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Analysis of Targeted CYCD7;1 Expression in Seed 
Development 

 

Emily Sornay 

 

Summary 
 

D-type cyclins in plants are represented by seven conserved subgroups and play a major 
role in controlling cell division. Relatively little is understood of their role during seed 
development, although their expression pattern has been characterized and ectopic 
expression of CYCD3;1 has previously been shown to disrupt normal embryo development.  

Here the consequences of ectopic expression of CYCD7;1 using the early endosperm-
specific promoter FWA in developing Arabidopsis seeds were investigated. Ectopic 
CYCD7;1 expression in the maternal central cell prior to fertilization, and in the endosperm 
from fertilization until cellularization resulted in seeds up to 45% larger. Seed enlargement 
was accompanied seed lethality, shown to be due to a defect of development during early 
and mid stages of seed development. As expected from the maternal specific expression of 
the imprinted FWA promoter, seed size and lethality was dependent on maternal origin of 
the transgene. Larger seed size was correlated to mature embryo and seed coat 
outgrowth, and was due to cell proliferation rather than cell elongation. In particular, 
embryo development was accelerated during the early stages, suggesting these may be 
dependent on cell division rate, whereas later stages progressed at the same rate as WT 
seeds. Seed-targeted CYCD7;1 expression phenocopies (1) the nucleus proliferation in the 
endosperm prior to fertilization observed in rbr and fis-class mutants and (2) the seed 
enlargement observed in paternal genome excess interploidy crosses. These suggest that 
CYCD7;1 may act through the RBR pathway to promote cell proliferation and modify 
imprinting in the endosperm, thereby influencing the parental genome balance. 

Mechanistically, CYCD7;1 did not interact directly with CDKA;1 but the interaction was 
promoted in presence of the inhibitor of CDK, ICK1/KRP1 or ICK2/KRP2 in a yeast-three-
hybrid assay. However, loss of either KRP1 or KRP2 in respective mutant backgrounds did 
not prevent the seed enlargement phenotype. 

 



 v 

Table of Contents 

 

Chapter 1 : Introduction 

 

 
1.1. The plant cell cycle 1 

1.1.1. The plant cell cycle and its regulators 1 
1.1.2. Cell cycle transitions and progression 13 
1.1.3. D-type cyclins in plants 15 

 
1.2. Seed development in Arabidopsis thaliana 20 

1.2.1. Fertilization and formation of seeds 20 
1.2.2. Embryo development 21 
1.2.3. Endosperm development 25 
1.2.4. Seed coat 29 
1.2.5. Cross-talk between seed compartments 30 
1.2.6. Seed Development, cell cycle and D-type cyclins 32 

 
1.3. Seed size 34 

1.3.1. Economical impact of seed size 34 
1.3.2. Determination and regulation of seed size 34 

 
1.4. Project aims 36



 vi 

Chapter 2 : Material and Methods 

 
 

2.1. General DNA techniques 38 
 

2.2. Polymerase Chain Reaction (PCR) 42 
	  

2.3. Sequence analysis 44 
	  

2.4. General Escherichia coli techniques 44 
	  

2.5. Construction of binary vector for endosperm-targeted CYCD7;1 
expression 46 
	  

2.6. Construction of reporters to follow endosperm-targeted CYCD7;1 
expression 53 
	  

2.7. RNA techniques and reverse transcription PCR (RT-PCR) 56 
	  

2.8. Agrobacterium mediated transformation of Arabidopsis 58 
	  

2.9. Plant growth conditions 60 
	  

2.10. Arabidopsis genetics and crossing 60 
 
2.11. Assay for  β-glucuronidase activity (GUS) 61 
 
2.12. Histological techniques 62 
	  

2.13. Microscopy, image processing and phenotype analysis 63 
	  

2.14. Yeast-Hybrid assay 64 
	  

2.15. Accession numbers and T-DNA insertion mutants 67



 vii 

Chapter 3 : Targeting CYCD7;1 Expression to Engineer 
Seed Size 

 
	  

Introduction 68 
	  

Results 71 
3.1. Expression of FWA during seed development 71 

3.1.1. Activity of the FWA promoter during seed development 71 
3.1.2. Expression of CYCD7;1 under the FWA promoter 73 

	  

3.2. Endosperm-targeted CYCD7;1 expression using a GAL4/UAS  
enhancer trap system 75 

3.2.1. GAL4/UAS system for endosperm-targeted CYCD7;1 expression 75 
3.2.2. Endosperm-targeted CYCD7;1 expression using GAL4 driven by  
the FWA promoter produced seeds with an enhanced final size. 76 
3.2.3. CYCD7;1 has a greater effect on size seed when the number of  
seeds produced is reduced. 77 

	  

3.3. Endosperm-targeted CYCD7;1 expression using a single direct  
promoter-gene construct 79 

3.3.1. Generation of FWA promoter constructs directly driving CYCD7;1 
expression 79 
3.3.2. FWA:CYCD7;1 produces enlarged seeds and the increase is  
greater than that using the GAL/UAS system 80 
3.3.3. The enlarged seed size phenotype is conferred by the expression of 
CYCD7;1 in the female gametophyte 84 

	  

Discussion 86



 viii 

Chapter 4 : Effects of Endosperm-Targeted Expression of 
CYCD7;1 on Seed Development  

 
 
Introduction 89 
	  

Results 92 
4.1. Effect of endosperm-targeted expression of CYCD7;1 on mature 
 female gametophytes 92 

4.1.1. Effect of endosperm-targeted CYCD7;1 expression on ovule  
initiation within the pistil 92 
4.1.2. Effect of endosperm-targeted CYCD7;1 expression on cell cycle 
 arrest in the female gametophyte prior to fertilization 94 

	  

4.2. Effect of endosperm-targeted expression of CYCD7;1 on developing 
seeds 96 

4.2.1. Effect of endosperm-targeted CYCD7;1 expression on seed size 
during seed development 96 
4.2.2. Effect of endosperm-targeted CYCD7;1 expression on seed viability 
in the silique 98 
4.2.3. Effect of endosperm-targeted CYCD7;1 expression on embryo 
development 104 

	  

4.3. Effect of endosperm-targeted expression of CYCD7;1 on the 
compartments of  mature seeds 108 

4.3.1. Effect of endosperm-targeted CYCD7;1 expression on final embryo 
size 108 
4.3.2. Effect of endosperm-targeted CYCD7;1 expression on the seed 
coat of mature seeds 109 

	  

4.4. Effect of endosperm-targeted expression of CYCD7;1 on seedlings  
post-germination 111 
	  

Discussion 113



 ix 

Chapter 5 : Interaction of CYCD7;1 with CDK and KRP 
proteins  

 
 

Introduction 117 
	  

Results 119 
5.1. Identification of CYCD7;1 cell cycle partners 119 

5.1.1. Yeast three-hybrid assay: to test interaction between three proteins 119 
5.1.2. CYCD7;1 interacts with CDKA;1 in the presence of KRP2 120 
5.1.3. CYCD7;1 does not interact with CDKBs in yeast           121 
5.1.4. CYCD7;1 can also interact with CDKA;1 in the presence of KRP1 121 
5.1.5. Other members of the KRP family do not interact with CYCD7;1 122 

	  

5.2. Activity of KRP1 and KRP2 genes during plant development 123 
5.2.1. Expression pattern of KRP1 during plant development 123 
5.2.2. Expression pattern of KRP2 during plant development 124 

	  

5.3. Biological roles of the CDKA;1-CYCD7;1-KRP1/2 interaction in the  
seed size phenotype 126 
	  

Discussion 128



 x 

Chapter 6 : Final Discussion 

 
 
6.1. Endosperm-targeted CYCD7;1 expression promotes seed size 
enlargement 134 
	  

6.2. Endosperm-targeted CYCD7;1 expression promotes cell proliferation  
in enlarged seed 135 
	  

6.3. CYCD7;1 acts in an autonomous and non-autonomous manner 138 
	  

6.4. CYCD7;1 forms a complex with CDKA;1 in the  presence of KRP1 and/or 
KRP2 and may act through the RBR pathway to regulate the cell cycle 139 

6.4.1. CYCD7;1 interacts with CDKA;1 in the presence of KRP1 or KRP2 139 
6.4.2. CYCD7;1/CDKA;1 may act through the RBR pathway and may have an 
effect on the imprinting of the maternal genome 141 

	  

6.5. CYCD7;1 expression in the central cell might reduce fertility 142 
	  

6.6. Trade-off between seed size and number 144 
	  

6.7. Concluding remarks and future work 145 
	  

 



 xi 

Abbreviations 
 

ACT  ACTIN 

AD Activation domain 

A or ade Adenine 

AHK ARABIDOPSIS HISTIDINE KINASE 

AP2 APETALA2 

AP-MS Affinity purification mass spectrometry 

BD Binding domain 

BiFC Bimolecular fluorescence complementation 

CAK CDK-dependent kinase 

CDK Cyclin-dependent kinase 

CKI Cyclin-dependent kinase inhibitor 

CKS Cyclin-dependent kinase subunit 

CKX CYTOKININ OXIDASE/DEHYDROGENASE 

Col-0 Columbia-0 

CYCD Cyclin D 

DAP Day after pollination 

DNA Deoxyribonucleic acid 

dFWA FWA protein fragment with a homedomain and a NLS 

dNTP Deoxynucleotide triphosphate 

EOD3 ENHANCER OF DA1 

FIE FERTILIZATION-INDEPENDENT ENDOSPERM 

FIS FERTILIZATION-INDEPENDENT SEED 

FWA FLOWERING WAGENINGEN 

G1 / G2 Gap1 / Gap2 

GM Growth medium 

HAP Hour after pollination 

H or his Histidine 

ICK INHIBITOR OF CYCLIN-DEPENDENT KINASE 

IKU HAIKU 



                                                                                                                                                               Abbreviations 
	  

 xii 

KRP KIP RELATED PROTEIN 

L or Leu Leucine 

M Mitosis 

MEA MEDEA 

MET Methionine 

MET1 DNA METHYLTRANSFERASE1 

MINI3 MINISEED3 

MNT MEGAINTEGUMENTA 

MSI1 MULTICOPY SUPRESSOR OF IRA1 

NLS Nuclear localization sequence 

PCA Protein-fragment complementation assay 

PCR Polymerase chain reaction 

PGK PHOSPHOGLYCERATE KINASE 

RB Retinoblatoma protein 

RBR RETINBLASTOMA-RELATED 

RNA Ribonucleic acid 

rpm Revolutions per minute 

RPS5A RIBOSOMAL PROTEIN SUBUNIT 5A  

RT-PCR Reverse transcription PCR 

S Synthesis phase 

SE Standard error 

seedCYCD7;1 CYCD7;1 seed-targeted expression (pFWA:CYCD7;1) 

SHB SHORT HYPOCOTYL UNDERBLUE1 

SIM SIAMESE 

TAP Tandem affinity purification 

T-DNA Transfer DNA 

TF Transcription factor 

T Tryptophan 

TTG2 TRANSPARENT TESTA GLABRA 2 

U Uracil 

WT Wild-type 



                                                                                                                                                               Abbreviations 
	  

 xiii 

X-Gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside 

X-Gluc 5-bromo-4-chloro-3-indolyl glucuronide 

Y2H Yeast-two-hybrid assay 

Y3H Yeast-three-hybrid assay 

 



	  

 

 
 
 
 
 
 

Chapter 1 
 

Introduction 

 



	  

1 

 

Seeds are essential for dispersal and survival of Flowering plants. During seed 

development, the high level of mitotic cell cycle activity drives the formation of a 

multicellular organism from the single-celled zygote. Moreover, crop seeds constitute a 

major part of human nutrition. Increasing seed yield in crops is becoming more important, 

due to rising food demand. Understanding the plant cell cycle and its regulation during 

seed development might help to achieve greater seed yields. In this thesis, “plants” refers 

to higher land plants or ‘seed’plants. 

 

1.1. The plant cell cycle 

For any living organism, the cell division cycle is a fundamental process by which cells 

reproduce. The cell cycle is a highly conserved mechanism from protozoa (or prophytes) to 

complex metazoans (or metaphytes). For unicellular organisms, it is essential for 

reproduction. For multicellular organisms, it is also required for (1) the formation of a 

multicellular individual from a single zygotic cell and (2) the regeneration of some tissues 

(Nurse, 2000).  

In plants, development can be continuous and occurs mostly post-embryonically due to the 

activity of meristems that contain pools of stem cells. The production of new organs during 

plant development requires active cell division. New cells, that undergo cell expansion and 

differentiation, are formed leading to the formation of new tissues and/or organs. Therefore, 

the plant mitotic cell cycle is an essential part of both embryonic and post-embryonic 

development. Despite the fact that the sequential phases of plant cell cycle and their 

regulation have been studied for decades, the regulation of some processes remains 

unclear (Alberts et al., 2002). 

1.1.1. The plant cell cycle and its regulators 

Overview of the plant cell cycle 
The mitotic cell cycle leads to the formation of two daughter cells carrying the same genetic 

information as the mother cell they were generated from. The mitotic cycle is composed of 

alternating DNA replication (synthesis, also named S phase) and chromosome partitioning 
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(Mitosis, also named M phase), interrupted by two gaps named G1 (between M and S 

phases) and G2 (between S and M phases) (Fig. 1.1). Cell cycle progression requires tight 

regulation that occurs at the two main checkpoints: G1-to-S and G2-to-M transitions (Novak 

et al., 1998; Jakoby and Schnittger, 2004). The commitment into a cell cycle requires the 

integration by the cell of developmental cues such as energy availability and hormone 

levels respectively (Dewitte and Murray, 2003). The integration of these signals is 

fundamental for the cell in making the decision to initiate DNA replication and to commit 

itself to the mitotic process (Van't Hof, 1985). 

To complete the cell cycle, the duplicated DNA has to be separated and a new cell wall 

synthesized. The cytoskeleton, the microtubules in particular, plays a major role in 

separating the daughter chromatids, which align at the site of the pre-prophase band, and 

in guiding membrane vesicles to the cell plate to form the new cell wall (Field et al., 1999; 

Pickett-Heaps et al., 1999). 

 

Some plant cells undergoing differentiation can go through a modified cell cycle, called 

endocycle (Galbraith et al., 1991). During the endocycle, the genetic material is replicated 

during S-phase, but mitosis does not occur. Therefore, for every endocycle, the ploidy level 

is doubled (Joubes and Chevalier, 2000). Endoreplication has been described for all 

eukaryotes (Edgar and Orr-Weaver, 2001). In Arabidopsis, the ploidy level is highly 

variable. It has been observed that in mature or differentiating leaves, the epidermal cells 

can display 2C to 16C and even reach 64C in specific leaf cells such as trichomes 

(Galbraith et al., 1991; Melaragno et al., 1993). The role of endoreduplication is not well 

understood, however it has been observed that endocycles are often correlated with 

increased cell size and it has been postulated that it might offset increased metabolism 

(Melaragno et al., 1993; Traas et al., 1998). It also has been proposed that by increasing 

ploidy, the plant has a greater capacity to buffer to the accumulation of mutations and/or to 

DNA damage (Ramirez-Parra and Gutierrez, 2007).  

The mitotic cell cycle and endocycle mostly share the same regulators and similar 

regulatory mechanisms (Jakoby and Schnittger, 2004). 
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Figure 1.1. Plant cell cycle overview. The progression through the different phases G1, 
S, G2 and M involved the successive formation, activation and inactivation of cyclin-
dependent kinases (CDKs). The control of the different phases and transition depends on 
the association between the different CDKs and cyclins. Activity of CDK/CYC complex can 
be decreased by KRPs binding and by negative phosphorylation by WEE1. CDK/CYC 
activity can be enhanced by positive phosphorylation by CDK-activating kinases (CAKs).  
Endocycle is a modified cell cycle, reduced to the alternating S and G1 phases. Modified 
from Andrietta et al. (2001) and Menges et al. (2005). 

 

Cyclin-dependent Kinases (CDKs) 
Eukaryotic cell cycle control involves modulation of the serine-threonine kinase activity of 

cyclin-dependent kinases (CDKs). The CDK usually requires the binding of a regulatory 

subunit called a cyclin to be functional (Fig. 1.2). In all eukaryotes analyzed to date, there is 

at least one CDK with the canonical amino-acid sequence PSTAIRE in the cyclin-binding 

domain. All eukaryotic serine-threonine and tyrosine kinases share a similar protein 

structure due to a closely-related sequence of 300 amino acids. This sequence gives rise 

to a bilobal structure forming a catalytic pocket between the N- and C-terminal tails. This 

pocket is the site of ATP- and substrate-binding. Access to the catalytic pocket is restricted 

by a so-called T-loop. Upon cyclin binding, the flexible CDK structure is shifted and the T-

loop moves laterally allowing CDK substrates to access the catalytic sites. However, the 

catalytic activity is low and requires the phosphorylation of threonine 160 of the T-loop by 
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CDK activating kinases, to give full catalytic potential (Joubes et al., 2000; Dissmeyer et al., 

2007; Jura et al., 2011). 

 

 

 

 

 

 

 

In the Arabidopsis genome, twelve CDK-related genes have been identified based on 

sequence similarity. They are divided into 6 groups (CDKA-F; Fig.1.3) (Vandepoele et al., 

2002).  

 

Figure 1.3. Tree of the A, B, C, D, E, and F Classes of CDKs from Arabidopsis (Arath), 
Lyces, tomato (Lycopersicon esculentum); Medsa, alfalfa (Medicago sativa); Orysa, rice 
(Oryza sativa) (from Vandepoele et al., 2002). 
 

In Arabidospis, a single gene coding for CDKA (CDKA;1) is present, and is the only gene 

that carries in its sequence the PSTAIRE amino acid hallmark. CDKB genes have the 

sequence PPTA/TLRE (Mironov et al., 1999; Vandepoele et al., 2002). The difference of 

the hallmarks in the CDKB group reflects the presence of two subgroups, CDKB1 and 

CDKB2 families, each containing 2 members in Arabidopsis (CDKB1;1, CDKB1;2, 

CDKB2;1 and CDKB2;2). CDKA;1 and CDKBs have been shown to have direct action on 

controlling the transition between the different phases of the cell cycle (Joubes et al., 2000; 

Figure 1.2. CDK/CYC complex and its 
regulation.  

CDK can be regulated at different levels. The 
kinase activity is activated by CYC binding 
and positively enhanced by CKS binding and 
activation phosphorylation by CAKs. The 
kinase activity is inhibited upon inhibitory 
binding of ICKs/	   Kip-related protein (KRPs) 
or upon inhibitory phosphorylation. Modified 
from Dewitte and Murray (2003).	  
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Boudolf et al., 2001). CDKA;1 is involved in regulating both the transition  from G1-to-S and 

G2-to-M, with a requirement for CDKB in the latter transition (Inze and De Veylder, 2006; 

Kawamura et al., 2006).  

CDKD displays an N(I/F)TALRE motif and, in association with a H-type cyclin, can 

phosphorylate CDKA/D-type cyclin complexes (De Veylder et al., 2007). CDKF has also 

been shown to be involved in activating the CDK/CYC complexes by phosphorylating a 

threonine site on the T-loop (Umeda et al., 1998; Shimotohno et al., 2004). Therefore 

CDKD and CDKF are classified as CDK-activating kinases (CAKs). Recent data show that 

CDKF and CDKD can also phosphorylate RNA polymerase II and mutation in any of these 

CDKs leads to defects in transcription in plants (Hajheidari et al., 2012). Since 

phosphorylation of both CDKs and the C-terminal tail of the RNA polymerase can be a 

shared function of CAKs, these results reinforce that CDKD and CDKF are CAKs. Similarly, 

CDKC, characterized by a PITAIRE and shown to be homologous of mammalian CDK9, is 

involved in phosphorylating the C-terminal domain of RNA polymerase II (Mironov et al., 

1999; Price, 2000; Barroco et al., 2003). A more recent study also showed that CDKC 

shares more similarity with the mammalian CYSTEINE-RICH RLK7 (RECEPTOR-LIKE 

PROTEIN KINASE7, CRK7) than the mammalian CDK9, and is co-localized with splicing 

factors and this localization depends on its kinase activity (Kitsios et al., 2008). 

CDKE, carrying the hallmark SPTAIRE, has not been demonstrated to be involved 

regulating the cell cycle (Vandepoele et al., 2002). Based on it homology with the human 

CDK8, it was proposed that CDKE might also be involved in regulating the RNA 

polymerase II (Tassan et al., 1995). To date, this has not been demonstrated in plants. 

 

Table 1.1. Arabidopsis cyclin-dependent kinases (Modified from Vandepoele et al., 2002). 

Gene Accesssion Number CDK signature motif  
CDKA;1 At3g48751 PSTAIRE 
CDKB1;1 At3g54180 PPTALRE 
CDKB1;2 At2g38620 PPTALRE 
CDKB2;1 At1g76540 PPTALRE 
CDKB2;2 At1g20930 PPTALRE 
CDKC;1 At5g10270 PITAIRE 
CDKC;2 At5g64960 PITAIRE 
CDKD;1 At1g73690 NVTALRE 
CDKD;2 At1g66750 NFTALRE 
CDKD;3 At1g18040 NITALRE 
CDKE;1 At5g63610 SPTAIRE 
CDKF;1 At4g28980 None 
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There are four levels of regulation to activate and/or modulate CDK activity (Fig1.3): (1) the 

binding with positive cofactors such as cyclins, (2) the binding of negative regulators such 

as CDK inhibitors, (3) positive phosphorylations and (4) negative phosphorylations, with 

both phosphorylations occurring on the threonine or tyrosine residues of the T-loop (Pines, 

1995).  

 

Cyclins 
Monomeric CDKs do not usually possess kinase activity. The association with regulatory 

proteins called cyclins (CYCs) is required to activate their kinase activity (Fig. 1.3). Cyclins 

were first identified in sea urchin eggs in which their protein levels appear and disappear in 

a cyclic manner (Evans et al., 1983). Interactions between CDKs and CYCs have been 

demonstrated using different methods and the potential interaction between the different 

members of these protein classes investigated (Boruc et al., 2010). The interaction of 

human CDKs and cyclins has been visualized by crystallography (Russo et al., 1996). 

Cyclins are characterized by a conserved region of 250 amino acids. (Nugent et al., 1991; 

Noble et al., 1997). The N-terminal region is about 100 amino acids long and corresponds 

to a region of highest conservation with five invariant residues. It contains a CDK-binding 

site also called “cyclin box” (Wang et al., 2004). Over three decades, cyclins have been 

isolated from many organisms. The constant discovery of new plant cyclins in the 1980s-

90s necessitated a unified nomenclature (Renaudin et al., 1996).  

Arabidopsis genome-wide analysis reveals 49 putative cyclins that could be identified 

based on the presence of the two N- and C-terminal regions (Fig. 1.4) (Vandepoele et al., 

2002; Wang et al., 2004). Thirty one of these proteins have the N- and C-termini in their 

sequence, whereas 18 contain only the N-terminus. Phylogenetic analysis reveals 

homology with animal and protist cyclins, thus the plant cyclins have been classified into 10 

classes homologous to those in animals and protists. They are annotated A, B, C, D, H, T, 

L, U. C-, T-, L-, U-type cyclins based on sequence analysis. Except for their expression 

pattern in different Arabidopsis tissues and the presence of homologs in rice (Oryza sativa), 

little is known about these four classes (Wang et al., 2004). On the other hand, A-type, B-

type, D-type and H-type cyclins have been widely described and their involvement in cell 

cycle control has started to be elucidated (De Veylder et al., 2007). The A-type cyclin family 

has 10 members, B-type, 11, D-type 10 and there is a single H-type cyclin. CYCA and 

CYCB are divided into three subgroups  (A1, A2, A3 and B1,B2, and B3) and CYCD into 

six (D1, D2/D4, D3, D5, D6, D7) (Vandepoele et al., 2002).  
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Figure 1.4. Phylogenetic tree and protein domain structure of Arabidopsis cyclin 
(from Wang et al., 2004). 
 
CYCA, CYCB and CYCD form active complexs with CDKA;1 or CDKBs, whereas CYCH is 

associated with CDKD. Broadly speaking, the G1-S transition is controlled by 

CYCD/CDKA;1 and CYCA/CDKA;1 and CDKB regulate the cell cycle from the S-phase to 

the M-phase. The G2-M transition and the onset of M phase are regulated by CYCA, CYCB 

or CYCD with CDKA or CDKB (Inze and De Veylder, 2006). CYCH is associated with 

CDKD at the transition G2-M. The general view of the cell cycle control is corroborated by 
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analysis of expression of the different cyclins in synchronized cell suspension (Menges et 

al., 2005) and the investigation of core cell cycle protein interactions (Boruc et al., 2010; 

Van Leene et al., 2010; Van Leene et al., 2011). The plant D-types cyclins and their role 

during the cell cycle and development of plants is detailed below. 

 

The level of each cyclin type protein is a way to regulate the activity of CDKs and control 

the progression of the cell cycle. This level can be regulated transcriptionally or post-

translationally by targeting proteasome degradation. 

CDK Subunit 

CDK subunit (CKS) proteins act as docking factors that mediate the interaction between 

the CDKs and their substrates and regulatory proteins (Fig. 1.3) (De Veylder et al., 1997; 

De Veylder et al., 2001; Zhou et al., 2002b). In Arabidopsis, two CKSs (CKS1 and CKS2) 

have been identified (Vandepoele et al., 2002). They share 83% homology in the 

nucleotide sequence and 90% in the protein sequence (De Veylder et al., 1997). They are 

located on the same chromosome, arranged in a tandem-like organization suggesting that 

they arise from a duplication event (Fig. 1.5) (Vandepoele et al., 2002). CKS1 interacts with 

CDKA;1 and CDKBs and is expressed in dividing and endoreduplicating cells (De Veylder 

et al. 1997). CKS2 has been shown to interact in vivo with CDKA;1, CDKB1;1 and 

CYCD3;1 but no functional analysis has been carried out (Van Leene et al., 2007). 

 

 

 

 

CDK inhibitors 

CDK Inhibitors (CKIs) modulate the activity of CDKs either to direct binding of the 

CDK/CYC complex or by a negative by regulating phosphorylation of the CDK subunit 

(Fig.1.3) (Vandepoele et al., 2002).  

 

CDK/CYC binding inhibitors are divided into 2 groups: INTERACTOR/INHIBITOR OF 

CYCLIN-DEPENDENT KINASE (ICK) family and a more recently described class, 

SIAMESE (SIM) and SIM-RELATED (SMR) proteins in Arabidopsis (Walker et al., 2000; 

Churchman et al., 2006; Peres et al., 2007).  

Crystallography studies show that the mammalian protein related to ICKs can bind CDK on 

its own (Russo et al., 1996) but has a greater affinity for the CDK/CYC complex. A 65 

Figure 1.5. Schematic of the tandem-like structure 
of CKS genes in Arabidopsis. Blacks boxes 
represent exon and white boxes are untranslated 
region. (from Vandepoele et al., 2002).  
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amino-acid domain of ICK, involved in the binding, interacts with a large surface of the 

CDK/CYC complex (Fig. 1.6) (Joubes et al., 2000). The ICK binding on CDK/CYC complex 

prevents ATP and substrate entry in the catalytic pocket. In Arabidopsis, the first ICK 

isolated, ICK1, displays a homology in its C-terminus with the animal Cip/Kip family (Wang 

et al., 1997). Therefore they were also named Kip-Related Proteins (KRPs). The 

Arabidopsis genome contains 7 genes encoding for KRP1-7 (Fig. 1.6) (De Veylder et al., 

2001). Deletion analysis indicated that the C-terminal domain of ICK1/KRP1 is required for 

the interaction with CDKA;1 and CYCDs (Wang et al., 1998). Functional analysis of KRPs 

shows that the C-terminus contains three motifs conserved in the 7 Arabidopsis KRPs and 

the mammalian p27Kip1 protein (De Veylder et al. 2001). A more recent study reveals that 

the homology in the C-terminus is also shared with other plant species such as Poplar 

trichocarpa and Oryza sativa L. (Torres Acosta et al., 2011). The inhibition of kinase activity 

has been shown in vitro (Wang et al. 1997) and in vivo (Zhou et al., 2003). The inhibitory 

effect on the cell cycle was demonstrated in planta by overexpressing KRP1 and KRP2 

leading to small plants with smaller serrated leaves and KRP1 overexpression was shown 

to reduce the cell number in petals. 

 

Figure 1.6. Structural organization of Arabidopsis KRPs. Conserved sequence boxes 
are indicated (1 to 6). N, nuclear localization signal. Asterix indicates the conserved 
sequences required for CDKA;1/CYCD interaction. Modified from De Veydler et al., 2001). 
 

The second class of CDK inhibitors acting by binding to the CDK/CYC complex that has 

been identified is the SIAMESE (SIM) proteins (Churchman et al., 2006). In Arabidopsis, 

there are four members of the SIM family. They share a conserved EIEDFF motif with 

ICK/KRP and display a potential cyclin-binding motif. FRET studies show that SIM can bind 

both CDKA;1 and D-type cyclins. The inhibitory effect has been demonstrated in 

overexpressers, characterized by slow-growing plants with serrated leaves composed of 

enlarged epidermal cells with an increased ploidy level, very similar to KRP 

overexpressers.  
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Arabidopsis CDKs possess the two residues threonine-14 and tyrosine-15, that when 

phosphorylated, inhibit the CDK/CYC activity (Fig. 1.3). Phosphorylated tyrosine-15 brings 

the N-terminus into the CDK cleft by creating a hydrogen bond with glutamine-51 (Joubes 

et al., 2000). Therefore, ATP binding and substrate docking are prevented. In Arabidopsis, 

one gene codes for the kinase WEE1 that is involved in phosphorylating these two residues 

(Sorrell et al., 2002).  

CDK-activating component 

As mentioned above, full CDK activation can be achieved by the phosphorylation of 

threonine-160 or by removing the inhibitory phosphorylation on the threonine-14 and 

tyrosine-15 residues. T-160 phosphorylation is carried out by the CDKD/CYCH complex. 

Partial activation of CDK/CYC complexes can also be performed. In yeast, CDC25 

phosphatase dephosphorylates these residues (Russell and Nurse, 1986). In Arabidopsis, 

a single gene (Arath;CDC25), sharing 32% homology in the catalytic domain with the yeast 

CDC25, has been identified (Landrieu et al., 2004). Different views are found regarding its 

role and its possible involvement in cell cycle regulation. It has been shown that 

Arath;CDC25 displays a phosphatase activity in vitro whereas in vivo no effect on the cell 

cycle could detected since in arath;cdc25 loss-of-function and ArathCDC25 overexpresser 

mutants did not grow differently compared to wild-type (WT) plants, and DNA ploidy 

distribution was similar in mutant lines and WT plants (Landrieu et al., 2004; Dissmeyer et 

al., 2009; Spadafora et al., 2011). However, Arath;CDC25 was shown to be involved in 

other in vivo physiological processes. Since Arath;CDC25 has some sequence homology 

with the arsenate reductase enzyme, its enzyme activity was tested: in an ArathCDC25 

overexpresser; its activity was increased two-fold. In arath;cdc25 loss-of-function mutants, 

its activity was not detectable (Landrieu et al., 2004; Dissmeyer et al., 2009). These results 

suggest that ArathCDC25 is not involved in cell cycle regulation but may act as an arsenate 

reductase. 

Retinoblastoma protein 

In higher eukaryotes one of the main targets of the CDK/cyclin complex is the 

retinoblastoma-related (RBR) protein (Goodrich and Lee, 1993; Boniotti and Gutierrez, 

2001). In Arabidopsis, a single gene encodes the RBR protein (Xie et al., 1996) whereas in 

maize, there are three RBR genes (RBR1, RBR2 and RBR3) (Xie et al., 1996; Ach et al., 

1997; Sabelli et al., 2005). During the G1 phase, the active RBR represses gene 

transcription by either binding the heterodimeric transcription factor E2F/Dimerisation 

Partner (DP) or by recruiting histone deactylases (Dyson, 1998; Ramirez-Parra et al., 1999; 

Chen and Tian, 2007). RBR protein contains two conserved sequences that form a pocket 
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in which the E2F is docked (de Jager and Murray, 1999). At the G1-to-S transition RBR is 

phosphorylated by the CDK/CYCD complex, leading to its inactivation. Therefore RBR 

dissociates from its partner E2F/DP leading to the expression of E2F/DP responsive genes 

and histone deacetylases are not recruited. As RBR represses transcription, RBR is seen 

as a negative regulator of cell cycle and cell proliferation. 

RBR is essential for plant development and reproduction in Arabidopsis. In an rbr loss-of-

function mutant, meiotic defects result in impaired female and male gametogenesis .(Chen 

et al., 2011) In addition, the rbr mutant fails to restrict mitosis during megagametogenesis 

(Ebel et al., 2004; Ingouff et al., 2006) and to determine the cell fate of vegetative and 

sperm cells during pollen formation (Chen et al., 2009).  

In addition to the role of RBR in the cell cycle, RBR has been shown to be involved 

genome silencing during seed development (discussed in section 1.2.6)(Jullien et al., 

2008). 

E2F/Dimerisation Partner (DP)  
RBR controls the activity of the E2F promoter-binding factor. In Arabidopsis, there are six 

genes coding for E2F proteins (E2Fa, E2Fb, E2Fc, E2Fd, E2Fe and E2Ff) and two for DP 

proteins (DPa and DPb) (Fig. 1.7). E2F/DP binds DNA in responsive promoters containing 

a canonical (TTTCCCGCC) sequence, which commonly lies upstream of genes involved in 

the regulation of the S-phase of the cell cycle (Albani et al., 2000). The binding of E2F to 

DNA requires 2 motifs. E2Fa, E2Fb and E2Fc contain a single DNA-binding motif in their 

respective sequences whereas E2Fd (also named DP/E2F-like proteins 2 (DEL2), 

E2Fe/DEL1, E2Ff/DEL3 possess two binding motifs in their sequence (Dyson, 1998; 

Kosugi and Ohashi, 2002). Therefore, to regulate the promoter activity of a responsive 

gene, E2Fa, E2Fb and E2Fc require dimerization with DPa or DPb, which also contain a 

DNA-binding motif. E2Fa/b/c act as heterodimers and E2Fd-e-f act as monomers to 

regulate gene expression. RBR can interact only with E2fa/b/c. E2Fa and E2Fb are 

activators (De Veylder et al., 2002; Rossignol et al., 2002). In contrast, E2Fe/DEL1, 

E2Ff/DEL3 and E2Fc, the latter acting possibly with DPb, are transcriptional repressors 

(del Pozo et al., 2002; Kosugi and Ohashi, 2002). When E2Fa/DPa are ectopically 

overexpressed, they induce cell divisions and endoreduplication in leaves and hypocotyls 

(De Veylder et al., 2002; Rossignol et al., 2002). Overexpression of E2Fe/DEL1 leads to 

reduced ploidy level in leaves or premature onset of endoreduplication suggesting that 

E2Fe/DEL1 is an inhibitor of endoreduplication (Vlieghe et al., 2005). E2Ff/DEL3 is shown 

to be involved in down-regulating the expression of genes involved in cell wall biosynthesis 

such as expansin, therefore suppressing cell expansion of dividing cells (Ramirez-Parra et 

al., 2004). 
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Figure 1.7. E2F and DP families in Arabidopsis: Phylogenetic Tree (A) and structural 
organization of E2F and DP proteins (Modified from Vandepoele et al., 2002). 
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1.1.2. Cell cycle transitions and progression 
The cell cycle progression depends on the protein level of the regulators mentioned above 

as well as their specific interactions.  

The G1 to S-phase transition 

The G1-to-S transition is a control point in the cell cycle. During G1, exogenous and 

endogenous cues are integrated by the cell to make the decision to commit, to exit or re-

enter the cell cycle. Once the cell commits to the cell cycle, DNA replication is initiated 

(Gutierrez et al., 2002). The regulation of the G1-S transition involves the D-type cyclins as 

major regulator (Oakenfull et al., 2002). CYCD amino acid sequence contains the RBR 

binding motif LxCxE, with x any amino-acid (Menges et al., 2007). Protein interaction 

studies show that CDKA;1 form a complex with several CYCDs such as CYCD3;1 (Wang 

et al., 2004), CYCD2;1 (Sanz et al., 2011), CYCD4;1 and CYCD4;2 (Van Leene et al., 

2010). CYCDs bind specifically to CDKA;1 but not CDKB1;1 (Healy et al., 2001). The 

formation and the activity of the CDKA;1-CYCD complex depends on the factors mentioned 

above. As previously reviewed, the active CDKA;1/CYCD complex phosphorylates RBR 

(Boniotti and Gutierrez, 2001). In non-dividing cells, RBR binds to the E2F/DP complex and 

recruits histone deacetylases preventing the transcription of S-phase genes such as 

thymidine kinase and DNA polymerase (de Jager and Murray, 1999). The E2F/DP 

transcription factor bound to RBR is inactivated (Dyson, 1998). Deacytelation of histones 

maintains the positive charge conferred by lysine and arginine residues of the histone. 

Therefore the histones have great affinity for the negatively charged DNA, blocking the 

accessibility of the chromatin to transcription factors (Chen and Tian, 2007). Upon RBR 

phosphorylation, the inhibition of S-phase genes is removed. RBR dissociates from 

E2F/DP and can activate gene expression (Fig.1.8). Histones are more likely acetylated, 

reducing their affinity for DNA and allowing the transcription machinery to work. Therefore, 

transcription is active in genes whose products are needed for S-phase entry and 

progression. Thus the cell cycle progresses to the S phase. 
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Figure 1.8. Model of G1-to-S transition control. CYCD3 in response to developmental 
cues, binds CDKA;1. The active CDKA;1/CYCD3 complex phosphorylates RBR releasing 
E2F/DP from its inhibitory binding. S phase genes are therefore expressed (Modified from 
Tromas et al., 2010 and Andrietta et al., 2001). 
 

The G2 to M-phase transition 

The control of the G2/M transition is responsible for entry into mitosis. At this checkpoint 

the cell commits to either divide or endoreduplicate. The control depends on CDK-CYC 

kinase activity. The typical mitotic CDK is CDKB as its expression level peaks at G2; 

however, CDKA;1 is also thought to be involved in the transition (Menges et al., 2002). It 

has been shown that CDKA;1 is required for cell entry into mitosis (Nowack et al., 2006). 

CYCB transcript level increases from S phase to G2 and interact with CDKA and CDKB. 

Moreover, CYCA can also interact with CDKA and CDKB to control the progression from 

G2-to-M as it has been shown that CDKB1;1 and CYCA2;3 form a complex at the G2-to-M 

transition and their activity inhibits the switch between mitosis and endocycle (Boudolf et 

al., 2009). The negative regulation of CYC/CDK by WEE1 occurs during the G2-M 

transition (Sorrell et al., 2002).  

CDK/CYC complexes phosphorylate specific transcription factors that activate the 

expression of genes required for mitosis (Ito et al., 1998; Ito et al., 2001). In addition, 

CYC/CDK were shown to be associated with microtubules during mitosis (Criqui and 

Genschik, 2002). It was demonstrated that a CYC/CDK complex phosphorylates 

microtubule-associated proteins that are involved in the regulation and stabilization of 

microtubular structure assembly. CYC/CDK complexs may have an essential role for the 

formation of the preprophase band, mitotic spindle and phragmoplast (Criqui and Genschik, 

2002).  
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Endoreduplication  
Certain cells that have completed DNA replication do not go through mitosis in response to 

developmental cues. The cell cycle is shortened to alternating S-phase and G1 phase 

without DNA partitioning and cytokinesis (Edgar and Orr-Weaver, 2001). The switch to the 

endoreplication cycle lies in the down-regulation of M-phase-specific CDKs and CYCs such 

as CDKBs, CYCAs and CYCBs (Jacqmard et al., 1999; Imai et al., 2006). CDKB transcripts 

cannot be detected whereas CDKA;1 is still present but in much lower abundance. 

Interestingly, it has been shown that the down-regulation of CYCD3;1 promotes endocycles 

in leaves (Dewitte et al., 2007). Down-regulation of the components of a CYC/CDK 

complex can be achieved by negative phosphorylation by WEE1 and/or by targeting the 

CDK/CYC for degradation via CCS52A-mediated proteolysis (Kondorosi and Kondorosi, 

2004). ICK can act as a repressor or an activator of endocycles: high overexpression of 

ICK1 or ICK2 leads to endocycle and mitotic cycle repression (Verkest et al., 2005b), 

whereas a weak overexpression results in premature onset of endocycles (Verkest et al., 

2005a; Weinl et al., 2005).  

Overexpression of E2Fa/DPa promotes endocycles correlated with RBR deficiency (De 

Veylder et al., 2002; Wildwater et al., 2005). On the other hand, overexpression of DEL1 

(E2Fe) represses the endocycle (Vlieghe et al., 2005). In maize endosperm, inactivation of 

RBR by hyperphosphorylation correlates with an increase of ploidy due to enhanced 

endoreduplication (Grafi et al., 1996).  Hence E2Fa and RBR appear to be involved in both 

mitotic and endocycle control. 

1.1.3. D-type cyclins in plants 

D-type cyclin gene in plants 
There is a high degree of homology of cell cycle core components between plants and 

animals. D-type cyclins are conserved among higher eukaryotes. Despite the low sequence 

similarity of D-type cyclins between animals and plants (Wang et al., 2004), they share key 

features required for their function during the cell cycle, especially during the G1-S 

transition. In the plant kingdom, 14 CYCDs are found in rice (Oryza sativa), 22 in poplar 

(Populus trichocarpa), 1 in moss, 10 in Arabidopsis thaliana (Fig. 1.9) (Menges et al., 2005) 

and at least 17 were isolated from maize (Buendía-Monreal et al., 2011). Their sequence 

organization has been widely reported for plants and the gene organization regarding exon 

length and distribution of exons and introns is conserved (Renaudin et al., 1996; 

Vandepoele et al., 2002; Menges et al., 2007). The 10 Arabidopsis CYCDs are divided into 

6 subgroups. The CYCD3 family has 3 members (CYCD3;1, CYCD3;2, and CYCD3;3), 

CYCD2-4 contains 3 members (CYCD2;1, CYCD4;1 and CYCD4;2), whereas the CYCD1, 



                                                                                                                                                                     Chapter 1 

16 

CYCD5, CYCD6 and CYCD7 subgroups, each have a single member. CYCDs have an N-

domain containing 120 amino acids highly conserved among plants. The C-terminal 

domain is more variable and can even be absent. Only the Arabidopsis CYCD5;1 does not 

have the C-domain, whereas 2 of the rice cyclins and 3 of the poplar cyclins do not 

possess the C-domain (Menges et al., 2007). The absence of the C-domain suggests that it 

is not critical for its function but might give some specificity (Wang et al., 2004). The N-

domain spans fours regions essential for cyclin function: the CDK-binding region, the RBR 

binding region, the cyclin signature and five non-contiguous highly conserved residues (R, 

W, D, L and K, Table 1.2). The CDK-binding region, also named the “cyclin box” contains a 

highly conserved 8 amino-acid W(I/M)LKV motif. The cyclin box spans the first and second 

exons except for CYCD3 where it is localized in the first exon (Menges et al., 2007). The 

RBR binding motif is characterized by the LxCxE sequence. CYCD5;1 has a modified 

LxCxE motif to FxCxE and CYCD4;2 and CYCD6;1 do not contain the motif in their 

sequence. The RBR interaction motif has been shown to be conserved in poplar and rice 

(Menges et al., 2007). In human CYCD, the PEST sequence (proline, glutamine, serine 

and threonine rich) is involved in targeting the CYCD for ubiquitin-mediated proteolysis by 

phosphorylation of T-286. To date, potential PEST sequences were only identified in plants 

and they were found in Arabidopsis CYCDs with exceptions of the CYCD2/4 group, 

CYCD3;3; CYCD6;1 and CYCD7;1. 

 

Table 1.2. Arabidopsis D-type cyclins and the conserved domains. nd not determined 

Gene name Accession number CDK-binding motif RBR-binding motif 
CYCD1;1 At1g70210 ILK--VQAYY LFCGE 
CYCD2;1 At2g22490 ILKVCAHY LACGE 
CYCD3;1 At4g34160 ILRVNAHY LYCEE 
CYCD3;2 At5g67260 VLRVKSHY LYCEE 
CYCD3;3 At5g50070 IFKVKSHY LFCEE 
CYCD4;1 At5g65420 WIWKACEVH LLCTE 
CYCD4;2 At5g10440 WIWKACEEL nd 
CYCD5;1 At4g37360 ILTTRTRF LYCEE 
CYCD6;1 At4g03270 ITQYSRKF nd 
CYCD7;1 At5g02110 LIQTSRL LLCDEE 
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Figure 1.9. Genomic domain structure 
CYCD genes in Arabidopsis thaliana, 
Oryza sativa, Populus trichocarpa (from 
Menges et al. 2005).  
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D-type cyclin role in plant development 
In Arabidopsis, ten genes encode for D-type cyclins. However, their differential roles in 

controlling the cell cycle are not well characterized. The study of CYCD gene activity during 

plant development demonstrated discrete and overlapping spatio-temporal expression 

patterns that may be associated with their different roles in controlling cell cycle 

progression (Dewitte and Murray, 2003). 

 

The study of CYCD expression during the plant cell cycle provides insight into the 

differential roles in controlling the cell cycle. Cell suspensions were used in combination 

with Affymetrix GeneChip arrays. Conveniently, the cell cultures could be synchronized in 

cell cycle progression with sucrose induction and aphidicolin supplementation (Menges and 

Murray, 2002). This allows molecular analysis of the cell cycle and the control of its 

progression. It has been shown that the ten CYCDs are expressed during the cell cycle 

with some differences in their patterns (Menges et al., 2002; Menges et al., 2003; Menges 

et al., 2005). CYCD3;3 and CYCD5;1 are expressed early in G1, whereas CYCD3;1 and 

both of the CYCD4 genes accumulate at the end of G1 prior to the G1-S transition. 

Whereas CYCD3;1 transcript level is high throughout the cell cycle, CYCD4, CYCD5.1 and 

CYCD3;3 transcript levels decrease. CYCD6;1 and CYCD7;1 are also expressed during 

late G1. These data are consistent with the CYCDs being regulators of the G1/S transition 

during the cell cycle. 

 

In the context of plant development the balance between cell mitotic cycle, endocycle and 

differentiation requires fine-tuning. The great diversity of plant D-type cyclins may suggest 

that the individual genes have exclusive or partially overlapping roles. However, such roles 

are yet to be fully elucidated. The expression of most of the CYCDs has been investigated 

during plant development using promoter reporters, fluorescent protein fusions and mRNA 

transcript detection techniques. CYCD1;1 expression is detectable only in the embryonic 

root and especially in the lens-shaped cell that will be incorporated into the root meristem 

during embryo development (C. Forzani, unpublished data). CYCD2;1 has been shown to 

be expressed in the shoot and the root (Cockcroft et al., 2000). CYCD2;1 protein localized 

in the root apical meristem (RAM) apart from the quiescent center and the adjacent initials 

and their progeny of primary and lateral roots. In the elongation zone of the root closest to 

the RAM, CYCD2;1 is still distinguishable in the endodermis (Sanz et al., 2011). CYCD3 

genes are expressed in the SAM, in the inflorescence stem and the meristem throughout 

floral development. They are restricted to the gynoecium at later stages of floral 

development (Riou-Khamlichi et al., 1999; Swaminathan et al., 2000; Dewitte et al., 2007). 
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CYCD3 expression is also detected in the RAM. CYCD3;2 is expressed in stomata. 

CYCD4;1 is expressed in the root meristem, the SAM, hypocotyl, as well as the vascular 

tissues (Kono et al., 2003; Barroco et al., 2005; Kono et al., 2007). CYCD6;1 is specifically 

expressed in the cortex-endodermis initials and their daughter cell from heart stage of 

embryo development to 5-day-old seedlings as well as in young developing leaves 

(Sozzani et al., 2010). CYCD7;1 is expressed in late meristemoids and guard mother cells 

during stomatal development and in sperm cells of pollen grain (Patell et al., manuscript 

under revision). These expression patterns support the idea that CYCD gene activity is 

associated with tissues being able to divide. 

 

To understand the roles of CYCDs in plant development, gain-of-function and loss-of-

function mutants have been analyzed.  

cycd1;1 and cycd4;1 mutants delay the onset of cell division in the RAM during seed 

germination, leading to a delay of radicle emergence, suggesting that they are rate-limiting 

(Masubelele et al., 2005). In addition, the generation of the cycd4;1-cycd4;2 double mutant 

reveals that non-protruding cells of the hypocotyl that give rise to the stomata lineage were 

reduced. This indicates an essential role of CYCD4 is to control cell division in the initial 

step of stomata formation (Kono et al., 2007). Constitutive overexpression of CYCD1;1, 

CYCD2;1 and CYCD3;1 causes an increase of the number of dividing cells. However, 

CYCD1;1, and CYCD2;1 affect the cells in the radicle, leading to more rapid germination, 

whereas CYCD3;1 overexpression induced ectopic cell division in the hypocotyl and does 

not induce a faster germination rate (Masubelele et al., 2005). In CYCD3;1 overexpresser 

seedlings, leaf development is impaired, likely due to hyperproliferation of leaf cells, a 

failure to differentiate leaf tissues and an inhibition of endocycles (Dewitte et al., 2003). The 

loss of the three CYCD3 class genes leads to the onset of endoreduplication in the petals 

and young leaves. In addition, in young cycd3 leaves, the number of cells is reduced but 

not the average leaf area. In the SAM, cell number is also reduced. Impaired SAM 

development leads to defects in aerial organ formation. cycd3 cannot generate callus 

without exogenous cytokinin and even with exogenous cytokinin no shoot could be formed. 

These results suggest that CYCD3 genes may be involved in restraining endocycles in 

favor of mitotic cycle and are rate-limiting for cytokinin responses (Dewitte et al., 2007). It 

appears that the loss of several CYCD genes gives stronger phenotypes than in single 

mutants.  

In summary, during plant development, D-type cyclins regulate the cell cycle in order to 

coordinate cell proliferation and tissue differentiation. 
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1.2. Seed development in Arabidopsis thaliana 

1.2.1. Fertilization and formation of seeds 
In Spermatophytes, seeds are composed of three compartments: the embryo, the 

endosperm and the seed integuments or seed coat (Dumas, 2001). They arise from 

fertilized ovules. The ovule is composed of the embryo sac surrounded by the maternal 

sporophytic integuments (Fig. 1.10) (Shi and Yang, 2011). The embryo sac or female 

gametophyte contains seven cells: two synergids, one egg cell, one central cell and three 

antipodiales. These cells are haploid with the exception of the central cell, which contains 

two haploid nuclei. In flowering plants, reproduction is characterized by a double 

fertilization event: both the egg cell and the central cell are fertilized by one haploid sperm 

cell each (Faure et al., 2002). This implies that the male gametophyte or pollen grain 

contains two haploid sperm cells (Hamamura et al., 2012). A vegetative cell surrounds the 

two sperm cells. After its hydration, the pollen grain germinates developing a pollen tube. 

The vegetative cell supports the growth of the pollen tube along the septum in the ovary. It 

brings the two sessile sperm cells to the embryo sac (Higashiyama et al., 1998). A key 

feature of fertilization is that the female and male gametes can only fuse in the same phase 

of the cell cycle (Berger et al., 2006). Prior to fertilization, the sperm cell is in G2 (Nowack 

et al., 2006) and it is assumed that the female gametes are also in G2 (Berger et al., 2006). 

Upon fertilization, the ovule becomes a seed containing two zygotic tissues, the diploid 

embryo derived from the fertilization of the egg cell and the triploid endosperm arising from 

the fertilization of the central cell, and a sporophytic tissue, the seed integuments (Fig. 

1.2B). Seed development requires a co-ordination of growth between the different seed 

comparments and it has been postulated that signals between endosperm and seed 

integuments may be essential for determination of seed size in Arabidopsis (Berger et al., 

2006). 

Figure 1.10. Ovule (A) becomes a seed 
(B) upon a double fertilization event of the 
female gametophyte. The two female 
gametes: the central cell (cc, in green) 
and the egg cell (eg, in blue) are both 
fertilized by one sperm cell giving rise to 
two genetically different zygotic tissues, 
the triploid endosperm (en; 2m/p) and a 
diploid zygote (m/p) that develops into an 
embryo (e) and a suspensor (s), 
respectively. The two synergids (sy) 

release peptides that serve as chemical guidance for pollen tube growth. A 2-cell layered 
outer integument (OI) and 3-cell layered inner integument (II) protect the female 
gametophyte and the zygotic tissues. The antero pole (AP) is at the micropyle (mp) and the 
postero pole (PP) at the chazalal pole (ch). Abbreviations: m, maternal genome; p, paternal 
genome. 



                                                                                                                                                                     Chapter 1 

21 

1.2.2. Embryo development 

Morphological development of the embryo 
In Arabidopsis, embryogenesis is initiated by the fusion of the haploid sperm cell and the 

haploid egg cell. It gives rise to a diploid zygote. The development of the embryo is 

characterized by a well-defined order of cell division planes and cell fate specification, 

although this organization is not apparent in all species (Fig. 1.11, top panel) (West and 

Harada, 1993; Kaplan and Cooke, 1997; Capron et al., 2009; Peris et al., 2010)  

Just after fertilization, the zygotic cell elongates and forms the “proembryo”. Then the 

proembryo divides asymmetrically and anticlinally to give rise to a small apical cell toward 

the endosperm and a larger basal cell at the micropylar region. The apical cell is referred to 

as the embryo proper. The basal cell undergoes several rounds of anticlinal divisions 

forming a file of cells. The top cell of the file is the hypophysis and the file itself is the 

suspensor. The suspensor anchors the embryo to the mother plant. It regulates nutrient 

exchange between the mother and the embryo. Most of the embryo body derives from the 

apical cell except for the embryonic root apex that comes from the hypophysis. The apical 

cell undergoes two longitudinal divisions, producing four cells, followed by transverse 

divisions giving rise to an octant stage embryo. An apico-basal axis can be distinguished 

with an upper and a lower tier, each consisting of four cells. The next division is periclinal 

and differentiates the outer layer, the protoderm precursor of the epidermis, and the inner 

cells, precursors of the ground and vascular tissues. At this stage the embryo contains 16 

cells. The following globular stage is defined by anticlinal divisions in the protoderm, 

leading to the expansion of the protoderm around the ground and vascular tissue 

precursors, and longitudinal and transverse divisions of the inner cells. At this stage, the 

hypophysis divides asymmetrically and transversally, forming the lens-shaped cell and a 

lower cell. These two cells are incorporated into the embryonic root apex, establishing the 

quiescent center and the columella root cap respectively. The embryo progresses to the 

transition stage when the two lobes of the cotyledon start bulging and a bilateral symmetry 

appears. At the transition stage, ground tissues, epidermis, vascular tissues and root 

meristem are distinguishable and the shoot apical meristem is determined. The heart stage 

is characterized by the emergence of the cotelydons. Cotyledon expansion carries on until 

the torpedo stage then the bent-cotyledon stage (also called walking stick) until they reach 

their full length in mature embryos. From late heart stage onwards, the shoot meristem is 

discernible as well as the fundamental three layers of the shoot apex (L1-L2-L3). In 

Arabidopsis, embryo maturation is characterized by the accumulation of nutrient storage 

mainly in cotyledons. Finally the embryo metabolism slows down for the embryo to become 

dormant and sustain desiccation. 



	  

 

Figure 1.11. Seed development in Arabidopsis. 

 

Arabidopsis seed begins development following a double fertilization event, giving rise to 
two zygotic tissues: the diploid embryo and the triploid endosperm. The top part represents 
the different stages of embryo development. The lower part represents the endosperm 
development. The pictures that are my own and the diagrams (modified from Berger (2003)) 
are not to scale. 
 
Embryo development starts upon the fertilization of the haploid egg cell by a haploid sperm 
cell. It gives rise to a diploid cell called zygote. The first division of the zygote is transversal 
and leads to the formation of an apical cell towards the endosperm, giving rise to the embryo 
itself and, a basal cell toward the micropyle giving rise to the suspensor. Early 
developmental stages are named according to the number of cells constituting the embryo. 
At 16-Cell stage, also called dermatogen stage, the protoderm is specified and the 
hypophysis is visible. At the triangular stage, the hypophysis divides transversally and the 
upper cell forms the lens cell that will be incorporated in the embryonic root to form part of 
the root apical meristem (RAM) at the heart stage. The heart stage is characterized by the 
emerging cotyledons and the shoot apical meristem (SAM) is specified in the connecting 
region between the cotyledons. From fertilization to the torpedo stage, cell division is the 
prevailing process by which the embryo develops. From bent-cotyledon (BC, walking stick 
WS) stage onwards, embryo growth is supported by cell expansion rather than cell division. 
 
 
Endosperm development starts with several rounds of synchronous syncytial mitosis from 
stage I to stage VI. From stage VII, division starts being asynchronous between the chalazal 
and micropylar pole resulting in morphologically distinct zones. From stage VIII, the 
endosperm starts its cellularization from the micropylar pole. Cellularization at the chalazal 
pole is delayed and is visible from stage X. After full cellularization, the endosperm is a 
source of nutrients to support the development of the embryo as it reaches the torpedo 
stage. In an Arabidopsis mature seed, the endosperm is limited to a single cell layer called 
aleurone. 
The endosperm arises from the fertilization of the diploid central cell and a haploid sperm 
cell, therefore it is a triploid with a 2m/p genome balance. The change in maternal/paternal 
genome balance leads to a disruption of endosperm development, affecting the length of the 
syncytial and asyncytial phases. The bottom diagrams illustrate these changes. 
 
Abbreviations: A, anterior pole; ap, apical cell; BC, bent-cotyledon stage; bp, basal cell; c, 

cotyleon; cp, chalazal pole; gt, ground tissue; h, hypohysis; hy, hypocotyl; lc, lens cell; mp; 

micropylar pole; P, posterior pole; pd; protoderm; pv, provasculature; QC, quiescent centre; 

ra; radicle; RAM root apical meristem; SAM, shoot apical meristem; su, suspensor; WC, 

walking-stick stage; z, zygote. 
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Molecular genetics of embryo development 

In Arabidopsis, embryo development is characterized by a strict control of cell proliferation 

and cell fate acquisition. This is essential to correctly pattern the plant body with the 

specific tissues in the appropriate domains. During embryo development, the determination 

of cell and tissue types is controlled by many different transcription factors. The 

coordinated development is the product of specific gene expression from the early 

embryonic events following fertilization (Table 1.3).  

Prior to the first asymmetric division, the zygote elongates. This elongation depends on the 

expression of GNOM (GN). A defect in GN expression leads to a symmetric division and 

the development of a ball-shaped embryo. (Mayer et al., 1993; Steinmann et al., 1999; 

Wolters et al., 2011). This elongation is coupled with the acquisition of a polarity of the 

zygote. The zygote polarity appears to be established by the differential expression of the 

WUSCHEL-RELATED HOMEOBOX (WOX) transcription factor. In the mature egg cell and 

in the central cell region nearest to the egg apparatus, WOX2 and WOX8 are expressed. 

This expression persists in the zygote. After the first division, the expression becomes 

differential along the apical-basal axis with WOX8 and WOX9 in the basal cell and WOX2 

in the apical cell (Haecker et al., 2004; Breuninger et al., 2008). A recent study shows that 

differential WOX8 expression is directly activated by the transcription factor WRKY2 

leading to a polar organelle localization that appears to be required for asymmetric division 

of the zygote (Ueda et al., 2011). The embryo polarity and patterning depend on the 

directional transport of the plant hormone auxin and its signaling (Friml et al., 2003). After 

the first zygotic division occurring in an auxin-independent manner (Ueda et al., 2011), 

auxin is transported from the basal to the apical cell via the auxin efflux carrier PIN-

FORMED 7 (PIN7) (Friml et al., 2003). Removing the directional auxin transport leads to 

longitudinal division correlated with a defect in specifying the apical cell. The transverse 

division is also observed in auxin deficient mutants such as monopteros/auxin response 

factor5 (mp/arf5) from the two-cell stage onwards and bodenlos/indole-3-acetic acid 

inducible12 (bdl/iaa12). GN has also been shown to the involved in maintaining the auxin 

gradient. GN encodes for a protein regulating the intracellular trafficking and is involved in 

the positioning of multiple auxin transport membrane proteins (Steinmann et al., 1999). 

These results suggest that auxin is essential for early formation of the apical-basal axis of 

the embryo. 

 

As the embryo progresses through the 16-cell/dermatogen stage, asymmetric periclinal 

divisions generate an outer cell layer with protoderm specification and inner cells giving rise 

to provasculature and ground tissue. At this stage, the radial axis begins to be established. 
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The asymmetric divisions are linked to the expression of MP, BDL and WOX genes that are 

expressed differentially after the transverse division. MP is excluded from the protoderm 

layer, and WOX2 and WOX9 are specifically expressed in the protoderm layer (Mansfield 

and Briarty, 1991; Haecker et al., 2004; Breuninger et al., 2008). In addition, the expression 

of the transcription factors ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) and 

PROTODERMAL FACTOR2 (PDF2) is confined in the protodermal layer (Lu et al., 1996; 

Abe et al., 2003). The atml1/pdf2 mutant does not form a distinct epidermis layer (Abe et 

al., 2003). The inner cells express ARGONAUTE 10 (AGO10) shown to be involved in SAM 

maintenance (Lynn et al., 1999). During progression of embryo development at the 

transition stage, the inner cells divide separating the inner vascular tissues from the outer 

ground tissues. The transcription factor SHORT-ROOT (SHR) is expressed in the 

provasculature (Helariutta et al., 2000). SHR acts non-autonomously in the adjacent 

ground tissue to activate the expression of SCARECROW (SCR). SCR promotes ground 

tissue periclinal division and specification of the endodermal identity during and post-

embryogenesis (Nakajima et al., 2001; Sozzani et al., 2010). Therefore SHR and SCR are 

involved in establishing the radial pattern of the embryonic and mature root. SHR also 

directly activates expression of a number of cell cycle genes, including CYCD6, to promote 

division of the cortical/endodermal initial cell post-embryonically (Sozzani et al., 2010). 

 

Establishment of the root system and its positioning occurs at the 8/16-cell stage. 

Specification of the root pole is seen as a consequence of developmental events taking 

place at the apical pole of the embryo (Weijers et al., 2006). Auxin synthesized by the 

apical cells is accumulated in the hypophysis by a directional transport involving the efflux 

carrier PIN1 located at the basal membrane of each cell (Friml et al., 2003; Friml et al., 

2004). PIN1 expression is controlled by MP and BDL (Weijers et al., 2006). Several genes, 

such as TARGET OF MONOPTEROS 7 (TMO7), SHR and PLETHORA (PLT), have been 

shown to confer hypophysis specification (Nakajima et al., 2001; Aida et al., 2004; 

Schlereth et al., 2010). Once the hypophysis is specified, a transverse asymmetric division 

produces an upper lens-shaped cell. At the heart stage, several divisions of the lens-

shaped cell and its progeny give rise to three cell types : the quiescent center (QC), the 

columella cell and columella stem cell constituting the root cap. 

During embryogenesis, shoot apical meristem (SAM) specification and cotyledon initiation 

occur in the apical domain of the embryo. SAM specification is marked by the expression of 

stem cell identity genes such as WUSCHEL (WUS), SHOOT MERISTEMLESS (STM) and 

HOMEODOMAIN LEUCINE SIPPER III (HD-ZIPIII) (Mayer et al., 1998; Aida et al., 1999; 

Emery et al., 2003). The expression of these genes is activated early during 
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embryogenesis at the 16-cell stage. WUS expression is restricted to a few cells of the SAM 

during embryo development due to negative regulation by the CLAVATA genes (CLV) 

(Schoof et al., 2000). The expression of STM in the central domain is promoted by the 

CUP-SHAPED COTYLEDON (CUC) genes. In a negative feedback loop, STM restricts the 

expression of CUC, creating a boundary between the SAM and the cotyledon primordia 

(Aida et al., 1999). In the SAM, STM counteracts ASYMETRIC LEAVES genes (AS), 

preventing the formation of lateral organ primordia in the STM expression domain. In the 

adjacent regions of the SAM where AS genes are expressed, cotyledon primordia are 

initiated (Byrne et al., 2000). Evidence shows that at the globular stage, the incipient 

cotyledon primordia represent a maximum of auxin response correlated with PIN1 

localization mediating the flow toward these maxima (Benkova et al., 2003). The study of 

CUC expression in mp and pin1 mutant shows that these genes are required for proper 

CUC expression (Aida et al., 2002). The link between auxin and AS for cotyledon primordia 

initiation has not been resolved. 

 

Table 1.3. Genes mentioned involved in embryo development. 

Abbreviation Full Gene name 
AGO ARGONAUTE 
ARF AUXIN RESPONSE FACTOR 
AS ASYMETRIC LEAVES 
ATLM ARABIDOPSIS THALIANA MERISTEM LAYER 
BD BODENLOS 
CLV CLAVATA 
CUC CUP-SHAPED COTYLEDON 
GN GNOM 
HD-ZIPIII HOMEODOMAIN LEUCINE SIPPER III 
IAA INDOLE-3-ACETIC ACID INDUCIBLE 
MP MONOPTEROS 
PDF PROTODERMAL FACTOR 
PIN PIN-FORMED 
PLT PLETHORA 
SCR SCARECROW 
SHR SHORT ROOT 
STM STEM MERISTEMLESS 
TMO TARGET OF MONOPTEROS 
WOX WUSCHEL-RELATED HOMEOBOX 
WUS WUSCHEL 
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1.2.3. Endosperm development 

Morphological development of the endosperm 
In higher plant endosperm development is characterized by four biological processes: 

syncytial divisions, cellularization, differentiation and degeneration (Lopes and Larkins, 

1993; Berger, 1999). These phases can occur in a discrete manner or can overlap with one 

another. However the length of these phases and the degree of division, cellularization, 

differentiation and degeneration vary in different plant species (Lopes and Larkins, 1993).  

During syncytial divisions in Arabidopsis, mitoses take place without cytokinesis leading to 

the formation of the coenocytic endosperm. Cellularization is defined cell walls formation 

around the syncytial nuclei at the end of mitotic cycles. And so during this process, 

individual cells can be visualized (Boisnard-Lorig et al., 2001). The cellularization of the 

endosperm overlaps with syncytial mitosis at the end of the syncytial phase and happens 

gradually throughout the endosperm. The differentiation of the endosperm into tissues 

carrying out different functions is concomitant with the cellularization of the endosperm. It 

has been postulated that the differentiation may originate from heterogeneous distribution 

of mRNA within the cœnocytic endosperm (Doan et al., 1996). During these two processes, 

three endosperm compartments are morphologically and cytologically distinguishable. 

These compartments are patterned along the antero-posterior axis, consisting of the 

micropylar endosperm (MCE) with a dense cytoplasm surrounding the globular embryo, the 

chalazal endosperm (CZE) with few large nuclei, and the peripheral endosperm (PEN) in 

the region linking the CZE and the PEN (Scott et al., 1998; Boisnard-Lorig et al., 2001; 

Sorensen et al., 2002). The polarity along the antero-posterior axis is present in the central 

cell even before fertilization. The anterior pole (AP) of the ovule is where the micropyle, the 

site of sperm cell entry, is located. The posterior pole (PP), at the side opposite the 

micropyle, is the chalaza where the vascular tissues supply the ovule with nutrients 

(Berger, 2003).  

Finally, in Dicot plant, the endosperm is degraded by the embryo and persists a single layer 

called the aleurone layer (Berger, 1999). In Arabidopsis endosperm degeneration occurs 

after full cellularization of the endosperm whereas in peas, the endosperm is degraded 

after syncytial division and before cellularization. In Monocot plants, the endosperm is 

persistent in the mature seed (Lopes and Larkins, 1993). Degeneration of the endosperm is 

linked to seed germination. During germination, embryo revival and growth is supported by 

the use of nutrients stored in the endosperm, allowing the resumption of embryo 

metabolism (Berger, 1999). Despite a possible involvement of ethylene signaling in maize 

(Young et al., 1997), little is known about the factors triggering degeneration or from where 

the signals originate.  
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Endosperm development of Arabidopsis has been described in detail by Boisnard-Lorig et 

al. (2001). It has been divided into 12 developmental stages (annotated I to XII) where the 

four phases mentioned previously overlap (Fig 1.11, bottom panel). Stage I is defined by 

fertilization of the endosperm by a haploid sperm cell. During stage I to IV, three rounds of 

synchronous syncytial divisions take place, giving rise to 8 free nuclei in the tube-like 

endosperm. At stage IV, one or two nuclei migrate to the chalazal pole and the endosperm 

appears like an enlarged tube. From stage V onwards, nuclear divisions start being 

asynchronous with nuclei dividing faster at the anterior pole. During the fourth nuclear 

mitosis at stage V, the nuclei appear to have a different size with larger nuclei containing 

larger nucleoli at the posterior pole than at the anterior pole. At stage VIII, the three 

domains MCE, PEN and CZE are recognizable. At stage IX, the eighth mitotic cycle is 

followed by cytokinesis around the nuclei of the MCE. The event characterizes the end of 

the syncytial phase and the beginning of the cellularization phase. From stage IX onwards, 

the formation of the cell wall progresses from the MCE to the PEN and CZE.  

Molecular genetics of endosperm development 

Endosperm development is triggered by fertilization and it has been shown to be 

dependent on the activity of FERTILIZATION-INDEPENDENT SEED (FIS) genes prior to 

fertilization (Table 1.4). FIS proteins are homologous to the animal Polycomb group (PcG) 

proteins that are chromatin-remodeling proteins (Grossniklaus et al., 1998; Kohler et al., 

2003; Leroy et al., 2007). Three FIS genes have been identified in Arabidopsis: 

FIS1/MEDEA (MEA) (Grossniklaus et al., 1998), FIS2 (Luo et al., 1999), FIS3/ 

FERTILIZATION-INDEPENDENT ENDOSPERM (FIE)(Ohad et al., 1996) and 

MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) (Kohler et al., 2003; Guitton et al., 2004). 

The FIS genes are expressed in the embryo sac during the late stages of its maturation 

and in the embryo and endosperm post-fertilization (Luo et al., 2000). MEA encodes for a 

protein containing a SET domain, which is known in histone lysine methyltransferases and 

required for their enzymatic activity (Grossniklaus et al., 1998) (Thorstensen et al., 2011). 

FIE and MSI1 proteins contain a WD40 domain known to function as a protein-protein or 

protein-DNA (Guitton et al., 2004; Xu and Min, 2011). The FIS protein has a VEFS domain 

characterized by an acidic tryptophane/methionine-rich sequence (Chanvivattana et al., 

2004). The FIS proteins interact to form the Polycomb repressive complex 2 (PCR2) 

(Kohler et al., 2003). fis mutants show automonous development of the embryo sac. In the 

absence of fertilization, mea, fis2 and fie/fis3 mutants display nuclear proliferation in the 

central cell (Ohad et al., 1996; Grossniklaus et al., 1998; Luo et al., 1999). In addition to 

endosperm-autonomous development, msi mutants show additional divisions in the egg 
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cell (Guitton and Berger, 2005). These results suggest that, firstly, the FIS complex is 

required in the female gametophyte to control the arrest of the cell cycle prior to 

fertilization, and secondly that the control of the egg cell arrest may rely on a discrete 

mechanism from the one for the central cell (Berger et al., 2006). FIS2 and MEA/FIS1 are 

imprinted and only the maternal allele is expressed during seed development, but MSI1 

and FIE/FIS3 are not (Kinoshita et al., 1999; Luo et al., 2000; Jullien et al., 2006). FIS2 

silencing in the sperm cell relies on the methylation of a CpG rich region of its promoter by 

the methyltransferase MET1 (Jullien et al., 2006; Schmidt et al., 2013) and the imprinting 

removal depends on DNA glycolsylase DEMETER (DME) activity (Gehring et al., 2006). 

Similarly the FLOWERING WAGENINGEN (FWA) gene, whose function in seed 

development is still unknown, is expressed in the maternal gametophyte and is subject to 

the same silencing mechanism as FIS2, involving MET1 and DME (Kinoshita et al., 2004). 

By contrast, MEA silencing relies on the presence of a methyl group on the lysine residue 

27 of the HISTONE H3 (H3K27) (Jullien et al., 2006). Similarly to FIS2, DME is responsible 

for relieving silencing of the maternal allele at the end of ovule development (Choi et al., 

2004).  

PHERES1 (PHE1) and the SKP1-like protein MEIDOS have been showed to be direct 

targets of the FIS complex (Kohler et al., 2003). The function of these two genes is still 

unknown but their expression is repressed upon FIS binding. In addition, PHE1 has been 

shown to be imprinted and so only the paternal allele is expressed in the endosperm.  

As previously stated, FIS genes appear to be involved in the control of cell cycle arrest in 

the female gametophyte prior to fertilization. Several data show that cell cycle regulators 

are involved in endosperm development. It has been shown that RBR is a direct target of 

MSI1 (Jullien et al., 2008). The rbr1-1 mutant also shows nuclear divisions in the central 

cell in the absence of fertilization, a phenotype similar to that seen in the msi1 mutant as 

well as in the male gamete (Ingouff et al., 2006; Chen et al., 2009).  

 

FIS genes and their targets are involved in endosperm development in late stages of 

gametophyte maturation onwards. FIS2 is also involved in endosperm cellularization as fis2 

fails to cellularize and the embryo development arrests (Hehenberger et al., 2012). Other 

genes are involved in controlling the endosperm development at later stages during the 

cellularization process. Mutants with impaired endosperm cellularization are knolle (kn), 

keule (keu), hinkel (hin), open house (opn), runkel (ruk), späztle (spa), pleiade (ple) and 

endosperm defective 1 (ede1) (Sorensen et al., 2002; Hehenberger et al., 2012). These 

mutants display absence of cellularization in the syncytial endosperm visualized by 

multinucleate enlarged cells in the endosperm. In addition, they often display defects of 
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cytokinesis in the embryo. PILZ group genes include TITAN1 (TTN1) and TTN5. pilz 

mutants do not cellularize due to a lack of organized microtubules (Mayer et al., 1999). 

Other ttn mutants, ttn7 and ttn8 show giant nuclei and non-cellularized endosperm (Liu et 

al., 2002).  

All these genes encode for components involved in the basic machinery of cytokinesis and 

chromosome partitioning at the anaphase of mitosis. KNOLLE is a protein involved in 

vesicle docking and fusion at the cell plate (Lukowitz et al., 1996). KEULE interacts with a 

protein involved in regulating vesicle trafficking (Sorensen et al., 2002). HINKEL is a 

kinesin-like protein that functions in reorganizing the phragmoplast microtubules (Strompen 

et al., 2002). PLEIADE is a microtubule-associated protein (Müller et al., 2002). RUNKEL is 

a protein with a microtubule-binding domain (Krupnova et al., 2009). PILZ encodes for 

proteins of the tubulin-folding complex (Steinborn et al., 2002). 

On the contrary, genes like AGAMOUS-LIKE 62 (AG62), HAIKU2 (IKU2) and MINISEED3 

(MINI3) are shown to repress cellularization. ag62, iku2 and mini3 endosperms show 

precocious cellularization (Garcia et al., 2003; Luo et al., 2005; Kang et al., 2008). It has 

been demonstrated that in WT, the AG62 level drops prior to cellularization suggesting that 

AG62 may act as a suppressor of cellularization during the syncytial development (Kang et 

al., 2008).  

 

Control of the cell cycle plays important roles in the endosperm. Endosperm development 

depends on control of cell cycle arrest in the central cell before fertilization. Proliferation of 

nuclei during the syncytial stage involves multiple rounds of nuclear divisions. Then the 

cellularization stage of the endosperm relies on cytokinesis machinery components 

required for chromosome segregation and formation of the new cell wall. 
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Table 1.4. Genes mentioned involved in endosperm development. 

Abbreviation Full Gene name 
AG62 AGAMOUS-LIKE 62 
DME DEMETER 
EDE1 ENDOSPERM DEFECTIVE1 
FIE FERTILIZATION INDEPENDENT ENDOSPERM 
FIS FERTILIZATION-INDEPENDENT SEED 
FWA FLOWERING WAGENINGEN 
HIN HINKEL 
IKU2 HAIKU2 
KEU KEULE 
KN KNOLLE 
MEA MEDEA 
MINI3 MINISEED3 
MSI1 MULTICOPY SUPPRESSOR OF IRA1 
PHE1 PHERES1 
PLE PLEIADE 
OPN OPEN HOUSE 
RUK RUNKEL 
SPA SPAZTLE 
TTN TITAN 

 

1.2.4. Seed coat 
The seed coat or testa is a protective layer for zygotic tissues. It is typically a sporophytic 

tissue and derives from the diploid integuments surrounding the female gametophyte. In 

the mature ovule, there are two integuments, the outer integument composed of two cell 

layers and the inner integument that consists of one cell layer at the micropylar and 

gradually becomes a three cell layer at the chalazal end (Schneitz et al., 1995; Enugutti et 

al., 2013). In response to fertilization, the integument cells divide, elongate and finally 

differentiate into a seed coat (Windsor et al., 2000). Seed coat differentiation is associated 

with the secretion of mucilage by the outer layer and accumulation of flavonoids such as 

proanthocyanidin throughout the seed coat. The mucilage is secreted between the cell wall 

and the plasma membrane of the outermost layer. The final stage of differentiation occurs 

when the inner layer of the outer integument is completely compressed. During imbibition 

of seed prior to germination, the mucilage layer is hydrated by passive entry of water into 

the cells. The pressure increases within the cell, causing the outer cell wall to break from 

the transverse walls, thus weakening the seed coat (Windsor et al., 2000). Flavonoid 

accumulation gives the brown color to the seed coat. Fertilization is required for the 

proanthocyanidin deposit. Single fertilization of the egg cell is sufficient to induce flavonoid 
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production (Ungru et al., 2008), since in an autonomous endosperm seed, flavonoid 

production is induced. However, the lack of pigment accumulation does not appear to 

impair the development of the embryo and the endosperm (Debeaujon et al., 2003). 

1.2.5. Cross-talk between seed compartments 
Seed development requires control of the individual seed components but also coordination 

of growth between these components. Communication between the embryo, the 

endosperm and the integuments has been unraveled (Fig. 1.12). Signal and 

communication pathways have been partially identified.  

 

The first piece of evidence showing signals from the embryo was illustrated by the work on 

cdka;1+/- mutants. Half of the cdka;1+/- pollen grain population carries a single sperm cell 

that can fertilize the egg cell leaving the diploid central cell unfertilized. Then, the embryo 

initiates its development. Concomitantly, nuclear proliferation in the central cell is visible 

and the acquisition of endosperm fate is demonstrated by the use of an endosperm-specific 

marker (Nowack et al., 2006; Ungru et al., 2008; Zhao et al., 2012). Ultimately embryo 

development ceases at the transition stage, likely due to an under-developed endosperm 

carrying 32 nuclei. Identical results have been reported for fbl17 mutants (Gusti et al., 

2009). These results suggest that a positive signal from the fertilized egg cell activates 

endosperm development during early seed development. However, when cdka;1+/- fertilizes 

a fis-class mutant (mea, fie and fis2), in which seed abortion is linked to the arrest of 

autonomous endosperm development, seeds complete embryogenesis with a maternal 

genome-derived endosperm. Cellularization and differentiation of the endosperm is 

restored and embryo development carries on (Nowack et al., 2007). This result suggests 

the existence of a signal between the endosperm and the embryo at later stages of seed 

development, in addition to signals emitted just after fertilization. 

Existence of signal emitted from zygotic tissues to the maternal integument is illustrated by 

the production of flavonoid by the maternal integument trigged by fertilization of the female 

gametophyte. Flavonoid production is the key event marking the transformation of the 

maternal integument into a seed coat. In the cdka;1 mutant, Similarly, seed containing 

autonomous endosperm also produces flavonoids in the seed coat (Ingouff et al., 2006). 

These results raise the question whether the signal triggering seed coat formation comes 

from the embryo or the endosperm, once its proliferation has been elicited.  

 

Signals to the embryo, which originate from the endosperm, have been demonstrated by 

the specific ablation of the endosperm after its initiation (after two or three rounds of 
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nucleus divisions) using diphtheria toxin A. Following the removal of the endosperm, the 

embryo arrests and seeds abort (Weijers et al., 2003). The glauce mutant also illustrates 

the existence of signals from the endosperm to the embryo. In glauce, two sperm cells are 

produced. The egg cell is fertilized and the embryo develops whereas the endosperm does 

not develop due to either a defect in fertilization of the central cell or a defect in division of 

the primary endosperm nucleus (Ngo et al., 2007). glauce embryos stop their development 

at the late globular stage. Similarly the capulet 2 mutant stops endosperm development 

after one to five divisions and the embryo arrests in the late globular stage (Grini et al., 

2002). This collection of mutants with a seed abortion phenotype reveals the existence of 

the signal(s) from the endosperm to the embryo that allow(s) coordination of seed 

component development. Interestingly, although such mutant phenotypes point to the 

existence of signals, their nature is unknown. It is also unclear to what extent they act to 

co-ordinate relative growth. 

As mentioned above, it appears that the endosperm emits signals to the maternal 

integuments, which in response enter the seed coat differentiation process. The production 

of flavonoids in the integuments of an endosperm-autonomous seed is one piece of 

evidence (Ingouff et al., 2006). iku2 and mini3 mutants produce decreased endosperm, 

embryo and integument size leading to smaller seeds. However, IKU and MINI3 are 

specifically expressed in the endosperm shortly after fertilization (Garcia et al., 2003; Luo et 

al., 2005). Data show that IKU2 and MINI3 are in a common pathway. This result suggests 

that the loss-of-function in the endosperm impacts on cell elongation in the seed 

integument and embryo. 

 

 

 

Signal Known gene involved 
A n.d. 
B IKU2, MINI3 
C FIS1/2/3, GLAUCE, CAPULET2 

D/E SIN1, AP2, GL2, TTG2 
 

Figure 1.12. Cross-talk between seed 
compartments. (A) Diagram of a seed and the 
communication existing between the different tissues. 
(B) List of genes reviewed in this section known to be 
involved in the cross-talk between seed compartment. 
 

 

A B 
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Reciprocally, maternal integuments engender signals to influence embryo and endosperm 

development. The existence of signals to the embryo can be illustrated by the studies of 

short integument 1 (sin1), glabra2, apetala 2 (ap2) and megaintegumenta (mnt)/auxin-

response factor 2 (arf2) mutants. In sin1, the integument growth is disrupted. In sin1+/-, 

embryos fail to specify/produce a SAM and only one cotyledon emerges (Robinson-Beers 

et al., 1992; Ray et al., 1996b). AP2, initially identified as a floral homeotic gene, has been 

shown to be involved in the production of seed coat epidermal structures. In ap2, 

integuments are longer with more elongated cells. Consequently, the endosperm and the 

embryo undergo an outgrowth (Jofuku et al., 1994). mnt/arf2 mutants exhibit cell 

overproliferation in the integuments. A larger endosperm is developed and the final seed 

size enhanced (Schruff et al., 2006). With ap2 and mtn/arf2 examples, a question is raised 

regarding whether the embryo and endosperm phenotype is due to a signal produced by 

the integuments to trigger zygotic tissue growth or whether the outgrowth is a consequence 

of a mechanical constraint exerted by the seed integument that is released. 

TRANSPARENT TESTA GLABRA2 (TTG2) is involved in integument differentiation and 

especially in flavonoid production (Johnson et al., 2002). In ttg2, not only flavonoid deposits 

are affected but also the integument cell size and the endosperm is reduced and thus the 

overall seed size is reduced (Garcia et al., 2005). 

1.2.6. Seed Development, cell cycle and D-type cyclins 

Interface between seed development and cell cycle 
Seed development is characterized by cell proliferation and cell fate specification leading to 

the ultimate cell differentiation, often with an intermediate step of cell elongation (Mansfield 

et al., 1991). As it has been demonstrated, CDKA;1 is essential for seed development as 

the homozygous loss-of-function mutant is embryo lethal (Nowack et al., 2006). The study 

of a dominant-negative cdka;1 mutant reveals defects in embryo patterning such as 

distortion in the apical-basal pattern. Impaired embryo patterning leads to seed germination 

failure, leaf growth defects and incorrect phyllotaxy (Hemerly et al., 2000). The study of 

tobacco CYCA3;2 shows that in antisense expression lines, mature embryos do not display 

properly formed roots, cotyledons or hypocotyls due to a defect of cell proliferation (Yu et 

al., 2003). Other cyclins have been shown to be expressed during seed development. 

CYCA2;1 is expressed in developing embryos and endosperm, from zygote formation to 

the torpedo stage and from the syncytial to cellularized stages respectively (Burssens et 

al., 2000). Studies show that CYCB1;1 is expressed in the three mitotic domains of the 

syncytial endosperm (Boisnard-Lorig et al., 2001) as well as throughout the embryo from 

the globular to the heart stage, in the cotyledons and the vascular tissues at the torpedo 
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and finally in only a few dividing cells of the cotyledons in a mature embryo (Collins et al., 

2012). 

RBR, another cell cycle regulator, has been shown to have an essential role during female 

gametogenesis and seed development. rbr1 shows overproliferation of nuclei in the central 

cell (Ebel et al., 2004); however, the central cell does not acquire endosperm fate (Ingouff 

et al., 2006). RBR has been shown to interact with MSI1 leading to a transcriptional 

repression of MET1. In turn, MET1 repression leads to a reduced of methylation level of 

DNA allowing gene expression which was previously repressed by MET1. As mentioned in 

section 1.2.3., the MET1 known targets in seed development are FWA gene and PcG 

genes such as FIS2 and MEA/FIS1 (Jullien et al., 2008). Therefore these results suggest 

that RBR has a role in the FIS pathway to control proliferation in the female gametophyte. 

 

Pieces of information now start coming together to understand how cell cycle regulation is 

involved in seed development and the developmental coordination of the seed 

components.    

Seed development and D-type cyclins 

Data describing D-type cyclin expression were not collected until recently: it has been 

shown that CYCD4;1 is expressed in fertilized ovules and in embryos at heart and torpedo 

stages (De Veylder et al., 1999) and CYCD3;2 is expressed in developing ovules and early 

developing seeds (Swaminathan et al., 2000). A recent study describes in detail the 

expression pattern of the 10 D-type cyclins during seed development and starts to unravel 

the role of CYCD during seed development (Collins et al., 2012). The use of reporter genes 

shows that CYCDs have both discrete and overlapping expression profiles during seed 

development. For example CYCD3;1 is expressed in early endosperm at the chalazal pole. 

It expression is detected in the embryo from globular to heart stage and is restricted to the 

cotyledons from the torpedo stage onwards. On the other hand, CYCD7;1 does not appear 

to be expressed in the mature ovule or in the developing seed. CYCD3 class genes are 

required for proper seed development as loss-of-function mutants display aborted seeds 

and a delay in embryo development. CYCD3 over-expressers show cell overproliferation 

leading to a delay in embryo development with abnormal and additional divisions. However, 

the CYCD3 overexpressers do not show a defect in endosperm development although this 

might be linked to the RIBOSOMAL PROTEIN SUBUNIT 5A (RPS5A) promoter used, 

which is highly active in the embryo. This study is the first to give some insights into the 

role of D-type cyclins during seed development. However, information remains limited.  
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1.3. Seed size 

1.3.1. Economical impact of seed size 
The population of the Earth is expected to reach 9.6 billion by 2050 (UN News, 2013). The 

population increase implies an increase in demand for food production and the UN predicts 

that a 70% increase in global food production is required by 2030 (FAO, 2009). However, 

arable land has become less available and is likely to continue to do so. To cope with the 

requirement of food production increase, new varieties and/or genetically modified crops 

are potential solutions. These strategies cannot only increase crop yields but may also 

improve the nutritional quality. The majority of food consumed by humans is and/or derived 

from seeds, primarily maize, barley, wheat, soybean and rice. Other seeds are used to 

extract compounds (i.e. oil from Brassica napus, commonly named oilseed rape, and from 

sunflower, Helianthus annus). The drive to improve crop yield through creative engineering 

is reflected in the recent increase of reports concerning the biology and the genetic control 

of seed development. The sequencing of the genome of many crop species (wheat, oilseed 

rape, rice, soybean) will help in engineering crops (International Rice Genome Sequencing, 

2005; Schmutz et al., 2010; Brenchley et al., 2012; Huang et al., 2013). 

1.3.2. Determination and regulation of seed size 
The regulation of final seed size depends on gene expression in each seed compartment, 

the parent-of-origin effect as well as a trade-off between seed size and number.  

The final seed size is affected by the maternal and zygotic tissues. As previously 

mentioned, TTG2, AP2, MTN/ARF2 and the cytochrome P450/KLUH (KLU) are expressed 

in the maternal integuments (Jofuku et al., 1994; Garcia et al., 2005; Schruff et al., 2006; 

Adamski et al., 2009). TTG2 and KLU promote cell expansion of the seed integuments 

whereas AP2 and ARF2 limit integument expansion (Garcia et al., 2005; Jofuku et al., 

2005; Schruff et al., 2006; Ohto et al., 2009). TTG2 and AP2 control cell expansion and 

KLU and ARF2 regulate cell proliferation. In addition, AP2 has been shown to be involved 

in controlling the accumulation of proteins and oils during seed development (Jofuku et al., 

2005). AP2 controls some the main features that plant breeders are interested in, however 

ap2 mutants are not a good candidate as its mutation has pleiotropic effects (Jofuku et al., 

1994). In Arabidopsis, several factors expressed in the zygotic tissues influence seed size. 

IKU, MINI3 and SHORT HYPOCOTYLE are expressed in the endosperm and promote 

endosperm growth (Garcia et al., 2003; Luo et al., 2005; Zhou et al., 2009). The loss-of-

function of each of these genes leads to the production of seeds with a reduced size 

suggesting that these genes are involved in controlling seed size. Other genes controlling 

the seed size are DA1 and ENHANCER OF DA1 (EOD3) genes encoding for a predicted 
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ubiquinin receptor and the cytochrome P450/CYP78A6, respectively (Li et al., 2008; Fang 

et al., 2012). DA1 is expressed throughout the developing ovule and the torpedo embryo 

and loss-of-function of da1-1 leads to enlarged seeds. Despite that EOD3 could not be 

detected in any ovule or seed tissues, overexpression of EOD3 produces enlarged seeds 

both due to cell expansion and cell proliferation in the maternal integuments. Despite the 

fact that DA1 and EOD3 do not act in the same regulatory pathway and are also 

independently of TTG2, their functions in a regulatory pathway have not been found. 

Seed size also appears to be regulated by the plant hormone cytokinin. Plants 

overexpressing the CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene have a 

reduced level of cytokinin (Werner et al., 2001). In CKX overexpresser plants, seeds 

produces were larger and contained an enlarged embryo constituted of more cells that 

were larger (Werner et al., 2003). Similarly, mutants lacking cytokinin receptor (Arabidopsis 

thaliana sensor histidine kinase (ahk)) were shown to produce larger seeds and embryos 

(Riefler et al., 2006). However in this study, it has not been resolved by which mechanism 

the enlargement occurs, whether cell elongation or cell number is affected and whether it is 

a maternal or zygotic effect (Riefler et al., 2006). It is interesting to note that cytokinin can 

regulate cell cycle components. For example, it has been shown that CYCD3;1 expression 

is induced by cytokinin treatment in cell suspension culture and that cycd3 triple mutants 

are impaired in cytokinin responses suggesting that CYCD3 genes link plant hormone 

levels and cell proliferation (Riou-Khamlichi et al., 1999; Dewitte et al., 2003). 

The parental genome dosage is also involved in regulating the seed size and studies have 

shown that the maternal versus paternal expression of genes can influence seed size. In 

the study performed on several Arabidopsis ecotypes, interploidy crosses show that 

doubling the maternal genome (2n) with respect to paternal genome (1n) inhibits 

endosperm development and leads to smaller seeds, whereas the reciprocal crosses, with 

a doubled amount of paternal genome produce enlarged seed. If the parental genome 

number is triple the maternal genome number, the seeds abort (Scott et al., 1998). Inter-

ecotype crosses in Arabidopsis show that seed viability depends only on the male 

genotype independently of the fertilization success whereas the seed size is influenced by 

both the maternal and paternal genotypes (House et al., 2010).  

 

To increase crop yield, breeders have already considered increasing the relative parental 

genome abundance by creating amphidiploid, tetraploid or even hexaploid species. 

Therefore, to increase seed size, new solutions must be looked at. The recent study on D-

type cyclin function in seed development may point to a new direction (Collins et al., 2012). 

Overexpression of CYCD3;1 and CYCD7;1 using a promoter active in dividing tissues 
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(RIBOSOMAL PROTEIN SUBUNIT 5A, RPS5A) induces overproliferation of the 

suspensor, the embryo and the endosperm. However, there is a large proportion of aborted 

seeds correlated mainly with embryo defects. These data raise the idea that final seed size 

enlargement can be achieved by increasing the number of cells. The increase of cell 

number might be accomplished by modifying cell cycle regulation. This can be done by 

changing the spatio-temporal expression of its regulators. In addition, Collins carried out a 

preliminary experiment in which CYCD3;1 and CYCD7;1 were expressed using a two 

component system (GAL4/UAS) under the FWA promoter (Collins, 2008). The aim was to 

investigation the role of seed-targeted expression of a cyclin natively expressed in the seed 

(CYCD3;1) and one that is not natively expressed (CYCD7;1). These initial results suggest 

that CYCD7;1 expression under the FWA promoter increased final seed size whereas no 

effect on final seed size could be observed when expressing the CYCD3;1 gene under the 

FWA promoter. Furthermore, considering that the project was in collaboration with Bayer 

CropScience, and the patent situation, it was interesting to pursue the investigation of 

endosperm-targeted CYCD7;1 expression.  

1.4. Project aims 

With the worldwide increasing pressure to supply more food, the need to increase crop 

yield is urgent. In this work, I aimed to explore the potential for ectopic CYCD expression to 

engineer seed size. This idea was to attempt to increase the number of cells within the 

seed by expression of the limiting cell regulator CYCD. The chosen CYCD is CYCD7;1, as 

it is not natively expressed in the seed and hence might be less prone to other overriding 

regulation. Given the initial results of Collins, seed-targeted expression was chosen to be 

driven by the endosperm-specific promoter, FWA. The effects of ectopic CYCD7;1 

expression on final seed size and on seed development, as well as  molecular mechanisms 

were to be investigated. 

The system of choice is Arabidopsis thaliana, a model plant that has its genome 

sequenced and is very convenient to work with considering its short life cycle. Moreover, 

Arabidopsis belongs to the same family as commercially relevant species such as Brassica 

napus (oilrape seed), Brassica oleracea (wild cabbage) or Brassica rapa (wild turnip), 

which have a longer life cycle. Arabidopsis can be used for a low cost proof a concept. 

Then any useful technology can potentially be transferred to the other Brassicas.  

 

Objectives: 

1- Establish the phenotype of final seed size in lines expressing CYCD7;1 in the 
endosperm during early stages of seed development using available lines with 
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the GAL4/UAS system, and to confirm the effect of ectopic expression with 
newly generated lines in which CYCD7;1 is directly expressed under the FWA 
promoter. 

2- Confirm the spatio-temporal window of FWA expression and follow the 
expression of CYCD7;1 protein using a fluorescent tag. 

3- Carry out a detailed analysis of seed development with seed-targeted CYCD7;1 
expression, looking at mature female gametophyte, embryo and endosperm 
development, effects on the seed coat and the overall seed production by 
plants. 

4- Understand the molecular mechanism by which CYCD7;1 may act for the seed 
size phenotype, by looking for cell cycle interactors  of CYCD7;1 and 
investigating the seed phenotype in any relevant mutant backgrounds of these 
interactors. 
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All chemicals and enzymes were purchased from Sigma-Aldrich Company Ltd., Promega-

UK Ltd., New England Biolabs, Melford Laboratories Ltd, Roche Diagnostics Ltd., Life 

Technologies Corporation or Bioline Reagent Ltd., unless otherwise stated. All media and 

solutions were prepared using demineralized ultra-purity (UHP) distilled water and were 

sterilized by autoclaving at 115°C at 15 psi for 20 minutes or filter sterilized using a 0.2 µm 

filter. When concentrated buffers are listed the final concentration in the reaction was 

always 1X, unless otherwise stated. Unless otherwise stated, all procedures were 

performed at room temperature (RT).  

2.1. General DNA techniques 

2.1.1. Isolation of Arabidopsis genomic DNA 

For cloning procedure 
Genomic DNA used for cloning was extracted from plant tissue (leaf) with Nucleon 

Phytopure Genomic DNA Extraction Kits (GE Healthcare, UK) according to the 

manufacturer’s instructions. Plant tissue was frozen using liquid nitrogen and ground finely. 

First 600 µl of Reagent I was added to the plant powder, mixed and then 200 µl of Reagent 

II was added. After mixing, the samples were incubated at 65°C with constant shaking for 

10 minutes followed by a 20 minute incubation on ice. The DNA extraction was performed 

by adding 500 µl of ice-cold chloroform, then 100 µl of Nucleon PhytoPure DNA extraction 

resin suspension, shaking for 10 minutes at room temperature, centrifugation at 13,000 g 

for 10 minutes and finally by transferring the upper phase containing the DNA into a fresh 

tube. DNA was precipitated with an equal volume of ice-cold isopropanol and centrifuged 

for 5 minutes at 4,000 g. The DNA was washed with 70% ethanol and air-dried. The DNA 

was finally resuspended in 50 µl of TE (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). 

For genotyping 
Genomic DNA extraction was performed with REDExtract-N-AmpTM Plant PCR Kits 

(Sigma, USA) for genotyping. Fresh plant tissue was collected in a tube and 50 µl of 

Extraction Solution was added. After 10 minutes incubation at 95°C, 50 µl of Dilution 

Solution was added. After mixing, the extracted DNA was stored at 4°C. 

Chapter 2 

Material and Methods 
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2.1.2. Isolation of plasmid DNA 
Plasmid extraction was performed with commercial kits, QIAprep Spin Miniprep Kit 

(QIAGEN GmbH, Germany) or with Wizard Plus SV Minipreps, DNA Purification system 

(Promega, USA). These two kits are based on the same principles. Plasmid isolation was 

carried out on 5 to 10 ml of overnight culture according to manufacturer’s instructions. Cells 

were first pelleted and resuspended in the appropriate buffer. Cell lysis was performed by 

adding an alkaline buffer and, after 5 minutes incubation the lysis was stopped with a 

neutralization solution. The lysate was centrifuged for 10 minutes at maximum speed and 

the cleared supernatant containing the plasmid DNA was bound to a column. After several 

washes, the DNA was eluted with elution solution and stored at -20°C. 

2.1.3. Determination of DNA concentration 
DNA concentration was first estimated by comparing the intensity of the band of interest to 

the intensity of the different bands of the DNA fragment size-marker SmartLadder 

(Eurogentec, Belgium), that represents a precise amount if used according to the 

manufacturer’s instructions. 

DNA concentration was determined more precisely using a NanoDrop-1000 

spectrophotometer (ThermoFisher Scientific, USA). This measures on one hand the 

concentration of DNA and on the other hand the purity of DNA samples by measuring the 

ratio of absorbance at 260 nm and at 280 nm. Ratios of 1.8 ± 0.1 are typical of pure DNA 

samples.  

The results from these two methods can be compared. 

2.1.4. Concentration of DNA 
DNA was precipitated by adding 1/10 volume 3M sodium acetate (CH3COONa), pH 5.2 and 

2 volumes of ice-cold 100% ethanol. After mixing thoroughly, samples were incubated at -

20°C for at least 1h30 and centrifuged at 14,000 rpm at 4°C for 20 minutes. The DNA pellet 

was washed twice with ice-cold 70% ethanol and centrifuged for 5 minutes, 14,000 g at 

4°C. The pellet was resuspended in an appropriate volume of water and stored at -20°C. 

2.1.5. Restriction endonuclease digestion of DNA 
DNA samples were digested with restriction endonucleases purchased from New England 

Biolabs (UK) or Promega (UK). Typically 0.5 to 1 µg of DNA was incubated with 5-10 units 

of restriction enzymes, 10X of appropriate buffer and 100X BSA (bovine serum albumine, 

for NEB enzymes requiring BSA) in a 20 µl volume reaction. Depending on enzyme 

characteristics, reactions were incubated at 25°C or 37°C for at least 1 hour 30 minutes. 
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When necessary, enzymes were inactivated at 65°C for 15 minutes. The digestion was 

analyzed by agarose gel electrophoresis. 

2.1.6. Agarose gel electrophoresis 
1% agarose gels were prepared by dissolving agarose (for routine use, Sigma, life 

Science) in 1X TAE buffer (40 mM TrisAcetate, pH 8.0 and 2 mM Na2EDTA, 

AlphaLaboratories, Hampshire, UK). 

SafeView Nucleic Acid Stain (NBS Biologicals, UK) was added to the molten agarose in the 

amount advised by the manufacturer in order to stain the DNA. 

Gel loading buffer (6X bromophenol blue: 0.25% in 30% sterile glycerol) was added to DNA 

samples to visualize the sample prior to sample-loading into the wells, and during 

electrophoresis. 

DNA fragment size-marker SmartLadder was run alongside the DNA samples to estimate 

DNA fragment size and concentration in the sample. 

DNA was electrophoresed at a constant voltage of 80V using BioRad Power Pack 300.  

Bands were visualized using an UV transilluminator U:genius (Syngene) connected to an 

integrated camera to acquire gel images. 

2.1.7. Recovery of DNA from agarose gel and PCR clean-up 
DNA was recovered using the NucleoSpin Extract II PCR clean-up gel extraction protocol 

(Macherey and Nagel, Germany). For gel recovery, the DNA fragment of interest was cut 

out of the gel. For each 100 mg of gel or 100 µl of digestion solution, 200 µl of binding 

buffer was added and heated together at 50°C until the gel was completely dissolved (10 

minutes maximum). The DNA-gel solution was run through a column. DNA was retained 

and washed with the appropriate buffer. Finally, DNA was eluted with the elution buffer. 

2.1.8. Subcloning of DNA 

5’ ends dephosphorylation 
To prevent recircularisation and religation of digested plasmid DNA after blunt end 

restriction digestion reactions, 5’-ends were dephosphorylated using a shrimp alkaline 

phosphatase (SAP, Promega). 10 units SAP/µg of vector were used. Typically 2 µl of SAP 

were directly added to a 40 µl restriction-digestion reaction and incubated at 37°C for the 

time of the digestion reaction. SAP was inactivated by heating to 60°C for 15 minutes. 
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Blunting reaction 
Blunting reactions were performed by removing 3’ overhang or by filling-in 5’ overhang, 

using T4 DNA polymerase (New England Biolabs, UK). Restriction digested DNA 

fragments were blunted by adding dNTPs to a final concentration of 100 µM, 1 unit T4 DNA 

polymerase per microgram DNA and any 10X NEBuffer. The reaction was incubated for 15 

minutes at 12°C and stopped by adding EDTA to a final concentration of 10 mM and 

heating to 75°C for 20 minutes. The chelating agent EDTA was removed from the solution 

using a PCR clean-up protocol as mentioned above. 

Ligation reaction 

Purified restriction digested DNA fragments were ligated using T4 DNA ligase (New 

England Biolabs, UK). Ligations were performed in a final volume of 10-15 µl. Typically a 

ratio 3:1, DNA fragment:vector was used with 10X DNA ligase buffer and 1 µl of T4 DNA 

ligase (1-2 Units). Reactions were incubated at room temperature, approximately 20-24°C 

for at least 1 hour for cohesive ends and 2 hours for blunt ends. The plasmid mixture was 

used immediately to transform E. coli. 

TOPO® cloning (Invitrogen™) 

Invitrogen™ developed a cloning method using topoisomerase I. The enzyme cleaves a 

phosphodiester bond of a double stranded DNA vector releasing the energy that is, in turn, 

used to synthesize a new phosphodiester bond between the opened vector and the PCR 

product. There are several vectors available: pCR®-Blunt-II-TOPO® used with blunt pCR 

product, pCR®2.1-TOPO™ and pCR®II-TOPO® used with 3’A-overhang PCR product 

and, pENTR™/D-TOPO® that requires a forward primer designed with an 5’ CACC 

overhang prior to the sequence of interest. TOPO™ reactions were performed according to 

manufacturer’s instructions: 0.5-1 µl of TOPO™ vector containing the topoisomerase, 1 µl 

of salt solution and 0.5 to 4 µl of fresh PCR product were mixed in a 6-µl volume reaction. 

PCR clean-up was always performed prior to the reaction. The reactions were incubated 

for 1 hour at RT and 1 to 6 µl were used to transform chemically competent E. coli bacteria 

(see section 2.4). 

LR reaction for GATEWAY® cloning 

Gateway® cloning, developed by Invitrogen™, allows the assembly of multiple DNA 

segments by recombination between specific sites (att borders) using a mixture of 

recombinase enzymes, called LR clonase. 

LR reactions were performed according to manufacturer’s instructions. LR reactions were 

performed with 10 fmoles each of attL/attR entry clones (formula to calculate femtomoles 
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from ng of DNA is provided in the instruction), 20 fmoles the plant binary vector (called 

pDEST™)(0.4 µl) and dH2O up to an 8 µl final volume. To enhance the success of LR 

reaction, entry clones with attL or attR sites were linearized by digestion with a restriction 

enzyme cutting the vector outside the att sites once. The digestion was subsequently 

desalted from the enzyme buffer using the PCR clean-up method (section 2.1.7.). 

2.2. Polymerase Chain Reaction (PCR) 

Amplification of DNA from Arabidopsis plants, bacterial cells or purified DNA was 

performed using the Polymerase Chain Reaction, PCR. Depending on the aim of the PCR, 

three different enzymes were used.   

Primers used were synthesized by Eurofins, MWG operon (Ebersberg, Germany) or 

Sigma-Aldrich. Generally primers were designed using PCR Primer Design Tool (Eurofins) 

or AmplifX software (Jullien, 2004). Parameters used were 15-30 base pairs (bp), a melting 

temperature of 55-65°C, a G+C content between 40-55% and a low sequence 

complementarity at their termini to avoid primer-dimers and hair-pin loop formation. The 

primer sequences are reported in Table 2.1. 

The samples were placed into a thermal cycler (Mastercycler pro, Eppendorf AG, 

Hamburg) and parameters were adjusted to enzyme features. 

All resultant PCR products were analyzed by gel electrophoresis. 

2.2.1. Phusion High-Fidelity DNA polymerase, Finnzymes: cloning purposes 
Cloning requires a high accuracy in synthesis, therefore amplification of promoter and full-

length coding sequences was carried out with Phusion High-Fidelity DNA polymerase (New 

England Biolabs). Typical PCR reactions were performed in a 50 µl volume consisting of 

5X Phusion HF buffer, 200 µM of each dNTP (Invitrogen), 0.5 µm of each forward and 

reverse primer, 1 unit DNA polymerase and 1 µl DNA template, made up to 50 µl with 

milliQ ultrapure water. 

A typical PCR cycle was an initial template denaturation at 98°C for 30 seconds, followed 

by 30 cycles of denaturation at 98°C for 10 seconds, annealing at or below the primer 

melting point for 30 seconds and extension at 72°C for 30 seconds/1kb template length and 

a final extension at 72°C for 5-10 minutes followed by cooling to 4°C. 
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2.2.2. Taq polymerase: bacterial recombinant plasmid DNA screen 
PCR reactions were performed to detect Agrobacterium tumefaciens and E. coli 

transformed with recombinant plasmids. They were carried out with GoTaq® (Promega, 

UK) or with Taq PCR Master Mix (Qiagen) in a 10 µl volume. 

GoTaq® PCR reactions were performed with 5X green GoTaq® flexi buffer, 25 mM MgCl2 

to a final concentration of 2.0 mM, 0.2 mM dNTPs, 0.5 µM of each primer, 5 units/µl 

GoTaq® DNA polymerase and one colony as DNA template was directly transfer to the 

PCR mix. 

2X Taq PCR Master Mix from Qiagen (1.5 mM MgCl2, 200 µM each dNTP, 5 units/µl Taq 

DNA polymerase) was mixed with 0.5 µl of each primer, and the same amount of DNA 

template. 

A typical PCR cycle was an initial template denaturation at 94°C for 10 minutes, followed 

by 30 cycles of 94°C denaturation for 30 seconds, annealing temperature at the primer 

melting point for 30 seconds and 72°C extension for 1 minute / 1 kb template length and a 

final extension at 72°C for 5 minutes and gradual cooling to 4°C. 

2.2.3. RedExtract-N-Amp Plant PCR (Sigma-Aldrich): genotyping 
RedExtract-N-Amp Plant PCR (Kit, Sigma-Aldrich) was performed for genotyping. A typical 

reaction was performed in 10 µl volume using 2X REDExtract-N-Amp PCR ReadyMix 

complemented with 2 µl of the prepared DNA extract (stored at 4°C, see section 2.1.1) and 

0.4 µM of each primer.   

A typical PCR cycle was an initial template denaturation at 94°C for 3 minutes, followed by 

30 cycles of 94°C denaturation for 30 seconds, annealing at the primer melting point for 30 

seconds and 72°C extension for 1 minute / 1 kb template length and a final extension at 

72°C for 5 minutes followed by a gradual cooling to 4°C 

 

Table 2.1. Primers used in PCR and RT-PCR, and their associated sequences. 

Primer name DNA sequence (5’à3’) Number 

CYCD7-F-BamHI 

CYCD7-R-SacI 

pFWA-F-HindIII 

pFWA-R-BamHI 

pFWA-F-SacII 

FWA-R-Ex2-AscI 

ggatccATGGATAATCTACTCTG 

acgagctcCTAAATGTAATTTGACATTTCAATTG 

caagcttGGTAGGCTAATAATCAGAAGCCCT 

acggatccTTTCCCTCAATGCAATAACCTGGACA 

gacccgcggTAGGCTAATAATCAGAAGCCCT 

agcggcgcgccCTTCTCGAGATTTCTTTTATTCTGGAACCA 

1 

2 

3 

4 

5 

6 
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Table 2.1. Primers used in PCR and RT-PCR, and their associated sequences (continued).  

Primer name DNA sequence (5’à3’) Number 

M13-F (Uni -21) 

M13-R (-29) 

ACT2-F 

ACT2-R 

rt-FWA-5UTR-F2 

rt-CYCD7-Rv5’-2 

KRP1-F 

KRP1-R 

KRP1-rt-Fw340 

KRP2-rt-F10 

KRP2-rt-R600 

BAR-F 

BAR-R 

LB1a 

FWA-F 

UAS-F 

GAL4-R2 

EGFP1 

TGTAAAACGACGGCCAGT 

CAGGAAACAGCTATGACC 

GAAGAACTATGAATTACCCGATGGGC 

CCCGGGTTAGAAACATTTTCTGTGAACG 

GGTCGAAGTGCTATTTGGTTGTTTAAGG 

CGGTTAACTTCTTTGAGACGA 

ATGGTGAGAAAATATAGAAAAGCTAAAGG 

TCACTCTAACTTTACCCATTGG 

GAATTTGAATCGGCGGTTAA 

CGGTTAGGAGAAGAGAACGAG 

CGTATCTTCCTCCACCAAGTG 

CGGTCTGCACCATCGTC 

TGCCAGAAACCCACGTC 

TGGTTCACGTAGTGGGCCATCG 

ACAGAGGTACGAGCTTGGAC 

GCTGCAGCAAGACCCTTCCT 

GCGTCTTTGTTCACGTTGTC 

AGTCGTGCTGCTTCATGTGGTCG 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 

2.3. Sequence analysis 

PCR products were sequenced using an external service on an ABI3730XL sequencing 

analyzer (Eurofins, MWG, London, UK) or Illumina Genome Analyzer (GeneService, 

Cambridge, UK). Sample preparation was performed according to the manufacturer’s 

instruction. Computer based sequence analysis was performed using Sequencher 4.0 

software (Gene Codes corporation, USA) MACVECTOR 12.7.1 (MacVector, Inc, USA) or 

BLAST online tool (NCBI). 
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2.4. General Escherichia coli techniques 

2.4.1. E. coli strains and growth conditions 
All routine recombinant DNA procedures were performed using E. coli OneShot TOP10 

(Invitrogen) or DG1 (Eurogentec, Delphi genetics) chemically competent cells. These 

strains are sensitive to ampicillin, kanamycin, spectinomycin. These antibiotics can be used 

for selecting transformed colonies and the LacZ test for white/blue screen of recombinant 

clones can be performed. 

E. coli strains were cultivated at 37°C in Luria-Bertani (LB) medium (bacto-tryptone 100g/L, 

yeast extract 5g/L, NaCl 10g/L, pH7). Liquid cultures were incubated with gentle shaking at 

200 rpm. Solid medium was obtained by adding Bacto-agar (15 g/L) and incubated in a 

static incubator. 

2.4.2. Transformations of E. coli strains 
Chemically competent cells were transformed using the heat-stock method (Sambrook and 

Russell, 2001). A 50 µl aliquot of chemically competent cells was allowed to thaw on ice 

before adding 1-5 µl of circular plasmid DNA and incubating on ice for 30 minutes. Cells 

underwent a 42°C heat-shock for 30 seconds and were then incubated on ice for 2 

minutes. To recover, 250 µl of LB was added and cells were incubated for 1 hour at 37°C 

with gentle shaking. 100-250 µl of cells were spread on LB-agar plates with appropriate 

antibiotics and were incubated overnight at 37°C. 

2.4.3. Selection of transformants 
Transformed cells were selected by incorporating appropriate antibiotics into the medium 

(Table 2.2.). Only cells containing the plasmid DNA of interest carrying an antibiotic 

resistance gene are able to grow on such medium. The LacZ test was employed to screen 

for white recombinant colonies by spreading 0.8 mg/ml of X-Gal (dissolved in 

dimethylformamide, DMF) on top of the agar prior to the 37°C, 24-hour incubation with 

cells.  

Clones identified as recombinant were analyzed by PCR to confirm that they were carrying 

the plasmid DNA of interest. Restriction digestion was carried out to ensure the presence of 

the DNA of interest and discriminate PCR false positives. Ultimately the plasmid DNA was 

checked by sequencing (see 2.3).  
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Table 2.2. List of plasmids used and the resistance associated for selection in bacteria and 

plants. NA: Not Applicable (when the vector does not carry T-DNA borders required for 

insertion into the plant genome) 

Plasmid Name Resistance (Bacteria; Plant) µg/ml 

pCR®-Blunt-II-TOPO® 

pCR®2.1-TOPO™  

pCR®II-TOPO® 

pENTR™/D-TOPO® 

pGPTV-Bar 

pBluescript SK- II  

pH7m34GW  

pDONR R2/L3 (venus) 

pDONR L4/R1 

pENTR/D L1 L2 

pGreenI 0029 

25 µg/ml Zeocin or 50 µg/ml Kanamycin; NA 

50 µg/ml Ampicillin or 50 µg/ml Kanamycin; NA 

50 µg/ml Ampicillin or 50 µg/ml Kanamycin; NA 

50 µg/ml Kanamycin; NA 

50 µg/ml Kanamycin; 15 µg/ml phosphinothricin PPT 

50 µg/ml Ampicillin; NA 

100µg/ml Spectinomycin; 25 µg/ml Hygromycin 

50 µg/ml Kanamycin; NA 

50 µg/ml Kanamycin; NA 

50 µg/ml Kanamycin; NA 

50 µg/ml Kanamycin; 50 µg/ml Kanamycin 

2.5. Construction of binary vector for endosperm-targeted CYCD7;1 
expression 

To achieve specific seed-targeted expression, CYCD7;1 expression was placed under the 

control of the FLORAL WAGENINGEN (FWA) promoter. The different cloning steps are 

summarized in figure 2.1 and 2.2. First the 1026 bp coding sequence of CYCD7;1 was 

amplified by PCR using high-fidelity DNA polymerase. BamHI and SacI restriction sites 

were added at the 5’ and 3’ ends respectively. The primers used were CYCD7-F-BamHI 

and CYCD7-R-SacI. CYCD7;1 amplicons were inserted in pCR®-Blunt-II-TOPO® 

according to procedure described in section 2.1.8 to give pCR®-Blunt-II-TOPO®_CYCD7;1 

(Fig. 2.1A). CYCD7;1 was transferred into pBluescript SK- II using BamHI and SacI, 

allowing, in the next step, the insertion of the promoter fragment at the 5’ end 

(pBSC_CYCD7;1, Fig. 2.1B). The FWA promoter was amplified by PCR using high-fidelity 

DNA polymerase and the primers pFWA-F-HindIII and pFWA-R-BamHI (3272 bp), thereby 

adding HindIII and BamHI sites at the 5’ and 3’ ends respectively. The FWA promoter was 

inserted into pCR®2.1-TOPO™ by a TOPO reaction (pCR®2.1-TOPO™_pFWA, Fig. 

2.1C). The FWA promoter was introduced 5’ of the CYCD7;1 in pBluescript SK- II using 

HindIII and BamHI (pBSC_ pFWA:CYCD7;1, Fig. 2.1D). The cassette pFWA:CYCD7;1 was 
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cut out of pBluescript SK- II with HindIII and SacI and inserted in the plant binary vector 

pGPTV-bar  to yield pGPTV-bar_ pFWA:CYCD7;1 (Fig. 2.1E) (Becker et al., 1992). 

 

Figure 2.1. Cloning strategy to construct binary expression vector pGPTV-bar with 
pFWA:CYCD7;1 cassette containing the CYCD7;1 coding sequence under the control of 
the FWA promoter for endosperm-targeted CYCD7;1 expression. 
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Figure 2.1. Cloning strategy to construct binary expression vector pGPTV-bar with 
pFWA:CYCD7;1 cassette containing the CYCD7;1 coding sequence under the control of 
the FWA promoter for endosperm-targeted CYCD7;1 expression (continued). 
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Figure 2.1. Cloning strategy to construct binary expression vector pGPTV-bar with 
pFWA:CYCD7;1 cassette containing the CYCD7;1 coding sequence under the control of 
the FWA promoter for endosperm-targeted CYCD7;1 expression (continued). 



 

  50  

A second construct containing the FWA promoter together with 409 bp of the FWA gene 

annotated dFWA consists of the first two exons and the first intron of FWA encoding for a 

96 amino acid fragment. dFWA contains a homedomain and a nuclear localization 

sequence and might be involved in gene regulation (Soppe et al., 2000; Kinoshita et al., 

2004). dFWA was cloned in frame with the CYCD7;1 coding sequence. The FWA:dFWA 

fragment was excised from pBCH2-pFWA:dFWA:GFP plasmid (Kinoshita et al., 2004) 

using HindIII and BamHI and inserted upstream of CYCD7;1 in pBluescript SK- II 

(pBSC_pFWA:dFWA-CYCD7;1, Fig. 2.2A). The cassette FWA:dFWA-CYCD7;1 was cut 

out of pBluescript SK- II with HindIII and SacI and inserted in the plant binary vector 

pGPTV-bar to pGPTV-bar_ pFWA:dFWA-CYCD7;1 (Fig. 2.2B). Sequencing of the 

recombinant vectors was performed to ensure the correct sequence and frame between 

dFWA and CYCD7;1 had been obtained. 
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Figure 2.2. Cloning strategy to construct binary expression vector pGPTV-bar with 
pFWA:dFWA-CYCD7;1 cassette containing the sequence coding for dFWA in frame with 
the CYCD7;1 coding sequence under the control of the FWA promoter for endosperm-
targeted CYCD7;1 expression. 
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Figure 2.2. Cloning strategy to construct binary expression vector pGPTV-bar with 
pFWA:dFWA-CYCD7;1 cassette containing the sequence coding for dFWA in frame with 
the CYCD7;1 coding sequence under the control of the FWA promoter for endosperm-
targeted CYCD7;1 expression (continued). 
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2.6. Construction of reporters to follow endosperm-targeted CYCD7;1 
expression 

The pBCH2_FWA:dFWA:GFP plasmid was available (Kinoshita et al., 2004). In addition 

two constructs to examine the expression of CYCD7;1 under the control of FWA were built: 

a transcriptional reporter pFWA:3xVENUS and a translational reporter pFWA:dFWA-

CYCD7;1-VENUS. The “VENUS” marker is the fast folding yellow fluorescent protein (YFP) 

variant (Nagai et al., 2002). 

pFWA:3xVENUS was inserted into pGreenI 0029 by one step cloning (Fig. 2.3). The FWA 

promoter was cut from pBSC_pFWA:CYCD7;1 using HindIII and BamHI. The 3xVENUS 

consists of three repeats of the VENUS protein. The 3xVENUS fragment was cut out of 

pCUC2:3xVENUS (Heisler et al., 2005) using BamHI and NotI. The 3xVenus fragment also 

contains the N7 nuclear localization sequence. The two fragments pFWA and 3xVENUS 

were inserted, in one step ligation, into pGreenI 0029 previously cut with HindIII and NotI 

(pGreenI 0029_pFWA:3xVENUS-N7; Fig. 2.3). 

The pFWA:dFWA-CYCD7;1-VENUS translational reporter was made using 3-way 

Gateway® (Fig 2.4). The expression vector pH7m34GW carries attR4 and attR3 sites. R4 

and R3 sites recombine with L4 and L3 respectively. The entry vector pDONR containing 

the fluorescence tag, VENUS, carries R2 and L3 (pDONR_R2-VENUS-L3). The entry 

vector pENTR/D with L1 and L2 contains coding sequence of CYCD7;1 without the STOP 

codon (pENTR/D L1 L2_CYCD7;1). The entry vector pDONR L4/R1 has the FWA promoter 

between the recombination sites (pDONR_L4-pFWA:dFWA-R1). pDONR_R2-VENUS-L3, 

pENTR/D_L1-CYCD7;1-L2 and pDONR_L4-GAL4-R1 were already available (Forzani C., 

unpublished data). The latter vector contains SacII and AscI sites 5’ and 3’ of GAL4 

respectively and between the L4 and R1 borders. pFWA:dFWA was amplified by PCR 

using high-fidelity DNA polymerase, with the  pFWA-F-AscI and FWA-R-Ex2-AscI primers 

and using pBSC_pFWA:dFWA-CYCD7;1 as template. PCR product pDONR_L4-GAL4-R1 

was digested with AscI and SacII and the pFWA:dFWA fragment inserted into pDONR 

L4/R1 in place of GAL4 (Fig. 2.4A). The three entry vectors, pDONR_R2-VENUS-L3, 

pENTR/D_L1-CYCD7;1-L2 and pDONR_L4-pFWA:dFWA-R1 and the expression vector 

pH7m34GW were used together to perform the LR reaction (see 2.1.8) (Fig. 2.4B). The 

plant expression vector pH7m34GW_pFWA:dFWA-CYCD7;1-venus was checked by 

sequencing and used to transform Arabidospis plants. 
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2.7. RNA techniques and reverse transcription PCR (RT-PCR) 

RNA is sensitive to degradation therefore care was taken to use ribonuclease-free 

solutions and tubes. All consumables (plasticware, glassware) were autoclaved prior to 

use. 

2.7.1.  RNA isolation 
RNA was isolated from inflorescence tissue using TriPure Isolation Reagent (Roche) and 

from developing seeds using RNeasy Plant mini kit (Quiagen). Two apices of inflorescence 

stems (cut below the third silique coming out of the flower) or seeds from 10 siliques (at 

different developmental stages) were ground in liquid nitrogen using a 1.5 ml tube and 

pellet pestle.  

TriPure Method 
To disrupt cells and denature proteins (such as nucleases), 1 ml of TriPure was added to 

the powder, which was then homogenized and incubated for 5 minutes at room 

temperature. Then 0.3 ml chloroform was added to the mixture, inverted several times and 

left incubating for 15 minutes. The solution was centrifuged at 10,500 rpm for 15 minutes at 

4°C. The colourless upper aqueous phase was transferred to a fresh tube. The RNA was 

precipitated by adding an equal volume of isopropanol followed by inversion and a 10-

minute incubation at RT. The RNA was pelleted by a 10-minute centrifugation at 4°C and 

the supernatant was discarded. The RNA pellet was washed twice with 70% ethanol, then 

air-dried and finally dissolved in 100 µl pre-heated (50°C) RNase-free water.  

RNeasy Plant Mini Kit (Qiagen) 

The Qiagen RNeasy Plant Mini kit was used according to manufacturer’s instructions. Cell 

disruption and protein denaturation were performed by adding 450 µl Buffer RLC 

supplemented with β-mercaptoethanol and vigorous vortexing. The lysate was transferred 

to a QIAshredder spin column to homogenize it. After 2-minutes full speed centrifugation, 

the flow-through was transferred to a fresh tube. 0.5 volumes of ethanol was added and 

mixed. The sample was transferred to a RNeasy spin column to bind the RNA and 

centrifuged for 30 seconds at 10,000 rpm. The RNA was washed once with 750 µl buffer 

RW1 and twice with 500 µl Buffer RPE. 15-second centrifugation at 10,000 rpm was 

applied between each wash.  Finally the RNA was recovered from the column using 50 µl 

of RNase-free water and a 30-second centrifugation at 10,000 rpm. 
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Removal of DNA contamination  
The TURBO DNA-freeTM kit was used according to manufacturer’s instructions (Ambion). 

Half of the RNA sample was incubated with DNaseI and 10X TURBO DNase buffer at 37°C 

for 30 minutes. DNase inactivation was performed by adding 0.1 volume DNase 

inactivation buffer. After a gentle mix and 5-minute incubation at room temperature, the 

solution was centrifuged for 1.5 minutes at 10,000 rpm. The upper clear phase containing 

the RNA was transferred to a fresh tube. 

2.7.2. Determination of RNA yield and purity 
The total amount and purity of RNA was quantified by UV spectrophotometry using a 

NanoDrop-1000 spectrophotometer (ThermoFisher Scientific, USA). The absorbance of 

samples at 260 nm (A260), 280 nm (A280) and 230 nm (A230) was measured. The amount 

was determined at A260 whereas a high purity was defined by A260/A280 ratio and A260/A230 

ratio, that should be greater than 2.0.  

The integrity of RNA samples was determined by gel electrophoresis. Prior to use, 

electrophoresis apparatus was cleaned with 20% SDS (Sodium dodecyl sulfate) solution to 

remove any trace of RNases. A 1% agarose gel was used to visualize two discrete bright 

bands (28S and 18S ribosomal RNA) as well as few fainter bands of lower molecular 

weight. RNA samples with sufficient yield and of good quality were used for analysis. 

2.7.3. Single stranded cDNA synthesis 
The first strand cDNA synthesis was performed using RETROscript RT-PCR kit (Ambion) 

or RevertAid M-MuLV Reverse Transcriptase (RT, Fermentas) and oligo(dT) primer 

(T11VN, Eurogentec) according to the manufacturer’s instructions. Both methods follow the 

same principle. Firstly, 0.5-1 µg of total RNA was added to 2 µl 50 µM oligo(dT) and 

nuclease-free water was added to a final volume of 12 µl. The mixture was incubated at 

65°-70°C for 3-5 minutes and chilled on ice to facilitate the hybridization of oligo(dT) with 

the poly(A) tails of mRNAs. Then the following components were added to a total volume of 

20 µl:  RT buffer (10X Ambion buffer or 5X Fermentas buffer), 2-4 µl dNTP mix (1 mM final 

concentration), RNase inhibitor (20 units), RT (100 units Ambion or 200 units Fermentas). 

Reactions were incubated at 42°C for 1 hour followed by a 10-minute incubation at 94°C 

(Ambion) or 70°C (Fermentas). Single stranded cDNA samples were stored at -20°C and 

analyzed by PCR. 

2.7.4. Semi-quantitive RT-PCR amplification using cDNA or RNA template 
The expression level of a gene of interest was estimated using semi-quantitative RT-PCR. 

RT-PCR was performed using one of two methods based on the nucleic acid template 
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used: (1) cDNA template or (2) RNA samples using OneStep RT-PCR kit (Qiagen). For 

each gene, primer sets, annealing temperature (Tm) and number of cycles were optimized 

to stop the reaction before the point of product saturation. After gel electrophoresis and 

DNA staining, the amplicons produced in different samples could be compared by 

correlating the amplicon band intensities on a gel.  

RT-PCR on cDNA was performed using Taq PCR master Mix (Qiagen) using the 

conditions described in section 2.2.2, but the initial denaturation step was performed at 

94°C for 3 minutes instead of 10 minutes. 

The OneStep RT-PCR kit allows cDNA synthesis and PCR in a single step. RT-PCR mix 

was made in a final volume of 50 µl (in 200-µl PCR tube) using 100 ng of total RNA, 5X 

Qiagen OneStep RT-PCR buffer, 2 µl dNTP mix (with a final concentration of 400 µM of 

each dNTP), each primer at 0.6 µM final concentration and 2 µl OneStep RT-PCR enzyme 

Mix. The thermal cycler was set for 4 distinct steps: first a 30-minute incubation at 50°C to 

produce singled stranded cDNA by reverse transcription, then an initial PCR activation step 

at 95°C for 15 minutes inactivating the reverse transcriptase, denaturating the cDNA as 

well as activating the HotStartTaq DNA polymerase, thirdly a 3-step-cycling repeated 25 to 

35 times with a 30-second denaturation at 94°C, 30-second annealing at 5°C below the Tm 

required by the primer set and 1-minute extension at 72°C, and a final extension performed 

at 72°C for 10 minutes. 

2.8. Agrobacterium mediated transformation of Arabidopsis 

Electrocompetent Agrobacterium tumefaciens (GV3101 strain containing pMP90 plasmid) 

were used to transform Columbia-0 ecotype of Arabidopsis thaliana. 

2.8.1. Electrocompetent Agrobacterium 
GV3101 A. tumefaciens were grown for two days at 28°C on LB agar plates with 50 µg/ml 

rifampicin to select for the Agrobacterium genomic DNA containing the integrated rifampicin 

resistance gene and 20 µg/ml gentamycin to select for pMP90. One colony was used to 

inoculate 5-10 ml LB with the same antibiotics mentioned above and grown overnight at 

28°C. 400 ml of LB complemented with antibiotics was inoculated with the overnight culture 

and incubated at 28°C until OD600 reached 0.6. Cells were centrifuged at 4500 rpm for 15 

minutes at 4°C. Several washes were performed by resuspending the pellet sequentially in 

1, 0.5. and 0.02 volumes of ice-cold 10% glycerol, with an intervening centrifugation step. 

Finally cells were resuspended in 0.005 volumes of 10% ice-cold glycerol, aliquoted in 50 

µl volume and quickly frozen in liquid nitrogen. Cells were stored at - 80°C until required. 
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2.8.2. Agrobacterium transformation 
1 µl of plasmid DNA was added to a 50 µl aliquot of GV3101 cells and transferred into a 

pre-chilled electroporation cuvette. A pulse was then applied (Ec2 program, 2.4 kV, 25 µF) 

with a BioRad electroporator. After adding 1 ml of LB, the bacterial suspension was 

incubated for 2 hours at 28°C with gentle shaking. The bacterial culture was spread on LB 

agar plates containing 50 µg/ml rifampicin, 20 µg/ml gentamycin and the appropriate 

antibiotic to select for the plasmid of interest. The growth occurred during 2 days at 28°C. 

One colony containing the plasmid of interest – checked by PCR – was used to inoculate 5 

ml LB with the antibiotics mentioned above. 

2.8.3. Arabidopsis transformation using the floral dipping method 
A. thaliana was transformed using the floral dipping method (Weigel and Glazebrook, 

2006). One single A. tumefaciens colony containing the desired plasmid was picked and 

used to inoculate 5 ml LB supplemented with 50 µg/ml rifampicin, 20 µg/ml gentamycin and 

the appropriate antibiotic for the antibiotic resistance carried by the plasmid of interest. 

Cultures were incubated for 24 hours at 28°C, 200 rpm shaking. 1 ml of 24-hour culture 

was used to inoculate 200-400 ml LB culture with antibiotics as above. After a 24-hour 

incubation, OD600 was recorded. The cells were harvested by centrifugation at 4500 rpm for 

15-20 minutes and the supernatant was discarded. Cells were resuspended at a 

concentration of OD600 = 0.8 in infiltration medium containing 5% sucrose and 0.05% Silwet 

L-77. Plants with multiple floral stems were transformed by inverting them in the infiltration 

medium and allowing them to soak for 1 minute. Plants were then placed in sealed plastic 

bags and left under low light for about 16 hours. The plants then were removed from the 

bags and grown under normal conditions. 

2.8.4. Recovery of transgenic plants 
Agrobacterium-mediated transformation of Arabidopsis shows a 0.1-1% efficiency (Weigel 

and Glazebrook, 2006). Seeds harvested from the plants dipped are named T1 seeds. To 

identify transgenic T1 plants, all seeds were surface sterilized (see below) and sown on 

GM medium containing the selective agents for which resistance was carried by the T-DNA 

inserted and 200 µg/ml cefotaxime to kill any agrobacteria present on T1 seeds. After 7-15 

days of growth, transformed T1 seedlings produced true leaves and the lawn of sensitive 

plants turned either yellow for kanamycin and phosphinothricin (PPT) selection or stayed 

small and green for hygromycin selection. Resistant T1 seedlings were transferred onto 

soil. 
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2.9. Plant growth conditions 

2.9.1. Seed sterilization 
Sterilization solution (5 g/L sodium dichloroisocyanurate dihydrate (Chlorifix, Bayrol), 70% 

ethanol) was prepared by first dissolving an appropriate mass of sodium 

dichloroisocyanurate dehydrate in water and then adding 100% ethanol to a final 

concentration of 70%. Seeds were sterilized in the sterilizing solution for 10 minutes. Seeds 

were washed with 95% ethanol 3 times before drying.  

2.9.2. Growth condition in vitro 
After seed sterilization, plants were grown in vitro on germination medium (GM) plates 

containing 4.4 g/L Murashige and Skoog medium (MS), 1.5% sucrose, 1% agar, 0.5 g/L 

MES buffer (2-(N-morpholino) ethansulfonic acid), pH 5.8. For transgenic plants carrying 

resistance genes, GM plates were supplemented with the appropriate selective agent (50 

µg/ml kanamycin, 15 µg/ml PPT, 25 µm/ml hygromycin). To screen for transformant T1 

plants, 200 µg/ml cefotaxime was also added to GM plates to kill agrobacteria that could 

still be on seeds. Seeds on plates were left at 4°C for 2-3 days and then transferred to a 

growth chamber with 16h-light/8h-dark, 21°C and 70% humidity. After about 15 days, 

resistant seedlings were scored and transplanted to soil. 

2.9.3.  Growth conditions on soil 
Seedlings grown in vitro were transferred to a mixture of 1 part horticultural sharp sand and 

2 parts Sinclair professional All Purpose Growing Medium compost. Plants were watered 

once every 2-3 days. Plants were grown in controlled environment rooms at 21°C, with a 

16-hour photoperiod. 

2.10. Arabidopsis genetics and crossing 

2.10.1. Determination of apparent transgene copy number 
Following Arabidopsis transformation, the number of unlinked copies of the transgenic 

cassette containing a resistance gene (see table 2.2) that had integrated into the genome 

of transformants (T1 plants) was estimated. T2 seeds harvested following self-fertilization 

of T1 plants were surface sterilized and plated on GM supplemented with the appropriate 

selective agent. The ratio of resistant:sensitive seedlings was recorded. Based on 

Mendelian genetics, a typical ratio of 3 resistant: 1 sensitive suggests a single T-DNA 

insertion in the Arabidopsis genome. These resistant T2 plants were transferred onto soil. 
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2.10.2. Isolation of homozygous lines 
The selected T2 plants were allowed to self-fertilize. T3 seeds generated were harvested 

and sown on GM with the appropriate antibiotics. T3 seeds showing 100% resistance were 

kept as homozygous for the insert based on the resistance marker. For each construct, 

several independent lines containing a single homozygous T-DNA were used for further 

analysis. 

2.10.3. PCR confirmation of transgene integration 
To confirm that the T-DNA did not integrate only the selectable marker but also the DNA 

cassette of interest, PCR was performed using RedExtract-N-Amp Plant PCR (Sigma-

Aldrich) and primers to specifically amplify fragments of the transgene of interest (primers 

are detailed for each result chapter). In parallel, RT-PCR was performed to compare the 

level of expression of the transgene between the different lines and a wild-type Columbia-0 

(WT Col-0) (see 2.7). 

2.10.4. Procedure for crossing  
All parent lines used for crossing were homozygous. Flowers from the primary 

inflorescence stem were used for crossing. 2-3 unopened flowers in which petal elongation 

had started were emasculated by removing sepals, petals and finally stamens with fine 

forceps. The unwanted flowers on the stem were removed. After leaving the gynoecium to 

develop for 2 days, pollination was performed by transferring the pollen from ripe stamens 

onto the stigmatic papillae of the gynoecium until the latter was saturated with the donor 

plant pollen. To avoid contamination with unwanted pollen, forceps were regularly rinsed 

between crosses with 70% ethanol followed by a wash with dH2O. Successful pollination of 

gynoecia was observed 2 days later by the gradual elongation of developing siliques. 

This procedure was also used to follow seed development at specific time points.  

The emasculation procedure and pistil development was also performed to study the 

mature female gametophyte in chapter 4. 

2.11. Assay for  β-glucuronidase activity (GUS) 

GUS staining was performed on seedlings, flowers and seeds (Jefferson et al., 1987; 

Stangeland and Salehian, 2002). For seeds, siliques were sampled and cut open at each 

end and along the septum using single-edge blades. Plant samples were fixed in 90% ice-

cold acetone for 15-30 minutes before being washed twice with 50 mM sodium phosphate 

buffer pH 7.2. Specimens were immersed in GUS buffer (50 mM sodium phosphate buffer 

pH 7.2, 0.5 to 2 mM K3Fe(CN)6, 0.5 to 2 mM K4Fe(CN)6, 1 mg/ml X-Gluc and 0.2% Tween 
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20). Samples were vacuum infiltrated for 5 minutes and then incubated at 37°C in the dark 

for 6-24 hours. The staining buffer was removed. Seedlings and flowers were cleared in 

100% ethanol for 1-2 days and then rehydrated with an ethanol series of 70%, 50% and 

30% prior to microscopic examination. Siliques were washed several times with ethanol: 

acetic acid (1:1). A clearing solution of chloral hydrate:dH2O:glycerol (4:3:1) was used to 

mount sampled seeds from the siliques or seedlings and floral organs, 24 hours or 1 hour 

respectively prior to exanimation. 

2.12. Histological techniques  

2.12.1. Sample fixation 
For microscopic analysis, samples were fixed. Prior to DAPI staining, pistils containing 

unfertilized ovules were cut at both ends and opened along the septum. Samples were 

placed in FAA fixative solution (2 volumes 35% formaldehyde, 17 volumes 95% ethanol, 1 

volume acetic acid) and a vacuum was applied for 10 minutes. Samples were incubated at 

4°C overnight. After washing twice with dH2O, ovules were extracted with a surgical needle 

(0.3x13 mm, BD Microbalance) and placed in 50 µl of DAPI stain (see below). Samples 

were stored at 4°C in the dark for 7 days prior to analysis. 

When ovules or seeds were observed using Differential Interference Contrast (DIC), a 

fixative solution of ethanol:acetic acid (Et:Ac; 3:1) was used. Siliques or pistils were cut 

open and incubated in Et:Ac for 1- 24 hours at 4°C. Ovules or seeds were then cleared and 

mounted in chloral hydrate:dH2O:glycerol (4:3:1) and observed under DIC. 

2.12.2. Cell wall staining  
Embryo cell walls were stained with Schiff and propidium iodide (PI) allowing optical 

sectioning of plant tissue using confocal laser scanning microscopy (Truernit et al., 2008). 

Arabidopsis seeds were imbibed in water at 4°C for 2 days. Seed coats were removed 

using surgical needles. Embryos were transferred to 1 ml fixative (50% methanol and 10 % 

acetic acid) and stored at 4°C until observation. Prior to confocal imaging, fixative was 

removed and embryos were washed with dH2O. Embryos were incubated for 20-40 

minutes at RT in 1% periodic acid. Embryos were washed with dH2O and incubated in 

Schiff reagent with PI (100 mM sodium metabisulphite and 0.15N HCl ; PI to final 

concentration of 0.1 mg/ml was freshly added for 1-2 hours or until the embryos were 

visibly stained). The embryos were rinsed with dH2O and cleared in chloral hydrate solution 

for a few days before being mounted in chloral hydrate:dH2O:glycerol (4:3:1) for confocal 

observation. 
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2.13. Microscopy, image processing and phenotype analysis 

2.13.1. Microscopy and photography 
Wholemount preparations were examined using a Nikon SMZ-U dissecting microscope and 

photographed with the attached digital zoom camera Kodak DC290/MDS90. All pictures 

were captured with Adobe Photoshop 6.0.  

Seed pictures for seed size measurement were acquired using a LeicaFire Cam digital 

camera attached to a Leica MZ16F dissecting microscope. 

 

Cleared samples such as ovules and seeds were observed under a Zeiss Axio Imager M1 

microscope equipped with DIC optics. Pictures were acquired using an attached Axiocam 

MRC5 camera and pictures were processed using AxioVision 4.7 image analysis software.  

 

Live imaging of fluorescent proteins was carried out with a Zeiss LSM 710 Meta confocal 

microscope, using a DIC filter. Laser, filter and range of fluorescent protein emission 

wavelengths used are detailed in table 2.3. DAPI staining of nuclei used VECTASHIELD® 

mounting medium for fluorescence with DAPI (Vector Laboratories, Inc). Prior to DAPI 

staining, samples were fixed in FAA as mentioned above. Green fluorescent protein (GFP) 

and modified yellow fluorescent protein (VENUS) were added to the protein of interest 

during cloning procedures. PI was diluted 250X from 4 mg/ml to stain cell walls. 

 

Table 2.3. Confocal microscope settings and fluorescence 

Stain Laser for excitation 
(nm) 

Filter Range of fluorescence emission 
(nm) 

DAPI 
GFP 

VENUS 
PI 

405 
488 
514 
543 

MBS 405 
MBS 488 

MBS 458/514 
MBS 488/543 

410-585 
493-592 
519-621 
493-572 

2.13.2. Image analysis  
Images were processed using ImageJ. Cell length, cell area, cell counting and embryo 

length were acquired using the tools provided by the package.  

Seed parameters were generated using Seed Measurer, a purpose-written ImageJ plug-in 

(Forero-Vargas M., unpublished data). The program gives seed area, length and width as 

features.  
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Embryo volume was measured from Z-stacks covering the whole volume. An ImageJ plug-

in, Embryo 3D, reconstitutes the 3-D structure of the embryo and calculates the volume 

(Forero-Vargas M., unpublished data). 

2.13.3. Statistical analysis 
Statistical analysis was performed with the statistics package PASW 16.0 (SPSS Inc. 2007. 

Chicago). Statistical analyses were performed using one-, two-way ANOVA and χ2 tests 

depending on the experiment and the data comparison.  

Prior to performing ANOVA test, four main assumptions were verified: the samples were (1) 

randomly selected and (2) independent by experimental design, (3) the population was 

normally distributed and (4) the homoscedasticity (or equality of variance of the different 

populations) was verified. The normality assumption was tested using Kolmogorov-Smirnov 

or Shapiro-Wilk tests. The homoscedasticity was verified using Levene’s test. Normality 

and homoscedasticity were verified when p-value of these latter tests was greater than the 

significance level (α)  of 0.05 (p-value> α =0.05). Therefore ANOVA tests were performed. 

When the normality and homoscedasticity were not verified (p-value<0.05 for Kolmogorov-

Smirnov, Shapiro-Wilk and Leneve’s tests), non-parametric test (Kruskal-Wallis test) was 

performed. When performing ANOVA or Kruskal-Wallis tests, a significant difference of the 

mean between the different populations was concluded when the p-value was smaller than 

0.05. When performing ANOVA test, Bonferroni multiple comparison tests were run 

simultaneously to compare each mean of the different sample to another, in order to 

discriminate the one(s) that was/were significantly different.  

χ2 or Goodness-of-fit test was used to conclude whether the observed frequencies in the 

different populations fit a particular (hypothezised) distribution (Table 4.2 and Fig. 4.5A). A 

significant difference between the observed and hypothesized frequencies was concluded 

when the p-value was smaller than 0.05. 

2.14. Yeast-Hybrid assay 

2.14.1. Yeast strain and media 
Yeast-hybrid assays were performed in the yeast strain S. cerevisiea PJ69-4A (MATa leu2-

3,112 ura3-52 trp1-901 his3-200 gal4Δ gal80Δ GAL-ADE2 lys2::GAL1-HIS3 met2::GAL7- 

LacZ)  (James et al., 1996). PJ69-4A was grown at 30°C in YDP broth (1% yeast extract, 

2% peptone and 2% dextrose) or on YDP agar (YDP supplemented with 2% bacto-agar). 

Selection for transformants or for interaction was performed on SD medium (1.67g/l yeast 

nitrogen base without amino acids and containing ammonium sulfate, 2% glucose and 
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specific amino acids required for strain growth; SD agar was obtained by adding 2% bacto-

agar). 

Yeast strain PJ69-4A is auxotrophic for methionine (M), uracil (U), tryptophan (T), leucine 

(L), histidine (H) and adenine (A). Once transformed with the following plasmid DNA (see 

below), it became prototrophic for tryptophan, leucine and uracil respectively. Hence to 

select transformed cells, SD medium was supplemented with 20 µg/ml L-methionine, 20 

µg/ml L-histine and 40 µg/ml adenine.  

2.14.2. Vectors for Yeast-Three-Hybrid (Y3H) assay  
Y3H assays were performed to test the interaction between three proteins at the same 

time: CYCD7;1, CDKs and KRPs. Vectors containing the GAL4 DNA binding domain (BD) 

were pDEST32 (Invitrogen) and pBI880, a derivative of pPC62 (Chevray and Nathans, 

1992). Vectors containing activation domain (AD) were pDEST22 (Invitrogen) and pPC86 

(Chevray and Nathans, 1992). The third protein was cloned in pFL61, a vector carrying a 

2µ plasmid origin, and expressed under the constitutive PHOSPHOGLYCERATE KINASE 
(PGK) promoter (Minet et al., 1992). The 7 KRPs and CYCD2;1 cDNA fused to the GAL4 

AD  in pPC86_KRP and pBI880_CYCD2;1 respectively were available in the laboratory 

(Sanz et al., 2011). All the CDKs (CDKA;1 CDKB1;1 CDKB1;2 CDKB2;1 and CDKB2;2) 

and CYCD7;1 cDNA fused either to the GAL4 AD in pDEST22 or to the BD in pDEST32 

(de Jager S. unpublished data) were also available. All the KRPs were inserted in pFL61. 

pFL61_KRP2 was already available (Sanz et al., 2011). KRP3/4/5/6/7 cDNAs were excised 

from pPC86 with SalI and NotI and introduced into the NotI site of pFL61 after blunting. The 

KRP1 cDNA was amplified by PCR with KRP1-F and KRP1-R (see table 2.1) at Tm 58°C. 

After PCR clean-up (Macherey and Nagel, see section 2.1.7), KRP1 was cloned in pCR®-

Blunt II TOPO vector (Zero Blunt® TOPO® PCR technology, InvitrogenTM) according to the 

manufacturer’s instructions (see section 2.1.8). The KRP1 cDNA was excised from the 

pCR®-Blunt II TOPO vector with EcoRI-HF and introduced into the NotI site of pFL61 after 

blunting. To ensure the right orientation of the KRP cDNA sequence in pFL61, pFL61_KRP 

vectors were sequenced. 

2.14.3 Yeast transformation 
Yeasts were co-transformed with 3 different plasmids (1 with AD, 1 with BD and 1 pFL61, 

as mentioned above) using high efficiency yeast transformation protocols (Amberg et al., 

2006). A starter culture was initiated by inoculating 5-10 ml YDP with one colony from a 

YPD plate and incubating overnight at 30°C, 200 rpm. A new culture was inoculated to 0.2 

OD600 with the overnight culture and incubated at 30°C, 200 rpm. Typically the culture 

volume used was equivalent to 10 ml for each transformation to be performed. When the 
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OD600 reached 0.5-0.8 (3-5 hours), cells were centrifuged for 3 minutes at 3000g and 

washed with 5 ml sterile water or half of the initial culture volume. Cells were centrifuged 

again, washed in 1 ml LiAc/TE (1X TE, 0.1M LiAc, 1/10 initial volume) and transferred to a 

1.5 ml tube. Cells were centrifuged for 30 seconds at top speed. Finally cells were 

resupended in transformation mix by gentle vortexing in 50 µl LiAc/TE, 25 µl 2 mg/ml 

salmon sperm single-stranded carrier DNA (previously boiled at 95°C for 5 minutes and 

chilled on ice), 300 µl 40% PEG (freshly made from 50% PEG, polyethylene glycol MW 

3350, Sigma P3640) and 0.5 µg/µl of each plasmid DNA. Cells were incubated in the 

transformation mix for 30 minutes at 30°C and then underwent a heat-shock at 42°C for 20 

minutes. Cells were pelleted for 1 minute at 3000 rpm and the transformation mix was 

removed. Cells were resuspended in 100 µl of sterile water by gently pipetting. Cells were 

spread out on plates to select the transformants carrying all the plasmid DNAs of interest 

(SD-TLU) and incubated at 30C for 2-4 days. 

2.13.4. Selection for interactions 
Histidine and adenine auxotrophy as well as lacZ expression were used to select 

interactions between the proteins of interest. Growth on plates lacking histidine and 

adenine and the expression of the lacZ reporter indicate an interaction between proteins 

expressed from the plasmid DNA. 

Histidine and Adenine auxotrophy 

2-4 days after transformation and for each plasmid combination, 4 -5 transformants 

growing on SD-TLU were used to inoculate 2 ml SD-TLU culture. After overnight growth at 

30°C, 200 rpm, each culture was diluted to 0.5 OD600 and 10 µl was spotted onto plates 

non-selective for the interaction (SD-TLU), but selective for transformants carrying the 

three plasmids of interest, and onto plates selective for the interaction, lacking either 

adenine or histidine. Histidine selection has low stringency creating false positive results, 

thus 30 mM of the inhibitor of the enzyme activity encoded by the HIS3 gene, 3-amino-1,2-

4-triazole (3-AT, 1M filtered sterilized stock added to molten medium) was added. Spotted 

plates were incubated at 30°C for 3-7 days. At 3 days, the SD-TLU plates were checked for 

the growth of viable transformants and subsequently used to perform the β-galactosidase 

assay. At 7 days, the plates selecting for the interaction were checked and colony growth 

was examined to confirm interactions. 

Identification of lacZ expression 

Expression of the lacZ reporter gene in transformants was detected using the X-Gal 

agarose overlay assay (Duttweiler, 1996). After 3-day growth on SD-TLU, yeast plates 
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were overlaid with 10 ml 5 mg/ml agarose in 0.45 M potassium phosphate buffer (KPO4, pH 

7.0), 6% DMF, 0.1% SDS, 5 µl β-mercapto-ethanol and 0.5 mg/ml X-gal. The agarose was 

allowed to set and plates were incubated at 30°C for 24 hours until a blue color developed. 

2.15. Accession numbers and T-DNA insertion mutants 

Sequence data can be found in the Arabidopsis Information Resource database (www. 

Arabidospsi.org) under the following accession numbers : At4g25530 (FWA), At5g02110 

(CYCD7.1), At2g23430 (ICK1/KRP1), At2g23430 (ICK2/KRP2), At5g48820 (ICK6/KRP3), 

At2g32710 (ICK7/KRP4), At3g24810 (ICK3/KRP5), At3g19150 (ICK4/KRP6) At1g49620 

(ICK5/KRP7), At3g48750 (CDKA;1), At3g54180 (CDKB1;1), At2g38620 (CDKB1;2), 

At1g76540 (CDKB2;1), At1g20930 (CDKB2;2). 

Mutants used were: krp1-1 (SALK 100189) and krp2-3 SALK (110338) (Sanz et al., 2011). 
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Introduction 

Ectopic expression is a common technique to assess the potential function of a gene. This 

method can lead either to a misplaced and/or enhanced expression (gain-of-function) or to 

a direct silencing effect by expressing an interfering RNA (RNAi) that hybridizes with the 

targeted mRNA triggering the destruction of the double stranded hybrid and thereby 

preventing translation of the target mRNA (loss-of-function) (Waterhouse et al., 1998; 

Chuang and Meyerowitz, 2000; Muranaka, 2011). In both cases, the method gives insights 

into gene function through the analysis of the phenotypic consequences. In plants, gain-of-

function has commonly been generated by placing a gene of interest under the 

transcriptional control of the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter (Benfey 

et al., 1989). Originally the CaMV 35S promoter was responsible for driving the expression 

of a gene of the CaMV genome. The 35S promoter is a strong promoter leading to 

constitutive expression of the gene under its control. However, it has been shown that 

constitutive expression under the control of the 35S promoter of some genes can be 

responsible for abnormal plant development, and may induce sterility or, in extreme cases, 

lethality. Hence, the use of the 35S promoter can lead, in some cases to misinterpretation 

of results (Yoo et al., 2005; Zheng et al., 2007). To overcome deleterious effects of 

constitutive overexpression, studies using more directed expression have been performed. 

They rely on the choice of a promoter that defines the timing and pattern of expression. 

 

The genetic modification of crops was initially based on the transgenic expression method 

in which the target gene is often from another organism. For example, genetically modified 

(GM) crops have been engineered to be herbicide or pest-resistant by expressing a 

herbicide tolerance gene coming from a bacterial genome or a bacterial toxin that once 

ingested becomes toxic to the insects. Furthermore, GM crops have also been developed 

to improve nutritional quality as illustrated by the “golden rice” example. This GM rice 

variety produces elevated levels of provitamin A in the rice grain 

(http://www.goldenrice.org). With the growing demand and strain on the food supply and 

arable land becoming limited, increasing crop yield appears to be unavoidable and since 
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most crops are harvested as seed, increasing the seed yield is considered a primary target. 

As reviewed in chapter 1, seed arises from the fertilization of the ovule by sperm cells. Its 

development involves a well-characterized sequence of cell division, expansion and 

differentiation. Therefore, one approach considered for increasing yield is to increase the 

final seed size by stimulating cell proliferation during the appropriate stages (see below).  

A mitotic cell cycle is a tightly regulated process. As previously reviewed, cell cycle 

progression is governed by the activity of the complex cyclin-dependent kinase/cyclin 

complexes. The transition G1-S is under the control of CDKA;1 kinase complexes. CDKA 

can form active kinase complexes with cyclins expressed in the G1 phase, such as the D-

type cyclins (Dewitte and Murray, 2003; Inze and De Veylder, 2006; Van Leene et al., 

2010). The study of the 10 CYCD gene reporter constructs during seed development 

indicates that they have discrete and overlapping expression patterns in the different seed 

tissues, which change throughout development (Collins et al., 2012). Of the 10 CYCLIN 

genes, CYCD7;1 uniquely does not appear to be expressed during seed development. It 

has been shown that CYCD7;1 native expression is in late meristemoids and guard mother 

cell during stomatal development, as well as in sperm cells of pollen grains (Patell et al., 

manuscript under revision).  

Hence, the ectopic expression of CYCD7;1 was performed using two methods: (1) the 

GAL4/UAS system and, (2) a direct construct where a specific promoter was cloned 

upstream (5’) of the CYCD7;1 coding sequence. The GAL4/UAS system has been used 

successfully for decades in Drosophila melanogaster (Fischer et al., 1988; Brand and 

Perrimon, 1993), mammalian cells (Kakidani and Ptashne, 1988) and in plants upon 

adaption of the codon usage (Ma et al., 1988; Haseloff and Hodge, 2001). Specific 

promoters drive the expression of the yeast transcription factor (TF) GAL4 that binds to the 

Upstream Activator Sequence (UAS) leading to the transcription of the gene placed under 

the control of the UAS. The GAL4 protein used has been modified: the activation domain of 

GAL4 has been interchanged with the activation domain of the TF VP16 from Herpes 

simplex virus conferring a greater potency of the TF GAL4:VP16 (Moore et al., 2006). The 

GAL4:VP16/UAS combination has been further optimized for Arabidopsis (Haseloff and 

Hodge, 2001). The GAL4 DNA-binding nucleotide sequence has been modified to enhance 

its expression in plants (mGAL4), although the amino-acid sequence remains identical. 

 

After fertilization and during seed development, cell division activity persists until the bent 

cotyledon stage. After this stage, cell expansion becomes the predominant growth-driving 

process (Garcia et al., 2005; Le et al., 2010). The divisions occur in all three components of 

the seed, the embryo, the endosperm and the integuments. Thus, to increase cell division, 
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it seems beneficial to express CYCD7;1 during the early to mid stages of seed 

development. To date, a promoter has not been reported that would be active in all three 

seed compartments from fertilization to torpedo stage, therefore it was essential to decide 

in which seed compartment CYCD7;1 would be expressed during the time of expression 

previously chosen. As discussed in chapter 1, studies show that the endosperm controls 

seed size and therefore embryo development and the proliferation and differentiation of the 

integuments (Garcia et al., 2003; Luo et al., 2005; Zhou et al., 2009). Reciprocally, it has 

been shown that integument proliferation promotes seed and endosperm growth (Garcia et 

al., 2005). From these studies, no specific seed compartment was obvious in which 

CYCD7;1 should be expressed. However it has been shown that endosperm development 

and thus its nucleus proliferation was active shortly after fertilization and the endosperm 

goes through several rounds of syncytial mitotic division even before the zygote enters its 

first mitotic cycle (Boisnard-Lorig et al., 2001). Moreover, the endosperm is fully developed 

when the embryos reach heart/torpedo stage, after which the endosperm is used to support 

embryo development. Therefore it seems judicious to use an endosperm-specific promoter. 

The promoter chosen that most closely meets the requirements of timing and pattern of 

expression was the FLOWERING WAGENINGEN (FWA) promoter (Kinoshita et al., 2004). 

The FWA gene was primarily identified by a late-flowering phenotype in a gain-of-function 

mutant (Soppe et al., 2000). The ectopic expression of FWA was due to loss of DNA 

methylation in the promoter region and in the first two exons and introns. The FWA 

promoter was first shown to be expressed in the flower and more specifically in the 

endosperm, but was not active in any of the other plant and floral tissues (Kinoshita et al., 

2004). The FWA promoter region is imprinted (Soppe et al., 2000), thus FWA is only 

silenced in the mature pollen due to methylation of the promoter and is expressed in the 

mature female gametophyte and in the endosperm upon fertilization, until endosperm 

cellularization (Kinoshita et al., 2004). FWA silencing depends on MET1, and FWA 

expression relies on the demethylation of the promoter region by DME (Kinoshita et al., 

2004). Moreover preliminary experiments by Collins (Collins, 2008) suggested that FWA-

driven expression of CYCD7;1 might increase seed size. 

 

When studying ectopic expression of a target gene, it is desirable to verify that the target 

gene is expressed in the target domain and developmental window and, for this, the use of 

reporter genes is extremely convenient. Such reporters can be informative regarding the 

tissue and and developmental window of gene activity, at organ, tissue or cellular level 

during plant development. There is a wide variety of reporter genes that can be used, such 

as β-glucurodinase (GUS) or fluorescent proteins. The GUS gene (uidA) encodes an 
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enzyme β-glucurodinase that cleaves the substrate X-Gluc (5-bromo, 4-chloro, 3-indolyl β-

glucuronide) producing a blue dye (Jefferson et al., 1987).The presence of the cyan color 

indicates the tissues and time of gene activity. The first fluorescent protein isolated from the 

jellyfish, Aequoria victoria is the green fluorescent protein (GFP). Other fluorescent proteins 

are now available such as YFP (Yellow), CFP (Cyan) both modified GFP and DsRed (Red) 

naturally present in the coral Discosoma.  

The GUS assay requires destructive sampling whereas fluorescent protein imaging is a 

non-destructive and sensitive method that allows subcellular localization via microscopy 

(Prasher et al., 1992; Haseloff, 1999). The reporter can be a transcriptional or translational 

fusion. The first reports on the promoter activity of a gene of interest by placing the reporter 

gene under the control of the promoter of the native gene. The second gives information 

about the protein itself, by fusing in frame the reporter gene to the target gene under a 

desired promoter. 

 

Here, I explore the endosperm-targeted expression of CYCD7;1 using the FWA promoter. 

The pattern and timing of expression was analyzed using four different reporter constructs. 

The phenotypic consequences of the ectopic expression were analyzed based on the final 

seed size. 

Results 

3.1. Expression of FWA during seed development 

3.1.1. Activity of the FWA promoter during seed development 
The expression pattern of the FWA promoter was investigated in order to evaluate whether 

it was appropriate to drive the expression of CYCD7;1 during seed development. To report 

FWA activity, two reporter lines were used: pFWA:dFWA-GFP (Kinoshita et al., 2004) and 

pFWA:3xVENUS, constructed as part of my work. Using RT-PCR, previous results showed 

that FWA was not expressed in vegetative tissues and FWA transcripts were detected only 

in the seed during its development (Kinoshita et al., 2004; Collins et al., 2012). Therefore, 

the analysis of FWA reporter activity was verified in mature ovules, extracted from flowers 

two days following emasculation, and during seed development using developmental 

stages defined by Boisnard-Lorig et al. (2001). 

My analysis of the published pFWA:dFWA-GFP transgenic line revealed that dFWA-GFP 

protein was found to be localized in the nucleus of the central cell prior to fertilization and 

the triploid nucleus of the endosperm 6 hours after pollination (HAP) when driven by the 

pFWA cis regulatory sequence (Fig 3.1B-C). Following fertilization, fluorescent protein was 
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visible in the nuclei of syncytial endosperm from stage III to V (Fig 3.1D-E). At stage VI, the 

dFWA-GFP was detectable in the nuclei of the endosperm, which could be characterized 

into domains defined by the different nucleus sizes (Fig 3.1F). The GFP signal started 

decreasing in early cellularized endosperm at stage VIII and disappeared completely in 

cellular endosperm surrounding a heart stage embryo (Fig 3.1G-H). dFWA-GFP signal was 

absent in a mature male gametophyte (Fig. 3.1A). These results corroborate the 

expression pattern published by Kinoshita et al. (2004). 

 

The pFWA:dFWA-GFP construct contains the first two exons and the intervening intron of 

the FWA gene (dFWA, as described in chapter 2), corresponding to the homeodomain and 

a nuclear localization signal of FWA protein. To assess whether the presence of dFWA 

affects reporting the activity of the promoter, by for example stabilizing the GFP, a 

pFWA:3xVENUS line was constructed. This was also intended to provide information on 

whether the targeted expression of CYCD7;1 could be achieved by a direct FWA promoter-

CYCD7;1 fusion (FWA:CYCD7;1). To facilitate the monitoring of FWA expression, the 

fluorescent protein was targeted to the nucleus of expressing cells by a nuclear localization 

signal. In mature ovules prior to fertilization, FWA activity was detectable through VENUS 

fluorescence in the nucleus of the central cell (Fig 3.1K). From stage II of endosperm 

development, concomitant with zygote formation arising from the fertilization of the egg cell 

up to stage IV-V, VENUS protein was visible in the nuclei of the syncytial endosperm (Fig 

3.1L-M). At the dermatogen stage of embryo development, the fluorescent signal was 

observed in the nuclei throughout the endosperm that was reaching stage VI (Fig. 3.1N). At 

endosperm stage VII, FWA activity was detected in the nuclei localized at the micropylar 

and chalazal poles (Fig. 3.1O). FWA activity was not visible in any seed compartment or 

the cellularized endosperm concomitant with heart stage of embryo development (Fig. 

3.1P). Occasionally the VENUS signal could be observed in mature pollen grains (Fig 3.1I-

J).  

The analysis of the pFWA:dFWA-GFP and pFWA:3xVENUS reporters showed similar 

activity of FWA in the central cell of the female gametophyte prior to fertilization and after 

fertilization, in the endosperm until its cellularization. However, stochastic expression of 

pFWA:3xVENUS was found in mature pollen grains, whereas pFWA:dFWA-GFP was not.



 

   

Figure 3.1. Activity of the FWA promoter during seed development. 
 
Activity of the FWA promoter during seed development was observed using a pFWA:dFWA-
GFP line (Kinoshita et al., 2004) and a pFWA:3xVENUS line. Activity of the FWA promoter 
was followed by the fluorescent proteins, dFWA-GFP or 3xVENUS respectively. Seed 
developmental stages are those described in Boisnard-Lorig et al. (2001). 
 
(A-H) Localization of dFWA-GFP in the mature pollen grain and during seed development  
 

(A) dFWA-GFP is absent in mature pollen grains. 
(B) Expression in the nucleus of the central cell, two-day maturation after emasculation. 
(C) Expression in the triploid nucleus of the endosperm 6 hours after pollination (HAP).  
(D) Detectable dFWA-GFP in the syncytial endosperm at stage III. 
(E) Detectable dFWA-GFP in the syncytial endosperm at stage V. 
(F) Presence of fluorescence protein in nuclei of stage VI endosperm. 
(G) Expression of dFWA-GFP in nuclei of stage VIII endosperm. 
(H) No visible dFWA-GFP in a cellular endosperm surrounding a heart stage embryo. 

 
(I-O) Localization of 3xVENUS nucleus-targeted in the mature pollen grain and during seed 
development, reflecting the activity of the FWA promoter region in the absence of the 
homeodomain dFWA. 
 

(I-J) Occasional expression of the FWA promoter is detectable in the mature pollen grain. 
(K) 3xVENUS signal is visible in the nucleus of the central cell, two-day maturation after 
emasculation. 
(L) After the first syncytial mitosis in the endosperm the signal is detectable in the 2 

daughter nuclei. 
(M) VENUS protein was visible in the syncytial endosperm at stage IV-V. 
(N) Fluorescent protein was observed in the nuclei throughout the endosperm at stage VI. 
(O) Fluorescent signal is localized mainly at the micropylar and chalazal poles of the 

endosperm. 
(P)  3xVENUS is not visible in the cellularized endosperm at stage VIII-IX. 

 
 
Scale bars: A, I and J, 25 µm; B-H and K-P, 50 µm. B-H and K-P: scale bars are only shown 
in B and K. 
 
Abbreviations: cc, central cell; ec, egg cell; sy, synergids; I, integuments; en, endosperm; e, 

embryo; su, suspensor; ch, chalzal pole; mp, micropylar pole. 
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3.1.2. Expression of CYCD7;1 under the FWA promoter  
To achieve seed-targeted expression of CYCD7;1, two strategies were used. The first was 

to use transgenic lines with the two component GAL4/UAS system (Collins et al., 2012), 

and the second was to generate new constructs which used the FWA promoter upstream 

of the CYCD7;1 coding sequence (see below). To verify that CYCD7;1 is indeed expressed 

in the endosperm at the early stages of seed development, two reporters were available: 

FWA>>CYCD7;1/eGFP (Collins et al., 2012) and FWA:dFWA-CYCD7;1-VENUS, the latter 

being constructed as part of this work. 

 

FWA>>CYCD7;1 lines also carried a UAS:eGFP-GUS cassette on the same T-DNA. As 

eGFP and CYCD7;1 are expressed under the same promoter, GFP expression should 

inform on CYCD7;1 expression. A recent study using the same lines showed that 

expression of UAS:eGFP did not display any visible GFP in the absence of GAL4, ruling 

out background activation, and FWA>>CYCD7;1/eGFP was never detectable in vegetative 

tissues (Collins et al., 2012). Staged analysis of this latter line, FWA>>CYCD7;1/eGFP, 

during seed development showed that GFP signal was detectable in endosperm tissue 

from stage I, matching the early event of fertilization, to stage VIII, at which point the 

endosperm starts to become cellularized and the embryo reaches early heart stage (Fig 

3.2B-F). GFP signal was localized in the cytoplasm and not in the nucleus, due to the 

native GFP protein not carrying a nucleus-targeting signal domain. From stage IX of 

endosperm development, the GFP was not visible in the endosperm or in any other seed 

tissues (Fig. 3.2G). In mature pollen grains no signal was observed (Fig. 3.2A). The GFP 

localization from the FWA>>CYCD7;1/eGFP line appeared to match the FWA promoter 

activity determined from the analyses of the pFWA:dFWA-GFP and pFWA:3xVENUS 

reporters. 

 

To monitor the expression of CYCD7;1 under the control of the FWA promoter region and 

the accumulation of CYCD7;1 protein, two translational reporters were generated: 

FWA:CYCD7;1-VENUS and FWA:dFWA-CYCD7;1-VENUS.  

The analysis of more than 50 lines of FWA:CYCD7;1-VENUS revealed no detectable GFP 

fluorescence during any stages of seed development. This could be caused by a technical 

issue in generating transgenic lines such as low expression of the CYCD7;1 from the 

construct or a rapid turn-over of the protein preventing the detection of any GFP signal, 

GFP requiring post-protein folding maturation of the chromophore. The second hypothesis 

is that the absence of signal in FWA:CYCD7;1-VENUS lines reflects that the protein is not 
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expressed in this tissue possibly due to premature termination of transcription before GFP 

is transcribed.  

However, the monitoring of CYCD7;1 seed-targeted expression was possible using  the 

FWA:dFWA-CYCD7;1-VENUS construct during seed development. As the VENUS is at the 

C-terminus of CYCD7;1 and no cleavage site had been added between the CYCD7;1 and 

the VENUS, the presence of the signal is likely to report accurately the presence of the 

protein. The protein is localized in the diploid nucleus of the central cell or in the triploid 

nucleus of the endosperm at stage I, as the fertilization event was in this case difficult to 

assess (Fig. 3.2I). The signal persisted in nuclei of endosperm at stage II and stage V (Fig. 

3.2J-K). From stage VIII-IX, when the endosperm cellularized, the VENUS signal 

disappeared (Fig. 3.2L). As FWA:dFWA-CYCD7;1-VENUS carries the two methylated DNA 

regions restricting the expression in the female parts, it is not surprising that I did not find 

any signal in mature pollen grains (Fig. 3.2H). 

 

Transcriptional and translational reporters of the FWA promoter and CYCD7;1 protein 

appeared to have matching localization and timing of detectable GFP meaning that the 

expression patterns are similar. Under the control of the FWA promoter region, CYCD7;1 

protein appeared to be localized to the mature central cell of the female gametophyte prior 

to fertilization and in the endosperm of developing seeds until stage IX of endosperm 

development, matching the heart stage of embryo development. These results also show 

that the FWA promoter used is sufficient to give a normal expression pattern and the dFWA 

containing a portion of FWA is not required. 



 

    

Figure 3.2. CYCD7;1 expression under the FWA promoter region. 
 
The localization of CYCD7;1 was followed during seed development using 
FWA>>CYCD7;1/eGFP and FWA:dFWA-CYCD7;1-VENUS. Seed developmental stages are 
those described in Boisnard-Lorig et al. (2001).  
 
(A-G) In the FWA>>CYCD7;1 line, the localization of CYCD7;1 protein can be inferred by the 
use of green fluorescent protein GFP that is under the control of the same promoter, UAS. 
When the UAS promoter is activated by the TF GAL4, itself expressed under the control of the 
FWA promoter, CYCD7;1 and GFP are expressed. Hence, GFP expression should reflect 
CYCD7;1 expression. In this construct the GFP is not nuclear targeted. 
 

(A) No GFP detectable in the mature pollen grains. 
(B) GFP is localized in the mature cell or stage I endosperm (Fertilization event was not 

recorded, hence the two stages are complex to distinguish). 
(C) Expression of GFP is noticeable in stage II endosperm. 
(D) GFP signal is observed in stage IV endosperm. 
(E) Detectable GFP in the syncytial endosperm at stage V. 
(F) Detectable GFP in the syncytial endosperm at stage VI-VII. 
(G) Presence of fluorescence protein was not detectable in the endosperm at stage VIII-IX. 

 
 

 
(H-L) In the transgenic FWA:dFWA-CYCD7;1-VENUS line, CYCD7;1 is tagged with modified 
yellow fluorescent protein (VENUS) at its N-terminal. Therefore the visualization of VENUS 
reflects the localization of CYCD7;1. Homeodomain dFWA has a nuclear localization 
sequence; thus the signal appears in the nuclei of the expressing tissues. 
 

(H) No detectable expression in the mature pollen grain. 
(I) VENUS signal is visible in the diploid nucleus of the central cell or in the triploid 

nucleus of the endosperm at stage I as the fertilization was in this case difficult to 
assess. 

(J) After the first syncytial mitosis in the endosperm, the signal is detectable in the 2 
daughter nuclei. 

(K) VENUS protein was visible in the syncytial endosperm at stage V. 
(L) Fluorescent protein was observed in the nuclei throughout the endosperm at stage VI. 

 
 
Scale bars: A and J, 25 µm; B-G and I-L, 50 µm. B-G and I-L. Scale bars are only shown in B 
and I. 
 
Abbreviations: cc, central cell; ec, egg cell; sy, synergids; I, integuments; en, endosperm; ch, 
chalzal pole; mp, micropylar pole. 
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3.2. Endosperm-targeted CYCD7;1 expression using a GAL4/UAS enhancer 
trap system 

3.2.1. GAL4/UAS system for endosperm-targeted CYCD7;1 expression 
The above analysis shows that the mGAL4:VP16/UAS system is suitable for specific 

expression of CYCD7;1 in the endosperm of seeds during early development. As shown 

above, the FWA promoter has a domain-specific expression pattern restricted to the central 

cell and endosperm, and a time-specific expression pattern from mature central cell to 

cellularization of endosperm concomitant with the heart/torpedo stage of embryo 

development. FWA:GAL4 and UAS:CYCD7/UAS:eGFP-GUS lines and lines with both 

constructs (referred to as FWA>>CYCD7;1) were available in the laboratory (Fig. 3.3A) 

(Collins et al., 2012). The first step was to confirm that the lines were carrying the T-DNA of 

interest and were homozygous for the insert. The presence of the T-DNA was verified 

using diagnostic primers which discriminate between the integrated and native CYCD7;1 

and FWA promoter. The homozygosity of the antibiotic or herbicide resistance marker 

present on the T-DNA was confirmed: homozygous plants will produce seeds that are 100 

% resistant on GM plates supplemented with the antibiotic or herbicide for which they carry 

the resistance marker.  

A diagnostic primer pair binding the FWA promoter and GAL4 was used to screen resistant 

seedlings for transgenes and FWA:GAL4 and FWA>>CYCD7;1 lines showed a DNA band 

of 320 bp following PCR analysis, suggesting that the insert was present in both of these 

lines (Fig. 3.3B). The UAS:CYCD7;1 insert was detected using primers amplifying a 200 bp 

fragment between UAS and CYCD7;1. Both FWA>>CYCD7;1 and UAS:CYCD7;1 lines 

were confirmed to carry the insert. To confirm that lines with the UAS:CYCD7;1-

UAS:eGFP-GUS insertion carried the whole cassette the presence of UAS:eGFP-GUS was 

also examined by PCR, revealing a 400 bp fragment. Hence both the control line 

FWA:GAL4 and UAS:CYCD7;1 and the line of interest FWA>>CYCD7;1 carried the 

integrated transgene. Moreover, Columbia-0 WT (Col-0) controls did not reveal the 

presence of these transgenes. Col-0 was sensitive to both PPT and kanamycin. 

FWA:GAL4 was 100% resistant on kanamycin but 100% sensitive on PPT, indicating that 

the line is homozygous for FWA:GAL4 transgene. UAS:CYCD7;1 seeds were 100% 

resistance on PPT and 100% sensitive on kanamycin, consistent with the line being 

homozygous for the UAS:CYCD7;1 construct. FWA>>CYCD7;1 was 100% resistant on 

both PPT and kanamycin suggesting that the line is homozygous for both constructs. 
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For each confirmed line, fresh seeds were harvested and used to grow plants from which 

seeds collected were analyzed for their final seed size. 

3.2.2. Endosperm-targeted CYCD7;1 expression using GAL4 driven by the 
FWA promoter produced seeds with an enhanced final size. 

The line of interest, FWA>>CYCD7;1, was compared to three experimental controls: WT 

(Col-0), a line without activator (UAS:CYCD7;1-UAS:eGFP-GUS) and a line without 

effector (FWA:GAL4). Mature dry seeds were collected at the same time and stored under 

the same conditions. Pictures of seeds were taken at low magnification with a dissection 

microscope and analyzed using a plug-in for ImageJ custom designed by Dr Manuel 

Forero-Vargas to determine projected seed area, length and width (see Chapter 2).  

WT seeds measured on average 95,952 ± 9,039 µm2 (n=1086), with a length of 439 ± 19 

µm and a width of 258 ± 17 µm (Fig. 3.3C-F). FWA:GAL4 (n=998) and UAS:CYCD7;1-

UAS:eGFP-GUS (n=909) seeds had an area of 95,034 ± 7,852 µm2 and 94,861 ± 7,742 

µm2, respectively, with a length of 456 ± 15 and 463 ± 17 µm respectively and a width of 

263 ± 15 µm and 261 ± 14 µm respectively. WT, UAS:CYCD7;1-UAS:eGFP-GUS and 

FWA:GAL4 seeds were not significantly different (two-way ANOVA, p=0.46 and 0.12) (Fig. 

3.3C-F). FWA>>CYCD7;1 seeds (n=743) measured 491 ± 21 µm long and 282 ± 14 µm 

wide, significantly longer (12% increase) and 9% wider than WT, UAS:CYCD7;1-

UAS:eGFP-GUS and FWA:GAL4 seeds (one-way ANOVA, p=3.6x10-6 for the length 

compared to WT and p=4.1x10-5 for the width compared to WT). The projected surface was 

of 108,870 ± 7,564 µm2. On average FWA>>CYCD7;1 seeds were larger than the WT 

(p=1.20x10-8), with an increase of 13% in the seed area. 



 

 

Figure 3.3. Seed-targeted expression of CYCD7;1 using the GAL4/UAS system. 
 
(A) Schematic representation of mGAL4:VP16/UAS system implemented for Arabidopsis. The 

activator line contains a promoter sequence - in this study, FWA promoter – driving the 
expression of the modified yeast transcription factor (TF) mGAL4:VP16. Expression of the 
GAL4 TF is restricted to cells expressing the FWA promoter. Effector line contains 
Upstream Activation Sequence (UAS), the target sequence of the GAL4 TF which drives 
the expression of the genes of interest: in this study, the CYCD7;1 and eGFP/GUS 
reporters. When the activator and effector cassettes are in the plant (often generated by 
crossing), GAL4 expressed specifically in the domain and time of FWA activity is able to 
activate the UAS promoter leading to the expression of CYCD7;1 and eGFP/GUS.  
Arrows indicated with number show the position of primers used for genotyping.	  (Modified 
from Weijers et al., 2003).	  

(B) DNA gel showing the genotype of lines used to evaluate a seed size variation. Primer set 
21 + 23 amplifies a 320 bp fragment from the FWA:GAL4 insert. Primer set 22 + 25 
amplifies a 200 bp fragment from UAS:CYCD7;1 insert and primer set 22 + 24 amplifies a 
400 bp fragment from the UAS:eGFP/GUS transgene (when using an elongation time of 
20 second). Table below the gel shows the percentage of resistant seedlings growing on 
GM with PPT (% PPTR) or with kanamycin (%KanR). RPS5A was used as a loading 
control. 

 
 
(C-E) Comparison of seed area (C), seed length (D) and seed width (E). Error bars show ± 
SE. (*) indicates a statistical difference in variation of seed size parameters.  
 
(F) Mature dried seeds from self-fertilization of WT, FWA:GAL4, UAS:CYCD7;1 and 
FWA>>CYCD7;1 plants. Scale bars: 500 µm.	  
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3.2.3. CYCD7;1 has a greater effect on size seed when the number of seeds 
produced is reduced. 
Some studies suggest that the number of seeds produced by the sporophyte has an effect 

on individual seed size (Paul-Victor and Turnbull, 2009; Herridge et al., 2011). I sought to 

address whether the effect of seedCYCD7;1 expression depended on the resources 

available. Each plant was grown in identical conditions using single pots but the plant 

architecture was modified forming three different groups. Plants of the first group had only 

a primary stem growing and producing seeds; all axillary and secondary branches were 

removed. In this case, referred to as “SUPRA” conditions, the resources were allocated to 

a presumably smaller number of siliques/ seeds (Fig. 3.4A). In the second group, plant 

architecture was untouched and plants were grown in “NORMAL” conditions. In the last 

group, the primary stem was cut soon after the floral transition. This leads to the production 

of many stems producing a larger number of side branches and presumably a higher 

number of seeds. This was referred as “SUB” conditions. For each group, SUPRA, 

NORMAL and SUB, nine plants were grown. 

An effect of plant architecture on seed size was found (two-way ANOVA, p=1.18x10-47; Fig 

3.4B). However, a Bonferroni test showed that the seed size of WT plants was not 

significantly different between NORMAL and SUPRA conditions (98,063 ± 7,053 µm2 and 

99,684 ± 8,819 µm2 respectively; p=0.94) but in SUB conditions the seed size was about 

4% smaller (94,573 ± 8,994 µm2). The same was observed for FWA>>CYCD7;1 seeds: 

grown on normal and supra conditions, plants produced seeds with a similar area (106,364 

± 9,377 µm2 and 108,550 ± 10,241 µm2 respectively, p=0.76), and smaller seeds when 

grown in SUB conditions (90,621 ± 8,793 µm2). These results suggest that maximum seed 

size is not strongly resource limited, since removal of side branches had little effect. 

There is also an effect of genotype on final seed size (two-way ANOVA, p=3.95x10-45). In 

NORMAL plants, FWA>>CYCD7;1 seeds were significantly 8% larger than the WT, 

confirming previous results. In SUPRA conditions FWA>>CYCD7;1 seeds also showed a 

9% increase on the overall area. However, in SUB growth conditions FWA>>CYCD7;1 

seeds were 4% smaller than the WT. The study of length and width showed results similar 

to those observed for the overall size (Fig 3.4C-D). This suggest that the manifestation of 

the CYCD7;1 conferred enlarged seed phenotype is dependent on the availability of 

sufficient resources. 
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Figure 3.4. Influence of plant architecture and resource availability on seed size. 
 
(A) Experimental design. In SUPRA conditions, all axillary and secondary branches were 
removed leading a reduced number of seeds produced. In NORMAL conditions plant 
architecture was untouched. In SUB conditions, the primary stem was cut soon after the 
floral transition thus allowing of the branching stem producing a higher number of seeds. 
 
(B-C) Comparison of seed features between the different growth conditions. Mean seed 
area (B), mean seed length (C) and mean seed width (D). Error bars show ± SE. (*) 
indicates a statistical difference in variation of seed size parameters. 
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3.3. Endosperm-targeted CYCD7;1 expression using a single direct promoter-
gene construct  

Ultimately the enlarged seed phenotype could be introduced into crops, especially in 

Brassica crops such as oilseed rape. Crops are often hybrid and carry multiple copies of 

their genome. For example, Brassica napus is an amphidiploid carrying the Brassica rapa 

and Brassica oleracea ancestral genome. The GAL4/UAS system has two main drawbacks 

in this respect. Firstly, it has never been used in B. napus before and it is therefore not 

known whether the system could work. Secondly, the GAL4/UAS as it has been used in 

this study requires homozygosity for both of the two T-DNAs, one carrying the GAL4 

activator under control of the desired promoter and the second carrying the effector protein 

of interest under the control of UAS. Given the time-consuming procedure for transforming 

B. napus, and the generation time, it would take a long time to generate this system in B. 

napus (4n chromosomes). Finally regulatory issues would be expected in a crop using an 

additional transgene. A transformation where the promoter FWA driving the expression of 

CYCD7;1 directly seems more appropriate for crop transformation. 

3.3.1. Generation of FWA promoter constructs directly driving CYCD7;1 
expression 
Before potentially transferring the technology to crops, it was necessary to check in 

Arabidopsis that a single construct for endosperm-specific expression of CYCD7;1 by the 

FWA promoter confers the same phenotype as the one obtained with the GAL4/UAS two 

component system. Two constructs were designed and created (Fig 3.5A). The same FWA 

promoter used in GAL4/UAS was used, corresponding to ~3300 bp upstream of the start 

codon. This promoter fragment also contains the 5’UTR of FWA gene. Moreover, in the 

FWA:GAL4 cassette, the FWA promoter was followed by dFWA (section 2.6 and 3. 1.1) 

cloned in frame with GAL4. Therefore, in the first construct, the FWA promoter fragment 

plus dFWA was cloned in frame with the CYCD7;1 coding sequence previously used in the 

GAL4/UAS system (section 2.6 and 3.1.1; Fig. 3.5A). Although previously CYCD7;1 

expression in endosperm could not be visualized without the homeodomain, the possible 

effect of CYCD7;1 activity was unknown, so an untagged version containing 3300bp of the 

FWA promoter upstream the CYCD7;1 coding sequence was also constructed to assess 

the consequence of the homeodomain on the enlarged seed phenotype. 

Based on the herbicide resistance markers carried by the T-DNA, independently 

transformed lines carrying a single T-DNA insertion were isolated (T2 seeds showing a 3:1 

resistant:sensitive ratio on selection medium): four with FWA:CYCD7;1 transgenes and 

three with FWA:dFWA-CYCD7;1. They were annotated 6499, 6484, 12489 and 14054 for 
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FWA:CYCD7;1 and, 8543, 8555 and 8591 for FWA:dFWA-CYCD7;1. RT-PCR was 

performed to compare the level of CYCD7;1 expression. RNA extraction was performed on 

3 siliques starting their elongation after pollination and having the stigma and style 

emerging from the flower. Primers used were amplifying the 3’ region of CYCD7;1 but the 

comparison with the WT sample did not show overexpression. This was presumably due to 

the fact that the native CYCD7;1 is expressed in the stomatal lineage of the epidermis of 

floral organs (Patell et al., manuscript under revision). As spatial and temporal windows of 

FWA:(dFWA)-CYCD7;1 expression in seed development are narrow, the overexpression 

was likely not detected in the background of native CYCD7;1 expression. Ultimately, RT 

primers were designed to amplify a fragment specific to the inserted region and the level of 

expression was compared relatively between the different transgenic lines (Fig 3.5B). 

FWA:CYCD7;1 lines 6499 and 6484 showed the strongest levels of expression of the 

transgene, FWA:CYCD7;1 lines 12489 and 14054 had lower levels, with line 14054 the 

lowest. The three FWA:dFWA-CYCD7;1 lines showed an ectopic expression level lower 

than the lowest FWA:CYCD7;1 line 14054. Among the three FWA:dFWA-CYCD7;1 lines, 

8543 showed the strongest level of ectopic CYCD7;1 expression. 

3.3.2. FWA:CYCD7;1 produces enlarged seeds and the increase is greater 
than that using the GAL/UAS system 
The four FWA:CYCD7;1 lines and the three FWA:dFWA-CYCD7;1 lines were grown and 

the size of the seed produced was further characterized. In order to compare the final size 

of dry, homozygous T3 seedCYCD7;1 seeds, lines were grown next to WT controls. Lines 

were sown at the same time, grown side-by-side under the same conditions of light and 

humidity. After harvesting, T4 seeds simultaneously with WT seeds were left at 42°C for 7 

days. Pictures of seeds were taken and seed area, length and width measurements were 

generated using the SeedAnalyzer plug-in in ImageJ (see chapter 2). For each experiment, 

6 to 9 plants were grown for each genotype and line, and at least 500 seeds were scored. 

After verifying normality of the population and homoscedasticity, ANOVA tests were 

performed using a significance level (α) of 0.05.  

Col-0 WT seeds measured on average 101,841 ± 9,266, being on average 459 ± 22 µm 

long and 279 ± 14 µm wide (n=783) (Fig 3.5C-E,G). FWA:CYCD7;1 line 6499 produced 

seeds with a mean area of 145,835 ± 21,2103 µm2 . On average, the length was of 592 ± 

38 µm and the width 309 ± 20 µm (n=862). The FWA:CYCD7;16499 seeds were significantly 

larger with an average increase of 43% for the area, 29% for the length and 11% for the 

width (p=4.81x10-58 for the area, p=1.86x10-79 for the length and p=4.03x10-35 for the width). 

Seeds from FWA:CYCD7;1 line 6484 had a mean area of 13,3192 ± 19,925 µm2, 

corresponding to an increase of 28% (n=807 , p=5.32x10-23). Seed length and width were 
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551 ± 35 µm and 307 ± 19 µm respectively, equivalent to an increase of 19% and 10% 

respectively (p=1.37x10-38, p=1.85x10-47, respectively). FWA:CYCD7;1 line 12489 

produced seeds 19% larger than the WT with a mean area of 121,742 ± 15,501 µm2 

(n=625, p=3.68x10-30), a length of 522 ± 32 µm (13% increase, p=2.83x10-43) and a width of 

298 ± 18 µm (6% enlargement, p=1.96x10-39). FWA:CYCD7;1 line 14054 seeds underwent 

an area increase of 15% with a mean value of 117,198 ± 17,658 µm2 (n=904, p=6.9x10-67). 

The seeds were on average 501 ± 35 µm long and 298 ± 18 µm wide (p=1.75x10-75; 

p=2.37x10-56). 

 

In order to determine if the FWA imprinted promoter region is sufficient or if the 

homeodomain dFWA is also required for the enlarged seed phenotype, or alternatively 

whether dFWA sequence affects the CYCD7;1 fusion, the seed size of the transgenic line 

carrying FWA:dFWA-CYCD7;1 was investigated (Fig 3.5C-E,G). Line 8543 had seeds with 

a mean area of 112,642 ± 9,997 µm2 (11% increase with p=7.43x10-26, n=530), average 

length of 490 ± 20 µm (7% increase, p=3.14x10-12) and an average width of 292 ± 15 µm 

(4% increase, p = 3.76x10-10). Line 8555 seeds were 10% larger than WT (111,879 ± 8,243 

µm2, p=2.03x10-15, n=831), 5% longer (483 ± 21 µm, p=4.57x10-13) and 5% wider (293 ±14 

µm, p=6.25x10-7). Seeds from line 8591 were 5% larger (106,594 ± 8,309 µm2, p=5.90x10-

7, n=755) with a 4.5% increase length (480 ± 22 µm, p=1.43x10-9) but a width that was not 

significantly different from that of WT (281 ± 16 µm, p=0.402). 

 

The seed size range from FWA:CYD7;1 lines 6499 and 6484 was wider than that of WT 

even though the population distribution followed a normal distribution (Fig 3.5F). 

FWA:CYD7;1 line 12489, 14054 as well as FWA:dFWA-CYD7;1 line 8543 showed a 

distribution similar to the WT, whereas FWA:dFWA-CYD7;1 line 8555 and 8591 had a 

population with a narrower distribution than that of WT. 



	  

 

Figure 3.5.	  Seed-targeted expression of CYCD7;1 using direct expression driven by 
the  FWA promoter. 
 
(A) Schematic representation of FWA:CYCD7;1 (top) and FWA:dFWA-CYCD7;1 (bottom) 

transgenes. The first construct was constructed by cloning ~3300 bp FWA promoter 
including the 5’UTR of FWA in upstream of the CYCD7,1 coding sequence. The second 
cassette was constructed by cloning ~3300 bp FWA promoter and the 2 first exons with 
the intron in between, in frame with the CYCD7,1 coding sequence. The FWA promoter 
region and the 5’ genic region, and CYCD7;1 coding sequence were identical to the one 
used with the GAL4/UAS system.  
Arrows indicated with numbers show the positions of primers used for RT-PCR. 

 
(B) Expression of FWA:CYCD7;1 and FWA:dFWA-CYCD7;1. cDNA was prepared from 3 

siliques starting their elongation based on the stigma and style protruding from the flower. 
RT-PCR was performed using ACTIN2 (ACT2, primer pair 9 and 10 in chapter 2) for 
normalization and transgene-specific primers (primer pair 11 and 12 in chapter 2). A ~950 
bp fragment was amplified for FWA:CYCD7;1 and ~1400 bp for FWA:dFWA-CYCD7;1. 
Col-0 WT was used to ensure that the primer set 11+12 was specific to the transgene. 

 
(C-E) Comparison of seed area (C), seed length (D) and seed width (E). 
 
(F) Histogram showing the population distribution for the seed area. Curve represents an 

expected normal distribution. Similar histograms could be observed for length and width 
(not shown). 

 
(G) Mature dried seeds from self-fertilization of FWA:CYCD7;1 and FWA:dFWA-CYCD7;1	  

plants. Scale bars: 500 µm 
	  
	  On graphs: Error bars show ± SE. (*) indicates a statistical difference in variation of seed size 
parameters compared to the WT.	  
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Comparing segregated siblings to establish the effects of CYCD7;1 

To ensure that the enlarged seed size phenotype is due to the additional copy of CYCD7;1 

with seed targeted expression, and not due to indirect effects conferred by the 

transformation procedure, the seed size of seedCYCD7;1 was compared to seeds from WT 

plants isolated from a segregating population. Heterozygous T3 seeds were grown on soil 

and T4 seeds were collected from individual plants. According to Mendelian genetics, 25% 

of T4 seeds should be homozygous WT, 25% homozygous for the insert, and 50% 

hemizygous for the transgene. Based on the antibiotic resistance marker, homozygous WT 

and seedCYCD7;1 were isolated. These seeds were measured and analyzed as above (Fig. 

3.6).  

WT seeds had a mean area ranging from 110,977 µm2 (line 12489) to 128,764 µm2 (line 

6499). Col-0 WT control not coming from a segregating population had a mean area of 

118,477 µm2. In the same experiment, WT seeds from line 6499 were slightly bigger than 

Col-0 seeds (p=0.015) whereas WT seeds from line 12489 were smaller than 

untransformed WT seeds (p=0.026). WT seeds from 6484 and 14054 were not significantly 

different than the untransformed WT seeds (120,433 µm2, p=0.89 and 115201 µm2, 

p=0.34, respectively). Homozygous seedCYCD7;1 seeds had an area of 158,603 µm2 (line 

6499), 154,275 µm2 (line 6484), 149,006 µm2 (line 12489) and 135,532 µm2 (line 14054). 

For each line, the homozygous mutant seeds were all significantly larger than the 

segregating WT and untransformed WT (two-way ANOVA, p=7.17x10-19). 

WT seeds coming from a segregating population have a distribution similar to the 

untransformed WT. As previously observed, homozygous gain of function CYCD7;1 mutant 

seeds have a broader distribution of population  and consistently produce larger seeds 

(Fig. 3.5H-I).  
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Figure 3.6.	  Seed-targeted expression of CYCD7;1 using direct expression driven 
by the FWA promoter (continued). 
 
 
(H) Comparison of seed area. WT (grey bar) is an untransformed WT. WTseg (red bars) is a 

homozygote WT plant isolated from a segregating population. seedCYCD7;1 (green 
bars) is from a homozygous plant for the FWA:CYCD7;1 transgene. (*) indicates a 
statistical difference. 

 
(I) Histogram showing the population distribution for the seed area. Curve represents an 

expected normal distribution. Similar histograms could be observed for length and width 
(not shown). 

 
 
On graphs: Error bars show ± SE. (*) indicates a statistical difference in variation of seed 
size parameters compared to the WT. 
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3.3.3. The enlarged seed size phenotype is conferred by the expression of 
CYCD7;1 in the female gametophyte 
The seedCYCD7;1 transgenic line produced seeds with an enlarged overall size, and in 

these lines CYCD7;1 expression was under the control of the FWA promoter. The 

imprinting of the FWA promoter region confers female gametophyte specific expression 

due to a lack of methylation of the maternal genome (Kinoshita et al., 2004). However it 

has also been shown that part of the imprinting lies in the 5’ genic region of FWA (Soppe et 

al., 2000) and I previously showed that occasional expression of FWA could be picked up 

in the mature pollen grain. To determine whether the cause of the enlarged seed 

phenotype lies in the expression of CYCD7;1 in the female gametophyte and developing 

endosperm, reciprocal crosses between Col-0 WT and FWA:CYCD7;1 lines were 

performed. If the imprinting is not disrupted, FWA:CYCD7;1 should be expressed only in 

the female gametophyte and only maternal copies of FWA:CYCD7;1 should be sufficient to 

confer the phenotype. Therefore, analyzing F1 seeds coming from directional crosses can 

be used to address this question. 

WT x WT seeds had an area of 102,289 ± 10,456 µm2 (Fig. 3.7). When pistils were 

pollinated with pollen coming from the plant FWA:CYCD7;1, seeds were significantly larger 

with areas 148,347 ± 24,947 µm2 (line 6494, 45% increase), 143991 ± 21,835 µm2 (line 

6484, 40% increase), 125761 ± 21,355 µm2 (line 12489, 23% increase), 116749 ± 18,356 

µm2 (line 14054, 14% increase), (one-way ANOVA, p=3.4x10-47). When FWA:CYCD7;1 

pistils were pollinated with WT pollen, seed sizes were similar to the seeds produced by 

self fertilization (one-way ANOVA, p=0.32). For the four seedCYCD7;1 lines, seeds were 

larger than WT x WT (one-way ANOVA, p=1.44x10-20). WT pistils were pollinated with 

FWA:CYCD7;1 pollen. Seeds produced had an average area that was not significantly 

different from the size of seeds from WT x WT (p=0.35), but were significantly smaller than 

the size of seeds from FWA:CYCD7;1 self-fertilized plants (p=3.9x10-4). 

These results show that the production of enlarged seed is defined by the genotype of the 

female gametophyte. 
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Figure 3.7.	  Enlarged seed produce by the seed-targeted CYCD7;1 expression lines 
is maternally conferred.  
 
Comparison of F1 seed generated by crossing WT and seedCYCD7;1. (sf) F1 seeds are 
from a cross where the pistil and the pollen are from the same plant. Genotype of the 
female gametophyte (f) and genotype of the male gametophyte (m). (♦) indicates that seed 
size between seedCYCD7;1 (f) x Col-0 (m) and (*) Col-0 (f) x seedCYCD7;1 (m) is statistically 
different, comparing line by line.   
 
Error bars show ± SE. (*) indicates a statistical difference in variation of seed size 
parameters compared to the WT.	  
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Discussion 

Endosperm-targeted ectopic expression of CYCD7;1 was performed in the attempt to 

engineer seeds with an enhanced size. FWA activity has been shown to be maternal 

gametophyte-specific (Kinoshita et al., 2004). This specificity is due to a hypomethylation in 

the promoter and 5’ genic regions of FWA (Soppe et al., 2000). Another study showed that 

the methylation required for the imprinting lies in two tandem repeat sequences located in 

the promoter region of the FWA gene (Fujimoto et al., 2008). Initially, I confirmed that the 

FWA promoter was suitable for endosperm-specific expression and determined whether 

the 5’ genic region (dFWA) was required for the endosperm-specific expression. Therefore, 

FWA activity was followed using one reporter line containing the FWA promoter and the 5’ 

genic region encoding the dFWA protein fragment fused to GFP (FWA:dFWA-GFP) 

(Kinoshita et al., 2004) and one reporter line containing the FWA promoter only, driving 

VENUS, a fast folding YFP variant (FWA:3xVENUS). My results showed that, with both 

reporters (pFWA:dFWA:GFP and pFWA:3xVENUS), prior to fertilization, the FWA activity 

was detectable in the mature central cell of the female gametophyte. After fertilization, I 

showed that the FWA activity occurred in the endosperm during its development until stage 

IX when it cellularizes, concomitant with the embryo reaching the heart stage. 

Corroborating results have been published by Kinoshita et al. revealing a similar 

expression pattern of FWA in the female gametophyte and the seed during its development 

(2004). Moreover, in this same study, RT-PCR results showed that the FWA activity is 

detectable only in the female gametophyte and developing seed and no FWA mRNA could 

be found in vegetative tissues, buds, placenta and embryos. However, I also showed that 

without the 5’ genic region of FWA (dFWA), a stochastic expression could be observed in a 

fraction of the mature pollen grains. This novel result may suggest that the degree of 

methylation is lower due to the absence of the 5’ genic region, and thus the FWA 

expression is not restricted to the female side.  

In this study, using FWA>>CYCD7;1/eGFP and FWA:dFWA-CYCD7;1-VENUS reporters, 

CYCD7;1 expression under FWA promoter activity showed that CYCD7;1 protein was 

expressed and localized in the mature ovule and in the developing endosperm until its 

cellularization (Stage IX). The absence of detectable expression in the mature male 

gametophyte from these two lines could be explained by the presence of the dFWA fused 

to either GAL4 or to CYCD7;1 directly. No clear results regarding the requirement of dFWA 

for CYCD7;1 to display an endosperm-specific expression were found, as none of the 

FWA:CYCD7;1-VENUS reporter lines showed a detectable signal allowing me to follow the 

expression.  
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To engineer seed size by expressing CYCD7;1 in seeds, two approaches were taken. The 

first one used the GAL4/UAS system where the FWA promoter drives the expression of the 

GAL4 transcription factor that activated the activity of the UAS promoter controlling the 

expression of CYCD7;1. The second method was to generate transgenic lines with 

FWA:CYCD7;1 and FWA:dFWA-CYCD7;1 transgenes. This method has two main 

advantages: (1) it can be transferable to crop plants such as Brassica and (2) it allows to 

assess whether or not the dFWA homeodomain-containing fragment fused to the CYCD7;1 

is required to engineer seed size.  

seedCYCD7;1 expression led to the production of enlarged seeds. Using the GAL4/UAS 

system, the FWA>>CYCD7;1 line produced seeds that were 13% larger than WT. Both 

length and width were increased but the length underwent a greater change (12%) than the 

width (9%). Here the investigation of the effect of plant architecture and theoretically the 

number of siliques and thus seeds produced per each parent sporophyte on final seed size 

was performed. The plant architecture was modified by either removing side branches 

reducing the number of seed produced, or removing the main stem thus allowing branching 

and a greater number of seeds to be produced. There were genotype effects, growth 

condition effects and an interactive effect between the genotype and the growth condition 

on the final seed size. When comparing growth conditions, both WT and seedCYCD7;1 

produced larger seed in normal and supra conditions compared to the sub conditions. In 

normal and supra conditions, seedCYCD7;1 expression lead to the production of enlarged 

seeds whereas in sub conditions, seedCYCD7;1 expression produced smaller seeds than 

the WT plants. When the number of side branches and presumably the number of seeds 

produced was reduced, seedCYCD7;1 expression conferred a beneficial trait in terms of 

seed size increase but when the number of side branches is increased by removal of the 

primary shoot seedCYCD7;1 expression has a deleterious effect on size by reducing the size 

below the WT average. 

Using FWA:CYCD7;1 and FWA:dFWA-CYCD7;1, seeds displayed an enhanced size 

ranging from a 15% to a 43% increase for the first transgene and from 5 to 10% for the 

second transgene. There was a correlation between the level of expression and the 

enlargement: the line with a higher level of CYCD7;1 expressed during seed development 

produced a greater increase in seed size than the line with a lower level of expression. The 

line with the higher level of seedCYCD7,1 expression had a population distribution with wider 

spread. The averages of seed features were increased but the characteristics of half of the 

population overlap with the WT. Another feature of seed size increase was that the length 

appeared to be more affected than the width, producing slender seeds that were less round 
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than the WT. The presence of the dFWA protein fragment fused to CYCD7;1 during early 

seed development did not seem to give an additional effect on seed size. However, 

isolated lines expressing the chimeric dFWA-CYCD7;1 showed a lower level of dFWA-

CYCD7;1 than the line expressing CYCD7;1. To show a biological effect of the dFWA 

protein fragment, lines with a similar level of expression would be necessary. While doing 

the screening of transgenic lines with one T-DNA insert and normal development, only a 

low level expressing line could be isolated.  

The enhanced seed size phenotype was confirmed to be due to CYCD7;1 expression in 

seed by comparing the size of seed from plants homozygous for the transgene to WT 

plants coming from the same segregating population. Both WT plants, Col-0 WT 

untransformed and WT plants coming from a segregating population, produced seeds with 

a size similar to the Col-0 WT and to the homozygous. Therefore, the enlarged seed size 

phenotype arose from the expression of CYCD7;1 in the endosperm during early seed 

development and not from a secondary effect of the transformation process. 

 

Here I showed that CYCD7;1 can be expressed in the ovule and endosperm of developing 

seeds. Moreover, CYCD7;1 endosperm-specific expression led to an enlarged seed size 

that depends on the maternal origin of the pFWA:CYCD7;1 transgene, as revealed  by 

directional crosses with WT. These results supports that imprinting of the FWA promoter is 

sufficient to target CYCD7;1 expression only in the female gametophyte and confers a 

increased final seed size phenotype. 
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Introduction 

In flowering plants, the seed develops from a double fertilization event. The male pollen 

grain delivers two sperm cells via a pollen tube to the female ovule. Both the haploid egg 

cell and the diploid central cell are fertilized by one of the sperm cells, giving rise to a 

diploid embryo and a triploid endosperm respectively. Seed development is characterized 

by the coordinated growth of the zygotic tissues, consisting of the embryo and the 

endosperm, and maternal tissues that give rise to the seed coat. In Arabidopsis, a series of 

well-defined cell divisions patterns the embryo from the zygote to the bent cotyledon stage. 

From the bent cotyledon stage onwards, embryo growth occurs primarily through cell 

expansion (Goldberg et al., 1994). Endosperm development goes through a series of 

synchronous syncytial divisions, then syncytial divisions become asynchronous 

accompanied by differentiation processes. The endosperm reaches maturity when it has 

become fully cellularized (Boisnard-Lorig et al., 2001).This stage onwards, the endosperm 

tissue is used being the embryo to sustain its development. The maternal sporophytic 

tissues become a seed coat upon fertilization that triggers cell divisions, cell elongation and 

differentiation, characterized by deposition of flavonoids (Debeaujon et al., 2003). 

 

The production of viable seeds involves two fundamental steps: pollination and fertilization. 

Pollination requires the proper development of male and female reproductive structures, 

the andrœcium and the gynœcium respectively (Smyth et al., 1990; Bowman, 1994). In 

Arabidopsis, the andrœcium is composed of a set of six stamens, each composed of an 

anther and a filament. The gynœcium is the set of carpels, each consisting of the stigma, 

which is composed of papilla cells onto which the pollen adheres, the style, and the ovary, 

in which the ovules attached along placenta by the funiculus. In self-pollinated plants such 

as Arabidopsis, coordinated development of these structures allows the deposition of 

pollen grains from the opened anther onto the stigma. This was suggested by the study of 

the mtn mutant where the defect in seed production was correlated with failure in the 

opening of flowers and manual pollination could rescue female fertility (Schruff et al., 2006). 

However, even though pollination is an essential step, it does not by itself lead to seed 
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development. The fusion of male and female gametes is the key element to transform an 

ovule into a seed, and fertilization can happen only if the male and female gametophytes 

develop properly.  

The male gametophyte or pollen grain is composed of one vegetative cell and two sperm 

cells. All arise from the two rounds of mitotic division of a haploid microspore: the first 

division produces one vegetative cell and one generative cell. The vegetative cell supports 

the development of a pollen tube that brings the two sessile sperm cells from the stigma to 

the female gametophyte. The generative cell divides to produce two sessile sperm cells 

(Twell, 2011). The female gametophyte or embryo sac arises from four mitotic divisions of 

one haploid megaspore. The embryo sac is therefore composed of 7 cells of which 6 are 

haploid (two synergids, one egg cell, three antipodiales), plus the central cell which is a 

diploid fusion of two haploid nuclei (Drews and Koltunow, 2011). The proper development 

of the gametophytes is required for physiological processes such as the pollen tube growth 

of the pollen grain and the production of small protein signals from the synergids leading to 

the attraction of the pollen tube to the embryo sac. 

 

Micro and megagametogenesis involve a series of divisions and the control of cell cycle 

progression is essential for the formation of gametophytes. For example, in the fis mutant, 

the divisions of the central cell fail to arrest, producing an autonomous-endosperm in the 

absence of fertilization, leading to seed development failure likely linked to the absence of 

a developing embryo (Grossniklaus et al., 1998; Kohler et al., 2003; Leroy et al., 2007). 

MSI1 is a FIS-class gene, which has been shown to be directly bound by RBR (Jullien et 

al., 2008). Indeed, the rbr1 mutant displays supernumerary nuclei in the sperm cells of the 

pollen as well as in the central cell in the absence of fertilization, but unlike fis, the central 

cell does not acquire endosperm identity (Ingouff et al., 2006; Johnston et al., 2008; Chen 

et al., 2009). As reviewed in chapter 1, CDKA;1 is a regulator of the transition between the 

cell cycle phases (De Veylder et al., 2003). In cdka;1-1/+, bicellular pollen is produced that 

fertilizes only the egg cell leading to developing seeds that eventually abort (Nowack et al., 

2006). The bicellular pollen of the cdka;1-1 mutant results from a failure to complete mitosis 

producing the two sperm cells from the generative cell, therefore the single generative cell 

remains in G2. It has been postulated that the fusion of gametes occurs only if the gametes 

are in the same cell cycle phase (Berger et al., 2006). In tricellular pollen such as 

Arabidopsis, male gametes are arrested in S-phase (Friedman, 1999). The control of the 

cell cycle is essential to achieve normal gametophyte development. 
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Upon fertilization, a seed is generated and the coordination of various cellular processes in 

the three compartments determines its size (Chaudhury and Berger, 2001). As reviewed in 

chapter 1, defects in embryo development in fis2-5 and ede1-1 mutants as well as defects 

of endosperm development in iku2 and mini3 lead to smaller seeds correlated with a 

reduction of cell elongation in the seed integuments (Garcia et al., 2003; Hehenberger et 

al., 2012). Changes in the cell proliferation, elongation and differentiation of the seed 

integuments impair seed size and embryo and/or endosperm development. In sin1-2 

mutants, ovule integuments do not develop properly; however, 30% of the ovules 

generated can be fertilized and produce seed with a decreased size suggesting that 

integuments influence seed size and proper embryo development (Robinson-Beers et al., 

1992; Ray et al., 1996a). Defects in integument differentiation during seed development in 

ttg2 also lead to integument cell size reduction with an associated reduction of endosperm 

size, leading to the production a smaller seeds (Johnson et al., 2002). Reciprocally, 

overproliferation of ovule integuments in the mtn mutant leads to enlarged seeds with 

larger embryos (Schruff et al., 2006). These studies show that growth of seed components 

is coordinated and that cross-talk between the components determines final seed size. 

Seed size can also be influenced by other factors such as the dosage of parent-of-origin 

genomes (Scott et al., 1998) and the cytokinin hormone (Werner et al., 2003; Riefler et al., 

2006). Interploidy crosses show that plants with doubled ratio of maternal genomes to 

paternal genomes produce smaller seeds, whereas plants with doubled paternal genome 

contribution produce enlarged seeds (Scott et al., 1998). As previously reviewed in Chapter 

1, mutants impaired in cytokinin sensing (ahk) or cytokinin-deficient mutants (ckx) produce 

larger seeds (Werner et al., 2003; Riefler et al., 2006). 

 

In chapter 3, I showed that seed size can also be modulated by expression the CYCD7;1 in 

endosperm during early phases of seed development. In this chapter, I investigated the 

developmental origin of the enlarged seed. Examination of the seed components was 

performed at tissue and/or cellular levels during seed development and seed maturation. 

As seeds arise from fertilization of the cells of the female gametophyte, female and male 

gametophytes were also inspected. The studies were performed using the FWA:CYCD7;1 

lines described in chapter 1 and these lines were referred as seedCYCD7;1.
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Results 

4.1. Effect of endosperm-targeted expression of CYCD7;1 on mature female 
gametophytes 

The formation of ovules occurs within the pistil and is one of the key steps to produce 

viable seed. In order to investigate the effect of endosperm-targeted CYCD7;1 expression 

on the mature female gametophyte, unfertilized mature gynœcia were examined. Therefore 

flowers were emasculated and after two days of maturation pistils and ovules were 

sampled. 

4.1.1. Effect of endosperm-targeted CYCD7;1 expression on ovule initiation 
within the pistil 
Two-day elongated pistils were prepared in order to record the ovary length (from the 

bottom to the top of the ovary at the junction with the style) and the number of ovules prior 

to fertilization using a microscope with bright field illumination. WT pistils measured 2.08 ± 

0.15 mm long and carried on average 55 ± 8 ovules (Fig. 4.1A,B,D). seedCYCD7;1 pistils 

were significantly longer with a length of 2.28 ± 0.17 mm for line 6499, 2.27 ± 0.14 mm for 

line 6484, 2.32 ± 0.12 mm for line 12489 and 2.34 ± 0.22 mm  for line 14054 (Fig. 4.1AC; 

one-way ANOVA, n=30, p=0.03). The number of ovules initiated per pistil was significantly 

lower with 41 ovules for line 6499, 43 for line 6484, 49 for line 12489 and 47 for line 14054 

compared to 55 in the WT (Fig. 4.1D; one-way ANOVA, n=30 pistils, p=3.2x10-8). These 

results suggest that prior to fertilization the number of ovules produced is lower in 

seedCYCD7;1 and the ovule density within the cavity of the ovary was lower in seedCYCD7;1. 

Potentially the seeds therefore have more space to grow and have less mechanical 

constraint and therefore more space to grow, particularly as the pistil length is increased.  
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Figure 4.1. Effect of endosperm-targeted CYCD7;1 expression on ovule initiation 
and associated pistil elongation. 
 
Two-day elongated pistils from emasculated flowers were cleared and examined under a 
microscope. Comparison of ovary length of mature pistils (A) and number of ovules 
produced within the ovary (D). (B,C) DIC images of mature pistils of WT (B) and 
seedCYCD7;1 (line 6499) (C).  
 
Error bars show ± SE. (*) indicates a statistical difference between WT and seedCYCD7;1  
(n=30; p=0.03 for  pistil length and p=3.2x10-8 for ovule count).  
 
Scale bars: 200 µm.  
Abbreviations: sty, style; stg, stigma. 
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4.1.2. Effect of endosperm-targeted CYCD7;1 expression on cell cycle arrest 
in the female gametophyte prior to fertilization 
As demonstrated in chapter 3, seedCYCD7;1 is expressed in the central cell prior to 

fertilization. Moreover, seedCYCD7;1 produced larger mature seeds and the reciprocal 

crosses showed that CYCD7;1 acts maternally to influence seed size. To determine the 

origin of the size difference, mature ovule size was investigated. To do so, pistils were 

emasculated and after 2 days of maturation, ovules were cleared and observed using 

differential interference contrast (DIC) microscopy. WT ovules had an average cross 

sectional area of 15,097 ± 1,112 µm2 and seedCYCD7;1 ovules were similar in size with 

14,495 ± 1,320 µm2 (line 6499), 15,415 ± 1,234 µm2 (line 6484), 15,104 ± 1,070 µm2 (line 

12489), and 15,612 ± 1,359 µm2 (line 14054) (one-way ANOVA, n=30, p=0.51; Fig. 4.2A-

E).  

However, the analysis of unfertilized ovules showed that in seedCYCD7;1 mature ovules 

several nuclei in the central cell were visible prior to fertilization (Fig. 4.2B-E). To confirm 

the presence of several nuclei in the central cell, three independent experiments in which 

flowers were emasculated and pistils left to mature for 2 days were performed. In two 

experiments, ovules were harvested, cleared and analyzed using DIC microscopy. In the 

third experiment, pistils were fixed (according to the procedure described in chapter 2, 

section 2.12.1) and ovules were stained with DAPI, then examined using confocal imaging. 

The overall result is shown in Fig. 4.2F. The WT central cell contained a single nucleus 

located toward the egg apparatus (Fig. 4.2B,D,F). In seedCYCD7;1, depending on the line, 

between 20% to 50 % of the analyzed ovule, had a single nucleus (Fig. 4.2F). On average, 

23% of seedCYCD7;1 ovules had 2 nuclei, 15% had 3 nuclei and 9% with 4 nuclei. For line 

6484 and 12489 had 33% and 30 % ovules with more than 5 nuclei, respectively. 

These results suggest that seedCYCD7;1 expression can affect the size of structures other 

than the seed. 
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Figure 4.2. Effect of endosperm-targeted CYCD7;1 expression on mature female 
gametophyte prior to fertilization. 
 
(A-G) Comparison of mature ovule area with error bars showing ± SE (A). DIC images of 
WT ovule (B) and seedCYCD7;1 (line 6499) (C). Confocal images of mature ovule from WT 
(D) and seedCYCD7;1 (line 6499) (E) with the left-hand side picture of each panel showing 
DAPI-stained images and the right-hand side picture showing images using transmitted 
light. Arrow heads in (B-E) show a single nucleus in the mature central cell of WT (B,D) and 
supernumerary nuclei in seedCYCD7;1 (line 6484).  
 
(F) Comparison of nucleus number in a non-fertilized central cell.  
 
Scale bars: 20 µm.  
Abbreviation: ec, egg cell. 
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4.2. Effect of endosperm-targeted expression of CYCD7;1 on developing 
seeds 

4.2.1. Effect of endosperm-targeted CYCD7;1 expression on seed size during 
seed development 
seedCYCD7;1 produced seeds with an increased final size. To determine from which stage 

of development the seed size phenotype manifested itself, I recorded the size of 

developing seeds following controlled self-pollination. Developing seeds were dissected out 

and cleared with chloral hydrate for examination under DIC optics at 3, 4, 5, 6, 7, 9, days 

after pollination (DAP). As previously suggested in section 4.1, the ovules were no different 

in size and the enlargement was not visible prior to fertilization. 3 DAP, WT seed area 

measured 69,689 ± 9,368 µm2 and seedCYCD7;1 seeds were not larger with an area of 

64,546 ± 11,366 µm2 (6499), 66,265 ± 13,398 µm2 (6484), 60,230 ± 11,403 µm2 (12489) 

and 61903 ± 10,338 µm2 (14054) (one-way ANOVA, n>50, p=0.6; Fig. 4.3 and Fig. 4.3). 

From 4 DAP, seedCYCD7;1 seeds displayed a seed size larger than that of WT. 

seedCYCD7;1 seed area were 187,890 ± 16,643 µm2 (6499) and 150174 ± 14,875 µm2 

(14054) and 92,836 ± 9,536 µm2 for the WT seeds (two-way ANOVA, effect of the 

genotype on seed size, n>50, p=5.47x10-7). At 9 DAP, the last time point recorded, 

seedCYCD7;1 areas were 237,067 ± 15,986 µm2 (6499), 224,919 ± 19,567 µm2 (6484), 

214,672 ± 17,982 µm2 (12489) and 186,847 ± 15,935 µm2 (14054), and WT seed area was 

140,552 ± 12,987 µm2. The seed area was compared between WT and seedCYCD7;1 lines 

at each time point but also between the different time points (3, 4, 5, 6, 7, 9 DAP) by 

performing a two-way ANOVA with a Bonferroni test. Statistical analysis suggested that for 

each line, the seed size increased during development From 3 DAP to 6 DAP. From 6 DAP 

onwards, the seed size increase was not significant except for the seedCYCD7;1 6499 line, 

which showed a significant seed size increase until 9 DAP. These results suggest that the 

enlarged seed size phenotype conferred by seedCYCD7;1 arises in the early stages of seed 

development (from 3 to 4 DAP) correlated with the largest relative increase in growth 

compared to the WT (191% for 6499 and 143% for 14054 relative to 33% for WT). 
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Figure 4.3. Area of developing seeds in WT and seedCYCD7;1 plants.  
 
At each time point, (*) indicates a significant difference between WT seeds and 
seedCYCD7;1 seeds. ( ¿ ) indicates a significant different for each line with the previous 
time point. Error bars show ± SE. 
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4.2.2. Effect of endosperm-targeted CYCD7;1 expression on seed viability in 
the silique  

Silique length and frequency of developing seeds 
Strikingly, mature siliques from seedCYCD7;1 plants were shorter than the WT. Therefore, 

The silique length difference was quantified by measuring the length of 5 mature siliques 

(stage 17 described by Alvarez-Buylla et al., 2010) at position 10 to 14 from the rosette on 

the primary stem of 15 different plants: A WT mature silique measured on average 1.61 ± 

0.17 cm, whereas seedCYCD7;1 siliques were significantly shorter with an average length of 

0.86 ± 0.17 cm (line 6499), 1.20±0.22 cm (line 6484), 1.36 ± 0.17 cm (line 12489) and 1.28 

± 0.2 cm (line 14054) (one-way ANOVA, n=75, p=3x10-6; Fig. 4.4A-B). Since the siliques 

were shorter, the total number of developing and aborting seed produced in each pod was 

recorded. In WT plants, the average seed count in a mature silique was 54 ± 6 (Fig. 4.4C). 

seedCYCD7;1 siliques contained on average 43 ± 7 seeds (line 6499), 46 ± 7 seeds (line 

6484), 48±8 seeds (line 12489) and 48 ± 9 seeds (line 14054). The total number of seed 

produced in seedCYCD7;1 plants is significantly smaller than in WT plants (one-way 

ANOVA, n=75 p=2x10-6). The reduced number of total seeds per silique arose during ovule 

initiation in the placenta, as the number of ovules produced by each transgenic line and the 

WT was similar to the final number of total seeds in a mature silique (one-sample t-test for 

each line: WT, p=0.85; 6499, p=0.71; 6484, p=0.56; 12489, p=0.91; 14054, p=0.86; Fig. 

4.1). In addition, the number of aborted and developing seeds was also recorded (Fig. 

4.4D), and the relative proportion of aborted/developing is shown in Fig. 4.4E. In WT 

plants, 5% of the total amount of seeds produced were aborted, whereas in seedCYCD7;1 

plants, 80% of seeds were aborted in line 6499, 65% in line 6484, and 50% in lines 12489 

and 14054. In seedCYCD7;1, plants the relative proportion of lethality is substantially greater 

than in the WT (one-way ANOVA, n=75, p=1.33x10-13).  

Therefore, these results suggest that the silique length reduction is due to fewer female 

gametophytes being produced prior to fertilization, although the pistil is actually longer, and 

a larger number of aborted seeds. 
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Figure 4.4. Seed lethality in developing siliques and developmental 
characterization of seed abortion. 
Mature siliques were analyzed. The siliques developing on the primary stem from position 
10 to 14 were harvested. The length, the total count of seeds and the proportion of 
developing/aborting seeds were recorded. 
 
(A) Length comparison of siliques from WT and seedCYCD7;1 plants. 
(B) Picture of siliques at position 10 on the main stem from WT (first on the left) and 
seedCYCD7;1 plants (from the second of the left line 6499, 6484, 12489 and 14054). 
(C) Total seed count including developing and aborted seeds of the siliques from WT and 
 seedCYCD7;1 plants. 
(D) Opened siliques revealing aborted seeds (black arrowhead) and developing seeds 
(white arrowhead) of WT (first on the left) and seedCYCD7;1 plants (from the second of the 
left line 6499, 6484, 12489 and 14054). 
(E) Relative proportion of developing/aborted seeds in siliques from WT and seedCYCD7;1 
plants. 
 
Scale bars: B, 5 mm; D; 2 mm.(*) indicates a statistical difference between WT and 
seedCYCD7;1.  
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Developmental characterization of seed abortion 
In seedCYCD7;1 mature siliques, a large proportion of seeds aborted. It has been previously 

shown that the reduced fertility can be caused by mechanical failure of pollination (Schruff 

et al., 2006). Indeed, stamens of seedCYCD7;1 flowers appeared to be shorter than in the 

WT. In addition, the degree of pollen deposition on the stigma seemed lower in 

seedCYCD7;1 with the reduction in the strongest seedCYCD7;1 expresser (6499) being higher 

than in the lowest seedCYCD7;1 expressers (12489 and 14054). Manual crosses in which 

stigmas were saturated with pollen from the same plant revealed that WT siliques produced 

49 seeds with 7±8 aborting, whereas seedCYCD7;1 produced 38 total seeds with 26 

aborting seeds (6499), and 48 seeds including 21 aborting seeds (12489, Table 4.1). When 

performing a manual pollination, the lethality was increased by 10% in WT and by 16 % 

and 3% in the seedCYCD7;1 6484 and 14054 lines respectively (Fig. 4.4.E; table 4.2). In 

contrast, for seedCYCD7;1 6499 the lethality was reduced by 16% and 6% in 12489 when 

plants were pollinated manually instead of being allowed to self-pollinate. However, the 

increase or decrease of lethality is not statistically significant (Table 4.2, χ2 test, using the 

lethality proportion in naturally occurring pollination as expected values, p-value≤0.05). 

This result suggests that mechanical pollination is unlikely to be the main factor explaining 

the level of seed abortion seen in seedCYCD7;1. 

 

Table 4.1. Count of aborting and developing seeds in siliques at stage 17 (mature green 

silique analyzed 8 DAP;(Alvarez-Buylla et al., 2010)) from manually self-fertilized crosses. 

   n developing seeds aborted seeds total number seed 

WT WT x WT  54 42±13 7±8 49±8 

se
ed

C
Y

C
D

7;
1 

6499 x 6499 32 11±11 26±11 38±9 

6484 x 6484 52 8±5 35±8 43±7 

12489 x 12489 52 27±11 21±9 48±7 

14054 x 14054  56 22±9 25±9 47±8 
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Table 4.2. Comparison of seed lethality in siliques at stage 17 between naturally occuring 

pollination and manual crosses. 

  Naturally occurring pollination Manual pollination  

  n % of abortion n % of abortion χ2 (p-value) 

WT WT x WT 54 14% 75 5% 0.2 

se
ed

C
Y

C
D

7;
1 

6499 x 6499 32 80% 75 68% 0.2 

6484 x 6484 52 65% 75 81% 0.05 

12489 x 12489 52 50% 75 44% 0.4 

14054 x 14054 56 50% 75 53% 0.7 

 

As pollination failure did not explain the observed seed abortion, early events of seed 

development were analyzed. Therefore, manual crosses were performed and 29 hours 

after pollination (HAP) seeds were cleared and examined using DIC microscopy. In WT 

plants, 100 % of the harvested seeds contained a developing embryo (Fig. 4.5A,C,D). In 

seedCYCD7;1, a developing zygote could be observed in 46% of harvested seeds of 6499, 

in 75% of 6484 seeds, 61% of 12489 seeds and 81% of 14054 sampled seeds. This result 

suggested that there is a delay or an arrest early in development. However the proportion 

of abortion is increased during maturation of the silique (Fig. 4.5A). This suggests that a 

proportion of developing embryos arrest their development. To investigate this assumption, 

aborted seeds from manually pollinated siliques (5 DAP) were cleared and observed under 

DIC optics. All arrested seeds failed to get through the globular stage, and the arrest seem 

to occur between the 8-cell to globular stage. However, arrested embryos seemed to be 

patterned correctly (Fig. 4.5E,F). These data suggest that seed development arrest 

happens early during development and is due to a delay early in development and a 

reduced potential to make the transition from a globular to heart stage embryo. 
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Figure 4.5. Developmental characterization of seedCYCD7;1 seed abortion. 
 
(A) Graph showing the proportion of developing and aborted seeds when performing 
manual crosses.  
 
(B) Typical unfertilized ovule. This absence of individualized zygote and synergids, on the 
micropylar pole, marks the onset of degeneration.  
 
(C,D) Progression of seed development: fertilization is indicated by the formation of the 
zygote on the micropylar pole and expansion of the syncytial endosperm (D). The first 
division of the zygote produces the two-celled embryo proper with the apical cell towards 
the endosperm and the basal cell towards the micropyle (E). 
 
(E,F) 5 DAP, seedCYCD7;1 aborting seeds were sampled. Seed integuments are 
degenerating, confirming that the seeds are dying. Embryos arrest at globular stage (E) 
and at the 16-cell stage at which point the protoderm is noticeable (F). 
 
Scale bars: B-F, 20 µm. 
Abbreviations: ac, apical cell of the embryo proper; bc, basal cell of the embryo proper cc, 
central cell; en, endosperm; I, integuments; mp, micropylar pole; z, zygote.  
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Parental-origin of seed lethality 
CYCD7;1 is expressed in these experiments under the control of the FWA promoter. The 

FWA promoter is imprinted and active only in female reproductive structures (Soppe et al., 

2000; Kinoshita et al., 2004). Moreover, I showed that the seed size phenotype has a 

maternal origin. Therefore I investigated whether the seed lethality was also due to a 

maternal effect. Reciprocal crosses were performed between WT and seedCYCD7;1 plants, 

and the abortion proportion was recorded in both mature siliques and during early stages.  

A self-fertilized manual cross on WT plants produced 49±8 seeds per silique with 7±8 

aborting, corresponding to 14% of abortion (Table 4.3). Self-fertilized seedCYCD7;1 plants 

produced 38 seeds per silique (line 6499), 43 for line 6484, 48 (line 12489) and 47 (line 

14054). When seedCYCD7;1 pistils were pollinated with WT pollen, the total number of 

seeds produced per silique and the proportion of lethality is comparable to seedCYCD7;1 

pistils pollinated with seedCYCD7;1 pollen. For example, the pistil of the line 6499 pollinated 

with 6499 pollen produced 11 developing seeds and 26 aborted seeds and when pollinated 

with WT pollen, 15 seeds developed and 21 aborted (df=1, p=0.12). On the other hand a 

WT pistil pollinated with seedCYCD7;1 pollen produced 50 developing seeds and 3 aborting 

(for the line 6499), similar to the number of seeds developing and aborting in the WT pistil 

pollinated by a WT pollen (df=1, p=0.54). Similar results were found for the three other 

seedCYCD7;1 lines. This result suggests that the seed lethality is due to a maternal-origin 

effect. 



	  

 

 

Table 4.3. Count of aborting and developing seeds in manually self-fertilized crosses. Genotype of (f) female and (m) male. 

          
χ2 test (p-value) 

Expected values are from the cross with 
  n developing seeds aborted seeds total number seed OE pistil Col-0 pistil 
Col f x Col m 54 42±13 7±8 49±8   
       
Col f x 6499 m 30 50±5 3±3 53±4  0.544826851 
Col f x 6484 m 27 44±11 5±8 50±6  0.345231072 
Col f x 12489 m 33 35±10 7±7 43±5  0.236723571 
Col f x 14054 m 30 40±6 3±3 43±4  0.473200418 
       
6499 f x 6499 m 32 11±11 26±11 38±9   
6499 f x col m 36 15±2 21±5 36±4 0.12  
       
6484 f x 6484 m 52 8±5 35±8 43±7   
6484 f x Col m 31 8±10 34±7 42±6 0.865772375  
       
12489 f x 12489 m 52 27±11 21±9 48±7   
12489 f x Col m 30 21±7 20±8 41±8 0.239938989  
       
14054 f x 14054 m 56 22±9 25±9 47±8   
14054 f x col m 30 24±8 22±9 47±4 0.461680188  
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4.2.3. Effect of endosperm-targeted CYCD7;1 expression on embryo 
development 

Time course of seed development  
The developmental progression of seedCYCD7;1 lines and WT seeds was compared. A time 

course of seed development was generated in order to establish when the enlarged seed 

size phenotype is visible. Time points chosen were 2, 3, 4, 5, 6, 7, 9 DAP. Seeds were 

harvested and cleared with chloral hydrate for examination under DIC optics. 99 to 234 

individual embryos were recorded for each line at each time point. The stages of embryo 

development recorded were those described in Fig. 1.5. In WT plants, 2 DAP, 56% of 

seeds reached the 2/4-cell stage, 36% were at the embryo proper stage and 8% were at 

the zygote stage (Fig. 4.6). In the strongest seedCYCD7;1 expresser (line 6499), only 3% of 

embryos reached the 2/4-cell stage, 33% the embryo proper stage and 64% were still at 

the zygote stage. In the lower seedCYCD7;1 expresser (line 14054), 23% of seeds were at 

the 2/4-cell stage, 54% at the embryo proper stage and 23% at the zygote stage. At 3 DAP, 

in WT plants, 20% of embryos reached the 16-cell stage, 41% the 8-cell stage, 24% the 

2/4-cell and 15% were in the embryo proper stage. In seedCYCD7;1 plants, up to 60% of 

embryos were at the globular stage (line 12489), only 10% were at the 2/4-cell stage and 

no embryos were still at the embryo proper stage. 4 DAP, 54 % of WT embryos reached 

the globular stage, 22% the triangular stage and 5 % the heart stage, 19% were still in the 

16-cell stage. seedCYCD7;1 embryos were mainly at the triangular and globular stages with 

less than 10% in the 16-cell stage and none at stages earlier than 16-cell : line 6499 had 

72% embryos at the heart stage and 17% at triangular stage; line 14054 had 28% at the 

heart stage and 41% at the triangular stage. 5 DAP, in WT plants, the majority of seeds 

(50%) reached the globular stage but 25% were still at the  transition stage and 25% at the 

heart stage whereas in seedCYCD7;1 seeds were at heart stage (74% for line 14054) or at 

the torpedo stage (52% for line 12089) and under 10% were at the triangular and globular 

stages. At 6 DAP, 32% of WT embryos reached the bent cotyledon stage, 52% the torpedo 

stage, and 16% were still at the heart and transition stages. At this specific time, the 

seedCYCD7;1 line 6499 (with the strongest expression level) showed a retarded 

development compared to the WT, with 15% of seeds at the bent cotyledon stage, 42% at 

the torpedo stage, 36% at heart stage and 7% at the  triangular and globular stages. The 

seedCYCD7;1 line 12489 (with the one of the lowest expression level) still showed an 

accelerated development with 46% at the bent cotyledon stage, 49% at the torpedo stage 

and 5% at the heart and triangular stages. 7 DAP, 40% of WT seeds were at the mature 

embryo stage, 48% at the bent cotyledon stage and 11% between the torpedo and 

triangular stages. The stronger seedCYCD7;1 expresser 6499 still displayed a retarded 
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development compared to the WT, with 11% at the mature embryo stage, 19% of seeds at 

the bent cotyledon stage, 45% at torpedo stage, 22% at heart stage and 6% at triangular 

and globular stage. In contrast, the seedCYCD7;1 line 14054 (one of the lines with the lowest 

expression level) showed a similar development to the WT with 10% deviation (with 98% of 

seeds at the two last stages of embryo development compared to 88% in WT). However, in 

seedCYCD7;1 line 14054, 69% were at the mature embryo stage, 29% at the bent cotyledon 

stage and 2% at the torpedo stage. 100% of the WT and seedCYCD7;1 seeds reached the 

mature embryo stage at 9 DAP. 

 

At very early stages of seed development (2 DAP), WT seeds appeared to progress faster 

through embryogenesis with a larger proportion of the population at the 2/4-cell stage 

compared to the seedCYCD7;1 seeds. Moreover, the stronger the level of the seedCYCD7;1, 

the more retarded this early development was. This result is consistent with the fact that in 

seedCYCD7;1 overexpresser there is seed lethality due to a defect either at early stages of 

seed development or during the fertilization event. Slightly later in seed development, from 

3 DAP to 5 DAP, seedCYCD7;1 seeds reached later stages of embryo development quicker 

than the WT seeds. This apparent early delay in seedCYCD7;1 might be explained if the 

fertilization happens at a different time in WT and in seedCYCD7;1, or it could be a 

retardation of the earliest divisions. Once the fertilization occurs, the presence of CYCD7;1 

in the early endosperm then supports a faster development as long as it is expressed. 

Finally, from 6 DAP onwards, seedCYCD7;1  seed development progression is similar to WT 

seed development. This could be consistent with a reduction of CYCD7;1 expression within 

the endosperm at this time. However, detailed analysis of the different seedCYCD7;1 lines 

showed that from 7 DAP onwards, the line with the strongest level of expression tends to 

be slower than the WT whereas seeds from the line with the lowest expression level are 

still further ahead in seed development progression than WT seeds. Interestingly, the 

accelerated embryo progression through the globular-heart stage occurred between 3 to 4 

DAP. This time window also corresponds to the greatest relative increase of seed area 

(Fig.4.4).  



	  

 

Figure 4.6. Seed development in WT and seedCYCD7;1.  
 
Manual crosses were performed and seeds were cleared and examined 2, 3, 4, 5, 6, 7, 9 days after pollination. Progression of seed 
development was observed in seedCYCD7;1 lines and compared to WT seed development.  
 
(A) Radar diagrams show the proportion of seed at different stages for each time point. 
 
(B) Characteristic pictures of the typical stage present in higher proportion for each time point and in each line.  
First row: seed development from WT plants; second row: seed development from one of the strongest seedCYCD7;1 (6499) and third row: seed 
development from one of the weakest seedCYCD7;1 (12489) 
In all images, the chalazal pole is at the left end the micropylar pole, where the embryo is located at early stages and from which the embryo 
expands at later stages, is on the right. Scale bar: 50 µm (shown only in the first of B).  
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Heart stage embryo size 

The study of the progression of embryo development revealed that WT embryos started 

reaching the heart stage at 5 DAP, one day later than seedCYCD7;1. However, the time 

window in which each embryo transited the heart stage was shorter in the WT (2 days from 

5 to 6 DAP) whereas seedCYCD7;1  had a slower average progression through the heart 

stage from 4 DAP to 7 DAP. Despite the slower rate of embryo development and the wider 

time window through heart stage, the patterning of WT and seedCYCD7;1 embryos was 

morphologically similar at early and late heart stage (Fig. 4.7A-F). This could suggest that 

the coordination between embryo progression and tissue formation was not disturbed by 

faster embryo development progression in seedCYCD7;1. In addition the embryo area of 

every heart stage embryos was recorded (Fig. 4.7G). WT embryos measured on average 

4378 µm2 and seedCYCD7;1 embryos measured 4489 µm2 (6499), 4583 µm2 (6484), 4312 

µm2 and 4410 µm2 (14054). seedCYCD7;1 embryos were not significantly different from WT 

(one-way ANOVA, n>35, p=0.26). Despite the fact that seedCYCD7;1 seeds started 

undergoing a significant enlargement compared to the WT, the embryos were not 

significantly larger. Taken together with the fact that seedCYCD7;1 embryo patterning was 

not disturbed and that the seedCYCD7;1 reached heart stage quicker, it is likely that the 

transition from  triangular to heart stage in seedCYCD7;1 was accelerated. As embryo 

patterning is correlated with cell division rate, it is also plausible that the accelerated rate of 

embryo development at this triangular/heart stage transition was due to a faster rate of cell 

divisions. 
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Figure 4.7. Characterization of heart-stage embryos in WT and seedCYCD7;1. 
 
(A-C) Early heart stage embryo where the cotyledon-to-be starts forming a bump. Toward 
the future root tip, the division of the upper cell of the hypophysis formed the lens-shaped 
cell. From the lens-shaped cell, the provascular tissues are distinguishable at the centre 
and the ground tissues at the outside surrounded by the epidermis.  
 
(D-F) Mid-heart stage embryo where the cotyledons have started their outgrowth. The lens-
shaped cell underwent divisions giving rise to the quiescent centre and one cell-layer of 
collumela stem cells. The vascular tissues are still distinguishable at the centre and the 
ground tissues at the outside surrounded by the epidermis 
 
(A,D) WT embryo. (B,E) seedCYCD7;1 line 6499 and (C,F) seedCYCD7;1 line 12489. 
 
(G) Embryo area at heart-stage. Error bars show ± SE. No statistical difference between 
WT and seedCYCD7;1 is observed. 
 
Scale bars: A-F, 15 µm.  
Abbreviations: c, cotyledon; lc, lens-shaped cell; QC, quiescent centre; pv, provasculature. 
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4.3. Effect of endosperm-targeted expression of CYCD7;1 on the 
compartments of  mature seeds  

In chapter 3, I showed that seedCYCD7;1 produced seeds with a final seed area enlarged by 

15% to 43%. To investigate the overall consequences on the seed components, I looked at 

the mature embryo released from of mature seeds, as well as the seed coat, especially the 

outer layer of the outer integument.  

4.3.1. Effect of endosperm-targeted CYCD7;1 expression on final embryo size 
A Col-0 WT mature embryo measured on average 894 µm long, whereas seedCYCD7;1 

mature embryos had a length of 1226 µm for line 6499, 1122 µm for line 6484, 1035 µm for 

line 12489 and 996 µm for line 14054 (Fig. 4.8A,B). Hence seedCYCD7;1 mature embryos 

were significantly longer by 12% to 37% depending on the transgenic line (one-way 

ANOVA, n>37, p=8.47x10-7). The volume of a mature embryo was determined by imaging 

the whole embryo with confocal Z-stacks and by picture integration with an ImageJ plug-in 

developed by M. Ferero-Vargas (personal communication). A WT embryo had a volume of 

25x106 µm3. seedCYCD7;1 embryos were 61x106 µm3 (line 6499), 40x106 µm3 (line 6484), 

41x106 µm3 (line 12489) and 38x106 µm3 (line 14054). These results show a significant 

increase in volume ranging from 50% to 139% (one-way ANOVA, n>37, p=2.8x1017; Fig. 

4.8A,C).  

To determinate whether the increase in mature embryo size was due to a cell 

overproliferation effect or to an effect on cell elongation, the cotyledon areas and the 

epidermal pavement cell areas were measured in the mature embryo. The ratio of 

cotyledon surface:epidermal pavement cell surface gives a calculated number of pavement 

cells on the cotyledon surface. The WT cotyledon surface measured on average 75x103 

µm2. seedCYCD7;1 measured 120x103 µm2 (line 6499), 116x103 µm2 (line 6484), 106x103 

µm2 (line 12489) and 97x103 µm3 (line 14054). As the embryo volume increased, 

seedCYCD7;1 cotyledon area was significantly larger with a 29% to 60% increase (one-way 

ANOVA, n>74, p=1.29x10-5; Fig. 4.8A,H). The average surface areas of epidermal 

pavement cells were 194 µm2 for the WT and 210 µm2, 196 µm2, 200 µm2 and 199 µm2 for 

seedCYCD7;1 line 6499, 6484, 12489 and 14054 respectively. A Bonferroni multi-

comparison test revealed that only from seedCYCD7;1  6499 were the pavement cells 

significantly larger (n>555, p=0.3x10-4; Fig. 4.8F,G). The calculated ratio of cotyledon 

surface:epidermal pavement cell surface showed that the WT area were consisted of 388 

cells and the seedCYCD7;1 of 572, 589, 529 and 448 cells for line 6499, 6484, 12489 and 

14054 respectively. WT cotyledons had fewer pavement cells than the seedCYCD7;1 (one-
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way ANOVA, n>74, p=7.5x10-20; Fig. 4.8I). By measuring cell area in the shoot, I inferred 

that cell proliferation was stimulated in cotyledons. 

As the whole embryos were larger, I next determined whether the embryo radicle anatomy 

and the cell length were different. WT radicle consists of concentric single-cell layers of 

epidermis, cortex and endodermis from the outside to the inside. The inner layers consist of 

the stele, where the single-layer pericycle surrounds the vascular tissues (Marchant et al., 

1999). The analysis of Z-stacks showed that seedCYCD7;1 radicles did not appear to have 

extra layers and the root pattern in the radial dimension was similar to that of WT 

(Fig.4.8D). The lengths of sixteen cortical cells, starting from the first cortical cell after the 

cortical-endodermis initials (CEI), were measured. The first cortical cell length in a WT root 

was 6.5 µm. In the seedCYCD7;1 cortical cell lengths ranged from 5.5 to 6 µm depending on 

the line observed. The sixteenth cortical cell length measured was 9.2 µm in WT and were 

between 8.8 µm and 10.6 µm for SeedCYCD7;1. Overall the cell length was increasing up 

the root except for the second cortical cell with slightly greater cell length than 

seedCYCD7;1. A two-way ANOVA test showed that the cortical cell length is not significantly 

different between WT and seedCYCD7;1 (n>74 cortical files, α=0.05, p=0.23). However, for 

both genotypes the cortical cell length is statistically different depending on the position 

from the CEI (n>74 cortical files, α=0.05, p=4.6x10-6; Fig. 4.8E). As the cells from the cortex 

were not larger, the contribution of the root to produce a larger embryo is presumably due 

to cell overproliferation. 

4.3.2. Effect of endosperm-targeted CYCD7;1 expression on the seed coat of 
mature seeds 
As the seedCYCD7;1 lines produced larger seeds with larger embryos containing more cells, 

I investigated the effect on the seed coat. The cells of the outer layer of the outer 

integument were measured on mature dry seeds. Cells of the outer integuments had on 

average an area of 778 µm2 for WT (Fig. 4.8J). The average cell area for seedCYCD7;1 was 

854 µm2 (6499), 857 µm2 (6484), 821µm2 (12489) and 807 µm2 (14054) and is not 

significantly different from the WT cell area (one-way ANOVA, n=450, p=0.18). The 

projected seed area was measured and the ratio projected seed area:average cell area 

gives a calculated number of cells contributing to the size of the seed coat. The WT seed 

area was 12.3x104 µm2 whereas seedCYCD7;1  seed areas were significantly larger with an 

average of 17.4x104 µm2 (6499), 17.3x104 µm2 (6484), 16.2x104 µm2 (12489) and 14.3x104 

µm2 (14054) (Fig. 4.8K; one-way ANOVA, n=30,  p=5.9x10-4). Therefore, the calculated 

counts of cells in the outer integument inferred by the ratio projected seed area:average 

cell area were 159 for the WT. The seedCYCD7;1  lines contained significantly more cells 

with averages of 204, 203, 197 and 181 for lines 6499, 6484, 12489 and 14054 
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respectively (Fig. 4.8L; one-way ANOVA, n=450, p=6x10-4). Therefore, The seedCYCD7;1 

seed coat is larger and the enlargement is due to cell proliferation rather than cell 

expansion. 



 

 

Figure 4.8. Characterization of enlarged mature seeds from seedCYCD7;1 plants. 
 
(A-I) Embryo features  
 

(A) Confocal stacks showing embryos removed from mature dried seeds. 
Length (B) and volume (C) of mature embryos from WT and seedCYCD7;1 plants. 
(D) Embryo radicle revealing a concentric single-celled layer radial pattern (from the 

outside to the inside: the epidermis, the cortex, the endodermis and the pericycle) the 
inner part of radicle is the stele constituted of vascular tissues. 

(E) Length of cortical cells from the cortex-endodermis initials (CEI) 
 
(A) Trace of mature embryo cotyledon epidermis showing pavement cells, stomata and 

lineage cells of stomata.  
(B) Comparison of cell area of pavement cells of mature embryo cotyledons. 
(C) Comparison of cotyledon area of mature embryos. 
(D) Inferred numbers of pavement cells of cotyledons by calculating the ratio cotyledon 

surface:epidermal pavement cell surface. 
 

(J-L) Seed coat features looking at the outermost layer of the integuments. 
(E) Comparison of cell area of the outermost layer of the mature seed integuments. 
(F) Comparison of seed surface. 
(G) Inferred numbers of cells in the outer integument by calculating the ratio seed 

surface:integument cell surface. 
 

Scale bars: A,D, 100 µm; F, 50 µm 
Error bars show ± SE. (*) shows a statistical difference between WT and seedCYCD7;1. 
 
Abbreviations: co, cortex; ed, endosermis; ep, epidermis; p, pericycle; st, stele. 
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4.4. Effect of endosperm-targeted expression of CYCD7;1 on seedlings post-
germination 

As the final embryo size of seedCYCD7;1  was increased, an investigation was carried out to 

determine whether the seedCYCD7;1 has a prolonged effect beyond its window of 

expression during post-embryonic development. In 7 day-old seedlings, root length and 

cotyledon area were measured. In WT, the root length of 7 day-old seedling was 21.9 mm 

(Fig. 4.9C). In seedCYCD7;1, roots were 31.3 mm long for line 6499, 31.1 mm for line 6484, 

29.7 mm for 12489 and 28.6 mm for 14054. seedCYCD7;1 roots were significantly longer 

than WT roots (one-way ANOVA, 30<n<45, p=6.09x10-9). The average cotyledon surface 

per seedling was 5.1 mm2 in WT and the cotyledon area was larger in seedCYCD7;1 

seedlings with an average of  9.5 mm2 for the line 6499,  8.5 mm2 for 6484, 7.9 mm2 for 

12489 and 7.7 mm2 for 14054 (one-way ANOVA, p=2.5x10-10; Fig. 4.9A,B). In addition, in 

seedCYCD7;1 the first true leaves were more advanced in their development that the ones in 

WT (Fig. 4.9B). Whether the emergence of the first true leaves is faster in seedCYCD7;1 or 

whether the leaves grow faster, still needs to be investigated. 
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Figure 4.9. seedCYCD7;1 has an effect on seedling growth 7 days after germination. 
 
(A) Comparison of cotyledon surface between 7 day-old seedling WT and seedCYCD7;1. 
 
(B) 7 day-old seedling. Cotyledon surface is wider in seedCYCD7;1 than in the WT and the 
development of the true leaves is more advanced.  
 
(C) Comparison of root length between 7 day-old WT and seedCYCD7;1 seedlings. 
 
Scale bar: 1 mm. 
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Discussion 

Changes in seed size have been reported in a number of genes including AP2, EOD3 and 

MTN that encode for an AP2 class transcription factor, a cytochrome P450 and AUXIN 

RESPONSE FACTOR 2, respectively. Seed-targeted expression of CYCD7;1 promotes 

seed growth by promoting cell proliferation in the embryo and the seed coat rather than cell 

expansion (Fig. 4.8), unlike ap2 and eod3-1D in which both cell proliferation and cell 

expansion are affected (Ohto et al., 2005; Fang et al., 2012). Despite the expression of 

seedCYCD7;1 in the central cell of the mature female gametophyte (Chapter 3), the size of 

mature ovules was similar in the WT and seedCYCD7;1, suggesting that the effect of 

CYCD7;1 expression in the central cell has no visible effect prior to fertilization, although 

the number of ovules was reduced. Therefore I can assume that the seed size difference 

happens post-fertilization and time-course experiments revealed that the enlarged seed 

size was distinguishable 4 DAP. Similarly, the mature ovule of eod3-1D mutants have a 

size similar to the WT and the enlarged seed phenotype from the eod3-1D mutants arises 

post-fertilization at 2 DAP, whereas in mtn the enlargement is observable in mature ovules 

pre-fertilization (Schruff et al., 2006; Fang et al., 2012). At 4 DAP, the seed size 

enlargement was noticeable in seedCYCD7;1  and is correlated with a faster rate of embryo 

development until the embryos reach the heart stage. Despite the quicker embryo 

development progression, heart stage embryos did not display an enhanced size or 

abnormalities in embryo patterning, unlike RPS5A:CYCD7;1 (Collins et al., 2012). It has 

been shown that under the control of the RPS5A promoter, CYCD7;1 is expressed in all 

proliferating tissues (Weijers et al., 2001; Collins et al., 2012). This expression leads to 

abnormal embryo development characterized by cell overproliferation in the suspensor and 

in the embryo. Morphologically the embryo patterning is impaired. However embryos still 

progress through the different stages of development and reach maturity (Collins et al., 

2012). Interestingly, the defects of embryo patterning have also been observed with 

RPS5A:CYCD3;1, reinforcing the hypothesis that control of the cell cycle progression is 

essential for normal seed development. The normal embryo patterning and heart stage 

embryo size suggests that the accelerated rate of cell division and embryo patterning were 

still coordinated to form normal tissues rather than a disturbed coordination leading to 

aberrant patterning.  

In addition to seed enlargement, seedCYCD7;1 line exhibit a high proportion of non-

developing seeds. The level of lethality appeared to be positively correlated with the level 

of seedCYCD7;1. The seed abortion in seedCYCD7;1 appeared to be only partially due to a 

defect of reproductive structure architecture limiting the efficiency of pollination. In the mtn 
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mutant the reduced fertility is rescued by performing manual crosses (Schruff et al., 2006). 

In contrast, in seedCYCD7;1, manual crosses (Fig. 4.5) only partially rescued the number of 

seeds produced in the strongest expresser, suggesting the pollination event is not the key 

step in the reduction of developing seeds. As the CYCD7;1 was expressed exclusively on 

the female side and I previously showed that CYCD7;1 acts maternally to promote seed 

growth leading to an enlarged seed size, reciprocal crosses were performed to reveal that 

similarly the reduction of developing seed is due a maternal effect. The present results do 

not allow a conclusion as to whether the increase of seed size is due to reduced fertility as 

observed in ap2 and mtn/arf2 or is independent of fertility impairment, as in eod3-1D 

(Schruff et al., 2006; Fang et al., 2012). Therefore these data raise the question of 

seedCYCD7;1 effects on seed development: does seedCYCD7;1  induce a reduction of the 

number of developing seeds leading to a lower steric bulk within the closed silique and also 

indirectly increasing the nutrient flow to the remaining seeds and therefore allowing the 

seeds to enlarge? Or, does the endosperm-targeted CYCD7;1 expression induces seed 

enlargement and lethality is induced by an independent mechanism? The hypothesis that 

seedCYCD7;1 induces lethality, and as a consequence the seeds enlarge, is backed up by 

the fact that arrested seeds are at the globular stage (3 DAP). The proportion of seed 

progressing beyond the heart stage had therefore more room and this could be correlated 

with the fact that the enlarged seed phenotype arises at 4 DAP. This hypothesis is also 

supported by the study of eod3 that showed that mutant plants producing seeds that were 

80% larger that WT seeds also displayed an increased lethality compared to that of WT 

(Fang et al., 2012). 

 

I demonstrated that seed development arrest was due on one hand to a defect during early 

phases of seed development but also to embryo arrest prior to or at globular stages. In 

seedCYCD7;1 lines, embryos reached the globular stage 3 DAP, at which time the embryo 

development progression and rate of cell divisions were faster in seedCYCD7;1 than in WT. 

This suggests that the globular stage may be particularly sensitive to changes in the 

developmental program. This is supported by studies showing that embryo patterning, 

shoot apical meristem specification and emergence of future cotyledons depend on the 

proper establishment of auxin flow from the zygote to the transition stage (Mayer et al., 

1993; Aida et al., 2002; Friml et al., 2003; Friml et al., 2004). Moreover, the examination of 

aborted seeds did not reveal aberrations in the morphological patterning of the globular 

embryo as has been recently published with overexpression of CYCD3;1 in the seed 

(Collins et al., 2012). The use of cell fate markers might help to ascertain whether the cell 

fate is established properly during early onset of divisions. For example, WOX2,8,9 or WUS 
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would highlight the cell fate acquisition until globular stage and PIN1, PIN7, MP and DR5 

reporters would indicate the proper establishment of auxin flow and auxin response, 

essential for patterning the embryo (Moller and Weijers, 2009). At early stages, it was 

unclear whether the arrest was due to a non-fertilization event or an arrest at the zygote 

stage. Initial observations indicated an absence of fertilization, as no zygotes were 

distinguishable in the degenerating ovules. A way to determine whether the fertilization 

happened or not, would be to use a sperm cell nucleus marker such as the Histone Three 

Related 12 (HTR12, pHTR12:HTR12-RFP) (Ingouff et al., 2007). HTR12 marks initially the 

nucleus of the microspore and during male gametogenesis is restricted to the generative 

cell and finally to the two sperm cell nuclei. After fertilization, HTR12 is visible in the nuclei 

of the developing endosperm and the zygote. Twelve hours after fertilization, when the 

endosperm contains 8 nuclei and the zygote undergoes the first mitotic division, the 

expression becomes weaker.  

 

Interestingly, seedCYCD7;1 displayed nucleus overproliferation in the central cell without 

pollination and fertilization (Fig 4.2). CYCD7;1 under the FWA promoter is expressed 

during seed development but also in the mature central cell. Therefore the multinuclear 

phenotype in central cell suggests that CYCD7;1 may have an effect in the central cell prior 

to fertilization. The first hypothesis to explain this phenotype could be pollen contamination. 

It seems unlikely since the styles of pistils were examined prior to ovule sampling to ensure 

the absence of pollen contamination. However, to rule out this hypothesis, the use of the 

HTR12 marker in the seedCYCD7;1 background would determine whether the ovules were 

fertilized by some pollen grains. However, the nucleus proliferation phenotype in the central 

cell or in the endosperm in the absence of fertilization has previously been reported in the 

rbr1-1 mutant and fis class mutants respectively. In rbr1-1 mutants, the multiple nuclei 

phenotype in the central cell was due to a failure in arresting the cell cycle prior to 

fertilization and thus the central cell does not acquire endosperm fate, whereas in fis class 

mutants, the multiple nuclei phenotype in the endosperm is due to autonomous seed 

development in the absence of fertilization (Ohad et al., 1996; Grossniklaus et al., 1998; 

Kiyosue et al., 1999; Luo et al., 1999; Kohler et al., 2003; Guitton and Berger, 2005; Ingouff 

et al., 2006). To investigate whether the central cell acquires the endosperm fate, 

examination of the presence flavonoid (pro-anthocyanidins) deposits in the endothelium 

with vanillin staining could be done. In addition, a marker of the female gametophyte 

central cell such as pMEDEA:GUS could indicate whether or not the central cell acquires 

endosperm fate (Luo et al., 2000). These two methods would suggest an autonomous 

endosperm development mimicking fertilization of the central cell (Ingouff et al., 2006). 
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Little is known about the molecular mechanism by which CYCD7;1 acts in plant 

development. As a member of the D-type cyclins, it is plausible that CYCD7;1 acts with 

CDKA;1 to inactivate RBR function by phosphorylation (Boniotti and Gutierrez, 2001). 

Therefore, overexpressing CYCD7;1 in seeds would be similar to reducing the activity of 

RBR prior to and post fertilization. This would result in failure to cell cycle arrest in the 

central cell leading to overproliferation of central cell nuclei as has been observed in a loss-

of function rbr mutant. This phenotype will be discussed further in the final discussion 

(chapter 6).  

Whilst the multi-nucleus phenotype is observed in all of the seedCYCD7;1 lines, 80% of the 

ovules of the lowest seedCYCD7;1 expression (12489 and 14054) display this phenotype 

whereas the stronger expresser 6499 and 6484 had 55% and 30% of ovules with multiple 

nuclei, respectively. Interestingly, it does not correlate with the lethality proportion in the 

different lines. The lines 6499 and 6484 have the highest levels of lethality (80% and 65% 

respectively) whereas the lower expressers have 50%. It does not appear that the multi 

nucleate phenotype is the cause or the main factor causing lethality since, for example, in 

line 12489 out of the 80% of ovules with multiple nuclei, 60 % could develop into a seed, as 

the lethality is 50%. 

 

Here I showed that CYCD7;1 expression in the mature central cell and the endosperm acts 

non-autonomously on embryo and seed coat growth (Fig. 4.10). seedCYCD7;1 influences 

seed development by promoting cell division in the embryo and the seed coat throughout 

seed development. Due to the observed accelerated embryo development and the similar 

size of heart stage embryos in WT and seedCYCD7;1, I propose that the rate of cell division 

is increased and the window of cell division is prolonged. 



 

 

 

Figure 4.10. Overview of the effects of CYCD7;1 expression in the ovule central cell and the developing endosperm on seed 
development. 
 
Seed development starts from the fertilization of the ovule. It is characterized by the development of two zygotic tissues, the embryo and the 
endosperm, and the maternal integuments giving rise to the seed coat. Pictures show a mature ovule (on the left) and the different stages of 
seed development. The stages of embryo development are written in blue and the stages of endosperm development are written in black. The 
stages of seed development are recorded days after pollination (DAP) and are based on the Fig. 4.6B. 
Under the control of the FWA promoter, CYCD7;1 is expressed in the mature central cell and the developing syncytial endosperm when the 
embryo reaches the heart stage (beige) . The ovule and seed compartments affected by the expression of CYCD7;1 are visualized with a 
diamond shape. 
Phenotypes observed in seed-targeted CYCD7;1 expression are 
 - nucleus proliferation in the central cell in absence of fertilization. 

- seed lethality (grey) during early stages of fertilization/seed development (dark gray) and embryo arrest at globular stage (light gray). 
 - accelerated embryo development until heart stage (dark blue) correlated with an accelerated rate of cell divisions (cyan).  
 - seed enlargement visible 4 DAP correlated with a transition stage of embryo development (red), an endosperm enlargement and 
mature embryo and seed coat size increase (orange).  
 
Scale bar: 50 µm.  
 
Abbreviations: cc, central cell; e, embryo; en, endosperm; I, integuments
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Introduction 

In all Eukaryotes, the cell cycle is governed by CDKs in association with cyclins (Meijer and 

Murray, 2000). In Arabidopsis, fives CDKs are known to be involved in regulating the cell 

cycle (Vandepoele et al., 2002). CDKA;1 is association with D-type cyclin control the 

commitment of cells to the mitotic cell cycle by regulating the transition G1-to-S through the 

RBR/E2F pathway. This is supported by studies of loss-of-function cycd mutants that are 

impaired in the cell cycle and thus have reduced cell numbers in leaves (Dewitte et al., 

2007), fewer mitotic figures in germinating roots (Masubelele et al., 2005) and a decreased 

lateral root density (Sanz et al., 2011) to cite a few examples. Gain-of-function CYCD 

mutants, on the contrary, display cell overproliferation leading to impaired differentiation 

(Dewitte et al., 2003). 

In Chapters 3 and 4, I demonstrated a possible role for CYCD7;1 in stimulating seed 

enlargement by promoting cell division. These results corroborate with the study showing 

that overexpression of CYCD7;1 in proliferation tissue during seed development under the 

RPS5A promoter leads to outgrowth of embryos and endosperm by promoting cell division 

and cell enlargement (Collins et al., 2012). Little is known otherwise about the role of 

CYCD7;1. Recent studies show that native CYCD7;1 is expressed in late meristemoids and 

guard mother cells during stomatal development and in sperm cells of the pollen grain  

(Patell et al., manuscript under revision). It appears that CYCD7;1 promotes the last 

symmetric division of the guard mother cell , but paradoxically it appears to inhibit cell cycle 

progression in stomatal guard cells and in pollen. The molecular mechanism by which 

CYCD7;1 may be involved in regulating the cell cycle needs to be elucidated. In this 

chapter, the aim is to identify potential CYCD7;1 interactors such as CDKs and KRPs to 

help understand its mode of action.  

 

During the past decade, the interaction between core cycle proteins has been broadly 

investigated. Protein-protein interactions have been analyzed using high-throughput 

methods (Van Leene et al., 2007; Braun et al., 2013) . Protein-fragment complementation 

assays (PCA) such as yeast-two-hybrid (Y2H), bimolecular fluorescence complementation 
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(BiFC), is based on reconstituting a functional transcription factor and a reporter 

respectively from two inactive fragments. PCA is used to study direct and targeted 

interaction between two proteins of interest. In contrast, affinity purification-mass 

spectrometry (AP-MS) (eg. tandem affinity purification, TAP) highlights direct and indirect 

interactions between proteins found in complexes. TAP is based on a 2-step protein 

complex immunoprecipitation with immobilized antibodies and mass spectrometry to 

identify the purified proteins. BiFC and TAP are in planta methods, whereas Y2H is an in 

vivo heterologous system that could be affected by problems of protein expression or toxic 

effects in yeast. All three methods can give false positives with BiFC and TAP due to an 

overexpression that could potentially lead to unspecific interactions and, in Y2H, potential 

auto-activation. Steric hindrance caused by the protein fusions could cause false negative 

results. Using these technologies over 100 proteins have been studied, 416 interactions 

were tested and 35 interactions are confirmed using the 3 methods (Van Leene et al., 

2011). 

 

In this chapter, using a yeast-three-hybrid (Y3H) assay, I investigated the potential 

interactions between CYCD7;1, CDKA;1 and all KRPs. The interaction with CDKBs was 

also tested. I then analyzed the expression pattern of the confirmed interactors by the 

yeast-hybrid assay. Finally, to test whether the interaction is relevant in respect to the 

enhanced seed size phenotype, I analyzed the seed size phenotype of the seedCYCD7;1 in 

the knock-out mutant backgrounds of the interactors identified. 
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Results 

5.1. Identification of CYCD7;1 cell cycle partners 

5.1.1. Yeast three-hybrid assay: to test interaction between three proteins 
To investigate the potential interaction between CDKs, CYCD7;1 and KRPs, a yeast-three-

hybrid assay was performed (Drees, 1999) (Fig. 5.1). In Yeast, such as Saccharomyces 

cerevisiae, the GAL4 transcription factor binds to a specific DNA sequence to induce gene 

expression. The GAL4 contains a DNA binding domain (BD), allowing interaction with DNA 

sequences, and an activation domain (AD), inducing gene expression (Fig. 5.1A). In the 

Y2H assay, these domains are spilt and binding and activation domains are each fused to 

proteins of interest (Fig. 5.1B,C). The fusions are made in frame with the N-terminus of the 

protein of interest. If the two proteins interact, the BD and AD of GAL4 form an active 

transcription factor that can activate the expression of reporter genes (Fig. 5.1E). In the 

Y3H assay (Fig. 5.1F-G), a third protein is co-expressed in the yeast. To achieve this, the 

appropriate native cDNA sequence was cloned under the phosphosglycerate kinase 

promoter (PGK) in pFL61. The third construct is not fused to any GAL4 component (see 

chapter 2). CYCD7;1 and the 5 Arabidopsis CDKs were fused to both the GAL4-AD and 

GAL4-BD and the 7 KRPs were fused to the AD. The KRPs were also expressed unfused 

in pFL61. KRP proteins were not fused to the BD as it has been demonstrated that they 

can self-activate (C Forzani, unpublished data). The Y3H was performed using the yeast 

strain PJ694A which carries under GAL4/UAS control a lacZ reporter gene as well as HIS3 

and ADE2 providing auxotrophy on histidine and adenine. Interaction between 2 and/or 3 

proteins is revealed by the yeast growth on media lacking of histidine or adenine. In the 

LacZ assay, interaction is visualized by the appearance of a blue reaction product after 

several hour incubation with the substrate X-gal. 



	  

 

Figure 5.1. Schematic representation of the yeast-two-hybrid and yeast-three-hybrid 
assays. 
 
Yeast-hybrid assay test for protein-protein interaction in vivo. The yeast transcription factor 
(TF) GAL4 has two distinct domains, the DNA-binding domain (BD) and the transcriptional 
activation domain (AD). These two domains form a functional transcription factor that binds to 
a UAS promoter leading to the transcription of the adjacent gene. In the yeast-two-hybrid 
assay two putative interacting proteins X and Y are fused to the BD and AD. The two hybrid 
proteins BD-X and AD-Y are co-expressed in a yeast strain (here, PJ69-4A) exhibiting 
histidine and adenine auxotrophy or lacZ, a reporter gene under the control of UAS. When X 
and Y interact, the TF is reconstituted, leading to expression of the reporter. With PJ69-4A, 
the yeast will grow on media lacking of histidine and adenine. During the LacZ assay, the X-
Gal is added and cleaved by the enzyme product of LacZ gene expression, the yeast colonies 
will turn blue.  
 
In the yeast-three-hybrid assay, a yeast strain is co-transformed with BD-X and AD-Y and a 
third protein Z. Z is expressed under the control of a strong constitutive promoter (PGK). The 
reporter genes are transcribed only when Z interacts with X and Y at the same time (modified 
from Dees, 1999). 
 
(A)  Native TF with BD and AD, leads to reporter gene expression 
 
(B,C)  Negative control. (B) BD-X expression on its own or with AD (without Y fused), the 
reporter gene is not active. (C) AD-Y expression on its own or with BD (without X fused), the 
TF is not reconstituted and the reporter gene not expressed. In the latter case, if the reporter 
gene is active, Y-AD self activates, and positive results cannot be concluded. 
 
(D)  When X and Y do not interact, the reporter gene is not expressed. 
 
(E)  Interaction between X and Y allow formation of an active TF leading to reporter gene 
expression. 
 
(F,G)  In a yeast-three hybrid assay, a third protein Z is tested for the interaction with Y and 
X. If Z does not interact with both of them or interacts with only one of them, the TF is not 
active and the reporter gene is not expressed (F). The interaction between X and Z and Y 
allows the expression of the reporter gene (G). 
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5.1.2. CYCD7;1 interacts with CDKA;1 in the presence of KRP2  
Unlike other D-type cyclins, a recent study showed that CYCD2;1 does not interact with 

CDKA;1 directly but requires KRP2 to allow the formation of the CYCD-CDKA;1 complex 

(Sanz et al., 2011). Based on this observation, the interaction between CYCD7;1, CDKA;1 

and KRP2 was tested. In addition, the interactions with CDKBs were also probed in the 

assay (Fig. 5.2). 

Before investigating the interaction of the proteins of interest, several controls were 

performed. First, it was necessary to check that the simultaneous expression of the three 

proteins in yeast is not lethal for the strain. After transformation, yeast was grown on media 

lacking tryptophan, leucine and uracil, selecting for the transformants containing the 3 

plasmids of interest (see chapter 2; Fig 5.2, first column). All combinations were found to 

be viable, except CYCD7;1-BD and CDKB2;2-AD (Fig.5.2, first column, row 45). However, 

since the reciprocal combination CYCD7;1-AD and CDKB2;2-BD was viable, conclusions 

about the interaction could be drawn (Fig.5.2, first column, row 50).  

Next, to eliminate potential false positives several controls were carried out. To check for 

self-activation, yeast containing CYCD7;1-BD or CDK-BD were transformed with the empty 

AD vector together with either the pFL61 empty vector (Fig.5.2, rows 2,5,22,31,40,49) that 

or expressing KRP2 (Fig.5.2, rows 9,14,24,33,42,51). In all cases, no yeast growth could 

be observed on - his or - ade media and no blue colour appeared. In parallel, to ensure that 

the AD did not forms an active TF with an unfused BD and activate the expression of the 

reporter gene, CYCD7;1-AD, CDKA-AD and KRP2-AD were transformed with empty BD 

and pFL61 empty vector (Fig.5.2, rows 4,7,17,26,35,44) or pFL61_KRP2 (Fig.5.2, rows 

8,10,19,28,37,46). On media selective for the interaction none of the above combinations 

could grow whereas they could grow on media selecting for transformants with the 3 

plasmids, suggesting that no interaction between protein-AD and unfused BD occurred. 

Therefore, all controls were negative. 

The interactions between CDKA;1, CYCD7;1 and KRP2 were investigated. Direct 

interactions were detected between CDKA;1 and KRP2 as revealed by growth and blue 

colour in the CDKA;1-BD/KRP2-AD combination (Fig. 5.2, row 13). No direct interaction of 

CYCD7;1 with either CDKA;1 or KRP2 was observed in this system as no yeast growth or 

blue color could be observed in the CYCD7;1-BD/CDKA;1-AD, CDKA;1-BD/CYCD7;1-AD 

and CYCD7;1-BD/KRP2-AD combinations (Fig. 5.2, rows 3,6/16,12). Since KRP2 has been 

shown to promote the interaction between a different CYCD (CYCD2;1) and CDKA;1 (Sanz 

et al., 2011), its ability to promote possible CYCD7;1 and CDKA;1 interaction was tested. 

Results show that KRP2 expressed as a native protein promoted CDKA;1/CYCD7;1 
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interaction in both the CYCD7;1-BD/CDKA;1-AD and CDKA;1-AD/CYCD7;1-BD 

combinations (Fig. 5.2, row 11,15). 

5.1.3. CYCD7;1  does not interact with CDKBs in yeast 

The analysis was further extended to test whether CYCD7;1 can bind CDKBs in the 

presence or absence of  KRP2. No direct interaction of KRP2 with any of the four CDKBs 

(CDKB1;1, CDKB1;2, CDKB2;1, CDKB2;2) was observed (Fig. 5.2, rows 21,30,39,48), as 

previously reported (Zhou et al., 2002a; Nakai et al., 2006). Furthermore no direct 

interaction of CDKBs with CYCD7;1 was observed (Fig. 5.2, rows 

18,23,27,32,36,41,45,50). Finally the co-expression of KRP2 was unable to promote 

CDKBs-CYCD7;1 interaction (Fig. 5.2, rows 20,25,29,34,38,43,47,52). 

 

The KRP family has seven members in Arabidopsis. The question asked is whether 

CYCD7;1 binds specifically to CDKA;1 in the presence of KRP2 or whether CYCD7;1 could 

interact with any CDKs in presence of other KRPs. 

5.1.4. CYCD7;1 can also interact with CDKA;1 in the presence of KRP1 
The most closely related of the other KRPs to KRP2 is KRP1 (Zhou et al., 2002a; Torres 

Acosta et al., 2011). The previous investigation was therefore repeated using KRP1 instead 

of KRP2. The same controls as mentioned above were run to ensure the validity of the 

results of this experiment (Fig. 5.3): no yeast growth was observed on - his or - ade media 

and no blue colour appeared with transformants containing (1) CYCD7;1-BD or CDK-BD, 

empty AD vector together with pFL61 expressing KRP1 (Fig. 5.3 row 2,7,13,18,23,28), (2) 

empty BD with CYCD7;1-AD or CDK-AD and pFL61_KRP1 (Fig. 5.3, row 8,3,10,15,20,25), 

and (3) empty BD with KRP1-AD and pFL61 empty vector (Fig. 5.3 row 5) 

Similar results to KRP2 were found with KRP1. Interaction between KRP1 and CDKA;1 

(Fig. 5., row 6) and not any other CDKBs (Fig. 5.3 row 12,17,22,27), was observed as 

yeast could grow on media lacking his and ade, as well as a positive result with the lacZ 

reporter. Like KRP2, CYCD7;1 did not interact with KRP1 (Fig. 5.3, row 1), but interaction 

with CDKA;1 was observed when KRP1 was co-expressed (Fig. 5.3, row 4,9). Furthermore 

the interaction between CYCD7;1 was specific for CDKA;1. When CDKBs, KRP1 and 

CYCD7;1 were co-expressed the yeast did not grow on media lacking of his and ade, 

indicating that KRP1 also did not promote the interaction between CDKBs and CYCD7;1 

(Fig. 5.3, row 11,14,16,19,21,24,26,29). 



	  

 

Figure 5.2. CYCD7;1 interacts with CDKA;1 in the presence of KRP2.  
 
Interaction between CYCD7;1, CDKs (CDKA;1/ CDKB1;1/CDKB1;2/CDKB2;1 and CDKB2;2) 
and KRP2 was tested using Y3H assays. The first column shows growth on a medium non-
selective for the interaction but selective for co-transformation with the three plasmids 
(medium depleted of TLU).  
– his column is a medium depleted of TLUH and supplemented with 30 mM 3-AT. – ade is a 
medium depleted of TLUA. Yeast growth on –TLUH or –TLUA reflects an interaction between 
the proteins expressed. 
X-Gal column shows colonies grown on –TLU (selection for co-transformant) for 3 days on 
which the overlay X-Gal assay was performed (see chapter 2). Interaction between the 
expressed proteins is detected by the development of a blue color.  
 
Abbreviations: T, tryptophan; L, leucine; U, uracil; H/his, histidine; A/ade, adenine; 3-AT, 3-
Amino-1,2,4-triazole.



	  

 



	  

 



	  

 



	  

 

Figure 5.3. CYCD7;1 interacts with CDKA;1 in the presence of KRP1.  
 
 
Interaction between CYCD7;1, CDKs (CDKA;1/ CDKB1;1/CDKB1;2/CDKB2;1 and CDKB2;2) 
and KRP1 was tested using Y3H assays. The first column shows growth on a medium non-
selective for the interaction but selective for co-transformation with the three plasmids 
(medium depleted of TLU).  
– his column is a medium depleted of TLUH and supplemented with 30 mM 3-AT. – ade is a 
medium depleted of TLUA. Yeast growth on –TLUH or –TLUA reflects an interaction between 
the proteins expressed. 
X-Gal column shows colonies grown on –TLU (selection for co-transformant) for 3 days on 
which the overlay X-Gal assay was performed (see chapter 2). Interaction between the 
expressed proteins is detected by the development of a blue color.  
 
Abbreviations: T, tryptophan; L, leucine; U, uracil; H/his, histidine; A/ade, adenine; 3-AT, 3-
Amino-1,2,4-triazole. 
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5.1.5. Other members of the KRP family do not interact with CYCD7;1 
KRP1 and KRP2 appear to be involved in allowing or promoting the interaction between the 

catalytic sub-unit CDKA;1 and the regulatory sub unit CYCD7;1. To ensure that no other 

members of the KRP family are disregarded, a yeast-three-hybrid was performed with 

KRP3, KRP4, KRP5, KRP6, KRP7 and the 5 CDKs.  

When CDKA;1-BD and KRP-AD are co-expressed, only yeast with KRP3-AD can grow 

suggesting that CDKA;1 interacts with KRP3 but not with KRP4, KRP5, KRP6 or KRP7 

(Fig. 5.4). However, CYCD7;1 does not bind CDKA;1 in the presence of KRP3 as yeast 

growth does not occur and the colonies stay white in the X-Gal assay. This demonstrates 

that KRP binding to CDKA;A is not sufficient to promote CDKA;1 interaction with CYCD7;1, 

and this promotion is specific to KRP1 and KRP2. 

CYCD7;1-BD or - AD, CDKA;1-BD or –AD, KRP1/2/3 with or without AD appear to be 

functional as they could interact with one or more partner proteins. On the other hand, as 

no interaction was detected with KRP4/5/6/7 with or without the AD, I needed to ensure 

that the proteins were both expressed in yeast and were functional. Positive controls 

showing an interaction between CYCD2;1 and KRP4, KRP5 and KRP7 were included 

(Sanz et al., 2011). As no positive control was available for KRP6, the absence of yeast 

growth should be interpreted carefully and might not reflect an absence of interaction. 

Finally the interaction between CYCD7;1 and the other 5 KRPs and the 4 CDKBs was 

tested (Fig. 5.5). Using this system it appeared that CYCD7;1 did not interact with CDKBs 

nor did KRP3-7. However, the absence of interaction between CYCD7;1 and CDKBs has to 

interpreted carefully as the absence of positive control binding for the CDKBs was not 

available and results could be caused by a production of non functional CDKBs or CDKBs 

with an abnormal conformation in yeast. 

  

Using Y3H assay, the interaction between CYCD7;1 and CDKA;1 in the presence of KRP1 

or KRP2 was revealed. To investigate if the interaction is required in planta to give rise to 

the enhanced seed size phenotype, KRP1 and KRP2 expression patterns were analyzed to 

assess the likelihood of the proteins coming into contact. 

 



	  

 

Figure 5.4. CDKA;1 can also interact with KRP3 but this does not allow the interaction 
with CYCD7;1.  
 
Interaction between CYCD7;1, CDKA;1 and KRP3-7 is tested using Y3H assay. The first 
column shows growth on a medium non-selective for the interaction but selective for co-
transformation with the three plasmids (medium depleted of TLU).  
– his column is a medium depleted of TLUH and supplemented with 30 mM 3-AT. – ade is a 
medium depleted of TLUA. Yeast growth on –TLUH or –TLUA reflects an interaction between 
the proteins expressed. 
X-Gal column shows colonies grown on –TLU (selection for co-transformant) for 3 days on 
which the overlay X-Gal assay was performed (see chapter 2). Interaction between the 
expressed proteins is detected by the development of a blue color.  
 
Abbreviations: T, tryptophan; L, leucine; U, uracil; H/his, histidine; A/ade, adenine; 3-AT, 3-
Amino-1,2,4-triazole.



	  

 



	  

 



	  

 



	  

 

Figure 5.5. CYCD7;1 does not appear to bind any CDKBs. 
 
Interaction between CYCD7;1, CDKBs (CDKB1;1/CDKB1;2/CDKB2;1 and CDKB2;2) and 
KRP3, KRP4, KRP5, KRP6 and KRP7 was tested using Y3H assays. The first column shows 
growth on a medium non-selective for the interaction but selective for co-transformation with 
the three plasmids (medium depleted of TLU).  
– his column is a medium depleted of TLUH and supplemented with 30 mM 3-AT. – ade is a 
medium depleted of TLUA. Yeast growth on –TLUH or –TLUA reflects an interaction between 
the proteins expressed. 
X-Gal column shows colonies grown on –TLU (selection for co-transformant) for 3 days on 
which the overlay X-Gal assay was performed (see chapter 2). Interaction between the 
expressed proteins is detected by the development of a blue color.  
 
Abbreviations: T, tryptophan; L, leucine; U, uracil; H/his, histidine; A/ade, adenine; 3-AT, 3-
Amino-1,2,4-triazole. 
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5.2. Activity of KRP1 and KRP2 genes during plant development 

5.2.1. Expression pattern of KRP1 during plant development 
KRP1 expression was examined using RT-PCR of total RNA, and the reporter line 

KRP1:GUS (Ren et al., 2008). Analyses were carried out on seedlings and on reproductive 

structures as a positive control and on different stages of developing seeds pooled together 

to perform the RT-PCR. For RT-PCR, WT (Col-0) was used to assess basal expression, 

and the krp1-1 loss-of-function mutant as a negative control. The KRP1:KRP1-GUS 

transgenic line (overexpressor in the native domain of expression) was used as a positive 

control (Ren et al., 2008; Sanz et al., 2011). WT and KRP1:KRP1-GUS seedlings showed 

detectable mRNA, whereas krp1-1 seedlings did not show any mRNA, confirming previous 

data (Fig. 5.6A). KRP1 transcript could be detected in developing seeds of WT and in the 

overexpressor KRP1:KRP1-GUS but not in krp1-1 seeds. To gain a better insight of KRP1 

spatio-temporal expression, the reporter KRP1:GUS was studied. The KRP1:KRP1-GUS 

transgenic line was also available but no GUS signal was detected in these seeds. 

As previously described, a 7day-old seedling showed KRP1:GUS activity in cotyledons and 

2 emerging leaves but could not be seen in the petiole or in roots (Fig. 5.6B). In the 

inflorescence, GUS staining was visible in sepals throughout flower development from 

stage 10 to stage 16 as described by Smyth et al. (1990)(Fig. 5.6C-F). At stage 16, in 

addition to the expression in sepals, KRP1:GUS expression is detectable in mature anthers 

(Fig. 5.6F,G) and specifically in mature pollen grains (Fig. 5.6G). In pistils that appeared to 

be pollinated, ovules/seeds showed staining (Fig. 5.6H). Detailed analysis of KRP1 

expression in developing seeds revealed that the promoter was not active before the 

dermatogene stage (Fig. 5.6I). KRP1:GUS was strongly expressed in the micropylar 

endosperm at the globular embryo stage (Fig. 5.6J) and more weakly at heart stage (Fig. 

5.6K). From later heart/early torpedo stage (Fig. 5.6L) to bent cotyledon stage (Fig. 5.6M), 

the expression appeared in the cellularized endosperm. In mature-green-stage seeds, 

KRP1 activity seemed to be restricted to the mature embryo (Fig. 5.6N). 

 

The data suggest that KRP1 was expressed during seed development. KRP1 activity in the 

endosperm at globular stage would be concomitant with CYCD7;1 expression under the 

FWA promoter and CDKA;1 expression that has been shown to be expressed in mature 

central cell and seed development (Le et al., 2010; Zhao et al., 2012). The spatio-temporal 

overlap of CYCD7;1, KRP1 and CDKA;1 expression supports that fact that CYCD7;1, 

KRP1, and CDKA;1 might be involved in enhancing seed size. 



	  

 

Figure 5.6. KRP1 is expressed during vegetative, flower and seed development. 
 
(A)  cDNA was prepared from seedlings and seeds at different developmental stages 
pooled together. RT-PCR was performed using ACTIN 2 (ACT2, primer pair 9 and 10 in 
chapter 2) for normalization and gene-specific primers (KRP1, primer pair 14 and 15 in 
chapter 2). Col-0 WT was used to assess the basal level of expression, the krp1-1 mutant as 
a negative control and the KRP1:KRP1-GUS transgenic line (Ren et al., 2008) as an 
overexpressor in the native domain of expression. 
 
KRP1:GUS line (Ren et al., 2008) was used to examine KRP1 promoter activity by GUS 
assay (0.5 mM K3Fe(CN)6/K4Fe(CN)6 and 3h incubation at 37°C). After incubation, blue 
staining appeared in expressing tissues. Floral developmental stages used are those 
described by Smyth et al. (1990). Seed developmental stages used are described in Bowman 
and Mansfield (1994) and reviewed by West and Harada (1993) and, Le et al. (2010). 
 
(B)  Expression is detectable in cotyledons and young leaves of 7-day old seedlings. 
 
C-G, Expression during flower development and reproductive structures: 
 
In the inflorescence (C), GUS staining is visible in the sepals of flowers at different 
developmental stages from stage 10 (D) to stage 12 (E). At stage 16 (F), expression is still 
noticeable in sepals and appears in mature anthers. Detailed view of pollen sac (G) reveals 
promoter activity in the mature pollen grain (in box, pollen grain extracted from pollen sac). (H) 
Flower to which sepals, petals and stamen were removed to reveal a pistil where the seeds in 
the ovary chamber show a blue staining. 
 
I-N, Expression during seed development: 
 
(I)  At dermatogen stage, expression is not detectable in any of the seed compartments. 
(J) KRP1 is expressed in the micropylar endosperm at globular stage 
(K)  Weak expression detected in micropylar endosperm at heart phase 
(L) Blue stain is visible in cellularized endosperm at the transition heart-torpedo 
(M) Blue stain is visible in cellularized endosperm at bent cotyledon 
(N) GUS activity seems to be restricted to mature embryo at mature-green-stage 
 
Scale bars: B,C, 1 mm; D,E,F,H, 500 µm; G, 50 µm; I,J,K,L,M,N, 75 µm. 
 
Abbreviations: se, sepal; gy, gynoecium; a, anther; I, integuments; en, endosperm; e, embryo; 
su, suspensor; ch, chalzal pole; mp, micropylar pole. 
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5.2.2. Expression pattern of KRP2 during plant development 
KRP2 promoter activity was examined using RT-PCRs on total RNA, the reporter line 

KRP2:GUS and the protein fusion transgenic line KRP2:KRP2-GFP (Sanz et al., 2011). As 

for KRP1, analyses were carried out on seedlings and reproductive structures as positive 

controls and different stages of developing seeds pooled together to perform the RT-PCR. 

WT (Col-0) was used to assess basal expression by RT-PCR, the krp2-3 loss-of-function 

mutant as a negative control (Sanz et al., 2011) and the KRP2:KRP2-GFP transgenic line 

as a control. WT and KRP2:KRP2-GFP seedlings showed detectable mRNA, whereas in 

krp2-3 seedlings, no KRP2 transcripts were detected, confirming previous results (Fig. 

5.7A). WT and overexpressor KRP2:KRP2-GFP showed a detectable level of mRNA but 

the krp2-3 mutant did not. In both seedling and seed, as the ACTIN2 levels were similar, it 

appears that addition of one copy of KRP2 under its own promoter was sufficient to 

produce a detectable difference in mRNA level. 

KRP2:GUS and KRP2:KRP2-GFP lines were used to confirm KRP2:GUS expression in 

vegetative and reproductive tissues. KRP2 activity was visible in the vascular tissues of 

emerging leaves and the primary root of 7day-old seedling (Fig. 5.7B). A close-up of root 

tissues showed that KRP2 expression was detectable by GUS staining in the vasculature 

from the vascular initials (Fig. 5.7C) up to the shoot. The KRP2 protein fusion with GFP 

reveals that KRP2 protein was present in the root where the protein activity was previously 

observed (Fig. 5.7D)(Sanz et al., 2011). At 24 hours after exposure to light, a germinating 

embryo showed blue staining in the vasculature of the root and the cotyledons (Fig. 5.7E). 

This suggests that the KRP2 promoter is active early during germination events in the root 

and cotyledon vasculature.  

KRP2 expression was further followed during flower development. No blue staining could 

be observed in any of the sterile (sepals and petals) or reproductive (androecium and 

gynoecium) floral organs at stage 10 (Fig. 5.7F), stage 12 (Fig. 5.7G) or stage 15-16 (Fig. 

5.7H-I). At stage 17, KRP2 promoter activity was not detectable in the mature green silique 

(Fig. 5.7J). From the 2-4-cell embryo to the mature green embryo, KRP2:GUS activity was 

not detectable (Fig. 5.7K-R). These data appear to be contradictory with RT-PCR results 

showing the presence of KRP2 mRNA during seed development. This could be explained 

by the combined fact that RT-PCR was performed on bulked up seeds at different stages of 

development, increasing the total amount of RNA extracted, or the presence of intron 

sequences in the precursor mRNA needed for KRP2:GUS expression in the endogenous 

domain. However, the second hypothesis seems unlikely as analysis of the KRP2:KRP2-

GFP line, containing the genomic sequence fused to the GFP, revealed that no GFP signal 
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could be seen in any of the seed compartments at any of the different stages of seed 

development (data not shown). 

 

Taken together, the data suggest that KRP2 is expressed in vegetative organs and 

specifically in the vasculature. Non-correlating data for KRP2 expression during seed 

development prevent us from drawing a clear conclusion. However, KRP2 mRNA is 

detectable during seed development but the timing of expression and the tissue are not yet 

determined. The presence of KRP2 mRNA during seed development supports the proposal 

that KRP2 is a potential interactor of CYCD7;1 and CDKA;1 and may be involved in the 

enhanced seed size phenotype in seed-targeted CYCD7;1 transgenic lines. To confirm or 

deny this hypothesis, lines with seed-targeted CYCD7;1 expression in krp1-1 and krp2-3 

knockout backgrounds were generated and the seed size phenotype investigated. 



	  

 

Figure 5.7. KRP2 is expressed during vegetative and seed development. 
 
(A)  cDNA was prepared from seedlings and seeds at different developmental stages 
pooled together. RT-PCR was performed using ACTIN 2 (ACT2, primer pair 9 and 10 in 
chapter 2) for normalization and gene-specific primers (KRP2, primer pair 16 and 17 in 
chapter 2). Col-0 WT was used to assess the basal level of expression, the krp2-3 mutant as 
a negative control and the KRP2:KRP2-GFP transgenic line (Sanz et al., 2011) as an 
overexpressor in the native domain of expression. 
 
KRP2:GUS line (De Veylder et al., 2001) was used to examine KRP2 promoter activity by 
GUS assay (0.5 mM K3Fe(CN)6/K4Fe(CN)6 and 24h incubation at 37°C). After incubation, blue 
staining appears in expressing tissues. The KRP2:KRP2-GFP reporter line was imaged using 
a confocal microscope to detect the protein localization. 
Floral developmental stages used are those described by Smyth et al. (1990). Seed 
developmental stages used are described in Bowman and Mansfield (1994) and reviewed by 
West and Harada (1993) and, Le et al. (2010). 
 
(B-E) Expression is detectable in vasculature of shoots and roots (B-C) of 7-day-old 
seedlings. KRP2 protein is localized in the vasculature of the root (D). Blue stain is visible in 
the vasculature of 24h-light seedling (E).  
 
F-J, Expression during flower development and in reproductive structures: 
 
KRP2 activity was not detectable in flowers at stage 10 (F), stage 12 (G) or at stage 15-16 
(H). No staining was visible in mature reproductive structures (stage 15-16, I). Siliques at 
stage 17-18 did not exhibit blue staining (J)  
 
K-R,  Expression is not detectable in any of the seed compartments at the 2/4-cell stage (K), 
8-cell (L), globular (M), triangular (N), heart (O), torpedo (P), walking-stick (Q) and mature-
green-stage (R). 
 
Scale bars: B,J, 2mm; C,D,F, 200 µm; E, K-R, 50 µm; G,H,I, 500 µm. 
 
Abbreviations: se, sepal; gy, gynoecium; a, anther; I, integuments; en, endosperm; e, embryo; 
su, suspensor; ch, chalzal pole; mp, micropylar pole. 
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5.3. Biological roles of the CDKA;1-CYCD7;1-KRP1/2 interaction in the seed 
size phenotype 

In this study, the FWA promoter is used to drive the expression of CYCD7;1 in the mature 

central cell and in the endosperm of the developing seed (chapter 3). Moreover 

endosperm-targeted CYCD7;1 lines produce enlarged seeds. Several studies show that D-

type cyclins act with CDKA;1 to regulate the cell cycle progression (Dewitte et al., 2003; 

Dewitte et al., 2007; Nieuwland et al., 2009; Sozzani et al., 2010; Sanz et al., 2011; Zhao et 

al., 2012). Here I showed, using a Y3H assay, that CYCD7;1 can indeed interact with the 

catalytic subunit CDKA;1, but also that this interaction requires KRP2 or KRP1 as a 

partner. To investigate whether the interaction is necessary in planta to obtain seeds with 

an enhanced size, lines with endosperm-targeted CYCD7;1 expression were crossed into 

krp1-1 and krp2-3 backgrounds. If KRP1 and KRP2 are indeed required for the size 

enhancement mediated by CYCD7;1 ectopic expression, it might be expected that the size 

enhancement be reduced or abolished in these lines. 

 

krp1-1 (SALK 100189) and krp2-3 (SALK 110338) are T-DNA insertion mutants and are 

publicly available from the SALK institute. krp1-1 and krp2-3 lines were genotyped by PCR. 

Primer pairs (20+15) and (20+16) respectively were used to determine where the T-DNA 

insert is localized in the gene and (13+14) and (16+17) respectively were used to amplify 

the native KRP1 and KRP2 genes (Fig. 5.8A). krp1-1 had a T-DNA inserted at the 

beginning of the last exon (exon 4). The study of interaction between KRP1 and CDKA;1, 

and KRP1 and CYCD3;1 shows that the CDKA;1/CYCD binding domain is localized on the 

C-terminal of KRP1, between the amino acid positions 152 and 191, corresponding to the 

end of exon 3 and the beginning of exon 4 (Wang et al., 1998). In krp2-3, T-DNA was 

situated in exon 3 (Fig. 5.8A). To confirm that krp1-1 and krp2-3 are knock out mutants, 

RT-PCR was performed on seedling mRNA, using primer pairs (15+14) and (16+17) 

respectively. Similarly to KRP1, it has been shown that the CDKA;1/CYCD binding domain 

is localized at the C-terminal of KRP2 spanning exons 3 and 4 (De Veylder et al., 2001; 

Torres Acosta et al., 2011). Both krp1-1 and krp2-3 showed no presence of full length 

mRNA, as previously demonstrated (Sanz et al., 2011), and the two seed-targeted 

CYCD7;1 lines have KRP1 and KRP2 mRNAs (Fig. 5.8B).  

seedCYCD7;1 lines 6499 and 12489 were used to perform crosses with krp1-1 and krp2-3. 

As shown in chapter 3, line 6499 is the strongest expressor available and line 12489 has a 

weaker expression. F3 homozygous krp1-1 x seedCYCD7;1 and krp2-3 x seedCYCD7;1 lines 

were generated. krp1-1, krp2-3, seedCYCD7;1 and WT were isolated from the cross. The 
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genotypes of these lines were confirmed by PCR using the primer pairs above. For krp1-1 

and krp2-3 and for seedCYCD7;1 (11+12, see chapter 3) were used (Fig. 5.8C,F).  

The seed sizes of the different genotypes were compared using a two-way ANOVA (with 

normality assumptions met and homoscedasticity verified) and the number of seeds 

measured ranged from 188 to 227 (Fig. 5.8D,E,G,H). WT seeds had a mean projected area 

of 96,594 µm2 ranging from 95,726 µm2 to 97123 µm2, krp1-1 seeds of 97,434 µm2 and 

krp2-3 of 97,350 µm2. krp1-1 and krp2-2 seeds were not significantly larger than the WT 

(p=0.002 and p=1.48x10-18 respectively). seedCYCD7;16499 seeds have a size of 135,117 

µm2 on average, which was significantly greater than the WT (p=1.26x10-78), representing a 

size increase of 39%. krp1-1 x seedCYCD7;1 and krp2-3 x seedCYCD7;1 had seed areas of 

136,125 µm2 and 130,581 µm2 respectively. krp1-1 or krp2-3 x seedCYCD7;1 seeds were 

not significantly smaller than seedCYCD7;16499 (p=1 and p=0.45 respectively) and both were 

significantly larger than the WT (p=1.6x10-8 and p=1.47x10-15 respectively). 

The seedCYCD7;1 line 12489 had a seed size 104,509 µm2 on average. These seeds were 

significantly greater than the WT (p=6.04x10-7) representing a size increase of 8% 

respectively. krp1-1 x seedCYCD7;1 and krp2-3 x seedCYCD7;1 showed seed sizes of 

103,043 µm2 and 103,691 µm2 respectively, which were not significantly different from 

seedCYCD7;112489 (p=1 and p=0.7 respectively) but were significantly larger than the WT (p-

value 2.58x10-8 for cross with krp1-1 and 1.05x10-5 for the cross with krp2-3) and single krp 

insertion mutants (p=3.8x10-4 for cross with krp1-1 and p=2.63x10-6 for the cross with krp2-

3). 

 

These data shows that seedCYCD7;1 seeds are larger than WT and there is a correlation 

between the magnitude of the seed size increase and the ectopic level of CYCD7;1 

expression in the seed. This piece of information corroborates results shown in chapter 3. 

The loss of KRP1 or KRP2 function does not affect final seed size. Therefore the loss of a 

single putative interactor, KRP1 or KRP2, in seedCYCD7;1 lines does not appear to 

influence the seed size phenotype. 

 



	  

 

Figure 5.8. Biological roles of CDKA;1, CYCD7;1 and KRP1/2 interaction in the seed 
size phenotype. 
 
(A) Schematic representation of krp1-1 (SALK 100189) and krp2-3 (SALK 110338) insertion 
mutants showing the relative positions of 5’ and 3’ UTR (grey box), exons (black box), introns, 
(black line), CDK/CYCD binding domain (stripe box), T-DNA inserts indicated by RB and LB 
and primers.  
 
(B) RT-PCR showing the absence of full length transcript of KRP1 in krp1-1 and KRP2 in 
krp2-3 using primer pairs (15+14) and (16+17) respectively. ACT2 was used a loading control. 
 
(C-H) Crosses generated between seedCYCD7;1 x krp1-1 (C-E) and between seedCYCD7;1 x 
krp2-3 (F-H). 
 
(C) Genotyping by PCR to identify WT, seedCYCD7;1, krp1-1 from the cross (indicated with 
a * and seedCYCD7;1 x krp1-1. Primers pairs used are (11+12 amplifying a ~ 940 bp fragment) 
for seedCYCD7;1, for the native KRP1 (13+14 amplifying a ~ 580 bp fragment) and (20+15 
giving a DNA band of ~ 350 bp) for the insert (see chapter 2). 
 
(D,G) Projected seed area was measured on at least 188 seeds. Mean seed size is plotted. 
Errors bars represent ± SE. * indicates a p-value < 0.05 
 
(E)  Seed from WT, krp2-3, seedCYCD7;1 and seedCYCD7;1 x krp2-3. 
 
(C) Genotyping by PCR to isolate WT, seedCYCD7;1, krp2-3 from the cross (indicated with 
a * and seedCYCD7;1 x krp2-3. Primers pairs used are (11+12 amplifying a ~ 940 bp fragment) 
for seedCYCD7;1, for the native KRP2 (16+17 giving a DNA band of ~ 800 bp) and (20+16 
giving a DNA band of ~ 750 bp) for the insert (see chapter 2). 
 
 (H) Seed from WT, krp2-3, seedCYCD7;1 and seedCYCD7;1 x krp2-3. 
 
 
Scale bars: 200 µm 
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Discussion 

Y3H assays were performed to determine potential direct interaction between proteins. 

CDKA;1 was shown to interact with KRP1, KRP2 and KRP3. This corroborates previous 

findings using Y2H assays and co-immunoprecipitation (Wang et al., 1998; Lui et al., 2000; 

De Veylder et al., 2001; Zhou et al., 2002a; Nakai et al., 2006; Ren et al., 2008; Sanz et al., 

2011; Pusch et al., 2012; Zhao et al., 2012). Interestingly, whereas I could not show the 

interaction between CDKA;1 and KRP4, Zhou et al. previously showed that KRP4/ICK7 

could interact with CDKA;1/Cdc2a, using the same KRP plasmid DNA for expression in 

yeast (Zhou et al., 2002a). The absence of interaction between CDKA;1 and KRP6/ICK4 

and KRP7/ICK5 was also demonstrated by Zhou et al. The controversial results found 

regarding the CDKA;1/KRP4 interaction may be due to the yeast strain used to perform the 

yeast assays, since they were different. Thus, it is likely that the yeast strain PJ69-4A used 

is more stringent than MaV203 used by Zhou et al, and requires a stronger interaction 

between tested proteins to be able to grow on media selecting for the interaction. 

Furthermore, the CDKA;1/KRP4 as well as CDKA;1/KRP6 interactions have been shown 

using TAP-MS (Van Leene et al., 2010). As previously mentioned the TAP-MS method 

reveals interaction between proteins forming a complex. The detection of KRP4 and KRP6 

interaction with CDKA;1 using TAP- MS could suggest that CDKA;1/KRP4 or KRP6 

interactions require additional proteins to allow the binding. The interaction between KRP 

and CDK appears to be specific to CDKA;1. In the yeast assays performed, I could not 

detect interaction between KRPs and CDKBs. These results corroborate interaction studies 

on one hand performed in the yeast that could not detect direct interactions between 

CDKB1;1 and all KRPs except KRP5 and on the other hand co-immunoprecipation also 

showing that KRPs bind CDKA;1 but not CDKB1;1 (Lui et al., 2000; De Veylder et al., 

2001; Zhou et al., 2002a; Verkest et al., 2005a; Pusch et al., 2012). However, an 87-amino-

acid fragment of KRP5 has been shown to interact with CDKB1;1 in a yeast-hybrid assay 

(Lui et al., 2000). Similarly, a co-immonuprecipitation assay shows that CDKB2;1 cannot 

bind directly KRPs. However, this study also shows that the complex CYCD2;1/CDKB;2;1 

can bind all the KRPs (Nakai et al., 2006). These data also highlight the role of KRP as a 

bridging factor (discussed below). 

Furthermore the Y3H assay suggests that CDKA;1 does not interact with CYCD7;1 on its 

own whereas the interaction seems to be allowed when KRP1 or KRP2 act as a mediator. 

The absence of direct interaction between CDKA;1 and CYCD7;1 could be explained (1) by 

a change in conformation of CYCD7;1 or CDKA;1 fused to AD or BD and the interaction 

may dependent on post-translational modifications such as disulphide bridge, 
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phosphorylation which does not occur properly in yeast or (2) KRP1 or KRP1 are required 

to bind first CKDA;1 inducing a conformational change promoting the interaction between 

CDKA;1 and CYCD7;1. To support the biological relevance of KRP1/2 as a mediator, as 

opposed to these conclusions being derived from a technical issue, Van Leene et al. (2010) 

showed an interaction between CYCD7;1 and CDKA;1 using a TAP method. This methods 

also showed that CKS1, CKS2, SMR4 and SMR6 are part of the protein complex in which 

CDKA;1 and CYCD7;1 were found to interact. The requirement of KRP1/2 presence to 

promote CDKA;1 and CYCD7;1 interaction highlights a new role for KRP. Similarly, it has 

been shown that the interaction between CYCD2;1 and CDKA;1 requires the presence of 

KRP2 (Sanz et al., 2011). In this study, the authors propose that KRP2 is required for 

CYCD2;1 to translocate into the nucleus, and for the interaction between CYCD2;1 and 

CDKA;1 to form an active kinase complex. In mammals, it also been reported that Cip/Kip, 

KRP orthologs help to activate the G1 kinase Cdk4 and Cdk6 since Cdk4/6 and its 

functional interactor Cyclin D do not bind with high affinity (Sherr and Roberts, 1999; 

Bockstaele et al., 2006). The formation of the complex is enhanced in presence of Cip 

proteins, analogous to the role of KRP. 

 

The relevance of the interaction between CDKA;1, CYCD7;1 and KRP1 and KRP2, in 

planta, for the enhanced seed size phenotype requires that the proteins (1) are expressed 

in the same time-window or are present at the time and (2) come into contact either by 

being expressed in the same cell or moving into a common cell. CYCD7;1 expressed under 

the FWA promoter is present in the mature central cell prior to fertilization and in 

endosperm from just before fertilization until endosperm cellularization when its expression 

is no longer detectable (see chapter 3). Recently, CDKA;1 has been shown to be 

expressed throughout ovule development and especially in the nuclei of the egg cell and 

central cell in mature ovules (Zhao et al., 2012; Belmonte et al., 2013). Microarray data of 

CDKA;1 expression available on the eFP brower revealed that CDKA;1 is expressed is all 

the three seed tissues and throughout the seed development (Fig. 5.9D) (Winter et al., 

2007). The expression of KRP1 and KRP2 has been studied during vegetative and 

reproductive development. Several methods investigating the expression at different levels 

were used. Promoter activity was analyzed using a reporter gene (Gonzalez-Garcia et al., 

2011). RNA transcript levels were highlighted using northern blot (Lui et al., 2000), RT-PCR 

(De Veylder et al., 2001), micro-array (De Almeida Engler et al., 2009) and in situ 

hybridization (Ormenese et al., 2004). The protein abundance was determined using fusion 

tags (De Veylder et al., 2001). These studies show that KRP1 and KRP2 are both 

expressed in leaves, stems, root, anthers, sepals and at the base of siliques. However, the 
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level of expression of KRP1 and KRP2 differs depending on the tissue. For example KRP2 

is strongly expressed in the stem whereas KRP1 has a lower level of expression in the 

stem. More specifically, KRP1 and KRP2 expression has also been shown in 

endoreduplicating tissues using in-situ hybridization (Ormenese et al., 2004). In contrast, 

KRP1 and KRP2 expression in seeds has been little explored. Microarray analysis 

performed by De Almeida and co-workers showed inconclusive results in the range of 

settings used (De Almeida Engler et al., 2009). In 2010, the global analysis of gene 

expression during seed development using microarrays did not disclose KRP expression 

(Le et al., 2010). In this study, the investigation of KRP1 and KRP2 expression showed that 

KRP1 and KRP2 full-length transcripts are present in seedlings, confirming published 

results, and in seeds during their development. Since mRNA was detectable in developing 

seeds, reporter lines KRP1:GUS (Ren et al., 2008), KRP2:GUS (De Veylder et al., 2001) 

and KRP2:KRP2-GFP (Sanz et al., 2011) were used to document the expression pattern in 

developing seeds. KRP1 activity was detectable in the micropylar endosperm when the 

embryo reaches the globular stage, corresponding to the beginning of endosperm 

cellularization at the micropylar pole, confirming the RT-PCR results (Berger, 2003). This 

result also corroborates microarray data of KRP1 expression available on the eFP brower 

(Fig. 5.9B) (Winter et al., 2007). 

However, despite the presence of KRP2 mRNA in developing seeds, no KRP2 promoter 

activity or KRP2-GFP protein could be detected in developing seeds. The RT-PCR and 

expression pattern contradictory data may be explained, as suggested previously, by low 

KRP2 activity, but as the RT-PCR was performed on many seeds, the total amount of RNA 

extracted was increased allowing for KRP2 mRNA detection. Moreover, microarray data of 

KRP2 expression suggest that KRP2 is expressed in the seed integument from heart-stage 

to mature seed (Fig. 5.9C) (Winter et al., 2007). 

CYCD7;1 is a putative regulatory subunit of the CDKA-CYCD complex, hence CYCD7;1 

function in the seed size phenotype is linked to the interaction between the 2 subunits 

leading to the kinase activity. As shown in the Y3H assay, the interaction between CDKA;1 

and CYCD7;1 is conditioned by the presence of KRP1 or KRP2 proteins. Since KRP1 and 

KRP2 are expressed during seed development, the three partners could potentially 

physically interact.  
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Figure 5.9. KRP1 and KRP2 expression as revealed by microarray data.  (A) 
Schematic representation of a developing seed. KRP1 (B), KRP2 (C) and CDKA;1 (D) 
expression in developing Arabidopsis Ws seeds based on microarray data. Modified from 
Arabidopsis eFP browser (Winter et al., 2007). 
 

The strategy taken to investigate if seedCYCD7;1 acts with CDKA;1, KRP1 or KRP2 in 

planta to give rise to the enhanced seed size phenotype, was to express seedCYCD7;1 in  

A 
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loss-of function krp mutants. CDKA;1 loss-of-function is lethal and as KRP1 and KRP2 are 

required for the interaction CDKA;1-CYCD7;1, using loss-of-function krp1-1 and krp2-3 

mutants was the approach adopted. krp1-1 and krp2-3 did not show full length transcripts 

and no 3’ transcript encoding the CYC/CDK binding motifs were detected, so they are loss-

of-function mutants. These mutants were crossed with seedCYCD7;1. Loss of KRP1 or 

KRP2 did not have an effect on seed size. The loss of function of KRP1 or KRP2 in 

seedCYCD7;1 does not affect the enlarged seed size compared to the seedCYCD7;1 in WT 

background. This result could have several explanations. (1) KRP1 and KRP2 are 

redundant and losing the function of a single KRP is not sufficient to reduce the size of 

enlarged seeds. To rule out the redundancy of KRP1 and KRP2, the generation of 

seedCYCD7;1 in a double mutant krp1-1/krp2-3 background would be required. (2) KRP1 

and KRP2 are not involved in the phenotype since CYCD7;1 and CDKA;1 interact without 

the KRP1 and KRP2 as a mediator in planta and the direct interaction revealed using a 

heterologous yeast system does not reflect the mechanism in planta. (3) As the T-DNA 

insertion in KRP1 and KRP2 genes is at the 3’ of the gene, it is possible that a shorter 

mRNA from the 5’ is still produced. However, it is unlikely to mediate binding since the 

CDKA;1/CYCD binding domain is located in the 3’ region disrupted by the T-DNA insertion 

(Torres Acosta et al., 2011). Thus even though the 5’ mRNA could be synthesized, the 

protein produced would not have the functional domain to bind CDKA;1/CYCD7;1. Using a 

knock-down mutant of CDKA;1 (Dissmeyer et al., 2007; Zhao et al., 2012) in the 

seedCYCD7;1 background would be a way to rule out the requirement of KRP1 and KRP2 to 

obtain a complex. An in vitro kinase assay could also be used to determine if the complex 

CYCD7;1-CDKA;1 is functional. However, it is also possible that CYCD7;1 exerts its effect 

without interacting with CDKA;1. This could be tested from the phenotype of CYCD7;1 with 

a mutation in the CDK-binding domain which prevents the interaction. The molecular 

mechanism by which CYCD7;1 acts to give rise to the enhanced seed size phenotype still 

needs to be clarified. 
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Crop productivity must be increased in order to cover the food needs of the world 

population. For human consumption, seeds are the main edible component of grain crops. 

Therefore, seed size is one of the key features for seed yield improvement. Over the past 

25 years, extensive studies have been done to identify genes involved in the determination 

of seed size, and to characterize their interactions and functions (Kesavan et al., 2013) 

although no strong unifying picture has emerged. These genes encode various proteins 

such as transcription factors, kinases and enzymes for pigment synthesis, and are involved 

in a range of cellular processes including hormone signaling and epigenetic modifications. 

In the meantime, increasing knowledge of seed development following ovule fertilization 

highlights that (1) cell cycle activity is essential and, (2) the coordination of seed tissue 

development and therefore seed size determination involves on signals between seed 

components (Nowack et al., 2010; Collins et al., 2012). 

Initiation of the cell cycle depends on the decision of quiescent cells to re-enter the cell 

cycle. It occurs upon the integration of exogenous and endogenous signals controlling the 

G1 phase acting on the CDKA;1/CYCD complex (Oakenfull et al., 2002; Dewitte and 

Murray, 2003; Kono et al., 2006; Menges et al., 2006; Dewitte et al., 2007). Until last year, 

little was known about the expression or function of D-type cyclins during seed 

development (Collins et al., 2012). This study shows that CYCD genes have discrete but 

partially overlapping expression patterns, with the exception of CYCD7;1 that is not 

expressed during seed development. In addition, both overexpression of CYCD3;1 and 

loss-of-function of the three CYCD3 genes impair seed development. Interestingly, in both 

gain- and loss-of-function mutants, embryo patterning is disrupted and embryo 

development is delayed. The endosperm is shriveled, pointing to abnormal development 

(Collins et al., 2012). These data suggest that proper expression of CYCD3 genes is 

required for normal seed development. This study also shows that strong ectopic 

expression of CYCD7;1 in the seed increases final seed size. In addition, CYCD7;1 is the 

only member of the conserved family of D-type cyclins that has been little characterized 

during embryonic and postembryonic plant development. A further recent study shows that 

CYCD7;1 is expressed in stomatal lineage cells, especially late meristemoids and guard 

mother cells, as well as in the two sperm cells of the pollen grain (Patell et al., manuscript 

under revision). In this study, data suggest antagonistic functions depending of the time of 

expression in these cells. CYCD7;1 stimulates the final cell divisions of the guard mother 
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cell to produce guard cells, and of the generative cell to produce two sperm cells. Upon the 

final divisions of the stomata guard cells and sperm cells, CYCD7;1 promotes an arrest in 

S-phase in each case preventing further mitotic divisions. The reasons for the S-phase 

arrest and the mechanism of CYCD7;1 action in these cell types are unknown. 

 

In this present study, ectopic expression of CYCD7;1 in seeds is used on one hand to 

illustrate a novel method to target seed size increase using a cell cycle regulator, and on 

the other hand to attempt to understand more about its molecular mechanisms of action. 

6.1. Endosperm-targeted CYCD7;1 expression promotes seed size 
enlargement 

Endosperm-targeted expression of the CYCD7;1 gene to the endosperm under the FWA 

promoter led to the formation of seeds with an increased final size compared to WT seeds 

(Chapter 1). Seeds are composed of three different tissues (the zygotic embryo, the zygotic 

endosperm and the maternal-tissue-derived seed coat) that require developmental 

coordination (Bowman, 1994; Nowack et al., 2010). Therefore the increase of final seed 

size could be due to a coordinated increase of the three compartments or only the increase 

of the specific tissue where the CYCD7;1 gene is expressed. 

I observed that mature embryos from FWA:CYCD7;1 lines showed an enlargement. 

Several other studies have also revealed that larger seeds contain larger embryos, as it is 

the case in the EOD3 overexpresser, mnt and ap2, mutants as well as in interploidy 

crosses with paternal excess (Scott et al., 1998; Ohto et al., 2005; Schruff et al., 2006; 

Ohto et al., 2009; Fang et al., 2012). Similarly, mutants with a reduced level of cytokinin 

sensing such as the Arabidopsis thaliana sensor histidine kinase (ahk2/ahk3/ahk4) triple 

mutant (known to be cytokinin receptors) or cytokinin-deficient mutants such as an 

overexpresser of CYTOKININ OXIDASE/DEHYDROGENASE1 (AtCKX1) mutants show 

enlarged seeds containing larger embryos (Werner et al., 2003; Riefler et al., 2006). 

Conversely, interploidy crosses with maternal excess, ttg2, mini3 and short hypocotyl 

underblue1 (SHB) mutants show that smaller seeds develop smaller embryos (Johnson et 

al., 2002; Luo et al., 2005; Zhou et al., 2009). 

The development of enlarged embryos was expected to be coordinated with enlargement 

of the seed coat of mature seeds, a hypothesis confirmed by measurements of the 

projected seed area. This increase of embryo size and seed coat surface in FWA:CYCD7;1 

lines, in which CYCD7;1 expression was restricted to the mature central cell and the 

developing endosperm until full cellularization using the FWA promoter, is presumably one 

more example of the communication between seed compartment during its development 



                                                                                                                                                                     Chapter 6 

135 

(see below, Nowack et al., 2010). As the size of the embryo and the seed coat of mature 

seeds is enhanced in CYCD7;1 endosperm-targeted expression lines, it is not 

unreasonable to hypothesize that the aleurone layer, a single cell layer remaining from the 

endosperm at seed maturity, is also thickened either by an increase of cell size or an 

increase in the number of layers. During the analysis of seed developmental progression, 

preliminary observation revealed that in mature seeds, the aleurone was a single cell layer 

in both the WT and the CYCD7;1 endosperm-targeted expression lines (Chapter 4). 

However, no detailed quantification was performed regarding thickness of the layer. I chose 

not to performed further investigations because, after the completion of endosperm 

development, this latter is metabolized in order to sustain the final stages of embryo 

development (Berger, 1999). Therefore I assumed that if the CYCD7;1 has an effect on 

endosperm development itself, it would occur during the earlier stages of seed 

development when the endosperm undergoes, first nucleus proliferation and then 

cellularization. The endosperm is fully developed after cellularization when the embryo 

reaches the heart-torpedo stages (Boisnard-Lorig et al., 2001). Analysis of the size of 

seeds during their development showed that the enlargement arose 4 DAP, correlating with 

the embryo reaching the heart stage and the presence of cell walls in the endosperm, 

indicating that the cellularization process was happening (Chapter 4). Moreover, the 

comparison of area of heart stage embryos between the WT and the seedCYCD7;1 revealed 

no difference even though embryos reach this stage faster and the overall size of the 

developing seed is larger. Therefore, since the seedCYCD7;1 final seed size is larger than 

the WT but the embryos had a similar size 4 DAP, this suggests that the seed cavity in 

which the endosperm developed is increased. Therefore it is reasonable to infer that the 

endosperm is larger. On the contrary, smaller mature seeds have a reduced endosperm 

cavity at heart stage as suggested by loss-of-function of the IKU2 and MINI3 genes that are 

natively expressed in the endosperm (Garcia et al., 2003; Luo et al., 2005). 

6.2. Endosperm-targeted CYCD7;1 expression promotes cell proliferation in 
enlarged seed  

As mentioned above, FWA:CYCD7;1 lines produced larger mature seeds compared to WT 

lines. Many studies show that altered organ size is due to a modification of cell proliferation 

and/or of cell growth (Tsukaya, 2003; Breuninger and Lenhard, 2010). Moreover, enlarged 

cells that undergo extensive growth, such as trichomes or epidermal cells, frequently 

display a higher ploidy level correlated with endoreduplication (Traas et al., 1998; Joubes 

and Chevalier, 2000; De Veylder et al., 2001). Therefore the determination of organ size 

depends on the regulation of the mitotic cell cycle and the endocycle. D-type cyclins have 
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been demonstrated, using loss and gain of function mutants, to promote cell cycle 

progression in plants (Menges et al., 2006). Constitutive overexpression of CYCD2;1 in 

Arabidopsis led to an increased number of stomata as well as an increased number of cells 

in roots and in the primordia of aerial organs (Qi and John, 2007). Similarly, constitutive 

overexpression of CYCD3;1 caused hyperproliferation of leaf cells and RPS5A>>CYCD3;1 

promotes cell proliferation in the embryo and the suspensor of developing seeds (Dewitte 

et al., 2003; Collins et al., 2012). Reciprocally, loss-of-function of the three CYCD3 genes 

leads to a reduction of cell numbers in petals correlated with a cell size increase, whereas 

the loss-of-function of single or double CYCD3 genes does not display an effect on cell 

proliferation (Dewitte et al., 2007). CYCD4 genes have been shown to control cell division 

in the initial step of stomata formation in the hypocotyls and to therefore control the 

proliferation of stomatal lineage progenitors (Kono et al., 2007). CYCD4;1 loss-of-function 

leads to a reduced lateral root density. Because CYCD4;1 is involved in the regulation of 

cell divisions which are required for the formation and emergence of lateral roots (De 

Veylder et al., 1999; Nieuwland et al., 2009). Similarly, it has been shown that CYCD2;1 is 

an auxin-regulated mediator of lateral formation (Sanz et al., 2011). CYCD6;1 has been 

shown to be involved in regulating formative division in cortex/endodermis layers in 

Arabidopsis root (Sozzani et al., 2010; Cruz-Ramírez et al., 2012). All these lines of 

evidence are consistent with the view the CYCD genes promote cell division in plants. 

 

Given the regulatory function of D-type cyclins in the mitotic cell cycle and the recent 

evidence showing that CYCD7;1 stimulates cell divisions in stomatal lineage cells and in 

generative cells of the pollen grain, it is not unreasonable to postulate that when ectopically 

expressed, CYCD7;1 will stimulate cell divisions during seed development and therefore 

lead to an enlargement of the mature embryo, seed coat and developing endosperm. 

However, in non-disrupted organ development, cell division and cell expansion act 

synergistically in order to achieve correct the organ morphogenesis program. And so, cell 

division and cell expansion are only tools to achieve final organ size and shape partially 

determined by other genes than cell cycle regulating genes. Therefore, since the final 

organ size is the determined endpoint, modifying either the cell cycle or cell expansion 

could be compensated by the other that is not affected (Bogre et al., 2008). Hence, 

identification and disruption of genes involved in determining seed size show that both cell 

division and cell expansion are affected. In the literature, mutants affecting seed size have 

variable effects on cell number and cell expansion. For example, increases in cell number 

and cell size contribute to larger seeds in the EOD3 and AtCKX1 overexpressers and mnt 

mutants (Schruff et al., 2006; Fang et al., 2012). Reciprocally, smaller seeds in ttg2 and 
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iku2 mutants show a reduction of cell size number (Garcia et al., 2005). Another example 

from klu mutant analysis shows that smaller seeds have a smaller number of larger cells 

(Adamski et al., 2009). All these examples suggest that the change of seed size is normally 

due to a combined effect of cell division and cell expansion. Therefore, considering the role 

of CYCDs in cell proliferation, it is obvious to postulate that CYCD7;1 should stimulate cell 

division, but given the general linkage between cell division and expansion, I cannot 

discard the hypothesis that cell expansion also plays a role in the enlarged seed of 

seedCYCD7;1 lines. However, the results presented here show that the epidermal pavement 

cells of the embryo, the embryonic root cortical cells and the outer seed coat cells have a 

similar area in the seedCYCD7;1 lines and the WT, suggesting that cell expansion is not 

affected. The embryo, cotelydons and final seed size are larger, leading to the conclusion 

that cell proliferation is increased. Therefore this study is, to my knowledge, a unique 

example during seed development where seed enlargement is due a modification of cell 

cycle program exclusively and where the cell expansion is not affected.  

 

seedCYCD7;1 lines produce larger seeds composed of more cells in the embryo and the 

seed coat. The generation of a higher number of cells appeared to be due to an 

accelerated rate of cell proliferation. In seedCYCD7;1 lines, the embryos reached the heart-

stage quicker than the WT embryos (Chapter 4). However, the morphological comparison 

of heart stage embryos showed that seedCYCD7;1 embryos are identical to WT embryos. 

The accelerated embryo development and the absence of embryo patterning defects are 

consistent with a faster cell cycle rate during early development. In addition, the 

accelerated rate of embryo development occurred up to 4-5 DAP and from 5-6 DAP 

onwards the progression of embryo development is similar in seedCYCD7;1  and WT lines 

(Chapter 4). 4-5 DAP embryos reached heart-stage and the point at which the endosperm 

was cellularizing. At this stage the activity of the FWA promoter starts decreasing and the 

expression of FWA:CYCD7;1 was no longer visible in the seed and especially in the 

endosperm (Chapter 3). These data suggest that the cell overproliferation in the embryo is 

due to an accelerated rate of cell divisions and the timing of accelerated rate of cell 

divisions in the embryo correlates with the timing of CYCD7;1 expression in the 

endosperm.  

 

This study suggests that endosperm-targeted CYCD7;1 expression promotes seed 

enlargement by increasing the rate of cell division in the embryo and seed coat. Under the 

FWA promoter, CYCD7;1 is expressed in the mature central cell and in the endosperm until 

cellularization (Chapter 3). However, the effects on endosperm still need to be investigated 
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in detail. The time-course study of seed development showed that the endosperm is 

enlarged 4 DAP, correlating with the first manifestation of seed enlargement. Preliminary 

microscopic analysis showed that nuclei proliferation in the endosperm is increased, 

leading to an endosperm with an enlarged size. However, detailed quantification should be 

performed to confirm this. The endosperm nucleus proliferation hypothesis is supported by 

the analysis of seed development mutants such as mea, ttg2 and iku2. Similarly, mea 

mutants display larger seeds with lengthened endosperm mitotic activity and an enlarged 

chalazal endosperm (Grossniklaus et al., 1998; Kiyosue et al., 1999). Reciprocally, in ttg2 

and iku2 mutants, seeds are smaller due to reduced embryo and integument size and less 

endosperm growth during the cellularization process (Garcia et al., 2003; Garcia et al., 

2005). The mnt mutant is a counter example. In mtn larger seeds, the mature embryo is 

larger whereas the endosperm is not hypertrophic. This suggests that in larger seeds not 

all of the three tissues are always affected by the size increase (Schruff et al., 2006). 

All these studies show that effects of the final seed size can originate from modification of 

cell proliferation and expansion in the three components of the size. Hence, although it is 

still possible that endosperm-specific CYCD7;1 expression has no effect on the 

endosperm, from my preliminary analysis and mea, ttg2 and iku2 studies, I can predict that 

CYCD7;1 might have an effect on endosperm proliferation during the syncytial phase and 

maybe during the cellularization phase. 

6.3. CYCD7;1 acts in an autonomous and non-autonomous manner  

Seed development lies in the coordination of growth of three tissues, with three different 

genetic backgrounds, that develop concomitantly (the diploid embryo m/p, the triploid 

endosperm 2m/p and the diploid integument 2m) (Nowack et al., 2010). Therefore it is not 

surprising that gene expression is different in the three seed tissues, nor that the 

coordination of their developments requires communication. Most of the seed development 

mutant examples mentioned above show that the genes controlling seed growth act in both 

an autonomous and non-autonomous manner. MINI3 and IKU2 genes are specifically 

expressed in developing endosperm shortly after fertilization, and loss-of-function of these 

genes affects seed integument and embryo development in a non-autonomous manner 

(Garcia et al., 2003). MEA, which is expressed in the endosperm upon fertilization, triggers 

seed integument and embryo proliferation (Grossniklaus et al., 1998). Reciprocally TTG2, 

which is expressed in the integument, triggers cell proliferation in the seed integuments and 

the endosperm, as suggested by the loss-of-function mutant showing a defect of 

integument and endosperm growth upon fertilization (Garcia et al., 2005). Similarly, AP2 is 

expressed in the ovule and seed integuments, and prevents cell overproliferation in the 
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endosperm and embryo since the ap2 seeds display hypertrophic embryo and endosperm 

due to an increase in mitotic activity (Ohto et al., 2005; Ohto et al., 2009). Therefore its 

effects on the embryo are presumably indirect consequences of its expression in the ovule 

and integuments. 

In this study, I showed that CYCD7;1 expression was targeted to the endosperm. However, 

the stimulating effect on cell proliferation was noticeable in the embryo, the seed coat and 

in the endosperm, suggesting that CYCD7;1 acts autonomously in the endosperm and non-

autonomously in the seed coat and embryo. Hence stimulating proliferation within the 

endosperm up to 4 DAP appears to be sufficient to promote larger seed. 

6.4. CYCD7;1 forms a complex with CDKA;1 in the  presence of KRP1 and/or 
KRP2 and may act through the RBR pathway to regulate the cell cycle 

6.4.1. CYCD7;1 interacts with CDKA;1 in the presence of KRP1 or KRP2 
As reviewed above and in chapter 1, D-type cyclins are cell cycle regulators known to bind 

CDKA;1, in order to regulate the G1-to-S transition of the cell cycle. The interaction 

between CYCDs and CDKA;1 has been demonstrated using various methods such as 

yeast-hybrid assays, BiFC, co-immunoprecipitation and TAP experiments (Boruc et al., 

2010; Van Leene et al., 2010; Van Leene et al., 2011; Pusch et al., 2012; Zhao et al., 

2012). Control of the G1-S transition by the CYCD/CDKA;1 complex has been supported 

by the detailed analysis of CYCD expression, as well as the overexpression of CYCD3 

genes in synchronized Arabidopsis cell cultures. Broadly speaking, all 10 D-type cyclins are 

expressed during the G1 phase, with some variations (Menges and Murray, 2002; Menges 

et al., 2003; Menges et al., 2005). Moreover, in CYCD3;1-overexpressing cells, the 

increased proportion of cells in the G2 phase, the prolonged G2 phase, and enhanced level 

of S-phase gene expression suggests that cells go through the G1-S transition quicker and 

highlights the role of CYCD3;1 in controlling this transition (Menges et al., 2006). Control of 

the G1-S transition by CYCD2;1 and CYCD3;1, both of which can form a complex with 

CDKA;1, has also been demonstrated in planta and not surprisingly in dividing cells (Healy 

et al., 2001). Here, I showed that CYCD7;1 interacts with CDKA;1, but this interaction is 

possible in yeast only when KRP1 or KRP2 have first bound CDKA;1. Moreover I showed 

that in this assay, none of the four CDKBs can bind CYCD7;1 or KRP1/2, and the complex 

formation is specific to the presence of CDKA;1. As previously discussed in chapter 5, 

several studies using yeast-hybrid-assays, BiFC and co-immunoprecipitation show similar 

results regarding the binding of CDKA;1 to KRP1 or KRP2 and the absence of interaction 

between CDKB1 and KRPs (Wang et al., 1998; Lui et al., 2000; De Veylder et al., 2001; 

Zhou et al., 2002a; Nakai et al., 2006; Van Leene et al., 2007; Ren et al., 2008; Sanz et al., 
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2011; Pusch et al., 2012; Zhao et al., 2012). Unlike the results I showed, that CYCD7;1 

cannot bind KRP1 or KRP2, these studies showed that the D-type cyclins investigated can 

also bind KRPs on their own (CYCD2;1 and KRP2, (Sanz et al., 2011); CYCD3;1 and 

KRP1, (Nakai et al., 2006)). Sanz et al. proposed that KRP2 acts as a linker promoting 

between CYCD2;1 and CDKA;1 that could not bind in absence of KRP2 (2011). In addition, 

the results from the study of the interaction between CDKA;1, KRPs and CYCD3;1 suggest 

that KRP preferentially targets the CDK-cyclin dimer since CDKA;1 with a modified CYCD 

binding motif that prevents the CDKA;1/CYCD complex formation, cannot interact with any 

of the KRPs (Zhao et al., 2012). Similar to the results I showed, a core cell cycle 

component interactomic study reveals that CDKA;1 and CYCD7;1 sit in the same complex 

in vivo (Van Leene et al., 2010). However, whereas I detected the binding of KRP1/2 with 

CDKA;1 and CYCD7;1, the interactomic study identifies SMR4 and SMR6, two additional 

CYCD/CDK, inhibitors, as part of the complex as well as the CYCD/CDK co-factors, CKS1 

and CKS2.  

Here I demonstrated the prerequisite for binding of KRP1 or KRP2 with CDKA;1 for the 

formation of the CYCD7;1/CDKA;1 regulatory complex. This suggests that CYCD7;1 alone 

has a low affinity for CDKA;1, but this affinity is increased when CDKA;1 is bound to 

KRP1/2, possibly due to a conformational change of CDKA;1 promoting therefore, the 

interaction with CYCD7;1. However in this study some questions remain unanswered. I 

could not demonstrate in planta that KRP1 or KRP2 was required for the formation of a 

functional CDKA;1/CYCD7;1 complex based on its ability to generate the enhanced seed 

size phenotype. The knock-out of krp1 or krp2 did not have any effect on the seed size in 

endosperm-targeted CYCD7;1 expression lines. However, as both KRP1 and KRP2 are 

expressed in the seed, they may act redundantly and the effect on seed size might be 

present when the loss-of-function krp1 and krp2 genes will be in the CYCD7;1 seed-

targeted expression lines. The kinase activity of the CYCD7;1/CDKA;1 complex could also 

be assessed in vitro in the presence and absence of KRP1/2. This method would not 

however discern whether or not the CYCD7;1/CDKA;1 kinase activity is the key element 

promoting cell proliferation during seed development and therefore the seed enlargement. 

Another explanation of the lack of an effect on final seed size in krp1-krp2-seedCYCD7;1 

lines is that other inhibitors such as SIM or SMR are involved in the CYCD7;1/CDKA;1 

complex. Indeed, this has been demonstrated by Van Leene (2010). Finally, it is also 

possible that CYCD7;1 acts independently of complex formation with CDKA;1 to give rise 

to the enlarged seed size phenotype in endosperm-specific CYCD7;1 expression lines. 
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6.4.2. CYCD7;1/CDKA;1 may act through the RBR pathway and may have an 
effect on the imprinting of the maternal genome 
Endosperm-targeted CYCD7;1 expression leads to a final seed size increase promoted by 

cell proliferation. CYCD/CDKA regulates the progression through the G1-S transition and 

therefore the commitment of the cell to enter the cell cycle (Boniotti and Gutierrez, 2001). In 

addition, it has been demonstrated that the entry of the cell into S-phase of the cell cycle is 

initiated by relieving the inhibition of the E2F/DP transcription factors by RBR, allowing the 

transcription of S-phase genes (Dyson, 1998). The release of RBR inhibition occurs upon 

phosphorylation of the latter by the CYCD/CDKA;1 complex during the progression to the 

G1-S transition (Boniotti and Gutierrez, 2001).  

A plausible explanation of the cell proliferation stimulation in seedCYCD7;1 lines is that the 

CYCD7;1/CDKA;1 complex acts by phosphorylating RBR and therefore permitting cell 

cycle progression, leading to cell proliferation. CYCD7;1 contains a canonical LxCxE amino 

acid motif known to be required for the interaction of cyclins with RBR (Menges et al., 

2007). Moreover, in cell suspension CYCD7;1 is expressed late in G1 (Menges et al., 

2005). These results are consistent with the hypothesis that CYCD7;1 may act through the 

RBR pathway to promote cell division. Another piece of evidence is that seedCYCD7;1 

expression in the mature central cell phenocopies the rbr1-1 mutants that show nucleus 

overproliferation prior to fertilization (Ingouff et al., 2006; Johnston et al., 2008). In addition, 

several studies show that RBR is involved in genome imprinting and therefore in 

endosperm development. Mutants in the Polycomb group genes of the FIS class such as 

mea/fis1 (Grossniklaus et al., 1998; Kiyosue et al., 1999), fis2 (Luo et al., 1999), fie/fis3 

(Ohad et al., 1996), msi1 (Kohler et al., 2003; Guitton et al., 2004; Ingouff et al., 2006), also 

display nuclear proliferation in the absence of fertilization. Despite the apparently similar 

phenotype, the use of endosperm-specific reporters reveals that the central cell of the rbr 

mutants does not acquire endosperm identity, whereas that in fis mutants does (Ingouff et 

al., 2006). These results suggest that the rbr mutant fails to arrest cell cycle in the mature 

female gametophyte prior to fertilization, whereas in fis mutants re-entry into the cell cycle 

occurs despite the absence of a fertilization signal, leading to autonomous endosperm 

development. A direct consequence of this different arrest in the cell cycle between the rbr 

and fis mutant is that some of the additional nuclei in rbr are haploid, as the fusion of the 

two haploid nuclei into a diploid polar nucleus in the central cell does not always occur, and 

some nuclei are diploid, whereas in the fis mutants, a mature central cell displays a single 

diploid nucleus undergoing extra cell cycles, and therefore the multiple nuclei in fis mutant 

are always diploid (Johnston et al., 2008). As the seedCYCD7;1 phenotype observed in the 

central cell is similar to that in rbr and fis mutants, a question arises as to whether the 

central cell acquires endosperm identity and whether the nucleus DNA content is diploid or 
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haploid. Preliminary observation of the unfertilized ovules of seedCYCD7;1 would suggest 

that the phenotype is similar to that in the rbr mutant, as the central cell did not acquire the 

typical shape of a developing endosperm that undergoes growth, and therefore nuclei fail 

to arrest cell division in the mature central cell prior to fertilization. However further 

analyses need to be done to confirm this hypothesis.  

 

RBR has been demonstrated to interact with MSI1 and DNA methytransferase1 (MET1), 

leading to the transcriptional repression of MET1 (Jullien et al., 2008). MET1 has been 

shown to be involved in methylating DNA of the MEA, FIS2 and FWA genes, which is 

required for their genome imprinting (Kinoshita et al., 1999; Kinoshita et al., 2004; Jullien et 

al., 2006; Xiao et al., 2006). Paternal alleles of MEA, FIS2 and FWA are hypermethylated, 

leading to their silencing in the endosperm, whereas the maternal alleles are 

hypomethylated in the endosperm allowing their expression (Huh et al., 2007; Hsieh et al., 

2011). In mea and fis2 mutants, the autonomous endosperm development is due to an 

increase of methylation leading to the repression of maternal allele expression in the 

endosperm (Kinoshita et al., 1999; Kinoshita et al., 2004; Schmidt et al., 2013). In mea 

mutants, as well as in interploidy crosses with paternal genome excess, developing seeds 

display an increased number of peripheral endosperm nuclei and an enlarged chalazal 

endosperm (Grossniklaus et al., 1998; Scott et al., 1998; Kiyosue et al., 1999). In the rbr 

loss-function-mutant, MET1 is less repressed leading to hypermethylation of genes such as 

MEA or FIS2. Hypermethylated MEA and FIS2 are then silenced, leading to autonomous 

development of the endosperm. Conceptually, hypermethylation of MEA or FIS2 could be 

interpreted as effectively changing the maternal and paternal genome expression balance, 

potentially leading to larger seeds on a similar way to an excess of paternal genome. 

Relating this to the experiments here, CYCD7;1/CDKA;1 can  phosphorylate RBR and 

inhibit its function, leading to the induction of higher expression of MET1 that can then 

hypermethylate maternal genome. This would lead to a change in maternal/paternal 

genome expression balance. Therefore, the hypothesis is consistent with an enlarged seed 

size phenotype in seedCYCD7;1 lines, similar to the enlarged seed phenotype observed in 

plants with an excess of paternal genome. 

6.5. CYCD7;1 expression in the central cell might reduce fertility 

Proper formation of the female gametophyte is crucial for fertilization, as well as seed 

development. In seedCYCD7;1 lines,  50% to 75 % of seeds did not reach maturity. As 

described in chapter 4, 20 to 50 % of these non-developing seeds, fail to reach maturity 

due to an embryo arrest at globular stage. No apparent defect of embryo patterning was 
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observed (Chapter 4). In contrast, in lines overexpressing CYCD3;1 or CYCD7;1 in the 

embryo, 40-50% of embryos fail to establish a proper pattern: the protoderm fails to 

differentiate into a distinguishable outer single cell layer, the division of the hypophysis is 

transversal instead of longitudinal prior to the incorporation of the upper into the embryo 

and/or the globular embryo undergoes uncoordinated outgrowth. The embryo defects are 

correlated with seed abortion in these lines overexpressing CYCD3;1 or CYCD7;1 in the 

embryo (Collins et al., 2012). The embryo arrest in seedCYCD7;1 lines could be due a defect 

arising in the endosperm, since my work show that the CYCD7;1 expression in the 

endosperm has a non-autonomous effect on embryo development. Even though no visible 

defects in the endosperm are observed, this is a likely explanation as many examples of 

embryo arrest due endosperm developmental impairment have been reported. In mutants 

failing to cellularize the endosperm, embryo arrest can be due to a failure in proper 

patterning of the embryo, such as in endosperm defective1 (ede1) mutants, or show no 

visible defects in embryo patterning, as reported for the capulet2 mutant (Grini et al., 2002; 

Pignocchi et al., 2009). However, in both mutants, the seed stops its development. In the 

glauce mutant, WT pollen can fertilize the egg cell but not the central cell. Therefore the 

endosperm does not develop. Eventually seeds abort (Ngo et al., 2007). Similarly, the 

single fertilization event of the egg cell in the cdka;1 mutant leads to the development of the 

embryo and in some cases non-autonomous endosperm development. At the 32-nuclei 

stage the endosperm stops both its own development and the seeds (Ungru et al., 2008). 

The targeted degeneration of the endosperm using tissue-specific expression of the 

diphtheria toxin A also leads to embryo arrest and subsequent seed abortion (Weijers et 

al., 2003). Further investigations need to be performed to unravel the roles of CYCD7;1 

expressed in the endosperm on embryo arrest at globular stages. 

 

Embryo arrest at the globular stage explains 40-50% of seed abortion. However, I also 

showed that the seed abortion is also due to an earlier event of seed development. The 

question that remains unclear is whether the ovules degenerated before fertilization or 

shortly after fertilization. According to the non-fertilization hypothesis, three scenarios can 

be considered: (1) the pollen tube does not the reach the ovules, (2) the pollen tube 

reaches the ovule but the sperm cells are either not released or sperm cell nuclei do not 

fuse with the female nuclei and therefore do not trigger seed development, and (3) the 

ovule degenerates before reaching maturity. Defects of pollen tube guidance are observed 

in central cell guidance (ccg) mutants. CCG encodes a transcription factor that when 

expressed under an endosperm specific promoter in the ccg mutant rescues the defect in 

pollen tube guidance, suggesting that the central cell may also have a role in pollen tube 



                                                                                                                                                                     Chapter 6 

144 

guidance in addition to the synergids (Chen and Tian, 2007). As discussed before, the 

expression of CYCD7;1 in the mature central cell has some effect on central cell polar 

nucleus formation and it is therefore not unlikely to have more subtle effects that were not 

found in this study. To rule out a defect in fertilization, use of a sperm cell nucleus marker 

such as HTR12 (discussed in chapter 5) would be a great help (Ingouff et al., 2007). 

Moreover, use of an endosperm-specific marker such as MEA could also determine 

whether the seed development program has been initiated (Luo et al., 2000). As the 

endosperm starts its development even before the zygote development is activated, it 

would seem beneficial to use an endosperm-specific marker rather than a zygote-specific 

marker. The effect of CYCD7;1 on the central cell and the CYCD7;1 involvement in causing 

early seed lethality are still unclear. For example the proportion of ovules displaying 

nucleus proliferation in the central cell does not match the proportion of early aborting 

seeds: 10 to 25% of the total seeds abort early in development whereas 50-85% of ovules 

display extra nucleus proliferation in the central cell. However, as leaky expression of 

CYCD7;1 was observed in the pollen grain, it is possible that pollen grains from 

seedCYCD7;1 can fertilize only the egg cell, and as the nuclei in the endosperm are already 

proliferating, the endosperm development program is triggered allowing the continuation of 

its growth and therefore seed development. Similar results have been reported when a 

cdka;1 single sperm cell pollen fertilizated a FIS-class mutant. In this case, the cdka;1 

single sperm cell fertilized the egg cell initiating the zygotic developmental program, and 

endosperm proliferation was initiated by the loss-of-function of the FIS-class genes. The 

endosperm cellularization process that marks the arrest of endosperm development in FIS-

class mutants is restored and the seed develops (Nowack et al., 2007). 

6.6. Trade-off between seed size and number  

Seeds develop within enclosed fruit pods. Therefore, their final size is affected by the 

spatial constraint of the silique. It has been commonly acknowledged that an increase in 

seed size is accompanied by a decrease in seed number per silique. However, 

quantification of lethality in enlarged seed mutants or, reciprocally, quantification of seed 

size increase in seed lethal mutants, has been poorly investigated in detail or reported. For 

example, in ap2 and ahk2-3-4 triple mutants, seed size underwent an increase of 20-70% 

and 150% respectively. Although the authors mentioned a possible reduction of seed yield, 

no data quantify this reduction (Jofuku et al., 2005; Riefler et al., 2006). In AtCKX1,2,3,4 

overexpressors, seed size was quantified and seed lethality was visualized with pictures of 

opened siliques, but determination of the level of seed lethality was not mentioned (Werner 

et al., 2003). Reciprocally, in cdka1-1+/-, 50% of seeds abort but variation in seed size has 
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not been reported (Nowack et al., 2006). More recently, Fang and co-workers showed that 

in EOD3 overexpressers, seed size is increased by 100% and is accompanied by 21% 

lethality (2012). House et al. showed that the relationship between seed number and seed 

size in inter-ploidy crosses is not significant (2010). Here I showed that seedCYCD7;1 lines 

with the higher level of CYCD7;1 have higher lethality and higher seed size increase and, 

reciprocally, seedCYCD7;1 lines with a lower level of CYCD7;1 expression have a lower 

lethality proportion and a lower seed size increase. It sill remains unclear whether 

CYCD7;1 endosperm-specific expression induces lethality and, as a consequence of 

reduced steric bulk, seed size increases, or whether CYCD7;1 induces both seed size 

increase and lethality independently. I demonstrated that CYCD7;1 endosperm-specific 

expression has a direct effect on cell proliferation, therefore it is unlikely that the only effect 

of CYCD7;1 is inducing lethality and that seed size increase is solely a consequence of this 

high lethality proportion. Another way of addressing this issue would be to quantify the 

seed size of a seed lethal mutant such as cdka;1-1+/-. If the seeds of the lethal mutant do 

not show a size increase, it would suggest that lethality does not always lead to larger 

seeds, but reduces the steric bulk in the silique. However, in this study it appeared that 

expression of CYCD7;1 under the FWA promoter has the drawback of inducing lethality. 

Thus the choice of promoter to drive CYCD7;1 expression seems critical. 

6.7. Concluding remarks and future work 

CYCD7;1 is a good candidate to target its expression in seed in order to manipulate seed 

size and therefore seed yield in agronomically important crop plants, if lethality issues can 

be addressed.  

As mentioned above, the choice of promoter to drive the expression of CYCD7;1 is 

essential for usefully engineering seed size. Endosperm development is a key element to 

control seed size by affecting embryo and seed coat development, thus an endosperm-

specific promoter appears to be an obvious choice. In addition, the parental-origin dosage 

in the endosperm is also a key element for endosperm development. Therefore an 

imprinted endosperm-specific promoter such as the FWA promoter was a good candidate 

for targeting the expression in the central cell and developing endosperm. However, two 

improvements could be considered: first, from this study, it appears that the early 

expression of CYCD7;1 in the mature central cell might cause seed lethality. Secondly, as 

the seed integument also creates a constraint to seed development, using an integument-

specific promoter as well as a maternal genome endosperm-specific promoter might 

increase the yield. Hence, MEDEA or FIS2 promoters could be used to target the 
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expression of CYCD7;1. In addition, a recent study reveals a new gene, specific to the 

seed integument, DIRIGENT PROTEIN1 (DP1) (Esfandiari et al., 2013).  

Endosperm-targeted expression of CYCD7;1 also phenocopies cytokinin-deficient and 

cytokinin receptor-deficient mutants. Since it has been shown that one mechanism of 

cytokinin action is the control of the cell cycle components (CYCDs) and more specifically 

CYCD3s (Dewitte et al., 2007), it would be interesting to investigate the effects of cytokinin 

on endosperm-targeted CYCD7;1 expression. 

An interesting feature of endosperm-targeted CYCD7;1 expression was larger seedling 

than the WT after seven days indicating a potential faster seedling establishment. In annual 

crops, seedling establishment is a critical point at which biotic and abiotic stresses can 

influence the yield of the crop for the whole year. Therefore, reducing the time window of 

seedling establishment is one way of reducing the influence of external factors impairing 

the harvest yield. Investigations to determine whether seedlings with larger cotyledons 

display faster vegetative growth and whether the flowering transition is earlier could be 

done. 
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