
Modelling, Tracking and Generating
Human Interaction Behaviours in Video

Thesis submitted to Cardiff University in candidature for the degree
of Doctor of Philosophy.

Yue Zheng

Cardiff
UNIVERSITY

PRIFYSCOL
CaeRDv#

Centre of Digital Signal Processing
Cardiff University

2008

UMI Number: U494997

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U494997
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Intelligent virtual characters are becoming increasingly popular in en­

tertainment, educational and simulation software. A virtual charac­

ter is the creation or re-creation of a human being in an image, using

computer-generated imagery. It must act and react in the environment,

drawing on the disciplines of automated reasoning and planning. Cre­

ating characters with human-like behaviours that respond interactively

to a real person in a video, is still a serious challenge. There are several

major reasons for this. First, human motion is very complex, which

makes it particularly difficult to simulate. Second, the human form is

also not straightforward to design due to the large number of degrees

of freedom of the motion. Third, creating novel contextual movements

for virtual characters in real time is a new research area.

The research described in this thesis addresses these problems and

presents novel model-based approaches to create a three dimensional

(3D) virtual interactive character. In other words it can respond in

a realistic and sensible manner to actions of a real person in video.

To this end, a virtual character generating system is developed. The

system tracks and analyses the behaviour of a real person in a video

input and thereby produces a fully articulated 3D character interacting

with the person in the video input. Experimental results demonstrate

that the simulated behaviours are very close to those of real people.

iii

Abstract iv

Furthermore, in order to enhance the tracking capabilities of the

algorithm, a novel technique that splits the complex motion data in an

automated way has been developed. This results in an improved model

of the human motion. Indeed, experimental results confirmed tha t the

model produced, using the above technique, can provide more accurate

tracking results than the model trained on all the whole data at hand.

ACKNOWLEDGEMENTS

I would like to thank my PhD supervisors, Dr Yulia Hicks, Dr Dave

Marshall and Prof. Jonathon Chambers, for their ideas, suggestions

and patience in helping me to complete this work. It would have been

an impossible task without their advice and support.

I would like to thank my colleagues from Centre of Digital Signal

Processing for helping me to collect the motion data for the experi­

ments in this work.

Finally, I would like to thank my family for their unconditional

care, support and encouragement through the whole study. I thank my

boyfriend, Dr. Qiang Yu, for his unremitting support. W ithout their

love and support, I would not be where I am now.

Acronyms

2D Two Dimensional

3D Three Dimensional

A P F Annealed Particle Filtering

B N Bayesian Network

CCD Charge Couple Device

CH M M s Coupled Hidden Markov Models

EKF The Extended Kalman Filter

EM Expectation-Maximisation

E V D Eigenvalue Decomposition

fps frames per second

G M M s Gaussian Mixture Models

GPLVM Gaussian Process Latent Variable Model

G P Gaussian Process

H M M s Hidden Markov Models

IK Inverse Kinematics

vi

Acron ym s V l l

KF Kalman Filter

LED Light Emitting Diode

M CM C Markov Chain Monte Carlo

M oCap Motion Capture

M RF Markov Random Field

PC A Principal Component Analysis

P D F Probability Density Function

P P C A Probabilistic Principal Component Analysis

RG B Red, Green and Blue

R JM C M C Reversible-Jump Markov chain Monte Carlo

R PF The Regularised Particle Filter

SA Simulated Annealing

S GPLVM Scaled Gaussian Process Latent Variable Model

SIR The Sampling Importance Resampling

SIS The Sequential Importance Sampling

SV D Singular Value Decomposition

VLM M Variable Length Markov Model

CONTENTS

A B ST R A C T iii

A C K N O W L ED G EM E N TS v

A C R O N Y M S vi

LIST OF FIG U R E S xiii

LIST OF TABLES xxiii

1 IN T R O D U C T IO N 1

1.1 Thesis Overview 4

1.2 Main Contributions 6

1.3 List of Publications 6

2 IN T E R A C T IV E BEH AVIO URS: A R E V IE W 8

2.1 Modelling the Motion of the Human Body 9

2.2 Reducing the Dimensionality of the State Space 14

2.3 2D vs. 3D Tracking 16

2.4 Visual Tracking Methods in Real Video 17

viii

A cronym s ix

2.5 Interactive Behaviour between Two People 23

2.6 Generating A Computer Graphics Character 26

2.7 Summary 28

3 V IR TU A L C H A R A C T E R G EN ER A TIN G SY ST E M

OVERVIEW 29

3.1 Acquisition of 3D MoCap Data 32

3.2 Learning a Model of Human Motion for Tracking Motion

of a real person in video 33

3.3 Tracking a 3D Person in Real Video 34

3.4 Learning a Model of Human Motion for Generating In­

teractive Behaviours 36

3.5 Generating Interactive Behaviours for a Virtual Charac­

ter Responding to the Tracked Person 36

3.6 Summary 37

4 A M ODEL OF H U M A N M O TIO N FO R A SIN G LE

PE R SO N 38

4.1 Motion Capture Systems 39

4.2 3D MoCap Data 43

4.3 A Model of Human Body Motion 45

4.3.1 Principal Component Analysis: MoCap D ata Di­

mension Reduction 47

4.3.2 Gaussian Mixture Models 51

4.3.3 Hidden Markov Models 54

Acron ym s X

4.3.4 Training a Model of Dynamics 58

4.4 Summary 59

5 T R A C K IN G A 3D PE R SO N IN A 2D REAL V ID E O 62

5.1 Introduction 62

5.2 Tracking Method - Annealed Particle Filtering (APF) 63

5.3 Tracking the Motion of a Person in Real Video 66

5.3.1 Tracking Process 67

5.3.2 Calibrating the Camera 68

5.3.3 Training Data 69

5.3.4 Subtracting Background 71

5.3.5 Model of Human Motion 72

5.3.6 Tracking Results 75

5.4 Summary 78

6 G EN E R A T IN G BEH AVIO RS FO R A V IR TU A L C H A R ­

A C T E R 80

6.1 Introduction 80

6.2 Model of Interactive Behaviour 82

6.2.1 Training Data 82

6.2.2 Dual-Input HMM Construction 83

6.3 Generating Interactive Behaviours 86

6.3.1 The Standard Viterbi Algorithm 86

6.3.2 The Windowed Viterbi Algorithm 88

A cron ym s xi

6.3.3 The Trellis Structure 92

6.3.4 Estimating Output Behaviours 92

6.3.5 Trajectory Post-processing 95

6.3.6 Motion Resynthesis Summary 95

6.4 Placing Virtual Character Back into the Real Video 96

6.5 Experiments with 3D MoCap Data 98

6.5.1 Generating Algorithm 99

6.5.2 Animation Video Sequences 100

6.6 Assessing the Accuracy of the Generated Behaviour 100

6.7 Perceptual Evaluation 109

6.8 Summary 112

7 IM PR O V IN G TH E MODEL OF H U M A N M O T IO N 114

7.1 Introduction 114

7.2 Splitting Complex Motion Data Automatically 117

7.3 The Combined Hidden Markov Model 120

7.4 The Process of Combining HMMs 123

7.5 Experiments with 3D MoCap data 127

7.5.1 Assessing the Accuracy of Tracking Results of

Shaking Hands Behaviours 127

7.5.2 Assessing the Accuracy of Tracking Results of

Pushing Behaviours 128

7.5.3 Assessing the Accuracy of Tracking Results of

Pulling Behaviours 134

A cron ym s xii

7.6 Summary 136

8 C O N C LU SIO N A N D FU T U R E R E SE A R C H 139

8.1 Conclusion 139

8.2 Future Research 141

A PH A SE SPA C E M O TIO N D IG ITIZER SY ST E M 144

B M O TIO N BU ILD ER : A CTO R 147

B IB L IO G R A P H Y 154

List of Figures

2.1 A stick-figure human body model [1]. 11

2.2 A 2D contour human body model [1]. 11

2.3 A volumetric (cylinder) human body model (viewed from

two directions) [2]. 12

3.1 Overview of the virtual character generating system. 30

3.2 Human model with 30 markers (Two markers on the

back are not visible). 34

3.3 (a) Original image of a person, (b) the person in the

scene without background. 35

4.1 Example of 12 cameras positioned for full body motion

capture. 41

4.2 Calibration object (a) and calibration wand (b) used dur­

ing the calibration process. The red lights are LEDs. 43

4.3 Original captured 3D MoCap data, (a) Shaking Hands

Behaviour, (b) Pulling Behaviour, (c) Pushing Behaviour. 44

xiii

LIST OF FIGURES xiv

4.4 Motion data, (a) No markers are occluded, (b) The

markers with dark blue are occluded during the captur­

ing process, so they need to found manually with inter­

polation.

4.5 A model of geometry of a human body. It consists of 16

segments (represented as truncated cones in the figure)

connecting 20 vertices on the body (represented as red

crosses in the figure).

4.6 The original training data of the motion for a person

walking and shaking hand distribution visualised in 2D.

Blue dots represent the original motion data.

4.7 Reduced dimension data with two biggest eigenvectors

modelling the walking and shaking hand motion of the

whole human body. Blue dots represent the motion data.

4.8 Data distribution visualised in 2D and fitted with 12

Gaussians. The red ellipses represent Gaussian and the

blue dots denote the motion data.

4.9 Data distribution visualised in 2D and fitted with 4,8,16

and 30 Gaussians. The red ellipses represent Gaussian

and the blue dots denote the motion data.

4.10 The Basic Structure of an Hidden Markov Model

4.11 GMM with connections showing HMM transition prob­

abilities with values greater than 0.01.

5.1 Original background image without a person in the scene.

5.2 Original video image with a person present in the scene.

45

46

49

50

52

53

55

59

69

70

LIST O F FIGURES X V

5.3 Selected video images of one person walking and shaking

hands at time 2.2s, 3s and 4.83s respectively. 70

5.4 Binary image after subtracting background. 72

5.5 Selection frames from Original video sequence and bi­

nary images after subtracting background. 73

5.6 Percentage of eigenenergy vs. number of dimensions 74

5.7 Original images (first column) and the estimated 3D fig­

ures in the same view (second column). 76

5.8 Tracking result for the synthesised data (shaking hands

behaviours). In the top of figure, blue trajectories are

ground tru th while red trajectories are tracking result.

In the bottom of figure, the line shows the distance be­

tween ground tru th and the tracking result. 78

5.9 Tracking result for the synthesised data (pushing be­

haviours). In the top of figure, blue trajectories are

ground tru th while red trajectories are tracking result.

In the bottom of figure, the line shows the distance be­

tween ground tru th and the tracking result. 79

5.10 Tracking result for the synthesised data (pulling behaviours).

In the top of figure, blue trajectories are ground tru th

while red trajectories are tracking result. In the bottom

of figure, the line shows the distance between ground

tru th and the tracking result. 79

LIST O F FIGURES xvi

6.1 Illustration of the Viterbi Trellis. Si is the sequence of

hidden states and arnax(t) is the maximum probability at

the time t. T is the number of frames. 89

6.2 Illustration of the windowed Viterbi algorithm. Si is

the sequence of hidden states and n n±i is the maximum

probability at the time t = 1. The dashed blue box

represents the length of the window T. The pink node

represents the second state of the best path for the win­

dow T. The black node represents the output at the time

t. 91

6.3 Initial Trellis data structure for generating motion data.

Q is a set of states. 93

6.4 A representation of error Calculation for the generating

motion data. C 3t is the data vector for person B for cell

j at time t, hinput is the new input signal, ba is the data

vector for person A, E represents the error. 93

6.5 Match the generated motion which is represented by cer­

tain points (denote as blue points) on the body onto a

3D actor. 97

6.6 The animation sequence, the real video sequence and the

background sequence are imported to Shake. 98

6.7 The process of producing the animation video. 99

6.8 Interactions with virtual character (Handshake behaviour). 101

6.9 Interactions with virtual character (Pushing behaviour). 102

6.10 Interactions with virtual character (Pulling behaviour). 103

LIST OF FIGURES X V I I

6.11 Error of the generated behaviour (in mm). Shaking

hands behaviour (Sequence 1). The error of generated

behaviour using the standard Viterbi algorithm is shown

in the solid blue line, the pink dash line is for using the

windowed Viterbi algorithm. 104

6.12 Error of the generated behaviour (in mm). Shaking

hands behaviour (Sequence 2). The error of generated

behaviour using the standard Viterbi algorithm is shown

in the solid blue line, the pink dash line is for using the

windowed Viterbi algorithm. 105

6.13 Error of the generated behaviour (in mm). Shaking

hands behaviour (Sequence 3). The error of generated

behaviour using the standard Viterbi algorithm is shown

in the solid blue line, the pink dash line is for using the

windowed Viterbi algorithm. 105

6.14 Error of the generated behaviour (in mm). Pulling be­

haviour (Sequence 1). The error of generated behaviour

using the standard Viterbi algorithm is shown solid in

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 106

6.15 Error of the generated behaviour (in mm). Pulling be­

haviour (Sequence 2). The error of generated behaviour

using the standard Viterbi algorithm is shown solid in

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 106

LIST O F FIGURES X V 1 1 1

6.16 Error of the generated behaviour (in mm). Pulling be­

haviour (Sequence 3). The error of generated behaviour

using the standard Viterbi algorithm is shown solid in

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 107

6.17 Error of the generated behaviour (in mm). Pushing be­

haviour (Sequence 1). The error of generated behaviour

using the standard Viterbi algorithm is shown in solid

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 107

6.18 Error of the generated behaviour (in mm). Pushing be­

haviour (Sequence 2). The error of generated behaviour

using the standard Viterbi algorithm is shown in solid

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 108

6.19 Error of the generated behaviour (in mm). Pushing be­

haviour (Sequence 3). The error of generated behaviour

using the standard Viterbi algorithm is shown in solid

blue line, the pink dash line is for using the windowed

Viterbi algorithm. 108

6.20 Test video sequences showed only the motion of certain

points on the body. 110

7.1 The general idea of the work contained in this chapter. 116

7.2 Split a complex data sequence to subsequences. 117

LIST O F FIGURES xix

7.3 Error of the generated behaviour (in mm). Pushing be­

haviour. The error of generated behaviour using the

standard Viterbi algorithm is shown in blue solid line,

the pink dash line is for using the windowed Viterbi al­

gorithm. The black dash lines show the place to split

the motion.

7.4 An illustration of splitting process.

7.5 (a) Opening by flat structuring element; (b) Top-Hat

transformation [3].

7.6 The example structure diagram of two simple HMMs

for the combined HMM are shown, a is the transition

probability from sub-model 1 to sub-model 2. It can be

obtained using the Baum-Welch algorithm.

7.7 Motion Data (walking and shaking hand) distribution

visualised in 2D for normal HMM which trained on all

motion data and fitted with 24 Gaussians. The red ellip­

soids represent Gaussians associated with a HMM state

and the blue dots denote the motion data.

7.8 Motion data (walking and shaking hand) distribution vi­

sualised in 2D for the combined HMM and fitted with 24

Gaussians. The red ellipsoids represent Gaussians asso­

ciated with a HMM state and the blue dots denote the

motion data.

7.9 Motion data (walking) distribution visualised in 2D and

fitted with 10 Gaussians. The red ellipses represent

Gaussians and the blue dots denote the motion data.

118

119

120

121

122

123

124

LIST OF FIGURES X X

7.10 Transition matrix for the normal HMM (55 states). 126

7.11 Transition matrix for the combined HMM (55 states). 126

7.12 Error of the tracked behaviours (in mm). Shaking hands

behaviours (Sequence 1). (a) - (e) show the error of

the tracked behaviours when using each separate HMM

respectively. 129

7.13 Error of the tracked behaviours (in mm). Shaking hands

behaviours (Sequence 1). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 130

7.14 Error of the tracked behaviours (in mm). Shaking hands

behaviours (Sequence 2). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 130

7.15 Error of the tracked behaviours (in mm). Shaking hands

behaviours (Sequence 3). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 131

7.16 Error of the tracked behaviours (in mm). Pushing be­

haviours (Sequence 1). (a) - (d) show the error when

using each separate HMM respectively. 132

7.17 Error of the tracked behaviours (in mm). Pushing be­

haviours (Sequence 1). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 133

LIST OF FIGURES xxi

7.18 Error of the tracked behaviours (in mm). Pushing be­

haviours (Sequence 2). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 133

7.19 Error of the tracked behaviours (in mm). Pushing be­

haviours (Sequence 3). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 134

7.20 Error of the tracked behaviours (in mm). Pulling be­

haviours (Sequence 1). (a) - (c) show the error when

using each separate HMM respectively. 135

7.21 Error of the tracked behaviours (in mm). Pulling be­

haviours (Sequence 1). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 136

7.22 Error of the tracked behaviours (in mm). Pulling be­

haviours (Sequence 2). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 137

7.23 Error of the tracked behaviours (in mm). Pulling be­

haviours (Sequence 3). The error of the tracked be­

haviours using the normal HMM is shown in the black

line, the pink line is for using the combined HMM. 137

A .l PhaseSpace products layout [4]. 146

B.l 3D motion data 147

LIST OF FIGURES X X I I

B.2 Asset Browser window 148

B.3 Match markers and actor 149

B.4 Navigator window for create actor 150

B.5 Exporting the marker set 151

B.6 Re-use the market set. 153

List of Tables

4.1 Probability transition matrix trained on walking and

shaking hands MoCap data of one person. The sum

values of each row is one. 60

6.1 Evaluation Results. The resulting motions are generated

using the standard Viterbi algorithm. I l l

6.2 Evaluation Results. The resulting motions are generated

using the windowed Viterbi algorithm. 112

xxiii

Chapter 1

INTRODUCTION

T h e main research area of this thesis is to generate human interactive

behaviours for a virtual character responding to a real person in the

video. The problem of generating human interactive behaviours that

respond to real person is a real challenge, due to the complexity and

uncertainty of human motion. Using a priori models of geometry and

motion helps to deal with these problems, by imposing constraints on

the interpretation of motion data.

In this research, there is a particular interest in developing models

of human actions that not only assist in tracking human motion in real

video, but are also suitable for generating interactive virtual charac­

ters, behaving in a fashion consistent with the actions of the real peo­

ple in the video. The applications for such technology include areas of

computer games, film production and virtual environments. However,

current techniques for simulating virtual character behaviours generate

a two dimensional (2D) silhouette of a virtual human. (For example,

shaking hands [5]). To our best knowledge, nobody has attem pted to

produce interactive behaviours for fully articulated 3D virtual charac­

ters in real-time until now.

In this thesis, two novel approaches are presented for generating

intelligent behaviours regarding fully articulated 3D virtual characters,

1

2

on the basis of visual analysis of the motion of a real person in a 2D

video. To achieve this goal, a system named “Virtual character gener­

ating system” is developed. The system consists of learning the model

of a 3D articulated human motion from motion capture (MoCap) data,

tracking the 3D motion of a real person in real video, and generating

a variety of complex behavioural motions for a 3D virtual character

responding to the tracked person in the real video.

In recent years, MoCap technology has become the common place

in computer vision and computer graphics area. Using MoCap equip­

ment, real person behaviours can be recorded and exported as MoCap

data. The latest developments in computer graphics area have included

the use of low-dimensional statistical models trained on MoCap data

to represent particular types of motion [6]. This allows an artist to

generate new motions given only a few constraints, and to interpolate

between different motions effortlessly in the low-dimensional space of

the model [6,7]. In this research, 3D MoCap data is captured using

the PhaseSpace Motion Digitizer System [4] in conjunction with Mo-

tionBuilder, a commercial software package [8]. Statistical models are

learnt on 3D MoCap data representing a number of interactions be­

tween two people, from which an appropriate behaviour for a virtual

character can be derived. The models are based on Principal Compo­

nent Analysis (PCA) and Hidden Markov Models (HMMs).

To generate an intelligent behaviour for a virtual character, the

motion of a real person in video must first be analysed. In recent

years, a variety of methods to extract the 3D articulated motion of a

moving person in video were developed. The m ajority of these methods

rely on a model of the human body and/or motion. Many approaches

3

have used the CONDENSATION algorithm or similar methods based

011 particle filters [9-11]. The problem with these approaches is the

large number of particles required to track the motion, which grows

exponentially with the dimensionality of the search space. Hence, they

are not adequate for real-time applications. For a fully articulated

motion of the human body these techniques entail unacceptably long

processing times. For this reason, the particle filtering technique has

been improved to address the problem of tracking in high dimensional

space with the annealed particle filtering (APF) [12].

Two methods are then presented for generating interactive behaviours

for a virtual character responding to the tracked person in the video,

given a sequence of 3D poses of a person. They are the standard Viterbi

algorithm [13] and the windowed Viterbi algorithm [14]. The standard

Viterbi algorithm requires the full observation sequence before the pro­

cessing starts, thus making real-time processing impossible. When the

windowed Viterbi method is used instead, it does not require the full

observation sequence before the processing starts, thus it can be used

in a real-time system. Nevertheless, realistic generated interactions

behaviours can still be obtained for both algorithms. Hence, the per­

formances of the standard Viterbi algorithm and the windowed Viterbi

algorithm within the virtual character generating system can be com­

pared. When assessing the accuracy of the generated behaviours and

inspecting the generated motion sequences visually, it was found that

the windowed Viterbi algorithm can be used to detect sudden changes

in the motion sequences.

To improve the tracking capability of the algorithm, an automatic

splitting at the complex motion data is proposed. The idea of behind

S ect ion 1.1. T hes is Overview 4

such comes from the generated interactive behaviours using the win­

dowed Viterbi algorithm. The windowed Viterbi algorithm can detect

sudden changes in the complex motion sequence efficiently. By ex­

ploiting this advantage, the new method focuses on splitting the com­

plex human motion automatically. Thereafter, it learns adaptively the

model of human motion from the different split parts, and combines

the separate models into one, to track the motion of a person in real

video. The performance of the conventional model (a model trained on

3D MoCap data representing the complex motion) and the combined

model are also compared. The analysis shows that the tracked motion

using the combined model is better than the motion tracked using the

traditional model.

1.1 Thesis Overview

The structure of this thesis is as follows:

• In Chapter 2, previous work in computer vision and computer

graphic areas is reviewed. This includes visual tracking methods

in video, human motion modelling, generating a computer graph­

ics character, and generating interactive behaviours between two

people.

• In Chapter 3, an overview of a “virtual character generating sys­

tem” is given, with description of each of its major processes: 1)

Acquisition of 3D MoCap data, 2) Training a model for tracking

a 3D person in video, 3) Tracking motion of a 3D person in real

video, 4) Training a model for generating interactive behaviours,

5) Generating human interactive behaviours for a virtual charac-

S ectio n 1 .1 . T h esis O verview 5

ter. The overview also describes how the following Chapters in

the thesis relate to each of these processes.

• In Chapter 4, the process of data acquisition and learning dy­

namics model of human motion on 3D MoCap data for a single

person is presented.

• In Chapter 5, the annealed particle filter (APF) for the tracking

of a person’s motions in real video is described. The results of ap­

plying a model to track motion of a person in real video concludes

this chapter.

• In Chapter 6, the process of generating interactive behaviours for

a virtual character responding to the tracked person (Chapter

5) in real video is introduced. Two methods are used for gener­

ating interactive behaviours, namely the standard Viterbi algo­

rithm, and the windowed Viterbi algorithm which can be used in

a real-time system. The experimental results are also presented,

followed by perceptual evaluation.

• In Chapter 7, a novel approach is developed for finding where to

split the complex motion data automatically in order to improve

the model of human motion for obtaining better tracking results.

The combined models which train on the different parts of the

split data (for example, walking, shaking hands and pushing),

and then fused together are introduced. The combined model is

used for tracking motion of a person in real video.

• Chapter 8 concludes this thesis and provides directions for further

research.

S ectio n 1 .2 . M ain C ontrib ution s 6

1.2 Main Contributions

In summary the main contributions of this thesis are:

• A novel approach for generating intelligent behaviours for fully

articulated 3D virtual characters on the basis of visual analysis

of the motion of a real person in ordinary 2D video using the

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual

characters using the windowed Viterbi algorithm, capable of doing

so in real-time.

• A novel method for improving the model of the human motion due

to the ability to split the complex human motion automatically.

1.3 List of Publications

The research described in this thesis is published as follows:

1. Yue Zheng, Yulia Hicks, Darren Cosker, Dave Marshall, Juan C.

Mostaza and Jonathon A. Chambers. “Virtual Friend: Tracking

and Generating Natural Interactive Behaviours in Real Video” ,

8th International Conference on Signal Processing (ICSP 2006).

Nov. 16-20, Guilin, CHINA, 2006.

2. Zheng Y., Hicks Y. A., Cosker D. P., Marshall D., Chambers

J. A., “Generating 3D Interactive Behaviours” , Proc. of the 3rd

European Conference on Visual Media Production (CVMP 2006),

London, UK, 2006.

3. Zheng Y., Hicks Y. A., Cosker D. P. and Marshall D., “Gener­

ating Human Interactive Behaviours using the Windowed Viterbi

S ection 1 .3 . List o f P u b lication s 7

Algorithm” , 3rd International Conference on Computer Graphics

Theory and Applications (GRAPP 2008), Jan. 22-25, Funchal,

Madeira, Portugal, 2008.

4. Zheng Y., Hicks Y. A., Cosker D. P. and Marshall D., “Real-time

Generation of Interactive Virtual Human Behaviours” , submitted

to Lecture Notes in Computer Science, Springer, October, 2008.

5. Zheng Y., Hicks Y. A. and Marshall D., “Improving the Model

of Human Motion for Tracking the Motion of a Person in Real

Video” , In Preparation.

Chapter 2

INTERACTIVE BEHAVIOURS:

A REVIEW

T h e problem of generating interactive behaviours for a 3D virtual

character is a challenging task, considering the complexity of the ge­

ometry of a human body, a large number of degrees of freedom of

the motion, and the uncertainty of the human motion. Using a priori

models of geometry and motion helps to deal with these problems by

imposing constraints on the interpretation of motion data.

In recent years, there has been a large amount of research in mod­

elling and tracking 3D human motion [15-19]. There are several major

reasons for this. First, 3D human motion includes more details about

the object, such as the orientation of the object in the real world and

different angle of view of the object. Those information will provided to

the researchers to understand and analyse the human motion. Second,

people in the industry are become interested in using the techniques to

build 3D computer models, typically keeping the structure and throw­

ing away the motion. Third, the real world is 3D.

In this research, the aim is to create a 3D virtual character capable

of responding to actions obtained from observing a real person in video

in a realistic and sensible manner. To achieve this purpose, first of all,

S ectio n 2 .1 . M odelling th e M otion o f th e H um an B ody 9

a model of 3D articulated human motion from MoCap data is learnt.

The motion of a 3D real person in a 2D video is then tracked. Finally,

interactive behaviours for a moving virtual character reacting to the

motion of the tracked person in the video are generated.

In this chapter, the relevant research have been reviewed. The chap­

ter begins by considering models of the human body geometry and

the methods used for modelling dynamics of human motion in Section

2.1. Section 2.2 reviews dimensionality reduction methods of the state

space. Section 2.3 presents the difference between 2D and 3D tracking.

Section 2.4 investigates methods used for visual tracking in real video.

Section 2.5 discusses interactive behaviours between two people. Fi­

nally, Section 2.6 reviews the work on generating a computer graphics

character.

2.1 Modelling the Motion of the Human Body

As mentioned above, the objective is to generate interactive behaviours

for a virtual character reacting to the motion of the tracked person

in the original video footage using model-based approach. Thus, a

geometry model of the human body and motion model of the human

body is built. The model is used to represent the moving bodies in the

video.

In recent years, there has been a large amount of research in mod­

elling the geometry of the human body in computer graphics and com­

puter vision areas. Conventionally, a human body is represented by

a stick figure (Figure 2.1), 2D contours (Figure 2.2) or a volumetric

model (Figure 2.3) [2].

The simplest representation of a human body is the stick-figure

S ection 2 .1 . M odelling th e M otion o f th e H um an B ody 10

[20-22] which is drawing to depict the general form of humans. It is

based 011 the observation that human motion is essentially the move­

ment of the human skeleton brought about by the attached muscles.

The stick-figure models are often used to recover the 3D configuration of

a moving subject according to their projected 2D image. In 2D contour

models [23], the body segments can be approximated as 2D ribbons. A

2D ribbon model consists of two components: the basic human body

model and the extended body model. The basic human body model

outlines the structural and shape relationships between the body parts.

The extended model is intended to resolve ambiguities in the interpre­

tation process by identifying a certain pattern from the outline picture.

Thus, a description of the body parts and the appropriate body joints

is obtained. Volumetric models (such as elliptical cylinders [24,25], and

spheres [26]) represent the shape of the human body, but require more

parameters for computation. Each model can be scaled according to

the height of the human body. The volumetric models can be used

to model articulated and self-occluding objects such as fingers. While

each model has its strengths, there is not a single model th a t is perfect

for every possible use.

Elliptical cylinders are commonly used in modelling the human

body. For example, Hogg’s [24] WALKER model is represented by

elliptical cylinders. In his model, the human body is described by 14

cylinders. Each cylinder is controlled by two parameters: the size of

the major and minor axes of the cross-sectional ellipse with respect

to the scale defined by the embedded coordinate system. Rehg and

Kanade [27] tracked two self-occluded fingers with cylinders in 2D fin­

ger images. Goncalves et al. [28] addressed the problem of estimat-

S ectio n 2 .1 . M odelling th e M otion o f th e H um an B ody 11

feature points
in head

Neck

Right shoulder

^ Right elbow

Right hipLeft hip

Left urisyj

^ L eftk u ee Right kneeO

A Left ankle

Figure 2.1. A stick-figure human body model [1].

Figure 2.2. A 2D contour human body model [1].

ing the position and motion of a human arm in 3D in a monocular

video sequence by modelling the upper and lower arm as truncated

right-circular cones, and the shoulder and elbow joints are modelled

as spherical joints. The hand tip is considered to be an extension of

Section 2 .1 . M odelling th e M otion o f th e Hum an B ody 12

F ig u re 2.3. A volumetric (cylinder) human body model (viewed from
two directions) [2].

the forearm joints. Recent work by Park et al. [29] proposed a method

to model human body parts by combining an ellipse representation

and a convex hull-based polygonal representation for the recognition

of two-person interactions using a hierarchical Bayesian network. The

model can represent the human body part accuracy. However, when

the behaviours is complex, the model cannot recognise the two-people

interactions accurately.

Once the geometry model of the human body is built, a motion

model of the human body is also needed. The purpose is to make the

geometrical model change its poses, to mimic real human poses in the

video sequences. In recent years, many researchers have worked on

building a statistical model for tracking human motion [20,24,30-32]

in video sequences.

Bowden [31] used PC A to simplify the motion, K-means clustering

was used to collect similar motions, and modelled the dynamics of hu­

man motion using an HMM. The HMM was used to reconstruct 3D

postures from monocular image sequences.

S ection 2 .1 . M odelling th e M otion o f th e H um an B ody 13

Karaulova et al. [20, 25] proposed a hierarchical model of human

dynamics for tracking people with a single video camera. The top level

of the hierarchy models the motion of the whole body as a HMM in

the reduced dimensional eigenspace. The lower levels of the hierarchy

contain more detailed information about poses of some subpart of the

body, for example, right arm, left arm, right leg, left leg and torso with

the head. The motion on the lower lever was modelled as a GMM in

the reduced dimensionality eigenspace of the corresponding body part

poses. The results showed that the lower level models are more accurate

in representing the motion of different body parts than a single model

representing the motion of the whole body.

Lawrence [33,34] introduced a new underlying probabilistic model

for PCA, that is a Gaussian process latent variable model (GPLVM).

They described probabilistic principal component analysis (PPCA) which

is formulated as a latent variable model, and showed how PCA can be

interpreted as a Gaussian process mapping from a latent space to a

data space. The algorithm for GPLVM is a non-linear process, which

has three main components, sparsification, latent variable optimisation

and Kernel optimisation. The model has an advantage th a t due to the

various spectral clustering algorithms used, it is a generative process

with an underlying probabilistic interpretation.

Scaled Gaussian process latent variable models (SGPLVMs) were

used for learning the model parameters from training data in low­

dimensional space. The model is based on the Gaussian Process (GP)

[35] model. The SGPLVM optimises the low-dimensional latent space

embedding human pose space. Grochow et al. [6] introduced the use

of the SGPLVM of human poses for interactive computer animation.

S ection 2 .2 . R educing th e D im ensionality o f th e S ta te Sp ace 14

Given the training poses, a SGPLVM is used to represent the prob­

ability distribution function over poses. Urtasun et al. [32] proposed

the use of the SGPLVM to learn prior models of 3D human pose for

3D people tracking. The SGPLVM simultaneously optimises a low­

dimensional embedding of the high-dimensional pose data and a density

function. The optimisation of these two features yields higher probabil­

ity to points close to training data and provides a nonlinear probabilistic

mapping from the low-dimensional latent space to the full-dimensional

pose space.

Caillette et al. [30,36] learned behaviours with variable length Markov

model (VLMM) for tracking 3D human body in real-time. VLMM deals

with a class of random processes in which the memory length varies.

The advantage of VLMM is the ability to locally optimise the length of

memory required for prediction compared with a fixed memory Markov

model. This results in a more flexible and efficient representation which

is particularly attractive in cases where the higher-order temporal de­

pendencies in some parts of the behaviour and lower-order dependencies

elsewhere needed to capture.

2.2 Reducing the Dimensionality of the State Space

Modelling the motion of the human body is a very difficult problem in

computer vision and computer graphics areas, because human motion

is high-dimensional. Generally, high quality human motion needs to be

represented by fifty to sixty dimensions [37]. However, the movements

of the joints are highly correlated for many behaviours. For example,

during the run/walk motion, the arms, legs and torso tend to move in

a similar oscillatory pattern. Therefore, the dimensionality of motions

S ectio n 2 .2 . R educing th e D im ensionality o f th e S ta te Sp ace 15

can be reduced by applying a simple dimensionality reduction technique

to poses taken from human motion sequences. For example, six to eight

dimensions are enough to represent a human jump th a t looks similar

to the original high-dimensional version [7]. In recent years, a simple

dimensionality reduction technique, such as PCA [38], has been used

to reduce the dimensionality of the data set in learning the statistical

models of human motion [20,31,39].

Troje [40] presented an approach to linearize human walking data.

Each walking sequence (3D MoCap data) is decomposed into a PCA

space. A reduced dimension space is produced by this, and the discrimi­

nant functions are determined to compute corresponding coefficients for

a given parameter (male/female, happy/sad, relaxed/nervous). How­

ever, a disadvantage resides in that changing a stylistic parameter can

modify locomotion speed. Moreover, as the data are computed in global

3D space, no retargeting on humans of different size is possible.

Cosker et al. [41] described a hierarchical image-based facial anima­

tion system capable of producing coarticulted mouth animation given

audio input alone. The method is model-based, and it applies PCA on

the appearance and speech training set (obtained from the captured

video and audio sequences) to reduce dimensionality of the training

data.

Glardon et al. [42] proposed an approach to generate new human

walking patterns using MoCap data. The method applies PCA on mo­

tion data to yield a reduced dimension space, leading to a real time

engine intended for virtual human animation. This representation al­

lows for style-based interpolation and classification, but the motions

used must be segmented first. These spaces are most useful when deal­

S ectio n 2 .3 . 2D vs. 3D Tracking 16

ing with cyclic motions such as walking.

Safonova et al. [7] proposed a motion synthesis framework able to

synthesise human motions by optimising a set of constraints within a

low-dimensional space constructed with PCA. Grochow et al. [6] solved

the low-dimensional human motion synthesis problem by applying a

non-linear PCA to the data set. Carvalho et al. [43] presented an ap­

proach by combining motion models and prioritized inverse kinematics

for interactive low-dimensional human motion synthesis.

2.3 2D vs. 3D Tracking

Object tracking in 3D space has various applications, such as human-

computer interface, behaviours analysis and so on. In recent years,

many researchers have been working on 2D and 3D motion tracking,

such as tracking the pose between 2D image and 2D model state (2D-

2D model-based tracking approach) [44,45], estimating the pose be­

tween 2D image and 3D model state (2D-3D model-based tracking ap­

proach) [46,47] and tracking motion between 3D image and 3D model

state (3D-3D model-based tracking approach).

2D-2D model-based tracking approach is an independent processing

(2D tracking can be processed independently) [48]. This m ethod can

easily extract the information from the single image. The downside

of it is the restriction to a single view suitable for tracking as the one

built in the model. 3D-3D model-based tracking approach can provide

more information for the object from both 3D image and 3D model.

Thus, it can produce more accuracy tracking compared with 2D-2D

model-based tracking approach. However, this method is more com­

plex to process. In 2D-3D model-based tracking approach, 3D human

S ection 2 .4 . V isual Tracking M eth od s in Real V ideo 17

motion are projected onto 2D images and by evaluating the consistency

between 2D estimation and image features. This method had tight in­

teractions between 3D and 2D object positions, Thus, the tracking is

more robust than the 2D tracking. The view of the tracked object also

is independent.

Hicks [46] presented an approach for tracking 3D articulated motion

from monocular 2D video sequences. Her method is capable of recov­

ering 3D information from 2D video with good accuracy, it is capable

of dealing with self occlusions and partial occlusions by other object.

The method is not restricted to any particular view.

Marchand et al. [47] proposed an method for tracking complex ob­

jects in a 2D image sequence which can be approximately modelled

by a polyhedral shape. The approach relies on the estimation of the

2D object image motion along with the computation of the 3D object

pose. This method fulfills real-time constraints along with reliability

and robustness requirements.

Howe et al. [49] presented a system that reconstructs the 3D mo­

tion of human subjects from single-camera video. The system tracks

joints and body parts as they move in the 2D video, then combines the

tracking information with the prior model of human motion to form a

best estimate of the body’s motion in 3D.

2.4 Visual Tracking M ethods in Real Video

After learning the geometry model and motion model of a human body,

tracking the motion of a 3D person in a real video became another issue

in this research. Tracking human motion in video sequences constitutes

the most basic block of image processing to understand its dynamic be-

S ection 2 .4 . V isual T racking M eth od s in Real V ideo 18

havior. The main aim is to track human motion in a sequence of video

frames. Then, the results of tracking are analysed mathematically to

translate the motion behaviours of a human [50]. There are many ar­

eas of applications in visual tracking. An important application area

in computer vision is surveillance. The most common application is

to track one or more people’s motion [51,52] or vehicle’s position [53].

The surveillance setting can involve access control, parking lots, super­

markets and traffic.

Another application area is virtual reality, which includes interactive

virtual worlds [54], games and character animation [6,7,55,56].

Another important area is user interface, which involves sign-language

translation [57], gesture driven control and gait analysis [50]. These

applications deal with human-computer interaction, which attem pt to

interact with users in a natural way [58-60].

Tracking people can be divided into several groups according to

the applications. Some of them need to detect particular parts of the

body, for example, hands [61,62], leg [63,64] or face/head [65], whilst

others need to track the motion of full human body [11,12,59]. In this

research, we work on tracking motion of full human body in real video.

Conventionally, two approaches are used for tracking moving people,

motion-based and model-based.

• Motion-based approaches depend on a robust m ethod for group­

ing visual motions consistently over time [66]. They tend to be

fast, but do not guarantee that the tracked regions have any se­

mantic meaning [67].

• Model-based approaches can impose high-level semantic knowl­

edge but suffer from being computationally expensive due to the

S ectio n 2 .4 . V isual T racking M eth od s in Real V ideo 19

need to cope with scaling, translation, rotation and deformation.

Recent reviews of techniques for human motion tracking can be

found in the survey papers by Cedras et al. [68], Gavrila [45], and Wang

et al. [50]. In this research, the focus is on estimating 3D poses of a

person from the 2D real video sequence using a model-based approach.

The earlier work on body tracking was done by Hogg [24]. He developed

a model-based walking vision system, which is illustrated the machine­

generated picture over the original recorded images. Hogg’s WALKER

model uses a set of cylinders to represent rigid body parts, with posture

represented by parameterised joint angles.

In recent years, a variety of methods for tracking a person in video

have been produced. The Kalman filter (KF) [69-71] has been used

successfully in the vision tracking and estimation due to its simplicity

and robustness. It is simply an optimal recursive data processing algo­

rithm, and provides a recursive solution to the linear optimal filtering

problem in linear dynamical system. However, the application of the

KF to non-linear systems can be difficult. The most common approach

is to use the Extended Kalman Filter (EKF) for modelling complex

movement of objects. The EKF approximates the models used for the

dynamics and measurement process in order to approximate the prob­

ability density of a Gaussian random variable. But if the true density

is non-Gaussian, then a Gaussian model is not adequate. In such cases,

particle filtering may be used because it approximates the density di­

rectly using a finite number of samples.

Masked et al. [10] gives a tutorial on particle filtering (PF) for

nonlinear/non-Gaussian Bayesian tracking. They described the nonlinear/non-

Gaussian tracking problem and its optimal Bayesian solution. Particle

S ectio n 2 .4 . V isual T racking M eth od s in Real V ideo 20

filtering methods and their extensions have become popular due to

their robustness to noise, clutter and occlusions in video. A number

of different types of particle filters exist and some have been shown to

outperform others when used for particular applications.

The Sequential Importance Sampling (SIS) particle filter [72] has

a common problem that is known as the degeneracy phenomenon (the

particles have negligible weight) after a few iterations. For the Re­

sampling particle filter [10], the resampling step reduces the effects of

the degeneracy problem, but it introduces other practical problems,

such as, it limits the opportunity to parallelise the process since all the

particles must be combined.

The Sampling Importance Resampling (SIR) particle filter [73] has

the advantage that the importance weights are easily evaluated and the

importance density can be easily sampled. But it can be inefficient and

is sensitive to outliers.

The Regularised Particle Filter (RPF) [74] is identical to the SIR

filter except for the resampling stage. It is simpler than the SIR, but has

the theoretic disadvantage that the samples are no longer guaranteed

to asymptotically approximate those from the posterior distribution.

To design a specific type of particle filter for a particular application,

it is critical to select the correct density function.

Isard and Blake [9] developed the CONDENSATION (conditional

density propagation) algorithm. The CONDENSATION algorithm is

a class of particle filtering algorithm [10]. It uses “factored sampling” ,

in which the probability distribution of possible interpretations is rep­

resented by a randomly generated set. The algorithm samples stochas­

tically from a probability density function (PDF) of a set of N possible

S ectio n 2 .4 . V isual T racking M eth od s in Real V ideo 21

particles (which are feature vectors parameterising the target object),

applies predictive dynamics to each particle, and evaluates each parti­

cle to create a new PDF for the next time step. This technique allows

fast tracking of an object in cluttered scenes. The result of the tracking

is more effective in clutter compared with Kalman filter [75]. However,

a number of problems in its application exist:

1. The large number of particles required to track the motion, which

grows exponentially with the dimensionality of the search space

[9],

2. The CONDENSATION algorithm needs a large amount of sam­

ples to achieve better tracking result, so large amount of compu­

tation is needed.

3. The generated motion is not necessarily smooth, because all sam­

ples are generated randomly from GMM.

Deutscher et al. [12] described the development of a modified parti­

cle filter for general tracking without restrictive assumptions. This new

algorithm is called annealed particle f i lte r (APF). The standard par­

ticle filter is not suitable for full body human motion capture, because

of the difficulties encountered when constructing a valid observation

model as a normalised probability density distribution. For the APF

algorithm, there are several important tracking parameters.

1. The weighting function. It must be general and simple, and edges

and foreground silhouette, foreground-background segmentation

are useful features.

S ection 2 .4 . V isual T racking M eth od s in Real V ideo 22

2. The number of particles and the number of annealing layers. Dou­

bling the number of annealing layers reduces the number of par­

ticles needed for successful tracking by more than half.

3. The diffusion variance vectors. Each element in the variance vec­

tor is allocated a value equal to half the maximum expected move­

ment over one time step.

Compared with standard CONDENSATION, the APF can improve

tracking performance when given equivalent computational resources

[li],

Khan et al. [76] proposed a particle filter that effectively deals with

interacting targets. For traditional particle filters such as the Bayes

filter and SIR particle filter, there are problems on tracking multiple

targets when the targets interact. Hence, they have introduced several

filters to track multiple targets:

• The Markov random field (MRF) motion model can reduce the

number of tracker failures by explicitly modelling interactions.

• The Markov chain Monte Carlo (MCMC) based particle filtering

can track targets when they are not interacting, but also deals

with efficiently complicated interactions when targets approach

each other.

• The Reversible-jump MCMC (RJMCMC) particle filter can be

extended to deal with varying number of targets, and it is preva­

lent in practice.

S ection 2 .5 . Interactive B ehaviour betw een T w o P eop le 23

2.5 Interactive Behaviour between Two People

In 1994, Baumberg et al. [77] described a method for generating a

similar flexible shape model automatically from real image data. The

system takes live video images from a static camera, and segments mov­

ing objects from the background image via a thresholding procedure.

Then, an efficient method for extracting a shape vector based on a cu­

bic B-spline is utilised. The system can process large amounts of data

in near real time to generate a compact data set. Statistical compo­

nent analysis of the spline data gives a simple but effective model. The

model is “data-centred” in the sense that it is constructed from real

image data. An advantage of this approach is that it is easy to fit the

model to new inputs, but it is still not a high level description of a

human. The spline model is then be used for fast segmentation (and

real time tracking) and gives a global estimate of object pose in the

high-level model space.

Johnson et al. [5,59] developed a system capable of producing a 2D

silhouette of a virtual human interacting with a real person in video and

they demonstrated it working with a handshake behaviour. They ac­

quired training data by automatically locating and tracking individuals

within a video corpus of typical interactions. Tracking is accomplished

using an extension of a 2D silhouette extraction method to collect train­

ing data. Then a probabilistic model is learnt from the training data,

and used as the basis for a higher level model for the behaviour model.

Interaction with a virtual human is achieved using the model in parallel

with a tracking algorithm.

Jebara et al. [78] proposed a dynamic human face, which mimics

human speech in response to events. However, as Jebara states him-

S ection 2 .5 . Interactive B ehaviour b etw een T w o P eop le 24

self, the system exhibited only limited intelligent behaviour. Both of

the above systems automatically learnt the intelligent behaviours from

observed video data and represented them using HMMs [13,79], which

are commonly used for representing temporal dynamics of the data.

Hogg et al. [80] described the way in which interactive behaviours

are learnt. This model is then used to generate an interactive vir­

tual person. In order to obtain a behaviour model, image profiles are

modelled by a B-spline contour (represented by control points). Sub­

sequently, the mean profile is obtained by using PCA. This analysis

can provide a model for the target shape with fewer parameters. Two

applications of this work are:

• Interactions between a pair of individuals with application to

human-computer interaction. This is addressed in [59].

• Dealing with interactions between people and motor vehicles which

can find applications in surveillance.

Oliver et al. [81] described a real-time computer vision and machine

learning system for modelling and recognising human behaviours in a

visual surveillance task. The system combines top-down and bottom-

up information in a feedback loop. They proposed and compared two

different state-based learning architectures, namely, HMMs and Cou­

pled Hidden Markov Models (CHMMs) for modelling behaviors and

interactions. In one model, they compared CHMM and HMM archi­

tectures with data from synthetic agents; the other one analysed real

pedestrian data using both synthetic and site-specific models. Accord­

ing to their findings on synthetic data and real pedestrian data, it was

deduced that the CHMMs outperformed HMM architectures in terms

S ection 2 .5 . Interactive B eh aviour betw een T w o P eop le 25

of both training efficiency and classification accuracy.

In [29, 82] Park and Aggarwal suggested a method for the recog­

nition of two-person interactions using hierarchical Bayesian Network

(BN). The recognition algorithm is preceded by a feature extraction

algorithm that extracts body-pose features from the segmented and

tracked (manually) body-part region in a video frame. The interacting

human body parts were modelled by combining an ellipse representa­

tion and a convex hull-based polygonal. The poses of tracked body

parts (respectively head pose, arm pose, leg pose) are estimated at the

low level of the BN and the overall body pose is reconstructed at the

high level of the BN. The evolution of the poses of the multiple body

parts during the two-person interactions is achieved by incorporating

the whole-body motion and spatial/temporal constraints on relative

positions and causal relations between the two persons.

Later, Park and Aggarwal [83] presented a new framework for de­

scribing human actions and interactions at a semantic level with a nat­

ural language description. The representation of human interaction

is based on a hierarchy; a two-person interaction is a combination of

single-person actions, and the single-person action is composed of mul­

tiple body part gestures such as torso motion and arm /leg motion. The

human body is represented as both the subject and object in the two-

person interaction, and each person is both subject and object. Human

action is represented in terms of “subject + verb + object” , semantics

and human interaction is represented via “ cause + effect” semantics

between human action.

S ection 2 .6 . G enerating A C om pu ter G raphics Character 26

2.6 Generating A Computer Graphics Character

Creating realistic motion for computer graphics characters is an impor­

tant problem with applications ranging from the special effects industry

to interactive games and simulations. The use of motion capture data

for animating virtual characters has become a popular technique in

recent years [84].

An inverse kinematics (IK) system based on a learned model of

human pose is described by Grochow et al. [6]. Given a set of con­

straints, the system can produce the most likely pose satisfying those

constraints in real time. The main idea of the approach is to learn

a PDF over character poses from motion data, and then use this to

select new pose during IK. The model is represented as an objective

function over poses as a PDF, which describes the likelihood function

over poses. This means that the IK system can generate any pose, but

favours poses that are most similar to the space of poses in the training

poses. The limitation of the style-based IK system is th a t if the training

data does not match the desired poses well, then more constraints will

be needed. However, with a generic training data set, the style-based

IK produces much more natural poses than existing approaches.

Zordan et al. [17] presented an approach for dealing with optical

motion data through the use of a dynamics model to simulate joint tra ­

jectories. The system is used to control the motion of the animated ar­

ticulation, which attempts to match the positional marker data points.

This approach is less sensitive to error within the resulting animated

articulation, because of its dynamics based knowledge, which aids the

construction process.

In [85, 86] Cosker et al. described a non-linear hierachical speech-

S ection 2 .6 . G enerating A C om pu ter Graphics Character 27

appearance model of the face capable of producing high-quality video-

realistic animation given a speech input. A non-linear speech-appearance

model is trained on the vectors formed by the low-dimensional appear­

ance parameters (that include both shape and texture parameters) and

low-dimensional speech parameters. They then used the non-linear

speech-appearance model to calculate the associated appearance pa­

rameter of an input speech parameter for every video frame, in order

to obtain the synthesized facial information.

More recently, Cosker et al. [41] developed a hierarchical image

based facial model which is driven from speech. He also demonstrated

how animation of the entire face can be created from animations of

the mouth and how the colour may be incorporated and reproduced

compactly without being modelled explicitly. A dual HMM is trained

with two sets of states. The first HMM is built using the appearance

parameter training set, and the second HMM is built on the basis of

the speech training parameter set. However, the transition probability

is the same as the first one. This dual HMM framework can estimate

a hidden state sequence given any speech observation with the Viterbi

algorithm.

Safonova et al. [7] proposed a motion synthesis framework able to

synthesise a physically realistic motion. They utilised the technique of

PCA to process the motion capture database because of a high degree

of coordination between movements of human joints and constructed

a low-dimensional motion space. Then they used IK on the characters

limbs, as a second step to clean undesirable artifacts.

S ection 2 .7 . Sum m ary 28

2.7 Summary

In recent years, many researchers showed interest in generating inter­

active behaviours for virtual characters in 2D and 3D. The applications

for such technology includes the areas of computer games, film produc­

tion and virtual environments.

In this thesis, the aim is to create a 3D virtual character capable of

responding to actions obtained from observing a real person in video in

a realistic and sensible manner. Human motion is very complex and un­

predictable, so it is difficult to track human motion from real video and

generate the interactive behaviours for a virtual character. The chal­

lenging problem has been dealt with, through the introduction a priori

models of geometry and motion. Such models have been automatically

learnt from real human motion data, obtained using commercial mo­

tion capture equipment, and contained the information in the original

motion data.

Tracking people is also a challenging task because of the high di­

mensionality of full body kinematics, the ambiguity caused by body

articulation and the fast movement. Moreover, loose clothing, mutual

occlusion between body part or shadows may complicate the inference

problem. In recent years, many approaches have been used for tracking

the motion of a person in real video, as was discussed in this chapter.

In this chapter, the relevant researches have been reviewed. These

include modelling the motion of the human body, visual tracking meth­

ods in video sequence, and methods for generating human behaviour.

Chapter 3

VIRTUAL CHARACTER

GENERATING SYSTEM

OVERVIEW

I n recent years, many researchers have shown an interest in producing

virtual worlds and populating them with virtual characters [15-19,56,

58]. There has also been a limited amount of research into enabling

virtual characters with the ability to produce intelligent behaviour on

the basis of visual analysis of the scene. These were mainly conducted

in the computer vision area.

A virtual character is the creation or re-creation of a human being

in an image using computer-generated imagery. It must act and react

in the environment, drawing on the disciplines of autom ated reasoning

and planning [87]. The behaviours for the virtual character are learnt

from real motion data and generated in response to video automatically.

Virtual characters are becoming more and more popular, and used in

many applications such as character animation, computer games and

virtual environments (for the visual creation of 3D characters to popu­

late virtual environments and to be used as virtual actors for film and

television).

29

30

The aim of this research is to create a virtual character capable of

responding to actions obtained from observing a real person in video

in a realistic and sensible manner. To this end, a “virtual character

generating system” (Figure 3.1) is developed. The system is used to

generate interactive behaviours for a virtual character responding to a

real person in video.

3D Motion Data
Person 1 and Person 2
Three Different Types

Training a model
for Tracking

Tracking 3D
Person

Training a model
for Generating

Acquisition

Video

Two Persons
Data

Annealed Particle
Filtering

Person l ’s Data The Viterbi
Algorithm

Reduce
Dimensionality
(Eigen Model)

Reduce
Dimensionality
(Eigen Model)

Generate
Behaviour
for Virtual
C haracter

Estimate 3D Pose
o f a Person in

videoHMM/GMM
Training I Dual HMM

Generating
Interactive
Behaviours

Figure 3.1. Overview of the virtual character generating system.

In the above figure, 3D MoCap data representing a number of in­

teractions between two people is first captured using the PhaseSpace

Motion Digitizer System (Chapter 4.1 and Appendix A), such as two

people walking and shaking hands, one person pulling another person,

and one person pushing another person. Several videos of a person’s

motion with a single camera (corresponding to the MoCap data) were

31

also recorded, as these video sequences were used to analyse human be­

haviour from which, 3D poses of a person were estimated. A collection

of HMMs on 3D low-dimensional MoCap data (whose dimensionality

was reduced by PCA) representing several motion vector for one person

(Chapter 4) is then trained, after which 3D poses of a single person in

2D real video is tracked using this model (Chapter 5). Next, a dual­

input HMM of human motion on that 3D low-dimensional MoCap data

(whose dimensionality was reduced by PCA) representing several in­

teractions between two people is trained. Finally, using the dual-input

HMM trained in the previous stage, interactive behaviour for a mov­

ing virtual character reacting to the motion of the tracked person is

generated, and placed back in the original video footage (Chapter 6).

This chapter gives an overview of the “virtual character generating

system” used for building and training a model of human motion, and

utilised to track the motion of a person in video and generating inter­

active behaviours for a virtual character. The overall system can be

divided into five separate procedures (Figure 3.1):

1. A cquisition of 3D M oCap data: Acquire 3D MoCap data for

two people using PhaseSpace Motion Digitizer System [4],

2. Learning a m odel of human m otion for tracking m otion of

a real person in video: Train a Hidden Markov Model (HMM)

of human motion (used for tracking a 3D person in a video) on

3D MoCap data of one person.

3. Tracking the m otion of a real person in video: Track the

motion of a real person in the video sequence using the HMM built

in Procedure 2 working with the Annealed Particle Filtering

S ection 3 .1 . A cquisition o f 3D M oC ap D ata 32

(APF).

4. Learning a m odel of human m otion for generating inter­

active behaviours for a virtual character: Train a dual-input

HMM [41] of human motion (used for generating interactive be­

haviours for a virtual character responding to the tracked person

in the video) on 3D MoCap data set depicting interactive be­

haviour of two people.

5. G enerating interactive behaviours for a v irtual character:

Generate interactive behaviours for a virtual character respond­

ing to the tracked person in video using the dual-input HMM

built in Procedure 4 in conjunction with the tracked result in

Procedure 3.

A brief description of each of these procedures in the virtual char­

acter generating system is presented in the following subsections.

3.1 Acquisition of 3D MoCap Data

The first step for training a model of human motion begins with captur­

ing two persons’ 3D MoCap data using the PhaseSpace Motion Digitizer

System (Chapter 4.1). This system can capture complex motion data

in real-time using advanced hardware and software technology [4].

Three different types of human motion between two people are cap­

tured. They are two individuals shaking hands, one person pulling

another person, and one person pushing another person. 30 markers

are placed on a person around the different joints, for example, elbow,

hip and knee. Figure 3.2 shows the placement of all markers, but two

S ection 3 .2 . Learning a M odel o f H um an M otion for Tracking M otion o f a real p erson in v id eo 33

markers on the back are not visible in the figure. Each marker is rep­

resented by X : Y and Z positions, therefore a pose in each frame is

represented by a 90-dimensional vector. Each MoCap data sequence

is sampled at 30 frames per second (fps), and has around 150 pose

vectors. In total, 14 sequences of MoCap data for shaking hands, 9 se­

quences of MoCap data for pushing and 7 sequences of MoCap data for

pulling have been obtained. All the original MoCap data sequences can

be viewed in the CD at back of the thesis in folder O riginal-shaking

hands, O riginal-pushing and O riginal-pulling respectively. The

acquisition of 3D MoCap Data is described in details in Chapter 4.

Several videos of a person moving with a single camera at 30 fps

corresponding to the 3D MoCap data is also recorded. The recorded

video data is then exported into a set of RGB images in order to analyse

human behaviour and estimate 3D poses of a person in each image.

3.2 Learning a Model of Human Motion for Tracking M otion of

a real person in video

The learning step involves training a model of human motion using 3D

MoCap data of one person. The model is used for tracking a 3D articu­

lated person in real video. In order to train the model of dynamics, one

person’s MoCap data is used. In the experiments, several sets of motion

data in 3D space with 30 markers are captured, therefore a pose in each

frame is represented by a 90-dimensional vector. Such data is always

constrained by physical and dynamic factors, thus the dimensionality

of the data set needs to be reduced using PCA, before proceeding. The

seven largest eigenvectors are kept in the model, which accounts for

approximately 90% of the total eigenenergy, and then train the HMM

Section 3.3. Tracking a 3D Person in Real Video 34

Figure 3.2. Human model with 30 markers (Two markers on the back
are not visible).

on a number of such vectors.

3.3 Tracking a 3D Person in Real Video

To track the fully articulated 3D motion of a person in video sequence,

the motion of a real person in video need to be analysed. In recent

years, a variety of methods to extract 3D articulated motion of a per­

son moving in video have been developed [45]. The majority of these

methods rely on some kind of a human body model and/or motion.

For tracking, many approaches have used the CONDENSATION algo­

rithm [9] or similar methods based on particle filters [10]. The problem

with these approaches is the large number of particles required to track

the motion, which grows exponentially with the dimensionality of the

search space. For a fully articulated motion of human body this pro­

Section 3.3. Tracking a 3D Person in Real Video 35

duces unacceptably long processing times. In this research, a method

based on particle filtering is modified to avoid the high dimensionality

problem, namely, the annealed particle filtering (APF) [12].

When tracking 3D pose of a person in 2D video, the video sequence

needs to be preprocessed by cancelling the background [88], and thus

a sequence of binary images are obtained. Figure 3.3 (a) shows the

original image of a person from a video sequence, and the person in

the scene without the background in Figure 3.3 (b). An APF is used

together with an HMM trained in the previous stage (Section 3.2) to

estimate 3D poses of the tracked person in the video. The result of the

tracking process is a sequence of 90 dimensional vectors, each estimating

a 3D pose of the tracked person in the video. Chapter 5 gives a more

detailed account of tracking a person in real video.

(a) (b)

Figure 3.3. (a) Original image of a person, (b) the person in the scene
without background.

S ection 3 .4 . Learning a M odel o f H um an M otion for G enerating In teractive B eh av iou rs 36

3.4 Learning a Model of Human Motion for Generating Interac­

tive Behaviours

This step involves training a dual-input HMM [41] (using 3D MoCap

data of two individuals) for generating interactive behaviours respond­

ing to the tracked person in the video. Similar to the way for represent­

ing the interactive motion of one person, in the dual-input HMM, there

are two sets of states, but this time only one transition matrix. The

first set of states models the poses for the first person A, the second set

of states models the poses for the second person B. Each state in the

model is modelled with a Gaussian distribution. The details of training

a model will be explained in Chapter 6.

3.5 Generating Interactive Behaviours for a Virtual Character Re­

sponding to the Tracked Person

The final process in the system generates interactive behaviours for a

virtual character responding to the tracked person in the video. The

model is a dual-input HMM [41,89] which is trained in the previous

stage (Section 3.4). It is capable of representing a variety of interactive

behaviours, for instance, shaking hands.

Given a sequence of 3D poses of the first person A as input (the

tracking result in Section 3.3), it is possible to project it into the dual­

input HMM, and generate a corresponding sequence of poses for a vir­

tual character using the standard Viterbi algorithm [13] and the win­

dowed Viterbi algorithm [14]. Consequently, the performances of the

standard Viterbi algorithm and the windowed Viterbi algorithm within

the virtual character generating system are compared. The standard

S ection 3 .6 . Sum m ary 37

Viterbi algorithm requires the full observation sequence before the pro­

cessing starts, thus making real-time processing impossible. When the

windowed Viterbi method is used instead, it does not require the full ob­

servation sequence before the processing starts, thus it can be used in a

real-time system. Moreover, realistic generated interactions behaviours

can still be obtained. These details will be described in Chapter 6.

3.6 Summary

This chapter has given a brief description of each step procedure per­

taining to the virtual character generating system. The system is used

for generating interactive behaviours for a virtual character respond­

ing to the tracked person in the video. The structure of the next four

chapters, in relation to these processes, is as follows. Acquisition of 3D

MoCap data and training a model of human motion for a single person

will be explained in Chapter 4. The process of tracking a 3D person

in real video sequence is described in Chapter 5. The process of learn­

ing a model of human motion for two people and generate interactive

behaviours responding to the tracked person in the video is detailed in

Chapter 6. Additionally, Chapter 7 proposes a novel technique which

efficiently splits the complex motion data for better tracking ability, in

order to improve the model of human motion.

Chapter 4

A MODEL OF HUMAN

MOTION FOR A SINGLE

PERSON

I n this chapter, a model of human motion based on HMMs is pre­

sented. Recent developments in computer graphics have led to the

incorporation of motion capture technology into everyday usage by

artists. Motion capture is a technique of digitally recording the actions

of human actors or an object, this information can be used to animate

digital character models. The latest developments have included the

use of statistical models trained on MoCap data to represent particular

types of motion [6]. This allows an artist to generate new motions given

only a few constraints, and to interpolate between different motions in

the low-dimensional space of the model.

The approach adopted in this thesis is to model statistically the

motion of a person. The data set for training the model are obtained

using the PhaseSpace Motion Digitizer System. The dimensionality

of the training data is reduced using PCA, since such data is always

constrained by physical and dynamical factors. Finally, a model of

human motion is built using a HMM.

38

S ection 4 .1 . M otion C apture S y stem s 39

In this chapter, a human motion capture system is first described,

which is set up to obtain the MoCap data for building models of human

motion. The details of the 3D MoCap data is then given. Finally,

a model of human motion learnt from the collected MoCap data is

demonstrated. The MoCap system is described in Section 4.1, and the

obtained data is described in Section 4.2. The statistical modelling

techniques used in this thesis are described in Section 4.3, and the

chapter is summarised in Section 4.4.

4.1 Motion Capture Systems

Motion capture is a technique for recording movements of subjects in

3D space. It is also a simple way to track a subject’s movement as the

subject changes position relative to a fixed point in space. Motion cap­

ture data can be used for the mapping of motion onto a computer model

(such as actor, computer character) with extra software, for example,

MotionBuilder [90] and Maya [91]. In recent years, motion capture has

been used for a wide variety of applications, including virtual reality,

entertainment (games, movies, and television), medicine and robotics.

As motion capture technology developed, several uniquely different

types of motion capture systems evolved. The types of motion capture

input systems are: magnetic, mechanical, and optical [92-95]. Magnetic

motion capture systems [96] use sensors placed on the body to measure

the low-frequency magnetic field generated by a transm itter source. It

is ideally suited for situations in which the motion range is limited.

Another advantage is that all the data is in relation to a single object

without occlusion. One of the biggest disadvantages is their sensitivity

to metal, and it is also not suitable for fast movements, since the data

S ection 4 .1 . M otion C apture S y stem s 40

sampling rate is too slow.

Mechanical motion capture systems [92] directly track body joint

angles and are often referred to as skeleton motion capture systems,

due to the way the sensors are attached to the body. It allows real­

time processing, and is not range limited. However, while the device

can provide continuous data of the position of the object, it cannot

capture continuous motion.

The basic idea of optical motion capture [93,95] is the tracking of

markers on a subject in real-time. In a typical optical motion capture

system, cameras are placed on the circle of a capture area to track

passive or active markers [97]. In passive optical system, the markers

used for reflecting light back. So only the reflective markers can be

sampled by the cameras. A large number of markers at high frame rate

can be captured using this system, and the frame rate for this system is

traded off between resolution and speed. Active marker systems can ei­

ther strobing one marker on at a time or tracking multiple markers over

time. This system can capture more subtle movements by having both

higher spatial and temporal resolution. More processing is required in

active marker systems compared with passive optical system.

Optical motion capture system offers several advantages: high res­

olution cameras, real-time data process, capture of high speed motion

and tracking multiple subjects. However, optical motion capture sys­

tems have the following disadvantages: occlusion (markers cannot be

seen by enough cameras, or markers may be blocked by limbs, bodies

or other markers), challenging to calibrate and operate, and sensitivity

to light and reflections. While each system has its strengths, there is

not a single motion capture system tha t is perfect for every possible

S ection 4 .1 . M otion C apture S ystem s 41

use.

In the experiments an optical motion capture system named PhaseS­

pace Motion Digitizer System [4] has been used to collect MoCap data.

A detailed description of PhaseSpace Motion Digitizer System used in

the Communication Research Centre (CRC) lab at Cardiff University

can be found in Appendix A.

The PhaseSpace Motion Digitizer System consists of twelve spe­

cialised CCD (Charge Couple Device) cameras and several infra-red

Light Emitting Diode (LED) markers. The system is based on tracking

LED markers attached to the areas of interest on a person. All “cam­

eras” have a resolution of 3,600 x 3,600 (12 Megapixel) and streaming

frequency of 120fps. In the experiments, the full body motion needs to

be captured, thus the best place to locate cameras is in a circular con­

figuration with the field of view being in the centre of the circle. The

greater the field of view desired, the larger the circle should be. Fig­

ure 4.1 shows the position of the cameras for full body motion capture.

I 5

F igu re 4.1. Example of 12 cameras positioned for full body motion
capture.

Section 4 .1 . M otion C apture S ystem s 42

The LEDs are placed on the body of two subjects on the places of

different joints. For each person, the total number of markers is 301.

Figure 3.2 on Page 34 shows the placement of all markers, except two

markers on the back are not visible in the figure.

Before capturing motion data, camera calibration is an im portant

step. The PhaseSpace camera calibration is performed using the pro­

prietary calibration software which can be run remotely on a client

machine, which is very accurate and requires only several seconds to

perform. This program uses a calibration object and calibration wand

as shown in Figure 4.2. The current version of calibration software

involves two steps. The first step is a coarse calibration tha t uses the

calibration object. During this step the system uses an inverse trans­

form to determine the relative position of the cameras. As for the

second step defined as incremental calibration, a calibration wand with

LEDs at a known distance apart is moved throughout the desired cap­

ture area. Since the system knows the physical distance between these

LEDs, minor adjustments are made to the camera positions as well as

to the optical maps of the cameras so as to get a best fit between the

“virtual distances” and the actual physical distances. After complet­

ing the camera calibration process, all cameras are aligned effectively

with extremely high precision. The MotionBuilder [90] software pack­

age working with PhaseSpace Motion Digitizer System is then used to

capture motion data2.

130 m a rk e rs a re p la c e d o n each h u m a n b o d y d u e to th e l im i ta t io n o f o u r M o C a p
sy s te m .

2M o tio n B u ild e r is a re a l- t im e a n im a tio n s y s te m sp e c if ic a lly d e s ig n e d to c re a te
re a lis t ic c h a ra c te r a n im a tio n . I t c a n w o rk w ith a v a r ie ty o f m o t io n c a p tu r e d ev ice s ,
su ch as P h a s e S p a c e a n d C y b e rG lo v e [98].

Section 4.2. 3D MoCap Data 43

a b

Figure 4.2. Calibration object (a) and calibration wand (b) used
during the calibration process. The red lights are LEDs.

4.2 3D MoCap Data

The data used in this research is 3D MoCap data captured by the mo­

tion capture system described in the previous section. Three different

types of motion (walking and shaking hands, one person pulling an­

other person, and one person pushing another person) are filmed at

the frame rate of 30 fps. There are five reasons for choosing these

interactive behaviours:

1. These three interactive behaviours are simple, and easy to model

and analyse. Yet they cover a wide variation of motion.

2. In Gavrila’s [45] survey paper, he only adopted four generic inter­

actions with people are shaking hands, embracing, pushing and

hitting. For our purposes, hitting is hard to capture, and so we

evaluate in a similar range of interaction to Gavrila.

3. In CMU’s Graphics Lab Motion Capture Database [99], they pro­

vided some human interaction with two subjects, such as shaking

hands, pulling, quarrelling and dancing. For our purposes, quar­

Section 4.2. 3D MoCap Data 44

relling is hard to capture, and dancing is not so interactive and

occlusion between the human bodies.

4. In Hogg’s [59] work, he developed a system capable of producing

a 2D silhouette of a virtual human interacting with a real per­

son in video and they demonstrated it working with a handshake

behaviour.

5. For our purpose, we argue that three interactive behaviours are

sufficient.

30 markers are placed on the front of the person’s body at the differ­

ent joints, as in Figure 3.2 on Page 34. The position of each marker

is represented using 3D Cartesian Coordinates. Figure 4.3 shows the

original captured MoCap data of three different types.

(a) (b) (c)

Figure 4.3. Original captured 3D MoCap data, (a) Shaking Hands
Behaviour, (b) Pulling Behaviour, (c) Pushing Behaviour.

However, sometimes markers cannot be seen by enough cameras, or

markers may be concealed by limbs, bodies or other markers (as shown

in Figure 4.4) during the capturing process. In order to obtain high

quality MoCap data, this missing data need to be interpolated manually

Section 4.3. A Model o f Human Body M otion 45

(the reinterpolate filter in MotionBuilder is employed to estimate the

position of missing markers) after the data were captured. The final

output constitutes a file containing a list of 3D Cartesian coordinates

of the markers in each frame, and therefore a pose in each frame is

represented by a 90-dimensional vector. Each MoCap data sequence

has around 150 pose vectors. In total, 14 sequences of MoCap data for

shaking hands, 9 sequences of MoCap data for pushing and 7 sequences

of MoCap data for pulling have been obtained. All the original MoCap

data sequences can be viewed in the CD at back of the thesis in folder

Original-shaking hands, Original-pushing and Original-pulling

respectively.

(a) (b)

Figure 4.4. Motion data, (a) No markers are occluded, (b) The
markers with dark blue are occluded during the capturing process, so
they need to found manually with interpolation.

4.3 A Model of Human Body Motion

The model of geometry of a human body is deliberately kept simple, but

our approach adequately models the full body as required. It consists

Section 4.3. A Model o f Human Body Motion 46

of a number of vertices representing significant points on the body of a

person, for example, elbows, knees and hips. Some of the vertices are

connected with segments representing the corresponding body parts,

such as lower arms, upper arms, lower legs and upper legs. 20 vertices

are used on the human body and 16 segments connect the points. These

segments are dressed in truncated cones. The silhouette of the produced

model of geometry roughly resembles a human figure. Figure 4.5 shows

the geometry model of the human body. The vertices are represented

by red crosses and the segments of human body are represented by

truncated cones.

Figure 4.5. A model of geometry of a human body. It consists of 16
segments (represented as truncated cones in the figure) connecting 20
vertices on the body (represented as red crosses in the figure).

The goal is to obtain a model of human motion which is used for

tracking the motion of a real person in video. As mentioned in the pre­

vious section, several sets of MoCap data in 3D space with 30 markers

S ection 4 .3 . A M odel o f H um an B ody M otion 47

are captured, therefore a pose in each frame is represented by a 90-

dimensional vector. Such data is always constrained by physical and

dynamical factors, thus we would like to reduce the dimensionality of

this data distribution using Principal Component Analysis (PCA).

4.3.1 Principal Component Analysis: MoCap Data Dimension

Reduction

PCA [38,100,101] is a useful statistical technique th a t can be used to

simplify a data set of high dimension. More formally, it is a transform

that chooses a new coordinate system for the data set. It has found ap­

plication in fields such as face recognition and image compression. The

main advantage of PCA is to reduce the high-dimensional data to low­

dimensional data without the loss of important information. Therefore,

PCA is a popular method for modelling data sets.

Assuming that the original data set is a multivariate Gaussian, a

single multivariate Gaussian is:

9{X' S) = (27r)n/2(fet(S)1/2exP[~^(x ~ - M)] (4.3.1)

where x is the data set and x £ n is the dimensionality of the

space, /i is the mean value of the data set, X) is the covariance m atrix

of size n x n, (*)r is matrix transpose, (-)-1 is the m atrix inverse and

det(-) is the matrix determinant.

PCA can be used for reducing dimensionality in a data set which

retains the main characteristics, but eliminates the less significant prin­

cipal components. A multidimensional Gaussian distribution is also

S ection 4 .3 . A M odel o f H um an B ody M otion 48

referred to as an eigenmodel. An eigenmodel 0 can be denoted as

0 = (/ie,U e, Ae) (4.3.2)

where /ie is an origin in the original n-dimensional space, U e is an n x n

orthogonal matrix, with columns called normalized eigenvectors, and

Ae is an diagonal matrix with diagonal values called eigenvalues.

For PCA, it is necessary to find eigenvectors and corresponding

eigenvalues through eigenvalue decomposition (EVD) of the covariance

matrix of the original data set. Singular value decomposition (SVD)

also can be used for an arbitrary shaped matrix. EVD represents the

covariance matrix as below:

£ = U A U t (4.3.3)

A standard way to calculate PCA is to use a covariance matrix

formed from the original data [100]. Suppose we have an m x n data

matrix A (m data vectors of n dimensions), and we want to rearrange

our data into a k dimensional representation (k < n):

1. Form some m x n data matrix A. For example, two types of

MoCap data are chosen, walking and shaking hands, as the train­

ing data matrix A. A pose in each frame is represented by 90-

dimensional vector and each MoCap data sequence has 194 pose

vectors. Therefore, the training data m atrix A is 194 x 90. The

original training data are shown in Figure 4.6.

2. Find the mean value in each column dimension, such that the

mean matrix ji is 90 x 1.

Section 4.3. A Model o f Human Body Motion 49

Original training data
1250

1200

1150

1100

1050
a>
3
03<1>

LL.

1000

950

900

850

800

750
800400 600 1000 1200 1400200

Feature 1

Figure 4.6. The original training data of the motion for a person walk­
ing and shaking hand distribution visualised in 2D. Blue dots represent
the original motion data.

3. Subtract the mean value from each data dimension. This pro­

duces a data set whose mean is zero. Then store the centred data

matrix in S.

4. Calculate the covariance matrix £ of S: £ = ST • S. Since the

original data has 90 dimensions, the covariance matrix will be

90 x 90.

5. Calculate the eigenvectors U and eigenvalues A of the covariance

matrix. Since the covariance matrix is square, the eigenvectors

and eigenvalues can be calculated for this matrix. These are im­

portant, as they provide useful information about our data.

6. Choose the first k components (1 < k < n) of the eigenvectors

and derive the new data set (New data has only k dimensions).

Section 4 .3 . A Model o f Human Body Motion 50

Once we have chosen the eigenvectors that we wish to keep in the

data, we simply take the transpose of the feature vector (feature

vector is (eigi eig2 • • • eign)) and multiply it on the centred data

transposed. Figure 4.7 shows the reduced dimension data with

two largest eigenvectors.

10

5

o

- 5

-10

-1 5
-8 - 6 - 4 - 2 0 2 4 6 8 10 12

Figure 4.7. Reduced dimension data with two biggest eigenvectors
modelling the walking and shaking hand motion of the whole human
body. Blue dots represent the motion data.

PCA also provides a transformation of the vectors from the original

space to the eigenspace ©. Any vector x from the original space

can be transformed to a corresponding vector y in eigenspace © using

the following:

y = UTx (4.3.4)

The vector y can be transformed back to the original space by

multiplying it by U.

x = Uy (4.3.5)

The training data projected into the eigenspace

S ection 4 .3 . A M odel o f Hum an B ody M otion 51

PCA can model efficiently a single Gaussian distribution, since it

is a linear basis transformation. However, if the data set is non-linear

(such as human motion data), then it is better to model non-linear data

as a GMM.

4.3.2 Gaussian Mixture Models

Though the whole data set is non-linear, assume that the local variation

is linear. Thus non-linear data sets can be modelled by approximat­

ing non-linear variation as a locally linear model. Gaussian Mixture

Model (GMM) is a standard approach to model non-linear data via

local linearisation.

A GMM is a mixture of several Gaussian distributions and can

represent different subclasses inside one class. A GMM is given by:

M

p(x) = ^ 2 a,g(x,/ii, S i) (4.3.6)
i = 1

where <a; denotes the prior probability of each Gaussian, ^ are the

centres of the Gaussians, S* are the covariance matrices and M denotes

the number of Gaussians [102].

Expectation-Maximization (EM) [102] is a widely used method for

estimating the parameter set of the GMM. It is an iterative procedure.

EM proceeds iteratively in two steps, the Expectation Step and the

Maximization Step.

• The expectation step: Calculate the expectation of the log-likelihood

over all possible assignments of data points to sources.

• The maximization step: Maximize the expectation by differenti­

ating written current parameters.

Section 4.3. A Model o f Human Body Motion 52

In the previous section, the dimensionality of the data set needs to

be reduced using PCA. Here we propose to model the reduced dimen­

sionality data set as a GMM in order to reduce the complexity of the

programme. Figure 4.8 shows a GMM fitted to the low dimensional

data, the red ellipses represent Gaussians and the blue dots denote the

motion data. We choose the number of Gaussians to be 12 experimen­

tally, to adequately represent the data distribution. Figure 4.9 shows

the same data distribution visualised in 2D and fitted with 4, 8, 16 and

30 Gaussians respectively. It is clear that when the number of Gaus­

sians are 4 and 8, the data distribution from the model does not match

well. When the number of Gaussians are 16 and 30, some clusters are

overlapped. The model cannot represent the data very well.

Data distribution visuallised in 2D and fitted with 12 G aussians

CSI

3
(9
CD

U-
- 5

-10

-1 5
-8 -6 -4 -2 0 2 4 6 8 10 12

Feature 1

Figure 4.8. Data distribution visualised in 2D and fitted with 12
Gaussians. The red ellipses represent Gaussian and the blue dots denote
the motion data.

When the reduced dimensionality data set were modelled as a GMM,

Section 4.3. A Model o f Human Body Motion 53

M o tio n d a ta d is tr ib u tio n v is u a l is e d in 2D a n d f itte d w ith A G a u s s i a n s
10

1 0

M o tio n d a ta d is tr ib u tio n v is u a l is e d in 2 D a n d f itte d w ith 8 G a u s s i a n s

12

M o tio n d a ta d is tr ib u tio n v is u a l is e d In 2 D a n d fitte d w ith 1S Gi

lO

IS ,
-6 12

M o tio n d a ta d is tr ib u tio n v is u a l is e d in 2 D a n d fitte d w ith 3 0 G a u s s i a n s
10

12

Figure 4.9. Data distribution visualised in 2D and fitted with 4,8,16
and 30 Gaussians. The red ellipses represent Gaussian and the blue
dots denote the motion data.

Section 4 .3 . A M odel o f H um an B ody M otion 54

a number of Gaussian centres are chosen in the GMM. When the hu­

man body poses are reconstructed from the GMM, the reconstructed

sequence is not representative of the motion accurately in a temporal

sense, because the model does not contain any information on the tem­

poral relationship between the variety of poses. In order to select the

variety of poses at time t to reflect previous pose choices at time t — 1,

and to anticipate possible future pose choices at time t + 1, it is better

to learn probable pose transitions from the training set using Hidden

Markov Models (HMMs).

4.3.3 Hidden Markov Models

Given a stochastic system, which may be in any one of a number of

states, it is possible to represent the system as a graph structure. In

the graph structure, the nodes correspond to the states and the edges

to the probability of moving from one state to another, or of remaining

in the same state. One of the simplest forms is a Markov chain, where

the model may only stay in the same state or move into the next state.

A Markov model can be represented as a graphical structure in which a

network of states is formed, connected by edges corresponding to tran­

sition probabilities of moving from one state to another [102]. In a first

order Markov model, the state transitions are dependent only on the

current state of the system. A transition matrix of the probabilities of

moving from one state to another may be estimated by the frequencies

of the event being observed in training data [103].

Hidden Markov models (HMMs) are first order Markov models

which have been extended by introducing a set of hidden states (which

are probabilistically linked to the observable states). The basic struc­

S ection 4 .3 . A M odel o f H um an B ody M otion 55

ture of an HMM is shown in Figure 4.10. A continuous HMM con­

tains two sets of states, two sets of probabilities and one initial state

[13,104,105].

an
V2

VI
V2 VIb3i
b32

a33
b22

V2
1321

V I
a22

Figure 4.10. The Basic Structure of an Hidden Markov Model

In the HMM description that follows it is assumed tha t the person

A ’s MoCap data is used for construction.

• The number of states n in the model. The state are hidden, and

may be represented by Gaussian mixtures for the purposes of a

continuous HMM. The states are denoted S = {Si, S 2 , •••, Sn} and

the state at time t as qt. In this research, each hidden state is

represented one of Gaussians with a GMM modelling the person

A ’s MoCap data.

• Visible states v t = {v(t\), u(t2), •••, the states of the pro­

cess that are Visible’. In our case, the visible state is a sequence

of the person A ’s MoCap data.

• The state transition probabilities between hidden states {a^}:

S ection 4 .3 . A M odel o f H um an B ody M otion 56

hold the probability of being in a hidden state Sj at time t + 1

given the hidden state Si at time t.

dij = P (S j (t+ 1)|Si(t)), 1 < i j < n (4.3.7)

The state transition coefficients have the properties

dij > 0 (4.3.8)

n

y > 3 = 1 (4.3.9)
3 - 1

• The observation probabilities of a visible state {bj(vt)}: contain

the probability of observing a particular visible state given that

the hidden model is in a particular hidden state.

bj(vt) = P(vt \Sj(t)) 1 < j < n (4.3.10)

• The initial state probability distribution 7r = 7 where

it = P(qi = Si) 1 < i < n. (4.3.11)

Thus an HMM is a standard Markov process augmented by a set of

visible states, and some probabilistic relations between them and the

hidden states.

For convenience, we use the compact notation:

A = (A , B , 7 t) (4.3.12)

S ection 4 .3 . A M odel o f Hum an B ody M otion 57

where A = {up}, B = {bj(vt)} and n — 7q, to indicate the complete

parameter set of the model.

Defining an observation sequence O — {eq, 0 2 , •••, or}, where ot is an

observation at time t, there are three basic problems associated with

a HMM. The first two are pattern recognition problems: finding the

probability of a sequence of visible states given an HMM (evaluation);

and finding the sequence of hidden states that most probably generated

an observed sequence (decoding). The third problem is generating an

HMM given a sequence of observations (learning) [13, 79,102].

• Evaluation problem: Given the HMM A = (A, B,7r) and the

observation sequence O = {0 1 , 0 2 , •••, or}, calculate the proba­

bility that model A has generated sequence O. The Forward-

Backward algorithm can be used to estimate these probabili­

ties.

• D ecoding problem: Given the HMM A = (A, B,7t) and the ob­

servation sequence O = {cq, 0 2 ,..., or}, calculate the most likely

sequence of hidden states Si that produced this observation se­

quence. The Viterbi algorithm is used to find the most likely

path of hidden states.

• Learning problem: Given some training observation sequences

O = {cq, o2, ..., or} and general structure of an HMM (numbers

of hidden and visible states), determine the HMM parameters

A = (A, B , 7r) that best fit the training data, th a t is, maximizes

P(0 |A). The Baum-W elch algorithm is used to find the un­

known parameters of the HMM.

In this research, the two problems of concern are:

S ection 4 .3 . A M odel o f Hum an B ody M otion 58

1. Given a number of training data, to train an HMM which has high

likelihood of producing the training data. To do this, the Baum -

W elch algorithm is used to determine the best HMM parame­

ters. The transition probabilities and the observation probabili­

ties are initialised using random numbers at the beginning, and

then iteratively improve the estimates. This HMM is used to

track a 3D person in real video.

2. Given an HMM A and the observation sequence O, the V iterbi

algorithm needs to be used to find the best state sequence that

produced the input observation sequence during the generating

process. The result of the generating process is a sequence of

90-dimensional vectors, each estimating a 3D pose of the virtual

character responding to the tracked person in the video.

4.3.4 Training a Model of Dynamics

In the experiments, the HMM is trained on one person’s MoCap data.

We obtained the transition probabilities in the HMM after 3 iterations.

Figure 4.11 shows a GMM with 12 Gaussians, fitted to a person’s Mo­

Cap data. 12 Gaussians have been used to cover the data distribution

well. In the figure, the red ellipses represent Gaussian and the blue

dots denote the motion data.

Table 4.1 shows the transition probability m atrix of the HMM used

here. It is clear that the highest probability values are on the diagonal,

which corresponds to no transition. The off diagonal, there is only one

more non-zero value, which means there is one transition of the cluster

from the current state to another state. In the transition probability

matrix, a probability equal to unity, means tha t the transition ends up

Section 4.4. Summary 59

GMM with connections showing HMM transition probabilities

-5

-10

-1 5
-8 -6 -4

Figure 4.11. GMM with connections showing HMM transition prob­
abilities with values greater than 0.01.

in this state.

Now we have an accurate model of human motion represented by

an HMM, where each state in the HMM is represented by a single

Gaussian, this model can be used to determine the poses in the video

frame.

4.4 Summary

In this chapter, the motion capture system is introduced, which is used

to capture the real motion data. The PhaseSpace Motion Digitizer

System uses PhaseSpace cameras to capture the motion of subjects

who have LEDs attached to their bodies. MotionBuilder software is

then used to capture the motion data. These data will be used for

modelling human motion, tracking motion of a 3D person in real video,

and generating human interactive behaviours for a virtual character

S ection 4 .4 . Sum m ary 60

Table 4.1. Probability transition matrix trained on walking and shak­
ing hands MoCap data of one person
one.

0.909 0.00 0.00 0.00 0.00 0.091

0.00 0.875 0.00 0.00 0.125 0.00

0.00 0.091 0.909 0.00 0.00 0.00

0.143 0.00 0.00 0.857 0.00 0.00

0.00 0.00 0.00 0.16 0.84 0.00

0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.091 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

The sum values of each row is

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.889 0.00 0.00 0.111 0.00 0.00

0.00 0.909 0.00 0.00 0.00 0.00

0.00 0.00 0.917 0.00 0.00 0.083

0.00 0.059 0.00 0.941 0.00 0.00

0.00 0.00 0.032 0.00 0.968 0.00

0.20 0.00 0.00 0.00 0.00 0.80

responding to the tracked person.

This chapter also outlines the basic theory which is used for mod­

elling human interactive behaviours. PC A is a well known method for

reducing the dimensionality of the data sets. It allows the computation

of a transformation that maps our MoCap data from a high dimensional

space to a low dimensional space. The goal of applying PCA to our

data is to reduce the dimensionality of the training data, and to retain

as much as possible of the variation present in the original data set at

the same time. This is because it is difficult to analyse data in the

high dimensional space. The HMMs are then trained on the reduced

dimensional data to represent interactive behaviours for tracking the

motion of a real person in a real video sequence.

S ection 4 .4 . Sum m ary 61

In the next chapter we are going to explain in detail the process of

tracking the motion of a 3D person in real video using the model of

human motion.

Chapter 5

TRACKING A 3D PERSON IN

A 2D REAL VIDEO

5.1 Introduction

In the previous chapter, we described a model of human motion. In

this chapter, we apply this model to tracking motion of a 3D person in

real video sequence.

Analysing human behaviour and tracking the full human body in

video have been an active area of research for over twenty years. The

recent appearance of cheap digital video equipment has made this area

even more appealing to researchers, with applications ranging from

biomedical human motion analysis and video surveillance to computer

games and film production. Tracking people is a challenging task, be­

cause of the high dimensionality of a full body kinematics, the ambigu­

ity caused by body articulation, and the fast movement of the human

body. Moreover, loose clothing, mutual occlusion between body parts

or shadows may complicate the inference problem. These ambiguities

make it hard to track moving body parts.

In this research, the purpose is to create a 3D virtual character

capable of responding to actions obtained from observing a real person

62

S ection 5 .2 . Tracking M ethod - A nnealed Particle F iltering (A P F) 63

in video. To achieve this goal, the motion of a real person in video needs

to be tracked. In this chapter, the annealed particle filtering (APF) [12]

is applied to track the fully articulated 3D motion of a person in video in

conjunction with a model of human geometry and a model of dynamics

of human motion built using the techniques described in Chapter 4. The

tracked motion of a person is then used for generating the interactive

behaviours for a virtual character.

The model of geometry of a human body is deliberately kept simple,

which is sufficient for this purpose. It consists of 16 segments connecting

20 vertices positioned on the body and representing places like elbows,

knees, etc. These segments are described in truncated cones as shown

in Figure 4.5 on Page 46. The silhouette of the produced model of

geometry roughly resembles a human figure, which is needed during

the tracking process.

The remainder of the chapter is as follows: In Section 5.2 the track­

ing algorithm APF is discussed. It is used for tracking an articulated

3D motion of a person in real video. The results of tracking in real video

is then presented in Section 5.3. Section 5.4 concludes this chapter.

5.2 Tracking Method - Annealed Particle Filtering (A PF)

The aim is to track the motion of a 3D person from 2D real video

sequence with good accuracy, from frame to frame. There are two

problems when tracking an articulated 3D person from 2D video: the

first is to locate the person in a video frame, the second is to estimate

the articulated motion from 2D data. Since video sequences of a single

moving person are captured in a controlled environment, the person in

the video sequence can be located easily using thresholding techniques

Section 5 .2 . Tracking M ethod - A nnealed Particle F iltering (A P F) 64

[88]-

In order to track a fully articulated motion of human body efficiently

and to obtain the desired information, the annealed particle filtering

[12] was adopted. This is based on particle filtering, but modified to

avoid the high dimensionality problem of standard PFs. This approach

is similar to that of simulated annealing (SA) [106].

SA was developed by Kirkpatrick [106] as a way of handling multiple

modes in an optimisation context. It employs a series of distributions,

with probability densities given by po(x) to p m (%), in which each pm(x)

differs only from pm+i(x). Samples actually need to be drawn from the

distribution po(x). The distribution Pm is designed so tha t the Markov

chain used to sample from it allows movement between all regions of

the state/search space.

An annealing run is started in some initial state, from which a

Markov chain designed to converge to pm is first simulated. Some

number of iterations of a Markov chain designed to converge to P m - i are

simulated next, starting from the final state of the previous simulation.

The process is continued in this fashion, using the final state of the

simulation for pm as the initial state for the simulation for pm_i, until

the chain designed to converge to po is finally simulated.

The idea of annealing for optimisation is now adapted to perform

a particle based stochastic search within the framework of an annealed

particle filter. The detailed of the APF approach is described in [12].

A.ssume that a series of wuight functions tuq([Z, to (Z ,X) 1 are

employed, where m is the number of annealing layers. An un-weighted

xT h e w e ig h tin g fu n c tio n t o a re c o n s t ru c te d b y tw o im a g e fe a tu re s : ed g es a n d
fo reg ro u n d s i lh o u e tte . T h e d e ta ile d o f th e w e ig h t f u n c t io n c a n b e fo u n d in [12].

S ection 5 .2 . Tracking M ethod - A nnealed Particle F iltering (A P F) 65

set of particles are denoted as:

s.,™ = { (< ! ,) • • • (si"™1’)} (5.2.1)

where N is the number of particles on each layer. A set of weighted

particles represents the state of the tracker after an annealing run in

each layer m,

Sfc,™ = 4 %) • • ■ (s A 1’- 4 ! t “ 1))} (5.2.2)

where 7 r ^ is the corresponding particle weighting.

Each annealing run can be broken down as follows [12]:

1. Select the number of layers m and the number of particles N in

each layers. For each time tk an annealing run is started at layer

m.

2. Initialise a set of un-weighted particles Sk,m on each layer of an

annealing run.

3. Assign a weight on each of the particles,

4 ‘,L i’t) (5-2.3)

which are normalised so that = 1- The se ̂ weighted

particles Sfc>m is now formed.

4. N particles are drawn randomly from S J m with replacement and

with a probability equal to their weighting 7r^m. As the nth parti-

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 66

cle s j ^ is chosen, it is used to produce the particle using:

J n) = (n) R
k,m— 1 k,m ' (5.2.4)

where B m is a multi-'variate Gaussian random variable with vari­

ance P m and mean 0.

5. The set Sfc!?n_i has now been produced, and can be used to ini­

tialise layer m — 1. The process is repeated from Step 3 to 4 until

we arrive at the set Sjyo (layer 0).

6. S£0 is used to estimate the optimal model configuration Xk using:

The set is then used to initialise layer M of the next annealing

run at tk+i-

5.3 Tracking the Motion of a Person in Real Video

In the previous section, the APF used to extract 3D articulated motion

of a person moving in video from frame to frame is presented. It can

avoid the high dimensionality problem of the data-set, and recovers

3D poses of person from the original video sequences. In this section,

the model (built using techniques described in Chapter 4) is applied to

N

(5.2.5)

7. The set Sh+i,M is then produced from S£0 using:

(5.2.6)

Section 5 .3 . Tracking th e M otion o f a Person in Real V ideo 67

recover 3D poses of human figures from the video sequences. To do so,

the volumetric model is represented by cylinders (Figure 4.5).

Firstly, statistical background subtraction [88] is used to detect the

silhouette of a person in each frame. Assuming tha t the person’s height

and other parameters, such as radius of torso, the length of legs and

arms are known. Next APF [12] is used to estimate the whole body

poses.

5.3.1 Tracking Process

In the tracking process, the 3D pose and position of a person in a real

video sequence need to be found. To do this, the following steps are

performed:

1. A single video camera is calibrated using Zhang’s method [107]

and record several video sequences (simple background with no

person present and a person moving in the scene).

2. A moving person is identified by subtracting the background, re­

sulting in a binary image (black and white) with the persons

silhouette in white, as shown in Figure 5.4.

3. A dynamic model is built on a single person’s MoCap data.

4. The whole body pose and 3D information is estim ated using the

APF.

5. Repeat step 2 to 4 for all frames of the image sequence.

The above steps will be described in detail in the following sections.

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 68

5.3.2 Calibrating the Camera

Camera calibration is the process of transformation the 3D position

and orientation of the camera frame in world space into 2D image co­

ordinates [108-110]. Camera calibration is an important step in many

computer vision applications. The intrinsic properties of the camera are

obtained through this process, such as focal length, image center and

image distortion coefficients. The extrinsic camera parameters, such

as translation components and rotation angles for the transformation

between the world space and camera co-ordinates, are then obtained

by using Zhang’s method [107] (Zhang’s method, using a simple planar

pattern has provided the research community with both an easy-to-

use and accurate algorithm for obtaining both intrinsic and extrinsic

camera parameters). This algorithm was implemented in the Matlab

Camera Calibration Toolbox [111] by Jean-Yves Bouguet and C + + in

Intel OpenCV library [112]. These libraries are currently two of the

most widely used tools for camera calibration. Both intrinsic and ex­

trinsic camera calibration parameters need to be saved, such as focal

length, image distortion coefficients, translation components and rota­

tion angles. Those parameters are used for locating the person in the

video frame and merge the virtual character back into original the video

sequence.

Video sequences are obtained by recording a person’s movement us­

ing a single camera. First, simple background frames without a person

present are recorded. Then several videos are filmed for one person’s

action (walking and shaking hands, pulling and pushing) corresponding

to the MoCap data which are used in this research to analyse human

behaviour and estimate 3D poses of a person in video sequence. All

Section 5.3. Tracking the Motion o f a Person in Real Video 69

videos are recorded at 30 fps. Some of them are background videos

without a person present (Figure 5.1), some videos show one person

walking and shaking hands (Figure 5.2), some videos showed pulling

behaviours and the remaining show pushing behaviours. Finally, the

recorded video data is exported into a sequence of RGB images. Se­

lected frames from the original video sequence for walking and shaking

hands behaviours are shown in Figure 5.3.

Figure 5.1. Original background image without a person in the scene.

5.3.3 Training Data

The 3D MoCap data are obtained by capturing two people’s motion

using Phasespace system (Chapter 3). 30 markers are placed on each

person at the joints shown in Figure 3.2 on Page 34. The 3D position

of markers were recorded at each pose, therefore a pose of a person

in each frame is represented by a 90-dimensional vector. The data

collected consists of the markers’ coordinates in each frame through

Section 5.3. Tracking the Motion of a Person in Real Video 70

I

Figure 5.2. Original video image with a person present in the scene.

"■R
t= 2.2s t = 3s t = 4.83s

Figure 5.3. Selected video images of one person walking and shaking
hands at time 2.2s, 3s and 4.83s respectively.

a number of sequences describing three different types of motion. In

total, 14 sequences of MoCap data for shaking hands, 9 sequences of

MoCap data for pushing and 7 sequences of MoCap data for pulling

have been obtained. All the original MoCap data sequences can be

viewed in the CD at back of the thesis in folder Original-shaking

hands, Original-pushing and Original-pulling respectively.

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 71

5.3.4 Subtracting Background

To locate the 3D position of a person in an image, the person’s contour

need to be first determined by subtracting the background image from

all other video frames. For this purpose, the statistical subtraction

method described by Horprasert et al. [88] is used to detect a moving

foreground object (the shape of the person) from a background scene

using color images.

The basic idea of background subtraction is to subtract the image

B from a reference image A that models the background scene. The

basic steps of the algorithm are as follows [88].

• Background modelling constructs a reference image representing

the background. In the background training process, the reference

background image and parameters are computed over a number

of background images.

• Threshold selection determines appropriate threshold values by a

statistical learning procedure used in the subtraction operation

to obtain a desired detection rate.

• Pixel classification classifies the type of a given pixel, th a t is, the

pixel is the part of background, or it is a moving foreground ob­

ject. In this step, the difference between the background image

A and the current image B is evaluated. When the difference

between each pixel is greater than the threshold value, then this

pixel will change to white in image B. Otherwise, when the dif­

ference between each pixel is less than the threshold value, this

pixel will change to black in image B. As a result, the black is the

background and the white is the silhouette of the human body.

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 72

Figure 5.4 shows the result of the image after subtracting the

background.

Figure 5.4. Binary image after subtracting background.

Selection frames from the result of the image after subtracting the

background are shown in Figure 5.5. These result images show the

robustness and reliability of the statistical subtraction algorithm.

5.3.5 Model of Human Motion

In the following experiments, the model of dynamics of the motion of

a single person is represented using an HMM as described in Chapter

4. The model of geometry of the human body used in the following

experiments is described in Chapter 4, Figure 4.5. An HMM is defined

as

A = (A, B, 7r) (5.3.1)

where A = {%•} is the state transition probability matrix, B = {bj(vt)}

where bj{yt) is the observation density distribution at state j and 7r is

Section 5.3. Tracking th e Motion o f a Person in Real Video 73

Figure 5.5. Selection frames from Original video sequence and binary
images after subtracting background.

Section 5.3. Tracking the Motion of a Person in Real Video 74

the initial state probability distribution.

To train the model of dynamics, the MoCap data for one person

need to be used. In the experiments several sets of motion data in 3D

space with 30 markers are captured, therefore a pose in each frame is

represented by a 90-dimensional vector. Such data is always constrained

by physical and dynamical factors, thus the dimensionality of the data

set need to be reduced using PC A. The model is trained on 1600 frames,

keeping approximately 90% of the total eigenenergy in the model, which

accounts for seven largest eigenvectors, and approximately 60 states are

used in the model. Figure 5.6 shows the relations between percentage

of eigenenergy and number of dimensions. As mentioned in Chapter

2, six to eight dimensions are enough to represent a human jump that

looks similar to the original high-dimensional version [7]. From the

figure, we decided to choose 90% of the total eigenenergy in our model.

18

16

14

12

Percentage of eigenenergy vs. number of dimensions

0 —
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Percentage of eigenenergy

Figure 5.6. Percentage of eigenenergy vs. number of dimensions

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 75

Then the HMM on a number of such vectors is trained using the

Baum-Welch algorithm [13]. Finally, the APF algorithm as described

in Section 5.2 is used to track the motion of a person in real video.

5.3.6 Tracking Results

The 3D articulated motion of a person in a 2D real video sequence needs

to be tracked. The video sequence is preprocessed by subtracting the

background [88] and thus a sequence of binary images (Figure 5.5) is

obtained. Next, the APF described in Section 5.2 is used together with

the HMM trained in the previous stage to estimate the 3D poses of the

tracked person in the video.

In the following experiments, we use the same tracking algorithm

to track a person in a real video sequence and track a person using

the synthesised data. The purpose of these experiments is to test the

accuracy of the APF.

Tracking a Person in a Real Video Sequence

In this section, the experiments are repeated to track 3D poses of a

person from the original video sequences. In the experiments, 10 layers

and 256 particles (samples) on each layer are used; both numbers were

determined empirically. The result of the tracking process is a sequence

of 90 dimensional vectors, each estimating a 3D pose of the tracked

person in the video. Figure 5.7 shows selected frames from the video

sequences and the estimated 3D figures in the same view.

Since there are no markers placed on the human body in the real

video sequence, the only way to assess the accuracy of tracking in video

sequence is visual. In the next section, the synthesised data are used

Section 5.3. Tracking the Motion of a Person in Real Video 76

HI
2H31

Figure 5.7. Original images (first column) and the estimated 3D fig­
ures in the same view (second column).

S ection 5 .3 . Tracking th e M otion o f a Person in Real V ideo 77

to assess the accuracy of tracking.

Tracking a Person using the Synthesised Frames

In this section, several sequences of synthetic frames are generated from

the 3D MoCap data of one person performing shaking hands, pushing

and pulling motion.

In the following experiments, the same tracking algorithm, the same

number of layers, and the same number of particles are used as in the

above real video sequence. Figure 5.8 - 5.10 shows the tracking results

for the synthetic data on three different types of motion.

For Figure 5.8, blue trajectories are ground tru th while red trajecto­

ries are tracking result in the top of figure. In the bottom of figure, the

line shows the distance between ground tru th and the tracking result.

It is clear to see that the tracked motion is similar to the ground tru th

in most of frames. In the frame 30 to 40, the average error of tracking

is 7mm, which is worse than the tracking precision in all frames. The

overall average error of tracking is 3mm, so we feel is still acceptable.

Figure 5.9 shows the error of tracking on a synthesised data for

pushing behaviours. The error is consistent through all the frames and

its average value through all the frames is around 2mm. It is a very

good estimate considering the absence of any 3D information.

In Figure 5.10, The error is a little worse in the last 30 frames,

which stabilises in the rest of the sequence. Overall, the average error

is a little worse than in the pushing motion for the same person, which

can be attributed to a different type of motion.

Section 5.4. Summary 78

-1 0

-2 0

SS -30

-40

-50
40 60

Number of Frames
80 100 12020

20 40 60
Number of Frames

80 100 120LU

Figure 5.8. Tracking result for the synthesised data (shaking hands
behaviours). In the top of figure, blue trajectories are ground truth
while red trajectories are tracking result. In the bottom of figure, the
line shows the distance between ground truth and the tracking result.

5.4 Summary

In this chapter, we have described the details of APF for tracking 3D

human motion in real video. It can search high dimensional configu­

ration spaces and is capable of recovering full articulated body motion

efficiently. The model of human motion and the APF are applied to

recover 3D poses of human figures from the video sequences. The good

tracking results are obtained in the experiments, however, the results

are dependent on how well the built models represent the tracked per­

son. In the next chapter, the tracked motion of a person is used for

generating the interactive behaviours for a virtual character.

Section 5.4. Summary 79

8

g
3

2
40 60 80 1000 20

E Number of Frames
E r

§ 4 -

b 2 -

40 60
Number of Frames

Figure 5.9. Tracking result for the synthesised data (pushing be­
haviours). In the top of figure, blue trajectories are ground truth while
red trajectories are tracking result. In the bottom of figure, the line
shows the distance between ground truth and the tracking result.

20

10

o

5 -2 0 i-

-30 0 20 40
Number of Frames

60 80 100

3 10

5

o 0 - =i 0 ill 20 40 60
Number of Frames

80 100

Figure 5.10. Tracking result for the synthesised data (pulling be­
haviours). In the top of figure, blue trajectories are ground truth while
red trajectories are tracking result. In the bottom of figure, the line
shows the distance between ground truth and the tracking result.

Chapter 6

GENERATING BEHAVIORS

FOR A VIRTUAL

CHARACTER

I n the previous two chapters, we described how the model of human

motion was built and how to track motion of a real person in the video.

In this chapter, the process of generating interactive behaviours for a

virtual character responding to the tracked person is presented.

6.1 Introduction

In recent years, many researchers have become interested in producing

virtual worlds and populating them with virtual characters [15-19].

There has been also a limited amount of research into enabling virtual

characters with the ability to produce intelligent behaviour on the basis

of visual analysis of the scene, which mainly was conducted in the

computer vision area. The applications for this technology include the

areas of films, computer games and virtual environments (for the visual

creation of 3D characters to populate virtual environments and used as

virtual actors for film and television).

80

Section 6 .1 . Introduction 81

The main contributions presented in this chapter are:

• A novel approach for generating intelligent behaviours for fully

articulated 3D virtual characters on the basis of visual analysis

of the motion of a real person in ordinary 2D video using the

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual

characters using the windowed Viterbi algorithm, with real-time

capability.

To do this, a dual-input HMM is learnt on 3D MoCap data of two

individuals motion. The dual-input HMM has two sets of states. The

first set of states models the poses for person A, and the second set of

states models the poses for person B. Each state in the model is mod­

elled with a single Gaussian. The standard Viterbi algorithm and the

windowed Viterbi algorithm are then used to generate the responsive

behaviours for a virtual character, given a sequence of 3D poses of the

tracked person (for person A) in video. Finally, the generated motion

is mapped onto a virtual character and the virtual character is placed

back into real video.

The organisation of the Chapter is as follows: in Section 6.2, the

dual-input HMM trained on 3D MoCap data of two persons’ interactive

behaviours is described. The behaviour generating part is explained in

Section 6.3 and the methodology to place the virtual character into

real video is outlined in Section 6.4. The experimental results and the

assessment of the accuracy of the generated behaviours in Sections 6.5

and 6.6 respectively, followed by the visual inspection of the generated

motion by ten independent observers are presented in Section 6.7.

S ection 6 .2 . M odel o f In teractive B eh aviour 82

6.2 Model o f Interactive Behaviour

The model is trained 011 the 3D MoCap data of two real persons. It

can represent a variety of interactive behaviours. The model uses a

dual-input HMM. In particular, the model is trained on the following

behaviours: a handshake between two people; one person pulling an­

other person,the and one person pushing another person. However,

the model can be trained to represent other types of motion given the

appropriate training data. In the experiments, the PhaseSpace Mo­

tion Digitizer System (Chapter 4.1) is used to capture several sets of

motion data in 3D space with 30 markers. Therefore a pose in each

frame is represented by a 90-dimensional vector. Such data is always

constrained by physical and dynamic factors, thus the dimensionality

of the data set needs to be reduced using PCA before proceeding with

anything else. Approximately 90% of the total eigenenergy are kept

in the model, which accounts for seven largest eigenvectors, and then

train the HMM on a number of such vectors.

6.2.1 Training Data

The data used in this research is 3D MoCap data captured using the

motion capture system described in Chapter 4.1. As mentioned earlier,

this system consists of 12 specialist cameras. 30 markers are placed

on the person’s body, as shown in Figure 3.2 on Page 34. The data

collected consists of the markers’ coordinates in each frame. Three

different types of interactive behaviours (walking and shaking hand,

one person pulling another person and one person pushing another

person) are captured for person A and person B.

S ection 6 .2 . M odel o f In teractive B eh aviour 83

6.2.2 Dual-Input HMM Construction

Dual-input HMMs were described by Brand in [113]. In his work, he

mapped audio parameters with visual shape and velocity parameters

through an entropic HMM, hence estimating of the hidden visual state

sequence from a new speech observation. In this thesis, the method em­

ploys the standard HMM to model the human interactive behaviours for

two persons. After the HMM stage, motion parameters are calculated

for a virtual character from a state sequence.

The model is trained on the 3D MoCap data of two real people.

The model uses a dual-input HMM (each HMM describes the motion

of a whole human body), with two sets of states. One set of states

models the poses for person A. Likewise, the other set of states models

the poses for person B. Each state is modelled with a single Gaussian

variable. The model is trained on 1600 frames, keeping approximately

90% of the total eigenenergy in the model, which accounts for seven

largest eigenvectors (See Figure 5.6 on Page 74).

The construction process is as follows. First an n state HMM is

defined as:

Ab = (A b , B b , 7Tb) (6.2.1)

where Ab is the state transition probability matrix, B b is the obser­

vation probability distribution, and 7Tb is the initial state probability

distribution. It is constructed using the training data representing the

motion of person B. The mean and covariance of each state in Ab are

defined as /ilB and Fg, where i = 1, . . . , n.

After training this HMM, the matrix 7t(i) is also automatically

obtained, which defines the probability of being in state i at time t.

Section 6 .2 . M odel o f In teractive B eh aviour 84

Since the length of the observation sequence is equal to the number of

training vectors, T = N during training. Using the matrix 7 t (z), we

build a second HMM with the new n states which is defined as

Aa = (A b , B b , 7Tb) (6.2.2)

It has the same transition, observation and prior probabilities as Ab-

The means filA and covariances E ^ are calculated from the training

data representing the motion of person A.

N (6.2.3)

and

E*=i7t(i) 1 < i < n, T —

s fci7t(*) ' (b‘A ~ A»k)(b a ~ a.)T
s S=i7t(*)

(6.2.4)

1 4 = t = 1 , w 7 4 A— 1 < i < n , T = N

where b is the observation sequence of person A ’s motion data.

Given Aa and a sequence of 3D poses of the tracked person in video,

we can estimate the best state sequence Q using the standard Viterbi

algorithm. Given the shared transition, observation and initial proba­

bilities between Ab and Aa, the means and covariance of Aa are con­

structed using the state observation matrix 7 t(i) and the training data

representing the motion of person A, the state sequence Q also corre­

sponds to a state sequence through Ab- The state sequence Q defining

a set of hidden states through both Ab and Aa, also relates to a unique

set of mean and covariance matrices of the training data representing

the motion of person B for each time step £, and a unique set of mean

Section 6 .2 . M odel o f In teractive B ehaviour 85

and covariance matrices of the training data representing the motion of

person A for each time step t. This way, the shared properties between

Ab and A a associate Qt with /ig and Eg, as well as ^ and E^-

The HMM Aa is defined as a dual-input HMM since it has two sets

of means and covariance’s, constructed using person A and person B ’s

motion data respectively. This is different from coupled HMM in which

two HMM are coupled together.

A summary of the dual-input HMM is as follows:

1. Given the training data representing the motion of person B,

build the HMM Ab and keep the matrix 7*(i).

2. Using 7t(i), the training data for person A corresponding to the

training data representing the motion of person B used in Ab

construction, and calculate the new means filA and covariances

E^ using Equation (6.2.3) and (6.2.4).

3. Define the dual-input HMM A a using the new means and covari­

ances. It has the same transition, observation and prior proba­

bilities as Ab -

4. Using Ab , classify the motion data for person B for each obser­

vation to a state, by minimising the Mahalanobis distance .

5. Using the one-to-one first-and-second correspondences from the

training set, form clusters for each HMM state.

Using this dual-input HMM, a sequence of 3D poses for a virtual

character can be estimated, given a sequence of 3D poses of the tracked

person in the video. This is described in the next section.

Section 6 .3 . G enerating In teractive B ehaviours 86

6.3 Generating Interactive Behaviours

In the virtual character generating system, the 3D articulated motion

of a real person in a video is tracked using the APF described in the pre­

vious chapter, after which the obtained 3D data for the tracked person

are used in combination with the dual-input HMM and the standard

Viterbi algorithm or the windowed Viterbi algorithm to generate the

responsive behaviour for a virtual character. Finally, the virtual char­

acter performing the generated motion can be placed back into the

original video sequence, as shown in Figures 6.8, 6.9 and 6.10.

In the following subsections the theory of both the standard Viterbi

algorithm and the windowed Viterbi algorithm are described briefly.

Then the process of generating interactive behaviours is described given

a sequence of poses (tracking result) for person A.

6.3.1 The Standard Viterbi Algorithm

The standard Viterbi algorithm is able to find the single best state

sequence Q = {<7 1 ,(7 2 , • • •, Qt } for given an observation sequence O =

{'0 1 , 0 2 , • • •, ot}. For example, this will be a good “animation” synthesis

of a given sequence. The best state sequence is the most likely state

sequence that could have generated the observation sequence. A terms

need to be defined:

5t (i) = m a x P (Q , 0 | A) (6.3.1)
i

where St (i) is the highest probability along a single path at time t.

Then,

Section 6 .3 . G enerating In teractive B eh aviours 87

St+i(j) = max[Jt (2)ay]6j(oi+i) (6.3.2)

In the experiments, the observation sequence is the original MoCap

data of person A. The standard Viterbi algorithm can be described as

follows [13]:

1. Intialise the probability calculated by the initial hidden state

probabilities with the associated observation probabilities.

where ^ (2) is used to keep track of the argument which maximises

Equation (6.3.1) for each t and j .

2. Consider all products of transition probabilities with the max­

imal probabilities derived for the preceding step to determine the

most probable route to the next state. Keep the highest proba­

bility and its corresponding path at iteration.

(6.3.3)

(6.3.4)

5t(j) = max[5t_i(z)ai:7-]fy(ot) 2 < t < T (6.3.5)

'ipt(j) = argmax[dt_i(i)a,j] 2 < t < T (6.3.6)i

3. Determine the path (state sequence) at final iteration.

Section 6 .3 . G enerating In teractive B eh aviours 88

qt — argmax[&r(i)] (6.3.7)

4. Backtrack through the path, following the most probable route.

The sequence obtained from this process will hold the most prob­

able sequence of hidden states for a given observation sequence.

The process of the standard Viterbi algorithm is described in Fig­

ure 6.1. Si is the sequence of hidden states, amax(t) is the maximum

probability at time t and T is the number of frames.

The standard Viterbi algorithm requires the full observation se­

quence O = {oi, 0 2 ? • • • ? ° t } before the processing starts, which makes

real-time processing impossible. In order to exploit the benefits of the

Viterbi without having to wait for the entire full state sequence, we em­

ploy the windowed Viterbi algorithm [14,114] that can obtain the best

state sequence. This is achieved by processing the full state sequence

in a block wise manner (instead of the whole data), thus it can be used

in a real-time system.

6.3.2 The Windowed Viterbi Algorithm

In a real-time system, the windowed Viterbi algorithm will cause a

small delay in the state estimate, but as long as the delay is not too

long, the estimate may still be useful. For example, if the training

data are captured at 30 frames per second, and the window size is

chosen by 10 frames. Thus the delay time only is 0.033 second. It is

t = T - 1 , T - 2 , . . . 1 (6.3.8)

S ection 6 .3 . G enerating In teractive B ehaviours 89

so) v f V \ So } 1 So

Bmax(l)

S o J [So

Smax(T-l)

£Jmax(3) Hmax(4) Bmax(X)

Sn

t = 1

Sn

2

Sn

3

Sn

4

Sn

5

Sn

T - l

0

Figure 6.1. Illustration of the Viterbi Trellis. S'* is the sequence of
hidden states and amax(^) is the maximum probability at the time t. T
is the number of frames.

not usually noticeable in most of the generated motions. However, it

is possible to avoid this delay by adjusting the time correspondences

between interacting people in the training data.

The standard Viterbi algorithm extract the best path with the as­

sumption that the whole motion sequence is available, th a t is a non-

causal filter of length and delay equal to the sequence length. This

might be impractical in some applications. Moreover memory and ef­

ficiency problem will be caused for long sequences the length of the

trellis. In order to avoid that, a method is devised that uses a win­

dowed trellis that probes the best future path and uses only the first

portion of it to make up the overall path.

Section 6 .3 . G enerating In teractive B eh aviours 90

At any given time t, a time slice of T samples is taken and used as

the input to the Viterbi algorithm. We retain only the second state q-2

of the sequence of states Q = {^i, q2, . . . , qr} corresponding to the best

path for the actual time slice.

In summary, the windowed Viterbi algorithm can be described in

the following way [14].

1 . Select the length of the window T and select the initial state

probability 7r for the n states using the following way as in [14].

7Tn+l = l,7r^n±i = 0 (6.3.9)

2. The best path {<7 1 , q2, . . . , qr} for the window T can be obtained

using the standard Viterbi processing.

3. Retain the second state q2 as the output at time t, and let

71-32 = 1 , 7 1 - ^ 2 = 0 (6.3.10)

for processing of the next window.

4. Repeat steps 2-3 (slice trellis forward) until the end state is reached.

Assume a window T = 5 samples of the input sequence is chosen,

and the windowed Viterbi algorithm is applied to it. Figure 6.2 il­

lustrates the general process of the windowed Viterbi algorithm. The

dashed blue box represents the length of the window, the pink node

represents the state at time t = 2 which is used to build up the output

sequence at time t = 1 (see black node in the Figure 6.2).

In the next section, the obtained motion data for the tracked person

in the video is fed to the dual-input HMM with the standard Viterbi al-

Section 6 .3 . Generating Interactive Behaviours 91

51

52

53

Sn

S2

S3

Sn

Sl

S3

Sn

o o o O y/ i o o o
o-tt* _ -1 o o O i 'Oi o o o
/I =JL

9 f oiJ 9 9 9
6

i

Wo
2 3

6
4

6:
5

6
6

6
7

6
8

o O O O Oi O O
o o o.to 1

J o o
9 9/t 9 9 oi

S i
9 9

•
i

a 6
2 3

6
4

6
5

6
6

6
7

6
8

o 0:0 O Oi O
o 0-0,to O'yOOi o
q • d

! 1 !
9 9 ? 9

• 6 b 6 6 6' 1V_/ i6
t = 1 4 5

S l O o • o o o Oi
S2 O o oio'\° o
S3 Q • ? o o c6\9
Sn 6 Oi6 6 6 6 6|

t = 1 2 3 4 5 6 7 8

Figure 6.2. Illustration of the windowed Viterbi algorithm. Si is the
sequence of hidden states and 7Tn+i is the maximum probability at the
time t = 1. The dashed blue box represents the length of the window
T. The pink node represents the second state of the best path for the
window T. The black node represents the output at the time t.

Section 6 .3 . G enerating In teractive B eh aviours 92

gorithm, or the windowed Viterbi algorithm (to generate the responsive

behaviour for a virtual character). A trellis data structure is defined

to find the best sequence for the virtual character. The trellis data

structure contains the nodes of the trellis graph, whose shortest path

from the start node has been computed. After that, we work backward

through the trellis and chose the second person motion data with the

lowest cost for each time t.

6.3.3 The Trellis Structure

In Section 6.2, a dual-input HMM on the 3D MoCap data of two real

persons is trained. Now it is possible to generate a corresponding se­

quence of poses for the virtual character, given an input the sequence

of 3D poses of a person (tracking result from Chapter 5). To achieve

this goal, a trellis data structure is defined. Figure 6.3 illustrates an

example of an initial trellis structure [41]. Q is the set of states re­

sulting from the Viterbi algorithm step, and each column of the trellis

structure represents motion data of person B corresponding to the mo­

tion of the virtual character. Therefore, the length of each column may

vary.

6.3.4 Estimating Output Behaviours

When the trellis is built, the best path needs to be found through this

trellis according to the minimum distance between each data vector and

a state at time t. Thus, an error value (the Mahalanobis distance [115])

to each element in each column is assigned, and then we work backward

through the trellis to choose the motion data for the virtual character

S ection 6 .3 . G enerating In teractive B eh aviours 93

States
Q1 Q2 Q3 Qt

Real Person
Motion Data

Figure 6.3. Initial Trellis data structure for generating motion data.
Q is a set of states.

with the lowest cost for each time t.

Figure 6.4 shows how errors are calculated according to the trellis.

CJt is the data vector for person B for cell j at time t , b input is the

new input signal (the tracking result from previous chapter) and ba is

the data vector for person A, which has the same location as the data

vector for person B.

Qt Qt-i
D1

•t-1 Dr

binput

ci. E = (D1 + D2 + ... + Dr) D

Errors for t = 1,..., T

Figure 6.4. A representation of error Calculation for the generating
motion data. CJt is the data vector for person B for cell j at time t,
b input is the new input signal, ba is the data vector for person A, E
represents the error.

For state 1 (t = 1) of the trellis structure, we only have the distance

between the new input signal b input and the data vector ba for person

S ection 6 .3 . G enerating In teractive B eh aviours 94

A (denoted as D in Figure 6.4). Therefore, we calculate the error using:

E (C „ Qr) = (K - b\nput)T^ (K - b l put)

i = l , . . . , p (6.3.11)

where E (C i: Qi) is the error between the new input signal and the data

for person A in state Qi, p i s the number of parameters C i in state Q i,

b Input 1 S the input signal vector observed at time t — 1, and is the

covariances matrix of A a for state Q\.

For the remaining states t — 2,..., T (T is the number of frames of

the new input signal), the distances between Cj in a column at time

t and in a column at time t — 1 (denoted as Di, D 2 and Dr) are

calculated. Thus, the error can be obtained as E = (Di + D2 + . . . +

Dr) x D for other state as follows.

r

E (C j ,Q t) = [^ (c ; _ j - C?)T£ B (C U - c p] X
?’=1

(K ~ - b l put)

j = (6.3.12)

where E (C j ,Q t) is the error between CJt in a column at time t and

0 3t_i in a column at time t — 1, p is the number of parameters C j in

state Qt , r is the number of parameters C; in state Qt-i and is

the covariances matrix of Ab for state Qt.

When the errors are calculated in the trellis, the best path is calcu­

lated by working backwards through the trellis (from T > t > 1), and

choosing the motion data for the virtual character in each column

S ection 6 .3 . G enerating In teractive B eh aviours 95

with the lowest error value at time t.

C°ut = m m E (C j , Qt)\ j = l , . . . , n ; t = T , . . . , 1. (6.3.13)

Through this process, the generated interactive behaviour for the

virtual character can thus be obtained.

6.3.5 Trajectory Post-processing

Through the above process, the generated interactive behaviour for a

virtual character can be achieved. Then trajectory post-processing is

employed to smooth the estimated sequence of poses. A good approach

is to use a weighted averaging filter on the estimated sequence of poses,

thus removing spikes in the trajectory caused by the incorrect motion

choice. This is because the spike causes large changes in the estimated

motion over short time periods. Finally, the motion data is transformed

back to original dimensional space.

6.3.6 Motion Resynthesis Summary

A summary of the motion resynthesis is as follows.

1. Calculate the best state sequence Q through the dual-input HMM

using the input sequence of 3D poses of a person b* t (the

tracked result), where t = 1 , . . . , T.

2. Using the state sequence Q, construct a trellis of the parameter

C.

3. Assign errors to each trellis mode at t = 1, using Equation

S ection 6 .4 . P lacin g V irtual C haracter B ack in to th e Real V ideo 96

(6.3.11).

4. Assign errors to each trellis mode at t = 2 , . . . , T, using Equation

(6.3.12).

5. Choose the best state C°ut from T to 1, using Equation (6.3.13).

6. Apply post-processing (Section 6.3.5) to the motion data for the

virtual character.

Using the approach described in this section, the response behaviour

was generated for the virtual character from the dual-input HMM, given

three different types of motion data for the tracked person in the video

as input. In all three cases an appropriate behaviour was generated,

and the generated behaviour appeared naturalistic. All the generated

videos can be viewed in the CD at back of the thesis. The videos in

folder G enerated results - standard are generated using the stan­

dard Viterbi algorithm, and the videos in folder G enerated results -

windowed are generated using the windowed Viterbi algorithm.

6.4 Placing Virtual Character Back into the Real Video

In this section, a virtual character is placed back into the real video.

Two main commercial software packages, MotionBuilder [8] and Shake

[116], are used for producing the animation sequences. A summary of

the production process is now provided.

1. Mapping the generated motion onto a 3D actor with Motion­

Builder. The process of mapping to a 3D actor can be found in

Appendix B. Figure 6.5 shows the generated motion is matched

with a 3D actor in MotionBuilder.

Section 6.4. Placing Virtual Character Back into th e Real Video 97

Viewer

Figure 6.5. Match the generated motion which is represented by cer­
tain points (denote as blue points) on the body onto a 3D actor.

2. Rendering the animation sequence as .avi file using Render op­

tion under File in MotionBuilder.

3. Importing the animation sequence, the real video sequence and

the background sequence into Shake using the Fileln node from

the Image Tool tab (Figure 6.6). Further details can be found

in [117].

4. Using the relevant tools button, such as Resize, Over, Subtract

and ColorMatch to create the animation video (Figure 6.7).

Further details can be found in [117].

5. Saving the animation video to the disk using the FileOut node

from the Image Tool tab.

Section 6.5 . Experim ents w ith 3D M oCap Data 98

Figure 6.6. The animation sequence, the real video sequence and the
background sequence are imported to Shake.

During this process, a lighting system1 must be created to simulate

the light in the original real video and use alpha channels in a digital

composite program to generate occlusions, when the 3D character is

occluded by the real character in the video.

6.5 Experiments with 3D MoCap Data

In this section, three experiments are conducted, each with a different

type of motion: two people shaking hands, one person pulling another

person, and one person pushing another person.

1T h e p rocess o f c re a tin g a ligh ting sy s te m is com plex , m o re d e ta ils a b o u t th a t
can b e found in [117]

Section 6 .5 . Experiments with 3D M oCap Data 99

Figure 6.7. The process of producing the animation video.

6.5.1 Generating Algorithm

In each experiment, the training data consisted of seven MoCap data

sequences with two individual, with a total of around 1600 pose vectors.

Each experiment consisted of the following steps.

1. PCA is performed on the data set representing the motion of

two people, keeping 90% of the eigenenergy (seven dimensions

remain) and project the data set in the reduced dimensionality

eigenspace.

2. A dual-input HMM is then trained on the above data set depicting

interactive behaviour of two persons.

3. A trellis data structure is built for generating motion data.

4. A response behaviour for a virtual character is generated using

the dual-input HMM and working with the .standard Viterbi algo-

Section 6 .6 . A ssess in g th e A ccu racy o f th e G enerated B ehaviour 100

rithm or the windowed Viterbi algorithm as described in Section

6.3.

5. The virtual character is inserted into real video sequence.

6.5.2 Animation Video Sequences

Selected frames from the generated video sequences are shown in Fig­

ures 6.8, 6.9 and 6.10. A selection of generated video sequences are

available in the attached CD as well. The videos in folder G enerated

results - standard are generated using the standard Viterbi algo­

rithm, and the videos in folder G enerated results - w indow ed are

generated using the windowed Viterbi algorithm.

6.6 Assessing the Accuracy of the Generated Behaviour

In the following experiments the performances of the standard Viterbi

algorithm and the windowed Viterbi algorithm are compared when gen­

erating interactive behaviours for a virtual character. To do so, the Eu­

clidean distance [118] are calculated between original motion and the

generated motion generated by both approaches to assess the accuracy

of the generated behaviour.

A dual-input HMM was trained on 3D MoCap data representing

three different types of motion of two persons: handshaking, one person

pulling another person, and one person pushing another person. Given

a sequence of MoCap data extracted from video sequence for person

A, we generated interactive motion for person B using the standard

Viterbi algorithm and the windowed Viterbi algorithm (we choose the

length the window size to be 10, which was determined empirically).

Section 6 .6 . A ssessing th e A ccuracy o f th e Generated Behaviour 101

Figure 6.8. Interactions with virtual character (Handshake be­
haviour).

Section 6.6. A ssessing th e A ccuracy o f th e Generated Behaviour 102

Figure 6.9. Interactions with virtual character (Pushing behaviour).

Section 6 .6 . A ssessing th e A ccuracy o f th e G enerated Behaviour 103

Figure 6.10. Interactions with virtual character (Pulling behaviour)

Section 6 .6 . A ssessing th e A ccuracy o f th e Generated Behaviour 104

Figures 6.11 - 6.19 show the Euclidean distance between the original

motion and the generated motion when using the standard Viterbi al­

gorithm and the windowed Viterbi algorithm on three different types

of motion. Each type of motion includes three different sequences (Se­

quence 1, Sequence 2 and Sequence 3), which are captured by the same

person on different times.

Error of the generated behaviour using the standard Viterbi and the windowed Viterbi

 S tandard Viterbi

140

120

E
E
s
C

o
croCl)
2
oaLU

120 140 160
Number of Frame

Figure 6.11. Error of the generated behaviour (in mm). Shaking
hands behaviour (Sequence 1). The error of generated behaviour using
the standard Viterbi algorithm is shown in the solid blue line, the pink
dash line is for using the windowed Viterbi algorithm.

From these figures, the following conclusions are made:

1. In Figures 6.11 - 6.19, the error of the generated behaviour using

the standard Viterbi algorithm is shown in the solid blue line.

The pink dash line shows the error of generating behaviour using

the windowed Viterbi algorithm. It is easy to see the errors of

generating behaviours using both algorithms are similar. It means

the generated motion using the windowed Viterbi algorithm is as

Section 6 .6 . A ssessing th e A ccuracy o f the Generated Behaviour 105

Error of the g en e ra ted behaviour using the standard viterbi and th e window ed Viterbi
400

—— S tandard Viterbi
— — W indowed Viterbi350

300

J= 250

200

o 150

100

50

100
N um ber of F ram e

20 40 60 80 120
F ram e

140 160 180 200

Figure 6.12. Error of the generated behaviour (in mm). Shaking
hands behaviour (Sequence 2). The error of generated behaviour using
the standard Viterbi algorithm is shown in the solid blue line, the pink
dash line is for using the windowed Viterbi algorithm.

Error of the genera ted behaviour using th e standard viterbi an d th e w indow ed Viterbi
350

■ S tandard Viterbi
— — — W indowed Viterbi

300

250

200

S 150

100

50

20 40 60 80 100 120 140
N um ber of Fram e

160 180 200 220

Figure 6.13. Error of the generated behaviour (in mm). Shaking
hands behaviour (Sequence 3). The error of generated behaviour using
the standard Viterbi algorithm is shown in the solid blue line, the pink
dash line is for using the windowed Viterbi algorithm.

Section 6 .6 . A ssessing th e Accuracy o f th e Generated Behaviour 106

Error of th e g en e ra ted behaviour using the standard Viterbi and the w indowed Viterbi
18 0

S tandard Viterbi
W indowed Viterbi16 0

14 0

120

60

4 0

20

4 0 60
Number of F ram e

8 0
Fram e

100 12020 140

Figure 6.14. Error of the generated behaviour (in mm). Pulling
behaviour (Sequence 1). The error of generated behaviour using the
standard Viterbi algorithm is shown solid in blue line, the pink dash
line is for using the windowed Viterbi algorithm.

Error of th e g en e ra ted behaviour using the standard viterbi an d th e w indow ed Viterbi
140

-----------S tandard Viterbi
— — — W indowed Viterbi

120

100
E
_E

80

S

60
13LU

4 0

20

60 80 100 120
N um ber of Fram e

20 4 0 1 4 0 160 180 200

Figure 6.15. Error of the generated behaviour (in mm). Pulling
behaviour (Sequence 2). The error of generated behaviour using the
standard Viterbi algorithm is shown solid in blue line, the pink dash
line is for using the windowed Viterbi algorithm.

Section 6 .6 . A ssessing th e Accuracy o f th e Generated Behaviour 107

Error of th e g e n e ra te d behav iour using th e s tan d a rd viterbi an d th e w indow ed Viterbi
160

— — S tan d a rd Viterbi
— W indow ed Viterbi

140

120

100

80

60

40

20

20 40 60 80
N um ber of F ram e

100
of

120 140 160 180 200
N um ber

Figure 6.16. Error of the generated behaviour (in mm). Pulling
behaviour (Sequence 3). The error of generated behaviour using the
standard Viterbi algorithm is shown solid in blue line, the pink dash
line is for using the windowed Viterbi algorithm.

Error of the genera ted behaviour using the stan d a rd viterbi and th e w indow ed Viterbi
500

— ■■ S tandard Viterbi
---------- W indowed Viterbi450

400

350

300

250

150

100
50

60 80 100
Number of Frame

1 2 0 140 160 180 20020 40

Figure 6.17. Error of the generated behaviour (in mm). Pushing
behaviour (Sequence 1). The error of generated behaviour using the
standard Viterbi algorithm is shown in solid blue line, the pink dash
line is for using the windowed Viterbi algorithm.

Section 6 .6 . A ssessing th e Accuracy o f the Generated Behaviour 108

Error of th e g en e ra ted behaviour using the standard viterbi and th e w indowed Viterbi
300

— St andar d Viterbi
— — W indowed Viterbi

250

200

£ 150

i3 100

50

20 40 60
N um ber of Fram e

80 1000

Figure 6.18. Error of the generated behaviour (in mm). Pushing
behaviour (Sequence 2). The error of generated behaviour using the
standard Viterbi algorithm is shown in solid blue line, the pink dash
line is for using the windowed Viterbi algorithm.

Error of the g enera ted behaviour using the standard viterbi and th e w indow ed Viterbi
250

S tandard Viterbi
— - W indowed Viterbi

200

T 150

100

50

40 80
N umber of Fram e

60 100 120 14020
N umber

Figure 6.19. Error of the generated behaviour (in mm). Pushing
behaviour (Sequence 3). The error of generated behaviour using the
standard Viterbi algorithm is shown in solid blue line, the pink dash
line is for using the windowed Viterbi algorithm.

S ection 6 .7 . P ercep tua l E valuation 109

good as the motion generated using the standard Viterbi. Hence,

it looks real and natural in all of the generated sequences.

2. From Figures 6.11 - 6.19, it is possible to see tha t the generated

motion using the windowed Viterbi algorithm has a small delay

compared with the generated motion using the standard Viterbi

algorithm. However, this delay is not noticeable in the generated

motion sequences.

3. Although the error for the standard Viterbi algorithm is similar

in most frames, in some frames the windowed Viterbi algorithm

produces smaller error. After inspecting the generated motion

sequences visually, we found that such frames corresponded to

sudden changes in the motion. We conclude th a t the windowed

Viterbi algorithm can cope with sudden changes in motion bet­

ter as it uses less history of motion. In the following chapter,

we are planning to take advantage of this observation by devel­

oping a new method on finding where to split the motion data

automatically in order to improve the model of human motion.

6.7 Perceptual Evaluation

The drawback of assessing the accuracy of the generated behaviours is

that they do not address the question of whether the generated motion

are convincing form a perceptual point of view, i. e. do the generated

motion actually look convincing and realistic? In this section, the goal

was to evaluate how convincing the generated motion was and evaluate

the perception quality of the generated motions, from the point of view

of a panel of independent observers. For these purposes, nine test video

Section 6 .7 . Perceptual Evaluation 110

sequences were generated.

• Three test video sequences showed original MoCap data collected

from two persons performing handshake, pushing, and pulling

actions.

• Three test video sequences showed the generated motion using

the standard Viterbi algorithm (Chapter 6.3.1) interacts with the

original MoCap data of person A.

• In the remaining three sequences, the original MoCap data of

person A was substituted with motion data generated using the

windowed Viterbi algorithm (Chapter 6.3.2).

All videos showed only the motion of certain points on the body, not

the whole body. Figure 6.20 shows selected frames from the test video

sequences. According to Johansson’s [119] experiments in psychology

(Johansson has shown that an animation sequence consisting of a few

points placed on the joints of the articulated human body is enough to

create a perception evaluation.), the video sequences are acceptable for

visual evaluation.

p
m

a err

t
a S B

< * ■ ID

•---• ./ f~--------—A----

v .

(a) (b)

Figure 6.20. Test video sequences showed only the motion of certain
points on the body.

(C)

S ection 6 .7 . P ercep tua l E valuation 111

Each of the above video sequences was shown to ten independent

observers2. The observers were told that the videos showed the motion

data of two people performing some action, and they were asked to

answer two questions:

1. To identify the actions.

2. To comment if they noticed anything strange or unusual about

the motion of the people.

All ten subjects were able to identify the actions in all nine video

sequences correctly. Table 6.1 and Table 6.2 show the evaluation results

whose motion were generated using the standard Viterbi algorithm and

the windowed Viterbi algorithm respectively.

Table 6.1. Evaluation Results. The resulting motions are generated
using the standard Viterbi algorithm.

Motion Comments

Shaking hands 5/10 - generated motion is floaty.

Pushing 3/10 - original motion is wobbly.
1/10 - generated person did not touch
the real person.

Pulling no comments.

From these results, we conclude that both the generated behaviours

using the standard Viterbi algorithm and the windowed Viterbi al­

gorithm looked very similar to the real behaviours as they received

approximately the same amount of comments. W ith exception of, per­

haps, generated “shaking hands” motion, the observers did not notice

2U sin g t e n in d e p e n d e n t o b se rv e rs to e v a lu a te th e p e rc e p t io n q u a l i ty o f th e g en ­
e ra te d m o tio n s w as a c c e p te d in a ll m y c o n fe re n c e p u b lic a tio n s .

Section 6 .8 . Su m m ary 112

Table 6.2. Evaluation Results. The resulting motions are generated
using the windowed Viterbi algorithm.

Motion Comments

Shaking hands 2/10 - generated person did not touch
the real person at the beginning of
shaking hands.
2/10 - generated motion is wobbly.

Pushing 2/10 - generated motion is floaty.

Pulling no comments.

anything unusual about the generated motion compared against the

real motion.

6.8 Summary

In this chapter, two novel approaches were described to generate a va­

riety of complex behaviour responses for a virtual character responding

to the tracked person in real video in 3D. The model is trained on

motion capture data depicting three different interactive behaviours by

two subjects. Such data is always constrained by physical and dynami­

cal factors, thus the dimensionality of the data set needs to be reduced

using PC A before proceeding with anything else. The model is a dual­

input HMM, with two sets of states, but only one transition matrix.

The first set of states represents the poses for person A. The second

set of states represent the poses for person B using the same HMM

transition matrix.

Interactive behaviours are then generated for a virtual character on

the basis of motion of the tracked person in video. A corresponding

sequence of states is estimated in the HMM using the standard Viterbi

S ection 6 .8 . Su m m ary 113

algorithm and the windowed Viterbi algorithm. As a result, a sequence

of poses for the virtual character is obtained. In all experiments, the

generated behaviour appeared naturalistic.

In the next chapter, the further researches are described on finding

where to split the motion data automatically, in order to improve the

model of human motion for obtaining better tracking results.

Chapter 7

IMPROVING THE MODEL OF

HUMAN MOTION

7.1 Introduction

In the previous chapters, the virtual character generating system was

developed. Using this system, a 3D moving virtual character reacting

to the motion of the person in video was generated and placed back

into the original video footage. Consequently, the performances of the

standard Viterbi algorithm and the windowed Viterbi algorithm within

the virtual character generating system were compared.

The standard Viterbi algorithm requires the full observation se­

quence before the processing starts, thus making real-time processing

impossible. When the windowed Viterbi method is used instead, it does

not require the full observation sequence before the processing starts,

thus it can be used in a real-time system. Moreover, realistic generated

interactive behaviours can still be obtained.

By analysing the generated behaviours in Figures 6.11, - 6.19, we

found that the error for the standard Viterbi algorithm is similar in

most frames. In some frames the windowed Viterbi algorithm produces

smaller error. After inspecting the generated motion sequences visually,

114

S ection 7 .1 . In troduction 115

we found that such frames corresponded to sudden changes in the mo­

tion. We concluded tha t the windowed Viterbi algorithm can cope with

sudden changes in motion better as it uses less history of the motion.

Blake et al. [120] also introduced a new segmentation method based

on HMM to deal with problems of the shadows of vehicles. The method

performed accurate segmentation of the foreground objects from back­

ground objects and shadows. Then the HMMs are employed to deal

with three different categories including background, foreground and

the shadows of vehicles. However, they approximate the distribution of

the background and shadow by Gaussian densities and the distribution

of the foreground as a uniform probability density. Thus, the model

parameters of each HMM are estimated from a particular learning se­

quence in the learning process. While in the segmentation process, one

series of optimal states is found for each HMM over time.

In this chapter, we take advantage of our observation in the previous

research and the idea of Blake’s work by developing a new method

on finding the place to split the motion data automatically in order

to improve the model of human motion for obtaining better tracking

results. Figure 7.1 presents the general idea of the work contained in

this chapter.

To do so, the combined model trained on the particular motion data

is introduced. The combined model employed is based on the following

premise. When a complex sequence of MoCap data representing motion

of two persons contains several different behaviours together (normally

it is a high dimensional data set), such as walking, pushing, running

and jumping. We would like to split the complex motion sequence to

several subsequences. Figure 7.2 shows an example of splitting a com-

Section 7 .1 . Introduction 116

HMM n

HMM 2

HMM 1

Motion n

Motion 2

Motion 1 The
Combined

HMM

3D Motion
Data for

one person

Separate
Motion Data

Automatically

Reduce
Dimensionality
(Eigen Model)

Tracking Motion
of a Person in

Real Video

Figure 7.1. The general idea of the work contained in this chapter.

plex sequence data to subsequences. The statistical models have been

trained on different subsequences of motion data and then fused models

together, we wish the combined model can represent the data distri­

butions more accurately. Thus, we may obtain better tracking results

when tracking the motion of a person in real video using this combined

model. We can improve on the above assumption by comparing the per­

formance of the tracking results when using the combined model and

the normal model (a model trained on 3D MoCap data representing

the complex motion at once).

In this chapter, a novel method is presented for finding where to split

the motion data automatically in Section 7.2. The combined HMM

trained on the split data sequence is then introduced in Section 7.3.

The detail of the combined HMM and the whole process of applying

on the MoCap data are explained in Section 7.4. In Section 7.5, the

tracking results and the performance analysis are presented, followed

by the summary in Section 7.6.

Section 7 .2 . Sp litting Com plex M otion D ata A utom atically 117

Walking Pushing Running Jumping

Automatically split
motion data

Walking Pushing Running Jumping

A complex sequence
MoCap data of a
person's motion

Four split data
subsequences

Figure 7.2. Split a complex data sequence to subsequences.

7.2 Splitting Complex Motion Data Automatically

Previously in Chapter 6 , human interactive behaviours for a virtual

character were generated using the standard Viterbi algorithm and the

windowed Viterbi algorithm. The performances of the standard Viterbi

algorithm and the windowed Viterbi algorithm were compared. We do

so by calculating the Euclidean distance [118] between original motion

and the motion generated by both approaches to assess the accuracy

of the generated behaviour. Figure 7.3 shows the Euclidean distance

between the original motion and the generated motion when using the

standard Viterbi algorithm and the windowed Viterbi algorithm on

pushing behaviour.

Although the error of the standard Viterbi algorithm is similar in

most of the frames, in some frames the windowed Viterbi algorithm

produces smaller error, such as at frames 46, 97 and 133 respectively

(as black dash lines shown in Figure 7.3). These frames corresponded

to sudden changes in the motion. Therefore, the windowed Viterbi

algorithm can be used to find sudden changes in the complex motion

sequence. In this section, this observation is exploited by developing

Section 7 .2 . Splitting Complex M otion D ata Autom atically 118

E rro r o f th s g e n e ra te d b e h a v io u r u s in g th e s ta n d a rd v ite rb i a n d th e w in d o w e d Viterbi
500

 S ta n d a rd Viterbi
 W in d o w ed Viterbi450

400

350

c 300

c 250

200

150

100

14020 40 60 80 00
N u m b er o f F ram e

120 160 180 200

Figure 7.3. Error of the generated behaviour (in mm). Pushing be­
haviour. The error of generated behaviour using the standard Viterbi
algorithm is shown in blue solid line, the pink dash line is for using the
windowed Viterbi algorithm. The black dash lines show the place to
split the motion.

a new approach for splitting the complex motion data automatically.

Figure 7.4 shows an illustration of the splitting process. We split the

motion automatically into several motion parts using morphology op­

erators by detecting the peaks in the error curve.

The mathematical morphology methods are introduced to detect

the objects as local maxima. They can be used to obtain the essen­

tial conformation of an object through the operation of objects and

structuring elements. The primary morphological operations are di­

lation and erosion, and from these two, more complex morphological

operations such as opening and closing [118,121]. In this Chapter, the

purpose is to find the peaks in a curve, therefore the Top-Hat operator

is used to do that. The Top-Hat transformation [3] is a grey scale mor-

Section 7 .2 . Splitting Complex M otion D ata Autom atically 119

Generated motion
using the standard
Viterbi algorithm

Error of the generated behaviour

4*0

Generated motion
using the windowed

Viterbi algorithm
!»

150

too

180 200

Morphology
Operators

Split motion data

Figure 7.4. An illustration of splitting process.

phologic algorithm. It is used for finding pixel clusters that are light on

a surrounding relatively dark background. The operation is illustrated

in Figure 7.5. The original signal / is processed with opening by flat

structuring element g, and then the peaks are detected as a Top-Hat

by subtracting an opened image form the original signal.

Through this process, the position of the peaks together with de­

scription of their height are obtained. The motion sequence is then sep­

arated at those points. After inspecting the split motion data sequences

visually, we find that each of them represents a particular motion. In

the next section, a combined HMM is introduced. The idea here is to

train an HMM on each part of the split motion data and combine two

S ec tio n 7 .3 . T h e C om b in ed H idden M arkov M odel 120

(b)

HAT (f

1

1

(a) (b)

F ig u re 7.5. (a) Opening by flat structuring element; (b) Top-Hat
transformation [3].

or more separate HMMs into one. Then the combined HMM can be

used to track the motion of a person in real video.

7.3 The Combined Hidden Markov Model

In the previous section, the complex motion data sequence was split

into several subsequences automatically. Here, a combined HMM is

introduced in order to obtain better tracking results in real video. The

idea of the combined HMM is to combine two or more separate HMMs

into one [122]. Each separate HMM is trained on the da ta of a par­

ticular motion, such as walking, shaking hands or pushing. Next the

parameters of each HMM are combined together. Finally, the transi­

tion matrix of the combined HMM is updated using the Baum-Welch

Section 7 .3 . T he Combined Hidden Markov Model 121

algorithm [13]. The example structure diagram for the combined HMM

is shown in Figure 7.6. Sub-model 1 and sub-model 2 are learnt on

different parts of the split data with different numbers of Gaussians.

The combined HMM consists of all information from both sub-models,

and connected with a transition probability a from sub-model 1 to

sub-model 2.

Submodel 1

+

Submodel 2

\ / v

The combined

Figure 7.6. The example structure diagram of two simple HMMs for
the combined HMM are shown, a is the transition probability from
sub-model 1 to sub-model 2. It can be obtained using the Baum-Welch
algorithm.

Section 7 .3 . T he Com bined Hidden Markov M odel 122

Figure 7.7 shows the motion data distribution visualised in 2D for

the normal HMM which was trained on two sequences complex motion

data at once and fitted with 24 Gaussians, for example, one person

walking and shaking hands. Figure 7.8 shows the motion data dis­

tribution visualised in 2D for the combined HMM on the same data

set with the same number of Gaussians. It is clear to see the combined

HMM can cover the data distribution very well when choosing the same

number of Gaussians as the normal HMM.

Motion Data of walking and shaking hand distribution visualised in 20 for normal HMM and fitted with 24 Gaissuans
8

6

4

2

0

-2

-4

-6

■8
-8 -6 ■4 -2 0 2 4 6 8

Figure 7.7. Motion Data (walking and shaking hand) distribution
visualised in 2D for normal HMM which trained on all motion data
and fitted with 24 Gaussians. The red ellipsoids represent Gaussians
associated with a HMM state and the blue dots denote the motion data.

In the following section, the detail of combining separate HMMs

into one model is presented.

Section 7.4. T he P rocess o f Combining HMMs 123

Motion da ta ot walking and shaking hands distribution visualised in 2 0 with 24 G aussians lor the com bined HMM(

6

4

2

0

-2

-4

-e

■8
2■8 -8 -4 ■2 0 4 6 8

Figure 7.8. Motion data (walking and shaking hand) distribution
visualised in 2 D for the combined HMM and fitted with 24 Gaussians.
The red ellipsoids represent Gaussians associated with a HMM state
and the blue dots denote the motion data.

7.4 The Process of Combining HMMs

In this section, the process of combining separate HMMs into one model

is described. In this process, we need to obtain the transition probabil­

ity matrix between the separate HMMs. To do so, the following steps

are performed:

1 . Perform PCA on the 3D MoCap data representing the motion of

one person.

2 . Automatically split the complex motion sequence to several dif­

ferent motion parts using morphology operators by detecting the

peaks in the error curve (such as one part is walking, another part

is shaking hands). A detailed is described in Section 7.2.

3. Train an HMM on each particular motion data (Chapter 4).

Section 7 .4 . T he Process o f Combining HMMs 124

For example, we have two different parts of motion data, one

sequence represents walking motion [Motion!) and another se­

quence represents shaking hands motion (Motion2). Then the

first HMM (trained on Motion 1) is defined as Ai consisting of M

states

X1 = (A 1:B U7t1) (7.4.1)

The second HMM (trained on Motion2) is defined as A2 consisting

of N states

A2 = (A2,B 2,tr2) (7.4.2)

Figure 7.9 shows low-dimensional walking data (Motionl) distri­

bution visualised in 2 D and fitted with 1 0 Gaussians.

Walking data distribution visualised in 2D and fitted with 10 Gaussians
2

1

-2

-3

-4

-5

-7
-6 0 2-4 4 6 8

Figure 7.9. Motion data (walking) distribution visualised in 2D and
fitted with 1 0 Gaussians. The red ellipses represent Gaussians and the
blue dots denote the motion data.

4. Combine the parameters of each HMM which are obtained in

S e c tio n 7 .4 . T h e P r o cess o f C om b in in g H M M s 125

Step 3 and update the transition matrix using the Baum-Welch

algorithm [13]. In this step, we want to combine the parameters

of each HMM together to update the transition m atrix of the

combined HMM Ac — (A c ,B c ,7Tc)-

To update Ac we firstly need to estimate the new transition ma­

trix. The first stage of estimating the probability transition ma­

trix A c of the combined HMM Ac is to combine the two original

transition matrices A i of size M x M and A 2 of size N x N into

a single matrix A u of size n x n, where n = M + N .

A 1
Ai 0

0 A 2
E
j = 1

1 < i < n (7.4.3)

where at- are the elements of the matrix A u.

Then the initial state probability 7rc of Ac is estimated. To obtain

its values, we concatenate the two initial state probabilities and

7T2 into a single ttu in the following way:

nu = [tti 7r2] (7.4.4)

Finally, the elements of the probability transition m atrix A c and

the initial state probability 7rc of Ac are updated using the Baum-

Welch algorithm [13].

Figure 7.10 shows the transition m atrix of the normal HMM

trained on all walking and shaking hand motion at once. Figure

7.11 shows the transition matrix of the combined HMM trained

Section 7 .4 . T he P rocess o f Com bining HMMs

on the split data representing the same behaviours.

126

Figure 7.10. Transition matrix for the normal HMM (55 states).

Figure 7.11. Transition matrix for the combined HMM (55 states).

It can be observed that the transition matrix in Figure 7.11 is

S ectio n 7 .5 . E xp erim en ts w ith 3D M oC ap data 127

strongly diagonal, as there is only few more non-zero values on

the off-diagonal. It means there is few closest transition of the

cluster from current state to another state.

In the next section, the experiments with 3D MoCap data on three

different types of motion for tracking the motion of a real person in

video are presented.

7.5 Experiments with 3D MoCap data

In order to prove the hypothesis in Section 7.1, a series of experiments

for different types of motion are performed for tracking the motion of a

person in real video. The MoCap data sequences used in this chapter

are different from the MoCap data used in the previous experiments.

The new MoCap data are captured by the different person, but they

are performed the same types of motion (shaking hands, pushing and

puling).

7.5 .1 A ssessing the Accuracy o f Tracking Results o f Shaking Hands

Behaviours

In this subsection, the model is trained on the data consisting of ap­

proximately 800 frames and 90-dimensional vectors representing the

poses of two persons walking and shaking hands. The dimensionality

of the eigenspace of all data is reduced from 90 to seven1. The re­

maining seven dimensions accounts for approximately 84% of the total

eigenenergy.

1 S in ce in th e p re v io u s t r a c k in g e x p e r im e n ts th e d im e n s io n a l i ty o f th e d a t a s e t is
re d u c e d to sev en . In o rd e r to c o m p a re th e t r a c k in g re s u l ts , h e re t h e d im e n s io n a l i ty
o f t h e d a t a s e t is r e d u c e d to sev en a g a in .

S ec tio n 7 .5 . E xp erim en ts w ith 3 D M oC ap data 128

Five separate HMMs are trained in the reduced dimensionality eigen­

space, each on the vector sequences representing the different types of

motion (for example, walking, then shaking hands, then walking back to

the original place). To speed up the experiments, we choose the number

of clusters representing each kind of motion in the different five HMMs

to be equal to 15, 11, 19, 5 and 5 respectively, rather than estimate

them automatically. Then five separate HMMs are combined together

into a combined HMM. Finally, a 3D person in real video is tracked

using this combined HMM and the APF as described in Chapter 5.

Figures 7.12 (a) - (e) show the error of the tracked behaviours for

shaking hands motion when using each separate HMM respectively.

Figures 7.13 and 7.15 show the Euclidean distance between the original

video motion and the tracked behaviours using the normal HMM (a

model trained on 3D MoCap data representing the complex motion)

and the combined HMM on different video sequences. It is easy to

see that the error of the motion tracking using the combined HMM

is smaller than the error using the normal HMM in all frames. This

means the tracked motion using the combined HMM is better than the

motion tracked using the normal HMM.

7.5 .2 A ssessing the Accuracy o f Tracking Results o f Pushing B e­

haviours

In this subsection, the model is trained on the data consisting of ap­

proximately 550 frames and 90-dimensional vectors representing the

poses of a person pushing another person. The dimensionality of the

eigenspace of all data is reduced from 90 to seven2. The remaining seven

2S in ce in th e p re v io u s t r a c k in g e x p e r im e n ts t h e d im e n s io n a l i ty o f th e d a t a s e t is
r e d u c e d to sev en . I n o rd e r to c o m p a re th e t r a c k in g r e s u l ts , h e re t h e d im e n s io n a l i ty

Section 7 .5 . Experim ents w ith 3D MoCap data 129

Error o f th a tra c k in g m o tio n u s in g th a n o rm al HM M an d th a c o m b in e d HM M

V 00
J 80
.ifl

1 70 | 00u3
50

N o rm al HMM
C o m b in e d HMM

10 12
N u m b er of F ra m e

(a)

Error o f th e tra c k in g m otio n u s in g th e n o rm al HM M and th e c o m b in e d HMM100E
£ 90

N orm al HMM
C o m b in ed HM MS

i 80

I 705 00 s
UJ

50
3016 20 26

N u m b e r of F ram e
35

(b)

E rro r o f th e t ra c k in g m o tio n u s in g th e n o rm al HM M an d th e o o m b in e d HMM

8 SO
1 70 N o rm al HMM

C o m b in ed HMM
60

jj
50

50 55 60 65
N u m b e r of F ram a

E rror o f th e tra c k in g m o tio n u s in g th e n o rm al HM M and th e o o m b in e d HMM^ 100
90

80 N orm al HMM
C o m b in e d HMM70

£s
LU

SO
50

70 75 80 85 90
N u m b e r of F ram e

E rro r o f t h e tra c k in g m o tio n u s in g th e n o rm al HM M and th e c o m b in e d HMM
100

N orm al HMM
C o m b in e d HMM

80
.it

1 -
2 002
m 50

02 96 98 100 102 104 108
N u m b e r of F ram e

(C)

(d)

(e)

Figure 7.12. Error of the tracked behaviours (in mm). Shaking hands
behaviours (Sequence 1). (a) - (e) show the error of the tracked be­
haviours when using each separate HMM respectively.

dimensions accounts for approximately 83% of the total eigenenergy.

Four separate HMMs are trained in the reduced dimensionality

o f th e d a ta se t is red u ced to seven again .

Section 7 .5 . Experiments with 3D M oCap data 130

Error of the tracking motion using the normal HMM and the combined HMM
100

 Normal HMM
--------- Combined HMM95

90

E* 85
E,
8 80

I 75
c30)
■a
oa

70

ix i 6 5

60

5 5

50
20 4 0 6 0

Number of Frame
80 100 120

Figure 7.13. Error of the tracked behaviours (in mm). Shaking hands
behaviours (Sequence 1). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

Error of the tracking motion using the normal HMM and the combined HMM
160

- Combined HMM
---------- Normal HMM140

120E
E
8c5
£2Q
c33T3

100

8 0

4 0

200 20 40
Number

60
Number of Frames

80 100

Figure 7.14. Error of the tracked behaviours (in mm). Shaking hands
behaviours (Sequence 2). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

Section 7 .5 . Experim ents with 3D MoCap data 131

Error of the tracking motion using the normal HMM and the combined HMM
160

155

150
E
E 145
8c
03

g 140
cB-g73=3 135 -
Ui

130
---------- Normal HMM

Combined HMM125

120
10 20 30 40 50

Number of Frame
60 70 80 90

Figure 7.15. Error of the tracked behaviours (in mm). Shaking hands
behaviours (Sequence 3). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

eigenspace, each on the vector sequences representing the different type

of the motion (for example, walking, pushing, then walking back). To

speed up the experiments as in previous section, we choose the number

of clusters representing each kind of motion in the different four HMMs

to be equal to 10, 7, 11 and 5 respectively, rather than estimate them

automatically. Then four separate HMMs are combined together into

a combined HMM. Finally, a 3D person in real video is tracked using

this combined HMM and the APF as described in Chapter 5.

Figures 7.16 (a) - (d) show the error of the tracked behaviours for

pushing motion when using each separate HMM respectively. Figures

7.17 and 7.19 show the Euclidean distance between the original video

motion and the tracked behaviours using the normal HMM (a model

trained on 3D MoCap data representing the complex motion) and the

combined HMM on different video sequences. It is easy to see that

Section 7 .5 . Experiments with 3D M oCap data 132

the error of tracking motion using the combined HMM is smaller than

the error using the normal HMM in all frames. Figure 7.17 shows the

much better tracking results (more similar to the original video motion)

are obtained using the combined HMM from frame 60 to 80 (part of

pushing action).

Error of the tracking motion using the normal HMM and the combined HMM
100

Normal HMM
Combined HMM80

t 60
3 I 80 2 4 6 10 12 14 16

(a)

Number of Frame
Error of the tracking motion using the normal HMM and the combined HMM

Normal HMM
Combined HMM

(b)

30 35 40 45 50
Number of Frame

Error of the tracking motion using the normal HMM and the combined HMM

Normal HMM
Combined HMM

65 70
Number of Frame

Error of the tracking motion using the normal HMM and the combined HMM
120

100

80 Normal HMM
Combined HMM

^ 60 L 86 88 90 92 94 96 98 100

(d)

Number of Frame

Figure 7.16. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 1). (a) - (d) show the error when using each separate
HMM respectively.

Section 7.5. Experiments with 3D MoCap data 133

Error of the tracking motion using the normal HMM and the combined HMM
140

— Normal HMM
— - Combined HMM130

120

100

80

70

60
20 40

Number of Frame
60 80 100

Figure 7.17. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 1). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

Error of the tracking motion using the normal HMM and the combined HMM
140

135

130

120

B 115

110

---------- Normal HMM
— Combined HMM105

100
20 40 60

Number of Frames
80 100

Figure 7.18. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 2). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

Section 7 .5 . Experiments with 3D M oCap data 134

Error of the tracking motion using the normal HMM and the combined HMM
155

Normal HMM
Combined HMM150

145

^ 140

135

S 130

125

120

115
20 30 40

Number of Frame
50 60 70 80 90 100

Figure 7.19. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 3). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

7.5.3 Assessing the Accuracy of Tracking Results of Pulling Be­

haviours

As in the experiment in the previous subsection, here the model is

trained on the data consisting of approximately 500 frame, 90-dimensional

vectors representing the poses of a person pulling another person. The

dimensionality of the eigenspace of all data is reduced from 90 to seven3.

The remaining seven dimensions accounted for approximately 81% of

the total eigenenergy.

We trained three separate HMMs in the reduced dimensionality

eigenspace, each on the vector sequences representing the different type

of the motion (for example, walking, pulling, then walking back). We

choose the number of clusters representing each kind of motion in the

3S ince in th e p rev ious track in g exp erim en ts th e d im en s io n a lity o f th e d a ta se t is
red u ced to seven. In o rd e r to com pare th e tra c k in g re su lts , h e re th e d im en sio n a lity
o f th e d a ta se t is red u ced to seven again .

Section 7 .5 . Experiments with 3D M oCap data 135

different three HMMs to be equal to 8, 14 and 6 respectively, rather

than estimate them automatically to reduce the running time. Three

separate HMMs are then combined together into a combined HMM. Fi­

nally, a 3D person in real video sequence is tracked using this combined

HMM and the APF as described in Chapter 5.

Error of the tracking motion usign the normal HMM and the combined HMM
90

Normal HMM
 Combined HMM13 70

50 14 20
Number of Frame

(a)

Error of the tracking motion usign the normal HMM and the combined HMM
90

70

 Normal HMM
Combined HMM

60

50 40 50 55 60 9525 30 35

(b)

Number of Frame

Error of the tracking motion usign the normal HMM and the combined HMM
90

 Normal HMM
Combined HMM

w 50
75 80 85

Number of Frame
70 90 95 100

(c)

Figure 7.20. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 1). (a) - (c) show the error when using each separate
HMM respectively.

Figures 7.20 (a) - (c) show the error of the tracked behaviours

for pulling motion when using each separate HMM respectively. Fig-

Section 7.6. Summary 136

ures 7.21 and 7.23 show the Euclidean distance between original video

motion and the tracked behaviours using the normal HMM (a model

trained on 3D MoCap data representing the complex motion) and the

combined HMM on different video sequences. As in the previous sec­

tion, it can be observed that the tracked motion using the combined

HMM is more accurate than the motion tracked using the normal

HMM.

Error of the tracking motion usign the normal HMM and the combined HMM
90

 Normal HMM
—— Combined HMM85

80

“ 75

70

E 65

60

55

50
20 40

Number of Frame
60 80 100

Figure 7.21. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 1). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

7.6 Summary

In this chapter, a new approach is developed for finding where to split

the complex motion data automatically in order to improve the model

of human motion for obtaining better tracking results. To do so, the

complex motion sequence is first divided into several subsequences. The

combined HMM is then introduced, which learns a model of human

Section 7 .6 . Summary 137

Error of the tracking motion using the normal HMM and the combined HMM
110

Combined HMM
---------- Normal HMM105

100
95

90

85

80

75

70

65

600 20 40 60
Number of Frames

80 100 120

Figure 7.22. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 2). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

Error of the tracking motion using the normal HMM and the combined HMM
1 1 0

 Normal HMM
Combined HMM100

90E
E
8a 80n<5
b

70

50

400 20 40
Number of

60
Number of Frame

80 100

Figure 7.23. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 3). The error of the tracked behaviours using the
normal HMM is shown in the black line, the pink line is for using the
combined HMM.

S e c tio n 7 .6 . Sum m ary 138

motion on the different parts of the split data and combines them into

one model. Next, the combined HMM is applied to track the motion of

a person in real video. Through the comparison of the tracking results,

it is clear that the combined HMM can be used to improve the normal

HMM, and hence better tracking results are obtained.

Chapter 8

CONCLUSION AND FUTURE

RESEARCH

1 he key points of the work presented in this thesis are reviewed, fol­

lowed by a summary of the main contributions and the future research.

8.1 Conclusion

The work in this thesis was motivated by the desire to develop methods

for creating a 3D virtual character capable of responding to actions

obtained from observing a real person in video in a realistic and sensible

manner. Virtual characters are becoming more and more popular and

used in many applications such as character animation, computer games

and virtual environments.

In this research, a “virtual character generating system” was de­

veloped, and used for generating interactive behaviours for a virtual

character responding to a real person in real video. The system builds

an accurate model of human motion, tracks and analyses the behaviour

of a real person in a video input, and produces a fully articulated 3D

character interacting with the real person in the video input. Next, a

motion capture system was described, the PhaseSpace Motion Digitizer

139

S ec tio n 8 .1 . C onclusion 140

System which was set up and used for capturing 3D MoCap data. Af­

terwards, an accurate model of human motion represented by an HMM

was learnt, where each state in the HMM is represented by a single

Gaussian. This framework can model the data distribution well and

can be used for predicting the poses in the video frame.

A method for tracking a 3D articulated human person in real video

sequences was then presented. The tracking method is based on particle

filtering, namely the annealing particle filtering (APF). The APF is

capable of recovering full articulated body motion efficiently and leads

to very robust tracking results.

Next, two approaches for generating interactive behaviours for a vir­

tual character were considered: the standard Viterbi algorithm and the

windowed Viterbi algorithm. Both methods were presented based on

the dual-input HMM. The dual-input HMM was learnt on two persons’

MoCap data, with two sets of states. It can be used for synthesising

and estimating the motion data for person B from the motion data for

person A by statistically encoding relations between them to produce

animation for a virtual character. Both the standard Viterbi algorithm

and the windowed Viterbi algorithm can be used for generating very

similar behaviours to the real behaviours, and it was shown th a t the

windowed Viterbi algorithm can be used for generating behaviours in

real-time. The generated motion was also mapped to a virtual charac­

ter and then a number of animations of a virtual character interacting

with a real person in an original video sequence were produced. These

animations can be found on the attached CD. The produced animations

have smooth, natural behaviours.

Finally, a novel approach was developed for finding the places to

S ec tio n 8 .2 . Future R esearch 141

split the complex motion data automatically in order to improve the

model of human motion for obtaining better tracking results . The

combined HMM was then introduced. The idea of this model is to

train the separate models on the split motion data and then combine

them together. Experimental results showed that the combined HMM

trained on the split data can represent the data distribution more accu­

rately than the normal model trained on 3D MoCap data representing

the complex motion at once. Next this model was applied to track

3D articulated human motion in the video sequences (the same video

sequences as Chapter 5).

In summary, the main contributions in this thesis are:

• A novel approach for generating intelligent behaviours for fully

articulated 3D virtual characters on the basis of visual analysis

of the motion of a real person in ordinary 2D video using the

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual

characters using the windowed Viterbi algorithm, capable of doing

so in real-time.

• A novel method for improving the model of the human motion due

to the ability to split the complex human motion automatically.

8.2 Future Research

Many opportunities for future research await to be explored. In Chap­

ter 4, an HMM was introduced to learn the motion of real people.

Because the MoCap data used in this work are high-dimensional, it is

necessary to reduce the dimensionality using PC A before the processing

S e c tio n 8 .2 . Future R esearch 142

starts. When modelling human motion in the reduced dimensionality

eigenspace, there is a balance between keeping detail in the model and

the growing dimensionality the of the eigenspace. The more detail we

keep, the higher is the dimensionality of the eigenspace representing

the data distribution. It is possible to extend this model to the hierar­

chical model [46,123] in order to keep as much of detail in the model

as possible. The idea of the hierarchical model of human motion comes

from analysing the motion of different body parts as the whole body

performs some action. Through the use of the hierarchy, we expect to

improve the accuracy of the model of human motion.

The windowed Viterbi algorithm in Chapter 6 has been utilised for

generating interaction behaviours for a virtual character responding

to the tracked person in real video. The window size was fixed in

this algorithm. This can possibly be extended to incremental Viterbi

algorithm [124]. That means the length of window size can be increased.

The incremental Viterbi algorithm is shown to reduce memory usage

in long state sequence problems compared with the standard Viterbi

algorithm.

As we described before, virtual characters are becoming more and

more popular and used in many applications such as character ani­

mation, computer games, films and virtual environments. It can also

be extended to the application in television programme and education

area. Those virtual humans would interact with people through speech

and gestures. In the television programme, virtual presenters can be

created and used for presenting programmes in different languages. In

the education area, virtual humans can be used for providing tutor

support for students in e-learning courses by answering questions and

S e c tio n 8 .2 . F u ture R esearch 143

offering help with problems. This would make the learning process with

computers more enjoyable for students [125]. In a word, realistic inter­

active virtual characters will almost certainly populate our near future,

guiding us toward opportunities to learn, enjoy, and consume [87].

Appendix A

PHASESPACE MOTION

DIGITIZER SYSTEM

PhaseSpace is a high resolution, real time optical motion capture sys­

tem. A PhaseSpace motion digitizer captures complex motion data in

real-time using advanced hardware and software technology [4]. Motion

capture is accomplished by placing the PhaseSpace cameras around an

area, and moving subjects with the LED markers attached to them.

The cameras detect the positions of the LED markers and transm it

information to a central computer, that processes the data and cal­

culates and stores the actual X , Y and Z positions for the markers.

Then, the marker positional data can be used to do motion analysis

and applications.

The basic PhaseSpace system consists of:

• CCD (Charge Couple Device) video cameras

• LED drivers

• Infra-red LEDs

• A HUB into which the cameras and LED drivers connect

• A server computer which runs Linux and communicates with the

144

145

HUB

• Calibration objects

• Server software

• Dynamic link libraries th a t enable a user to construct client pro­

grams

The PhaseSpace motion digitizer system consists of a number of

specialised CCD (Charge Couple Device) cameras. Each “camera” is

high-speed at up to 480 fps and high-resolution with 3, 600 x 3, 600

(1 2 Megapixel), and used to measure the position of infra-red LED

markers in real time. Each LED marker placed on the human body

should be visible from at least two cameras at any time, or preferably

from three cameras. All LEDs are attached to LED strings which are

connected to an LED drive unit. Figure A .l shows the layout of the

whole PhaseSpace product. For the full body motion capture, the best

place to locate cameras is in a circular configuration with the field of

view being in the centre of the circle. The greater the field of view

desired, the larger the circle should be.

146

IMPULSE CAMERAS
MAX 24/SERVER

SERVER

NTROLLER*^^ ~^BASE!BASESTATION

ACTIVE LEDS
MAX 72/CONTROLLER

Figure A .I. PhaseSpace products layout [4].

A p p e n d i x B

MOTION BUILDER: ACTOR

MotionBuilder has an intermediate “skeleton” called an Actor. It’s a

set of constraints that will be the source motion for the character. First

we have to match the marker points to corresponding areas of the actor.

A summary of the match the markers to the actor is now provided [126].

1. Importing marker data.

The first thing to do is bring in a .trc file (Figure B.l). Go to

File -> Import . . . and select Motion Analysis (*.trc) as

the file type.

-- -
Viewer

U View I L Display |

jT]

f - A ..

u y i
m

--------------- -— *V— ---------------- — i- .________
....- -

r
•
*L L d o.oo d il o.oo o.oo

Figure B .l . 3D motion data

2. Bringing in Actor.

147

148

Next, we need to drag an actor into the space. The Actor icon is

located in the Templates section of the Asset Browser window

(Figure B.2).

A sset Browser [_

A sset Browser | Pose Controls | Properties

+ Support _Files
— flSB Templates

— —
— ®!» Commands
— e«a Constraints
— Devices
— «ai Elements

gobo
Materials

1— an Scripts
1— a a Shaders

- A *
Actor

o
Actor face

Character

V #
Character face

Figure B.2. Asset Browser window

Within Templates directory is the Characters section. Within

that are both Actor and Character. For this part, we only want

to use Actor.

3. Matching actor to markers.

Translate, Rotate and Scale Uniform Actor and Actor’s segments

until they match (Figure B.3). The Translate, Rotate and

Scale Uniform icons are on the right side of Viewer.

Note:

• In Viewer, Ctrl+1 gives a single view. Ctrl+2, Ctrl+3 and

Ctrl+4 give two, three and four views respectively.

• Ctrl+Z can used to undo the last operation.

149

Viewer

Display

•79.07

Figure B.3. Match markers and actor

4. Creating a marker set.

Once the actor is fitting within the markers, we need to decide

which markers go with which part of Actor.

In the Navigator window, click on Actor under Actors. Ac­

tor Setting should appear. Click on M arkerSet.. . and select

create from the drop down menu (Figure B.4 (a)). Now we can

see different areas representative of the head, arm, etc*, with the

number 0 (Figure B.4 (b)). We need to select markers in the

Viewer and drop them into the correct locations (Figure B.4

(c)) .

Notes:

• Alt-drag is used for dropping the markers to the correct

location.

• The number of the markers in the hip of the actor must be

150

h^winitliirI'OTitjaiui
Navigator j story Dopesheet FCurvas |

7 » e r s . . . | [~ , > | j i [+ - '

+ ‘A* Actors
+ V Audio

+ - Lights
H Materials

♦ V Opttcats

I Active j | lock < N oW «t» rS at> / | |_ Market Set^

output Marker S e t : <No Marker S e ts

(a)
T?

Navigator Story | Dopesheet , FCiaves

Actor Sctthgs

4 k' Actors
M m r Set

H Groups

Matm m
♦ Y O pticak

Poses
♦ ® ShadersTakes

r Active I r Lock

n
1

y | I MarfcarSet..,'

Output Marker S e t : <No Marker Set>

(b)

■
Dopesheat | F G jv es

+ ♦ Scene
■f ? ; Actors
+ ~k MarkerSet
+ 4 ; Audo
+ S< Cameras

Constraints
a t Groups
& Sets

+ - lights
+ 1 Materials
+ V optic als

Poses
-*■<£ Shaders
+ g Takes

Actor Settings |

I- Active ! Snap 11- Lock I

I 1I *Pi fcr.t

Model Oriented

p l jh e a d

p ljh e a d

T R O p ljb e a d r
TRC:pl_head r

(C)

Figure B.4. Navigator window for create actor

151

at least 3.

• If wrong markers are dragged in the scene, they can be

deleted.

• If Alt-drag does not work, go to Settings -> Keyboard

Configurations and select Motionbuilder.

5. Exporting the marker set.

Click on M arkerSet... in Actor Setting and select Export

from the drop down menu (Figure B.5). The marker set will be

saved as a .hik file.

Navigator

Navigator | story | Dopesheet | FCurves

Rters... j; = j X aiN
+ ♦ Scene
+ •£ Actors
+ •£ MarkerSet
+ 4 Audio
+ Bi Cameras

** Constraints
1% Croups
B Sets

■f ? Lights
- f 0 Materials
* V Opticals

Poses
+ ® Shaders

Takes

Actor Settings

r Active | Snap 1 r Lock i Marke6et

f \

t

pl_rhead

pljhead

Y I MarkerSet..,

Model

TRC:pl_rhead

TRCplJhead

Output Maker S et: <NoMarker5et>

Create r
Rename
Import
Export
M ete

Figure B.5. Exporting the marker set

Note: Re-using the marker set. The marker set (.hik file) will be

used repeatedly to apply to an actor with other motions. This

is helpful because we do not have to go through Steps 3 or 4 for

every motion.

(a) Import a new .trc file and a new Actor.

152

(b) In the Navigator window, click on Actor under Actors.

Click on Marker S e t . . . in the Actor Settings and select

import from the drop down menu (Figure B . 6 (a)).

(c) Select all of the optical data points, alt-drag, and drop them

into M odel part of the Reference section of the actor (Fig­

ure B . 6 (b)). Then M otionBuilder drops all the markers

into the correct place (Figure B . 6 (c)).

6 . Activate the character.

Activate the character by clicking on Actor in Actor Setting

and play the animation.

153

Navigator | Story Dopesheot F Curves |

H te w - i| *= | > | T P T T I Actor S e ttt*

+ ♦ Scene "
4 ~fc M a i Active
+ #; Audio mrnSSm
4 ffc Cameras M B & H

* . Constraints HRffiS
Groups

& Sets
4 - ughts
4 m Materials
- V Opdcals V f l

4 V TRClOOhcal
■j Poses EHr Sb

4 W shaders HEffig
4 * Takes H R H 9 f

Model

Import

output Marker s a t : 1 <No Marker 3et>

(a)

Nevta ator

4 ♦ Scene
4 i r Actors
4 VC Marker Set
4 Audio
4 cameras

* , Constraints
H Groups
A Sets

4 - Utfks
4 * Materials
— V optlcab

4 V IRC : optical
Poses
Shaders

4 ® Takes

FCcrves |

Actor Settkigs

I Active j] Lock

9 *

/ i

MarkerSet T | | IMarkerSet.. 1
Model Oriented I

Reference <No models r «l
p t jo r s e <No model > r
p! jrtddehio <No models r J
pl_rhip <Nomodel> r
p ljh lp <No model > r
p lju w e rle g <Nomodel> r
p ljth ig h <No model > r
P lJ e g <No model > r v l

■ ■ " t— LZJ

Output Marker S e t : <No Marker Set > '1

(b)

F Active | , , I Lock

Actor Settings

navigator

Navigator Story | Dopesbeet | FCirves

Reference

pl_torse

p ijrtddeh lp

p lj+ kp

p i j n p

pi Jupoerleg

pljth igh

P lJ e g

Output Marker S e t :

▼] 1 MarkerSet... |

Model Oriented

<No models H e» r
TRC:pl_torse jr
TRC:pl_middet*

TRC:pl_rHp

TRCsplJvp r
TRC:pl_lupperleg

TRCiplJthgh

TRC:pl J e g
— . i ..

[<No Marker Set>

(C)

Figure B.6. Re-use the market set.

BIBLIOGRAPHY

[1] J. K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,”

Journal of Computer Vision and Image Understanding (CVIU), vol. 73,

1 1 0 . 3, pp. 428-440, 1999.

[2] J. K. Aggarwal, Q. Cai, W. Liao, and B. Sabata, “Nonrigid Mo­

tion Analysis: Articulated and Elastic Motion,” Journal of Computer

Vision and Image Understanding (CVIU), vol. 70, pp. 142-156, May

1998.

[3] Y. C. Shao and L. C. Chen, “Object Segmentation in Elevation Space

Using Mathematic Morphology,” Proceedings of the 22nd Asian Con­

ference on Remote Sensing, pp. 227-232, 2001.

[4] “PhaseSpace Motion Digitizer System,” Available at

http://www.phasespace. com/, 2007.

[5] N. Johnson, Learning Object Behaviour Models. PhD thesis, School

of Computer Studies, The University of Leeds, September 1998.

[6] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic, “Style-

based Inverse Kinematics,” ACM Transactions on Graphics (TOG),

vol. 32, pp. 522-531, August 2004.

[7] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing Phys­

ically Realistic Human Motion in Low-dimensional, Behavior-specific

154

http://www.phasespace

Bib liography 155

Spaces,” ACM Transactions on Graphics Journal, vol. 23, pp. 514-521,

August 2004.

[8] “Alias MotionBuilder 6 User’s Guide,” November 2004.

[9] M. Isard and A. Blake, “CONDENSATION - Conditional Density

Propagation for Visual Tracking,” International Journal of Computer

Vision, vol. 29, no. 1, pp. 5-28, 1998.

[1 0] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tuto­

rial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian

Tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174-

188, February 2002.

[1 1] A. O. Balan, L. Sigal, and M. J. Black, “A Quantitative Evalua­

tion of Video-based 3D Person Tracking,” Proceedings of the 14th In­

ternational Conference on Computer Communications and Networks,

pp. 349-356, October 2005.

[12] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Cap­

ture by Annealed Particle Filtering,” Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 126-

133, 2000.

[13] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition,” Proceedings of the IEE E , vol. 77,

pp. 257-286, February 1989.

[14] M. Pilu, “Video Stabilization as A Variational Problem and Numer­

ical Solution with the Viterbi Method,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), vol. 1, pp. 625-630, 2004.

Bib liography 156

[15] N. I. Badler, “Real-Time Virtual Humans,” Proceedings of 5th Pa­

cific Conference on Computer Graphics and Applications, pp. 4-13,

October 1997.

[16] T. K. Capin, H. Noser, D. Thalmann, I. S. Pandzic, and N. M.

Thalmann, “Virtual Human Representation and Communication in the

VLNet Networked Virtual Environments,” IEEE Computer Graphics

and Applications, vol. 17, pp. 42-53, March 1997.

[17] V. B. Zordan and N. C. V. D. Horst, “Mapping Optical Motion Cap­

ture Data to Skeletal Motion using a Physical Model,” Proceedings of

ACM SIGGRAPH/Eurographics symposium on Computer animation,

pp. 245-250, 2003.

[18] M. Meredith and S. Maddock, “Adapting Motion Capture D ata

using Weighted Real-time Inverse Kinematics,” Comput. Entertain .,

vol. 3, pp. 5-5, January/M arch 2005.

[19] G. J. Wen, Z. Q. Wang, S. H. Xia, and D. M. Zhu, “From Motion

Capture D ata to Character Animation,” Proceedings of the AC M sym ­

posium on Virtual reality software and technology, pp. 165-168, 2006.

[20] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A Hierarchical

Model of Dynamics for Tracking People with a Single Video Camera,”

British Machine Vision Conference (BMVC), pp. 262-352, Septemeber

2002 .

[21] E. Hsu, K. Pulli, and J. Popovic, “Style Translation for Human

Motion,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 1082-

1089, 2005.

Bib liography 157

[2 2] E. Hsu, S. Gentry, and J. Popovic, “Example-based control of hu­

man motion,” Proceedings of ACM SIGGRAPH/Eurographics sympo­

sium on Computer animation, pp. 69-77, 2004.

[23] M. K. Leung and Y. H. Yang, “First Sight: A Human Body Out­

line Labeling System,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 17, no. 4, pp. 359-377, 1995.

[24] D. C. Hogg, “Model-Based Vision: a Program to See a Walking

Person,” Image and Vision Computing, vol. 1, pp. 5-20, February 1983.

[25] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “Tracking People

in Three Dimensions using a Hierarchical Model of Dynamics,” Image

and Vision Computing, vol. 20, pp. 691-700, August 2 0 0 2 .

[26] D. Thalmann, “Human Modelling and Animation,” Eurographics

’93 State-of-the-Art Reports, Chapter 7, 1993.

[27] J. M. Rehg and T. Kanade, “Model-based Tracking of Self-occluding

Articulated Objects,” Proceedings of the 5th International Conference

on Computer Vision, pp. 612-617, June 1995.

[28] L. Goncalves, E. D. Bernardo, E. Ursella, and P. Perona, “Monoc­

ular Tracking of the Human Arm in 3D,” Proceedings of the 5th Inter­

national Conference on Computer Vision, pp. 764-770, 1995.

[29] S. Park and J. K. Aggarwal, “Recognition of Two-person Interac­

tions using a Hierarchical Bayesian Network,” International Multime­

dia Conference, First ACM SIGMM International Workshop on Video

Surveillance, pp. 65-76, 2003.

B ibliography 158

[30] F. Caillette, A. Galata, and T. Howard, “Real-Time 3-D Human

Body Tracking using Variable Length Markov Models,” British Ma­

chine Vision Conference (BMVC), vol. 1, pp. 469-478, September 2005.

[31] R. Bowden, “Learning Statistical Models of Human Motion,” IEEE

Workshop on Human Modelling, Analysis and Synthesis, pp. 10-17,

July 2000.

[32] R. Urtasun, D. J. Fleet, and A. H. P. Fua, “Priors for People Track­

ing from Small Tracking Sets,” Proceedings of the 10th IEEE Interna­

tional Conference on Computer Vision, pp. 403-410, October 2005.

[33] N. D. Lawrence, “Gaussian Process Latent Variable Models for Vi­

sualisation of High Dimensional Data,” Advances in Neural Information

Processing Systems, pp. 329-336, 2003.

[34] N. D. Lawrence, “The Gaussian Process Latent Variable Model,”

tech. rep., The University of Sheffield, Department of Computer Sci­

ence., 2006.

[35] D. J. C. Mackay, “Introduction to Gaussian Processes,” In:

C. M. Bishop (Editor), Neural Networks and Machine Learning, N ATO

A S I Series, Kluwer Academic Press, pp. 133-166, 1998.

[36] F. Caillette, Real-Time Markerless 3-D Human Body Tracking. PhD

thesis, School of Computer Science, University of M anchester, 2006.

[37] A. Safonova, Reducing the Search Space for Physically Realistic

Human Motion Synthesis. PhD thesis, School of Com puter Science,

Carnegie Mellon University, September 2006.

B ib liography 159

[38] I. T. Jolliffe, Principal Component Analysis. Springer Series in

Statistics. Springer-Verlag, 2 nd ed., 2 0 0 2 .

[39] R. Bowden, Learning Non-linear Models o f Shape and Motion. PhD

thesis, Department of Systems Engineering, Brunei University, October

1999.

[40] N. F. Troje, “Decomposing biological motion: A framework for anal­

ysis and synthesis of human gait patterns,” Journal o f Vision, vol. 2 ,

p. 371C387, 2002.

[41] D. Cosker, D. Marshall, P. Rosin, and Y. A. Hicks, “Speech Driven

Facial Animation using a Hidden Markov Coarticulation Model,”

17th International Conference on Pattern Recognition (IC PR), vol. 1 ,

pp. 128-131, August 2004.

[42] P. Glardon, R. Boulic, and D. Thalmann, “PCA-based Walking En­

gine using Motion Capture D ata,” Proceedings of Computer Graphics

International (CGI), pp. 292-298, June 2004.

[43] S. R. Carvalho, R. Boulic, and D. Thalm ann, “Interactive Low­

dimensional Human Motion Synthesis by Combining Motion Models

and PIK ,” Computer Animation and Virtual Worlds, vol. 18, pp. 493-

503, September 2007.

[44] L. Wang, W. Hu, and T. Tan, “Recent Developments in Human

Motion Analysis,” Pattern Recognition, vol. 36, pp. 585-601, March

2003.

[45] D. M. Gavrila, “The Visual Analysis of Human Movement: A Sur­

vey,” Computer Vision and Image Understanding, vol. 73, pp. 82-98,

January 1999.

Bib liography 160

[46] Y. A. Hicks, Modelling and Tracking of Articulated Human Motion.

PhD thesis, Cardiff University, School of Computer Science, September

2003.

[47] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau, “Ro­

bust Real-time Visual Tracking using a 2D-3D Model-based Approach,”

IEEE Transacations on Pattern Analysis and Machine Intelligence,

vol. 24, pp. 932-946, July 2 0 0 2 .

[48] Y. Matsumoto, T. Kato, and T. Wada, “An Occlusion Robust Like­

lihood integration Method for Multi-Camera People Head Tracking,”

Proceedings of f th International Conference on Newworked Sensing

Systems, pp. 235-242, June 2007.

[49] N. Howe, M. Leventon, and W. Freeman., “Bayesian Reconstruction

of 3D Human Motion from Single-Camera Video,” Advances in Neural

Information Processing Systems, 1999.

[50] J. J. Wang and S. Singh, “Video Analysis of Human Dynamics: A

Survey,” Real-Time Imaging, vol. 9, pp. 321-346, October 2003.

[51] N. T. Siebel and S. Maybank, “Real-Time Tracking of Pedestri­

ans and Vehicles,” 2nd IEEE Workshop on Performance Evaluation of

Tracking and Surveillance, December 2001.

[52] I. Haritaolu, D. Harwood, and L. S. Davis, “W4: Real-time Surveil­

lance of People and Their Activities,” IEEE Transactions Pattern Anal­

ysis, and Machine Intelligence, vol. 2 2 , no. 8 , pp. 809-830, 2000.

[53] J. M. Ferryman, S. J. Maybank, and A. D. Worrall, “Visual Surveil­

lance for Moving Vehicles,” International Journal of Computer Vision,

vol. 37, pp. 187-197, June 2000.

Bibliography 161

[54] R. Torre, P. Fua, S. Balcisoy, M. Ponder, and D. Thalmann, “In­

teraction Between Real and Virtual Humans: Playing Checkers,” Pro­

ceedings of Eurographics Workshop On Virtual Environments, 2000.

[55] M. Meredith and S. Maddock, “Inverse Skinning,” 3rd European

Conference on Visual Media Production, pp. 163-172, 2006.

[56] Y. Zheng, Y. Hicks, D. Cosker, and D. Marshall, “Generating hu­

man interactive behaviours using the windowed Viterbi algorithm ,” 3rd

International Conference on Computer Graphics Theory and Applica­

tions, January 2008.

[57] T. Starner and A. Pentland, “Real-Time American Sign Language

Recognition from Video Using Hidden Markov Models,” tech. rep., Per­

ceptual Computing Section Technical Report No. 375, MIT Media Lab,

Cambridge, MA, 1995.

[58] Y. Zheng, Y. Hicks, D. Cosker, D. Marshall, J. C. Mostaza, and

J. A. Chambers, “Virtual Friend: Tracking and Generating N atural In­

teractive Behaviours in Real Video,” Proceedings of the 8th Internation

Conference on Signal Processing, China, November 2006.

[59] N. Jonson, A. Galata, and D. Hogg, “The Acquisition and Use of

Interaction Behaviour Model,” IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 866-871, June 1998.

[60] Y. Zheng, Y. Hicks, D. Cosker, D. Marshall, and J. A. Chambers,

“Generating 3D Interactive Behaviours,” Proceedings of the 3rd Euro­

pean Conference on Visual Media Production (CVM P 2006), London,

November 2006.

Bibliography 162

[61] B. Stenger, P. R. S. Mendonga, and R. Cipolla, “Model-Based 3D

Tracking of an Articulated Hand,” Proceedings o f International Con­

ference on Computer Vision and Pattern Recognition (CVPR), vol. 2,

pp. 310 315, December 2001.

[62] K. Nirei, H. Saito, M. Mochimaru, and S. Ozawa, “Human Hand

Tracking from Binocular Image Sequences,” Proceedings o f 22th In ter­

national Conference on Industrial Electronics, Control, and Instrum en­

tation , pp. 297-302, August 1996.

[63] S. X. Ju, M. J. Black, and Y. Yacoob, “Cardboard People: a Param ­

eterized Model of Articulated Image M otion,” Proceedings o f the 2nd

International Conference on Automatic Face and Gesture Recognition,

pp. 38-44, October 1996.

[64] F. Lerasle, G. Rives, M. Dhome, and A. Yassine, “Human Body

Tracking by Monocular Vision,” Proceedings o f the 4th European Con­

ference on Computer Vision, pp. 518-527, 1996.

[65] M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting Faces in Im­

ages: A Survey,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, pp. 34-58, January 2002.

[6 6] S. Gong and H. Buxton, “Bayesian Nets for M apping Contextual

Knowledge to Computational Constraints in Motion Segmentation and

Tracking,” British Machine Vision Conference (BM VC), pp. 229-239,

September 1993.

[67] S. Gil, R. Milanese, and T. Pun, “Combining M ultiple Motion Esti­

mates for Vehicle Tracking,” European Conference on Computer Vision

(ECCV), vol. 2 , pp. 307-320, 1996.

Bib liography 163

[6 8] C. Cedras and M. Shall, “Motion-based Recognition: A Survey,”

Image and Vision Computing, vol. 13, pp. 129-155, March 1995.

[69] R. E. Kalman, “A New approach to Linear Filtering and Predic­

tion Problems,” Transactions of the ASM E, Ser. D., Journal o f Basic

Engineering, vol. 82, pp. 34-45, March 1960.

[70] E. Cuevas, D. Zaldivar, and R. Rojas, “Kalman Filter for Vision

Tracking,” tech. rep., Freie Universitat Berlin, Institue fur Informatik,

Takuster, Germany, 2005.

[71] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,”

SIGGRAPH, 2001.

[72] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, “An Introduc­

tion to Sequential Monte Carlo Methods,” In: A. Doucet, J. F. G. de

Freitas and N. J. Gordon (Editors), Sequential Monte Carlo Methods

in Practice, Springer-Verlag, New York, 2001.

[73] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel Ap­

proach to Nonlinear and Non-gaussian Bayesian State Estim ation,”

IEE Proceedings-F, Radar and Signal Processing, vol. 140, pp. 107-

113, April 1993.

[74] C. Musso, N. Oudjane, and F. LeGland, “Improving Regularised

Particle Filter,” In: A. Doucet, J. F. G. de Freitas and N. J. Gor­

don (Editors), Sequential Monte Carlo Methods in Practice, Springer-

Verlag, New York, pp. 247-271, 2001.

[75] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Aca­

demic Press: New York, 1970.

Bibliography 164

[76] Z. Khan, T. Balch, and F. Dellaert, “MCMC-Based Particle Fil­

tering for Tracking a Variable Number of Interacting Targets,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

pp. 1805 1918, November 2005.

[77] A. M. Baumberg and D. C. Hogg, “Learning Flexible Models from

Image Sequence,” Proceedings of the 3rd European Conference on Com­

puter Vision, vol. 1, pp. 299-308, 1994.

[78] T. Jebara and A. Pentland, “Statistical Imitative Learning from

Perceptual D ata,” Proceedings of the 2nd International Conference on

Development and Learning, pp. 191-196, June 2002.

[79] L. R. Rabiner and B. H. Juang, “An Introduction to Hidden Markov

Models,” IEEE ASSP Journal, pp. 4-16, June 1986.

[80] D. Hogg, N. Johnson, R. Morris, and D. Buesching, “Visual Models

of Interaction,” Proceedings of 2nd International Workshop on Cooper­

ative Distributed Vision, Kyoto, Japan, pp. 5 /1 -5 /2 , July 1998.

[81] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian Com­

puter Vision System for Modelling Human Interactions,” IEEE Trans­

actions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 831-

843, August 2 0 0 0 .

[82] S. Park and J. K. Aggarwal, “A Hierarchical Bayesian Network for

Event Recognition of Human Actions and Interactions,” AC M Journal

of Multimedia Systems, pp. 164-179, October 2004.

[83] S. Park and J. K. Aggarwal, “Event Semantics on Two-person In­

teractions,” International Conference on Pattern Recognition, vol. 4,

pp. 227-230, August 2004.

Bibliography 165

[84] M. Lau and J. J. Kuffner, “Behavior Planning for Character Anima­

tion,” Proceedings of the AC M SIGGRAPH/Eurographics Symposium

on Computer Animation , August 2005.

[85] D. Cosker, D. Marshall, P. Rosin, and Y. A. Hicks, “Video Real­

istic Talking Heads using Hierarchical Non-linear Speech-appearance

Models,” Proceedings of Mirage, pp. 20-27, Match 2003.

[8 6] D. Cosker, D. Marshall, P. Rosin, and Y. A. Hicks, “Speaker-

independent Speech-driven facial Animation using a Hierarchical Fa­

cial Model,” IEE Proceedings of Visual Information Engineering (VIE),

pp. 169-172, July 2003.

[87] J. Gratch, J. Rickel, E. Andre, J. Cassell, E. Petajan, and N. Badler,

“Creating Interactive Virtual Humans: Some Assembly Required,”

IEEE Intelligent Systems, vol. 17, pp. 54-63, July/A ugust 2002.

[8 8] T. Horprasert, D. Harwood, and L. S. Davis, “A Statistical Ap­

proach for Real-time Robust Background Subtraction and Shadow De­

tection,” Proceedings of IEEE International Conference on Computer

Vision (ICCV) FRAM E-RATE Workshop, Kerkyra, Greece, pp. 1-19,

September 1999.

[89] M. Brand, “Voice puppetry,” Proceedings of AC M SIG G RAPH ,

pp. 21-28, 1999.

[90] “Autodesk MotionBuilder,” Available at

http://www.autodesk.com/, November 2004.

[91] “Autodesk Maya,” Available at http://www.autodesk.com/, 2008.

http://www.autodesk.com/
http://www.autodesk.com/

Bib liography 166

[92] C. Grow, I. Gordon, R. D. Stuart, and A. Adalja, “Mo­

tion Capture as a Means for D ata Aquisition,” Available at

http://vizproto. prism, asu. edu/datacapture/motioncapturel / , 1998.

[93] “Motion Capture,” Available at h ttp://w w w . metamotion, com/motion-

capture/motion- capture.htm.

[94] B. Delaney, “On the Trail of the Shadow Woman: the Mystery of

Motion Capture,” IEEE Computer Graphics and Applications, vol. 18,

no. 5, pp. 14-19, 1998.

[95] “Motion Capture (Mocap) Studios,” Available at

http://www.motioncapturestudios.com/article/types-of-mocap-system.htm.

[96] J. F. O ’Brien, R. E. Bodenheimer, G. J. Brostow, and J. K. Hod-

gins, “Automatic Joint Parameter Estimation from Magnetic Motion

Capture D ata,” Proceedings of Graphics Interface, pp. 53-60, 2000.

[97] “Motion capture,” Available at http://en.wikipedia.org/wiki/Motion-capture.

[98] “Wireless D ata Glove: The CyberGlove II System,” Available at

http://www.immersion.com/3d/products/cyber-glove.php.

[99] “CMU Graphics Lab Motion Capture Database,” Available at

http://m ocap. cs. emu. edu/.

[100] L. I. Smith, “A Tutorial on Prin­

cipal Component Analysis,” Available at

http://www.cs.otago.ac.nz/cosc453/student-tutorials/principaLcomponents.pdf

February 2002.

[101] J. E. Jackson, A User’s Guide to Principal Components. Wiley-

IEEE, 1 st ed., 1991.

http://vizproto
http://www
http://www.motioncapturestudios.com/article/types-of-mocap-system.htm
http://en.wikipedia.org/wiki/Motion-capture
http://www.immersion.com/3d/products/cyber-glove.php
http://mocap
http://www.cs.otago.ac.nz/cosc453/student-tutorials/principaLcomponents.pdf

Bib liography 167

[1 0 2] P. E. Hart, R. O. Duda, and D. G. Stork, Pattern Classification.

A Wiley-interscience Publication, 2nd ed., 2001.

[103] C. J. Needham, Tracking and Modelling of Team Game Interac­

tions. PhD thesis, The University of Leeds, School of Computing, Oc­

tober 2003.

[104] J. R. Movellan, “Tutorial on Hidden Markov Models,” tech. rep.,

Machine Perception Laboratory, 1995.

[105] J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete-Time

Processing of Speech Signals. Wiley-IEEE Press, 1999.

[106] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

Simulated Annealing,” Science, vol. 220, pp. 671-680, May 1983.

[107] Z. Zhang, “A Flexible New Technique for Camera Calibration,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 11, pp. 1330-1334, 2000.

[108] P. (Jivicioglu and E. Besdok, “Implicit Camera Calibration by Us­

ing Resilient Neural Networks,” The 13th International Conference on

Neural Information Processing (ICONIP), pp. 632-640, 2006.

[109] P. Parent, Computer Animation: Algorithms and Techniques. Mor­

gan Kaufmann, 2nd ed., 2007.

[110] M. X. Li and J. Lavest, “Some Aspects of Zoom Lens Camera Cal­

ibration,” IEEE Transactions on Pattern Analysis and Machine Intel­

ligence, vol. 18, pp. 1105-1110, Novermber 1996.

[111] J. Y. Bouguet, “Camera Calibration Toolbox for M atlab,” Avail­

able at http://www.vision.caltech.edu/bouguetj/calib-doc/.

http://www.vision.caltech.edu/bouguetj/calib-doc/

Bibliography 168

[112] “Open Source Computer Vision Library,” Available from

http://www.iritel.com/technology/computing/opencv/index. htm.

[113] M. Brand, “An Entropic Estimator for Structure Discovery,” Pro­

ceedings of Neural Information Processing Systems, pp. 723-729, 1998.

[114] P. E. Rybski and M. M. Veloso, “Robust Real-Time Human Activ­

ity Recognition from Tracked Face Displacements,” Proceedings of the

12th Portuguese Conference on Artificial Intelligence, vol. 1, pp. 87-98,

December 2005.

[115] B. D. Ripley, Pattern Recognition and Neural Networks. Cam­

bridge University Press, 1996.

[116] “Apple - Shake,” Available at http://www.apple.com/shake/.

[117] “Shake 4 Tutorials,” Available at http://www.apple.com/’, 2005.

[118] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis,

and Machine Vision. International Thomson Publishing, 2nd ed., 1998.

[119] G. Johansson, “Visual Perception of Biological Motion and a

Model for its Analysis,” Perception and Psychophysics, vol. 14, no. 2,

p p . 201-211, 1973.

[120] J. Rittscher, T. Watanabe, J. Kato, S. Joga, and A. Blake,

“An HMM-based Segmentation Method for Traffic M onitoring,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 24, pp. 1291-

1296, September 2 0 0 2 .

[1 2 1] K. R. Castleman, Digital Image Processing. Prentice Hall Interna­

tional, 1996.

http://www.iritel.com/technology/computing/opencv/index
http://www.apple.com/shake/
http://www.apple.com/%e2%80%99

Bibliography 169

[122] E. Birney, Sequence Alignment in Bioinformatics. PhD thesis, The

Sanger Centre, Cambridge, U.K, March 2000.

[123] D. Cosker, Animation of a Hierarchical Appearance Based Facial

Model and Perceptual Analysis of Visual Speech. PhD thesis, Cardiff

University, School of Computer Science, July 2006.

[124] T. P. Minka, D. S. Bloomberg, and K. Popat, “Document Image

Decoding using Iterated Complete Path Search,” International Sympo­

sium on Electronic Imaging: Science and Technology, Document Recog­

nition and, Retrieval VIII, pp. 344-349, January 2001.

[125] “Virtual Humans Part of the Future?,” Available at

http://w w w . axistive. com/virtual-humans-part- of-the-future, html,

June 2007.

[126] “MotionBuilder: Actor,” Available at

http://atec.utdallas.edu/m idon/H andouts/motionBuilder.actor.htm ,

September 2006.

http://www
http://atec.utdallas.edu/midon/Handouts/motionBuilder.actor.htm

