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Abstract 

We present an analytical investigation of the intrinsic oscillations in a nonlinear inventory system 
where excessive inventory cannot be returned to the supplier.  Mathematically this is captured by a 
non-negative constraint on the replenishment order. By studying the eigenvalues of the characteristic 
matrices of the system, the criteria for different types of dynamic behaviour (including convergence, 
periodicity, quasi-periodicity, chaos, and divergence) are derived. The upper and lower bounds of the 
order and inventory oscillations are found via a time-domain analysis. Our results are verified by 
bifurcation diagrams. We find that the closer the replenishment rule feedback parameters are to the 
convergence area, the milder the intrinsic oscillation of the system. 

Keywords:  Nonlinear inventory system; forbidden returns; oscillation, bifurcation, stability. 

1. Introduction and motivation 

A supply chain�s inventory control policy needs to attenuate fluctuations in demand, so as to maintain a 
smooth production rate in the face of both externally and internally generated disturbances. It should 
also maintain inventory levels around target safety stock levels. One of the most well-studied 
oscillation phenomena in supply chains is the so-called Bullwhip Effect. Since the pioneering work of
Lee et al. (1997), much effort has been devoted to this problem. Many factors affecting the Bullwhip 
Effect have been investigated including: the impact of forecasting methods (Chen et al., 2000; 
Dejonckheere et al., 2003); statistical modelling of demand processes (Aviv, 2003, Gaalman, 2006); 
cooperative mechanisms such as information sharing (Lee et al., 2000; Dejonckheere et al., 2004); and 
Vendor Managed Inventory (Disney and Towill, 2003a). The integration of control theory and system 
dynamics approaches provides a powerful approach for quantifying and mitigating such effect (Disney 
and Towill., 2003b). However, in most of the previous theoretical studies on the Bullwhip Effect, linear 
inventory system models were adopted. In linear systems dynamical oscillations can only be generated 
by external events (such as demand). This has greatly limited the applicability of published results and 
has made it impossible to explain and describe oscillations caused by internal factors.  

To maintain linearity of inventory system models, order rates are permitted to take negative values. 
This means that all participants in a supply chain are allowed to return excess product freely. 
Specifically, a negative order rate value leads to a decrease in the inventory level at the consuming 
echelon and an immediate increase in the inventory level at the supplying echelon. This assumption 
may be difficult to realize in reality but we do recognize that it exists in some supply chains.  For 
example in the consumer electronics and book publishing supply chains it is accepted practice that 
retailers may return unwanted product to the manufacturer / publisher. In practice this may also mean 
that the excess inventory is not physically moved from one location to another but instead will be 
considered to be in the possession of the upstream supplier until being used as part of a future 
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replenishment (Hosoda and Disney, 2009).  

It has also been demonstrated that nonlinear effects play an important role in inventory systems, 
sometimes even a dominant role (Nagatani and Helbing, 2004). When linearity assumptions are 
removed complex dynamic behaviours are revealed. The behaviour may even become chaotic or 
hyper-chaotic. More importantly, oscillations generated internally by the system itself, rather than by 
the external environment, may arise. Mosekilde and Larsen (1988) adapted the beer game model 
(Sterman, 1989) to include both forbidden returns and lost sales constraints. To make the chaotic 
phenomenon more obvious, a long lead-time was used. Mosekilde and Larsen (1988) found that the 
operating cost of this constrained system could be 500 times higher than its linear counterpart. 
Thomsen et al. (1992) concluded that economic and business systems do not necessarily operate close 
to their steady state. Hwarng and Xie (2008) investigated several system factors that affect chaotic 
behaviour and discovered a �chaos-amplification� phenomenon between supply chain echelons. Wu and 
Zhang (2007), using a supply chain model with a constrained discount rate and exponential demand 
function, found that the attractors of the model in the phase space moves with the assumed initial states, 
rendering it impossible to provide guidelines for avoiding chaos by bifurcation analysis. Wang et al.

(2005) used the Lyapunov exponent to identify chaotic demand in real supply chain data and proposed 
an algorithm to cope with it from a time series aspect.  

The piecewise linear modelling approach has also been shown to be effective for certain nonlinear 
supply chain problems as the piecewise linear function is able to approximate any nonlinear function to 
any required level of accuracy. Liu (2005) and Rodrigues and Boukas (2006) analyzed the stability of 
supply chain inventory systems with piecewise linear techniques. Laugesen and Mosekilde (2006) and 
Mosekilde and Laugesen (2007) studied border-collision bifurcations in piecewise linear supply chain 
systems. However, mathematical properties of such systems, such as local and global stability 
conditions and bifurcations, are still �very hard to investigate� and �notoriously challenging� (Sun, 
2010). 

This paper is concerned with identifying the range of oscillations in a constrained supply chain that are 
generated by the system itself rather than by the external environment. For our analysis a unit step 
demand input will be adopted (unless otherwise stated) to emphasize that it is the system itself rather 
than the environment that is generating these dynamical effects. The pattern and amplitude of each kind 
of oscillation will be characterized. Section 2 models the constrained one echelon supply chain system 
piecewise-linearly. Section 3 investigates the type of oscillation pattern produced by the inventory 
system. Section 4 focuses on the upper and lower bounds of oscillation with respect to the order 
volume and inventory level. Concluding remarks are given in Section 5. 

2. Modelling and assumptions of forbidden returns inventory system 

Our inventory system model has several components that can be described in the time domain by 
difference equations. These equations will be listed below. First, we assume that the inventory system 
uses exponential smoothing as a forecasting method.  The exponential smoothing forecasts are 
generated with 

1
� �(1 )t F t F td d d     ,                           (1) 

where td  is the demand at time t, �
td  is its forecast at time t and F is the exponential smoothing 

constant. 0 2F  is required for stability of the forecasting system. Within the inventory system, 

the inventory levels obey the usual conservation law such that the new level of inventory equals the 
inventory level in the previous period plus the net in-flow into that state. That is 

1t t t ti i c d   ,                               (2) 

Here it is the inventory level, ct is the completion rate (what arrives from the supplier or the production 
system) and ot is the order rate at time. Factors such as the loss / damage / late delivery of goods in 
storage and transportation will be omitted. The work-in-progress, WIP, (or orders placed but not yet 
received) also obeys the conservation law,  

1 1 1

pT

t t t t t ii
w w o c o  

    ,                        (3) 
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where wt is the work-in-process level and pT  is the physical lead-time. To capture the time delay 

between placing an order and receiving it into inventory there is a sequence of events delay for 
(information) order processing of one period and a physical lead-time, pT , for production / 

transportation, also of one period duration.  This means that 

1t tr o  ,                                 (4) 

and

1t tc r  .                                 (5) 

rt is an auxiliary variable used to capture the review period and ensure a proper sequence of events. 
This assistant variable is also essential in establishing the matrix form of the inventory system. We 
make this unit lead-time assumption for the simplicity in future analysis. Non-negative WIP is assured 
as the orders cannot be negative; this fact is most easily recognized from the RHS of (3). It is clear 
from existing research on linear inventory system analysis that increasing the lead-time will severely 
harm the dynamic performance and reduce the size of its stability region in the parametrical space, 
Towill and Disney (2008). We note that it is theoretically possible to extend this analysis to higher 
lead-time cases. However the complexity of the analysis increases with the lead-time and, as we will 
demonstrate, this system already exhibits a very rich set of dynamics behaviours, even with such a 
short, known and constant lead-time. 

Using these four building blocks (the forecast, the inventory and WIP balance equations and the 
lead-time equations), we adopt the Automatic Pipeline and Variable Inventory and Order Based 
Production Control System (APVIOBPCS) ordering policy for placing replenishment orders. For a 
thorough review of this policy and the entire IOBPCS family we refer readers to Sarimveis et al.

(2008). This policy has been frequently studied as it is of a very general nature. This policy determines 
the replenishment order quantity as the sum �the demand forecast, plus a fraction of inventory 
discrepancy, plus a fraction of work-in-process discrepancy� (Disney and Towill, 2003a). The 
APVIOBPCS replenishment rule is a generalization of the industrially popular Order-Up-To policy, 
Dejonckheere et al (2003), and has a long history in the literature.  Inventory and work-in-process 

discrepancies are the expected levels, �
ti  and �

tw , minus the actual levels, it and wt, respectively. In the 

APVIOBPCS model, expected inventory level is set as a multiple k of expected demand (k is a constant 
called �target inventory gain�). The expected work-in-process is a multiple Tp of expected demand, 

��
t p tw T d  (Sarimveis et al., 2008). For simplicity we set k = 1 and Tp = 1. Therefore �� �

t t ti w d  . We 

use S and SL to denote the fractions arbitrarily set by decision makers. The subscript S is for stock 
(inventory), SL for supply line (work-in-process). In other words, S and SL are proportional feedback 
controllers acting upon the of inventory and work-in-process information used to generate a 
replenishment order.  The APVIOBPCS ordering policy can be expressed as 

� � �( ) ( )

� � �( ) ( )

�(1 ) .

t t S t t SL t t

t S t t SL t t

S SL t S t SL t

o d i i w w

d d i d w

d i w

 

 

   







      

      

      

        (6) 

The ordering policy in (6) was found to mimic real-life decisions made by players of the Beer Game, 
Sterman (1989). Forbidden returns (non-negative orders) are enforced with the maximum operator, [x]+

= max[0, x], in (6). Contrary to the linear assumption, we assume that when the desired order rate 
(calculated by the expression inside the square bracket in (6)) is negative, the supply chain participant 
can only stop ordering and wait for the excess inventory to be depleted before positive orders are 
resumed. Since there is no non-negative constraint on the inventory level, the following underlying 
assumptions are necessary: express orders / outsourcing are fully available (downstream demand can 
still be fulfilled even if supplier�s inventory is insufficient); and shortages (backorders) are allowed.  
That is, negative inventory can be accumulated into the next period (Hosoda and Disney, 2012). Whilst 
we recognize that in real situations non-negative inventory is an important practical consideration, we 
have ignored this feature here so as to avoid the extra complexity and to isolate and specifically 
investigate the impact of non-negative orders. 
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We can see that the forecast is used three times to create the replenishment order. The first forecast is a 
forecast of the demand in the period after the lead-time. The second forecast is used to set target 
inventory levels. The third forecast is used to forecast the target open orders placed but not yet received 
the target WIP. We note when there is a unit step increase in demand that the orders will initially 
overshoot the demand in order to maintain inventory levels around target levels.  After some time, 
when operating in a stable mode, the orders will �lock� onto the demand. Because of the lead-time 
between placing an order and receiving it into stock, this fundamental property of a replenishment 
system cannot be avoided if inventory levels are to be adequately maintained around target safety stock 
levels.  This can be easily verified via a simulation analysis. 

The above difference equations are easily converted into matrices that describe the system of equations 
that define the replenishment policy: 

  
1

1 0 0 0 0

1 1

0 0 1 0 1

0 1 0 1 1

0 1 0 0 0

F

F S SL SL S SL SL S


       

 
        
 
 

 
  

A , 

 
1

1

1

0

0

F

S F S SL


   
 
    
  
 
 
  

b , 

2

1 0 0 0 0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 0 0 0

F 
 
 
 
 

 
  

A , 2

0

1

0

0

F 
 
 
  
 
 
  

b , �
T

d o i w r   x .          (7) 

The piecewise affine model for this nonlinear inventory system is given by 

1 1 1 1 1 1 1

2 1 2 1 2 1 2

( ) ,

( ) ,
t t t t

t

t t t t

F d S

F d S

  

  

  
    

x A x b x
x

x A x b x
                     (8) 

where 1 { | 0}S o x and 2 { | 0}S o x  are both non-degenerate polyhedral partitions of the state 

space. That is, each region Si is a (convex) polyhedron with a non-empty interior. The (n�1) 

dimensional hyper-plane ot = 0 is the boundary of the partitions. 1 2 RnS S  , 1 2 1 2S S S S     . 

S° is the interior of S and n is the dimension of x. It should be noted that the boundaries are continuous, 
i.e., 1 2t tA x A x  when 1 2t S Sx  . 

In general terms, the feedback parameters, S and SL, and the lead-time solely determine the stability 
of the inventory system. They also influence other dynamic characteristics of the system (Disney, 2008) 
The forecast is a feed-forward component in the inventory system that does not directly influence the 
stability of the inventory system. As long as 0 < F < 2, the forecasting system is stable and the 
stability of the inventory system is not influenced by the forecast. We now set the demand forecast to 
be equal to the deterministic demand (that is set F = 1). As we mainly study the deterministic unit step 
demand, this assumption is not wildly unrealistic. Furthermore we are interested in the long term (not 
the initial transient response) dynamic behaviour. In the long term the exponential smoothing forecast 

has �locked� onto the step demand. Setting �
t td d  does not alter the long-term behaviour of the 

inventory system and allows us to focus solely on the influence of S and SL in our discussion.  

Setting �
t td d  also results in a naïve forecasting strategy, often advocated by the lean production 

community as a practical way to set production targets (Martichenko and von Grabe, 2010). 

Our model can be further simplified. When the transportation lead time is one, the work-in-process is a 
flow rate rather than a stock level, i.e., rt = wt. If we let rt = wt and F = 1, we can express the inventory 
system in three dimensions with the following matrices: 
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1 0 1 1

1 0 0

SL S S     
   
 
 

A , 1

1 2

1

0

S SL   
   
 
 

b , 2

0 0 0

0 1 1

1 0 0

 
   
 
 

A , 2

0

1

0

 
   
 
 

b , 

o

i

w

 
   
 
 

x . 

Noticing that A1 and A2 are both linear dependent, the dimension of the system can be further reduced. 
Denoting the sum of the inventory and work-in-process as the inventory position, that is IPt = it + wt, 
we have 

1 1 1
SL S   

  
 

A , 1

1 2

1
S SL   

   
b , 2

0 0

1 1

 
  
 

A , 2

0

1

 
   

b , 
o

IP

 
  
 

x .     (9) 

Introducing the inventory position tIP  into the model is mathematically prudent as then a redundant 

dimension can be eliminated and both A1 and A2 become fully ranked.  The use of tIP  does not alter 

the dynamics of the system in anyway. The steady-state behaviour of the original five-dimension model 
is exactly the same as the two-dimension system as long as the exponential smoothing forecasting 
mechanism is stable. 

3. Pattern of oscillation in the forbidden returns system 

The oscillation of linear systems is easy to investigate compared to nonlinear systems. There are only 
two patterns of dynamic behaviours that are physically possible. The system could be convergent 
(stable), which means that the trajectory will eventually return to an equilibrium point, no matter where 
it is started.  That is, it is insensitive to initial values. It could also be divergent (unstable), which 
means the trajectory will escape to infinity. There is also a third pattern, appearing when the control 
parameters are on the very edge of the stability boundary called critical stability. Here the system will 
oscillate with a regular, repeating pattern. 

On the other hand, trajectories of nonlinear systems could be either convergent or divergent and can 
even oscillate in a bounded fashion. It could oscillate in a regular repeating pattern or in a seemingly 
random one. The dynamic behaviour of the system could also be highly sensitive to initial values. 
Moreover, in piecewise linear systems, the effect of border-collisions can be dominant. This 
phenomenon refers when two linear systems are �sewn� together and where one of the part of the 
periodic trajectory becomes tangent to the sewing surface. This causes a particular type of bifurcation, 
named as border-collision bifurcation or C bifurcation in Russian literature (di Bernardo et al., 1999). 
In our forbidden returns inventory system, a border collision indicates that the inventory has grown 
large but negative orders cannot be issued. A simple type of border collision bifurcation consists of the 
continuous transformation of a solution from one type into another or the merging and disappearances 
of solutions of different types. However, more complicated nonlinear phenomena, including chaos, are 
possible (Zhusubaliyev and Mosekilde, 2003). Some examples of the different types of time domain 
oscillations in response to a unit step input are shown in Figure 1, where we asserted that convergent 
responses result in the lowest supply chain cost, divergent responses high supply chain cost.  This 
assertion is based solely on intuition. 

Figure 1: Five groups of dynamic behaviours (to the unit step demand) generated by the forbidden 
returns system 
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Figure 2 shows divergent (white), convergent (black) and periodic (dark grey) areas of the inventory 
system on the {S, SL} plane. The matrices used to derive the criteria are also labelled. 
Quasi-periodicity and chaos are represented by light grey. We will explain in this section how to derive 
the boundaries analytically for each region. We have extended our scope from the conventional region 

when  0 , 1S SL    to the case where an uninformed and irrational replenishment rule design 

exists because parameters are chosen outside of the stability region. 

Figure 2. Bifurcation structure of forbidden returns inventory system. 

3.1 Boundedness and divergence 

If all solutions of a dynamical system that start out near an equilibrium point xe, stay near xe forever, 
then the system is bounded (Figure 1a-d). Otherwise the system is divergent (Figure 1e). There are two 
factors in the forbidden returns system that cause three types of divergence in this system: exponential 
monotonic; linear monotonic; and exponential oscillatory divergence. Sometimes the sub-system F1

dominates which will create an exponential (multiplicative) monotonic divergence. At other times the 
sub-system F2 dominates which will create a linear (additive) divergence. Sometimes these two effects 
may combine and lead to an exponential and oscillating divergence. 

The criteria for exponential monotonic divergence in the piecewise linear system is 
1

im( ) 0
A

λ  and 

1
1

A
λ , where im(z) is the imaginary part of the complex number z. This is different from linear 

systems where the criteria for divergence is simply 
1

1Aλ . In linear systems, if the eigenvalues of 

system matrices are complex and outside the unit circle, the system oscillates with ever increasing 
amplitude, i.e., infinity becomes a focus of the system. However, in the piecewise linear forbidden 
returns systems, such trajectory will eventually hit the border at ot = 0. In other words, the border 
constrains such trajectories from divergence. For exponential divergence to occur, infinity must be a 
node and the trajectories must not collide with the border, i.e., 1A  has two real positive eigenvalues 

larger than one. Thus, the criterion for bounded oscillation is given by 

S = (SL + 1)2 / 4.                              (10) 

It is also worth noticing that this region and the asymptotic stability region are not adjacent. The second 
type of divergence (linear monotonic) happens when the parameters cross the saddle-node (fold) 
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bifurcation boundary at 0S  . If the parameters cross this boundary, the system will have only one 

positive eigenvalue larger than one, and the system trajectories starting from the origin will move along 
the negative axis of ot linearly to infinity, under the effect of the linear sub-system F2. Managerially, 
this means the firm never places orders even when inventory backlogs are accumulating. If 

( 1) / 2S SL    , it will diverge linearly. Otherwise an exponential oscillatory divergence can be 

observed. 

3.2 Convergence 

If all solutions that start near xe converge to xe, then more strongly, the system is convergent. This 
means that the trajectory approaches an equilibrium point over time (Figure 1a). The concept is 
mathematically equivalent to asymptotic stability, and has a similar meaning with stability in a classical 
linear control theory sense. In the area of convergence on the parametrical plane, the system will 

eventually return to equilibrium. The condition for stability is 
1

1
A

λ . For 
1

im( ) 0 
A

 and 
1

1 
A

, 

we have 0S  , which is the criteria for saddle-node (fold) bifurcation. For 
1

im( ) 0 
A

 and 

1
1  

A
, we have 2 2S SL   , which is the criteria for period-doubling (flip) bifurcation. For 

1
im( ) 0 

A
 and 

1
1 

A
, we have 1S SL   . This is the criteria for Neimark bifurcation 

(Thompson and Stewart, 1986). These three criteria form a triangular stability region on the 
parametrical plane. In this region the system has a globally stable fixed point at {o = 1, ip = 1}. A 
similar pattern has been found in a two-dimensional discrete nonlinear system with saturation (Galias 
and Ogorzalek, 1990). The three types of bifurcation are labelled in Figure 2. 

3.3 Periodicity 

The periodicity of a system is a point which the system returns to after a certain number of function 
iterations or a certain amount of time (see Figure 1b for an illustration). In a forbidden returns system, 
conditions of periodic oscillations can be obtained by studying the eigenvalues of the corresponding 
matrix representing the periodic movement. That is to say, for a stable period-m movement under 

certain parameter settings, the modulus of eigenvalues of matrix 1
1 2
m n

A A  must be less than one, 

 ,m n  . We notice that the value of n does not affect the eigenvalues of matrix 1 2
m n

A A  (note n > 0) 

since the two dimensional matrix A2 is idempotent. 

As an example, the conditions for a stable period-2 orbit can be derived by solving 
1 2

1
A A

λ , from 

which we obtain 0 < S < 2. Likewise, the criteria for period-3, 2
1 2

nS S  can be obtained from 
2

12
1A A

λ , 

i.e., 2 1 1S SL S     , from which we get 2SL   and 
2

2
S

SL







. 

For a specific value of m, we can use this approach to derive the criteria for m + 1 periodicity. These 
regions form what is called an �Arnold�s Tongue� in Figure 2 (Ogorzalek and Galias, 1991). The 
principal zone of period-2 lies on the right of the stability triangle. Other resonant zones are situated 
above the Neimark bifurcation boundary. We are unable to illustrate all the zones since there is an 
infinite number of them. But it is possible to infer that, as the period increases, they will finally 
approach the exponential divergence boundary, where the density of tongues will be very high. 

3.4 Quasi-periodicity and chaos 

Quasi-periodicity is a form of irregular motion that arises through the beating of two or more 
oscillatory modes with incommensurate frequencies (see Figure 1c). This form of dynamics can be 
observed in linear as well as in nonlinear systems. Quasi-periodic behaviour is also distinguished from 
deterministic chaos by not displaying sensitivity to the initial conditions. Geometrically, 
quasi-periodicity indicates that every trajectory winds around endlessly on a torus, never intersecting 
itself and yet never quite closing. 

Mathematically, chaos refers to a very specific kind of unpredictability: deterministic behaviour that is 
very sensitive to its initial conditions. In other words, infinitesimal variations in initial conditions for a 
chaotic dynamic system lead to large variations in behaviour over time. Chaotic systems consequently 
appear disordered and random (Figure 1d). When chaotic dynamics occurs, the system moves in a 
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region of phase space that is densely filled with unstable periodic orbits. The trajectory is attracted and 
repelled in different directions by these orbits, resulting in an irregular behaviour that is sensitive to 
small perturbations and parameter changes (Thompson and Stewart, 1986). In the forbidden returns 
system, quasi-periodic and chaotic oscillations are both characterized by the fact that, although 
bounded in phase space, the trajectory never precisely repeats itself. 

To verify our analytical result, we conducted a numerical analysis which scans the parametrical plane. 
To distinguish periodicity, we adopted the numerical method proposed by Dai and Han (2011) which 
involves calculating the so-called Periodicity Ratio. Boundedness and asymptotic stability can be 
identified by calculating the variance of system response. In the bounded oscillation region, if the 
system is neither asymptotically stable nor periodic, then it must be quasi-periodic or chaotic. The 
accuracy of the numerical analysis is restricted by the thresholds that we arbitrarily set. In total 
800×800 scans are carried out within the parameter place defined by ( 1,5)S    and ( 4,4)SL   . 

In each scan, the first 100 data points are discarded and the next 2000 iterations are used to characterize 
the dynamic response. We use black for asymptotic stability, dark grey for periodicity, light grey for 
quasi-periodicity and chaos, and white for divergence. By comparing Figure 2 and Figure 3, we see that 
our analysis successfully explains the system behaviour. Figure 4 shows in more detail the structure of 
periodicity region when (0.05,0.1)S   and ( 1.05, 1)SL    . We can easily notice the existence of 

a very delicate pattern called �sausage structure� (Ogorzalek and Galias, 1991) or �necklace structure�
(Mosekilde and Laugesen, 2007) and has apparently an infinite number of successive patterns with a 
stable periodic movement. 

Figure 3. Numerical validation of the oscillation patterns in the forbidden returns system 
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Figure 4. The �sausage� or �necklace� structure 

To summarize, the aforementioned criteria divided the parametrical plane into several areas in which 
the inventory system oscillates in different patterns: convergent, periodic, quasi-periodic, chaotic and 
divergent. As intuition would dictate, a positive inventory feedback parameter is essential to maintain 
boundedness of the system. Furthermore, when the absolute value of SL is small, the system will be 
convergent. This region is limited and shaped as a triangle. Luckily the Order-Up-To policy (S = 1, 
SL = 1) lies within this region. Comparing these results with Laugesen and Mosekilde (2006), we see 
that for an inventory system which has a delivery time of two periods, asymptotic stability of a 
conservative ordering policy ( (0,1)S  , (0,1)SL  ) is assured. However, as the lead-time increases, 

an ordering policy with high inventory compensation and low WIP compensation (S close to 1 and SL

close to 0) cannot guarantee the stability of the inventory system in this region. Also, positive inventory 
or work-in-process feedback (negative S or SL) will cause divergence (which can either be 
exponential or linear). Regular periodicity can be discovered when S is small and SL is positively 
large. Other areas are filled by periodical tongues, quasi-periodic and chaotic parameter settings. What 
we can infer from the above analysis is that high S and SL values can lead to chaos in nonlinear 
systems. 

4. Bound of oscillation in the forbidden returns system 

So far we have obtained the conditions for asymptotic stability, boundedness and stable periodicity in 
forbidden return systems. We are now interested in the bounds of oscillation because it is relevant to 
the variance amplification phenomenon in supply chains known as the Bullwhip Effect, which may 
severely increase the cost of operating supply chains (Geary et al., 2006). Figure 5 shows the result of a 
numerical analysis where the demand is a stochastic, independently and identically normally 
distributed with a mean of 10 and a standard deviation of unity, d ~ N(10,1). S = 1 and SL ranges from 
-1 to 3 with an increment of 0.04. The dashed line represents the bullwhip in a linear inventory system; 
the empty circles represent bullwhip in a corresponding forbidden returns system; and filled circles 
represent bullwhip also in the forbidden returns system, but with a deterministic step input (dt = 10 for t
> 0, dt = 0 otherwise). Bullwhip is measured by the variance of the orders. 

First we discover the bullwhip of the forbidden returns system will not inflate to infinity when the 
parameters approach or cross the stable boundary, which is obviously a consequence of non-negative 
orders. Second, linear bullwhip expressions no longer approximate bullwhip in the forbidden return 
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system even in the centre of the stable region � the border collisions reduce the order variance. Third, 
knowledge of system oscillation in a deterministic environment is able to broadly predict bullwhip 
behaviour of the nonlinear system faced with stochastic demand, especially outside the stable region. 
Therefore a useful, meaningful and tractable first step is to calculate upper and lower bounds of system 
oscillation in the absence of randomness via the unit step response. 

Figure 5. Comparison of the Bullwhip curve in linear and forbidden return systems 

Recall that the piecewise inventory system model (8) contains a primary subsystem F1 and a 

constrained subsystem F2. Using the transformation 1
1 1( ) ( )TF q q  I A b  we can derive the transfer 

function between the state variables (more specifically the order rate) and the input variable (the 
demand rate). I is the identity matrix with the appropriate dimension. 

1 21

1 1 2

(1 2 ) (1 )( )

( ) 1 ( 1) ( )
S SL S SL

SL S SL

a q qo q

d q q q

  
  

 

  

    


   
,                 (11) 

where q-1 is the unit time lag operator (Åström, 1970). We may rewrite (11) into the following time 
domain form, 

1 2 1 2( 1) ( ) (1 2 ) (1 )t SL t S SL t S SL t S SL to o o d d                   . 

In the following analysis the assumption of unit step demand is once again adopted. Note that it is 
different from the numerical analysis in the beginning of this section where are assumed the demand 
was i.i.d., N(10,1). Because 1td   for 0t   we can find the following second order recursive 

equation for order rate dominates the dynamics of the system: 

1 2(1 ) ( )t SL t SL S t So o o         .                     (12) 

It is worth noting that the coefficients in (12) equals 1tr( )A  and 1 A  respectively. The layout of 

the eigenvalues of the system in the {S, SL} plane is summarized in Figure 6. It is found that this 
layout and more precisely, the sign of the eigenvalues� real parts, determines the upper bounds of the 
orders. 
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Figure 6. Eigenvalue layout in the {SL-S} plane 

4.1 Oscillations in the replenishment orders 

A period-2 oscillation happens when S is small (0 < S < 2) and SL is large (SL > 2 + S / 2). To 
analyze the oscillation in this region, we have to solve the following matrix equation 

1 2 2 1( )  A A x b b x  since the movement S1S2 dominates. By doing so we can get the oscillation of 

order: � 2, 0, 2, 0, 2, 0, � where the initial transient response of the system is omitted. In this region 
the oscillation is independent of S and SL, and the frequency of the order being zero is exactly 0.5. 
In regions Ia, Ib and Ic in Figure 6, both of the eigenvalues have negative real parts. The boundaries for 
region I are SL = 1 and S = SL. Therefore we have the following proposition: 

Proposition 1. If {S,SL} lies in region I, then t So  . 

Proof. In region I we have 1 0SL   and 0SL S   , which are coefficients of ot-1 and ot-2 in (12).

Since all orders are non-negative it is easy to obtain t So  . 

In region II the system has two complex conjugate eigenvalues with positive real parts. To derive the 
expression for the upper bounds of the orders in this region the following transformation needs to be 
introduced. Starting from t = 3 and the basic difference equation (12), we make certain transformations 
to reach the form, 

(2) (1) (0)
2 1t t t t

o P o P o P   ,                           (13) 

t  . (2)
tP , (1)

tP  and (0)
tP  are different time varying coefficients. Bracketed superscripts should 

not be mistaken for multiple derivatives. The following proposition holds for the upper bound of the 
orders in this region: 

Proposition 2.  If {S,SL} lies within region II, and (2) 0tP  , (2)
1 0tP  , then (0)

t to P . 

Proof.  For coefficients (0)
tP , (1)

tP  and (2)
tP , we have the following recursive relationships: 



Wang, X., Disney, S.M. and Wang, J., (2014), “Exploring the oscillatory dynamics of a forbidden returns inventory system”,  
International Journal of Production Economics, Vol. 147, pp3–12. DOI: 10.1016/j.ijpe.2012.08.013. 

 12

(2) (2) (2)
1 2(1 ) ( )t SL t SL S tP P P       ;                     (14) 

(1) (1) (1)
1 2(1 ) ( )

t SL t SL S t
P P P       ;                     (15) 

(0) (0) (0)
1 2(1 ) ( )t SL t SL S t SP P P         ;                   (16) 

(1) (2)
1( )t SL S tP P    .                           (17) 

Proof of (14) to (16) is elementary. (17) can be proved by induction. Notice (2)
3 1

SL
P   , 

(1)
4 (1 )( )SL SL SP      . Assume (17) holds for all t, then 

(1) (1) (1)
1 1

(2) 2 (2)
1 2

(2)

(1 ) ( )

(1 )( ) ( )

( )

t SL t SL S t

SL SL S t SL S t

SL S t

P P P

P P

P

  

    

 

 

 

   

    

 

                 (18) 

We denote Lt as a region in which (2) 0tP   and (2)
1 0tP  , and (2) 0tP   gives the boundaries 

between them. Clearly in Lt we have (2) 0
t

P   and (1) 0
t

P   since 0SL S   . Therefore (0)
t t

o P
due to the non-negativity of orders. 

In general, (0)
tP  gives the upper bound of order oscillation and (2) 0tP   gives the boundaries. As t

increases, (0)
tP  takes different forms. We denote 

max (0)
,IIt to P , in which a subscript II is used to 

represent that this is the upper bound of orders in region II. Some expressions of upper bounds and 
boundaries in the first few periods are summarized in Table 1.  

Table 1. Upper bounds and boundaries in region II 

t 
max (0)
,IIt to P (2) 0tP 

3 S 1SL 

4 2S SL S    2 1S SL SL    

5 2 2( 2 3)S SL SL S       21
( 1)

2
S SL

  

6 2 3 2(2 3) ( 2 3 4)
SL S SL SL SL S

          2 23 5 3
2 ( 1)

2 2 2
S SL SL SL

       

7 

3 2 2

4 3 2

(3 6 6)

( 2 3 4 5)

S SL SL S

SL SL SL SL S

   

    

    
 
     

21
( 1)

3
S SL SL    

According to (16), (0)
tP  happens to be the solutions of the characteristic difference equation (12). Also 

notice that (0) 2
1 21 tr( )t

tP   A A . Moreover, (2) 0tP   is equivalent to setting the following continued 

fraction to zero, 

1
1

1
1

1

-tuple continued fraction

tr( ) 0.

tr( )
tr( )

t

 




A
A

A
A

A 
                        (19) 
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Figure 7a gives an example of order oscillations in this region with S = 1 and SL = �1.5. We know 
from the previous analysis that the system is not stable. However, complex eigenvalues make the 
vibration slow, smooth and periodic-like. Large positive orders are separated by long intervals of zero 
orders.  

The bifurcation map when S = 1 is shown in Figure 7b. It is clearly seen that the upper bounds can 

only be expressed piecewise, and the bifurcation is enclosed by curves of (0)
tP . When S = 1, the upper 

bound expression changes at 1 5
2SL   , the golden ratio, and 1SL   . Although all the curves are 

polynomial, the upper bound of the orders increases to infinity as {S, SL} approaches the boundary of 
divergence. 

(a) Time-series plot. S = 1, SL = -1.5. 
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(b) Bifurcation diagram, S = 1. 
Figure 7. Time series plot and bifurcation diagram of typical order oscillations in region II, S = 1. 

Inventory systems with parameters in region III oscillate in a more chaotic pattern. Systems in this area 
are dominated by one negative real eigenvalue outside the unit circle and one positive real eigenvalue 
inside the unit circle, and fluctuate at a much higher frequency than systems with complex eigenvalues. 
In this area, instead of precise upper bounds, we have discovered that the bifurcation maps are stratified. 
The curves we are able to derive are no longer the upper bound of order oscillation. Instead, they divide 
the bifurcation into several layers (sections) in which the order volume has a different probability 
density. Here one can only claim with a certain probability that the order volume is smaller than one of 
these curves. Through time series speculation (Figure 8a) we have observed the following fact which 
may help explain the stratifying effect in this region: a large order often follows a small fluctuation. 
The longer the small fluctuation lasts for, the larger the order will be which is less likely to happen. 
This can be verified by the following analysis. Starting from t = 3, we make certain transformations 
from (12) to obtain the form 

(2) (1) (0)
1 1t t t t t

o Q o Q o Q   ,                          (20) 

t  , 3t  .The following iterative relationships can then be found by induction, 

(2)

(2)
1

1 SL S

t SL

t

Q
Q

 





   ,                          (21) 

(1)
(1) 1

(2)
1

( )SL S t

t

t

Q
Q

Q

  




  ,                           (22) 

(0)
(0) 1

(2)
1

( )SL S t

t S

t

Q
Q

Q

 





   .                        (23) 

Since 1 0SL  , 0SL S    in region III, (2)
tQ is guaranteed to be negative and (1)

tQ  is always 
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positive. We use max (0)
,IIIt to Q  to denote the approximate upper bound in region III. By simple 

observation we have find that max
,IIIlim ( 2)

SL
t S

o t





  . Another important limit is 

2
max max
,III ,III

1 (1 ) 4
lim

2
SL SL S

t
t

o o
  



   
                       (24) 

which gives us the absolute boundary of the maximum possible order quantity. This is derived by 

computing the final values of (2)
tQ  and (0)

tQ  from (21) and (23). When SL  , (24) approaches 

1SL  , independent of S. 

We have listed several stratifying curves below and drawn them along with the bifurcation map in 
Figure 8b. For the sake of clarity the range of SL is extended. We can see that the stratifying curves fit 
very well with the bifurcation map. 

Table 2. Approximate upper bounds in region III 

t 
max (0)
,IIIt to Q

3 S

4 
( )

1
S SL S

S

SL

  





 


5 2

( )(2 1)

1
S SL S SL S

S

SL SL S

    


  
  


  

6 
2 2

2

( )( 2 3 3 1)

(1 )(1 2 )
S SL S S SL SL S SL

S

SL S SL

       


  
     


  

7 
3 2 2 3

2 2 3 4

( ) 1 2(1 2 ) 3(1 2 ) 4

1 3 (4 1) (1 3 )

S SL S S S S SL S SL SL

S

S S S SL S SL SL SL

         


       

          
     


 
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(a) Time-series plot, S = 5.1, SL = 12. 

(b) Bifurcation diagram, S = 5.1. 
Figure 8. Time series plot and bifurcation diagram of typical order oscillations in region III, S = 5.1. 

It is found that the parameter settings adjacent to the convergence region generate small oscillations. 
On the contrary, remote parameter settings, no matter in which direction, will increase the mean and 
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amplitude of the oscillation. Only the velocity of such increases will vary. For instance, starting from 
the convergence area, increasing SL is expected to generate a linear growth in the maximum order 
oscillation, and decreasing a negative SL will generate an almost exponential growth. 

4.2 Oscillations in the inventory 

The upper and lower bound of inventory oscillation can also be calculated by investigating its 
dynamics. In the period 2 region, the inventory fluctuation follows 

1 1 1 1 1 1
  , , , , , ,SL S SL SL S SL SL S SL

S S S S S S

        
     
             (25) 

In Region I and II, we notice that the minimum inventory level (denoted min
I,IIi ) always appears one 

period after the first order, because this order will be received and inventory level will rise one period 
after the minimum inventory level. Remember also that before the first order the system is in a full 

consumption state without compensation. Consequently, the inventory level one period before min
I,IIi

generates an order of S, which means that 

min
I,II(1 ) ( 1)S SL S Si        .                     (26) 

Rearranging we have 

min
I,II

1
SL S

S

i
 


 

 .                           (27) 

Likewise, the maximum inventory level ( max
,I,IIti ) appears two periods after the last order in a cycle, which 

is its completion time. It is equal to the minimum inventory level plus the sum of orders less the sum of 
the consumption in the cycle: 

max min max max
,I,II I,II ,I,II ,I,II

1 1

1t t
SL S

t j j

j j S

i i o t o t
 

 

 
       .               (28) 

In region III, there are both upper and lower stratifying curves. Notice that the minimum inventory 
appears one period after the maximum order rate, and maximum inventory appears two periods after 
the maximum order rate. Using similar methods, the approximate bounds in region III can be derived 
as: 

max
,IIImin

,III

1 SL t

t

S

o
i




 
                               (29) 

max
,IIImax

,III

( 1) 1S t SL S

t

S

o
i

  


   
 .                        (30) 

The upper and lower bound of the inventory oscillation are both increasing in SL and decreasing in S.  

5. Conclusions and managerial implications 

We have highlighted the range of dynamic behaviours that are present in a constrained inventory 

system with only one constraint, forbidden returns. The stable region of the forbidden return system is 

identical to that of the linear system, indicating that existing knowledge and methodologies for 

studying the asymptotic stability of linear inventory systems can be applied to the forbidden returns 

case. We have shown that a complex and diversified set of behaviours and patterns exist outside the 



Wang, X., Disney, S.M. and Wang, J., (2014), “Exploring the oscillatory dynamics of a forbidden returns inventory system”,  
International Journal of Production Economics, Vol. 147, pp3–12. DOI: 10.1016/j.ijpe.2012.08.013. 

 18

convergence region. When operating outside the convergence region, the inventory system may not 

escape to infinity as would be inferred by a linear analysis; the risk of catastrophic divergence is 

reduced by the physical constraint. Divergence only appears when there is a positive feedback on 

inventory or strong positive feedback on WIP. In other cases, if there is an oscillation, the oscillation 

will be bounded. Under certain parameter settings, the oscillation will show a periodic pattern, most 

noticeably when WIP feedback gain is larger than the inventory feedback gain. It is reasonable to 

conjecture that when facing a stochastic demand, system behaviour will be more predictable when the 

parameters are in this region. Moreover, we found it interesting that even a simple deterministic model 

with a short, known and constant lead-time is sufficient to generate such complex phenomena.  We 

wonder what sort of impact stochastic demand, longer or random lead-times and more constraints will 

have? 

Through a numerical experiment, we have shown the Bullwhip Effect in a nonlinear inventory system 

is largely affected by the intrinsic oscillations produced by the system. Therefore it is essential, as a 

first step, to study the deterministic oscillation amplitude of the inventory system with respect to both 

order and inventory. We have demonstrated how to determine the type and bound of each oscillation. It 

is found that whilst system stability is determined by the modulus of eigenvalues, the oscillation 

amplitude is governed by their real parts. The upper bound of the oscillations can be expressed 

piecewise by solutions of the dominating difference equation, and the amplitude of order and inventory 

oscillations will be smaller if control parameters are set closer to the stable region. For period-2 

oscillation, the amplitude of both order and inventory is constant. In the region 1 SL S    the 

oscillation of order is constrained to below S . As can be predicted, setting parameters close to the 

divergence boundary will create massive order quantities, but with very long intervals between orders. 

As would be expected there is also a tendency that large orders are followed by long intervals of zero 

orders. This approach may be suitable in situations when there is a significant order set-up cost and it 

may be useful to compare performance to the Economic Order Quantity model. 

The lead-time of the inventory system is limited to one period in this paper, where the conventional 

settings, 0 { , } 1S SL   , are guaranteed to be stable. However when the lead-time increases this is 

not the case. Settings with a large inventory gain and small WIP gain are the most vulnerable to a 

lead-time increase in terms of stability. Nonlinear oscillations in such scenarios can then be analyzed 

using a similar approach. Moreover, there is a possibility that supply chain participants will use an 

intuitive ordering policy rather than a carefully designed one.  In this case decision makers are more 

likely to move the parameters out of the stability area. Therefore an expansion of the control plane 

provides a more thorough understanding of the dynamic nature of a constrained inventory system.  

Potential future research could involve several aspects. One is to incorporate other constraints, such as 

lost sales and forbidden outsourcing, into the inventory system model. Our own preliminary 

investigation has shown that when lost sales are solely present, the stable region will be sensitive to the 

initial values of the inventory and orders. Another idea for future work is to expand our study of the 

oscillation when the system is exposed to random external disturbances. The intrinsic oscillation would 

then be coupled with random noise.  Yet another avenue of investigation could be to study how 

different types of oscillation evolve along a multi-echelon supply chain, i.e., the so-called 

�chaos-amplification� effect, as a nonlinear counterpart to the linear �variance amplification� (or 
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bullwhip) effect. 
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 Criteria for stability and periodicity of the constrained inventory system are identified. 

 Analytical upper bounds of the order and inventory oscillations are derived. 

 Parameter settings that lead to different classes of dynamic behaviour are identified. 


