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Abstract

Purpose -  This thesis studies the Inventory Routing Problem (IRP) consisting of one 
supplier and multiple retailers who face a stochastic demand that is assumed to be 
independently and identically distributed over an infinite planning horizon. The aim 
of the study is to examine the impact of replenishment flexibility and efficient routing 
strategies on costs, vehicle energy consumption and effectiveness. The flexibility is 
generated from the opportunity of the supplier to make an early replenishment in 
order to consolidate the replenishment between retailers. The study also aims to 
evaluate the potential of the IRP model as a business process reengineering strategy in 
the context of private healthcare industry in Malaysia.

Design / methodology / approaches -  A leading private healthcare organization that 
owns a chain o f clinics in Malaysia is used to explore typical supply chain process 
leading to practical contextualization of an IRP model. The new IRP model is 
proposed based on (s,c,S) policy to evaluate the trade-off between inventory cost and 
transportation cost. The analysis, based on a spreadsheet simulation model, 
numerically evaluates the performance of the proposed IRP model using different 
vehicle effectiveness strategies including the Travelling Salesman Problem (TSP) 
approach, the Overall Vehicle Effectiveness (OVE) and Modified Overall Vehicle 
Effectiveness (MOVE) metrics.

Findings -  The results show that the proposed periodic “can-deliver” model provides 
a significant cost saving compared to the common inventory control policy, (s,S) and 
a slight additional marginal benefit compared to the (s,S-1,5) policy. The findings also 
indicate that the MOVE metric consistently outperformed the OVE metric and TSP 
approach. The MOVE metric determines the delivery sequence that generates high 
vehicle effectiveness which in return minimizes the cost, vehicle distance travelled, 
and vehicle energy consumed.

Practical implications -  An appropriate inventory policy together with an 
appropriate routing policy is crucial in the IRP approach. The integration of flexible 
inventory control policies with the MOVE metric leads to minimized operating costs 
and low vehicle energy consumption as well as improving total vehicle effectiveness.

Results limitations and further research -  Only a single vehicle is considered to 
perform the replenishment activity without capacity constraint, and the supplier is 
assumed to have sufficient stock to fulfill retailers’ requirements. Future research 
could consider more complex network designs, capacity constraints and use of 
heuristic / meta-heuristic methods.

Originality/value -  Provides insights into the application of the IRP approach as a 
potential business process reengineering solution in the healthcare industry, 
specifically in the context of Malaysia’s private healthcare industry. The research 
widens the application o f well-known multi-item single supplier joint replenishment 
approaches in the periodic scenario of multi-retailers single item context. This is the 
first study to explore an optimal replenishment decision incorporating inventory 
control and vehicle effectiveness strategy, that considering both economic and 
environmental factors.
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Chapter 1 Introduction

This chapter first presents the foundation and structure of the thesis. It begins by 

discussing Supply Chain Management (SCM) and logistics concepts that are used in 

Operations Management research. It then continues with an examination of the 

traditional supply chains, and supply chain coordination strategies with regard to the 

whole supply chain performance. This is followed by an explanation of the motivation 

to conduct this research, a statement of the research objectives, and presentation of the 

research questions. The chapter subsequently briefly describes the methodology for 

conducting the research to address the research questions. Finally, the organisation of 

the chapters in this thesis and the contributions of the research to the body of 

knowledge are presented.

1.1 Research Background

Recently there has been an emerging trend in supply chain management (SCM) to 

integrate inventory management among the players in the supply chain. According to 

Ruston et al. (2006), SCM and logistics are terms used interchangeably in the 

academic literature and in industry. SCM can be viewed as a new name for logistics 

since the two can overlap or be seen as a function of the other (Larson and Poist 

(2007). However, a survey conducted by Lummus et al. (2001) among practitioners 

indicated that, generally, logistics is the process of planning and managing the 

inventory in an organisation that includes management of the inbound and outbound 

activities between the organisation and its suppliers and customers. In contrast, SCM 

includes a broader function that monitors the overall activities between all points in 

the supply chain. Generally, supply chain stages consist of customers, retailers, 

wholesalers or distributors, manufacturers and component or raw material suppliers 

that are known as the supply network (Chopra and Meindl, 2004). Figure 1.1 shows 

the structure of the supply chain.
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However, Chopra and Meindl (2004) have argued that an appropriate supply chain 

structure depends on customers’ requirements and the role of each stage in the supply 

network. Sometimes, the functions in the middle stages can be eliminated. As can be 

seen from Figure 1.1, retailers can be directly served by the supplier or manufacturer 

without going through the distributor.

Supplier Retailer CustomerDistributorManufacturer

Figure 1.1: Supply chain structure (adapted from Chopra and Meindl, 2004)

1.2 Supply Chain Strategy

Traditionally, a decentralised inventory system is used for managing the supply chain 

across multiple stages. Each stage is responsible for managing their inventory 

independently, and the order is placed with the supplier based on their individual 

requirements without considering the situation o f others. For example, the retailer 

will monitor their own inventory and generate the order to the distributor based on the 

current inventory level and their local forecast demand for the next period. The 

distributor is then responsible for making deliveries based on the exact order quantity 

made by retailers. This kind of inventory management has some disadvantages for the 

retailer and the other players in the supply chain. It may lead to demand uncertainty 

for the distributor as the time and the number o f orders from retailers can vary. Hence, 

the distributor may face difficulty in managing their own inventory and scheduling the 

deliveries in an efficient way. The demand uncertainty from the retailers can lead to 

an uncertain order quantity between customer and supplier. This phenomenon is 

called the bullwhip effect (Disney and Towill, 2003). It causes an extra cost for the 

distributor who has to deal with problems such as inventory shortage and resource 

utilisation problems. Moreover, Kleywegt et al. (2002) have indicated that the lack o f 

information with regard to retailer inventory level in conventional inventory
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management can affect the decision at the distributor level. They point out that 

without the visibility o f inventory level information at the retailers, the supplier is 

unable to determine the priority of shipment between retailers. Thus, suppliers may 

possibly end up replenishing non-critical customers, causing a stock-out problem in 

that other retailers that really require items are unable to fulfil their end customer 

demand.

Thus, a single efficient decision at one particular stage is possibly not efficient for the 

whole supply chain. Yu et al. (2001) indicated that this problem occurs as a result o f a 

decentralised control approach and ‘the whole system may not achieve the optimum 

performance, even though each member optimises its own performance’. Thus, the 

decisions between the stages in the supply chain need to be integrated in a  manner 

that is beneficial for the entire supply chain in both operational and economic terms. 

Information sharing and the Vendor Managed Inventory (VMI) are among supply 

chain integration strategies that have been studied by several researchers, for instance, 

Sari (2008), Zhao et al. (2002), Hosoda and Disney (2006), and Waller et al. (1999).

Holweg et al. (2005) have classified supply chain coordination configurations based 

on inventory collaboration and planning collaboration factors. The information 

sharing approach is classified as Type 1 where the company considers only planning 

collaboration in their decision-making processes. On the other hand, the VMI 

approach is associated with inventory management collaboration and planning 

collaboration within the supply chain. The characteristics and the behaviour o f  each 

configuration is described by Holweg et al. (2005) using a water-tank analogy.

The information sharing strategy structure is similar to the traditional supply chain 

strategy approach where the planning and optimisation decision for inventory 

management is still made separately by the supplier and the retailers. However, the 

demand information at the retailer is made available via the information sharing 

strategy, and thus assists the supplier in the decision-making process, instead o f  just 

relying on the forecast data. The information sharing strategy can therefore help to 

reduce the demand uncertainty and thus reduce or eliminate the bullwhip effect in the 

supply chain (Yu et al., 2001). Zhao et al. (2002) stated that this approach is able to 

improve the total cost for the entire supply chain by up to 60 percent in some

3



circumstances. However, they also stated the information sharing strategy is not 

beneficial for the retailer even though it improves the total supply chain cost and 

customer service level under certain demand patterns and low capacity conditions.

Centralised decision-making using the Vendor Managed Inventory (VMI) approach 

(Holmstrom et al., 2003) presents a beneficial and good opportunity for both supplier 

and customers to manage the inventory. In VMI, the supplier is responsible for 

replenishing the retailer’s inventory based on information available from the retailer, 

such as inventory level, expected demand and cost (Claasen et al., 2008). In the case 

of setting customers’ priority, as highlighted by Kleywegt et al. (2002), VMI allows 

both supplier and customer to gain benefit from an efficient replenishment decision 

since the supplier is able to distribute the available stock based on customers’ 

requirements and coordinate the deliveries to improve the service.

This approach is becoming increasingly popular since the existence of low-cost 

technology facilitates accurate monitoring o f required information (Campbell et al., 

1997). For example, a telemetry unit is used to measure the level of fluid in tanks in 

the petrochemical industry. The most widely used technology with regard to VMI is 

Electronic Data Interchange (EDI) (Altekar, 2005). For many suppliers, producers, 

distributors and retailers worldwide, EDI has become the backbone for computerised 

business-to-business communications. Use o f the Internet has also enhanced the 

connections between retailers and suppliers via online systems.

VMI as a collaboration approach has been shown to strongly enhance customer 

service levels and improve supply chain control. However, collaboration is influenced 

by the quality of the buyer-supplier relationship, IT systems, and the intensity of 

information sharing factors (Campbell et al., 1997). Waller et al. (1999) point to the 

reduction of cost in VMI as a result o f improving resource utilisation with reduction 

in stock and use of full truckload shipments together with more efficient routes for 

delivery. The supplier is also able to balance the available stock with retailer 

requirements by determining the priority of deliveries to critical retailers and thus 

distribute the stock to those retailers in an efficient manner (Kleywegt et al., 2000). 

Yang et al. (2003) termed this phenomenon “vendor flexibility” and it is one of the 

factors that influences the performance of the supply chain. As a result o f vendor
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flexibility, the supplier is able to maintain the inventory level of the retailer who can 

then fulfil end-customer demand.

1.2.1 Inventory Routing Problem

Usually, the optimisation of inventory and transportation decisions are solved 

separately using different approaches. In an organisation, both types of decision are 

commonly managed by different departments. Generally, the decision of the global 

best replenishment time and the quantity o f delivery for each retailer is determined via 

the inventory control policy, whilst the route to make the delivery is determined by 

using routing algorithms via the travelling salesman problem or vehicle routing 

methods. However, there is a trade-off between the inventory and the transportation 

costs. Reducing the inventory holding cost by keeping a low inventory level at 

retailers will result in frequent deliveries, which may increase the transportation cost. 

On the other hand, longer replenishment cycles may possibly be costly as 

organisations have to hold extra stock. Therefore, it is important to coordinate these 

two decisions in order to achieve a more economic result. Coordination of the 

inventory and transportation costs in the centralised control system is known as the 

Inventory Routing Problem (IRP). IRP research is basically concerned with 

determining three main decisions as described by Campbell et al. (1997):

• which customers should be replenished at what times,

• which inventory items should be replenished and how much o f each item,

• the route that each vehicle should use in order to minimise the total cost over 

the planning horizon.

The central decision-maker has to construct an effective inventory management policy 

and delivery strategy in response to each question in order to balance the trade-off 

between inventory and transportation cost. As described by Kleywegt et al. (2000):

“The central decision maker can be the supplier, and the inventory can be kept 

at independent customers, or the central decision-maker can be a manager 

responsible for inventory management at a number of warehouses or retail 

outlets of the same company.”
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With IRP, the manager for the organisation has the flexibility to manage the 

transportation and inventory management to minimise the total operating cost and 

maximise the system performance for the entire organisation. The central decision­

maker is also able to coordinate the retailers during the replenishment in order to 

utilise the transportation usage.

Most IRP solutions based on routing solutions minimise the total distance travelled by 

vehicles. Some researchers have also used a static route in the decision where a 

similar route is used for the replenishment. This is usually applied to deterministic 

problems.

With regard to IRP solving approaches, previous researchers have solved the different 

dimensions of the IRP by using various mathematical models such as Lagrangian 

Relaxation (Bell et al., 1983), Integer Programming (Campbell and Savelsbergh, 

2002), and Dynamic Programming (Kleywegt et al., 2004). Recent studies have also 

solved the IRP using meta-heuristic approaches such as Tabu search (Cousineau- 

Ouimet, 2002) and Local search (Lau et al., 2002) techniques.

The IRP has proved beneficial in many different industries. The decision support 

system developed by Bell et al. (1983) has been reported to be able to increase vehicle 

productivity and reduce the operation cost at Air Product and Chemicals, Inc. an 

industrial gases producer. The IRP application at PRAXAIR, engaged in the 

petrochemical industry, is reported to outperform the current industry approximation 

approach. Further, the IRP implementation for vending machine supply chains 

(Rusdianshah and Tsao, 2005) and supermarket chains, (Gaur and Fisher, 2004) have 

achieved substantial cost savings.
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1.3 Research Motivation and Research Objectives

The success of IRP implementation in various industries in reducing cost has provided 

the motivation for the researcher to conduct this study in an healthcare industry. The 

study is conducted in a developing country since most studies to improve the supply 

chain of the healthcare industry have been carried out in developed countries and it is 

therefore considered necessary to ascertain the suitability of the IRP for the healthcare 

supply chain in developing countries. Moreover, inventory management and routing 

strategy are among the main research topics investigated in the Industrial Computing 

Department of the University Technology Malaysia where the author works as a 

lecturer. Since previous research in the aforementioned university has focused on 

inventory management and routing strategy, it is this researcher’s aim to integrate 

these areas in the decision-making process. Further, environmental considerations are 

becoming increasingly important given the need to reduce global warming, therefore 

ensuring vehicles are fully utilised and vehicle energy consumption is reduced are 

important according to the FreightBestPractise (2007) report. Accordingly, this 

research aims to determine how the flexibility that the IRP provides is able to increase 

utilisation of vehicles and at the same time reduce the energy used by vehicles and, in 

turn, CO2 emissions. Importantly, Kara et al. (2007) found that by minimising only 

the distance travelled, vehicle energy consumption can, in fact, increase.

Thus, in general, the aims of this thesis are to evaluate the suitability of 

implementing the IRP approach in a Malaysian case study and then to explore 

the proposed replenishment strategy which integrates an efficient inventory 

policy and routing strategy in order to replenish multiple retailers facing a 

stochastic demand. The aim of the proposed replenishment strategy is not only to 

minimise the total inventory and transportation cost but also to minimise the 

energy consumed by the vehicles used.

Given the above aims, the thesis’ objective is to widen the application of the IRP to 

another industry not observed by previous research. Thus, this study will observe 

current supply chain process practice and evaluate whether the IRP is capable of 

improving the distribution strategy of the healthcare industry. Few studies have
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evaluated the supply chain process of the healthcare industry in a developing country 

and none as far as the researcher is aware has focused on the private healthcare 

context in Malaysia where chains of clinics exist under one organisation.

Since the IRP permits flexibility for the supplier when making a replenishment 

decision, this research is interested in observing the behaviour of flexible 

replenishment policies to facilitate an early replenishment decision, and coordinate 

the delivery between retailers in order to reduce the total operating costs and enhance 

vehicle effectiveness. Determining the optimal inventory control parameters for 

minimising the total inventory and transportation costs over the planning horizon 

based on the conceptual model developed from the first part of the study and the 

theory from the literature is the focus of the second part of the study.

This research also intends to evaluate different routing strategies with regard to the 

inventory policy in order to determine the optimal delivery sequence between 

multiple retailers and thereby reduce the total cost, minimise vehicle energy 

consumption, and maximise vehicle effectiveness.

1.4 Research Questions and Methodology

Based on the research aims and objectives presented above, four research questions 

are addressed in this thesis as follows:

i) How is the supply chain process carried out in the healthcare 

industry in the context of developing countries’ private healthcare, 

especially in Malaysia? Can the Inventory Routing Problem approach 

be used to improve supply chain operations?

This question is formulated in an attempt to examine the appropriateness 

of the IRP as a business process reengineering strategy to improve the 

performance of an organisation providing private healthcare involving a 

central warehouse and chain of clinics. Improvement o f the organisation’s
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performance is based on two factors: (1) the existing supply chain policy 

in the healthcare industry as identified from a case study, and (2) the 

organisation’s capability to adopt the improvement strategy proposed by 

this research. In the course of addressing the research question, the 

suitability o f other strategies to improve performance, e.g. Just In Time 

(JIT) policy and stockless policy, will also be considered.

ii) How should the parameters in the Inventory Routing Problem be set?

How should the supplier decide on which retailers should be 

replenished during each replenishment period?

The characteristics of the new IRP model for solving periodic stochastic 

multi-retailer problems that allow an early replenishment are examined 

under this question. Further, the condition that triggered the replenishment 

together with the condition of flexibility to coordinate the replenishment 

are evaluated based on the proposed inventory policy.

iii) How does the proposed policy perform in the single item multi­

retailer case? How do the variables influence the result?

This question is developed in connection with research question 2 to 

explore the impact o f different variables in the IRP model, i.e. inventory 

control parameters and costs, on the performance measurement, using 

explicit numerical analysis. This question is also related to the next 

research question which seeks to observe the behaviour of the proposed 

IRP model when implementing different routing strategies.

iv) How should the routing strategy be incorporated into the IRP model

to reduce cost, improve vehicle effectiveness, and reduce energy 

consumption?

The appropriate routing strategy that is able to facilitate the efficient 

sequence of delivery in terms of cost, vehicle effectiveness, and vehicle 

energy consumption is examined through this research question.
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These research questions emerged from the literature review and the study process 

itself. Initially, research question 1 was derived from the IRP literature in Chapter 2, 

which identified weaknesses in the traditional supply chain strategy, advantages of the 

IRP to various industries, and the lack of implementation of the IRP in the healthcare 

industry. This research question is answered in Chapter 4, the case study chapter 

which discusses the suitability of implementing this approach with regard to current 

supply chain processes and problems. The supply chain management policy to 

improve performance in the healthcare industry is based on the supply chain 

management policy described in the literature.

The findings derived from research question 1 as well as inventory policy theory 

presented in the literature review were used to develop research question 2. Answers 

to this question are found at the beginning o f Chapter 5 in this thesis.

As this study is the first to evaluate the “can order” policy known as the (s,c,S) policy 

in the multi-retailer context, it is necessary to explore the behaviour o f the proposed 

model with different inventory control parameters and costs. Hence, research question 

3 was developed to accomplish this aim and the findings are detailed in the Chapter 5.

Since the IRP approach integrates inventory management and transportation 

management, research question 4 was developed to evaluate different routing 

strategies for the purpose of reducing the total cost as well as the energy consumption 

of a vehicle. The behaviour of the IRP model with different routing strategies was 

examined in this research question and findings were also used to address research 

question 3. The detailed specification of the routing strategies and the effect of the 

proposed IRP model’s coordination with different routing strategies is discussed in 

Chapter 6. The linkage between research questions and the discussion of findings is 

illustrated in Figure 1.2.

With regard to the research methodology, a case study and spreadsheet simulation 

were employed to address all the research questions. The case study was developed 

after the author spent two and a half months in one of the leading private healthcare 

organisations in Malaysia to examine the supply chain processes in the organisation. 

The ordering and delivery processes were analysed in order to identify the
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performance of the current supply chain strategy and determine how the IRP approach 

could overcome existing problems. A IRP model was developed via spreadsheet 

simulation and the interaction between variables in the model was explored to gain 

insight into the model’s effect on performance measurement. Details of the research 

methodology are presented in Chapter 3.

1.5 Structure of the Thesis and Research Contributions

This thesis is organised into 7 chapters as shown in Figure 1.2. This chapter 

introduces the research. Chapter 2 provides a review of the literature focusing on 

previous IRP research, identifies the research gap, and presents the conceptual model 

of the research. Chapter 3 discusses the research methodology.

In Chapter 4, the result o f the case study is presented, beginning with the description 

of healthcare supply chain management in general followed by a description of it in 

the Malaysian context. The chapter then continues by describing the case study’s 

supply chain process and analysing the problems faced by the organisation under 

study. Finally, the chapter focuses on the improvement strategy that points to the 

suitability of implementing the IRP strategy in the organisation.

Chapter 5 presents the development of the suggested IRP simulation model using a 

spreadsheet and analyses the impact of the various variables in the model on total cost. 

The analysis focuses on the effect of the inventory control parameters on inventory 

holding, shortage and transportation costs. Here, the routing decision is identified 

based on the minimum distance travelled by the vehicle during the delivery process. 

At the end of this chapter, the proposed model is compared with other inventory 

policies.

Chapter 6 enhances the routing part in the IRP model. The effect of different vehicle 

effectiveness methods, including the Travelling Salesman Problem (TSP), Overall 

Vehicle Effectiveness (OVE) metric, and Modified Overall Vehicle Effectiveness 

(MOVE) metric on total cost, vehicle effectiveness and vehicle energy consumption
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factors, is examined. The best strategy that is able to minimise the cost and vehicle 

energy consumption is implemented for further investigation of the model.

Chapter 7 provides a discussion of how the analysis answers the research questions. 

This chapter also explains the contributions and implications of the research, 

addresses IRP model generalisation, presents the limitations of the research, and 

suggests areas for further study.

The contributions expected from this research are the development and analysis of an 

IRP model that gives flexibility for the central decision-maker to make early 

replenishments in order to reduce costs and improve vehicle effectiveness. The study 

evaluates the trade-off between inventory and transportation costs. Implementation of 

the new routing strategy using the Modified Overall Vehicle Effectiveness strategy 

facilitates minimisation of the distance as well as the energy consumed in the 

transportation. The result therefore proves that both distance travelled and vehicle 

energy consumption could be minimised together using an efficient routing strategy. 

Nevertheless, the result also shows that only a slightly higher total cost will occur if 

the model only considers the distance travelled as the factor to identify the best 

replenishment route compared with the new routing strategy.

1.6 Conclusion

This chapter has provided the route map for this thesis. First, it focussed on supply 

chain management and logistics concepts and then discussed supply chain integration 

strategies, comparing them to the traditional supply chain approach. The research 

aims and objectives were subsequently outlined and the motivation for this research 

was explained. Finally, the thesis structure was presented to illustrate the linkage 

between the chapters presented in this thesis. The next chapter will offer a review of 

the relevant literature to provide an overview of the application and methods used by 

previous researchers to solve the IRP. The gap in the literature is also identified to 

determine the scope of research needed for further investigation of the IRP area.
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Chapter 1

Introduction

Chapter 3

Methodology

Chapter 2

Literature Review
- RQ1 presented
- RQ2 presented

Chapter 7

Discussion and Conclusion

Chapter 4

Case Study
- RQ1 answered
- RQ2 presented

Chapter 6

Transport Effectiveness
- RQ4 answered
- RQ3 answered

Chapter 5

The Stochastic Periodic 
‘Can Deliver’ Policy

- RQ2 answered
- RQ3 presented
- RQ3 answered
- RQ4 presented

Figure 1.2: The thesis structure
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Chapter 2 Literature Review on the Inventory 

Routing Problem

This chapter provides an overview of previous research on the Inventory Routing 

Problem (IRP). Section 2.1 describes the general characteristics of the IRP. Then, 

Section 2.2 and Section 2.3 review the various dimensions of the IRP and methods 

used to solve the IRP. The performance measurement and the structure of the 

objective function used in the IRP model are examined in Section 2.4. Finally, Section

2.5 explores the replenishment policy adopted by previous researchers before 

identifying the research area that requires further investigation in Section 2.6.

2.1 Introduction

As has been discussed earlier in Chapter 1, the IRP is concerned with inventory and 

transportation integration for determining the optimal decision in a centralised control 

system. Generally, the IRP is concerned with the repeated delivery of a single product 

from a central facility or supplier to a set of customers using a fleet of M  

homogeneous vehicles with known capacity over a planning horizon. The supplier 

knows the demand rate at each customer. Thus, the inventory level, I  for each 

customer /, can be measured by the supplier at any time, t. Usually, the IRP model 

assumes an unlimited capacity at the supplier whilst customers have unlimited 

capacity to store the product. The transportation cost is associated with the route used 

to make the round-trip delivery from the supplier to all the customers. The inventory 

cost also includes the holding cost per unit item in the stock and the penalty cost in 

the case of a shortage or out of stock situation. The supplier is responsible for 

determining an effective decision that minimises the total cost or maximises the 

profit. The decision is made regarding the best time and quantity to replenish the 

customer as well as the efficient routes. This makes the IRP different from the vehicle 

routing problems approach. While the vehicle routing problems approach attempts to 

find the best route to make a delivery for a single particular period, the IRP deals with
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a longer horizon period and the decision made at a current period will impact upon the 

decision in the next period (Campbell et al., 1997).

2.2 IRP dimensions

A considerable amount of literature has been published on solving the IRP. 

Researchers have categorised the IRP scenario along a number of different 

dimensions including:

• The length of planning horizon

• Customer demand pattern

• Number of customers visited during the delivery

• Vehicle characteristics

• Number of delivered products

The length of planning horizon of the IRP solution can be a single-period, multi­

period or an infinite time horizon. These categories are known as time demand 

approaches in Dynamic Routing and Inventory Problem (DRAI) problems (Baita et 

al., 1998). The single-period problem determines the solution that balances the 

transportation and inventory costs at the beginning of every single time period based 

on the inventory level information. Federgruen and Zipkin (1984), Federgruen et al. 

(1986) and Chien et al. (1989) addressed the IRP in this context. In multi-period 

problems, the improvement solutions for the delivery schedule and the routes for 

delivery are determined for a specific period of time. A number of studies have solved 

the multi-period problem such as those of Dror and Ball (1987), Trudeau and Dror

(1992) and Dror and Trudeau (1996). They determined the long-term solution by 

reducing the multi-period problem into a single period problem. The idea has been 

extended by Jaillet et al. (2002) and Bard et al. (1998) who considered the use of a 

satellite facility to reload the item into the vehicle to make another delivery trip. 

According to Moin and Salhi (2006), multi-periods are more practical to use as they 

provide a realistic trade-off between the strategic and the operational requirements of 

a solution. On the other hand, the infinite time horizon solves a long-term problem by 

evaluating the performance of replenishment policies and the routing approach that
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minimises the total cost average. Anily and Federgruen (1990, 1993) and Gallego and 

Simchi-Levi (1990) are among those that have studied the infinite IRP.

The demand pattern is another dimension that differentiates the IRP categories. Most 

researchers assume the customer demand is deterministic to simplify the problem. 

However, in reality, the customer demand is stochastic. Lourenco and Ribeiro (2003) 

examined demand characteristics in the model. Stochastic IRP models have been 

solved by Trudeau and Dror (1992), Kleywegt et al. (2000), Berman and Larson

(2001), and Kleywegt et al. (2004). With respect to the number of customers visited 

for a single vehicle trip, several researchers have studied the direct delivery case 

where only one customer is considered on a single vehicle route to simplify the 

solution (Kleywegt et al., 2000). However, it is not efficient to deliver a small amount 

of items to one customer for one delivery trip. Thus, in many situations, vehicles are 

scheduled to visit multiple customers during the delivery trip. Furthermore, the 

characteristics of vehicles for the delivery can be categorised based on the capacity, 

type and the number o f units used for delivery. The capacity of the vehicle can be 

either unlimited or capacitated, whilst the number o f vehicles can be single or 

multiple. In terms of vehicle type, it can be either homogeneous or heterogeneous. 

Supplier characteristics are other IRP characteristics where it can be unlimited or 

limited supply in a two-echelon supply chain. Recently, Zhao et al. (2008) studied the 

IRP in a three-echelon supply chain structure that consisted of a supplier, central 

warehouse and multiple retailers. The IRP also can be categorised by the number of 

items delivered to the customer. However most of the research assumes a single item 

in the model. Sindhuchao et al. (2005) stated that the research in inventory routing 

area that considered multi items is quite limited and suggested that the study by 

Vismanathan and Mathur (1997) and Qu et al. (1999) are the most significant 

contribution in this area. Aziz and Moin (2007) is another research that considered a 

multi product scenario in their study.

2.3 Research Method and Approaches to Solve an IRP

In this subsection, we are interested in the methods used to solve an IRP. Generally, 

quantitative modelling has been used by previous researchers, employing either exact
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analytical or heuristic approaches. Integer programming, Mixed Integer programming, 

Dynamic programming or Markov decision processes are examples of exact analytical 

methods used to obtain the optimal IRP solutions. On the other hand, the heuristic or 

Meta-heuristic methods are preferred solutions for the complex problems.

2.3.1 Exact method

Bell et al. (1983) used the Lagrangian Relaxation algorithm to solve a large mixed 

integer programming problem. It is reliably able to obtain near optimal scheduling 

decisions in the Air Product and Chemicals Inc. online vehicle scheduling system. 

This system is also integrated with a shortest route planning algorithm to determine 

inter-customer distances and travel times. The exponential smoothing forecasting 

method is used to forecast customers’ demand rate at individual locations. The system 

produces individual customer replenishment schedules for the next two to five days. 

Solutions are obtained using the Lagrangian Relaxation algorithm to produce a 

feasible solution that traditional mixed integer linear programming methods cannot 

handle.

Campbell and Savelsbergh (2002) implemented the Integer Programming method to 

solve the deterministic IRP problem at a large industrial gases company in North 

America, PRAXAIR. PRAXAIR uses remote telemetry units to monitor customer 

inventory levels. The system uses a two-phase approach. Integer Programming is 

used in the first phase in order to determine which PRAXAIR customers require 

replenishment as well as the quantity that is needed at each customer location to 

prevent out-of-stock situations. The customer’s capacity, vehicle capacity and any 

time windows are considered in this phase. Since PRAXAIR has over 10,000 

customers and it is difficult for integer programming to handle such a large problem, 

clustering and aggregation are used to reduce the number of routes used and the 

length of planning horizon. The delivery routes and replenishment schedules that 

minimise the inventory and transportation cost are then determined by the second 

phase.

Differently, Kleywegt et al. (2004) formulated a stochastic IRP problem as a discrete 

time Markov process, extending the Dynamic Programming investigation in Kleywegt
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at al. (2002). They used real data from the air products industry to validate their 

model. The model captures the customers’ inventory level over time and creates a set 

of feasible replenishment schedules determined by vehicle availability and work load 

constraints as well as customers’ inventory holding capacity. Overall, the problem is 

decomposed into smaller sub-problems of specific subsets of customers to simplify 

the process.

2.3.2 Heuristic method

A heuristic method based on an Iterated Local Search (ILS) was developed by 

Louren9 0  and Ribeiro (2003) to solve a multi-period Inventory Routing Problem for 

two types of customers, VMI customers and conventional replenishment customers. 

The VMI customers’ demand is considered to be a continuous random variable that 

follows an exponential distribution. The ILS meta-heuristic is capable of producing 

good, effective, quality and robust results. It is iteratively applied to obtain effective 

delivery routes, since the Vehicle Routing Problem (a closely related sub-problem of 

the IRP) is N-P hard. A balance is made between the delivery costs and inventory 

cost. Tabu search is another meta-heuristic method that can be used to solve 

deterministic IRP problems (Cousineau-Ouimet, 2002). This method is efficient and 

flexible enough to solve an IRP with multi-customers and multi-vehicles.

2.3.3 Hybrid method

Recently, hybrid methods have become popular approaches in order to quickly obtain 

feasible and quality solutions within a reasonable computation time. Examples of 

hybrid techniques that have been used to solve the IRP can be found in Lau et al.

(2002) who integrated local search and network flow techniques, and Lau et al. (2003) 

who combined an ant colony optimisation with the Tabu search method.

2.3.4 Simulation

Simulation is another method that has been used to explore the behaviour of the IRP 

model, see, for instance, Reiman et al. (1999), Jaillet et al. (2002) and Aghezzaf 

(2008).
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2.4 The IRP Objective Function and Performance Measurement

Most IRP solutions aim to determine the optimal replenishment timing and quantity 

for delivery as well as an efficient route that minimises the total cost. However, there 

are various combinations of costs included in the objective function used by 

researchers in the IRP model. Bertazzi et al. (2007), Bertazzi et al. (2002), and 

Gallego and Simchi-Levi (1990) are among those that have included inventory 

holding costs in the objective function. On the other hand, Gaur and Fisher (2004), 

Trudeau and Dror (1992) and Berman and Larson (2001) have preferred to just 

include the transportation cost. Some researchers such as Anily and Federgruen

(1993) have also included the inventory cost at the warehouse in situations when 

warehouses keep stock. Otherwise, the inventory cost only occurs at the customers. 

This is relevant for the cross-docking scenario which has always been used as an 

assumption in the model. The shortage cost is considered by some researchers as the 

cost to make direct replenishment to the customer that needs an urgent delivery. 

However, others (Abdelmaguid et al., 2008) have viewed the shortage cost as the 

charge per unit shortage supply when inventory on hand is insufficient to meet 

demand at the end of each period in each location. The shortage cost here is included 

in the cost function.

Also, different variations of transportation cost functions have been considered. Anily 

and Federgruen (1990,1993) included the fixed transportation cost per trip and 

variable cost per distance travelled. On the other hand, Campbell (2002) and Trudeau 

and Dror (1992) only considered variable costs in their cost function.

2.5 The Replenishment Policy

Flexibility will help the supplier to deal with the uncertainty scenario in a stochastic 

IRP. Accumulating the retailers’ requirement to deliver a full vehicle load is an 

approach that has been applied by researchers to address the vehicle utilisation 

problem and reduce the transportation cost (Cetinkaya and Lee, 2000). However, 

there is an issue of delaying the replenishment at retailer level where there is a
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possibility of the retailers running out of stock, thus increasing the inventory backlog 

costs. Gurbuz et al. (2007) implemented another approach to replenish all retailers 

whenever one of the retailers reaches the reorder level, or when the total demand for 

all retailers reaches a certain point. However, they used fixed transportation cost for 

the delivery and a penalty transportation cost for excessive vehicle capacity 

requirements. Thus, the solution is intended to optimise the inventory management by 

determining the appropriate joint replenishment point that minimises the cost. The 

partition approach has also been used as a replenishment approach, where all 

customers in one cluster are replenished at a particular time. However, these 

replenishment strategies as well as other inventory policies that have been used to 

solve the inventory problem (such as the Economic Order Quantity (EOQ) policy, 

zero inventory ordering policy and the order-up to policy, (s,S)) do not allow 

flexibility in the decision making process.

Route selection for the replenishment is mostly based on the distance travelled by the 

vehicle, and the same route will be used for each delivery. In some cases, the 

minimum cost is determined based on a constant cost between two points. However, 

with different quantities of items being delivered to different points, the cost may 

change based on the weight and the vehicle distance travelled. To our knowledge, 

only one paper (Kara et al., 2007) has discussed the relationship between weight and 

distance when determining the optimal route based on the minimum energy consumed 

by a vehicle.

A list of studies which have used IRP research in the past is summarised in Table 2.1 

according to customer demand types, the number of available vehicles and the 

condition of vehicles, length of the planning horizon, number of customers visited on 

a vehicle trip, methods used to solve the IRP, objective function, replenishment policy 

and inventory policy.

The research contribution of this study is also highlighted at the bottom of the table.
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2.6 Potential Research Area

The “can order” policy known as the (s,c,S) policy introduced by Balinfy (1964) 

seems to be a promising idea to solve the IRP as it gives flexibility to the supplier to 

make replenishments when it is convenient. With this approach, customers’ deliveries 

can be consolidated with other customers that also require a delivery through the 

introduction of the flexible inventory control parameter, c, as well as two others 

inventory control parameters. These specify the reorder level, s and the maximum 

inventory level, S which are commonly used parameters in a replenishment policy. 

This approach may allow the supplier to make decisions more economically and 

increase the effectiveness of vehicles.

Further, vehicle routing is supposedly evaluated based on the weight of goods and 

travel distance, in order to determine the actual cost incurred by the vehicle. This is 

consistent with the suggestion by Moin and Salhi (2006) that IRP solutions need to be 

considered based on their environmental impact. Therefore, this thesis is concerned 

with determining the best solution that integrates the inventory policy and the routing 

policy which is beneficial not only from the economic perspective but will also help 

to reduce the energy consumed during the delivery process through replenishment 

coordination and a new vehicle efficiency approach.

2.7 Conclusion

This chapter has reviewed the various ways of solving the IRP. Many different 

dimensions and methods have been explored in previous research for determining the 

best decision based on certain replenishment policies that minimise various cost 

functions. The gaps in the literature are identified with respect to the replenishment 

policy that gives flexibility to the supplier in the decision-making process. 

Furthermore, the optimal sequence of customer delivery takes into account the weight 

carried by vehicles in cost determination has not been considered before in the 

literature. Thus, further research along this direction is required. In the next chapter, 

we discuss the methodology that is appropriate for conducting this research.
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Table 2.1: Previous Inventory Routing Problem research

Researcher Year Demand

Ve

Number

licle

Condition
Time
Horizon

Delivery
Type Methods Objective Replenishment Policy Inventory Policy

Federgruen and 
Zipkin 1984 Stochastic Limited Capacitated Finite Multiple Stochastic programming Min cost Cluster first- route second

Bums et al. 1985 Deterministic Unlimited Capacitated Finite
Direct,
Multiple EOQ/Theoretical analysis Min cost Cluster (distance) EOQ

Dror et al. 1985 Stochastic Limited Capacitated Finite Multiple
Integer programming, 
Decomposition Min cost

Determine delivery time 
then schedule scustomer 
delivery by route (s,S) policy

Dror and Ball 1987 Stochastic Limited Capacitated Finite Multiple Mixed Integer programming 

Heuristic
Min cost Cluster first-route second Minimum level

Chien 1989 Deterministic Limited Capacitated Finite Multiple Mixed Integer programming 

Heuristic and Bound
Max profit Vehicle assigment

Anily and 
Federgruen 1990 Deterministic Unlimited Capacitated Infinite Multiple Heuristic,

Bound

Min cost Cluster first(distance)- 

route second

Zero-Inventory

Ordering

Gallengo 

and Simchi-Levi

1990 Deterministic Unlimited Capacitated Infinite Direct Bound Min cost Cluster first(distance)- 

route second

Zero-Inventory

Ordering

Trudeau and Dror 1992 Stochastic Limited Capacitated Finite Multiple Heuristic,

Mixed Integer programming

Min cost Cluster first(time)- 

route second
Anily and 
Federgruen 1993 Deterministic Unlimited Capacitated Infinite Multiple Heuristic,

Bound

Min cost Cluster first(distance)- 

route second

Zero-Inventory

Ordering

Herer and Levy 1997 Stochastic Unlimited Capacitated Finite Multiple Heuristic, Simulation Min cost Retailer selection

Chan et al. 1998 Stochastic Unlimited Capacitated Infinite Multiple Analysis and Heuristic Min cost Clustering
Zero-Inventory
Ordering

Qu et al. 1999 Stochastic Single Unlimited Infinite Multiple Heuristic, Lower bound Min cost Retailer selection Perriodic Review
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Table 2.1 (cont.)

Researcher Year Demand

Vehicle Time
Horizon

Delivery
Type Methods Objective Replenishment Policy Inventory PolicyNumber Condition

Park et al. 2002 Stochastic Single Unlimited Infinite Multiple Heuristic, Simulation Min cost Dynamic allocation Least-inventory first

Jaillet et al. 2002 Stochastic Limited Capacitated Finite Multiple Simulation Min cost

Retailer selection-combine in one or 
more route and assign a vehicle to 
each route (s,S)

Kleyweght et al. 2002 Stochastic Limited Capacitated Infinite Direct Markov Decision process, 

Heuristic
Max profit Bound EOQ

Gaur and Fisher 2004 Deterministic Unlimited Capacitated Infinite Multiple Heuristic Min cost Clustering
Campbell and 

Savelsbergh

2004 Deterministic Limited Capacitated Finite Multiple Integer Programming, 

Heuristic

Min cost Clustering Bound

Kleyweght et al. 2004 Stochastic Limited Capacitated Infinite Multiple Markov Decision process, 

Heuristic

Max profit Retailer selection

Zhao et al. 2006 Deterministic Limited Capacitated Infinite Multiple Heuristic Min cost Clustering EOQ

Gurbuz et al. 2007 Stochastic Limited Capacitated Infinite Multiple Simulation Min cost Retailer selection Hybrid policy ( s ,S - l,S ) 

and echelon policy

Abdelmaguid et al. 2008 Deterministic Limited Capacitated Finite Multiple
Mixed Integer 
Programming

Heuristic

Holding,
Stockout Fixed, Direct Min cost

Raa 2008 Deterministic Limited Capacitated Infinite Multiple Heuristic Min cost Cyclic distribution

Mustaffa 2008 Stochastic Single Unlimited Infinite Multiple Simulation Min cost

strategy

effectiveness

Retailer selection (s,c,S)
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Chapter 3 Methodology

In this chapter, the research methods and methodology used to conduct the research 

and the relationship between of the research approach and the research philosophy are 

described. Section 3.1 deals with the research philosophy, while Section 3.2 evaluates 

research commonly used in Operation Management, specifically in the Logistics or 

Supply Chain Management area. Then, the description of the methods used to conduct 

the study in addressing the research questions is presented in Section 3.3. The 

framework used in this research is discussed in Section 3.4. The details of each 

method are described separately in subsection 3.5 and 3.6. Finally, Section 3.7 

evaluates the ethical considerations with regard to the study.

3.1 Research Philosophy

Identifying and understanding the relationship between research philosophy and 

research methodology is important when designing projects. The ontological and 

epistemological research philosophy paradigm position will underlay the 

methodology and the methods adopted for the research (Solem, 2003; Reich, 1994; 

and Frankel et al., 2005).

According to Solem (2003), Ontology and Epistemology are terms both derived from 

Greek words. Ontology comes from the word “ontos” and “logos” and means “being” 

and “word”, whilst Epistemology comes from the words “epi”, “histemi” and “logos” 

and means “upon or on”, “stand” and “word”. Therefore, ontology refers to the 

‘philosophical study of being’ and epistemology ‘deals with the background of 

knowledge’ that may be viewed as referring to ‘how do we know what we know’ 

(Ibid). Generally, ontology is concerned with the nature of reality that determines the 

existence of the objectivity of the reality, whilst epistemology is concerned with the 

approach used to understand reality and the relationship between the researcher and 

their knowledge (Reich, 1994; and Frankel et al., 2005). Reich (1994) and Frankel et 

al. (2005) describe the methodology as the methods used to understand the world that
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are concerned with the way the research is executed. This includes the methods used 

to collect the data, test the theory, as well as interpret the results.

Wass and Wells (1994) establish the relationship between the epistemological 

perspectives categorized as positivism, realism or naturalism with the ontological 

position, methodology and techniques for data collection. Naturalism can also be 

referred to as interpretivism, phenomenology, and constructionism, (Fisher, 2004, p. 

17).

The relationship between the research philosophy and the research strategy and the 

research approach has been illustrated by Saunders et al. (2003) in Figure 3.1 as the 

research process ‘onion’. Positivism and interpretivism paradigms are placed at 

opposite poles. The positivism position uses the deductive approach and quantitative 

research strategies such as experimental and survey methods.

Research

Positivism Philosophy

Time horizons
Deductive

Experiment Survey

Cross Sectional Case Study
iRealismSampling, Secondary data,

Observation, Interviews, Questionnaires
GroundedLongitudinaJ
Theoi

EthnographyAction Research

Inductive Research

StrategiesData collections Interpretivism
Research

Approaches
methods

Figure 3.1: The research process onion (Source: Saunders et al., 2003)

25



3.2 Research Methods in Supply Chain Management or Logistics

The discussion of the philosophy of science and the methodology in this section is 

specially related to logistic or supply chain research. According to Frankel et al. 

(2005):

Many logisticians would say that their research tends to more positivist in 

nature and utilizes variations of quantitative approaches as the primary 

research method. Conversely, other logisticians tend to be more interpretive in 

nature which leads to a greater use o f qualitative approaches

Solem (2003) supports the statement by stating that the positivism and realism 

approaches dominate the logistics area, even though some researchers have moved 

towards the new perspective that is closer to the interpretive approach. Ticehurst and 

Veal (2000, p. 15), cited in Knox (2004, p. 122) also reveal that the quantitative 

approach is widely employed in management science or operational research. Even 

though case study methods are used in logistics to solve real-world logistics problems, 

Naslund (2002) point out that case study method can be quantitative as well and 

seems to be primarily based on the positivist paradigm.

Sachan and Datta (2005) analyzed trends in the research design of logistics research 

based on papers published in three well-known logistics journals from 1999 to 2003. 

Their results are summarized in Table 3.1. A higher total percentage of quantitative 

methods compared to the qualitative method in Journal o f Business Logistic (JBL) 

and International Journal o f Physical Distribution & Logistics Management 

(IJPDLM) indicates that the research design was more towards the positivism 

position. In general, it can be seen from the table that the total percentage of 

quantitative research is higher than that of qualitative research. However a trend can 

be seen towards increasing use of the qualitative technique, since the total percentage 

of desk qualitative approach is higher than the total percentage of desk quantitative 

approach. In order to understand this phenomenon, the percentage of several research 

methods used in logistic research by various researches is summarized in Table 3.2.
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Table 3.1: Research design applied in logistics research based on papers 

published in three top journals between 1999 to 2003

Research
design JBL (percent) SCMIJ (percent) [JPDLM (percent) Total (percent)

Empirical
quantitative 52 (57) 38 (26) 72 (35) 162 (37)
Empirical
qualitative 5 (5) 41 (28) 32 (16) 78 (18)

Desk
quantitative 22 (24) 14 (10) 42 (21) 78 (18)

Desk
qualitative 13 (14) 53 (35) 51 (25) 117 (26)
Empirical

triangulation 1 (1) 6 (3) 7 (2)
Total 92 (100) 147 (100) 203 (100) 442 (100)

Source: Sachan and Datta, 2005

JBL : Journal o f  Business Logistic

SCMIJ: Supply Chain Management: An International Journal 

IJPDLM: International Journal o f  Physical Distribution & Logistics Management

Table 3.2: Research methods applied in logistics research

Research methods

Mentzer 

and Kahn 

(1995)

Larson and 

Halldorsson 

(2004)

Sachan and Datta (2005) Frankel 

et al. 

(2005)JBL SCMIJ IJPDLM Total

Surveys 54.30 % 54.30 % 52.20 % 22.40 % 35.50 % 34.60 % 37.0 %

Simulations 14.90 %
19.20%

9.80 % 2.0 % 4.90 % 5.0 %
14.80%

Maths model 4.30 % 13.00% 12.80% 12.80% 10.40%

Interviews 13.80% 13.80% 3.30 % 5.90 % 5.90 % 6.80 % 19.50%

Case Studies 3.20 % 3.20 % 4.30 % 25.20 % 14.80% 16.10% 6.70 %

Archival studies - 9.60 % - - - - -

Conceptual model - - 4.30 % 7.50 % 6.40 % 6.30 % -

Others 9.60 % - 13.0% 27.20 % 19.70% 20.80 % 22.15%

Source: Mentzer and Kahn, 1995; Larson and Ha 

2005 and Frankel et al., 2005

ldorsson, 2004; Sachan and Datta,

As can be seen from Table 3.2, the methods used in logistics research are more 

quantitative than qualitative with the survey as the preferred method. Simulation and
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mathematical modelling methods stand in second position in the table (Mentzer and 

Kahn, 1995 and Larson and Halldosson, 2004).

The ontological and epistemological positions for this thesis are more towards the 

realism and positivism paradigms. The positivism position is more appropriate to the 

interpretivism paradigm because research on the Inventory Routing Problem is an 

economic approach, since the research attempts to find the best solution that 

minimises cost or maximises profit via quantitative technique. Mentzer and Khan 

(1995) state that the economic and behavioural approaches are influenced by a 

positivism position since their goal is ‘to explain and predict reality’. According to 

Mentzer and Flint (1997 p. 199), “positivism is inherently a process of induction 

leading to deduction, leading to induction”. The process to conduct the research based 

on the positivism position is discussed in the next section.

3.3 Research question and methodology selection

Generally, research is based on qualitative, quantitative or a combination of these 

techniques. As discussed in the previous section, the research philosophy position will 

influence the methodology chosen for the research. In addition, the research questions 

and research objectives also contribute as factors to the methodology decision 

(Frankel et al., 2005; and Ellram, 1996). Thus, this section provides an overview of 

the selection of the methodology to address the research question described in Section 

1.4.

i) How is the supply chain process carried out in the healthcare industry 

in the context of developing countries’ private healthcare, especially 

in Malaysia? Can the Inventory Routing Problem approach be used 

to improve supply chain operations?

Ellram (1996) states that the case study methodology is suitable for answering the 

‘how’ and ‘why’ questions in both exploratory and explanatory research. On the other 

hand, quantitative methods like the survey or secondary data analysis need to be used
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in order to answer the ‘how much’, ‘how many’, ‘who’, ‘what’ and ‘where’ questions 

in explorative, descriptive and predictive research.

Therefore, the case study approach is chosen as the method to explore the existing 

supply chain process in the case organization, since the research endeavours to answer 

the ‘how’ question. Moreover, additional information and a better understanding of 

the performance of the current policies can be obtained via secondary organisation 

data analyses.

This study is also interested in investigating the potential of implementing the IRP 

approach in the Malaysian healthcare industry, to manage several clinics in one 

organisation. Generally, previous research in the IRP area has mostly determined a 

solution for the gas industry, (Bell et al., 1983; and Campbell and Savelsbergh, 2002). 

The benefit of the centralised decision making that integrates two important elements 

in the supply chain has motivated other researchers to expand the application of the 

IRP to other industries. According to Meredith (1998), the case study strategy can be 

used as an early exploratory investigation where the variables are still unknown and 

the phenomenon not yet fully understood. The case study is therefore considered to be 

the best strategy to investigate existing supply chain processes, evaluate the problems 

that occur as well as identify the improvement strategies needed to overcome the 

problems.

Furthermore, the information on the general healthcare supply chains in Malaysia and 

improvement supply chain strategies that exists in the healthcare supply chain is 

reviewed from the literature. The sources of the literature and the design of case study 

that appropriate for this research are discusses in detail in Section 3.5.1. and 3.5.2 

respectively.

ii) How should the parameters in the Inventory Routing Problem be set? 

How should the supplier decide on which retailers should be 

replenished during each replenishment period?

The various replenishment approaches to solve the Inventory Routing Problem that 

used by previous researchers are examined from the literature. Nevertheless, the
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review of the appropriate replenishment procedures to be implemented has also 

considered the joint replenishment approach as this could be used to solve the multi­

item problem for a single location. Furthermore, the appropriateness of the inventory 

control policy to be adopted in this thesis also taking into account the suitability o f the 

case study organisation based on their supply chain environment.

It has been found that the periodic “can-order” policy is the best approach to solve the 

multi-items problem. This concept seems appropriate as a new replenishment policy 

for IRP gives flexibility for the supplier to consolidate the replenishment among 

retailers. Therefore, the characteristic of the new IRP model including the parameters 

and the condition that triggered the replenishment are evaluated based on the “can- 

deliver” policy concept in the literature and the analysis in the organisation.

iii) How does the proposed policy perform in the single item multi­

retailer case? How do the variables influence the result?

Analysis of the new IRP policy is carried out using quantitative methods. Quantitative 

modelling in operations management is appropriate for understanding the causal 

relationship between control variables and the performance variable o f the model. 

Further, these approaches are able to examine the behaviour of the suggested policies 

under different scenarios and quantify the best solution that optimises the 

performance measurement in either the physical or economic aspects o f the model. 

Bertrand and Fransoo (2002) categorise model-based quantitative research as 

axiomatic and empirical research, since both can be classified as descriptive and 

normative/prescriptive research. Axiomatic normative (AN) research is a typical type 

of model-based quantitative research in the Operational Research field. The AN 

research is primarily concerned with finding the best solutions for improving previous 

research or solving a newly defined problem as a scientific contribution to the existing 

knowledge (ibid).

Similarly, Ragsdale (2004) categorised mathematical models into prescriptive, 

predictive and descriptive categories based on the characteristics of the mathematical 

function and independent variables o f the problem. Table 3.3 shows the difference
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between the three model categories and suitable management science techniques for 

each category.

Table 3.3: Mathematical models categories9 characteristic

Category Form of 
functional 

relationship, f(.)

Values of 
Independent 

variables

Management Science 
Technique

Prescriptive
Models

Known,
well-defined

Known or under
decision-makers’
control

Linear Programming, 
Networks, Integer 
programming, Critical 
Path Method (CPM), Goal 
programming, Economics 
order quantity (EOQ), 
Nonlinear Programming

Predictive
Models

Unknown, ill- 
defined

Known or under 
decision-makers’ 
control

Regression Analysis, 
Time Series Analysis, 
Discriminant Analysis

Descriptive
Models

Known, well- 
defined

Unknown or 
uncertain

Simulation, Queuing, 
Program Evaluation and 
Review Technique 
(PERT), Inventory Models

Source: Ragsdale, 2004

In contrast, Beamon (1998) eliminated the optimisation model and categorised the 

analytical model into two different categories, namely, deterministic analytical 

models and stochastic analytical models and introduced economic models as a new 

category in multi-stage models for supply chain design and analysis. The supply 

chain’s taxonomies discussed in Min and Zhou (2002) also included hybrid models 

which contain both deterministic and stochastic elements and IT-driven models as a 

result of growing IT software usage in modelling the supply chain.

With regard to the modelling process, Law and Kelton (2000) indicate that the 

relationship between variables for a simple problem may be modelled to obtain an 

exact solution using analytical mathematical methods such as calculus and probability 

theory. However, a simulation method is more appropriate to model and solve a 

complex system numerically using a computer. According to Harrell et al. (2003), the 

complexity of the system is related to the interdependencies and the variability 

factors. Duncan (1972) refers to the environmental complexity based on the number
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and interdependencies of the environment variables. Figure 3.2 shows the relationship 

between the analytical difficulty and the level of complexity as illustrated by Harrell 

et al. (2003). It can be seen from the figure that an increasing number of 

interdependencies and uncertainty levels in the system raises the level of analytical 

difficulty exponentially.

C-,o
o
&
<L>
Q

Number o f interdependencies and random variables

Figure 3.2: The relationship between analytical difficulty and the number of 

interdependencies and random variables (Source: Harrell et al., 2003)

It has been suggested by Ragsdale (2004) that the simulation approach is more useful 

for studying stochastic inventory control since the solution to determine an optimal 

ordering level, time, and quantity is not possible to express just using a simple 

formula. Banks et al. (1999) also state that simulation is an appropriate tool for 

studying an internal interaction in a complex systems or subsystems. Banks et al. 

(1999) also contend that simulation is suitable for identifying an improvement in the 

system under study. It is also able to determine the consequence of implementing a 

new design or approach to the system as well as provide valuable insight into the 

systems regarding the effect of each variable and highlight those variables most likely 

to have a large impact in the systems (Ibid). Chang and Makatsoris (2001) also report 

that supply chain simulation is beneficial for the organisation to carry out what-if 

analyses by testing different alternative improvement strategies and identify the 

impact of the changes without interrupting the current process. Moreover, Terzi and 

Cavalieri (2004) state that simulation is a powerful method among other quantitative 

methods for supply chain decision making. Similarly, Law and Kelton (2000) indicate 

that simulation is among the most common techniques used in operations research and
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management besides mathematical programming and statistical techniques. The 

growing trend of simulation usage by various industries to redesign and improve their 

existing system proves that the simulation is a practical tool for studying the supply 

chain (Chu, 2003).

Accordingly, the simulation model is adopted in this thesis to address this research 

question. Simulation is capable of evaluating the behaviour of the proposed IRP 

model to various input factors. The comparison of a new improvement strategy with 

other inventory policies can also be simply obtained via simulation by updating the 

model configuration. The detail on simulation model is discusses in Section 3.6.

iv) How should the routing strategy be incorporated into the IRP model 

to reduce cost, improve vehicle effectiveness, and reduce energy 

consumption?

The simulation model is expanded to evaluate the impact of different vehicle 

effectiveness strategies on the IRP model. The appropriate vehicle effectiveness 

strategies to include in the analysis are reviewed from the literature. Similarly, the 

literature is the primary source to develop new transportation cost function in the IRP 

model that considers minimizing a route based cost to yield a minimum energy 

consumption and high vehicle effectiveness.

3.4 Research Framework

The research design is a framework to conduct research that links the data to be 

collected and data analysis to the initial questions and objective of the study. Figure

3.3 illustrates the framework to conduct the research. It starts with the problem 

formulation and conceptualisation phase, followed by a modelling and the 

generalisation phase based on the logistic research framework suggested by Mentzer 

and Kahn (1995) and Mitroff et al. (1974).
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Figure 3.3: Research framework

3.5 Problem Formulation and Conceptual Model

The conceptual model for the study was generated from reviewing the literature to 

obtain a broad overview of the research area as well as from via case study method in 

order to observe of a real life phenomenon, i.e. the supply chain process. It was 

important to identify the problem considered in this research and the scope of the 

research.

3.5.1 Literature Review

As discussed in Section 3.3, the literature review provides an overview of the 

improvement supply chain strategies that exists in the healthcare supply chain, 

different IRP methods used by previous researchers to solve the IRP, the vehicle 

effectiveness strategies and the information to develop new transportation costs. In 

addition, the information collected from the literature helped to define the research 

gap so that this thesis could contribute to the existing body of knowledge.

The literature for this review was captured from various sources, including:
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i) University online databases and electronic journal databases

Relevant papers and journals were identified based on key words like 

‘Inventory Routing Problem’, ‘Vendor Managed Inventory’, ‘Joint 

Replenishment’ and ‘Supply Chain Methodology’ and obtained from the 

online database provided by Cardiff University. The Scopus, Pro quest, 

Emerald and Science Direct databases are common databases used to find 

the published academic journal papers or articles from magazines. The 

author also accessed and reviewed special issues of top journals in the 

logistics area such as the ‘Journal o f Business Logistics’, ‘European 

Journal o f Operation Research ’, Transportation Science ’ , Tnternational 

Journal o f production Economics’ and the ‘International Journal of 

Production Research ’.

ii) Conference proceedings

Papers from conference proceedings were useful for obtaining the latest 

information regarding the research area that had not been published yet in 

journals.

iii) Cardiff University library

The University library offered a wide range of books and magazines that 

was used as a foundation and starting point for providing general 

information about the research area. The library also provided a hardcopy 

of journal papers and previous student theses for reference. Further, the 

university provided an inter-library loan service to obtain those resources 

not provided by the university.

iv) Internet

This is the fastest growing resource for obtaining research information 

which can be obtained easily from a search engine like Google 

(www.google.comT The information given from the internet came from 

various sources, including lecture notes, journal papers, newspapers, 

information from the organization under study, and academic websites. 

The Google scholar websites provides more relevant information for
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research as it locates scholarly information such as journals, peer-reviewed 

articles, theses and technical reports from universities, (Noruzi, 2005).

3.5.2 Case Study

The design of the case study appropriate for a research study needs to be determined 

before conducting the research. Yin (2003) categorised four types of case study 

design, namely: single-case (holistic) design, single-case (embedded) design, 

multiple-case (holistic) design, and multiple-case (embedded) design. Figure 3.4 

shows these four classifications based on Yin (2003). The present study design can be 

classified as an embedded type since it involves more than one unit of analysis. 

According to Bryman and Bell (2007), the best-known research in the business and 

management area is based on the single-case study approach where the study 

normally focuses on a single organisation, a single location, a person or a single 

event. Voss, Tsikriktsis and Frohlich (2002) contend that the single case study 

approach provides an opportunity to gain in-depth knowledge but has the possible 

disadvantage of misjudging the single event and limited scope for generalisation. On 

the other hand, multiple case studies can enhance the external validity but may reduce 

the depth of the study.

Ellram (1996) states that a single case study is suitable for representing a critical case 

to test a theory and is also appropriate for studying a unique case as well as to study 

the phenomenon that has previously been difficult to get access too. Yin (2003) also 

advocates these reasons for using the single case study method. A single case study 

was viewed as appropriate for the first phase of this research to study in detail the 

structure of supply chain activities within the private healthcare industry, which can 

be considered unique when compared to other supply chain processes studied 

previously in the IRP area. The strong academic collaboration between the case study 

organisation and the research Faculty of Computer Science and Information System 

of the University Technology Malaysia provided the author with an opportunity to 

gain access to the organisation. Furthermore, the in-depth investigation of one of the 

leading private healthcare companies in Malaysia that owns the largest chain of
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clinics in the country offering private health care will reveal whether the IRP a 

possible, feasible re-engineering approach.

Single-case designs

holistic

CONTEXT

Case

Multiple-case design
CONTEXT- 
! Case !

CONTEXT.
! Case !

CONTEXT.
! Case !

CONTEXT. 
! Case

embedded

CONTEXT
Case

EUOA 1

EUOA2

EUOA = Embedded Unit of Analysis

CONTEXT. 
! Case

EUOA 2

CONTEXT. 
! Case

EUOA 2

CONTEXT.
! Case

EUOA 2

CONTEXT. 
! Case

Figure 3.4: Case study design type (Source: Yin, 2003)

The study can be classified as an embedded single case study since the study will 

explore several aspects, including inventory management, transportation management, 

and the ordering process within a two echelon supply chain in an organisation. The 

organisation has a central warehouse that receives deliveries from a large number of 

suppliers that is represented as a single wholesaler in this study. On the other hand, 

retailers are represented by the chains o f clinics that are owned by the organisation. 

Relevant data for the analysis process is collected using a triangulation technique that 

combines process mapping, interviews and company documentation and archival 

data. The use of multiple sources for the data collection process will address the 

issues construct validity. The interview sessions with personnel in charge of supply 

chain activities, an IT manager from the IT Department, and staff members from 

clinics started with broad and open-ended questions. Questions then become more 

specific as interviews progressed as suggested by (Voss, Tsikriktsis and Frohlich, 

2002), open-ended questions allowed interviewees to freely express their opinion 

regarding the supply chain process in the organisation. The data collection technique
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is discussed in chapter four, Section 4.3. The process to develop a simulation model 

which is a valid model of the system under study is discussed in the next section.

3.6 Simulation model

Banks (1998) and Banks et al. (1999) define simulation as “the imitation of the 

operation of a real-world process or system over time”. The behaviour of this system 

is evaluated by building a simulation model. The valid simulation model can then be 

used to investigate what-if questions and predict the effect of changes within the 

existing system as well evaluate the performance of new systems.

However, the simulation method has several weaknesses. According to Law and 

Kelton (2000), simulation can be used to model a complex supply chain system that 

contains stochastic elements but it is time consuming to develop such a model and 

carry out the analysis. In addition, Banks (1998) and Banks et al. (1999) state that the 

simulation result is likely to be difficult to interpret due to the randomness of the input 

variables. On the other hand, Banks (1998) and Banks et al. (1999) indicate that 

simulation allows a better understanding of the interaction between variables in a 

complex system. Furthermore, every aspect of the modification for the system can be 

tested and investigated via the simulation method without interruption o f the existing 

system. However, Law and Kelton (2000) claim that the result from simulation is less 

valuable if the model does not represent the actual system. Moreover, the model 

requires several independent runs for each combination of input in order to obtain a 

close estimate point of the true expected performance of the system.

Generally, simulation models are classified into three different categories (Law and 

Kelton, 2000; Banks et al., 1999; Brooks et al., 2001 and Harrell et al., 2003):

i) Deterministic or Stochastic

A deterministic model deals with certain and known input variables which will 

produce a similar outcome each time the model is executed. In contrast, the 

stochastic model takes into account uncertainty and the inputs to the model where 

will generate random outputs. According to Harrell et al. (2003), the random value
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will vary within a certain range according to the specific density which is defined 

by the probability distribution.

ii) Static or Dynamic

A characteristic of the simulation model in this category is that it depends on 

whether the system output varies over time. A static simulation model represents a 

system that that does not change with time. In contrast, the dynamic simulation 

model represents a system that changes over time.

iii) Continuous or Discrete

The state of changes in the system over time can be discrete or continuous. For 

example, the level of petrol in tanker that continuously changes can be classified 

as a continuous system. However, this phenomenon can also be modelled using a 

discrete system. Therefore, Banks et al. (1999) and Law and Kelton (2000) state 

that selection of the type of the model, whether to use a continuous or discrete 

model, depends on the characteristics and the objective o f the system under study. 

Generally, Greasley (2004) differentiates between both models based on the level 

of application. He believes the discrete model is more appropriate to use in 

modelling the operational manufacturing and service system, whilst the 

continuous model is appropriate for investigating the cause and effect of 

parameter change in an organisation’s system.

Kleijnen and Smits (2003) classified simulation types to solve supply chain 

management problems into different categories, i.e. spreadsheet, system dynamics 

(SD), discrete-event dynamic system (DEDS) and business games. Law and 

Keaton (2000) described the discrete-event simulation model as having discrete, 

dynamic and stochastic characteristics. Greasley (2004) stated that the system 

dynamic simulation type uses a continuous model approach and the spreadsheet 

simulation type is significant for analyzing a static model, such as the Monte 

Carlo method. In fact, spreadsheet simulation can also be used in modelling 

discrete-event or system dynamics simulation (Pecherska and Merkuryev, 2005; 

Greasley, 1998 and Stent and McCallum, 1995). We will further discuss 

spreadsheet simulation in the simulation modelling tool context in the following 

section.
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3.6.1 Simulation modelling tool

Generally, a simulation model can be developed based on three main categories of 

simulation modelling tools (Robinson, 2004):

i) Spreadsheets

ii) Programming languages

iii) Specialist simulation software

Pidd (2004) reports that writing the simulation using programming languages, such as 

FORTRAN was the only option available in the late 1950s. However, these general 

purpose languages are still useful nowadays since they give the developer the 

flexibility to design a model with minimum restriction on output format, even though 

it requires a longer developing time (Shannon, 1975 and Robinson, 2004). 

Furthermore, Brooks et al. (2001) and Seila (1995) point out that low modelling cost 

is another advantage of using this approach.

The earliest specialist simulation software like SIMULA, GPSS and SIMCRIPT, also 

known as simulation language (Brooks et al., 2001), or special purpose language 

(Shannon, 1975) was able to simplify the modelling process and reduce the modelling 

time by having extra features, such as experimental support, a well-suited syntax, 

automatic data generation, collection and reporting of statistics as well as animation 

facilities (Pidd, 2004; Brooks et al., 2001; and Shannon, 1975). Then, a new 

generation of specialist simulation software started to appear with the existence of 

powerful computers that have the capability to develop, execute and analyse the 

models visually and interactively. Such software can be classified as general purpose 

packages such as Arena, Extend, SIMUL8, and AweSim, or application-oriented 

simulation packages such as ProModel, ServiceModel, MedModel, MODSIM 111, 

AutoMod, WITNESS and SIMPROCESS which are suitable for modelling a specific 

application (Law and Kelton, 2000). A detailed summary of simulation software 

including the typical applications, cost of software, and the features available for 

model building is provided in Swain (2007).
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The detailed history and development of simulation software can be obtained from 

Robinson (2005) and Pidd and Carvalho (2006). Among such software, ProModelPC, 

WITNESS and Simul8 are the softwares most commonly used by academia and 

industry to develop simulation models according to a survey conducted by Hlupic 

(2000).

Although these simulation specialist packages offer advantages in terms of being able 

to develop simulation models easily in a graphical manner through the available menu 

functions, the user requires extra time to explore all features provided in the software 

as well as time to obtain the skills needed to develop the simulation models. On the 

other hand, spreadsheet simulation is convenient for developing simulation models 

since the user is generally familiar with spreadsheets like Microsoft Excel. Ragsdale 

(2004) stated that the electronic spreadsheet has been reported to be one of the most 

effective and useful approaches for developing computer models by millions of 

business people. Coles and Rowley (1996) also report the increasing use of 

spreadsheets by managers as decision support systems. In addition, Evans (2000) and 

Pecherska and Merkuryev (2005) have shown that the spreadsheet is a powerful tool 

for teaching both static and dynamic simulation models. With spreadsheets, the user is 

able to integrate graphics to visualise the results that are updated dynamically with the 

change of model input. A spreadsheet also provides statistical tools and functions that 

allow the user to perform an analysis of the result directly (Evans, 2000). Seila (2005) 

indicated that a large number of functions are available in the spreadsheet and an 

automation programming language such as Visual Basic Application (VBA) is among 

spreadsheet features which are capable of being a platform to conduct a simulation. 

Moreover, Seila (2005) reported that spreadsheet simulation is appropriate in 

developing stochastic models and undertaking sensitivity analysis of the models with 

variation of the unknown parameters, but has a limitation with regards to modelling 

the complex algorithm and large amounts of data.

Table 3.4 presents a comparison of the main categories of simulation modelling tools 

based on several features, such as range of application and the time required to obtain 

the skills and build the model. Generally, programming languages provide a high 

range of application, flexibility and small execution time. However, the specialist 

simulation software is better than programming language in terms of duration of
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model building, ease of use and ease of model validation. As has been previously 

discussed, users only require a short time to obtain the software skills necessary to use 

the spreadsheet simulation that is also affordable in terms of price. The long execution 

time for spreadsheet simulation might be overcome by using powerful computer 

specifications or performing the simulation on multiple computers using a parallel and 

distributed simulation approach (Brooks et al., 2001).

Table 3.4: A comparison of main categories of simulation modelling tools 

(Source: Robinson, 2004)

Features Spreadsheet Programming

language

Specialist

simulation software

Range of application Low High Medium

Modelling flexibility Low High Medium

Duration of model building Medium Long Short

Ease of use Medium Low High

Ease of model validation Medium Low High

Run-speed Low High Medium

Time to obtain software skills Short (medium Long Medium

for macro use)

Price Low Low High

Apart from the cost and learning time factors, Sezen and Kitapci (2007) indicate that 

spreadsheet simulation and commercial simulation software can also be distinguished 

‘based on the appropriateness to the specific need’. According to Robinson (2004) 

and Pidd (2004), the majority of specialist simulation software are Visual Interactive 

Modelling Systems (VIMS). As the result, the simulation model can be developed 

interactively by select the model’s objects via the available menus in the software. For 

example the “machine” object can be used to model part of a manufacturing process 

whereas a “counter and people” object can be used to model the service model or 

queuing model. In addition, the logic and the flow of entities for the simulation model 

can be defined through an existing menu. The simulation software also provides a 

visualisation of the model to display the animation when the model has been executed 

and user is able to interact with the model at any particular time to obtain the results
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or modify the model. Thus, the simulation software is more appropriate to develop the 

event-scheduling approach that is able to define the flow of entities, event logic and 

visualize the movement of entities to get more understanding of the model. On the 

other hand, Robinson (2004) stated that the ‘spreadsheet is a relatively straightforward 

approach to develop a simple time-slice model’ but it is ‘difficult to develop a model 

animation using spreadsheet’. Nevertheless, several researchers have preferred to use 

spreadsheet simulation to model a queuing system since the time to develop the 

queuing model with other applications requires extra time to gain knowledge of 

programming languages or special purpose simulation languages (Seal, 1995)

An analysis of the outcome generated by the spreadsheet and the commercial 

simulation software can be used to examine the performance and impact of the 

simulation model using different simulation modelling tools. Interestingly, the 

deterministic supply chain analysis performed by Chwif et al. (2002) showed 

similarity of the total cost margin for a one year simulation period between 

spreadsheet and supply chain guru software, with less than 1% of deviation. It is 

probably because the rounding of the input data and truncating o f the processes during 

the simulation model development process. However, Chwif et al. (2002) claimed 

that the spreadsheet result might be misleading if the model has variation in demand. 

The analysis of inventory management problems by Zabawa and Mielczarec (2007) 

using Monte Carlo proved that the spreadsheet is capable of producing a similar 

outcome with Extend software for variable demand and lead time.

To choose an appropriate simulation software tool for this study, an analysis of a 

simple deterministic IRP model using Microsoft Excel Spreadsheet and Pro Model 

software is conducted in order to test the capability of these simulation tools in terms 

of the accuracy of results, modelling time and execution time. A detailed explanation 

of the IRP model notations and objective function is presented in Chapter Five. For 

simplicity, the simulation model is analysed using spreadsheet and Pro Model 

software for 100 periods o f simulation time using similar demand data. Figure 3.5 

shows the screen shoots of the simulation model for spreadsheet and Pro Model 

software.
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Figure 3.2: Simulation model screen shots (a) Pro Model (b) Spreadsheet
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As predicted, the results of six different inputs generated by spreadsheet and Pro 

Model software as presented in Table 3.5 showed similarity for all measurement 

costs.

Table 3.5: Results of comparison analysis between Spreadsheet and Pro Model

software

Experiment

Simulation

tools

Simulation results

Holding

Inventory

costs

Shortage

cost

Total

Inventory

cost

Transport

costs Total cost

Spreadsheet 5202 0 5202 96.8700 5298.8699

1 Pro Model 5202 0 5202 96.87 5298.87

Spreadsheet 5167.6 0 10404 99.6648 5267.2648

2 Pro Model 5167.6 0 10404 99.66 5267.26

Spreadsheet 5175 0 5175 96.2506 5271.2506

3 Pro Model 5175 0 5175 96.25 5271.25

Spreadsheet 3046.3 6.8 3053.1 19.3807 3072.4807

4 Pro Model 3046.3 6.8 3053.1 19.38 3072.48

Spreadsheet 3058 4 3062 17.6903 3079.6903

5 Pro Model 3058 4 3062 17.69 3079.69

Spreadsheet 3090.8 5.2 3096 16 3112

6 Pro Model 3090.8 5.2 3096 16 3112

However, throughout the modelling and execution phase of the simulation model, the 

spreadsheet model outperformed the Pro Model software. The total modelling time for 

the simulation model using the Pro Model software was longer than the modelling 

time for the spreadsheet model. Extra time was required to learn and build an 

advanced simulation model, even though the author had been used to this software for 

basic simulation modelling previously. Building this model not only required 

determining general elements of the model like locations, entities, path networks and 

resources but also required using advanced elements, including attributes, variables 

and external file features. Further, the operation logic statement to specify the activity
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of entities at a defined location based on specific conditions needed advanced 

programming logic skill. Further information regarding the modelling elements and 

other features in the Pro Model software can be found in Harrell and Price (2002) and 

Benson (1997).

Surprisingly, in this analysis we found that the execution time of a 100 simulation 

period for the Pro Model software at full speed was longer than the execution time for 

the spreadsheet model at each change of input parameters. Therefore in this thesis we 

adopt spreadsheet simulation as a simulation tool to develop the model. This decision 

supported by Sezen and Kitapci (2007) who also contended that ‘spreadsheets can be 

effectively used in modelling and simulation of supply chain inventory problems’.

3.6.2 The spreadsheet simulation modelling process

According to Robinson (2004), the modelling process of the spreadsheet simulation 

model is generally similar to the common simulation process used in specialist 

simulation software or a programming language. The development of the simulation 

process in this thesis is based on general simulation study steps that have been 

outlined by Law (2003) and Law and Kelton (2000) as follows:

0 Define the problem

ii) Collect the data and construct the conceptual model

iii) Build the spreadsheet model

iv) Validate and verify the spreadsheet model

v) Design the simulation experiment

vi) Analysis of output

vii) Document and present the simulation results

This flow is consistent with Chang and Makatsoris (2001) who suggested 

understanding the supply chain process is the initial step in supply chain simulation 

before modelling the particular area that needs to be improved. Problem formulation 

together with conceptual model construction obtained from the literature review and 

case study analysis have been discussed earlier in Section 3.4. Therefore, in the next

46



subsection, we focus on the remaining spreadsheet simulation study processes in more 

detail.

3.6.2.1 Spreadsheet modelling

Winston (2005) described spreadsheet modelling as ‘the process o f entering the inputs 

and decisions into a spreadsheet and then relating them appropriately, by means o f 

formulas, to obtain the outputs’. Thus, the layout o f the spreadsheet model needs to be 

constructed clearly to differentiate the functions o f  cells in the worksheet so that they 

become understandable and flexible for the analysis. Seila (2005) classified cells in 

the spreadsheet model into inputs, intermediate computations and outputs o f the 

model. The input cells can be either constant or random values. To model a stochastic 

model, Simon (1998) provided a guide to generate the simulation model in a 

spreadsheet without using add-in software such as Crystal Ball.

Generally, the random input data can be generated via the “RAND( )” function or by 

the random number generator in Analysis Toolpak (ATP) in Excel. The intermediate 

computations contain the formulas that are assigned to the cells, either using 

calculation operators such as arithmetic operators (addition, subtraction, 

multiplication and division) or comparison operators (equal, greater than, less than, 

greater than, less than or equal to, greater than or equal to and not equal), or using 

appropriate functions. The calculation for the intermediate computations will be 

updated automatically with changes o f input value when cell references are used in 

the formulas. The spreadsheet also allows the user to create their own functions via 

the Visual Basic Application (VBA), and to formulate the long and complex 

calculations that can be easily used in the spreadsheet. The automatic repetition o f 

decision variables for the sensitivity analysis can also be generated via the VBA. 

Moreover, the results generated from one combination o f  decision variables can be 

copied and written into different worksheets via commands such as those shown in 

Figure 3.6.
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Sheets("ModelSheet"). Select 

Range("Result_ceH"). Select 

Selection. Copy 

Sheets("N e wSheet"). S elect 

Cells(Row_number, Coloumnumber).Select

Figure 3.3: Command to copy and write results in new worksheets in Excel

Martin (2000) shows how VBA offers significant capability extension to a 

spreadsheet. This may also include a dialog box to interact with the user and provide 

advanced control of the model.

Pecherska and Merkuryev (2005) have indicated that the simulation length of the 

spreadsheet simulation can be increase by assigning more rows in the worksheet with 

the relevant formula. The output cells represent the performance measurement of the 

model. We will discuss in detail the development of our IRP simulation model in 

Section 5.4 and the custom functions which were designed in Section 6.7.

3.6.2.2 Verification and validation

In this phase, the spreadsheet model is verified and validated to test the accuracy of 

the model for the analysis. Law and Kelton (2000) describe verification as the process 

to check the correctness of the translation process from conceptual model to computer 

model. On the other hand, validation is the process of determining the accuracy o f the 

simulation model compared to the system under study. The model can be verified and 

validated in a number of different ways. Checking the simulation result is one 

approach that can be used for verification besides tracing and debugging the computer 

program (Law and Kelton, 2000). In this study, the result of the simple spreadsheet 

IRP model for a certain simulation period is verified by hand calculation using 

different constant input values to check the rationality of the output. The correctness 

of the logical process and the formula assigned at intermediate computation cells were 

traced manually by plotting the graph of the inventory level of each location on paper 

as shown in Figure 5.2. Further, the VBA modules used to enhance the capability of 

the spreadsheet model can automatically detect syntax errors while coding the 

programmed parameter and processes in the Visual Basic programming language.
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Using the step debugging function helps to verify the semantic error or logical error of 

VBA modules. The similar results between spreadsheet and ProModel software 

shown in Table 3.5 verified the accuracy of the spreadsheet simulation model. In this 

context the black-box validation, (Robinson, 2004) or comparisons with other 

modelling validation techniques, (Harrell et. al, 2003) is used to compare the two 

different simulation models o f the same system. The decision variables of the model 

were also tested with scenario variations to check the behaviour of the model. The 

experimental validity of the model was confirmed through the determination of an 

appropriate warm-up period, simulation length as well as number of replications for 

the simulation besides performing the sensitivity analysis (Robinson, 2004). 

According to Sargent (1994), sensitivity analysis is able to evaluate the effect of a 

model under different input settings by comparing the behaviour of the system under 

study. He also stated that the operational validity of the model to examine the model’s 

output behaviour can be evaluated via graphical or statistical test comparison.

3.6.2.3 Simulation Experiment

Brook and Robinson (2001) and Robinson (2004) indicated that obtaining an accurate 

result and determining the alternative scenario to be simulated are two decisions that 

need to be made in performing the simulation experiment.

As has been discussed in the previous subsection, the accurate result o f the simulation 

model was obtained by determining the appropriate length of the initialisation period 

and a number o f simulation replications to obtain sufficient output data. However, the 

technique for dealing with these issues is related to the behaviour o f the simulation 

output. This technique will be discussed in the next subsection.

With regard to the procedure to explore the impact of the solution model with various 

decision variables or inputs settings, three approaches can be used to achieve this 

purpose, including (Robinson, 2004):

• Experimental design

• Metamodel

• Optimisation
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3.6,2.3.1 Experimental Design

Harrel et al. (2003) and Law and Kelton (2000) indicated that decision variables or 

inputs are known as factors whilst the output of the model is known as the output 

response in experimental design terminology. These terminologies are shown in 

Figure 3.7.

Factors (Xi, X2 .... X„)
   »

Simulation

Model
Output response

Figure 3.4: Experimental design terminology (source: Harrel et al., 2003)

The factorial design method is an approach that can be used to design the combination 

of factors and the level of each factor for the simulation experiment. The two level, 

full factorial (2k factorial) designs can be used to execute the model for more than two 

factors, k, with two levels. The number o f experiments can be reduced to deal with a 

large number of factors by using fractional factorial designs, and factor-screening 

strategies eliminate some unimportant factors for the analysis (Law and Kelton, 

2000). On the other hand, Taguchi Methods are able to outline the simulation 

experiment for various numbers of factors and levels via orthogonal arrays (OAs) and 

examine the factors that influence the model through Analysis Of Variance 

(ANOVA), (Roy, 1990). Taguchi Methods are therefore employed to design the 

simulation experiment in the IRP model. The factors that we considered in the 

analysis included the inventory controls parameters and the cost parameters where 

five different value is test for each factor in the experimental design analysis. Section

5.6.1 will describe the detailed process using the Taguchi methods applied to the IRP 

model and result of the most factor that influence the IRP model based on ANOVA.

3.6.2.3.2 Metamodel

Basically, the metamodel is the standard regression model that is used to estimate the 

behaviour of the model when the input is changed or identify the approximate best 

solution for the inputs factors (Law and Kelton, 2000). However, the full factor
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analysis of the IRP model was conducted using the brute force approach with a 

specific range of factors to evaluate the sensitivity analysis of the model. The effect 

between the two factors is evaluated with a three-dimension mesh surface known as 

the response surface. In this way the performance behavior of the model can be 

comprehensively evaluated

3.6.2.3.3 Optimization

The optimization approach is used to determine the best combination of control 

factors that optimize the simulation model’s objective function. Several approaches 

can be used in order to obtain the best result such as; stochastic approximation, 

random searches and metaheuristics techniques, (Olafsson and Kim, 2002). In this 

study, the best combination of factors that minimizes the total cost for the IRP model 

was determined by seeking the lowest point o f the response surface generated from 

the sensitivity analysis.

A detailed explanation of design of the simulation experiment and the sensitivity 

analysis of model factors (as well as the results) is presented in Chapters Five and Six.

3.6.2.4 Output analysis

According to Robinson (2004), the simulation output analysis aims to determine an 

‘accurate estimation of average (normally the mean) performance’ through 

eliminating the initialisation bias and obtaining a sufficient amount of output from the 

model. A suitable analysis for such evaluation depends on whether the simulation is 

classified as a terminating or non-terminating simulation. The terminating simulation 

starts and ends the simulation within a defined time or at a specified event, whilst for 

the non-terminating simulation analysis, the steady-state or long-term average 

behaviour of the model is measured. The non-terminating system will reach a steady- 

state period after several simulation times. Therefore, it is crucial to determine the 

transient period or warm-up period in order to eliminate any result bias.
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The common practice for dealing with this problem is to truncate some of the 

observations that do not represent the steady-state at the beginning of the run and use 

only the remaining observations to estimate the true mean response of the model. 

Sandikci and Sabuncuoglu (2006) called this method “truncation heuristics” and 

stated that this approach is often preferred because of its simplicity.

Many techniques have been developed in the literature to determine the warm-up 

time. Robinson and Ioannou (2003) summarised 42 methods under five categories as 

follows:

i) Graphical method

ii) Heuristics approaches

iii) Statistical methods

iv) Initialisation bias

v) Hybrid methods

A list of different methods and the relevant reference for each method under these five 

categories can be found in Robinson(2002). Robinson and Ioannou (2003) also 

reported that the Welch graphical method is one of the most commonly used 

techniques for determining a truncation point. Linton and Harmonosky (2002) state 

that this method may be a good practical choice since it is not based on any 

assumptions about the type of system being modelled and it is simply applied. Section

5.4.2.1 will discuss the process of determining the warm-up period using Welch’s 

method.

Robinson (2004) also contended that the initialisation problem can be avoided by 

assigning proper initial conditions to the model. For this reason, the initial inventory 

level for each retailer in our IRP model is assigned to the maximum inventory level 

that can be held by the retailers. A sufficient amount of data for the non-terminating 

simulation can be obtained by running the simulation model for a long simulation 

period or replicating the simulation using different streams of random data (Robinson, 

2004; Harrel et al., 2003; Bank et al.,1999; Law and Kelton, 2000). However, only the 

multiple replications approach is appropriate for terminating simulations. Section

5.4.3 will explain the technique used to determine the appropriate simulation run 

length for our simulation model based on 95% of desired half-width of confidence
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level together with the evaluation of simulation output demand pattern via histogram 

and goodness-of-fit tests. The outcome of the proposed simulation model is also 

compared to that obtained from other inventory policy approaches presented in 

Section 5.7.

3.6.2.5 Documentation of results

Discussion on the development o f the simulation model and the reporting of the 

simulation results are elaborated clearly and concisely in different chapters within this 

thesis. In general, the literature review chapter and the case study chapter discuss 

problem identification and the conceptual model in order to identify the objectives, 

inputs, performance measurement, structure and the assumption used for the IRP 

simulation model. Chapters five and six are the main analysis chapters that report on 

the experimental design of the simulation and the outcome of the simulation model. 

As well as graphical presentation, several figures and tables are provided to improve 

the interpretation of the result. The external validity of the study is addressed in 

Section 5.8 and Section 6.10. The model is tested with different input variables in 

order to observe the behaviour of the model and the predicted effect of the model 

when it is applied to other scenarios.

3.7 Ethical considerations

Several ethical issues needed to be addressed when employing the case study 

approach in the chosen case study organisation. First, permission to conduct the 

research was obtained from the organisation. The research aims were clearly 

explained to the organisation to provide a broad idea to participants of the information 

required when conducting the field study. It was important to protect the identity of 

the organisation under study and confidential data. Therefore the identity of the 

organisation has not been revealed in this thesis. The research was conducted in 

accordance with university research ethical requirements in place at the time of the 

study.
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3.8 Conclusion

This chapter has evaluated the methodology used to conduct the research. It began by 

discussing the general philosophies underlying business and management research 

and then focused on the methods commonly used by previous logistics or supply 

chain researchers. From such discussion it was found that the epistemology of this 

research is more towards the positivism approach. The chapter continued with the 

description of the research framework. Generally, problem identification and the 

conceptual model of the research were based on the review of the literature and the 

case study. The simulation model was considered more appropriate than the analytical 

model for research purpose as it is able to explore the performance of improvement 

policy under several input settings. A comparison analysis between spreadsheet and 

Pro Model software together with supporting references indicated that spreadsheet 

simulation is the appropriate simulation tool for modelling and simulating the 

inventory problem. Then, the process o f developing and designing an accurate 

simulation model was explained. The next chapter will report the results of the case 

study analysis and evaluate the suitability o f the IRP approach to overcome the 

problem faced in the organisation.
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Chapter 4 Case Study

This chapter discusses the healthcare industry supply chain and its business’s process 

reengineering approaches. This addresses research question number 1 and a 

conceptual model is built with regard to the structure of the supply chain between two 

echelons. This conceptual model provides a foundation for the IRP model presented 

in Chapter 5. The study specifically investigated the current supply chain process 

involving a wholesaler and a chain o f medical clinics. Secondary and primary data 

derived from the case study are analysed in order to identify the issues that occur 

within the process. Relevant improvement processes that can be applied to improve 

the process are discussed. They are based on the literature that highlights general 

improvement strategies in the pharmaceutical industry. The improvement strategy 

suggested in this research is conceptually designed using a Data Flow Diagram (DFD) 

technique. Generally, the contents o f this chapter are based on a paper presented by 

Mustaffa and Potter at the EUROMA Conference in Glasgow in 2007. This paper has 

been accepted for publication in the Supply Chain Management: An International 

Journal by Emerald Group Publishing Limited.

4.1 Introduction

The use of an appropriate supply chain management strategy is important in the 

healthcare industry since it deals with the public’s health and it is important to have 

accurate records and stocks to meet the patients’ requirements (Frederick, 1995). 

Hanna and Sethuraman (2005) pointed out that the healthcare organisation also has to 

balance operational efficiencies and cost improvement activities to deal with a 

challenging value chain environment. A number of strategies used to improve the 

performance of the healthcare supply chain industry is found in the literature. 

However, there still exist barriers to implementing improvement strategies in 

developing countries since most of the applications are focused on the developed 

world. Moreover, much of the research considers a whole sector instead of individual 

businesses and only a few sources in the literature refer to developing countries.
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Keamey (2004) and Correa (2004) are examples o f healthcare sector research in 

developing countries. This chapter will therefore evaluate the current healthcare 

supply chain process o f leading private healthcare providers in Malaysia. Specifically, 

the study aims to identify the problems that exist within the business process and then 

determine the best strategies to solve the problems.

Section 4.2 explores the general supply chain management in the healthcare industry 

and the possible improvement strategies to improve the process. The case study is 

used to gain an in-depth knowledge and understanding of organisational issues in a 

Malaysian context. The method in conducting the case study is discussed in Section

4.3. The current supply chain process that has been implemented by the organisation 

is examined in Section 4.4. Discussion on the issues that exist within the supply chain 

is continued afterwards in Section 4.4.1. Further discussion on why the VMI approach 

is a more applicable approach to replace the traditional supply chain rather than other 

approaches such as JIT and how the IRP approach can be implemented to improve the 

performance in the healthcare supply chain is presented in Section 4.5.

4.2 Supply Chain Management Practices in the Healthcare Industry

4.2.1 General Issues

Within the healthcare industry, the supply chain associated with pharmaceutical 

products is critical in ensuring a high standard of care for patients and providing 

adequate supplies of medication for pharmacies. In terms of cost, it is estimated that 

supply accounts for 25-30% of operational costs for hospitals (Roark, 2005). 

Therefore, it is essential that this is managed effectively to ensure both service and 

cost objectives are met.

The typical healthcare supply chain structure is shown Figure 4.1.

Primary manufacture involves the creation of the active ingredients contained within 

the medication. Because of the need to avoid contamination between products, there
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are long downtimes in production to allow for cleaning, leading to batch production 

(Shah, 2004). In effect, this represents mass production.

Primary
Manufacture Wholesaler

Pharmacy

Hospital/
Clinic

Secondary
Manufacture

Manufacturer
Distribution

Centre

Inventory

Mass
production

Inventory  

■ >  -< -
Push

production
Pull

production

Figure 4.1: Healthcare supply chain structure (based on Shah, 2004, and Morton,

2003)

Secondary production sees the active ingredients converted into useable products 

(such as tablets, capsules, etc). This can potentially lead to a significant expansion in 

the number of product lines, especially once packaging is taken into consideration. 

Altricher and Caillet (2004) suggest a 200:1 growth in products across this stage in 

the supply chain. With increasing globalisation in the pharmaceutical industry, the 

location of manufacturing plants is often influenced by factors such as tax benefits 

(Papageorgiou et al., 2001). Indeed, secondary manufacturing may be geographically 

separated from primary manufacturing and serve local or regional markets (Shah,

2004).

Turning to the distribution o f finished products, there are a number of different 

channels to the market. The dominant intermediary (in terms of volume at least) is the 

wholesaler. In the UK, approximately 80% of volume flows through this channel 

(Shah, 2004). Hospitals and retailers which have large demand requirements receive 

shipments direct from the manufacturer’s distribution centre. Hospitals may also 

leverage economies o f scale by consolidating their purchasing power through, for 

example, Group Purchasing Organisations (Roark, 2005). As will be discussed shortly, 

recent trends in healthcare supply chain management have seen a move towards pull 

based systems for the final part of the distribution channel, effectively inserting a
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decoupling point at the wholesaler, where a repository of stock is found (Hoekstra and 

Romme, 1992).

4.2.2 Healthcare Supply Chain in Malaysia

According to Smith (1996):

“The economies of most developing countries are growing much faster than 

those of developed countries, primarily because of private investment. In most 

developing countries, the private health sector is proportionally much bigger 

than in developed countries, see for example, Malaysia, Indonesia and 

Bangladesh”.

Malaysia is considered one of the most developed of the developing countries. The 

study comparing Asian and European logistics systems by Bookbinder and Tan 

(2002) showed that Malaysia is classified in the same group as top ranking logistics 

oriented countries like Singapore and Denmark, based on the infrastructure, 

performance, information systems, human resources and business, political and 

environmental characteristics o f the country.

MacDonald (2007) states:

“Malaysia is set on encouraging further development of the logistics sector, as 

outlined in the government’s 3rd Industrial Master Plan (IMP3) with incentives 

for companies to develop integrated logistics solutions across the entire supply 

chain”

Malaysia is now planning to integrate the primary, secondary and tertiary healthcare 

sectors via an efficient and effective referral system (Ninth Malaysia Plan Report, 

2006). In the three and half decades since Malaya’s decolonisation, overall heath 

standards have improved. Health status in Malaysia is almost as good in other 

industrial countries. In 2000, infant mortality was 0.79% of live births and maternal 

mortality 0.02% live births. According to Tham and Yahya (2008), ‘Malaysia ranks
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fifth in healthcare spending, despite a relatively small population’ compared with 

other Asian countries. Malaysia’s existing healthcare system comprises public and 

private systems as a two-tier system. The private sector supplements the public sector 

in meeting the demand for health services. Generally, private primary care providers 

are more likely to be located in urban areas. Recently, there have been signs of growth 

in private clinics in rural areas due to a better infrastructure and road system. Private 

healthcare is run as a profit-oriented business and patients pay for their services and 

medicines from their own pocket.

Even though the cost of obtaining treatment in the private sector is more expensive 

than public healthcare, patients are more attracted to private clinics due to factors such 

as short waiting time, good interpersonal quality of care, and convenient opening 

hours.

As report by Ismail (1996) in News Straits Times, most patients are not satisfied with 

the attitude of the doctor and health workers in the public sector. Private doctors are 

polite, helpful, patient and spend more time with the patient. Further, patients are free 

to choose a different primary care doctor according to their preference. The study by 

Universiti Kebangsaan Malaysia has found that there has, however, been little 

research conducted on the private healthcare sector because of difficulty in gaining 

cooperation from private doctors. According to Dr. Syed Aljunid they do not want to 

waste their time participating in research since they fear it will expose weaknesses 

(ibid).

The Malaysian government is now considering re-structuring the healthcare system by 

adopting different systems for financing cost related activities and delivering products 

between warehouse and healthcare providers in order to better achieve the 

government’s health care policy goals. Healthcare service planning should be based 

on needs assessment and allocation efficiency in order to attain the appropriate level 

of access and an equitable distribution of the scarce resources. The aim is now to 

improve the mix and quality of services and to increase efficiency and effectiveness. 

The main strategy for healthcare sector development is improving accessibility to 

affordable and quality health care. The Malaysian government also plans to 

collaborate with the public and private sectors to achieve a better health care system.
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4.2.3 Overview of the case study organisation

The chosen organisation is one o f the largest private healthcare company’s in 

Malaysia. It has one headquarter and owns a chain of 35 branches of clinics. The 

location of these clinics are scattered in south of Peninsular Malaysia. The clinics 

offer all aspect of medical activities including the medical examination, minor surgery, 

blood tests as well as the paediatric services.

Generally, the medicine items that are stored at the clinics are categorised into eight 

different groups. These groups are based on the function and other criteria such as; 

general drugs, obstetrics and gynaecology stock, stationery stocks category, 

psychotropic stock, pharmacy stock, over-the-counter (OTC) stock and Group A stock 

category. Group A stock category consists of the expensive medicines and medicines 

that are controlled by the Ministry o f Health in Malaysia. Overall, the organisation 

stock about 600 items at clinics.

The inventory of each clinic is managed separately and each clinic is responsible to 

ensure the stock is sufficient to meet the patient demand. The order is made through 

the headquarters and the total number and the category of orders are varied based on 

the clinics’ requirement. Thus, the headquarters act as a wholesaler responsible for 

processing orders and scheduling the deliveries using the organisation’s transportation. 

This consists of one lorry and one van which is also used for other activities within 

the organisation. Basically, the deliveries are scheduled for two consecutive days for 

each type of vehicle to deliver too four different groups o f clinics that been clustered 

roughly based on their location. The details delivery process will be discuss in Section

4.4. Figure 4.2 shows the supply chain structure of the case study organisation.

Suppliers Retailers

Cluster

Cluster 2
Wholesaler

Cluster

Cluster

Figure 4.2: Organisation’s supply chain structure
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4.3 Research Method

A case study approach is adopted to investigate the current level of supply chain 

management in the healthcare industry in Malaysia. A case study will yield in- depth 

knowledge and understanding o f current operations. Even though the case study is 

based on a single organisation, the study involves two echelons in the supply chain -  

the wholesaler and the clinics. Thus, the case study in this research can be classified 

as an embedded case study design (Yin, 1984). The data is collected using three main 

techniques:

• Process mapping

Process mapping is a technique used to model the business process flow in graphical 

form, to visualise the actual process in the organisation, and to look for improvement 

to make it more effective (Paper et al., 2001). Aguilar-Saven (2004) provides an 

overview of the many process mapping tools. The basic business process symbols as 

illustrated in Figure 4.3 are used to illustrated the general activities involved in the 

organisation’s supply chain process and show the flow of the activities between the 

wholesaler and clinics.

Process mapping symbols derives 
from ‘Scientific Management’

O Operation (an activity that 
directly adds value)

Inspection ( a check of 
  some sort)

I )  Transportation ( a
Y movement of something)

D Delay ( a wait, e.g. for 
materials)

V Storage (deliberate 
storage, as opposed to a 

 delay.)_______________

Process mapping symbols 
derives from Systems Analysis
f 'N Beginning or end of  J A process

Activity

7 Input or output from the 
process

 ► Direction of flow

O  Decision (exercising 
direction)

Figure 4.3: Business process symbols (source: Slack et al., 2006)
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Details of the current suggested inventory management process within the 

organisation are provided using the Data Flow Diagram (DFD) technique. Recker et 

al. (2006) studied the differences in the representational capabilities across leading 

process modelling techniques and concluded that the DFD is one of the best methods 

for representing the structure o f systems. The process map uses 4 different symbols 

(see Figure 4.4) to represent the main components -  External Entities, Data Stores, 

Data Flows, and Processes. An External Entity either supplies data to the system or 

receives data from the system, or both. The Process receives input data and produces 

outputs. The DFD has data stores which can be either a document, file or a database to 

archive the output from a process before it is retrieved by another process. Data flows 

generally are labelled with the name o f the data and link sources, process, data store 

and sinks to represent the data flow in the system.

V J

Process External Entity

 ►

Data Store Data flow lines

Figure 4.4: Four main DFD components (Gane and Sarson, 1977)

• Interviews

Semi-structured interviews were carried out at the wholesaler and the clinics. 

Interviewees included personnel in charge of inventory and transportation, an IT 

manager from the IT department, and staff members from pharmacies in clinics. 

Information on current inventory approaches, including the ordering process and 

delivery process to clinics, was obtained during the interview session. The 

information was visualised using the process mapping approach described above.
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• Archival document 

Reviews of the organisation’s archival records were important and useful to obtain 

specific and detailed information for analysis purposes. Archival data was collected 

from the organisation with respect to purchase orders (PO) and delivery orders (DO). 

These were kept on two different systems. Purchase Order details are extracted from 

the company’s online system used by the clinic to place an order. DOs were extracted 

from the inventory system and the data was kept in a Microsoft Access database. For 

this research, three months o f PO and DO data were analysed.

From this, the supply chain was analysed to identify main problems that existed, using 

triangulated findings from primary and secondary sources. Having identified the 

problems, a potential solution was then proposed, again using the DFD to portray the 

future state of the supply chain.

4.4 Understanding the “As-is” case study organisation’s supply 

chain

Information on the organisation’s supply chain process that was gained through 

interviews was easily understood by representing the flow of activities and the players 

involved using the process mapping technique. A broad picture of the key stages of 

the organisation’s inventory management and replenishment processes is presented in 

Figure 4.5.

The analysis focussed only on the activities involved between the wholesaler and the 

clinics. The organisation has implemented a pull strategy approach where each clinic 

is responsible for monitoring and managing their own inventory independently from 

other clinics. Every first week and third week at each month, they will place an order 

with the wholesaler to replenish the low volume items. However, the person in charge 

of making an order is from the general clinic staff. They may not be an expert in 

managing the inventory. Therefore, the decision on which products are required to be 

replenished as well as the optimal quantity of order is based on that staff member’s 

personal experience and skill. The headquarters will act as both the wholesaler and the

63



organisation’s central management and therefore process the order and schedule 

delivery of products to each clinic after the packaging process. Finally, the products 

which are received at each clinic need to be checked for correctness against the 

delivery list.

Wholesaler Clinic

Packaging

Delivery

Ordering

Inventory
Monitoring

Process
Order

Stock
Checking

Product
Receiving

Figure 4.5: Key stages in the organisation’s inventory management and 

replenishment processes

The detailed flow of these processes, including the activities, players and the 

documents involved in the process is presented in Figure 4.6. The DFD diagram is 

used to represent the detailed flow of the inventory management and replenishment 

processes using 4 main DFD components as discussed in Section 4.3. As well as the 

wholesaler and clinic, the transportation department also plays an important role in 

the organisation, as it is responsible for the delivery o f products. This is categorised as 

an external entity in the diagram. The flow of activities and documents required to 

complete the process from monitoring and ordering the product until it has been 

received at the clinic are shown by the data store and data flow line components.
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As can be seen from the figure below, the clinic places an order with the wholesaler 

based on the decision made during the inventory monitoring process in terms of the 

type of product and the quantity that is required to satisfy the customer demand.

Update
4 Delivery

Order

i k

i
i
| — i

Copy o f DO & 
QC form

Delivery
details

Inventory
DO & QC formTransportation

Product
ReceivingPackaging

Product

Order
Details

Inventory
Cheoking

Product
Information

Approval Delivery Inventory
Monitoring

Clime

Order DecisionWholesaler

Profit
Ordering

Sales details
Buying Customer

Product

Payment

Monitor

Order

Create PO

Order
details r

2 Purchase
Order

Figure 4.6: “As-is” DFD diagram of the inventory replenishment in the case 

study organisation

The order is made using the online Purchase Order (PO) system that can be accessed 

through the organisation’s website. The system will generate a unique PO number 

automatically every time a new order is created. This number is used as an order 

reference number along the replenishment process. The warehouse will receive the 

order directly through an online system and generally the replenishment process takes 

about 5 working days to be completed.
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The replenishment process begins with the inventory checking process. At this stage, 

a hardcopy of POs is sent to the person in charge at the store department to check the 

availability of products. This process is carried out manually since the inventory on 

hand for each required product is checked against the inventory stock book. If the 

product is out of stock, the supply manager is informed for further action to be taken. 

The supplier will be contacted to check the status of products in the case of 

outstanding orders. Delivery will be delayed until the product is available in the stock. 

A new order may be placed with the supplier if  no alternative product is available in 

the stock. Missing stock can also be replaced by available stock that can perform the 

same purpose. For example, Zecuf Lozenges herbal tablet can replace orange Zecuf 

Lozenges since the difference is only the flavour.

The next process is the packaging process which needs to be done 3 days before the 

delivery date. The products are packed based on the order information in the PO. 

Those products that are ready for delivery are listed on the Delivery Order (DO) form 

that contains information about the clinic that needs the delivery, together with details 

of the type of product and the quantity that has been packed for delivery. This form is 

essential to determine that the correct products have been received by the clinic. This 

information is also used by the stock keeper to update the current inventory level of 

the products in the inventory stock book and to ensure the accuracy of the status of the 

products.

Next, the delivery is scheduled in accordance with the information on the location and 

the load that is required for the delivery, taking into account the availability of the 

organisation’s transport fleet (one van and one lorry) and drivers. The clinics are 

clustered roughly on the basis of location, and the area of delivery and each vehicle is 

scheduled to deliver to a specific cluster at one time. The route to make the delivery 

depends on the skill o f the driver who adopts a milk-run approach to delivery. 

Basically, the clinic that is situated furthest from wholesaler is visited first followed 

by other clinics that close to the previously visited clinics and finally delivered to the 

clinic that is closest to the wholesaler. In average, the total distances occur for the 

delivery is about 316 km for one delivery trip.

66



The products that arrive at each clinic are checked to determine whether they are 

similar to the products listed in the DO forms. The clinic must notify the wholesaler 

by phone as soon as possible if a difference is found between the number o f products 

received and the DO. Such differences also need to be indicated on the DO. In the 

case of products that have been left behind or delivered to the wrong branch, a revised 

delivery will be scheduled to correct this error. Satisfactory products are moved to 

the store or to the fridge in the case o f medication that needs to be kept chilled. Then, 

the DO and delivery form are signed as a proof o f delivery and a copy of each 

returned to the wholesaler via the driver.

4.4.1 Issues in the supply chain

The analysis continued with the investigation of issues that exist within this supply 

chain. Through the triangulation o f primary and secondary organisation data, two 

main issues were identified as occurring in the organisation that might influence 

customer service performance, the problem of urgent orders and the lack of inventory 

at the warehouse.

4.4.1.1 Urgent orders

As mentioned earlier, the decision regarding order details is the responsibility of 

general staff in clinics who generate orders manually based on individual experience. 

Therefore, unpredictable demand from customers can cause a problem of low 

inventory level and stock outs at clinics. As a result, orders for critical products need 

to be placed with the warehouse immediately since the delivery of a normal order will 

take at least 5 days. Immediate replenishment is crucial because the medical product 

is unlike the consumer product in that it is important in providing patient care as there 

may be no alternative treatment for the patient. Thus, the warehouse needs to process 

the urgent order immediately and schedule a direct delivery to the required location in 

order to satisfy the customer demand.

However, urgent orders raise another issue in the organisation. That is, increased 

operating costs and low vehicle efficiency in dealing with urgent orders. By only
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delivering to the one particular location that requires an immediate delivery of just a 

few products can cause lower vehicle utilisation and increase transportation costs. 

Further, it also causes difficulty for the warehouse which has to manage and schedule 

a quick replenishment as the process involves different resources and steps to those 

mentioned in Section 4.4.

An in-depth investigation was carried out to understand the amount of urgent orders 

compared to normal orders based on POs over a three month period. An urgent order 

is notified as ‘URGENT’ at the product status on the PO. The number of normal and 

urgent orders placed each day from October to December 2005 was counted and the 

results are shown in graph presented in Figure 4.7. The peak level of normal orders on 

alternate weeks suggests that clinics are usually placing such orders every first and 

third week in the month. We can also see a significant number of urgent orders placed 

between the peaks. Moreover, the percentage of orders categorised as urgent orders is 

similar for each month and is generally about a third of total orders. This finding 

points to a problem with the ordering process within clinics since the level of urgent 

orders remain the same each month. Such a problem may be related to the availability 

of products at the wholesaler in that the low inventory at clinics may possibly be 

caused by a delayed delivery o f normal orders. Therefore, stock availability at the 

wholesaler appears as another issue in the organisation and is examined in the next 

subsection.
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U rgent O rd e rs
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37.1% 29.0% 30.6%

Figure 4.7: Normal and urgent orders placed by clinics with the wholesaler 

4.4.1.2 S to ck  a v a ila b il i ty  a t  th e  w h o le sa le r

Within the current supply chain process, the warehouse is responsible for placing 

replenishments based on separate orders received from clinics. However, the large 

orders from the clinics in weeks 1 and 3 may cause a difficulty for the warehouse to 

fulfil the order if the same products are required by many clinics at the same time. As 

a result, the delivery can only be made based on the availability of the stock and there 

is some indication that some clinics are not receiving the products that have been 

requested in the PO.

The scale of this problem is examined by comparing the POs and DOs for a three 

month period. The analysis is based on four different categories as follows:

i) The product quantity delivered is equal to the amount on the order

ii) The product quantity delivered is lower than the amount ordered

iii) The product is not delivered to clinics

iv) The product quantity delivered is greater than the amount ordered
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The analysis was carried out for each individual product in POs rather than the 

aggregate order for each clinic. Table 4.1 shows the results of the analysis in 

percentages for each category based on about 2,000 individual orders for products for 

each month. As can be seen from the table, the wholesaler is able to fulfil around 80% 

of orders (including about 9% of cases where product quantity delivered is more than 

the amount requested by the clinic). Throughout the analysis, it was found that the 

extra quantity delivered was mostly because of the difference between the quantity 

ordered and the unit size o f the product supplied by the wholesaler. For example, an 

order for Gentacimin Cream from the clinic is for 900g packs, but the product is only 

available in 500g packs. Therefore, the wholesaler will deliver 2 packs of the product, 

leading to an over delivery of lOOg.

Analysis results indicated that in around 10% to 12% of orders there was an over 

delivery, while another 7% could not be delivered due to insufficient stock available 

at the wholesaler. These shortfalls can have a serious impact on the medical treatment 

available to patients.

Table 4.1: Delivery performance for the wholesaler

Category October November December

Product delivered = Amount ordered 

Product delivered > Amount ordered 

Product delivered < Amount ordered 

Product delivered = 0

71.5%

9.37%

12.1%

6.97%

72.75%

9.12%

9.84%

8.29%

71.64%

8.8%

11.69%

7.87%

4.5 Business process reengineering

4.5.1 Existing strategy

A number of initiatives have been undertaken over recent years with a view to 

reducing supply chain costs and improving customer service. Initial improvements 

have been based around implementing just-in-time (JIT) approaches (Kowalski, 1986). 

These approaches have been developed further with the introduction of stockless 

inventory systems (Wilson et al., 1992). The JIT and stockless approaches can reduce
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inventory holding costs in the organisation, while maintaining service levels (Lynch, 

1991). More recently, it has been suggested that the stockless inventory system should 

only be used for high volume products, with a more traditional approach used for low 

volume medical supplies (Rivard-Royer et al., 2002). However, there is a requirement 

for improved information and communication technology (ICT) systems to support 

this stockless inventory strategy, along with automated processing of orders and 

suppliers (mainly wholesalers) close to the hospital to enable rapid replenishment. 

Wilson et al. (1992) provides three examples o f the implementation of this type of 

inventory control system within the healthcare industry in the US. Both JIT and 

stockless approaches represent ‘puli’ type inventory management systems.

More recently, other inventory control systems have started to be introduced into 

healthcare supply chains. In particular, there has been interest in the vendor managed 

inventory (VMI) strategy. Under VMI, the supplier assumes responsibility for the 

management of inventory at the customer, and takes decisions regarding 

replenishment (Waller et al., 1999). To some extent, this builds on the information 

requirements of stockless inventory systems. For the VMI to work successfully, there 

is a need for accurate information on current stock levels and consumption. However, 

providing such information within hospitals can be difficult (Haavik, 2000, McKone- 

Sweet et al., 2005). Nonetheless, examples of VMI implementation do exist in the 

literature. In Kim (2005), VMI brought a number o f benefits, including less 

administration at the hospital, fewer errors, improved information reliability, and a 

30% reduction in inventory. By contrast, Altricher and Caillet (2004) found that, 

because of a lack of trust in the supply chain, the hospital kept over-ruling the VMI 

system, holding more stock and eliminating any benefits that accrued.

Since the current management of the organisation under study face a lot of problems, 

both at the wholesaler and clinics, they should take further steps and consider new 

approaches to control the inventory more efficiently. This can lower the operating 

cost and generate more revenue and profit. At the same time, there should be an 

improvement in service level. In the literature, JIT, stockless inventory, VMI and IRP 

approaches are among the strategies that have been implemented within the healthcare 

supply chain. A major issue with implementing JIT and stockless systems is that 

demand fluctuates and is hard to predict (Kowalski, 1991). The risk associated with a
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stock out is very high. Therefore, for the JIT approach to be successful, it is important 

that the wholesaler and clinic are located close to each other with effective transport 

networks between them. In the case study supply chain, the transport networks are 

not very effective; a feature of many developing countries that clinics are in rural 

areas. In addition, there is only limited transport capacity (one truck and one van). 

Therefore, the capability o f the wholesaler to satisfy concurrent demands from a 

number of clinics is limited. It is therefore believed that a VMI based solution 

represents the best course o f action for the company. According to Brennan (1998), 

centralised logistics is a key technology for enhancing healthcare supply chain 

operating efficiencies. As detailed earlier, this kind of approach has gained popularity 

in the healthcare sector, since it can also reduce the time and effort needed to manage 

the inventory (Kowalski, 1991). The centralised control system based on VMI gives 

the opportunity for the wholesaler to integrate the transportation management into the 

decision-making processes that minimise total inventory and transportation costs via 

the IRP policy.

4.5.2 IRP implementation “To-be”

A revised DFD diagram for the organisation’s improvement strategy based on IRP 

can be found in Figure 4.8. With this new process, the warehouse monitors daily each 

product’s inventory levels and usage levels at all clinics. By gaining accurate 

information and integrating the inventory and transportation management, the 

wholesaler as a central decision maker, is able to made a good decision regarding the 

time of delivery, the optimal quantity o f delivery for each clinic and the efficient 

replenishment route that minimises the inventory and transportation cost.

The visibility and transparency o f the product and demand information helps the 

wholesaler to identify priority despatches and make a good replenishment. This will 

help reduce urgent replenishments between the normal replenishment and better 

utilise the transportation capacity. With customer demand and inventory level 

information, the warehouse can observe the potential need for a particular product at 

each clinic and ensure that the inventory at the wholesaler is used to replenish the 

clinics with the lowest inventory levels. This should overcome customer service
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issues arising from the wholesaler being out of stock. Thus, the customer service level 

can be improved by having the right product in stock whenever it is needed.

The wholesaler has more flexibility to plan the replenishment strategy so as to 

minimise the cost and maximise the vehicle utilisation. It is more practical for the 

wholesaler to coordinate deliveries to the different clinics that are close to each other 

during the replenishment time. This approach will overcome the problem of 

emergency delivery, since an early delivery is made to other clinics that have been 

integrated to the delivery. However, this approach has the tendency to increase the 

holding cost at clinics. Thus, an appropriate decision in terms of the optimal delivery 

time and clinic situation that need to be integrated during the delivery activity has to 

be made to ensure a low total operating cost.
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Figure 4.8: “To-be” DFD diagram of the inventory replenishment in the case 

study organisation
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As has been discussed in Chapter 2, the integration approach that coordinates 

activities amongst other clinics when certain inventory levels are reached based on 

(s,c,S) policy is a possible improvement strategy. Here, the cost reduction comes from 

the opportunity that the supplier obtains from delivering certain amounts of products 

before the clinics reach the actual reorder point.

Holmstrom (1997) notes that VMI implementation can be achieved through robust 

process design and collaboration. However, effective systems can improve the success 

of VMI implementation (Kim, 2005). An issue in the context of this particular supply 

chain is the use of different systems for POs and DOs. Consequently, it is difficult to 

ensure accuracy between the PO and DO systems, with errors in data entry occurring. 

In addition, the wholesaler has limited visibility of usage or inventory at the clinics. 

Therefore, some investment in ICT may be needed before the new supply chain 

approach can be implemented. The organisation has access and currently utilises the 

Internet to undertake data transfer between wholesaler and clinics. Therefore, it is 

believed that no constraints exist in term of infrastructure to implement the centralised 

IRP approach. With some improvement to the company’s existing supply chain 

systems, it is possible for the wholesaler to get real time data from all branches. 

However, to automate the process and get an optimal decision on the replenishment 

schedule and the transportation, they have to make a more significant investment by 

acquiring inventory control and routing software. The behaviour and effect of the IRP 

flexibility model on the total cost via simulation will be investigated in the next 

chapter.

4.6 Conclusion

The case study has shown that the organisation under study is still implementing the 

traditional supply chain policy where each clinic needs to place an order with the 

wholesaler twice a month. The analysis of comparison between the ordering and the 

actual delivered quantity from organisation’s Purchase Order and Delivery Order data 

has shown that the organisation is suffering with poor supply chain performance. 

About 28 percent of the orders cannot be delivered as required, and about 31 to 38 

percent of orders placed from clinics are categorised as urgent orders that require 

quick replenishment as a result of improper inventory management at clinics’ level
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and low availability of products at the wholesaler needed to fulfil the high volume of 

orders. Thus, a centralised control system via the VMI approach is the best 

improvement strategy for the organisation to overcome the stated problems. 

Furthermore, the wholesaler is able to determine the optimal time and the quantity of 

replenishment and thereby minimise the total operating cost by implementing the 

approach-underlying the VMI strategy known as IRP strategy. The impact of 

implementing the early coordination strategy on the total cost will be observed in the 

next chapter. The IRP model developed for the simulation is a simplified model of the 

supply chain process that contains only 1 wholesaler called the supplier and 3 clinics 

known as retailers. The assumptions, parameters and the objective function of this 

model are described explicitly in the next chapter.

75



Chapter 5 The Stochastic Periodic “Can Deliver” 

Policy

In this chapter, the periodic “can deliver” policy is proposed as a new replenishment 

policy for the multi-echelon Inventory Routing Problem in order to address research 

question 2 and 3. The conceptual model developed is based on the literature in 

Chapter 2 and the findings from the case study in Chapter 4. This policy gives 

flexibility and opportunity for the centralised supplier to schedule an early 

replenishment to the retailer. This is done when a certain inventory level is reached 

and consolidation with deliveries to other retailers is achieved. This replenishment 

consolidation benefits in terms of reducing total operating costs.

The details about the policy assumptions, notation and the objective function are to be 

found in Section 5.1 through to Section 5.3. Section 5.4 and Section 5.5, presents the 

method to develop and design the simulation model. A discussion of numerical results 

for different parameter settings is presented in Section 5.6 to address research 

question 3 of this study. The result o f the proposed periodic replenishment policy is 

compared with other inventory policies in Section 5.7. Finally, the effect of different 

demand distribution patterns and demand variance on the behaviour of the proposed 

IRP model is examined in Section 5.8.

5.1 The periodic (s,c,S) Policy

The proposed policy is a periodic replenishment policy for a single product in a 

multiple retailer scenario with stochastic demands. Previously, the “can-order” policy, 

known as the (s,c,S) policy, had been widely applied in a single-location multi-item 

scenario, see for instance, Ignall (1969), Federgruen et al. (1984), and Silver and 

Peterson (1985). The performance of the continuous review version of this policy has 

been compared to periodic review policies. Recently, Johansen and Melchiors (2003) 

have shown that the periodic version of the continuous time (s,c,S) policy performed 

well when compared to other periodic replenishment policies. This motivates us to

76



investigate the capability of this policy in an Inventory Routing Problem (IRP) 

environment.

The ‘can order’ concept provides an opportunity for the retailer to order multiple 

items from a single supplier simultaneously. Application of this concept in a 

centralised decision-making environment that integrates the inventory and 

transportation management fields gives flexibility to the supplier to manage and 

utilise his resources (inventory, transport and capacity) in an efficient manner. The 

flexibility comes from the opportunity for the supplier to schedule an early 

replenishment to the retailer whose inventory position has reached a ‘can-order’ level 

and at the same time combine the delivery with other retailers who must be 

replenished at that time.

In order to gain some understanding o f the benefits that this policy provides and the 

mechanism by which these benefits are produced, a basic model o f Inventory Routing 

has been developed using Microsoft Excel. This model considers an outbound 

centralised distribution system consisting of one supplier, {S}, and 3 identical 

retailers, {Ci, C2, C3}.

The model assumes an unlimited supply of inventory is available at the supplier to 

replenish the retailers’ inventory. Each o f the retailers’ locations is subject to end 

consumer demand. Customer demand is assumed to be independent and identically 

distributed. The basic model assumes that the demand, D in time period t, at customer 

location x, is independent and identically distributed (i.i.d) follows a Binomial 

distribution with probability o f success, p=  0.5 in N  independent trials, here tV=20.

DtiX=B( 20,0.5) (1)

Unsatisfied demands are assumed to be backordered and charged at a rate of, p x per 

unit backorder per period at retailer jc. An excess inventory at the end of each period 

incurs holding cost, hx per unit item held in stock per period at retailer x. Moreover,

the vehicle used for delivery is assumed to make delivery without a capacity 

constraint.
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Also, the model assumes a periodic review system where inventory positions are 

monitored every time period. As the process of replenishment is classified as the 

periodic replenishment approach, inventory positions at each location are observed 

periodically at the end of each period. The decision to make replenishments to 

individual customers is driven by three time- invariant parameters at each retailer that 

are called here:

• the “order-up-to” level”, /+

• the “can-deliver” level, Ic

• and the “must-deliver” level, Im.

The characteristic of the parameters are similar to the (s,c,S) policy introduced by 

Balinfy (1964). However, different terms are used here to denote the “can-order” level 

and the “must-order” level. This is reasonable and logical in the IRP context where 

the supplier takes responsibility to replenish the retailers’ inventory.

Replenishment is triggered by one o f two conditions. Delivery must be made when 

the inventory on-hand at customer location, x at the end of period t, falls below a 

“must- deliver” level. The replenishment is made to bring the inventory up to an 

“order-up-to” level”. The “can-deliver” level gives an opportunity for the retailer to 

make replenishment early if inventory at a particular location falls below this level 

and a delivery is required at another location via the “must-deliver” criteria. The 

amount of delivery sent to the “can-deliver” location is the difference between the 

current inventory position and the order-up-to level. Thus, the model has a mechanism 

where the supplier can, opportunistically, gain some economies of scale in the 

distribution activities.

The evolution of the inventory levels over time and the “order-up-to”, “must” and 

“can” deliver levels at two retailers are shown in Figure 5.1 based on a single 

simulation run for 26 periods of simulation time. As each customer faces a demand 

pattern with the same stochastic properties, the basic model also assumes that /+, Ic 

and Im are the same at each customer location.
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Order-up-to level, 1+

Can deliver level, Ic

Must deliver level, Im

R etailerl

R etailer 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time

Figure 5.1: The can and must deliver level

The inventory on hand, I at each customer location, jc, at the end of period t, It x, is 

given by the inventory balance equation:

where Rt.i x is the inventory replenishments delivered to customer x in the previous 

period, M and T>, ^is the demand in time period /, at customer location x. Thus,

although deliveries are made immediately, because of the sequence of events, there is 

effectively a unit replenishment delay. The replenishments Rtx are driven by the 

following logic,

0 otherwise

where y  and z are used to denote customers other than customer x. Equation (3) shows 

that if the inventory level is below the “must-deliver” level then the difference

(2)

/  -  /, if /. < Im+ l,x  t ,x  m+ l,x  l ,x  — m

(3)
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between the order-up-to level and the current inventory level is ordered. If the 

inventory level is below the “can-deliver” level, then an order (that will bring the 

inventory back up to the order-up-to level) is placed if one of the other customers has 

reached the “must” deliver criteria. Otherwise no delivery is made. Note that if all 

the customers have reached the “can-deliver” level, but neither has reached the “must- 

deliver” level, then no replenishment takes place, as it is assumed that this would 

result in unnecessarily increased inventory levels. Since the vehicle capacity is 

assumed unlimited, the model is considered to satisfy all the requirements.

In order to clarify the policy behaviour, the conceptual overview of inventory position 

at 3 customer locations for 14 time periods that are based on a single simulation run is 

illustrated in Figure 5.2. The initial inventory at each retailer is set equal to the “order- 

up-to” level. Values for all policy control parameters are /+=30, Ic= 12 and Im =8. The 

retailers who need replenishment will receive products in the next time period. As can 

be seen from Figure 5.2, the inventory levels at all customers at the end of the first 

period (f=l) are still high and no replenishment is needed at that time. However, at 

end of next period, inventory level at customer 2 drops to 4, which is below a “must- 

deliver” level, and 26 items must be delivered to bring its inventory up to /+. At the 

same time, the inventory level at customer 3 has reached the “can-deliver” level. This 

triggers an opportunity for the supplier to combine a replenishment at t=3 to both 

customers in one delivery.

Accordingly, a total of 44 items are placed on the truck as 18 items are required for 

customer 3. No replenishment is required at this time for Customer 1 since its 

inventory level is still above Ic. As a result, at the end of period t=3, a demand has 

decreased the inventory level o f customer 1 to below Im and action is needed to raise 

the inventory to 30. At the end of period t=4, inventory levels at both customers 2 and 

3 has fallen below Ic. However, no replenishment takes place since no customer’s 

inventory level has reached Im. The delivery despatched in the previous period 

increases the inventory level at customer 1. Demands arrive in the next period, 

reducing inventory level o f customer 3 to below lm and causing out of stock problem 

at customer 2. As a result, some o f the demand for customer 2 will be backlogged. 

Therefore, a total o f 32 items needed to be delivered to customer 2 in order to raise
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with 27 items replenishment for customer 3 for the delivery trip at t=6.
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Figure 5.2: Conceptual overview of Inventory level over time for the “can 

deliver” policy



Similar with the condition at t=2, only two retailers can be consolidated together at 

this delivery at time t= l  since the inventory level for customer 1 is still above Ic. 

Thus, the supplier needs to make another delivery at the next time period t= l  in order 

to replenish customer 1 that has reached the Im level. No replenishment is required at 

t=l  because none of the customers have reached the Im level even though customer 2 

and customer 3 have reached the Ic. Consequently, once again customer 2 faces a 

backlogged problem at /=8. This time, the supplier can schedule the delivery to 

replenish all three customers at one time as the inventory level for customer 1 is 

below the Ic and the inventory level for customer 3 has reached Im_. It can be seen 

from Figure 5.2 that at t=9 the inventory levels at all customers are greater than the 

two policy control parameters so no replenishment is required at that time. Similarly 

at /=10, even though all retailers have reached the “can-deliver” level, no retailer has 

yet reached the “must-deliver” level. Hence, no replenishment is required in this time 

period. As a result, the demand occurring at t= 8 has cause a backlogged problem at 

both customer 1 and customer 2. Replenishment is scheduled to replenishment all 

three retailers in the next time period to fill the backlog and raised the inventory level 

up to /+. From Figure 5.2, it can be seen the same scenario occurs where no 

replenishment is required at t=\2  and t==13 and three customer can be replenished 

together at t= 14 as all customer’s inventory level are below the Im.•

5.2 Route generation

As has been mentioned previously, the model assumes having one vehicle with 

unlimited capacity, 1 supplier and 3 retailers. A very simple geographical layout 

connecting a supplier/depot to all customers and the undirected arcs between all 

customers are shown in Figure 5.3.
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Figure 5.3: Supply chain physical layout

Consider for a moment the transportation distance incurred for different delivery 

scenarios. The vehicle leaves the depot to make a delivery once to each of the 

required customers and then returns back to the depot at the end of the period. The 

optimal routes that minimise the distance travelled along the supply chain network 

can be solved using the Travelling Salesman Problem (TSP) approach, (Lawler, 

Lenstra, Rinnooy and Shmoys, 1985). The layout for this basic model is classified as 

a symmetric TSP as the distance travelled is identical in both directions. For example, 

the distance travelled from customer 1 to customer 2 is exactly the same as the 

distance travelled from customer 2 to customer 1. So, the model is not concerned with 

the direction of travel, providing it is a minimum route. Since the network size in this 

model is small (it only contains 4 nodes), the route travelled may be calculated using 

the brute-force search method. The brute-force method may be viewed as the simplest 

technique for searching all possible combinations o f the solution space and selecting 

the best result based on the problem statement. Based on the physical layout of the 

distribution system shown in Figure 3, the minimum distance travelled for different 

numbers of deliveries in a single period is given by Table 5.1.
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Table 5.1: Calculating the minimum distance travelled for the number of

deliveries

Customers

served

Minimum Distances 

travelled

N
o.

 o
f 

cu
st

om
er

 
re

qu
ir

in
g 

de
liv

er
ie

s

1

1 10*2=20 km

2 14.14*2=28.28 km

3 10*2=20 km

2

1 and 2 10+10+14.14=34.14 km

1 and 3 10+14.14.+10=34.14 km

2 and 3 14.14+10+10=34.14 km

3 1, 2 and 3 10+10+10+10= 40 km

5.3 The objective function

Performance is measured by the total cost (TC). This is based upon the inventory cost 

and transportation cost. An inventory cost is charged only at the customer’s location 

and consists of the holding cost and the shortage cost. The inventory holding costs in 

each period are assumed to be the total of each customer’s inventory position at the 

end of each period, I l x, multiplied by the cost to hold a single unit, (h) per unit

inventory in each location, whilst the shortage cost is the charge per unit shortage 

supply, /?, when inventory on hand is insufficient to meet demand at the end of each 

period in each location, Sht x. The transportation costs are the sums of the distances

travelled to make a replenishment in km in each period multiplied by the 

transportation cost, c incurred per km. The total cost is the accumulation of costs for 

the overall simulation period. Equation (4) highlights the assumed structure of the 

total cost equation for this basic model.

TC=S  *h)+Z (SK* *p)+X<m* c) w
( ,  X  t ,  X  l , x

Thus, the total cost per period is estimated based on average total cost over the 

simulation period. The model evaluates the parameter settings that minimise the total
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cost produced by the inventory replenishment activity. The “must deliver” level could 

possibly be determined using traditional safety stock techniques prevalent in the 

inventory literature. However, the “can deliver” level is somewhat unusual. Therefore, 

a simulation analysis was performed via simulation in order to investigate the impact 

of this IRP flexibility on inventory, transportation and total costs.

5.4 Overview of the simulation method

As discussed in Chapter 3, a spreadsheet simulation model is developed in Microsoft 

Excel to represent the IRP model and evaluate the model sensitivity analyses for this 

study. The impacts of flexibility on inventory transportation and total costs are 

observed by varying inventory control parameters as well as the cost parameters. The 

stochastic nature of simulation that uses random data generation as the model’s input 

may generate different outputs every time the model is executed. This uncertainty will 

affect the accuracy of estimating the performance measurement result. Therefore, it is 

important to specify the appropriate length of the warm-up period and the number of 

replications needed for simulation.

5.4.1 Developing the Simulation Model

The simulation model is built by assigning the inputs, model formulations and outputs 

to specific cells in the spreadsheet. Figure 5.4 shows the part o f the model design for 

the periodic “can-deliver” policy in the Excel Spreadsheet. The three inventory 

control parameters, the “order-up-to” level (/+ ), the “can-deliver” level ( I c) and the 

“must-deliver” level ( Im ) are given in cells C3, C4 and C5 for customer 1. Since 

customers are assumed to be identical to each other in the model, these parameters are 

set to be equal for customer 2 in cells L3, L4 and L5 and customer 3 in cells V3, V4 

and V5 in the spreadsheet as shown in Figure 5.4.
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Figure 5.4: The periodic “can-deliver” model
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However, the best combination o f the inventory control parameters that emerge from 

the analysis that minimises the total cost might be not the “true” optimal value for 

customer 2. This is because the location o f customer 2 as illustrated in Figure 5.3 is 

further from the depot point when it compared to the location for customer 1 and 

customer 3.

The model will generate the results based on these inputs as well as the demand 

distribution for each customer. Although demand data can be generated from the 

random number generator function in Excel through the Analysis Toolpak (ATP) and 

RAND( ) function, there is an accuracy issue with the results. McCullough and 

Wilson (2005) report that the random number generator function in Excel 2003 can 

produce negative numbers with the ATP. Although this problem has been fixed in the 

RAND( ) function in Excel 2003, there is still a problem with the accuracy of 

statistical distributions. Knusel (2005) states that this is due to the fact that the lower 

tail probabilities for the Binomial distribution that are generated with the 

BINOMDIST Excel function have been rounded to zero.

Therefore, some different 3rd party software was used to generate the demand data for 

the model. We used instead the Stat:Fit software provided in ProModel simulation 

software as it can generate large random data (more than 8000) with reliable random 

number generators, i.e. the Prime Modulus Multiplicative Linear Congruential 

Generator and Mixed Prime Modulus Multiplicative Linear Congruential Generators, 

for simulation (Harrell et. al., 2003).

Input data and variables for the simulation like the demand, inventory control 

parameters, holding and shortage quantity, are assigned to different blocks of cells in 

Excel. Three flag variables are used to monitor an inventory condition at each 

customer. If the customer’s inventory on hand reaches the “must-deliver” level, the 

replenishment quantity value will be calculated automatically in the must flag column. 

The same conditions also apply to the can flag column that calculates the quantity that 

can be replenished in order to combine with other customers. The order flag is related 

to the must flag level. It acts as an important variable for the supplier to make the 

decision whether a replenishment needs to be made in a particular time period. The 

decision is based on all the customer conditions. A Boolean number is used to
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represent the decision. If the order flag value is 1, the delivery quantity is generated 

based on the value that has been calculated in the must flag or can flag variable.

The order flag value is assigned for customer 1 at simulation period 14 for cell F14 in 

Figure 5.4 is based on this formula:

= IF ( D14 > 0, 1, IF ( M M X ) ,  1 , I F ( V 1 4 > 0 ,  1 , 0 ) ) )

Where cells D14, M l4 and V I4 represent must flag for customer 1, customer 2 and 

customer 3, respectively.

The distance (km) travelled to make that delivery is also calculated based on 

customers who need delivery using the IF...THEN...ELSE function in EXCEL. The 

minimum distance travelled value is referred to in Table 5.1 above. The model 

performance measure is calculated as a total of the inventory cost and the 

transportation cost over the whole simulation period. This value is represented in cell 

AD6 in Figure 5.4 as the total value o f cells AD3, AD4 and AD5. The holding and 

shortage cost per unit item is an input in the model and is used to calculate the total 

holding cost and shortage cost value that accumulates for all customers. The 

transportation cost is based on the total distance travelled at the end of the simulation 

period and the cost to travel per km that is an input in the model. The model total cost 

per period calculated in cell AD 7 as shown in the spreadsheet model illustrated in 

Figure 5.4, is based on these costs and the number of simulation periods. This value 

will change each time the model is modified with different input parameters.

5.4.2 Warm-Up period

This inventory model is categorised as a non-terminating simulation since we are 

interested in analysing the long term average behaviour of the model. In modelling 

steady-steady state behaviour, there is a problem determining the time the model takes 

to reach steady-state. This start-up period is called a warm-up or transient period. If 

observations are collected in the transient period, this may cause inaccurate results 

due to the stochastic nature o f the model that deals with random data.
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5.4.2.1 Welch’s method

Welch’s method is a graphical method for estimating a truncation point, I, based on a 

number of independent replications, averaging the output value at each simulation 

time period across replications and observing the time that the model reaches the 

steady state. This point is identified when the averaged output response that is plotted 

in a line graph begins to flatten out. However, it is sometimes difficult to identify the 

point when the output is inconsistent. The variability o f the plot can be reduced and 

the graph can be smoothed by using a moving average. This is calculated by taking 

the average of the most recent data points in the data set based on moving average 

window, w value, (Harrell et al., 2003). The smoothness of the graph plot will 

increase by increasing the value o f w.

The truncation point, /, for the IRP model using Welch’s method is determined by the 

four steps of Law and Kelton (2000). The simulation model is replicated 5 times, each 

replication has a length o f 65000 time periods. The total cost, TC Jt at each simulation

time period, (t = 1,2,  3 ,........ ,65000) from the yth replication is observed, (j=T to 5)

and the average total cost, TCt for t =1 to 65000 time periods over 5 replications is 

calculated based on equation (4) below:

—  ^  T C ,tTC, = ^  (4)
7=1 •>

The next step is to define a moving average, TCi(w) to smooth out the high 

frequency oscillations in the average total cost observations,

TC\,TCi,TC3, ,TC 65000using equation (5). That value is plotted and the

truncation point is chosen when the moving average plot begins to flatten out. A small 

window size, w, is chosen at the beginning of the analysis and the value is increased 

until the plot of moving average becomes smooth.

Law and Kelton (2000) recommend the size be less or equal (m/4), where m is the 

total number o f observations in simulation. The analysis is therefore done by using the 

two moving average windows (w= 2000, 5000). The moving average window is less 

than 16250 (65000/4).
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TC,(w) = <

±TC ...
s= -w __________

2w + l 

2 t - \
if  t = 1, ,w

(5)

Figures 5.5 (a) and 5.5 (b) show the moving average, TCi(w) for w=5000 and 

w=2000.
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Figure 5.5: Moving averages for total cost per period : (a)w>=5000 (b)»v=2000

The graph for w=5000 is smoother than the graph for w=2000. Therefore, Figure 5(a) 

is used to determine the appropriate warm up period for this model. It shows that the 

steady state is reached at r=5000 time periods. As a result, observations up to 5000

90



time periods are ignored and the model is analysed only with observations beyond this 

point.

5.4.3 Simulation size

In analysing the model’s output, it also important to determine an appropriate sample 

size, n, in order to establish a confidence interval between the estimated point and the 

model’s true expected performance. Basically, by increasing the number of simulation 

time periods, the closer the results can be expected to be to the true value. However, 

conducting the simulation for a very long period is computationally expensive. 

Therefore, a minimum sufficient sample size needs to be determined in order to obtain 

an accurate result in a reasonable time.

Bienstock (1996) states that the sample size can be adjusted by using multiple 

replications or by raising the quantity of subintervals. He also reported that the 

replication approach is recommended because it can avoid the independence issue 

between observations. However, there is a question about how many replications are 

necessary.

Law and Kelton (2000) state that the replication/deletion approach is the easiest 

method to construct the point estimate and confidence interval for steady state based 

on the desired confidence level. Point estimates for mean, /j. and standard deviation, cr

of a population are estimated by calculating the mean, x , and standard deviation, s, of 

sample data, (Harell et.al, 2003). The confidence interval measures the gap between 

the estimated and true point. The gap becomes smaller as the number of replications 

increases.

The appropriateness o f the confidence interval depends on the assumption that the 

observations are independent and identically distributed. Running multiple 

replications with different streams of random numbers ensures that sample 

observations are statistically independent. Harell et al. (2003) state that most 

statistical methods assume that the observations are normally distributed as well; thus, 

the confidence interval half-width value can be computed from the Student’s t
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distribution. However, Law and Kelton (2000) claim this assumption is not essential 

for the sequential procedure which has a similar process to the replication/deletion 

approach. Therefore, the normality test is conducted in order to verify the distribution 

of the observations.

5.4.3.1 Normality test

The test is carried out by plotting the frequency histogram and performing the 

goodness-of-fit test on the simulation output. The histogram is plotted to recognise 

the shape of the observation based on the distribution’s probability density function 

(pdf) or probability mass function (pmf). It can be seen from Figure 5.6, that the total 

cost per period may follow the normal distribution, since the histogram has a bell­

shaped pattern similar to the probability density function o f the normal distribution.
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Figure 5.6: Histogram of the total cost per period.

The histogram pattern may be slightly affected by the number o f data points and the 

size of class intervals that construct the histogram. Therefore, statistical tests can be 

used to determine the distribution o f empirical data more objectively. The common 

goodness-of-fit tests are the Chi-square test, the Kalmogorov-Smimov Test (K-S), the 

Anderson-Darling (A-D) test, and the Shapiro-Wilk (S-W) test. Among the tests, the 

K-S test performs better than the Chi-square test, but is less powerful than the A-D 

test (Law and Kelton, 2000). The S-W test is as powerful as the A-D test (D’argosto
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and Stephens, 1986). The K-S and A-D tests are empirical cumulative distribution 

function tests (ECDF) whilst the S-W test is based upon regression and correlation 

tests. These tests are provided in the MINITAB software package.

The K-S and A-D tests were implemented in Microsoft Excel and compared to the 

MINITAB software output. Both tests were calculated based on the 500 observations 

of total cost per period sorted in ascending order. The null hypothesis for the 

goodness-of-fit test is

H0= The data are independent and identically distributed (i.i.d) random variables 

with normal distribution.

The statistic D can be determined based on equation (6).

D  = max(D+, D  ) (6)

Where D +
max 

1 < i < N
max

The A-D test is computed using equation (7)

A,

c

-  nn n

V /

The A-D test result is used in computing the adjusted A-D test as shown in equation

(  4 25 ̂  i 
Adjusted A-D= 1 + -------   An (8)
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Table 5.2 shows part o f the K-S and A-D test calculation and Table 5.3 summarises 

the results for both tests. Results for K-S, A-D and S-W tests from the MINITAB 

software are shown in Figure 5.7.

Table 5.2: Summary of K-S and A-D test results

K-S test A-D test

D + 0.017998
£  (2 / -  l[lnZ, ( X)  + ln(l -  Z„,_, (*))])
i=1 -250106.91

z r 0.020232 A l 0.213801

D 0.020232 Adjusted A-D 0.215491

The results show that the D  value and the adjusted A-D value are similar to the 

normality test conducted in MINITAB. The critical value, Da , for the significance

level, a  =0.05 and sample size, N  = 500, based on the Kalmogorov-Smimov Critical 

Values table is 0.060821, while the modified critical value for the A-D test for the 

same significance level is 0.870. Since 0.020 < 0.061 and 0.215 < 0.870; it can be 

assumed therefore that the data is normally distributed, p  values for all tests in 

MINITAB also support this assumption since all the values are greater than the stated 

alpha level, 0.05.
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Table 5.3: K-S and A-D test calculation

i X Z, (x)
K-S test A-D test

i

n D + D~ w+l-i
A = ln(l -  

2 ,twW)
B =

ln (Z ,W )
C=A+B (2/-1)* C

1 6.946718 0.000659 0.002 0.001341 0.000659 500 0.000126 -8.979387 -16.30458 -16.3045776

2 6.94755 0.001469 0.004 0.002531 -0.00053 499 0.004196 -5.473656 -11.99674 -35.9902086

3 6.948961 0.005074 0.006 0.000926 0.001074 498 0.005639 -5.177987 -10.46162 -52.308102

4 6.949092 0.005652 0.008 0.002348 -0.00035 497 0.008825 -4.730124 -9.905826 -69.3407844

5 6.949347 0.006944 0.01 0.003056 -0.00106 496 0.011232 -4.488958 -9.458829 -85.129463

6 6.949483 0.007729 0.012 0.004271 -0.00227 495 0.011734 -4.445274 -9.308011 -102.388125

7* 6.949911 0.010754 0.014 0.003246 -0.00125 494 0.014733 -4.21766 -8.7501 -113.751303

8 6.950095 0.012347 0.016 0.003653 -0.00165 493 0.016875 -4.081944 -8.476265 -127.143975

9 6.950424 0.015692 0.018 0.002308 -0.00031 492 0.021022 -3.862188 -8.016804 -136.28566

10 6.950698 0.019044 0.02 0.000956 0.001044 491 0.023507 -3.750459 -7.711478 -146.518079

496 6.965927 0.988768 0.992 0.003232 -0.00123 5 0.993056 -0.006968 -0.018264 -18.0997867

497 6.966244 0.991175 0.994 0.002825 -0.00083 4 0.994348 -0.005668 -0.014533 -14.4311015

498 6.966807 0.994361 0.996 0.001639 0.000361 3 0.994926 -0.005087 -0.010742 -10.6884755

499 6.967163 0.995804 0.998 0.002196 -0.0002 2 0.998531 -0.00147 -0.005675 -5.65788358

500 6.970744 0.999874 1 0.000126 0.001874 1 0.999341 -0.000659 -0.000785 -0.78415434
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Figure 5.7: Normality test results in MINITAB (a) K-S test (b) A-D test (c) S-W 

test remove the colour from this figure.

The process of point estimation and the analysis of the appropriate number of 

replications will be discussed in next section.

5.4.3.2 Number of Replications

The point estimate is calculated using observations after the warm-up period that was 

determined previously with W elch’s method. In the last section, the warm-up period, 

/, for the inventory model was reached when t= 5000 time periods for 5 replications of 

length m=65000. Therefore, observations for total cost, TCjt are for 60000 time

periods from t=5001 until 7=65000 for each replication.
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The average o f the total cost, from the y'th replication can be computed using 

equation (7).
65000

Z TC„
x  m   for y e N + < 5  (7)

7 60000

The X j  values for each simulation replication are presented in Table 5.4.

These results are used to estimate the mean, v  and standard deviations, er of the 

population by calculating the average o f the results across all replications, X(n ) via 

equation (8) and the standard deviation of the results, S(n) via equation (9).

Table 5.4: The simulation result from 5 independent replications

Replication ( j )

65000

Z T C „
/=5001 Average total co st, X .

1 4168.13.4 6.94689

2 416288.4 6.93814

3 416467.2 6.94112

4 416298.4 6.93831

5 416556.1 6.94260

_ 2X
X{n) = —------ (8)

S(n) = -J  ------  (9)
n - 1

The confidence interval estimation is used to estimate the confidence interval half­

width, hw value, and the relative precision, y  between point estimates, X , from the 

true mean, v , with probability o f confidence, P. The probability that v will fall
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outside the confidence interval is referred to as the significance level, a  = 1 -  P . 

Thus, the probability v  will fall inside is 1 -  a  .

The confidence interval half-width, hw, for significance level, a  is calculated by 

equations (10)

An approximate confidence level o f 100(1-a)percen t for v ,  and relative precision, 

y (0<y <1), can be computed using equation (11) and equation (12)

The confidence interval result means that the expected average is 100(1- a )  per cent 

sure between the lower confidence level (X(n)  + hw) and upper confidence 

level (X(n) -  hw) . The target value for the relative precision in this study is assumed

Microsoft Excel. In Microsoft Excel, the TINV(or, n-1) function can calculate the 

student t-distribution value automatically with significance level, a , and degrees of 

freedom (n-1). The standard deviation and mean values can be calculated using the 

STDEV() and M EA N () function.

The confidence interval results and the relative precision for different numbers of 

replications and significance level are shown in Table 5.5 for the simulated IRP model 

with 60,000 simulation periods for each replication. The results show that we are 95 

per cent confident that the average total cost value is between a lower confidence 

interval of 6.88693 and a upper confidence interval o f 6.99810 and 99 per cent 

confident that the value is between 6.66402 and 7.22101 for n=2. The confidence 

interval and relative precision will increase as the significance level increases,

(10)

X(n)  ± hw (11)

hw
(12)r  = = —  

X(n)

at 0.5% or 0.005. A confidence interval analysis can be easily carried out using
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whereas, the interval between estimated values and the true value decreases as the 

number of replications is increased.

The relative precision for n=3 for both significance levels is close enough to the mean 

estimated value, as the relative precision value is within 0.005% of the real value. 

Therefore, the analysis will be conducted with 3 replications, each with a warm up of 

5000 periods and 60, 000 periods o f actual simulation time for each problem instance.

Table 5.5: Simulation results for significance level, 0.05 and 0.01 and 4 different 

numbers of replications

Significance

level
Replication

Point

estimates

Confidence

interval

half-width

Relative

precision

Lower

confidence

interval

Upper

confidence

interval

2 6.94252 0.05590 0.00801 6.88693 6.99810

3 6.94205 0.01105 0.00159 6.93100 6.95310
0.05

4 6.94111 0.00650 0.00094 6.93462 6.94162

5 6.94141 0.00447 0.00064 6.93694 6.94589

2 6.94252 0.27850 0.04012 6.66402 7.22101

3 6.94205 0.02550 0.00367 6.91656 6.96754
0.01

4 6.94111 0.01193 0.00172 6.92918 6.95305

5 6.94141 0.00741 0.00107 6.93400 6.94883

5.5 Running and designing the simulation

The multi-replications simulation model was executed by replicating the identical 

simulation spreadsheet models using different streams o f random numbers for demand 

data in each replication. As discussed in Section 5.4.1, the periodic “can-deliver” 

model contains inventory control and costs parameters that influence the model’s 

output. Therefore, a sample experiment will be executed first to evaluate how the 

outputs might be affected by changes in these input parameters. The range for the 

order-up to level parameter is considered to be within the range of 0 to 60 units. The 

lower range for “must-deliver” is set equal to zero to represent the scenario where the 

replenishment only can be made when customers have no inventory available in the
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stock. The value of the “must-deliver” level is limited by the “order-up to” level 

value, whilst the range for “can deliver level” must be in between the “must” deliver 

level and the “order-up-to” level. Thus,

(13)

The shortage cost and transportation cost are examined in the range from 0.1 to 1.0 

per unit, whereas the holding costs are only tested from 0.1 to 0.5 cost per unit.

The analysis to test all possible combinations o f these inputs to determine the true 

optimal performance measure output value is performed by applying the brute force 

approach, (Wan et. al., 2007). The optimal value for this model is found using a 

search grid with an increment o f step size 1 for the inventory control parameter for 

each combination of costs. The optimal combination o f these inputs is determined 

based upon the minimum total cost per period o f the solution space. The process of 

analysing the relationship between a factor and its response is visualised by a 2D or 

3D graph. The surface that visualises the response o f the full combination o f two 

factors is called a response surface (Law and Kelton, 2000). The optimal combination 

of factors that minimises the total cost per period is the lowest point in the grid and 

the behaviour of the model can be evaluated from the shape o f the graph. Analysis 

with the brute-force approach over enough time periods will generate a good response 

surface and guarantee the optimal result.

Running the model with a series o f model inputs requires a sequence of recalculations 

and saving processes in the spreadsheet model. These processes become much easier 

when Visual Basic (VBA) macros are developed as these can be used to alter input 

parameters as well as automatically read and write results from specific cells. There 

are various looping function available in VBA such as For...Next, Do...Until and 

D o.. .While function. Writing that value in the cell o f the spreadsheet model requires a 

specific location that can be identified by cell name using the “range” command, or 

by the cell row and column numbering scheme using the “cell” command. The copy 

and paste function can also be used to read and write the value in the selected 

location. The logic o f simulation model analysis using the brute-force approach is
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defined by the pseudo code algorithm in Figure 5.8. As can be seen in the figure, the 

brute force approach is used in the analysis in order to test the IRP model with all 

possible combination o f inventory control parameters and the costs parameters within 

the specified range as discuss above. All inventory control parameters includes the 

“order-up-to” level ( / +), “must-deliver” level ( Im) and “can-deliver” levels (7C) 

which are have an increment o f 1 unit size. The cost parameters includes the; 

holding cost (h), shortage cost (c) and transportation cost (p) and these are 

incremented by 0.1 unit size in each loop. The result o f the analysis including the 

holding cost per period, shortage cost per period, transportation cost per period and 

total cost per period values are written into a different worksheet of the IRP model 

spreadsheet. The same procedure o f the analysis is applied to all 3 replications. Each 

replication has different demand values due to the different streams of random 

numbers used as the input into the demand data. The optimal combination of 

inventory control parameters for specific value o f costs parameters is determined 

based on the average value o f the total cost per period from the 3 replications.

For h from 0.1 to 0.5 Step 0.1; Range(“AJ l ”)=h  
For c from 0.1 to 1.0 Step 0.1; Range(“AJ2”)=c

For/? from 0.1 to 1.0 Step 0.1; Range(“AJ3”)=/?

For I  + from 0 to 60 Step 1; Range(“c l ”)= I +

For I m from 0 to I + Step 1; Range(“c2”)= I m 

For I c from I m to I + Step 1; Range(“c3”)= I c

Write the I + , I m , I c , holding cost per period, shortage cost per period,

transportation cost per period and total cost per period value for 60, 000 
periods o f  actual simulation time.

Next I c ;

Next ;m 5
Next I + ;

Next /?;
Next c;

Next h
Repeat the above procedure for all 3 replications
Average o f all costs value from these 3 replications.
min = oo

For average total cost per period for all combinations o f h ,p ,c , I  + , I m , I c

If average total cost per period < min Then
min = average total cost per periodd;

optimal inventory control combination = I + , I m , I c

Endlf ______________________________________________________________________

Figure 5.8: The pseudo code algorithm for the logic of simulation model
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5.6 N um erical A nalysis

The analysis begins by evaluating the impact o f the IRP flexibility on inventory and 

transportation costs by varying the “can-deliver” level and “must-deliver level” while 

fixing the “order-up-to” level and the cost parameters. The traditional supply chain is 

the benchmark for quantifying the benefit of this model which happens when the 

“can-deliver” level is equal to the “must-deliver” level. It can be seen from Figure 

5.9(a), the total cost per period for the benchmark scenario is lower than that of the 

total cost per period for the proposed model at high “must-deliver” level settings. 

However, that cost is not the minimum total cost per period in the solution space. The 

total cost per period first decreases when the “must-deliver” level is increased but 

then it rises sharply when the level is increased further. Interestingly, the benchmark 

scenario is an expensive option compared to the lowest total cost per period. In order 

to clarify the relationship between variations o f “can-delivery” level for a specific 

“must-deliver” level at higher level with the inventory and transportation cost, a 2 

dimensional graph is plotted for the optimal “must-deliver” level, which in this case is 

equal to 3 in Figure 5.9(b).

Holding cost 

Shortage cost 
Transportation cost 

Total cost

1 O V* N? *0 v
‘can-deliver” level

“can-deliver*’ level “m ust-deliver” level

Figure 5.9: (a) Total cost with various “can-deliver” level and “must-deliver” 

levels

(b) W ith inventory holding cost, shortage cost and transportation 

cost when the “must-deliver” level is equal to 3.

As can be seen from the figures, the inventory cost rises very slightly when the “can- 

deliver” level increases at 7C=10, which is about 5 units higher than the benchmark
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condition. However, this is more than compensated for by the reduction in transport 

costs and shortage cost, as they fall dramatically at the same time. The finding 

suggests that the IRP flexibility allows a significant reduction in transportation costs 

and also prevents out-of-stock problems. As a result, the total cost reduces by 

approximately 16%. Nevertheless, the initial benefits realised by providing a “can- 

deliver” level, seem to saturate out, and further flexibility provides zero marginal 

benefit. The costs remain constant when the “can-deliver” level reaches the maximum 

inventory level. Therefore, further flexibility will not affect the quantity of items and 

number of retailers to which they should be delivered. For example, situations when 

the replenishment is required at retailer 1 and inventory on hand at 2 other retailers 

are 9 and 16 units at time t. With the “can-deliver” level value equal to 15, only 2 

retailers can be integrated with the delivery at that time, whereas all retailers can be 

replenished together with a higher “can-deliver” level, even with a value equal to 

“order-up-to” level.

Essentially, the result shows that the costs are minimised when 7C = 13 before the

graph flattens out. However, this is hard to see in the figure since the increasing 

percentage is quite small at approximately <0.01%. It can be concluded that the 

procedure to replenish all retailers whenever one of the retailer reaches the “must- 

deliver” level is a more economical choice compared to the traditional supply chain 

that is based on individual reorder levels which, in this case, refers to the “must- 

deliver” level. However, that flexibility level tended to achieve additional savings 

when “order-up-to” level was equal to 21 in this experiment. Therefore, further 

analysis was carried out in order to explore the behaviour o f the model and the 

interaction between the other two control parameters i.e. “must-deliver” level and 

order-up-to” level was investigated.

The results are plotted in 3 dimensional graphs to obtain a broad picture o f the effects. 

Figure 5.10 shows that a similar pattern occurs with most of the “order-up-to” level 

parameters as the “can-delivery” level is increased whilst the “must-deliver” level is 

equal to 5. The total cost per period decreases rapidly and reaches a low point when 

7+=20. The cost increases steadily as the “order-up-to” level, is increased before 

falling again at 7+=30 to a point slightly higher than the lowest point. This is
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followed by a sharp increase as the “order-up-to” level is increased further. This 

suggests that the minimum cost may possibly be located at the second minima with 

different parameter settings. Thus, the pattern is examined by varying the “must- 

deliver” level with a fixed value of the “can-deliver” level. For simplicity, the “can- 

deliver” value is set equal to the “order-up-to” level, since the previous results 

suggest, that it is possible that this condition will lead to a fall in the total cost. As 

seen in Figure 5.11, there are similarities with most of the patterns plotted for 

different “must-deliver” levels, but the cost is dramatically increased as the “order-up- 

to” level increases.

60 50 40 30 20 10 00
“can-deliver” level

“order-up-to” level

Figure 5.10: Varied “can-deliver” level and “order-up-to” level
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Figure 5.11: Varied “ m ust-deliver” level and “order-up-to” level
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The analysis so far has evaluated the effect o f the IRP model with different “order-up- 

to”, “must-deliver” and “can-deliver” level settings. The analysis is continued to see 

how the model reacts with different cost parameters in the next section.

5.6.1 Analysis with cost parameters

As discussed in Section 4.3, the IRP model performance measurement is based upon a 

particular inventory holding cost, shortage cost and transportation cost. Therefore, 

further analysis o f the Inventory Routing Policy is carried out with different cost 

parameters as well as inventory control settings. First the analysis is conducted using 

an experimental design based on the Taguchi Methods in order to obtain an overview 

of how each of the input factors influences the results. This is followed by a full 

factorial analysis (which considers all combinations o f factors) to examine the impact 

of the cost parameters on both the optimal inventory control parameters and minimal 

total cost in Section 5.6.2.

The Taguchi methods use standard orthogonal arrays (OAs) to lay out the 

experiments. In theory, these OAs reduce the number o f experiments required to 

explore the solution space, thus reducing the computational burden of the analysis. 

The results of these experiments are then analysed with the ANalysis O f VAriance 

(ANOVA) technique to determine the factors that will be most likely to have a large 

impact on model performance based upon their “percentage contribution”.

Taguchi’s methods help to simplify an Inventory Routing Problem investigation by 

considering a selected number o f factors in a specific combination. This results in a 

small number of simulation experiments that is easily managed. The factors and the 

level of each factor need to be determined before designing the experiment in order to 

select an appropriate OA to structure the experiments.
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Six factors identified for evaluation in the analysis are included

• the “must-deliver” level at each o f the three retailers (Imi, Im2 and Im3), (the 

model assumes Imi =Im2 = lm3)

• “order-up-to” level at each retailer (/+/ ,I+2 and I+3), (the model assumes I+1

=  I +2 =  I +3)

• the “can” deliver level at each retailer (Icl, Ic2 and Ic3), (the model assumes 

I d  Ic2 ~  Ic3 )

• holding cost (h),

• shortage cost (p),

• transportation cost (c).

Five levels o f each o f the above six factors are shown in Table 5.6. The “order-up-to” 

level is tested for values that are greater than the mean of demand. Therefore level 1 

for the “order-up-to level” is assigned a value of 12 as the starting point of the 

analysis. The value is increased further in the following level to test the IRP model 

with a slightly higher “order-up-to” level than the previous value. As discuss in 

Section 5.5, the range o f “must-deliver” level value is analysed from the condition 

when the replenishment only can be made when customers have no inventory in the 

stock and limited by the value o f “order-up-to” level whilst the range of “can-deliver” 

level must be in between the value o f “must-deliver” level and the “order-up-to” level. 

The range of the holding cost is set to be lower than the value of shortage cost and 

transportation cost. A high shortage cost is set compared to the holding cost and 

transportation cost in order to discourage and avoid out-of-stock situations.

Accordingly, the number o f simulations needed to fully explore the solution space is 

56=15625. This can be reduced using Taguchi’s Orthogonal Arrays. However, the 

most suitable OA needed to be selected to specify the factors and levels at which to 

conduct the experiment. The selected OA must satisfy the following inequality:

Total Degrees of Freedom of OA > Total Degrees of Freedom required for the 

experiment. (14)
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Table 5.6: IRP model factor and Level

Level

Factor Level 1 Level 2 Level 3 Level 4 Level 5

Im i,2,3) 12 16 20 24 28

Im(l,2,3) 0 r r 3  r r
4 2 4

Ic(l,2,3) Imtn s i  + rm I * + I + / « + 3 / + V
4 2 4

h 0.1 0.2 0.3 0.4 0.5

P 0.6 0.7 0.8 0.9 1.0

c 0.3 0.4 0.5 0.6 0.7

Given 6 factors, each with five levels, the total Degree of Freedom (DOF) required for 

the experiment are 24, since each factor has 4 DOF (No. o f levels -  1). Therefore the 

L25 Taguchi’s Orthogonal Arrays matrix is appropriate to use for the analysis. Table 

5.7 shows 25 different experiments that combines all factors at various levels (0 to 5).

The analysis o f the result using Taguchi’s methods can be performed by standard 

analysis of a single observation. However, Roy (1990) strongly recommends the use 

of the signal to noise ratio (S/N) analysis for the multiple runs scenario. Since the 

analysis will be conducted with 3 replications of 5000 warm up periods and 60, 000 

simulation time periods, the S/N ratio is used to plot the main effects and carry out the 

ANOVA analysis based on the procedure explained in Roy (1990).

The S/N ratio for 3 replications is calculated by equation 15

S /N = -1 0 L o g 104 2 > , 2) (15)
3 /=1

where y t represents the total cost per period for the replication /.

The signal-to-noise ratios for each experiment as well as the simulation results for 3 

replications are shown in Table 5.8.
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Table 5.7: L25 orthogonal array matrix

Experiments I+(1,2,3) Im(l,2,3) J ed ,2,3) h P c
1 1 1 1 1 1 1
2 1 2 2 2 2 2

3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 2 1 2 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 2

9 2 4 5 1 2 3
10 2 5 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 3 5 2 4 1
14 3 4 1 3 5 2

15 3 5 2 4 1 3
16 4 1 4 2 5 3
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 5 3 1
20 4 5 3 1 4 2

21 5 1 5 4 3 2

22 5 2 1 5 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1

The effect o f each control factor is evaluated from the average o f the S/N ratio for 

each level. For example, the average S/N ratio for factor h at level 1 and level 2 is as 

follows:

h\ = ( -  23.3656 - 26.7706 - 24.8732 - 25.575 - 25.0422) / 5 

= -25.12534

hl = { -  24.9167 - 28.8196 - 24.5947 - 23.9484 - 31.7749 ) / 5 

= -26.81088

The minimum variation is determined based on the highest average S/N value. 

Therefore, in this example, factor h at level 1 has less variation than at level 2. The 

effect of all factors is shown graphically in Figure 5.12 to obtain an overview of the 

impact of each factor at different levels. It is apparent from the figure that the “must-
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deliver” level, holding cost and transportation cost factors have a large effect on the 

S/N ratio, whereas the other factors especially the “can-deliver” level, have a small 

effect. It can be seen from the figure, that the S/N ratios are highest for level 1 for 

holding and transportation cost, so there will be minimum variation in lowest cost at 

both factor settings. In contrast, the shortage cost has less variation for the highest 

cost setting. The “can-deliver” level gives a better result in the middle level, thus 

shows that the flexibility helps to reduce the total cost. The standard ANalysis Of 

VAriance (ANOVA) technique can emphasise the effects that have been estimated 

previously from the graph based on the percentage contribution of each factor.

The steps to carry out the ANOVA analysis o f total cost based on Roy (1990) are as 

follows:-

Step 1 : Calculate the Total o f all S/N ratios for each experiment, T

r  = f ]S 7 jV E (16)
E=1

E = experiment

Step 2: Compute the Correction Factor, C.F.

CF = T 2 / 25 (17)

Step 3: Square each o f the S/N ratios for each experiment, E, and calculate the Total 

Sum of Squares, ST using equation (18)

ST = J ^ S /N e -  C.F. (18)
E=1

Step 4: Calculate the total contribution of each factor, F, at correspondence level, L ,

Fl

Fl= 123 = Sum of all total costs for factor F at level,L. (19)

F  ~  -^+(1,2 ,3) ’ Im ( 1,2 ,3) > ^c( 1, 2 ,3)

and determine the Factor Sum o f Squares, S, for each factor as equation (20)
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S f = ' Z ( F l2 / N fl) - C . F .  (20)
L=1

N FL = Number o f experiments included at level, L, for each factor, F

Error Sum o f Square, Se = S T -  ^  SF (21)
^ = ^+(l,2 ,3)>

Step 5: Determine the Total and Factor Degrees o f F reedom ,/

Total Degrees o f Freedom, f T = number o f experiments -  1 (22)

Factor Degrees o f Freedom, f  F = Number o f level factor, F  -1 (23)

Error Degrees o f Freedom , / ,  = f T -  ^ / f  (24)
•^ = ^+(l,2 ,3)>
^ m (l,2 ,3 )» ^ c ( l,2 ,3 )» ^ > P .c

Step 6: Calculate the Mean Square (Variance) for each factor and variance of error 

value ( Ve)

VF = S F! f F (25)

V ' = S , l f e (26)

Note that the variance o f error value is not valid with zero f e .

Step 7: Evaluate the Percentage Contribution for each factor

PF = ( S FIS T) * \ W  (27)
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Table 5.8: Total cost per period for 3 replications and S/N ratio

Experiment Replication 1
y i

Replication 2 
y2

Replication 3
y3

S/N

1 14.72779 14.74803 14.72203 -23.3656
2 17.61675 17.61922 17.60352 -24.9167
3 22.52354 22.5196 22.51784 -27.0515
4 27.25725 27.25061 27.25138 -28.7083
5 31.98954 31.9803 31.98303 -30.0987
6 22.74328 22.79962 22.74501 -27.1445
7 16.44176 16.47975 16.46212 -24.3292
8 24.95821 24.94117 24.95657 -27.9421
9 21.80476 21.80098 21.8054 -26.7706
10 27.60673 27.59893 27.60804 -28.8196
11 21.49711 21.49064 21.50069 -26.6472
12 17.52422 17.53605 17.51507 -24.8732
13 16.9492 16.98748 16.97924 -24.5947
14 24.94467 24.92622 24.9401 -27.9369
15 32.00419 31.9878 32.00688 -30.1029
16 15.74733 15.76576 15.75234 -23.9484
17 28.381 28.35342 28.35016 -29.0546
18 37.55114 37.5635 37.53874 -31.4925
19 27.00524 26.98475 27.0086 -28.6271
20 19.00105 18.99695 19.00172 -25.575
21 18.26243 18.25853 18.26491 -25.2309
22 27.1341 27.12418 27.12732 -28.6685
23 17.88558 17.87837 17.8445 -25.0422
24 38.79611 38.78575 38.79523 -31.7749
25 28.20315 28.19085 28.20516 -29.0049
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Figure 5.12: Effects of each 6 control factors at 5 levels.

Based on all the total costs in the Table 5.8 above, the Correction factor, C.F. and the 

Total Sum of Squares, ST are calculated using equations (17) and (18). The C.F. 

value for the experiment is 18589.7393, and the Total Sum of Squares, 5^ is 

135.56861. The ANOVA results o f the degree o f freedom (/), Factor Sum of Squares 

(5), Mean Square (variance) and Percentage Contribution (P) value of each factor are 

shown in Table 5.9.
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Table 5.9: ANOVA of S/N ratio total cost
Column Factors f 5 V P%

1 I+ (l, 2,3) 4 5.67673 1.41918 4.18735

2 Im (l,2,3) 4 45.79715 11.44929 33.78153

3 ic(l,2 ,3 ) 4 4.10992 1.02748 3.03161

4 h 4 35.82159 8.95540 26.42322

5 P 4 14.32085 3.58021 10.56354

6 c 4 29.84237 7.46059 22.01275

All other/error 0 0.00000 0.00000

Total 24 135.56861 100.00000

As can be seen from the table, the percentage contribution of “can-deliver” level and 

“order-up-to” level are small. Therefore, these factors should be pooled in order to get 

a higher and nonzero value o f f e and Se that will raise the confidence level of the

significant factor, (Roy, 1990). As a result, the new Sum of Square error ( S e) and

Degree of freedom error ( f e ) value can be calculated by equation 28 and equation 29.

Se = ST- ( S lmutn+ S h + Sc + Sp) ( 2 8 )

f e = f r  + / * + / , + / , )  ( 2 9 )

With a Ve value greater than zero, the variance ratios (F) can be determined by 

equation 30 . The percentage contribution is recalculated using the pure sum of square 

(S') that can be determined by equation 31.

Ff = V f /V' ( 3 0 )

S'F = S F - ( V exfF) ( 3 1 )

^  ~  ^ + (1 ,2 ,3 ) ’ A n ( U ,3 )  ’ 1,2 ,3)

The percentage error is calculated by subtracting the percentage contribution of 

remaining factors from 100%. Table 5.10 shows the ANOVA table after pooling 

insignificant factors.
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Table 5.10: Pooled ANOVA of S/N ratio total cost
Column Factors f S V F S' P

1 1+0,2,3) (4) (5.67673) Pooled

2 Im(I,2,3) 4 45.79715 11.44929 9.35911** 40.90383 30.17205

3 h(l,2 ,3) (4) (4.10992) Pooled

4 h 4 35.82159 8.95540 7.32050* 30.92826 22.81373

5 P 4 14.32085 3.58021 2.92661 9.42753 6.95406

6 c 4 29.84237 7.46059 6.09859* 24.94905 18.40326

error 8 9.78665 1.22333 21.65689

Total
24 135.56861

135.5686

1 100

* Significant at 95% confidence level F.95 (4,8) = 3.8378

** Significant at 99% confidence level F.95 (4,8) = 7.006

In this analysis, the “must-deliver” level was shown to have a significant effect at the 

1% level on the S/N ratio for the total cost whereas holding cost and transportation 

costs were shown to have a significant effect at the 5% level. Shortage cost only 

contributed 6.95% and as the F  ratio was greater than the F  table value, F(4,8) at a 

90% confidence level (2.8064), the shortage cost factor could be retained. 

Nevertheless, the variations o f these total costs are based on the values assigned to 

each level in Table 5.6. The percentage contribution o f each significant factor was 

visualised using a Pie Chart as shown in Figure 5.13.

The chart shows that “must-delivery” level is the factor most influencing total cost 

since it contributed almost 30 per cent of the variation. The holding cost and 

transportation cost ratio represented a further 23% and 18% respectively. This 

suggests that the appropriate order-up-to level needs to be decided for the optimal 

result. Furthermore, changes in the cost settings will alter the combination of 

inventory control parameters that optimises the total cost. These impacts will be 

studied in detail in the next subsection.
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Figure 5.13: Pie C hart for Percentage Contribution of four significant factors in 

experiment.

5.6.2 Sensitivity Analysis

As explained in Section 4.1, a replenishment is primarily triggered when the inventory 

reaches the “must-deliver” level and this replenishment will bring the inventory up to 

an “order-up-to” level. The “can-deliver” level gives an opportunity for the supplier to 

consolidate other retailers’ deliveries into the one load, thus saving transport costs. 

The last analysis shows that the “must-deliver” level, holding cost and transportation 

costs factor have large impact on the IRP solution. In this section, the behaviour of the 

optimal combination of the inventory control parameters that minimise the total cost 

per period is examined by considering all possible combination o f inventory control 

parameters with respect to different cost parameter settings. The range of cost 

parameters considered in this experiment is similar to the experimental design in 

Table 5.6 above. This parameter combination will assure that the shortage cost will be 

higher than the holding cost whilst it is also able to test the condition when 

transportation cost is equal to or higher than the holding cost. Table 5.11 shows 

optimal inventory control parameters (/+, Ic and Im ) and total cost per period, TC, 

result for different combinations o f holding cost, h, shortage cost, p , and 

transportation cost, c.
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It can be seen from Table 5.11 that the results for the total cost per period are as 

intuitively expected. The total cost value increased as the costs and inventory control 

parameters were increased. The result also showed that the effect of changes in 

shortage cost is small with a constant transportation cost and holding cost value. 

However, the total cost per period is greatly affected by the holding cost as it 

increases dramatically when the holding cost increases further. The effects of varying 

shortage cost and holding cost when the transportation cost is equal to 0.5 is 

illustrated in Figure 5.14.

Total cost per 
period

cosl

Figure 5.14: Total cost per period for varying shortage cost and holding cost 

when the transportation cost = 0.5.

The behaviour o f the three inventory control parameters throughout the experiment is 

seen to be quite sensitive to changes in the cost parameters. The analysis first looked 

at scenarios when the transportation costs are equal to the holding costs to observe the 

effect of the shortage cost on the optimal inventory policy parameters. The result 

shows that, generally, the quantity o f inventory that is delivered to the retailer remains 

the same for both low and high shortage costs. The pattern o f costs for the optimal 

combinations of inventory policy in Figure 5.15 indicated that shortage cost increase 

influences the holding cost value.
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Figure 5.15: The behaviour o f costs with variation of shortage costs

With higher shortage cost, it is optimal to keep extra stock at retailers by increasing 

the “order-up-to” level in order to prevent out o f stock problems. Also it can be seen 

from the figure that shortage cost decreases in parallel with the increase in the stock 

level. The constant line o f holding cost suggests that it more practical to retain the 

same inventory level at some point but the cost is likely to increase afterwards.

Next, the effect o f the optimal inventory control parameter is observed when the 

holding cost is less than the transportation cost. Since the cost to hold the inventory is 

low compared to the delivery cost, it is more cost-effective to replenish those retailers 

with larger inventories at the time o f delivery. The results in Table 5.11 show that the 

“order-up-to” level decreases as the holding cost increases. For transportation cost 

equal to 0.5, the optimal “order-up-to” level for holding cost equal to 0.1 is more than 

double compared to the “order-up-to” level at holding cost equal 0.5. Also, the extra 

stock at the retailers will increase the replenishment cycle period. Therefore less 

delivery trips are required and a lower transportation cost is incurred. On the other 

hand, when the holding cost is higher than the transportation cost, the periodic “can- 

deliver” policy will tend to reduce the quantity in each delivery to the retailers by 

decreasing the “order-up-to” level. As the result, regular replenishment is required in 

order to maintain retailers’ service level. This pattern can be seen in Table 5.11 

starting at holding cost equal to 0.5 and transportation cost equal to 0.3, and the 

“order-up-to” level is suspected to drop further with increasing holding cost.
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Table 5.11: The sensitivity analysis for different combination of holding cost, shortage cost and transportation cost

h p
C

0.3 0.4 0.5 0.6 0.7

h I n , /c TC / + In , I c TC / + In , I c TC / + In , I c TC / + In , I c TC

0.1 0.6 31 3 22-31 8.07577 31 2 20-31 9.39695 39 0 22-39 10.45403 40 0 21-23 11.4424 48 0 23 12.39587
0.7 31 3 22-31 8.18491 32 3 21-32 9.51931 40 1 23-40 10.59547 41 1 22-24 11.59352 49 0 24 12.55179
0.8 32 4 23-32 8.2756 32 3 21-32 9.60619 41 2 24-41 10.71264 41 2 24-41 11.71081 49 0 24 12.70061
0.9 32 4 23-32 8.34936 32 4 23-32 9.68551 41 3 24-41 10.81335 41 2 24-41 11.81523 42 2 23-25 12.80396
1 32 4 23-32 8.42312 32 4 23-32 9.75927 42 3 25-42 10.89948 42 3 25-42 11.89765 42 3 25-42 12.89583

0.2 0.6 20 2 12 10.50977 28 0 19-28 12.35396 28 0 19-28 13.69012 28 0 19-28 15.02627 28 0 19-28 16.36243
0.7 20 3 13 10.70092 28 0 19-28 12.6293 29 0 18-29 13.96468 29 0 18-29 15.28402 29 0 18-28 16.60335
0.8 21 4 14 10.83281 21 3 13 12.82447 29 1 20-29 14.18583 29 0 18-29 15.51447 29 0 18-29 16.83381
0.9 21 4 14 10.95565 21 3 13 12.95369 30 2 21-30 14.38553 30 1 19-20 15.70613 30 1 19-30 17.02546
1 21 4 14 11.07849 21 4 14 13.07987 30 2 21-30 14.5399 30 2 21-30 15.87606 30 1 19-30 17.19784

0.3 0.6 19 1 11 12.05958 19 0 13 14.04662 19 0 13 16.01573 26 0 17 17.52913 26 0 17 18.91519
0.7 19 2 12 12.33317 19 1 11 14.33163 19 0 13 16.3188 27 0 17-27 17.89748 27 0 17-27 19.254
0.8 20 3 13 12.57806 20 2 12 14.57334 20 1 14 16.55685 27 0 17-27 18.22415 27 0 17-27 19.58066
0.9 20 3 13 12.76656 20 3 13 14.76794 20 2 12 16.75996 28 0 19-28 18.53094 28 0 19-28 19.8671
1 20 3 13 12.95506 20 3 13 14.95644 20 2 12 16.95597 28 0 19-28 18.80628 28 0 19-28 20.14244

0.4 0.6 17 0 10 13.33599 17 0 10 15.33737 17 0 10 17.33876 18 0 10 19.33037 25 0 16 21.19103
0.7 18 1 11 13.73247 18 0 10 15.73385 18 0 10 17.72447 18 0 10 19.71508 25 0 16 21.59644
0.8 19 2 12 14.07903 19 1 11 16.07944 19 1 11 18.07005 19 0 13 20.04157 26 0 17 21.98612
0.9 19 2 12 14.35189 19 2 12 16.35327 19 1 11 18.35149 19 1 11 20.34211 19 0 13 22.31375
1 19 2 12 14.62475 19 2 12 16.62613 19 2 12 18.62751 20 1 14 20.6195 20 1 14 22.58861

0.5 0.6 16 0 10 14.38232 16 0 10 16.40022 16 0 10 18.41812 17 0 10 20.4334 17 0 10 22.43479
0.7 17 0 10 14.92239 17 0 10 16.92377 17 0 10 18.92515 17 0 10 20.92654 17 0 10 22.92792
0.8 11 2 6 15.31464 18 1 11 17.3845 18 0 10 19.37879 18 0 10 21.3694 18 0 10 23.36001
0.9 11 3 6 15.46591 18 1 11 17.75975 18 1 11 19.76113 18 0 10 21.75411 18 0 10 23.74472
1 11 4 7 15.61158 19 2 12 18.09913 19 1 11 20.0993 19 1 11 22.08991 19 0 13 24.0674

118



The results also revealed that flexibility from the “can-deliver” level giving the 

supplier the opportunity to coordinate the replenishment among retailers, in turn, 

minimises the total cost. Different “can-deliver” level values indicate that the level of 

flexibility is influenced by the cost settings. Interestingly, there are several cases 

where it more economical to consolidate the replenishment with all retailers in each 

delivery. This situation occurs when the ratio o f holding cost is less than half of 

transportation cost. Thus, it would appear to be more efficient to carry the inventory at 

the maximum range when there is an opportunity to coordinate the inventory with 

other retailers. It will also be costly to replenish other retailers separately due to the 

high transportation cost.

In addition, the results reveal an unexpected pattern in the combination of optimal 

inventory control parameters for different transportation costs at a constant holding 

cost. This pattern can be seen from the table at holding cost equal to 0.2. At a 

transportation cost equal to 0.4, a higher “order-up-to” level is required at low 

shortage cost to decrease the transportation cost; however, at the higher shortage cost 

it remains constant. The model suggests that at some point, it is more efficient to 

increase the quantity o f delivery when the shortage cost is low in order to decrease the 

transportation cost. However, increasing the delivery when higher shortage cost exists 

tends to slightly increase the holding cost and shortage cost more than the 

transportation cost. Therefore, it is more efficient to keep the “order-up-to” level at 

the same level. The different optimal “order-up-to” values causing minimum total cost 

occur at two different areas shown in Figure 5.16. One minimum total cost occurs at 

the first slope o f the graph in Figure 5.16 (a) whilst another minimum total cost occurs 

at a higher “order-up-to” level that is shown in Figure 5.16 (b).
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Figure 5.16: Total cost per period for holding cost = 0.2 and shortage cost = 0.6 

(a) transportation  cost = 0.3 (b) transportation cost = 0.4

From the analysis, it appears that different combinations of cost parameters require at 

different optimal combinations of inventory policy parameters to minimise the 

objective function. Therefore, as a decision maker the supplier has to think carefully 

about the decision parameters to minimise the operation cost for replenishment.

These findings is based on the basic IRP model that considered only 3 retailers and 

one wholesaler in the analysis under the physical supply chain layout that illustrated 

in Figure 5.3. The actual scenario that exists in the case study organisation that 

describe in Chapter 4 is more complex in terms of the number o f retailers, number of 

items and transportation conditions. Nevertheless, the findings from this study still 

show that IRP could be beneficial for the organisation as it gives flexibility to the 

decision making. It will be especially useful when the organisation have conditions 

where 3 retailers need to be replenished at one particular time. It is also believed that 

the organisation will benefit from a reduction in cost in the case when more retailers 

required for delivery. However, further analyses needs to be carried out in order to 

determine the actual behaviour of the IRP model with different numbers o f retailers.
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5.6.2.1 Causal-loop diagram

The dynamic relationship between the cost parameters and the inventory control 

parameters, as explained previously in the above section can be easily visualised 

using a causal-loop diagram as shown in Figure 5.17. The figure shows that the 

holding cost and the transportation cost impact upon the consolidation replenishment. 

When the holding cost at the retailer is high, the supplier tends to keep low inventory 

by reducing the replenishment quantity that is associated with the “order-up-to” level 

and decreasing the consolidation replenishment. These phenomena generate the 

negative causal loops, B -l and B-5, in Figure 5.17. On the other hand, the “order-up- 

to” level is increased in the scenario when the shortage cost at the retailer is also 

increased. Increasing the level o f stock will help to reduce the shortage cost by 

decreasing the backlog number in the negative loop, B-2. Also, the same impact 

occurs by increasing the delivery frequency as indicated in the negative loop, B-3. 

However, increasing the delivery frequency will increase the transportation cost. The 

transportation cost can be reduced through consolidating replenishments and 

increasing the “order-up-to” level as increasing the amount o f stock will reduce the 

number of delivery frequencies in the next period. This scenario is represented by the 

negative loops, B-4, B-6 and B-7.
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Figure 5.17: Causal loop diagram for sensitivity analysis
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5.7 Comparison with other inventory policies

In this section, the performance o f the periodic “can-deliver” policy against the (s,S) 

policy and (sJS-IJS) inventory policy that exist in the literature for joint replenishment 

is examined. The value o f the comparison policies is obtained based on the results o f 

different instances o f the “can-deliver” parameter. The periodic (s, S) policy is 

generated when the “can-deliver” level, Ic , is equal to the “must-deliver” level, l m .

Section 4.6 discussed the benefit o f IRP flexibility with regards to inventory and 

transportation costs and compared to the (s,S) policy with the proposed periodic “can- 

deliver” policy which is used as a benchmark. However, this is just a starting point 

since the comparison is based only on the same “order-up-to” level. In this section, 

the optimal (s,S) policy is examined based on the overall experiments. A comparison 

is then made o f the periodic “can-deliver” policy and the (s,S-\,S) inventory policy 

which triggered the replenishment to all retailers at each replenishment time. The 

latter policy was advocated by Gurbuz et. al. (2007) who characterised it as an 

installation based policy. For the (s,S-\,S) policy, the “can-deliver” level is set equal 

to the “order-up-to” level -1.

The performance o f the periodic “can-deliver” policy is measured based on the 

percentage o f cost saving over the (s,S) policy and the (s,S- 1 ,S) policy which represent 

as P policy in equation 32 . This the same approach used by Pantumsinchai (1992).

Percentsaving(%) = (°P timalTC P P°licy> ~ (O P ^ alT C  "can - deliveTpolicy) x m  Q 2 )
(Optimal TC policy, P)

A positive and higher percent saving value indicated that the periodic “can-deliver” 

policy is able to yield a cost saving and outperform the two benchmark policies. On 

the other hand, a low value shows that all policies have similar behaviour. Only 18 

experiments from the sensitivity analysis in Section 4.6.2 are considered in this 

analysis, and only 3 levels are included for all cost parameters. The cost parameter 

settings and the result o f the percent savings for the periodic “can-deliver” policy over 

(s,S) policy and (sJS-IJS) policy are shown in Table 5.12.
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Table 5.12 shows that the periodic “can-deliver” policy outperforms the (s,S) policy. 

Results presented in Table 5.12 also reveal that smaller savings will be generated 

from the IRP flexibility if  the holding cost, h is higher than the transportation cost, c. 

Without this condition, the average saving is about 13.7% and the highest percentage 

occurs when transportation cost is equal to 0.7, holding cost is equal to 0.1 and 

shortage cost is equal to 0.6. The findings show that early replenishment triggered by 

the “can-deliver” level value provides advantages for the organisation to reduce total 

cost. However, the marginal benefit o f the flexibility decreases as it become higher. It 

can be seen from Table 5.12 that the highest saving percentage for the “can-deliver” 

policy over the (s,S-l,S) policy is only 0.018%. Also, there are cases where the 

periodic “can-deliver” policy has a similar performance with the (s,S-l,S) policy when 

the ratio of transportation cost and holding cost is high.

Table 5.12: Performance of “can-deliver” policy over other two policies.

Cost parameter Saving Percentage over policy
c h P TC("can-delivery" policy) (s,S) (s,S-1,S)

0.3 0.1 0.6 8.07577 12.93441 0
1 8.42311 11.35819 0

0.3 0.6 12.05958 13.03971 0.00273
1 12.95506 11.52526 0.00419

0.5 0.6 14.38232 3.48886 0.00225
1 15.61158 0.00035 0.01827

0.5 0.1 0.6 10.45403 17.22692 0
1 10.89948 16.50104 0

0.3 0.6 16.01573 13.93869 0.00005
1 16.95597 13.11571 0.00134

0.5 0.6 18.41812 13.68076 0.00234
1 20.09930 13.03971 0.00273

0.7 0.1 0.6 12.39587 17.62720 0.00080
1 12.89583 17.00209 0

0.3 0.6 18.91519 9.77392 0.00041
1 20.1424 15.70162 0.00018

0.5 0.6 22.43479 13.71929 0.00418
1 24.06740 14.26916 0.00004
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5.8 The Effect of demand distribution pattern and demand variance 

on retailers

The effect of the proposed IRP model on the demand distribution factor is examined 

by considering Normal and Poisson distributions for identical retailers. The mean 

values for Normal and Poisson distributions are set equal to the mean of the current 

demand distribution used in the study. However, the value of the variance parameter 

for the Poisson distribution is slightly different as a result o f the characteristic of 

Poisson distribution since the variance value is equal to the mean value. Further, five 

different variance values of the Normal distribution are considered in this analysis, 

namely, the condition when the variance is approximately similar to the current 

setting, Normal( 10,2.24), the condition when the model have a lower variance value, 

Normal (10,2.0) and Normal (10,1.0) as well as the condition when the model have a 

higher variance value, Normal (10,2.5) and Normal (10,3.0) in order to examine the 

effect of the IRP model with regard to the variation of demand.

The effect of different demand distributions that may have similar mean and variance 

with current demand distribution used in the IRP model on the optimal inventory 

control parameters that minimises the total cost is shown in Table 5.13.

Table 5.13: Optimal inventory control parameters and total cost for different 

demand distributions

Demand "Order-up- "Must-deliver" "Can-deliver" Optimal
Distribution to" level level level total cost
Normal (10,2.24) 19 0 11 22.9644
Poisson(lO) 19 0 10 23.7606
Binomial(20,0.5) 19 0 13 22.9528

With a similar warm-up period and length of simulation execution, it is found that the 

behaviour of the model is consistent, even with different demand distributions, since 

the optimal inventory control parameter is similar for Normal (10, 2.24), Poisson (10) 

and Binomial (20, 0.5). Thus, it is anticipated that the model will behave similarly for 

demand distributions that have similar characteristics. However, different total cost 

values occur as a result o f different values of demand data generated with regards to 

the demand pattern behaviours. Consistent with ANOVA analysis findings reported in
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Mustaffa and Disney (2006), the IRP model performance measurement is highly 

influenced by the demand distribution factor. With regard to the impact of demand 

variations, it can be seen in Table 5.14 that shortage cost is increased as the demand 

variance is increased, which is as expected.

Table 5.14: Effect of demand variance on inventory control parameters and costs

Parameters

Demand distribution
Normal
(10,1.0)

Normal
(10,2.0)

Normal
(10,2.24)

Normal
(10,2.50)

Normal
(10,3.0)

"Order-up-to"
level 19 19 19 19 19

"Must- 
deliver" level 5 1 0 0 0
"Can-deliver"

level 9 13 11 11 10
Holding cost 5.5180 5.7767 5.7403 5.8057 5.9384
Shortage cost 1.4398 2.1469 2.6229 2.8117 3.1534

Transportation
cost 14.9613 14.8383 14.6012 14.5608 14.5027

Total cost 21.9190 22.7619 22.9644 23.1782 23.5945

Is also been discovered that the optimal combination of inventory control parameters 

have shown an interesting pattern in the results. Basically, in theory a higher “must- 

deliver” level is needed in order to deal with high demand variance. However, the 

findings from Table 5.14 suggest that a lower “must-deliver” level is more 

economical when there is opportunity to coordinate the replenishment between 

retailers via the “can-deliver” level by considering o f the transportation cost in the 

performance measurement. A higher “must-deliver” level may increase the number of 

delivery trips where probably only one or two retailers that reach the “must-deliver” 

level and “can-deliver” level are required to be delivered in one delivery trip. 

Therefore, another delivery trip needs to be scheduled in the next period in order to 

fulfil the requirement for others retailer. Hence, more frequent delivery is required 

and this phenomenon will cause a higher transportation cost and holding cost. 

However less total cost will occur with a low “must-deliver” level since the 

probability to deliver to all retailers in one delivery trip is higher. This is because, 

there is a gap between the replenishment periods as none of the retailers have reached 

the “must-deliver” level and no replenishment is required at some period. As a result,
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the inventory level for all retailers may decrease unvaryingly and all retailers can be 

consolidated together for each replenishment time. As a result, fewer delivery trips are 

required. Therefore, less total cost is incurred with a reduction of transportation cost 

and holding cost even though it may cause a slightly higher shortage cost.

5.9 Conclusion

This chapter has examined the opportunity for a supplier to consolidate retailers’ 

replenishment through an inventory control policy called the “can-deliver” policy. 

The analysis was carried out using a spreadsheet simulation. The steady state period 

was determined using the well-known Welch’s method. The simulation was executed 

with multiple replications to ensure accuracy. At the 95 percent and 99 percent 

confidence level, three replications were found appropriate for this simulation model.

The performance of the “can-deliver” policy was evaluated in 3 phases. First, we 

examined the model by varying the inventory control parameter with the constant 

costs parameter. Results showed that the total costs decreased as the “can-delivery” 

level is increased. However, the benefit seemed to saturate out with high flexibility. 

The experiment is expanded by varying the cost parameters using the experimental 

design approach based on the Taguchi methods to get the rough idea of model 

behaviour. The experiment showed that the “must-deliver” level, holding cost and 

transportation cost factors had a large impact on the model performance measurement 

as expected. Then, the sensitivity analysis of the model is analysed by determining the 

optimal combination o f inventory control parameters that minimised the total cost. 

Total cost of the model is a function of holding cost, shortage cost and transportation 

cost. 125 combinations o f these costs were analysed using the brute-force approach to 

determine the optimal total cost. Results showed that the “can-delivery” level 

minimised the total cost for the combination of costs. The result suggested that it is 

economical to replenish all retailers when there is the opportunity to make 

replenishment and the ratio o f transportation cost is high compared to holding cost. In 

other situations, the results showed that the minimum total cost existed at a certain 

flexibility level. The dynamic relationship between costs parameter and the inventory 

control parameters was visualized using the causal-loop diagram.
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Finally, in order to evaluate this model’s performance, comparison analysis was 

performed between the “can-delivery” policy and the (s,S) policy as well as the 

(s,S-1,5) policy by changing the setting of the “can-delivery” level. The results 

showed that with the periodic “can-deliver” policy it was possible to get the 

maximum 17.6% saving compared to the (s,S) policy. On the other hand, only a small 

additional cost would be incurred if replenishment was made to all retailers at each 

delivery time.

So far, the optimal routing strategy for the proposed IRP model has been determined 

based on the route that minimises the total distance travelled during the replenishment 

activities. However, as the quantity o f delivery at each retailer is different based on 

the condition of retailers and the cost function, further analysis o f the optimal 

sequence of delivery between retailers based on distance, weight of vehicle and the 

weight of replenishment that minimises the costs and vehicle energy and maximises 

the overall vehicle effectiveness needs to be carried out. Such analysis is presented in 

the following chapter.
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Chapter 6 Transport Effectiveness

The optimal route for the replenishment analysis conducted in chapter 5 was based on 

minimising the distance travelled by a vehicle in order to make a round trip delivery 

from the central supplier to multiple retailers. The sequence by which retailers were 

serviced was determined employing a Travelling Salesman Problem approach in the 

hope that minimising the total distance travelled would lower the transportation cost. 

This assumed the transportation cost for the periodic “can deliver” policy was solely 

based upon the cost per unit distance (km) travelled. However, only minimising the 

distance does not guarantee minimisation o f vehicles’ energy consumption or 

maximisation of vehicle’s effectiveness and this therefore led to the development of 

research question 4. This chapter attempts to address this research question by 

examining other routing strategies which can be integrated with the periodic “can- 

deliver” policy to not only improve the economic performance o f IRP model but to 

reduce the environmental impact o f the distribution activities.

This study differs from previous approaches implemented by other researchers in that 

the decision in determining the optimal route and the sequence o f the replenishment 

considers not only the distance travelled but also the vehicle weight and the load it 

carries to replenish each retailer. Further, the strategy considered for integration in the 

IRP model not only evaluates the overall performance of the routing chosen but also 

other factors, such as the quantity o f delivery as well as the time used to carry out the 

replenishment activities for one delivery trip.

Specifically, this analysis examines the impact o f two vehicle effectiveness measures 

that integrate different vehicle key performance indicator measurements known as 

Overall Vehicle Effectiveness (OVE) and Modified Overall Vehicle Effectiveness 

(MOVE) metric. The performance of these metrics is evaluated based on the energy 

consumed by the vehicle as well as the total distance travelled that is usually 

examined in the Travelling Salesman Problem (TSP) approach. The study also 

determines the best policy to use for the routing strategy of the IRP model.
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6.1 Introduction

Logistics is playing an increasingly important role in business strategies and can 

influence the business supply chain process, (Rafele, 2004). It is therefore important 

for an organisation to so manage its vehicle performance as to successfully deliver 

customer requirements in an effective way. By correctly evaluating the vehicle 

performance, an organisation can identify problems that need to be addressed. This 

may result in increases in the vehicle effectiveness as well as reductions in the energy 

consumed and cost incurred.

Studies in the literature have used different approaches to monitor the efficiency and 

effectiveness of vehicles. Most studies have used a set o f Key Performance Indicators 

(KPIs) as a measurement to evaluate the logistics performance. McKinnon (2000) in 

association with the Energy Efficiency Best Practice Programme conducted a pilot 

study to measure transport efficiency using a survey approach in the food industry. 

The performance of transportation operation was measured based on five sets of KPIs,

namely:

i) Vehicle fill

ii) Empty running

iii) Time utilisation

iv) Deviation from schedule

v) Fuel consumption

The survey was continued in 2002 with the objectives of benchmarking vehicle 

efficiency, estimating the average levels of efficiency as well as identifying areas for 

improvement. In the second survey, more participants and different vehicle types 

were involved to measure vehicle performance with similar KPI categories, 

(McKinnon et al., 2003). McKinnon and Ge (2006) then analysed the results from the 

survey focusing on the routing efficiency and back-loading opportunities.

The same KPI were used also by the FreightBestPractice programme to measure 

performance across different sectors such as non-food retail distribution and next-day 

parcel delivery (FreightBestPractice, 2006a, 2006b). The FreightBestPractice
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programme together with the Freight Transport Association developed a “Fleet 

Performance Management Tool” to assist organisations in monitoring their vehicle 

performance based on 24 KPI’s that are grouped into costs, operational, service, 

compliance, maintenance and environmental categories (FreightBestPractice, 2007). 

For instance, the average cost per unit delivery, the total vehicle cost, total miles run 

and the percentage average vehicle fill.

Other notable studies that have used KPI’s include Donselaar et al. (1998) and Krauth 

et al. (2005) who both conducted surveys on logistic service providers. Donselaar 

et.al. (1998) identified critical success factors in the transportation and distribution 

sectors related to financial and operations performance based on turnover/variable, 

turnover/direct costs, and turnover/wages elements. Krauth et al. (2005) clustered 

qualitative KPIs into internal perspectives o f management and employees and the 

external perspective o f the customer and the society.

A common performance measurement in the IRP area for measuring the effectiveness 

in the distribution is the volume delivered per mile travelled. However, Song and 

Savelsbergh (2007) have contested the correctness of using this measurement for 

determining the absolute performance and introduced the concept o f a Tower bound 

on the minimum total mileage required to satisfy customer demand’.

The TSP approach can also be categorised as a KPI measurement where the distance 

travelled per tour is used as a measure o f the performance o f the vehicle that will 

minimise the cost. Kara et al. (2007) recently proposed a cost function that also 

considers the vehicle load factor to identify the best route for the Capacitated Vehicle 

Routing Problem that minimises the energy consumption using a weight-distance 

measurement.

KPI measurement is focused towards the evaluation of effectiveness of specific or 

individual criteria that need to be analysed separately. Mason. Simons and Gardner 

(2001) and Simons, Mason and Gardner (2004) have proposed a new metric that can 

measure the effectiveness o f a vehicle in a single metric, called the Overall Vehicle 

Effectiveness (OVE) measurement. This measurement, founded in the lean thinking 

approach, aims to reduce wasteful activities and is useful when determining areas for
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potential improvement. However, this measurement incorrectly assesses round trip 

schedules as it tends to increase the energy consumed by the vehicle. As a result, 

Guan et al. (2003) have attempted to modify this metric by adding the time utilisation 

function to the performance criteria known as the Modified Overall Vehicle 

Effectiveness (MOVE). The performance behaviour of OVE and MOVE 

measurements and KPI’s was debated at the Freight Logistics Research Group, 

November 2004 meeting.

In light of the above, this thesis is interested in examining the impact of the OVE 

and MOVE on the transportation cost function used to determine the total cost 

in the periodic ‘ can-deliver” model. Accordingly, the comparison was made 

between OVE and MOVE metric and the Travelling Salesman Problem 

approach in terms of cost, distance and energy consumption of the vehicle.

The relevant KPIs, OVE and MOVE metrics are discussed in detail in sections 6.2, 

6.3 and 6.4 respectively. This is followed by a numerical illustration o f these three 

measurements for 2 and 3 retailers in section 6.5. Next, a new transportation cost 

function is presented in section 6.6, followed by the description of a modified 

spreadsheet simulation in section 6.7. Section 6.8 evaluates the performance of all 

three metrics in terms o f distance, vehicle energy, vehicle effectiveness with a new 

cost function. The effect o f the IRP model is analysed using the recommended 

vehicle effectiveness measurement with different transportation cost variables in 

section 6.9. The discussion continues in Section 6.10 with the examination of the 

effect of different demand distribution patterns and weight converter values on the 

behaviour of the proposed IRP model, to examine the external validity of the study. 

These analyses attempt to answer research question 3 by observing the effect of 

different routing used in the periodic “can-deliver” policy.

6.2 Key Performance Indicators (KPIs)

This study was specifically interested in analysing two KPIs related to the distance 

and energy consumed by the vehicle. The minimum distance travelled by the vehicle 

can be determined by solving the Travelling Salesman problem using the brute-force
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approach based on the route generated in section 5.2 for small instance such as we use 

in present study. Similarly, the brute-force approach is adopted in determining the 

minimum energy consumption criterion in this chapter. The best route can be 

determined using the TSP concept, however the decision now takes into account the 

vehicle weight load carried as well as distances travelled in order to minimise vehicle 

energy consumption throughout the trip. According to Kara et al. (2007) the vehicle 

weight has an impact on the energy used by the vehicle, often referred to as the fuel 

usage. Vehicles with high weight tend to use more fuel thus reducing the miles per 

gallon achieved by the vehicle. Coyle (2007) reported that the miles per gallon (MPG) 

when 26 and 32 tonne vehicles were fully loaded was almost half that of the MPG 

when running empty vehicles. However, the energy consumed in terms of litres per 

tonne per kilometre is increased as the vehicle

As the weight of the vehicle changes throughput the trip according to the deliveries to 

the retailers, it is crucial for the decision-maker to determine the best order of 

deliveries throughout the trip to minimise the energy consumed based on the un-laden 

vehicle weight, distance between the delivery points as well as the weight delivered to 

each of the retailers. The total weight-distance measurement for the multi-retailer 

replenishment scenario is as follows:

n f
f  "  )

\

wd, = Y i d i - l , i v + X X +  V* < 0 (33)
/=! \ I  j= i ) /

Where

wdt = total weight-distance o f delivery trip at time t 

v = un-laden vehicle weight 

Wj = weight of replenishment for retailer j

d t j = distance between location i and j  where index 0 represents the base point,

index 1 is the first retailer visited during the delivery trip and so on. 

dn 0 = distance between last retailer and the base

n = number o f retailers
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6.3 Overall Vehicle Effectiveness (OVE)

Simons, Mason and Gardner (2004) adopted the OVE measurement from the Overall 

Equipment Effectiveness (OEE) metric. The OEE metric was historically used in the 

manufacturing industry to measure the effectiveness of machines. It was developed by 

Seiichi Nakajima based on the Total Productive Maintenance (TPM) concept, 

(William, 2007). It focuses on eliminating six main classes of equipment waste that 

can be categorised into downtime, speed and quality losses. Figure 6.1 is a diagram of 

the OEE tool illustrating the relationship between losses and the equipment 

performance as illustrated in Muchiri and Pintelon (2008).

Equipment timing The six big losess Perspective integrated

Loading

time
I— S Maintenance effectiveness

Operating

time

Down time

losses
| = >  Production effectiveness

Speed

losses

Net operating 

time

Valuable 

operating time

Defect
< = >  Quality effectivenesslosses

1. Equipment failure

3. Idling & minor stoppage

4. Reduced speed

2. Setup & adjustment

5. Defects in process

6. Reduced yield

Figure 6.1: The OEE metric with 6 major losses in the equipment process

Muchiri and Pintelon (2008) differentiated between the effectiveness and efficiency 

measurement and concluded that the OEE metric is classified as a measure of 

effectiveness since it measures the actual performance against the expected 

performance of the equipment, (ibid). It can be calculated based on the availability, 

performance and quality factors as equation (34)

OEE = Availability * Performance * Quality (34)

These factors are related to the six main equipment losses where the availability rate 

is a measure o f the percentage o f the available time the machine produces good work 

by considering the total downtime caused by the equipment failure and the setup or 

adjustment time. The performance rate of the equipment in the period available to
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produce the product can be affected by idle time or speed reduction. The quality rate 

is determined by taking the defect and yield losses into account. This basic 

effectiveness measurement which is limited to measuring individual pieces of 

equipment, has led to the development o f improvement measurements which look at 

wider aspects, such as the total equipment effectiveness performance (TEEP), 

production equipment effectiveness (PEE), overall factory effectiveness (OFE), and 

overall asset effectiveness (OAE) (Muchiri and Pintelon, 2008).

Simons, Mason and Gardner (2004) expanded this performance measurement 

approach into the field o f logistics by using it to measure the total effectiveness of a 

vehicle with a single measure. A similar concept to OEE is used where the availability, 

performance and quality are three main factors to calculate the new metric called 

Overall Vehicle Effectiveness (OVE). This performance measure, inspired by the lean 

thinking approach, is used to optimise the value adding activities and eliminate the 

non-value adding activities in road freight transport. With OVE, wasteful activities in 

the delivery process that can reduce the effectiveness of a vehicle can be identified 

and eliminated. Simons, Mason and Gardner (2004) found that the value-adding 

activities in transport are affected by five main losses. These include the extra time 

used to load and unload a vehicle above the standard load time as well as the vehicle’s 

fill loss, speed loss and quality loss. The total performance is measured in terms of an 

overall percentage and the identification o f the most important activity to reduce is 

given by the factor that has the lower percentage. The OVE metric uses weight- 

distance, as it is a common road-freight transport KPI, to evaluate the vehicle’s 

energy efficiency (Aylward and O ’Toole, 2007).

6.3.1 The availability rate

The availability of the vehicle is the percentage of the actual vehicle’s weight distance 

(after considering the loss time caused by the waste activities, such as excess loading 

time) compared to the planned weight distance as shown in equation (35) below:

, ... actual weight distance
Availability  ----------------------- ;--------

planned weight distance
(35)



where the

(Actual weight distance) = (planned weight distance) — (loss weight distance) (36)

The planned weight distance and loss weight distance are calculated as follows:

Planned weight distance =
Planned time (min) * optimal vehicle speed (km/min) 

* vehicle capacity (weight)
(37)

Loss weight distance =
Loss time (min) * optimal vehicle speed (km/min) 

* vehicle capacity (weight)
(38)

Hence, equation (35) can be simplified as 1-
loss time \

where the value of loss
planned time

time is supposed to be less than the value o f planned time. The planned time, of 

course has to account for the statutory breaks during the journey.

Figure 6.2 is a diagram o f the OVE availability factor.

Planned weight distance

Actual weight distance Loss weight distance

<------------  Availability ---------------------------- ►

Figure 6.2: OVE availability

6.3.2 Performance

The performance factor is evaluated by the capacity and the speed rate o f the vehicle. 

The capacity rate is measured based on the total weight-distance carried by the 

vehicle to visit all delivery points against the actual weight distance as equation (39):

^  total weight distance carried . . . .
Capacity rate = ------------   (39)

actual weight distance

135



The total weight distance carried is calculated based on the total distance travelled and 

the weight carried by the vehicle along the trip, similar to the energy consumption 

calculation in equation (33), but the total weight-distance in this situation is 

determined without the vehicle un-laden weight as in equation (40) for the case of 

direct delivery and equation (41) for multi-retailer scenario: 

wd, = Wj * d0 l (40)

(41)

The speed rate measures the average speed used by the vehicle compared to the 

optimal speed that is allowed for the vehicle as in equation (42).

n f
( »  'I

ii M

/=! V

n

)

Speed rate =
Actual average speed (km/min) 

Optimal average speed (km/min)
(42)

where

Actual average speed =
Total distance travelled (km) 

Travelling time (min)
(43)

The travelling time is the actual time the vehicle spends on the route after taking into 

account the transport losses time such as the loading and unloading time from the 

whole replenishment planned time. As a result a lower actual average speed will 

occur if the lost time is low which will increase the travelling time value. Hence, the 

performance rate o f the vehicle can be computed by:

Performance rate = speed rate x capacity rate 

A diagram of OVE performance rate presented in Figure 6.3 below

(44)

Actual weight distance

Total weight distance carried Fill loss

Speed rate Speed loss

— Performance —►
Figure 6.3: OVE performance
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6.3.3 Quality

The third factor that is important when evaluating the vehicle performance is the 

quality of the output, which can cause additional losses, such as time delays and 

reductions in the total weight distance carried by the vehicle if  any problem occurs 

along the process. For simplicity, the quality rate in the model is assumed at 95%, as 

this effect is outside o f the model boundary in this study.

6.3.4 OVE

The overall vehicle effectiveness can be computed by multiplying the percentages of 

availability rate, performance rate and quality rate as shown in equation (45):

OVE (%) = availability (%) * performance (%) * quality (%) (45)

A diagram of these three factors with their wasteful activities is shown in Figure 6.4. 

Some issues occur when using the OVE metric as some wasteful activities are 

incorrectly classified as value adding activities. The determination of the optimal 

vehicle speed and quality level is a subjective measurement based on several factors. 

However, it is not a major problem as it can be overcome by making a clarification 

based on common logistics procedures and standard measurements, such as the 

national speed limit.
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Figure 6.4: OVE diagram

A study by Simon, Mason and Gardner (2004) has revealed that the OVE metric 

raised a problem with regard to the round trip since the highest effectiveness occurred 

on trips with the highest weight-distance value. Therefore, Guan et al. (2003) 

suggested that the OVE metric should first determine the optimal route of the vehicle 

before the OVE metric is used in order to achieve the correct optimal route decision.

6.4 M o d ified  O v era ll V eh ic le  E ffectiven ess (M O V E )

Guan et al. (2003) made an effort to improve the OVE metric by introducing a new 

metric called the Modified Overall Vehicle Effectiveness (MOVE) metric. They 

found that the problem in OVE metric is due to lack of focus on measurement of 

vehicle effectiveness in that wasteful activities occur when a non- efficient route is 

selected. They therefore included a route efficiency component as one important 

additional aspect of the vehicle performance rate.

The efficiency of the selected route in terms of weight distance measurement can be 

calculated as:

. minimum route cost (weight - distance)
Route efficiency =     — —--- —  —

actual route cost (weight - distance)
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The total weight o f the vehicle here is the sum of the total weight of vehicle loads and 

the unladen vehicle weight, as it is subsequently used to determine an accurate total 

weight distance for the round trip, even with an empty backhaul.

The minimum route cost is the minimised weight-distance along an optimal route, 

whilst the actual route cost is the total weight-distance for the selected route. The 

optimal route is referred to here as the lowest weight-distance value to complete the 

trip. This element will make sure the effectiveness of the vehicle has a relationship 

with the optimal route; 100% route efficiency rate can be achieved only if the vehicle 

follows the optimal route for the trip.

The MOVE metric also determines the effectiveness o f the vehicle by evaluating time 

efficiency that is, the minimum theoretical time to complete a tour compared to the 

actual time for the trip including the value-adding and non-value adding activities (see 

equation 47 below):

^  . Shortest possible time (mm)
Time efficiency = ------------£-------------------------  (47)

Actual time taken (min)

The shortest possible vehicle travel time is based on the time taken to complete the 

tour following the optimal route according to the optimal vehicle speed, with time 

allocated for other value-added activities and legal requirements. The speed rate 

measurement used in the OVE metric is modified in the MOVE metric to evaluate the 

time aspect o f vehicle effectiveness.

This MOVE metric also modifies the vehicle capacity rate measurement in the OVE 

metric with another measurement factor that will give an appropriate measurement to 

evaluate the vehicle capacity aspect. This new factor measures the capacity carried by 

the vehicle against the available capacity for that vehicle, and takes into account the 

distance travelled as well as the weight carried along the optimal route. Thus,

, . , . optimal route weight - distance (weight - distance)
Vehicle utilisation = ---------- ------ ——------ —---- ---------- ;— . . A A — I™;

planned available weight - distance (weight - distance)
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The quality factor remains the same in the new metric to evaluate the quality of the 

vehicle performance and takes into account factors that can reduce vehicle 

effectiveness due to failure or error occurring during the delivery process.

Therefore, the MOVE metric can be calculated by multiplying together all the defined 

factors as follows:

MOVE = Vehicle utilisation x Time efficiency * Route efficiency * Quality (49)

Computation of the MOVE metric has been explained in detail by Guan (2002). His 

study also evaluated the performance o f OVE and MOVE metrics in terms of various 

factors such as validity, robustness, usefulness, integration, economy and 

compatibility. In general, the finding from the study by Guan (2002) shows that the 

MOVE metric outperforms the OVE metric in determining the most efficient route. 

Further, the MOVE metric can be modified according to organisational requirements 

and it is possible to extend it for use in measuring performance in other logistical 

scenarios. This is because with the structure of the MOVE metric, it is possible to add 

other elements to the existing factors (see Figure 6.5).

Planned available 
weight distance

MOVE

l§>
Minimum route cost

X

T
im

e
efficiency

Actual time taken

X
oe

Total delivery required

S e
1* Actual route cost ■ Shortest possible j | | | J | |  

time
Valuable
delivery

L oss effectiven ess

Figure 6.5: The components of MOVE

6.5 Numerical example

The analysis begins with a numerical example for the MOVE and OVE metrics based 

on the theory previously discussed in Section 6.3 and 6.4.
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First, the evaluation o f the OVE and MOVE metric’s effectiveness percentage is 

demonstrated based on a simple example involving 2 retailers. The distance between 

each retailer and the base point and retailers’ weight requirement is based on the 

layout shown in Figure 6.6. Here, the distance between each point is assumed to be 

symmetric, that is, the total distance is similar for both directions and the unit used for 

weight of the product is in kilograms (kg). The calculation is determined based on 

sample input data shown in Table 6.1.

Retailer A

A ^ !70kg)10 km
10km

14.14 kmbase Retailer B 
(210 kg)

Figure 6.6: Retailers’ layout and weight requirement

Table 6.1 Input data for the performance measurement calculation

Input Data
1 Maximum transportation capacity 400 kg
2 Actual journey time 70 min
3 Maximum Speed 1 km/min
4 Quality 95 %
5 Break time 15 min
6 Excess Loading time 10 min
7 Unladen Vehicle weight 500 kg
8 Available travelling time 55 min

In this case, two possible routes exist to make the replenishment and will be examined 

using both metrics. The vehicle has an option to choose either to replenish retailer A 

first followed by retailer B, or the other way around. By only considering the distance 

factor to determine the optimal route for symmetric cases, it seems that either routes 

can be chosen when minimising the distance travelled. However, the vehicle energy 

consumed for each route is different. This is because the load carried by the vehicle 

varies according to the retailers’ requirements. Therefore, it is more accurate to
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determine an efficient route by considering both distance travelled and vehicle load 

which influence vehicle effectiveness and energy consumption.

To begin, the total distance travelled and the total weight-distance (both without and 

with un-laden vehicles) are calculated for both route options. This is done with the 

brute-force strategy. For simplicity, the route that leaves the base to retailer A 

followed by retailer B before it returns to the base is named route 1, and the opposite 

direction is designated route 2. The result in Table 6.2 shows that route 1 is the 

optimal route, with the least distance (km) and energy consumption (kg-km).

Table 6.2: The distance and weight-distance calculation for route 1 and route 2

Route 1

Distance 34.14 km

Weight-
distance

With un­
laden 

vehicle

=(500+170+210)kg*10km+(500+210)kg*10km 
+500kg*14.14km 

=22970 kg-km
Without
un-laden
vehicle

=(170+210)kg*1 Okm+210kg*10km 
=5900 kg-km

Route 2

Distance 34.14 km

Weight-
distance

With un­
laden 

vehicle

=(500+210+170)kg*14.14km+(500+170)kg*10km 
+500kg*10km 

=24143.2 kg-km
Without
un-laden
vehicle

=(210+170)kg*14.14km+170kg*10km 
=7073.2 kg-km

Using the information in Table 6.1 and 6.2, the OVE and MOVE metric percentages 

for route 1 and route 2 can be computed using equations (33) to (44) with 

consideration that all activities are similar even though different routes are used for 

delivery. The difference in performance between route 1 and route 2 is quantified by 

the capacity rate in the case o f the OVE metric and the route efficiency in the case of 

the MOVE metric. The other factors remain the same for both metrics. Table 6.3 

shows the value o f the availability and speed rate factors for the OVE metric whilst 

the utilisation and time efficiency values for the MOVE metric are shown in Table 6.4.
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Table 6.3 : OVE availability and speed rate calculation
Factor Calculation

Availability
Planned weight distance 400 kg *1 km/min * 55 min = 22000 kg-km

Lost weight distance 400 kg *1 km/min *10 min = 4000 kg-km
Actual weight distance (22000-4000) kg-km = 18000 kg-km

.•. Availability
18000 kg-km _ gn0/̂  
22000 kg-km

Speed rate

Actual travelling time 55 min-10 min = 45 min

Average speed rate
34.14 km .------------ = 0.76 km/min

45 min

.‘. Speed rate
0.76 km/min 76%

1 km/min

Table 6.4 : MOVE vehicle utilisation and time efficiency calculation

Factor Calculation

Vehicle
utilisation

Optimal route weight-distance 5900 kg-km
Planned available weight-distance 22000 kg-km

.‘.Vehicle utilisation
5900 kg-km _2682% 
22000 kg-km

Time efficiency

Shortest travel time 34.14km------------ = 34.14 mm
1 km/min

Shortest possible time (34.14 + 15) min = 49.14 min

.‘.Time efficiency 49' 14min=70.2% 
70 min

Then, the capacity rate used in the OVE calculation for both routes can be calculated 

as follows:

i) Capacity rate for route 1

= 5900k g -k m  = 3 2  8%
18000 k g -k m

ii) Capacity rate for route 2

= 7Q73-2 k g " km = 3 9 3 %
18000 kg - km

Hence, the performance rate for the OVE metric for both routes is:

i) Route l ’s performance rate = 32.8% * 76% = 24.93%
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ii) Route 2 ’s performance rate = 39.3% * 76% = 29.87% 

The route efficiency for the MOVE metric for both routes is:

i) Route efficiency for route 1

22970k g -k m
=     =  100%

22970 kg - km

ii) Route efficiency for route 2

,  22970 kg - km 
24143.2k g -k m

Finally, the total OVE percentage is determined by multiplying the availability rate 

percentage with the performance rate and quality rate percentages as shown in Table 

6.5. The MOVE values for both routes are also shown in Table 6.5.

Table 6.5 : OVE and MOVE values for route 1 and route 2

Route 1 Route 2

MOVE 26.82%* 100%*70.2%*95% = 17.89% 26.82%*95.14%*70.2%*95% = 17.02%
OVE 82%*24.93%*95% = 19.42% 82%*29.87%*95% = 23.27%

A contrast can be seen between the OVE and MOVE results in Table 6.5. Route 2 has 

a higher performance than route 1 using the OVE metric, but with the MOVE metric, 

route 1 is superior to route 2. From Table 6.5, it can be seen that the OVE metric is 

driven by the performance rate, 24.93% for route 1 and 29.87% for route 2. The 

capacity rate that contributes to the total OVE performance rate percentage is higher 

in the case where the vehicle has a higher weight-distance value for the trip. This 

suggests that the OVE metric gives more priority to heavy loads carried along longer 

distances since the capacity rate value is the total weight-distance divided by the 

actual weight-distance value. However, as has been discussed before, increasing the 

vehicle’s weight will cause an increase in the fuel consumption. As a result, such 

increase may influence the vehicle operating cost and also the maintenance cost.

Further, the MOVE metric produces a higher vehicle effectiveness for route 1. Table 

6.5 shows that route 2 contributes to a lower route efficiency percentage since the
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total weight-distance for an actual route taken is longer than the optimal, minimised 

weight-distance. Therefore, the MOVE metric is capable of identifying the best route 

that minimises the energy consumed by the vehicle. Moreover, the vehicle utilisation 

rate in the MOVE calculation points to the most suitable size of the vehicle to be used 

in order to better utilise resources and reduce wasteful activities. The vehicle 

utilisation rate will decrease as the vehicle size increases or as the size of the vehicle 

loads decrease. Figure 6.7 illustrates the effect of different maximum transportation 

capacities on vehicle utilisation rate and overall MOVE percentage. The effect of 

vehicle utilisation on the vehicle load factor will be discussed later in Section 6.7.
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Figure 6.7: The effect of different maximum transportation capacity on vehicle 

utilisation rate  and M OVE percentage

As can be seen in Figure 6.7, the vehicle utilisation rate and total vehicle performance 

decreases to almost half o f the current rate by doubling the vehicle size capacity to 

800 kg. The percentage is decreased further as we increase the vehicle capacity. Thus, 

the decrement o f vehicle utilisation rate and MOVE percentage decrement is inversely 

proportional to the increment o f maximum transportation capacity. It is suspected that 

the same condition also holds for the vehicle capacity rate in the OVE calculation

Vehicle utilisation (% ) 

M O VE (% )
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when different vehicle sizes are used for replenishment. A large vehicle capacity will 

decrease the capacity rate and this influences the performance rate and total OVE 

score.

Next, the OVE and MOVE metrics are evaluated when the requirement of each 

retailer is changed by assigning the heaviest load to retailer A instead of retailer B. 

Interestingly, the new result shown in Table 6 . 6  is similar to that derived from the 

previous analysis. It is obvious here that route 2 produces higher weight-distance 

since the vehicle is carrying the total load from the base along the longer route 

between the base and retailer B. Furthermore, the vehicle is carrying the heavier load 

after making the replenishment to retailer B.

Table 6.6: MOVE and OVE results after weight requirement changes

Route 1 Route 2

MOVE 8.9431 8.5085

OVE 9.7063 11.6071

The situation is different when retailer A requires small loads compared to retailer B. 

This is because the MOVE metric will give higher performance for route 2 rather than 

route 1, as less energy is used by the vehicle to deliver the heavy loads first at retailer 

B, even though it is a longer distance from the base. Figure 6 . 8  illustrates the 4 

MOVE factors for both routes in the situation where Retailer A only requires 70 kg 

compared to the requirement o f Retailer B of 210 kg. Therefore, the decision as to 

which route to use for the trip is not dependent on either distance or weight factor 

only but on both factors.
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Figure 6 .8 : MOVE factors

So far, the OVE and MOVE metrics have been computed for equal distances between 

alternative routes. The analysis continues with the evaluation for 3 retailers where 

different total distances occur when a vehicle chooses a different sequence of retailers 

during the trip. With a similar physical layout as in section 5.2, there are two possible 

total distances for 6 different route combinations.

The results for 6 alternative routes, including the distance travelled and the total 

weight-distance are summarised in Table 6.7 for conditions when the loads required 

for retailers A, B and C are 190 kg, 240 kg and 200 kg, respectively. The same data is 

as used in Table 6.1, except the maximum vehicle capacity is now set to 700 kg to 

make sure the vehicle capacity is related to the total loads required at all three 

locations. The route combinations are represented as routes 1 to 6, and the 

replenishment sequences for each route are as follows:

Route 1 : 

Route 2 : 

Route 3 : 

Route 4 : 

Route 5 : 

Route 5 :

base -  retailer A 

base -  retailer A 

base -  retailer B 

base -  retailer B 

base -  retailer C 

base -  retailer C

retailer B 

retailer C 

retailer A 

retailer C 

retailer A 

retailer B

ller C 

ler B 

ller C 

iler A 

iler B 

retailer A

reta

reta

reta

reta

reta

base

base

base

base

base

base
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Table 6.7 MOVE, OVE and KPI measurement for 6 routes

Metrics Factors Route 1 Route 2 Route 3 Route 4 Route 5 Route 6
Vehicle utilisation (%) 32.47

MOVE Route efficiency (%) 99.39 83.2 81.71 82 82 100
Time efficiency (%) 78.57
Quality (%) 95
MOVE (%) 24.09 20.16 19.8 19.87 19.87 24 24
Availability (%) 82

OVE
Speed (%) 89
Capacity rate (%) 40.3 47.4 49.6 49.2 46.9 39.7
Performance (%) 35.87 42.19 44.14 43.79 41.74 35.33
OVE (%) 27.94 32.87 34.39 34.11 32.52 27.52

KPI’S
Distance (km) 48.28 48.28 48.28 48.28
Weight-distance (kg-km) 
with unladen vehicle 32700 39061.6 39776.2 39634.8 38920.2 IHB

The routes that give highest performance for all metrics are highlighted in the Table 

6.7. It can be seen that route 6  is the best route using the MOVE metric, whilst the 

OVE metric allocates the highest performance to route 3. The optimal route 

determined by the MOVE metric is based on the minimum distance travelled and 

weight-distance carried by the vehicle. Using the OVE metric, routes having higher 

distances tend to contribute to a high weight-distance value to maximise vehicle 

performance.

Hence, the examples show that the MOVE metric outperforms the OVE metric as it 

minimises the vehicle distance travelled and energy consumed. The impact of the 

MOVE and OVE metrics and TSP approach in terms of cost will be discussed in the 

Section 6 .8 .

6.6 New transportation cost function

As the OVE and MOVE metrics measure the vehicle performance in terms of weight- 

distance, a new transportation cost function is needed to replace the previous 

transportation cost function, which only takes into account the distance travelled as a 

factor in the calculation o f transportation cost. In the development of a new cost 

function, other factors related to transportation activities and the delivery process, 

which may influence the cost. These will now be considered.
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In general, transportation costs can be categorised into fixed and variable costs, 

(Rushton et al., 2006; and Coyle et al., 1999) classified these costs as the direct costs. 

Various cost functions have been used to determine the cost of transportation in multi­

retailer situations, probably because o f the different problems and objectives which 

need to be solved. For example, Bums et al. (1985) considered three different cost 

components for the transportation cost function, including fixed cost incurred at the 

beginning of the delivery time, variable cost related to the distance travelled, and 

fixed cost charged for each stop at their customers. Qu et al. (1999) employed a 

similar cost function to Bums et al. (1985), which also considered the travelling costs 

corresponding to the distance travelled and stopover costs excluded from the fixed 

cost. In contrast, Yu et al. (2008) considered the delivery trip as a fixed cost for each 

tour made instead o f a measure based on the distance travelled. Yu et al. (2008) also 

included the cost o f the empty vehicle travelling from the last customer to the depot, 

and the shipping cost per unit product in their model cost function. Bolduc et al. 

(2008) and Chu (2005) included the cost o f the carrier in the cost function in the case 

when an external carrier is used for delivery instead of using the organisation’s own 

private truck. The cost per time unit used for travelling is another type of variable cost 

that has been used by Chan et. al (1998). The cost function proposed by Kara et al. 

(2007) considered both distance and vehicle weight to determine the best delivery 

route to minimise a vehicle’s energy consumption.

Accordingly, the new transportation cost function will include the fixed costs per 

delivery time, a cost related to the distance travelled, the total weight o f vehicle and 

goods delivered, and cost for each stop-over at the customers. Costs per unit travelling 

time is not added to the cost function since the routing model does not have a 

travelling time constraint in it. Rushton et al. (2006) indicates that basic driver wage 

costs are usually considered a fixed cost since the payment is made to the driver based 

on a fixed monthly basis and not associated with the delivery activities, unless for 

overtime working. Also, the external carrier cost is not relevant since only one private 

vehicle is used in the IRP model.

The basic notations for the transportation cost are defined as follows:

C =  Transportation cost
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Cf = Fixed transportation cost per delivery

Cwd = Delivery cost per weight-distance

wd, = Actual weight - distance o f delivery trip at time t

Cs= Fixed stop-over cost at retailer

f 1 if customer x is replenished at time t 
^t,x [ 0  otherwise

f 1 if delivery is made at time t 
v = \
1 | 0  otherwise

Hence, the new transportation cost function can be expressed as 

C = £ C / * v , +  X , ( t W  *w d,) + x(Cs * y , J  (50)

The fixed cost, C f , that is incurred in each delivery time will increase when the 

number of replenishment frequencies is increased, which is based on the Boolean 

decision variable, v ,. The delivery cost per weight-distance, Cwd, is a variable cost

that is related to the vehicle running cost. This may include fuel, lubricants, tyres and 

maintenance costs. This cost can be minimised by travelling along the minimum 

distance-weight route that consumes less energy. Figure 6.9 illustrates the general 

behaviour of the three elements o f the transportation cost. However, there is a 

relationship between the weight-distance and the number of retailers since the weight- 

distance may be higher when the number of retailers is included in the trip is 

increased.
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Figure 6.9: T rade off between fixed cost and variables’ cost in the transportation 

cost function

With the new transportation cost function, the total cost function can be formulated as

TC =Total cost

I t x = inventory on hand at each retailer location, x, at the end of period, t

h— cost to hold a single unit per unit inventory 

p= charge per unit shortage supply

Shtx = quantity of backlog inventory at the end of period, t , in each location, x 

The total cost per period over total number of periods in a simulation, T, is given as:

where (51)

(52)
T
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6.7 Application of different performance measurements to the 

periodic “can-deliver” simulation model.

The impact o f the different performance measurements on the vehicle effectiveness 

and the total cost per period in the periodic ‘can-deliver” model can be evaluated by 

slightly modifying the current simulation spreadsheet model in section 5.4.1. The 

inputs and outputs o f the inventory model in the current simulation model, such as the 

inventory control parameters and holding, the shortage and the replenishment 

quantities, will remain the same. Adjustments are made for the transportation cost 

calculation involving three different performance measurement approaches. 

Additional worksheets are used to assign the inputs for the MOVE and OVE metrics 

in the model (which currently uses the TSP metric). Specific cells are used to display 

the outputs of each performance measurement in terms of transportation costs, total 

costs, vehicle effectiveness, total distance travelled, and energy consumed by the 

vehicle in order to make comparisons and determine the best approach that can 

minimise the cost as well as the vehicle’s energy consumption.

The first step to evaluate the transportation cost using weight-distance measurement is 

to convert the retailers’ replenishment quantity that had been computed earlier into a 

weight measurement unit. Generally, the weight of the product (mass) can be 

computed according to the density and the volume of the product as in equation (53):

(  kg ^mass(£g) = density *volume(m3) (53)
Vm J

However, different types o f product have different densities. The average density of 

the product needs first to be determined by comparing its actual total weight with the 

total volume of products. For example, the Florida Department of Environmental 

Protection measured the amount o f waste in tons at a construction and demolition 

(C&D) debris facility based on the average density, by dividing the actual weight of 

171 different loads with the volume of loads in cubic yards. Similarly, Dicke and 

Parker (2007) determined the weight of three types of pine timber products in tons by 

multiplying the volume with the standard weight for one unit o f each type of product. 

Accordingly, the periodic “can-deliver” model was simplified by assuming that one
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item quantity was equivalent to 1 0 kg o f weight unit as the starting point of the 

analysis.

The new calculation process was more complex than that used in Chapter 5 since the 

decision regarding the best route for the replenishment trip required many different 

steps and formulas as discussed earlier in Section 6.3 and Section 6.4. Basic functions 

in Excel like IF..THEN..ELSE that had been used previously in Chapter 5 were not 

appropriate for computing the results. It was more practical to define specific 

functions that could automatically determine the vehicle effectiveness percentage and 

the energy consumption o f best route for MOVE and OVE metrics. This function 

could be created as a Custom Function or User Defined Function (UDF) in Visual 

Basic Application (VBA). It could be accessed in Excel just like using a standard 

Excel’s functions or add-in functions, e.g. SUM ( )  and AVERAGE ( ). The UDF was 

created in the VBA module window using the syntax shown in Figure 6.10.

Function Functionname (varNamel As vartype, ......., varNamen As vartype)

‘ body o f the unction

[ statements ]

‘ return statement

[.Functionname = expression]

End Function

Figure 6.10: Syntax of User Defined Function

The complex procedure to determine the result involving a group of statements that 

contained different types o f mathematical and comparison operators was defined in 

the body of the function. The result that is computed in the body o f the function is 

returned to the Excel via the Functionname by assigning the required input variable 

using this structure: function will return the value that is assigned by expression to the 

function name when it called in Excel using this structure:

= Functionname(value_l,... .,value_n) 

where valuel,..valuen can be either a constant value or the cell reference in Excel as a 

passing arguments to the function.

Seven different User Defined functions were created to determine the minimum 

distance, minimum weight-distance, vehicle effectiveness and the total weight-
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distance for the best route based on MOVE and OVE metrics and the TSP approach. 

These functions were used in each simulation period to determine the vehicle 

effectiveness, transportation costs and total costs for MOVE, OVE and TSP 

measurements. A similar approach had been used in Chapter 5 for the numerical 

analysis where 3 replications were carried out using 5000 warm up periods and 60, 

000 simulation periods. The end results of the analysis were average costs per period 

and the average vehicle effectiveness from 3 replications.

6.8 Numerical analysis

This section describes further investigation o f the impact of the optimal route that was 

generated from the OVE and MOVE metrics and TSP approach on vehicle energy, 

vehicle effectiveness and a new cost function. Three retailers are considered to be 

included in this analysis based on the supply chain physical layout presented in Figure 

5.3. The first numerical analysis to compare the performance of these three 

measurements was based on the following assumptions:

i) Constant inventory control parameters and cost parameters.

ii) Only one vehicle was used for replenishment with a 2000kg maximum 

vehicle capacity. The vehicle unladen weight, average speed and other 

input data, including break time as well as the quality rate, were similar to 

the data used in Section 6.5.

iii) The route used to replenish retailers in the TSP approach was based on the 

lexicographical order o f retailers (Retailer 1, Retailer 2 and Retailer 3) 

since the distance between each point was symmetric.

Table 6 .8  shows results generated from OVE and MOVE metrics and the TSP 

approach for 20 simulation periods. It covers the scenario of replenishment involving 

different numbers o f retailers. It can be seen that there is a relationship between the 

number o f retailers in a single delivery trip and the total weight-distance. The optimal 

weight-distance value in all cases for one retailer is less than the total value for two 

retailers. The weight-distance to replenish three retailers is the highest. The proportion 

of the three elements o f transportation cost, shows that the fixed transportation cost is 

charged every time the delivery is made, even to replenish just one retailer.
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Accordingly, it is more economical to consolidate other retailers during the 

replenishment trip and thereby reduce the frequency of replenishment activity and 

eliminate the fixed delivery cost.

Further, increasing the number o f retailers up to 3 retailers will influence other 

elements o f the transportation cost. Therefore, it is crucial for the decision-maker to 

determine the route and sequence o f replenishments that use the lowest energy in 

order to minimise the total delivery cost. Different delivery costs are incurred with 

different strategies used to determine the best route for the delivery.

In general, as expected the transportation cost generated by the OVE metric was 

higher than the results calculated using MOVE metric and TSP approach for all cases. 

This phenomenon is related to the results reported in Section 6.5, where the OVE 

metric tends to choose the route that had a high weight-distance value in order to 

increase vehicle effectiveness. On the other hand, by applying the TSP approach 

slightly higher transportation cost was incurred than when using the MOVE metric 

because it is tends to produce two different routes that generated minimum distance 

travelled in the case o f symmetric layout. However, the total weight-distance value for 

each route differs with a different sequence o f delivery due to different loads required 

at each retailer. Therefore, by using the same route for each replenishment activity 

with a similar number o f retailers might produce an additional weight-distance value.
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Table 6.8: The comparison of transportation cost obtained from the OVE and MOVE metrics and TSP approach when C f—5, Cs =3 and 

Cwd =0.0005

Period
Replenishment weight Fixed

delivery
cost

Stopover
cost

OVE MOVE TSP
Retailer

1
Retailer

2
Retailer

3
Total

weight-
distance

Delivery
cost Trans cost

weight-
distance

Delivery
cost Trans cost weight-

distance
Delivery

cost Trans cost
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 220 200 230 1150 5 9 41083.2 20.5 34.5 32900 16.5 30.5 33100 16.6 30.6
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 190 150 210 1050 5 9 38886.4 19.4 33.4 30800 15.4 29.4 31200 15.6 29.6
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 200 0 260 960 5 6 25346.4 12.7 23.7 24498 12.2 23.2 25346.4 12.7 23.7
7 0 210 0 710 5 3 17109.4 8.6 16.6 17109.4 8.6 16.6 17109.4 8.6 16.6
8 220 0 180 900 5 6 24180.8 12.1 23.1 23615.2 11.8 22.8 23615.2 11.8 22.8
9 0 220 0 720 5 3 17250.8 8.6 16.6 17250.8 8.6 16.6 17250.8 8.6 16.6
10 220 0 200 920 5 6 24380.8 12.2 23.2 24098 12.0 23.0 24098 12.0 23.1
11 0 0 0 500 0 0 0 0 0 0 0 0 0 0 0
12 190 280 210 1180 5 9 40724.6 20.4 34.4 33400 16.7 30.7 33800 16.9 30.9
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 190 200 230 1120 5 9 40359 20.2 34.2 32000 16 30 32800 16.4 30.4
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 210 190 210 1110 5 9 39934.8 20.0 34.0 32200 16.1 30.1 32200 16.1 30.1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 240 250 190 1180 5 9 41448.8 20.7 34.7 33100 16.6 30.6 33100 16.6 30.6
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 170 250 160 1080 5 9 38378.8 19.1894 33.2 31500 15.75 29.75 31500 15.75 29.75

£=341.5 £=313.2 £=314.6
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Table 6 .8  shows that 25% of the delivery trips followed a higher weight-distance 

route based on the assumption that the replenishment route to deliver all three retailers 

was based on the lexicographical order o f retailers. It caused an extra 1.32 units of 

total cost in 2 0  simulation periods when compared with the total cost generated by the 

MOVE metric.

Further analysis was required to examine the percentage difference between 

transportation cost per period, total cost per period, and the average weight-distance 

using the OVE and MOVE metrics and the TSP approach.

This analysis aims to evaluate the impact of two different routes that minimise the 

distance travelled and the optimal routes generated from the MOVE and OVE metrics 

on the weight-distance, transportation cost per period, and total cost per period. To 

begin, the periodic ‘can-deliver’ simulation model was tested with 5 sets of input data 

using different combinations o f inventory control parameters to measure the 

performance of each policy. The results are shown in Table 6.9. Then the percentage 

cost saving for MOVE metric over OVE metric and two TSP options was computed 

and results are shown in Table 6.10

According to the results in Table 6.9, the MOVE metric outperforms the OVE metric 

and TSP approach in all cases. The energy consumed during the delivery trip and the 

costs per period were high using the OVE metric. As shown in Table 6.10, the 

transportation cost per period that was generated by the OVE metric was 

approximately 10-11% higher than the cost generated by the MOVE metric. As a 

result, the OVE metric tended to generate high total costs per period. Also, the 

minimum distance route determined by the TSP approach appeared to consume 

slightly higher energy costs than the optimal value route. This was applicable to both 

minimum routes represented here as TSP 1 and TSP 2, since the results generated 

from both routes were seen to be equal to each other. However, the TSP approach 

showed a better performance than the OVE metric with respect to the cost saving 

percentage for the transportation cost per period, since for this approach it was less 

than 1 per cent.
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Table 6.9: Simulation results for weight-distance, transportation cost per period 

and total cost per period for different vehicle measurement

approaches when ^=0.6, p=0.8, C f=5, Cs =3 and Cwd =0.0005

Data set

Inventory control parameters
Vehicle

performance
measurement

Results

f Im Ic

Weight-
distance

Transportation 
cost per 
period

Total 
cost per 
period

1 5 1 3

OVE 31993.65 30.00 42.02
MOVE 25748.90 26.87 38.90

TSP
1 26000.43 27.00 39.03
2 25999.70 27.00 39.03

2 1 0 2 4

OVE 31423.99 29.50 32.86
MOVE 25488.52 26.53 29.90

TSP
1 25741.32 26.66 30.02
2 25741.71 26.66 30.02

3 15 4 1 0

OVE 27837.93 25.54 32.03
MOVE 22375.27 22.81 29.30

TSP
1 22608.18 22.92 29.42
2 22607.47 22.92 29.42

4 2 0 2 8

OVE 19771.03 16.89 25.18
MOVE 15812.91 14.91 23.20

TSP
1 15994.08 15.00 23.29
2 15993.61 15.00 23.29

5 25 1 2 16

OVE 22320.24 19.89 33.59
MOVE 18289.94 17.88 31.57

TSP
1 18520.45 17.99 31.69
2 18519.23 17.99 31.69

Table 6.10: Performance measurement of the MOVE metric over the OVE

metric and the TSP approach for 5 sets of inventory control parameters

Data set
Percentage saving

Transportation cost per period Total cost per period

OVE TSP OVE TSP
1 2 1 2

1 10.41 0.47 0.46 7.43 0.32 0.32
2 10.06 0.47 0.47 9.03 0.42 0.42
3 10.69 0.51 0.51 8.53 0.40 0.39
4 11.72 0.60 0.60 7.86 0.39 0.39
5 10.13 0.64 0.64 6 .0 0 0.36 0.36
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It would therefore appear that choosing the minimum distance travelled route using 

TSP approach might also contribute towards lower vehicle energy consumption and 

costs, even though it did not reach the optimal value. Interestingly, the 

aforementioned result contrasts with that result found by Kara et al. (2007) where 

minimising only distance travelled seems to increase the energy consumed by the 

vehicle in a symmetric scenario.

The analysis continued with an examination o f the impact of flexibility by means of 

the periodic “can-deliver” policy on the new cost function and vehicle effectiveness 

based on the OVE and MOVE metrics and TSP approach. The “order-up-to” level and 

“must-delivery” value were fixed in order to determine the behaviour of the total cost 

per period for all three vehicle performance measurements with varied “can-deliver” 

level.
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Figure 6.11: Total cost per period with varied Ic and fixed t  and Im

(7+=20, Im =2) for OVE and MOVE metrics and TSP approach

Figure 6.11 shows that IRP flexibility helps to reduce the total cost for all routing 

strategies. The behaviour o f the new cost function was similar to the results reported 

in Chapter 5 where the flexibility that came from the ‘can-deliver’ level tended to 

reduce the cost. The similar graph pattern for MOVE, OVE and TSP graph patterns 

indicated that cost saving could be achieved; even though the delivery trip was 

followed was a less effective route. However, as can be seen from the figure, the OVE 

metric only contributed a small amount of cost reduction with replenishment 

coordination, whilst the MOVE metric and TSP approach gained a profit three times
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more than the cost reduction than the OVE metric could achieve. Further, the large 

gap between the OVE value and other values in the graph indicated that the optimal 

sequence of delivery generated by the OVE metric is an expensive way to manage 

replenishments. As predicted, the TSP approach produced better performance than the 

OVE metric. In fact the performance it produced was almost as good that produced by 

the MOVE metric.

This suggests that an appropriate routing strategy was needed as well as a good 

inventory management strategy in order to minimise the total cost.

Further analysis was carried out to examine the total cost per period obtained from 

using the TSP approach and MOVE metric. From such analysis, the optimal inventory 

control parameters to minimise the total cost per period could be determined. First, 

the pattern for both measurements was examined when the “can-deliver” level and 

“must-deliver” level were varied and the “order-up-to” level was equal to 20. As can 

be seen in Figure 6.12 (a) and 6.12 (b), the patterns generated by the TSP approach 

and MOVE metric were similar to each other. Neither had a minimum total cost per 

period at low “must-deliver” levels. The total cost per period value was high when the 

“can-deliver” level was equal to “must-deliver” level. However the costs dramatically 

decreased when the “can deliver” level was further increased and the cost reduction 

levels off when the “can-deliver” level approaches 7.

Next, various “order-up-to” levels and “must-deliver” levels were analysed to observe 

the behaviour o f the model when the “can-deliver” level was set equal to the “order- 

up-to” level. As in the first analysis, the results were similar for both the TSP 

approach and MOVE metric. It can be seen in Figures 6.13 (a) and 6.13 (b) that the 

minimum cost per period for both policies were in the range o f 18 to 2 0  for the 

“order-up-to” level. Therefore, a further analysis was carried out to determine the 

accurate optimal combination o f the inventory control parameters that minimised the 

total cost per period using the brute-force strategy. Based on the above preliminary 

results, the simulation was executed with the range for the “order-up-to” level 

parameters from between 10 to 30 units. Interestingly, the results presented in Table 

6.11 indicate that the minimum total cost per period for the MOVE metric and TSP 

approach was generated from the same combination of inventory control parameters.
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However, as had been the case earlier, the result for the MOVE metric was superior to 

that for the TSP approach. The results in Table 6.11 show that the cost per period for 

the MOVE metric was smaller than the cost per period for TSP approach. The 

percentage saving for one period was as follows:

Percentage saving MOVE over TSP = ,(23-0418 ~ 22-9528) * 10o = 0.3862%
23.0418

Although this would at first seem to be a small amount if margins are small, it may 

nevertheless result in increased profits.
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Figure 6.13: Varied “must-deliver” level and “order-up-to” level 

(a) MOVE (b)TSP

Figure 6.12: Varied “can-deliver” level and “must-deliver” level 
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Table 6.11 : Impact of optimal inventory control parameters to minimise total 

cost per period using the TSP approach and MOVE metric

Vehicle
performance
measurement

Optimal inventory control 
parameter Optimal total cost per 

period
f Im Ic

MOVE 19 0 13 22.95281
TSP 19 0 13 23.04181

The analysis also showed that the minimum total cost per period was achieved when 

the “can-deliver” level is 13 units higher than the “must-delivery” level. This finding 

suggests that IRP flexibility led to a significant reduction in total cost per period. 

Accordingly, analysis was expanded to examine how IRP flexibility influenced 

vehicle effectiveness using the MOVE metric.

6.8.1 The impact of IRP flexibility on MOVE vehicle effectiveness

The observation was conducted by measuring the average vehicle performance 

measurement throughout the simulation period for different “can-deliver” levels 

between the optimal “must-deliver” level and optimal “order-up-to” level values. The 

averages of vehicle effectiveness percentage and the total cost per period with varied 

“can-deliver” levels are shown in Figure 6.14.
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Figure 6.14: MOVE average percentage and total cost per period with various 

“can-deliver” levels
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It can be seen from figure 6.14 that replenishment coordination improved the 

performance of the vehicle by approximately 40%. The vehicle effectiveness 

percentage dramatically increased at first until the “can-deliver” level was equal to 8 

units. Then, further flexibility only contributed a small increase in vehicle 

performance. Interestingly, results showed that this vehicle effectiveness average 

behaviour pattern was connected to the total cost per period pattern. This indicated 

that, in general, the total cost per period had an inverse relationship with the vehicle 

effectiveness as would be expected.

It was anticipated that the MOVE percentage would decrease for higher “must- 

deliver” levels because the replenishment quantity would decrease as the “must- 

deliver” level increased. Similarly, the MOVE percentage would increase with higher 

“order-up-to” levels as the vehicle load also increased. Such phenomena are 

illustrated in Figure 6.15 (a) for various “must-deliver” levels and Figure 6.15 (b) for 

various “order-up-to” levels when the “can-deliver” level was set equal to the “order- 

up-to” level.

Figure 6.15: Behaviour of M OVE percentage average with a) varied “must- 

deliver” level and varied “can-deliver” level and b) varied “order-up-to” level 

and varied “m ust-deliver” level

The behaviour of the inventory control parameters with different transportation cost 

parameters is explored in the next section.
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6.9 Transportation cost sensitivity analysis

As indicated in Section 6 .6 , a new cost function was constructed with three different 

elements of transportation cost. These elements were a fixed delivery cost, a variable 

cost per weight-distance, and a cost for each customer stop-over. So far, the numerical 

analysis had been conducted with assumed costs. Therefore, additional analysis was 

carried out to determine the effect o f periodic “can-delivery” model by varying these 

elements of transportation cost with fixed holding and shortage costs. The experiment 

was conducted by comparing the current cost setting used in the numerical analysis 

section (Section 6 .8 ) with the different cost values for each transportation cost 

element as indicated in Table 6.12.

The range of the cost values that were evaluated in the analysis is divided into four 

different cost levels in order to evaluate the IRP model with various input values. The 

transportation costs setting used in the previous analysis is assigned as the medium 

level. The low level is assigned a cost which only a fifth of medium cost settings. 

Similarly, the high level is assigned with the value which is 60% higher than the 

medium level value and the very high level is assigned for the cost value that is 300% 

of the medium level value.

Table 6.12: Transportation cost parameters value for current, low, medium and 

high level

Transportation cost 
parameters

Level
Low Medium High Very High

Fixed delivery cost, C f 1 5 8 15
Delivery cost per 

weight-distance, Cwd 0.0001 0.0005 0.0008 0.0015
Fixed stopover cost, Cs 0.6 3 5 9

Accordingly, the number o f experiments needed for the full analysis was 64(4 ). The 

evaluation criteria for this analysis were similar to the criteria used in the sensitivity 

analysis conducted in the previous chapter. Table 6.13 shows the optimal inventory 

control parameters ( f ,  Ic, Im) and total cost per period, T C , for all combinations of the 

transportation cost parameters.
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As can be seen from the results, in general, the total cost per period increased as the 

level of each transportation cost parameter increased. However, the increase rate is 

different for the changes o f different cost parameters. The impact of the changes in 

the cost per weight-distance parameter was higher than the impact of other 

transportation cost elements. As can be seen in Table 6.13, the total cost per period

when the cost per weight distance parameter was at a very high level was about 46%

higher than the total cost per period when the cost per weight-distance was at a low 

level with other transportation parameter costs at a high level. On the other hand, the 

cost per period increased only about 26% and 15% with regard to the changes in cost 

per stop-over cost parameter and fixed delivery cost parameter, respectively. The 

effect of changes in the cost per weight-distance and stop-over cost at low and very

high delivery cost is illustrated in Figure 6.16.

Low level delivey cost Very high level delivery cost

Figure 6.16: Cost per weight-distance and stopover cost effect at low and very 

high level delivery costs

Interestingly, the results showed that the effects to both cost per weight-distance and 

stop-over on the optimal inventory control parameters to minimise the total cost per 

period were similar. For example, in the current cost setting, the optimal inventory 

control was (7+=19, 7m=0 and Ic- 13). By increasing the cost per weight-distance to a 

very high level, the optimal inventory control was ( / f=27, Im=0 and 7C=16). This was 

also the optimal combination for very high stopover cost, indicating that in general, 

the same plan of action might be used when changing either the cost per weight- 

distance or the stop-over cost.
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With a low fixed delivery cost level, it is more economical to keep a minimum stock 

at retailers and make a frequent delivery for low weight-distance and stop-over costs 

level. However, a higher amount o f stock is needed with an increase in weight- 

distance and stop-over costs to reduce the number of delivery times. Similarly, the 

amount of deliveries also increases the number o f retailers who can be consolidated 

into a single delivery trip. Accordingly, it is more cost effective for retailers to hold 

higher stock in order to reduce the delivery frequency by increasing the “order-up-to” 

level and lowering the “must-deliver” level when these transportation cost parameters 

are increased.

Thus, it can be seen that, in general, the optimal reorder time for replenishment at 

very high and high cost per weight-distance (as well as stop-over cost) is when the 

inventory level at one o f the retailers is empty. However, the cost can only be 

minimised by consolidating the replenishment with other retailers when they reach the 

“can-deliver” level. This flexibility parameter gives an opportunity for the supplier to 

make an early replenishment and coordinate the delivery to minimise the 

transportation cost. However, in some cases, the cost per weight-distance requires 

more flexibility than the stop-over costs. Generally, higher flexibility is required with 

higher transportation cost parameters.

Moreover, changes in fixed delivery cost can have some impact on the optimal stock 

level decision at retailers as well as on the scheduled delivery. With a fixed delivery 

cost that is five times higher, in general, the periodic “can-deliver” policy will tend to 

reduce the delivery frequency by decreasing the “must-deliver” level. There are cases 

where the level o f coordination is increased when this reorder level is maintained. 

Also, dramatic changes in the order-up-to level required for retailers to minimise the 

total cost per period were found with a high cost per weight-distance and the stop­

over cost was at medium level or vice versa. A similar pattern was discovered as the 

value of the fixed delivery cost parameter increased to a very high level. It is therefore 

practical to keep an additional stock at a retailer when the fixed delivery cost is high. 

It can be seen from Table 6.13 that at high fixed delivery cost, a high “order-up-to” 

level occurred with changes in the weight-distance and stop-over cost parameters.
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Table 6.13: Transportation costs sensitivity analysis results

Cwd
low medium high very high

C f Cs r In ,x tn lc TC r Im Ic TC r L Ic TC r I m Ic TC

low 11 5 1 8.26603 19 2 12 17.38993 19 1 11 22.13046 26 0 14 32.42414

medium 19 2 12 14.660789 19 1 11 20.980901 19 0 13 25.684108 26 0 14 34.919088

high 19 1 11 17.656673 19 0 10 23.937324 26 0 14 28.051513 27 0 16 36.954353

low very high 24 0 2 23.03524 26 0 7 28.35645 27 0 16 32.17917 27 0 16 41.02382

low 11 5 7 12.26603 19 1 11 19.38863 19 0 13 24.10883 26 0 17 33.81032

medium 19 1 11 16.661562 19 0 13 22.952809 26 0 14 27.35888 27 0 16 36.276175

high 19 0 13 19.639251 26 0 14 25.603703 26 0 14 29.438002 27 0 16 38.310908

medium very high 26 0 14 24.64955 27 0 16 29.74516 27 0 16 33.53573 27 0 16 42.38038

low 19 2 12 14.56131 19 1 11 20.88165 19 0 13 25.58567 26 0 17 34.84987

medium 19 1 11 18.154578 19 0 13 24.429642 26 0 17 28.398616 27 0 16 37.293592

high 19 0 13 21.116084 26 0 14 26.64357 26 0 17 30.477694 27 0 16 39.328325
high very high 26 0 14 25.68942 27 0 16 30.76258 27 0 16 34.55314 36 0 20 43.33221

low 19 1 11 18.05532 19 0 13 24.3312 26 0 17 28.32934 27 0 17 37.22582

medium 19 0 13 21.608373 26 0 17 26.99017 27 0 17 30.822898 27 0 17 39.667538

high 26 0 17 23.957163 27 0 16 29.067087 27 0 16 32.85765 27 0 16 41.702297
very high very high 27 0 16 28.08247 27 0 16 33.13655 27 0 16 36.92712 36 0 20 45.1797
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Overall, the results showed that the appropriate inventory stock level at retailers has a 

strong relationship with the transportation cost elements. It is more economical to 

make small frequent deliveries when the transportation cost is low. However, as the 

cost of transportation parameters increases, optimal strategies to minimise the total 

cost per period are to reduce the delivery trip and keep extra stock at the retailers by 

increasing the “order-up-to” level.

6.10 Generalisation of results

The analysis of the proposed IRP model was based on several model parameter 

assumptions. This section will therefore address the issue of the model’s external 

validity by looking at the effect o f the optimal inventory control parameter that 

minimize the total cost, and the effect on vehicle effectiveness of different assumption 

parameters’ values, including the demand pattern and weight converter value.

6.10.1 The Effect of demand pattern on vehicle effectiveness

The evaluation of demand distribution in terms of different vehicle effectiveness 

strategies in Table 6.14 shows that the MOVE metric consistently outperforms the 

OVE metric and TSP approaches and results in cost savings of 0.4% to 8.0%. This 

supports previous findings reported in Section 6 .8 .

Table 6.14: Performance of MOVE metric over OVE metric and TSP approach

Demand
distribution

Vehicle
measurements

Transportation
cost Total cost

Saving percentage 
o f MOVE policy 

over OVE, TSP and 
TSP2

Normal
(10,2.24)

MOVE 14.6012 22.9644
OVE 16.5890 24.9531 7.9697
TSP 14.6905 23.0537 0.3873

TSP2 14.6895 23.0527 0.3830

Normal
( 1 0 ,2 .0 )

MOVE 14.8383 22.7619
OVE 16.6177 24.7439 8.0103
TSP 14.9182 22.8418 0.34996

TSP2 14.9173 22.8409 0.3460

Poisson
( 1 0 )

MOVE 14.6522 23.7606
OVE 15.1305 25.6413 7.3343
TSP 14.7772 23.8857 0.5234

TSP2 14.7765 23.8849 0.5202
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6.10.2 The Effect of Weight Converter value

The weight converter used to measure the weight of one unit product is another 

parameter assumption that was included in the periodic “can-deliver” model. In the 

model, it is assumed that 1 unit item is equal to 10 kg. Further analysis with a lower 

and higher weight converter was carried out in order to generalise the result. As 

expected, the result in Table 6.15 shows that increasing the weight converter will 

increase the vehicle effectiveness without affecting the optimal inventory control 

parameter that minimises the total cost. However there are changes in total cost per 

period since the cost is the function o f the weight of the product. Higher cost is 

incurred as a result o f the higher weight-distance generated from a high weight 

converter value.

Table 6.15: Different weight converter factors

Weight

converter

"Order-up- 

to" level

"Must-deliver"

level

"Can-deliver"

level Total cost MOVE (%)

15 19 0 13 24.4084 7.5428

5 19 0 13 21.4972 2.5157

6.11 Conclusion

In this chapter, the best vehicle performance evaluation metric used to identify 

effective replenishment routes was determined. Routes that had highest MOVE and 

OVE metric percentage were evaluated based on the vehicle distance travelled and the 

vehicle energy consumption. Results in Section 6.5 showed that the routes generated 

by the MOVE metric were more efficient than the routes generated by the OVE 

metric because the OVE metric tended towards a longer distance and higher vehicle 

energy route in order to increase vehicle effectiveness. Thus, the MOVE metric was 

capable of determining the optimal route to minimise vehicle distance travelled and 

energy consumed. Further, different aspects of vehicle performance that had been 

previously determined separately (i.e. vehicle utilisation rate) via KPI’s measurement 

were examined using a single MOVE metric.
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The study also developed a cost function that included the cost per weight-distance as 

a variable cost to compare the performance of MOVE and OVE metrics and TSP 

approach in terms o f cost. The new cost function also considered the fixed delivery 

cost and stop-over cost as other elements of the transportation cost function. A 

numerical analysis was conducted using simulation and, as expected, the OVE metric 

generated a 10% higher cost than the MOVE metric. Interestingly, the results showed 

that the cost saving achieved by minimising the distance travelled using the TSP 

approach was less than 1 per cent higher than using the MOVE metric. As a result, 

both generated similar optimal inventory control parameters that minimised the total 

cost per period. When comparing higher optimal “can-deliver” levels with the optimal 

“must-delivery” level, the comparison showed that the consolidation replenishment 

from the IRP flexibility allowed a reduction in costs. Nevertheless, different values of 

the transportation cost elements influenced the decision with regard to the appropriate 

inventory stock level at retailers, the essential replenishment time as well as the 

optimal consolidation time.

A sensitivity analysis showed that, in general, it is more cost effective to keep extra 

stock at the retailers and increase the IRP flexibility level to reduce the delivery 

frequency when the transportation cost increases. It is shown that similar findings 

were found when different weight conversion units were used in the analysis, even 

though a higher weight converter value may result in higher vehicle effectiveness 

percentage and a cost per period value.

Next chapter will present an overview of the research, its contributions to the 

literature, implications o f the findings for practical situations in the field, limitations 

of the research and the suggestions for future research.

170



Chapter 7 Discussion and Conclusion

This chapter presents an overview o f the research findings in relation to the research 

objectives and research questions presented earlier in Chapter 1. The chapter begins 

by restating the study objectives and methodology used to conduct the research in 

Section 7.1. It follows with a discussion o f the research findings by evaluating how 

the results of analysis contributed towards addressing the research questions in 

Section 7.2. Then, the research contributions and implications of the research for 

theory and practice are highlighted in Section 7.3 and 7.4, respectively. Section 7.5 

discusses the limitations o f the research. Finally, areas for future studies are 

recommended in Section 7.6. Final comments on the study are presented in Section 

7.7.

7.1 Research Overview

This thesis has studied the Inventory Routing Problem (IRP) consisting of one 

supplier and multi-retailers which faces a stochastic demand that is assumed to be 

identical and independently distributed over a long planning horizon. The study 

indicates that the IRP inspired integrated supply chain is more beneficial in terms of 

cost and performance for the entire supply chain than the independent inventory 

management and transport planning activities in the traditional supply chain strategy.

The visibility o f retailers’ information such as demand and inventory levels enables 

the supplier to make a decision that balances inventory cost and transportation cost. 

Also, a centralised system of control gives the supplier the flexibility to manage the 

replenishment in an efficient manner. However, a review of the literature reveals a 

scarcity of studies on inventory control policies in IRP that permit flexibility in the 

decision making process. This thesis is therefore aimed to explore the effect of early 

replenishment on total cost and vehicle effectiveness that allow the supplier to 

coordinate the replenishment between the retailers.

Further, the successful application o f the IRP model to reduce cost and improve 

customer service level in practice (Bell et al., 1983; Rusdiansyah and Tsao, 2005;
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Gaur and Fisher, 2004) inspired the author to investigate the suitability of 

implementing the IRP approach in the healthcare industry. Specifically, this study was 

focused on investigating the improvement of the supply chain strategy in a developing 

country. This is because most academic journals and papers have studied the business 

process reengineering in developed countries (Wilson et al., 1992; Kowlaski, 1986). 

The study was also interested in examining the implications o f route selection and 

delivery arrangement when weight was considered as a decision factor as well as the 

distance between two successive points.

The research analyses supported the appropriateness of the case study and simulation 

methods for achieving the research objectives and addressing the research questions. 

The case study is a relevant method to explore supply chain phenomena in the real 

world and examine the problem in order to evaluate the feasibility o f IRP policy as a 

potential way of improving the supply chain strategy for the organisation. The 

findings from the case study also contribute towards the development of the problem 

formulation and the conceptual model o f the research. The simulation model was 

considered more appropriate for this study compared to the analytical model. As 

indicated earlier in Chapter 3, simulation approaches make it possible to evaluate the 

interaction between variables for a complex system and provided valuable insight of 

the behaviour of the system under several inputs factor.

A discussion of how these methods addressed the research questions is presented in 

the next section.

7.2 Discussion on the research question

Different analysis procedures were conducted in this research in order to address the 

research questions. The analysis o f findings with regards to the research questions 

stated in the introduction chapter, Chapter 1, will be discussed in the following 

subsections:
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7.2.1 Research Question 1

Research Question 1 was

“How is the supply process carried out in the healthcare industry in the context 

of developing countries’ private healthcare, especially in Malaysia? Can 

Inventory Routing Problem approaches be used to improve supply chain 

operations?”

This question was addressed in Chapter 4 by exploring the literature on general supply 

chain practices in the healthcare industry and using a single case study of a leading 

private healthcare organisation that owns a large chain of clinic branches in Malaysia. 

Very little was found in the literature on the healthcare industry’s supply chain 

business process re-engineering in a developing county. Thus, the supply chain 

process and the problems faced by the case study organisation needed to be 

understood in order to determine an appropriate supply chain improvement strategy.

The organisation’s supply chain process also needed to be investigated in order to 

understand the activities involved and the flow o f activities between the headquarters 

that acted as a wholesaler and clinics. The information was gathered from interview 

sessions with personnel in charge of supply chain process activities in both the 

wholesaler and clinics and the manager o f the IT department in the wholesaler. The 

supply chain process was visualized using process mapping tools as illustrated in 

Figure 4.5. The information obtained revealed that the organization still implemented 

a traditional supply chain policy in that each clinic placed an order with the 

wholesaler independently twice a month and the wholesaler was responsible for 

delivery based on the orders. The analysis of three months’ archival data showed that 

the organisation faced issues with urgent orders from retailers and low stock 

availability at the wholesaler to fulfil clinics’ orders as a result o f demand uncertainty.

From a review o f literature, Vendor Managed Inventory (VMI), Inventory Routing 

Problem (IRP), Just in time (JIT) and stockless policy were found to be possible 

improvement strategies to implement in the healthcare supply chain. However, JIT
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and stockless policy were not practical to use as the geographical locations of the 

wholesaler and clinics were remote from each other. The wholesaler was located in an 

urban area while retailers were scattered which is common in rural areas. Further, the 

form of transportation used for delivery was limited in terms of capacity and 

availability. Road congestion problems were also another factor that made these 

improvement strategy approaches inappropriate for implementation in a developing 

country such as Malaysia.

A centralised decision-making approach under a Vendor Managed Inventory would 

be more effective since in the traditional supply chain approaches, order quantity 

decisions are determined by general staff in who are not experts in managing the 

inventory. Transparency o f information promotes efficient management o f the entire 

supply chain. However, a VMI approach is specifically concerned with inventory 

management. The transportation management is managed separately and the decision 

on the optimal replenishment time and quantity of replenishment is not taking into 

account the transportation aspect. Therefore, since the decision is now made centrally, 

it is practical to integrate these two main activities of supply chain process to generate 

the optimal decision that balances inventory and transportation costs.

The case study has shown that the conventional supply chain process caused problems 

to both warehouse and clinics. Thus, it is suggested that IRP approach could be an 

appropriate as an improvement strategy for the organisation since the IRP approach 

allows the wholesaler to manage the entire supply chain with the aim of making it 

more efficient, which in turn, will minimise the cost and maximise the vehicle 

utilisation. The wholesaler is able to identify delivery priorities based on clinics’ 

requirements and thereby ensure a sufficient amount of inventory is available at 

clinics in order to fulfill end customer demand. Further, the organisation’s own 

transportation is used for servicing the clinics, thus the IRP approach may allow the 

inventory to be replenished early which can increase the utilization of vehicle use. 

Consequently, the wholesaler finds it beneficial to control their own inventory to 

ensure a sufficient amount o f stock is available for retailers’ replenishment.

However, the success o f implementing this approach relies on IT facilities at the 

organisation to access the information as well as to make good replenishment
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decisions. These activities can be achieved by improving the existing online supply 

chain system and obtaining a control system to assist the decision making process. A 

study by Le and Koh (2002) revealed that Malaysia is capable of providing a good 

ICT infrastructure through the existence of Multimedia Super Corridor.

The study of research question 1 had provided evidence that the traditional approach 

produces problems in managing the supply chain for both supplier and retailers and 

the need of new practices to improve the performance of the organisation and 

overcome the problems. It is apparent that the IRP policy could be a suitable strategy 

in order to improve the healthcare industry in Malaysia, particularly by private 

companies who own a chains o f clinics under one organisation and manage their own 

transportation. However, it is crucial that the central decision-maker determines the 

appropriate inventory policy and routing strategy to effectively implement the IRP 

strategy in multi-retailers supply chain scenarios that faced a stochastic demand 

pattern. This lead to the development o f research question 2.

7.2.2 Research Question 2

Research Question 2 was

“How should the parameters in Inventory Routing be set? How should the 

supplier decide on which retailers should be replenished during each 

replenishment period?”

The first part o f Chapter 5 answered this question through an evaluation of 

replenishment policies in the literature and the analysis from Chapter 4. From a 

review, several replenishment approaches were found to have been used by previous 

researchers, like delaying the delivery until a full vehicle load is reached, replenishing 

all retailers when one retailer reaches the reorder level or making replenishments to 

only those retailers who reach the reorder level.

As the IRP approach allows flexibility for the retailer to schedule the replenishment to 

the retailer, the proposed model required another parameter to facilitate flexibility. 

The “can-order” concept is commonly used for joint replenishment in the multi-item
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single supplier scenario and is appropriate to adopt for examining the effect of 

flexibility in multi-retailer single item scenario. The same measurement parameter for 

the (5,c,5) policy used in the joint multi-item scenario was employed in the proposed 

IRP model. However, two different terminologies were used for the parameters in the 

IRP situation (“can-deliver” rather than “can-order” and “must-deliver” rather than 

“must-order”) since in the IRP context the replenishment decision is made by the 

supplier not the retailer. The following three parameters were used in the proposed 

IRP solution;

• the “order-up-to” level”, 1+

• the “can-deliver” level, Ic

• and the “must-deliver” level, Im

where 7 <- I. <= /  .m c m

The delivery decision is made based on the inventory position at retailers, x, at the end 

of period, t, that has been evaluated using the inventory balance equation. At each 

time period, the supplier will monitor the inventory position of each retailer and note 

the replenishment which needs to be carried out to the retailer who has reached the 

must-deliver level. However, by making delivery to only one retailer the delivery trip 

will generate low vehicle efficiency. Thus, it is practical to replenish other retailers in 

that delivery trip. The “can-deliver” level can act as indicator for the supplier to make 

needed early replenishments and combine them with delivery to other retailers before 

they reach the “must-deliver” level. Thus, replenishments can be consolidated into

one trip. The delivery quantity for all retailers is based on the difference between the

current inventory level and the “order-up-to” level. However, no replenishment is 

required if none of the retailers reach the “must-deliver” level, even though all 

retailers may have reached the “can-deliver” level.

The replenishment policy that delivers to all retailers when one of the retailer reaches 

the reorder level policy is generated when the “can-delivery” level is equal to the 

“order-up-to” level”- 1 is known as (s,S-l,S) inventory control policy. The traditional 

inventory policy, (s,S) replenishes the individual retailer based on the reorder level 

which occurs when the “can-deliver” level is set as equal to the “must-deliver” level.
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The traditional inventory policy scenario is used as a benchmark to quantify the 

benefits o f early replenishment offered by the proposed periodic “can-deliver” policy. 

The replenishment triggered by the periodic “can-deliver” policy led to the 

development o f research question 3 to evaluate the performance o f the proposed IRP 

model in regard to cost and vehicle effectiveness, and to examine the effect of the 

policy on changes in input variables.

7.2.3 Research Question 3

Research question 3 was

“How does the proposed policy perform in the single item multi-retailer case? 

How do the variables influence the result?’9

The behaviour o f the proposed IRP model was evaluated by examining the 

performance input variables with respect to the total cost via simulation methods. 

Question 3 was addressed in Chapter 5 by performing an analysis based on three 

retailers and one supplier setting. The model also assumed one vehicle was used for 

delivery. Different combinations o f inputs were evaluated throughout the analysis in 

order to examine the impact o f input variables on the model’s performance 

measurement. The results o f varied “can-delivery” levels with fixed “must-delivery” 

and “order-up-to” levels in Figure 5.9 (b) show that the use of a “can-delivery” level 

reduced the total cost by almost 16 percent compared with the scenario when no 

flexibility was adopted in the replenishment decision. However, as the benefits 

saturates with higher “can-deliver” levels, this suggests that the proposed IRP model 

did not generate further benefits with very high flexibility. In fact, there was an 

optimal “can-deliver” level that minimised the total cost, although this was difficult to 

see from the graph as the percentage o f different between points was rather small. The 

analysis of the model behavior with changes in the “order-up-to” level showed that 

with a consistent reorder level, increasing the maximum level of capacity at retailers 

decreased the total cost. However the model behavior changed when the “order-up-to” 

level reached a certain level. As regards the variation in “must-delivery” level, the 

results showed that it was more economical to trigger the delivery at a certain reorder
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point before the inventory reached the zero position at retailers. Further, delaying the 

delivery or having a large gap between deliveries dramatically increased the total 

inventory and transportation cost.

Further evaluation on how the three inventory control parameters (“can-deliver”, 

“must-deliver” and “order-up-to”) together with different cost parameters influenced 

the periodic “can-deliver” model was examined in Section 5.6.1 via Taguchi Methods. 

The analysis evaluated the main effects o f six different factors. These were the three 

inventory control parameters and holding, shortage, and transportation cost, on the 

“can-deliver” model performance. Analysis results showed only three factors i.e. 

“must-delivery” level, holding cost and transportation cost influenced the model’s 

performance. Analysis o f the results from ANOVA suggested that the “must-deliver” 

level highly influenced the model since it generated almost 30 per cent of the 

variation in total cost and 23 and 18 per cent of variation in holding cost and 

transportation cost, respectively.

The result thus suggests that different cost settings impact on the optimal combination 

of parameter settings that generate minimum cost. This effect was evaluated in 

Section 5.6.2. The results o f the sensitivity analysis of the impact on total cost per 

period of increasing cost parameters and inventory cost parameters was as expected, 

since the total cost per period increased with the increment o f cost parameters and 

inventory control parameters. In general, it was optimal to keep extra stock at retailers 

by increasing the “order-up-to” level in order to prevent out of stock problems, as it is 

more cost-effective to replenish the retailers with larger inventories when the 

inventory holding cost is lower than the transportation cost. Higher stock will reduce 

the frequency o f delivery and thus reduce the transportation cost. On the other hand, 

frequent delivery should be scheduled when transportation cost is lower than holding 

cost. This will ensure a low amount o f inventory is kept at retailers. The optimal 

inventory control parameters that combined with a certain “can-deliver” level showed 

the flexibility o f the periodic “can-deliver” model to be beneficial for minimising the 

total cost per period. The effect o f each parameter was summarised using a causal- 

loop diagram in Figure 5.17. The comparative analysis in section 5.7 indicated that 

the periodic “can-deliver” model’s flexibility outperformed the (s,S) inventory control 

policy. The findings also suggested that the cost benefit derived from the proposed
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IRP model was similar to that obtained from the (s,S-1,5) policy when the ratio 

between transportation cost and holding cost was high.

So far, the proposed model had only quantified the optimal route based on the 

minimum distanced travelled. However, following this route, that only considered the 

distance factor in the decision-making process, could possibly affect the environment. 

This led to the development o f research question 4 in order to evaluate an appropriate 

routing strategy that is economically, environmentally friendly and efficient.

7.2.4 Research Question 4

Research Question 4 was

“How should the routing strategy be incorporated into the IRP to reduce cost, 

improve vehicle effectiveness, and reduce energy consumption?”

This question was addressed by examining the model effect with different routing 

strategies in Chapter 6. The Travelling Salesman Problem (TSP) approach was used in 

the basic routing strategy for model analysis in Chapter 5, where the optimal route 

was determined based on the minimum distanced travelled by the vehicle for the 

delivery trip. The same route was used to replenish the same combination of retailers. 

However, in reality different loads are carried by a vehicle at different periods of 

replenishment which not only influences the sequence o f delivery but also vehicle 

energy consumption and transport efficiency. Thus, the IRP model was examined in 

Chapter 6 using two vehicle effectiveness measurements known as Overall Vehicle 

Effectiveness (OVE) and Modified Overall Vehicle Effectiveness (MOVE) metrics. 

Both metrics integrate different KPI’s measurements that have been previously 

evaluated separately in a single metric measurement (McKinnon, 2000). The analysis 

of the optimal route in the “can-deliver” model obtained from OVE and MOVE 

metrics and the TSP approach in terms o f the new transportation cost function was 

based on the spreadsheet simulation model. This new transportation cost function 

included fixed transportation costs per delivery, delivery cost per weight-distance and 

fixed stop-over cost at retailer replaced the cost per distanced traveled used in the IRP 

model in Chapter 5. With this new transportation cost function, the minimum
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transportation cost can be generated for a route that gives minimum energy 

consumption. In general, the OVE metric produced the highest cost compared to that 

produced by the MOVE metric and TSP approach since the highest vehicle 

effectiveness in the OVE metric was determined by the highest weight-distance value. 

On the other hand, the TSP approach produced better performance than the OVE 

metric, whilst the MOVE metric produced the best vehicle effectiveness strategy to 

minimize vehicle energy consumption and total cost. However, analysis of the optimal 

combination o f inventory control parameters indicated that the same optimal 

combination was generated from both the MOVE metric and TSP approach. Thus, it 

may be concluded that the TSP approach performs as well as the MOVE metric, 

producing only a marginally slightly higher total cost. Nevertheless, the MOVE 

metric has advantages in measuring overall vehicle effectiveness in term of vehicle 

utilisation, route efficiency, time utilisation and quality factors in one metric.

7.3 Research Contributions

Research on the integration o f inventory and transportation management through the 

Inventory Routing Problem approach has been undertaken previously to solve various 

dimensions of the problem using several mathematical modelling methods. However, 

existing replenishment policies in previous studies mostly view the IRP as an 

extension of the vehicle routing problem. Therefore, the solution method is more 

towards solving solely based on routing that satisfies the constraints and performance 

measurement. Only a small number o f studies have considered including inventory 

policy solution methods such as (5, S), EOQ and zero ordering policy. However, few 

studies have explored the flexibility offered by the IRP approach to assist the central 

decision-maker in balancing the inventory cost and the transportation cost. Further, 

the optimal route decision is commonly based on distance travelled or just used a 

static route for each replenishment period. Also, few studies have taken into account 

the vehicle efficiency factor in making the decision. Thus, this thesis offers a number 

of contributions to the literature since it fills identified gaps through a number of 

analyses in Chapter 4 through to Chapter 6.

In general, this thesis has presented an extensive numerical study which has quantified 

the gains from the flexibility that comes from early replenishment opportunities in
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terms of operating costs and the vehicle effectiveness along with a dynamic routing 

strategy with regard to vehicles’ energy consumption in making the replenishment. 

Moreover, this study provides insights into the application of the IRP approach as a 

potential business process reengineering solution in the healthcare industry, 

specifically in the context o f Malaysia’s private healthcare industry. The problem of 

replenishing multiple-retailers who face a stochastic demand based on the case study 

organization has been simplified and studied via simulation in order to evaluate the 

effect of flexibility to make early replenishments on transportation and inventory 

costs.

Such flexibility is implemented in the model based on the periodic (s,c,S) inventory 

policy. Accordingly, this study contributes to the literature by widening the 

application of well-known joint replenishment approaches to periodic scenarios with 

multi-retailers and a single item. However, the parameters that trigger the 

replenishment have been slightly modified to fit implementation in the IRP scenario 

where the responsibility for making decisions on the time and the delivery quantity is 

that of the supplier, not the retailer. The flexibility of scheduling an early 

replenishment to consolidate replenishments with other retailers is quantified by the 

“can-deliver” level value.

The first part o f the analysis in Chapter 5 presents an extensive numerical study of the 

effect of inventory control parameter settings on the trade-off between inventory 

holding cost, inventory shortage cost, and transportation cost. This is a further 

contribution o f the study since investigation o f replenishment flexibility obtained 

from (s,c,S) policy with a wide range of the flexible parameter (“can-deliver” level, c) 

has not been carried out before in solving the multiple-retailer scenario. Another 

contribution of the study is that the model also considered shortage cost per unit 

shortage supply in the objective function where the researchers mostly use the 

delivery cost as the shortage cost in the model. The findings show that by having 

another indicator that triggers an early replenishment before the inventory level 

reaches the reorder level is beneficial for reducing the transportation cost and 

overcoming the out o f stock problem. The result also shows that the early 

replenishment strategy does not significantly influence the inventory holding cost at
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the retailers. Hence, the study indicates that the periodic “can-deliver” policy provides 

a significant cost saving and outperforms the (s,S) policy.

The study continued with an examination of the effect of flexibility with regard to 

vehicle effectiveness and total cost by modifying the routing strategy and taking into 

account distance and load factors to decide the dynamic replenishment sequence of 

retailers during the delivery trip in Chapter 6. The analysis was performed by 

investigating vehicle performance and route selection based on the Travelling 

Salesman Problem (TSP), and Overall Vehicle Effectiveness (OVE) and Modified 

Overall Vehicle Effectiveness (MOVE) metrics. Another contribution of the study 

was its identification o f the relationship between Key Performance Indicator (KPIs) 

used to evaluate vehicle performance and single OVE and MOVE performance 

metrics. This relationship had previously been questioned by the Freight Logistic 

Research Group in 2004.

Incorporation o f the OVE and MOVE performance measurements in the IRP model to 

examine total vehicle effectiveness and the impact of vehicle energy consumption 

with regards to the route selection during the replenishment period is a further 

contribution of the study to the existing body of literature. In addition, as far as the 

researcher is aware, this is the first study to explore the effective replenishment 

decision incorporating inventory control and vehicle effectiveness strategy that 

consider both economic and environmental factors in the decision. Thus, a new 

transportation cost function is developed, which includes fixed delivery cost and 

variable transportation costs related to the weight-distance and number of retailers 

visited during the replenishment. The analysis of the comparison between the MOVE 

and OVE metric and the TSP approach in terms of the optimal inventory control 

parameters and total cost provides further insight into the effect of different routing 

strategies incorporated in the IRP model.

In addition, this study also contributed to research methodology since comprehensive 

analyses were performed to determine an appropriate simulation tool to conduct the 

study as well as identify a warm-up period and the number of replications required to 

obtain an accurate result for the simulation analysis. Further, the normality test was 

conducted using both graphical and statistical tests in order to verify the assumption
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that the observations were normally distributed. This is important when computing the 

half-width confidence interval to determine the appropriate number of replications 

using Student’s t distribution.

7.4 Research Implications

The findings o f this study have a number o f important implications for the field of 

study, researchers and practice at industry or government level. The current findings 

add to a growing body o f literature on the applicability of implementing the (s,c,S) in 

a multi-retailer scenario to reduce the total operating cost. By implementing this 

policy, the decision-maker is able to gain cost saving by allowing an early 

replenishment for others when there is an opportunity to collaborate with retailers that 

require replenishment.

Furthermore, the findings have shown that basing routes solely on distance may 

produce slightly higher transportation costs and increase vehicle energy consumption, 

even though the optimal inventory decision is employed in the decision making 

process. Therefore, the integration o f flexible inventory control policies with the 

MOVE metric is able to minimise operating costs and ensure low vehicle energy 

consumption; as well as improve total vehicle effectiveness.

The findings showed that total cost is higher when using the traditional inventory 

control approach since the replenishment decision is triggered based on reorder level 

which is represented in this study as the “must-deliver” level, usually known as the 

(s,S) inventory control policy. However, this is the inventory control policy 

commonly used by researchers and organizations. For instance, see Hollier et al. 

(2005) that used (s,S) inventory control policy to solve the problem. Accordingly, the 

periodic “can-deliver” policy proposed in this study provides another option for 

industry to manage their inventory. This presents an opportunity to move from the 

traditional inventory management approach to a centralised strategy that is proven to 

be efficient for managing the entire supply chain.

By extending the (s,S) policy by incorporating flexibility from the “can-deliver” 

parameter, the organisation can save cost and manage the vehicle more efficiently.
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The total cost can be reduced by allowing some flexibility if  there is a constraint on 

the stock availability at the supplier. More cost saving can be achieved if the 

replenishment for the other retailers is generated earlier, since as shown in Table 5.11, 

the optimal total cost occurs when the “can-delivery” level is about half that of the 

“order-up-to” level. Also, the coordination between retailers during the delivery trip 

will increase the vehicle utilisation. The study has also shown that a slightly lower or 

zero cost margins benefit occurs if  flexibility is too high. Thus, the policy to replenish 

all retailers in one cluster when one o f the retailers needs a replenishment, generates 

slightly higher costs in the long term as it requires the supplier to hold more inventory 

in stock to replenish all retailers.

In the Malaysian context, the IRP application can also support Malaysia’s 3rd 

Industrial Master Plan (IMP3) by integrating “logistics solutions across the entire 

supply chain” (MacDonald, 2007).

In the broad context, the implementation o f the IRP policy to the healthcare industry, 

can be realized by the application o f future healthcare supply chain ‘to centralise 

contracting, procurement, distribution and logistics operations’ between multiple 

hospitals and healthcare systems (Parker and DeLay, 2008).

The findings also reveal that an appropriate inventory policy together with an 

appropriate routing policy is crucial in the IRP approach. This offers another variation 

on inventory policy in solving the multi-retailer scenario and opens up an opportunity 

for researchers to explore the benefit and effect o f early replenishment in other 

scenarios.

7.5 Limitations of the research

A number of important limitations of the findings need to be considered. The current 

study only examined the influence o f early replenishment strategies using a single 

vehicle during the delivery trip. However, the use o f a single vehicle in the analysis to 

examine the effect o f the proposed IRP model is reasonable because only small 

number of retailers is considered in the proposed IRP model and the retailers are
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reasonably close together. Therefore, replenishment can be delivered to retailers by 

one vehicle at each delivery time.

Further, the study only considered three retailers and one wholesaler as a central 

decision-maker in the model with a specified physical layout. This network structure 

facilitated an explicit numerical study which evaluated the impact of the proposed 

periodic “can-deliver” policy based on the basic model that could be used to 

implement this approach. The results have shown that the flexibility that comes from 

an consolidate replenishments leads to a reduction in total cost. However, this finding 

is limited to the specific instance o f three retailers. It is believed that the cost 

reduction may also occur when there are a more retailers present. However, further 

analysis is needed to examine the actual behaviour and performance of IRP model for 

these more complex scenarios. The analysis may consider multiple-item scenarios as 

well as the situations that involve more customers. In addition, further analysis may 

consider procedures for handling out-of-stock situations.

Also, the assumptions on unlimited vehicle capacity and supply from supplier 

permitted quantification o f the effect o f the proposed model with regard to the optimal 

replenishment quantity and consolidation without any constraint. However, the study 

did include the analysis o f the effect o f vehicle utilisation rates with different 

maximum transportation capacities in Chapter 6.

The research based on a single case study was another limitation of the research to 

generalise the findings. Nonetheless, it is believed the study has produced significant 

findings, as the organization chosen for the study is a leading private healthcare 

organisation in Malaysia which owns a large chain o f clinics. Furthermore, as 

discussed in methodology chapter, a single case study is applicable in research where 

the case is unique and has been found difficult to access previously (Ellram, 1996; 

Yin, 2003). Accordingly, the proposed periodic “can-deliver” model could be 

implemented in other organisations in various sectors as the replenishment strategy 

deals with multiple customers.

The suggested business reengineering strategy to improve the performance of the 

organisation is based on an evaluation o f the current business strategy and the
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capability of the organisation to adopt the new strategy. The analysis of the benefit of 

the proposed IRP model is also simulated based on several assumptions. The 

willingness of the organisation to implement the new strategy and the evaluation of 

actual total cost benefit derived from the current supply chain process and the 

proposed supply chain strategy are beyond the scope of this study. However, in 

general, the study found that the flexibility from the periodic “can-deliver” model is 

able to generate cost savings and increase vehicle effectiveness in a multi-retailer 

scenario.

7.6 Recommendations for further research

This section provides recommendations for further research extensions to the study to 

contribute to the existing body o f knowledge. A number of directions can usefully 

expand the study o f the flexibility o f an early replenishment strategy using the 

proposed IRP model.

First, it would be interesting to examine the behaviour of the model under different 

scenarios. The investigation o f the trade-off between the inventory cost and 

transportation cost for the optimal decision solution based on the proposed IRP model 

would be more interesting if  the holding cost at wholesaler is included in the model. 

Analysis could also be conducted on the behaviour of optimal control parameters in 

the situation of non-identical retailers. A further study could consider more complex 

network designs by including more retailers in the model with different physical 

layouts between retailers and wholesaler.

In addition, the study could take the capacity constraints for both wholesaler and 

vehicle into consideration. A further study could consider different IRP dimensions in 

a periodic “can-deliver” model.

Further investigation could be carried out on a scenario where multiple vehicles are 

used to make a delivery trip. The analysis could be expanded to examine the effect of 

homogenous and heterogeneous vehicle types on solving a multiple vehicle scenario. 

The overall vehicle effectiveness could be measured by accumulating MOVE

186



percentage for each vehicle. It would also be interesting to examine the total 

effectiveness o f the IRP model with regard to the inventory and vehicle performance. 

Also the effectiveness measurement can be expanded to evaluate the overall 

effectiveness for the entire supply chain.

Finally, another study could focus on the methods used to determine the optimal 

solution of the proposed model with regard to the routing decision and the inventory 

control parameters that minimise the total cost. An intelligent approach using heuristic 

or metahueristic methods enable quick determination of near optimal solutions. The 

simulation model can be optimised directly via simulation software packages and 

Microsoft Excel add-in software that uses various search strategies. For example, the 

OptQuest package in ARENA software and the Crystal Ball add-in use scatter search, 

tabu search and neural network, whilst the Optimizer package in Witness software 

uses simulated annealing and tabu search strategy (Fu et al., 2005 and Law and 

Kelton, 2000). Studies by Kleijnen and Wan (2007) and Wan et al. (2007) have 

shown that the Optquest software is capable of giving an accurate result similar to the 

result generated from the brute-force technique. With regard to the optimal routing 

decision, further studies could consider applying approaches such as the Genetic 

Algorithm, Simulated Annealing and Local Search to determine the optimal sequence. 

Such approaches are already widely applied in the area o f vehicle routing, for 

instances, Baker and Ayechew (2003), Pankratz (2002) and Backer et al. (2000).

7.7 Final comments

The integration o f inventory and transportation management via the Inventory 

Routing Problem approach is beneficial to enhance the efficiency of the entire supply 

chain. This study has provided insight on how implementation o f the IRP model can 

improve the supply chain in the healthcare industry. The simulation result has shown 

that the flexibility o f making the replenishment decision at a central point through the 

(s,c,S) policy, which is commonly used in joint replenishment for a multi-item 

problem, not only generates a low total operation cost but also gives opportunity for 

the supplier to manage a vehicle effectively. It is hoped that the findings of the 

research will be useful to the decision-maker in managing the entire supply chain 

more economically and in an environmentally friendly manner.
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