
 

 

 

The Effects of Aberrant Wnt Signalling on the Murine 

Intestinal Stem Cell Compartment 

 

 

Madeleine A Young 

 

Cardiff University 

Ph.D. 

2009-2013 

 

 

  



ii 

 

Declarations 

This work has not been submitted in substance for any other degree or award at this or 

any other university or place of learning, nor is being submitted concurrently in 

candidature for any degree or other award. 

 

This thesis is being submitted in partial fulfilment of the requirements for the degree of 

PhD. 

 

This thesis is the result of my own independent work/investigation, except where 

otherwise stated. Other sources are acknowledged by explicit references.  The views 

expressed are my own. 

 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 

inter-library loan, and for the title and summary to be made available to outside 

organisations. 

 

 

Signed ………………………………………… (Candidate)       Date ………………………… 

  



iii 

 

Acknowledgements 

I dedicate this thesis to my Dad, whose short battle with cancer inspired my career 

choice. 

Firstly I would like to thank Prof Alan Clarke, for enabling me to pursue such an 

interesting and exciting PhD project, and giving me guidance and independence in equal 

measure. I would also like to thank the whole ARC group, especially Dr Karen Reed for 

her time, patience, enthusiasm and general loveliness, Dr Valerie Méniel for her 

encouragement, kindness and support and my work wife, Lili Ordonez, for her 

friendship and humour. Everyone within the group has been amazingly supportive 

throughout my PhD and have helped me to start believing in my own abilities as a 

researcher.  

Balancing my social life with the demands of a PhD has been challenging and so I would 

like to thank my amazing friends, especially the P.P.s, who have been there for me 

whenever I needed to eat cake and talk rubbish. I am always amazed at the ability of 

these wonderful people to make me forget about work stresses and concentrate on the 

important things in life such as fizzy booze and being silly. 

My family have been wonderful throughout my studies, and my Mum’s love, support 

and proof-reading services have been second to none. Just knowing that I can come back 

to Brixham whenever I want to and be looked after has made this whole process a lot 

easier! My brother Roly and sister Poppy have also encouraged me in their own way, 

usually displayed through a constant willingness to drink with me. 

Finally I’d like to thank my partner Mark, for his love, patience and pasta making skills 

throughout my PhD, all of which have meant that the last four years have not only been 

manageable, they’ve been awesome. 



iv 

 

Table of Contents 

Declarations ..............................................................................................................................................................ii 

Acknowledgements............................................................................................................................................. iii 

Table of Contents ................................................................................................................................................. iv 

List of Figures ....................................................................................................................................................... xii 

List of Tables ....................................................................................................................................................... xvii 

Abbreviations and Definitions .................................................................................................................. xviii 

Abstract ......................................................................................................................................................................1 

1 General Introduction...................................................................................................................................1 

1.1 Intestinal anatomy and function ................................................................................................................... 2 

1.1.1 Intestinal histology ..................................................................................................................................... 2 

1.2 Signalling pathways involved in intestinal homeostasis .................................................................. 5 

1.2.1 Canonical Wnt signalling Pathway ..................................................................................................... 5 

1.2.2 Notch Signalling pathway ....................................................................................................................... 6 

1.2.3 TGFβ, BMP signalling pathway............................................................................................................. 7 

1.2.4 The Hedgehog Pathway ........................................................................................................................... 7 

1.3 Adult intestinal stem cells .............................................................................................................................. 10 

1.3.1 Identifying the ISC: location and markers ................................................................................... 10 

1.3.2 ISC division .................................................................................................................................................. 13 

1.3.3 Stem cell niche ........................................................................................................................................... 14 

1.3.4 In vitro culture of ISCs ........................................................................................................................... 17 

1.4 Colorectal cancer ................................................................................................................................................ 19 

1.4.1 Signalling Pathways associated with CRC ................................................................................... 21 

1.5 Modelling CRC in the mouse ......................................................................................................................... 23 

1.5.1 Mouse models of FAP ............................................................................................................................. 23 

1.5.2 Cre-lox technology ................................................................................................................................... 24 

1.5.3 β-catenin mutant mouse models ...................................................................................................... 27 



v 

 

1.6 Intestinal stem cells as the cells of origin of CRC ............................................................................... 27 

1.7 Cancer stem cells ................................................................................................................................................ 28 

1.7.1 Cancer stem cells and chemotherapy ............................................................................................ 29 

2 Aims and Objectives ................................................................................................................................. 32 

3 Materials and Methods............................................................................................................................ 33 

3.1 Experimental Animals ...................................................................................................................................... 33 

3.1.1 Animal Husbandry ................................................................................................................................... 33 

3.1.2 Breeding ........................................................................................................................................................ 33 

3.2 Genetic Mouse Models ..................................................................................................................................... 33 

3.3 Experimental Procedures............................................................................................................................... 33 

3.3.1 Ear biopsy for genotyping.................................................................................................................... 33 

3.4 Genotyping of mice using Polymerase Chain Reaction (PCR) ..................................................... 34 

3.4.1 DNA extraction .......................................................................................................................................... 34 

3.4.2 PCR Protocol ............................................................................................................................................... 35 

3.4.3 Visualisation of PCR products............................................................................................................ 36 

3.5 Experimental Cohorts ...................................................................................................................................... 37 

3.5.1 Tamoxifen administration ................................................................................................................... 37 

3.5.2 5-Bromo-2-deoxyuridine administration .................................................................................... 37 

3.6 Tissue Preparation............................................................................................................................................. 38 

3.6.1 Tissue Dissection ...................................................................................................................................... 38 

3.6.2 Tissue Fixation using Formalin ......................................................................................................... 38 

3.6.3 Fixation Using Methacarn .................................................................................................................... 38 

3.6.4 Paraffin Embedding Fixed Tissue .................................................................................................... 39 

3.6.5 Sectioning Fixed Tissue ......................................................................................................................... 39 

3.6.6 Snap freezing tissue ................................................................................................................................ 39 

3.6.7 Epithelial Cell Extraction using Weiser Preparation ............................................................. 39 

3.7 Histological Analysis ......................................................................................................................................... 41 

3.7.1 De-waxing and Rehydrating PLLs ................................................................................................... 41 



vi 

 

3.7.2 Haematoxylin and Eosin (H&E) staining ..................................................................................... 41 

3.7.3 Cell Type Specific Stains ....................................................................................................................... 41 

3.7.4 Immunohistochemistry (IHC)............................................................................................................ 42 

3.7.5 Cell Counting ............................................................................................................................................... 46 

3.7.6 Tumour Severity Grading..................................................................................................................... 46 

3.8 In Situ Hybridisation ......................................................................................................................................... 48 

3.8.1 Transformation of competent cells with cDNA vectors ....................................................... 48 

3.8.2 Plasmid DNA extraction and probe linearization .................................................................... 49 

3.8.3 Probe Preparation.................................................................................................................................... 50 

3.8.4 Probe hybridisation ................................................................................................................................ 51 

3.8.5 Post-hybridisation treatment ............................................................................................................ 52 

3.8.6 Signal Detection ........................................................................................................................................ 52 

3.8.7 Preparation of intestinal tissue powder ....................................................................................... 52 

3.9 Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) .................... 53 

3.9.1 RNA extraction........................................................................................................................................... 53 

3.9.2 DNase Treatment ..................................................................................................................................... 53 

3.9.3 cDNA synthesis .......................................................................................................................................... 54 

3.9.4 SYBR Green Gene Expression Analysis ......................................................................................... 54 

3.9.5 TaqMan Gene Expression Analysis ................................................................................................. 55 

3.9.6 Analysis of qRT-PCR data ..................................................................................................................... 56 

3.10 Western Blotting ................................................................................................................................................. 57 

3.10.1 Protein Extraction .................................................................................................................................... 57 

3.10.2 Protein Quantification ........................................................................................................................... 57 

3.10.3 Sample Preparation................................................................................................................................. 58 

3.10.4 Gel Casting.................................................................................................................................................... 58 

3.10.5 SDS-PAGE ..................................................................................................................................................... 59 

3.10.6 Protein transfer ......................................................................................................................................... 59 

3.10.7 Antibody probing of nitrocellulose filter ..................................................................................... 59 



vii 

 

3.10.8 Signal detection ......................................................................................................................................... 61 

3.10.9 Stripping the filter.................................................................................................................................... 61 

3.10.10 Confirmation of equal loading ...................................................................................................... 61 

3.11 Intestinal organoid culture ............................................................................................................................ 62 

3.11.1 Isolation of intestinal crypts ............................................................................................................... 62 

3.11.2 Counting and seeding crypts .............................................................................................................. 62 

3.11.3 Organoid growth media ........................................................................................................................ 63 

3.11.4 Organoid formation efficiency assay .............................................................................................. 63 

3.11.5 PrestoBlue viability assay .................................................................................................................... 64 

3.11.6 Fixing Intestinal Organoids for Immunohistochemistry ..................................................... 67 

3.12 Data Analysis ........................................................................................................................................................ 68 

4 Development and Optimisation of a novel ISC function assay ............................................ 69 

4.1 Introduction .......................................................................................................................................................... 69 

4.2 Identifying and counting crypts .................................................................................................................. 72 

4.3 High variation between seeding densities in wells of 96-well plate ....................................... 74 

4.4 Establishing CHARM settings for counting initially seeded crypts and number of 

organoids at day 11 .......................................................................................................................................................... 74 

4.5 Seeding density does not affect the percentage of organoids which grow .......................... 75 

4.6 Number of wells of each genotype required to produce an accurate readout of 

stemness ................................................................................................................................................................................. 76 

4.7 Crypts from induced Apcflox/flox mice form cyst-like organoids .................................................... 79 

4.7.1 Apcflox/flox form two distinct types of organoids ......................................................................... 79 

4.7.2 Apcflox/flox organoids contain fewer differentiated cell types than wildtype 

organoids .......................................................................................................................................................................... 83 

4.7.3 Ki67 is expressed from a higher number of cells from wildtype organoids than 

from Apcflox/flox organoids........................................................................................................................................... 86 

4.7.4 Apcflox/flox and wildtype organoid cells undergo similar levels of apoptosis ............... 86 

4.8 Apcflox/flox organoids grow faster than wildtype ................................................................................... 90 

4.8.1 Apcflox/flox organoids have higher levels of nuclear β-catenin than wildtype .............. 90 



viii 

 

4.9 Assessing changes in the ISC compartment as a result of Apc loss using traditional gene 

expression methods ......................................................................................................................................................... 93 

4.10 A higher percentage of Apcflox/flox crypts are capable of forming organoids than wild 

type crypts and grow in the absence of Rspo1 ................................................................................................... 95 

4.11 Using the organoid culture method as a readout of Wnt-activation in the Intestinal 

Stem cell compartment ................................................................................................................................................... 97 

4.12 Mitochondrial activity within Apcflox/flox organoids is not affected by Rspo1 

concentration whereas wild type organoids respond in a dose dependant manner ..................... 98 

4.13 Assessing the utility of the organoid formation assay using a Cited-1 deficient mouse 

model 99 

4.13.1 Cited-1 ............................................................................................................................................................ 99 

4.14 Cited-1 loss and the ISC compartment .................................................................................................. 100 

4.14.1 Cited-1-/- organoids ............................................................................................................................... 102 

4.14.2 Cited-1-/- crypts form organoids more efficiently than wildtype .................................. 102 

4.14.3 Cited-1-/- organoids are Rspo1 dependent ................................................................................ 102 

4.15 Discussion............................................................................................................................................................ 105 

4.15.1 Apcflox/flox crypts form two distinct types of organoids ....................................................... 105 

4.15.2 Apcflox/flox organoids contain fewer differentiated cells than wildtype ....................... 106 

4.15.3 Wildtype organoids are more highly proliferative than Apcflox/flox organoids ........ 106 

4.15.4 Development of a functional stem cell assay .......................................................................... 108 

4.15.5 The effect of Cited-1 loss on the ISC compartment .............................................................. 109 

4.16 Summary .............................................................................................................................................................. 110 

4.17 Future Work ....................................................................................................................................................... 111 

5 The roles of Pml in the context of Apc and Pten dependent colorectal 

tumourigenesis .................................................................................................................................................... 69 

5.1 Introduction ....................................................................................................................................................... 113 

5.1.1 PTEN in tumourigenesis .................................................................................................................... 113 

5.1.2 PML in tumourigenesis ....................................................................................................................... 114 

4.1.1 PTEN, PML and stem cells ................................................................................................................. 115 



ix 

 

4.2 Results ................................................................................................................................................................... 117 

4.2.1 Pml deficiency does not affect survival, tumour burden or tumour grade, but does 

result in increased intussusception in an Apcflox/+ mouse model of tumourigenesis .............. 117 

5.1.3 Pml deficiency does not alter the phenotype of Apcflox/flox mice ..................................... 121 

5.1.4 Pml loss does not activate the PI3K pathway in Apcflox/flox intestinal epithelium . 126 

5.1.5 Pml loss results in a significant increase in expression of ISC markers in Apcflox/flox 

mice 130 

5.1.6 Pml deficiency does not affect the survival or tumour burden in Apcflox/+ Ptenflox/flox 

mice 132 

5.1.7 Pml deficiency increases tumour progression Apcflox/+ Ptenflox/flox mice .................... 132 

5.1.8 Pml deficiency significantly reduces survival of Apcflox/flox Ptenflox/flox mice .............. 135 

5.1.9 Pml deficiency does not alter the histological phenotype of Apcflox/flox Ptenflox/flox 

mice 136 

5.1.10 Pml loss does not activate the PI3K pathway in Apcflox/flox Ptenflox/flox intestinal 

epithelium ..................................................................................................................................................................... 143 

5.1.11 Pml loss results in a significant increase in expression of ISC markers in Apcflox/flox 

Ptenflox/flox mice............................................................................................................................................................. 143 

5.1.12 Organoids from all cohorts are cyst-like, with few differentiated cell types ......... 146 

5.1.13 Pml loss does not affect organoid formation efficiency in Apcflox/flox or Apcflox/flox 

Ptenflox/flox mice............................................................................................................................................................. 146 

5.2 Discussion............................................................................................................................................................ 148 

5.2.1 Pml deficiency results in subtle phenotypic changes in Apcflox/+ and Apcflox/flox mice, 

but no change in survival or tumour burden .............................................................................................. 148 

5.2.2 Pml deficiency does not affect the survival or tumour burden in Apcflox/+ Ptenflox/flox 

but results in increased tumour progression ............................................................................................. 150 

5.2.3 Pml deficiency significantly reduces survival of Apcflox/flox Ptenflox/flox mice but does 

not grossly alter intestinal phenotype ............................................................................................................ 151 

5.2.4 Pml loss results in a significant increase in expression of ISC markers in both 

Apcflox/flox and Apcflox/flox Ptenflox/flox mice........................................................................................................... 152 

5.3 Summary .............................................................................................................................................................. 154 



x 

 

5.4 Future Work ....................................................................................................................................................... 154 

6 Investigating the effects of loss of Apc2 on the ISC compartment .................................. 113 

6.1 Introduction ....................................................................................................................................................... 156 

6.2 Results ................................................................................................................................................................... 159 

6.3 Analysis of Apc2-/- intestinal phenotype in vivo and in vitro .................................................... 159 

6.3.1 Apc2 loss results in significantly shorter crypt lengths..................................................... 159 

6.3.2 Apc2 loss does not affect levels of apoptosis or mitosis but does alter the location 

of apoptotic bodies ................................................................................................................................................... 159 

6.3.3 Loss of Apc2 results in an increased level of Wnt-signalling within the intestinal 

epithelium ..................................................................................................................................................................... 163 

6.3.4 Loss of Apc2 results in an increased level of expression of intestinal stem cell 

markers, but no mis-localisation of expression ......................................................................................... 166 

6.3.5 Apc2-/- organoids are phenotypically identical to wildtype ............................................ 168 

6.3.6 Apc2-/- crypts form organoids at a lower efficiency than wildtype ............................. 168 

6.3.7 Apc2-/- organoids are less dependent on R-spondin than wildtype ............................ 168 

6.4 Analysis of Apc2-/- intestinal phenotype in the context of Apc homozygous deletion, in 

vivo and in vitro ................................................................................................................................................................ 172 

6.4.1 Additional loss of Apc2 does not alter the intestinal morphology resulting from 

Apc deletion .................................................................................................................................................................. 172 

6.4.2 Additional loss of Apc2 results in increased apoptosis ..................................................... 176 

6.4.3 Additional loss of Apc2 attenuates the increased Wnt-signalling phenotype of 

Apcflox/flox mutants ....................................................................................................................................................... 179 

6.4.4 Additional loss of Apc2 attenuates expansion of the ISC compartment associated 

with Apc loss................................................................................................................................................................. 179 

6.4.5 Organoids derived from Apcflox/floxApc2-/- crypts are phenotypically identical to 

Apcflox/flox organoids ................................................................................................................................................... 182 

6.4.6 Apcflox/floxApc2-/- crypts form organoids less efficiently than Apcflox/flox crypts ........ 182 

6.4.7 Apcflox/floxApc2-/- organoids are R-spondin independent .................................................... 182 

6.5 Discussion............................................................................................................................................................ 185 

6.5.1 Loss of Apc2 alone subtly alters intestinal homeostasis ................................................... 185 



xi 

 

6.5.2 Loss of Apc2 results in increased Wnt-signalling ................................................................. 185 

6.5.3 Loss of Apc2 results in increased expression of intestinal stem cell markers but 

less efficient organoid formation ...................................................................................................................... 185 

6.5.4 Additional loss of Apc2 results in increased survival of Apcflox/flox mice .................... 189 

6.5.5 Additional loss of Apc2 results in attenuated the Wnt-signalling and stem cell 

phenotype in Apcflox/flox crypts ............................................................................................................................. 190 

6.5.6 Loss of Apc2 does not impact tumourigenesis despite affecting the ISC population

 191 

6.6 Summary .............................................................................................................................................................. 193 

6.7 Future work ........................................................................................................................................................ 194 

7 General Discussion ................................................................................................................................. 156 

7.1 Loss of Cited-1 results in an increase in expression of ISC markers and higher organoid 

formation efficiency ...................................................................................................................................................... 198 

7.2 Loss of Pml results in an increase in expression of ISC markers but no change in 

organoid formation efficiency .................................................................................................................................. 199 

7.3 Loss of Apc2 results in an increase in expression of ISC markers but a lower organoid 

formation efficiency ...................................................................................................................................................... 199 

7.4 The potential of Msi-1 as a marker of the functional ISC population ................................... 202 

References ........................................................................................................................................................... 206 

Appendix 1: Publication List....................................................................................................................... 225 



xii 

 

List of Figures 

Figure 1.1 Intestinal Histology. .......................................................................................................................4 

Figure 1.2 Outline of the main signalling pathways involved in intestinal homeostasis. ...9 

Figure 1.3 Diagrammatic representation of the three division “choices” which stem cells 

face.. ........................................................................................................................................................................... 14 

Figure 1.4 Organoid grown from a single intestinal crypt. ............................................................. 18 

Figure 1.5 Model of tumour intitiation and progression as proposed by Fearon and 

Vogelstein ............................................................................................................................................................... 20 

Figure 1.6 Outline of the PI3Kinase pathway.. ...................................................................................... 22 

Figure 1.7 Outline of Cre-Lox Technology. ............................................................................................. 25 

Figure 1.8 LacZ stain of mouse small intestinal villi after recombination using Cre-

recombinase linked to Lgr5 expression. .................................................................................................. 26 

Figure 1.9 Cancer stem cells and chemotherapeutics. ...................................................................... 30 

Figure 3.1 Tumour grading system. ........................................................................................................... 47 

Figure 4.1 A typical crypt faction at counting ....................................................................................... 73 

Figure 4.2 The number of crypts counted in 6 wells when seeded at 100 crypts per well.

...................................................................................................................................................................................... 73 

Figure 4.3 GelCount counts of 10 wells of a 96 wells plate to show seeding variability..76 

Figure 4.4 Screenshot of GelCount programme when counting organoids. ........................... 77 

Figure 4.5 Seeding density within a two-fold range does not affect the percentage of 

crypts which form organoids. ....................................................................................................................... 77 

Figure 4.6 Running mean of the percent of crypts which form organoids in 20 wells.. ... 78 

Figure 4.7 Images of organoids grown from the crypts of wild type (top row) and 

induced Apcflox/flox mice taken daily for 14 days.. ................................................................................. 80 

4.8 Wildtype organoids form a regular structure with visible Paneth cells ........................... 81 

4.9 Organoids derived from Apcflox/flox mice form cyst-like structures of two types. ......... 82 

4.10 Alcian Blue stain of wildtype and Apcflox/flox organoids.. ......................................................... 84 

4.11 Grimelius stain of wildtype and Apcflox/flox organoids. ............................................................ 85 

4.12 Lysozyme IHC of wildtype and Apcflox/flox organoids. ............................................................... 85 

4.13 A Ki67 IHC on wildtype and Apcflox/flox organoids ..................................................................... 87 

4.14 Percentage of wildtype and Apcflox/flox organoid cells which stain positive for Ki67. .



xiii 

 

...................................................................................................................................................................................... 87 

4.15 BrDU IHC of uninduced Apcflox/flox organoids (equivalent to wildtype) and induced 

Apcflox/flox organoids after 1 hour of BrDU exposure. ......................................................................... 88 

4.16 A Caspase3 IHC on wildtype and Apcflox/flox organoids. .......................................................... 89 

4.17 Percentage of Wildtype and Apcflox/flox organoid cells which are Caspase 3 positive.

...................................................................................................................................................................................... 89 

4.18 Apcflox/flox organoids grew faster than wildtype, but were not significantly larger at 

day 11.. ..................................................................................................................................................................... 91 

4.19 Wildtype and Apcflox/flox organoids have the same number of cells at day 11.............. 91 

4.20 β-catenin IHC on wildtype and Apcflox/flox organoids ............................................................... 92 

4.21 qRT-PCR results of relative expression levels of a range of proposed intestinal stem 

cell markers from wildtype versus Apcflox/flox intestinal epithelial cell preparations. ....... 94 

4.22 In situ hybridisation for stem cell markers Olfm4 and Ascl2 in wildtype and day 4 

Apcflox/flox murine intestine.............................................................................................................................. 94 

4.23 Organoid forming efficiency of wildtype and Apcflox/flox crypts .......................................... 96 

4.24 Organoid forming efficiency of wildtype and Apcflox/flox crypts in the absence of 

Rspo1 ........................................................................................................................................................................ 96 

4.25 Relative mitochondrial activity of wildtype and Apcflox/flox organoids in different 

Rspo1 concentrations using the PrestoBlue assay ............................................................................. 98 

4.26 qRT-PCR results of relative expression levels of a range of proposed intestinal stem 

cell markers from wildtype versus Cited-1-/- intestinal epithelial cell preparation ........ 101 

4.27 In situ hybridisation for the intestinal stem cell marker Olfm4 in wildtype and 

Cited-1-/- crypts. ................................................................................................................................................ 101 

4.28 H&E of a Cited-1-/- organoids. ........................................................................................................... 103 

4.29 Organoid formation efficiency of Cited-1-/- compared to wildtype crypts ................. 104 

4.30 Relative mitochondrial activity of wildtype and Cited-1-/- organoids in differenct 

Rspo1 concentrations using the PrestoBlue assay.. ........................................................................ 104 

5.1 A Survival Plot of Apcflox/+ mice with or without Pml deletion. .......................................... 118 

5.2 Graphical representation of the proportion of each lesion type found per genetic 

cohort.. .................................................................................................................................................................. 119 

5.3 Cumulative survivals of Apcflox/flox and Apcflox/flox Pml-/- mice after administration of 

tamoxifen. ............................................................................................................................................................ 120 



xiv 

 

5.4 H&E Stain of Apcflox/flox and Apcflox/flox Pml-/- mouse intestine day 3 post induction with 

tamoxifen.. ........................................................................................................................................................... 122 

5.5 Counts of the number of cells in the region of aberrant proliferation per crypt-villus 

axis in Apcflox/flox and Apcflox/flox Pml-/-mice ............................................................................................ 122 

5.6  Alcian Blue IHC of Apcflox/flox and Apcflox/flox Pml-/- intestine ................................................. 123 

5.7  Paneth cell IHC of Apcflox/flox and Apcflox/flox Pml-/- intestine. ................................................ 124 

5.8 Grimelius stain of Apcflox/flox and Apcflox/flox Pml-/- intestine .................................................. 125 

5.9 Comparison of levels of apoptosis in Apcflox/flox and Apcflox/flox Pml-/- mice..................... 127 

5.10 Comparison of levels of mitosis in Apcflox/flox and Apcflox/flox Pml-/- mice.. ..................... 128 

5.11 Phospho-AKT levels as a measure of activation of the PI3K pathway due to 

additional deletion of Pml form Apcflox/flox mice ................................................................................. 129 

5.12 qRT-PCR analysis of selected ISC markers showed a trend for increased expression 

due to Pml loss in Apcflox/flox mice. ............................................................................................................ 131 

5.13 In situ hybridisation to visualise Olfm4 mRNA expression location ............................. 131 

5.14 Survival and tumour burden of Apcflox/+ Ptenflox/flox mice with or without Pml 

deletion ................................................................................................................................................................. 133 

5.15 Graphical representation of the numbers of each lesion type found per genetic 

cohort. ................................................................................................................................................................... 134 

5.16  Cumulative survival of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice 

after administration of tamoxifen ............................................................................................................ 135 

5.17 H&E Stain of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mouse intestine day 

3 post induction with tamoxifen. ............................................................................................................. 137 

5.18 Counts of the number of cells in the region aberrant proliferation per crypt-villus 

axis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. .............................................. 137 

5.19 Alcian Blue IHC of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- intestine .... 138 

5.20 Lysozyme cell IHC of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- .................. 139 

5.21 Grimelius stain of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/-......................... 140 

5.22 Comparison of levels of apoptosis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox 

Pml-/- mice. ........................................................................................................................................................... 141 

5.23 Comparison of levels of mitosis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-

/- mice. .................................................................................................................................................................... 142 

5.24 Phospho-AKT levels as a measure of activation of the PI3K pathway due to 



xv 

 

additional deletion of Pml from Apcflox/flox Ptenflox/flox mice. .......................................................... 144 

5.25 qRT-PCR analysis of selected ISC markers showed a trend for increased expression 

due to Pml loss in Apcflox/flox mice. ............................................................................................................ 145 

5.26 In situ hybridisation to visualise Olfm4 mRNA expression location.. ........................... 145 

5.27 H&E displaying organoids representative of Apcflox/flox Pml-/-, Apcflox/flox Ptenflox/flox 

and Apcflox/flox Ptenflox/flox Pml-/- organoids. ............................................................................................ 147 

5.28 Intestinal organoid formation efficiency of Apcflox/flox, Apcflox/flox Pml-/-, Apcflox/flox 

Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- intestinal crypts.. ....................................................... 147 

6.1 Expression of Apc2 is downregulated in the majority of human colorectal cancers..

................................................................................................................................................................................... 158 

6.2 H&E of crypt villus structure of wildtype and Apc2-/- intestine......................................... 160 

6.3 Cell counts for wildtype and Apc2-/- intestinal crypts. ........................................................... 160 

6.4 Mitotic Index of wildtype versus Apc2-/- crypts. ........................................................................ 161 

6.5 Cumulative distribution of mitotic cells within the intestinal crypt of wildtype and 

Apc2-/- mice. ........................................................................................................................................................ 161 

6.6 Apoptotic Index of wildtype versus Apc2-/- crypts.. ................................................................. 162 

6.7 Cumulative distribution of mitotic cells within the intestinal crypt of wildtype and 

Apc2-/- mice. ........................................................................................................................................................ 162 

6.8 qRT-PCR results showing the relative expression levels of Wnt-target genes in 

wildtype and Apc2-/- intestinal epithelium. ......................................................................................... 164 

6.9 IHC for β-catenin showing increased nuclear localisation in wildtype and Apc2-/- 

intestinal crypts ................................................................................................................................................ 164 

6.10 qRT-PCR results showing the relative expression levels of Wnt-inhibitor genes in 

wildtype and Apc2-/- intestinal epithelium. ......................................................................................... 165 

6.11 qRT-PCR results showing the relative expression levels of intestinal stem cell 

marker genes in wildtype and Apc2-/- intestinal epithelium ...................................................... 167 

6.12 In situ hybridisation for Olfm4 expression in Wildtype and Apc2-/- intestine.. ........ 167 

6.13 Phenotype of Apc2-/- intestinal organoids.. ............................................................................... 169 

6.14 Growth rates of wildtype and Apc2-/- organoids.. .................................................................. 170 

6.15 Organoid formation efficiency of wildtype and Apc2-/- crypts. ....................................... 170 

6.16 Wildtype crypts die by day 3 post seeding in the absence of R-spondin, whereas 

Apc2-/- crypts survive until day 4. ............................................................................................................ 171 



xvi 

 

6.17 Prestoblue assay showing the mitochondrial activity of wildtype and Apc2-/- 

organoids day 3 post seeding as well as Apc2-/- organoids at day 4 in various R-spondin 

concentrations................................................................................................................................................... 171 

6.18 Cumulative survival plot of Apcflox/flox and Apcflox/flox Apc2-/- mice post tamoxifen 

induction. ............................................................................................................................................................. 174 

6.19 H&Es of Apcflox/flox and Apcflox/flox Apc2-/- intestine at day 4 post induction. ............... 174 

6.20 Number of cells in the region of aberrant proliferation per crypt-villus region of 

Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (ApcApc2) intestine at day 4 post induction. ....... 175 

6.21 Number of cells in the region of aberrant proliferation per crypt-villus region of 

Apcflox/flox (Apc) and Apcflox/flox Apc-/- (ApcApc2) intestine at day 5 post induction. .......... 175 

6.22 Mitotic Index of Apcflox/flox versus Apcflox/flox Apc2-/- intestinal epithelium. ................. 177 

6.23 Cumulative frequency graph showing the location of mitotic bodies within the 

region of aberrant proliferation of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (ApcApc2) 

intestines. ............................................................................................................................................................. 177 

6.24 Apoptotic Index of Apcflox/flox versus Apcflox/flox Apc2-/- at day 4 post induction. ....... 178 

6.25 Cumulative frequency graph showing the location of apoptotic bodies within the 

region of aberrant proliferation of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (ApcApc2) 

intestines .............................................................................................................................................................. 178 

6.26 qRT-PCR results showing the relative expression levels of Wnt-target genes in 

Apcflox/flox (Apc) and Apcflox/flox Apc2-/-  (Apc Apc2) intestinal epithelium. .............................. 180 

6.27 qRT-PCR results showing the relative expression levels of ISC marker genes in 

Apcflox/flox (Apc) and Apcflox/flox Apc2-/-  (Apc Apc2) intestinal epithelium. ............................. 181 

6.28 In situ hybridisation for Olfm4 expression in Apcflox/flox and Apcflox/floxApc2-/- 

intestine. ............................................................................................................................................................... 181 

6.29 Phenotype of Apcflox/flox Apc2-/- intestinal organoids. ............................................................ 183 

6.30 Organoid formation efficiency of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (Apc Apc2) 

crypts.. ................................................................................................................................................................... 184 

6.31 Prestoblue assay displaying mitochondrial activity of Apcflox/flox versus Apcflox/flox 

Apc2-/- organoids at a range of R-spondin concentrations. ......................................................... 184 

6.32 Diagrammatic representation of the "just-right" hypothesis of neoplasia................ 190 

 



xvii 

 

List of Tables 

Table 1 Outline of the transgenic mouse models used within this thesis ............................... 34 

Table 2 Constituents of PCR mix ................................................................................................................. 35 

Table 3 PCR conditions required for genotyping. ............................................................................... 36 

Table 4 Constituents of Weiser Solution for epithelial extraction. ............................................. 40 

Table 5 Constituents of Solution required for a Grimelius stain for the presence of 

enteroendocrine cells. ...................................................................................................................................... 42 

Table 6 Optimised conditions for IHC for the range of antibodies used. ................................. 45 

Table 7 The constituents required to perform a restriction digest of the plasmid DNA. 50 

Table 8 Restriction enzymes required for linearisation of plasmid DNA.. .............................. 50 

Table 9 RNA polymerase enzymes for probe transcription.. ......................................................... 51 

Table 10 DIG-labelling mix.. ........................................................................................................................... 51 

Table 11 Constituents of cDNA synthesis mix. ..................................................................................... 54 

Table 12 Primer details for genes analysed by qRT-PCR. ............................................................... 55 

Table 13 Constituents of modified RIPA buffer.................................................................................... 57 

Table 14 Recipe to make up 5% and 10% polyacrylamide gels for Western blotting. ..... 60 

Table 15 Recipes for running buffer and transfer buffer.. .............................................................. 60 

Table 16 Antibody incubation conditions for protein expression analysis using Western 

Blotting .................................................................................................................................................................... 60 

Table 17 Recipe for 100 ml of complete organoid culture medium including all growth 

factors. ...................................................................................................................................................................... 63 

Table 18 CHARM settings. .............................................................................................................................. 66 

Table 19 Summary of observed phenotypes, comparing gene expression analysis to 

organoid formation efficiency and effect on tumourigenesis……………………………………202 



xviii 

 

Abbreviations and Definitions 

Symbols 

°C= Degrees Celsius 

μg= Micrograms 

μm= Micrometre 

μM= Micromolar 

A 

ABC= Avidin Biotin Complex 

APC= Adenamatous Polyposis Coli 

APL= Acute Promyelocytic leukaemia 

APS= Ammonium Persulphate 

Ascl2= Achaete Scutelike 2 

AXIN2= Axis Inhibitor Protein 2 

B 

Bmi1= polycomb ring finger oncogene 

BMP= Bone Morphogenic Protein 

BNF= β-napthoflavone 

bp= Base Pair 

BrDU= 5’-bromo-2-deoxyuridine 

BSA= Bovine Serum Albumin 

C 

CBC cells= Crypt-Base-Columnar cells 

Col1A2CreERT= Collagen Type 1, Alpha 
2 Cre recombinase Estrogen Receptor 
transgene 

Cox-1= Cyclooxygnease 3 

CRC= Colorectal Cancer 

CreERT= Cre recombinase-Estrogen 
receptor fusion transgene 

CSL= A transcription factor important 
within the Notch signalling pathway 

CT = Cycle threshold 

D 

DAB= Diaminobenzidine 

Dckl1= Doublecortin And CaM Kinase-
Like 1 

DEPC= H2O Diethylpyrocarbonate 
treated water 

dH2O= Deionised H2O 

ddH2O= Double Distilled H2O 

Dhh= Desert Hedgehog 

Dkk1= Dickkopf1, a Wnt inhibitor 

Dll4= Delta-Like Ligand 4, a notch ligand 

DMEM/F12= Dulbecco’s Modified Eagle 
Medium, nutrient mixture F12 

DNA= Deoxyribonucleic Acid 

DNase= Deoxyribonuclease 

dNTP= deoxynucleotide triphosphate 

Dsh= Dishevelled 

DTT= Dithiothreitol 

E 

ECL= Electochemiluminescence 

EDTA= Ethylenediaminetetraacetic acid 

EGTA= Ethyleneglycoltetraacetic acid 

EMT= Epithelial-to-mesenchyme 
transition 



xix 

 

EpCAM= Epithelial Cell Adhesion 
Molecule 

ER= Estrogen Receptor 

EtOH= Ethanol 

F 

FACs= Fluorescence Activated Cell 
Sorting 

FAP= Familial Adenamatous Polyposis  

FLP= Flippase 

FOX1=Forkhead Box L1 

Fz= Frizzled 

G 

gDNA= Genomic Deoxyribonucleic Acid 

Gli= Glioma Associated Oncogene 

Groucho= A Wnt inhibitor 

GSK-3= Glycogen Synthase Kinase-3 

H 

HBSS= Hanks Balanced Salt Solution 

H&E= Haematoxylin and Eosin 

HNPCC= Hereditary Nonpolyposis 
Colorectal Cancer 

HopX= Homeodomain-only protein X 

hr= Hour 

HRP= Horse Radish Peroxidase 

I 

IGF-1= Insulin-Like Growth Factor-1 

IHC= Immunohistochemistry 

Ihh= Indian Hedgehog 

IL17= Interleukin 17 

I.P.= Intraperitoneal 

ISC= Intestinal Stem Cell 

K 

KRAS= Kirsten Rat Sarcoma viral 
oncogene homolog 

kV= Kilovolts 

L 

L= Litre 

LEF= Lymphoid Enhancer-Binding 
Factor 1 

LOH= Loss of heterozygosity 

LoxP= Locus of crossover of 
Bacteriophage P1 

Lgr5= Leucine-rich repeat containing G-
protein coupled receptor 5 

Lrig1= Leucine-Rich Repeats and 
Immunoglobulin-Like Domains 

Lrp= low density lipoprotein receptor-
related protein complex 

M 

mg= milligram 

MIN= Multiple Intestinal Neoplasia 

mins= minutes 

ml= millilitre 

mM= millimolar 

MRU= Mammary Repopulating Unit 

Msi1= Musashi RNA-Binding Protein 

mTERT= Mouse telomerase reverse 
transcriptase 



xx 

 

mTOR= mammalian target of rapamycin 

N 

NGS= Normal Goat Serum 

NICD= Notch Intracellular Domain 

NRS= Normal Rabbit Serum 

O 

Olfm4= Olfactomedin 4 

O/N= Overnight  

Opn= Osteopontin 

P 

pAkt= Phosphorylated Akt 

PBS= Phosphate Buffered Saline 

PCR= Polymerase Chain Reaction 

PI3K= Phosphatidylinositol-3-Kinase 

PIP2= Phosphatidylinositol 4,5-
biphosphate 

PIP3= Phosphatidylinositol 3,4,5-
biphosphate 

PipC= Polyinosinic-polycytidylic acid 

PKA= Protein Kinase A 

PJS= Peutz-Jeghers Syndrome 

PLL= Poly-L-Lysine coated slides 

PML= Promyelocytic leukemia protein 

PML-NB= PML Nuclear Body 

pmTOR= Phosphorylated mTOR 

PTEN= Phosphatase and tensin homolog 
deleted on chromosome ten 

Q 

qRT PCR= Quantitative Reverse 
Transcription Polymerase Chain 
Reaction 

R 

RA= Retinoic Acid 

RARα= Retinoic Acid Receptor alpha 

RNA= Ribonucleic Acid 

RNase= Ribonuclease 

rpm= Revolutions per minute 

Rspo1= R-spondin 1 

RT= Room Temperature 

S 

SDS= Sodium Dodecyl Sulphate 

SDS-PAGE= Sodium Dodecyl Sulphate-
Polyacrylamide Gel Electrophoresis 

secs= Seconds 

Shh= Sonic Hedgehog 

SMADs= intracellular proteins 
important within BMP signalling 

STAT3= Signal Transducer And 
Activator Of Transcription 3 

T 

T3= Thyroid Hormone 3 

TA= Transit-amplifying 

TACE= Tumour Necrosis Factor-α-

Converting Enzyme 

Taq= DNA polymerase derived from 

Thermus aquaticus 



xxi 

 

TBS/T= Tris Buffered Saline with 0.1% 
Tween 

Tcf= T cell-specific transcription factor 

TEMED= Tetramethylethylenediamine 

TGF-α= Transforming Growth Factor-α 

TGF-β= Transforming Growth Factor-β 

TNFα= Tumour Necrosis Factor Alpha 

U 

UV= Ultra Violet 

V 

V= Volts 

VillinCreERT=  Villin Cre recombinase 
Estrogen Receptor Transgene 

W 

Wnt= Wingless-type murine mammary 
tumour virus Integration site family 

WT= Wild Type 

123 

+4= Crypt cell located 4 cells from the 
top of the Paneth cells. 

 



1 

 

Abstract 

Colorectal cancer is the 2nd most common cause of death by cancer in the UK, but it is 

treatable if diagnosed early. In order to increase the likelihood of early diagnosis, more 

must be understood about the early stages of colorectal tumourigenesis. It is known 

that intestinal stem cells (ISCs) are the cells of origin of colorectal tumourigenesis, and 

that an expansion of undifferentiated cell types, akin to ISCs, is one of the earliest events 

in mouse models of tumourigenesis. This indicates the importance of the relationship 

between the ISC compartment and tumourigenesis. 

In order to understand how changes in the ISC compartment may be contributing to 

tumourigenesis, the ability to accurately quantify this compartment is essential. 

Currently, analysis of the ISC compartment relies on the analysis of gene expression 

levels of ISC markers. However, there is a great deal of controversy surrounding the 

majority of these markers and there is no evidence that alterations in expression levels 

of these markers results in a functional change in the ISC compartment. 

Here I present a novel method for assessing the ISC compartment based on a functional 

capacity of ISCs; the ability to form intestinal organoids in culture. This new method 

uses organoid formation efficiency as a readout of changes in the ISC compartment, and 

can be used in conjunction with traditional methods of ISC marker expression to 

understand the relationship between expression of ISC markers and ISC functionality. I 

have used this method to further analyse the intestinal phenotype of a range of mouse 

models of colorectal cancer based on gene deletion of Apc, Cited1, Apc2, Pten and Pml. 

These experiments have shown that organoid formation efficiency can be a useful 

method for assessing the ISC compartment, although changes within this compartment 

may not be accurately predictive of tumourigenesis. 
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1 General Introduction 

 Intestinal anatomy and function 1.1

The intestine is a tube which runs from the stomach to the anus, which ingested food 

passes through for the absorption of nutrients and water. The small intestine can be 

divided into three parts; the duodenum, the jejunum and the ileum. The luminal surface 

of the small intestine consists of a sheet of epithelial cells which are organized into 

invaginations called the crypts of Lieberkuhn and finger-like projections called villi (see 

Figure 1.1) which maximize surface area for increased absorption efficiency. These 

epithelial cells are polarized, with microvilli on the luminal side which further increase 

surface area. Beneath the single-cell epithelial sheet are stromal fibroblasts which 

surround the crypts and extend into the villi (the stromal component of which is 

referred to as the lamina propria) encasing a blood supply to these cells. Beneath both 

the epithelial and stromal compartments is the smooth muscle layer, which is 

responsible for the peristaltic action essential for the movement of food along the 

intestine. 

1.1.1 Intestinal histology 

Structurally, the intestinal epithelium is a highly regulated tissue, with up to nine crypts 

feeding cells into each villus. The proliferative zone of the intestinal epithelium is 

located within the crypt. Transit amplifying cells within the crypt divide 4-5 times, with 

each cycle taking about 12 hours whilst migrating up the crypt-villus axis towards the 

crypt-villus junction where they terminally differentiate (Marshman et al. 2002). There 

are four main types of differentiated cells found within the intestine; the absorptive 

enterocytes and the secretory lineages of goblet cells, enteroendocrine cells and Paneth 

cells, Figure 1.1. Differentiated cells (apart from Paneth cells) continue to migrate up the 

villus eventually being sloughed off into the lumen at the villus apex and replaced by the 

continual stream of new cells migrating upwards from the crypt. This rapid turnover of 

cells is maintained by an intestinal stem cell (ISC) population at the base of the crypt, 

the daughter cells of which are capable of becoming any of the epithelial lineages within 

the intestine.  
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The majority of differentiated cells found in the villi are enterocytes, which are the 

absorptive cells responsible for nutrient uptake. Cells from this differentiated cell 

lineage are tightly packed together, with close cell-to-cell adhesions forming an 

epithelial barrier which helps to prevent microbes from entering the bloodstream. 

Enterocytes can be identified by their expression of the enzyme alkaline phosphatase. 

Goblet cells are responsible for the secretion of mucins which aid the lubrication of the 

epithelium and protect it from the high level of mechanical stress which occurs as a 

result of food movement through the intestine. Goblet cells also secrete trefoil proteins 

which facilitate tissue repair (Mashimo et al. 1996). Goblet cells are found throughout 

the villus, often at the crypt-villus junction. The mucins secreted by the goblet cells can 

be stained using Alcian Blue, and this staining technique is used to identify the number 

and position of intestinal goblet cells. 

Enteroendocrine cells are scarce in comparison to the other differentiated cell types but 

are found throughout the whole of the crypt-villus axis. These function to secrete 

hormones which control many gut functions such as regulating glucose levels and 

signalling to empty food from the stomach. They can be identified by their ability to 

reduce silver ions, marking them with black deposits when stained with Grimelius silver 

stain. 

Finally, Paneth cells are long-lived cells (6-8 weeks), found exclusively at the base of the 

intestinal crypt.  In contrast to the other cell types, they migrate back down the crypt-

villus axis as they differentiate (Bjerknes and Cheng 1981, 2006). The Paneth cells 

secrete a variety of anti-microbials and as such they are responsible for immunity and 

protection within the intestinal crypt. The Paneth cells also secrete a range of other 

factors which have a less well understood role in tissue maintenance, such as TGF-α, 

Wnt3 and the Notch ligand Dll4 (Bevins and Salzman 2011; Sato et al. 2010). These 

factors are thought to be important in maintaining the ISC population by regulating the 

ISC niche, see section 1.3.3. 
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Figure 1.1 A; Haemotoxylin and Eosin stain of a normal mouse small intestine. Black bar 
indicates 100μm. B; Cartoon representation of a normal intestinal crypt and villus showing the 
differentiated cell types.  
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 Signalling pathways involved in intestinal homeostasis 1.2

The delicate balance of cell proliferation, migration and apoptosis within the intestine 

must be carefully regulated in order to maintain intestinal structure and function. This 

is achieved by controlling gene expression through a number of important signalling 

pathways, the most important of which are discussed here.  

1.2.1 Canonical Wnt signalling Pathway 

Canonical Wnt signalling is a signalling pathway which is essential during embryonic 

development due to its role in establishing the basic body pattern. This signalling 

pathway relies on the binding of a secreted ligand to a receptor, and the Wnt signalling 

molecules are highly conserved throughout the animal kingdom. 

In the absence of a Wnt signal, the intracellular proteins adenomatous polyposis coli 

(APC) and axin are phosphorylated by glycogen synthase kinase-3ß (GSK3) which 

increases their ability to bind to ß-catenin. When ß-catenin binds to these proteins it is 

also phosphorylated by GSK3, a process which results in the breakdown of ß-catenin, 

Figure 1.2. 

When a Wnt ligand binds to a Wnt receptor (a Frizzled (Fz)/low density lipoprotein 

(LDL) receptor-related protein (LRP) complex), a signal is transduced to the 

intracellular proteins stimulating interaction between Dishevelled (Dsh) and Axin, 

making it unavailable for binding to ß-catenin and initiating its breakdown (Logan and 

Nusse 2004). This results in an accumulation of ß-catenin in the cytoplasm and the 

nucleus, where it interacts with any member of the lymphoid enhancer-binding factor 1 

or T cell-specific transcription factor (LEF/TCF) to enhance transcription of a number of 

Wnt target genes (Behrens et al. 1996; Clevers and Van de Wetering 1997).  

Many Wnt target genes are associated with cell proliferation, migration and adhesion, 

processes which are all essential for the maintenance of the intestine. Indeed, the 

appropriate regulation of Wnt signalling is vital for the maintenance of the intestinal 

stem cell (ISC) population. The ISC population is found at the base of the intestinal 

crypt, and throughout the crypt-villus axis there is a gradient of Wnt agonists, with 

higher levels found near the ISC population (Gregorieff et al. 2005).  
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The importance of Wnt signalling within intestinal homeostasis has been demonstrated 

using a range of experimental formats. Ireland et al. showed that conditional 

homozygous deletion of β-catenin in the mouse resulted in catastrophic disruption of 

normal intestinal homeostasis, with crypt ablation, reduced numbers of goblet cells, 

increased apoptosis and detachment of sheets of enterocytes (Ireland et al. 2004). 

Likewise, transgenic ectopic expression of the Wnt inhibitor Dickkopf1 (Dkk1) resulted 

in reduced numbers of secretary cells, reduced proliferation and loss of crypts (Pinto et 

al. 2003), while deletion of the important Wnt-target gene C-myc was lethal to intestinal 

cells, resulting in a complete loss of all C-myc-/- crypts (Muncan et al. 2006). 

1.2.2 Notch Signalling pathway 

Notch signalling is a cell-to-cell signalling pathway, meaning that signalling can only 

occur via direct cell-to-cell contact of adjacent cells. Notch ligands (such as Jagged or 

Delta) interact with the Notch receptor and this causes two proteolytic cleavage events. 

The first, mediated by the tumour necrosis factor-α-converting enzyme (TACE), involves 

the cleavage of the extracellular domain from the Notch receptor. Once this has 

occurred, the second cleavage event takes place, releasing the Notch intracellular 

domain (NICD) which can then enter the nucleus and activate the transcription factor 

CSL, resulting in expression of Notch target genes, Figure 1.2. Like Wnt target genes, 

Notch target genes have a variety of functions which influence tissue homeostasis via 

roles in controlling apoptosis, proliferation, spatial patterning and cell fate 

determination (Artavanis-Tsakonas et al. 1999). 

Conditional inactivation of CSL within the mouse intestine (which effectively prevents 

Notch signalling), results in the conversion of proliferative cells within the intestine into 

post-mitotic goblet cells (Van Es et al. 2005). Not only does this demonstrate the 

importance of the Notch signalling pathway in homeostasis, but crucially it highlights 

that the maintenance of the undifferentiated cells, the ISCs, within the crypt is essential 

for intestinal homeostasis. Therefore the importance of Notch signalling is due to its 

role as a regulator of the ISC compartment, supported by the high levels of Notch 

ligands found at the base of the crypt in comparison to the rest of the crypt-villus axis.  
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1.2.3 TGFβ, BMP signalling pathway 

Both the TGF-β pathway and the BMP signalling pathway are activated by the binding of 

a ligand to the membrane-bound type II receptor which enables the type II receptor to 

dimerise with type I receptors, and phosphorylate its cytoplasmic domain. Once 

phosphorylated, the type I receptor can then recruit and phosphorylate either the 

SMAD2/3 proteins (TGF-β), or the SMAD1/5/8 proteins (BMP) which, once 

phosphorylated are collectively known as receptor regulated SMADS (R-SMADS). The R-

SMADS can then disassociate from the receptor and form a complex with SMAD4, 

thereby enabling its translocation into the nucleus. Once in the nucleus, SMAD4 can 

interact with regulatory proteins and regulate a range of gene transcription events 

(Figure 1.2). Target genes of the TGF-β/BMP signalling pathway have a range of 

functions, but are most commonly associated with inhibition of cellular growth and 

proliferation. 

Within the intestine, expression of TGF-β ligands is highest at the villus tip, concomitant 

with absence of cellular growth and proliferation, in accordance with its role within 

intestinal homeostasis (Barnard et al. 1993).  

1.2.4 The Hedgehog Pathway 

The Hedgehog signalling pathway is controlled by two cell membrane spanning proteins 

called Patched and Smoothened. When no ligand is bound, Patched inhibits 

Smoothened, which enables protein kinase A (PKA) to phosphorylate the transcription 

factors Gli2/3 resulting in the targeting of Gli2 for degradation. This leaves the 

truncated Gli3 protein free to enter the nucleus and act as a transcriptional repressor of 

Hedgehog target genes.  

When a Hedgehog ligand (either Sonic Hedgehog, Shh, Indian Hedgehog, Ihh or Desert 

Hedgehog, Dhh in vertebrates) binds to Patched, the inhibition of Smoothened is 

prevented, and active Smoothened prevents the phosphorylation and degradation of 

Gli2/3. This enables Gli2/3 to enter the nucleus and act as a transcription factor for a 

number of Hedgehog target genes. One of these target genes is FoxL1 (Madison et al. 

2009), which has been shown by Kaestner et al. to be a regulator of BMP and Wnt 

signalling (Kaestner et al. 1997). Loss of the Hedgehog target FoxL1 results in increased 

proliferation in the intestinal epithelium and a distorted crypt-villus architecture 
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(Kaestner et al. 1997). A similar effect is caused by the loss of the Hedgehog ligand (and 

therefore activator) Ihh in the intestinal epithelium, which results in increased 

proliferation, crypt fission, and expanded ISC compartment (Kosinski et al. 2010). Most 

importantly, as Hedgehog is a paracrine signalling pathway with ligands being 

expressed in the epithelium and secreted, the pathway is activated in the stromal cells 

and so loss of Ihh in the epithelium resulted in disruption of the mesenchymal 

architecture and deterioration of the extracellular matrix. This highlights the 

importance of the interactions between the epithelium and the mesenchymal in tissue 

homeostasis.  
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Figure 1.2 The four main signalling pathways involved in intestinal homeostasis; WNT, Notch,TGF/BMP and Hegdgehog signalling, which all control 
the expression of genes associated with homeostatic processes such as proliferation, apoptosis, differentiation, growth and migration.  



10 

 

 Adult intestinal stem cells 1.3

The least well understood cells within the intestine are the undifferentiated cells found 

at the base of the crypt, referred to as intestinal stem cells (ISCs). These stem cells 

persist throughout the lifetime of an individual, and their progeny are capable of 

differentiating into any of the intestinal epithelial cell lineages. Both the location and the 

gene expression patterns seen within the ISC population are controversial. It has 

previously been reported that ISCs can be subcategorized into two distinct populations; 

the crypt base columnar cells (CBC cells) which are responsible for intestinal 

homeostasis and a quiescent population found at the +4 position within the intestinal 

epithelia which is only active after intestinal trauma (Tian et al. 2011; Yan et al. 2012). 

However, the data produced from extensive studies on the matter has been interpreted 

in a number of different ways. 

1.3.1 Identifying the ISC: location and markers 

Traditionally, an adult stem cell is described as a long-lived, slowly dividing cell, multi-

potent and asymmetrically dividing. This does not appear to be the case for ISCs which 

despite being long-lived and multi-potent, are relatively very rapidly dividing cells, 

dividing every 24 hours (Barker et al. 2007) and appear to divide symmetrically (see 

section 1.3.2) (Escobar et al. 2011). However, this is relatively new knowledge and the 

quest to find ISC markers that match this dogma has hindered the identification of ISCs 

to date.  However, this has not been the only problem encountered when studying ISCs. 

Due to the small number of ISCs (predicted to be 4-6 per intestinal crypt) (Booth and 

Potten 2000) expression levels of any markers are low, thereby making 

immunohistochemistry difficult. As a result, most ISC identification methods rely on 

FAC sorting or in situ hybridisation, both of which make it difficult to determine the 

exact location of cells expressing the markers (Gregorieff et al. 2005). Thus a number of 

stem cell markers have been proposed and later refuted making this is a very dynamic 

and evolving area of research. 

For many years, DNA label retaining experiments were used to identify the “label 

retaining cell”, assumed to be the ISC. Cells at the +4 position within the intestinal crypt 

were shown to retain thymidine DNA labels long term despite continued cell division 

(Potten et al. 1974). Later, studies reported that the +4 cells specifically express the 
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marker Bmi1, and that these cells were proliferative and capable of self-renewal, and so 

Bmi1 expression has been widely used as a marker of ISCs (Sangiorgi and Capecchi 

2008).  

CBC cells are rapidly dividing (rapid in terms of stem cells) elongated cells at the base of 

the crypt which are interspersed with Paneth cells.  In 2007, it was reported that CBC 

cells are specifically positive for the expression of Lgr5. Lgr5 was at the time classified 

as an orphan receptor, but it is now known to interact with R-spondins, Wnt activators 

found at the base of the crypt (Zhao et al. 2007). Despite their rapid cell division, Lgr5+ 

cells were shown, using lineage tracing experiments, to be capable of generating all the 

cell lineages of the intestinal epithelium (Barker et al. 2007; Zhu et al. 2008). More 

recently, the Lgr5+ cells were shown to be specifically capable of forming intestinal 

organoids in culture (Sato et al. 2009), see section 1.3.4. By analysing the differential 

gene expression profiles of Lgr5hi and Lgr5low intestinal epithelial cells, it has been 

possible to identify other proteins which are specifically expressed in CBCs, and it was 

through this method that expression Olfm4 and Ascl2 was identified as a potential 

marker of the ISC compartment (van der Flier et al. 2009a; van der Flier et al. 2009b). 

Olfm4 encodes an anti-apoptotic factor that promotes tumour growth and facilitates cell 

adhesion, whereas Ascl2 is an imprinted gene that encodes a basic helix loop helix 

transcription factor. Interestingly, of these three markers of CBC cells, only Olfm4 is not 

a Wnt target gene, and so can be used to differentiate between changes in Wnt signalling 

and changes in the ISC population (Barker et al. 2007; Jubb et al. 2006; van der Flier et 

al. 2009a). 

Other ISC markers have been proposed over the last decade, including Hes1 and Msi1 

(Kayahara et al. 2003; Potten et al. 2003) due to the localisation of expression within 

normal and post-irradiated intestinal crypts, as well as increased expression in tumours 

derived from mouse models of intestinal tumourigenesis. The authors of these papers 

are careful that they only tentatively propose these genes as potential markers of the 

ISC population as a result of their localisation of expression, but much research has 

since been conducted which does not take this into account. This misunderstanding has 

resulted in new ISC markers being proposed as a result of their co-localisation with 

these genes. For example, Dckl1 was proposed as an ISC marker due to its co-
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localisation with Msi1 (May et al. 2007), but was later reported to be in fact a marker of 

a rare intestinal epithelium secretory lineage called “tuft” cells (Saqui-Salces et al. 

2011). 

The ISC markers which seem to have been most successfully used, are those which were 

determined by comparing the gene expression pattern of Lgr5+ cells to Lgr5- intestinal 

cells such as Prominin1/Cd133, Ascl2 and Olfm4 (Snippert et al. 2009; van der Flier et al. 

2009a; van der Flier et al. 2009b) all of which specifically mark the CBC cells. 

Over recent years it has been proposed that ISCs should be sub-categorised into rapidly 

dividing CBC cells which are responsible for intestinal homeostasis (identified by 

expression of Lgr5), and the more slowly dividing, label retaining +4 cells, which are 

thought of as “quiescent” stem cells and are activated in response to injury or cell death 

(identified by expression of Bmi1) (Tian et al. 2011; Yan et al. 2012). However, a recent 

paper from Hans Clever’s laboratory has disputed this, by using both single transcript in 

situ hybridisation and transcriptional profiling of sorted Lgr5hi expressing cells to show 

that all of the current ISC markers overlap in their expression, although there appears to 

be a gradient of expression of many of the markers between the CBCs and the +4 cells 

(Muñoz et al. 2012). Other proposed markers for the +4 population of stem cells are 

HopX, mTERT and Lrig1 (Montgomery et al. 2011; Powell et al. 2012; Takeda et al. 

2011), however, evidence contradicting the ability of each of these proteins to act as a 

marker for the +4 cell has been published by Barker et al., and so the controversy 

continues (Barker et al. 2012). 

The controversy surrounding the idea of two distinct ISC populations has been more 

recently explored by Buczacki et al, who showed that the quiescent label retaining stem 

cells are in fact committed to the secretory lineage and will invariably mature into 

Paneth and enteroendocrine cells. This seems to be the case during homeostasis, 

however, after injury these previously quiescent cells can undergo rapid proliferation 

and produce all of the main epithelial lineages, indicating that they can be pulled back 

from committed quiescent cells into active stem cells (Buczacki et al. 2013). This was 

achieved through pulse-chase experiments showing that the label retaining cells can 

only form clonally populated crypts after injury by radiation, hydroxyurea or 



13 

 

doxorubicin. This seminal work shows not only the complexity and fluidity of the 

system, but the utility of lineage tracing experiments in dissecting this complex system. 

All of the contradictory information published makes it very difficult to produce a 

definitive list of ISC markers. Much of the current literature is anchored around genes 

specifically expressed at the base of the crypt, although there is a growing consensus 

that Lgr5, Ascl2 and Olfm4 are key markers of an ISC population, but potentially not the 

only ISC population. 

1.3.2 ISC division 

The +4 stem cell is often referred to as the “quiescent” stem cell, due to its ability to 

retain a thymidine DNA label despite division (Potten et al. 1997). This assumed 

quiescence however, is not the conclusion arrived at by the research group who 

conducted the label-retaining experiment. This group presented a hypothesis known as 

the immortal strand hypothesis (Potten et al. 1978; Potten et al. 2002; Smith 2005). It 

was thought that the only way in which ISCs were able to protect their genome from a 

lifetime’s build-up of mutations was by some form of strand selection, whereby the 

original DNA template strand is retained within the daughter stem-cell. This argument 

has since been refuted by studying DNA segregation within the CBCs as opposed to the 

+4 ISCs and clearly demonstrates unbiased segregation of the DNA strands at division 

(Escobar et al. 2011). 

The retention of DNA labels lead to the assumption for many years that the intestinal 

stem cells divide asymmetrically to produce one intestinal stem cell, and one transit 

amplifying cell. (Potten et al. 2002; Smith 2005). This form of division is referred to as 

“invariant asymmetry”. However, it was observed that intestinal crypts tend to drive 

towards monoclonality whereby, after a given period of time, the entire crypt is 

descended from one ISC (Loeffler et al. 1993). This does not correspond with the idea of 

invariant asymmetry which fails to provide an adequate explanation for crypt 

monoclonality.  

Recently, another explanation has been proposed, whereby ISCs divide symmetrically 

either to produce two transit amplifying (TA) or two stem cells (SC) in an entirely 

stochastic manner (Figure 1.3), meaning that any of the ISCs within the crypt have an 



14 

 

equal likelihood of becoming the dominant clone. This hypothesis, termed “neutral 

drift” has been supported by mathematical modelling as well as some beautiful lineage 

tracing experiments from Hans Clever’s laboratory whereby each ISC is individually 

labelled and the development of clonality can be seen (Fletcher et al. 2012; Lopez-

Garcia et al. 2010; Snippert et al. 2010).  

Interestingly, as ISCs provide both homeostatic and regenerative functions, it should be 

considered that there may be some kind of “choice” as to whether an ISC divides 

asymmetrically, or symmetrically to produce 2 stem cells or 2 transit amplifying cells. It 

could be argued that stochastic symmetrical or asymmetrical division is required for 

homeostasis, and during times when the stem cell is required for regeneration, the rate 

of stem cell division is increased in order to replace lost cells. However, there is also a 

case for the idea that gross intestinal cell damage drives a regenerative stem cell 

division pathway, with more cells dividing symmetrically to produce 2 TA cells. This 

would enable the regeneration of the intestine without exposing the stem cell to the 

damage which results from an increased number of divisions, however a mechanism 

which could drive this division choice remains unclear. 

 

Figure 1.3 Diagrammatic representation of the three division “choices” which stem cells face. 
SC= Stem cell, TA= transit amplifying cell. 

1.3.3 Stem cell niche 

The ISC niche is described as the microenvironment in which the ISCs reside. It is 

thought that the niche may help establish or maintain stem cells by providing them with 

a range of signals. Paneth cells have long been thought of as the main constituent of the 

ISC niche due to their expression of  TGF-α, Wnt3, the Notch ligand Dll4 as well as a 

range of antimicrobial factors, which are necessary in both the establishment and 
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maintenance of in vitro culture of ISCs (Bevins and Salzman 2011; Sato et al. 2010). This 

was supported by a study which showed that organoid growth efficiency (see section 

1.3.4) was increased by the co-culture of Lgr5+ cells with Paneth cells (Sato et al. 2010).  

Due to the importance of Notch signalling in the maintenance of the ISC population, 

coupled with the fact that Notch receptors and delta ligands are membrane bound 

requiring cell contact with the Lgr5+ in order to activate Notch in the ICS, it is thought 

that the main role of Paneth cells within the ISC niche is the ability to activate the Notch 

signalling pathway (Fre et al. 2005).  

If the Paneth cells are essential for the maintenance of the ISC niche then it would be 

assumed that loss of Paneth cells would result in complete crypt ablation. This 

experiment was attempted in two ways; by expressing the diphtheria toxin gene within 

Paneth cells (Garabedian et al. 1997) and by conditional knockout of Sox9 (Bastide et al. 

2007), both of which resulted in some crypt dysplasia, but failed to result in complete 

breakdown in crypt villus structure which would be expected from a loss of the ISC 

population. This was explained as being the result of incomplete loss of Paneth cells, 

and the ability of the intestine to repair itself after even major damage. Furthermore, at 

the time of the experiment there were few ISC markers available resulting in an 

incomplete analysis of the effects on the ISC compartment. 

More recently, complete ablation of Paneth cells from the mouse intestine was achieved 

through the use of the Math1-/- mouse with the surprising result that Lgr5-expressing 

cells are in fact capable of survival, renewal and performance of all normal functions in 

the absence of Paneth cells (Kim et al. 2012). Math1 is described as a Notch-repressed 

target gene since inhibition of the Notch pathway activates its expression. It is a driver 

of differentiation by pushing cells into the secretory lineage and inhibiting proliferation. 

An explanation for the surprising result from the study by Kim et al. is offered by the 

proposition that loss of the important differentiation factor Math1, may render ISCs 

independent of Notch signalling, thereby removing their dependency on neighbouring 

Paneth cells (Schuijers and Clevers 2012; Van Es et al. 2010).  

A newly acquired self-sufficiency of Lgr5 stem cells due to the loss of Math1 could 

explain why no change in intestinal homeostasis was seen in the absence of Paneth cells 

and could be tested by culturing Lgr5+ cells from Math1-/- mice to assess if they are 
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capable of forming organoids in the absence of the Notch ligand Jagged which is 

required for the growth of organoids from single wildtype Lgr5+ cells (section 1.3.4). 

However, it does not explain the observation by Kim et al. that Lgr5+ cells are present at 

an earlier stage of intestinal development than the Paneth cells in normal mice (Kim et 

al. 2012), which would require the culturing of Lgr5+ cells from an early developmental 

stage to assess if Notch dependency increases throughout development. 

Despite the evidence discussed indicating that ISCs do not rely on the presence of 

Paneth cells for capacity to maintain intestinal homeostasis, recently we showed that 

Paneth cells are required for the ability of ISCs to repair the gut after trauma. By 

inducing loss of expression of β-catenin within the intestinal epithelium using either 

Villin-Cre (which recombines within the ISC and the Paneth cell as well as the other 

epithelial lineages) or AH-Cre (which recombines in the ISC and epithelia but not the 

Paneth cell) we were able to show that surviving ISCs were able to repopulate the 

intestine and retain function when the Paneth cell was unharmed, but were unable to in 

the absence of Paneth cells, thereby resulting in loss of crypt-villus architecture (Parry 

et al. 2013). This indicates that if there are indeed two distinct populations of ISCs, with 

one population responsible for homeostasis and the other responsible for damage 

repair, Paneth cells are an essential niche component only for the +4 cells, or they are 

required for interconversion between the two subsets of stem cells. 

Despite the contradictory evidence, it is clear from these studies that Paneth cells play 

an important role in the maintenance of the Lgr5+ ISCs, but their exact role is still far 

from clear, and the contribution of extraepithelial factors should not be underestimated. 

For example, it has been shown that the loss of Wnt3 from the intestinal epithelium in 

vivo causes no effect on intestinal morphology and function. However, the loss of Wnt3 

in organoid cultures (where the extraepithelia compartment of the intestine is absent) 

results in organoid death, an effect rescued when the organoids are in co-culture with 

mesenchymal cells (Farin et al. 2012). This indicates that Wnt3 from sources other than 

the Paneth cell and the epithelial compartment plays an essential role in the 

maintenance of the ISC niche.   

As previously mentioned, the importance of components contributing to the ISC niche 

can be assessed by their presence/absence during the time of development of the ISC 
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compartment. The establishment of the crypt-villus architecture with an ISC population 

occurs during perinatal development. Interestingly, during this stage of development 

thyroid hormone (T3) levels are particularly high. It is also known that loss of functional 

thyroid hormone receptor α results in deregulated intestinal morphology (Plateroti et 

al. 2001). This knowledge led to the recent study by Hasebe et al, in which T3 levels 

were manipulated during intestinal remodelling in amphibian metamorphosis to show 

that T3 is required by both the intestinal epithelium and the non-epithelial intestine 

(stroma and myofibroblasts) for the formation of ISCs (Hasebe et al. 2013). It has been 

shown that T3 regulates Hedgehog and BMP signalling (both important pathways 

involved in homeostasis of the ISC compartment) within the intestinal connective tissue, 

but not the epithelium, indicating the important role of cell-cell interactions and extra-

epithelial factors in the maintenance of the ISC niche. 

The complexity of the stem cell niche lies in its self-regulation. Potentially, the ISCs may 

be regulating their own niche by manipulating their microenvironment to suit their own 

requirements. The Kim et al. study in which Paneth cells were totally ablated from the 

intestinal epithelium without affecting homeostasis highlighted quite how fluid the 

system could be, with signals feeding both ways. This fluidity of the ISC niche is perhaps 

unsurprising, due to the importance of protecting the intestinal stem cell, and a highly 

regulated system has undoubtedly evolved to meet this requirement (Kim et al. 2012) . 

1.3.4 In vitro culture of ISCs 

In 2009 Sato et al. published a method which enabled the growth of intestinal organoids 

in culture. These organoids were grown from single mouse intestinal crypts and 

consisted of multiple crypt-like structures formed by crypt fission (Figure 1.4). 

Organoids can also be grown from single Lgr5+ cells, thereby cementing the use of Lgr5 

expression as a marker of the ISC population (Sato et al. 2009). The culture conditions 

artificially mimic those found within the intestine; they are seeded in Matrigel, which 

not only enables 3-dimensional growth, but is laminin-rich, as laminin has been found 

to prevent cell anoikis when in culture (Sato et al. 2009). Epidermal Growth factor 

(EGF) is also used in intestinal organoid culture as it is associated with intestinal 

proliferation. Inhibition of the BMP signalling pathway is achieved by the addition of 

Noggin in order to prevent the inhibition of intestinal self-renewal caused by BMP 
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signalling (Haramis et al. 2004; He et al. 2004). Importantly, the growth factor R-

spondin1 (Rspo1) is also required for intestinal organoid culture. R-spondins  are only 

capable of enhancing the Wnt-signal within cells in the presence of canonical Wnt 

ligands, indicating that Rspo1 only enhances the Wnt-signal in cells which are already 

Wnt-activated, and within cells expressing an Rspo1 receptor, such as Lgr5 (Kim et al. 

2008).  

When growing these organoids from single cells sorted for their expression of Lgr5, 

there are additional growth factor requirements, as the “stem cell niche” is no longer 

present. These growth factors are Jagged, a Notch ligand which activates the Notch 

signalling pathway within the Lgr5+ cells (a function normally carried out by Paneth 

cells) and the Rho kinase inhibitor Y27632. Rho kinase normally stimulates the activity 

of the tumour suppressor protein PTEN, and so it can be assumed that the addition of a 

Rho kinase inhibitor will result in higher levels of the oncogenic factor phosphorylated 

Akt (pAkt) (see Figure 1.6) which promotes cell survival (Li et al. 2005). 

The organoid structures produced contained all the differentiated epithelial cell types 

found within the intestine and are structurally very similar to intestinal tissue.  

This method represents not only a highly useful tool by which to test drugs, but also a 

way in which to understand the ISC niche. By altering the growth factor which enables 

single Lgr5+ cells to form organoids, it could greatly help the understanding of what is 

required for an ISC to function as an ISC.  

 

Figure 1.4 Organoid grown from a single intestinal crypt. Black bar represents 100µm. Black 
arrows indicate visible Paneth cells. 
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 Colorectal cancer  1.4

Colorectal cancer (CRC) is the third most common cancer in the UK, with 37,500 people 

being diagnosed every year. Although CRC survival rates have doubled in the last 30 

years, over half of all sufferers do not survive for longer than 5 years after diagnosis, 

despite it being curable if diagnosed early.  

There are a number of reasons why the incidence of CRC is so high. The high rate of cell 

division required to maintain the rapid turnover of cells within the intestinal epithelia, 

results in a high incidence of DNA replication errors and so a build-up of DNA mutations 

in these cells makes oncogenic mutations likely. Also, the direct exposure of intestinal 

cells to potential carcinogens via ingested food further increases the mutation rate. 

The development of sporadic CRC is a multistep process in which an accumulation of 

genetic mutations leads to the progression from normal intestinal epithelium to 

dysplastic tissue to benign adenoma through to metastatic carcinoma. Based on studies 

of the frequency of gene mutations at various stages of progression in human tumours, 

Fearon and Vogelstein proposed a model whereby loss of function of Adenomatous 

polyposis coli (APC) initiates the formation of a benign lesion, followed by an activating 

mutation in KRAS, allelic loss of the 18q locus and mutation of p53, which all contribute 

to the progression to malignant disease (Fearon and Vogelstein 1990), (Figure 1.5). 

The reason that the levels of mortality associated with this disease are so high is mainly 

due to late detection, as a patient usually only presents with symptoms once the disease 

has reached late stages and metastasised. It has been shown that one round of faecal 

occult blood screening (which examines a patients stool for non-visible traces of blood) 

reduces the relative risk of mortality associated with CRC  by 25% as a consequence of 

earlier detection (Hewitson et al. 2007; Mandel et al. 1993). In order to develop more 

screens for early detection of CRC it is essential that the early stages of colorectal 

tumourigenesis are well understood. 
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Figure 1.5 Model of tumour intitiation and progression as proposed by Fearon and Vogelstein 
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1.4.1 Signalling Pathways associated with CRC 

As cancer is simply unregulated cell division it is unsurprising that most of the 

signalling pathways which are implicated as playing a role in CRC are pathways which 

play an important role in intestinal homeostasis. 

 PI3K pathway 1.4.1.1

Mutations which cause the constitutive activation of the phosphoinositide-3-kinase 

pathway (PI3K pathway) are found in 40% of all CRC tumours (Parsons et al. 2005). 

Activation of this pathway is normally the result of upstream receptor tyrosine kinases 

(RTKs) which cause phosphorylation of phosphatidylinositol-4-5-biphosphate (PIP2) 

which generates phosphatidylinositol-3-4-5-biphosphate (PIP3). PIP3 recruits AKT to 

the cell membrane where it is phosphorylated by phosphoinositide dependent kinases, 

converting it into its active form (pAKT) which can initiate translation, transcription, 

cell cycle progression as well as inhibit apoptosis through its kinase activity, see Figure 

1.6. PTEN (phosphatase homolog of tensin) is a lipid phosphatase and an important 

negative regulator of the PI3K pathway. It is therefore a tumour suppressor, which acts 

by converting PIP3 into PIP2. Reduction of PIP3 via PTEN results in the prevention of Akt 

recruitment to the membrane and its subsequent activation. Mutations which result in 

constitutive activation of this pathway can be either activating mutations of RTKs or 

inactivating mutations of downstream negative regulators of the pathway, such as 

PTEN. Interestingly, pAKT is responsible for the activation of GSK3 (Voskas et al. 2010), 

an important negative regulator of the Wnt pathway, and so there is a great deal of cross 

talk between the two pathways. 

Knowledge of the PI3K pathway has led to the development of a number of targeted 

therapies such as Trastuzumab, an antibody which targets human epidermal growth 

factor receptor 2 (HER2), a potent activator of the PI3K pathway. This therapy has been 

shown in phase III trials to significantly increase survival in patients with gastric 

tumours which express HER2 when used in conjunction with chemotherapy (Roukos 

2010). However, this treatment only increases survival for a couple of months as 

tumours become resistant via downstream activation of the pathway. Because of this, 

more targeted therapies are being sought from the range of proteins downstream in the 

pathway and many inhibitors of the PI3K pathway are currently in clinical development. 
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Figure 1.6 The PI3Kinase pathway. Activation of the pathway by receptor binding results in the 
conversion of PIP2 to PIP3 which translocates AKT to the plasma membrane where it is phosphorylated by 
phosphoinositide dependent kinases (PDKs) into its active form, pAKT. 

  Wnt and cancer 1.4.1.2

As Wnt-target genes have been shown to control a number of regulatory processes 

associated with tumourigenesis, such as cell proliferation and adhesion (Staal et al. 

2004), it is unsurprising that abnormalities within this pathway are closely associated 

with cancer, particularly CRC (Bienz and Clevers 2000; Polakis 2000).  

Wnt signalling has also been linked to cell migration within the colon, and so may also 

be involved in the ability of early tumourigenic cells to metastasise. There seems to be a 

great deal of potential to target the Wnt pathway therapeutically to control 

tumourigenesis and metastasis and much work is ongoing to develop Wnt inhibitors as 

a potential therapeutic treatment to colorectal cancer (Dihlmann and von Knebel 

Doeberitz 2005). In order to do this effectively the Wnt signalling pathway needs to be 

fully elucidated with gene interactions and their effect on the tumourigenic properties 

of the cells and organism understood.  

Mutations in the important negative regulator of the Wnt signalling pathway, APC, are 

an early initiating step in the formation of spontaneous CRC, with loss of heterozygosity 

(LOH) of the APC gene occuring at an early stage of colorectal tumour progression. It has 

also been shown that APC mutations which result in activated Wnt-signalling are 
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present in over 80% of human colorectal tumours (Powell et al. 1992). Loss of 

functional APC leads to an increase in nuclear β-catenin, where it can act, along with 

TCF as a transcription factor to drive expression of a range of Wnt target genes.  

 Modelling CRC in the mouse 1.5

The importance of the Wnt signalling pathway, particularly during development, means 

that many of the molecular interactions and signalling strategies used within the Wnt 

pathway are highly conserved between species. As such, the pathways are extremely 

comparable between humans and mice. Mouse models are useful not only because 

genetically engineered mice can be generated in a relatively short space of time, but 

because they also enable the long term study of tumourigenesis, as well as investigating 

the roles that diet and environment play in tumourigenesis, which is not possible when 

using cancer cell lines. 

1.5.1 Mouse models of FAP 

APC was originally identified as the gene that is mutated in cases of familial 

adenomatous polyposis (FAP). FAP is an inherited autosomal disorder, sufferers of 

which develop multiple colonic polyps at a young age. Although the polyps are benign, 

there is a high risk that some will progress into malignant adenocarcinomas if left 

untreated (Groden et al. 1991).   

In 1990 a mouse which modelled FAP was identified within a colony of mice following 

random mutagenesis. Termed the Multiple Intestinal Neoplasia mouse (MIN), it carries 

a truncation mutation at codon 850 in one allele of the mouse homologue of APC and 

was reported to develop multiple adenomas throughout the entire intestinal tract from 

an early age (Moser et al. 1990). The development of the Apcmin model was a turning 

point in the study of CRC, and it was soon followed by a variety of different Apc+/- 

mutants, which shared the same phenotype of development of multiple adenomas, but 

interestingly differed in the number, size and location of the adenomas depending on 

the type of Apc mutation (Fodde et al. 1994; Su et al. 1992).   

Apc+/- mutants proved exceptionally useful in the study of modulators of Wnt-

dependent tumourigenesis. Using these model mice, it was possible to perform 

microarrays at various stages of tumour development, and establish a list of genes 
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which are expressed abnormally from the earliest stages of tumourigenesis, as these 

genes potentially play an important role in tumour initiation (Young et al. 2013).  It was 

through such a study that the importance of the COX-2 (PTGS2) gene was determined. 

Cox-2 was shown to be expressed from a very early stage of polyp formation, and so 

Cox-2 knockout mice were crossed with Apc+/- mice and it was shown that COX-2 

deficiency drastically reduced adenoma formation in these mice, and that chemical 

inhibitors of COX-2 could achieve the same effect (Oshima et al. 1996). Drug trials 

showed that the effect seen in Apc-deficient mouse models was also true for humans 

and although prescription must be carefully regulated due to cardiovascular side effects, 

the COX-2 inhibitor can significantly lower the number of colorectal polyps formed in 

FAP patients (Steinbach et al. 2000). 

1.5.2 Cre-lox technology  

Despite the utility of the Apcmin mouse in studying intestinal tumourigenesis, it has 

limited use when trying to study the earliest stages of disease. One of the earliest stages 

of disease onset is the inactivation of both alleles of APC (Gryfe et al. 1997) and in the 

min mouse the time of LOH is unknown, so a model whereby both Apc alleles could be 

deleted at a known time point was essential. Use of the Cre-loxP recombination system 

(Figure 1.7) has enabled the initial stages of intestinal tumourigenesis to be studied in 

detail. By inducing conditional loss of both alleles of Apc within the intestinal epithelium 

it has been shown that functional Apc is essential to maintain normal intestinal 

homeostasis, and loss of Apc immediately deregulates the tissue morphology by 

affecting migration, differentiation, proliferation and apoptosis (Sansom et al. 2004). 

Interestingly, this paper observed that the intestinal cells took on the appearance of 

“crypt progenitor cells”, supporting the evidence that Wnt signalling controls the 

intestinal stem cell population. 
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Figure 1.7 Cre-Lox Technology.  When tamoxifen is administrated to mice which possess both the 
essential exon of the gene of interest flanked by LoxP sites and an oestrogen bound Cre-
recombinase, the tamoxifen frees the Cre-recombinase and enables recombination between 
LoxP sites resulting in the excision of the essential exon. This method is used to temporally 
control gene loss. 

 

When expressed, Cre-recombinase will recombine DNA between any two loxP sites in 

the same orientation. In this example, Cre-expression is linked to the tissue-specific 

promoter villin, which will express in the intestinal epithelia, including the ISCs. The 

transgene encodes a Cre-recombinase estrogen-receptor (ER) linked protein, which is 

inactive until an injection of tamoxifen binds the ER, freeing the Cre-Recombinase. This 

results in a tissue specific conditional knock out, induced by tamoxifen injection. One of 

the main advantages of this model is the ability to use different promoters to drive 

expression of the Cre-recombinase, and thereby drive recombination of the floxed gene 

in any number of specific cell compartments, for example using a Cre-recombinase 

linked to expression of the ISC marker Lgr5 results in recombination specifically within 

the ISC compartment. The utility of this extends beyond providing the ability to 
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determine the importance of mutation location on tumourigenesis, but also enables cell 

lineage tracing experiments using a lacZ reporter gene which once recombined 

expresses β-galactosidase which can easily be stained blue by performing an X-gal stain. 

Daughter cells of the recombined cells will also stain blue, as can be seen from Figure 

1.8 where recombination within ISC compartment enables visualisation of all daughter 

cells of single ISCs as they migrate up the crypt-villus. 

 

 

Figure 1.8 LacZ stain of mouse small intestinal villi. Each stripe of blue represents all of the 
progeny of a single recombined ISC using Cre-recombinase linked to Lgr5 expression.  

 

Cre-lox technology not only enables the study of the early stages of tumourigenesis via 

Apc deletion, but also enables the study of loss of genes which are embryonic lethal. For 

example, Cre-Lox technology has been used to study the effects of the loss of expression 

of the important tumour suppressor Pten, which is embryonic lethal. Loss of Pten 

results in increased levels of PiP3 which recruits Akt to the membrane, thereby 

increasing the levels of activated Akt. This effectively models the effects of constitutive 

PI3K pathway activation which is seen in many human CRC tumours. This method was 

used by Marsh et al., and showed that Pten loss in the adult mouse has no effect on the 
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homeostasis of normal intestine, but does cause accelerated tumourigenesis when 

coupled with defiency of Apc (Marsh et al. 2008).  

1.5.3 β-catenin mutant mouse models 

Another method of modelling Wnt-dependent CRC is via the expression of a mutant 

form of β-catenin which is far more stable in the cell and therefore resistant to 

proteasomal degradation. Mutations which result in a stabilised form of β-catenin are 

found in a subset of human colon tumours which do not carry the APC mutation. When 

modelled in the mouse, conditional stabilisation of β-catenin results in the formation of 

multiple tumours. Interestingly, the work was originally performed with expression of 

Cre-recombinase being driven by the calbindin promoter (which is not expressed in the 

proliferative zone of the intestine) and resulted in few tumours (Romagnolo et al. 

1999). Subsequently Cre-expression driven by a fatty acid binding protein gene 

promoter (which is expressed in the proliferative zone) was shown to result in many 

thousands of adenoma (Harada et al. 1999). These mouse models of CRC lead to the idea 

that oncogenic mutations in cells at the base of the crypt play a more important role in 

CRC than mutations in the differentiated cells along the crypt-villus axis. 

 Intestinal stem cells as the cells of origin of CRC 1.6

A study in 2008 used an Lgr5-promoter driven Cre to show that when Apc is deleted 

specifically within the Lgr5+ cell population, microadenomas form within the intestine 

within 3-5 weeks and develop rapidly to adenomas, whereas when Apc is deleted 

specifically from the transit-amplifying region, microadenomas are rare (Barker et al. 

2008). The loss of Apc in differentiating cells is thought to have so little effect because 

the cells are so rapidly lost from the villi. However, Apc mutations in Lgr5+ cells, as the 

ISCs, results in the population the whole crypt and villus with Apc-/- cells, thereby 

causing tumourigenesis. This result shows the importance of the relationship between 

the ISCs and tumourigenesis, and that expansions in the ISC compartment would 

provide the intestine with a higher number of cells of potential cancer origin.  

Despite the ISC being described as the cell of origin of intestinal cancer, other epithelial 

cells are capable of driving tumourigenesis, but it has been presented that ISC derived 

tumours are more aggressive (Barker et al. 2008). 
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 Cancer stem cells 1.7

Cells within a tumour often maintain a high degree of similarity to the cells of the tissue 

from which they originated, with similar interactions with the environment, and 

responses to molecular control mechanisms. This similarity with normal tissue could be 

taken forward to suggest that, like their tissue of origin, tumour cells are also organised 

into a hierarchy, with less and more potent cells present. The cancer stem cell 

hypothesis maintains that only a sub-population of cancer cells are capable of 

populating and maintaining the tumour, and it is only these cells which are capable of 

metastasising to form new tumours. As such it is essential that these cells are targeted 

by treatment.  

This idea is now supported with a great deal of data, which show that in both 

Leukaemia (Bonnet and Dick 1997; Lapidot et al. 1994) and a variety of solid tumours 

such as breast (Al-Hajj et al. 2003), brain (Singh et al. 2004) and colon (O’Brien et al. 

2006) there is a sub-population of cells which can form a new tumour when 

transplanted into an immune deficient mouse, but that the bulk of tumour cells are 

incapable of this. This insight has led to the cancer stem cell hypothesis.  

In the field of CRC, analysing the heterogeneity of tumour cells taken from solid primary 

tumours of CRC patients enabled the sorting of tumour cells according to the expression 

of various cell surface makers. It was found that of all the different expression patterns 

of these tumour cells, a small subpopulation of epithelial cells which expressed a high 

level of epithelial cell adhesion molecule (EpCAM) as well as CD44 (which is a reported 

breast cancer stem cell marker) were the only population of tumour cells capable of 

engraftment into immune-deficient mice (Dalerba et al. 2007). Interestingly, the 

tumours that they formed in these xenograft experiments re-acquired the same 

heterogeneity of expression patterns and phenotype seen in the parental tumour. This 

indicates that the EpCAMhigh/CD44+ tumour cells represent a subpopulation of CRC cells 

capable of populating and expanding a tumour, therefore potentially represent the 

cancer stem cell population.   

The ability of tumour cells to form tumours upon transplantation and serial 

transplantation into immune deficient animal models is seen as the gold standard for 

identification of cancer stem cells, however many argue that xenotransplantation is an 
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inappropriate method for identification of such cells. This controversy is based on the 

idea that xenotransplantation does not model a physiologically relevant environment of 

tumour growth, and that these assays are simply isolating a subpopulation of cells that 

have an increased fitness for survival in abnormal conditions. Interestingly, it was 

shown by Quintana et al. that the frequency of melanoma cells with tumourigenic ability 

is dramatically altered by the level of immune deficiency of the host animal into which 

they are transplanted (Quintana et al. 2008). This work indicates that the 

xenotransplantation assay may not be the most appropriate method for identifying 

CSCs. 

The recent drive to expand the knowledge base surrounding the cancer stem cell 

hypothesis has resulted in new, convincing supporting evidence using lineage tracing in 

models of sporadic tumourigenesis. Schepers et al. used the confetti mouse (previously 

used to elucidate monoclonality within the crypt) in order to demonstrate that 

intestinal adenoma growth is fuelled by a subpopulation of adenoma cells which 

express the ISC marker Lgr5 (Schepers et al. 2012). This important study also showed 

that the Lgr5+ adenoma cells are intermingled with Paneth cells, indicating that they 

may require a similar sort of niche environment to normal ISCs. It should be noted that 

sorted Lgr5+ intestinal tumour cells have not yet been able to form tumours when 

transplanted into immune deficient mice and so despite being multipotent, they have 

not yet been shown to possess self-renewal capacity. 

This work highlights the importance of choice of approach when attempting to identify 

CSC markers, and hints that despite the attractiveness of the CSC hypothesis, many of 

the markers which have already been published do not necessarily represent a true CSC 

population. 

1.7.1 Cancer stem cells and chemotherapy 

Most currently used chemotherapeutics target rapidly dividing cells which make up the 

bulk of the tumour, however it is thought that they are not as effective against the 

slowly dividing cancer stem cells. This results in the relapse of disease as cancer stem 

cells can repopulate the tumour after treatment (Figure 1.9). This knowledge has led to 

an increase in the number of studies aimed at understanding the drug sensitivity of 

CSCs to compounds used to treat the cancer, and it has been found in a number of 
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studies that less differentiated cell types within a tumour are often less sensitive to 

drugs (Ho et al. 2007; Levina et al. 2008).  

Interestingly, it has recently been shown that a number of ABC transporter proteins 

(which have been associated with drug efflux) are associated with stem cells, and if this 

is the case in CSCs then potentially this sub-population of tumour cells may be markedly 

more resistant to chemotherapeutics than the bulk of the tumour (Al-Hajj et al. 2004). 

 

 

Figure 1.9 Cancer stem cells and chemotherapeutics. Current chemotherapeutics target rapidly 
dividing cells, thereby reducing tumour size (tumour bulk shown as blue cells) but can leave the 
less rapidly dividing cancer stem cells (represented in red) unaffected, enabling them to re-
establish the tumour and cause relapse. By targeting the cancer stem cells, it may be possible to 
cause tumour regression as well as prevent metastasis. 

 

 It is evident that some method of targeting cancer stem cells is necessary in order to 

permanently treat the disease, however, this presents a number of difficulties. What we 

know about normal adult stem cells indicates that there is likely to be some sort of 

cancer stem cell niche, whereby the direct environment of the cancer stem cell 

promotes its existence. What is unknown is whether the niche regulates the stem cells 

or if the stem cells regulate their own niche. If it is the former then simply killing the 

cancer stem cells will not have any effect as whichever cell finds itself in the niche will 
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be driven to become a cancer stem cell. For this reason a greater understanding of the 

relationship between cancer stem cells and their niches is required in order for this 

hypothesis to be put to therapeutic use.  

Another difficulty commonly encountered when attempting to produce a therapy which 

specifically targets CSCs, is the similarities between normal ISCs and CSCs. Any 

treatment which does not distinguish between the two types of cells could cause severe 

damage to normal intestinal tissue. One recent attempt to expand the differences 

between the two populations of cells showed that expression of Dclk1 can differentiated 

between ISCs and CSCs. Using Cre-induced lineage tracing experiments, this study 

showed that normal intestinal cells which express Dclk1 do not represent the ISC 

population, whereas tumour cells which express Dclk1 represented a proliferative 

population of cells at the base of the polyp (Nakanishi et al. 2012). Developing this 

theme, this study then explored how the knowledge of these differences between CSCs 

and ISCs could be of use to therapy.  By specifically ablating Dclk1 positive cells in Min 

mice, it was shown that normal intestinal epithelium was undamaged, but there were 

high levels of tumour regression. This example represents how increased 

understanding of both normal ISCs and CSCs, as well as the relationship between the 

two, can result in the uncovering of potential therapeutic targets. 

Recently there have been some positive outcomes from the use of the CSC hypothesis, 

namely the development of Metformin (currently a treatment for diabetes) alongside 

traditional chemotherapeutics to selectively target cancer stem cells, so far with a great 

deal of success (Cufí et al. 2010; Hirsch et al. 2009).  It is now thought that Metformin 

functions by inhibiting Transforming Growth Factor-β (TGF-β) driven Epithelial-

Mesenchymal Transition (EMT). Metformin is beginning to show its worth as a breast 

cancer treatment in a variety of trials (Martin-Castillo et al. 2010) and as data 

accumulates it will be interesting to see whether drugs which target CSCs in this way 

will reduce the risk of relapse post-recovery. 
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Aims and Objectives 

 The importance of the relationship between ISCs and intestinal tumourigenesis is clear, 

not only due to the identification of ISCs as the “cell of origin” of intestinal adenomas 

(Barker et al. 2008), but because conditional homozygous loss of the tumour suppressor 

gene Apc results in an increase in undifferentiated cell types (Sansom et al. 2004b). This 

indicates that an early stage of tumourigenesis may involve an expansion of the 

intestinal stem cell compartment. 

Currently, assessment of the ISC compartment relies on the use of gene expression 

markers, either by in situ hybridisation or qRT-PCR. The specificity of these genes to 

mark the ISC population is continually debated (Barker et al. 2012), and they do not 

provide a readout of changes in the functional potency of the ISC compartment.  

The two main objectives of this thesis are therefore to develop a functional assay for the 

assessment of the ISC compartment and to apply this assay to a variety of mouse models 

of colorectal cancer in order to identify how changes in the ISC compartment contribute 

to tumourigenesis. 

To address the first objective I will be utilising the known functional properties of ISCs; 

the ability to produce daughter cells of all of the intestinal epithelial lineages, and as 

such, form intestinal organoids in culture (Sato et al. 2009). I will use this technique to 

investigate the potential of organoid formation efficiency as a readout of the functional 

stem cell compartment. 

In order to assess how changes in the ISC compartment contribute to tumourigenesis I 

will be using a number of novel models. The role of Wnt-signalling in the maintenance 

of the ISC compartment will be interrogated through loss of the Wnt-target gene Cited-1, 

individual and combined loss of Apc and its homologue Apc2, and cross talk with the 

PI3K pathway will be examined using loss of the negative regulators of PI3K, Pml and 

Pten on an Apc deficient background. The intestinal phenotype of these models will be 

described, not only by analysing the effect of gene deficiency on tumourigenesis and 

intestinal homeostasis but in relation to changes within the ISC compartment, as 

assessed by gene expression patterns and ISC functionality. 
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2 Materials and Methods 

 Experimental Animals 2.1

2.1.1 Animal Husbandry 

All animals were housed according to UK Home Office Regulations; mice were given 

access to the Harlan standard diet (Special Diets Service UK, expanded diet) and water 

ad libitum. 

2.1.2 Breeding 

All mice were maintained on an outbred background. Mice of 6 weeks and older of 

known genotype were bred in trios of one male and two females. Pups were weaned at 

approximately 4 weeks old when feeding independently. Pups were sexed and 

separated at weaning then ear clipped for identification purposes. 

 Genetic Mouse Models 2.2

A number of transgenic mouse models were utilised within this project, see Table 1. The 

transgenes used either resulted in a constitutive deletion of the gene of interest or 

contained exons of the gene of interest flanked with LoxP sites, to enable conditional 

deletion of the genes. The only Cre-recombinase transgene used in this thesis was 

VillinCreER which is expressed in the intestinal epithelium where it is inactive whilst 

fused to a mutated estrogen receptor. This Cre-recombinase becomes active in the 

presence of tamoxifen. 

 Experimental Procedures 2.3

All procedures were conducted according to appropriate UK Home Office Regulations, 

and fell within the remit of the project licence code 30/2737. 

2.3.1 Ear biopsy for genotyping 

As the tissue from the ear biopsy taken for identification purposes was also used for 

DNA extraction and genotyping, (see section 2.4.1) the ear biopsy is defined as an 

experimental procedure. As such it was performed by a licensed individual in a 

designated procedure room. Ear biopsies were taken using a 2 mm ear punch (Harvard 
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apparatus). When DNA from ear biopsy was not suitable for genotyping, tail biopsy was 

utilized to surgically remove 3-5 mm of the tail tip under local anaesthetic. 

 

Transgene Effect 

VillinCre ERT (El Marjou et al. 2004) Intestinal epithelial cells, tamoxifen 

inducible 

LoxP targeted Apc allele (Shibata et al. 

1997) 

Endogenous Apc allele bearing LoxP 

sites flanking exon 14 

LoxP targeted Pten allele (Suzuki et al. 

2001) 

Endogenous Pten allele bearing LoxP 

sites flanking exons 4 and 5 

Pml- allele (Wang et al. 1998) Constitutive Pml knockout. 

Cited1- allele (Rodriguez et al. 2004) Constitutive Cited1 knockout 

Apc2 - allele (Van der Meer et al. 2001) Constitutive Apc2 knockout 

Table 1 Outline of the transgenic mouse models used within this thesis 

 Genotyping of mice using Polymerase Chain Reaction (PCR) 2.4

PCR was performed to genotype weaned mice using genomic DNA (gDNA) extracted 

from ear biopsy. Confirmatory genotyping was also performed at time of death to 

ensure the mouse was assigned to the correct experimental cohort. PCR was kindly 

performed by Mark Bishop. 

2.4.1 DNA extraction 

Ear biopsies were placed in a labelled microtube and stored at -20°C until use. Cell Lysis 

Solution (Gentra, 250 µl) and Proteinase K (Roche, 5 µl of 20 mg/ml) were added and 

incubated in a shaking incubator at 40°C overnight (O/N). Protein Precipitation Solution 

(Puregene, 100 µl) was added and mixed by inversion. Following centrifugation for 10 

minutes at 13000 rpm, the supernatant was carefully removed and placed in a fresh 

microtube with 250 µl isopropanol. This was mixed by inversion and centrifuged at 

13000 rpm for a further 15 minutes then the supernatant removed and discarded. The 

pellet containing the precipitated gDNA was resuspended in 250 µl of Ultrapure H2O 

(Sigma). gDNA was stored short term at room temperature (RT) and at 4°C for long 

term storage.  
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2.4.2 PCR Protocol 

PCR was carried out in thin-wall 12-well strip tubes (Grenier, Bio-One). 2.5 µl of gDNA, 

extracted as described above, was added to each tube with 47.5 µl of PCR mix 

(described in Table 2) containing the DNA polymerase and buffer appropriate to the 

PCR (see Table 3), Ultrapure H2O (Sigma), Magnesium Chloride (Promega), dNTPs 

(Bioline) and gene specific primers. One control tube, made up as described above but 

with the DNA replaced with Ultrapure H2O (Sigma), was run with every PCR reaction. 

Primers were either designed using Primer3 software (http://primer3.ut.ee/) and 

specificity confirmed using BLAST engine against the Ensembl database 

(http://www.ensembl.org/Mus_musculus/Info/Index) or used as described from 

previous publications. Specific primer sequences used can be found in Table 3. 

The caps were then firmly placed on the tubes and the PCR reactions run on a 

thermocycler (G storm). Conditions are described in Table 3. 

 

Table 2 Constituents of PCR mix  

http://primer3.ut.ee/
http://www.ensembl.org/Mus_musculus/Info/Index
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Table 3 PCR conditions required for genotyping. 

 

2.4.3 Visualisation of PCR products 

PCR products were visualised using gel electrophoresis. Agarose gels were made by 

dissolving 10 g agarose in 400 ml 1 × Tris-Boreate-EDTA (TBE) buffer (Sigma) in a 

conical flask by heating in a microwave until boiling. The gel was then cooled by running 

cold water over the base of the conical flask while agitating to prevent uneven cooling. 

14 µl of Safe View fluorescent nucleic acid stain (NBS Biologicals) was added to the 

melted gel and agitated carefully to ensure even distribution of the Safe View without 

incorporating air bubbles into the gel. 200 ml of gel solution was then poured into each 

of two moulds (Bio-Rad) and combs inserted to create wells. Once the gels were set, the 

combs were removed and they were placed into gel electrophoresis tanks and covered 

with 1 × TBE with Safe View (10 μl Safe View/100 ml 1 × TBE).  

5 µl of loading dye (50% Glycerol [Sigma], 50% Ultrapure H2O, 0.1% bromophenol blue 

[Sigma]), was added to the PCR product and mixed by pipetting. 20 µl of the coloured 
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PCR product was added to each well of the agarose gel, and run alongside a molecular 

weight ladder (Promega) of appropriate size to the estimated PCR product. The gel was 

run at 120 V until the loading dye had run more than halfway across the gel 

(approximately 30 minutes) and the gel was visualised using a GelDoc UV trans 

illuminator (Bio-Rad). Depending on the size of the PCR products produced, the gel was 

frequently run for longer in order to clearly separate the bands.  

 Experimental Cohorts 2.5

After the genotype of mice had been ascertained by PCR, Cre-recombinase mediated 

recombination was induced in appropriate mice around 8-10 weeks of age using 

tamoxifen administration. Once induced, long term cohorts were monitored closely for 

signs of ill health, and were culled when they presented either an intestinal tumour 

phenotype (hunched appearance, piloerection, paling feet, large rectal prolapse which 

caused discomfort or was ulcerated) or any other signs of loss of condition.  

Short term cohorts were induced at 8-10 weeks of age and then sacrificed 3 days after 

the first induction day to study the short term effects of gene deletion. 

2.5.1 Tamoxifen administration 

Powdered Tamoxifen (Sigma) was dissolved in corn oil (Sigma) at a concentration of 10 

mg/ml in an 80°C water bath. An 80 mg/kg dose of tamoxifen was administered to each 

experimental mouse via intraperitoneal (I.P.) injection daily, for four consecutive days. 

For short term cohorts, 3 injections of 60 mg/kg were administered in a single day. I.P. 

injections were performed using a 1 ml syringe (BD Plastipak) and 25 G needle (BD 

Microlance3). 

2.5.2 5-Bromo-2-deoxyuridine administration 

Sort term experimental animals were injected with 250 µl of the thymidine analogue 5-

Bromo-2-deoxyuridine (BrDU, Amersham Biosciences) either 2 or 24 hours prior to 

sacrifice in order to label cells currently undergoing, or which have passed through, S-

phase within the 2 hours during which BrDU is bioavailable. 
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 Tissue Preparation 2.6

2.6.1 Tissue Dissection 

Mice were culled via cervical dislocation according to Home Office Licence procedures. 

The mouse was sprayed with 70% EtOH and the skin and muscle wall of the abdomen 

cut through to open the abdominal cavity. The genitourinary tract, kidneys, pancreas 

and spleen were fixed together, liver was dissected out and fixed alone, and the small 

and large intestine and stomach were flushed out using 1 × PBS and fixed as described 

below.  

For the short term cohorts, the small intestine was divided into small sections, with 

some being snap frozen for RNA extraction, some being opened longitudinally, rolled 

and placed in formalin and a third section being used for epithelial cell extract using 

Weiser preparation. All organs were collected into 10% formalin on ice.   

For long term cohorts, once sacrificed due to ill health, where possible the cause of 

death was established. All organs were collected and formalin fixed. The intestine was 

opened longitudinally and fixed in methacarn. 

2.6.2 Tissue Fixation using Formalin 

All organs were formalin fixed unless otherwise stated. Small and large intestine were 

flushed with cold 1 × PBS and opened longitudinally. The gut was then rolled using 

dissection tweezers and pinned in place using a syringe needle. The gut roll was placed 

in 10% formalin (Sigma) on ice. Organs were incubated in formalin for 24 hrs at 4°C 

then stored in 70% EtOH at 4°C until paraffin embedding. 

2.6.3 Fixation Using Methacarn 

For long term cohorts where an accurate tumour count was required, small and large 

intestines were flushed with cold 1 × PBS and opened longitudinally on 3MM paper 

(Whatman). This was then placed in a sealed container of Methacarn (4:2:1 Methanol: 

Chloroform: Glacial Acetic Acid (Fisher)) and stored overnight (O/N) at RT in a fume 

hood. Tumour counts and location were then performed and the gut was rolled using 

dissection tweezers and pinned in place using a syringe needle. This was placed in 70% 

EtOH at 4°C prior to paraffin embedding. 



39 

 

2.6.4 Paraffin Embedding Fixed Tissue 

Fixed tissues were removed from 70% EtOH and placed in a cassette (Fisher) and 

processed using an automatic processor (Leica TP1050). The tissues were incubated in 

an increasing gradient of EtOH for dehydration (70% EtOH for 1 hour, 95% EtOH for 1 

hour, 2 × 100% EtOH for 1 hour 30 minutes and 100% EtOH for 2 hours), then in 2 × 

xylene for 2 hours. The tissue samples were then placed in liquid paraffin for 1 hour, 

followed by 2 × 2 hours. The samples were removed from the cassette and embedded in 

paraffin wax by hand and left to solidify.  

2.6.5 Sectioning Fixed Tissue 

In order to enable microscopic analysis of the tissue, sections of tissue were fixed onto 

slides in preparation for H&Es, cell-specific staining or IHC. Paraffin embedded tissues 

were cut to 5 µm sections using a microtome (Leica RM2135) and placed on Poly-L-

Lysine coated slides (PLLs) and baked at 58°C for 24 hours.   

Paraffin embedding and sectioning was performed by Derek Scarborough and Mark 

Isaac. 

2.6.6 Snap freezing tissue 

Several sections of normal intestinal tissue and intestinal tumour tissue (approximately 

2 mm × 2 mm) were placed in lockable microtubes and placed in liquid nitrogen until 

frozen then stored at -80°C until required. 

2.6.7 Epithelial Cell Extraction using Weiser Preparation 

When RNA or protein analysis was required, Weiser preparation was performed in 

order to extract intestinal epithelium and therefore minimise interference from stromal 

and smooth muscle compartments. The 10 cm of the small intestinal proximal to the 

pyloric junction was dissected out, and flushed with ice cold PBS. The gut was opened 

longitudinally and cut in half longitudinally, and one half rolled and formalin fixed. This 

enabled direct comparison between gene expression levels and phenotype. The other 

half was washed 3 × in 15 ml ice cold Weiser solution (Table 4) by shaking in a 50 ml 

Falcon tube. The sample was then incubated on ice for a maximum of 20 minutes in 15 

ml Weiser solution then vortexed for 15 minutes. The solution was removed and 

retained on ice and a further 15 ml ice cooled Weiser solution added to the sample, this 
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was repeated twice. The removed fractions were combined and centrifuged at 1500 

rpm for 5 minutes at 4°C. The supernatant was discarded and the pellet washed 2 × with 

20 mls of ice cold PBS. The pellet was then resuspended in 3 ml PBS and aliquoted into 3 

× 1 ml samples in microtubes which were then centrifuged at 13000 rpm and the 

supernatant removed. Two of these pellets were resuspended in 500 µl Trizol before 

snap freezing in liquid nitrogen and stored at -80°C for future RNA extraction. The third 

pellet was snap frozen in liquid nitrogen then stored at -80°C for future protein 

extraction. 

 

Table 4 Constituents of Weiser Solution for epithelial extraction. * DTT should only be added on 
day of use. 
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 Histological Analysis  2.7

2.7.1 De-waxing and Rehydrating PLLs 

Prior to IHC or cell staining, PLL sections were de-waxed by 2 × 10 minute submersion 

in Xylene and rehydrated through 5 minute incubations in each of the following 

gradients of EtOH; 2 × 100% EtOH, 1 × 95% EtOH and 1 × 70% EtOH. Slides were placed 

in dH2O in preparation for IHC or cell staining.  

2.7.2 Haematoxylin and Eosin (H&E) staining 

Staining with H&E enables the visualisation of tissue morphology. Haematoxylin stains 

the cell nuclei blue, whereas Eosin stains protein red. PLL sections were de-waxed and 

rehydrated, as described in section 2.7.1, and then immersed in a bath of Mayer’s 

Haemalum (R.A. Lamb) at RT for 45 seconds. The slides were removed and placed in a 

fresh bath with running water to remove any excess Haemalum and then placed in a 

bath of Eosin (R.A. Lamb). The slides were removed and placed in a fresh bath with 

running water to remove any excess Eosin. Slides were then dehydrated and mounted 

as described in section 2.8.2.8. 

 Cell Type Specific Stains 2.8

 Alcian Blue Staining for Goblet Cells 2.8.1.1

Alcian blue stain the mucins which are present in the secretory intestinal epithelial cell 

type, goblet cells. 

PLL slides were de-waxed and dehydrated as described in section 2.7.1 then immersed 

in a bath of alcian blue staining solution (1% Alcian blue (Sigma), 3% Acetic acid 

(Fisher) in distilled water (dH2O) at pH 2.5) for 2 minutes then placed in a bath with 

running water for 5 minutes. Tissue sections were then counter stained with Haemalum 

(R.A. Lamb) for 45 seconds then returned to a bath with running water for a further 5 

minutes. Slides were then dehydrated and mounted as described in section 2.8.2.8. 

 Grimelius Staining for Enteroendocrine Cells 2.8.1.2

The hormone-secreting enteroendocrine cells of the intestinal epithelium contain 

argyrophilic granules, which bind silver ions. These can be precipitated in the presence 

of a reducing solution which results in enteroendocrine cells appearing black. 
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All glassware was washed in double distilled H2O (ddH2O) prior to use to prevent 

contamination by any reducing agents. Slides were de-waxed and rehydrated as 

described in section 2.7.1 then incubated in silver staining solution (see Table 5) for 3 

hours at 65°C. The slides were then incubated in preheated reducing solution (see Table 

5) at 45°C for 1-10 minutes until the tissue sections had a visible yellow background 

stain, thereby eliminating the need for a counter stain. Slides were then dehydrated and 

mounted as described in Section 2.8.2.8. 

 

Table 5 Constituents of Solution required for a Grimelius stain for the presence of 
enteroendocrine cells. 

 

2.8.2 Immunohistochemistry (IHC) 

IHC was performed to enable the visualisation of the presence and location of specific 

proteins within the tissue sections. The specific conditions for each IHC performed are 

outlined in Table 6, and a generic protocol is described below.  

PLL slides were dewaxed and rehydrated as described in section 2.7.1 prior to antigen 

retrieval. 

 Antigen retrieval 2.8.2.1

In order to unmask the antigens, the cross-linking bonds formed between proteins 

during fixation were broken via antigen retrieval. Slides were boiled in pre-warmed 

citrate buffer (2.94 g Sodium citrate tribasic dehydrate (Sigma) in 1 L dH2O, pH 6) in a 
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pressurized cooker for 10 minutes then left to cool to room temperature and washed in 

dH2O. 

 Blocking of endogenous peroxidises 2.8.2.2

Antibody visualisation involves an enzymatic reaction catalysed by horse radish 

peroxidise (HRP), and so it was necessary to block the activity of endogenous 

peroxidises. This was achieved by the incubation of slides in hydrogen peroxide. The 

slides were either incubated in hydrogen peroxide (Sigma) diluted to the appropriate 

concentration in dH2O, or a commercial peroxidise blocking solution (Envision+Kit, 

DAKO). Hydrogen peroxide concentrations and blocking time can be found in Table 3. 

Slides were then washed 3 × 5 minutes in wash buffer (Table 6) at RT with agitation. 

 Blocking of non-specific antibody binding 2.8.2.3

Binding of non-specific antibodies was blocked by incubating the sections with serum 

derived from a species other than that in which the primary antibody was raised. A 

hydrophobic barrier pen (Immedge, VectorLabs) was used to draw around the sections 

and serum diluted in wash buffer to the correct concentration (Table 6) was added to 

the slides and incubated for 30 minutes at room temperature.  

 Primary Antibody Treatment 2.8.2.4

Primary antibodies were diluted to the working concentration (Table 6) using the 

working serum stock used in the previous step. The serum block was removed from the 

slides and the primary antibody applied and incubated in a moist chamber for the 

appropriate time. 

 Secondary Antibody Treatment 2.8.2.5

Slides were washed 3 × 5 minutes in wash buffer at room temperature with agitation 

then the secondary antibody, which was either a biotinylated antibody diluted to the 

correct concentration in the working stock of blocking serum, or a HRP-conjugated 

antibody from the EnVision plus kit (DAKO), was applied and incubated for the 

appropriate time (Table 6).  

 HRP Conjugation for Signal Amplification 2.8.2.6

When a biotinylated antibody had been used as a secondary (but not when the EnVision 

plus kit had been used), a signal amplification step which involves the binding of HRP to 
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the biotin of the secondary antibody was performed. This was achieved using the 

Avidin-Biotin Complex (ABC) kit (Vector Labs). The ABC reagent was prepared 

according to manufacturers’ instructions 30 minutes prior to use and stored at RT.  

Sections were washed 3 × 5 minutes in wash buffer at RT with agitation then the ABC 

reagent applied and incubated at RT for 30 minutes in a moist chamber.  

 Visualisation of Antibody Binding 2.8.2.7

Visualisation was achieved by the use of diaminobenzidine (DAB), which is a substrate 

for HRP, and when catalysed results in a brown coloured stain.  

 Sections were washed 3 × 5 minutes at RT with agitation and the DAB reagents (DAKO) 

prepared according to manufacturers’ instructions immediately prior to incubation. 

DAB was applied and incubated for 5-10 minutes until a brown stain could be seen. 

Tissue sections were then washed in dH2O, and counterstained in Mayer’s Haemulum 

(R.A. Lamb) for 45 seconds and washed in a bath of running water to remove excess 

Haemulum.  

 Dehydration and Mounting of slides 2.8.2.8

Slides were dehydrated by incubation in a series of EtOH baths at an increasing gradient 

of EtOH. (1× 5 minutes 70% EtOH, 1 × 5 minutes 95% EtOH, 2 × 5 minutes 100% EtOH) 

then cleared in 2 × 5 minute incubations in xylene. Slides were removed from the xylene 

and mounted in DPX mounting medium (R.A. Lamb) and coverslips applied and allowed 

to dry in a fume hood. 
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Table 6 Optimised conditions for IHC for the range of antibodies used. 
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2.8.3 Cell Counting 

Unless otherwise stated, all cell counts were performed on 50 half crypt-villus axes per 

mouse for a minimum of 4 mice per cohort. Positively stained brown cells from IHC 

were counted in this way, as were black enteroendocrine cells from Grimelius staining 

and blue goblet cells from alcian blue staining. 

 Crypt/aberrant cell number counts 2.8.3.1

The number of cells from the base of the crypt were counted per half crypt up to the 

crypt “shoulder” at the crypt-villus junction using H&E sections. Mice with homozygous 

deletion of Apc did not have clear crypt compartments due to cell mis-regulation, and so 

the number of cells in the region of aberrant proliferation within the crypt-villus axis 

were counted in a single line. 

 Apoptosis and Mitosis Scoring 2.8.3.2

When counting the crypts and the aberrant regions of the intestine, the number of 

apoptotic bodies and mitotic bodies and their positions were recorded. 

2.8.4 Tumour Severity Grading 

Tumour grading was carried out on all sections from aged Apcflox/+ Ptenflox/flox Pml-/- mice 

and associated control cohorts. From H&E slides from methacarn fixed gut roll, the 

intestine was examined under the microscope and the number and severity of lesions 

was counted and graded. Each lesion was graded according to the grading system 

outlined in Figure 2.1. 
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Figure 2.1 Tumour grading system. Black arrows indicate aberrant region. Black bar represents 
100 µm. 
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 In Situ Hybridisation 2.9

In situ hybridisation was performed on gut PLL slides from formalin fixed tissue in 

order to assess the location of Ascl2 and Olfm4 mRNA, two markers of the ISC 

compartment. Markers of the ISC compartment are generally expressed at such low 

levels, and there are few useful antibodies against the proteins, that it is impractical to 

visualise expression using IHC.  

In situ hybridisation uses digoxigenin (DIG) labelled RNA probes (riboprobes) which 

specifically bind target mRNA due to their complementary sequence. Successful probe 

binding can be detected using an anti-digoxigenin alkaline phosphatase-conjugated 

antibody. BM purple, a chromogenic substrate for alkaline phosphatase, is then used to 

visualise the location of antibody binding through the development of a purple stain. 

DIG labelled sense RNA probes (of the same, not complimentary sequence to the mRNA) 

were used as a control. 

Previously published probes for Ascl2 (Guillemot et al. 1994) and Olfm4 (van der Flier et 

al. 2009a) cloned into a pBluescript vector flanked by a promoter sequence for T3 or T7 

RNA polymerase, were used to transform competent Escherichia coli (E.coli) cells. These 

were then cultured and the plasmid DNA extracted and linearised and the probe 

transcribed using the appropriate RNA polymerase. 

2.9.1 Transformation of competent cells with cDNA vectors 

The probes were supplied integrated into plasmid vector DNA, and so had to be 

amplified for long term use via transfection into E.coli cells. 50 μl of chemically 

competent JM109 E.coli cells (Promega) were incubated on ice for 30 minutes with 1 μg 

plasmid DNA. The cells were then heat shocked at 42°C for 45 seconds before being 

returned to ice for 2 minutes. 1 ml SOC medium (Invitrogen) was added to the cells and 

incubated at 37°C in a shaking incubator for 2 hours. 750 μl of the culture was then 

plated onto one agar plate containing ampicillin and 250 μl plated onto another. The 

plates were then incubated O/N at 37°C. 

A single colony from this plate, selected using a sterile pipette tip, was streaked onto a 

separate agar plate containing ampicillin, and incubated O/N at 37°C. Four isolated 

colonies were selected from this plate using a sterile pipette tip and cultured O/N at 
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37°C in 10 ml of ampicillin containing LB medium in a 50 ml falcon tube in a shaking 

incubator. Plasmid DNA was extracted from 3.5 ml of this culture using a Qiagen Mini-

prep kit and subjected to an analytical digest to ensure transfection of the correct 

construct had occurred (see below). Another 100 μl of this culture was then used to 

inoculate 200 ml of ampicillin containing LB medium which was cultured O/N at 37°C in 

a shaking incubator to enable large scale plasmid DNA extraction through the use of a 

midi-prep kit (Qiagen). A glycerol stock of each culture was prepared by mixing 0.5 ml 

of this culture with 0.5 ml 50% glycerol and freezing at -80°C. Future probe generation 

was performed by culturing E.coli directly from this stock. 

2.9.2 Plasmid DNA extraction and probe linearization 

Plasmid DNA was extracted using Qiagen mini-prep kit (for the analytical digest) or 

Qiagen midi-prep kit (for the probe preparation) according to manufacturer’s 

instructions and resuspending extracted DNA in 200 μl 10 mM Tris (pH 8). A NanoDrop 

machine was used to quantify the DNA. 

 Analytical digests were performed by digesting the Ascl2 probe-containing plasmid 

with EcoR1 (New England Biolabs), which had been used to insert the probe into the 

plasmid, whilst the Olfm4 probe-containing plasmid was digested with NotI and SacI 

(New England Biolabs) (see Table 7 for restriction digest protocol). For both constructs 

the resultant digestion product was analysed on a 4% agarose gel to assess the 

fragment size. The Ascl2 digest was approximately 1,700 bps after analytical digest, and 

the Olfm4 digest was approximately 700 bps. 

200 μg plasmid DNA was linearised for probe preparation using the appropriate 

restriction enzyme (seen in Table 8) and the linearised plasmid DNA was 

phenol/chloroform extracted. This was performed by making the volume of plasmid 

DNA up to 500 μl with 10 mM Tris (pH 8) and adding an equal volume of phenol. This 

was then mixed by inversion for 5 minutes at room temperature and centrifuged at 

room temperature at 13000 rpm for 10 minutes.  The upper aqueous phase was 

carefully pipetted into a clean microtube and an equal volume of chloroform added. This 

was mixed by inversion for 10 minutes at room temperature then centrifuged again for 

10 minutes at 13000 rpm at room temperature. The aqueous phase was then carefully 

pipetted into a clean microtube and 0.1 volume of 3 M NaOAc (ph 5.2) was added with 
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2.5 volumes of 100% EtOH. This was incubated at -20°C O/N in order to precipitate the 

DNA. This was then centrifuged at 4°C for 20 minutes at 13000rpm and the supernatant 

discarded. The pellet was washed twice with 70% EtOH and allowed to air dry before 

being resuspended in 40 μl of 10 mM Tris (pH 8). The DNA was quantified using a 

NanoDrop machine and adjusted to a concentration of 1 μg/μl using 10 mM Tris (pH 8). 

 

 

Table 7 The constituents required to perform a restriction digest of the plasmid DNA. 

 

 

Table 8 Restriction enzymes required for linearisation of plasmid DNA. All restriction enzymes 
were purchased from NEB and were associated with a specific buffer. For the analytical digest of 
Olfm4, the combination of two restriction enzymes resulted in the need for an alternative buffer, 
and buffer 2 (NEB) was used. 

 

2.9.3 Probe Preparation 

The probes were prepared using the linearised plasmid DNA as a template for the 

transcription of DIG-labelled riboprobes using T3 or T7. 1 μg of 1 μg/μl linearised 

plasmid DNA was labelled using the appropriate RNA polymerase (see Table 9) and a 

DIG labelling mix (Roche). The transcription reactions were set as detailed in Table 10, 

and incubated for 2 hours at 37°C and 20 units of DNaseI (Ambion) added and then 

incubated for a further 15 minutes at 37°C to digest the DNA template.  

1/10th of the volume of NaOAc and 2.5 volumes of 100% EtOH were then added to the 

transcription reaction in order to precipitate out the DIG-labelled riboprobe. This was 

centrifuged at 13000 rpm for 20 minutes at 4°C and the pellet washed twice with 70% 
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EtOH and air dried. The pellet was resuspended in 100 μl Ultrapure H2O (Sigma) and 

stored at -80°C in 10 µl aliquots until use. 

 

Table 9 RNA polymerase enzymes for probe transcription. DIG-labelled riboprobes were 
transcribed from linearised plasmid DNA using the appropriate RNA polymerase enzyme. 

 

 

Table 10 DIG-labelling mix. Table shows the constituents and volumes for a single reaction to 
produce a DIG-labelled riboprobe. 

2.9.4 Probe hybridisation 

Sections were dewaxed, rehydrated, treated with 6% H2O2
 for 30 minutes, washed 2× in 

PBS and fixed in 4% paraformaldehyde for 20 minutes on ice.  Sections were washed 2× 

in PBS and digested in Proteinase K solution for 5 minutes (200 µg/ml proteinase K in 

50 mM Tris, 5 mM EDTA), washed once in PBS, post-fixed in 4% paraformaldehyde for 5 

minutes, and washed in DEPC H20 for 2 minutes.  The slides were then treated in acetic 

anhydride solution (2 M Acetic anhydride in 0.1 M triethanolamine hydrochloride) for 

10 minutes whilst stirring, washed once in PBS and once in 1× saline then dehydrated 

and allowed to air-dry. The olfm4 probe was diluted 1 in 100 in hybridisation buffer (5× 

SSC, 50% formamide, 5% SDS, 1 mg/ml heparin, 1 mg/ml calf liver tRNA) which was 

heated to 80˚C for 3 minutes. 100 μl of this was applied to each slide which was then 

covered in parafilm to prevent dehydration of the slide, and incubated overnight in a 

dark, moist chamber at 65˚C.  
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2.9.5 Post-hybridisation treatment 

Post hybridisation washes were performed 1× in 5× SSC at 65˚C for 15 minutes then 2× 

in 50% formamide, 5× SSC 1% SDS for 30 minutes at 65˚C. Post hybridisation washes 

were continued by washing twice in 0.5 M NaCl, 10 mM TrisHCl pH 7.5, 0.1% Tween for 

10 minutes, the first at 65˚C and the second at room temperature. Sections were then 

incubated for 45 minutes in 0.5 M NaCl, 10 mM TrisHCl pH 7.5, 0.1% Tween with 25 µg 

RNAse A (Qiagen) at 37˚C then washed once in 0.5 M NaCl, 10 mM TrisHCl pH 7.5, 0.1% 

Tween for 5 minutes at room temperature. Sections were washed 2× in 50% 

formamide, 5× SSC for 30 minutes at 65˚C and preblocked in 10% sheep serum in PBT 

in a dark, moist chamber at room temperature for 2-3 hours. Antibody solution was 

created by pre-absorption of Anti-digoxigenin alkaline phosphatise conjugated antibody 

(Roche) for 3 hours at 4°C in 1% heat-inactivated sheep serum in PBT containing 5 

mg/ml mouse intestinal powder.  100 μl of this antibody solution was applied to each 

slide which was then covered in parafilm and incubated in a dark, moist chamber at 4°C 

O/N. 

2.9.6 Signal Detection 

Sections were washed 3× in PBT for 5 minutes then 3× in PBT for 30 minutes then 

preconditioned to inhibit endogenous alkaline phosphatase by washing 3× in NTMT 

buffer for 5 minutes (100 mM NaCl, 100 mM Tris HCl, 50 mM MgCl2, 0.1% Tween, 2 mM 

Levamisole). The substrate (BM purple, Roche) was added directly to the slides and 

incubated in the dark at 4˚C for 24-72hrs until a sufficiently strong colour developed. 

Sections were washed in PBT and counterstained with eosin. Excess eosin was removed 

by washing in running H2O and the slides were dipped in xylene prior to air-drying and 

mounting using DPX. 

2.9.7 Preparation of intestinal tissue powder 

The small intestines of 5 adult mice were combined and homogenised in the minimum 

volume of ice cold PBS. 4 volumes of ice cold acetone were added to the homogenised 

intestine, which was mixed thoroughly and incubated on ice for 30 minutes. This was 

centrifuged and the pellet was washed using ice cold acetone. This was further 

centrifuged and the resulting pellet spread onto filter paper and allowed to dry. Once 

thoroughly dry the material was ground to a fine powder using a pestle and mortar.  
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 Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) 2.10

qRT-PCR was used to assess the relative expression levels of genes within intestinal 

epithelial tissue. Intestinal epithelium was isolated using the Weiser preparation 

method (see section 2.6.7) and stored in Trizol at -80°C prior to RNA extraction. This 

RNA was used as a template for cDNA synthesis and then the levels of gene expression 

of a range of Wnt-target genes and ISC markers was compared between a minimum of 4 

mice of each genetic cohort.  

2.10.1 RNA extraction 

Epithelial cell extract was defrosted in 1ml Trizol (Invitrogen) in Precellys® beaded 

microtubes. Once defrosted, the samples were homogenized using a Precellys®24 

homogenizer for 45 seconds followed by 1 minute incubation and a further 45 seconds 

homogenisation. The samples were removed from the machine and allowed to settle on 

ice for 5 minutes to remove bubbles. The samples were pipetted into fresh microtubes 

with 200 μl pre-chilled chloroform. This was incubated on ice with frequent agitation 

for 10 minutes. 

The samples were then centrifuged for 15 minutes at 13000 rpm at 4°C, and the 

aqueous phase of the supernatant carefully pipetted into fresh microtubes and 700 μl 

isopropanol added. This was incubated at -20°C O/N for optimal RNA precipitation. 

The samples were then centrifuged for 15 minutes at 13000 rpm at RT and the 

supernatant discarded. The pellets were washed twice with 500 μl pre-chilled 70% 

EtOH and air dried for 5 minutes then resuspended in 10μl Ultrapure H2O (Sigma) and 

incubated for 10 minutes at 65°C. Extracted RNA was quantified using the NanoDrop 

machine. 

2.10.2 DNase Treatment 

10 μg extracted RNA was mixed with 5 μl RQ1 buffer (Promega), 10 μl RQ1 DNase 

enzyme (Promega) and made up to 50 μl with Ultrapure H2O. This was incubated at 

37°C for 30 minutes for optimum DNase activity. 5 μl STOP solution (Promega) was 

added and the solution heated to 65°C for 10 minutes to prevent further DNase activity. 

This resulted in DNA-free RNA at a concentration of 10 μg/ 55 μl. 
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2.10.3 cDNA synthesis 

The RNA was used as a template for cDNA synthesis using the reverse transcriptase 

SuperScript II (Invitrogen). The constituents of the cDNA synthesis mix are outlined in 

Table 11 and made up in thin-walled 12 well strip tubes (Grenier, Bio-One). This was 

heated to 65°C for 3 minutes then placed on ice and 1 μl Superscript II (Invitrogen) was 

added. This was incubated within a thermocycler at 25°C for 10 minutes, 42°C for 1 

hour and 65°C for 15 minutes. cDNA samples were stored at -20°C. 

 

Table 11 Constituents of cDNA synthesis mix. 

2.10.4 SYBR Green Gene Expression Analysis 

qRT-PCR was carried out in MicroAmp fast optical 96-well reaction plates (Applied 

Biosystems). All reactions were carried out in duplicate and each cDNA sample was run 

with primers for the house-keeping gene β-actin in order to normalise the expression 

levels of target genes. Each well was made up of 10 µl SYBR green fast mix (Invitrogen) 

2 µl of cDNA, 0.5 µl of each primer (10 mM) and 8 µl Ultrapure H2O (Sigma). See Table 12 

for primer sequences. The plate was sealed and centrifuged for 1 minute at 8000 rpm. 

qRT PCR reactions were carried out using a Step One Plus real-time PCR system 

(Applied Biosystems). The relative mRNA abundance was determined by incorporation 

of SYBR green into the PCR product. Thermocycler conditions were: 95°C for 20 seconds 

followed by 40 cycles of 95°C for 3 seconds (denaturation) and 60°C for 30 seconds. The 

data were collected automatically using StepOne Software. 

When the abundance of the mRNA transcript within the intestinal epithelial extract was 

particularly low, SYBR green was inefficient at detecting expression levels, and so the 

more specific, probe based TaqMan assay was used for these genes (see Table 12). 
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2.10.5 TaqMan Gene Expression Analysis 

Each well of the plate was made up of 10 µl TaqMan gene expression master mix 

(Invitrogen), 2 µl cDNA, 1 µl TaqMan probe (10 mM) and 8 µl Ultrapure H2O (Sigma). 

See Table 12 for TaqMan probe details. The plate was sealed and centrifuged for 1 

minute at 8000 rpm. 

The TaqMan probes are pre-designed and consist of a forward and reverse primer for 

the gene of interest and a probe complimentary to an internal region of the amplified 

PCR product with a fluorescent molecule and quencher attached to the 5’ end. During 

thermocycling, the fluorescent molecule is cleaved from any cDNA bound probe by Taq 

polymerase activity, releasing it from the quencher and enabling fluorescent signal 

detection. 

qRT-PCR reactions were carried out using a Step One Plus real-time PCR system 

(Applied Biosystems). Thermocycler conditions were: 50°C for 2 minutes, 95°C for 10 

minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. The data 

were collected automatically using StepOne Software. 

 

Table 12 Primer details for genes analysed by qRT-PCR using the SYBR green and the TaqMan 
assay. 
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2.10.6 Analysis of qRT-PCR data 

SYBR green melt curves were examined to ensure the presence of a single peak, as 

double peaks indicate the presence of primers dimers or primer contamination. A 

fluorescence threshold was set and the number of thermocycles required by each well 

to reach the threshold in fluorescence was recorded as the cycle threshold (CT value). 

Samples were only analysed if they had a single peak in the melting curve and the 

duplicate repeats were within 1 CT value of each other.  

In each assay, the sample CT value was calculated as an average of the duplicates, and 

normalised by the subtraction of the CT value of β-actin for the same sample, thereby 

generating a ΔCT value. The ΔCT values were used to determine significance of change in 

gene expression at N=4. If the data was normally distributed (tested by the Shapiro-

Wilk test in SPSS) then a two-tailed T-test was performed, whereas if the data was not 

normally distributed a Mann-Whitney test was performed. 

In order to calculate the fold changes in expression levels, the average of the ΔCT values 

of the control cohort was subtracted from the average of the ΔCT values of the test 

cohort producing a ΔΔCT value. The equation fold change = 2−ΔΔC
T was used to calculate 

fold change in gene expression levels. 
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 Western Blotting 2.11

2.11.1 Protein Extraction 

40-100 mg of frozen intestinal epithelial tissue (prepared by Weiser preparation, see 

section 2.6.7, and stored at -80°C until use) was resuspended at 100 μl / 10 μg tissue in 

pre-chilled modified RIPA buffer (see Table 13) with protease inhibitor (Complete 

protease cocktail mini tablets (Roche), 1 tablet per 5 ml RIPA buffer). This was 

transferred into Precellys® beaded microtubes and homogenized on the Precellys®24 

homogenizer for 2 x 45 seconds. The samples were then stored on ice until the bubbles 

had settled and then transferred to a fresh microtube and incubated on ice for 20 

minutes. Samples were then centrifuged at 13000 rpm for 10 minutes at 4°C and the 

supernatant containing the protein was aliquoted into 50μl aliquots, snap frozen in 

liquid nitrogen and stored at -80°C until use. 

 

Table 13 Constituents of modified RIPA buffer 

2.11.2 Protein Quantification 

Protein was quantified using the bicinchonic acid (BCA) method. This method is based 

on a biuret reaction whereby the presence of peptide bonds reduces Cu2+ ions to Cu1+ 

ions, producing a violet colour. The BCA reagent (Pierce) strongly absorbs light at 562 

nm and so the extent to which Cu is reduced (and the quantity of protein present) can 

be determined through a colourimetric assay.  

Protein samples were created by adding 8 µl sample to 192 µl PBS and 2 serial dilutions 

resulted in 3 protein concentrations (1:25, 1:50, 1:100) in a final volume of 100 µl PBS. 

Stock Bovine Serum Albumin (BSA) was diluted in RIPA buffer and then PBS to produce 

6 standards of known concentration ranging from 0 µg/ml to 25 µg/ml.  All samples 
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were loaded and standards were loaded into a colourless, flat bottom 96-well plate in 

duplicate. 

BCA reagents (Pierce) were made up according to manufacturer’s instructions and 100 

µl added to each sample. The plate was then sealed and incubated at 37°C for 2 hours. 

The absorbance of each sample was then read on an ELx800 spectrophotometer 

(BioTek) at 590 nm. A standard curve of absorbance to concentration was calculated 

using the absorbance of the BSA standards and the concentrations of the samples 

calculated. 

2.11.3 Sample Preparation 

Protein samples were defrosted on ice and 30 µg was resuspended in laemlli buffer (4% 

SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol blue and 0.125 M Tris 

HCl in Ultrapure H2O, pH 6.8. All reagents were purchased from Sigma) to make up a 

volume of 25 µl. Samples were heated to 95°C for 5 minutes and quenched on ice before 

loading into gels. 

2.11.4 Gel Casting 

Mini-Protein III (Bio-Rad) gel casting apparatus was used to prepare polyacrylamide 

gels. Solutions for a 5% stacking gel and a 10% resolving gel were made up without the 

addition of the TEMED (see Table 14). The gel casting apparatus was assembled and 

TEMED was added to the 10% gel solution which was then mixed and poured between 

the two glass plates, to 2 cm below the top of the glass plates. 2 ml of H2O was poured 

over the top of the gel to prevent drying out and the formation of bubbles. Once the gel 

was set, (typically 45 minutes) the H2O was poured off the gel and the TEMED added to 

the 5% stacking gel solution. This was then mixed and poured on top of the 10% gel 

until it overflowed the top of the glass plates, and the well comb was inserted. 

Once the gel was set, the well comb was removed and the gel placed in sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) apparatus and 1× running 

buffer (see Table 15 Recipes for running buffer and transfer buffer. 500 ml of 1 × running 

buffer is required per tank, and 1 L of 1 ×transfer buffer required for each transfer tank.) 

added, and the wells were flushed out using a pipette to remove any excess gel. 
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2.11.5 SDS-PAGE 

Prepared protein samples were loaded into the wells of the gel in the SDS-PAGE 

apparatus with 1× running buffer. One well was loaded with 7 µl of pre-stained full-

range Rainbow molecular weight ladder (GE Healthcare). The gels were then run at 

120-200 V until the dye reached the end of the gel. 

2.11.6 Protein transfer 

The gel containing the separated proteins was removed from the glass plates, the 5% 

stacking gel removed, and placed in transfer buffer (see Table 15). Amersham Hybond-

ECL nitrocellulose filter (GE Healthcare) was then cut to size and dipped in transfer 

buffer (Table 15) before being placed on top of the 10% gel. This was then sandwiched 

between two sheets of 3MM blotting paper (Whatman) which had been dipped in 

transfer buffer, and transfer buffer soaked sponges. This was placed into the plastic 

transfer supports and placed into the transfer tank so that the filter was between the gel 

and the positive electrode. Transfer buffer was added to the tank and it was run at 100 

V for 1 hour. After transfer, the filter was carefully removed from the transfer supports 

and placed in Tris Buffered Saline with 0.1% Tween (TBS/T, Sigma) until probing. 

2.11.7 Antibody probing of nitrocellulose filter 

The nitrocellulose filter was blocked in 5% milk powder in TBS/T for 1 hour at RT with 

agitation. 3× 5 minute washes in TBS/T were then performed and the primary antibody 

(diluted in 5% milk powder in TBS/T) was added (see Table 16). This was incubated 

O/N at 4°C with agitation. The filter was then washed 3× 5 minutes in TBS/T and 

incubated with HRP-linked secondary antibody in TBS/T for 1 hour at RT with agitation 

and then washed for a further 3× 15 minutes in TBS/T prior to signal detection. 
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Table 14 Recipe to make up 5% and 10% polyacrylamide gels for Western blotting. 

 

Table 15 Recipes for running buffer and transfer buffer. 500 ml of 1 × running buffer is required 
per tank, and 1 L of 1 ×transfer buffer required for each transfer tank. 

 

 

Table 16 Antibody incubation conditions for protein expression analysis using Western Blotting 
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2.11.8 Signal detection 

The standard electrochemiluminescence (ECL) detection reagents (GE Healthcare) were 

prepared according to manufacturers’ instructions. The filter was incubated with 2 ml 

of the reagents at RT for 1 minute then excess ECL reagent removed and the filter 

placed in an X-ray cassette. The X-ray film (Fujifilm Super RC, blue background) was 

exposed in a dark room under safe light conditions and the film processed using an 

automatic processor (Xograph Compact X4 automatic X-ray film processor). A number 

of exposure times were attempted to produce a clear image. The developed film was 

then overlaid onto the filter and the band size measured against the molecular weight 

ladder to ensure the correct protein had been detected. 

2.11.9 Stripping the filter 

The filter could be re-used for probing with other antibodies, but if the protein of 

interest was of a similar size to that previously detected (for example phospho-AKT and 

total-AKT were the same size) the filter was stripped between probing. 20 ml of 

stripping buffer (1.2 ml 1 M Tris pH 6.8, 400 mg SDS made up to 20 ml in dH2O) was 

added to the membrane with 70 µl β-mercaptoethanol. This was incubated at 55°C for 

30 minutes with agitation and then the filter removed and re-probed as described in 

section 2.11.7. 

2.11.10 Confirmation of equal loading 

The filter was re-probed with β-actin antibody to ensure any changes in phospho-AKT 

and total-AKT were not due to unequal protein loading. 
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 Intestinal organoid culture 2.12

The method outlined below for intestinal organoid culture has been adapted from the 

method originally presented by Sato et al., in order to increase efficiency (Sato et al. 

2009). 

2.12.1  Isolation of intestinal crypts 

15 cm of small intestine was flushed through with HBSS containing 1× 

penicillin/streptomycin (Invitrogen). The intestine was then opened longitudinally and 

scraped firmly using a glass cover slip in order to remove the villi. Once scraped, the 

intestine was chopped into 0.5 mm pieces and placed in 25 ml HBSS containing 1× 

penicillin/streptomycin and incubated for 15 minutes at RT. This solution was gently 

shaken then transferred into a primary tissue culture hood. All of the remaining steps 

were carried out in sterile conditions. The media was removed from the pieces of 

intestine, which were then washed gently 5 times in HBSS. The intestine was 

resuspended in 10 ml 8 mM EDTA in HBSS and incubated at RT for 5 minutes. The 

solution was then shaken vigorously and the EDTA in HBSS removed. The intestine was 

again suspended in 10 ml 8 mM EDTA in HBSS and incubated on ice for up to 30 

minutes. This was shaken vigorously and the solution removed and retained as the first 

crypt-containing fraction. This fraction was immediately diluted 1:1 in DMEM/F12 

containing Glutamax. 15 ml HBSS was added to the intestine and again shaken 

vigorously, this fraction added to the first and repeated until four fractions had been 

collected. The collected crypts were then spun at 6000 rpm for 5 minutes to remove 

single cells and resuspended in 10 ml DMEM/F12 containing Glutamax. This was then 

spun at 7000 rpm for 3 minutes and the pellet resuspended in 10 ml DMEM containing 

Glutamax and passed through a 70 µm cell strainer to remove clumps.  

2.12.2  Counting and seeding crypts 

The number of crypts within three 10μl aliquots were counted and the appropriate 

volume of solution to seed 60 wells at 200 crypts per well was calculated. This volume 

was taken then spun at 7000 rpm for 3 minutes and first resuspended in 20 µl 

DMEM/F12 (Invitrogen) (due to difficulty of resuspending directly into Matrigel) 

followed by dilution into the appropriate volume of Matrigel (BD Biosciences). Plates 

were pre-warmed in the incubator prior to seeding. 96 well Nunclon U-bottom plates 
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were seeded with 10 μl Matrigel, and 24 well Nunc plates were seeded with 50 μl 

Matrigel. 

2.12.3  Organoid growth media 

100 µl organoid growth media (Table 17) was then added to each well of 96 well plates, 

and 500 μl to each well of 24 well plates and the plates returned to the incubator 

immediately. Media was changed every two days. 

 

Table 17 Recipe for 100 ml of complete organoid culture medium including all growth factors. 

2.12.4 Organoid formation efficiency assay 

30 wells of a 96 well plate were seeded at 200 crypts/well in 10 μl Matrigel per well in 

each of two plates (one for the organoid formation assay, another for the PrestoBlue 

viability assay). Three batches of media were made up, one with 665 ng/ml R-spondin 

(R&D Systems), another with 332 ng/ml and the third with 0 ng/ml. 10 of the seeded 

wells of the 96 well plate were given each of the three concentrations of media. Media 

was changed every two days. 

The plate was read at day 1, day 3, day 5, day 7, day 9 and day 11 using the Gelcount 

(Oxford Optronix) machine and software. Data of average size was used from all of the 

readings in order to produce the growth curves whilst only data from day 1 and day 11 

were counted and analysed to produce a readout for the proportion of seeded crypts 

which grew into organoids. The CHARM settings (which define the thresholds for 

automated organoid identification through a number of different parameters) for each 

day and genotype can be seen in Table 18. When high quality images were required, a 
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preheated 24 well plate was also seeded at a density of 200 crypts per well in 50 µl 

matrigel per well and images taken daily for 14 days.  

2.12.5 PrestoBlue viability assay 

10 μl of Prestoblue (Invitrogen) was added per 100 μl media to each of the 30 wells in 

one of the 96 well plates and 3 extra wells were filled with 100 μl media and 10 μl 

Prestoblue without any cells as a negative control. This was incubated at 37°C for 2 hrs 

and then 50 μl of the media removed and placed into a black 96well flat bottomed plate 

(ThermoScientific 11359163). This was then read in a fluorescence plate reader. 

Relative fluorescence was calculated by subtracting the average of the negative controls 

from each of the well readings, then comparing the average of 10 wells from each R-

spondin concentration to the average of the wells containing the highest R-spondin 

levels. 
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Table 18 CHARM settings devised for the detection of dissociated crypts and grown organoids over an 11 day period. Different settings were used to 
detect wildtype-like organoids and cyst-like organoids. 
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2.12.6 Fixing Intestinal Organoids for Immunohistochemistry 

From a 24-well plate, matrigel was disrupted using a 1 ml pipette tip and the matrigel 

pipetted up and down to free the organoids from the matrigel. It was then pipetted into 

a microtube. In a 96-well plate the wells were scraped using a 200 μl tip and then 

pipetted straight into a microtube, disrupting the Matrigel by abrasing the microtube 

over a microtube rack. When few organoids were present, the pipette tips were soaked 

in 0.1% BSA in PBS prior to use, to prevent organoid loss to the pipette tip surface. 

The organoids were centrifuged at 7000 rpm for 5 minutes then the supernatant and 

the clear layer of matrigel were carefully removed and discarded. 800 μl of formalin was 

then added to the organoids and the pellet broken up into the formalin by running along 

a microtube rack. This avoided unnecessary pipetting, which could cause organoid loss, 

and sonication, which could disrupt the structure of the organoid. Following 1 hour 

incubation on ice, the organoids were centrifuged for a further 5 minutes at 7000 rpm 

and the supernatant and any remaining matrigel removed. The organoids were 

resuspended in 70% EtOH (avoiding pipetting) and incubated on ice for a further 1 

hour. 

The organoids were centrifuged for 3 minutes at 7000 rpm and the EtOH removed and 

the organoids resuspended in 70 μl of Histogel (ThermoScientific) (pre-heated to 70°C) 

and placed in a specially made mould on top of parafilm and allowed to set (typically 3-

5 minutes). The pellet was then removed from the mould and stored in 70% EtOH prior 

to paraffin embedding and sectioning (see section 2.6.4). 
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 Data Analysis 2.13

Raw data obtained from cell counts, tumour grading and qRT-PCR were input into Excel 

(Microsoft) for the calculations of means and standard deviations for graphical 

representation.  

Comparison of means was carried out in SPSS data analysis software. All analysed data 

was tested for normality using the Shapiro-Wilk test. Normally distributed data was 

tested for significance using a two-tailed T test, and data which was not normally 

distributed was analysed using Mann-Whitney U Test. 

Survival data was analysed using Kaplan-Meier plots to present the data and 

significance calculated using the Wilcoxon Log Rank test. 
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3 Development and Optimisation of a novel ISC function assay 

 Introduction 3.1

The importance of understanding the relationship between changes in the ISC 

compartment and tumourigenesis was highlighted by the observation by Baker et al., 

that the ISC is the cell of origin of intestinal cancer (Barker et al. 2008). This was found 

by comparing the effects of conditional deletion of the tumour suppressor Apc using two 

different Cre-recombinases. One of these specifically recombined within the ISC 

compartment (using an Lgr5-linked Cre recombinase). The other Cre drove 

recombination efficiently within the proliferative crypt compartment but only very 

inefficiently within ISCs (using AH-linked Cre recombinase and a specially designed 

induction method). These experiments showed that loss of Apc from the ISC 

compartment initiated the formation and growth of multiple adenomas, whereas loss of 

Apc from the other cell types within the crypt produced fewer, smaller lesions.  

In addition to these experiments, it has been observed that in a model of early 

tumourigenesis, Apcflox/flox mice, one of the earliest characteristics observed following 

deletion of Apc is an increase in undifferentiated cell types (Sansom et al. 2004). Taken 

together, these experiments suggest that perturbation of the ISC compartment could 

play an essential role in tumourigenesis.  

In order to increase our understanding of the relationship between changes in the ISC 

compartment and tumourigenesis it is necessary to be able to accurately assess the ISC 

compartment.  

As previously discussed in section 1.3.1 there are a range of ISC markers which can be 

used for the identification of the presumed stem cell population (Barker et al. 2007; 

Besson et al. 2011; Potten et al. 1974; Sangiorgi and Capecchi 2008; van der Flier et al. 

2009a; van der Flier et al. 2009b). These markers have proven extremely useful when 

studying the mis-localisation of expression or expansion of the ISC compartment but are 

informative simply of gene expression patterns, rather than ISC functionality. In order 

to truly assess any changes occurring in the ISC population it is necessary to combine 

expression levels and localisation information of published stem cell markers with a 
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functional assay which can be used to determine whether these cells are capable of 

functioning as ISCs.  

Lineage tracing experiments have been previously very successful in determining 

whether or not a cell which expresses a particular gene is in fact an ISC due to its ability 

to produce daughter cells which can form any of the intestinal epithelial lineages. These 

methods, however, are not capable of comparing the number, location and potency of 

the ISC populations between individual mice of different genotypes. Furthermore, the 

necessity of a stem cell specific Cre to drive LacZ expression in order to perform these 

experiments presents numerous logistical problems, not only with the breeding of many 

mice, but the interference it may have with the required experimental phenotype. In 

order to study changes in ISC functionality between specific genotypes it has been 

necessary to expand our current toolkit for assessing this intestinal compartment. An 

ideal method would assess the functional capacity of ISCs, while being easily 

incorporated into traditional tissue harvesting techniques enabling it to be used in 

conjunction with other mechanisms for assessing the ISC compartment, such as gene 

expression analysis. 

The technique which appeared to hold the most potential as a method for assessing 

changes in the stem cell compartment was that of intestinal organoid culture. The 

method of culturing intestinal organoid structures in vitro, devised by Sato et al., is now 

well established as a useful tool to study crypt homeostasis (Sato et al. 2009). This 

method simply isolates intestinal crypts, and using knowledge of intestinal growth in 

vivo, simulates the conditions required for growth with the addition of the growth 

factors EGF and Noggin. Crypts are cultured in laminin-rich Matrigel in the presence of 

Rspo1. Epidermal Growth Factor (EGF) is associated in vivo with intestinal proliferation, 

and inhibition of BMP signalling via transgenic expression of Noggin is sufficient to 

induce a significant expansion in crypt numbers (Haramis et al. 2004). Sato et al. noted 

that intestinal cells undergo programmed cell death when isolated from normal 

intestine, an effect which can be overcome by the addition of laminin, which is present 

in vivo at high levels at the base of the intestinal crypt. Culturing the intestinal organoids 

in laminin-rich Matrigel not only prevents anoikis by providing the required laminin, 
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but also supports the 3-dimensional structures of the organoids thereby enabling 

epithelial cell growth. 

R-spondin1 (Rspo1) is a Wnt activator found endogenously at the base of the intestinal 

crypt. It has been shown that R-spondins interact with Lgr5 (de Lau et al. 2011), and it 

has recently been shown that, in vivo, Rspo1 is a ligand of the widely accepted ISC 

marker Lgr5 and its homologue Lgr4 (Schuijers and Clevers 2012). In organoid culture, 

the addition of Rspo1 enhances activation of the Wnt-signalling pathway specifically 

within Lgr5+ cells (Sato et al. 2010). Apc mutants have been shown to be capable of 

organoid formation in the absence of Rspo1, indicating that reliance on Rspo1 could be 

used as a measure of Wnt-signalling activation within the intestinal crypt. 

Once isolated, the crypts capable of regenerating and producing organoids in culture are 

able to do so as a consequence of containing functional ISCs. There remains a degree of 

inefficiency within this system, and consequently not all crypts are capable of producing 

organoids. However, increases in efficiency of organoid formation are likely to be 

concomitant with an increase in the number of ISCs per crypt and/or with augmented 

Wnt-activated stem cells per crypt. This can be extrapolated so that the number of 

organoids which grow from a known number of crypts seeded may be used to readout a 

level of “stemness” within each crypt. 

Not only is organoid culture a technically challenging method to initially establish 

within the laboratory, but the use of it in this manner poses more obstacles. The main 

difficulties that we aim to overcome are;  

1. Accurately calculating the number of seeded crypts. This is essential for the 

calculation of the percentage of seeded crypts which form organoids and subsequent 

determination of the level of “stemness” 

2. Accurately and efficiently counting the number of organoids grown in order to 

minimise the time outside of the specific culture conditions of the incubator, as 

organoids are extremely sensitive to changes in culture conditions 

3. Accurately quantifying the differences between the types of organoids which can 

grow.  Organoids grown from Apcflox/flox mice are reported to be of a different 
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morphology to those grown from wildtype, indicating that Wnt-activation alters the 

way in which organoids grow. Quantifying these differences is required to assess the 

level of Wnt activation in the ISCs in the crypts 

 Results 3.2

 Identifying and counting crypts 3.3

As previously mentioned, in order to calculate an accurate organoid formation 

efficiency, it is essential to have reliable data on the number of crypts seeded. In order 

to do this a counting method was optimised. Once the crypts were isolated and 

resuspended in 10 ml media, 3 x 10 µl samples were taken and counted. Only parallel 

rows of epithelial cells with a defined edge were counted (Figure 3.1). Variation in the 

quality of crypt preparations between mice was large, and the number of non-crypt 

epithelial cells (such as villus cells) is variable. Hence, by specifically counting crypts, 

rather than single cells, any other epithelial cells present do not skew the data. A further 

advantage of seeding crypts rather than single cells is that the efficiency of organoid 

formation from unsorted single cells is low (efficiency <0.003%, data not shown) such 

that very small variation can have a huge impact on the data, whereas organoid 

formation efficiency from crypts is much higher. 

Initially 100 crypts were seeded per 50 µl Matrigel in each well of a 24 well plate. The 

number of crypts per well were counted 3 times manually. Due to the 3-dimensional 

nature of the Matrigel crypts were present in various planes of vision and this was a 

source of variation between counts. Furthermore, this method of counting is a slow 

process, and results in the removal of the plates from the incubator for extended 

periods of time, thereby potentially affecting their growth. 
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Figure 3.1 A typical crypt faction at counting. Red circles indicate crypts that would be counted. 
Although there is other cell debris and potentially fractions of intestinal crypts, crypts are only 
counted when there are clearly two parallel rows of epithelial cells which have a clear and 
distinct edge. Black bar represents 50 µm. 

 

Figure 3.2 The number of crypts counted in 6 wells when seeded at 100 crypts per well. Each 
was counted 3 times and the bars represent the average of these counts. Error bars represent 
standard deviation. 
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The solution to this problem was to use an automated colony counter to count the 

organoids with greater speed and accuracy. In order to do this, the organoids have to be 

grown in a single plane of vision. This was achieved by using 96-well U-bottom plates 

and seeding 10 µl Matrigel per well. Using such a small volume in a U-bottom well 

prevented the Matrigel from setting in a dome shape. The newly designed plate reader 

and software used (Gelcount, Oxford Optronix) captured images of each well of the plate 

and automatically processed these to flatten the images from the U-bottom plate. 

Transferring the organoid culture from 24-well to 96-well plates, facilitated the 

production of a high throughput system in which accurate automated counting could be 

performed, removing much of the propensity for error in the system. 

 High variation between seeding densities in wells of 96-well plate 3.4

The conversion to growing the organoids in 96 well plates and reducing the seeding 

volume from 50 µl to 10 µl, resulted in a higher variation in seeding density between 

wells (Figure 3.3). In order to minimise the variation in organoid formation efficiency 

between wells, the problem of variations of seeding density between wells had to be 

addressed. This problem was overcome by using the automated plate reader to count 

wells individually and provide an accurate day 1 count. The number of organoids grown 

can thus be expressed, with confidence, as a percentage of the actual (rather than 

assumed) number of crypts present at day 1 for reach well. In order to assess the utility 

of this method it was necessary to ascertain whether seeding density, which clearly 

varied between each well, had an impact on this readout, see section 3.6. 

 Establishing CHARM settings for counting initially seeded crypts and number 3.5

of organoids at day 11 

In order to enable the Gelcount machine to perform automated organoid counts on 

images taken from 96 well plates, a script, entitled CHARM settings, had to be 

established. In order to establish these CHARM settings, threshold values for specific 

parameters such as optical density, size, circularity and quality of edge of objects 

detected within the well were set to enable the Gelcount programme to determine what 

type of object to count as a live organoid. The number of organoids within a well were 

manually counted and identified by the presence of an organised structure, and it was 

decided if they were alive or dead based on the quality of the “edge” of the organoid. 



75 

 

Dead organoids appear to lose the organisation of their outer edge and are less optically 

dense because of this. The parameters of the CHARM settings were adjusted until the 

Gelcount programme consistently counted organoids within 10% accuracy of the 

manual counts (see Figure 3.4). As both the manual counts and the Gelcount generated 

organoid counts are based on morphological criteria alone, there remains a propensity 

for error within the system, for example, an organoid may appear alive but actually be 

dead. In order to overcome this problem, the CHARM settings were adjusted for each 

day post seeding, and the size threshold altered, so that the only organoids within the 

well which were counted were those which had actively grown. This gives a level of 

accuracy and reproducibility which cannot be achieved through the use of manual 

counts alone, without measuring the size individual organoids. Final CHARM settings 

can be seen in section 2.12.4. 

 Seeding density does not affect the percentage of organoids which grow 3.6

The rate of organoid growth is greatly dependent on the presence or absence of the 

Wnt-activator Rspo1. Furthermore, Paneth cells are known to secrete other Wnt-

activators which can impact on ISC function and number and thereby influence 

organoid growth. It therefore follows that the initiation and subsequent growth rate of 

organoids could be influenced by the density of the seeded crypts. If the proportion of 

organoids formed per well is dependent on the initial seeding density, then the seeding 

density will need to be the same between wells and between mice, which as previously 

mentioned is difficult to achieve using 96-well plates. Initial counts of actual crypt 

number seeded into each well of a 96-well plate showed a wide variation in seeding 

density per well (Figure 3.3). In order to assess any alterations in growth rate due to 

initial seeding density within this range, 20 wells were seeded with either 100 crypts, or 

400 crypts. The number of crypts seeded was counted on the Gelcount machine at day 1 

to establish the exact number per well, and the number of organoids over 150μm per 

well were counted at day 11 using the Gelcount machine. There was no significant 

difference in the percentage of crypts seeded which grew into organoids by day 11 

when wells with an initial seeding density of less than 200 crypts per well (range 27-

200) were compared to those with an initial seeding density of 300-500 crypts per well 

(Figure 3.5). Thus differences in the seeding density within this range do not affect the 

percentage of organoids which grow. 
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 Number of wells of each genotype required to produce an accurate readout of 3.7

stemness 

In order to assess the number of wells of organoids required to give an accurate reading 

of organoid forming efficiency, 20 wells of a 96-well plate were seeded with 200 crypts 

per well and the percentage of crypts which formed organoids by day 11 was calculated 

per well. Using the running mean enabled the calculation of the number of wells 

required for an accurate reading of organoid forming efficiency. As organoid culture is 

both expensive and labour intensive, it is necessary to seed the least number of wells 

possible while still seeding enough to get an accurate result. It was found that the 

running mean had stabilised at around 6-7 wells (Figure 3.6) and so it was decided that 

10 wells would be seeded to ensure accuracy. 

 

 

Figure 3.3 GelCount counts of 10 wells of a 96 wells plate were seeded at a predicted 100 crypts 
per 10 µl in each well. Machine counts showed that the number of crypts actually present within 
each well was greatly variable, ranging from 50 to 265. 
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Figure 3.4 Screenshot of GelCount programme when counting organoids using specially selected 
CHARM settings. The red triangles indicate organoids which have been counted based on their 
size, density and complete edge. A quantity of cell debris and dead organoids can also be seen 
within this well. 

 

Figure 3.5 Seeding density within a two-fold range does not affect the percentage of crypts 
which form organoids. 20 wells were seeded with an estimated 100 crypts per well (actual 
values ranged from 27-200) and 20 wells were seeded with 400 crypts (actual range 300-500). 
There was no significant difference in the organoid formation efficiency between crypts seeded 
at 0-200 crypts per well, and those seeded at 300-500 crypts per well, 2-tailed T-test p= 0.086. 
Error bars represent standard deviation. N=9. 
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Figure 3.6 Running mean of the percent of crypts which form organoids in 20 wells. The average 
becomes stable at around 6-7 wells. 
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 Crypts from induced Apcflox/flox mice form cyst-like organoids  3.8

To date, Apc deficient organoids have only been studied following the conditional loss of 

Apc within the organoids (Onuma et al. 2013).  Our aim was to develop a system which 

permits the measurement of intestinal crypt “stemness” from the quantification of the 

percentage of seeded crypts which are capable of forming organoids. Therefore, we 

induced Apc loss within the mice using established tamoxifen induction of Cre-

combinase under control of a Villin promoter in order to induce loss of Apc specifically 

within the intestinal epithelium, 3 days prior to initiating the crypt culture. This method 

of forming Apcflox/flox organoids resulted in the development of cyst-like organoids 

forming at day 1-2 (Figure 3.7). The differences between organoid structure and growth 

rate can be visually ascertained, but difficult to quantify, due to the requirement for 

multiple photographs thereby requiring removal of the organoids from the incubator 

for long periods of time. As the Apcflox/flox organoids are different in structure from 

wildtype organoids (Figure 3.8), specific CHARM settings were devised for cyst-like 

organoids, as they are less optically dense, and are more circular than wildtype. The 

CHARM settings were developed by altering the detection parameters until the 

automated counts were consistently within 10% of manual counts. All CHARM setting 

can be found in section 2.12.4. 

3.8.1 Apcflox/flox form two distinct types of organoids 

Organoids grown from Apcflox/flox crypts 3 days post induction form two distinct types of 

organoids. As can be seen from Figure 3.7, all Apcflox/flox organoids are cyst-like in 

structure; however they can be subcategorized into those which have a single layer of 

undifferentiated cells in a regular structure and those which have thick outer layers of 

multiple undifferentiated cells in an irregular and disordered structure (Figure 3.9). 

Both subtypes of Apcflox/flox organoids grew in the absence and presence of Rspo1 and 

occured independently of whether recombination was induced in vivo or in vitro so the 

differences are not due to differential dependency on Rspo1, or incomplete 

recombination of Apc within the intestinal epithelium.  Regions of cells with polarised 

nuclei were observed in both subtypes of Apcflox/flox organoids, which contradicts what is 

observed in vivo whereby Apc deficiency results in loss of cell polarity within the 

aberrant proliferative region of the crypts. 
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Figure 3.7 Images of organoids grown from the crypts of wild type (top row) and induced Apcflox/flox mice taken daily for 14 days. Differences between 
the two types of organoids are clear, with Apcflox/flox organoids having a cyst-like morphology and growing faster and larger than wild type organoids. 
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3.8 Wildtype organoids form a regular structure with visible Paneth cells (indicated by the black 
triangle). The crypt structures protruding clearly display polarised cells with clear organisation 
enabling mitotic cells to move away from the basement membrane towards the interior of the 
crypt structure (indicated with arrows) as is seen in vivo. Bar represents 100 μm.  
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3.9 Organoids derived from Apcflox/flox mice form cyst-like structures of two types. This H&E slide 
shows that many organoids (indicated with a black triangle) display edges which are many cells 
thick with large patches of unpolarized cells (insert A), whereas others have a single cell 
thickness (indicated with an arrow) with clearly polarized nucei (insert B). Bars represent 100 
μm. 

 

 

 

 

 

 



83 

 

3.8.2 Apcflox/flox organoids contain fewer differentiated cell types than wildtype 

organoids 

Wildtype organoids present all the differentiated cell lineages found in vivo within the 

intestinal epithelium. However, organoids derived from Apcflox/flox mice 3 days post 

induction, only rarely stain positive for Alcian Blue, a marker of the mucins produced by 

goblet cells. It must be noted that goblet cells were only observed in Apcflox/flox organoids 

which had been cultured in the presence of Rspo1, and may represent organoids 

derived from intestinal crypts in which there had been incomplete recombination of Apc 

(Figure 3.10). Positive staining for alcian blue was not observed in Apcflox/flox organoids 

which had been grown in the absence of Rspo1, thereby selecting for organoids derived 

from crypts in which recombination of Apc was complete.  

Enteroendocrine cells were detected in wildtype organoids using Grimelius staining, 

although they were rare, however they were not observed in Apcflox/flox organoids under 

any growth conditions (Figure 3.11). 

Interestingly, Paneth cells were observed in Apcflox/flox organoids, although less 

frequently than were observed in wildtype organoids (Figure 3.12). Due to the lack of 

other differentiated cell types in Apcflox/flox organoids it is likely that rather than these 

Paneth cells being the result of differentiation in culture, they represent surviving 

Paneth cells which were present in the crypts when the organoid culture was 

established. Data courtesy of Nadia Panitz indicates that Paneth cells were not observed 

in Apcflox/flox cultures which had been cultured long term and had undergone multiple 

passages. 

These data show that intestinal Apcflox/flox cells with a stem-like phenotype, i.e. able to 

form organoids in culture and a high expression of ISC markers, cannot be described as 

true ISCs due to their inability to produce all of the differentiated cell types of the 

intestinal epithelia. 
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3.10 Alcian Blue stain of wildtype and Apcflox/flox organoids. Multiple goblet cells can be seen in wildtype organoids throughout the structures, 
whereas goblet cells were only observed extremely rarely in Apcflox/flox organoids. Bars represent 100 μm.  
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3.11 Grimelius stain of wildtype and Apcflox/flox organoids. Black arrows indicate enteroendocrine 
cells. Black bars represent 100 μm. 

 

Figure 3.12 Lysozyme IHC of wildtype and Apcflox/flox organoids. Paneth cells are stained brown 
and are seen more frequently in wildtype than Apcflox/flox organoids. Black bars represent 100 
μm. 
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3.8.3 Ki67 is expressed from a higher number of cells from wildtype organoids 

than from Apcflox/flox organoids 

It has been shown that conditional homozygous loss of Apc from the intestinal 

epithelium in vivo results in an increase in levels of cell proliferation (Sansom et al. 

2004). However, counts from IHC staining for the proliferative marker Ki67 in the 

organoids (Figure 3.13) show that a significantly higher percentage of cells are 

proliferating in cultured wildtype organoids than in Apcflox/flox organoids (Figure 3.13) 

(Wildtype 98±2, Apcflox/flox 49±29). This was measured by counting the total number of 

cells per sectioned organoid and representing Ki67 positive cells as a percentage of the 

total number of cells. Individual organoids were classed as a separate “n” value, 

although organoids derived from a minimum of 3 mice were counted for each genotype. 

BrDU stains, (courtesy of Nydia Panitz) show that exposing the organoids to BrDU for 1 

hour prior to fixing, results in a similar proliferative readout (Figure 3.15). 

3.8.4 Apcflox/flox and wildtype organoid cells undergo similar levels of apoptosis 

Levels of apoptosis within the organoids were assessed by expression of the apoptotic 

marker Caspase 3 (Figure 3.16). The percentage of organoid cells which were Caspase 3 

positive showed no significant difference between Apcflox/flox organoids and wildtype 

organoids (Figure 3.17) (Wildtype 0.6±0.6, Apcflox/flox 0.9±0.8). This is in direct contrast 

to the observation made in vivo, namely that loss of Apc results in an increase in 

apoptosis (Sansom et al. 2004). 
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3.13 A Ki67 IHC on wildtype and Apcflox/flox organoids. Brown cells represent Ki67 positive cells, c 
the vast majority of cells from wildtype organoids were Ki67 positive, and non-proliferating 
cells were extremely rare. In Apcflox/flox organoids both Ki67 positive and negative cells were seen 
frequently. Bars represent 100 μm. 

 

3.14 Percentage of wildtype and Apcflox/flox organoid cells which stain positive for Ki67. Error 
bars represent standard deviation. Wildtype organoids contained significantly more Ki67 cells 
than Apcflox/flox organoids, 2-tailed T-test p=0.00. N>30. 
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3.15 BrDU IHC of uninduced Apcflox/flox organoids (equivalent to wildtype) and induced Apcflox/flox 
organoids after 1 hour of BrDU exposure. Slides courtesy of Nydia Panitz. There is an observable 
reduction in BrDU uptake from induced Apcflox/flox organoids compared to uninduced. Bars 
represent 100 μm. 
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3.16 A Caspase3 IHC on wildtype and Apcflox/flox organoids. Caspase 3 positive cells (stained 
brown) are rare in both genotypes. Bars represent 100 μm.  

 

3.17 Percentage of Wildtype and Apcflox/flox organoid cells which are Caspase 3 positive. There 
was no significant difference in the percentage of organoid cells which were caspase positive 
between the two genotypes, 2-tailed T-test p=0.119. Error bars represent standard deviation. 
N>30. 

 

 



90 

 

 Apcflox/flox organoids grow faster than wildtype 3.9

Measuring the average diameter of the organoids on alternate days using the GelCount 

programme enabled assessment of the growth rate of the intestinal organoids. 

Organoids derived from Apcflox/flox crypts grew faster than those derived from wildtype 

crypts (Figure 3.18), however, by day 11 the sizes were not significantly different and 

there was no difference between the numbers of cells per organoid (as counted on H&E 

sections) at day 11 (Figure 3.19) (Wildtype 172±141, Apcflox/flox 159±91). It should be 

noted that sectioning of paraffin embedded organoids results in a high variation of 

visible cells per organoid due to differences in the plane of the section. 

3.9.1 Apcflox/flox organoids have higher levels of nuclear β-catenin than wildtype 

In vivo, loss of Apc is associated with a dramatic increase in Wnt-signalling, which is 

highlighted by an increase in nuclear β-catenin. This situation is mimicked in vitro, 

where intestinal organoids derived from Apc deficient crypts are high in nuclear β-

catenin, whereas cells from wildtype organoids have variable levels (Figure 3.20). 
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3.18 Apcflox/flox organoids grew faster than wildtype, but were not significantly larger at day 11. 
Average organoid diameter was measured using Gelcount machine. Ten wells of each genotype 
were measured. Error bars represent standard deviation. * represents p<0.05 at that time point 
using 2-tailed T-test. 

 

3.19 Wildtype and Apcflox/flox organoids have the same number of cells at day 11. Cell counts were 
performed using H&E sections of paraffin embedded fixed organoids. There was no significant 
difference in the total cell counts between the two genotypes, 2-tailed T-test p=0.651. Error bars 
represent standard deviation. N>30. 
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3.20 β-catenin immunohistochemistry on wildtype and Apcflox/flox organoids, brown nuclei 
represent nuclear β-catenin. Nearly 100% of Apcflox/flox organoid cells are positive for nuclear β-
catenin, whereas the levels of nuclear β-catenin in wildtype organoids are variable. Nuclear β-
catenin in wildtype organoids indicated by arrows. Black bars represent 100 µm. 

 

 

 

 

 

 

 

 

 



93 

 

 Assessing changes in the ISC compartment as a result of Apc loss using 3.10

traditional gene expression methods 

Using qRT PCR to determine the relative expression levels of a range of intestinal stem 

cell markers shows an increased expression of these markers in Apcflox/flox intestinal 

tissue when compared to wildtype intestinal epithelium (Figure 3.21). The most 

commonly used markers of the intestinal stem cell compartment, Lgr5, Ascl2, Olfm4, 

Msi1 and Bmi1 (Barker et al. 2007; Kayahara et al. 2003; Sangiorgi and Capecchi 2008; 

van der Flier et al. 2009a; van der Flier et al. 2009b) were all significantly upregulated 

following loss of Apc from the intestinal epithelium. Intestinal epithelium was extracted 

using Weiser preparation to minimise interference from the stromal and muscle 

compartments of the intestine. 

In situ hybridisation is a commonly used method for identifying the location of the ISC 

compartment (Ziskin et al. 2012). In situ hybridisation for the ISC markers Ascl2 and 

Olfm4 shows an expansion of the ISC compartment following Apc loss. These in situ 

hybridisations support the qRT-PCR data and indicate that loss of Apc does not simply 

lead to an increase of expression of these markers, but also a mis-localisation. These 

data taken together indicate an expansion of intestinal stem-like cells as a result of loss 

of Apc as assessed by ISC expression markers (Figure 3.22).  
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3.21 qRT-PCR results of relative expression levels of a range of proposed intestinal stem cell 
markers from wildtype versus Apcflox/flox intestinal epithelial cell preparation. * indicates p<0.05, 
** indicates p<0.01 using 2-tailed T-test. 

 

3.22 In situ hybridisation for stem cell markers Olfm4 and Ascl2 in wildtype and day 4 Apcflox/flox 
murine intestine. Mis-localisation and increase of expression was observed following Apc loss. 
Bar represents 100 μm. 
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 A higher percentage of Apcflox/flox crypts are capable of forming organoids than 3.11

wild type crypts and grow in the absence of Rspo1 

Using the specially adapted CHARM settings it was possible to directly compare 

efficiency of organoid formation between wildtype and Apcflox/flox crypts. It was found 

that the percentage of Apcflox/flox crypts which had formed organoids by day 11 was more 

than 2 fold greater than that seen in wildtype crypts (Figure 3.23) (Wildtype 16±8, 

Apcflox/flox 38±11). These data support the qRT-PCR and in situ hybridisation results 

which suggest an increase in number of functional ISCs. 

The number of Apcflox/flox crypts which form organoids was found to be independent of 

the presence of Rspo1 in the media, whereas wildtype organoids did not form without 

Rspo1 (Figure 3.24), demonstrating that not only are there more ISCs in Apc deficient 

mice, but that these ISCs are highly Wnt-activated.  
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3.23 Organoid forming efficiency of wildtype and Apcflox/flox crypts. Crypts deficient for Apc are 
significantly more efficient at forming organoids, 2-tailed T-test p=0.004. N>6. 

 

3.24 Organoid forming efficiency of wildtype and Apcflox/flox crypts in the absence of Rspo1. 
Crypts deficient for Apc are capable of forming organoids in the absence of Rspo1, whereas 
wildtype crypts are not. 2-tailed T-test p=0.00. N>6. 
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 Using the organoid culture method as a readout of Wnt-activation in the 3.12

Intestinal Stem cell compartment 

As the ability to grow in vitro independently of Rspo1 concentration could represent a 

readout of the level of Wnt-activation of the ISCs, the ability to quantify the level of 

Rspo1 dependency of the crypts of various genotypes became essential. As previously 

discussed the addition of the growth factor Rspo1 results in the activation of the Wnt-

signalling pathway specifically within the Lgr5+ ISC population. It can therefore be 

inferred that genotypes of organoids which are more capable of growing in the absence 

of Rspo1 contain more highly Wnt-activated ISCs.  

Using the plate reader to count the number of organoids each day post seeding when 

cultured in the absence of Rspo1 is not currently possible, as the CHARM settings cannot 

differentiate between organoids which are alive or recently dead (as the size and 

density of organoids does not alter for a few days after death). Therefore in order to 

quantify the ability of intestinal organoids to grow in the absence of Rspo1 it was 

necessary to explore the use of cell viability assays. 

The PrestoBlue cell viability reagent uses the reducing ability of the cytosol in living 

cells to reduce a blue, non-fluorescent, cell-permeant compound into a red, highly 

fluorescent compound, enabling the detection of changes in levels of absorbance 

without affecting cell viability. This enables the measurement of cell viability in the 

presence or absence of Rspo1 without damaging the organoids. 

Previous culturing of organoids has shown that wildtype crypts can survive for 2 days in 

the absence of Rspo1, so the PrestoBlue assay was used on day 3 for 2 hours at 3 

different Rspo1 concentrations. The normal culture conditions include Rspo1 at 6.5 

μg/ml, and the fluorescence produced by PrestoBlue exposure to 10 wells of these 

organoids was used as a baseline for mitochondrial activity. The fluorescence measured 

as a result of PrestoBlue exposure to wells containing organoids grown with the other 

Rspo1 concentrations (3.25 μg/ml and 0 μg/ml) was normalised as relative to those 

grown at 6.5 μg/ml. 
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 Mitochondrial activity within Apcflox/flox organoids is not affected by Rspo1 3.13

concentration whereas wild type organoids respond in a dose dependant 

manner 

Calculating relative mitochondrial activity using the PrestoBlue assay for wildtype vs 

Apcflox/flox organoids shows that loss of Apc renders organoids independent of Rspo1 for 

their survival and growth. As an Lgr4/5 ligand (Wang et al. 2013a), Rspo1 activates the 

Wnt-signalling pathway specifically within Lgr4/5 expressing cells, identified as the 

ISCs. Ability to grow in the absence of Rspo1 must therefore reflect the presence of ISCs 

with already highly activated Wnt-signalling, as would be expected from ISCs derived 

from murine intestinal epithelium in which Apc has been homozygously deleted. 

 

 

 

3.25 Relative mitochondrial activity of wildtype and Apcflox/flox organoids in different Rspo1 
concentrations using the PrestoBlue assay. ** indicates p<0.001 using 2-tailed T-test. 
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 Assessing the utility of the organoid formation assay using a Cited-1 deficient 3.14

mouse model  

In order to assess whether the stem cell functionality assay could provide useful 

insights into the early stages of tumourigenesis, we must be able to demonstrate that it 

can detect more subtle changes in the ISC compartment than those caused by 

homozygous deletion of Apc. Also, as loss of Apc results in large, cyst-like structures as 

opposed to differentiated organoids, the method must also be able to distinguish 

between genotypes which have a similar phenotype in vitro. 

3.14.1 Cited-1 

It was shown in a mouse melanoma cell line that the bi-functional transcriptional 

cofactor encoded by Cited-1 plays a role in activation and repression of expression of a 

wide range of target genes (Shioda et al. 1996; Yahata et al. 2001). The complex role 

that Cited-1 could play in tumourigenesis was hinted at by its ability to inhibit Wnt 

signaling but activate Smad-4 dependent transcription resulting in enhanced 

TGFβ/BMP signaling (Plisov et al. 2005).  A role for CITED-1 in tumourigenesis has also 

been implicated in several human cancers such as nephroblastoma, melanoma and 

Wilm’s tumours where disregulation of CITED-1 expression is observed (Lovvorn Iii et 

al. 2007; Nair et al. 2001). In a mouse model of mammary cancer (MMTV-

Cre/FloxNeoNeuNT), it was shown that Cited-1 expression is elevated within the 

tumours  where it functions alongside Egr2 to drive expression of the oncogene ErbB2 

(Dillon et al. 2007). 

Microarray data from this laboratory has shown that loss of Apc immediately results in 

an increase in expression of the gene Cited-1, an upregulation that is dependent on the 

presence of functional C-myc. Loss of the Wnt target C-myc in an Apcflox/flox mouse not 

only rescues the phenotype of Apc loss (Sansom et al. 2007), but also returns Cited-1 

expression levels to those found in wildtype. Our laboratory has recently shown that an 

upregulation of CITED-1 is observed in human colorectal cancers, and that loss of Cited-

1 expression in the Apc heterozgygous mouse model of colorectal tumourigenesis, 

Apcmin/+, increases survival via a reduced intestinal tumour burden (Méniel et al. 2013).  
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Loss of Cited-1 alone does not result in intestinal tumourigenesis, but does markedly 

increase levels of dephosphorylated β-catenin within the intestinal epithelium. 

Interestingly, loss of Cited-1 in the context of homozygous Apc loss using AhCre Apcflox/flox 

mice results in a further increase in both dephosphorylated β-catenin and associated 

Wnt-target genes (Méniel et al. 2013).  

The subtle deregulation of Wnt signaling observed in Cited-1 null intestinal epithelia 

without grossly affecting the intestinal phenotype, provides a perfect model for testing 

the ability of the organoid formation assay to analyze small changes in the ISC 

compartment that may arise as a result of Wnt-deregulation. 

 Cited-1 loss and the ISC compartment 3.15

qRT-PCR was used to show that expression of the ISC markers Lgr5, Msi1 and Ascl2 were 

significantly higher in the intestinal epithelia of Cited-1 null mice than wildtype 

(p<0.05). There was a trend for increased expression of the markers Bmi-1 and Olfm4 

but it was not significant at n=6 (p>0.05). 

In situ hybridisation revealed that expression of the intestinal stem cell marker Olfm4 

was still limited to the crypt base in Cited-1 null mice, and the probe signal appears no 

different to that observed in wildtype. This indicates that there is no mislocalisation of 

the ISC compartment, however, there could be an increase in ISC number around the 

base of the crypts, which would not be visible from the cross-sections of the crypt 

structure shown in Figure 3.27. Also, it should be noted that Olfm4 is one of the ISC 

markers whose expression is not significantly upregulated as a result of Cited-1 loss. 

Olfm4 was chosen for in situ hybridisation as in situ hybridisation for this marker results 

in a tighter staining pattern than that observed with Ascl2. In addition to this, Olfm4, 

unlike Ascl2, is not a direct Wnt target gene, and so changes in expression pattern are 

less likely to be due to an increase in Wnt-signalling as opposed to an increase in ISC 

markers (van der Flier et al. 2009a). 
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3.26 qRT-PCR results of relative expression levels of a range of proposed intestinal stem cell 
markers from wildtype versus Cited-1-/- intestinal epithelial cell preparation. * indicates p<0.05, 
** indicates p<0.01. N=6 

 

 

3.27 In situ hybridisation for the intestinal stem cell marker Olfm4 in wildtype and Cited-1-/- 
crypts. Bars represent 100 μm. 
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3.15.1 Cited-1-/- organoids 

Cited-1-/- organoids are phenotypically identical to wildtype (Figure 3.28), displaying 

multiple crypt-protrusions containing goblet cells, enteroendocrine cells and Paneth 

cells (images not shown). As there were no gross differences between Cited-1-/- 

organoids and wildtype organoids, the same CHARM setting for organoid counting and 

measurement of growth rates were used. 

3.15.2 Cited-1-/- crypts form organoids more efficiently than wildtype 

The organoid formation assay revealed that a significantly higher percentage of Cited-1-

/- crypts were capable of forming organoids than wildtype (Figure 3.29) (Wildtype 14±5, 

Cited-/- 21±3). This supports the expression marker data which indicates that loss of 

Cited-1 results in an expansion of the ISC compartment. The organoid formation 

efficiency of Cited-1-/- crypts was still significantly lower than that seen in Apcflox/flox 

crypts. 

3.15.3 Cited-1-/- organoids are Rspo1 dependent 

The PrestoBlue mitochondrial activity assay shows that Cited-1-/- organoids are 

dependent on the presence of Rspo1 in the culture medium for their growth and 

development in a dose dependent manner equivalent to that of wildtype. This indicates 

that the ISCs of Cited-1-/- mice are not significantly more Wnt-activated than wildtype 

ISCs. 
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3.28 H&E of a Cited-1-/- organoid. Cited-1-/- organoids are phenotypically identical to wildtype 
organoids displaying multiple crypt-like protrusion containing differentiated cell types. Bars 
represent 100 μm. 
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3.29 Organoid formation efficiency of Cited-1-/- compared to wildtype crypts. Loss of Cited-1 
resulted in a significant increased organoid formation efficiency, 2-tailed T-test p=0.026. N>4. 

 

3.30 Relative mitochondrial activity of wildtype and Cited-1-/- organoids in differenct Rspo1 
concentrations using the PrestoBlue assay. * indicates p<0.05 **indicates p<0.001 using 2-tailed 
T-test. N=10. 



105 
 

 Discussion  3.16

The final protocol for the ISC functionality assay with the CHARM settings used can be 

found in section 2.12.4 of Materials and Methods.   

3.16.1 Apcflox/flox crypts form two distinct types of organoids 

The difference between the two types of organoids formed from Apc deficient crypts 

indicates that potentially there are two types of cells in these crypts capable of forming 

organoids. This could represent the two different ISC populations which, once Wnt-

activated as a result of Apc loss, can both grow in culture (Yan et al. 2012). Alternatively 

it could represent the difference between organoids grown from Wnt-activated ISCs and 

those grown from highly Wnt-activated cells of the proliferative compartment of the 

crypt which are not “true” ISC.  

As both types of organoids are observed when Apc was recombined in vitro as well as in 

vivo, it is difficult to assess why they are different. One potential method would be to 

sort Apc deficient intestinal cells based on expression of Lgr5hi Ckitlo and Lgr5lo Ckithi 

using Lgr5 expression as a marker of the ISC population and Ckit expression as a 

marker of the proliferative zone. This would enable assessment of both the efficiency of 

organoid formation and the different types of organoid which each cell type can 

produce. The difficulty of this method is the likelihood of plasticity within the system, 

especially within Apc deficient tissue, whereby stem cells are defined by their 

microenvironment, and all cells are capable of becoming “stem-like” given exposure to 

specific conditions. This plasticity means that some cells can be more “stem-like” than 

others, and measures of “stemness” are difficult to quantify. 

It was also noted that Apcflox/flox organoids often contain polarized cells, whereas 

Apcflox/flox intestinal tissue in vivo does not. This is most likely due to the environment in 

vitro whereby sealed cyst-like organoids have a clearly defined “inside” and “outside” 

with the outside being rich in growth factors and the inside being the area of cell death 

and so high in apoptotic signals. This clear gradient of signals may give the cells 

stronger positional cues than occur in vivo when a high level of proliferation occurs. 
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3.16.2 Apcflox/flox organoids contain fewer differentiated cells than wildtype 

The observation that Apcflox/flox organoids contain fewer differentiated cells than 

wildtype matches the in vivo data whereby loss of Apc results in an increase in 

undifferentiated cell types. No enteroendocrine cells were observed in Apcflox/flox 

organoids and goblet cells were only observed in Apcflox/flox organoids which had been 

cultured in the presence of Rspo1. The organoids containing goblet cells most likely 

represent organoids derived from crypts in which incomplete recombination of Apc had 

occurred, as these organoids would not survive in the absence of Rspo1.  

By contrast, Paneth cells were occasionally observed in Apcflox/flox organoids which had 

been cultured in the absence of Rspo1. As these organoids were only cultured for 11 

days it is likely that the observed Paneth cells are those from the original crypts which 

were seeded that survived rather than ones which had differentiated in culture. Paneth 

cells are long-lived and can survive for up to 20 days (Ayabe et al. 2004). This 

hypothesis is supported by microscopic analysis of fixed Apcflox/flox organoids which have 

undergone long-term culture and passage (courtesy of Nydia Panitz) and did not 

revealed the presence of any Paneth cells. 

As previously discussed, the inability of Apcflox/flox organoids to differentiate indicates 

that they are not derived from true ISCs, as the definition of an ISC is its ability to 

produce all the differentiated cell types found within the epithelium. For this reason, 

despite the utility of comparing wildtype and Apcflox/flox organoid formation in order to 

calibrate this assay, the stem cell function assay should only be used to compare 

formation efficiency of organoids which display a wildtype phenotype with all the 

differentiated cells present or the formation efficiency of cyst-like structure producing 

genotypes with that seen in Apcflox/flox crypts. 

3.16.3 Wildtype organoids are more highly proliferative than Apcflox/flox organoids 

The interesting and unexpected observation that wildtype organoids express higher 

levels of the proliferation marker Ki67 and contain more cells in “S”-phase of mitosis (as 

measured by number of cells which uptake BrDU in a one hour period) indicates that 

wildtype organoids are proliferating at a greater rate than Apcflox/flox organoids. This is in 

direct contrast with in vivo data where loss of Apc and subsequent Wnt-signalling 

activation results in a great increase in proliferation (Sansom et al. 2004). This 
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observation does not fit with the data showing that Apcflox/flox organoids grow faster 

than wildtype. However, as the growth rate data shows, by day 11 (which is when the 

organoids were fixed) Apcflox/flox growth has reached a plateau, whereas wildtype 

organoids are still growing. This could be due to the lack of organized structure of 

Apcflox/flox organoids, which just form cyst-like sacks of dead matter and toxins. 

Potentially there is a maximum size the organoids can reach before proliferation is 

reduced to maintain this size. This is supported by the observation that larger organoids 

appear to collapse in on themselves by day 12-13 (see Figure 3.7). 

The organized structure of wildtype organoids enables them to continue growing 

despite the large quantity of dead material inside, as a “crypt” can bud further away 

from the necrotic matter, and often a “leak” of dead matter will form within wildtype 

organoids with the crypts budding on the opposite side of this “leak”. This could explain 

why proliferation rate of wildtype organoids are so much higher than those seen in 

Apcflox/flox organoids, and could be easily tested by fixing organoids at day 5 when growth 

rates between genotypes are very different, and assessing proliferation using Ki67 and 

BrDU. Nearly 100% of wildtype organoid cells are proliferating which indicates that 

they only represent the proliferative compartment of the intestinal epithelium with the 

crypt protrusion and there is no compartment of the organoid which represents the 

non-proliferating villus region. 

The observation that loss of Apc does not appear to result in an increase in apoptosis (as 

measured by Caspase 3 expression) in vitro, but does in vivo (Sansom et al. 2004), could 

be explained by the presence of laminin within the cultures, which prevents cell anoikis 

(Sato et al. 2009). The loss of cellular organisation seen in vivo as a result of Apc loss, 

may interfere with cell-cell contact and positional cues, thereby resulting in cellular 

anoikis. An alternative hypothesis is that in vivo, mice do not survive loss of Apc using 

Villin-Cre for more than 5-6 days and so the increase in apoptosis may be an earlier 

phenotype. This could again be assessed by fixing organoids at earlier time-points and 

assessing Caspase 3 expression. 

 These data not only show the differences between wildtype and Apcflox/flox organoids 

but also highlight that despite the utility of this in vitro system to recapitulate aspects of 
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in vivo work, there are still many areas in which it does not truly represent the situation 

seen in the mouse intestine. 

3.16.4 Development of a functional stem cell assay 

By testing this method using Apcflox/flox mice as an example of a Wnt activated mutant, 

we have developed a sound methodology to examine ISC functionality which is capable 

of determining changes in the ISC population due to aberrations in Wnt signalling. The 

changes in ISC compartment can be supported by in situ hybridisation to determine 

whether the number of stem cells, or simply their potency, has changed. 

There is one major drawback to this technique which is currently being addressed, 

namely that in order for it to be a true representation of “stemness”, the ability of the 

organoids to self-renew would need to be assessed. At present, this has not been 

possible due to the inefficiencies of passage. The major difficulty of gaining a readout of 

the number of organoids which grow after passage is the variability in the passage 

preparation. In order to passage intestinal organoids, it is necessary to manually disrupt 

their structures until they are once more single crypts. In published data this is often 

taken down to single cells using trypsin or similar in order to disassociate the cells, then 

passed through a 40μm filter to ensure that only single cells are seeded. However, due 

to the nature of this assay, it is necessary to seed crypts as opposed to single cells. This 

is due to the inefficiency of organoid growth from unsorted single epithelial cells, as 

sorting for a specific marker, such as Lgr5, would impose pre-selection for defined 

parameters of “stemness”, and what is required from this assay is a global analysis of 

ISC functionality within the whole intestinal crypt. Passage involving the breakdown of 

organoids and re-seeding of crypts as opposed to single cells is routinely done for the 

long term maintenance of intestinal organoid cultures, but not in a manner whereby the 

quality of crypt preparation is essential, or the number of single crypts seeded needs to 

be quantified. When this was attempted, it was found that the quality of the crypt 

preparation was variable, with many individual crypts, or partial organoids, and other 

complete organoids which were undisrupted by the passage process. 

The problem lies in both the difficulty of extracting a large quantity of organoids from 

cultures grown in a 96 well plate, and the inability to consistently break these organoids 

down to a single crypt level. In order to confirm that only single crypts (and not large 
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chunks of organoids, or whole organoids) have been seeded it is necessary to pass the 

sample through a 70 μm filter (pre-soaked in PBS + 0.1%BSA), which results in a great 

reduction in crypt numbers. At present the maximum number of crypts successfully 

passaged from a culture which was originally seeded with approximately 75,000 crypts, 

is 400 crypts. This has meant that incorporating a self-renewal assay into this method 

has as yet been unfeasible. 

It must also be taken into consideration that intestinal organoid function and phenotype 

is not always a direct representation of that seen in vivo. For example, Farin et al., 

recently showed that despite the dispensable nature of Wnt3 in the intestinal 

epithelium in vivo, the loss of Wnt3 cannot be supported in intestinal organoids (Farin 

et al. 2012).  

Other methods for using the intestinal organoid method to assess the ISC compartment 

in vivo have previously been suggested, and other laboratories are using the number of 

crypt-like protrusions as a readout of “stemness”, due to the clear difference between 

wildtype and Apcflox/flox organoids in this characteristic (Ernlund 2011). However, these 

protrusions arise via crypt fission (Sato et al. 2009), and there is no evidence that crypt 

fission occurs as a result of an expansion of the ISC compartment. Furthermore, 

measuring organoid formation efficiency more accurately recapitulates the “gold 

standard” of stem cell assays used in other tissues, such as the neurosphere or cleared 

fat pad transplant assay (Deome et al. 1959; Reynolds and Weiss 1992), whereby cells 

capable of forming a differentiated tissue structure in vitro are measured as stem cells. 

3.16.5 The effect of Cited-1 loss on the ISC compartment 

The data presented here showing that loss of Cited-1 results in an increased organoid 

forming efficiency indicates the potential utility of this method for gaining an 

understanding of the effect of subtle deregulations of Wnt on the intestinal stem cell 

compartment. Although loss of Cited-1 is not alone sufficient to cause intestinal 

tumourigenesis, the subtly increased Wnt-signalling levels, as observed by increased 

nuclear β-catenin, are resulting in an increase in ISCs. Despite this increase in the pool 

of potential “cells of origin” of colorectal cancer, there is not an increase in 

tumourigenesis as these cells are not highly Wnt-activated, as determined by their 

dependency on Rspo1.  
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These data show that a small expansion of the ISC compartment is not alone sufficient to 

drive tumourigenesis, as transforming mutations must still occur within these ISCs 

which result in high levels of nuclear β-catenin.  

The increased number of ISCs should theoretically increase the likelihood of 

tumourigenesis as the number of potential “cells of origin” has increased, however, as 

spontaneous colorectal tumourigenesis in mice is very rare, the number of mice 

required in order to see such an effect would be large. Recently, it has been shown that 

Cited-1 loss is not sufficient for the initiation of intestinal tumourigenesis (Méniel et al. 

2013). Interestingly, despite loss of Cited-1 resulting in an apparent expansion in the ISC 

compartment, Cited-1 loss in a model of Wnt-driven intestinal tumourigenesis, Apcmin/+ 

mice, results in a decrease in tumour burden and a significant increase in survival. This 

is thought to be due to Cited-1 loss resulting in an increase in Wnt signalling, which 

when coupled with Wnt-activation due to Apc deficiency results in an over activation of 

this pathway and an associated increase in apoptosis. This is thought to cause Wnt 

signalling to elevate above tumour-permissive levels, and therefore actually decrease 

tumourigenesis (Méniel et al. 2013). This indicates the complexity of intestinal 

tumourigenesis, and shows that if changes within the ISC compartment are playing a 

role in potential for tumour initiation, then that role may be overridden by alterations in 

Wnt signalling levels. 

 Summary 3.17

This is the first time that an assay to determine the functionality of ISCs has been 

developed and, despite some drawbacks, could prove itself to be an exceptionally useful 

technique. In order to overcome these drawbacks, the assay should always be used in a 

combined approach to assess changes to the ISC compartment, in conjunction with qRT-

PCR data of ISC marker expression levels and in situ hybridisation techniques. 

Apc loss results in such a gross alteration in organoid phenotype that comparisons of 

organoid formation efficiency between organoids of a wildtype phenotype and those of 

an Apc deficient phenotype may be irrelevant. However, it is possible to draw 

comparisons between genotypes which present a similar organoid phenotype. 
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 Future Work 3.18

Growing organoids from single cells would be arguably led to more accurate 

quantification of organoids grown. Single cell organoid culture was attempted (with the 

addition of Wnt3a and the Rho kinase inhibitor Y-27632 to the growth media) however, 

the organoid formation efficiency was so low (<0.03%) that very few total organoids 

grew (typically about 1 per animal) leading to very high variability as well as preventing 

the use of the Rspo1 dependency test. Sato et al., were able to grow organoids at a 

higher efficiency by sorting for the expression of Lgr5 using an Lgr5-GFP transgene 

(Sato et al. 2010).  However, efficiency was still low unless co-cultured with Paneth cells 

and for the purposes of a stem cell function assay this method would not be viable, as it 

would involve artificial selection of proposed ISCs prior to seeding. Ideally, sorting cells 

on the basis of expression of Lgr5 would also enable a cell count of total number of 

epithelial cells compared to Lgr5hi expressing cells, however, as currently no reliable 

antibodies exist for Lgr5, this method would rely on the use of the Lgr5-GFP linked 

transgene (which is also linked to a Cre-recombinase for lineage tracing experiments). 

One of the main technical issues experienced in using the Lgr5-GFP transgene is that it 

is expressed in a mosaic manner, meaning that counts between mice cannot be 

compared. 

However Wang et al. recently published a method of sorting out single intestinal cells 

based on a combination of stem cell associated cell surface markers. When single 

intestinal epithelial CD44+ CD24lo CD166+ GRP78lo/- ckit+ cells are FACs sorted they are 

reported to grow into organoids in culture at an efficiency of more 20% (Wang et al. 

2013b). This is a vast improvement on what was published from Lgr5hi sorted cells and 

could represent a much purer population of ISCs. If this is shown to be correct, and that 

CD44+ CD24lo CD166+ GRP78lo/- ckit+ cells are in fact representative of the ISC 

population, then using FAC sorting to count the percentage of epithelial cells which 

meet these expression requirements could also prove useful as a readout of changes in 

the ISC compartment due to genetic mutations.  This method would be cheaper than 

assessing organoid formation efficiency but would miss out on the functional aspect of 

assessing the ISC compartment as it is a method based purely on expression of ISC 
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markers, as opposed to interrogation capacity of intestinal epithelium cells to function 

as ISCs. 

In order to develop the organoid formation efficiency assay into a more accurate 

readout of ISC capability, self-renewal must be assessed. One of the attributes of a stem 

cell is its ability to self-renew, and so assessing organoid formation efficiency over a 

series of passage events would provide a more comprehensive ISC function assay. 
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4 The roles of Pml in the context of Apc and Pten dependent 

colorectal tumourigenesis 

 Introduction 4.1

APC is an important negative regulator of the Wnt-signalling pathway, and mutations of 

this gene are known to  initiate colorectal tumourigenesis (Lamlum et al. 2000). 

However, tumourigenesis is a multistep process in which many other gene mutations 

and mis-regulations play significant roles. One pathway which is known to be important 

in the progression of tumour development is the PI3K pathway. Activation of the PI3K 

pathway results in activation of mTOR as well as inhibition of the pro-apoptotic factor 

BAD (She et al. 2005) and the Wnt regulator GSK3, all of which cause increased cell 

growth and survival (see Section 1.4.1.1). Understandably, tumour cells containing 

mutations which result in constitutive activation of PI3K have a selective advantage 

within a tumour and so may drive clonality within that tumour. More than 40% of 

human colorectal cancers contain mutations which in constitutive activation of this 

pathway. 

The inhibition of GSK3 via activation of the PI3K pathway highlights the potential of 

crosstalk between the Wnt and the PI3K signalling pathways, as GSK3 forms part of the 

β-catenin destruction complex which is an integral regulator of Wnt-signalling (Voskas 

et al. 2010). 

4.1.1 PTEN in tumourigenesis 

The important role of PTEN as a tumour suppressor is well known through its function 

as a negative regulator of the PI3K pathway. PTEN converts PIP3 into PIP2, thereby 

preventing the recruitment of AKT to the membrane where it is activated by 

phosphorylation. In this way PTEN negatively regulates the amount of the oncogenic 

factor phosphorylated AKT (pAKT) available within the cell, see Section 1.1.1.1, (Cully et 

al. 2006). 

Germ line PTEN mutations are known to play a role in a number of autosomal dominant 

syndromes such as Cowden’s syndrome, which predisposes patients to the development 

of multiple hamartoma growths (Liaw et al. 1997). PTEN mutations have also been 
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identified in many sporadic tumour types such as glioblastoma (Wang et al. 1997) and 

prostate cancer (Cairns et al. 1997). Interestingly, loss of an allelic region close to that of 

PTEN has been associated with up to 30% of human colorectal cancers (Frayling et al. 

1997), although the frequency of PTEN mutations observed in sporadic colorectal 

cancers has been controversial. It has previously been shown that PTEN mutations are 

relatively common, with 19.5% of microsatellite stable human sporadic colorectal 

cancers displaying a PTEN mutation,  (Nassif et al. 2004) whilst hypermethylation and 

subsequent inactivation of PTEN is associated with 19.1% of microsatellite instability-

high sporadic colorectal tumours (Goel et al. 2004). However, there is contradictory 

evidence which shows that this hypermethylation may not be associated with a 

decrease in expression, as it refers to the methylation status of a PTEN pseudo gene, and 

not PTEN itself (Zysman et al. 2002).  

Nassif et al. showed that reduced PTEN expression was associated with a later clinical 

stage in human colorectal tumours, indicating that PTEN loss may not be an initiating 

mutation in sporadic colorectal tumourigenesis, but a driver of clonality within the 

tumour (Nassif et al. 2004).  This theory was supported through the use of Cre-Lox 

technology to cause homozygous disruption of Pten alleles in a specific tissue, as 

homozygous knockout of the gene is embryonic lethal (Cristofano et al. 1998). 

Homozygous loss of Pten within mouse intestinal epithelium had no effect on the 

homeostasis of normal mouse intestine, but did cause accelerated tumourigenesis when 

coupled with deficiency of Apc, showing the importance of the PI3K pathway as a driver 

of tumour progression (Marsh et al. 2008). Interestingly, He et al. found that Pten 

deletion from the ISC compartment of the intestinal epithelium was sufficient to initiate 

tumourigenesis (He et al. 2007).  

4.1.2 PML in tumourigenesis 

The oncogenic effect of Pten loss is reportedly exacerbated by the loss of another 

tumour suppressor gene; Pml (promyelocytic leukaemia protein) (Trotman et al. 2006). 

In this study Trotman et al. demonstrated that in a mouse model with heterozygous 

deletion of Pten, Pml deficiency resulted in a higher tumour burden, earlier onset and 

notably reduced survival due to the formation of colorectal and prostate tumours 

(Trotman et al. 2006).  
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PML was originally identified as a potential gene of interest in tumourigenesis due to its 

association with acute promyelocytic leukaemia (APL) where it is disrupted in 99% of 

all cases (Goddard et al. 1991). For many years the treatment of this disease was 

retinoic acid (RA), arsenic trioxide or a combination of the two, which seemed to cure 

most APL patients. It is now known that the mechanism of this cure is through targeting 

of the PML/RARα (retinoic acid receptor alpha) fusion protein (Chen 2010).  

The protein encoded by PML localizes to the subnuclear structure of the PML-nuclear 

body (PML-NB), which interacts with a vast number of proteins ex vivo but only a small 

number of these interactions are fully understood. Using microarray techniques, 

Gurrieri et al. showed that levels of PML protein were reduced or lost in 31% of colon 

adenocarcinomas, and this was associated with reduced number of PML-NBs (Gurrieri 

et al. 2004).  

The function of these PML-NBs is largely unknown although it has been shown to be 

required for the nuclear localization of PTEN (Song et al. 2008), as well as being 

involved in the inhibition of nuclear function of pAKT by actively recruiting pAKT and 

the AKT phosphatise, PP2a (Trotman et al. 2006). It is important to note that PML also 

plays a crucial role within apoptosis, modulating calcium release at the endoplasmic 

reticulum (Giorgi et al. 2010) and that lack of Pml can protect cell lines and mice from 

apoptosis resulting from a range of apoptotic stimuli (Bernardi et al. 2008). The link 

between PML and apoptosis may be an important factor in its role as a tumour 

suppressor. 

PML has also been linked to a role in cellular senescence, and overexpression of PML 

increases levels of cellular senescence through a p53 dependent pathway (Pearson et al. 

2000). As cell senescence is an important mechanism for minimising the effects of DNA 

damage, it could therefore contribute to the role of PML as a tumour suppressor 

(Collado et al. 2007). 

4.1.3 PTEN, PML and stem cells 

PTEN and PML have been described as playing some role in the maintenance of adult 

stem cell compartments, and as such their role within intestinal tumourigenesis could 

be of great importance. The role of PTEN within the maintenance of the ISC 



116 
 

compartment has been explored by He et al. who found that knocking out Pten in the ISC 

compartment initiated intestinal polyposis and also resulted in reduced levels of 

nuclear ß-catenin, an important regulator in ISC self-renewal, within the stem cells (He 

et al. 2007). Pml on the other hand has been shown to inhibit mTOR, which is an 

important driver of the ISC regulator STAT3 (Bernardi et al. 2006; Matthews et al. 

2011). Bernardi et al. showed that inhibition of mTOR by Pml occurred under hypoxic 

conditions, and not only could this affect the ISC compartment, but could also play a role 

by inhibiting angiogenesis, a process which is essential for the growth of solid tumours.  

Interestingly, PML has more recently been shown to play a role in the maintenance of 

“stemness” of hematopoietic stem cells (HSCs) and leukaemia-initiating cells (Ito et al. 

2008; Ito and Ito 2013; Zhou and Bao 2013). In this case, PML deletion results in 

inhibition of the PPAR-δ and  fatty acid oxidation (FAO) pathways which cause an 

increase in symmetric division of HSCs (Ito et al. 2012). The role of PML in the 

regulation of the PPAR-δ-FAO pathway has also been shown to play an important part in 

supporting cell survival in breast cancer cells, so also has a relevance to solid tumours 

(Carracedo et al. 2012).   

Pml and Pten have previously been shown to interact in their suppression of the PI3K 

pathway (Trotman et al. 2006). Here the role of Pml and its synergy with Pten in Wnt-

dependent tumourigenesis has been investigated, with a view to establishing the nature 

of the relationship between these two genes. As these genes have both been implicated 

as regulators of stem cell compartments, their role in maintenance of the ISC 

compartment will be assessed in the context of aberrant Wnt-signalling. 
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 Results 4.2

4.2.1 Pml deficiency does not affect survival, tumour burden or tumour grade, but 

results in increased intussusception in  Apcflox/+ mice 

Villin CreERT positive mice carrying one floxed allele of Apc (Shibata et al. 1997) with or 

without an additional homozygous constitutive knockout of Pml (created and kindly 

gifted to us by Pier Pandolfi) were induced with tamoxifen I.P. injection at 8-10 weeks of 

age and aged for survival analysis. At signs of loss of condition, mice were culled and the 

size, location and number of intestinal and colon tumours were recorded.  

Loss of Pml resulted in no change in either survival (Apcflox/+=345±123, Apcflox/+Pml-/-

=295±21) or tumour burden (Figure 4.1). Interestingly, 3/7 of the Apcflox/flox Pml-/- mice 

displayed gross intussusception upon dissection, whereas none of the 9 Apcflox/flox mice 

displayed this phenotype. This change in frequency of intussusceptions was found to be 

significant when tested using Chi-squared1 (Chi-squared value=6.7, the 0.05 significance 

chi value for n=1 being 3.8). Intussusception has previously been associated with Pten 

deficiency in Apcmin mice and was reported to be coupled with the presence of 

particularly large tumours (Shao et al. 2007). Although all 3 cases of intussusception 

were associated with the presence of a large tumour at the start point of the intestinal 

involution, the tumours were not the largest found in the small intestine (maximum size 

7 mm x 6 mm). 

As Pml deficiency has no effect on overall tumour burden, the level of progression was 

assessed using a tumour grading system. Tumours were divided into 5 categories; grade 

1: single crypt lesions, grade 2: microadenomas, grade 3: adenomas, grade 4: 

adenocarcinoma with submucosal invasion and grade 5: adenocarcinomas with smooth 

muscle invasion (see Section 2.8.4). Loss of Pml had no significant effect on the level of 

tumour progression (Figure 4.2). 

                                                        
1 The significance of this change was assessed using Chi-squared, however, Chi-squared cannot be 
performed if any of the categories (i.e. intussusceptions or no intussusception) of the expected cohort 
(which in this case was the Apcflox/+ mice) were equal to 0. As no cases of intussusception were observed 
in this cohort, the Apcflox/+ Pml-/- cohort had to be used as the basis for the expected results. So in effect, 
the frequency of cases of intussusception in Apcflox/+ mice was compared to that seen in Apcflox/+ Pml-/- 
mice. A more accurate readout of significance could be obtained with a higher N-number, which would 
enable the use of higher powered statistical tests such as a Mann-Whitney using a binomial distribution 
function. 
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4.1 A Survival Plot of Apcflox/+ mice with or without Pml deletion, cross represents mouse still 
living. No significant difference in survival between the two cohorts was observed (Wilcoxon 
p=0.748); B Comparison of tumour number in Apcflox/+ mice with Apcflox/+ Pml-/- mice, there was 
no significant difference in tumour number between the two cohorts (2-tailed T-Test p=0.273); 
C Comparison of average tumour size in Apcflox/+ mice with Apcflox/+ Pml-/- mice, there was no 
significant difference in tumour number between the 2 cohorts (2-tailed T-test p=0.251). N>5. 
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4.2 Graphical representation of the proportion of each lesion type found per genetic cohort. 
N>5. Chi-squared test showed no significant difference in proportion of tumour grade between 
the two cohorts. 
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 Pml loss has no effect on the survival of Apcflox/flox mice  4.2.1.1

As no role was found for Pml as a tumour suppressor in a long term model of Wnt-

dependent tumourigenesis, the potential role of Pml as a regulator of PI3K was 

interrogated using a short term model of early tumourigenesis, the Apcflox/flox mouse. 

After induction of Apc loss from the intestinal epithelium using tamoxifen injection, the 

mice were monitored closely (twice daily) for signs of loss of condition. At signs of ill 

health the animals were culled and the survival time recorded. Additional deficiency of 

Pml resulted in no change in mean survival time of Apcflox/flox mice (Apcflox/flox=4.6±0.7, 

Apcflox/flox Pml-/-=4.6±0.4) (Figure 4.3).   

 

4.3 Cumulative survivals of Apcflox/flox and Apcflox/flox Pml-/- mice after administration of tamoxifen. 
There was no significant difference in mean survival times between the two cohorts (Wilcoxon 
p=0.639). N>5. 
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4.2.2 Pml deficiency does not alter the phenotype of Apcflox/flox mice 

Mice were induced with tamoxifen on day 0 and injected with BrdU on day3, they were 

then culled 2 hours later to analyse the short term effect of Pml deletion on the Apcflox/flox 

phenotype. There was no obvious phenotypic difference between the intestinal 

compartments of Apcflox/flox and Apcflox/flox Pml-/-mice (Figure 4.4). 

The number of cells within the zone of aberrant intestinal epithelial cells was 

determined by counting cells in a single line from the base of the crypt to the top of the 

zone of aberrant cells (as defined by larger, darker, unpolarized and disordered cells). 

There was no difference in the number of aberrant cells due to additional loss of Pml 

(Apcflox/flox= 45.8±5.3, Apcflox/floxPml-/-= 49±3.4) (Figure 4.5). 

Because subtle changes in intestinal homeostasis can be identified by alterations in the 

numbers and distributions of differentiated cell types, paraffin sections of intestine 

taken from Apcflox/flox and Apcflox/flox Pml-/-mice were stained for markers of differentiated 

cells, and the numbers of these cell types counted. No difference in the number of goblet 

cells as marked by staining of mucins by alcian blue was observed (Apcflox/flox= 7.2±1.1, 

Apcflox/floxPml-/-= 8.1±3.1) (Figure 4.6), nor the number of Paneth cells as detected by 

lysozyme IHC (Apcflox/flox= 1.4±0.3, Apcflox/floxPml-/-= 1.4±0.1). Loss of Pml did result in a 

trend for an increased number of enteroendocrine cells as detected by Grimelius 

staining (Apcflox/flox= 0.13±0.05, Apcflox/floxPml-/-= 0.18±0.03), however, this was not 

significant at N=4 (Figure 4.8).  
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4.4 H&E Stain of Apcflox/flox and Apcflox/flox Pml-/- mouse intestine day 3 post induction with 
tamoxifen. The region of aberrant proliferation is indicated by the black brackets. There was no 
gross morphological difference between the two genotypes. Black bars represent 100 μm. 

 

4.5 Counts of the number of cells in the region of aberrant proliferation per crypt-villus axis in 
Apcflox/flox and Apcflox/flox Pml-/- mice. There was no significant difference in number of aberrant 
cells between the two genotypes 2-Tailed T-test p=0.406, N=4. Error bars represent standard 
deviation. 
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4.6 A Alcian Blue IHC of Apcflox/flox and Apcflox/flox Pml-/- intestine. Black bars represent 100 μm; B 
Counts of the number of alcian blue positive cells per crypt-villus axis in Apcflox/flox and Apcflox/flox 

Pml-/- mice. There was no significant difference in number of goblet cells between the two 
genotypes, 2-Tailed T-test p=0.28, N=4. Error bars represent standard deviation. 
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4.7 A Paneth cell IHC of Apcflox/flox and Apcflox/flox Pml-/- intestine, brown stained cells represent 
Paneth cells. Black bars represent 100 μm; B Counts of the number of brown cells per crypt-
villus axis in Apcflox/flox and Apcflox/flox Pml-/- mice. There was no significant difference in number of 
Paneth cells between the two genotypes, 2-Tailed T-test p=0.28, N=4. Error bars represent 
standard deviation.  
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4.8 A Grimelius stain of Apcflox/flox and Apcflox/flox Pml-/- intestine, black stained cells represent 
enteroendocrine cells. Black bars represent 100 μm; B Counts of the number of enteroendocrine 
cells per crypt-villus axis in Apcflox/flox and Apcflox/flox Pml-/- mice. There was no significant 
difference in number of enteroendocrine cells between the two genotypes, 2-Tailed T-test 
p=0.105, N=4. Error bars represent standard deviation. 
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4.1.1.1 Pml loss results in no effect on apoptosis in Apcflox/flox intestinal epithelium 

Despite the reported role of Pml in protecting cells from apoptosis (Bernardi et al. 2008; 

Giorgi et al. 2010), Pml loss did not result in an increase in number or location of 

apoptotic bodies in Apcflox/flox mice (Apcflox/flox 0.03±0.01, Apcflox/flox Pml-/- 0.03±0.002), 

results were normalised for the number of cells within the aberrant region. This was 

confirmed using a Caspase 3 IHC and counting positively stained cells (Apcflox/flox 

0.61±0.1, Apcflox/flox Pml-/- 0.67±0.03) (Figure 4.9). 

4.1.1.2 Pml loss results in increased mitosis in Apcflox/flox intestinal epithelium 

Counting the number and location of mitotic bodies revealed no significant change in 

number of mitotic bodies as a result of Pml loss in Apcflox/flox intestine (Apcflox/flox 

2.4±0.01, Apcflox/flox Pml-/-2.5±0.8) (Figure 4.10). However, IHC for the presence of 

incorporated BrDU after a 2 hour exposure to BrDU prior to mouse sacrifice revealed a 

significant increase in BrDU uptake due to additional Pml loss (Apcflox/flox 11.6±1.6, 

Apcflox/flox Pml-/- 20.7±2.8) (Figure 4.10). This indicates a higher number of cells at “S” 

phase of mitosis due to Pml loss. IHC for the more generic marker of proliferation, Ki67, 

was conducted in order to confirm this finding. The Ki67 IHC corroborated the 

observation that loss of Pml resulted in an increased level of proliferation (Apcflox/flox 

22.8±3.1, Apcflox/flox Pml-/- 28.8±1.5. 2-tailed T-test p= 0.029), data not shown.  

4.2.3 Pml loss does not activate the PI3K pathway in Apcflox/flox intestinal 

epithelium 

As Pml has been reported to play a role as a negative regulator of the PI3K pathway, 

protein was extracted from the intestinal epithelium of mice from the two genotypes, 

and analysed for changes in levels of phosphorylated-AKT (pAKT) compared to total- 

AKT (tAKT) using western blotting analysis. As pAKT is the downstream effector of the 

PI3K pathway, levels can be used as a direct readout of PI3K activity. Western blotting 

revealed no evidence of pAKT in either Apcflox/flox or Apcflox/flox Pml-/- mice, and no change 

in the levels of tAKT. This indicates that in the context of Apc deletion, Pml does not play 

a role in the regulation of this pathway (Figure 4.11). IHC for pAKT was performed and 

supported the evidence from western blotting that loss of Pml does not result in an 

increase in pAKT (Figure 4.11). 
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4.9 Comparison of levels of apoptosis in Apcflox/flox and Apcflox/flox Pml-/- mice. A Apoptotic Index as 
measured by number of apoptotic bodies per crypt-villus axis and normalised for the number of 
cells in the region aberrant proliferation. There was no significant difference between the two 
genotypes, 2-tailed T test p=0.842, N=4; B Number of Caspase positive cells as counted from 
Caspase IHC. There was no significant difference between the two genotypes, 2-tailed T test 
p=0.411, N=4; C Caspase 3 IHC on Apcflox/flox and Apcflox/flox Pml-/- intestine. Brown cells represent 
Caspase 3 positive cells. Black bars represent 100 μm.  
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4.10 Comparison of levels of mitosis in Apcflox/flox and Apcflox/flox Pml-/- mice. A Mitotic Index, as 
measured by number of mitotic bodies per crypt-villus axis and normalised for the number of 
cells in the region aberrant proliferation. There was no significant difference between the two 
genotypes, 2-tailed T test p=0.789, N=4; B Number of BrDU positive cells as counted from BrDU 
IHC after a 2 hour BrDU exposure. Pml loss led to a significant increase in BrDU uptake 2-tailed 
T test p=0.001, N=4; C BrDU IHC on Apcflox/flox and Apcflox/flox Pml-/- intestine. Brown cells 
represent BrDU positive cells. Black bars represent 100 μm.  
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4.11 Phospho-AKT levels as a measure of activation of the PI3K pathway due to additional 
deletion of Pml form Apcflox/flox mice. A Western blot analysis shows that total levels of Akt 
protein within the protein extracted from intestinal epithelium of the two genotypes was high, 
but no phospho-Akt was detected; B IHC for phospho-Akt confirmed that the PI3K pathway was 
not activated, as phospho-Akt was not observed. Black bars represent 100 μm. 
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4.2.4 Pml loss results in a significant increase in expression of ISC markers in 

Apcflox/flox mice 

Given that Pml is cited as a tumour suppressor, and that mis-regulation of the ISC 

compartment may play an important role in tumourigenesis, the ISC compartments of 

Apcflox/flox and Apcflox/flox Pml-/- mice were analysed.  

qRT-PCR for a number of published ISC markers was performed and revealed a 

significant increase in expression of Lgr5 due to Pml loss (Figure 4.12). Trends for 

increased expression of the ISC markers Ascl2, Olfm4, Msi1 and Bmi1 were found not to 

be significant at N=6.  

As changes in the expression levels could indicate either an increase in expression by 

the same number of ISCs or a loss of localisation of expression, in situ hybridisation was 

performed using an anti-Olfm4 riboprobe on paraffin embedded intestinal tissue of 

Apcflox/flox and Apcflox/flox Pml-/-mice. In situ hybridisation revealed an apparent increase in 

the zone of Olfm4 expression due to additional Pml loss (Figure 4.13). However, due to 

the tissue disruption caused by the proteinase K step of in situ hybridisation, this 

method is not quantifiable and trends can only be determined through the use of a 

representative image. 
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4.12 qRT-PCR analysis of selected ISC markers showed a trend for increased expression due to 
Pml loss in Apcflox/flox mice. * Indicates significance at p<0.05 using a 2-tailed T-test. N=6. 

 

 

4.13 In situ hybridisation to visualise Olfm4 mRNA expression location. Loss of Pml results in an 
apparent increase in the zone of expression. Black bars indicate 100 μm. 

 

 



132 
 

4.2.5 Pml deficiency does not affect the survival or tumour burden in Apcflox/+ 

Ptenflox/flox mice 

Mice were induced at 8-10 weeks old (+/- 10 days) and aged until displaying loss of 

condition, when they were culled. Using Wilcoxon survival analysis it was demonstrated 

that the survival of Apcflox/+ Ptenflox/flox Pml-/- mice is not significantly different from 

Apcflox/+ Ptenflox/flox mice (Apcflox/+ Ptenflox/flox 136 days ± 97, Apcflox/+ Ptenflox/flox Pml-/- 97 

days ± 42 days) (Figure 4.14). Intussusception was only observed in 1/12 of the 

Apcflox/+Ptenflox/flox mice (where it was associated with a large tumour, 9mm x 9mm in 

size), and 0/16 of the Apcflox/+Pten+/+ Pml-/- mice. 

Tumour counts in both the small and large intestine were performed, and the tumour 

size recorded. It was found that loss of Pml resulted in no change in the numbers of 

tumours found in the small and large intestine or the size of tumours in Apcflox/+ 

Ptenflox/flox mice. 

4.2.6 Pml deficiency increases tumour progression Apcflox/+ Ptenflox/flox mice 

The tumours seen on one section of H&E per mouse were graded using the tumour 

grading system explained in Section 3.8.2. Using Chi-squared it was possible to 

determine that there was a significant difference in the ratios of tumour grades 

observed, with loss of Pml resulting in a higher proportion of tumours displaying 

submucosal and smooth muscle invasion, and therefore fewer lower grade lesions 

(P<0.01) (Figure 4.15) .  
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4.14 A Survival Plot of Apcflox/+ Ptenflox/flox mice with or without Pml deletion, there was no 
difference in survival times between the two cohorts (Wilcoxon p=0.478); B Comparison of 
tumour number in Apcflox/+ Ptenflox/flox  mice with Apcflox/+ Ptenflox/flox Pml-/- mice, no significant 
difference was seen between the two cohorts (2-tailed T-test p=0.495) ; C Comparison of 
average tumour size in Apcflox/+ Ptenflox/flox mice with Apcflox/+ Ptenflox/flox Pml-/- mice, no significant 
difference was seen between the two cohorts (2-tailed T-test p=0.509). N>10. 
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4.15 Graphical representation of the numbers of each lesion type found per genetic cohort. 
N>10. Chi-squared test showed a significant difference in proportion of tumour grade between 
the two cohorts, Chi-squared value=34.3 (greater than the Chi-squared given value for p<0.001, 
6.64). 
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4.2.7  Pml deficiency significantly reduces survival of Apcflox/flox Ptenflox/flox mice 

Following induction of Villin-CreER via injection of tamoxifen, Apcflox/flox Ptenflox/flox mice 

have a median survival time of 4.5 days. In mice carrying the additional Pml mutation, 

median survival following tamoxifen injection was reduced to 3 days (mean values 

Apcflox/flox Ptenflox/flox 4.5±0.4, Apcflox/flox Ptenflox/flox 3.2±0.4). Upon dissection there was no 

discernible difference in phenotype between the two cohorts, except that the gut of 

Apcflox/flox Ptenflox/floxPml-/- mice was noticeably more vascularised. However, this was not 

quantified. 

 

4.16  Cumulative survival of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice after 
administration of tamoxifen. Loss of Pml significantly reduced the survival time of Apcflox/flox 
Ptenflox/flox mice (Wilcoxon p=0.002). N>5.  
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4.2.8 Pml deficiency does not alter the histological phenotype of Apcflox/flox 

Ptenflox/flox mice 

Despite the decrease in survival of Apc Pten-deficient mice due to loss of Pml, there was 

no gross difference in intestinal phenotype (Figure 4.17). Counting the number of 

aberrant intestinal epithelial cells per crypt-villus axis showed that Pml deficiency does 

not affect the number of cells in this region in Apcflox/flox Ptenflox/flox mice (Apcflox/flox 

Ptenflox/flox 65±4.5, Apcflox/flox Ptenflox/flox 62±10.7) (Figure 4.18).  

Pml deficiency resulted in no significant alteration in the differentiated cell composition 

of the intestinal epithelium when associated with additional Pten loss. In Apcflox/flox 

Ptenflox/flox mice, Pml deficiency had no effect on the number of alcian blue positive 

goblet cells (Apcflox/flox Ptenflox/flox 8.2±0.7, Apcflox/flox Ptenflox/flox 8.7±2.1) (Figure 4.19), but 

did result in a trend for decreased numbers of Paneth cells (Apcflox/flox Ptenflox/flox 

1.5±0.25, Apcflox/flox Ptenflox/flox 1.3±0.04) (Figure 4.20), and enteroendocrine cells 

(Apcflox/flox Ptenflox/flox 0.32±0.001, Apcflox/flox Ptenflox/flox 0.21±0.0001) (Figure 4.21). 

Similarly, Pml loss had no effect on levels of apoptosis in Apc and Pten deficient mice, as 

determined by counting the number of apoptotic bodies per half-crypt (Apcflox/flox 

Ptenflox/flox 0.024±0.006, Apcflox/flox Ptenflox/flox 0.038±0.009), and confirmed by Caspase 3 

IHC (Apcflox/flox Ptenflox/flox 0.69±0.09, Apcflox/flox Ptenflox/flox 0.68±0.05)( Figure 4.22). Levels 

of mitosis were also unaffected, as determined by counting mitotic bodies (Apcflox/flox 

Ptenflox/flox 2.8±1.2, Apcflox/flox Ptenflox/flox 2.5±0.9), and confirmed by BrDU IHC following a 

2hour BrDU exposure prior to animal sacrifice (Apcflox/flox Ptenflox/flox 19.9±4.3, Apcflox/flox 

Ptenflox/flox 20.4±4.9) (Figure 4.23). 
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4.17 H&E Stain of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mouse intestine day 3 post 
induction with tamoxifen. The region of aberrant proliferation is indicated by the black 
brackets. There was no obvious morphological difference between the two genotypes. Black 
bars represent 100 μm. 

 

4.18 Counts of the number of cells in the region aberrant proliferation per crypt-villus axis in 
Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. There was no significant difference in 
number of aberrant cells between the two genotypes, 2-Tailed T-test p=0.634, N=4. Error bars 
represent standard deviation. 
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4.19 A Alcian Blue IHC of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- intestine. Black bars 
represent 100 μm; B Counts of the number of alcian blue positive cells per crypt-villus axis in 
Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. There was no significant difference 
between the two cohorts, 2-tailed T-test p=0.705, N=4. 
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4.20 A Lysozyme cell IHC of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/-, brown stained 
cells represent Paneth cells. Black bars represent 100 μm; B Counts of the number of brown 
cells per crypt-villus axis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. Despite a 
clear trend, the difference was not significant at N=4, 2-Tailed T-test p=0.146. 
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4.21 A Grimelius stain of Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/-, black stained cells 
represent Grimelius containing enteroendocrine cells. Black bars represent 100 μm; B Counts of 
the number of black cells per crypt-villus axis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-

/- mice. Despite a clear trend, the difference was not significant at N=4, 2-Tailed T-test p=0.135. 
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4.22 Comparison of levels of apoptosis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. 
A Apoptotic Index, as measured by number of apoptotic bodies per crypt-villus access and 
normalised for the number of cells in the region aberrant proliferation. There was no significant 
difference between the two genotypes, 2-tailed T test p=0.059, N=4; B Number of Caspase 
positive cells as counted from Caspase IHC There was no significant difference between the two 
genotypes, 2-tailed T test p=0.411, N=4; C Caspase 3 IHC on Apcflox/flox Ptenflox/flox and Apcflox/flox 
Ptenflox/flox Pml-/- intestine. Brown cells represent Caspase 3 positive cells. Black bars represent 
100 μm. 
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4.23 Comparison of levels of mitosis in Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice. A 
Mitotic Index, as measured by number of mitotic bodies per crypt-villus access and normalised 
for the number of cells in the region aberrant proliferation. There was no significant difference 
between the two genotypes, 2-tailed T test p=0.672, N=4; B Number of BrDU positive cells as 
counted from BrDU IHC after a 2 hour BrDU exposure. There was no significant difference in 
BrDU uptake between the two genotypes, 2-tailed T test p=0.895, N=4; C BrDU IHC on Apcflox/flox 

Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- intestine. Brown cells represent BrDU positive cells. 
Black bars represent 100 μm. 
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4.2.9 Pml loss does not activate the PI3K pathway in Apcflox/flox Ptenflox/flox intestinal 

epithelium 

Western-blot analysis of protein extracted from intestinal epithelial cells of Apcflox/flox 

Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- mice showed that additional Pml deficiency had 

no effect on the levels of pAKT. This result was confirmed by IHC, which showed no 

visible change in levels of pAKT between the two genotypes (Figure 4.24).  

4.2.10 Pml loss results in a significant increase in expression of ISC markers in 

Apcflox/flox Ptenflox/flox mice 

Due to loss of Pml resulting in an increased tumour grade in Apc and Pten deficient mice, 

the ISC compartment was analysed. ISCs have been shown to be the cell of origin of 

intestinal tumourigenesis, and loss of Apc specifically within ISCs results in more 

aggressive adenomas than when Apc is lost from other intestinal epithelial cell types 

(Barker et al. 2008), hence once possible reason for the observed increase in the grade 

of adenomas may be a change in the ISC compartment.   

Loss of Pml in the context of combined Apc and Pten deficiency had a clear effect on the 

ISC compartment, with a trend for increased expression of the ISC markers Ascl2, Msi1 

and Bmi1, and a significant increase in the expression of the markers Lgr5 (t-test 

p=0.03) and Olfm4 (t-test p=0.03) at N=6 (Figure 4.25). 

Interestingly, in situ hybridisations for the ISC marker Olfm4 did not display any change 

of location of expression (Figure 4.26). 
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4.24 Phospho-AKT levels as a measure of activation of the PI3K pathway due to additional 
deletion of Pml from Apcflox/flox Ptenflox/flox mice. A Western blot analysis shows that total levels of 
both total- Akt protein and phospho-Akt were high in both cohorts with no difference between 
the two cohorts; B IHC for phospho-Akt confirmed that the PI3K pathway was activated equally 
in both genotypes. Black bars represent 100 μm. 
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4.25 qRT-PCR analysis of selected ISC markers showed a trend for increased expression due to 
Pml loss in Apcflox/flox mice. * Indicates significance at p<0.05 using a 2-tailed T-test. N=6. 

 

 

4.26 In situ hybridisation to visualise Olfm4 mRNA expression location. Loss of Pml results in no 
gross change in the zone of expression. Black bars indicate 100 μm. 
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4.2.11 Organoids from all cohorts are cyst-like, with few differentiated cell types 

The ability of Pml loss to seemingly expand the ISC compartment, and therefore the 

potential number of “cells of origin” of intestinal tumourigenesis, without having an 

impact on the number of tumour initiation “events” is contradictory and so it is 

necessary to assess the effect of Pml loss on the functional ISC compartment separately 

from its effect on the expression of ISC markers. 

Apcflox/flox Pml-/-, Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox Pml-/- intestinal crypts all 

produced organoids which were cyst-like with few differentiated cells, which were 

indistinguishable from Apcflox/flox organoids (Figure 4.27). Due to the similarities with 

Apcflox/flox organoids, the Apcflox/flox Pml-/-, Apcflox/flox Ptenflox/flox and Apcflox/flox Ptenflox/flox 

Pml-/- organoids were analysed using the Apcflox/flox CHARM programme. See section 

2.12.4. 

4.2.12 Pml loss does not affect organoid formation efficiency in Apcflox/flox or 

Apcflox/flox Ptenflox/flox mice 

In contradiction to the in vivo results which showed that Pml loss resulted in an 

increased expression of Lgr5, loss of Pml had no effect on the organoid forming 

efficiency of intestinal crypts from any of these cohorts (Figure 4.28). All organoid 

cultures were completely Rspo1 independent due to Apc deficiency. 
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4.27 H&E displaying organoids representative of Apcflox/flox Pml-/-, Apcflox/flox Ptenflox/flox and 
Apcflox/flox Ptenflox/flox Pml-/- organoids. Image actually taken of fixed Apcflox/flox Ptenflox/flox Pml-/- 
organoids. Black bars represent 100 μm. 

 

 

4.28 Intestinal organoid formation efficiency of Apcflox/flox, Apcflox/flox Pml-/-, Apcflox/flox Ptenflox/flox 
and Apcflox/flox Ptenflox/flox Pml-/- intestinal crypts. No significant difference was observed between 
any of the genotypes (2-tailed T-test p>0.05 for all comparisons). 
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 Discussion 4.3

4.3.1 Pml deficiency results in subtle phenotypic changes in Apcflox/+ and Apcflox/flox 

mice, but no change in survival or tumour burden 

Despite Pml loss resulting in no change in survival or tumour burden of Apcflox/+ mice, 

there was an increase in the levels of intussusception observed upon dissection. 

Heterozygous loss of Pten has been previously shown to increase levels of 

intussusceptions in an Apcmin model of colorectal tumourigenesis (Shao et al. 2007). 

Although intussusception is normally viewed as a result of the presence of large 

tumours, rather than a tumour independent phenotype, this was not the case in the 

Apcflox/+ Pml-/- mice, which did not have significantly larger tumours than were seen in 

Apcflox/+ mice alone. In order to assess whether the observed intussusception is due to a 

mechanism which is independent of tumour size, it would be necessary to generate a 

much higher N-number and record the size and location of the tumour associated with 

it.  

Shao et al. noted that in Apcmin Pten+/- mice where intussusception was observed, 

expression of the gene Osteopontin (Opn) was significantly upregulated (Shao et al. 

2007). Opn is a secreted phosphoglycoprotein which plays important roles in cell 

adhesion, motility, apoptosis and inflammation. Furthermore, high levels of OPN are 

associated with tumour progression in colorectal and breast cancers (Yeatman and 

Chambers 2003). Interestingly, Opn is an important driver of Interleukin17 (Il17) 

expression, which in turn regulates inflammation and immune response. It is currently 

believed that intussusception which is not tumour associated is likely to be induced by 

infection and inflammation (Nissan et al. 1997).  Pml-NBs have been implicated in the 

inflammatory process through their association with inflammatory tissue, and have 

been observed at high levels in macrophages (Terris et al. 1995). In order to assess the 

role inflammation is playing in intussusception caused by Pml deletion in Apcflox/+ mice, 

expression levels of Opn, Il17 and Tumour Necrosis Factor-α (TNFα) could be assessed. 

There is evidence that one of the ways in which PML regulates the PI3K pathway is 

through its role in regulating the localisation of PTEN. Specifically, this occurs within the 

nucleus where loss of Pml is associated with mis-localization of Pten (Song et al. 2008; 
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Trotman et al. 2006), and mis-localization of PTEN is associated with disease 

progression in CRC (Zhou et al. 2000). Despite the role of Pten within the PI3K pathway 

taking place at the cell membrane, mis-localisation of Pten may explain the proposed 

role of Pml in intestinal tumourigenesis. However, the work presented here shows that 

loss of Pml alone had no effect on the survival of either Apcflox/+ or Apcflox/flox mice, 

indicating that any mis-localisation of Pten is not comparable to loss of Pten function, 

which decreased survival time of these mice (Marsh et al. 2008).  

In our Apcflox/flox model it is clear that Pml is not playing a significant role in the 

regulation of the PI3K pathway, as loss of Pml does not result in any increase in levels of 

pAKT. It is therefore unsurprising that loss of Pml does not result in a change in survival 

or tumour burden of these mice, as in this context it is not regulating PI3K upstream of 

pAKT (Trotman et al. 2006). However, Pml may be playing a role downstream of pAKT, 

due to the ability of Pml-NBs to sequester mTOR (Bernardi et al. ; Carracedo and 

Pandolfi 2008). In order to test this in our model, levels of mTOR could be assessed 

using Western blotting, however, any significant increase in mTOR due to loss of Pml 

would presumably result in increased tumourigenesis and decreased survival of Apcflox/+ 

mice, which we did not observe.  

As PML-NBs are known to play a role in apoptosis, and loss of PML from cell lines 

resulted in decreased apoptosis (Bernardi et al. 2008; Gao YM et al. 2013), it was 

expected that loss of Pml from an Apcflox/flox model of acute Wnt activation would protect 

cells from apoptosis. However, this was not the case, and potentially the mechanism 

which drives apoptosis in Apcflox/flox mice, which is likely the result of highly activated 

Wnt-signalling increasing genetic damage, may be Pml-NB independent. 

In Apcflox/flox mice, we showed that loss of Pml results in increased mitosis, which 

supports the previously described role of Pml as a promoter of cell senescence, with loss 

of Pml resulting in increased proliferation (Ferbeyre et al. 2000; Melnick and Licht 

1999), although we have no evidence for senescence occurring in the intestinal 

epithelium of Apcflox/flox mice. 
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4.3.2 Pml deficiency does not affect the survival or tumour burden in Apcflox/+ 

Ptenflox/flox but results in increased tumour progression 

As it had previously been published that Pml deficiency increased tumour initiation, 

burden and progression in Pten+/- mice (Trotman et al. 2006), it was thought that a 

similar effect would be observed in a Wnt-driven model of intestinal tumourigenesis 

with homozygous Pten loss. Surprisingly, neither survival or tumour burden were 

affected by additional Pml loss, however, there are a number of potential mechanisms 

which would cause this effect. 

In the work presented by Trotman et al. a heterozygous model of Pten deletion is used, 

resulting in Pten deficiency in all tissues (Trotman et al. 2006). Heterozygosity for this 

allele of Pten alone, has already been shown to be adequate to drive the development of 

microscopic benign colonic polyps (Suzuki et al. 1998), whereas the conditional 

homozygous deletion of Ptenflox/flox using Villin-CreER does not result in any immediate 

change in intestinal or colonic homeostasis (Langlois et al. 2009; Marsh et al. 2008). 

These bodies of work suggest that any role played by Pten in initiating intestinal 

tumourigenesis in these models may occur outside of the intestinal epithelium, and may 

be due to changes in gene expression within the stromal compartment of the intestine. 

Consistent with this, conditional homozygous deletion of Pten using a fibroblast specific 

Cre-recombinase (Col1A2CreER (Zheng et al. 2002)), which specifically recombined in 

the intestinal stroma and smooth muscle compartments, resulted in tumourigenesis 

throughout the small intestine and colon (Davies 2011). However, He et al. found that 

Pten deletion from the ISC compartment was sufficient to induce intestinal 

tumourigenesis (He et al. 2007). The mechanism for Pten deletion in this instance was 

through the use of a Cre-recombinase linked to expression of Mxi1, which is upregulated 

due to interferon expression (Kühn et al. 1995). The use of this Cre means that not only 

is there a lack of specificity (with Pten recombination appearing to occur within the 

stromal compartment as well as the ISC compartment) but that the Cre is induced by the 

injection of polyinosinic-polycytidylic acid (pipC), which stimulates inflammation and 

immunity in order to upregulate interferon levels. This means that Pten loss within the 

intestinal epithelium may not be responsible for tumour initiation in this model as it 
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could either be due to Pten deletion within the stroma, or due to the stimulation of 

inflammation and the immune response. 

Potentially, the network through which Pten and Pml interact to suppress intestinal 

tumourigenesis is a stromal specific one, and as Villin-CreER recombines between LoxP 

sites of Pten specifically within the intestinal epithelium, the model used here is not an 

accurate representation of the interactions between Pten and Pml within the intestinal 

stroma. Alongside the cohorts shown here, Ptenflox/flox Pml-/- mice were also generated 

and aged (in the absence of Apc mutations), and they showed no decrease in survival 

compared to wildtype mice or any instances of intestinal tumourigenesis at death (data 

not shown).  

In our model, tumourigenesis is initiated by loss of Apc, but progression is driven by 

loss of Pten from the intestinal epithelium. In this context, constitutive loss of Pml does 

not play a role in tumourigenesis, and therefore does not increase tumour number.  

However, loss of Pml results in increased tumour progression. This supports the finding 

of Bernardi et al. that Pml acts to repress tumour progression in a mouse model of 

kidney cancer (Bernardi et al.). In this study it was shown that this repression of tumour 

progression was due to the role of Pml as an inhibitor of mTOR. Increased tumour 

progression in our Apcflox/+ Ptenflox/flox due to Pml loss could be a result of 

hyperactivation of the PI3K pathway specifically within the tumours.  

4.3.3 Pml deficiency significantly reduces survival of Apcflox/flox Ptenflox/flox mice but 

does not grossly alter intestinal phenotype 

Despite Pml deficiency resulting in no change in survival in an Apcflox/+ Ptenflox/flox model 

of long term tumourigenesis, the effect on survival of the short term model of early 

tumourigenesis, Apcflox/flox Ptenflox/flox mice, was dramatic. Pml deficiency resulted in a 

more than 25% decrease in survival, despite no gross microscopic gut phenotype when 

assessed at day 3 post induction. There was also no change in the number of cells in the 

region aberrant proliferation, apoptosis, mitosis or differentiated cell types. The health 

status of mice following combined loss of Apc and Pten is severely compromised, the 

supposed cause of death in Apcflox/flox mice is dehydration caused by complete intestinal 

failure. Furthermore, the intestine undergoes a gross immune response following loss of 

Apc, with visible gut inflammation. Pml has been shown to play an important role in 
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innate immunity, and Pml-/- mice have previously been found to develop lethal 

botryomycosis (BTM), which are granulomatous lesions caused by an inability to clear 

pathogenic microorganisms (Lunardi et al. 2011). Potentially, the decrease in survival 

time due to Pml loss in these models is due to an abnormal immune response. 

Despite the proposed role of Pml as a negative regulator of phosphorylation of AKT, loss 

of Pml did not result in any increase in pAKT in Apcflox/flox Ptenflox/flox mice, as confirmed 

by Western blots and IHC. Trotman et al. showed that Pml-NBs specifically recruit both 

PP2a (an Akt phosphatase) and pAKT, and that loss of Pml results in an increase in 

nuclear pAKT. This is directly contradictory to our observations. However, it should be 

noted that nuclear pAKT levels have not been analysed directly, rather pAKT levels 

were from complete intestinal epithelial extract. As the proposed roles of Pml in 

regulating the PI3K pathway are diverse, it is possible that loss of Pml in the epithelium 

is not increasing pAKT levels, but may be increasing mTOR activity (Bernardi et al. 

2011; Carracedo and Pandolfi 2008; Ito et al. 2009). IHC for phosphorylated mTOR 

could help elucidate this function.  

4.3.4 Pml loss results in a significant increase in expression of ISC markers in both 

Apcflox/flox and Apcflox/flox Ptenflox/flox mice 

The role of Pml as a promoter of quiescence (Ito et al. 2008), is particularly relevant 

when considering its role in maintaining the ISC compartment. Cell quiescence is 

commonly associated with stem cells, as adult stem cells generally rarely divide as a 

protective mechanism against genetic damage. However, Lgr5+ ISCs have been shown to  

proliferate rapidly and so cannot be said to be quiescent (Lopez-Garcia et al. 2010; 

Schepers et al. 2011). This is clear since loss of Pml, in the context of both conditional 

homozygous deletion of Apc alone and Apc and Pten loss, results in an increase in 

expression of the ISC marker Lgr5, and a trend for increased expression of the other 

ISCs examined.  

The increased expression of ISC markers observed due to loss of Pml supports its role as 

an inhibitor of mTOR, which has a reported role in the maintenance of breast cancer 

stem-like cells through its interactions with Stat3 signalling (Zhou et al. 2007). The 

increase in ISC marker expression due to Pml loss could provide a mechanism for how 

Pml loss results in an increased level of tumour progression in Apcflox/flox Ptenflox/flox mice. 
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In another mouse model of intestinal tumourigenesis, the Apcmin mouse, it has been 

shown that Stat3 regulates tumour progression (Musteanu et al. 2010). Stat3 is also an 

important regulator of the ISC compartment, and may provide a link between changes 

in tumour grade and expansion of the ISC compartment (Matthews et al. 2011). 

ISCs, specifically the Lgr5+ population, are known to be the cell of origin of intestinal 

tumourigenesis (Barker et al. 2008). As such, it would be expected that an expansion of 

the ISC population (as evidenced by an increase in expression of ISC markers) would 

result in an increased level of “cells of origin” and therefore an increased level of 

tumourigenesis. However, there is a great deal of controversy surrounding the 

relevancy of many of the ISC markers previously published (Barker et al. 2012; Muñoz 

et al. 2012). One of the main concerns with the use of many of these ISC markers is that 

they do not play a functional role in the maintenance of the ISC population. For example, 

the most commonly used marker of the ISC population is Lgr5, yet Lgr5 expression is 

dispensable for the maintenance of intestinal homeostasis (Tian et al. 2011). This 

highlights the fact that the ISC markers used here are not an adequate readout of 

changes in the ISC compartment. 

Despite the increased expression of ISC markers as a result of Pml loss in both Apcflox/flox 

and Apcflox/flox Ptenflox/flox mice, this did not translate into an increase in organoid 

formation efficiency. This paradox highlights one of the pitfalls of assessing the ISC 

compartment using gene expression markers alone, as they do not relate to a function 

capacity of ISCs. Loss of Pml in these contexts increased expression of ISC markers, but 

had no quantifiable effect on the functional ISC compartment (as assessed by organoid 

formation efficiency). This may explain why an increase in ISC marker expression did 

not correspond with an increase in tumourigenesis in these models. 

Equally, the result could indicate that organoid formation efficiency is not a relevant 

readout of changes in the ISC compartment within Apcflox/flox mice, as potentially, over-

activation of the Wnt-signalling pathway enables non-ISCs to form organoids in culture. 

As previously discussed, organoids derived from Apcflox/flox mice do not differentiate and 

therefore may not be derived from a population of true ISCs, and so potential changes in 

the ISC compartment due to Pten and Pml loss, may be being masked in this assay by the 

gross phenotypic change resulting from Apc deletion.  
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 Summary 4.4

Much of the research regarding Pml has struggled to produce confident mechanisms for 

its role as a tumour suppressor due to its diverse interactions and seemingly tumour-

specific functions. The primary role of Pml as a tumour suppressor within the intestine 

was thought to be due to its role in interacting with Pten to regulate the PI3K pathway 

(Trotman et al. 2006). However, in the context of Wnt-driven tumourigenesis, Pml has 

not been shown to play a role in either survival or tumour burden. It is possible that the 

interaction between Pml and Pten, which drives tumourigenesis, occurs in the stroma, 

as epithelial Pten loss is not tumour initiating, whereas stromal Pten does result in 

tumourigenesis. Any interaction between Pten and Pml in the model presented here 

(where Pten is lost specifically within the intestinal epithelium and tumourigenesis is 

initiated by Apc loss) results in an increase in tumour progression, but not tumour 

formation. 

Interestingly, constitutive loss of Pml did result in an increased tumour grade in a model 

of Apc heterozygous and Pten homozygous deletion from the intestinal epithelium. This 

increase in tumour grade due to Pml loss correlated with an increase in expression of 

ISC markers, both of which may be being controlled by changes in Stat3 levels, but not 

an increase in ISC functionality as assessed by the organoid formation efficiency assay. 

Pml loss, in the context of Apc and Pten homozygous deletion, resulted in a significantly 

decreased survival time, without altering the gross intestinal phenotype. It is thought 

that in this context, immune-deficiency brought about by Pml loss maybe causing 

decreased survival by increasing the susceptibility to and the severity of innate 

infectious reagents. However, there is no evidence for this as cause of ill health of these 

animals remains unclear. 

 Future Work 4.5

In order to ascertain the mechanism by which loss of Pml is resulting in an increase in 

both expression of ISC markers and invasion, levels of both phospho-mTOR and Stat3 

will be studied in both the intestinal epithelium and within tumours via IHC and 

Western blotting. 
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In order to understand the mechanism by which Pml loss resulted in a decreased 

survival of Apcflox/flox Ptenflox/flox mice, the immune response of these mice could be 

analysed, by looking at levels of gut inflammation and plasma macrophage levels. The 

effect any changes in immune response may be having on survival could be tested by 

challenging the immune system of Apcflox/+ Ptenflox/flox mice with a known pathogen, and 

assessing the response with or without additional Pml loss. 

It is thought that one reason why our model did not recapitulate the results observed by 

Trotman et al., may be due to the importance of the relationship between Pten and Pml 

in tumour initiation within the stromal rather than the intestinal epithelium. Therefore 

it would be interesting to study the effect of Pml deletion when recombination of 

Ptenflox/flox mice are induced using a stromal-specific Cre such as Col1A2CreER.  
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5 Investigating the effects of loss of Apc2 on the ISC compartment 

 Introduction 5.1

The identification of the APC homologue APC2, which shares many structural 

similarities with APC, led to the hypothesis that these two genes may share certain 

functions (Nakagawa et al. 1998; Van Es et al. 1999). One of these structural similarities, 

the presence of a 20-amino acid repeat motif, was shown to be capable of binding β-

catenin, and as a result APC2 is capable of depleting the levels of intracellular β-catenin, 

albeit less efficiently than APC (Nakagawa et al. 1998).  The drosophila homologue of 

Apc2 has also been shown to rescue mis-expression of Wnt-target genes due to loss of 

Apc (Kunttas-Tatli et al. 2012), and in APC deficient colorectal cancer cell lines, transient 

expression of APC2 was shown to result in a reduced TCF-Topflash readout equivalent 

to that seen as a result of transient expression of APC (Van Es et al. 1999). 

As well as a potential role as a negative regulator of Wnt-signalling, either in co-

operation with or independently from APC, it has emerged that APC2 may play a role as 

a tumour suppressor independently from APC. 

 APC2 has been fine mapped to a region of chromosome 19p13.3, which contains the 

markers D19S883 and WI-19632, which are frequently lost in a range of different cancer 

types, most markedly in ovarian cancer (Jarrett et al. 2001; Sobottka et al. 2000). 

Patients with Peutz-Jeghers syndrome (PJS), a heritable condition causing multiple 

intestinal polyps and increasing susceptibility to colon cancer, are missing this 

chromosome region. PJS patients also show an increased susceptibility to a range of 

other cancer types including breast, ovarian and testis. Loss of heterozygosity (LOH) of 

this region of chromosome 19p13.3 is also observed in certain sporadic cancers 

(Sobottka et al. 2000). 

Despite the rarity of known APC2 mutations, loss of gene function can occur through 

other mechanisms. Epigenetic regulation of gene expression by methylation is an 

extremely important means of controlling gene expression. Methylation is a process by 

which a methyl group is attached to a CpG sequence in the gene’s promoter region, 

thereby preventing transcription of the gene, and is an essential process during 
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development. Hypermethylation of tumour suppressor gene promoters is commonly 

seen in a variety of cancers and is how many of these genes are down regulated without 

having been identified as commonly mutated (Baylin 2005; Das and Singal 2004; 

Ehrlich 2002). 

Hypermethylation of APC2 has been recorded in a number of different cancer types 

including neurological, breast and colorectal cancer (Nakagawa et al. 1998; Schuebel et 

al. 2007). Interestingly, hypermethylation of APC2 is also associated with the 

progression from inflammatory bowel disease (IBD) to IBD associated neoplasia (Dhir 

et al. 2008). Chan et al. demonstrated that hypermethylation of APC2 was seen in 100% 

of primary colon tumours and that increased methylation directly correlated with a 

decrease in levels of APC2 protein (Chan et al. 2008). Studies by (Mokarram et al. 2009) 

confirmed that hypermethylation of APC2 occurs in 90-98% of colorectal tumour 

samples. Hypermethylation is associated with decreased gene expression, and previous 

work within our laboratory has shown that APC2 expression is indeed significantly 

down regulated in human colorectal tumours (Figure 5.1). 
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5.1 Expression of Apc2 is downregulated in the majority of human colorectal cancers. Median 
fold change -2.754, p<0.01. Tumour samples and qRT-PCR analysis courtesy of Fei Song. 

 

Despite the embryonic lethality of a constitutive knockout of Apc in mice (Moser et al. 

1995), a constitutive Apc2 mutant is viable, and such a mouse was produced by 

Professor Hans Clevers’ laboratory and gifted to us for analysis of the intestinal 

phenotype. The Apc2-/- mouse was produced by the insertion of a stop codon into the 

open reading frame of the gene, resulting in a shortened protein which is lacking the β-

catenin and axin binding sites (Van der Meer et al. 2001). 

Previous work conducted by Carl Daly within this laboratory has shown that loss of 

Apc2 in the mouse results in no obvious phenotype and no change in the numbers of 

differentiated cell types, but does result in an increase in expression of Wnt target 

genes, and an increase in nuclear β-catenin (Daly 2013). However, despite this increase 

in Wnt-signalling levels, it was shown that in Apcfl/+ mice, additional loss of Apc2 had no 

effect on survival or tumour burden. This unexpected result highlights the need for a 

thorough examination of the Apc2-/- phenotype, alone and in the context of homozygous 

Apc deletion, especially with regards to the intestinal stem cell compartment. 



159 
 

 Results 5.2

 Analysis of Apc2-/-intestinal phenotype in vivo and in vitro 5.3

5.3.1 Apc2 loss results in significantly shorter crypt lengths 

Despite no obvious difference in structure of the intestinal crypts between wildtype and 

Apc2-/- crypts (Figure 5.2), cell counts revealed that loss of Apc2 results in significantly 

shorter crypt lengths  (24.9±1.97 for Apc2-/- compared to 28.1±1.25 for wildtype, 

p<0.05) (Figure 5.3). There was no significant difference observed in the length of villi 

between the two genotypes. 

5.3.2 Apc2 loss does not affect levels of apoptosis or mitosis but does alter the 

location of apoptotic bodies 

As levels of apoptosis and mitosis are reportedly increased due to loss of Apc in vivo, 

increases in the levels of cell death and proliferation are seen as early markers of Wnt-

activation (Sansom et al. 2004b). Using H&E slides the apoptotic and mitotic indices 

were calculated by counting the number of apoptotic and mitotic bodies per 50 half 

crypts and then calculating the percentage of these cells based on average crypt length. 

It was found that Apc2 loss has no effect on levels of mitotic cells (Figure 5.4), or their 

position (Figure 5.5). Interestingly, previous work performed by Carl Daly showed that 

uptake of BrDU in a two hour period was increased by loss of Apc2 (data not shown), 

indicating an increase in cells at “S” phase of mitosis. 

There was a trend for increased apoptosis in the Apc2-/- mice (wildtype 0.55±0.37, Apc2-

/- 0.93±0.4) (Figure 5.6), however this was not significant (Independent sample T-test 

p=0.166). Positional information on the location of the apoptotic bodies showed that 

loss of Apc2 resulted in apoptosis occurring further down the crypt towards the stem 

cell compartment than seen in wildtype (Figure 5.7). This change in location was found 

to be significant using the Kolmogorov-Smirnov Z test (p=0.042). 
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5.2 H&E of crypt villus structure of wildtype and Apc2-/- intestine. There is no gross intestinal 
phenotype observed due to loss of Apc2. Black bars indicate 100μm. 

 

 

5.3 Cell counts for wildtype and Apc2-/- intestinal crypts. There was a significant decrease in 
crypt cell number due to loss of Apc2. Two tailed T-test p=0.016. N>5 
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5.4 Mitotic Index of wildtype versus Apc2-/- crypts. This was calculated by counting the number 
of mitotic bodies per crypt and normalising it to the number of cells per crypt. No significant 
difference was seen in the mitotic index between the two genotypes, two tailed T-test p=0.782. 
N>5. 

 

5.5 Cumulative distribution of mitotic cells within the intestinal crypt of wildtype and Apc2-/- 
mice. The positions were not significantly different, Kolmogorov-Smirnov Z-test p=0.072. N>5. 
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5.6 Apoptotic Index of wildtype versus Apc2-/- crypts. This was calculated by counting the 
number of apoptotic bodies per crypt and normalising it to the number of cells per crypt. No 
significant difference was seen in the mitotic index between the two genotypes, two tailed T-test 
p=0.166. N>5. 

 

5.7 Cumulative distribution of apoptotic cells within the intestinal crypt of wildtype and Apc2-/- 

mice. The positions were significantly different Kolmogorov-Smirnov Z-test p=0.042.  
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5.3.3 Loss of Apc2 results in an increased level of Wnt-signalling within the 

intestinal epithelium 

Loss of Apc from the intestinal epithelium results in a failure to form the β-catenin 

destruction complex, leading to a build-up of nuclear β-catenin and increased Wnt-

signalling. This increase in Wnt-signalling is thought to be responsible for the severity of 

the Apcflox/flox phenotype, as additional loss of the Wnt-target C-myc attenuates the 

phenotype (Sansom et al. 2007; Wilkins and Sansom 2008). It was predicted that loss of 

Apc2, which can also bind β-catenin, would also result in increased expression of a 

range of Wnt-target genes.  

 Intestinal epithelium was extracted using the Weiser preparation method (see section 

2.6.7) and RNA extracted for qRT-PCR analysis. This enabled the investigation of the 

effect of loss of Apc2 on Wnt-signalling levels specifically within the intestinal epithelia 

without interference from the stromal or muscle compartments of the intestine. 

However, it should be noted that as Apc2-/- is a constitutive knockout, it is also lost from 

these extra-epithelia compartments as well as the intestinal epithelium.  

As predicted, the loss of Apc2 results in an increased level of Wnt-signalling within the 

intestinal epithelium as measured by expression levels of a number of Wnt-target genes. 

Loss of Apc2 resulted in a significant upregulation of Axin2, Ephb3 and C-myc (p<0.05), a 

trend for increased expression of CyclinD1 and Ephb2 (p>0.05) and no change in 

expression levels of Cd44 (Figure 5.8). These results support the observation made by 

Carl Daly that loss of Apc2 results in an increased level of nuclear β-catenin (Figure 5.9). 

Due to the increase in Wnt-signalling levels as a result of Apc2 loss, the expression levels 

of the Wnt-inhibitors Groucho and Dikkopf were investigated. Expression of Groucho 

was found to be more than 4fold upregulated whereas there was no significant change 

in expression levels of Dikkopf (Figure 5.10).  
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5.8 qRT-PCR results showing the relative expression levels of Wnt-target genes in wildtype and 
Apc2-/- intestinal epithelium. Loss of Apc2 resulted in significant upregulation of Axin2, Ephb3 
and Cmyc (Two sample independent T-test p=0.0401, 0.0472 an d0.0439 respectively). N<4 

 

5.9 A Immunohistochemistry for β-catenin showing increased nuclear localisation in wildtype 
and Apc2-/- intestinal crypts. Black arrows indicate nuclear β-catenin, black bars represent 
50μm; B Counts of cells with nuclear β-catenin show significantly increased levels as a result of 
Apc2 loss (Mann-Whitney U-test p<0.01). IHC performed by Carl Daly. 
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5.10 qRT-PCR results showing the relative expression levels of Wnt-inhibitor genes in wildtype 
and Apc2-/- intestinal epithelium. Expression of Groucho was found to be significantly 
upregulated due to Apc2 loss (Mann-Whitney U-test p=0.27) whereas there was no significant 
difference in expression of Dikkopf2. N=4. 
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5.3.4 Loss of Apc2 results in an increased level of expression of intestinal stem cell 

markers, but no mis-localisation of expression 

The importance of Wnt-signalling in the maintenance of the ISC compartment (Reya and 

Clevers 2005) and the observation that loss of Apc2 results in increased nuclear β-

catenin and expression of Wnt-target genes indicates that loss of Apc2 may result in 

expansion of the ISC compartment.  

qRT-PCR analysis examining a range of published ISC markers within the intestinal 

epithelium demonstrated that expression of the ISC markers Lgr5 and Ascl2 was 

significantly upregulated (independent sample T-test p<0.01). Furthermore, there was a 

trend for increased expression of the markers Olfm4 and Bmi1, although this was not 

significant at n=5 (independent sample T-test p>0.05). Interestingly, expression of Msi1 

was found to be more than 5 fold down regulated (independent sample T-test p<0.05) 

(Figure 5.11). 

In situ hybridisation was used to assess the location of expression of the ISC markers. An 

anti-Olfm4 riboprobe on paraffin embedded sections of fixed wildtype and Apc2-/- 

intestine, showed that expression of this representative ISC marker was still limited to 

the base of the intestinal crypt (Figure 5.12). It should be noted that as the in situ 

hybridisations were performed on cross-sections of the crypt-villus axis, it cannot be 

determined from these images whether the qRT-PCR results indicate an increased 

expression of stem cell markers from the same number or fewer cells, or an increase in 

the number of cells expressing these markers as a result of increase ISCs around the 

base of the crypt. 
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5.11 qRT-PCR results showing the relative expression levels of intestinal stem cell marker genes 
in wildtype and Apc2-/- intestinal epithelium. Lgr5 and Ascl2 were significantly upregulated due 
to Apc2 loss (Independent samples T-test p=0.0089 and 0.0077 respectively) whereas Msi1 was 
significantly downregulated (Independent samples T-test p=0.038). N>4 

 

 

5.12 In situ hybridisation for Olfm4 expression in Wildtype and Apc2-/- intestine. Expression 
remains limited to the crypt base. Black bars represent 100μm. 
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5.3.5 Apc2-/- organoids are phenotypically identical to wildtype 

Increased expression of ISC markers and Wnt-signalling targets within the crypt due to 

Apc-loss is associated with a cyst-like phenotype when cultured in vitro. In order to test 

the level of Wnt-activation of Apc2-/- crypts by assessing their phenotype in orgnoid 

culture, Apc2-/- crypts were disassociated and cultured and found to form organoids 

with crypt like protrusions and all of the differentiated cell types in a manner 

phenotypically identical to wildtype (Figure 5.13). These organoids grow at the same 

rate as wildtype and to the same size by day 11 (Figure 5.14). 

5.3.6 Apc2-/- crypts form organoids at a lower efficiency than wildtype 

Due to increased expression of ISC markers it was predicted that Apc2-/- crypts would 

form organoids at a higher efficiency than wildtype. This, however, did not occur. Apc2-/- 

crypts form organoids only rarely with just 5.2% of crypts (±2.51) capable of forming 

organoids compared to 15.59% (±7.46) of wildtype (Figure 5.15). This difference was 

found to be significant using independent sample T-test (p=0.014). This indicates that 

loss of Apc2 results in a reduction in functional ISCs.  

5.3.7 Apc2-/- organoids are less dependent on R-spondin than wildtype 

Both wildtype and Apc2-/- organoids were cultured in 6.5μg/ml, 3.25μg and 0μg/ml R-

spondin, and it was observed that although wildtype crypts die in culture in the absence 

of R-spondin by day 2-3, many Apc2-/- organoids survived until day 3 and only began to 

die by day 4 (Figure 5.16). The Prestoblue assay, a mitochondrial activity assay used in 

order to test the survival of organoids at different R-spondin concentrations (see 

section 2.12.5), was therefore performed on both day 3 and day 4 and showed that 

mitochondrial activity of Apc2-/- organoids is still high in the absence of R-spondin at 

day 3, but has dropped to wildtype levels by day 4 (Figure 5.17). This indicates that 

despite an apparent decrease in the number of functional stem cells, the ISCs which 

remain are more highly Wnt-activated than wildtype. 
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5.13 Phenotype of Apc2-/- intestinal organoids. A, H&E slide displaying mutliple crypt 
protrusions. B, Alcian blue stain showing presence of blue goblet cells. C, Lysozyme immuno of 
Apc2-/- organoids showing the presence of brown Paneth cells. D, Grimelius stain of Apc2-/- 
organoids showing intense staining on few rare enteroendocrine cells. Black bars represent 
100μm. 
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5.14 Growth rates of wildtype and Apc2-/- organoids. There was no difference between the 
average diameters of the organoids at any of the timepoints measured. N<20 (10 wells of 
organoids were measured for a minimum of 2 mice). 

 

5.15 Organoid formation efficiency of wildtype and Apc2-/- crypts. Apc2-/- crypts formed 
organoids significantly less efficiently than wildtype (Independent sample T-test p=0.014). n>5. 
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5.16 Wildtype crypts die by day 3 post seeding in the absence of R-spondin, whereas Apc2-/- 
crypts survive until day 4. Black bars represent 50μm. 

 

5.17 Prestoblue assay showing the mitochondrial activity of wildtype and Apc2-/- organoids day 
3 post seeding as well as Apc2-/- organoids at day 4 in various R-spondin concentrations. The 
relative mitochondrial activity of wildtype organoids at day 3 responded to R-spondin 
concentration in a dose dependent manner, whereas Apc2-/- organoids do not show a response 
to R-spondin concentration via a change in mitochondrial activity at day 3, but did show a dose 
dependent response by day 4. Using independent samples T-test, * represents p,0.05 and ** 
represents p<0.01. 
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 Analysis of Apc2-/- intestinal phenotype in the context of Apc homozygous 5.4

deletion, in vivo and in vitro 

As the loss of Apc2 appears to result in a reduced yet more highly activated ISC 

compartment, it could be assumed that there would be some effect on Wnt-dependent 

tumourigenesis. As was observed previously in the lab, loss of Apc2 does not affect 

tumour burden or survival of Apcfl/+ mice (Daly 2013). In order to further elucidate the 

role of Apc2 in intestinal tumourigenesis, it was necessary to investigate the effect of 

Apc2 loss on the early phenotype of intestinal tumourigenesis. The model used to 

recapitulate the early phenotype of intestinal tumourigenesis is the Villin-CreER+ 

Apcflox/flox mouse, whereby Apc is homozygously deleted from the intestinal epithelium 

upon injection with tamoxifen. It has been previously published that loss of Apc from 

the intestine results in an increase in Wnt-signalling, an increase in apoptosis and 

mitosis and an increase of undifferentiated cell types (Sansom et al. 2004b). As 

previously shown in section 3.11, this expansion of undifferentiated cell types and 

increase in expression of ISC markers is associated with an increased efficiency of 

organoid formation.  

Here we used two cohorts of mice, Villin-CreER+ Apcflox/flox Apc2wt/wt (referred to as 

Apcflox/flox) and Villin-CreER+ Apcflox/flox Apc2-/- (referred to as Apcflox/flox Apc2-/- or double 

mutants). Mice were induced using tamoxifen and sacrificed at day 4. For the purposes 

of the organoid experiments they were sacrificed on day 3.  

Previous work within the laboratory has shown that additional loss of Apc2 resulted in 

an increased survival of Apcflox/flox mice post induction. Conditional homozygous loss of 

Apc alone using Villin-CreER resulted in a median survival of 4.5 days (n=8), whereas 

additional loss of Apc2 extended the median survival to 6 days (n=5) (Figure5.18).  In 

order to understand the mechanism by which Apc2 loss increases survival in Apcflox/flox 

mice, the intestinal phenotype of both cohorts were closely analysed. 

5.4.1 Additional loss of Apc2 does not alter the intestinal morphology resulting 

from Apc deletion 

The increased survival observed in double mutants indicates that disregulation of the 

intestinal tissue may not be as severe as that seen due to Apc loss alone. As loss of Apc 

results in loss of distinct crypt structures the crypt length cannot be measured (Sansom 
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et al. 2004b). In order to overcome this problem, the severity of tissue disregulation was 

assessed by counting the number of cells in the aberrant region of the intestinal tissue 

in a straight line from bottom to top (Figure 5.19). 50 half “crypts” were counted per 

mouse and a minimum of 5 mice were counted. The aberrant region can be identified by 

the disordered, larger cells which stain slightly darker using H&E (as indicated in Figure 

5.19). There was no significant difference in number of cells in the region of aberrant 

proliferation between genotype on day 4 post induction (Figure 5.20). However, further 

counts of the number of cells in the zones of abberant proliferation within the crypt 

show that by day5 post induction, the region of aberrant proliferation is significantly 

shorter by day 5 post induction (Figure 5.21). 
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5.18 Cumulative survival plot of Apcflox/flox and Apcflox/flox Apc2-/- mice post tamoxifen induction. 
Median lifespan was increased by 1.5 days by additional Apc2 mutation. Work conducted by 
Carl Daly. 

 

 

5.19 H&Es of Apcflox/flox and Apcflox/flox Apc2-/- intestine at day 4 post induction. The vertical black 
bars indicate the region of aberrant proliferation, with darker, disordered and undifferentiated 
cells with unpolarised nuclei. The scale bar represents 100μm. 
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5.20 Number of cells in the region of aberrant proliferation per crypt-villus region of Apcflox/flox 

(Apc) and Apcflox/flox Apc2-/- (ApcApc2) intestine at day 4 post induction. The number of cells in a 
direct line from the crypt base to the top of the visible region of aberrant proliferation were 
counted. There was no significant difference between the two genotypes. N=4 

 

5.21 Number of cells in the region of aberrant proliferation per crypt-villus region of Apcflox/flox 
(Apc) and Apcflox/flox Apc-/- (ApcApc2) intestine at day 5 post induction. Additional deletion of 
Apc2 resulted in a significant decrease in the number of cells within the region of aberrant 
proliferation by day 5 (Mann-Whitney p=0.016). N=3. 
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5.4.2 Additional loss of Apc2 results in increased apoptosis 

There was no change in levels of mitosis (Figure 5.22) or location of mitotic bodies 

(Figure 5.23) as a result of the additional loss of Apc2. 

The increase in apoptosis which is observed after the Apc loss in vivo is a result of 

increased proliferation and genetic damage, resulting in more cell death, and appears to 

be a natural defence mechanism against increased Wnt-signalling which is not potent 

enough to override the phenotype. This effect is augmented in the double mutants 

resulting in even higher levels of apoptosis as measured by the number of apoptotic 

bodies counted in the region of aberrant proliferation in 50 crypts/villus structures 

(Figure 5.24). The number of apoptotic bodies was normalised to account for the 

average number of cells within this region to produce an apoptotic index. Interestingly, 

apoptosis was found to be significantly higher up the crypt-villus axis (Figure 5.25). 
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5.22 Mitotic Index of Apcflox/flox versus Apcflox/flox Apc2-/-. Counts were normalised using the 
average number of cells per region of aberrant proliferation. There was no significant difference 
between the two genotypes (Independent sample T-test p=0.402). N=4.  

 

 

5.23 Cumulative frequency graph showing the location of mitotic bodies within the region of 
aberrant proliferation of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (ApcApc2) intestines. There was 
no significant difference in the location of mitotic bodies between the two genotypes using 
Kolmogorov-Smirnov Z-test p=0.074. N=4. 
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5.24 Apoptotic Index of Apcflox/flox versus Apcflox/flox Apc2-/- at day 4 post induction. Counts were 
normalised using the average number of cells within the region of aberrant proliferation. 
Additional loss of Apc2 resulted in a significant increase in apoptosis (independent sample T-
test, p=0.034). N=4. 

 

 

5.25 Cumulative frequency graph showing the location of apoptotic bodies within the region of 
aberrant proliferation of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (ApcApc2) intestines. The 
Kolmogorov-Smirnov Z-test showed that additional loss of Apc2 resulted in apoptosis occurring 
further up the crypt-villus axis in Apcflox/flox mice (p=0.042). N=4.  

 

* 
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5.4.3 Additional loss of Apc2 attenuates the increased Wnt-signalling phenotype of 

Apcflox/flox mutants 

As loss of Apc2 alone results in a small increase in Wnt signalling, and Apc loss results in 

a large increase in Wnt-signalling, it was predicted that combined loss of Apc2 and Apc 

would result in augmented expression of Wnt-target genes. Interestingly, combined loss 

of Apc and Apc2 resulted in an attenuated Wnt-signalling phenotype compared to that of 

Apc alone (Figure 5.26). The Wnt-target genes Axin2, EphB2, Cmyc and Cd44 were all 

expressed at a significantly lower level in double mutants than in Apcflox/flox intestinal 

epithelia (Independent sample T-test p<0.05), whereas there was no significant 

difference in expression levels of EphB3 and CyclinD1. 

5.4.4 Additional loss of Apc2 attenuates expansion of the ISC compartment 

associated with Apc loss 

As previously discussed, loss of Apc results in an expansion of the ISC compartment, 

with an increase in undifferentiated cell types, an increase in expression of ISC markers 

and a mis-localisation of expression of the stem cell markers Ascl2 and Olfm4. qRT-PCR 

analysis of cDNA synthesised from RNA extracted from epithelial cell extracts from 

Apcflox/flox mutants and double mutants reveals that additional loss of Apc2 results in 

reduced expression of the ISC markers Ascl2, Olfm4 and Msi-1 (p<0.05) with no change 

in expression of Lgr5 or Bmi-1 at n=5 (Figure 5.27). 

In situ hybridisations for Olfm4 revealed that the expression of Olfm4 in double mutants 

is still mislocalised, but both the mislocalisation of expression and the intensity of the 

staining do not appear as severe as seen in the Apcflox/flox gut alone (Figure 5.28). The 

images shown are representative of the genotypes (n=3), however, as in situ 

hybridisation is not quantifiable it is impossible to say if this difference is significant.  
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5.26 qRT-PCR results showing the relative expression levels of Wnt-target genes in Apcflox/flox 
(Apc) and Apcflox/flox Apc2-/- (Apc Apc2) intestinal epithelium. Additional loss of Apc2 resulted in 
significant down-regulation of the Wnt-targets Axin2, EphB2, Cmyc and Cd44, independent 
sample T-test p=0.02, 0.046, 0.046 and 0.034 respectively. N=5. 
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5.27 qRT-PCR results showing the relative expression levels of ISC marker genes in Apcflox/flox 

(Apc) and Apcflox/flox Apc2-/- (Apc Apc2) intestinal epithelium. Ascl2, Olfm4 and Msi1 expression 
are all significantly lower due to additional loss of Apc2 independent sample T-test 
p=0.047,0.029 and 0.04 respectively. N=5. 

 

 

5.28 In situ hybridisation for Olfm4 expression in Apcflox/flox and Apcflox/floxApc2-/- intestine. 
Expression is still mis-localised due to Apc loss, but intensity of staining is dramatically reduced 
due to additional Apc2 deletion. Black bars represent 100μm. 
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5.4.5 Organoids derived from Apcflox/flox Apc2-/- crypts are phenotypically identical 

to Apcflox/flox organoids 

In order to assess any changes in the number functional stem cells using the organoid 

formation assay, it was necessary to determine which of the CHARM settings (the 

parameters used to define an organoid on the GelCount machine which vary between 

wildtype and Apcflox/flox –like organoids, see section 2.12.4) to use in order to analyse the 

organoids. This required establishing whether the organoids formed from 

Apcflox/floxApc2-/- crypts were more like Apcflox/flox organoids (large, cyst-like with few 

differentiated cell types) or more like wildtype organoids with discrete crypt 

protrusions containing all of the differentiated cell types. 

Organoids derived from double mutant mice, were instantly recognisable as similar to 

Apcflox/flox organoids in structure and organisation (Figure 5.29) and so the Apcflox/flox 

CHARM settings were used for their analysis. The organoids grew at the same rate as 

Apcflox/flox and showed the same undifferentiated cell types with patches of polarised and 

unpolarised nuclei. 

5.4.6 Apcflox/floxApc2-/- crypts form organoids less efficiently than Apcflox/flox crypts  

Using the organoid formation assay as a readout of functional stem cell activity within 

the intestinal crypts showed that additional loss of Apc2 attenuates the Apcflox/flox 

phenotype of increased organoid formation efficiency (Figure 5.30). Interestingly, the 

organoid formation efficiency was not significantly higher than that of wildtype. 

This indicates that the number of functional stem cells in Apcflox/flox intestine is reduced 

by the additional loss of Apc2. However, as previously discussed, since the organoids 

formed do not present differentiated cells types it is not possible to describe them as 

“true” stem cells in this instance. 

5.4.7 Apcflox/floxApc2-/- organoids are R-spondin independent 

Using the PrestoBlue assay of relative mitochondrial activity, it was possible to 

demonstrate that despite double mutants having lowered Wnt-signalling levels in the 

intestinal epithelium, the organoids they form still retain high enough levels of Wnt-

signalling to enable their survival and growth in the absence of R-spondin, and are as 

equally R-spondin independent as Apcflox/flox organoids (Figure 5.31). 
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5.29 Phenotype of Apcflox/flox Apc2-/- intestinal organoids. A, H&E slide displaying large cyst-like 
organoids. B, Alcian blue stain showing no visible blue goblet cells. C, Lysozyme IHC of Apc2-/- 

organoids showing the absence of brown Paneth cells. D, Grimelius stain showing no intensely 
stained enteroendocrine cells. Black bars represent 100μm. 
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5.30 Organoid formation efficiency of Apcflox/flox (Apc) and Apcflox/flox Apc2-/- (Apc Apc2) crypts. 
Apc2-/- crypts formed organoids significantly less efficiently than wildtype. Independent sample 
T-test p=0.047. N>4. 

 

 

5.31 Prestoblue assay displaying mitochondrial activity of Apcflox/flox versus Apcflox/flox Apc2-/- 
organoids at a range of R-spondin concentrations. Organoids of both genotypes can grow 
entirely independently from the presence of R-spondin. 
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 Discussion 5.5

5.5.1 Loss of Apc2 alone subtly alters intestinal homeostasis 

An interesting phenotype of Apc2 loss alone was the increased levels of apoptosis at the 

base of the crypt. This indicates that apoptosis is occurring at a higher level in either the 

ISC compartment or the ISC niche. While homozygous loss of Apc from the intestinal 

epithelium results in increased apoptosis, there is no evidence that location of apoptotic 

bodies is altered. However, loss of Apc2 in this model is constitutive and universal 

throughout the mouse, and so it is possible that the subtly increased levels of Wnt-

signalling as a result of Apc2 deletion within the stromal compartment as well as the 

intestinal epithelium can disrupt the regulation of the ISC niche. The ISC niche plays an 

important role in intestinal homeostasis by regulating the number of daughter cells 

which retain stem cell identity thereby blocking the expansion of the stem cell 

compartment. There is already known to be a gradient of Wnt-signalling from the base 

of the crypt to the villus and it is easy to suppose that an increase in Wnt-signalling 

within the stromal compartment could affect the ISC niche.  

5.5.2 Loss of Apc2 results in increased Wnt-signalling 

As Apc2 is capable of forming a β-catenin destruction complex independent from that 

formed by Apc, it was assumed that loss of Apc2 would result in increased Wnt-

signalling levels. As shown here, this is indeed the case and indicates that in normal 

intestinal homeostasis Apc2 plays a role in regulating levels of nuclear β-catenin. 

5.5.3 Loss of Apc2 results in increased expression of intestinal stem cell markers 

but less efficient organoid formation 

As Wnt-signalling plays such an integral role in maintaining the ISC compartment, it is 

not surprising that a subtle increase in Wnt-signalling results in an increased expression 

of some ISC markers. However, this did not translate to an increased organoid 

formation efficiency, and Apc2-/- crypts were less efficient than wildtype at growing into 

organoids in culture. In order to explain this observation, it is necessary to develop our 

understanding of the ISC markers and their physiological function with regards to the 

maintenance of the ISC population. 
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 Lgr5, which is significantly upregulated as a result of loss of Apc2, is widely regarded as 

the most accurate marker of the crypt-base columnar stem cell. It was recently 

identified that Lgr5 interacts with R-spondins in order to increase Wnt-signalling within 

Lgr5 expressing cells. However, it has also been shown that despite marking the ISC, it 

has no essential functional role in the maintenance of the ISC. Using a diphtheria toxin 

receptor knocked into the Lgr5 locus, it was found that Lgr5 is dispensable for intestinal 

homeostasis (Tian et al. 2011). This was used as evidence of the ability of second ISC 

population, the +4 stem cells, to compensate for the loss of CBC SCs. However, it should 

be noted that use of diphtheria toxin would not have resulted in 100% Lgr5+ cell death 

and that single ISCs are capable of repopulating a great deal of damaged intestinal 

epithelium.  

It could be argued that increased expression for Lgr5 is the result of increased Wnt-

signalling and confers no added ISC functionality benefit as it is a marker of the ISC 

population and not a definer of “stemness”. Indeed, conditional homozygous deletion of 

Lgr5 alone does not result in a loss of intestinal homeostasis, and it is loss of its 

homologue Lgr4 that results in an intestinal phenotype of loss of crypts, although this 

effect is accentuated by additional loss of Lgr5 (de Lau et al. 2011). This indicates that 

redundancy in the system may cause expression levels of Lgr5 to be uninformative 

about ISC functional status when not combined with Lgr4 expression levels. 

Ascl2 expression levels were also significantly increased due to loss of Apc2. Ascl2 is also 

a Wnt-target gene, however, it appears that Ascl2 plays an important functional   role in 

maintaining the ISC compartment. Ascl2 is a basic helix-loop-helix transcription factor 

with a tightly restricted expression pattern which is controlled by imprinting during 

embryonic development (Miyamoto et al. 2002).  Despite the lack of knowledge 

concerning the interactions of Ascl2, the importance of this gene in regulating the ISC 

compartment has been convincingly demonstrated. Transgenic over expression of Ascl2 

within the intestinal epithelium resulted in crypt expansion and hyperplasia, as well as 

mislocalisation of crypts, whereas loss of Ascl2 within the intestinal epithelium resulted 

in crypt ablation (van der Flier et al. 2009b). 

However, despite this evidence of Ascl2’s role in maintaining the ISC compartment, mis-

expression of Ascl2 in these experiments was induced throughout the entire intestinal 
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epithelium and so does not represent what is observed in the Apc2 model. In the Apc2 

model we observe elevated expression, but the in situ hybridisation indicates that 

expression is still limited to the crypt base. This is more accurately represented by our 

2012 paper in which Ascl2 was entopically overexpressed at physiologically relevant 

levels and showed no significant intestinal phenotype (Reed et al. 2012). This 

demonstrates that despite the importance of Ascl2 in maintaining the ISC population, it 

is a question of localisation of expression, and despite loss of Apc2 causing an increase 

in levels of expression of Ascl2, there is no mislocalisation, and so could represent the 

same number of or even fewer ISCs than wildtype expressing higher levels of markers. 

Olfm4 encodes an anti-apoptotic factor that has been shown to promote tumour growth 

and facilitate cell adhesion and is associated with the Lgr5+ intestinal epithelium cells 

(van der Flier et al. 2009a). There was no significant increase for expression of Olfm4 

due to loss of Apc2, although there was a trend for increased expression at n=5. In situ 

hybridisations also showed that the expression pattern was unaltered. This is 

interesting as Olfm4 is the only ISC marker used here which is not a direct target of Wnt-

signalling (van der Flier et al. 2009a). The in situ hybridisations indicate that there is no 

significant expansion of the ISC compartment, but as in situ hybridisation is not a 

quantifiable technique, it is impossible to tell whether there is in fact an increased 

expression of Olfm4 in fewer cells. This is made more difficult by the crypt-villus cross 

sections taken on the slides, as it is possible that there are in fact fewer ISCs around the 

base of the crypt. Despite the trend for increased expression of Olfm4 as detected by 

mRNA levels, levels of the protein were not examined, and the increased levels of 

apoptosis seen at the base of the crypt are not indicative of an increased level of an anti-

apoptotic factor such as Olfm4. 

Bmi1 is also a Wnt-target gene, however, its role as a marker of ISCs is controversial. 

The gene encodes a Polycomb Repressing Complex 1, which is essential in maintaining 

chromatin silencing. Bmi1 was initially examined as a potential marker of the ISC 

population as it has been shown to play a role in self renewal in a variety of different 

cell types (Lessard and Sauvageau 2003; Molofsky et al. 2003). It has more recently 

been cited as a definitive marker of the +4 population of ISCs (Sangiorgi and Capecchi 

2008; Yan et al. 2012),however, it has been shown many times that Bmi1 is expressed 
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throughout the crypt and although it is more frequently located at the +4 

position(Sangiorgi and Capecchi 2008; Yan et al. 2012). Bmi1+ cells are capable of 

forming organoids in culture. However, from the literature it is not known whether or 

not Bmi1+ Lgr5- epithelial cells are capable of forming organoids, and Bmi1 and Lgr5 

expression overlaps within the intestinal crypt (Barker et al. 2012). In Apc2 null mice, 

there was no significant change in expression of Bmi1, however, as Bmi1 is such a broad 

marker of the intestinal crypt, this alone cannot be used as evidence that there has been 

no change to the ISC compartment. 

Msi1 encodes an RNA binding protein which plays an important role in the asymmetric 

division in neural progenitor cells (Okano et al. 2002). The role of Msi1 as a marker of 

the ISC population is interesting for two reasons, one being that its role as a marker has 

only ever been shown by localisation of expression using in situ hybridisation which 

revealed expression to be localised to the crypt base and upregulated in tumours. The 

second reason is that as well as being a Wnt-signalling target gene, Msi1 is involved in a 

double-negative feedback loop which results in increased Wnt-signalling (Spears and 

Neufeld 2011). This double-negative feedback loop was discovered by the observation 

that Msi1 binds to Apc mRNA and so negatively regulates Apc translation. This results in 

reduced Apc protein available for formation of the β-catenin destruction complex and so 

an increase in nuclear β-catenin and an increased level of expression of Wnt-target 

genes such as Msi1. Interestingly, Msi1 was the only ISC marker examined which was 

significantly down regulated. This means that Wnt-levels had not reached the threshold 

at which Wnt-signalling becomes self-perpetuating. The role of Msi1 in repressing 

translation of certain mRNAs has been associated with the ability to maintain the stem-

cell state of cells by controlling differentiation and tumourigenesis (Okano et al. 2002). 

It is possible that the reduced expression of Msi1 observed in Apc2-/- intestinal 

epithelium is representative of a loss of maintenance of the stem-cell population, which 

could explain the reduced organoid formation efficiency.  

As discussed here, the entopic over-expression of any of the ISC markers examined 

plays no recognized role on the functionality of ISCs. Therefore, I propose that subtly 

increased Wnt-signalling as a result of Apc2 loss has resulted in increased expression of 

ISC markers, but also induced ISC death via apoptosis. Loss of a number of ISCs is 
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supportable by the intestine, and this apoptosis has masked the true increase in 

expression of ISC markers. The combined results from the organoid formation efficiency 

assay and the R-spondin dependency assay supports the hypothesis that there are fewer 

functional ISCs present within the Apc2-/- intestine, but that those which survived the 

apoptotic influence of a change in Wnt-signalling levels are more highly Wnt-activated 

than wildtype, as seen by their decreased dependency on R-spondin. 

This proposed mechanism could be tested by making a single cell suspension of 

intestinal epithelium cells then using antibodies for ISC specific surface markers to FACs 

sort out Cd44+ Cd24lo Cd166+ Grp78lo/- Ckit+ as recently described in (Wang et al. 

2013b). This would enable RNA extraction from ISCs and non-stem epithelial cells from 

both wildtype and Apc2-/- mice in order assess the levels of Wnt-signalling using qRT-

PCR. This method would also enable a discreet count of the proportion of epithelial cells 

which express these markers. Despite not being a functional assay, this could support 

the organoid formation assay. 

5.5.4 Additional loss of Apc2 results in increased survival of Apcflox/flox mice 

Interestingly, the loss of Apc2 resulted in an increased survival of the Apcflox/flox mice 

despite having no effect on the number of cells within the region of aberrant 

proliferation at day 4 post induction. Also, double mutants survived for significantly 

longer than Apcflox/flox mice. This can be attributed to the increased apoptosis which 

results from additional deletion of Apc2, and is attested by the significantly lower 

number of cells in the region of aberrant proliferation at day 5 (counted by Carl Daly, 

data not shown). This indicates that the combined deletion of the two genes increases 

Wnt-signalling to such a level that the increased apoptosis acts as a compensatory 

mechanism to control for the increased proliferation due to Apc loss. 

Another hypothesis is that as the Apc2 mutation is a constitutive knockout which results 

in elevated Wnt-signalling levels, the cells are already acclimatised to increased Wnt-

signalling. This would mean that they are better equipped to respond to the gross 

elevation of the Wnt-signalling pathway which occurs after induction of Apc loss via 

tamoxifen injection. This is supported by the observation that Apc2-/- intestinal 

epithelium expresses the Wnt-inhibitor groucho at a higher level than is seen in 

wildtype and so are more prepared to cope with a change in Wnt-signalling levels. 
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5.5.5 Additional loss of Apc2 results in attenuated the Wnt-signalling and stem cell 

phenotype in Apcflox/flox crypts 

Despite the observation that double mutants have a reduced Wnt-expression readout in 

comparison to Apcflox/flox mice, it is likely that this is actually a side effect of increased 

apoptosis. We propose that the high levels of Wnt-signalling resulting from combined 

deletion of Apc and Apc2 results in apoptosis of the most highly activated cells, thereby 

causing a detectable decrease in measured Wnt-signalling. This supports the “just-right” 

hypothesis of Wnt-signalling which proposes that levels of Wnt-signalling must reach a 

certain threshold before they drive a tumourigenic phenotype, and there is a higher 

threshold over which levels of apoptosis are so high that they counter-act the 

phenotype (Figure 5.32) (Albuquerque et al. 2002).  

 

5.32 Diagrammatic representation of the "just-right" hypothesis of neoplasia. As the levels of 
Wnt-signalling increase, the levels of proliferation and apoptosis increase as well, but the 
balance of apoptosis and mitosis is only suitable for driving tumourigenesis within certain 
thresholds.  
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This would also explain the observation that loss of Apc2 resulted in reduced expression 

of ISC markers in Apcflox/flox intestinal epithelium as increased levels of Wnt-signalling 

induced apoptosis of intestinal stem cells. This is supported by the reduced efficiency of 

organoid formation of double mutant crypts. 

However, as previously discussed, the upregulation of expression of the Wnt-inhibitor 

groucho seen as a result of Apc2-/- alone, may be priming Apc2-/- cells to attenuate the 

Wnt-signalling and therefore ISC phenotype due to loss of Apc. This would explain why 

additional deletion of Apc2 reduces the Wnt-signalling levels within the intestinal 

epithelium. 

5.5.6 Loss of Apc2 does not impact tumourigenesis despite affecting the ISC 

population 

The effects on the epithelial Wnt-signalling levels of Apc2 loss alone and in conjunction 

with Apc loss would suggest that Apc2 would play some role in intestinal 

tumourigenesis. However, as previously discussed, it was observed that loss of Apc2 

was not sufficient to induce tumourigenesis, and that deletion of Apc2 on an Apc 

heterozygous background (Apcflox/+) had no effect on either survival or tumour burden. 

As Wnt-activated ISCs are the “cells of origin” of intestinal cancer (Barker et al. 2008), 

the changes on the ISC compartment as a result of Apc2 deletion could be expected to 

alter the number of tumours formed. However, despite loss of Apc2 resulting in the 

presence of fewer functional stem cells, the R-spondin dependency assay indicates that 

the stem cells remaining are more highly Wnt-activated. As it is only Wnt-activated ISCs 

which can act as the “cells of origin” of intestinal adenomas, these changes could 

effectively balance each other out, meaning that although the number of ISCs has 

changed, the number of “cells of origin” has not.  

It is also possible that in the Apcflox/+ model, the increased Wnt-signalling observed due 

to loss of Apc2 is resulting in a selective pressure for the change of location of the 

spontaneous second mutation of Apc, as described by the “just-right” hypothesis. The 

“just –right” models of Wnt-signalling in tumourigenesis recognises that in FAP patients 

who carry a germ line mutation in one copy of APC, the sporadic mutation which occurs 

and results in tumourigenesis is not a random mutation, but is dependent on the 

position and function of the germ line mutations (Clarke 2006; Clevers 2006; Polakis 
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2007). Most APC mutations result in truncated APC protein missing all the 

axin/conductin binding regions, but the mutations generally differ in the number of the 

β-catenin regulating 20-amino acid repeats which are retained. It has been shown that if 

the germ line mutation retains none of these 20-amino acid repeats then the sporadic 

point mutation will most frequently result in the retention of one or two of these 20-

amino acid repeats, whereas if the germ line mutation results in retention of one or 

more of these repeats, then the sporadic mutation will generally result in a complete 

loss of all of the repeats (Albuquerque et al. 2002). This shows how the second hit to 

APC is strongly influenced by the germ line mutation. This is most likely because only 

Wnt-levels within certain threshold boundaries drive tumourigenesis. Below the lower 

threshold Wnt-signalling levels are not adequate to drive the levels of proliferation 

required for tumourigenesis, and above the upper threshold, the apoptosis levels are so 

high that they counteract the tumourigenic phenotype (see Figure 5.24). This results in 

a selective pressure for the survival of tumours driven by mutations which facilitate the 

“just-right” levels of Wnt-signalling. 

Recently, the “just-right” hypothesis of Wnt-dependent tumourigenesis was further 

interrogated by the assessment of the phenotype following β-catenin stabilisation 

throughout the intestine. It has previously been shown that in normal tissue there is a 

gradient of Wnt-signalling levels from the proximal intestine to the distal intestine. 

Stabilisation of β-catenin resulted in a “graduated neoplastic response” ranging from 

complete transformation of proximal intestine to a neoplastic phenotype to enlarged 

crypts at the distal intestine where entopic Wnt-levels are relatively low (Leedham et al. 

2012). This supports the hypothesis that intestinal tumourigenesis is dependent on a 

fine balance of Wnt-signalling.  

Loss of Apc2 alone does not increase Wnt signalling levels high enough to reach the 

lower threshold required for tumourigenesis to occur and requires loss of Apc to do so. 

However, in the Apcflox/+ mouse, the “second hit” of Apc, according to the “just-right” 

hypothesis, is localised to enable the tumourigenic levels of Wnt-signalling to be 

achieved. When coupled with Apc2 loss, LOH mutations of Apc which result in complete 

Apc loss of function may be causing Wnt-levels to soar above the maintainable 

threshold, and apoptosis to be induced in mutated cells so that tumourigenesis does not 
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occur. This means that there could be a selective pressure for the Apc LOH mutations to 

be less severe in the absence of Apc2, and thereby preventing the manifestation of any 

phenotype due to Apc2 loss.  

This hypothesis could be tested by deep sequencing of intestinal tumours derived from 

both Apcflox/+ and Apcflox/+ Apc2-/- mice in order to determine if the absence of Apc2 has 

resulted in a change in location of the “second-hit” of Apc. 

However, as Apcflox/flox Apc2-/- mice display both reduced ISC marker expression and a 

decreased organoid formation efficiency than Apcflox/flox it can be assumed that the 

additional loss of Apc2 attenuates the expansion of the ISC compartment seen in 

Apcflox/flox mice. As ISCs are known to be the cell of origin for intestinal adenomas, it 

could be assumed that a reduced ISC population would result, purely by probability, in a 

reduced tumour burden. However, this phenotype is the result of the loss of Apc2 on an 

Apcflox/flox background, where both Apc mutations are severe. The ISC compartment of 

normal tissue within Apcflox/+ Apc2-/- mice would have to be assessed in order to make 

assumptions about the number of “cells of origin” and therefore the probability of 

transformation of cells. 

 Summary 5.6

As Apc2 is an Apc homologue, and as such can deplete cytoplasmic β-catenin levels, 

albeit less efficiently than Apc (Schneikert et al. 2013), loss of Apc2 results in a slight 

increase in Wnt-signalling levels. This increase in Wnt-signalling is not enough to reach 

the threshold and drive tumourigenesis, but does cause an increase in apoptosis within 

the ISC compartment. Cell death within the ISC compartment as a result of Apc2 loss 

appears to result in fewer ISCs which are more Wnt-activated, although this hypothesis 

requires further examination. The contradictory results between qRT-PCR for ISC 

expression markers and the efficiency at which the crypts form organoids in culture 

highlight the utility of the organoid formation efficiency assay in assessing the 

functional ISC compartment. Msi1 was the only ISC marker which followed an 

expression pattern which represented the results of the organoid formation efficiency 

assay, and so further investigation of the utility of using Msi1 expression as a surrogate 

marker of functional stem cell capacity could be useful. 
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The decreased number of ISCs as a result of Apc2 loss does not result in a decrease in 

tumour burden in an Apcflox/+ model, as the ISCs are more Wnt-activated than wildtype 

and so the actual number of Wnt-activated ISCs (cells of origin) has not altered. 

The constitutive loss of Apc2 developmentally conditions intestinal epithelial cells to 

maintain homeostasis in the presence of elevated Wnt-signalling levels. This means that 

Apc2-/- cells are more prepared to deal with the gross increase in Wnt-signalling 

resulting from Apc loss, and therefore additional deletion of Apc2 attenuates the Apc 

phenotype. 

This fine balance of Wnt-signalling required for tumourigenesis may result in a 

selection pressure for less aggressive LOH mutations in an Apcflox/+ Apc2-/- model, 

thereby explaining how loss of Apc2 in this context has no apparent effect on survival or 

tumour burden. 

 Future work 5.7

In order to corroborate the “just-right” theory of the relationship between Wnt-

signalling and tumourigenesis, the locations of the “second hit” of Apc in both Apcflox/+ 

and Apcflox/+ Apc2-/- intestinal tumours must be determined via deep sequencing. It will 

also be important to assess the ISC compartment within normal tissue of these two 

models in an attempt to determine the role of Apc2 in the maintenance of the ISC 

compartment. 

As previously discussed it will also be essential to FACs sort out the ISCs of Apc2-/- and 

wildtype mice and perform qRT-PCR to assess how Wnt-signalling levels have actually 

changed between the ISC populations of the two genotypes. This could be achieved 

using antibodies for the ISC specific cell surface markers described by Wang et al, for 

FACs sorting, which would also enable be possible to use the proportion of epithelial 

cells expressing these markers as a readout of ISC number to support the data from the 

organoid formation efficiency assay (Wang et al. 2013b). 

It would also be interesting to further explore the role of Msi1 not only as an activator of 

the Wnt-pathway via repression of Apc translation, but also as a regulator of stem cell 

state. This could be achieved through the use of siRNA to interrupt Msi1 expression 

within intestinal organoid in culture, and assess the effect on nuclear β-catenin levels as 
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well as expression of markers of cell differentiation. This experiment, alongside analysis 

of the effect of overexpression of Msi1 in culture using a pcDNA vector coupled with a 

CMV promoter could help clarify the role which Msi1 is playing in regulating the ISC 

compartment within the Apc2-/- mouse model. 
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6 General Discussion 

In order to begin developing more targeted drugs for the treatment of colorectal cancer, 

it is necessary to gain a better understanding of the genetic mutations and processes 

which occur at an early stage of colorectal tumourigenesis. Conditional homozygous 

deletion of the important tumour suppressor gene Apc enables the modelling of the 

initial stages of tumourigenesis within the intestine, and indicates that one of the 

earliest stages of tumourigenesis is a loss of differentiation and an expansion of cell 

types with an intestinal stem-like phenotype (Sansom et al. 2004). As ISCs have been 

shown to be the cell of origin of intestinal tumourigenesis (Barker et al. 2007), it is 

thought that changes within the ISC compartment may play a role in determining both 

risk of development of CRC, and potential severity of disease, and expansion of the ISC 

compartment is one of the earliest stages of tumourigenesis. 

To gain insight into the potential of using changes within the ISC compartment as a 

predictor of disease, it is necessary to develop our current methods for assessing these 

changes. Currently, the principle way of studying the ISC compartment (without 

additional genetic alterations) is through the use of gene expression analysis, either 

using qRT-PCR or in situ hybridisation. Multiple genes have been proposed as potential 

markers of the ISC population, however there is a great deal of controversy regarding 

both the specificity and the location of expression of these markers (Barker et al. 2012). 

This situation is made additionally complicated by the evidence that there may actually 

be two distinct ISC populations which play very different roles in the maintenance of 

intestinal homeostasis, with CBC being responsible for intestinal homeostasis and the 

+4 cells playing an essential role in intestinal repair following damage (Yan et al. 2012). 

A variety of assays for assessing the stem cell compartments of other adult tissues based 

on the functional properties of those stem cells have previously been proposed. In order 

to assess the stem cell compartment of mammary tissue either a cleared fat-pad assay 

or a “mammosphere” assay can be used. The cleared fat-pad assay involves the 

disassociation of mammary glands from donor mice, and then transplanting them into 

the cleared mammary fat pads of young recipient mice (DEOME et al. 1959) . As these 

mice mature and are subsequently bred, the transplanted cells produce fully 
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differentiated mammary glands. By transplanting limiting dilutions of the disassociated 

cells into recipient mice, it is possible to use this as a readout of the levels of mammary 

repopulating units (MRUs) within the mammary gland, which are proposed to be 

representative of mammary stem cells (Stingl et al. 2006). In order to enable a more 

high-throughput approach to assessing the mammary stem cell population, an in vitro 

assay was also developed. The mammosphere assay involves the culture of single 

mammary cells in non-adherent conditions which enables mammary stem cells to 

survive and proliferate, but results in the cell death of other mammary cell lineages. 

These stem cells grow into spheroids which can be passaged and so represent a self-

renewing population of mammary cells (Dontu et al. 2003), and the number of 

spheroids which form can be used as a representation of the number of stem cells 

within the mammary gland (Stingl et al. 2006). Both of these mechanisms have been 

useful, however, it is argued that mammospheres which form in culture are not derived 

from single cells as they are not clonal in nature, but are the result of cell aggregation of 

seeded cells (Liao et al. 2007). This indicates that the ability of cells to form 

mammospheres may not be directly linked to the ability of those cells to function as 

stem cells. Mammary glands grown from transplantation into cleared fat pads have 

been shown to be of clonal origin, but it could be suggested that the ability of a cell to 

grow in the artificial environment of a cleared fat pad does not represent the cells 

ability to function as a true mammary stem cell in vivo. 

The mammosphere stem cell assay was inspired by work on the central nervous system 

which showed that a sub-population of neuronal precursor cells are capable of survival, 

expansion, self-renewal and differentiation in non-adherent culture conditions in the 

form of neurospheres (Reynolds and Weiss 1992). The efficiency of neurosphere 

formation has been widely used as an assay of the neural stem cell compartment, but 

must be used with care, as like other stem cell function assays, they may represent an 

ability of neural cells to behave like stem cells in vitro in an artificial environment rather 

than representing an actual stem cell population, and it has been shown that the 

majority of neurospheres are not of clonal origin (Singec et al. 2006). 

Functional stem cell assays are therefore widely used to gain insight into the both the 

neural and mammary stem cell compartment, and classify stem cells not on their 
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expression of markers but on their actual ability to proliferate, differentiate and self-

renew. The only system which models all of these functions from cells derived from 

intestinal epithelium, is that of organoid culture (Sato et al. 2009), and so this system 

was used to develop a novel method to assess the ISC compartment. The ability to form 

these organoids represents the functional capacity of cells to function as ISCs, i.e. the 

ability to produce all of the different intestinal epithelial lineages and to self-renew.  

Here, intestinal organoid formation efficiency was used as a mechanism for assessing 

the stem cell compartment as it represented a stem cell assay most similar to the gold 

standard assays used in other tissues, discussed above. Other methods for using the 

organoid system to assess ISC capacity would be possible, such as the use of the number 

of protrusions formed per organoid, however there are difficulties associated with this 

method. Counting the number of protrusions per organoid is difficult to achieve due to 

the 3-dimensional nature of the organoids and the great variability in protrusion 

numbers between organoids of the same genotype. Problems would also arise using this 

method due to the fact that protruding crypts are formed by crypt fission, and so the 

number of crypt protrusions formed in culture may bare little relationship to the 

number of ISCs in the disassociated crypt prior to seeding, but be more representative 

of conditions favouring crypt fission. By assessing the organoid formation efficiency of 

various mouse models of CRC we have been able to determine the utility of this method 

in a variety of different settings. Organoid formation efficiency proved to aid 

understanding of changes in the ISC compartment that were not detectable by qRT PCR 

and in situ hybridisation alone, such as in the Apc2-/- mouse model, where the organoid 

formation efficiency was in direct contradiction to the expression data for ISC markers.  

 Loss of Cited-1 results in an increase in expression of ISC markers and higher 6.1

organoid formation efficiency 

Using the Cited-1-/- mouse it had previously been shown that loss of Cited-1 resulted in a 

subtle increase in Wnt signalling, one of the most important signalling pathways 

involved in maintaining the ISC compartment. Assessing the ISC compartment of this 

mouse model using traditional gene expression methods hinted that there may be some 

subtle expansion of the ISC compartment due to increased Wnt signalling levels. By 

using the organoid formation efficiency assay on disassociated intestinal crypts derived 
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from wildtype and Cited-1-/- mice it was possible to determine the potential utility of 

this method in assessing subtle changes in the ISC compartment. In this model, loss of 

Cited-1 resulted in an increased organoid formation efficiency, which supported the 

increased expression of ISC markers to indicate an expansion of the functional ISC 

compartment. This expansion of the ISC compartment was not sufficient to initiate 

intestinal tumourigenesis, indicating that an expansion of the ISC compartment alone, 

and therefore an increase in potential adenoma “cells of origin”, without a tumour 

initiating event, such as loss of Apc, has no effect on tumourigenesis. Interestingly, Cited-

1 loss in an Apc heterozygous model of tumourigenesis actually decreased 

tumourigenesis despite this expansion in the ISC compartment (Méniel et al. 2013). This 

indicates that the status of the ISC compartment alone is not an accurate predictor of 

risk of tumourigenesis in this model. 

 Loss of Pml results in an increase in expression of ISC markers but no change 6.2

in organoid formation efficiency 

Interestingly, when studying the role of Pml in the maintenance of the ISC compartment 

in both Apcflox/flox mice and Apcflox/flox Ptenflox/flox mice, the loss of Pml resulted in an 

increase in expression of ISC markers which, like that seen in the Cited-1 model, was not 

associated with an increase in intestinal tumourigenesis. Interestingly, the organoid 

formation efficiency assay showed that despite an increase in expression of the markers 

there was no change in functional capacity, which potentially explains why there was no 

change in tumourigenesis. By analysing these models in this way it was possible to 

hypothesise why an increase in expression of ISC markers did not translate into 

increased tumourigenesis, as the changes within the ISC compartment due to Pml loss 

did not result in a functional change. In this model, assessment of the functional ISC 

compartment using organoid formation efficiency proved a more accurate indicator of 

tumourigenesis than using the expression levels of ISC marker genes.  

 Loss of Apc2 results in an increase in expression of ISC markers but a lower 6.3

organoid formation efficiency 

In the mouse model of Apc2 loss, it was shown that despite an increase in expression of 

ISC markers, there was a significant decrease in organoid formation efficiency. This 

indicated that there were fewer functional ISCs which were expressing the ISC markers 
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at a higher level. It would not have been possible to determine this without the use of 

the organoid formation assay, which also enabled (through the use of the associated 

PrestoBlue R-spondin dependency assay) the generation of qRT-PCR evidence which 

showed that loss of Apc2 results in an increase in expression of Wnt-target genes. 

Despite the further work required in order to elucidate the mechanism behind the 

changes in the ISC compartment due to Apc2 loss and their effect on tumourigenesis, use 

of the organoid formation efficiency assay has enabled the separation of expression 

levels of ISC markers, and the functional capacity of the cells which they mark. Loss of 

Apc2 resulted in a decreased functional capacity of the ISC compartment, but with no 

effect on levels of tumourigenesis or tumour burden. 

The examples used within this thesis highlight the potential utility of the organoid 

formation assay in assessing the ISC compartment as an additional technique to be 

combined with ISC marker expression analysis. However, the ability of crypts to form 

organoids in culture may not be a true readout of ISC capacity within the crypt, and 

potentially we are selecting for a subpopulation of intestinal epithelial cells which does 

not represent the in vivo ISC population, but are capable of forming organoids in vitro. 

Because of this, the assay needs to be developed to produce a readout of self-renewal 

potential of the organoid forming cells via passage efficiency.  

Here, through the use of a number of different mouse models of tumourigenesis, I have 

shown that, despite their role as the cell of origin of intestinal tumourigenesis, the 

functional status of the ISC compartment is not necessarily an accurate predictor of 

disease (see Table 19). This appears to reflect the complexity of the relationship 

between number, ISC marker expression, functional capacity and Wnt-signalling levels 

of the ISCs. However, the ISC compartment can still be informative of changes in 

homeostasis within the intestine, and the ability to accurately assess this cellular 

compartment remains important. The organoid formation assay presented here enables 

a certain level of insight into the ISC compartment, but remains an expensive and time 

consuming method, whereas gene expression analysis may not be a good indicator of 

ISC functionality. The use of gene expression analysis to assess the ISC compartment 

would be a more reliable method if expression levels of that gene were shown to 

consistently represent the organoid formation efficiency of that genotype. 
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 The potential of Msi-1 as a marker of the functional ISC population 6.4

Of the ISC markers which were assessed, expression levels of Msi1 was the only one 

which consistently translated into equivalent organoid formation efficiency between 

different models (see Table 19). Loss of Cited-1 resulted in an increase in Msi1 

expression and increased organoid formation efficiency.  Loss of Pml in both Apc and 

Apc Pten deficient mice resulted in no significant change in Msi1 expression and no 

change in organoid formation efficiency. Interestingly, Msi1 was the only ISC marker 

analysed which was down regulated due to loss of Apc2, associated with decreased 

organoid formation efficiency. This may mean that Msi1 expression levels could provide 

a more accurate readout of changes within the ISC compartment. 

 Msi1 was originally proposed as a marker of the ISC population due to the location of its 

expression within the developing and adult intestine and its upregulation in tumours 

derived from Apcmin mice (Potten et al. 2003). It has been shown more recently that Msi1 

expression marks both the CBC cells and the +4 cells, the two populations of cells which 

have been identified as possible constituents of the ISC compartment (Kayahara et al. 

2003; Muñoz et al. 2012). CBC cells are thought to represent a proliferative ISC 

population responsible for maintenance of intestinal homeostasis, whereas the +4 cells 

are thought to represent a more quiescent ISC type, and are responsible for gut repair 

after injury (Takeda et al. 2011). Furthermore, FAC sorting for GFP positive cells from a 

recently developed mouse model which expresses GFP under the control of an Msi1 

promoter, demonstrates the ability to isolate two populations of intestinal epithelial 

cells which differentially express the proposed markers of CBC and the +4 cell types 

(Cambuli et al. 2013). 
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Genotype 

Stem Cell Markers Organoids 

Phenotype   
qRT 
PCR In Situ 

Organoid 
formation 
efficiency 

R-spondin 
dependency 

Cited-/- compared to 
wildtype 

Lgr5 1.7* 

Olfm4 expression is limited to 
the crypt base 

21.4% *, 
significantly higher 

than wildtype 
Same as 
wildtype 

Decrease in 
tumourigenesis and 

increase in survival in an 
Apcflox/+ model 

Ascl2 1.5 

Olfm4 1.3 

Msi1 7.1* 

Bmi1 1.9 

Apc2-/- compared to 
wildtype 

Lgr5 5.7* 

Olfm4 expression is limited to 
the crypt base, lower down than 

is seen in wildtype 
5.2% *, significantly 
lower than wildtype 

Survive a day 
longer than 

wildtype in the 
absence of R-

spondin 

No change in 
tumourigenesis in an 

Apcflox/+ model 

Ascl2 6.4* 

Olfm4 2.1 

Msi1 0.2* 

Bmi1 1.6 

Apc2-/- compared to 
Apcflox/flox 

Lgr5 0.9 

Olfm4 expression closer the the 
crypt base than seen in 

Apcflox/flox 

21.1% *, 
significantly lower 

than Apcflox/flox 

R-spondin 
independent, 
like Apcflox/flox 

Increased survival, 
increased 

apoptosis,decreased 
number of abberent cells 
by day 5 post induction 

Ascl2 0.5* 

Olfm4 0.7* 

Msi1 0.7* 

Bmi1 1.3 

Apcflox/flox Pml-/- 

compared to 
Apcflox/flox 

Lgr5 1.3* 

Expanded zone of Olfm4 
expression compared to 

Apcflox/flox 25.70% 

R-spondin 
independent, 
like Apcflox/flox 

No change in survival, 
subtle increase in BrDU 

uptake 

Ascl2 1.6 

Olfm4 1.8 

Msi1 1.3 

Bmi1 1.2 

Apcflox/flox Ptenflox/flox 
Pml-/- compared to 

Apcflox/flox Ptenflox/flox 

Lgr5 1.5* 

Olmf4 expression spread across 
the region of abberent 

proliferation 27.40% 

R-spondin 
independent, 
like Apcflox/flox 

Reduced survival, no 
clear phentoypic 

difference 

Ascl2 1.7 

Olfm4 2.6* 

Msi1 2.3 

Bmi1 1.1 

Table 19. Summary of observed phenotypes, comparing gene expression analysis to organoid formation efficiency and effect on tumourigenesis. 
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Interestingly, Msi1 plays a role within the ISC compartment beyond that of a simple 

marker of locations. Msi1 encodes an RNA-binding protein, which has been described in 

Drosophila as essential for the maintenance of stem cell identity (Siddall et al. 2006). In 

mammals, Msi1 tightly regulated levels of p21 via transcriptional repression (Battelli et 

al. 2006) and Msi1 levels are inversely correlated with that of p21 in intestinal epithelial 

cells in which Msi1 is overexpressed (Rezza et al. 2010). P21 has been shown to play an 

important role in maintenance of the ISC compartment with loss of p21 enhancing ISC 

survival following radiation injury (George et al. 2009). 

As well as potentially playing a direct role maintaining the ISC compartment, Msi1 has 

been shown to be a potent regulator of both the Notch and the Wnt signalling pathways. 

Notch signalling, which is thought to be a major constituent of the ISC niche, has been 

shown to be activated by Msi1 overexpression in intestinal epithelial cultures (Rezza et 

al. 2010). Overexpression of Msi1 via infection with Msi1 encoding viral particles was 

shown to increase the number of cells expressing the Notch receptor NICD, as well as its 

target, Hes1. The importance of Notch signalling as a niche regulator has been 

supported by evidence that in order to form organoids in culture, single ISCs require the 

addition of a Notch ligand, and that organoid formation efficiency can be increased by 

the co-culture of ISCs with Paneth cells, which express Notch ligands (Sato et al. 2010). 

This could indicate why Msi1 expression levels correlate with organoid formation 

efficiency, as they could be a representation of Notch signalling levels within the crypt. 

This could indicate that organoid formation efficiency is not an accurate representation 

of the number of the ISCs within a crypt, but rather represents a readout of the status of 

the ISC niche. This issue could be addressed by assessing the Notch signalling status 

within the models presented here to determine if Notch signalling levels are a better 

indication of organoid formation efficiency than expression levels of ISC markers. The 

use of Notch inhibitors would enable subtle manipulation of the Notch signalling 

pathway within organoid culture, and could enable the interrogation of potential role of 

Notch signalling in the maintenance of the ISC compartment. 

As previously mentioned, Msi1 is a Wnt-target gene, and interestingly, it is also a 

negative regulator of Apc via transcriptional regulation (Spears and Neufeld 2011). In 

this way, an increase in Wnt signalling results in an increase in expression of Msi1, 
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which in turn binds to Apc mRNA and reduces translation, thereby resulting in a further 

increase in Wnt signalling levels. Msi1 is also able to regulate Wnt signalling indirectly, 

since Msi1 induces Frat1 expression which in turn increases β-catenin stabilisation, 

thereby increasing Wnt activation (Rezza et al. 2010). Due to the seemingly direct 

relationship between Msi1 and Wnt signalling levels, it is surprising that in our Apc2-/- 

model, Wnt signalling was increased but Msi1 expression was significantly down 

regulated. One explanation for this seemingly contradictory evidence is that perhaps 

Wnt signalling levels need to reach a certain threshold before it induces Msi1 expression 

and therefore becomes self-regulating. 

The evidence presented here supports the idea that Msi1 expression is representative of 

organoid formation efficiency, although whether this is due to an expansion of the ISC 

compartment itself or a more highly activated niche component of the intestinal 

epithelium is unclear. It is however clear that Msi1 potentially may be of great interest 

in this field and that more work into the precise nature of its role in maintenance of the 

ISC compartment is required. An Msi1 knockout mouse is available, and it has been 

shown using this model that loss of Msi1 does not result in an increase in intestinal Apc 

levels, but does result in a decreased ISC compartment (Ernlund 2011). An interesting 

experiment would be to transfect disassociated intestinal crypts with either Msi1 siRNA 

or Msi1 expressing viral particles prior to crypt seeding to assess the effect of down 

regulation or overexpression of Msi1 on organoid formation efficiency. If the Msi1 

knockout does result in a decreased ISC population without affecting Wnt-signalling 

levels, it would be interesting to breed these mice with Apcflox/+ mice, to establish if a 

decreased ISC compartment translates into decreased tumourigenesis. It would be 

predicted that with fewer “cells of origin” the LOH event would be less common and so 

tumour burden would decrease, and survival increase due to loss of Msi1. Ideally, the 

production of an Msi1 allele flanked by LoxP sites would enable a higher level of control 

of gene expression. 

The work presented here indicates that changes in the number of ISCs does not 

translate well as a predictor of disease, as ISCs are only “cells of origin” once they have 

been malignantly transformed. Because of this, the levels of Wnt signalling specifically 

within the ISCs may prove more indicative of tumourigenesis. The R-spondin 
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dependency assay, when used on organoids derived from mice wildtype for Apc, may 

prove more useful in this instance. By assessing the dependency of organoids on R-

spondin, we may be able to assess the levels of Wnt signalling within the ISC 

compartment in order to gain further understanding into the genetic pathways involved 

in this complex disease.  
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