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ABSTRACT

Intelligent virtual characters are becoming increasingly popular in en­

tertainment, educational and simulation software. A virtual charac­

ter is the creation or re-creation of a human being in an image, using 

computer-generated imagery. It must act and react in the environment, 

drawing on the disciplines of automated reasoning and planning. Cre­

ating characters with human-like behaviours that respond interactively 

to a real person in a video, is still a serious challenge. There are several 

major reasons for this. First, human motion is very complex, which 

makes it particularly difficult to simulate. Second, the human form is 

also not straightforward to design due to the large number of degrees 

of freedom of the motion. Third, creating novel contextual movements 

for virtual characters in real time is a new research area.

The research described in this thesis addresses these problems and 

presents novel model-based approaches to create a three dimensional 

(3D) virtual interactive character. In other words it can respond in 

a realistic and sensible manner to actions of a real person in video. 

To this end, a virtual character generating system is developed. The 

system tracks and analyses the behaviour of a real person in a video 

input and thereby produces a fully articulated 3D character interacting 

with the person in the video input. Experimental results demonstrate 

that the simulated behaviours are very close to those of real people.
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Abstract iv

Furthermore, in order to enhance the tracking capabilities of the 

algorithm, a novel technique that splits the complex motion data  in an 

automated way has been developed. This results in an improved model 

of the human motion. Indeed, experimental results confirmed tha t the 

model produced, using the above technique, can provide more accurate 

tracking results than the model trained on all the whole data at hand.
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Chapter 1

INTRODUCTION

T h e  main research area of this thesis is to generate human interactive 

behaviours for a virtual character responding to a real person in the 

video. The problem of generating human interactive behaviours that 

respond to real person is a real challenge, due to the complexity and 

uncertainty of human motion. Using a priori models of geometry and 

motion helps to deal with these problems, by imposing constraints on 

the interpretation of motion data.

In this research, there is a particular interest in developing models 

of human actions that not only assist in tracking human motion in real 

video, but are also suitable for generating interactive virtual charac­

ters, behaving in a fashion consistent with the actions of the real peo­

ple in the video. The applications for such technology include areas of 

computer games, film production and virtual environments. However, 

current techniques for simulating virtual character behaviours generate 

a two dimensional (2D) silhouette of a virtual human. (For example, 

shaking hands [5]). To our best knowledge, nobody has attem pted to 

produce interactive behaviours for fully articulated 3D virtual charac­

ters in real-time until now.

In this thesis, two novel approaches are presented for generating 

intelligent behaviours regarding fully articulated 3D virtual characters,
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on the basis of visual analysis of the motion of a real person in a 2D 

video. To achieve this goal, a system named “Virtual character gener­

ating system” is developed. The system consists of learning the model 

of a 3D articulated human motion from motion capture (MoCap) data, 

tracking the 3D motion of a real person in real video, and generating 

a variety of complex behavioural motions for a 3D virtual character 

responding to the tracked person in the real video.

In recent years, MoCap technology has become the common place 

in computer vision and computer graphics area. Using MoCap equip­

ment, real person behaviours can be recorded and exported as MoCap 

data. The latest developments in computer graphics area have included 

the use of low-dimensional statistical models trained on MoCap data 

to represent particular types of motion [6]. This allows an artist to 

generate new motions given only a few constraints, and to interpolate 

between different motions effortlessly in the low-dimensional space of 

the model [6,7]. In this research, 3D MoCap data is captured using 

the PhaseSpace Motion Digitizer System [4] in conjunction with Mo- 

tionBuilder, a commercial software package [8]. Statistical models are 

learnt on 3D MoCap data representing a number of interactions be­

tween two people, from which an appropriate behaviour for a virtual 

character can be derived. The models are based on Principal Compo­

nent Analysis (PCA) and Hidden Markov Models (HMMs).

To generate an intelligent behaviour for a virtual character, the 

motion of a real person in video must first be analysed. In recent 

years, a variety of methods to extract the 3D articulated motion of a 

moving person in video were developed. The m ajority of these methods 

rely on a model of the human body and/or motion. Many approaches
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have used the CONDENSATION algorithm or similar methods based 

011 particle filters [9-11]. The problem with these approaches is the 

large number of particles required to track the motion, which grows 

exponentially with the dimensionality of the search space. Hence, they 

are not adequate for real-time applications. For a fully articulated 

motion of the human body these techniques entail unacceptably long 

processing times. For this reason, the particle filtering technique has 

been improved to address the problem of tracking in high dimensional 

space with the annealed particle filtering (APF) [12].

Two methods are then presented for generating interactive behaviours 

for a virtual character responding to the tracked person in the video, 

given a sequence of 3D poses of a person. They are the standard Viterbi 

algorithm [13] and the windowed Viterbi algorithm [14]. The standard 

Viterbi algorithm requires the full observation sequence before the pro­

cessing starts, thus making real-time processing impossible. When the 

windowed Viterbi method is used instead, it does not require the full 

observation sequence before the processing starts, thus it can be used 

in a real-time system. Nevertheless, realistic generated interactions 

behaviours can still be obtained for both algorithms. Hence, the per­

formances of the standard Viterbi algorithm and the windowed Viterbi 

algorithm within the virtual character generating system can be com­

pared. When assessing the accuracy of the generated behaviours and 

inspecting the generated motion sequences visually, it was found that 

the windowed Viterbi algorithm can be used to detect sudden changes 

in the motion sequences.

To improve the tracking capability of the algorithm, an automatic 

splitting at the complex motion data is proposed. The idea of behind
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such comes from the generated interactive behaviours using the win­

dowed Viterbi algorithm. The windowed Viterbi algorithm can detect 

sudden changes in the complex motion sequence efficiently. By ex­

ploiting this advantage, the new method focuses on splitting the com­

plex human motion automatically. Thereafter, it learns adaptively the 

model of human motion from the different split parts, and combines 

the separate models into one, to track the motion of a person in real 

video. The performance of the conventional model (a model trained on 

3D MoCap data representing the complex motion) and the combined 

model are also compared. The analysis shows that the tracked motion 

using the combined model is better than the motion tracked using the 

traditional model.

1.1 Thesis Overview

The structure of this thesis is as follows:

• In Chapter 2, previous work in computer vision and computer 

graphic areas is reviewed. This includes visual tracking methods 

in video, human motion modelling, generating a computer graph­

ics character, and generating interactive behaviours between two 

people.

• In Chapter 3, an overview of a “virtual character generating sys­

tem” is given, with description of each of its major processes: 1) 

Acquisition of 3D MoCap data, 2) Training a model for tracking 

a 3D person in video, 3) Tracking motion of a 3D person in real 

video, 4) Training a model for generating interactive behaviours, 

5) Generating human interactive behaviours for a virtual charac-
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ter. The overview also describes how the following Chapters in 

the thesis relate to each of these processes.

• In Chapter 4, the process of data acquisition and learning dy­

namics model of human motion on 3D MoCap data for a single 

person is presented.

• In Chapter 5, the annealed particle filter (APF) for the tracking 

of a person’s motions in real video is described. The results of ap­

plying a model to track motion of a person in real video concludes 

this chapter.

• In Chapter 6, the process of generating interactive behaviours for 

a virtual character responding to the tracked person (Chapter 

5) in real video is introduced. Two methods are used for gener­

ating interactive behaviours, namely the standard Viterbi algo­

rithm, and the windowed Viterbi algorithm which can be used in 

a real-time system. The experimental results are also presented, 

followed by perceptual evaluation.

• In Chapter 7, a novel approach is developed for finding where to 

split the complex motion data automatically in order to improve 

the model of human motion for obtaining better tracking results. 

The combined models which train on the different parts of the 

split data (for example, walking, shaking hands and pushing), 

and then fused together are introduced. The combined model is 

used for tracking motion of a person in real video.

• Chapter 8 concludes this thesis and provides directions for further 

research.
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1.2 Main Contributions

In summary the main contributions of this thesis are:

• A novel approach for generating intelligent behaviours for fully 

articulated 3D virtual characters on the basis of visual analysis 

of the motion of a real person in ordinary 2D video using the 

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual 

characters using the windowed Viterbi algorithm, capable of doing 

so in real-time.

• A novel method for improving the model of the human motion due 

to the ability to split the complex human motion automatically.

1.3 List of Publications

The research described in this thesis is published as follows:

1. Yue Zheng, Yulia Hicks, Darren Cosker, Dave Marshall, Juan C. 

Mostaza and Jonathon A. Chambers. “Virtual Friend: Tracking 

and Generating Natural Interactive Behaviours in Real Video” , 

8th International Conference on Signal Processing (ICSP 2006). 

Nov. 16-20, Guilin, CHINA, 2006.

2. Zheng Y., Hicks Y. A., Cosker D. P., Marshall D., Chambers 

J. A., “Generating 3D Interactive Behaviours” , Proc. of the 3rd 

European Conference on Visual Media Production (CVMP 2006), 

London, UK, 2006.

3. Zheng Y., Hicks Y. A., Cosker D. P. and Marshall D., “Gener­

ating Human Interactive Behaviours using the Windowed Viterbi
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Algorithm” , 3rd International Conference on Computer Graphics 
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Chapter 2

INTERACTIVE BEHAVIOURS: 

A REVIEW

T h e  problem of generating interactive behaviours for a 3D virtual

character is a challenging task, considering the complexity of the ge­

ometry of a human body, a large number of degrees of freedom of 

the motion, and the uncertainty of the human motion. Using a priori 

models of geometry and motion helps to deal with these problems by 

imposing constraints on the interpretation of motion data.

In recent years, there has been a large amount of research in mod­

elling and tracking 3D human motion [15-19]. There are several major 

reasons for this. First, 3D human motion includes more details about 

the object, such as the orientation of the object in the real world and 

different angle of view of the object. Those information will provided to 

the researchers to understand and analyse the human motion. Second, 

people in the industry are become interested in using the techniques to 

build 3D computer models, typically keeping the structure and throw­

ing away the motion. Third, the real world is 3D.

In this research, the aim is to create a 3D virtual character capable 

of responding to actions obtained from observing a real person in video 

in a realistic and sensible manner. To achieve this purpose, first of all,
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a model of 3D articulated human motion from MoCap data  is learnt. 

The motion of a 3D real person in a 2D video is then tracked. Finally, 

interactive behaviours for a moving virtual character reacting to the 

motion of the tracked person in the video are generated.

In this chapter, the relevant research have been reviewed. The chap­

ter begins by considering models of the human body geometry and 

the methods used for modelling dynamics of human motion in Section 

2.1. Section 2.2 reviews dimensionality reduction methods of the state 

space. Section 2.3 presents the difference between 2D and 3D tracking. 

Section 2.4 investigates methods used for visual tracking in real video. 

Section 2.5 discusses interactive behaviours between two people. Fi­

nally, Section 2.6 reviews the work on generating a computer graphics 

character.

2.1 Modelling the Motion of the Human Body

As mentioned above, the objective is to generate interactive behaviours 

for a virtual character reacting to the motion of the tracked person 

in the original video footage using model-based approach. Thus, a 

geometry model of the human body and motion model of the human 

body is built. The model is used to represent the moving bodies in the 

video.

In recent years, there has been a large amount of research in mod­

elling the geometry of the human body in computer graphics and com­

puter vision areas. Conventionally, a human body is represented by 

a stick figure (Figure 2.1), 2D contours (Figure 2.2) or a volumetric 

model (Figure 2.3) [2].

The simplest representation of a human body is the stick-figure
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[20-22] which is drawing to depict the general form of humans. It is 

based 011 the observation that human motion is essentially the move­

ment of the human skeleton brought about by the attached muscles. 

The stick-figure models are often used to recover the 3D configuration of 

a moving subject according to their projected 2D image. In 2D contour 

models [23], the body segments can be approximated as 2D ribbons. A 

2D ribbon model consists of two components: the basic human body 

model and the extended body model. The basic human body model 

outlines the structural and shape relationships between the body parts. 

The extended model is intended to resolve ambiguities in the interpre­

tation process by identifying a certain pattern from the outline picture. 

Thus, a description of the body parts and the appropriate body joints 

is obtained. Volumetric models (such as elliptical cylinders [24,25], and 

spheres [26]) represent the shape of the human body, but require more 

parameters for computation. Each model can be scaled according to 

the height of the human body. The volumetric models can be used 

to model articulated and self-occluding objects such as fingers. While 

each model has its strengths, there is not a single model th a t is perfect 

for every possible use.

Elliptical cylinders are commonly used in modelling the human 

body. For example, Hogg’s [24] WALKER model is represented by 

elliptical cylinders. In his model, the human body is described by 14 

cylinders. Each cylinder is controlled by two parameters: the size of 

the major and minor axes of the cross-sectional ellipse with respect 

to the scale defined by the embedded coordinate system. Rehg and 

Kanade [27] tracked two self-occluded fingers with cylinders in 2D fin­

ger images. Goncalves et al. [28] addressed the problem of estimat-
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Figure 2.1. A stick-figure human body model [1].

Figure 2.2. A 2D contour human body model [1].

ing the position and motion of a human arm in 3D in a monocular 

video sequence by modelling the upper and lower arm as truncated 

right-circular cones, and the shoulder and elbow joints are modelled 

as spherical joints. The hand tip is considered to be an extension of
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F ig u re  2.3. A volumetric (cylinder) human body model (viewed from 
two directions) [2].

the forearm joints. Recent work by Park et al. [29] proposed a method 

to model human body parts by combining an ellipse representation 

and a convex hull-based polygonal representation for the recognition 

of two-person interactions using a hierarchical Bayesian network. The 

model can represent the human body part accuracy. However, when 

the behaviours is complex, the model cannot recognise the two-people 

interactions accurately.

Once the geometry model of the human body is built, a motion 

model of the human body is also needed. The purpose is to make the 

geometrical model change its poses, to mimic real human poses in the 

video sequences. In recent years, many researchers have worked on 

building a statistical model for tracking human motion [20,24,30-32] 

in video sequences.

Bowden [31] used PC A to simplify the motion, K-means clustering 

was used to collect similar motions, and modelled the dynamics of hu­

man motion using an HMM. The HMM was used to reconstruct 3D 

postures from monocular image sequences.
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Karaulova et al. [20, 25] proposed a hierarchical model of human 

dynamics for tracking people with a single video camera. The top level 

of the hierarchy models the motion of the whole body as a HMM in 

the reduced dimensional eigenspace. The lower levels of the hierarchy 

contain more detailed information about poses of some subpart of the 

body, for example, right arm, left arm, right leg, left leg and torso with 

the head. The motion on the lower lever was modelled as a GMM in 

the reduced dimensionality eigenspace of the corresponding body part 

poses. The results showed that the lower level models are more accurate 

in representing the motion of different body parts than a single model 

representing the motion of the whole body.

Lawrence [33,34] introduced a new underlying probabilistic model 

for PCA, that is a Gaussian process latent variable model (GPLVM). 

They described probabilistic principal component analysis (PPCA) which 

is formulated as a latent variable model, and showed how PCA can be 

interpreted as a Gaussian process mapping from a latent space to a 

data space. The algorithm for GPLVM is a non-linear process, which 

has three main components, sparsification, latent variable optimisation 

and Kernel optimisation. The model has an advantage th a t due to the 

various spectral clustering algorithms used, it is a generative process 

with an underlying probabilistic interpretation.

Scaled Gaussian process latent variable models (SGPLVMs) were 

used for learning the model parameters from training data  in low­

dimensional space. The model is based on the Gaussian Process (GP) 

[35] model. The SGPLVM optimises the low-dimensional latent space 

embedding human pose space. Grochow et al. [6] introduced the use 

of the SGPLVM of human poses for interactive computer animation.
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Given the training poses, a SGPLVM is used to represent the prob­

ability distribution function over poses. Urtasun et al. [32] proposed 

the use of the SGPLVM to learn prior models of 3D human pose for 

3D people tracking. The SGPLVM simultaneously optimises a low­

dimensional embedding of the high-dimensional pose data  and a density 

function. The optimisation of these two features yields higher probabil­

ity to points close to training data and provides a nonlinear probabilistic 

mapping from the low-dimensional latent space to the full-dimensional 

pose space.

Caillette et al. [30,36] learned behaviours with variable length Markov 

model (VLMM) for tracking 3D human body in real-time. VLMM deals 

with a class of random processes in which the memory length varies. 

The advantage of VLMM is the ability to locally optimise the length of 

memory required for prediction compared with a fixed memory Markov 

model. This results in a more flexible and efficient representation which 

is particularly attractive in cases where the higher-order temporal de­

pendencies in some parts of the behaviour and lower-order dependencies 

elsewhere needed to capture.

2.2 Reducing the Dimensionality of the State Space

Modelling the motion of the human body is a very difficult problem in 

computer vision and computer graphics areas, because human motion 

is high-dimensional. Generally, high quality human motion needs to be 

represented by fifty to sixty dimensions [37]. However, the movements 

of the joints are highly correlated for many behaviours. For example, 

during the run/walk motion, the arms, legs and torso tend to move in 

a similar oscillatory pattern. Therefore, the dimensionality of motions
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can be reduced by applying a simple dimensionality reduction technique 

to poses taken from human motion sequences. For example, six to eight 

dimensions are enough to represent a human jump th a t looks similar 

to the original high-dimensional version [7]. In recent years, a simple 

dimensionality reduction technique, such as PCA [38], has been used 

to reduce the dimensionality of the data set in learning the statistical 

models of human motion [20,31,39].

Troje [40] presented an approach to linearize human walking data. 

Each walking sequence (3D MoCap data) is decomposed into a PCA 

space. A reduced dimension space is produced by this, and the discrimi­

nant functions are determined to compute corresponding coefficients for 

a given parameter (male/female, happy/sad, relaxed/nervous). How­

ever, a disadvantage resides in that changing a stylistic parameter can 

modify locomotion speed. Moreover, as the data are computed in global 

3D space, no retargeting on humans of different size is possible.

Cosker et al. [41] described a hierarchical image-based facial anima­

tion system capable of producing coarticulted mouth animation given 

audio input alone. The method is model-based, and it applies PCA on 

the appearance and speech training set (obtained from the captured 

video and audio sequences) to reduce dimensionality of the training 

data.

Glardon et al. [42] proposed an approach to generate new human 

walking patterns using MoCap data. The method applies PCA on mo­

tion data to yield a reduced dimension space, leading to a real time 

engine intended for virtual human animation. This representation al­

lows for style-based interpolation and classification, but the motions 

used must be segmented first. These spaces are most useful when deal­
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ing with cyclic motions such as walking.

Safonova et al. [7] proposed a motion synthesis framework able to 

synthesise human motions by optimising a set of constraints within a 

low-dimensional space constructed with PCA. Grochow et al. [6] solved 

the low-dimensional human motion synthesis problem by applying a 

non-linear PCA to the data set. Carvalho et al. [43] presented an ap­

proach by combining motion models and prioritized inverse kinematics 

for interactive low-dimensional human motion synthesis.

2.3 2D vs. 3D Tracking

Object tracking in 3D space has various applications, such as human- 

computer interface, behaviours analysis and so on. In recent years, 

many researchers have been working on 2D and 3D motion tracking, 

such as tracking the pose between 2D image and 2D model state (2D- 

2D model-based tracking approach) [44,45], estimating the pose be­

tween 2D image and 3D model state (2D-3D model-based tracking ap­

proach) [46,47] and tracking motion between 3D image and 3D model 

state (3D-3D model-based tracking approach).

2D-2D model-based tracking approach is an independent processing 

(2D tracking can be processed independently) [48]. This m ethod can 

easily extract the information from the single image. The downside 

of it is the restriction to a single view suitable for tracking as the one 

built in the model. 3D-3D model-based tracking approach can provide 

more information for the object from both 3D image and 3D model. 

Thus, it can produce more accuracy tracking compared with 2D-2D 

model-based tracking approach. However, this method is more com­

plex to process. In 2D-3D model-based tracking approach, 3D human
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motion are projected onto 2D images and by evaluating the consistency 

between 2D estimation and image features. This method had tight in­

teractions between 3D and 2D object positions, Thus, the tracking is 

more robust than the 2D tracking. The view of the tracked object also 

is independent.

Hicks [46] presented an approach for tracking 3D articulated motion 

from monocular 2D video sequences. Her method is capable of recov­

ering 3D information from 2D video with good accuracy, it is capable 

of dealing with self occlusions and partial occlusions by other object. 

The method is not restricted to any particular view.

Marchand et al. [47] proposed an method for tracking complex ob­

jects in a 2D image sequence which can be approximately modelled 

by a polyhedral shape. The approach relies on the estimation of the 

2D object image motion along with the computation of the 3D object 

pose. This method fulfills real-time constraints along with reliability 

and robustness requirements.

Howe et al. [49] presented a system that reconstructs the 3D mo­

tion of human subjects from single-camera video. The system tracks 

joints and body parts as they move in the 2D video, then combines the 

tracking information with the prior model of human motion to form a 

best estimate of the body’s motion in 3D.

2.4 Visual Tracking M ethods in Real Video

After learning the geometry model and motion model of a human body, 

tracking the motion of a 3D person in a real video became another issue 

in this research. Tracking human motion in video sequences constitutes 

the most basic block of image processing to understand its dynamic be-
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havior. The main aim is to track human motion in a sequence of video 

frames. Then, the results of tracking are analysed mathematically to 

translate the motion behaviours of a human [50]. There are many ar­

eas of applications in visual tracking. An important application area 

in computer vision is surveillance. The most common application is 

to track one or more people’s motion [51,52] or vehicle’s position [53]. 

The surveillance setting can involve access control, parking lots, super­

markets and traffic.

Another application area is virtual reality, which includes interactive 

virtual worlds [54], games and character animation [6,7,55,56].

Another important area is user interface, which involves sign-language 

translation [57], gesture driven control and gait analysis [50]. These 

applications deal with human-computer interaction, which attem pt to 

interact with users in a natural way [58-60].

Tracking people can be divided into several groups according to 

the applications. Some of them need to detect particular parts of the 

body, for example, hands [61,62], leg [63,64] or face/head [65], whilst 

others need to track the motion of full human body [11,12,59]. In this 

research, we work on tracking motion of full human body in real video. 

Conventionally, two approaches are used for tracking moving people, 

motion-based and model-based.

• Motion-based approaches depend on a robust m ethod for group­

ing visual motions consistently over time [66]. They tend to be 

fast, but do not guarantee that the tracked regions have any se­

mantic meaning [67].

• Model-based approaches can impose high-level semantic knowl­

edge but suffer from being computationally expensive due to the
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need to cope with scaling, translation, rotation and deformation.

Recent reviews of techniques for human motion tracking can be 

found in the survey papers by Cedras et al. [68], Gavrila [45], and Wang 

et al. [50]. In this research, the focus is on estimating 3D poses of a 

person from the 2D real video sequence using a model-based approach.

The earlier work on body tracking was done by Hogg [24]. He developed 

a model-based walking vision system, which is illustrated the machine­

generated picture over the original recorded images. Hogg’s WALKER 

model uses a set of cylinders to represent rigid body parts, with posture 

represented by parameterised joint angles.

In recent years, a variety of methods for tracking a person in video 

have been produced. The Kalman filter (KF) [69-71] has been used 

successfully in the vision tracking and estimation due to its simplicity 

and robustness. It is simply an optimal recursive data processing algo­

rithm, and provides a recursive solution to the linear optimal filtering 

problem in linear dynamical system. However, the application of the 

KF to non-linear systems can be difficult. The most common approach 

is to use the Extended Kalman Filter (EKF) for modelling complex 

movement of objects. The EKF approximates the models used for the 

dynamics and measurement process in order to approximate the prob­

ability density of a Gaussian random variable. But if the true density 

is non-Gaussian, then a Gaussian model is not adequate. In such cases, 

particle filtering may be used because it approximates the density di­

rectly using a finite number of samples.

Masked et al. [10] gives a tutorial on particle filtering (PF) for 

nonlinear/non-Gaussian Bayesian tracking. They described the nonlinear/non- 

Gaussian tracking problem and its optimal Bayesian solution. Particle
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filtering methods and their extensions have become popular due to 

their robustness to noise, clutter and occlusions in video. A number 

of different types of particle filters exist and some have been shown to 

outperform others when used for particular applications.

The Sequential Importance Sampling (SIS) particle filter [72] has 

a common problem that is known as the degeneracy phenomenon (the 

particles have negligible weight) after a few iterations. For the Re­

sampling particle filter [10], the resampling step reduces the effects of 

the degeneracy problem, but it introduces other practical problems, 

such as, it limits the opportunity to parallelise the process since all the 

particles must be combined.

The Sampling Importance Resampling (SIR) particle filter [73] has 

the advantage that the importance weights are easily evaluated and the 

importance density can be easily sampled. But it can be inefficient and 

is sensitive to outliers.

The Regularised Particle Filter (RPF) [74] is identical to the SIR 

filter except for the resampling stage. It is simpler than the SIR, but has 

the theoretic disadvantage that the samples are no longer guaranteed 

to asymptotically approximate those from the posterior distribution. 

To design a specific type of particle filter for a particular application, 

it is critical to select the correct density function.

Isard and Blake [9] developed the CONDENSATION (conditional 

density propagation) algorithm. The CONDENSATION algorithm is 

a class of particle filtering algorithm [10]. It uses “factored sampling” , 

in which the probability distribution of possible interpretations is rep­

resented by a randomly generated set. The algorithm samples stochas­

tically from a probability density function (PDF) of a set of N  possible
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particles (which are feature vectors parameterising the target object), 

applies predictive dynamics to each particle, and evaluates each parti­

cle to create a new PDF for the next time step. This technique allows 

fast tracking of an object in cluttered scenes. The result of the tracking 

is more effective in clutter compared with Kalman filter [75]. However, 

a number of problems in its application exist:

1. The large number of particles required to track the motion, which 

grows exponentially with the dimensionality of the search space 

[9],

2. The CONDENSATION algorithm needs a large amount of sam­

ples to achieve better tracking result, so large amount of compu­

tation is needed.

3. The generated motion is not necessarily smooth, because all sam­

ples are generated randomly from GMM.

Deutscher et al. [12] described the development of a modified parti­

cle filter for general tracking without restrictive assumptions. This new 

algorithm is called annealed particle f i lte r  (APF). The standard par­

ticle filter is not suitable for full body human motion capture, because 

of the difficulties encountered when constructing a valid observation 

model as a normalised probability density distribution. For the APF 

algorithm, there are several important tracking parameters.

1. The weighting function. It must be general and simple, and edges 

and foreground silhouette, foreground-background segmentation 

are useful features.
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2. The number of particles and the number of annealing layers. Dou­

bling the number of annealing layers reduces the number of par­

ticles needed for successful tracking by more than half.

3. The diffusion variance vectors. Each element in the variance vec­

tor is allocated a value equal to half the maximum expected move­

ment over one time step.

Compared with standard CONDENSATION, the APF can improve 

tracking performance when given equivalent computational resources 

[li],

Khan et al. [76] proposed a particle filter that effectively deals with 

interacting targets. For traditional particle filters such as the Bayes 

filter and SIR particle filter, there are problems on tracking multiple 

targets when the targets interact. Hence, they have introduced several 

filters to track multiple targets:

• The Markov random field (MRF) motion model can reduce the 

number of tracker failures by explicitly modelling interactions.

• The Markov chain Monte Carlo (MCMC) based particle filtering 

can track targets when they are not interacting, but also deals 

with efficiently complicated interactions when targets approach 

each other.

• The Reversible-jump MCMC (RJMCMC) particle filter can be 

extended to deal with varying number of targets, and it is preva­

lent in practice.
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2.5 Interactive Behaviour between Two People

In 1994, Baumberg et al. [77] described a method for generating a 

similar flexible shape model automatically from real image data. The 

system takes live video images from a static camera, and segments mov­

ing objects from the background image via a thresholding procedure. 

Then, an efficient method for extracting a shape vector based on a cu­

bic B-spline is utilised. The system can process large amounts of data 

in near real time to generate a compact data set. Statistical compo­

nent analysis of the spline data gives a simple but effective model. The 

model is “data-centred” in the sense that it is constructed from real 

image data. An advantage of this approach is that it is easy to fit the 

model to new inputs, but it is still not a high level description of a 

human. The spline model is then be used for fast segmentation (and 

real time tracking) and gives a global estimate of object pose in the 

high-level model space.

Johnson et al. [5,59] developed a system capable of producing a 2D 

silhouette of a virtual human interacting with a real person in video and 

they demonstrated it working with a handshake behaviour. They ac­

quired training data by automatically locating and tracking individuals 

within a video corpus of typical interactions. Tracking is accomplished 

using an extension of a 2D silhouette extraction method to collect train­

ing data. Then a probabilistic model is learnt from the training data, 

and used as the basis for a higher level model for the behaviour model. 

Interaction with a virtual human is achieved using the model in parallel 

with a tracking algorithm.

Jebara et al. [78] proposed a dynamic human face, which mimics 

human speech in response to events. However, as Jebara states him-
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self, the system exhibited only limited intelligent behaviour. Both of 

the above systems automatically learnt the intelligent behaviours from 

observed video data and represented them using HMMs [13,79], which 

are commonly used for representing temporal dynamics of the data.

Hogg et al. [80] described the way in which interactive behaviours 

are learnt. This model is then used to generate an interactive vir­

tual person. In order to obtain a behaviour model, image profiles are 

modelled by a B-spline contour (represented by control points). Sub­

sequently, the mean profile is obtained by using PCA. This analysis 

can provide a model for the target shape with fewer parameters. Two 

applications of this work are:

• Interactions between a pair of individuals with application to 

human-computer interaction. This is addressed in [59].

• Dealing with interactions between people and motor vehicles which 

can find applications in surveillance.

Oliver et al. [81] described a real-time computer vision and machine 

learning system for modelling and recognising human behaviours in a 

visual surveillance task. The system combines top-down and bottom- 

up information in a feedback loop. They proposed and compared two 

different state-based learning architectures, namely, HMMs and Cou­

pled Hidden Markov Models (CHMMs) for modelling behaviors and 

interactions. In one model, they compared CHMM and HMM archi­

tectures with data from synthetic agents; the other one analysed real 

pedestrian data using both synthetic and site-specific models. Accord­

ing to their findings on synthetic data and real pedestrian data, it was 

deduced that the CHMMs outperformed HMM architectures in terms
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of both training efficiency and classification accuracy.

In [29, 82] Park and Aggarwal suggested a method for the recog­

nition of two-person interactions using hierarchical Bayesian Network 

(BN). The recognition algorithm is preceded by a feature extraction 

algorithm that extracts body-pose features from the segmented and 

tracked (manually) body-part region in a video frame. The interacting 

human body parts were modelled by combining an ellipse representa­

tion and a convex hull-based polygonal. The poses of tracked body 

parts (respectively head pose, arm pose, leg pose) are estimated at the 

low level of the BN and the overall body pose is reconstructed at the 

high level of the BN. The evolution of the poses of the multiple body 

parts during the two-person interactions is achieved by incorporating 

the whole-body motion and spatial/temporal constraints on relative 

positions and causal relations between the two persons.

Later, Park and Aggarwal [83] presented a new framework for de­

scribing human actions and interactions at a semantic level with a nat­

ural language description. The representation of human interaction 

is based on a hierarchy; a two-person interaction is a combination of 

single-person actions, and the single-person action is composed of mul­

tiple body part gestures such as torso motion and arm /leg motion. The 

human body is represented as both the subject and object in the two- 

person interaction, and each person is both subject and object. Human 

action is represented in terms of “subject +  verb +  object” , semantics 

and human interaction is represented via “ cause +  effect” semantics 

between human action.
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2.6 Generating A Computer Graphics Character

Creating realistic motion for computer graphics characters is an impor­

tant problem with applications ranging from the special effects industry 

to interactive games and simulations. The use of motion capture data 

for animating virtual characters has become a popular technique in 

recent years [84].

An inverse kinematics (IK) system based on a learned model of 

human pose is described by Grochow et al. [6]. Given a set of con­

straints, the system can produce the most likely pose satisfying those 

constraints in real time. The main idea of the approach is to learn 

a PDF over character poses from motion data, and then use this to 

select new pose during IK. The model is represented as an objective 

function over poses as a PDF, which describes the likelihood function 

over poses. This means that the IK system can generate any pose, but 

favours poses that are most similar to the space of poses in the training 

poses. The limitation of the style-based IK system is th a t if the training 

data does not match the desired poses well, then more constraints will 

be needed. However, with a generic training data set, the style-based 

IK produces much more natural poses than existing approaches.

Zordan et al. [17] presented an approach for dealing with optical 

motion data through the use of a dynamics model to simulate joint tra ­

jectories. The system is used to control the motion of the animated ar­

ticulation, which attempts to match the positional marker data  points. 

This approach is less sensitive to error within the resulting animated 

articulation, because of its dynamics based knowledge, which aids the 

construction process.

In [85, 86] Cosker et al. described a non-linear hierachical speech-
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appearance model of the face capable of producing high-quality video- 

realistic animation given a speech input. A non-linear speech-appearance 

model is trained on the vectors formed by the low-dimensional appear­

ance parameters (that include both shape and texture parameters) and 

low-dimensional speech parameters. They then used the non-linear 

speech-appearance model to calculate the associated appearance pa­

rameter of an input speech parameter for every video frame, in order 

to obtain the synthesized facial information.

More recently, Cosker et al. [41] developed a hierarchical image 

based facial model which is driven from speech. He also demonstrated 

how animation of the entire face can be created from animations of 

the mouth and how the colour may be incorporated and reproduced 

compactly without being modelled explicitly. A dual HMM is trained 

with two sets of states. The first HMM is built using the appearance 

parameter training set, and the second HMM is built on the basis of 

the speech training parameter set. However, the transition probability 

is the same as the first one. This dual HMM framework can estimate 

a hidden state sequence given any speech observation with the Viterbi 

algorithm.

Safonova et al. [7] proposed a motion synthesis framework able to 

synthesise a physically realistic motion. They utilised the technique of 

PCA to process the motion capture database because of a high degree 

of coordination between movements of human joints and constructed 

a low-dimensional motion space. Then they used IK on the characters 

limbs, as a second step to clean undesirable artifacts.
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2.7 Summary

In recent years, many researchers showed interest in generating inter­

active behaviours for virtual characters in 2D and 3D. The applications 

for such technology includes the areas of computer games, film produc­

tion and virtual environments.

In this thesis, the aim is to create a 3D virtual character capable of 

responding to actions obtained from observing a real person in video in 

a realistic and sensible manner. Human motion is very complex and un­

predictable, so it is difficult to track human motion from real video and 

generate the interactive behaviours for a virtual character. The chal­

lenging problem has been dealt with, through the introduction a priori 

models of geometry and motion. Such models have been automatically 

learnt from real human motion data, obtained using commercial mo­

tion capture equipment, and contained the information in the original 

motion data.

Tracking people is also a challenging task because of the high di­

mensionality of full body kinematics, the ambiguity caused by body 

articulation and the fast movement. Moreover, loose clothing, mutual 

occlusion between body part or shadows may complicate the inference 

problem. In recent years, many approaches have been used for tracking 

the motion of a person in real video, as was discussed in this chapter.

In this chapter, the relevant researches have been reviewed. These 

include modelling the motion of the human body, visual tracking meth­

ods in video sequence, and methods for generating human behaviour.



Chapter 3

VIRTUAL CHARACTER 

GENERATING SYSTEM 

OVERVIEW

I n  recent years, many researchers have shown an interest in producing 

virtual worlds and populating them with virtual characters [15-19,56, 

58]. There has also been a limited amount of research into enabling 

virtual characters with the ability to produce intelligent behaviour on 

the basis of visual analysis of the scene. These were mainly conducted 

in the computer vision area.

A virtual character is the creation or re-creation of a human being 

in an image using computer-generated imagery. It must act and react 

in the environment, drawing on the disciplines of autom ated reasoning 

and planning [87]. The behaviours for the virtual character are learnt 

from real motion data and generated in response to video automatically. 

Virtual characters are becoming more and more popular, and used in 

many applications such as character animation, computer games and 

virtual environments (for the visual creation of 3D characters to popu­

late virtual environments and to be used as virtual actors for film and 

television).

29
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The aim of this research is to create a virtual character capable of 

responding to actions obtained from observing a real person in video 

in a realistic and sensible manner. To this end, a “virtual character 

generating system” (Figure 3.1) is developed. The system is used to 

generate interactive behaviours for a virtual character responding to a 

real person in video.

3D Motion Data 
Person 1 and Person 2 
Three Different Types

Training a model 
for Tracking

Tracking 3D 
Person

Training a model 
for Generating

Acquisition

Video

Two Persons 
Data

Annealed Particle 
Filtering

Person l ’s Data The Viterbi 
Algorithm

Reduce 
Dimensionality 
(Eigen Model)

Reduce 
Dimensionality 
(Eigen Model)

Generate 
Behaviour 
for Virtual 
C haracter

Estimate 3D Pose 
o f a Person in 

videoHMM/GMM
Training I Dual HMM

Generating
Interactive
Behaviours

Figure 3.1. Overview of the virtual character generating system.

In the above figure, 3D MoCap data representing a number of in­

teractions between two people is first captured using the PhaseSpace 

Motion Digitizer System (Chapter 4.1 and Appendix A), such as two 

people walking and shaking hands, one person pulling another person, 

and one person pushing another person. Several videos of a person’s 

motion with a single camera (corresponding to the MoCap data) were
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also recorded, as these video sequences were used to analyse human be­

haviour from which, 3D poses of a person were estimated. A collection 

of HMMs on 3D low-dimensional MoCap data (whose dimensionality 

was reduced by PCA) representing several motion vector for one person 

(Chapter 4) is then trained, after which 3D poses of a single person in 

2D real video is tracked using this model (Chapter 5). Next, a dual­

input HMM of human motion on that 3D low-dimensional MoCap data 

(whose dimensionality was reduced by PCA) representing several in­

teractions between two people is trained. Finally, using the dual-input 

HMM trained in the previous stage, interactive behaviour for a mov­

ing virtual character reacting to the motion of the tracked person is 

generated, and placed back in the original video footage (Chapter 6).

This chapter gives an overview of the “virtual character generating 

system” used for building and training a model of human motion, and 

utilised to track the motion of a person in video and generating inter­

active behaviours for a virtual character. The overall system can be 

divided into five separate procedures (Figure 3.1):

1. A cquisition of 3D M oCap data: Acquire 3D MoCap data  for 

two people using PhaseSpace Motion Digitizer System [4],

2. Learning a m odel of human m otion for tracking m otion  of  

a real person in video: Train a Hidden Markov Model (HMM) 

of human motion (used for tracking a 3D person in a video) on 

3D MoCap data of one person.

3. Tracking the m otion of a real person in  video: Track the 

motion of a real person in the video sequence using the HMM built 

in Procedure 2 working with the Annealed Particle Filtering
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(APF).

4. Learning a m odel of human m otion for generating  inter­

active behaviours for a virtual character: Train a dual-input 

HMM [41] of human motion (used for generating interactive be­

haviours for a virtual character responding to the tracked person 

in the video) on 3D MoCap data set depicting interactive be­

haviour of two people.

5. G enerating interactive behaviours for a v irtual character:

Generate interactive behaviours for a virtual character respond­

ing to the tracked person in video using the dual-input HMM 

built in Procedure 4 in conjunction with the tracked result in 

Procedure 3.

A brief description of each of these procedures in the virtual char­

acter generating system is presented in the following subsections.

3.1 Acquisition of 3D MoCap Data

The first step for training a model of human motion begins with captur­

ing two persons’ 3D MoCap data using the PhaseSpace Motion Digitizer 

System (Chapter 4.1). This system can capture complex motion data 

in real-time using advanced hardware and software technology [4].

Three different types of human motion between two people are cap­

tured. They are two individuals shaking hands, one person pulling 

another person, and one person pushing another person. 30 markers 

are placed on a person around the different joints, for example, elbow, 

hip and knee. Figure 3.2 shows the placement of all markers, but two
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markers on the back are not visible in the figure. Each marker is rep­

resented by X : Y  and Z  positions, therefore a pose in each frame is 

represented by a 90-dimensional vector. Each MoCap data  sequence 

is sampled at 30 frames per second (fps), and has around 150 pose 

vectors. In total, 14 sequences of MoCap data for shaking hands, 9 se­

quences of MoCap data for pushing and 7 sequences of MoCap data  for 

pulling have been obtained. All the original MoCap data  sequences can 

be viewed in the CD at back of the thesis in folder O riginal-shaking  

hands, O riginal-pushing and O riginal-pulling respectively. The 

acquisition of 3D MoCap Data is described in details in Chapter 4.

Several videos of a person moving with a single camera at 30 fps 

corresponding to the 3D MoCap data is also recorded. The recorded 

video data is then exported into a set of RGB images in order to analyse 

human behaviour and estimate 3D poses of a person in each image.

3.2 Learning a Model of Human Motion for Tracking M otion of 

a real person in video

The learning step involves training a model of human motion using 3D 

MoCap data of one person. The model is used for tracking a 3D articu­

lated person in real video. In order to train the model of dynamics, one 

person’s MoCap data is used. In the experiments, several sets of motion 

data in 3D space with 30 markers are captured, therefore a pose in each 

frame is represented by a 90-dimensional vector. Such data  is always 

constrained by physical and dynamic factors, thus the dimensionality 

of the data set needs to be reduced using PCA, before proceeding. The 

seven largest eigenvectors are kept in the model, which accounts for 

approximately 90% of the total eigenenergy, and then train  the HMM
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Figure 3.2. Human model with 30 markers (Two markers on the back 
are not visible).

on a number of such vectors.

3.3 Tracking a 3D Person in Real Video

To track the fully articulated 3D motion of a person in video sequence, 

the motion of a real person in video need to be analysed. In recent 

years, a variety of methods to extract 3D articulated motion of a per­

son moving in video have been developed [45]. The majority of these 

methods rely on some kind of a human body model and/or motion. 

For tracking, many approaches have used the CONDENSATION algo­

rithm [9] or similar methods based on particle filters [10]. The problem 

with these approaches is the large number of particles required to track 

the motion, which grows exponentially with the dimensionality of the 

search space. For a fully articulated motion of human body this pro­
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duces unacceptably long processing times. In this research, a method 

based on particle filtering is modified to avoid the high dimensionality 

problem, namely, the annealed particle filtering (APF) [12].

When tracking 3D pose of a person in 2D video, the video sequence 

needs to be preprocessed by cancelling the background [88], and thus 

a sequence of binary images are obtained. Figure 3.3 (a) shows the 

original image of a person from a video sequence, and the person in 

the scene without the background in Figure 3.3 (b). An APF is used 

together with an HMM trained in the previous stage (Section 3.2) to 

estimate 3D poses of the tracked person in the video. The result of the 

tracking process is a sequence of 90 dimensional vectors, each estimating 

a 3D pose of the tracked person in the video. Chapter 5 gives a more 

detailed account of tracking a person in real video.

(a) (b)

Figure 3.3. (a) Original image of a person, (b) the person in the scene 
without background.
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3.4 Learning a Model of Human Motion for Generating Interac­

tive Behaviours

This step involves training a dual-input HMM [41] (using 3D MoCap 

data of two individuals) for generating interactive behaviours respond­

ing to the tracked person in the video. Similar to the way for represent­

ing the interactive motion of one person, in the dual-input HMM, there 

are two sets of states, but this time only one transition matrix. The 

first set of states models the poses for the first person A, the second set 

of states models the poses for the second person B. Each state in the 

model is modelled with a Gaussian distribution. The details of training 

a model will be explained in Chapter 6.

3.5 Generating Interactive Behaviours for a Virtual Character Re­

sponding to the Tracked Person

The final process in the system generates interactive behaviours for a 

virtual character responding to the tracked person in the video. The 

model is a dual-input HMM [41,89] which is trained in the previous 

stage (Section 3.4). It is capable of representing a variety of interactive 

behaviours, for instance, shaking hands.

Given a sequence of 3D poses of the first person A  as input (the 

tracking result in Section 3.3), it is possible to project it into the dual­

input HMM, and generate a corresponding sequence of poses for a vir­

tual character using the standard Viterbi algorithm [13] and the win­

dowed Viterbi algorithm [14]. Consequently, the performances of the 

standard Viterbi algorithm and the windowed Viterbi algorithm within 

the virtual character generating system are compared. The standard
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Viterbi algorithm requires the full observation sequence before the pro­

cessing starts, thus making real-time processing impossible. When the 

windowed Viterbi method is used instead, it does not require the full ob­

servation sequence before the processing starts, thus it can be used in a 

real-time system. Moreover, realistic generated interactions behaviours 

can still be obtained. These details will be described in Chapter 6.

3.6 Summary

This chapter has given a brief description of each step procedure per­

taining to the virtual character generating system. The system is used 

for generating interactive behaviours for a virtual character respond­

ing to the tracked person in the video. The structure of the next four 

chapters, in relation to these processes, is as follows. Acquisition of 3D 

MoCap data and training a model of human motion for a single person 

will be explained in Chapter 4. The process of tracking a 3D person 

in real video sequence is described in Chapter 5. The process of learn­

ing a model of human motion for two people and generate interactive 

behaviours responding to the tracked person in the video is detailed in 

Chapter 6. Additionally, Chapter 7 proposes a novel technique which 

efficiently splits the complex motion data for better tracking ability, in 

order to improve the model of human motion.



Chapter 4

A MODEL OF HUMAN 

MOTION FOR A SINGLE 

PERSON

I n  this chapter, a model of human motion based on HMMs is pre­

sented. Recent developments in computer graphics have led to the 

incorporation of motion capture technology into everyday usage by 

artists. Motion capture is a technique of digitally recording the actions 

of human actors or an object, this information can be used to animate 

digital character models. The latest developments have included the 

use of statistical models trained on MoCap data to represent particular 

types of motion [6]. This allows an artist to generate new motions given 

only a few constraints, and to interpolate between different motions in 

the low-dimensional space of the model.

The approach adopted in this thesis is to model statistically the 

motion of a person. The data set for training the model are obtained 

using the PhaseSpace Motion Digitizer System. The dimensionality 

of the training data is reduced using PCA, since such data is always 

constrained by physical and dynamical factors. Finally, a model of 

human motion is built using a HMM.

38
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In this chapter, a human motion capture system is first described, 

which is set up to obtain the MoCap data for building models of human 

motion. The details of the 3D MoCap data is then given. Finally, 

a model of human motion learnt from the collected MoCap data is 

demonstrated. The MoCap system is described in Section 4.1, and the 

obtained data is described in Section 4.2. The statistical modelling 

techniques used in this thesis are described in Section 4.3, and the 

chapter is summarised in Section 4.4.

4.1 Motion Capture Systems

Motion capture is a technique for recording movements of subjects in 

3D space. It is also a simple way to track a subject’s movement as the 

subject changes position relative to a fixed point in space. Motion cap­

ture data can be used for the mapping of motion onto a computer model 

(such as actor, computer character) with extra software, for example, 

MotionBuilder [90] and Maya [91]. In recent years, motion capture has 

been used for a wide variety of applications, including virtual reality, 

entertainment (games, movies, and television), medicine and robotics.

As motion capture technology developed, several uniquely different 

types of motion capture systems evolved. The types of motion capture 

input systems are: magnetic, mechanical, and optical [92-95]. Magnetic 

motion capture systems [96] use sensors placed on the body to measure 

the low-frequency magnetic field generated by a transm itter source. It 

is ideally suited for situations in which the motion range is limited. 

Another advantage is that all the data is in relation to a single object 

without occlusion. One of the biggest disadvantages is their sensitivity 

to metal, and it is also not suitable for fast movements, since the data
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sampling rate is too slow.

Mechanical motion capture systems [92] directly track body joint 

angles and are often referred to as skeleton motion capture systems, 

due to the way the sensors are attached to the body. It allows real­

time processing, and is not range limited. However, while the device 

can provide continuous data of the position of the object, it cannot 

capture continuous motion.

The basic idea of optical motion capture [93,95] is the tracking of 

markers on a subject in real-time. In a typical optical motion capture 

system, cameras are placed on the circle of a capture area to track 

passive or active markers [97]. In passive optical system, the markers 

used for reflecting light back. So only the reflective markers can be 

sampled by the cameras. A large number of markers at high frame rate 

can be captured using this system, and the frame rate for this system is 

traded off between resolution and speed. Active marker systems can ei­

ther strobing one marker on at a time or tracking multiple markers over 

time. This system can capture more subtle movements by having both 

higher spatial and temporal resolution. More processing is required in 

active marker systems compared with passive optical system.

Optical motion capture system offers several advantages: high res­

olution cameras, real-time data process, capture of high speed motion 

and tracking multiple subjects. However, optical motion capture sys­

tems have the following disadvantages: occlusion (markers cannot be 

seen by enough cameras, or markers may be blocked by limbs, bodies 

or other markers), challenging to calibrate and operate, and sensitivity 

to light and reflections. While each system has its strengths, there is 

not a single motion capture system tha t is perfect for every possible
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use.

In the experiments an optical motion capture system named PhaseS­

pace Motion Digitizer System [4] has been used to collect MoCap data. 

A detailed description of PhaseSpace Motion Digitizer System used in 

the Communication Research Centre (CRC) lab at Cardiff University 

can be found in Appendix A.

The PhaseSpace Motion Digitizer System consists of twelve spe­

cialised CCD (Charge Couple Device) cameras and several infra-red 

Light Emitting Diode (LED) markers. The system is based on tracking 

LED markers attached to the areas of interest on a person. All “cam­

eras” have a resolution of 3,600 x 3,600 (12 Megapixel) and streaming 

frequency of 120fps. In the experiments, the full body motion needs to 

be captured, thus the best place to locate cameras is in a circular con­

figuration with the field of view being in the centre of the circle. The 

greater the field of view desired, the larger the circle should be. Fig­

ure 4.1 shows the position of the cameras for full body motion capture.

I 5

F igu re  4.1. Example of 12 cameras positioned for full body motion 
capture.
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The LEDs are placed on the body of two subjects on the places of 

different joints. For each person, the total number of markers is 301. 

Figure 3.2 on Page 34 shows the placement of all markers, except two 

markers on the back are not visible in the figure.

Before capturing motion data, camera calibration is an im portant 

step. The PhaseSpace camera calibration is performed using the pro­

prietary calibration software which can be run remotely on a client 

machine, which is very accurate and requires only several seconds to 

perform. This program uses a calibration object and calibration wand 

as shown in Figure 4.2. The current version of calibration software 

involves two steps. The first step is a coarse calibration tha t uses the 

calibration object. During this step the system uses an inverse trans­

form to determine the relative position of the cameras. As for the 

second step defined as incremental calibration, a calibration wand with 

LEDs at a known distance apart is moved throughout the desired cap­

ture area. Since the system knows the physical distance between these 

LEDs, minor adjustments are made to the camera positions as well as 

to the optical maps of the cameras so as to get a best fit between the 

“virtual distances” and the actual physical distances. After complet­

ing the camera calibration process, all cameras are aligned effectively 

with extremely high precision. The MotionBuilder [90] software pack­

age working with PhaseSpace Motion Digitizer System is then used to 

capture motion data2.

130 m a rk e rs  a re  p la c e d  o n  each  h u m a n  b o d y  d u e  to  th e  l im i ta t io n  o f  o u r  M o C a p  
sy s te m .

2M o tio n B u ild e r  is a  re a l- t im e  a n im a tio n  s y s te m  sp e c if ic a lly  d e s ig n e d  to  c re a te  
re a lis t ic  c h a ra c te r  a n im a tio n . I t  c a n  w o rk  w ith  a  v a r ie ty  o f  m o t io n  c a p tu r e  d ev ice s , 
su ch  as P h a s e S p a c e  a n d  C y b e rG lo v e  [98].
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a b

Figure 4.2. Calibration object (a) and calibration wand (b) used 
during the calibration process. The red lights are LEDs.

4.2 3D MoCap Data

The data used in this research is 3D MoCap data captured by the mo­

tion capture system described in the previous section. Three different 

types of motion (walking and shaking hands, one person pulling an­

other person, and one person pushing another person) are filmed at 

the frame rate of 30 fps. There are five reasons for choosing these 

interactive behaviours:

1. These three interactive behaviours are simple, and easy to model 

and analyse. Yet they cover a wide variation of motion.

2. In Gavrila’s [45] survey paper, he only adopted four generic inter­

actions with people are shaking hands, embracing, pushing and 

hitting. For our purposes, hitting is hard to capture, and so we 

evaluate in a similar range of interaction to Gavrila.

3. In CMU’s Graphics Lab Motion Capture Database [99], they pro­

vided some human interaction with two subjects, such as shaking 

hands, pulling, quarrelling and dancing. For our purposes, quar­
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relling is hard to capture, and dancing is not so interactive and 

occlusion between the human bodies.

4. In Hogg’s [59] work, he developed a system capable of producing 

a 2D silhouette of a virtual human interacting with a real per­

son in video and they demonstrated it working with a handshake 

behaviour.

5. For our purpose, we argue that three interactive behaviours are 

sufficient.

30 markers are placed on the front of the person’s body at the differ­

ent joints, as in Figure 3.2 on Page 34. The position of each marker 

is represented using 3D Cartesian Coordinates. Figure 4.3 shows the 

original captured MoCap data of three different types.

(a) (b) (c)

Figure 4.3. Original captured 3D MoCap data, (a) Shaking Hands 
Behaviour, (b) Pulling Behaviour, (c) Pushing Behaviour.

However, sometimes markers cannot be seen by enough cameras, or 

markers may be concealed by limbs, bodies or other markers (as shown 

in Figure 4.4) during the capturing process. In order to obtain high 

quality MoCap data, this missing data need to be interpolated manually
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(the reinterpolate filter in MotionBuilder is employed to estimate the 

position of missing markers) after the data were captured. The final 

output constitutes a file containing a list of 3D Cartesian coordinates 

of the markers in each frame, and therefore a pose in each frame is 

represented by a 90-dimensional vector. Each MoCap data sequence 

has around 150 pose vectors. In total, 14 sequences of MoCap data for 

shaking hands, 9 sequences of MoCap data for pushing and 7 sequences 

of MoCap data for pulling have been obtained. All the original MoCap 

data sequences can be viewed in the CD at back of the thesis in folder 

Original-shaking hands, Original-pushing and Original-pulling 

respectively.

(a) (b)

Figure 4.4. Motion data, (a) No markers are occluded, (b) The 
markers with dark blue are occluded during the capturing process, so 
they need to found manually with interpolation.

4.3 A Model of Human Body Motion

The model of geometry of a human body is deliberately kept simple, but 

our approach adequately models the full body as required. It consists
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of a number of vertices representing significant points on the body of a 

person, for example, elbows, knees and hips. Some of the vertices are 

connected with segments representing the corresponding body parts, 

such as lower arms, upper arms, lower legs and upper legs. 20 vertices 

are used on the human body and 16 segments connect the points. These 

segments are dressed in truncated cones. The silhouette of the produced 

model of geometry roughly resembles a human figure. Figure 4.5 shows 

the geometry model of the human body. The vertices are represented 

by red crosses and the segments of human body are represented by 

truncated cones.

Figure 4.5. A model of geometry of a human body. It consists of 16 
segments (represented as truncated cones in the figure) connecting 20 
vertices on the body (represented as red crosses in the figure).

The goal is to obtain a model of human motion which is used for 

tracking the motion of a real person in video. As mentioned in the pre­

vious section, several sets of MoCap data in 3D space with 30 markers
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are captured, therefore a pose in each frame is represented by a 90- 

dimensional vector. Such data is always constrained by physical and 

dynamical factors, thus we would like to reduce the dimensionality of 

this data distribution using Principal Component Analysis (PCA).

4.3.1 Principal Component Analysis: MoCap Data Dimension  

Reduction

PCA [38,100,101] is a useful statistical technique th a t can be used to 

simplify a data set of high dimension. More formally, it is a transform 

that chooses a new coordinate system for the data set. It has found ap­

plication in fields such as face recognition and image compression. The 

main advantage of PCA is to reduce the high-dimensional data to low­

dimensional data without the loss of important information. Therefore, 

PCA is a popular method for modelling data sets.

Assuming that the original data set is a multivariate Gaussian, a 

single multivariate Gaussian is:

9{X' S)  =  (27r)n/2(fet(S)1/2exP[~^(x  ~  -  M)] (4.3.1)

where x  is the data set and x  £ n is the dimensionality of the 

space, /i is the mean value of the data set, X) is the covariance m atrix 

of size n x n, (*)r  is matrix transpose, (-)-1 is the m atrix inverse and 

det(-) is the matrix determinant.

PCA can be used for reducing dimensionality in a data set which 

retains the main characteristics, but eliminates the less significant prin­

cipal components. A multidimensional Gaussian distribution is also
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referred to as an eigenmodel. An eigenmodel 0  can be denoted as

0  =  (/ie,U e, Ae) (4.3.2)

where /ie is an origin in the original n-dimensional space, U e is an n x n 

orthogonal matrix, with columns called normalized eigenvectors, and 

Ae is an diagonal matrix with diagonal values called eigenvalues.

For PCA, it is necessary to find eigenvectors and corresponding 

eigenvalues through eigenvalue decomposition (EVD) of the covariance 

matrix of the original data set. Singular value decomposition (SVD) 

also can be used for an arbitrary shaped matrix. EVD represents the 

covariance matrix as below:

£  =  U A U t (4.3.3)

A standard way to calculate PCA is to use a covariance matrix 

formed from the original data [100]. Suppose we have an m  x n  data 

matrix A (m data vectors of n dimensions), and we want to rearrange 

our data into a k dimensional representation (k < n):

1. Form some m  x n data matrix A. For example, two types of 

MoCap data are chosen, walking and shaking hands, as the train­

ing data matrix A. A pose in each frame is represented by 90- 

dimensional vector and each MoCap data sequence has 194 pose 

vectors. Therefore, the training data m atrix A  is 194 x 90. The 

original training data are shown in Figure 4.6.

2. Find the mean value in each column dimension, such that the 

mean matrix ji is 90 x 1.
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Figure 4.6. The original training data of the motion for a person walk­
ing and shaking hand distribution visualised in 2D. Blue dots represent 
the original motion data.

3. Subtract the mean value from each data dimension. This pro­

duces a data set whose mean is zero. Then store the centred data 

matrix in S.

4. Calculate the covariance matrix £  of S: £  =  ST • S. Since the 

original data has 90 dimensions, the covariance matrix will be 

90 x 90.

5. Calculate the eigenvectors U and eigenvalues A of the covariance 

matrix. Since the covariance matrix is square, the eigenvectors 

and eigenvalues can be calculated for this matrix. These are im­

portant, as they provide useful information about our data.

6. Choose the first k components (1 < k < n) of the eigenvectors 

and derive the new data set (New data has only k dimensions).
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Once we have chosen the eigenvectors that we wish to keep in the 

data, we simply take the transpose of the feature vector (feature 

vector is (eigi eig2 • • • eign)) and multiply it on the centred data 

transposed. Figure 4.7 shows the reduced dimension data with 

two largest eigenvectors.
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Figure 4.7. Reduced dimension data with two biggest eigenvectors 
modelling the walking and shaking hand motion of the whole human 
body. Blue dots represent the motion data.

PCA also provides a transformation of the vectors from the original 

space to the eigenspace ©. Any vector x from the original space 

can be transformed to a corresponding vector y in eigenspace © using 

the following:

y = UTx (4.3.4)

The vector y can be transformed back to the original space by

multiplying it by U.

x = Uy (4.3.5)

The training data projected into the eigenspace
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PCA can model efficiently a single Gaussian distribution, since it 

is a linear basis transformation. However, if the data  set is non-linear 

(such as human motion data), then it is better to model non-linear data 

as a GMM.

4.3.2 Gaussian Mixture Models

Though the whole data set is non-linear, assume that the local variation 

is linear. Thus non-linear data sets can be modelled by approximat­

ing non-linear variation as a locally linear model. Gaussian Mixture 

Model (GMM) is a standard approach to model non-linear data  via 

local linearisation.

A GMM is a mixture of several Gaussian distributions and can 

represent different subclasses inside one class. A GMM is given by:

M

p(x ) = ^ 2 a,g(x,/ii,  S i) (4.3.6)
i =  1

where <a; denotes the prior probability of each Gaussian, ^  are the 

centres of the Gaussians, S* are the covariance matrices and M  denotes 

the number of Gaussians [102].

Expectation-Maximization (EM) [102] is a widely used method for 

estimating the parameter set of the GMM. It is an iterative procedure. 

EM proceeds iteratively in two steps, the Expectation Step and the 

Maximization Step.

• The expectation step: Calculate the expectation of the log-likelihood 

over all possible assignments of data points to sources.

• The maximization step: Maximize the expectation by differenti­

ating written current parameters.
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In the previous section, the dimensionality of the data set needs to 

be reduced using PCA. Here we propose to model the reduced dimen­

sionality data set as a GMM in order to reduce the complexity of the 

programme. Figure 4.8 shows a GMM fitted to the low dimensional 

data, the red ellipses represent Gaussians and the blue dots denote the 

motion data. We choose the number of Gaussians to be 12 experimen­

tally, to adequately represent the data distribution. Figure 4.9 shows 

the same data distribution visualised in 2D and fitted with 4, 8, 16 and 

30 Gaussians respectively. It is clear that when the number of Gaus­

sians are 4 and 8, the data distribution from the model does not match 

well. When the number of Gaussians are 16 and 30, some clusters are 

overlapped. The model cannot represent the data very well.

Data distribution visuallised in 2D and fitted with 12 G aussians

CSI

3
(9
CD

U-
- 5

-10
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-8 -6 -4 -2 0 2 4 6 8 10 12

Feature 1

Figure 4.8. Data distribution visualised in 2D and fitted with 12 
Gaussians. The red ellipses represent Gaussian and the blue dots denote 
the motion data.

When the reduced dimensionality data set were modelled as a GMM,
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M o tio n  d a ta  d is tr ib u tio n  v is u a l is e d  in 2D  a n d  f itte d  w ith  A  G a u s s i a n s
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M o tio n  d a ta  d is tr ib u tio n  v is u a l is e d  in 2 D  a n d  f itte d  w ith  8  G a u s s i a n s
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Figure 4.9. Data distribution visualised in 2D and fitted with 4,8,16 
and 30 Gaussians. The red ellipses represent Gaussian and the blue 
dots denote the motion data.
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a number of Gaussian centres are chosen in the GMM. When the hu­

man body poses are reconstructed from the GMM, the reconstructed 

sequence is not representative of the motion accurately in a temporal 

sense, because the model does not contain any information on the tem­

poral relationship between the variety of poses. In order to select the 

variety of poses at time t to reflect previous pose choices at time t — 1, 

and to anticipate possible future pose choices at time t +  1, it is better 

to learn probable pose transitions from the training set using Hidden 

Markov Models (HMMs).

4.3.3 Hidden Markov Models

Given a stochastic system, which may be in any one of a number of 

states, it is possible to represent the system as a graph structure. In 

the graph structure, the nodes correspond to the states and the edges 

to the probability of moving from one state to another, or of remaining 

in the same state. One of the simplest forms is a Markov chain, where 

the model may only stay in the same state or move into the next state. 

A Markov model can be represented as a graphical structure in which a 

network of states is formed, connected by edges corresponding to tran­

sition probabilities of moving from one state to another [102]. In a first 

order Markov model, the state transitions are dependent only on the 

current state of the system. A transition matrix of the probabilities of 

moving from one state to another may be estimated by the frequencies 

of the event being observed in training data [103].

Hidden Markov models (HMMs) are first order Markov models 

which have been extended by introducing a set of hidden states (which 

are probabilistically linked to the observable states). The basic struc­
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ture of an HMM is shown in Figure 4.10. A continuous HMM con­

tains two sets of states, two sets of probabilities and one initial state 

[13,104,105].

an
V2
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V2 VIb3i
b32

a33
b22

V2
1321

V I
a22

Figure 4.10. The Basic Structure of an Hidden Markov Model

In the HMM description that follows it is assumed tha t the person 

A ’s MoCap data is used for construction.

• The number of states n in the model. The state are hidden, and 

may be represented by Gaussian mixtures for the purposes of a 

continuous HMM. The states are denoted S =  {Si, S 2 , •••, Sn} and 

the state at time t as qt. In this research, each hidden state is 

represented one of Gaussians with a GMM modelling the person 

A ’s MoCap data.

• Visible states v t =  {v(t\), u(t2), •••, the states of the pro­

cess that are Visible’. In our case, the visible state is a sequence 

of the person A ’s MoCap data.

• The state transition probabilities between hidden states {a^}:
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hold the probability of being in a hidden state Sj at time t +  1 

given the hidden state Si at time t.

dij =  P (S j ( t+  1)|Si(t)), 1 < i j  < n  (4.3.7)

The state transition coefficients have the properties

dij > 0 (4.3.8)

n

y > 3 =  1 (4.3.9)
3 - 1

• The observation probabilities of a visible state {bj(vt)}: contain 

the probability of observing a particular visible state given that 

the hidden model is in a particular hidden state.

bj(vt) = P(vt \Sj(t)) 1 < j  < n  (4.3.10)

• The initial state probability distribution 7r =  7 where

it =  P(qi =  Si) 1 <  i < n. (4.3.11)

Thus an HMM is a standard Markov process augmented by a set of 

visible states, and some probabilistic relations between them  and the 

hidden states.

For convenience, we use the compact notation:

A = ( A , B , 7 t) (4.3.12)
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where A = {up}, B = {bj(vt)} and n — 7q, to indicate the complete 

parameter set of the model.

Defining an observation sequence O — {eq, 0 2 , •••, or}, where ot is an 

observation at time t, there are three basic problems associated with 

a HMM. The first two are pattern recognition problems: finding the 

probability of a sequence of visible states given an HMM (evaluation); 

and finding the sequence of hidden states that most probably generated 

an observed sequence (decoding). The third problem is generating an 

HMM given a sequence of observations (learning) [13, 79,102].

• Evaluation problem: Given the HMM A =  (A, B,7r) and the 

observation sequence O =  {0 1 , 0 2 , •••, or}, calculate the proba­

bility that model A has generated sequence O. The Forward- 

Backward algorithm  can be used to estimate these probabili­

ties.

• D ecoding problem: Given the HMM A =  (A, B,7t) and the ob­

servation sequence O = {cq, 0 2 ,..., or}, calculate the most likely 

sequence of hidden states Si that produced this observation se­

quence. The Viterbi algorithm  is used to find the most likely 

path of hidden states.

• Learning problem: Given some training observation sequences 

O =  {cq, o2, ..., or} and general structure of an HMM (numbers 

of hidden and visible states), determine the HMM parameters 

A =  (A, B , 7r) that best fit the training data, th a t is, maximizes 

P(0 |A ). The Baum-W elch algorithm  is used to find the un­

known parameters of the HMM.

In this research, the two problems of concern are:
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1. Given a number of training data, to train an HMM which has high 

likelihood of producing the training data. To do this, the Baum - 

W elch algorithm  is used to determine the best HMM parame­

ters. The transition probabilities and the observation probabili­

ties are initialised using random numbers at the beginning, and 

then iteratively improve the estimates. This HMM is used to 

track a 3D person in real video.

2. Given an HMM A and the observation sequence O, the V iterbi 

algorithm  needs to be used to find the best state sequence that 

produced the input observation sequence during the generating 

process. The result of the generating process is a sequence of 

90-dimensional vectors, each estimating a 3D pose of the virtual 

character responding to the tracked person in the video.

4.3.4 Training a Model of Dynamics

In the experiments, the HMM is trained on one person’s MoCap data. 

We obtained the transition probabilities in the HMM after 3 iterations. 

Figure 4.11 shows a GMM with 12 Gaussians, fitted to a person’s Mo­

Cap data. 12 Gaussians have been used to cover the data  distribution 

well. In the figure, the red ellipses represent Gaussian and the blue 

dots denote the motion data.

Table 4.1 shows the transition probability m atrix of the HMM used 

here. It is clear that the highest probability values are on the diagonal, 

which corresponds to no transition. The off diagonal, there is only one 

more non-zero value, which means there is one transition of the cluster 

from the current state to another state. In the transition probability 

matrix, a probability equal to unity, means tha t the transition ends up
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GMM with connections showing HMM transition probabilities
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Figure 4.11. GMM with connections showing HMM transition prob­
abilities with values greater than 0.01.

in this state.

Now we have an accurate model of human motion represented by 

an HMM, where each state in the HMM is represented by a single 

Gaussian, this model can be used to determine the poses in the video 

frame.

4.4 Summary

In this chapter, the motion capture system is introduced, which is used 

to capture the real motion data. The PhaseSpace Motion Digitizer 

System uses PhaseSpace cameras to capture the motion of subjects 

who have LEDs attached to their bodies. MotionBuilder software is 

then used to capture the motion data. These data will be used for 

modelling human motion, tracking motion of a 3D person in real video, 

and generating human interactive behaviours for a virtual character
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Table 4.1. Probability transition matrix trained on walking and shak­
ing hands MoCap data of one person 
one.

0.909 0.00 0.00 0.00 0.00 0.091

0.00 0.875 0.00 0.00 0.125 0.00

0.00 0.091 0.909 0.00 0.00 0.00

0.143 0.00 0.00 0.857 0.00 0.00

0.00 0.00 0.00 0.16 0.84 0.00

0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.091 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

The sum values of each row is

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.889 0.00 0.00 0.111 0.00 0.00

0.00 0.909 0.00 0.00 0.00 0.00

0.00 0.00 0.917 0.00 0.00 0.083

0.00 0.059 0.00 0.941 0.00 0.00

0.00 0.00 0.032 0.00 0.968 0.00

0.20 0.00 0.00 0.00 0.00 0.80

responding to the tracked person.

This chapter also outlines the basic theory which is used for mod­

elling human interactive behaviours. PC A is a well known method for 

reducing the dimensionality of the data sets. It allows the computation 

of a transformation that maps our MoCap data from a high dimensional 

space to a low dimensional space. The goal of applying PCA to our 

data is to reduce the dimensionality of the training data, and to retain 

as much as possible of the variation present in the original data  set at 

the same time. This is because it is difficult to analyse data in the 

high dimensional space. The HMMs are then trained on the reduced 

dimensional data to represent interactive behaviours for tracking the 

motion of a real person in a real video sequence.
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In the next chapter we are going to explain in detail the process of 

tracking the motion of a 3D person in real video using the model of 

human motion.



Chapter 5

TRACKING A 3D PERSON IN 

A 2D REAL VIDEO

5.1 Introduction

In the previous chapter, we described a model of human motion. In 

this chapter, we apply this model to tracking motion of a 3D person in 

real video sequence.

Analysing human behaviour and tracking the full human body in 

video have been an active area of research for over twenty years. The 

recent appearance of cheap digital video equipment has made this area 

even more appealing to researchers, with applications ranging from 

biomedical human motion analysis and video surveillance to computer 

games and film production. Tracking people is a challenging task, be­

cause of the high dimensionality of a full body kinematics, the ambigu­

ity caused by body articulation, and the fast movement of the human 

body. Moreover, loose clothing, mutual occlusion between body parts 

or shadows may complicate the inference problem. These ambiguities 

make it hard to track moving body parts.

In this research, the purpose is to create a 3D virtual character 

capable of responding to actions obtained from observing a real person

62
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in video. To achieve this goal, the motion of a real person in video needs 

to be tracked. In this chapter, the annealed particle filtering (APF) [12] 

is applied to track the fully articulated 3D motion of a person in video in 

conjunction with a model of human geometry and a model of dynamics 

of human motion built using the techniques described in Chapter 4. The 

tracked motion of a person is then used for generating the interactive 

behaviours for a virtual character.

The model of geometry of a human body is deliberately kept simple, 

which is sufficient for this purpose. It consists of 16 segments connecting 

20 vertices positioned on the body and representing places like elbows, 

knees, etc. These segments are described in truncated cones as shown 

in Figure 4.5 on Page 46. The silhouette of the produced model of 

geometry roughly resembles a human figure, which is needed during 

the tracking process.

The remainder of the chapter is as follows: In Section 5.2 the track­

ing algorithm APF is discussed. It is used for tracking an articulated 

3D motion of a person in real video. The results of tracking in real video 

is then presented in Section 5.3. Section 5.4 concludes this chapter.

5.2 Tracking Method -  Annealed Particle Filtering (A PF)

The aim is to track the motion of a 3D person from 2D real video 

sequence with good accuracy, from frame to frame. There are two 

problems when tracking an articulated 3D person from 2D video: the 

first is to locate the person in a video frame, the second is to estimate 

the articulated motion from 2D data. Since video sequences of a single 

moving person are captured in a controlled environment, the person in 

the video sequence can be located easily using thresholding techniques
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[88]-

In order to track a fully articulated motion of human body efficiently 

and to obtain the desired information, the annealed particle filtering 

[12] was adopted. This is based on particle filtering, but modified to 

avoid the high dimensionality problem of standard PFs. This approach 

is similar to that of simulated annealing (SA) [106].

SA was developed by Kirkpatrick [106] as a way of handling multiple 

modes in an optimisation context. It employs a series of distributions, 

with probability densities given by po(x) to p m (%), in which each pm(x) 

differs only from pm+i(x). Samples actually need to be drawn from the 

distribution po(x). The distribution Pm is designed so tha t the Markov 

chain used to sample from it allows movement between all regions of 

the state/search space.

An annealing run is started in some initial state, from which a 

Markov chain designed to converge to pm is first simulated. Some 

number of iterations of a Markov chain designed to converge to P m - i  are 

simulated next, starting from the final state of the previous simulation. 

The process is continued in this fashion, using the final state of the 

simulation for pm as the initial state for the simulation for pm_i, until 

the chain designed to converge to po is finally simulated.

The idea of annealing for optimisation is now adapted to perform 

a particle based stochastic search within the framework of an annealed 

particle filter. The detailed of the APF approach is described in [12].

A.ssume that a series of wuight functions tuq([Z, to (Z ,X ) 1 are 

employed, where m  is the number of annealing layers. An un-weighted

xT h e  w e ig h tin g  fu n c tio n  t o  a re  c o n s t ru c te d  b y  tw o  im a g e  fe a tu re s :  ed g es  a n d  
fo reg ro u n d  s i lh o u e tte . T h e  d e ta ile d  o f th e  w e ig h t f u n c t io n  c a n  b e  fo u n d  in  [12].
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set of particles are denoted as:

s.,™ =  { (< ! ,) • • •  (si"™1’)} (5.2.1)

where N  is the number of particles on each layer. A set of weighted 

particles represents the state of the tracker after an annealing run in 

each layer m,

Sfc,™ =  4 % )  • • ■ (s A 1’- 4 ! t “ 1))} (5.2.2)

where 7 r ^  is the corresponding particle weighting.

Each annealing run can be broken down as follows [12]:

1. Select the number of layers m  and the number of particles N  in 

each layers. For each time tk an annealing run is started at layer 

m.

2. Initialise a set of un-weighted particles Sk,m on each layer of an 

annealing run.

3. Assign a weight on each of the particles,

4 ‘,L i’t )  (5-2.3)

which are normalised so that =  1- The se  ̂ weighted

particles Sfc>m is now formed.

4. N  particles are drawn randomly from S J m with replacement and 

with a probability equal to their weighting 7r^m. As the nth parti-
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cle s j ^  is chosen, it is used to produce the particle using:

J n )  =  (n) R
k,m— 1 k,m ' (5.2.4)

where B m is a multi-'variate Gaussian random variable with vari­

ance P m and mean 0.

5. The set Sfc!?n_i has now been produced, and can be used to ini­

tialise layer m  — 1. The process is repeated from Step 3 to 4 until 

we arrive at the set Sjyo (layer 0).

6. S£0 is used to estimate the optimal model configuration Xk using:

The set is then used to initialise layer M  of the next annealing 

run at tk+i-

5.3 Tracking the Motion of a Person in Real Video

In the previous section, the APF used to extract 3D articulated motion 

of a person moving in video from frame to frame is presented. It can 

avoid the high dimensionality problem of the data-set, and recovers 

3D poses of person from the original video sequences. In this section, 

the model (built using techniques described in Chapter 4) is applied to

N

(5.2.5)

7. The set Sh+i,M is then produced from S£0 using:

(5.2.6)
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recover 3D poses of human figures from the video sequences. To do so, 

the volumetric model is represented by cylinders (Figure 4.5).

Firstly, statistical background subtraction [88] is used to detect the 

silhouette of a person in each frame. Assuming tha t the person’s height 

and other parameters, such as radius of torso, the length of legs and 

arms are known. Next APF [12] is used to estimate the whole body 

poses.

5.3.1 Tracking Process

In the tracking process, the 3D pose and position of a person in a real 

video sequence need to be found. To do this, the following steps are 

performed:

1. A single video camera is calibrated using Zhang’s method [107] 

and record several video sequences (simple background with no 

person present and a person moving in the scene).

2. A moving person is identified by subtracting the background, re­

sulting in a binary image (black and white) with the persons 

silhouette in white, as shown in Figure 5.4.

3. A dynamic model is built on a single person’s MoCap data.

4. The whole body pose and 3D information is estim ated using the 

APF.

5. Repeat step 2 to 4 for all frames of the image sequence.

The above steps will be described in detail in the following sections.



S ection  5 .3 . Tracking th e  M otion o f  a Person in Real V ideo 68

5.3.2 Calibrating the Camera

Camera calibration is the process of transformation the 3D position 

and orientation of the camera frame in world space into 2D image co­

ordinates [108-110]. Camera calibration is an important step in many 

computer vision applications. The intrinsic properties of the camera are 

obtained through this process, such as focal length, image center and 

image distortion coefficients. The extrinsic camera parameters, such 

as translation components and rotation angles for the transformation 

between the world space and camera co-ordinates, are then obtained 

by using Zhang’s method [107] (Zhang’s method, using a simple planar 

pattern has provided the research community with both an easy-to- 

use and accurate algorithm for obtaining both intrinsic and extrinsic 

camera parameters). This algorithm was implemented in the Matlab 

Camera Calibration Toolbox [111] by Jean-Yves Bouguet and C + +  in 

Intel OpenCV library [112]. These libraries are currently two of the 

most widely used tools for camera calibration. Both intrinsic and ex­

trinsic camera calibration parameters need to be saved, such as focal 

length, image distortion coefficients, translation components and rota­

tion angles. Those parameters are used for locating the person in the 

video frame and merge the virtual character back into original the video 

sequence.

Video sequences are obtained by recording a person’s movement us­

ing a single camera. First, simple background frames without a person 

present are recorded. Then several videos are filmed for one person’s 

action (walking and shaking hands, pulling and pushing) corresponding 

to the MoCap data which are used in this research to analyse human 

behaviour and estimate 3D poses of a person in video sequence. All
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videos are recorded at 30 fps. Some of them are background videos 

without a person present (Figure 5.1), some videos show one person 

walking and shaking hands (Figure 5.2), some videos showed pulling 

behaviours and the remaining show pushing behaviours. Finally, the 

recorded video data is exported into a sequence of RGB images. Se­

lected frames from the original video sequence for walking and shaking 

hands behaviours are shown in Figure 5.3.

Figure 5.1. Original background image without a person in the scene. 

5.3.3 Training Data

The 3D MoCap data are obtained by capturing two people’s motion 

using Phasespace system (Chapter 3). 30 markers are placed on each 

person at the joints shown in Figure 3.2 on Page 34. The 3D position 

of markers were recorded at each pose, therefore a pose of a person 

in each frame is represented by a 90-dimensional vector. The data 

collected consists of the markers’ coordinates in each frame through
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I

Figure 5.2. Original video image with a person present in the scene.

"■R
t= 2.2s t = 3s t = 4.83s

Figure 5.3. Selected video images of one person walking and shaking 
hands at time 2.2s, 3s and 4.83s respectively.

a number of sequences describing three different types of motion. In 

total, 14 sequences of MoCap data for shaking hands, 9 sequences of 

MoCap data for pushing and 7 sequences of MoCap data for pulling 

have been obtained. All the original MoCap data sequences can be 

viewed in the CD at back of the thesis in folder Original-shaking 

hands, Original-pushing and Original-pulling respectively.
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5.3.4 Subtracting Background

To locate the 3D position of a person in an image, the person’s contour 

need to be first determined by subtracting the background image from 

all other video frames. For this purpose, the statistical subtraction 

method described by Horprasert et al. [88] is used to detect a moving 

foreground object (the shape of the person) from a background scene 

using color images.

The basic idea of background subtraction is to subtract the image 

B from a reference image A that models the background scene. The 

basic steps of the algorithm are as follows [88].

• Background modelling constructs a reference image representing 

the background. In the background training process, the reference 

background image and parameters are computed over a number 

of background images.

• Threshold selection determines appropriate threshold values by a 

statistical learning procedure used in the subtraction operation 

to obtain a desired detection rate.

• Pixel classification classifies the type of a given pixel, th a t is, the 

pixel is the part of background, or it is a moving foreground ob­

ject. In this step, the difference between the background image 

A and the current image B is evaluated. When the difference 

between each pixel is greater than the threshold value, then this 

pixel will change to white in image B. Otherwise, when the dif­

ference between each pixel is less than the threshold value, this 

pixel will change to black in image B. As a result, the black is the 

background and the white is the silhouette of the human body.
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Figure 5.4 shows the result of the image after subtracting the 

background.

Figure 5.4. Binary image after subtracting background.

Selection frames from the result of the image after subtracting the 

background are shown in Figure 5.5. These result images show the 

robustness and reliability of the statistical subtraction algorithm.

5.3.5 Model of Human Motion

In the following experiments, the model of dynamics of the motion of 

a single person is represented using an HMM as described in Chapter

4. The model of geometry of the human body used in the following 

experiments is described in Chapter 4, Figure 4.5. An HMM is defined

as

A =  (A, B, 7r) (5.3.1)

where A =  {%•} is the state transition probability matrix, B =  {bj(vt)} 

where bj{yt) is the observation density distribution at state j  and 7r is
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Figure 5.5. Selection frames from Original video sequence and binary 
images after subtracting background.
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the initial state probability distribution.

To train the model of dynamics, the MoCap data for one person 

need to be used. In the experiments several sets of motion data in 3D 

space with 30 markers are captured, therefore a pose in each frame is 

represented by a 90-dimensional vector. Such data is always constrained 

by physical and dynamical factors, thus the dimensionality of the data 

set need to be reduced using PC A. The model is trained on 1600 frames, 

keeping approximately 90% of the total eigenenergy in the model, which 

accounts for seven largest eigenvectors, and approximately 60 states are 

used in the model. Figure 5.6 shows the relations between percentage 

of eigenenergy and number of dimensions. As mentioned in Chapter 

2, six to eight dimensions are enough to represent a human jump that 

looks similar to the original high-dimensional version [7]. From the 

figure, we decided to choose 90% of the total eigenenergy in our model.

18
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Percentage of eigenenergy vs. number of dimensions
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Figure 5.6. Percentage of eigenenergy vs. number of dimensions
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Then the HMM on a number of such vectors is trained using the 

Baum-Welch algorithm [13]. Finally, the APF algorithm as described 

in Section 5.2 is used to track the motion of a person in real video.

5.3.6 Tracking Results

The 3D articulated motion of a person in a 2D real video sequence needs 

to be tracked. The video sequence is preprocessed by subtracting the 

background [88] and thus a sequence of binary images (Figure 5.5) is 

obtained. Next, the APF described in Section 5.2 is used together with 

the HMM trained in the previous stage to estimate the 3D poses of the 

tracked person in the video.

In the following experiments, we use the same tracking algorithm 

to track a person in a real video sequence and track a person using 

the synthesised data. The purpose of these experiments is to test the 

accuracy of the APF.

Tracking a Person in a Real Video Sequence

In this section, the experiments are repeated to track 3D poses of a 

person from the original video sequences. In the experiments, 10 layers 

and 256 particles (samples) on each layer are used; both numbers were 

determined empirically. The result of the tracking process is a sequence 

of 90 dimensional vectors, each estimating a 3D pose of the tracked 

person in the video. Figure 5.7 shows selected frames from the video 

sequences and the estimated 3D figures in the same view.

Since there are no markers placed on the human body in the real 

video sequence, the only way to assess the accuracy of tracking in video 

sequence is visual. In the next section, the synthesised data are used
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HI
2H31

Figure 5.7. Original images (first column) and the estimated 3D fig­
ures in the same view (second column).
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to assess the accuracy of tracking.

Tracking a Person using the  Synthesised Frames

In this section, several sequences of synthetic frames are generated from 

the 3D MoCap data of one person performing shaking hands, pushing 

and pulling motion.

In the following experiments, the same tracking algorithm, the same 

number of layers, and the same number of particles are used as in the 

above real video sequence. Figure 5.8 - 5.10 shows the tracking results 

for the synthetic data on three different types of motion.

For Figure 5.8, blue trajectories are ground tru th  while red trajecto­

ries are tracking result in the top of figure. In the bottom of figure, the 

line shows the distance between ground tru th  and the tracking result. 

It is clear to see that the tracked motion is similar to the ground tru th  

in most of frames. In the frame 30 to 40, the average error of tracking 

is 7mm, which is worse than the tracking precision in all frames. The 

overall average error of tracking is 3mm, so we feel is still acceptable.

Figure 5.9 shows the error of tracking on a synthesised data for 

pushing behaviours. The error is consistent through all the frames and 

its average value through all the frames is around 2mm. It is a very 

good estimate considering the absence of any 3D information.

In Figure 5.10, The error is a little worse in the last 30 frames, 

which stabilises in the rest of the sequence. Overall, the average error 

is a little worse than in the pushing motion for the same person, which 

can be attributed to a different type of motion.
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Figure 5.8. Tracking result for the synthesised data (shaking hands 
behaviours). In the top of figure, blue trajectories are ground truth 
while red trajectories are tracking result. In the bottom of figure, the 
line shows the distance between ground truth and the tracking result.

5.4 Summary

In this chapter, we have described the details of APF for tracking 3D 

human motion in real video. It can search high dimensional configu­

ration spaces and is capable of recovering full articulated body motion 

efficiently. The model of human motion and the APF are applied to 

recover 3D poses of human figures from the video sequences. The good 

tracking results are obtained in the experiments, however, the results 

are dependent on how well the built models represent the tracked per­

son. In the next chapter, the tracked motion of a person is used for 

generating the interactive behaviours for a virtual character.
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Figure 5.9. Tracking result for the synthesised data (pushing be­
haviours). In the top of figure, blue trajectories are ground truth while 
red trajectories are tracking result. In the bottom of figure, the line 
shows the distance between ground truth and the tracking result.
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Figure 5.10. Tracking result for the synthesised data (pulling be­
haviours). In the top of figure, blue trajectories are ground truth while 
red trajectories are tracking result. In the bottom of figure, the line 
shows the distance between ground truth and the tracking result.



Chapter 6

GENERATING BEHAVIORS 

FOR A VIRTUAL 

CHARACTER

I n  the previous two chapters, we described how the model of human 

motion was built and how to track motion of a real person in the video. 

In this chapter, the process of generating interactive behaviours for a 

virtual character responding to the tracked person is presented.

6.1 Introduction

In recent years, many researchers have become interested in producing 

virtual worlds and populating them with virtual characters [15-19]. 

There has been also a limited amount of research into enabling virtual 

characters with the ability to produce intelligent behaviour on the basis 

of visual analysis of the scene, which mainly was conducted in the 

computer vision area. The applications for this technology include the 

areas of films, computer games and virtual environments (for the visual 

creation of 3D characters to populate virtual environments and used as 

virtual actors for film and television).

80
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The main contributions presented in this chapter are:

• A novel approach for generating intelligent behaviours for fully 

articulated 3D virtual characters on the basis of visual analysis 

of the motion of a real person in ordinary 2D video using the 

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual 

characters using the windowed Viterbi algorithm, with real-time 

capability.

To do this, a dual-input HMM is learnt on 3D MoCap data of two 

individuals motion. The dual-input HMM has two sets of states. The 

first set of states models the poses for person A, and the second set of 

states models the poses for person B. Each state in the model is mod­

elled with a single Gaussian. The standard Viterbi algorithm and the 

windowed Viterbi algorithm are then used to generate the responsive 

behaviours for a virtual character, given a sequence of 3D poses of the 

tracked person (for person A) in video. Finally, the generated motion 

is mapped onto a virtual character and the virtual character is placed 

back into real video.

The organisation of the Chapter is as follows: in Section 6.2, the 

dual-input HMM trained on 3D MoCap data of two persons’ interactive 

behaviours is described. The behaviour generating part is explained in 

Section 6.3 and the methodology to place the virtual character into 

real video is outlined in Section 6.4. The experimental results and the 

assessment of the accuracy of the generated behaviours in Sections 6.5 

and 6.6 respectively, followed by the visual inspection of the generated 

motion by ten independent observers are presented in Section 6.7.



S ection  6 .2 . M odel o f  In teractive B eh aviour 82

6.2 Model o f Interactive Behaviour

The model is trained 011 the 3D MoCap data of two real persons. It 

can represent a variety of interactive behaviours. The model uses a 

dual-input HMM. In particular, the model is trained on the following 

behaviours: a handshake between two people; one person pulling an­

other person,the and one person pushing another person. However, 

the model can be trained to represent other types of motion given the 

appropriate training data. In the experiments, the PhaseSpace Mo­

tion Digitizer System (Chapter 4.1) is used to capture several sets of 

motion data in 3D space with 30 markers. Therefore a pose in each 

frame is represented by a 90-dimensional vector. Such data is always 

constrained by physical and dynamic factors, thus the dimensionality 

of the data set needs to be reduced using PCA before proceeding with 

anything else. Approximately 90% of the total eigenenergy are kept 

in the model, which accounts for seven largest eigenvectors, and then 

train the HMM on a number of such vectors.

6.2.1 Training Data

The data used in this research is 3D MoCap data captured using the 

motion capture system described in Chapter 4.1. As mentioned earlier, 

this system consists of 12 specialist cameras. 30 markers are placed 

on the person’s body, as shown in Figure 3.2 on Page 34. The data 

collected consists of the markers’ coordinates in each frame. Three 

different types of interactive behaviours (walking and shaking hand, 

one person pulling another person and one person pushing another 

person) are captured for person A  and person B.
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6.2.2 Dual-Input HMM Construction

Dual-input HMMs were described by Brand in [113]. In his work, he 

mapped audio parameters with visual shape and velocity parameters 

through an entropic HMM, hence estimating of the hidden visual state 

sequence from a new speech observation. In this thesis, the method em­

ploys the standard HMM to model the human interactive behaviours for 

two persons. After the HMM stage, motion parameters are calculated 

for a virtual character from a state sequence.

The model is trained on the 3D MoCap data of two real people. 

The model uses a dual-input HMM (each HMM describes the motion 

of a whole human body), with two sets of states. One set of states 

models the poses for person A. Likewise, the other set of states models 

the poses for person B. Each state is modelled with a single Gaussian 

variable. The model is trained on 1600 frames, keeping approximately 

90% of the total eigenenergy in the model, which accounts for seven 

largest eigenvectors (See Figure 5.6 on Page 74).

The construction process is as follows. First an n  state HMM is 

defined as:

Ab  =  ( A b , B b , 7Tb ) (6.2.1)

where Ab is the state transition probability matrix, B b is the obser­

vation probability distribution, and 7Tb is the initial state probability 

distribution. It is constructed using the training data  representing the 

motion of person B. The mean and covariance of each state in Ab are 

defined as /ilB and Fg, where i =  1, . . . ,  n.

After training this HMM, the matrix 7t(i) is also automatically 

obtained, which defines the probability of being in state i at time t.



Section  6 .2 . M odel o f  In teractive B eh aviour 84

Since the length of the observation sequence is equal to the number of

training vectors, T  = N  during training. Using the matrix 7 t (z), we

build a second HMM with the new n states which is defined as

Aa  =  ( A b , B b , 7Tb ) (6.2.2)

It has the same transition, observation and prior probabilities as Ab- 

The means filA and covariances E ^ are calculated from the training 

data representing the motion of person A.

N  (6.2.3)

and

E*=i7t(i) 1 < i < n, T  —

s fci7t(*) ' (b‘A ~ A»k)(b a ~  a.)T 
s S=i7t(*)

(6.2.4)

1 4  = t = 1 , w 7 4  A— 1 < i < n ,  T  = N

where b is the observation sequence of person A ’s motion data.

Given Aa and a sequence of 3D poses of the tracked person in video, 

we can estimate the best state sequence Q using the standard Viterbi 

algorithm. Given the shared transition, observation and initial proba­

bilities between Ab and Aa, the means and covariance of Aa are con­

structed using the state observation matrix 7 t(i) and the training data 

representing the motion of person A, the state sequence Q also corre­

sponds to a state sequence through Ab- The state sequence Q defining 

a set of hidden states through both Ab and Aa, also relates to a unique 

set of mean and covariance matrices of the training data representing 

the motion of person B  for each time step £, and a unique set of mean
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and covariance matrices of the training data representing the motion of 

person A for each time step t. This way, the shared properties between 

Ab and A a  associate Qt with /ig and Eg, as well as ^  and E^-

The HMM Aa is defined as a dual-input HMM since it has two sets 

of means and covariance’s, constructed using person A  and person B ’s 

motion data respectively. This is different from coupled HMM in which 

two HMM are coupled together.

A summary of the dual-input HMM is as follows:

1. Given the training data representing the motion of person B, 

build the HMM Ab and keep the matrix 7*(i).

2. Using 7t(i), the training data for person A corresponding to the 

training data representing the motion of person B used in Ab 

construction, and calculate the new means filA and covariances 

E^ using Equation (6.2.3) and (6.2.4).

3. Define the dual-input HMM A a using the new means and covari­

ances. It has the same transition, observation and prior proba­

bilities as Ab -

4. Using Ab , classify the motion data for person B  for each obser­

vation to a state, by minimising the Mahalanobis distance .

5. Using the one-to-one first-and-second correspondences from the 

training set, form clusters for each HMM state.

Using this dual-input HMM, a sequence of 3D poses for a virtual 

character can be estimated, given a sequence of 3D poses of the tracked 

person in the video. This is described in the next section.
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6.3 Generating Interactive Behaviours

In the virtual character generating system, the 3D articulated motion 

of a real person in a video is tracked using the APF described in the pre­

vious chapter, after which the obtained 3D data for the tracked person 

are used in combination with the dual-input HMM and the standard 

Viterbi algorithm or the windowed Viterbi algorithm to generate the 

responsive behaviour for a virtual character. Finally, the virtual char­

acter performing the generated motion can be placed back into the 

original video sequence, as shown in Figures 6.8, 6.9 and 6.10.

In the following subsections the theory of both the standard Viterbi 

algorithm and the windowed Viterbi algorithm are described briefly. 

Then the process of generating interactive behaviours is described given 

a sequence of poses (tracking result) for person A.

6.3.1 The Standard Viterbi Algorithm

The standard Viterbi algorithm is able to find the single best state 

sequence Q =  {<7 1 ,(7 2 , • • •, Qt } for given an observation sequence O =  

{'0 1 , 0 2 , • • •, ot}. For example, this will be a good “animation” synthesis 

of a given sequence. The best state sequence is the most likely state 

sequence that could have generated the observation sequence. A terms 

need to be defined:

5t (i) = m a x P ( Q , 0  | A) (6.3.1)
i

where St (i) is the highest probability along a single path at time t. 

Then,
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St+i(j)  =  max[Jt (2)ay]6j(oi+i) (6.3.2)

In the experiments, the observation sequence is the original MoCap 

data of person A. The standard Viterbi algorithm can be described as 

follows [13]:

1. Intialise the probability calculated by the initial hidden state 

probabilities with the associated observation probabilities.

where ^ ( 2) is used to keep track of the argument which maximises 

Equation (6.3.1) for each t and j .

2. Consider all products of transition probabilities with the max­

imal probabilities derived for the preceding step to determine the 

most probable route to the next state. Keep the highest proba­

bility and its corresponding path at iteration.

(6.3.3)

(6.3.4)

5t(j) = max[5t_i(z)ai:7-]fy(ot) 2 < t < T  (6.3.5)

'ipt(j) =  argmax[dt_i(i)a,j] 2 < t < T  (6.3.6)i

3. Determine the path (state sequence) at final iteration.
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qt — argmax[&r(i)] (6.3.7)

4. Backtrack through the path, following the most probable route. 

The sequence obtained from this process will hold the most prob­

able sequence of hidden states for a given observation sequence.

The process of the standard Viterbi algorithm is described in Fig­

ure 6.1. Si is the sequence of hidden states, amax(t) is the maximum 

probability at time t and T  is the number of frames.

The standard Viterbi algorithm requires the full observation se­

quence O =  {oi, 0 2 ? • • • ? ° t }  before the processing starts, which makes 

real-time processing impossible. In order to exploit the benefits of the 

Viterbi without having to wait for the entire full state sequence, we em­

ploy the windowed Viterbi algorithm [14,114] that can obtain the best 

state sequence. This is achieved by processing the full state sequence 

in a block wise manner (instead of the whole data), thus it can be used 

in a real-time system.

6.3.2 The Windowed Viterbi Algorithm

In a real-time system, the windowed Viterbi algorithm will cause a 

small delay in the state estimate, but as long as the delay is not too 

long, the estimate may still be useful. For example, if the training 

data are captured at 30 frames per second, and the window size is 

chosen by 10 frames. Thus the delay time only is 0.033 second. It is

t = T  - 1 , T  - 2 ,  . . . 1  (6.3.8)
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Figure 6.1. Illustration of the Viterbi Trellis. S'* is the sequence of 
hidden states and amax(^) is the maximum probability at the time t. T  
is the number of frames.

not usually noticeable in most of the generated motions. However, it 

is possible to avoid this delay by adjusting the time correspondences 

between interacting people in the training data.

The standard Viterbi algorithm extract the best path with the as­

sumption that the whole motion sequence is available, th a t is a non- 

causal filter of length and delay equal to the sequence length. This 

might be impractical in some applications. Moreover memory and ef­

ficiency problem will be caused for long sequences the length of the 

trellis. In order to avoid that, a method is devised that uses a win­

dowed trellis that probes the best future path and uses only the first 

portion of it to make up the overall path.
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At any given time t, a time slice of T  samples is taken and used as 

the input to the Viterbi algorithm. We retain only the second state q-2 

of the sequence of states Q =  {^i, q2, . . . ,  qr} corresponding to the best 

path for the actual time slice.

In summary, the windowed Viterbi algorithm can be described in 

the following way [14].

1 . Select the length of the window T  and select the initial state 

probability 7r for the n states using the following way as in [14].

7Tn+l =  l,7r^n±i =  0 (6.3.9)

2. The best path {<7 1 , q2, . . . ,  qr} for the window T  can be obtained 

using the standard Viterbi processing.

3. Retain the second state q2 as the output at time t, and let

71-32 =  1 , 7 1 - ^ 2  =  0  (6.3.10)

for processing of the next window.

4. Repeat steps 2-3 (slice trellis forward) until the end state is reached.

Assume a window T  =  5 samples of the input sequence is chosen, 

and the windowed Viterbi algorithm is applied to it. Figure 6.2 il­

lustrates the general process of the windowed Viterbi algorithm. The 

dashed blue box represents the length of the window, the pink node 

represents the state at time t =  2  which is used to build up the output 

sequence at time t =  1 (see black node in the Figure 6.2).

In the next section, the obtained motion data for the tracked person 

in the video is fed to the dual-input HMM with the standard Viterbi al-
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Figure 6.2. Illustration of the windowed Viterbi algorithm. Si is the 
sequence of hidden states and 7Tn+i is the maximum probability at the 
time t =  1. The dashed blue box represents the length of the window 
T. The pink node represents the second state of the best path for the 
window T. The black node represents the output at the time t.
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gorithm, or the windowed Viterbi algorithm (to generate the responsive 

behaviour for a virtual character). A trellis data structure is defined 

to find the best sequence for the virtual character. The trellis data 

structure contains the nodes of the trellis graph, whose shortest path 

from the start node has been computed. After that, we work backward 

through the trellis and chose the second person motion data with the 

lowest cost for each time t.

6.3.3 The Trellis Structure

In Section 6.2, a dual-input HMM on the 3D MoCap data of two real 

persons is trained. Now it is possible to generate a corresponding se­

quence of poses for the virtual character, given an input the sequence 

of 3D poses of a person (tracking result from Chapter 5). To achieve 

this goal, a trellis data structure is defined. Figure 6.3 illustrates an 

example of an initial trellis structure [41]. Q is the set of states re­

sulting from the Viterbi algorithm step, and each column of the trellis 

structure represents motion data of person B corresponding to the mo­

tion of the virtual character. Therefore, the length of each column may 

vary.

6.3.4 Estimating Output Behaviours

When the trellis is built, the best path needs to be found through this 

trellis according to the minimum distance between each data vector and 

a state at time t. Thus, an error value (the Mahalanobis distance [115]) 

to each element in each column is assigned, and then we work backward 

through the trellis to choose the motion data for the virtual character
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States
Q1 Q2 Q3 Qt

Real Person 
Motion Data

Figure 6.3. Initial Trellis data structure for generating motion data. 
Q is a set of states.

with the lowest cost for each time t.

Figure 6.4 shows how errors are calculated according to the trellis. 

CJt is the data vector for person B for cell j  at time t , b input is the 

new input signal (the tracking result from previous chapter) and ba is 

the data vector for person A, which has the same location as the data 

vector for person B.

Qt Qt-i
D1

•t-1 Dr

binput

ci. E = (D1 + D2 + ... + Dr) D

Errors for t = 1,..., T

Figure 6.4. A representation of error Calculation for the generating 
motion data. CJt is the data vector for person B for cell j  at time t, 
b input is the new input signal, ba is the data vector for person A, E  
represents the error.

For state 1 (t =  1) of the trellis structure, we only have the distance 

between the new input signal b input and the data vector ba for person
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A (denoted as D in Figure 6.4). Therefore, we calculate the error using:

E (C „ Qr) = ( K  -  b\nput)T^ ( K  -  b l put)

i = l , . . . , p  (6.3.11)

where E (C i: Qi) is the error between the new input signal and the data 

for person A in state Qi, p i s  the number of parameters C i in state Q i, 

b Input 1 S  the input signal vector observed at time t —  1, and is the 

covariances matrix of A a  for state Q\.

For the remaining states t — 2,..., T  (T is the number of frames of 

the new input signal), the distances between Cj in a column at time 

t and in a column at time t — 1 (denoted as Di, D 2 and Dr) are 

calculated. Thus, the error can be obtained as E  = (Di +  D2 +  . . .  +  

Dr) x D for other state as follows.

r

E (C j ,Q t) =  [ ^ ( c ; _ j  -  C?)T£ B  ( C U  -  c p ]  X
?’=1

( K  ~ -  b l put)

j  = (6.3.12)

where E (C j ,Q t) is the error between CJt in a column at time t and 

0 3t_i in a column at time t — 1, p is the number of parameters C j in 

state Qt , r is the number of parameters C; in state Qt-i  and is 

the covariances matrix of Ab for state Qt.

When the errors are calculated in the trellis, the best path is calcu­

lated by working backwards through the trellis (from T  > t > 1), and 

choosing the motion data for the virtual character in each column
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with the lowest error value at time t.

C°ut = m m E (C j ,  Qt)\ j  =  l , . . . , n ;  t = T , . . . ,  1. (6.3.13)

Through this process, the generated interactive behaviour for the 

virtual character can thus be obtained.

6.3.5 Trajectory Post-processing

Through the above process, the generated interactive behaviour for a 

virtual character can be achieved. Then trajectory post-processing is 

employed to smooth the estimated sequence of poses. A good approach 

is to use a weighted averaging filter on the estimated sequence of poses, 

thus removing spikes in the trajectory caused by the incorrect motion 

choice. This is because the spike causes large changes in the estimated 

motion over short time periods. Finally, the motion data is transformed 

back to original dimensional space.

6.3.6 Motion Resynthesis Summary

A summary of the motion resynthesis is as follows.

1. Calculate the best state sequence Q through the dual-input HMM 

using the input sequence of 3D poses of a person b* t (the 

tracked result), where t =  1 , . . . ,  T.

2. Using the state sequence Q, construct a trellis of the parameter 

C.

3. Assign errors to each trellis mode at t = 1, using Equation
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(6.3.11).

4. Assign errors to each trellis mode at t =  2 , . . . ,  T, using Equation

(6.3.12).

5. Choose the best state C°ut from T  to 1, using Equation (6.3.13).

6. Apply post-processing (Section 6.3.5) to the motion data for the 

virtual character.

Using the approach described in this section, the response behaviour 

was generated for the virtual character from the dual-input HMM, given 

three different types of motion data for the tracked person in the video 

as input. In all three cases an appropriate behaviour was generated, 

and the generated behaviour appeared naturalistic. All the generated 

videos can be viewed in the CD at back of the thesis. The videos in 

folder G enerated results - standard are generated using the stan­

dard Viterbi algorithm, and the videos in folder G enerated results - 

windowed are generated using the windowed Viterbi algorithm.

6.4 Placing Virtual Character Back into the Real Video

In this section, a virtual character is placed back into the real video. 

Two main commercial software packages, MotionBuilder [8] and Shake 

[116], are used for producing the animation sequences. A summary of 

the production process is now provided.

1. Mapping the generated motion onto a 3D actor with Motion­

Builder. The process of mapping to a 3D actor can be found in 

Appendix B. Figure 6.5 shows the generated motion is matched 

with a 3D actor in MotionBuilder.



Section 6.4. Placing Virtual Character Back into th e Real Video 97

Viewer

Figure 6.5. Match the generated motion which is represented by cer­
tain points (denote as blue points) on the body onto a 3D actor.

2. Rendering the animation sequence as .avi file using Render op­

tion under File in MotionBuilder.

3. Importing the animation sequence, the real video sequence and 

the background sequence into Shake using the Fileln node from 

the Image Tool tab (Figure 6.6). Further details can be found 

in [117].

4. Using the relevant tools button, such as Resize, Over, Subtract 

and ColorMatch to create the animation video (Figure 6.7). 

Further details can be found in [117].

5. Saving the animation video to the disk using the FileOut node 

from the Image Tool tab.
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Figure 6.6. The animation sequence, the real video sequence and the 
background sequence are imported to Shake.

During this process, a lighting system1 must be created to simulate 

the light in the original real video and use alpha channels in a digital 

composite program to generate occlusions, when the 3D character is 

occluded by the real character in the video.

6.5 Experiments with 3D MoCap Data

In this section, three experiments are conducted, each with a different 

type of motion: two people shaking hands, one person pulling another 

person, and one person pushing another person.

1T h e  p rocess o f c re a tin g  a  ligh ting  sy s te m  is com plex , m o re  d e ta ils  a b o u t th a t  
can  b e  found  in  [117]
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Figure 6.7. The process of producing the animation video.

6.5.1 Generating Algorithm

In each experiment, the training data consisted of seven MoCap data 

sequences with two individual, with a total of around 1600 pose vectors. 

Each experiment consisted of the following steps.

1. PCA is performed on the data set representing the motion of 

two people, keeping 90% of the eigenenergy (seven dimensions 

remain) and project the data set in the reduced dimensionality 

eigenspace.

2. A dual-input HMM is then trained on the above data set depicting 

interactive behaviour of two persons.

3. A trellis data structure is built for generating motion data.

4. A response behaviour for a virtual character is generated using 

the dual-input HMM and working with the .standard Viterbi algo-



Section  6 .6 . A ssess in g  th e  A ccu racy  o f  th e  G enerated  B ehaviour 100

rithm or the windowed Viterbi algorithm as described in Section 

6.3.

5. The virtual character is inserted into real video sequence.

6.5.2 Animation Video Sequences

Selected frames from the generated video sequences are shown in Fig­

ures 6.8, 6.9 and 6.10. A selection of generated video sequences are 

available in the attached CD as well. The videos in folder G enerated  

results - standard are generated using the standard Viterbi algo­

rithm, and the videos in folder G enerated results - w indow ed are 

generated using the windowed Viterbi algorithm.

6.6 Assessing the Accuracy of the Generated Behaviour

In the following experiments the performances of the standard Viterbi 

algorithm and the windowed Viterbi algorithm are compared when gen­

erating interactive behaviours for a virtual character. To do so, the Eu­

clidean distance [118] are calculated between original motion and the 

generated motion generated by both approaches to assess the accuracy 

of the generated behaviour.

A dual-input HMM was trained on 3D MoCap data  representing 

three different types of motion of two persons: handshaking, one person 

pulling another person, and one person pushing another person. Given 

a sequence of MoCap data extracted from video sequence for person 

A, we generated interactive motion for person B using the standard 

Viterbi algorithm and the windowed Viterbi algorithm (we choose the 

length the window size to be 10, which was determined empirically).
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Figure 6.8. Interactions with virtual character (Handshake be­
haviour).



Section 6.6. A ssessing th e  A ccuracy o f  th e Generated Behaviour 102

Figure 6.9. Interactions with virtual character (Pushing behaviour).
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Figure 6.10. Interactions with virtual character (Pulling behaviour)
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Figures 6.11 - 6.19 show the Euclidean distance between the original 

motion and the generated motion when using the standard Viterbi al­

gorithm and the windowed Viterbi algorithm on three different types 

of motion. Each type of motion includes three different sequences (Se­

quence 1, Sequence 2 and Sequence 3), which are captured by the same 

person on different times.

Error of the generated behaviour using the standard Viterbi and the windowed Viterbi

 S tandard  Viterbi

140

120

E
E
s
C

o
croCl)
2
oaLU

120 140 160
Number of Frame

Figure 6.11. Error of the generated behaviour (in mm). Shaking 
hands behaviour (Sequence 1). The error of generated behaviour using 
the standard Viterbi algorithm is shown in the solid blue line, the pink 
dash line is for using the windowed Viterbi algorithm.

From these figures, the following conclusions are made:

1. In Figures 6.11 - 6.19, the error of the generated behaviour using 

the standard Viterbi algorithm is shown in the solid blue line. 

The pink dash line shows the error of generating behaviour using 

the windowed Viterbi algorithm. It is easy to see the errors of 

generating behaviours using both algorithms are similar. It means 

the generated motion using the windowed Viterbi algorithm is as
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Error of the  g en e ra ted  behaviour using the  standard  viterbi and  th e  window ed Viterbi
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Figure 6.12. Error of the generated behaviour (in mm). Shaking 
hands behaviour (Sequence 2). The error of generated behaviour using 
the standard Viterbi algorithm is shown in the solid blue line, the pink 
dash line is for using the windowed Viterbi algorithm.
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Figure 6.13. Error of the generated behaviour (in mm). Shaking 
hands behaviour (Sequence 3). The error of generated behaviour using 
the standard Viterbi algorithm is shown in the solid blue line, the pink 
dash line is for using the windowed Viterbi algorithm.
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Error of th e  g en e ra ted  behaviour using the  standard  Viterbi and  the  w indowed Viterbi
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Figure 6.14. Error of the generated behaviour (in mm). Pulling 
behaviour (Sequence 1). The error of generated behaviour using the 
standard Viterbi algorithm is shown solid in blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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Figure 6.15. Error of the generated behaviour (in mm). Pulling 
behaviour (Sequence 2). The error of generated behaviour using the 
standard Viterbi algorithm is shown solid in blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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Error of th e  g e n e ra te d  behav iour using th e  s tan d a rd  viterbi an d  th e  w indow ed Viterbi
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Figure 6.16. Error of the generated behaviour (in mm). Pulling 
behaviour (Sequence 3). The error of generated behaviour using the 
standard Viterbi algorithm is shown solid in blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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Figure 6.17. Error of the generated behaviour (in mm). Pushing 
behaviour (Sequence 1). The error of generated behaviour using the 
standard Viterbi algorithm is shown in solid blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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Error of th e  g en e ra ted  behaviour using the  standard  viterbi and  th e  w indowed Viterbi
300

— St andar d Viterbi 
— — W indowed Viterbi

250

200

£ 150

i3 100

50

20 40 60
N um ber of Fram e

80 1000

Figure 6.18. Error of the generated behaviour (in mm). Pushing 
behaviour (Sequence 2). The error of generated behaviour using the 
standard Viterbi algorithm is shown in solid blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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Figure 6.19. Error of the generated behaviour (in mm). Pushing 
behaviour (Sequence 3). The error of generated behaviour using the 
standard Viterbi algorithm is shown in solid blue line, the pink dash 
line is for using the windowed Viterbi algorithm.
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good as the motion generated using the standard Viterbi. Hence, 

it looks real and natural in all of the generated sequences.

2. From Figures 6.11 - 6.19, it is possible to see tha t the generated 

motion using the windowed Viterbi algorithm has a small delay 

compared with the generated motion using the standard Viterbi 

algorithm. However, this delay is not noticeable in the generated 

motion sequences.

3. Although the error for the standard Viterbi algorithm is similar 

in most frames, in some frames the windowed Viterbi algorithm 

produces smaller error. After inspecting the generated motion 

sequences visually, we found that such frames corresponded to 

sudden changes in the motion. We conclude th a t the windowed 

Viterbi algorithm can cope with sudden changes in motion bet­

ter as it uses less history of motion. In the following chapter, 

we are planning to take advantage of this observation by devel­

oping a new method on finding where to split the motion data 

automatically in order to improve the model of human motion.

6.7 Perceptual Evaluation

The drawback of assessing the accuracy of the generated behaviours is 

that they do not address the question of whether the generated motion 

are convincing form a perceptual point of view, i. e. do the generated 

motion actually look convincing and realistic? In this section, the goal 

was to evaluate how convincing the generated motion was and evaluate 

the perception quality of the generated motions, from the point of view 

of a panel of independent observers. For these purposes, nine test video
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sequences were generated.

• Three test video sequences showed original MoCap data collected 

from two persons performing handshake, pushing, and pulling 

actions.

• Three test video sequences showed the generated motion using 

the standard Viterbi algorithm (Chapter 6.3.1) interacts with the 

original MoCap data of person A.

• In the remaining three sequences, the original MoCap data of 

person A was substituted with motion data generated using the 

windowed Viterbi algorithm (Chapter 6.3.2).

All videos showed only the motion of certain points on the body, not 

the whole body. Figure 6.20 shows selected frames from the test video 

sequences. According to Johansson’s [119] experiments in psychology 

(Johansson has shown that an animation sequence consisting of a few 

points placed on the joints of the articulated human body is enough to 

create a perception evaluation.), the video sequences are acceptable for 

visual evaluation.

p
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Figure 6.20. Test video sequences showed only the motion of certain 
points on the body.

(C)
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Each of the above video sequences was shown to ten independent 

observers2. The observers were told that the videos showed the motion 

data of two people performing some action, and they were asked to 

answer two questions:

1. To identify the actions.

2. To comment if they noticed anything strange or unusual about 

the motion of the people.

All ten subjects were able to identify the actions in all nine video 

sequences correctly. Table 6.1 and Table 6.2 show the evaluation results 

whose motion were generated using the standard Viterbi algorithm and 

the windowed Viterbi algorithm respectively.

Table 6.1. Evaluation Results. The resulting motions are generated 
using the standard Viterbi algorithm.

Motion Comments

Shaking hands 5/10 - generated motion is floaty.

Pushing 3/10 - original motion is wobbly.
1/10 - generated person did not touch 
the real person.

Pulling no comments.

From these results, we conclude that both the generated behaviours 

using the standard Viterbi algorithm and the windowed Viterbi al­

gorithm looked very similar to the real behaviours as they received 

approximately the same amount of comments. W ith exception of, per­

haps, generated “shaking hands” motion, the observers did not notice

2U sin g  t e n  in d e p e n d e n t  o b se rv e rs  to  e v a lu a te  th e  p e rc e p t io n  q u a l i ty  o f  th e  g en ­
e ra te d  m o tio n s  w as  a c c e p te d  in  a ll m y  c o n fe re n c e  p u b lic a tio n s .
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Table 6.2. Evaluation Results. The resulting motions are generated 
using the windowed Viterbi algorithm.

Motion Comments

Shaking hands 2/10 - generated person did not touch
the real person at the beginning of
shaking hands.
2/10 - generated motion is wobbly.

Pushing 2/10 - generated motion is floaty.

Pulling no comments.

anything unusual about the generated motion compared against the 

real motion.

6.8 Summary

In this chapter, two novel approaches were described to generate a va­

riety of complex behaviour responses for a virtual character responding 

to the tracked person in real video in 3D. The model is trained on 

motion capture data depicting three different interactive behaviours by 

two subjects. Such data is always constrained by physical and dynami­

cal factors, thus the dimensionality of the data set needs to be reduced 

using PC A before proceeding with anything else. The model is a dual­

input HMM, with two sets of states, but only one transition matrix. 

The first set of states represents the poses for person A. The second 

set of states represent the poses for person B using the same HMM 

transition matrix.

Interactive behaviours are then generated for a virtual character on 

the basis of motion of the tracked person in video. A corresponding 

sequence of states is estimated in the HMM using the standard Viterbi
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algorithm and the windowed Viterbi algorithm. As a result, a sequence 

of poses for the virtual character is obtained. In all experiments, the 

generated behaviour appeared naturalistic.

In the next chapter, the further researches are described on finding 

where to split the motion data automatically, in order to improve the 

model of human motion for obtaining better tracking results.



Chapter 7

IMPROVING THE MODEL OF 

HUMAN MOTION

7.1 Introduction

In the previous chapters, the virtual character generating system was 

developed. Using this system, a 3D moving virtual character reacting 

to the motion of the person in video was generated and placed back 

into the original video footage. Consequently, the performances of the 

standard Viterbi algorithm and the windowed Viterbi algorithm within 

the virtual character generating system were compared.

The standard Viterbi algorithm requires the full observation se­

quence before the processing starts, thus making real-time processing 

impossible. When the windowed Viterbi method is used instead, it does 

not require the full observation sequence before the processing starts, 

thus it can be used in a real-time system. Moreover, realistic generated 

interactive behaviours can still be obtained.

By analysing the generated behaviours in Figures 6.11, - 6.19, we 

found that the error for the standard Viterbi algorithm is similar in 

most frames. In some frames the windowed Viterbi algorithm produces 

smaller error. After inspecting the generated motion sequences visually,

114
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we found that such frames corresponded to sudden changes in the mo­

tion. We concluded tha t the windowed Viterbi algorithm can cope with 

sudden changes in motion better as it uses less history of the motion.

Blake et al. [120] also introduced a new segmentation method based 

on HMM to deal with problems of the shadows of vehicles. The method 

performed accurate segmentation of the foreground objects from back­

ground objects and shadows. Then the HMMs are employed to deal 

with three different categories including background, foreground and 

the shadows of vehicles. However, they approximate the distribution of 

the background and shadow by Gaussian densities and the distribution 

of the foreground as a uniform probability density. Thus, the model 

parameters of each HMM are estimated from a particular learning se­

quence in the learning process. While in the segmentation process, one 

series of optimal states is found for each HMM over time.

In this chapter, we take advantage of our observation in the previous 

research and the idea of Blake’s work by developing a new method 

on finding the place to split the motion data automatically in order 

to improve the model of human motion for obtaining better tracking 

results. Figure 7.1 presents the general idea of the work contained in 

this chapter.

To do so, the combined model trained on the particular motion data 

is introduced. The combined model employed is based on the following 

premise. When a complex sequence of MoCap data representing motion 

of two persons contains several different behaviours together (normally 

it is a high dimensional data set), such as walking, pushing, running 

and jumping. We would like to split the complex motion sequence to 

several subsequences. Figure 7.2 shows an example of splitting a com-
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Figure 7.1. The general idea of the work contained in this chapter.

plex sequence data to subsequences. The statistical models have been 

trained on different subsequences of motion data and then fused models 

together, we wish the combined model can represent the data distri­

butions more accurately. Thus, we may obtain better tracking results 

when tracking the motion of a person in real video using this combined 

model. We can improve on the above assumption by comparing the per­

formance of the tracking results when using the combined model and 

the normal model (a model trained on 3D MoCap data representing 

the complex motion at once).

In this chapter, a novel method is presented for finding where to split 

the motion data automatically in Section 7.2. The combined HMM 

trained on the split data sequence is then introduced in Section 7.3. 

The detail of the combined HMM and the whole process of applying 

on the MoCap data are explained in Section 7.4. In Section 7.5, the 

tracking results and the performance analysis are presented, followed 

by the summary in Section 7.6.
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Walking Pushing Running Jumping

Automatically split 
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person's motion

Four split data 
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Figure 7.2. Split a complex data sequence to subsequences.

7.2 Splitting Complex Motion Data Automatically

Previously in Chapter 6 , human interactive behaviours for a virtual 

character were generated using the standard Viterbi algorithm and the 

windowed Viterbi algorithm. The performances of the standard Viterbi 

algorithm and the windowed Viterbi algorithm were compared. We do 

so by calculating the Euclidean distance [118] between original motion 

and the motion generated by both approaches to assess the accuracy 

of the generated behaviour. Figure 7.3 shows the Euclidean distance 

between the original motion and the generated motion when using the 

standard Viterbi algorithm and the windowed Viterbi algorithm on 

pushing behaviour.

Although the error of the standard Viterbi algorithm is similar in 

most of the frames, in some frames the windowed Viterbi algorithm 

produces smaller error, such as at frames 46, 97 and 133 respectively 

(as black dash lines shown in Figure 7.3). These frames corresponded 

to sudden changes in the motion. Therefore, the windowed Viterbi 

algorithm can be used to find sudden changes in the complex motion 

sequence. In this section, this observation is exploited by developing
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Figure 7.3. Error of the generated behaviour (in mm). Pushing be­
haviour. The error of generated behaviour using the standard Viterbi 
algorithm is shown in blue solid line, the pink dash line is for using the 
windowed Viterbi algorithm. The black dash lines show the place to 
split the motion.

a new approach for splitting the complex motion data automatically. 

Figure 7.4 shows an illustration of the splitting process. We split the 

motion automatically into several motion parts using morphology op­

erators by detecting the peaks in the error curve.

The mathematical morphology methods are introduced to detect 

the objects as local maxima. They can be used to obtain the essen­

tial conformation of an object through the operation of objects and 

structuring elements. The primary morphological operations are di­

lation and erosion, and from these two, more complex morphological 

operations such as opening and closing [118,121]. In this Chapter, the 

purpose is to find the peaks in a curve, therefore the Top-Hat operator 

is used to do that. The Top-Hat transformation [3] is a grey scale mor-
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Figure 7.4. An illustration of splitting process.

phologic algorithm. It is used for finding pixel clusters that are light on 

a surrounding relatively dark background. The operation is illustrated 

in Figure 7.5. The original signal /  is processed with opening by flat 

structuring element g, and then the peaks are detected as a Top-Hat 

by subtracting an opened image form the original signal.

Through this process, the position of the peaks together with de­

scription of their height are obtained. The motion sequence is then sep­

arated at those points. After inspecting the split motion data sequences 

visually, we find that each of them represents a particular motion. In 

the next section, a combined HMM is introduced. The idea here is to 

train an HMM on each part of the split motion data and combine two
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F ig u re  7.5. (a) Opening by flat structuring element; (b) Top-Hat
transformation [3].

or more separate HMMs into one. Then the combined HMM can be 

used to track the motion of a person in real video.

7.3 The Combined Hidden Markov Model

In the previous section, the complex motion data sequence was split 

into several subsequences automatically. Here, a combined HMM is 

introduced in order to obtain better tracking results in real video. The 

idea of the combined HMM is to combine two or more separate HMMs 

into one [122]. Each separate HMM is trained on the da ta  of a par­

ticular motion, such as walking, shaking hands or pushing. Next the 

parameters of each HMM are combined together. Finally, the transi­

tion matrix of the combined HMM is updated using the Baum-Welch
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algorithm [13]. The example structure diagram for the combined HMM 

is shown in Figure 7.6. Sub-model 1 and sub-model 2 are learnt on 

different parts of the split data with different numbers of Gaussians. 

The combined HMM consists of all information from both sub-models, 

and connected with a transition probability a from sub-model 1 to 

sub-model 2.

Submodel 1

+

Submodel 2

\  /  v

The combined

Figure 7.6. The example structure diagram of two simple HMMs for 
the combined HMM are shown, a is the transition probability from 
sub-model 1 to sub-model 2. It can be obtained using the Baum-Welch 
algorithm.
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Figure 7.7 shows the motion data distribution visualised in 2D for 

the normal HMM which was trained on two sequences complex motion 

data at once and fitted with 24 Gaussians, for example, one person 

walking and shaking hands. Figure 7.8 shows the motion data dis­

tribution visualised in 2D for the combined HMM on the same data 

set with the same number of Gaussians. It is clear to see the combined 

HMM can cover the data distribution very well when choosing the same 

number of Gaussians as the normal HMM.

Motion Data of walking and shaking hand distribution visualised in 20 for normal HMM and fitted with 24 Gaissuans
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Figure 7.7. Motion Data (walking and shaking hand) distribution 
visualised in 2D for normal HMM which trained on all motion data 
and fitted with 24 Gaussians. The red ellipsoids represent Gaussians 
associated with a HMM state and the blue dots denote the motion data.

In the following section, the detail of combining separate HMMs 

into one model is presented.
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Motion da ta  ot walking and  shaking hands distribution visualised in 2 0  with 24 G aussians lor the com bined HMM(
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Figure 7.8. Motion data (walking and shaking hand) distribution 
visualised in 2 D for the combined HMM and fitted with 24 Gaussians. 
The red ellipsoids represent Gaussians associated with a HMM state 
and the blue dots denote the motion data.

7.4 The Process of Combining HMMs

In this section, the process of combining separate HMMs into one model 

is described. In this process, we need to obtain the transition probabil­

ity matrix between the separate HMMs. To do so, the following steps 

are performed:

1 . Perform PCA on the 3D MoCap data representing the motion of 

one person.

2 . Automatically split the complex motion sequence to several dif­

ferent motion parts using morphology operators by detecting the 

peaks in the error curve (such as one part is walking, another part 

is shaking hands). A detailed is described in Section 7.2.

3. Train an HMM on each particular motion data (Chapter 4).



Section 7 .4 . T he Process o f  Combining HMMs 124

For example, we have two different parts of motion data, one

sequence represents walking motion [Motion!) and another se­

quence represents shaking hands motion (Motion2). Then the 

first HMM (trained on Motion 1) is defined as Ai consisting of M  

states

X1 = (A 1:B U7t1) (7.4.1)

The second HMM (trained on Motion2) is defined as A2 consisting 

of N  states

A2 = (A2,B 2,tr2) (7.4.2)

Figure 7.9 shows low-dimensional walking data (Motionl) distri­

bution visualised in 2 D and fitted with 1 0  Gaussians.

Walking data distribution visualised in 2D and fitted with 10 Gaussians
2

1

-2

-3

-4

-5
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Figure 7.9. Motion data (walking) distribution visualised in 2D and 
fitted with 1 0  Gaussians. The red ellipses represent Gaussians and the 
blue dots denote the motion data.

4. Combine the parameters of each HMM which are obtained in
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Step 3 and update the transition matrix using the Baum-Welch 

algorithm [13]. In this step, we want to combine the parameters 

of each HMM together to update the transition m atrix of the 

combined HMM Ac — (A c ,B c ,7Tc )-

To update Ac we firstly need to estimate the new transition ma­

trix. The first stage of estimating the probability transition ma­

trix A c of the combined HMM Ac is to combine the two original 

transition matrices A i of size M  x M  and A 2 of size N  x N  into 

a single matrix A u of size n x n, where n  =  M  +  N .

A 1
Ai 0

0 A 2
E
j = 1

1 < i < n (7.4.3)

where at- are the elements of the matrix A u.

Then the initial state probability 7rc of Ac is estimated. To obtain 

its values, we concatenate the two initial state probabilities and 

7T2 into a single ttu in the following way:

nu = [tti 7r2] (7.4.4)

Finally, the elements of the probability transition m atrix A c  and 

the initial state probability 7rc of Ac are updated using the Baum- 

Welch algorithm [13].

Figure 7.10 shows the transition m atrix of the normal HMM 

trained on all walking and shaking hand motion at once. Figure 

7.11 shows the transition matrix of the combined HMM trained
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on the split data representing the same behaviours.

126

Figure 7.10. Transition matrix for the normal HMM (55 states).

Figure 7.11. Transition matrix for the combined HMM (55 states). 

It can be observed that the transition matrix in Figure 7.11 is
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strongly diagonal, as there is only few more non-zero values on 

the off-diagonal. It means there is few closest transition of the 

cluster from current state to another state.

In the next section, the experiments with 3D MoCap data  on three 

different types of motion for tracking the motion of a real person in 

video are presented.

7.5 Experiments with 3D MoCap data

In order to prove the hypothesis in Section 7.1, a series of experiments 

for different types of motion are performed for tracking the motion of a 

person in real video. The MoCap data sequences used in this chapter 

are different from the MoCap data used in the previous experiments. 

The new MoCap data are captured by the different person, but they 

are performed the same types of motion (shaking hands, pushing and 

puling).

7.5 .1  A ssessing the Accuracy o f Tracking Results o f Shaking Hands 

Behaviours

In this subsection, the model is trained on the data consisting of ap­

proximately 800 frames and 90-dimensional vectors representing the 

poses of two persons walking and shaking hands. The dimensionality 

of the eigenspace of all data is reduced from 90 to seven1. The re­

maining seven dimensions accounts for approximately 84% of the total 

eigenenergy.

1 S in ce  in  th e  p re v io u s  t r a c k in g  e x p e r im e n ts  th e  d im e n s io n a l i ty  o f  th e  d a t a  s e t  is 
re d u c e d  to  sev en . In  o rd e r  to  c o m p a re  th e  t r a c k in g  re s u l ts ,  h e re  t h e  d im e n s io n a l i ty  
o f  t h e  d a t a  s e t  is r e d u c e d  to  sev en  a g a in .
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Five separate HMMs are trained in the reduced dimensionality eigen­

space, each on the vector sequences representing the different types of 

motion (for example, walking, then shaking hands, then walking back to 

the original place). To speed up the experiments, we choose the number 

of clusters representing each kind of motion in the different five HMMs 

to be equal to 15, 11, 19, 5 and 5 respectively, rather than estimate 

them automatically. Then five separate HMMs are combined together 

into a combined HMM. Finally, a 3D person in real video is tracked 

using this combined HMM and the APF as described in Chapter 5.

Figures 7.12 (a) - (e) show the error of the tracked behaviours for 

shaking hands motion when using each separate HMM respectively. 

Figures 7.13 and 7.15 show the Euclidean distance between the original 

video motion and the tracked behaviours using the normal HMM (a 

model trained on 3D MoCap data representing the complex motion) 

and the combined HMM on different video sequences. It is easy to 

see that the error of the motion tracking using the combined HMM 

is smaller than the error using the normal HMM in all frames. This 

means the tracked motion using the combined HMM is better than the 

motion tracked using the normal HMM.

7.5 .2  A ssessing the Accuracy o f Tracking Results o f Pushing B e­

haviours

In this subsection, the model is trained on the data  consisting of ap­

proximately 550 frames and 90-dimensional vectors representing the 

poses of a person pushing another person. The dimensionality of the

eigenspace of all data  is reduced from 90 to seven2. The remaining seven

2S in ce  in  th e  p re v io u s  t r a c k in g  e x p e r im e n ts  t h e  d im e n s io n a l i ty  o f  th e  d a t a  s e t  is 
r e d u c e d  to  sev en . I n  o rd e r  to  c o m p a re  th e  t r a c k in g  r e s u l ts ,  h e re  t h e  d im e n s io n a l i ty
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Figure 7.12. Error of the tracked behaviours (in mm). Shaking hands 
behaviours (Sequence 1). (a) - (e) show the error of the tracked be­
haviours when using each separate HMM respectively.

dimensions accounts for approximately 83% of the total eigenenergy.

Four separate HMMs are trained in the reduced dimensionality

o f th e  d a ta  se t is red u ced  to  seven again .
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Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.13. Error of the tracked behaviours (in mm). Shaking hands 
behaviours (Sequence 1). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.

Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.14. Error of the tracked behaviours (in mm). Shaking hands 
behaviours (Sequence 2). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.
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Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.15. Error of the tracked behaviours (in mm). Shaking hands 
behaviours (Sequence 3). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.

eigenspace, each on the vector sequences representing the different type 

of the motion (for example, walking, pushing, then walking back). To 

speed up the experiments as in previous section, we choose the number 

of clusters representing each kind of motion in the different four HMMs 

to be equal to 10, 7, 11 and 5 respectively, rather than estimate them 

automatically. Then four separate HMMs are combined together into 

a combined HMM. Finally, a 3D person in real video is tracked using 

this combined HMM and the APF as described in Chapter 5.

Figures 7.16 (a) - (d) show the error of the tracked behaviours for 

pushing motion when using each separate HMM respectively. Figures 

7.17 and 7.19 show the Euclidean distance between the original video 

motion and the tracked behaviours using the normal HMM (a model 

trained on 3D MoCap data representing the complex motion) and the 

combined HMM on different video sequences. It is easy to see that
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the error of tracking motion using the combined HMM is smaller than 

the error using the normal HMM in all frames. Figure 7.17 shows the 

much better tracking results (more similar to the original video motion) 

are obtained using the combined HMM from frame 60 to 80 (part of 

pushing action).

Error of the tracking motion using the normal HMM and the combined HMM
100
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Combined HMM80

t  60 
3  I 80 2 4 6 10 12 14 16

(a)

Number of Frame
Error of the tracking motion using the normal HMM and the combined HMM
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Combined HMM

(b)

30 35 40  45  50
Number of Frame

Error of the tracking motion using the normal HMM and the combined HMM

Normal HMM
Combined HMM

65 70
Number of Frame

Error of the tracking motion using the normal HMM and the combined HMM
120

100

80 Normal HMM 
Combined HMM

^  60 L  86 88 90 92 94 96 98 100

(d)

Number of Frame

Figure 7.16. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 1). (a) - (d) show the error when using each separate 
HMM respectively.
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Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.17. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 1). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.
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Figure 7.18. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 2). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.
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Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.19. Error of the tracked behaviours (in mm). Pushing be­
haviours (Sequence 3). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.

7.5.3 Assessing the Accuracy of Tracking Results of Pulling Be­

haviours

As in the experiment in the previous subsection, here the model is 

trained on the data consisting of approximately 500 frame, 90-dimensional 

vectors representing the poses of a person pulling another person. The 

dimensionality of the eigenspace of all data is reduced from 90 to seven3. 

The remaining seven dimensions accounted for approximately 81% of 

the total eigenenergy.

We trained three separate HMMs in the reduced dimensionality 

eigenspace, each on the vector sequences representing the different type 

of the motion (for example, walking, pulling, then walking back). We 

choose the number of clusters representing each kind of motion in the

3S ince in  th e  p rev ious track in g  exp erim en ts  th e  d im en s io n a lity  o f th e  d a ta  se t is 
red u ced  to  seven. In  o rd e r to  com pare  th e  tra c k in g  re su lts , h e re  th e  d im en sio n a lity  
o f  th e  d a ta  se t is red u ced  to  seven again .
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different three HMMs to be equal to 8, 14 and 6 respectively, rather 

than estimate them automatically to reduce the running time. Three 

separate HMMs are then combined together into a combined HMM. Fi­

nally, a 3D person in real video sequence is tracked using this combined 

HMM and the APF as described in Chapter 5.

Error of the tracking motion usign the normal HMM and the combined HMM
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Figure 7.20. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 1). (a) - (c) show the error when using each separate 
HMM respectively.

Figures 7.20 (a) - (c) show the error of the tracked behaviours 

for pulling motion when using each separate HMM respectively. Fig-
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ures 7.21 and 7.23 show the Euclidean distance between original video 

motion and the tracked behaviours using the normal HMM (a model 

trained on 3D MoCap data representing the complex motion) and the 

combined HMM on different video sequences. As in the previous sec­

tion, it can be observed that the tracked motion using the combined 

HMM is more accurate than the motion tracked using the normal 

HMM.
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Figure 7.21. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 1). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.

7.6 Summary

In this chapter, a new approach is developed for finding where to split 

the complex motion data automatically in order to improve the model 

of human motion for obtaining better tracking results. To do so, the 

complex motion sequence is first divided into several subsequences. The 

combined HMM is then introduced, which learns a model of human
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Error of the tracking motion using the normal HMM and the combined HMM
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Figure 7.22. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 2). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.
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Figure 7.23. Error of the tracked behaviours (in mm). Pulling be­
haviours (Sequence 3). The error of the tracked behaviours using the 
normal HMM is shown in the black line, the pink line is for using the 
combined HMM.
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motion on the different parts of the split data and combines them into 

one model. Next, the combined HMM is applied to track the motion of 

a person in real video. Through the comparison of the tracking results, 

it is clear that the combined HMM can be used to improve the normal 

HMM, and hence better tracking results are obtained.



Chapter 8

CONCLUSION AND FUTURE 

RESEARCH

1  he key points of the work presented in this thesis are reviewed, fol­

lowed by a summary of the main contributions and the future research.

8.1 Conclusion

The work in this thesis was motivated by the desire to develop methods 

for creating a 3D virtual character capable of responding to actions 

obtained from observing a real person in video in a realistic and sensible 

manner. Virtual characters are becoming more and more popular and 

used in many applications such as character animation, computer games 

and virtual environments.

In this research, a “virtual character generating system” was de­

veloped, and used for generating interactive behaviours for a virtual 

character responding to a real person in real video. The system builds 

an accurate model of human motion, tracks and analyses the behaviour 

of a real person in a video input, and produces a fully articulated 3D 

character interacting with the real person in the video input. Next, a 

motion capture system was described, the PhaseSpace Motion Digitizer

139
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System which was set up and used for capturing 3D MoCap data. Af­

terwards, an accurate model of human motion represented by an HMM 

was learnt, where each state in the HMM is represented by a single 

Gaussian. This framework can model the data distribution well and 

can be used for predicting the poses in the video frame.

A method for tracking a 3D articulated human person in real video 

sequences was then presented. The tracking method is based on particle 

filtering, namely the annealing particle filtering (APF). The APF is 

capable of recovering full articulated body motion efficiently and leads 

to very robust tracking results.

Next, two approaches for generating interactive behaviours for a vir­

tual character were considered: the standard Viterbi algorithm and the 

windowed Viterbi algorithm. Both methods were presented based on 

the dual-input HMM. The dual-input HMM was learnt on two persons’ 

MoCap data, with two sets of states. It can be used for synthesising 

and estimating the motion data for person B from the motion data for 

person A by statistically encoding relations between them to produce 

animation for a virtual character. Both the standard Viterbi algorithm 

and the windowed Viterbi algorithm can be used for generating very 

similar behaviours to the real behaviours, and it was shown th a t the 

windowed Viterbi algorithm can be used for generating behaviours in 

real-time. The generated motion was also mapped to a virtual charac­

ter and then a number of animations of a virtual character interacting 

with a real person in an original video sequence were produced. These 

animations can be found on the attached CD. The produced animations 

have smooth, natural behaviours.

Finally, a novel approach was developed for finding the places to
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split the complex motion data automatically in order to improve the 

model of human motion for obtaining better tracking results . The 

combined HMM was then introduced. The idea of this model is to 

train the separate models on the split motion data and then combine 

them together. Experimental results showed that the combined HMM 

trained on the split data  can represent the data distribution more accu­

rately than the normal model trained on 3D MoCap data  representing 

the complex motion at once. Next this model was applied to track 

3D articulated human motion in the video sequences (the same video 

sequences as Chapter 5).

In summary, the main contributions in this thesis are:

• A novel approach for generating intelligent behaviours for fully 

articulated 3D virtual characters on the basis of visual analysis 

of the motion of a real person in ordinary 2D video using the 

dual-input HMM and the standard Viterbi algorithm.

• A new approach for generating interactive behaviours for virtual 

characters using the windowed Viterbi algorithm, capable of doing 

so in real-time.

• A novel method for improving the model of the human motion due 

to the ability to split the complex human motion automatically.

8.2 Future Research

Many opportunities for future research await to be explored. In Chap­

ter 4, an HMM was introduced to learn the motion of real people. 

Because the MoCap data used in this work are high-dimensional, it is 

necessary to reduce the dimensionality using PC A before the processing
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starts. When modelling human motion in the reduced dimensionality 

eigenspace, there is a balance between keeping detail in the model and 

the growing dimensionality the of the eigenspace. The more detail we 

keep, the higher is the dimensionality of the eigenspace representing 

the data distribution. It is possible to extend this model to the hierar­

chical model [46,123] in order to keep as much of detail in the model 

as possible. The idea of the hierarchical model of human motion comes 

from analysing the motion of different body parts as the whole body 

performs some action. Through the use of the hierarchy, we expect to 

improve the accuracy of the model of human motion.

The windowed Viterbi algorithm in Chapter 6 has been utilised for 

generating interaction behaviours for a virtual character responding 

to the tracked person in real video. The window size was fixed in 

this algorithm. This can possibly be extended to incremental Viterbi 

algorithm [124]. That means the length of window size can be increased. 

The incremental Viterbi algorithm is shown to reduce memory usage 

in long state sequence problems compared with the standard Viterbi 

algorithm.

As we described before, virtual characters are becoming more and 

more popular and used in many applications such as character ani­

mation, computer games, films and virtual environments. It can also 

be extended to the application in television programme and education 

area. Those virtual humans would interact with people through speech 

and gestures. In the television programme, virtual presenters can be 

created and used for presenting programmes in different languages. In 

the education area, virtual humans can be used for providing tutor 

support for students in e-learning courses by answering questions and
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offering help with problems. This would make the learning process with 

computers more enjoyable for students [125]. In a word, realistic inter­

active virtual characters will almost certainly populate our near future, 

guiding us toward opportunities to learn, enjoy, and consume [87].



Appendix A

PHASESPACE MOTION 

DIGITIZER SYSTEM

PhaseSpace is a high resolution, real time optical motion capture sys­

tem. A PhaseSpace motion digitizer captures complex motion data  in 

real-time using advanced hardware and software technology [4]. Motion 

capture is accomplished by placing the PhaseSpace cameras around an 

area, and moving subjects with the LED markers attached to them. 

The cameras detect the positions of the LED markers and transm it 

information to a central computer, that processes the data  and cal­

culates and stores the actual X , Y  and Z  positions for the markers. 

Then, the marker positional data can be used to do motion analysis 

and applications.

The basic PhaseSpace system consists of:

• CCD (Charge Couple Device) video cameras

• LED drivers

• Infra-red LEDs

• A HUB into which the cameras and LED drivers connect

• A server computer which runs Linux and communicates with the
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HUB

• Calibration objects

• Server software

• Dynamic link libraries th a t enable a user to construct client pro­

grams

The PhaseSpace motion digitizer system consists of a number of 

specialised CCD (Charge Couple Device) cameras. Each “camera” is 

high-speed at up to 480 fps and high-resolution with 3, 600 x 3, 600 

( 1 2  Megapixel), and used to measure the position of infra-red LED 

markers in real time. Each LED marker placed on the human body 

should be visible from at least two cameras at any time, or preferably 

from three cameras. All LEDs are attached to LED strings which are 

connected to an LED drive unit. Figure A .l shows the layout of the 

whole PhaseSpace product. For the full body motion capture, the best 

place to locate cameras is in a circular configuration with the field of 

view being in the centre of the circle. The greater the field of view 

desired, the larger the circle should be.
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IMPULSE CAMERAS 
MAX 24/SERVER

SERVER

NTROLLER*^^ ~^BASE!BASESTATION

ACTIVE LEDS 
MAX 72/CONTROLLER

Figure A .I. PhaseSpace products layout [4].



A p p e n d i x  B

MOTION BUILDER: ACTOR

MotionBuilder has an intermediate “skeleton” called an Actor. It’s a 

set of constraints that will be the source motion for the character. First 

we have to match the marker points to corresponding areas of the actor. 

A summary of the match the markers to the actor is now provided [126].

1. Importing marker data.

The first thing to do is bring in a .trc file (Figure B.l). Go to 

File -> Import . . .  and select Motion Analysis (*.trc) as 

the file type.

---------------------------------------- -
Viewer

U  View I L  Display |

jT]

f - A ..

u  y i
m

--------------- -— *V— ---------------- — i- .________
....- -

r
•
*L L d  o.oo d il o.oo o.oo

Figure B .l .  3D motion data

2. Bringing in Actor.

147
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Next, we need to drag an actor into the space. The Actor icon is 

located in the Templates section of the Asset Browser window 

(Figure B.2).

A sset Browser   [_

A sset Browser | Pose Controls | Properties

+  Support _Files
—  flSB Templates

— —
— ®!» Commands
— e«a Constraints
— Devices
— «ai Elements

gobo
Materials

1— an Scripts
1— a a Shaders

- A *
Actor

o
Actor face  

Character

V #
Character face

Figure B.2. Asset Browser window

Within Templates directory is the Characters section. Within 

that are both Actor and Character. For this part, we only want 

to use Actor.

3. Matching actor to markers.

Translate, Rotate and Scale Uniform Actor and Actor’s segments 

until they match (Figure B.3). The Translate, Rotate and 

Scale Uniform icons are on the right side of Viewer.

Note:

• In Viewer, Ctrl+1 gives a single view. Ctrl+2, Ctrl+3 and 

Ctrl+4 give two, three and four views respectively.

• Ctrl+Z can used to undo the last operation.
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Viewer

Display

•79.07

Figure B.3. Match markers and actor

4. Creating a marker set.

Once the actor is fitting within the markers, we need to decide 

which markers go with which part of Actor.

In the Navigator window, click on Actor under Actors. Ac­

tor Setting should appear. Click on M arkerSet.. .  and select 

create from the drop down menu (Figure B.4 (a)). Now we can 

see different areas representative of the head, arm, etc*, with the 

number 0 (Figure B.4 (b)). We need to select markers in the 

Viewer and drop them into the correct locations (Figure B.4

(c)) .

Notes:

• Alt-drag is used for dropping the markers to the correct 

location.

• The number of the markers in the hip of the actor must be
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Figure B.4. Navigator window for create actor
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at least 3.

• If wrong markers are dragged in the scene, they can be 

deleted.

• If Alt-drag does not work, go to Settings ->  Keyboard 

Configurations and select Motionbuilder.

5. Exporting the marker set.

Click on M arkerSet... in Actor Setting and select Export 

from the drop down menu (Figure B.5). The marker set will be 

saved as a .hik file.

Navigator

Navigator | story | Dopesheet | FCurves

Rters... j; = j X aiN
+  ♦  Scene
+  •£  Actors 
+  •£  MarkerSet 
+  4  Audio 
+  Bi Cameras 

**  Constraints 
1% Croups 
B  Sets 

■f ? Lights 
- f  0  Materials 
*  V Opticals 

Poses 
+  ®  Shaders 

Takes

Actor Settings

r  Active | Snap 1 r  Lock i Marke6et

f  \

t

pl_rhead

pljhead

Y  I MarkerSet..,

Model

TRC:pl_rhead

TRCplJhead

Output Maker S et: <NoMarker5et>

Create r  
Rename 
Import 
Export 
M ete

Figure B.5. Exporting the marker set

Note: Re-using the marker set. The marker set (.hik file) will be 

used repeatedly to apply to an actor with other motions. This 

is helpful because we do not have to go through Steps 3 or 4 for 

every motion.

(a) Import a new .trc file and a new Actor.
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(b) In the Navigator window, click on Actor under Actors. 

Click on Marker S e t . . .  in the Actor Settings and select 

import from the drop down menu (Figure B . 6  (a)).

(c) Select all of the optical data points, alt-drag, and drop them 

into M odel part of the Reference section of the actor (Fig­

ure B . 6  (b)). Then M otionBuilder drops all the markers 

into the correct place (Figure B . 6  (c)).

6 . Activate the character.

Activate the character by clicking on Actor in Actor Setting  

and play the animation.
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