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Abstract—The ability to quantify the level of regularity in an
individual’s patterns of visiting a particular location provides
valuable context in many areas, such as urban planning, reality
mining, and opportunistic networks. However, in many cases,
visit data is only available as zero-duration events, precluding
the application of methods that require continuous, densely-
sampled data. To address this, our approach in this paper takes
inspiration from an established body of research in the neural
coding community that deals with the similar problem of finding
patterns in event-based data. We adapt a neural synchrony
measure to develop a method of quantifying the regularity of
an individual’s visits to a location, where regularity is defined
as the level of similarity in weekly visiting patterns. We apply
this method to study regularity in three real-world datasets;
specifically, a metropolitan transport system, a university campus,
and an online location-sharing service. Among our findings we
identify a core group of individuals in each dataset that visited
at least one location with near-perfect regularity.

I. INTRODUCTION

The popularity of devices capable of tracking where individ-
uals have visited (such as GPS-enabled mobile phones) offers
both opportunities in providing location-aware commercial
services to users and research opportunities in measuring
and understanding human mobility behaviour. Furthering our
understanding of human visiting patterns is important in di-
verse areas such as urban planning [1], recommender systems
[2], opportunistic networks [3], and limiting the spread of
biological and computer viruses [4].

It is difficult to study human mobility without considering
its temporal nature. It has been shown that both the ordering
of visits and the timing of visits [5] contains information that
can be used to build powerful predictors of future behaviour.
Furthermore, human behaviour is driven by daily and weekly
routine [6], [7]. Although this form of temporal structure is
a rich source of information about individual behaviour, there
has been little work to examine regularity in individual visiting
patterns. Factors such as wealth, profession, lifestyle, and
health affect an individual’s routine, and therefore his or her
mobility patterns. This is likely to give rise to diversity in the
population’s visiting patterns and regularity. Indeed, diversity
has been found to be fundamental to human behaviour, both
within the same population and among different populations,
even having an evolutionary component [8]. Diversity in
visiting regularity may also exist among locations, with some
places, such as workplaces, having a natural predisposition for
routine.

While collective analysis of behaviour (i.e., focusing on
aggregate statistics of large populations of individuals) reveals
periodic temporal behaviour [7], [9], it is important to also
consider the individual scale (e.g., [10]), focusing on the
patterns of individuals from which the collective properties
emerge. It is at the individual scale that context-aware com-
puting, user profiling, and personalised recommendations are
performed. However, analysis at this scale is more challenging
as the data are more sparse and the effects of unpredictable
changes in behaviour are more prominent. These effects are
smoothed at the collective scale due to the aggregation of many
different, but weakly correlated, patterns.

In many real-world systems the visits of users are reduced
to instantaneous events, with information about the duration
of a stay either unrecorded or ignored. Despite this loss of
information, it is still valuable to analyse patterns of visits in
these systems. Examples of systems that capture event-based
visits include ‘checkins’ to venues in social networks and
location sharing services (for example, Facebook, Foursquare,
and Google Latitude), geo-tagged user-contributed content
(such as Twitter and Flickr), and electronic ticket payments in
metropolitan transport systems (such as the London transport
network). With these data there is no clear way to infer the
staying time, but nevertheless we are still able to extract
interesting patterns from arrival times alone.

In this paper we present a simple and efficient method for
measuring regularity in an individual’s visits to a location
and use it to explore the presence of regularity and routine
in real-world data. We define regularity as a visiting pattern
that is repeated with a reoccurring time frame (for example,
on a week-by-week or day-by-day basis). User visit data
such as this is very sparse and consequently challenging to
effectively model. This sparsity makes it difficult to apply
many established approaches for measuring regularity and
periodicity, such as nonlinear time series analysis, harmonic
analysis, and recurrence quantification analysis, as these are
most effective for time series that are continuous and densely
sampled. Although these approaches are unsuitable, in this
paper we draw on the large body of relevant work in the
neurophysiology community dealing with the problem of
finding regularity in event-based data.

The measure we present, named IVI-irregularity (inter-
visit interval irregularity), is adapted from a synchrony mea-
sure used in neural coding [11] (the branch of neurophysiology



concerned with the coding of information among the neurons
in the brain). In the context of neural coding, neurophysiolo-
gists deal with ensembles of spike trains, where each train
represents the instantaneous electrical pulses (or spikes) of
a particular neuron. An ensemble of spike trains is said to
exhibit high synchrony if the spikes in the trains occur at
similar times. Spikes can be regarded as abstract, zero-duration
events; in our case, spikes correspond to visits to a particular
location. We use a spike train synchrony measure to quantify
the dissimilarity in visits in different weeks; if visits in each
week occur at very similar times, then dissimilarity is very
low, and thus regularity is high. Throughout this paper we use
the terms visit and inter-visit interval (IVI) rather than spike
and inter-spike interval, as we are applying these techniques
outside the context of neurophysiology.

Using IVI-irregularity we seek to determine the prevalence
of regular relationships between individuals and locations and
factors that influence the level of regularity. We study these
questions using three empirical traces of human mobility, and
find that a core subgroup of individuals in each dataset have a
number of locations they visit with high regularity. For many
applications it is useful to treat regular visits differently to
erratic visits. Being aware of these characteristics of human
mobility, and being able to effectively measure them, is
valuable in many of the aforementioned scenarios.

The rest of this paper is structured as follows. The irregu-
larity measure is formulated in Section II. In Section III the
datasets used in the analysis are discussed. The analysis of
regularity in these datasets is presented in Section IV. We
discuss related work in Section V. Finally, in Section VI we
conclude the paper with a summary of the contributions and
opportunities for future work.

II. MEASURING REGULARITY

We define regularity as repeated routine over time. For
example, an individual visiting a location at very similar times
each week is considered to have a highly regular pattern for
that location. On the other hand, if the individual visits the
location at very different times each week it is considered to be
very a irregular pattern. Throughout this paper we use week-
by-week comparison to determine regularity; however, in the
following formulation we generalise this to any window size,
denoted by w.

The measure we introduce quantifies the level of irregularity
in an individual’s visits to a particular location in a given
period of time. Let the chronology of an individual v’s visits
to a particular location / be denoted by the ordered sequence of
times C,; = {t;|¢ =1,..., L}, where L is the number of v’s
visits to [. These times are assumed to be offsets from some
arbitrary origin, giving values t; € (0, Tynaz| Vi = 1,..., L.
The chronology is segmented into disjoint windows of duration
w to build N visit trains. The absolute times of visits are
translated to offsets from the start time of their corresponding
window; thus, each train has visit times in the interval (0, w].
We assume 7},,,, and w are chosen such that w N = T},,4.. We
denote the number of visits in the nth train with L,, and the
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Fig. 1. Example visit trains for a particular user and access point in the

DARTMOUTH dataset. Window width w = 7 days.

sequence of visit times with {u? |i =1,..., L, }. An example
of the visit trains for a chronology in the DARTMOUTH dataset
(discussed in Section III) are shown in Figure 1.

Irregularity is quantified by applying the ISI-diversity [12]
measure to the ensemble of N visit trains. The measure is
computationally efficient, scaling linearly in both the number
of visit trains N and number of visits L. We begin by
defining the inter-visit interval (IVI) as the time between
two consecutive visits. The instantaneous inter-visit interval
function I™(u) gives the IVI for the nth train at time offset
u; formally, we consider three cases,

I"(u) = uy it O<u<uy,
I"u)=w—uy if v} <u<w,

and I"(u) = min(u] |ul > u) — max(ul |ul < u) if v} <
u<uf .

We define two further instantaneous measures. For time
offset u, the instantaneous mean u(u) is given by

1 N
pw) = = ST

and the instantaneous standard deviation o(u) is given by

1/2
1 N

T D ) — puw))?

n=1

o(u) =

The coefficient of variation c,-(u) provides a measure of
dispersion in the IVI values at time offset w,
Coar(U) = w .
()

The coefficient of variation is a unitless measure and nor-
malised against the mean, which enables comparison between
the dispersion in collections of large IVI values and collections
of small IVI values.

By integrating over time offset © we obtain a measure of
overall dissimilarity D(C, ;) in the ensemble of visit trains
for chronology C, ;; formally,

D(Cy,) = l/ Cpar(u) du .
0

W

The resulting D(C,, ;) is a non-negative value, with D(C,, ;) =
0 indicating identical trains (or perfect regularity), and higher
values indicating more irregularity in the visiting patterns. We
refer to D(-) as the IVI-irregularity measure.



III. DATASETS

We use the [VI-irregularity measure to study regularity in
visiting patterns in the following datasets.

Foursquare Checkins (FOURSQUARE): Foursquare is a
popular location-based mobile social network. Foursquare
users voluntarily ‘check in’ to venues using the Foursquare
mobile application. In this way each user compiles a record
of his or her visits. We collected a dataset of all checkins in
three urban areas in the United Kingdom: Bristol, Cardiff, and
Cambridge. These checkins were collected in 2011 [13].

Dartmouth Wireless LAN Access Point Logs
(DARTMOUTH): Visits in this dataset are drawn from
the use of wireless access points (APs) by staff and students
at Dartmouth College campus in the United States [14].
Over 450 APs placed across the 800km? of campus provide
wireless coverage for most of the area, serving roughly 5,000
undergraduates and 1,200 faculty. The campus includes a
variety of facilities, including residences, auditoriums, and
social spaces. We use the AP movements trace of April 2003.

London Underground Journeys (UNDERGROUND): The
London Underground is a metropolitan rapid-transit rail sys-
tem serving most of Greater London in the United Kingdom.
The Oyster automated fare collection system is used by many
passengers, requiring each user to swipe his or her personal
Oyster RFID card at the station of entry and station of
exit. This provides a record of the passengers’ Underground
station visits. We obtained an anonymised dataset of all Oyster
card journeys over 28 days in March 2010 from Transport
for London (TfL), the government body responsible for the
service, to use in this paper.

While all three datasets capture visits of individuals to
locations, they are drawn from different domains and circum-
stances, and represent different geographic scales (relevant
differences are summarised in Table I). Of the three datasets,
FOURSQUARE is unique in that its visits are self-reported by
users and so visits may be liable to misreporting and under-
reporting; nevertheless, it is an interesting dataset as it is at
urban scale and covers many venue types. In the case of the
DARTMOUTH dataset we carried out additional processing to
prepare it for analysis. In particular, we discarded repeated
visits by the same user to the same AP separated by a short
interval (less than 15 minutes) as these are artefacts of the
WLAN AP protocol. In addition, to filter out stationary devices
(e.g., wireless-enabled desktop computers), we only included
devices that visited at least five different APs.

Each dataset spans a period of four consecutive weeks. We
note that the original data contained many individuals that
visited certain locations very rarely or exclusively in a few
of the four weeks. Chronologies such as these not suitable
for studying regularity, as their activity is too rare and too
transient. We restrict the datasets to chronologies with at least
two visits in each of the four weeks. The resulting datasets
are summarised in Table 1. This filtering culled 93% of the
original DARTMOUTH and UNDERGROUND person-location
pairs, indicating that, although the set of places a person has

TABLE I
SUMMARY OF DATASETS USED IN THE ANALYSIS OF REGULARITY. EACH
DATASET CORRESPONDS TO A FOUR-WEEK PERIOD. M DENOTES THE
NUMBER OF CHRONOLOGIES AND <L> DENOTES THE MEAN NUMBER OF
VISITS PER CHRONOLOGY. A CHRONOLOGY CUJ IS ONLY INCLUDED IN A
DATASET IF v VISITED [ AT LEAST TWICE IN EACH OF THE FOUR WEEKS.

Dataset FOURSQUARE DARTMOUTH  UNDERGROUND
Bristol,
Area(s) Cardiff, and Dartmouth London
Cambridge
Scale Urban Campus Metropolitan
Month June April March
Location type Venue Access point Metro station
Visit type Checkin Association Card swipe
Individuals 293 1,681 1,167,363
Locations 336 391 270
Visits 4,640 229,300 58,945,475
M 401 3,656 2,260,354
(L) 11.6 62.7 26.1

visited at least once may be large, many of these places are
only visited very occasionally. The number of chronologies for
FOURSQUARE reduced to 3% of the original, leaving a small
sample of 401. The remaining chronologies in FOURSQUARE
involve 4% of the users, a small proportion compared to 67%
in DARTMOUTH and 23% in UNDERGROUND.

IV. VISITS AND REGULARITY IN REAL-WORLD
MOBILITY TRACES

We divide our analysis into three areas of interest. We first
consider the influence of the time of week on the inter-visit
intervals of chronologies (Section IV-A). In Section IV-B we
compare the datasets in terms of their irregularity. Finally, we
consider how prevalent regular visiting patterns are among the
individuals in each dataset (Section IV-C).

A. Inter-visit intervals and the time of week

As discussed in Section II, our approach focuses on the
weekly patterns of inter-visit intervals (IVIs) for an indi-
vidual’s visits to a particular location. The IVIs themselves,
along with their level of dispersion at a particular time-of-
week, are an interesting property of human mobility and
thus we consider them specifically in Figure 2. The figure
shows how IVI dispersion (as quantified by the coefficient of
variation ¢, of a chronology at a given time-of-week) varies
throughout the week.

The small standard deviations in visit rates indicate that
the volume of visits is very similar in each week. This
contrasts with the {c,q,) values which have very high standard
deviation. This highlights the person-specific nature of an
individual’s visiting patterns with a location; in other words,
the visiting patterns (and therefore IVIs) of two different
individuals visiting the same location can be very different.

In the UNDERGROUND dataset we observe that, on average,
chronologies’ IVIs are most-dispersed between 10:00 and
16:00 on weekdays, and least-dispersed during nighttime. This
is because the relative effect of a discrepancy in visit times
that are close together is greater than when the visit times
are further apart. For example, the morning and afternoon



mean visit rate

Foursauare

(Cuar)

mean visit rate

Dartmouth
o

(Coar)
o
>

mean visit rate
O=_2NWHrOON®

Underground

| ———
j——
—a
——

o
o

Sat 00:00 F ————&——
Sat 08:00 - ———&———
Sat 16:00 |f ———&———
F——e——
Sun 16:00 | ———&———

Mon 00:00
Mon 08:00 |-
Mon 16:00 (-
Tue 00:00 -
Tue 08:00
Tue 16:00 -
Wed 00:00 |-
Wed 08:00 |-
Wed 16:00 |-
Thu 00:00 |-
Thu 08:00 -
Thu 16:00 |-
Fri 00:00 [~
Fri 08:00 [
Fri 16:00 |-
Sun 00:00
Sun 08:00

Fig. 2.  Time-of-week means of visit rates and coefficients of variation
({cvar)) for each dataset. {cyqr) is obtained by averaging over the cyqr
values in the corresponding two-hour time slot of all chronologies. A high
(cvar) indicates that the instantaneous IVI values were, on average, more
dispersed during that time of week.

commute on the same day are separated by roughly nine
hours, whereas the time between the afternoon commute and
the following day’s morning commute is roughly 15 hours.
Therefore, minor discrepancies in the visits to a commuter’s
stations will have a greater influence on the dispersion of
daytime IVIs than nighttime IVIs. The same behaviour is
responsible for the dip in IVI dispersion during the weekend.
Many chronologies consist of predominantly weekday visits.
The weekends for these chronologies will correspond to large
IVIs spanning from Friday to Monday, and so the dispersion
(cyar) Will be less during this period.

When comparing DARTMOUTH and UNDERGROUND we
note that DARTMOUTH’s weekday visit activity is sustained
throughout the day and lasts longer into the evening, rarely
declining before midnight. This reflects the fact that the
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Fig. 3. Cumulative distributions of IVI-irregularity scores (i.e., D(-)
values) in each dataset. High D(-) indicates high irregularity. The mean IVI-
irregularity value (D) is 0.381 (4-0.131) for FOURSQUARE, 0.510 (£0.185)
for DARTMOUTH, and 0.373 (£ 0.173) for UNDERGROUND.

DARTMOUTH dataset includes many types of visit (including
social, residential, and academic), whereas UNDERGROUND is
restricted to transportation. This late-evening visit activity is
also the reason for the delayed dip in IVI dispersion, which
does not decrease until 22:00 (compared to 16:00 in UN-
DERGROUND). It is also worth noting that the DARTMOUTH
decline in visit rate on the weekend is small. This is explained
by a large number of students living on-campus, compared to
a small proportion of students and staff who either live off-
campus or spend the weekend elsewhere.

B. Comparison of regularity between datasets

Given that the three datasets differ in scale, context, and
time of year we would expect differing visiting behaviours
in each. Indeed, we have already discussed how the three
datasets’ time-of-week visit rates exhibit different patterns.
The same is also true of the level of regularity present in
each dataset, as shown in Figure 3. DARTMOUTH is distinct
from the other two datasets, with the weight of its distribution
shifted towards higher irregularity. This is reflected in the
mean irregularity (D) (which we take over the available
user-location chronologies), which is higher for DARTMOUTH
(0.510) than for FOURSQUARE and UNDERGROUND (0.381
and 0.373, respectively). This suggests that the patterns of
individuals visiting locations on Dartmouth campus tend to be
more irregular. This is unlikely to be due to a sudden change in
routine, as the duration of the dataset (April 2003) is a continu-
ous period of term-time teaching, uninterrupted by holidays or
exams. The small deviations in visit rates (see visit rate plots
in Figure 2) also indicate that there was no overall change
in visiting patterns between the weeks. An alternative reason
for the increased irregularity may be the highly dynamic and
spontaneous nature of student behaviour. This contrasts with
Underground passengers and Foursquare users, whose student
proportion is likely to be much smaller, consisting instead of a
large population of individuals following less-flexible routines
(for example, commuters).



The finer-grained scale of the DARTMOUTH dataset may
also contribute to the increased irregularity. The Dartmouth
APs had an indoor range of around 40 to 100 metres, so
most buildings required multiple APs to achieve good WLAN
coverage. This means that users moving as little as a few tens
of metres can register as having visited a new location. These
short-distance movements are likely to be more unpredictable
and driven less by routine than larger-distance movements, and
thus result in higher irregularity in AP visits.

We also note the similar mean irregularities of FOURQ-
SUARE and UNDERGROUND chronologies, which may be
attributed to both datasets being at a city-wide scale and
consisting of a broad cross-section of people, as opposed to
Dartmouth campus’s predominantly student population.

C. Prevalence of regularity among individuals

We now study the extent to which an individual has regular
relationships with the locations he or she visits. We begin
by considering the overall number of locations individuals
tend to visit, as shown in Figure 4a. In FOURSQUARE and
DARTMOUTH the percentage of individuals decreases with
the number of different locations, with DARTMOUTH users
typically visiting a wider variety of locations. UNDERGROUND
follows a similar pattern, except its peak is at two locations
rather than one, which is explained by the nature of Under-
ground journeys. Individuals with only one location are due
to the rare instances of a passenger either bypassing the exit
turnstile or exiting from the entry station, and the minimum-
visits filtering we discussed in Section III.

Using the IVI-irregularity D(C,,;) of an individual v’s
visits to location [ we can evaluate whether v’s visits to !
are regular or irregular. We set a threshold for irregularity,
below which we will regard v’s visits to [ as regular. In
Figure 4b we plot the distribution of individuals and how
many of the locations they visited were deemed regular in
this way. We set a strict threshold of 0.2, as we wish to
find the chronologies with near-perfect regularity. As shown in
Figure 3, a minority of chronologies in each dataset are within
this threshold (8.2% in FOURSQUARE, 4.4% in DARTMOUTH,
and 17.4% in UNDERGROUND).

Figure 4b shows how the set of highly regular chronologies
is distributed among the individuals. 8% of Foursquare users
and Dartmouth WLAN users had at least one location that
they visited with high regularity. The percentage increases in
the case of Underground passengers, with 21% of individuals
having at least one regular location, likely due to the more-
routine nature of travel. At stricter thresholds (i.e., thresholds
closer to 0), the size of the core group of users with at
least one regular venue decreases. The threshold at which the
size of this group dropped to 1% of individuals was 0.009
for FOURSQUARE, 0.050 for DARTMOUTH, and 0.007 for
UNDERGROUND.

We also consider whether there is any relationship between
an Underground passenger’s most-visited station and his or
her most-irregular station. Most-visited stations are likely to
be ‘home’ stations, which we expect to have irregular visiting

patterns, since they represent a convolution of many different
routines throughout the week. We consider the probability
p(m) that, given an individual v who has visited m stations,
the individual’s most irregular station [ (i.e., [ such that
D(C,,) is maximised) is also the station that v visited the
most. We find that p(2) = 0.55, p(3) = 0.37, p(4) = 0.29,
p(5) = 0.28, and p(6) = 0.28, indicating that the probability
of these stations matching is slightly higher than chance.
The deviation from chance becomes greater when individuals
have four or more frequently visited stations. This deviation
is more significant in DARTMOUTH, which has probabilities
p(2) = 0.57, p(3) = 0.47, and p(4) = 0.43.

V. RELATED WORK

Relevant related work includes other approaches to quan-
tifying patterns in human mobility. Information entropy has
been used in [15] to quantify the predictability of mobile
phone users’ patterns of transition between home and work.
The work we have presented attempts to go beyond only home
and work, considering the many other locations a person visits.
An interesting observation in [15] is that university students,
especially those in their first year of study, have the highest
entropy, and therefore are the least predictable. This agrees
with our finding that DARTMOUTH individuals have higher
irregularity.

Song et al. [5] have made two key contributions relevant to
the work in this paper. First, the authors investigate a different
but related concept of regularity, which is defined by them as
the probability that an individual is found at his or her most-
visited location. They find that this property is tied to the
time-of-week, as we also observed with the mean coefficient
of variation (Section IV-A). As previously mentioned, we go
beyond the individual’s most-visited location and consider
their relationships with other places. Second, the authors find
that a significant amount of predictive information is encoded
in the sequence and ordering of visits. In this paper we
have focused on IVIs and their variation by time of week;
patterns in the sequences of IVIs is an interesting direction
for future work. We also note the datasets in this paper are
geographically fine-grained compared to the mobile phone
records used in [5], which are on the granularity of cell towers.

There has been research (such as [16]) in the opportunistic
networking community that views human behaviour as events
in a point process and leverages the corresponding literature;
however, we have not found any work in the fields of human
mobility or human encounters that utilises the methods of
neural coding (in which neuronal spikes are often treated as
point processes) as we have in this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduce a novel method for measuring
regularity in an individual’s visits to a particular location,
adapted from the neural coding concept of synchrony. The
method is computationally efficient, does not require binning,
and is applicable even for low visit rates.
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Fig. 4. Number of regular locations per individual compared to the overall number of locations per individual.

Using this method we investigate the visiting patterns of
individuals in three diverse datasets; specifically, a metropoli-
tan transport system, a university campus, and an online
location-sharing service. We find that campus visits are the
most irregular, likely due to the flexible nature of student
behaviour, and transport visits are most regular, likely due
to the significant commuter population. In all three datasets
we find a core group of individuals that visit at least one
location with near-perfect regularity. We also note a correlation
between an individual’s most-visited location (likely to be a
associated with their home) and irregularity.

This paper has focused on regularity from the perspective of
the individual, but we can use the same approach to consider
the location perspective. Future work will investigate how
the type of a location (e.g., the Foursquare venue category)
influences the regularity of users visiting it, and how this
contributes to the overall mean irregularity. We can also
consider the prevalence of regularity among locations. This has
implications for retailers and shop owners, as it would allow
them to distinguish regular visitors from irregular visitors.
We intend also to extend this work from person-at-location
regularity to person-to-person regularity.
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