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Abstract

Abstract

Pockmarks and pipes are found globally. They represent loci for overpressure 

generation and seal breach and are therefore of significant importance for basin 

analysis and modelling, the modelling of overpressure development and analysing 

seal integrity.

This research concentrates on two study areas. A family of blowout pipes from 

North Namibia imaged in 3D seismic data; and a group o f large buried pockmarks 

and a field of small seabed pockmarks from the Western Nile Deep Sea Fan (NDSF) 

imaged in ultra high resolution 2D seismic data. The general themes of this research 

are pipe and pockmark morphology and formation process, their spatial and temporal 

distribution and the magnitude and frequency of fluid flux through the conduit.

A family of blowout pipes from Namibia exhibit a variety of seismic characteristics, 

with the largest pipes containing a blowout crater and evidence of possible stacked 

palaeo-pockmarks. Formation of the Namibian blow out pipes is attributed to 

overpressure induced hydrofracturing of the seal, hydrofracture propagation towards 

the seabed and blow out. Blow out is accompanied by crater formation and collapse 

of the overburden resulting from volume loss at the base of the pipe due to 

fluidization. Fluidization and the migration of fluid and some sediment through the 

pipe are interpreted from localised reflection thickening at the top of the pipe, in a 

depositional pattern similar to channel levees.

Namibian pipe formation is shown to be intermittent and persistent throughout the 

Neogene. The fluid source for the family of pipes is unknown, however inferences 

based on the spatial position of pipes in relation to significant unit boundaries (Post 

Rift 1 and the Syn Rift) suggest the likely source is at depth (> 1 km). A close 

association between the size and location of the pipes, the development of hydrate 

(as identified by a Bottom Simulating Reflector) in Post Rift 3, and the Syn Rift, a 

proven hydrocarbon source region in South Namibian basins, is noted. If the 

Namibian pipes are source from the Syn Rift, these pipes are potentially sourced 

direct from a hydrocarbon kitchen and would have maximum pipe heights in excess
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Abstract

of 5 km. To the authors knowledge these would be the tallest recorded pipes in the 

literature and the first to be sourced from a kitchen. A conceptual model is 

developed in which the spatial position of pipes adheres to both basinal and local 

controls.

A group of large buried pockmarks on the NDSF are interpreted to have formed 

between 15,000 yrs BP and 100,000 yrs BP, the majority of which are believed to 

have formed at the same time c. 50,000-80,000 yrs BP. These buried pockmarks 

show evidence for highly focused, episodic fluid flow following burial of the 

pockmark. The longevity of post formation fluid migration is estimated to be 

~15,000-100,000 yrs.

A field of > 13,800 small seabed pockmarks (Nile Deep Sea Fan) are interpreted to 

have formed within the last 6,500 yrs. Spatial statistics identified an exclusion zone 

or “drainage cell” surrounding each pockmark which is not penetrated by the 

formation of any other pockmark. A conceptual model for a drainage cell is 

proposed whereby pockmark formation dissipates a radius/area of fluid and 

overpressure, thereby preventing the formation of another pockmark within that cell.

The overall conclusions of this thesis suggest that pipes form episodically over multi­

million year timescales in response to both local and basinal conditions. It is 

suggested that the formation of pipes and pockmarks is, to a certain degree, governed 

by the location of surrounding pipes / pockmarks and their associated drainage 

[overjpressure cells. Post formation fluid migration through these conduits can 

potentially continue > 100,000 yrs, although this fluid migration may be of a higher 

frequency and lower magnitude compared to the initial formative flux.

This thesis has contributed to the knowledge and understanding of focused fluid flow 

by demonstrating the spatio-temporal characteristics of a group of pipes and 

pockmarks. This thesis concurrently tackles questions of fluid migration timing with 

the spatial location of seal breach, and considers the re-use of the fluid migration 

conduit with time and space and the magnitude and frequency of that fluid flux. To 

the author’s knowledge, this is the first spatio-temporal analysis of its kind.
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Chapter 1 Introduction

1 INTRODUCTION

1.1 Rationale

Pockmarks are “[conical] features which record the existence o f [fluid] seepages in at 

least some types of seabed sediment“ (Hovland and Judd, 1988 pp 1). Pipes focus 

the migration of fluid to the seabed.

Pipes and pockmarks are found globally in both deep and shallow water settings 

(Hovland and Judd, 1988; Judd and Hovland, 2007). They have been identified on 

active and passive continental margins (Suess et al., 1998; Bemdt, 2005), and in 

marine and freshwater settings in sea, coastal, estuary, fjord and lake environments 

(Pauli et al., 2002; Van Rensbergen et al., 2002; Ussier III et al., 2003; Cartwright et 

al., 2004; Naudts et al., 2006; Rogers et al., 2006; Webb et al., 2009).

Since their discovery on the Scotian Shelf (King and MacLean, 1970), pockmarks 

have been the focus of significant academic and industrial interest. Interest in 

pockmarks concerns 1) their role in reservoir seal failure (Cartwright et al., 2007), 2) 

as potential habitats for fish and chemosynthetic communities (Olu-Le Roy et al., 

2007; Judd and Hovland, 2008), 3) potential links between pockmarks and fluid 

induced seabed slope instability (Biinz and Mienert, 2004; Chapron et al., 2004; 

Lastras et al., 2004), 4) potential hazards to drilling and seabed installations (Judd, 

1981; Haskell et al., 1999; Hovland et al., 2002; Garcia-Garcia et al., 2004; 

Heggland, 2004; Judd and Hovland, 2007), 5) potential geological indicators of 

tectonic movement e.g. precursors to earthquakes (Hasiotis et al., 1996) and 6) as 

potential contributors to oceanic methane and gas hydrates (Gorman et al., 2002; 

Haacke et al., 2009).

This research falls primarily within the broad category of reservoir seal failure. 

Pipes and pockmarks represent the focused migration of fluids from a reservoir, and
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Chapter 1 Introduction

identification of such features within a petroleum producing basin can have both a 

positive and negative impact on play assessment. On the one hand the presence of 

pipes and pockmarks is used to identify reservoir targets; on the other hand they 

represent localised trap failure and a breakdown in seal integrity. This conundrum 

highlights why pockmarks and pipes are significant components of basin analysis 

and modelling, and the modelling of overpressure development.

Pipes are reservoir “pressure valves”, balancing the system inputs and outputs. They 

are a complex interaction of some of the most fundamental components in 

hydrocarbon exploration, namely, the reservoir, the seal, fluid migration (primary 

and secondary) and pressure. Beyond the hydrocarbon industry, the global 

propensity of pipes/pockmarks ensures that they are likely to be present in many 

basins, whether directly or indirectly linked to a main hydrocarbon fluid reserve. It 

is this propensity which provides the fundamental reason for pipe and pockmark 

analysis; it implies there is a scale invariant baseline component/process to fluid 

migration which must hold true globally.

The overall objectives of this research are to further understand this baseline 

component in terms of its morphology and process, spatial and temporal variation 

and frequency and magnitude of flux.

1.2 Aims of study

The overall aims of this research are to describe the spatio-temporal characteristics of 

pipe and pockmark formation. The research presented in this thesis is based on two 

case study areas; 1) deep (seabed to basement) 3D seismic data from offshore 

Namibia permitting analysis of large scale, basin wide features; and 2) a shallow 

ultra high resolution 2D seismic survey from the Western Nile Deep Sea Fan 

permitting analysis of small scale features. This research is focused around 6 central 

themes; morphology and process, spatial and temporal distribution, and frequency

5



Chapter 1 Introduction

and magnitude (Fig. 1.5.). The methodology utilises spatial statistics tools not 

previously used in pockmark investigations to further develop pockmark analytical 

capabilities and explore new avenues for interpretation e.g. spatio-temporal analysis.
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Spatial and temporal distribution

Pipe / Pockmark morphology Fluid s o urce

Seism ic description Seism ic description

Geometry Depth and spatial extent

Process interpretation

Longevity o f fluid migration ‘Drainage cell"  characteristics

Fluid flux

Figure 1.1 Research concept Capturing the main themes of this research, morphology and 
process, spatial and temporal distribution, and magnitude and frequency
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Chapter 1 Introduction

An outline of the main aims and objectives of this research, and the chapter to which

they relate, are detailed below;

1. To extend the general descriptive base of blowout pipes in 3D

o Describe a previously unknown group of blowout pipes from offshore 

Namibia (Chapter 4)

2. To investigate the spatial distribution of pipes and pockmarks

o To analyse the spatial distribution of a family of blowout pipes (using 3D 

data) (Chapter 5)

o To investigate the spatial distribution of pockmarks within a pockmark 

field using a case study from the Nile Deep Sea Fan (NDSF) (Chapter 7)

3. To investigate the temporal distribution of pipes and pockmarks

o To analyse the sequential temporal distribution of blowout pipe formation 

in the Namib Basin, Namibia (Chapter 5)

o To analyse the temporal formation pattern of buried pockmarks from the 

Rosetta Region of the NDSF and relate formation timings to any potential 

triggering mechanisms (Chapter 6)

4. To investigate the longevity of post-formation fluid migration and make

inferences about the frequency and magnitude of flux

o To analyse and interpret “stacked pockmarks” (Chapters 4 and 6)

o To identify and interpret seismic reflection characteristics which typify 

post formation fluid migration (Chapters 4 and 6).

5. To determine whether spatial statistical techniques are a valuable tool for

analysing pipe and pockmark distributions (Chapters 2, 5, 6, 7 and 8)

1.3 Overview

The aims of this chapter are 1) to introduce pipes and pockmarks within the context 

of reservoir seal failure; 2) to describes the conceptualised fluid flow system; 3) to 

summarize the role of pipes in seal by-pass; 4) to illustrate the contrasting seismic 

expression of pipes; 5) provide an overview of the current theory on pipe and
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pockmark formation; and 6) to outline the current state of knowledge concerning the 

spatial and temporal distribution of pipes and pockmarks.

1.3.1 Fluid flow system

Fluid flow system is a generic term used to describe the lateral and vertical suite of 

processes involved in fluid migration from the accumulation of fluid in a trap, to trap 

breach and fluid escape (Fig. 1.1). The fluid flow system composition is highly 

variable and unique to each basin. The system comprises a vertically hierarchical 

arrangement of isolated reservoir bodies of different sizes, positioned at varying 

depths within the stratal sequence. These reservoir bodies are connected by vertical 

or sub-vertical migration pathways, connected laterally by carrier beds or units of 

high relative permeability, which permit the vertical movement of fluid from one 

body to another. These migration pathways can be any structural or stratigraphic 

feature which promotes fluid migration, e.g. pipe or fault. Once in the reservoir 

body, fluid may migrate laterally before re-migrating. Fluid can enter the system 

either through primary migration or in situ fluid generation, and exits the system at 

the seabed e.g. via a pipe and pockmark. The isolated reservoir bodies are inter­

connected by members of the Seal By-Pass family (Cartwright et al., 2007).
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vertical (pockmark formation) migration : system output

pockmarkpockmarkpockmarkseabed

pipe

low permeability: sealing sequence

fluid generation s ystem inputhigh permeability : fluid reservoir

lateral migration | vertical migration up-dip migration vertical migration to seabed

Figure 1.2 Schematic of the fluid flow system. Vertically hierarchical suite of reservoir bodies 
connected by vertical or sub-vertical migration pathways (SBS). Pipes and faults are shown but 
any member of the seal by-pass family could fulfil this role.
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1.3.2 Pipes : a member of the Seal By-pass System

Pipes are members of the seal by-pass family (Cartwright et al., 2007). A Seal By­

pass System (SBS) is defined as “ large-scale (seismically resolvable) geological 

features embedded within sealing sequences that promote cross-stratal fluid 

migration and allow fluids to bypass the pore network.”  (Cartwright et al., 2007 

ppll43). Seal By-pass Systems incorporate fault (trap defining and supratrap), 

intrusive (sandstone, igneous, salt/mud diapirs and diatremes) and pipe (dissolution, 

hydrothermal, blowout and seepage) by-pass (Cartwright et al., 2007). Pipes permit 

fluids to by-pass an assemblage of generally low-permeability lithofacies that halt or 

retard the flow of fluids (oil, gas, water) toward the seabed (Cartwright et al., 2007).

Pipes are defined as vertical to subvertical columnar zones of disturbed seismic 

reflections that may or may not be associated with subvertically stacked amplitude 

anomalies. Pipes range in height from tens of metres to several kilometres and are 

commonly circular to subcircular in planview (<25 m to >1000 m diameter), but their 

vertical and cross sectional geometry is often marred by seismic artefacts such as 

migration anomalies, scattering artefacts, lateral velocity anomalies and attenuation 

artefacts related to shallow diffractors (Loseth et al., 2001; Davies, 2003; Loseth et 

al., 2003; Cartwright et al., 2007).

Pipes are commonly differentiated from seismic artefacts (e.g. push downs, 

migration anomalies, defractors), by considering their geologic context (Fig. 1.2). 

Pipes are commonly seen to emanate from 1) crestal regions, e.g. structural crests i.e. 

tilted fault block crests or fold crests (e.g. Niger Delta) (Keller et al., 2007; Van 

Rensbergen et al., 2007; Cobbold et al., 2009); 2) fault tips (e.g. Fram Straight, NW 

Svalbard) (Cobbold et al., 2009; Hustoft et al., 2009a); 3) depositional or 

constructional crests i.e. diapiric crests (e.g. Central Adriatic Sea), sand bodies, 

turbidic crests or channel-levees with positive topography (e.g. Lower Congo Basin) 

(Gay et al., 2003; Gay et al., 2006a; Gay et al., 2007a; Geletti et al., 2008; Leon et 

al., 2010) or 4) fluid crests i.e. up dip limit of gas hydrates (e.g. Hydrate Ridge) or 

diagenetic boundaries i.e. the conversion of biogenic silica (opal-A) to opal-CT 

(cristobalite and tridymite) in biosiliceous sediment causes increased rates of water
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expulsion due to the reduction in sediment porosity and dehydration of the 

amorphous opal-A phase resulting in pipe formation (e.g. Faeroe Shetland Basin) 

(Cowley and O’Brien, 2000; Trehu et al., 2004; Davies et al., 2008) (Fig. 1.2). 

Nevertheless, many pipes are also documented from flat-lying units or synclinal 

regions, albeit with some focusing element at depth.
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System

levee

water

primary migr< reservoir

soun

Seal By-pass System : Pipe

sealing sequence

fracture zone or shear zone

sealing sequence Seal By-pass System

Seal Bv-pass System : Pipe j j

sealing sequence
source : opal-A to opal-CT reaction front

source: fluid 
migration from

«- Seal By-pass System : Pipe

d)
seabed

Seal By-pass System : Pipe

XT-
' sealing sequence

potential source

seabed

source

SBS

: lateral up-dip migration from depth

fault :

seabed

Figure 1.3 Geological context of pipes, a) generalised anticlinal trap b) buried channel-levee 
complex (Gay et al., 2003)), c) pipe emanating from the base of the gas hydrate stability field 
(Trehu et at, 2004; Trehu et al., 2004)), d) isolated shallow gas pockets, e) pipes forming at the 
crest of a salt diapir. Pipes have also been observed above mud volcanoes, 0  pipe bleeding from 
the top of a fault (also observed above polygonal faults), g) pipes forming due to dewatering 
associated with the opal-A to opal C-T reaction front (Davies et aL, 2008), h) pipes forming up- 
dip of structures e.g. tilted fault blocks
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Cartwright et al. (2007) based their subdivision of pipe by-pass on the pipe’s 

contextual setting. Dissolution pipes develop in areas of evaporite or carbonate karst 

and form by the dissolution of rock units at depth, creating subsurface cavities that 

promote instability in the overburden leading to collapse (Stanton, 1966; Cooper, 

1986; Bertoni and Cartwright, 2005; Michaud et al., 2005). Hydrothermal pipes are 

found in sequences breached by igneous intrusions, and form by the release of a high 

flux of hydrothermal fluids associated with mafic sills, laccoliths and other kinds of 

igneous intrusions (Davies et al., 2002; Svensen et al., 2003; Trude et al., 2003).

Blowout pipes were first described by Loseth et al 2001 from the Nigerian 

continental margin. Similar to the other pipe families, they are typically seen on 

seismic data as a columnar zone of disturbed reflections or vertically stacked 

localized amplitude anomalies, often reaching the seabed and terminating in a 

pockmark or crater. Blowout pipe genesis is believed to result from the enigmatic 

and catastrophic breaching of top seals on shallow gas reservoirs (Loseth et al., 

2001). The diagnostic link between blowout pipes and pockmarks is the main 

argument to support the concept that these pipes represent a discrete blowout event, 

instead of a longer term, slower flux process or seepage (Loseth et al., 2001; 

Cartwright et al., 2007). Blowout pipes are not linked to igneous intrusions or 

karstified units thereby differentiating them from dissolution and hydrothermal pipes. 

Seepage pipes have similar seismic characteristics to blowout pipes but lack the 

blowout crater (Cartwright et al., 2007).

1.3.3 Acoustic expression of blowout and seepage pipes

The basic description and definition of a pipe given above is simplistic. 

Complexities in the seismic expression of pipes have lead to a multitude of 

definitions and seismic examples in the literature. Specific literature examples have 

been chosen to illustrate this point (Bemdt et al., 2003; Loseth et al., 2003; Morley, 

2003; Xie et al., 2003; Trincardi et al., 2004; Gay et al., 2007a; Hustoft et al., 2007; 

Pauli et al., 2008; Pinet et al., 2008; Plaza-Faverola et al., 2010).
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At least five different terminological phrases are currently interchanged within the 

literature to describe what is broadly classified as a “pipe” i.e. a vertical columnar 

zone of seismic disturbance. The terminology often includes the terms “pipe” or 

“chimney”, for example;

• Pipe (Berndt et al., 2003)

• Chimney structures (Pauli et al., 2008)

• Seismic chimney (Pinet et al., 2008)

• Blowout pipe (Loseth et al., 2001; Trincardi et al., 2004)

• Gas chimneys (Loseth et al., 2003; Morley, 2003)

• Gas chimneys / plumes (Xie et al., 2003)

• Pipe / seismic chimney (Gay et al., 2007a)

• Acoustic pipe structure (Hustoft et al., 2007)

• Vertical fluid migration feature (Plaza-Faverola et al., 2010)

The multiplicity of terms for the seismic expression of the columnar structures, 

hereafter simply referred to as pipes, may reflect a degree of uncertainty in

interpreting these features due to their seismic complexity and propensity for being

shrouded in seismic artefacts. The seismic expression of pipes can be broadly 

classified into four groups; 1) up-bending convex reflections, 2) down-bending 

concave reflections, 3) distortion or chaotic loss of acoustic signal and 4) a 

combination o f types. Examples of different pipe structures are shown in Figure 1.3; 

a brief description of each example is given in Table 1.1.
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Chapter 1

Table 1.1 Basic pipe description (based on Figure 1.3)

Terminology Basic description Dimensions Amplitude Reflection
geometry

Blowout
pipes

Combination type : the lower section of the pipe 
is defined by clear breaks ii> reflection continuity 
in contrast with an upper section of upward 
bending continuous reflections

Height: ~ 1 km 
Width:

< 100 m

Similar to
background
strata

Discontinuous at 
pipe top (down­
turn) and bottom 
(upturn), continuous 
in the middle

Hydrate
choked

chimneys

Combination type : lower sections of the pipe are 
indistinguishable from the highly fractured 
background strata. The upper section of the pipe 
is characterised by reduced amplitude and loss of 
coherent acoustic expression

Height: 
~ 100 ms 
Width: 
~ 100 m

Less than
background
values

Discontinuous and a 
tendency towards 
up-tum reflections

Pipe/
Seismic
chimney

Combination type : seismic attributes differ 
between those above and below the BSR.
Beneath the BSR the deep anomaly is an inverted 
cone shape in cross section and marked by lower 
amplitude reflectors and acoustic turbidity.
Above the BSR reflections are up-bending, 
down-bending and discontinuous. The 
shallowest section of pipe is ovoid in shape with 
depressed high amplitude reflectors

Height: 
> 200 ms 
Width: 
~ 250 m

Isolated 
reflections 
showing above 
background 
amplitudes

Near continuous up- 
tum and down-tum 
reflections 
asymmetric in 
shape

Chimney
structures

Combination type : identified in seismic 
reflection profiles as local disturbances in the 
continuity of seismic reflections that are similar 
in width to the pockmark. Authors conclude this 
may be structural or a velocity effect

Height:
> 300 ms 

W idth: < 1km

Lower
amplitude than 
the BSR but 
slightly higher 
than the 
background 
strata

Discontinuous with 
localised up-tum 
and down-tum 
reflections

Vertical fluid 
migration 

feature

Distortion : recognised by push-down and loss of 
frequency

Height: > 1 s 
W idth: < 3km

Similar to
background
strata

Discontinuous, 
chaotic, wavy

Seismic
chimneys

Distortion . Vertical zones of disturbance in the 
seismic data where amplitudes of reflectors are 
distorted

Height:
~ 100 ms 

W idth: < 200m

Similar to 
background 
strata with 
isolated higher 
amplitudes

Highly
discontinuous with 
localised reflection 
concavity towards 
the pipe top

Gas
chimneys

Distortion : noise zones or noise filled seismic 
data with occasional high amplitude V-shaped 
brights clustered above the noise zone

Height: < 1 s 
Width : < 5 km

Similar to
background
strata

Discontinuous,
chaotic,
occasionally wavy
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Terminology Basic description Dimensions Amplitude Reflection
geometry

Gas 
chimneys / 

plumes

Distortion : low-middle seismic amplitudes and 
intermittently chaotic and blank reflecting 
seismic facies

Height: > 1 s 
Width : ~ 2 km

Generally lower 
than
background 
values with 
isolated higher 
amplitude 
reflections

Discontinuous, 
chaotic, some 
acoustic blanking

Blowout
pipes

Concave : stacked v-shaped continuous 
reflections

Height:
< 100 ms 
Width:
< 300 m

Similar to 
background 
strata with 
isolated higher 
amplitudes

Stacked v-shaped
continuous
reflections

Seismic
chimneys

Concave / distortion: occasional concave 
reflections within a vertical wipe-out zone where 
the seismic signal is deteriorated and reflections 
are absent

Height:
< 50 ms 
Width:
< 200 m

Above
background
levels

Chaotic and 
discontinuous but 
showing evidence 
for continuous 
concavity where 
reflections permit

Pipe Convex : circular zones of up bending, low 
amplitude reflections

Height:
< 500 ms 
Width:
< 500 m

Similar to 
background 
strata with 
isolated higher 
amplitudes

Discontinuous 
stacked convex 
reflections

Chimney / 
pipe

Convex : The upper part is ovoid in shape with 
high amplitude reflectors deflected upward 
directly beneath the pockmark depression. The 
deeper part is marked by a decrease in reflection 
amplitudes towards the centre

Height:
> 300 ms 

Width : < 1 km

Similar to 
background 
strata with 
isolated higher 
amplitudes

Near continuous 
stacked inverted v- 
shaped reflections

Acoustic
pipe

structures
Convex : narrow vertical zones of acoustic wipe­
out with upward bending marginal reflections

Height: 
> 500 ms 
Width : 
< 500 m

Similar to
background
strata

Continuous stacked 
inverted v-shaped 
reflections
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The seismic expression of pipes also shares some common elements with 

sedimentary diatremes and small mud volcanoes/diapirs (Brown, 1990; Loseth et al., 

2001; Cartwright and Huuse, 2005; Cartwright et al., 2007; Judd and Hovland, 

2007). Elements such as 1) columnar, vertical acoustic distortions; 2) deviation in 

amplitude from background values; 3) concave, convex, discontinuous and/or chaotic 

reflections; and 4) similar geometrical attributes. These similarities are noted but not 

dealt with here.

From this small selection of pipe examples, it is clear that the same terminology has 

been given to pipes with very different seismic expressions and conversely, pipes 

with a similar seismic expression have different terms. For example, blowout pipes 

described by Loseth et al (2001) and Trincardi et al (2004) and stacked inverted v- 

shaped reflections by Hustoft et al (2007) and Gay and Berndt (2007).

For the purposes of this thesis I refer to a chimney as an amorphous acoustic 

distortion resulting from the presence of gas, seeping through the sedimentary 

column. Pipes represent distinct, clearly definable, columnar structures formed by 

the migration of fluid (pore water, gas) and some sediment, to the extent that it 

disrupts the sedimentary layering. I suggest that pipes which entrain (fluidized) 

material can be distinguished from pipes which only permit the migration of fluids 

by recognition of deposited (transported) material on the (palaeo)seabed. Pockmarks 

are small (< 1 km diameter) circular seabed depressions formed by the expulsion of 

fluid.

The variation in seismic expression is difficult to explain, and as yet, has not been 

tackled in the published literature. A discussion on the variations in observed 

seismic expressions of pipes is beyond the scope of this thesis and the limited 

information supplied in some articles on the data collection methods etc is 

insufficient to make clear comparative conclusions. I tentatively suggest that the 

variation in seismic expression may be the result of;

• Seismic data collection, processing, migration etc

• Acoustic anomalies and amplitude anomalies

• Differences in the host stratigraphy
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• Variation in the fluid type and content (% gas in pore water) of the pipe

• Variation in how the pipe was formed i.e. blowout vs seepage

• Process e.g. collapse vs the upward movement of fluidized material

1.3.4 Pipe and pockmark formation

This section gives a brief introduction to the basics of pipe and pockmark formation. 

It is not a comprehensive account of the processes involved nor does it discuss any of 

the research in this thesis.

The formation of blowout pipes is poorly understood at present because only a few 

seismic examples have been described, and none have been calibrated by drilling 

(Cartwright et al., 2007). The only known published onshore example of a blowout 

pipe is from the Greek Island of Rhodes and consists of concentric rings of clasts in a 

muddy matrix surrounded by a halo of heavily fractured country rock ((Hanken et al., 

1999) reported in Judd and Hovland 2007). The identification of hydraulically 

fractured rock is of paramount importance to blowout pipe formation. Hydraulic 

fractures enable vertical gas escape, violent enough to erode the seabed and create a 

void. This void is subsequently filled by clasts of the overlying rock as they fall back 

into the newly created blowout crater (Hanken et al., 1999; Lovlie and Hanken, 

2002). It remains unclear whether this onshore example represents a blowout pipe or 

some other form of fluid migration or dissolution pipe given its limited exposure, 

however, this example does provide a good example of a collection of columnar 

hydrofractured structures. The description of Namibian blowout pipes in Chapter 4 

is intended to extend this descriptive base.

Conversely, pockmarks have received a greater amount of attention (Hovland and 

Judd, 1988; Judd and Hovland, 2007; Pilcher and Argent, 2007; Sahling et al., 2008). 

Pockmarks are conical seabed depressions which range from <100 m to >1000 m
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diameter and <1 to >20 m deep*. Their morphology is generally characterised as 

standard circular and/or elliptical, composite, asymmetric, unit, giant, pockmark 

strings and elongated pockmarks and troughs (Judd and Hovland, 2007). Formation 

involves seal breach at (shallow) depth instigating vertical fluid migration. 

Accumulations of gas in near seabed sediments result in increased pore pressures and 

produce doming of seabed and subseabed reflections. The dome is in tension and 

small fractures develop on the crest and flanks, through which gas establishes a route 

to the seabed forming unit pockmarks (diameter <5 m). A hydraulic connection is 

established, gas expands as it rises through the fractures and results in a violent burst 

of escaping fluid at the seabed forming a normal pockmark (diameter >100 m) (Judd 

and Hovland, 2007). Any fluidised sediments or entrained material is conveyed into 

the water column and dispersed by bottom currents. Unit pockmarks (~5 m to 

< 20 m diameter) continue to develop on the seabed around the newly formed 

pockmark and coalesce to form a composite pockmark. Site specific variations of 

this model of pockmark formation are present within the literature but not discussed 

here (Pilcher and Argent, 2007; Sahling et al., 2008).

Recently, numerical models have been utilised to further elucidate pockmark 

formation (Jain and Juanes, 2009; Cathles et al., 2010; Su et al., 2010). Cathles et al 

(2010) produced a “gas-piston-water-drive” numerical simulation of pockmark 

formation based on a capillary seal. A capillary seal is formed when capillary forces 

“attract” pore water into fine sediment pores, displacing gas into larger pores. 

Without sufficient pressure gas bubbles are unable to enter the finer pores preventing 

pore water and gas bubbles from migrating. It is essential that both pore water and 

gas are present for a capillary seal to be operational. In the Cathles et al (2010) 

model a single interface capillary seal traps gas until sufficient pressure has built up 

and the gas invades the seal. The seal fails completely (a unique aspect of capillary 

seals) releasing gas into an upward-propagating pipe, displacing water “like a piston” 

as it rises, liquefying the sediments (Cathles et al., 2010).

* see A ppendix  A l for a database o f  pockm ark geom etries ex tracted  from  pub lished  articles. Please 
note, the database is not an exhaustive account o f  pockm ark  geom etries and is only  designed  to 
illum inate the range in observed geom etries
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In the Cathles’ et al (2010) model, a subsurface pipe can start to deform overlying 

sediments when the pipe height equals half the distance between the base of the 

source reservoir and seabed, pushing water up at increasingly higher velocities as the 

pipe approaches the seabed (Su et al., 2010). This suggests that where the sediment 

permeability is uniform, it is the buoyancy force of the rising gas column which 

pushes water out of the sediments above causing fluidisation and pockmark 

formation; permeability is not a consideration (Hovland et al., 2010). The rate of 

pipe growth depends on permeability and the ratio between the depth to the fluid 

source and the thickness of the fluid source (Cathles et al., 2010).

Jain and Juanes’ (2009) discrete element model simulates pockmark formation at the 

grain scale. A fundamental outcome o f the Jain and Juanes model is that grain size is 

the main factor controlling the mode of gas transport in sediment. Capillary invasion 

(where the gas/water interface invades the sediment pore throat if the capillary 

pressure [difference between gas pressure and water pressure] is larger than the 

capillary entry pressure) is preferential in coarse grained sediments (>1 pm) and 

hydraulic fracture in fine grained sediments (< 1 pm) (Jain and Juanes, 2009).

Slight, yet significant differences exist between the conceptual and numerical 

models. The Cathles et al model uses a uniform permeability o f unstipulated grain 

size and advocates seal breach by seepage, analogous to the capillary invasion 

proposed by Jain and Juanes (2009), as the sole method of pockmark formation. The 

conceptual model proposed by Judd and Hovland (2007) implies fluid migration will 

utilise all available permeability pathways including fractures, a realistic compromise 

not integrated into the Jain and Juanes (2009) model which is also based on vertical 

permeability homogeneity.

The models presented here assume a vertical root system beneath the pockmark, 

constant fluid density and uniform vertical permeability. The models fail to 

incorporate heterogeneities in the flow pathways caused by permeability changes or 

diagenetic processes e.g. the formation of Methane Derived Authigenic Carbonates 

(MDAC) (a similar process is referred to as Hydrocarbon-related diagenetic zones 

(HRDZs) by Cowley and O’Brien (2000)). Studies of onshore fossil seeps have 

shown branching tubular networks of carbonate cemented chimneys attesting to the 

possible small scale dendritic nature of fluid migration at seep sites (Aiello, 2005; De
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Boever et al., 2006b, a; De Boever et al., 2009a; De Boever et al., 2009b; Nyman et 

al., 2009). The numerical models also fail to incorporate the possibility of pathway 

“re-use” over time. The models clearly describe the first generation pockmark but 

fail to capture the effects of re-migration through existing conduits or that the 

formation of unit pockmarks may amalgamate into larger pockmarks as suggested by 

the conceptual model of Judd and Hovland (2007). The possibility of conduit re-use 

and the lateral components of fluid migration are discussed in more detail in 

Chapters 6 and 7.

Gaps still remain in our understanding of the process o f pockmark formation. The 

next section summaries recent work on formation with a focus on the spatial and 

temporal distribution of pipe and pockmark formation, and the frequency and 

magnitude o f flux; the key themes o f this research.

1.3.4.1 Spatial and temporal distribution of pipe and pockmark formation

Incorporating spatial and temporal distribution analysis into discussions of pipe and 

pockmark formation is a relatively recent approach adopted within pockmark studies. 

Previous studies have analysed the distribution of fluid migration relative to focus 

points e.g. the up dip limit of structures, but to this author’s knowledge, the work 

presented here is the first published spatio-temporal research of its kind. Recent 

published studies have started to incorporate elements of spatial and temporal 

analysis, and that work is reviewed here.

Analysis of pockmark formation in space and time requires detailed 3D mapping of 

pockmarked horizons within a stratigraphic sequence. A large proportion of 

pockmark studies focus on seabed pockmarks or seeps thus rendering their time of 

formation difficult to determine, especially if  the seafloor is diachronous and/or has 

such low sedimentation rates that pockmarks of different ages become superimposed. 

Consequently, previous research has discussed the spatial aspects of pockmark 

formation and when they formed as separate issues. The research presented here 

(Chapters 4, 5, 6 and 7) combines this analysis into a holistic evolutionary model.
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1.3.4.1.1 Spatial

Traditionally, the spatial analysis o f seabed pockmarks has only extended to density 

as a basic spatial descriptor (Kelley et al., 1994; Rise et al., 1999; Garcia-Gil et al., 

2002; Pauli et al., 2002; Biinz et al., 2003; Naudts et al., 2006; Rogers et al., 2006; 

Gay et al., 2007a; Van Rensbergen et al., 2007; Andresen et al., 2008; Jane et al., 

2010), however more recent studies have incorporated more advanced statistics. 

Principle Component Analysis (PCA) and Variance have been used to describe the 

distribution of seep ecology within and surrounding pockmarks (Li et al., 2007; Olu- 

Le Roy et al., 2007; Galeron et al., 2009), Variogram analysis has been used on 

analogue onshore fossil seep studies (De Boever et al., 2009b), Nearest Neighbour 

analysis and Delaunay Triangulation were used to describe pockmark distributions 

from the Inner Oslofjord, Norway and Iberian Peninsula (Webb et al., 2009; Jane et 

al., 2010) and the Blade method was tested on pockmark distributions as a new 

statistical method for detecting point alignments (Hammer, 2009). To the author’s 

knowledge, these are the only studies which incorporate advanced spatial statistics. 

With the exception of Nearest Neighbour analysis and Delaunay Triangulation, none 

of the spatial statistics utilised in this research have previously been applied to 

pockmark distributions.

1.3.4.1.2 Temporal

The temporal distribution of pockmark formation is often poorly documented (Gay et 

al., 2007b). Research which has considered the timing of pockmark formation can 

be subdivided into three categories; those which use chronostratigraphic dating 

techniques on pockmark cores (Pauli et al., 2008; Webb et al., 2009), those which 

date the seismic stratigraphic unit containing the pockmark (Long, 1992; Kelley et 

al., 1994; Cole et al., 2000; Hansen, 2006; Gay et al., 2007b; Hjelstuen et al., 2009; 

Andresen and Huuse, 2010) and those which date the source layer feeding the 

pockmark (Heggland, 1998; Duck and Herbert, 2006; Gay and Bemdt, 2007; Van 

Rensbergen et al., 2007; Pinet et al., 2008; Hustoft et al., 2010). The range of dates 

for the timing of pockmark formation can range from an accuracy o f tens of years 

(chronostratigraphic dating) to geological time periods (dating the stratigraphic or 

source unit).
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Few studies have considered the timing of pockmark formation, and none to the 

author’s knowledge, have documented a series of pipes forming in sequence (as 

presented in Chapter 5). Possible reasons for this are 1) chronostratigraphically 

dating pockmarks is expensive and unrealistic considering the number of pockmarks 

within a basin or field, 2) arbitrarily chronostratigraphically dating pockmarks 

(methodology presented here, Chapter 5) is only applicable in uniform, continuous, 

well layered seismic stratigraphic sequences, 3) unlike buried pockmarks, it can be 

difficult to tie surface pockmarks to broad stratigraphic units of known geological 

age i.e. tied to wells and dated.

1.3.4.2 Frequency and magnitude of flux through pockmarks and pipes

Allied with the timing of pipe formation is the analysis of formation and/or recurrent 

flux through the conduit. Flux is the amount o f fluid that migrates through a pipe 

and pockmark with time. Pipe and pockmark flux is a highly debated, complex and 

convoluted topic. It is a difficult topic to tackle simply because as yet there is no 

robust way to measure it. For example, calculating the volume of a cylinder based 

on pipe height and diameter as a proxy for minimum flux is insufficient because it is 

unlikely that a pipe has a large open core (Cartwright et al., 2007). It is tentatively 

suggested that measurements of flow and/or flux could be estimated from pockmark 

sediment fluidization deposition, if  the evacuated sediment from a pockmark was 

deposited (and preserved) around a pockmark (repeat surveys would be required). 

Relative indications of sediment porosity could also be established if this material 

was sampled. This methodology is in its infancy and as yet untested.

To simplify discussions of fluid flux within this research, flux is discussed in terms 

of frequency and magnitude of fluid migration instead of volume. The concept of 

frequency and magnitude is shown diagrammatically in Figure 1.4. For the purposes 

of the research presented here, frequency relates to how often fluid is inferred to 

migrate through the pipe/pockmark and magnitude to the inferred “severity” of 

seabed eruption as documented by resultant pockmark geometry. This is further 

discussed in Chapter 8.
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Figure 1.5 Frequency and Magnitude schematic, a) High frequency, high magnitude; b) Low 
frequency, high magnitude; c) High frequency, low magnitude; d) Low frequency, low 
magnitude
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The frequency and magnitude o f flux is difficult to assess. Several categories of 

fluid migration need to be considered. Firstly, pockmark flux can range from 

explosive blowout to a gentle egress o f fluid at the seabed. Secondly, pockmark 

conduit re-use and recurrent flux may range from fluid venting as a one-off episode 

to continuous fluid seepage. Finally, fluid venting may occur frequently or 

episodically e.g. once a year or once every hundred thousand years.

Only modest research has been done on fluid flux and discussions are often 

qualitative and site specific. Exceptions to this are studies from onshore analogues 

and ROV (Remotely Operated Vehicle) seep studies. For example, studies of 

onshore mud volcano systems from NW Italy have demonstrated a prolonged period 

of intermittent fluid flow through conduits involving both a degassing phase of slow 

seepage permitting carbonate cementation and the growth o f chemosymbiotic 

communities, and violent eruptive phases documented by the extrusion of soft mud 

breccias and dyke formation (Clari et al., 2004; Clari et al., 2009). Onshore fossil 

seep studies from Bulgaria identified variable seepage rates o f a single hydrocarbon- 

charged fluid source at depth. Slow seepage allowed methane to oxidize within the 

sediment depleting 813 C ratios. Increasing seepage rates caused calcite cemented 

conduits to form and even higher-energy fluid flow formed “whirled up“ sediment 

cemented “pisoid” nodules within the conduits (De Boever et al., 2006a, b; De 

Boever et al., 2009a). Remotely Operated Vehicle (ROV) studies of submarine seep 

sites measuring flow rates and bubble sizes have reported variations in flux over 

short periods o f time (-20  mins). Observations ranged from violent outbursts, each 

lasting 1 minute over a three minute interval which displaced and resuspended 

sediment grains forming small depressions (maximum 50 cm diameter and 15 cm 

depth) to constant bubble release giving a flow rate o f 0.018-2.424 1/min (Naudts et 

al., 2010).

Fluid flux has been implied from offshore seismic interpretation studies of 

pockmarks (Pauli et al., 2002; Hovland et al., 2005; Hustoft et al., 2009a). Collating 

information gathered from various studies o f pockmarks offshore Norway, Hovland 

et al (2010) concluded that small unit-pockmarks likely manifest cyclic pore-water 

seepage and larger normal-pockmarks reflect periodic or intermittent gas eruptions, 

with extended intervening periods of slow, diffusive, and cyclic pore-water seepage.
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Methane Derived Authigenic Carbonate formation within pockmarks is cited as 

evidence for long term seepage through these features (Hovland et al., 2010).

Gaps still remain in our understanding of fluid flux associated with pipe and 

pockmark formation and continuity/episodicity o f fluid migration. Recent studies 

have recognised the possibility o f conduit re-use by possible episodic fluid 

migration, however these studies have failed to suggest a timeline or period i.e. 

1000 yrs for continued migration. It also remains unclear how often these conduits 

are re-used during this period. Chapters 5 and 6 aim to address these issues.

1.4 Thesis layout

An introduction and overview of the research topics covered in thesis has been 

presented in the preceding sections of Chapter 1. Seismic interpretation and spatial 

statistical methodologies common to all results chapters are presented in Chapter 2. 

Methodologies unique to particular research elements can be found in their related 

chapters. The geological setting of Namibia and the Nile Deep Sea Fan (NDSF) are 

presented in Chapter 3. The research presented in Chapters 4, 5, 6, 7 and Appendix 

A l  form the main results chapters o f this thesis. Chapters 4 and 5 are based on the 

Namibian data and are in print. Chapters 6, 7 and Appendix A l  are based on the 

NDSF and are due for submission in October (Appendix A l  is in review). Appendix 

A l  represents ancillary research to Chapter 7. Appendix A l  utilises two datasets, the 

NDSF (same data as Chapter 7) and bathymetric data from Big Sur, California. This 

paper further develops the methodologies described in Chapters 2 and 7. The data 

collection, mapping, geometrical analysis / morphometries and some statistical 

components o f the research presented in Appendix A l  for both the NDSF and Big 

Sur datasets are the work of the author [JLM]. The remainder of the paper in 

Appendix A l  is the work o f the lead paper author [AC] and is therefore placed in the 

appendix. An over-arching summary and discussions / implications are presented in 

Chapter 8 and conclusions drawn in Chapter 9.
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Chapter 2
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2 M ETH O D O LO G Y

2.1 Introduction

The results presented in this thesis are based on the interpretation o f 3D exploration 

seismic data, 2D Ultra High Resolution (UHR) seismic data, Chirp profiler and side 

scan sonar data. The aims of this chapter are 1) to outline the datasets used in this 

thesis; 2) provide a brief overview of the seismic method; 3) describe the seismic 

survey parameters; 4) outline the seismic interpretation and Geographic Information 

System techniques applied; and 5) describe the spatial statistics used in this thesis.

2.2 Seismic data

The Namibian research is based on a single exploration 3D cube. The Nile Deep Sea 

Fan research is based on an exploration 3D seismic, 2D UHR data and AUV 

(Autonomous Underwater Vehicle) collected Chirp profiler, side scan sonar with 

backscatter data. A 3D volume of the NDSF was used to provide the structural 

framework for the shallow data. Data from a single shallow geotechnical borehole 

was made available for the study area in Chapter 7. Chronostratigraphic dates for 

specific horizons were made available for Chapter 6 however this data is not 

available for publication.

2.2.1 2D and 3D seismic data

The two-way travel time (TWTT) of compressional waves (P-waves) is used in the 

construction o f seismic reflection data. In a typical offshore situation, P-waves
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originating from an airgun seismic source are reflected from geological boundaries 

between different rock lithologies (subsurface impedance contrasts) to a series of 

geophones towed behind a survey vessel (Evans, 1997). The strength of the 

impedance contrast is a function of the rock density and wave velocity contrasts. The 

seismic velocity o f a rock varies according to factors such as composition, texture, 

porosity, fluid content, elastic modulus and density (Kearey et al., 2002).

According to common convention, seismic data in this thesis is displayed in zero 

phase SEG (Society of Exploration Geophysicists) normal polarity. The convention 

o f SEG normal polarity is that an increase in acoustic impedance corresponds with a 

peak in the seismic wavelet and the wavelet is symmetrical with the peak 

corresponding to the zone o f maximum energy (Fig. 2.1) (Evans, 1997; Brown, 

2004).
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SEG normal polarity

■I'VE AmplitudeVE Amplitude
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Zero phase interface

+VE acoustic impedance contrast

Zero crossing / null point

increase in acoustic impedance

Soft reflection

Zero phase interface 

VE acoustic impedance contrast

Hard reflection
Figure 2.1 Seismic wave schematic illustrating the conventions of SEG normal polarity. Two 
wavelengths are shown. Wave colours relate to the 3D seismic lines used in this research 
(adapted from Hart, 19519)
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Compressional waves (P-waves) which are reflected from an interface showing 

positive downwards impedance contrast will be correlated with a peak on the wavelet 

whereas P-waves reflected from a surface showing negative downwards impedance 

contrast will be correlated with a trough (Fig. 2.1). Wave amplitude (height of the 

peak or trough) corresponds to the magnitude of impedance contrast.

The resolution of the seismic data varies both vertically and horizontally, and 

generally decreases with depth. Seismic velocities increase with depth as the rocks 

become older and more compact. Predominant frequencies decrease with depth as 

the high frequencies in the seismic signal are more quickly attenuated (lost by 

adsorption) resulting in an increasing wavelength and a poorer resolution (Brown, 

2004). Vertical resolution is lA o f the dominant wavelength (A,) o f the seismic pulse 

(limit of separability) (Fig. 2.2). The limit of visibility is reached when the bed 

thickness is less than the tuning thickness and the reflection signal becomes obscured 

by background noise (depends on acoustic impedance contrast and noise level) (Fig. 

2.2). The tuning effect is a phenomenon o f constructive or destructive interference 

of waves from closely spaced reflections. At a spacing o f less than 'AX, reflections 

undergo constructive interference and produce a single reflection of high amplitude. 

At spacing greater than that, the reflection begins to be resolvable as two separate 

reflections. The tuning thickness is the bed thickness at which two events become 

indistinguishable in time.
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Bed thickness > tuning thickness Bed thickness = tuning thickness Bed thickness < tuning thickness

Limit of Separability Limit of Visibility
(% of the dominant wavelength ) (no separability, amplitude ° °  thickness)

F igu re  2.2 V ertical reso lu tion  an d  tun ing  thickness. R esolution  of the  reflections from  the top 
and  bo ttom  o f  a bed is d ep en d an t on the in te raction  of closely spaced w avelets (ad ap ted  from  
B row n, 2004)
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Horizontal resolution is a function of the spacing of the recording hydrophones and 

the width o f the Fresnel zone. The spacing of the hydrophones determines the 

spacing of the depth estimate i.e. line spacing, from which the subsurface interface is 

reconstructed. For example, for a flat lying reflection, the horizontal sampling will 

be equivalent to half o f the detector spacing (Kearey et al., 2002), which is 

equivalent to line spacing (or bin size).

The Fresnel zone is the part of a reflector from which reflections from a surface 

constructively interfere. Any reflecting interface is composed of an infinite number 

of scatter points, each of which contributes backscattered rays to the reflected signal 

picked up by the detectors. Energy which is returned to the detector within V̂ k of the 

initial reflected arrival interferes constructively (Sheriff and Geldart, 1995; Kearey et 

al., 2002). The (first) Fresnel zone is the part of the interface from which this energy 

is returned (Fig. 2.3). All features (on buried horizons) with a lateral extent 

exceeding the Fresnel zone will be visible. Migration of the seismic data focuses the 

energy spread in the Fresnel zone, re-arranges reflections misplaced due to dip and 

removes reflection patterns from points and edges (Brown, 2004). This improves the 

horizontal resolution to about XA wavelength.
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2.2.2 Exploration 3D data survey parameters

2.2.2.1 Namib Basin. Namibia

The data volume used for this study consists o f a ~900 km2 grid o f time migrated 3D 

seismic data from North Namibia acquired on behalf o f NAMCOR in 2002 (Fig. 

2.4). The 3D volume was acquired in water depths o f c. 1000-1500 m and extends 

from sea level to basement (c. 6000 ms two way travel time, TWT) with inline (NW- 

SE) and cross-line (NE-SW) intervals of 12.5 m. Final survey processing yielded a 

time migrated 25 m by 25 m bin size. The seismic data are zero phased with an 

increase in acoustic impedance represented by a positive amplitude (red reflection) 

i.e. SEG normal polarity. Well and other calibration data (e.g. surface seep data) are 

not available, with the exception of some shallow calibration to ODP Leg 175 (Site 

1080) results. Where pipe geometry is quoted in metres an interval velocity of 

2000 m/sec was used (Chapters 4 and 5).
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Leg 175, Site 1080 
Angola

3D cube

Kuene River

Namibia

0 80'0" 10e0*0"E 11 W E

Figure 2.4 Location map. a) Gross structure map of the South Atlantic showing the location of 
the 3D cube on the Namibian continental margin and the location of the Walvis Ridge, NB, 
Namib Basin; WB, Walvis Basin; LB, Luderitz Basin; OB, Orange Basin. White circle 
represents the location of ODP Leg 175, Site 1080.; b) bathymetric map showing the location of 
the 3D cube (depth contour intervals are in metres). Kuene River marks the Angolan :
Namibian border. Black box denotes an area containing isolated zones of Bottom Simulating 
Reflections (BSR).
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222,2 Rosetta Region, Nile Deep Sea Fan, Mediterranean Sea

2.2.2.2.1 3D survey

The 3D seismic dataset is a mosaic of smaller surveys of variable frequency and 

resolution (Fig. 2.5). The data volumes consist of a -6,400 km 3D seismic volume 

clipped at the Messinian (4s) collected in -100-2000 m water depth. Final survey 

processing yielded a time migrated 25 m by 25 m bin size (minimum bin size) with 

N-S in-lines and E-W cross-lines. The seismic data are zero phased with an increase 

in acoustic impedance represented by a positive amplitude i.e. SEG normal polarity. 

Well and other calibration data were not available.
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Figure 2.5 Nile Deep Sea Fan location map. Dip map of 3D seismic seabed pick is shown. White box, AUV surv ey; Black box, UHR survey; white triangle, STACOR 
location. Bathymetric contours are in metres. Note the prominent landslide head scarps east of the Rosetta Channel Location of 3D volume on the Mediterranean Sea 
inset map is to scale
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2.2.2.2.2 2D Ultra High Resolution data survey parameters

A combined survey o f Autonomous Underwater Vehicle (AUV) and 2D Ultra High 

Resolution (UHR) seismic data were collected by Fugro Survey, on behalf of BP, in 

2004 and 2005 in water depths o f 16-1089 m with survey vessels M/V Geo 

Prospector and M/V Western Shore (Fig 2.6).

The UHR survey, totalling 4,536 km, comprised 99 primary lines (3,239 km), 

oriented 132 ° / 312 °, with line lengths o f 3-71 km and line spacing o f 250-2000 m. 

The general line spacing is 1000 m, with tighter line spacing and shorter lines over 

the Rosetta Region. Cross lines, totalling 1,297 km, comprised 59 lines oriented 

42 ° / 222 °, with line lengths 7-41 km and spaced every 2000 m.

The 2D UHR digital seismic data were acquired with a 60 channel airgun, 6.25 m 

shot and group intervals, 2.0-2.7 second record length (depth dependant) and 0.5 

millisecond sampling rate. Source tow depth was 1.0 m +/- 0.5 m and streamer tow 

depth 1.5 m +/- 0.5 m. The digital UHR seismic data were migrated with a vertical 

resolution < 5 m. High frequency and short wavelengths provide better vertical 

resolution when compared with the NDSF 3D data.
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c) d)

Figure 2.6 Nile Deep Sea Fan 2D survey, a) Rosetta Region UHR (black lines) and AUV (green 
lines), b) Entire coverage AUV and UHR seismic, c) AUV 2D survey lines, d) UHR survey 
lines
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2.2.2.2.3 Autonomous Underwater Vehicle data survey parameters

The AUV data was acquired with the Hugin 3000 AUV S/V Echo Surveyor using a 

Simrad EM2000 multibeam echo sounder, Edgetech side scan sonar and Edgetech 

sub-bottom profiler. The survey comprised >800 survey lines, totalling 6750 km of 

AUV data. The line spacing was 150 m (NE-SW) with orthogonal tie-lines at 

1000 m intervals, additional tie-lines were also run within the survey area (Fig. 2.6). 

The AUV typically operated at a height of 30-35 m above the seabed at a speed of 

3.6 knots continually acquiring data from all its onboard sensors.

The multibeam echo sounder operated with 111 beams at a frequency o f 200 k Hz 

with a ping rate o f up to 10 Hz. Beam width was 1.5° along and 3.5 ° across with an 

angular coverage o f up to 150°. Chirp profiler penetration is to 100 ms, with a 

vertical resolution o f ~0.5 m. Time : depth conversion o f the seafloor achieved 

assuming average seismic velocities of 1519 m/s. The full spectrum chirp dual 

frequency DW-120 /4 10 side scan sonar system was operated at 120 k H z  with a 

nominal range o f 200 m (bathymetry and backscatter data). The Edgetech DW-216 

chirp profiler system operated at frequencies between 2 and 10 kHz with a firing rate 

of 250 ms and a nominal record length o f 210 ms. No smoothing / sub-sampling 

were applied to the data and the final bin size for the bathymetry data was 3 m2.

2.2.3 Seismic interpretation techniques and integration with 

Geographic Information Systems (GIS)

The results presented in this thesis are derived from mapping o f 2D and 3D seismic 

data using Kingdom Suite (PC) and Schlumberger GeoFrame 4.0.2 (UNIX) software 

respectively. This section focuses on the methods generally applicable to all 2D and 

3D seismic studies (Chapters 3-7  and Appendix A7). Individual results chapters will 

provide further details o f procedures used where necessary.

Mapping is the basic process by which 2D and 3D surfaces o f both structural and 

stratigraphic features are created. Within the interpretational software package the
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horizon o f interest is tracked (manually or automatically) on a series o f lines oriented 

perpendicular to one another (2D survey lines, or 3D in-line / cross-line) providing a 

basic grid coverage o f the area o f interest. Grid density should be appropriate for the 

data resolution. Additional arbitrary lines are included as necessary. The tracked 

horizons provide seed points for automated tracking algorithms which propagate the 

interpretation according to the picking constraints and seismic volume constraints 

provided, converting lines into a surface coverage.

Once computed, various attribute information can be extracted from the surfaces 

including grid-based (dip), seismic trace (amplitude) and seismic volume (coherence) 

attributes. Seismic attributes utilised in this research are as follows;

• Dip: Dip is a measurement o f changes in gradient. Dip maps are used here to 

highlight surface morphology.

• A m plitude: Seismic amplitude is the difference between the maximum

displacement o f a wave and the point o f no displacement (null point) and is 

measured at the crest o f the reflection (Fig. 2.1). Amplitude variations on a 

single horizon are commonly due to changes in acoustic impedance caused by 

variations in lithology, bedding continuity, gross porosity or fluid content 

(Brown, 2004). Fluid content is recognised by acoustic turbidity, acoustic 

blanking, enhanced reflections, pull-ups, push-downs, bright spots and flat spots 

(Judd and Hovland, 2007), all o f which may be modified by variations in 

amplitude when compared to background strata.

• Root M ean Squared (RMS) Am plitude: RMS amplitude squares amplitude 

values over a specified time window and then averages the results. Consequently 

high amplitudes are more noticeable in surface maps. Care should be taken when 

interpreting average amplitude values, especially above pipes, because RMS 

windows can cross stratigraphic boundaries and gas pockets possibly introducing 

unwanted values into the calculation.

• Coherence: Time slices (or horizon slices/extractions) can be used to visualize 

coherency data with the aim of highlighting discontinuities in the reflections and 

is often free from interpretational bias i.e. the utilization o f mapped horizons is 

not a requirement (Brown, 2004). Coherence uses a set of mathematical 

calculations similar to correlation to compare adjacent waveforms and return a
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value which represents the similarity o f the waveforms (cf. Brown, 2004). 

Coherence is excellent for mapping and identifying the three dimensional nature 

o f faults (including throw) and therefore has strong applications for 

pipe/pockmark interpretation.

2.2.3.1 Quantitative measurements derived from seismic data

In order to substantiate some o f the qualitative observation made about the seismic 

data, quantitative measurements were taken. The methodological details of how 

these measurements were taken are given in the relevant chapters. These 

measurements were all taken from seismic sections and are accurate to < 5 ms TWT 

(Two Way Travel Time) and 25 m and 5 m for the Namibian and NDSF data 

respectfully. Time / depth conversions are given above.

2.2.3.2 GIS

Seismically derived data were imported into Arclnfo 9.2 Geographic Information 

System (GIS). Seabed and horizon picks and amplitude maps were exported out of 

the seismic interpretation software as x,y,z files. These files were interpolated to 

surfaces within the GIS. Coherency slices were imported into the GIS and 

georectified.

Seismically derived data such as horizons and maps were exported into a GIS 

environment. Breaks o f slope, slope angle, faults and planform geometry were 

identified from azimuth and dip maps, and coherency slices.

Once the raw seabed/horizon data were interpolated within the GIS, surface 

functions could be performed on the data. These included;

• Depth maps and contours: Depth topographic surfaces (ms or m)

• Hillshade: Shaded relief map generated using light source altitude and azimuth 

specifications (produces a similar result to dip)

• Slope: The slope o f the surface (degrees < 90)
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• Azimuth: The direction the slope is facing i.e. N, S, E, W (degrees < 360)

• Surface calculations e.g. isochron maps: Any mathematical function between 

two surfaces e.g. subtracting surface depth values to calculate unit thicknesses

GIS attribute databases were created which contained pipe/pockmark coordinates and 

additional quantitative, geometrical or qualitative information gained from the 

seismic data e.g. pipe height (top pipe depth -  base pipe depth), pipe/pockmark 

width, depth (converted to metres where necessary), fluid source (levee, shallow gas 

pocket, unknown). This data has been collated in the appendix*.

2.3 Spatial statistics

Most o f the spatial statistics were performed using the analysis packages built within 

the GIS. Minimal Spanning Tree, Self Organised Criticality and Hardcore 

simulations are the exception. These statistical models were run by Annabel 

Cartwright (AC) using specialist statistical software (Appendix A7). Point 

distributions are based on the centre of the pipe/pockmark as defined by a 4-way dip 

structure. Surface coordinates are taken for all pockmarks. Pipe coordinates are 

based on the top most reflection o f the column.

Commonly associated with computing, engineering, physics, astronomy and 

mathematics, the spatial statistics used here are also widely used in biological and 

environmental sciences to analyse point distributions. For example the spatial 

distribution o f plant and animal species (Asuka et al., 2004; Rozas et al., 2009), 

viruses (Siede and Btichler, 2006), water quality samples (Choi et al., 2007), 

earthquake hypocentre distributions (Nicholson et al., 2000) and tephra deposition 

(Bonadonna and Houghton, 2005).

The spatial statistical significance o f pipe and pockmark distributions where analysed 

using univariate spatial autocorrelation statistics; Nearest Neighbour Analysis (Rn),

* For attribute information see Appendix A2.
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Anselin Local M oran’s I cluster and outlier analysis (/), Ripley’s K multidistance 

cluster analysis (Ld), in addition to Density, Minimal Spanning Tree and Voronoi 

polygons (Dirichlet, 1850; Voronoi, 1907; Voronoi, 1908; Clark and Barber, 1954; 

Anselin, 1995a; Bailey and Gatrell, 1995; Cartwright and Whitworth, 2004).

2.3.1 Nearest Neighbour Index

The nearest neighbour index (Rn) measures the ratio o f the observed mean distance 

to the expected mean distance for a hypothetical random distribution to determine 

whether the points are clustered (Clark and Evans, 1954; Mitchell, 2005). The Rn 

value was calculated with the formula;

Where D(Obs) is the mean observed nearest neighbour distance, (n) is the number of 

pipes and (a) is the aerial extent o f pipe coverage in the study area.

A ratio of 1 is a random distribution and a ratio o f < 1 is clustered, the nearer to 0 the 

more clustered the distribution. A ratio > 1 is a regular distribution. In order to 

reject the null hypothesis that there is no pattern to pipe distribution (pipes are 

randomly distributed), the Z score is calculated. The Z score (Z) is a test of statistical 

significance which evaluates for a normal distribution of the nearest neighbour 

distances (Rn). Very high or a very low Z scores are found in the tails o f the normal 

distribution and this indicates it is very unlikely that the observed pattern is there by 

chance. Z scores are measures o f standard deviation away from the mean.

(1)

R n _D (O bs)

(2)

Z =
D(Obs)~  0.5

SE
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Where

(3)

s e =°4 m
aJn/A

Where SE  is the standard error and A is the aerial extent o f pipe coverage in the study 

area (Ebdon, 1985). Z scores are given to all spatial statistics used here.

This equation is tailored to Moran’s I and Ripley’s K statistic by substituting the Rn 

component in equation (2) with that o f other spatial statistics.

2.3.2 Nearest neighbour distances and exclusion zone

Nearest neighbour distance is the distance (in metres) between a pockmark and its 

nearest neighbour (nn). Exclusion zone is defined as half the nearest neighbour 

distance (see Chapter 7). The exclusion zone is a fixed, non-overlapping distance (or 

area) which is unique to each pockmark.

2.3.3 Moran’s I

Cluster and outlier analysis (Anselin Local Moran’s I) (Anselin, 1995b) uses a set of 

weighted data points to identify those clusters o f points with values similar in 

magnitude and those clusters of points with very heterogeneous values. It is used in 

Chapter 5 to measure the spatial autocorrelation o f both pipe locations and age (TP1) 

values simultaneously. M oran’s I emphasizes how individual pipe TP1 values differ 

from the values in the study area as a whole by comparing the TP1 value o f each pipe 

in a pair to the mean TP1 value for all pipes in the study area i.e. the statistic 

concentrates on local variation.
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Moran’s I (//) calculates the mean TP1 value for the data points and calculates the 

difference from the mean for each neighbour and multiples it by the weight (wij) for 

that neighbour. Then the product is summed, and the sum is multiplied by the ratio 

of the difference from the mean for the original data points, divided by the variance 

(Mitchell, 2005).

where n is the number o f pipes indexed by i and j \  x  is the variable o f interest or TP 1; 

x  is the mean o f x; and wij is a matrix of spatial weights.

values. Such a pipe is part o f a cluster. A negative value for Ii indicates that the pipe 

is surrounded by pipes with dissimilar TP1 values. Such a pipe is an outlier. Ii value 

Z scores are calculated (see above) and the null hypothesis that there is no spatial 

clustering o f TP1 values is rejected at the 95% level for all pipes with a Ii z  score < 2 

or > 2.

2.3.4 Ripley’s K

Ripley’s K (Ripley, 1976, 1977, 1979) is a second order statistic. The K function is 

similar to the Nearest Neighbour Index, however the K function includes all 

neighbours occurring within a given distance, rather than the distance to each point’s 

single nearest neighbour. Ripley’s K formula is given by

(4)

A positive value for Ii indicates that the pipe is surrounded by pipes with similar TP1
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(5)

The value of the K  statistic at distance d  (K(d)) is the measured distance (d) between 

points (i, j) ,  the weight for the pair (//,), the area (A) and the number o f points (n).

The weight (I) is either 1, if  the neighbouring point is within the distance o f the target 

point or 0 if it is not.

The K value is transformed using a variation of the K function (L(d)) to reduce the 

size o f the K value as distance increases (Mitchell, 2005). The transformation is 

given by

(6)

L(d) = t* J
7m(n - 1 )

The L(d) method states that the expected value for any distance, given a random 

distribution o f points, is the distance (d) itself (Mitchell, 2005). At any given 

distance, if  the observed L(d) values are above that for the expected values, the 

distribution is more clustered than expected for a random distribution. Lower and 

upper confidence envelopes for a random distribution are generated to indicate a 

statistically significant clustered pattern at any given distance.

2.3.5 Voronoi polygons

Voronoi tessellations proportionally divide a point distribution into cells or Voronoi 

polygons (Dirichlet, 1850; Voronoi, 1907; Voronoi, 1908; Okabe et al., 2000). 

Similar to a honeycomb structure, the area around the pipe/pockmark is divided into 

polygons which have the unique property that each polygon contains only one
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pipe/pockmark, and any location within the polygon is closer to its associated 

pipe/pockmark than to the pipe/pockmark o f any other polygon. Voronoi polygons 

are used in proximity analysis to determine “spheres of influence” around input data 

points.

2.3.6 Density

Circular neighbourhoods are defined around each pockmark, and the number of 

pockmarks that fall within the neighbourhood is totalled and divided by the area of 

the neighbourhood (Mitchell, 2005). Neighbourhood areas were 1 km2 for the 

Plateau and Rosetta Region and 500 m2 for the pockmark field respectively (refer to 

Chapters 6 and 7). Utilising a 1 km2 neighbourhood provides a more generalised 

density calculation than those resulting from smaller neighbourhoods.

2.3.7 Minimal Spanning Tree (MST)

The Minimal Spanning Tree (MST) is a unique network o f straight lines joining a set 

o f points, such that the total length of all the lines (edges) in the network is 

minimised and there are no closed loops (Gower and Ross, 1969). Starting at any 

point, an edge is created joining that point to its nearest neighbour. The tree is then 

extended by always constructing the shortest link between one o f its nodes and an 

unconnected point, until all the points have been connected (refer to Chapter 7 and 

Appendix A7 for more information).

The mean edge length ( m ) o f the MST is used as a measure o f close range clustering

within an array o f data points (Cartwright and Whitworth, 2004). Short values ( m )

indicate clustering, whilst maximum values ( m )  and the smallest variance a(m) 

indicate a perfect lattice (Dussert et al., 1986; Dussert et al., 1987). The advantage of 

MST statistics is that it completely describes the layout and space-filling
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characteristics o f the points and is powerful in bringing out patterns which cannot be 

revealed by a simple visual examination (Dussert et al., 1988; Dussert et al., 1989). Minimal 

Spanning Tree requires no compensation for edge effects because the analysed data 

is compared with random datasets occupying the same spatial domain.

2.3.8 Self Organised Criticality (SOC)

Self Organised Criticality (SOC) is considered to be a universal theory of complex 

behaviour (Ball, 2004). First described by Bak et al. (1987) the concept was 

illustrated by describing the evolution o f a Sand Pile Model whereby the 

maintenance o f a sand pile with critical slope is a scale-free power-law distribution 

of avalanche size. The theory states that a spatially distributed system gradually 

accumulates energy which is suddenly released at a particular location when a 

critical state is reached. The extent o f the local energy release is variable and highly 

non-linear, i.e. it depends on the spatial interconnectedness o f events (pockmarks, as 

applied in Chapter 7), the surrounding topography (surface and subsurface) and rate 

of energy dissipation with space and time. The defining characteristic of a system 

exhibiting SOC would be self-similarity in the magnitude o f the pockmark events 

(see Chapter 8 for further discussion).

In this study a simple SOC simulation was used to generate a series of coordinates of 

avalanche collapses. A plane with 1000 x 1000 incremented cells was triggered to 

collapse whenever a cell's contents exceeded a threshold value. The collapse 

emptied not only that cell but also the neighbouring cells which exceeded some 

lesser critical threshold value. The simulation settled into a self-organising state, and 

the coordinates o f collapses occurring in the middle 100 x 100 zone were recorded.
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2.3.9 Hardcore Distribution

The Hardcore, or Diggle model (Diggle, 1983, 2002) produces an anticlustered 

distribution, with each coordinate pair having a defined exclusion radius o f diameter 

(d) within which no other point is permitted. For a given area (A) containing n 

points, there is a theoretical maximum value of d  which corresponds with a perfect 

grid o f points, where d* = A / n .

Hardcore distribution was created by generating pairs o f independent coordinates 

using random numbers, Rx and Ry, which were discarded if  they were within a 

distance (d) o f a previously generated point (Diggle, 2002). The larger the value of d , 

the more regular and lattice-like the distribution o f points.

2.3.10 Complete Spatial Randomness (CSR)

Random datasets were created using random number generators to create n 

independent pairs Rx and Ry o f x and y coordinates in the appropriate ranges 

(including identical spatial extents and number o f coordinate pairs). Random 

datasets were also created using in-built GIS algorithms.

2.4 Potential errors and limitations

All qualitative and quantitative measurements and observations are given based on a 

full appreciation o f the resolution and potential errors o f the data. General 

considerations are given here with specific errors discussed in the relevant chapters.

Within the seismic data acoustic and amplitude anomalies associated with the 

presence o f gas are prevalent, this however is neither surprising nor can be avoided 

given the context o f this research. Phenomenon o f relative seismic velocities e.g.
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push downs (shallow layer/feature with a low seismic velocity (e.g., gas chimneys, 

hydrocarbon indicators) surrounded by rock with a higher seismic velocity causes 

what appears to be a structural low beneath it) are common. It is anticipated that 

seismic migration will reduce the magnitude of this effect but degrees of pull up / 

push down will still be present (Brown, 2004). Acoustic distortion or wipeout is 

common in the presence o f gas and will mask the true geometry o f a feature. This is 

an error inherent with the utilisation of P-wave data for pipe analysis (Hustoft et al., 

2007). Potential errors associated with 3D seismic imaging o f pipes is further 

discussed in Chapter 4.

All GIS models are subject to a maximum spatial positioning error o f half a bin size 

i.e. Namibia 25 m ±12.5 m and NDSF 3 m ±1.5 m. This is due to the interpolation 

algorithm used to construct the surfaces. Spatial statistics are highly susceptible to 

the precision o f the coordinates in the point dataset, the sample size and the 

mathematical boundary area imposed on the spatial analysis. Sample sizes used in 

this research are considered sufficient for statistical analysis (Mitchell, 2005). The 

pipe coordinates (Namibia) were collected from coherence, dip and seismic profiles 

in the seismic interpretation software package. Limitations associated with 3D data 

resolution have been mentioned above. The centre o f each NDSF unit pockmark 

(x,y,z), described by a 4-way dip structure, was determined at a scale of 1:1,000 

using an aspect (°), slope (°), depth (m) and hillshade model within the GIS and 

subject to the limitations o f data resolution as mentioned above. The mathematical 

boundary area imposed on the spatial analysis was a minimum enclosing rectangle. 

Where possible, the boundary area was kept constant to permit comparison between 

statistical results from a single test. Deviation from a constant boundary area, 

simulation o f edge effects and comparison to random populations are discussed 

separately in the relevant chapters (Chapters 5 and 7).
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3 G E O L O G IC A L  SE TT IN G

3.1 Introduction

The aims o f this chapter are 1) to describe the regional geology and tectonic setting 

o f the Namibian continental margin (Chapters 4 and 5); 2) describe the seismic 

stratigraphy o f the Namib Basin (Chapters 4 and 5); and 3) describe the regional 

geology and tectonic setting o f the Nile Deep Sea Fan (Chapters 6 and 7). STACOR 

(geotechnical core) information is available in Chapter 7.

3.2 Namibe Basin, Namibia

3.2.1 Regional geology and tectonic setting of the Namibian 

continental margin

The West African passive continental margin was initiated during the opening of the 

South Atlantic Ocean during the Early Cretaceous (Rabinowitz and Labrecque, 1979; 

Austin Jr and Uchupi, 1982; Niimberg and Muller, 1991; Guiraud and Maurin, 1992; 

Kamer et al., 2003; Goudie, 2005). Initial Gondwanaland break-up along this 

margin is related to lithospheric extension (Maslanyj et al., 1992) coupled to 

magmatic weakening and the extrusion of a major flood basalt province (the Parana- 

Etendeka) (Gladczenko et al., 1998). Progressive northwards propagation of the 

South Atlantic rift during the Mesozoic created important differences in the timing of 

rifting (Summerfield, 1991; Maslanyj et al., 1992) and volcanic activity in the areas 

north and south o f the Walvis Ridge.
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The gross structure o f the Namibian margin comprises an eastern inner half-graben, 

separated from the shallow basement o f the almost unextended coastal zone by a 

prominent hinge line. The Namibian margin comprises four major depocentres, the 

Orange, Luderitz, Walvis and Namibe Basins (Fig. 2.4). The gross stratigraphy of 

the Namibian continental margin is known from c. 10 exploration wells drilled in the 

last 25 years (Aizawa et al., 2000; Bluck et al., 2007; Cartwright et al., 2008). It 

consists 3-5 km thick, mainly clastic, post-rift sediments overlying a rifted 

continental basement (Aizawa et al., 2000). In conjunction with previous authors 

(Light et al., 1992; Maslanyj et al., 1992; Light et al., 1993; Bagguley and Prosser, 

1999; Aizawa et al., 2000) the seismic sequence stratigraphy interpretation described 

and interpreted here broadly correlates with the mega sequences described by Light 

et al (1993).

3.3 Seismic sequence stratigraphy in the Namibe 

Basin

The stratigraphy o f the Namibe Basin is not directly calibrated by deep drilling 

results, and my understanding is currently based entirely on (1) seismic-stratigraphic 

interpretation (Light et al., 1993; Clemson et al., 1997; Hopkins, 2006), (2) long- 

range correlations to the Walvis Basin and (3) limited shallow drilling during ODP 

leg 175 “Benguela Current” site 1080 (Berger et al., 2002). For mapping purposes, I 

have divided the basin fill into 6 seismic units (Syn-Rift, Transitional/Post Rift, Post- 

Rift 1, Post-Rift 2 and Post-Rift 3 which has been further subdivided into Post-Rift 

3a, b, c and d). The seismic stratigraphy is described with reference to a 

representative seismic profile across the basin (Fig. 3.1).

The deepest part o f the basin is characterized by rotated and eroded fault blocks with 

probable terrestrial sediments infilling the half-graben. By analogy with the 

equivalent rift sequences further south, these half-graben fills may include gas-prone 

source rock intervals. The syn-rift sequence seen throughout the study area is likely 

to consist o f Late Jurassic to Early Cretaceous siliclastic and volcanic rocks
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(Clemson et al., 1997; Clemson et al., 1999; Aizawa et al., 2000). Reflections are 

transparent to low amplitude, broken, discontinuous, non parallel and chaotic in 

places, consistent with the likely mixed terrestrial depositional system that is inferred 

here (Fig. 3.1).
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□  Post-Rift 3 (a, b, c, d)

□  Post-Rift 2

□  Post-Rift 1 

■Transitional /  Post-Rift

■  Syn-Rift

■  Pre-Rift /  Basem ent

Figure 3.1 Seismic stratigraphy of the study area is divided into 6 units after Light et al. (1993). 
The Syn-Rift is likely to consist of Late Jurassic to Early Cretaceous siliclastic and volcanic 
sediments. Transitional/Post Rift is likely to consist of volcaniclastic material of probable Late 
Cretaceous age, possibly associated with the guyot (G) and the formation of the Walvis Ridge. 
Possible hydrocarbon indicators have been interpreted in this unit and deeper. Post Rift 1 is a 
lensoid body likely to consist of mixed claystone and biogenic components of probable Late 
Cretaceous to Early Cenozoic age. Post Rift 2 has a drape geometry and is likely to consist of 
Early Cenozic claystone with coarser facies in the channelized units and overbank deposits.
Post Rift 3 is likely to consist of fine grained material of probable Neogene in age with the base 
being of Miocene age. Polygonal faults and pipes dominate this unit. Seismic scale is in seconds 
TWT.
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The transitional sequence is probably of Late Cretaceous age. It is likely that this 

sequence includes a significant fraction o f volcaniclastic material, and this may 

explain the high amplitudes and discontinuous seismic facies in the western part of 

the basin, closer to the origin o f known volcanic complexes (Clemson et al., 1997) 

(Fig. 3.1).

The remainder o f the stratigraphy is divided into three main seismic stratigraphic 

units, Post Rift 1-3. This succession was deposited during a major relative sea level 

rise due to thermal subsidence (Light et al., 1993). Post Rift 1 is probably of Late 

Cretaceous to Early Cenozoic age. It comprises a lensoid sedimentary body whose 

maximum thickness o f c. 600 m is developed along the basin axis. The body appears 

to exhibit the internal and external geometry of a large constructional body, with a 

convex upwards top, and a concordant base. The margins o f the body are marked by 

depositional thinning, onlap, and some erosional truncation. It is interpreted as a 

large sediment drift (Hopkins, 2006). The internal reflections exhibit high lateral 

continuity, high to moderate amplitude and probably consist o f mixed claystone and 

biogenic components (Fig. 3.1).

Post Rift 2 is probably largely Early Cenozoic in age. It varies in thickness from 

c. 500 m in the upper slope region to over 2000 m thick in the base of slope position. 

This unit is largely developed in a drape geometry with concordant relationships to 

Post-Rift 1 and a more irregular complex stratification to Post-Rift 3 where 

numerous channels have developed in the upper part of the slope. The reflection 

amplitude is very low in the base of the sequence, but towards the upper third, 

becomes more variable, especially in the channelized part o f the interval. The 

dominant lithofacies is expected to be claystone, but with coarser facies in the 

channelized units and respective overbank deposits.

Post Rift 3 is composed entirely of laterally continuous stratal reflections, with 

medium to high amplitude that are correlatable throughout the study area (this is 

highly significant for the methodology outlined in Chapter 5). The sequence has a 

maximum thickness o f c. 800 m in the basin axis, and thins upslope and downslope, 

by a combination o f onlap (upslope) and stratal condensation (downslope). The 

sequence pinches out almost entirely by the shelf break, and the shelf is a condensed
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interval suggesting an efficient bypass was occurring throughout this period. The 

sequence is likely to be Neogene in age, with the base being of Miocene age. 

Polygonal faults are widely developed in the lower part o f this interval, suggesting 

that a large part o f this sequence is very fine grained (Cartwright and Dewhurst, 

1998). The pipes transect all or part of this sequence, with the larger pipes extending 

down into post Rift 2 (Fig. 3.1). There is no evidence of major channelling in these 

slope sediments, and the depositional system seems to be dominantly one of a 

passive slope drape, under probable strong bottom current influences.

A prominent bottom simulating reflection (BSR) is developed within the sediments 

o f Post Rift 3 on the southern edge of the dataset (Fig. 2.4). The presence of the BSR 

marks the location o f the base of the gas hydrate stability field (BGHSZ) (Mienert 

and Posewang, 1999; Riedel et al., 2006). This indicates that adequate 

concentrations o f gas exist at the base of the gas hydrate stability zone to saturate the 

pore water within the underlying sediments with methane and suggest that conditions 

suitable for the occurrence of gas hydrate exist in the sediments overlying the BSR 

(Pauli et al., 2008). Numerous laterally extensive amplitude anomalies are seen 

within the highly reflective units of Post Rift 3, and these coincide at their upper 

limits with the BSR, supporting the notion that they result from free gas trapped 

beneath the hydrate layer. A few smaller, isolated zones of less prominent BSR are 

observed in the centre-west of the study area.

The occurrence o f seismically detectable BSR covers more than 1500 km and 

extends beyond the limits o f the study area (Swart, 2009). The BSR is observable in 

isolated regions and shows a reverse polarity to that of the sea floor. Numerous 

lensoid high amplitude bodies are evident at various depths throughout Post-Rift 3, 

these may represent palaeo-BSRs but this assertion must remain highly speculative. 

The thickness o f the transparent blanking layer above the BSR is typically 250- 

350 ms TWT, placing the BSR within the theoretical depth o f the base of the gas 

hydrate stability field, c. 300-800 m (given typical temperatures and pressures) 

(Pecher et al., 2001). A clear indication of the volume of hydrate is difficult to 

determine at present (Swart, 2009). Seabed sampling o f the Namibe Basin was 

undertaken by TDI-Brooks on behalf of NAMCOR in 2004. No sampling of 

hydrates was planned but hydrate was recovered from the bottom of a 5m drop core
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in the study area (Swart, 2009). No age data for the sediments are available. Heat 

flow measured in the basin was in the range 43.0 - 45.9 m W/m2 and sea bottom 

temperature varied from 4.4 - 4.6 °C (Swart, 2009). Sampling undertaken during a 

previous ODP Leg (Leg 175) at sites north and south of the Namibe Basin showed no 

evidence o f hydrates (Berger et al., 2002; Swart, 2009).

Post Rift 3 may have been calibrated to some extent by site 1080 of ODP leg 175, 

located some 100 km northwest of the Namibian study site (Berger et al., 2002). 

Berger et al (2002) reported that continuity of core recovery was affected by the 

strong development o f gas pressure from abundant methane and carbon dioxide 

within the sediments which produced sediment expansion, created voids and cracks 

and retarded sediment compaction. Problems encountered at the Namibe Basin site 

1080 resulted in only 52 m of core recovery. The core contained clay to silty clay 

which equates to 1.25 Myr (water depth 2777 m) but because o f the stratigraphic 

problems age models for site 1080 were not considered (Berger et al., 2002), and 

detailed calibration with the study area is not possible. Average sedimentation rates 

of the biogenic claystones found in the Pleistocene in ODP leg 175, site 1080 are 

c. 40 m/Ma (Berger et al 2002).

3.3.1 Nile Deep Sea Fan, Mediterranean Sea

3.3.2 Regional geology and tectonic setting of the NDSF

The Nile Deep Sea Fan (NDSF) is a large (c. 100,000 km2) sedimentary wedge 

constructed since the Late Miocene largely by terrigenous sediment delivered by the 

Nile River (Salem, 1976). The NDSF extends northward to the Mediterranean Ridge 

and northeastward to the Eratosthenes Seamount (Ross and Uchupi, 1977; Ryan, 

1978) (Fig. 3.2). The NDSF lies in a multifaceted geodynamic setting characterised 

by a complex pattern of active thick skinned crustal tectonics resulting from various 

plate and microplate interactions (McKenzie, 1970; Courtillot et al., 1987; Le Pichon 

et al., 1995; Mascle et al., 2000; McClusky et al., 2000).
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The Egyptian margin, commonly considered as a passive margin, has been subject to 

a complex structural evolution. In the distal regions of the margin, it was influenced 

by the subduction / collision of Africa beneath Aegea-Anatolia along the eastern 

Hellenic and Cyprus arcs (Ducassou et al., 2007). To the East and North-East, the 

active transcurrent motion of the Arabian plate relative to Africa led to significant 

basement faulting (Le Pichon et al., 1995; McClusky et al., 2000) and similarly to the 

South-East the margin was deformed by the very slow, almost aborted, rifting within 

the Suez Rift area (Mascle et al., 2000; Loncke et al., 2002; Loncke and Mascle, 

2004) (Fig. 3.2). Significant alignments of earthquake epicentres are associated with 

the plate boundaries and rifts (McKenzie, 1970; El-Sayed et al., 1994; Elenean et al., 

2010). Two major fault trends characterize the offshore Nile, the Temsah trend 

which runs NW -SE, and the Rosetta trend running N E-SW  to ENE-W SW  (Abdel 

Aal et al., 2001).
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Figure 3.2 Regional geological setting. A) Tectonic framework of the Eastern Mediterranean (adapted from (McKenzie, 1970; Mascle et aL, 2000; Loncke et aL, 2006; Elenean et al., 2010)). Earthquake zones and selected offshore 
epicentres close to the NDSF are >3 magnitude earthquakes. B) Regional geology of the Western NDSF (adapted from (Loncke et a l, 2006; Garziglia et al., 2008; Loncke et at, 2009)). C) Eustatic sea level change. Relative sea level 
change (m) since the Pleistocene (adapted from (Shackleton, 1987; Antonioli et aL, 2004)).
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The Mediterranean Sea was initiated by the opening of the Tethys Ocean in the Early 

/ Late Triassic (Morelli, 1978; Hirsch et al., 1995). The progressive closure of the 

Tethys Ocean caused by the convergence of the African and Eurasian plates isolated 

the Mediterranean Sea from the Atlantic Ocean in the Late Miocene. Isolation of the 

Mediterranean Sea caused a drastic decrease in sea level resulting in major 

evaporation, the deposition of evaporites in the deeper basins (Messinian Salinity 

Crisis) and large-scale canyon incision (Ryan, 1978).

Sea level rise and subsequent fall in the Plio-Pleistocene (Fig. 3.2) permitted 

progradation of the modem Nile Delta (Dupre et al., 2007). The total sedimentary 

thickness of the Egyptian margin is believed to exceed 9-10 km (Abdel Aal et al., 

2001). Overburden thicknesses in the Plio-Pleistocene are in excess of 3 km in many 

regions and rapid deposition of clay-dominated sequences provided ideal conditions 

for the development of significant overpressures in the more deeply buried sediments 

as evidenced by considerable sediment remobilisation (Frey-Martinez et al., 2006).

In addition to thick skinned crustal-scale tectonics, the NDSF is further modified by 

thin-skinned, gravity-driven deformation of Messinian evaporites and overlying 

sediments (Gaullier et al., 2000; Loncke et al., 2006; Cartwright and Jackson, 2008). 

Thin skinned syn-sedimentary deformation relating to salt tectonics and downslope 

gravity spreading or gliding of the evaporites and sedimentary overburden strongly 

affects the middle and lower Nile fan, especially in the western and eastern provinces 

where mass transport complexes (MTC), growth faults, salt diapirs and crestal 

grabens are common (Dupre et al., 2007; Garziglia et al., 2008; Loncke et al., 2009). 

Gravity spreading of the salt/overlying sediments “system” has induced proximal 

thin-skinned extension along the shelf and upper slope, and distal contraction along, 

and at the base, of the continental slope (Morley and Guerin, 1996). As a 

consequence, most of the NDSF Plio-Quatemary sedimentary cover is strongly 

tectonized and is thus particularly susceptible to fluid migration to the seafloor 

(Dimitrov, 2002). In contrast, the Messinian evaporites are almost absent in the 

upper slope where post-salt sediments can be up to 2-3 km thick (Loncke et al., 2002; 

Loncke and Mascle, 2004; Dupre et al., 2007). Pliocene to present day post-salt 

sedimentary deposition on the deep-sea fan is concentrated on the continental slope
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rather than shelf edge due to the extended location of the Nile mouth during this 

period (Loncke et al., 2002).

The River Nile bifurcates into two main tributaries, the Rosetta and Damietta Rivers 

(Western and Eastern tributaries respectively), as it transects its arcuate delta (Fig 

3.2). The offshore extension of the Rosetta River, the Rosetta Canyon and the 

Rosetta Channel, lies in a region of interrelated channel and slope processes. The 

study area for this research is located in and around the Rosetta Canyon/Channel, a 

prominent sediment delivery pathway to the lower fan (Loncke et al., 2002; Loncke 

and Mascle, 2004; Loncke et al., 2009). This feature consists of a deep canyon in the 

upper slope and a prominent modem channel-levee system in the lower slope. The 

channel-levee system has migrated, avulsed and been abandoned throughout its 

history. Multiple stacked abandoned buried channel and channel levee complexes 

can be identified from regional seismic data (Samuel et al., 2003) (Fig. 3.2). 

Palaeochannels and levees can provide either a fluid source or fluid focusing route 

for biogenic gas (Gay et al., 2003) or provide sedimentary traps or secondary 

migration routes for migrating hydrocarbons (Samuel et al., 2003).

Multiple tiers of buried mass transport deposits (MTDs) occur at various 

stratigraphic levels and at various depths within the Holocene-Pleistocene within the 

Rosetta region (Garziglia et al., 2008) (Fig. 3.2). Referring to the immediate area 

(-100 km2) surrounding the Rosetta Channel, the Rosetta Slide Complex (Loncke et 

al., 2009) is composed of 10 episodes of sliding. The first period of instability 

(incorporating at least 4 sliding events) is probably partly responsible for a >30 km 

long, -500 m high head scarp and sidewall, delimiting the Rosetta Slide Complex 

(Loncke et al., 2009) (Fig. 2.5). The mass wasting events produced a residual 

asymmetrical topography which is deeper towards the east of the complex. This 

topography controlled the location of turbidite depocentres and superimposed 

channel-levee systems (Loncke et al., 2009).

Widespread slope instability in this region may be related to changes in sediment 

supply, sea level change, earthquakes or the circulation of gas rich fluids within 

subsurface sediments (Loncke and Mascle, 2004; Garziglia et al., 2008; Loncke et 

al., 2009). Mass transport deposits (MTDs) have the potential to retard or promote
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fluid flow (Bunz et al., 2005; Pauli et al., 2008). It is possible that MTDs in this 

region may act as barriers to vertical fluid flow, may promote localised lateral up dip 

fluid migration or promote fluid expulsion due to the generation of overpressures 

through rapid loading or unloading (Garziglia et al., 2008; Loncke et al., 2009).

Information on the stratigraphic framework of the NDSF is restricted to descriptions 

of a limited number of sparsely distributed piston cores. These cores are not close, 

>20 km (Garziglia et al., 2008), to the area under investigation in Chapters 6 and 7. 

Sediment supply during the Holocene mainly consists of two fractions, a coarser 

fraction of turbiditic sands on the lower slope, and a finer fraction composed of 

hemipelagic clays on the upper slope (Maldonado and Stanley, 1976, 1979). 

Sedimentation rates in the Late Pleistocene to Holocene are high on the western 

NDSF with average rates of 32 cm/1000 yr for the last 58,000 years and 

280 cm/1000 yr in distal lobes of the Rosetta sub-aerial fan during the Pleistocene 

(Maldonado and Stanley, 1979; Ducassou et al., 2007; Loncke et al., 2009) where the 

highest proportions of turbidites occur. The Central NDSF is not influenced by 

highly effective sediment by-pass systems (channels) and average sedimentation 

rates are in the order of 2—4 cm/1000 yr for Late Pleistocene to Holocene times 

(Loncke et al., 2009). This may more closely resemble the hemiplegic sedimentation 

in the Rosetta Region. Sapropels and carbonate sediments are also common 

(Maldonado and Stanley, 1979; Ducassou et al., 2007; Loncke et al., 2009).

The NDSF is widely known as an important petroleum province. Thermogenic 

hydrocarbon accumulations have generally been discovered in 1) Pliocene- 

Pleistocene deepwater channel and basin-floor turbidite sands; 2) Upper Miocene 

fluvial and/or turbidite sands; and 3) pre-salt distal turbidities (Abdel Aal et al., 2001; 

Samuel et al., 2003).
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Chapter 4
This chapter has been published as Moss, J.L., and Cartwright, J., 2010, 3D seismic 

expression of km-scale fluid escape pipes from offshore Namibia: Basin Research, v. 

22, p. 481-501.

The work presented in this chapter is that of the lead author (JLM), editorial support 

was provided by the project supervisor (JAC) in accordance with a normal thesis 

chapter.
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4 3D SEISMIC EX PRESSIO N  O F KM- 

SC A L E  FLUID E S C A P E  P IP E S  FROM 

O FFS H O R E  NAMIBIA

4.1 Abstract

This chapter documents a large number of large km-scale fluid escape pipes with 

complex seismic expression and a diatreme-like geometry from the mapping of a 3D 

survey, offshore Namibia. These pipes are crudely cylindrical, but occasionally have 

steep conical geometry either narrowing upwards or downwards. They are generally 

ovoid in planform and their ellipticity varies with pipe height. Vertical dimensions 

range from c.100 to > 1000 m and diameters range between 50 m and 600 m. The 

lower part of the typical pipe is characterised by a sag-like or collapse type of 

structure, but this is only imaged well in the wider pipes. The upper part of the 

typical pipe is characterised by gently concave upwards reflections, with a negative 

relief of tens of metres. There is some evidence that these concave upwards 

reflections are vertically stacked palaeo-pockmarks. A conceptual model for pipe 

formation is proposed that involves hydraulic fracturing and localisation of focused 

vertical fluid escape with volume loss at the base of the pipe inducing collapse within 

the pipe. Continuing episodic fluid migration through the pipe produces further 

collapsing of the core of the pipe and pockmark structures at the top of the pipe. 

Longer term seepage through pipes is manifested in zones of amplification of 

reflections above the top of the pipe.
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4.2 Introduction

One of the least understood aspects of fluid flow in sedimentary basins is the precise 

nature of the flow across thick sequences of low permeability claystones, and the 

degree to which this flow is pervasive through the pore network, or more focused 

through faults or other features of enhanced vertical to sub-vertical permeability. 

This question has important implications for petroleum exploration and more 

generally for basin analysis (Downey, 1984; Watts, 1987; Cartwright et al., 2007). 

In particular, the evaluation of secondary migration pathways is a critical element in 

hydrocarbon play analysis, and recognition of features that promote vertical 

hydrocarbon migration is an important component of this type of analysis. Equally, 

prediction of the integrity of petroleum seals should ideally incorporate an appraisal 

of seal bypass systems, a group of features that are embedded in the sealing sequence 

and offer preferential flow pathways for hydrocarbons through the seal (Cartwright et 

al., 2007).

One of the main families of seal bypass system as defined by Cartwright et al. (2007) 

is pipes. A number of recent studies have documented different types of pipe-like 

structure from a diverse range of geological settings. The first detailed description of 

fluid expulsion pipes was by Loseth et al. (2001) who termed them blowout pipes, 

based on their mapping of these columnar disturbance zones from depths of 

c. 1000 m to the seabed, where they terminated in pockmark craters (King and 

MacLean, 1970; Hovland and Judd, 1988; Judd and Hovland, 2007). This 

pioneering study was followed by investigations using high-resolution (single­

channel and multichannel) 3D seismic data from offshore Norway (Mienert et al., 

1998; Bouriak et al., 2000; Bemdt et al., 2003; Hovland et al., 2005; Hustoft et al., 

2007; Pauli et al., 2008; Westbrook et al., 2008b), the North Sea Basin (Loseth et al., 

2003; Ligtenberg, 2005), offshore Ireland (Van Rensbergen et al., 2007), offshore 

West Africa (Gay et al., 2007a; Gay et al., 2007b), offshore Korea and using 2D 

seismic data from the Mediterranean region (Loncke and Mascle, 2004; Trincardi et 

al., 2004). The pipes in these studies have been referred to as gas chimneys, seismic 

chimneys, acoustic pipe structures or blowout pipes, but all share a common basic
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seismic expression albeit with considerable variation of specific acoustic 

characteristics.

In seismic profiles, pipes appear as vertical to sub vertical zones of highly 

discontinuous or disturbed reflections, or even as zones of complete loss of 

coherence (Fig. 4.1). In planform, pipes range from circular to elliptical, with 

variable geometry upwards over the full vertical extent of the pipe (Loseth et al., 

2001; Hustoft et al., 2007). The reflection amplitudes within the pipe are generally 

highly variable, with localised amplitude anomalies distributed within or 

immediately adjacent to the pipe, in some cases high amplitudes due to gas pockets 

or cemented zones are inferred (Gay et al., 2007a; Hustoft et al., 2007). Where 

reflections are more coherent surrounding the pipe, they are often seen to either bend 

sharply upwards around the pipe perimeter towards the centre of the pipe, or to bend 

downwards into the pipe (Bemdt et al., 2003; Hustoft et al., 2007). All these acoustic 

characteristics are considerably influenced by the survey parameters and specifics of 

the processing sequence (Loseth et al., 2003). Seismic artefacts (velocity anomalies, 

attenuation, transmission, and scattering) and the complexity of imaging the margins 

of a near vertical geological feature whose width of often not much greater than the 

spatial resolution combine to make the interpretation of true structure extremely 

difficult.
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2.6
250m

Figure 4.1 Seismic profile through pipe 24. Pipes appear as vertical to sub vertical zones of 
highly discontinuous or disturbed reflections, or even as zones of complete loss of coherence. 
The observed stratal thickening (blue arrow) on the flanks of the pipe is believe to represent the 
levee-like deposition of fluidized material from the base of the pipe. Pipe measurements include 
height and diameter and reflections width (A-A’) and relief (h). Pipe 24 passes through the 
Bottom Simulating Reflection (BSR). Seismic scale is in seconds TWT.
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I present a study of pipes from the West African continental margin. The study area 

is located in the Namibe Basin of northern Namibia, and is based on a 3D seismic 

survey located in the basin axis, in a modern slope setting. There are two prime 

advantages to this study area: (1) the data is high quality with very good spatial 

resolution of < 25 m, and (2) there are a large number (366) of seismically resolved 

pipes within the region covered by 3D seismic data. The large number of pipes 

means that I can investigate the range in acoustic expression in a single geological 

province where the basic stratigraphy and hydrodynamic boundary conditions are 

unlikely to vary laterally to any significant degree.

This chapter has two aims: (1) to extend the descriptive base for pipe structures by 

capturing the variability in acoustic expression of the pipes in this area and so aid 

their future interpretation elsewhere, and (2) propose a model for their genesis. This 

study is largely based on qualitative or semi-quantitative description of pipe 

geometry with a main focus on interpreting the internal and external structure of the 

pipes. Chapter 5 will deal more specifically with the spatial and temporal analysis of 

the pipe distribution, and relate the statistics of their distribution to their genesis. 

Hence in this chapter, I do not address the question of the diachroneity of pipe 

formation, nor attempt to explain in any detail why pipes and pipe clusters are 

located in specific positions in the basin. However, I do make some simple 

observations on the specific context in which some pipes are formed and relate this 

to their genesis.

4.3 Seismic Data and Methods

-y
The data volume used for this chapter consists of a -900 km grid of pre-stack time 

migrated 3D seismic data from North Namibia acquired on behalf of NAMCOR in 

2002 (Fig. 2.4). Pipe analysis focused on the geometric attributes of the constituent 

reflections, their seismic character, shape, reflection thickness and amplitude using 

methods outlined in Chapter 2.
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The quantitative analysis of the upper portions of the pipe structures undertaken in 

this chapter expands on measurements that have previously been employed with 

seismically resolvable sag structures (Bertoni and Cartwright, 2005; McDonnell et 

al., 2007) or for the measurement of growth fault slip histories (Thorsen, 1963).

4.4 Results

4.4.1 Regional distribution and geometry of the pipes in the 

Namibe Basin

Qualitative and semi-quantitative analysis was undertaken on a large population of 

pipes from the study area within the Namibe Basin. The 3D seismic cube covers an
y t

area of -900 km , and contains over 366 buried pipes at an average density of 2 pipes
9 • • 9per km . Densities range from 1 pipe per km to a maximum density of 7 pipes per 

km in the south. The largest pipes (height > 800 m and diameter > 200 m) are in the 

south of the study area with smaller pipes located towards the centre and north of the 

study area (Fig. 4.2).

The pipes are stratigraphically restricted to Post-Rift 2 and 3. The precise depth 

range for many of the pipes is one of the most challenging parts of their 

interpretation, and is discussed in more detail in later sections. However, many of 

the pipes in the southern part of the study area can be traced at least as deep as the 

channelized interval in Post Rift 2 (Fig 4.3). They terminate upwards at various 

levels within Post Rift 3. Again, this interpretation is problematic, because there is 

considerable variation in the geometry of the uppermost parts of pipes.
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inset b)

10km

Figure 4.2 Pipe distribution, a) Dip map of the base of Post Rift 3 showing the Location of the palaeo channels, polygonal faults, BSRs (black dashed outline) and pipes (white circles). The size of the pipe symbol is directly proportional 
to the maximum diameter of the pipe. The map is to scale, b) Inset map showing the location of the pipe examples referred to in the text (Chapter 4 only).
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250m250m

250m

Figure 4.3 Pipe examples are shown from different contextual settings, a) Pipes are observed 
to emanate from palaeo channel levees at the base of Post Rift 3 (PR3), for example Pipe 109, 
Pipe 357 and Pipe 358. b) A narrow pipe (Pipe 106) is feeding a high amplitude body trapped 
beneath the modern BSR from a probable palaeo channel (PC) source. Narrow pipe (Pipe 102) 
is sourced from the base of the high amplitude body (AMP), terminating at the lateral edge of 
the seismically determinable modern BSR c) Pipes have been observed to extend vertically 
through channel beds without interacting with the bed or rising up dip on levees, for example 
Pipe 10. This suggests that the pipes may be sourced deeper than Post Rift 3 (PR3). Pipe 10, 
pipe 16 and pipe 24 are examples of pipes which transect the BSR d) Narrow pipe 396 is 
sourced from the modern BSR Acoustic anomalies (push down) are observed beneath the pipe. 
The modern BSR is indicated (BSR). Seismic scale is in seconds TWT.
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The 366 pipes are distributed in a clustered and uneven pattern in the basin. They 

occur in a broad north-south zone in the basin axis (Fig. 4.2). They are spatially 

coincident with buried channels in the south and a more axial region of polygonal 

faulting within Post Rift 3. On a gross scale, the pipes are distributed in a horseshoe 

pattern. This pattern correlates with the flanking depressions to the large lensoid 

mound body defining the Post Rift 1 sequence (Fig. 4.4). The structure map of the 

top of Post Rift 1 shows the pipe distribution to be anti-correlated with the central 

mound-like high of this lensoid body. The thickness map of Post Rift 2 and the 

structural and thickness maps of the Syn-Rift are the only maps that show any spatial 

correlation of mapped features (thickness or topography) to the distribution of pipes 

(Fig. 4.4).

There is no obvious relationship between the geometry of the present day seabed and 

the distribution of the pipes*. A prominent failure scar occurs in a mid slope position, 

but there is no obvious correlation between this feature and the underlying pipe 

distribution. Similarly, there are few seabed pockmarks, and these do not uniquely 

correlate with the position of underlying pipes. The pipes are distributed across a 

range of present day bathymetry from -600 m to -1800 m. Since there has been 

relatively limited subsidence in the Neogene along this part of the margin, this 

bathymetric range probably closely approximates the bathymetry at the time of their 

formation.

The stratigraphic distribution of the pipes is difficult to determine precisely, mainly 

because the base of many of the pipes occurs within the very low amplitude seismic 

facies of Post Rift 2, and the true base is often masked by seismic artefacts or 

background noise. Of the pipes with a confidently interpreted base (about 40% of the 

total population), the majority of these emanate from the lower part of Post Rift 3*. 

Pipe bases are observed to emanate from buried channel levees (Fig. 4.3) and 

amplitude anomalies beneath the modern BSR in the south of the study area. In 

these instances it is feasible that the channel levees and gas trapped beneath the BSR 

supplied the pipes with fluid and/or free phase gas (Biinz et al., 2003; Gay et al., 

2003; Hovland et al., 2005; Gay et al., 2006a; Gay et al., 2006b).

* Map presented in Appendix A2
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Figure 4.4 Mega unit topography (unit top) and thickness maps, a) Post Rift 1 topography, b) Syn-Rift topography, c) Post Rift 2 (TWT) thickness map. d) Syn-Rift (TWT) thickness map. Pipe distribution is indicated by the white 
dots. White dots are proportional to maximum pipe diameter (m).
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Direct observations of pipes associated with channel levees and sub-BSR amplitude 

anomalies account for c. 20 % of the total population. For the majority of pipes the 

deepest recognisable seismically disturbed reflection is either coincident with the 

Post-Rift 2 / Post-Rift 3 unit boundary or in the upper part of Post-Rift 2. Seismic 

amplitude and continuity is poor in Post-Rift 2 and tracing pipe structures through 

this sequence is difficult, limiting interpretation of pipe structure to the uppermost 

400 m of this sequence. Observations of pipes that vertically transect channel fill 

units without any obvious change in their geometry or position may suggest that the 

pipes are sourced deeper than Post-Rift 3 (Fig. 4.3).

The pipes exhibit a complex relationship with a prominent BSR in the south of the 

study area. The spatial location of the BSR is coincident with some 59 pipes, among 

which include some of the largest in the population. Pipes are observed to (1) 

terminate upwards at the BSR (Fig. 4.3b), (2) originate at their base from the BSR 

(Fig. 4.3d) and (3) originate beneath and then pass straight upwards through the BSR 

(Fig. 4.3c). Only the smallest pipes originate at the BSR and only the largest pipes 

pass straight through the BSR. The smaller isolated ‘patches’ of a less prominent 

BSR in the central-west of the study area are devoid of pipes.

4.4.2 Seismic expression

The 366 pipes in the study area represent a broad spectrum of geometrical forms and 

dimensions, and also occur in a range of stratigraphic intervals. Hence much of the 

acoustic variation can be related to the background reflectivity of the intervals that 

the pipes individually transect. All the pipes are recognisable as circular to elliptical 

columnar zones of disturbed or disrupted reflections (Fig. 4.1). They stand out from 

the background reflectivity in Post Rift 3, but are less easily observed in the lower 

amplitude background reflectivity of Post Rift 2. Hence the ease of interpretation 

depends to some extent on the amplitude characteristics of the host stratigraphy. In 

general, they are more easily observed and more accurately defined within intervals 

with higher dominant frequency.
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The defining characteristic of all the pipes is the disrupted nature of the seismic 

reflections. This immediately flags an important if somewhat obvious point: 

formation of the pipe involves disrupting the sedimentary layering to the extent that 

the reflections are disrupted. This implies a scale of disruption that is imaged by the 

seismic wavefront. Disturbed seismic data quality is associated with reduced 

acoustic velocities and the specific distribution of gas within the sediments 

(Dangerfield, 1992; Granli et al., 1999; Amtsen et al., 2007). Gas charged zones can 

cause significant velocity anomalies which can produce distortion in the seismic data 

that can propagate downward below the pipe. The degree of disruption is important 

to quantify, but this is very difficult in practice because the disruption varies 

vertically and laterally, but is often masked or influenced by the presence of artefacts 

and coherent noise. The quality of the imaging of the pipes generally degrades with 

increasing depth.

The pipes in the study area vary considerably in gross dimensions and seismic 

expression. The narrowest pipes are at the limit of seismic resolution (one to two 

traces wide; 25-50 m) and therefore any internal structure is not clearly resolvable. 

The wider pipes can have diameters of c. 300-500 m, hence their internal structure is 

imaged, albeit subject to the distortions associated with lateral and vertical velocity 

anomalies, more clearly. In general, the larger the pipe is, the better the internal 

structure is resolved and imaged, and the more clearly it is possible to recognise 

probable artefacts.

In general, the pipe diameter is not constant with depth, irrespective of the size of the 

pipe. Pipe height and diameter are positively correlated implying there is a scaling 

relationship between pipe geometries (Fig. 4.5). Comparisons between pipes indicate 

that individual pipes have a different planform shape at consistent unit boundaries, 

and pipe size, shape and spatial location change with depth (Fig. 4.6b). The planform 

geometries of coalescing pipes (Fig. 4.6b(b)) typically show that pipes are separate at 

depth becoming more conjoined towards the seabed. Ellipticity measurements show 

that pipes are more elliptical at their base and more circular towards the top (Fig. 

4.6c). This alteration in ellipticity with depth is reflected in the orientation 

measurements which show pipe orientations are unidirectional at depth (NW-SE) and 

bidirectional in the top zone (NW-SE and NE-SW) (Fig. 4.6c).
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Figure 4.6 Pipe planform geometries, a) coherence slice through Post Rift 3 showing circular to 
elliptical pipes and coalescing pipes. Coherence cube sliced at Post Rift 3c c.2200ms TWT. b) 
digitised pipe perimeters from various depths in Post Rift 3 showing that pipe planform shape 
and spatial location change with depth for (a) single pipes e.g. pipe 53 and (b) coalescing pipes 
e.g. pipes 32 and 33. Note that pipes are single at depth but coalesce towards the seabed. From 
the digitised perimeters pipe a and b axis were measured. The data is displayed in figure c. c) 
Pipe orientation and ellipticity. Pipes become more elliptical and unidirectional with depth, (a) 
Post Rift 3a; (b) Post Rift 3b; (c) Post Rift 3c; (d) Post Rift 3d.
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Analysis of planform geometries was restricted to large pipes (> 800 m height) and 

measurements were only taken within Post-Rift 3 to ensure optimum image 

resolution and clarity. Potential errors are based on how well imaged the margins of 

the pipes are, consequently estimated errors increase with depth. Interpretation error 

is based on objective picking of pipe margins on adjacent profiles and line by line 

comparison of positional errors. Estimated errors are < 25 m at the top of the pipe 

(seismic spatial resolution), increasing to < 100 m at the base.

More detailed descriptions of seismic expression are presented below, grouped 

arbitrarily into narrow and wide pipes, based on the quality of the imaging that 

results from their size.

4.5 Narrow Pipes

Representative examples of the narrower end members of the pipes in the study area 

are presented in Fig. 4.7 (Pipes 30, 37, 121, 142). These examples all have minimum 

diameters of less than 100 m (Fig 8 a’, b ’, c’, d’). In Fig. 4.7(a), the pipe (P30) is 

visible as subtle breaks in the reflection continuity that are 1-2 traces wide that stack 

vertically in a systematic fashion over a distance of about 200 m above a prominent 

unbroken reflection (Rl). Above this, the reflections are more disrupted for c. 100 m, 

and then towards the top of the pipe, a prominent negative polarity reflection (R2) is 

deformed into a bowl shaped feature c. 100 m across, with a negative relief of 

c. 20 m. Above this reflection, there is minor disruption and concave deflection of 

reflections for 50 m up the pipe, and then at shallower levels there is no more 

disruption visible, but there is a subtle amplification of the background reflectivity in 

a column of almost constant width (c. 100 m across) up to the seabed.
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Figure 4.7 Examples of narrow pipes. Pipes are imaged as zones of disturbed reflections, a) 
Pipe 30 extends from reflection R1 to c. 1500ms TWT. (A’) Coherency slice through P30 (white 
arrow) at c.l550ms TWT. b) Pipe 37 from reflection N to P. (B’> Coherency slice through P37 
(white arrow) at c.l500ms TWT. c) Pipe 121 from reflection X to Y. (C’) Coherency slice 
through P121 (white arrow) at c. 1500ms TWT and d) Pipe 142 extends from reflection NAA to 
H. Only the flanks of pipes 88 and 90 arc imaged in this cross section. (D’) Coherency slice 
through P142, P88 and P90 (white arrows) at c. 1650ms TWT. Seismic cross section taken NW- 
SE (top left to bottom right) through the coherency slice. Seismic cross section scale is in 
seconds TWT.
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In Fig. 4.7(b), the pipe (P37) is interpreted based on the extent of disrupted 

reflections from 1550 ms TWT to 1400 ms TWT, from a prominent negative polarity 

reflection (N) at the base, to a positive polarity reflection (P) at the top. The 

disruption deep in the pipe is 1-2 traces across (c. 50 m), with strong de­

amplification of the background reflectivity in the pipe above a small depression 

visible on the basal reflection (N) amounting to c. 10 ms TWT of negative relief. 

Again, there is a sharp downward disruption of a reflection towards the upper part of 

the pipe by c. 15 m. There is no visible amplification above reflection P. Beneath 

basal reflection N a series of vertically stacked push downs are observed from 

1550 ms TWT to 1800 ms TWT.

In Fig. 4.7(c), a narrow pipe (P121) can be interpreted with a base that lies just above 

a high amplitude negative reflection (X), and is delimited upwards by a negative 

reflection (Y), some 200 m shallower in the section. The pipe is expressed in the 

lower portion as minor breaks in the reflections combined with dimming of 

amplitude across a zone 3-4 traces wide. Above 1500 ms TWT, several prominent 

reflections (e.g. Z) are offset downwards by 20-30 ms TWT, and a series of 

reflection doublets have significantly higher amplitudes than their lateral equivalents 

outside the pipe. In the uppermost 100 m of the pipe, the reflections are continuous 

across the structure, but are systematically depressed downwards over a zone that 

widens upwards from 100 to 250 m. There is no clear amplification of reflections 

above reflection Y.

The example in Fig. 4.7(d) (P I42) differs from the previous three examples in its 

context. The examples in Figs. 4.7(a) to (c) all have bases that are defined by 

unbroken reflections on a gently dipping flank. In Fig. 4.7(d), the right pipe (PI42) 

emanates from a seismic unit that can be clearly seen to be a channel fill deposit. 

Nearby, other narrow pipes (P88 and P90) are also seen to ‘root’ into this channel 

(this is not shown in Fig. 4.7(b)). The pipe (P I42) can be traced from a strong 

negative amplitude anomaly typical of a free gas accumulation (labelled NAA), and 

extends upwards some 350 m to terminate at a negative reflection (H). There are no 

amplitude anomalies above reflection H that can be clearly linked to P I42. The 

reflections within P I42 are disrupted mainly by downwards deflection or offset,
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typically by 10-15 m. There are no strong enhanced amplitude anomalies within the 

pipe, but a reflection at 1550 ms TWT is dimmed within the pipe.

4.5.1.1 Summary and Interpretation

The examples in Fig. 4.7 illustrate the variety in seismic expression amongst the 

narrowest pipes in the study area. They show that pipes can be reliably detected from 

recognition of systematic disruption and/or offset of the reflections within the pipe, 

augmented by observations of amplitude enhancement or dimming. The lateral 

margins of these types of pipe are thus defined as the edge of the stratal reflection 

disruption or offset. Edges of amplitude anomalies are treated with caution in this 

regard, as they may not be confined to the pipe itself, but may extend across the pipe 

margin and into the surrounding sediments.

Although at diameters of < 100 m, imaging of internal structure must be regarded 

with caution, all of these examples exhibited greater or lesser degrees of downward 

bending or depression of stratal reflections within the pipe relative to their position 

outwith the pipe. The recognition of the bases of pipes is a critical observation that 

can help constrain the location of the source of the fluids. All four examples have 

bases defined by a basal reflection that exhibits no disruption beneath the pipe. The 

recognition that the base can be defined as the first continuous reflection to cross 

beneath the pipe is thus important as a guide to the source layer for the fluid. In Fig. 

4.7(d), for example, Pipe P I42 emanates from the channel fill unit. The base of the 

pipe is a strong negative polarity amplitude anomaly that has the acoustic character 

expected for a small gas pocket which is probably trapped in coarser facies within 

the channel fill (Gay et al., 2006b; Gay et al., 2007a). By defining the base in this 

way, it is also possible to examine the seismic character in the region beneath the 

pipe to see if there are velocity anomalies (push down, pull up) or any evidence of 

scattering or distortion due to the complex ray paths through the pipe (Fig 4.7b). For 

3D seismic data acquired with cable lengths greater than a few kilometres, the wider 

offset data will undershoot the base of the pipe, and hence deeper reflections should 

not lose continuity because of ray path complexity within the pipe, as is often the 

case with, for example, shallow channels or shallow reefs (Brown, 2004).
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Definition o f  the upper termination of pipes in the study area is more problematic 

than defining the base. The only systematic way to define the upper terminus is by 

taking the first reflection to cross above the pipe with no loss of continuity or 

downward deflection. This works well for pipe examples in Figs. 4.7a, b and d. 

However, when this criterion is applied to Fig. 4.7c, the terminus is located in a zone 

of the feature where there is still a considerable downward deflection of several 

otherwise continuous reflections. Local amplification of reflections in a narrow 

linear zone above the pipes is also observed. These question are addressed again in 

the following section, in more detail, because the observation o f systematically 

downwards deflected reflections in the upper sector of the pipe and local reflection 

amplification is recognised for the majority of the wider pipes in the study area, and 

where these wider examples offer better imaging and grounds for discussion.

4.5.2 Wide Pipes

Some representative examples of wider pipes are presented in Fig. 4.8. These pipe 

examples are located in the south of the study area (Fig. 4.2).

The base o f the first example (Pipe 3) (Fig. 4.8a) is defined similarly as for narrow 

pipes i.e. by identifying the shallowest continuous reflections to cross beneath the 

pipe without disruption and/or offset. In this example, the base is located within the 

low amplitude reflections that are characteristic of Post Rift 2. Because the signal to 

noise ratio is generally lower in this type of seismic facies, it is harder to be confident 

of true continuity, since coherent noise emanating from the pipe above can interfere 

with the low amplitude reflections, as seen to some extent in this example. For the 

same reason, it is harder to interpret true breaks in the data, and thus difficult to 

define a perimeter to the pipe. Both these tasks are easier to achieve accurately in the 

high amplitude seismic facies of the basal part of Post Rift 3, above reflection P, in 

Fig. 4.8a. Here the pipe has a diameter of c. 300 m, and the reflections are both 

disrupted and deflected downwards by c. 10-20 m. Localised dimming and 

brightening is seen within the surrounding sediment adjacent to the pipe in this 

interval. Above 2300 ms TWT, the downward ‘sag’ o f the reflections increases
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upwards to a maximum relief of 40 ms at 2100m sTW T. No clear indications of 

erosional truncation can be seen towards any of the concave reflections, but there are 

numerous amplitude anomalies distributed up this part of the pipe, confined to the 

pipe interior. The pipe is interpreted to terminate at 2050 ms, into a lower relief 

depression, in which there appears to be an infill (X), which has a circular planform 

and is therefore interpreted as a buried and infilled pockmark crater. Coherence slices 

throughout this interval from 2050 to 2500 ms indicate that the gross geometry of 

this pipe is an almost constant diameter cylinder with a circular planform geometry 

(Fig 4.8a’).
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Figure 4.8 Examples of wide pipes. Pipe 3 a) and Pipe 6 b) transect the Post Rift 3 unit 
boundary (PR3) and are rooted in Post Rift 2. A BSR is interpreted at position H (a). (A’) 
Coherency slice through P3 (white arrow) at c.2200ms TWT showing a well developed crater 
(C). (B’) Coherency slice through P6 (white arrow) at c.2100ms TWT. Pipe 21 c) transects the 
Post Rift 3 unit boundary (PR3) at the location of a palaeochannel levee and passes through the 
theoretical base of the gas hydrate stability zone (H). (C’) Coherency slice through P21 (white 
arrow) at c.1900ms TWT d). Pipes 43 and 354 are coalesced or composite pipes rooted in the 
strong amplitude anomaly (AA). (D’) Coherency slice through P43 and P354 (white arrows) at 
c. 1600ms TWT. Seismic cross section taken NW-SE (top left to bottom right through the 
coherency slice, with the exception of (D’) which is taken SW-NE. Seismic cross section scale is 
in seconds TWT.
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The second example (Pipe 6) (Fig. 4.8b) is similar in its seismic expression in many 

respects to Fig. 4.8a in that (1) the base occurs within Post Rift 2, in the low 

amplitude seismic facies, (2) the pipe is sharply defined laterally by a pronounced 

downward ‘sag’ o f the background reflections, and (3) there are amplitude anomalies 

distributed vertically within the pipe. In addition, there are several features worth 

noting. Firstly, the relief of the ‘sag’ increases from c. 15 m at the base to a 

maximum of 60 m at 2150 ms TWT, and thereafter decreases steadily upwards to the 

upper pipe termination at 1900 ms TWT. The maximum relief position is marked by 

several reflections that are erosionally truncated against reflection C. Above this 

erosional surface, the suprajacent reflections appear to define an infill geometry over 

a vertical extent o f 100-150 m, with alternating reflections exhibiting greater and 

lesser negative relief. A good example of an infilling reflection is shown at point X. 

Secondly, the diameter of the pipe systematically decreases upwards from the point 

of maximum relief (300 m) to the upper terminus (100 m), and the geometry is that 

of a steep sided cone (carrot shaped). There are no obvious amplitude anomalies 

above the upper terminus. A polygonal fault transects the pipe at 2100 ms TWT (Fig 

4.8b’) at an acute angle. The pipe is not deflected by the fault.

The third example (Pipe 21) (Fig. 4.8c) represents a group o f wider pipes whose 

depth o f origin is problematic. The ‘roots’ of this pipe lie within Post Rift 2, but the 

quality of the imaging at depth is too poor to lead to confident interpretation of true 

continuity as opposed to reflections that appear broken because of migration artefacts 

or other interference with coherent noise. Nevertheless, the imaging within Post Rift 

3 is excellent and allows clear comparisons to be made with other wide pipes. In this 

interval, the pipe has an almost constant diameter of 450 m and an almost circular 

planform (Fig 4.8c’). The seismic expression of the pipe changes markedly, however, 

at a prominent negative reflection (H) at 1720 ms TWT. Below this, reflections 

within the pipe are dimmed, disrupted and exhibit the sag morphology, with a 

negative relief of c. 20 m. Above reflection H, the reflections exhibit a morphology 

that is a more gentle, bowl shaped depression, with a negative relief of 15-25 m, and 

with local amplification. Reflection H crosses the pipe with a much smaller 

downward deflection o f c. 3-5 m, compared to the 20 m relief above and below. 

Reflection H is interpreted as corresponding to the theoretical base of the gas hydrate 

stability zone from its polarity and by regional correlation to a suite of amplitude
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anomalies terminating at a fixed depth below the present day sea bed. The pipe 

terminates upwards about 100 m below the seabed, with a clear infill of the 

shallowest concave reflection (X), similar to the pockmark geometry interpreted at 

the upper terminus in Fig. 4.8a. There is a localised zone of amplification above the 

upper terminus extending up to the seabed.

The fourth wide pipe (Pipe 43 and Pipe 354) (Fig. 4.8d) has a base at a strong 

amplitude anomaly (AA) within the upper part of Post Rift 2. This pipe consists of 

two closely spaced or conjoined pipes, and it thus represents an important variation 

of the total population, of which some 5 % are conjoined or composite structures. 

This composite pipe structure is very clearly revealed by coherence attribute slices 

(Fig 4.8d’). Both component pipes share a common root zone with a base in the 

strong amplitude anomaly (AA). The combined diameter is c. 500 m, but with an 

elliptical planform for the combined structure. Both pipes are characterised by 

similar reflection geometry as seen in singular pipe structures i.e. dominant 

downward deflections with sporadic amplitude anomalies. As with Fig. 4.8c, the 

reflection geometry of the pipes changes upwards (X) across the level interpreted to 

be the base of the gas hydrate stability zone (H). The locus of downward deflection 

of reflections shifts to the more upslope of the two pipes above this level, and 

terminates at 1300 ms TWT, with only diffuse amplification of the overlying stratal 

reflections.

4.5.2.1 Summary and Interpretation

The wider pipes presented here represent the variation seen in the total population of 

pipes. Geometrically, they vary from cylindrical, to conical, to conjoined. They 

predominately root in Post Rift 2 or at the Post-Rift 2 : Post-Rift 3 unit boundary. 

They are characterised by an internal structure in which the majority of reflections 

are deflected or offset downwards relative to the host stratigraphy by amounts that 

vary upwards within the pipes. The negative relief ranges from c. 10 to c. 60 m. In 

some cases, the negative relief changes upwards gradually, but in other cases there is 

evidence of abrupt alternations of greater or lesser relief, and evidence of erosional 

sculpting of this relief, and subsequent and episodic infill. This latter observation is
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critical, since it strongly suggests that the negative relief is real and not artefactual 

(i.e. a velocity push down in pre-stack time migrated data), and hence implies a 

genetic process that is capable of removing material at the seabed and forming a 

crater shaped depression, that is then later infilled. This process seems to have been 

episodic in some cases (e.g. Fig. 4.8b). The upper terminations of these pipes are 

commonly, but not ubiquitously, features that can be interpreted as pockmark craters, 

also strengthening the notion of a dynamic process capable o f erosion of sediment in 

the near surface.

An important common observation is the contrast in the internal geometry of the 

deeper and shallower parts of the pipes. In the deeper part o f the pipes, the ‘sag’ is 

abrupt and sharply delimits the lateral margins, whereas the depressions in the 

shallower portions o f the pipe are more gently curving, and the pipe margins are less 

abruptly defined. This systematic change in geometry is discussed further in a later 

section.

The wider pipes that root in Post Rift 2 are invariably seen to transect a large part of 

Post Rift 3, terminating within a few hundred metres of the present day seabed. The 

wide pipes demonstrably cross the base of the gas hydrate stability zone, and the 

observation that the reflection most closely corresponding to this is almost unaffected 

by the downward deflection can be interpreted as evidence that the hydrate has re­

equilibrated across the pipe i.e. the pipe predates the current stabilisation of the 

hydrate in this area.

4.6 Discussion

4.6.1 Internal Sag Geometry: Real or Artefact?

As documented above, one of the most systematic observations of the widely varying 

pipe forms in the study area is the downward deflection of reflections relative to the 

host stratigraphy. This observation is potentially critical for any understanding of

92



Chapter 4 3D Seismic Expression of Blowout Pipes, Namibia

pipe genesis, since if genuine it implies that the process of pipe formation involves 

some collapse o f the column by loss of material (solid or fluid) from the column. A 

key question therefore is whether the interpreted downward deflection is due to a 

velocity effect (push down) or some other imaging artefact or whether it faithfully 

records true deformation of the strata?

To answer this question, I plotted the negative relief exhibited by successive stratal 

depressions in the shallower portions of the pipe by extrapolating a local datum 

across the pipe from the undisturbed correlative reflections around the pipe, and 

measuring the downward shift relative to that datum (Fig. 4.1). Measurements are 

reported here in two way travel time, because I was aiming to evaluate systematic 

shifts in travel time that might be indicative of velocity artefacts.

Plots of negative relief for 2 representative pipes are presented in Fig. 4.9*. In 

general, I observe a systematic reduction in negative relief from the base to top of the 

pipes. The relief at the base ranges from 10-55 ms in the population as a whole. I am 

typically able to measure 1-22 values of relief upwards from the base to tops of 

individual pipes, and the plots exhibit a typically staircase shape, with intervals of 

upward reduction in relief alternating with intervals of almost constant relief (Figs. 

4.9a and 4.9b). Less commonly the relief increases locally, before decreasing again 

(Figs. 4.9c and 4.9d). This was also noted in the description of pipe geometry and 

internal structure, and a good example of this was explained in Fig. 4.8b, where a 

pockmark crater was interpreted as the origin of the anomalous increase in relief. 

Many of the plots exhibit gradational upward decreases constrained by 

measurements every 30-40 m or so. These are particularly associated with the change 

in reflection geometry from a sharp downward deflection, to a more gently bowl 

shaped reflection geometry that is often noted to occur in the top 100-300 m of most 

of the wider pipes (Fig. 4.8a, b, c), and some of the narrower pipes too (Fig. 4.7).

* Additional plots are in A ppend ix  A2
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Figure 4.9 Pipe relief. Pipe reflection relief is plotted aga inst T W T . Plots typically exhibit a 
s ta ircase  shape ,  with intervals of  up w ard  reduction in relief  a l te rn a t in g  with in tervals o f  almost 
cons tan t relief, for  exam ple  pipe 22 (a) and  pipe 25 (b). Less com m only  th e  relief decreases 
g radua lly ,  for  exam ple pipe 45 (c) and  pipe 16 (d)
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It is notable that the downward deflections in those pipes with amplitude anomalies 

distributed throughout the pipe have the same range of values for negative relief as 

the pipes without any significant amplitude anomalies. For example Fig. 4.8c has few 

anomalies, whereas Fig. 4.8b has at least four levels of significant brightening, yet 

both have a similar distribution upwards o f negative relief.

Coupled with observations of infill, several of these comments can be taken together 

to argue against the interpretation that the downward deflections are artefactual or 

related primarily to a push down effect. Since a true push down requires the 

presence of an anomalously low velocity interval relative to the laterally equivalent 

strata, the step-like pattern of upward reduction in negative relief would be difficult 

to explain as being the result of intervals of low velocity material such as gas pockets 

in coarser sediments. Furthermore upwards increases in negative relief in a general 

trend of upward reduction cannot be due to a low velocity interval, since this interval 

would necessarily affect the interval below and not just that with the anomalous 

negative relief. Lastly, the systematic changes in geometry of the deflected 

reflections apply to nearly all o f the wider pipes, irrespective of the presence of any 

amplitude anomalies, suggesting they are geological, rather than artefactual.

It is undeniable that there must be some element of push down present, and possibly 

pull up, and this might vary vertically through the pipes according to the distribution 

of gas pockets or cemented zones (Hustoft et al., 2007), but the measured values of 

the negative relief argue forcefully that this is likely a much lower value than the 

gross values o f total negative relief, and probably accounts for some of the 

fluctuations in values seen on the plots in Fig. 4.9. Changes in the velocity model 

across space and time may account for some of the variations observed but I am 

unable to establish any accountability for this variation at such a local scale. In 

summary, these data strongly suggest that the downward deflection is a fundamental 

geometrical feature of the pipes.

Finally, linear zones of local amplification are observed to stretch from the pipe top 

towards the seabed from both narrow and wide pipes (Figs. 4.1, 4.3, 4.7 and 4.8)*.

* Raw RMS amplitude data (table) measured for selected pipes is available in Appendix A2
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Not all pipes exhibit this local amplification. This amplification is more apparent 

from wider pipes and larger narrow pipes which display a degree of downward 

deflection above narrow sag-like, loss of reflection continuity, v-shaped notches (see 

narrow pipe interpretation above). The linear zones share a similar planform 

geometry and diameter to the underlying pipes (Fig 4.10), although seabed 

pockmarks are not observed (at the resolution of this dataset). The seabed reflection 

does exhibit localised higher amplitudes above these columnar amplifications. Local 

amplitude amplification may result from some form of trace normalisation or 

amplitude anomaly. Due to the spatial distribution of these amplifications, and the 

specific association with pipes, amplitude anomalies resulting from processing 

problems, geometric or velocity focusing are unlikely but not improbable. Localised 

changes in lithology brought about by chemical alteration, cementation or carbonate 

deposition may be feasible if a fluid migration route can be established and 

maintained. Following the cessation of morphology forming fluid migration, low 

saturation gas migration through the pipe to the seabed would need to be maintained. 

Gas concentrations would need to be high enough to be seismically detectable and 

encourage lithological transformations yet low enough not to cause reflection 

downward deflection. Without sediment sampling this supposition must remain 

highly speculative.
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Figure 4.10 RMS amplitude extraction window 150-200ms below the seabed. Near vertical 
columnar zones of localised amplification arc imaged above the pipes. The amplitude extraction 
window was taken at an arbitrary distance above the pipes (150-200ms below seabed). Local 
amplification of amplitude is imaged as circular to elliptical high amplitude regions (dark grey) 
against a lower background amplitude (light grey). Average pipe diameters are shown. Pipe 
diameters vary with pipe height, therefore average pipe diameters are taken at different 
stratigraphic depths. In the majority of examples, the spatial overlap of average pipe diameters 
is simply a function of the depth at which the measurement was taken and not a representation 
of conjoined pipes. Pipe examples previously mentioned in the text are labelled. Not all pipes 
exhibit this local overburden amplitude increase.
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4.6.2 Pipes: A link to fluid expulsion

The network o f pipes in the Namibe Basin is remarkable for the spectrum of 

geometrical forms, for their density and their vertical extent. Whatever the genetic 

mechanism involved in their formation, it is evident that this suite of pipes represents 

a significant vertical anisotropy in an otherwise highly stratified sequence.

The similarity of the Namibe Basin pipes to most previous descriptions of fluid 

escape pipe makes a compelling case that the pipes in the study area also represent 

expulsion of pore fluids or gas under a significant pressure differential. Alternative 

pipe forming mechanisms such as collapse of carbonate or evaporite karst (Bertoni 

and Cartwright, 2005; McDonnell et al., 2007), or hydrothermal venting pipes 

(Hansen, 2006) can be considered highly unlikely here, because there are no 

indications of dissolution of either carbonates or evaporites deeper in the 

stratigraphy, nor any seismic indications of intrusions of the scale needed to generate 

hydrothermal pipes.

The case for a genetic link to some form of fluid expulsion for the Namibe Basin is 

considerably strengthened by the large number and areal extent of amplitude 

anomalies that can be attributed to free gas trapped in near surface sediments, and to 

the development of a hydrate layer, expressed in a bottom simulating reflection 

(BSR) (Swart, 2009). Most tellingly, there are numerous amplitude anomalies with 

negative polarity within many of the pipes, and minor velocity push-downs beneath 

the pipes also point to the presence of free gas within the pipes at the present day. 

These observations together indicate that a petroleum system has been recently active 

in the basin (England, 1987), and that vertical migration of gas has been occurring in 

the relatively recent past (Cunningham and Shannon, 1997). Analysis on the timing 

of pipe formation is further developed in Chapter 5.

Previous studies have generally invoked some form of natural hydraulic fracturing 

mechanism to explain the vertical focusing of fluids and their ascent through 

otherwise low permeability sediments (Hovland and Judd, 1988; Mienert et al., 1998; 

Van Rensbergen et al., 1999; Bemdt et al., 2003; Hustoft et al., 2007; Judd and
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Hovland, 2007). In recent studies of focused flow of free gas through shallow buried 

sediments within the hydrate stability zone, the buoyancy pressure of free gas 

columns trapped beneath the hydrate layer has been implicated as the driver for 

hydraulic fracturing and the propagation of pipe like vents for methane migration 

through to the seabed (Gorman et al., 2002; Flemings et al., 2003; Trehu et al., 

2004). Flemings et al. (2003) computed that quite modest free gas column heights of 

150-250 m might be sufficient to induce failure through hydraulic fracturing for a gas 

at shallow depths o f a few hundred metres. This is comparable to the column heights 

I have observed for many of the stratiform amplitude anomalies in the study area 

below the base of the hydrate stability zone, so it is therefore conceivable that one of 

the main drivers for focused fluid flow in the area may be gas overpressure resulting 

from trapped free gas columns.

4.6.3 Source of fluids implicated in pipe formation

We have no geochemical data to constrain the presence of gas, or to identify the 

composition and origin (biogenic versus thermogenic). Thermogenic gas has been 

encountered in a number of exploration boreholes further south in Namibia 

(Cartwright et al., 2008), and basin modelling studies indicate that Cretaceous source 

rocks in the Namibe Basin could certainly be in the gas generative window (Holtar 

and Forsberg, 2000). Biogenic gas generation is common in the slope sediments 

along the west African margin (Cunningham and Lindholm, 2000), and the organic 

content of the slope sediments of the Namibe Basin is likely to be reasonably high 

due to the sourcing of this sediment wedge from the Kunene Delta. Potentially 

enriched source regions for biogenic gas generation include the slope channel fills in 

Post-Rift 2

The upper temperature limit for biogenic gas generation is debated (Whiticar, 1999; 

Holm and Charlou, 2001; Sleep et al., 2004; Kieft et al., 2005; Lollar et al., 2006; 

Roussel et al., 2008), but is commonly taken as c. 70 degrees C. Using present day 

temperature gradient data from the Walvis Basin, this would equate to a sub seabed 

depth of c. 2000 m, which would mean that biogenic sources of fluid would be
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restricted to Post-Rift 3 and the upper portion of Post Rift 2. It should be noted that 

the deepest level a single pipe can be traced with confidence is to the middle of Post 

Rift 2, which is just at the notional deepest limit of biogenic gas generation.

Although it lies beneath the deepest level of confidently interpreted pipe bases, the 

likely source interval for thermogenically generated hydrocarbons (Syn Rift 

Sequence) could nonetheless be supplying hydrocarbons to the overburden sediments 

in the region o f most widespread pipe development. Direct (thermogenic) 

hydrocarbon indicators are indeed observed in the Transitional / Post-Rift 1 interval 

(Fig. 3.1) and it is conceivable that a deep thermogenic source was implicated in pipe 

formation. It would be necessary to invoke a vertical migration pathway across the 

lower part of Post Rift 2, and no obvious routes can be seen because the seismic data 

in this interval is so low in signal/noise ratio, therefore this suggestion must remain 

highly speculative.

4.6.4 Significance of the Internal Structure

It has been documented that the internal structure of the typical Namibian pipe 

consists of two or three contrasting reflection geometries. Loss of coherent acoustic 

character in the basal area of the pipe, the downward or sag like deflection of 

reflections and the more gently and subtly diminishing concave dish-like geometry in 

the upper portions o f the pipe.

Perhaps the most significant observation presented in this study is the ubiquitous 

downward deflection of reflections into pipes, across the full dimensional and 

contextual spectrum. I have argued that this negative relief is too large to be due 

entirely to velocity effects (push down), although minor push down is commonly 

observed at pipe bases. I have also shown that in some examples the negative relief is 

largely erosional, in the form of pockmark craters, embedded into the structure of the 

pipe as is also found at Nyegga, offshore Norway (Hovland et al., 2005; Westbrook 

et al., 2008a). This latter observation implies that fluid flux upwards through the pipe 

was sufficiently vigorous to excavate seabed sediments for depths of c. 30-50 m from
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the palaeo-seabed, and the pipe continued to grow upwards thereafter, as more 

sediments were deposited on top of the buried pockmark. However, it is clear that the 

downward deflection in the deeper parts of the pipes cannot be linked directly to 

seafloor erosion, and hence some other explanation is required.

Instead I suggest that this ‘sag-like’ geometry results from collapse by removal of 

material from near the base of the pipe. It is notable that the negative relief in the 

basal third to half of many pipes is almost a constant value, an observation that is 

consistent with a collapse origin. Although these pipes cannot be linked to any 

carbonate or evaporite karst collapse, the concave upwards geometry is very similar 

to that described for cylindrical collapse structures above karst in the Ordovician of 

West Texas (McDonnell et al., 2007). I speculate therefore, that pipe formation 

begins with focused fluid flow that either induces removal of material from a zone 

near the base o f the pipe (e.g. by fluidization) or some other process induces 

liquefaction, and the flow of fluid upwards from the liquefied interval provides the 

volume loss necessary to induce collapse of the overburden. Evidence for 

fluidisation is proposed in the form of the levee-like deposition of material observed 

in the stratal thickening o f some pipes (Fig. 4.1). Where the upward escape of fluid 

and/or entrained solids was sufficiently vigorous, a surface crater was formed as the 

multiphase flow egresses at the seabed (Hovland et al., 2005; Hovland and Svensen, 

2006). Where fluid escape is less vigorous the seabed may simply have had a modest 

depression as the surface expression of the underlying zone of collapsed pipe 

interior. It is also conceivable that in some cases pipes may have terminated into 

shallow aquifers, where the high porosity of the sediments may have allowed the 

upwards flowing fluids to disperse laterally, reducing their overpressure, and thus 

preventing their upward escape to seabed.

Gas hydrates are a very important component of the fluid flow system. The base of 

the gas hydrate stability field may represent a strong permeability boundary affecting 

the flow of fluids through the sediments, therefore the relationship between the BSR 

and pipe formation must be considered. It is plausible that the gas hydrate zone 

(GHZ) forms a low permeability seal, because present-day free gas accumulations 

are evidently trapped beneath the base of the GHZ. Underconsolidated sediments 

within and beneath the GHZ are likely to be overpressured, permitting lateral
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migration of fluids. Free gas is trapped beneath the BSR and migrates laterally to an 

up-dip location. At the up-dip location, if the buoyancy pressure of the free gas 

column is sufficiently high, it is likely that failure will occur, and a pipe could form 

as a result (Flemings et al., 2003; Trehu et al., 2004). The vertical depth limit of the 

stability field o f the hydrate restricts the height of pipe formation. The modem GHZ 

is 250-350 ms from the seabed, thereby restricting BSR sourced pipes to heights of 

< 350 m. Fifty six percent of pipes are less than 350 m tall but only < 5 pipes 

emanate from the modem BSR. The remainder are sourced from Post-Rift 2 or the 

base of Post-Rift 3.

The flow of fluids through a migration conduit is often associated with the loss of 

coherent acoustic character (Bemdt et al., 2003). Hence, focused fluid flow towards 

the palaeo seabed may seem to be in contradiction with the well imaged sag-like 

geometry of reflections. It is suggested that the concentration of gas and spacing of 

any fractures are insufficient to scatter seismic energy and prevent good imaging. It 

is acknowledge that imaging artefacts associated with the seismic wavefront and 

velocity anomalies are still present towards the base of the pipe.

This sequence of events does not capture the full set of observations however, 

because it fails to explain the systematic change of geometry observed in the internal 

reflections of most of the pipes, from the more abrupt sag at depth to more gently and 

subtly diminishing concave dish-like geometry in the upper portions. This change 

often coincides with an upwards widening of the pipe (e.g. Fig. 4.8). The upwards 

reduction in negative relief could be interpreted as a result of a collapse mechanism 

(Branney, 1995), but the combination of upwards widening, gentle curvature and 

upwards reduction in negative relief are difficult to reconcile with a purely collapse 

origin. Where clear evidence of pockmark craters can be seen within the pipe (e.g. 

Fig. 4.8b), these occur beneath this upper zone of gentle curving depressions, and 

this implies that the mechanism responsible for this upper region of pipe 

development occurred after the initial phase of pipe growth. This excludes the 

possibility of a simple single phase collapse mechanism for the entire pipe, since the 

collapse invoked to form the pipe initially can only have propagated up to the seabed 

at the position o f the palaeo-pockmark crater.
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Following the initial phase of pipe growth, the deposition of sediments and the burial 

of palaeo-pockmark craters beneath successive layers of sediment may be influenced 

by differential compaction. Sediment accumulation above the pipe may develop 

different degrees o f porosity or settle unevenly during pipe burial, a common process 

in differential compaction. Therefore differential compaction of sediments above the 

pipe as the pipe was buried could explain the sag like geometry in the upper zone of 

the pipe. Reflection thickness differences are observed between measurements taken 

within and outwith the pipes suggesting differential compaction as a viable 

mechanism to explain sag like geometry for individual reflections. The apparent sag 

in reflection is stacked between 1 and 22 reflections, with each reflection exhibiting a 

unique pipe width, sag relief and difference in reflection thickness between pipe 

shoulder and pipe centre. It is anticipated that differential compaction would 

produce a more uniform geometry that flattens out as the differences in sediment 

compaction between the pipe and background strata equilibrates through time. This 

is not uniquely observed. The importance of differential compaction should not be 

dismissed and is considered to be an ancillary mechanism in pipe propagation.

Instead of a collapse mechanism to explain the upper zones of the pipes, I prefer an 

episodic or continuous seepage mechanism that operates after the phase of initial 

formation, and exploits any permeability enhancement in the pipe from its initial 

phase of growth (Fig. 4.11). As sedimentation occurs, fluid flow upwards through the 

pipe could reduce net sediment accumulation in the region above the pipe, or could 

locally redistribute the deposited sediment into the water column, similar to the 

process often invoked for pockmark development and columnar fluidization 

structures (Fig. 4.11) (King and MacLean, 1970; Hovland and Judd, 1988; Davies, 

2003; Judd and Hovland, 2007).
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escaping fluids. F lu ids/sed im ent is expelled into the  w a te r  column and  la teral ly  onto  the seabed. 
Deposited sed im ents  form  a levee-like s t ru c tu re  on the seabed. Collapse of the o verbu rden  is 
induced by fluidization and  liquefaction th a t  initiates sed im ent rem oval a t  the base o f  the pipe, 
p roviding the vo lum e loss necessary for collapse; d) Following the phase  o f  initial formation, 
less vigorous, episodic o r  continuous seepage th rough  the pipe continues; e) as sedimentation 
occurs, fluid How th ro u g h  the pipe reduces net sedim ent accum ula t ion  in the region above the 
pipe a n d /o r  locally red is tr ibu tes  the deposited sedim ent into the w a te r  co lum n p roducing  bowl­
shaped  depressions above the pipe; 0  Fluid flow ceases and  the p ip e /p o ck m ark  is infilled with 
sediment.  A sim ila r  model has previously been suggested by Davies (2003) for  co lu m n ar  
fluidization s t ru c tu re s  from  the  Niger Delta.
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A similar mechanism of prolonged focused flow was previously invoked by 

Trincardi et al. (2004) to explain remarkably similar fluid escape structures from the 

Adriatic Sea, also characterised by gently curving dish-like reflection geometry 

stacked vertically with an upward widening of the diameter, and gentle reduction in 

negative relief. The final activity of the pipe is recorded by the sediment infill of the 

surface depression or pockmark present at surface resulting from the cumulative 

effects of all the seepage prior to that time, since it should also include any local 

volumetric adjustments (compactions, redistribution of mobilised sediments) of the 

pipe interior relating to the history of prolonged fluid flow.

Where seepage flow was more vigorous it is even possible that truly erosional 

pockmarks may form at the seabed, but the vertical resolution of our data was 

insufficient to identify unequivocal signs of erosional truncation within the upper 

portions of the pipes that would support this inference. Vertically stacked pockmarks 

have been interpreted for other areas of focused fluid flow (Mazzotti et al., 1987; 

Baraza and Ercilla, 1996; Qlifpi et al., 2003) so there is no reason to exclude this 

possibility here. Any episodic fluctuation in flux would likely lead to subtle 

expressions of differential negative relief, and these may perhaps be observed in the 

profiles presented in Fig. 4.9, although I caution that these minor fluctuations are 

close to the vertical resolution limit.

If this mechanistic interpretation of instantaneous pipe formation follow by long term 

seepage is correct, it means that I should be able to date the initial phase of pipe 

formation from observations of the geometry and vertical reduction in negative relief 

of the internal reflections and also bracket the time interval for subsequent leakage 

through the pipe conduit. It also implies that once formed, the pipes in the Namibe 

Basin have a tendency to act as long term conduits, as was also suspected for some 

pipes on the Norwegian margin (Hustoft et al., 2007). This mechanism also explains 

the zones of modest amplification of overburden reflections above the upper 

terminus of the pipe observed for many of the pipes (e.g. Figs. 4.8a,c), as an 

expression of probably low flux seepage of gas towards the seabed.

The specific processes occurring within the pipe during this second phase of growth 

will ultimately depend on the flux, the nature of the flow (single, multiphase), the
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pressure regime, and the physical properties of the deformed sediments comprising 

the pipe. It seems likely that gross lithology exerts a first order control on pipe 

geometry. The pipes described by Van Rensbergen et al (2007), for example, from 

the sand rich sequence of the Porcupine Basin look markedly different than those 

described here, with a generally convex upwards internal structure, as opposed to the 

concave downwards structure described here for probable clay-rich host strata, and 

this presumably relates to the different mobilisation mechanisms likely for sand rich 

versus clay rich sediments. Van Rensbergen et al. (2007) make a very convincing 

case for sand fluidization as a dominant process. In clay-rich pipes, the likeliest 

mechanism for continued focused flow is through dilational exploitation of pre­

existing fractures (from the initial phase of pipe formation) under renewed conditions 

of overpressure in the underlying fluid reservoir (Sibson, 1995). Longevity of 

activity therefore places constraints on the gross basin plumbing and hydrodynamic 

regime, since it implies a renewal of the driving overpressure conditions.

Comparisons can be drawn between the pipes described here and sedimentary 

diatremes. Sedimentary diatremes are narrow vertical structures formed by the 

fluidization and entrainment of nitrified sediment by flowing liquids or gases 

producing an explosive eruption at seabed and resultant blowout crater (Brown, 

1990; Loseth et al., 2001). The formation mechanism invoked for sedimentary 

diatremes is highly similar to the conceptual model described above although a 

considerable size difference exists between the width of the Namibian pipes and 

examples of sedimentary diatremes from offshore Nigeria (Loseth et al., 2001). The 

blowout pockmarks are of a comparable size. Hanken et al 1999 ((Hanken et al., 

1999) cited by Judd and Hovland 2007) proposed a formation mechanism for 

onshore sedimentary diatremes involving hydraulic fracture and vertical blowout. 

The authors propose that after each gas escape, the diatreme becomes blocked as 

clasts of the overlying rock fall into the newly created void and become embedded in 

the clay matrix. Subsequent gas pressure release requires the formation of a new 

diatreme and blowout crater. The pipes described here conform to diatremes-like 

collapse of the overburden, but I have shown that this collapse zone is possibly quite 

permeable, permitting a degree of fluid seepage. Chapter 5 will further examine the 

spatial distribution of overpressure build up and demonstrate how the blowout of a 

single pipe affects the formation of subsequent pipes.
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A final consideration is the question of a possible scaling relationship between height 

and width of the pipes (Fig. 4.5), and how this might be linked to the two stage 

genetic model being proposed here (Fig. 4.11). Is it possible, for example, that the 

height and width are partly controlled by the initial conditions of formation (e.g. flux, 

magnitude of overpressure, host stratigraphy), but then modified by gradual 

enlargement during the second phase of growth? It seems reasonable to infer that 

long-term and possibly episodic flux of pore fluids, gas and possibly entrained solids 

through the initial pipe structure, would lead to some degree o f widening. This might 

not necessarily require high velocity flow and abrasion of the pipe walls, but could 

be a combination of stopping and collapse of the walls, abrasion, liquefaction and 

brecciation by additional fracture propagation, similar to that described for many 

breccia pipes and sedimentary diatremes (McCallum, 1985). Alternatively, in much 

lower flux systems, with low seepage velocities, the widening of a pipe with time 

might be the result o f percolation invasion of the previously intact host stratigraphy, 

and of opening up o f new higher permeability routes around blockages resulting 

from cementation or collapse. The numerous examples of positive polarity amplitude 

anomalies observed in the pipes in this study area lend support to this notion, since 

they are most likely due to methanogenic carbonate precipitation in and around the 

pipe core (O'Brien, 2004). In summary, although speculative at this stage, in the 

absence o f examples calibrated by targeted scientific drilling, some form of widening 

of pipes could reasonably be expected to occur with longevity of activity as a 

conduit, and this would go some way to explaining the observed scaling relationship.

4.7 Summary

This study has focused primarily on describing the internal structure of pipes from a 

single, well defined area of focused fluid flow. Examples of narrow (<100m  

diameter) and wide pipes (> 100 m diameter) have been used to display the diversity 

and similarity between pipe seismic characteristics. Pipes can be reliably detected 

from recognition of systematic disruption and/or offset of the reflections within the 

pipe, augmented by observations of amplitude enhancement or dimming. Pipe bases
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are defined by a basal reflection that exhibits no disruption beneath the pipe, 

although occasionally velocity push-down or sag can be seen, and the upper terminus 

is defined by taking the first continuous reflection to cross above the pipe. Often this 

reflection exhibits a fill morphology.

A conceptual model for pipe formation is proposed. An increase in pressure induces 

reservoir cap rock failure by hydraulic fracturing. As fluids propagate upwards, 

fractures dilate and the flow self organises building pressure in the shallow 

subsurface. A hydraulic connection is established at the seabed reducing pressure 

and producing a violent burst of escaping fluid/sediment. Subsequent collapse of the 

overburden is induced by volume loss due to fluidization at the base of the pipe. 

After the phase of initial formation, less vigorous episodic or continuous seepage 

through the pipe continues reducing net sediment accumulation in the region above 

the pipe and/or locally redistributes the deposited sediment into the water column 

producing a bowl-shaped depression above the pipe. Upon cessation of fluid 

migration the pipe/pockmark is infilled with sediment.

The examples shown exhibit different degrees of clustering, and different ages of 

activity, which can potentially be dated using the interpretational framework 

established in this chapter. In the next chapter I concentrate more on explaining the 

distribution of the pipes in space and time.
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Chapter 5
This chapter has been published as Moss, J.L., and Cartwright, J., 2010, The spatial 

and temporal distribution of pipe formation, offshore Namibia: Marine and 

Petroleum Geology, v. 27, p. 1216-1234.

The work presented in this chapter is that of the lead author (JLM), editorial support 

was provided by the project supervisor (JAC) in accordance with a normal thesis 

chapter.
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5 TH E SPATIAL AND T E M PO R A L  

DISTRIBUTION O F PIPE  FORMATION, 

O F F S H O R E  NAMIBIA

5.1 Abstract

A group of nearly 400 pipe structures from the continental slope of northern Namibia 

are analysed for their spatial and temporal distribution. The pipes most likely formed 

as a result of highly focused fluid venting, and understanding the factors controlling 

their distribution in space and time is key to their genesis. I analysed their spatio- 

temporal distribution using an arbitrary chronostratigraphic timescale, from which it 

is concluded that the pipes did not form at the same time. Pipe formation is shown to 

be intermittent and persistent, with 2-29 pipes forming in each of the > 20 arbitrary 

time intervals that are considered to span the Neogene period. The spatial 

distribution of these pipes is clustered to dispersed. Spatial statistics conducted on 

the distribution o f pipe formation timings have shown that two statically significant 

groups of pipes exist within the population, (1) in the North and West and (2) in the 

South, with the former occurring prior to the latter. Locally, pipe formation is 

sporadic with clusters and outliers occurring during the same time period. A 

conceptual model is proposed whereby pipe formation in specific locations is the 

result of localised breaching of the seals for isolated pressure cells which are locally 

independent yet broadly controlled. An inferred basinal fluid source is thought to 

determine the broader patterns of pipe formation, and the focus of this fluid source 

shifts from North to South with time. At a local scale, multiple local factors interact 

producing a sporadic pipe formation distribution through a prolonged period of 

highly focused fluid migration. Once formed, the pipes continued to focus fluids 

intermittently, leading in some cases to later pockmark formation.
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5.2 Introduction

Focused fluid migration is an important process in sedimentary basins, and is 

manifested in a range of structures such as sand intrusions, mud volcanoes and fluid 

expulsion pipes (Bemdt, 2005; Cartwright et al., 2007). Pipes are vertical columnar 

zones of seismic disturbance, which are interpreted to be the expression of highly 

focused migration of fluids through low permeability sequences (Fig. 5.1) (Loseth et 

al., 2001). Fluid migration is focused into narrow, near-vertical zones where 

presumed increased permeability permits fluids to bypass the pore network. Pipes 

propagate from shallow fluid sources (< 1 km below the seabed) and terminate at 

seabed pockmarks, craters or vents. Pipes are considered to form by the catastrophic 

breaching o f top seals to shallow gas reservoirs in a highly dynamic process 

involving hydraulic fracture under elevated pore fluid pressures, and fluid driven 

erosion and collapse (Loseth et al., 2001; Bemdt et al., 2003; Ligtenberg, 2005; 

Cartwright et al., 2007; Hustoft et al., 2007; Judd and Hovland, 2007). Pipes have 

recently become a major research focus because they have implications for basin 

analysis, modelling overpressure development, seal failure and gas hydrate 

development.
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250m

Figure 5.1 Pipe examples. These vertical columnar zones of seismic disturbance are interpreted 
to be the expression of highly focused fluid migration, a) Wide pipe (Pipe P24). Time Point 1 
(TP1) is towards the base of the pipe and marked by steeply dipping, truncated reflections (D). 
The blue arrow also indicates stratal thickening interpreted as levee-like deposition of fluidized 
material from the base of the pipe. Shallow reflections towards the top of the pipe are more 
gently curving (S). Time Point 2 (TP2) is at the top of the pipe and marked by fill geometry.
This example of a wide pipe is transected by the hydrate layer (BSR). b) Narrow pipe (Pipe 
PI 16). Time Point 1 and Time Point 2 are marked by the same reflection. This reflection is at 
the top of the pipe and marked by fill geometry.

250ms

250m
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A large population of nearly 400 pipes from offshore northern Namibia was 

described in Chapter 4 (Fig. 4.2a), which extended the descriptive base for pipe 

structures. Based on a geometrical-acoustic description, I proposed a genetic model 

that built on previous studies in favouring a mechanism involving hydraulic 

fracturing and pressure release from a locally overpressured ‘cell.’ Other pipe 

genetic models were considered including dissolution of carbonate or evaporite units 

(Bertoni and Cartwright, 2005), fluid escape by slow seepage (Cartwright et al.,

2007) and rapid hydrothermal venting (Davies et al., 2002), but I was able to 

discount these possible alternatives based on the regional geological setting and 

knowledge o f the likely stratigraphy. No evaporites are known in northern Namibia, 

the seismic stratigraphy does not indicate the presence of thick carbonates and no 

igneous intrusions have been interpreted within the post-Karoo sedimentary sequence 

in this part o f the Namibian margin (Clemson et al., 1997; Comer et al., 2002), 

making dissolution and hydrothermal venting unlikely. I considered pipe formation 

utilising a purely seepage based genetic model unlikely for the majority of Namibe 

Basin pipes due to the observations of erosional truncation (e.g. defining the craters) 

but acknowledged that seepage may be involved.

The timing of pipe formation is generally quite poorly constrained in all previous 

descriptions o f pipes. One approach has been to constrain the maximum period of 

pipe formation from the accurate identification of pipe fluid sources. This 

methodology is only feasible where it is possible to determine when overpressure 

started to develop, and where precise delineation of the pipe base and its interaction 

with a fluid source can be established (Heggland, 1998; Gay et al., 2003; Duck and 

Herbert, 2006; Gay and Bemdt, 2007; Van Rensbergen et al., 2007; Pinet et al.,

2008). This method is limited by commonly occurring seismic artefacts obfuscating 

the diagnostic identification of the bases of pipes, but even when this interpretation 

can be made, this approach provides no constraints on the timing of subsequent pipe 

evolution.

The main aim of this chapter is to tackle the outstanding question of the dating of 

pipe formation and subsequent behaviour as fluid flow conduits. Firstly this chapter 

extends the initial description of Chapter 4 by placing pipe genesis within a more 

quantitative spatial and temporal framework, permitting the examination of how the
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distribution of pipes evolved through the basin’s history. Secondly, it introduces a 

more rigorous quantitative approach to the analysis of fluid escape pipes. It is 

acknowledged that the analysis of timing of pipe formation cannot be separated from 

the conceptual model for pipe formation. I note the uncertainties in this approach 

and attempt to overcome these by including alternative approaches to dating pipe 

activity. Irrespective of which specific approach is taken to dating pipes, the 

conclusion reached here is that pipe formation is intermittent yet persistent through 

time and space, and this should prompt further evaluation of the current group of 

genetic models.

5.3 Seismic data, interpretation and methodology

The data volume used for this study consists of a -900 km grid o f time migrated 3D 

seismic data from North Namibia acquired on behalf of NAMCOR in 2002 (Figs. 2.4 

and 3.1).

5.3.1 Dating formation from the interpretation of pipe 

morphology

Chapter 4 subdivided the population of pipes into narrow and wide pipes based on 

the quality of the imaging which results from their size, and this distinction is 

maintained here. Narrow pipes are imaged as systematic disruptions and/or offset of 

the reflections within the pipe, augmented by observations of amplitude enhancement 

or dimming (Fig. 5.1b). The pipes exhibit a greater or lesser degree of downward 

bending or deflection o f stratal reflections within the pipe relative to their position 

outwith the pipe. A sharp downward disruption of a reflection towards the upper part 

of the pipe is interpreted as the top of the pipe (Fig 5.1b). It is inferred that the top of 

a narrow pipe marks the stratigraphic datum at which focused fluid flow was initially 

expelled at the palaeo seabed. The reflection at which this morphology is observed is
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taken here to indicate the stratigraphic position of pipe formation or Time Point 1 

(TP1).

Wide pipes represent c. 45 % of the total population. Seismic imaging of wide pipes 

is enhanced by the larger size (100-500m diameter) of the feature permitting an 

assessment of their internal structure (Fig. 5.1a). Wide pipe internal structure is 

characterised by reflections that are bent or offset downwards relative to the host 

stratigraphy by c. 10 to c. 60 m, and the magnitude of this relief varies upwards 

within the pipes. A contrast in internal geometry is observed between the deeper and 

shallower parts of the pipes. In the deeper part of the pipes, the ‘sag’ is abrupt (max 

60 m relief) and sharply delimits the lateral margins. This maximum relief position 

is commonly marked by localised erosional truncation, suggestive of pockmark 

development. The depressions in the shallower portions of the pipe are more gently 

curving (c. 15 m relief) and the pipe margins are less abruptly defined (Fig. 5.1a). 

The reflections exhibit variation in pipe negative relief, ranging between a gradual 

upwards trend o f diminishing relief and abrupt alternations of greater or lesser relief 

over a vertical extent of 10-150 m. Amplitude anomalies of ‘soft’ and ‘hard’ 

impedance contrasts are distributed vertically within, above and below the pipes.

The position of maximum relief is interpreted as an expression of surface venting and 

pockmark formation, and is consequently categorised as the temporal point of initial 

pipe formation (Time Point 1 , TP1) (Fig. 5.1a). The upper limit of the pipe is taken 

at the first reflection that crosses the pipe with no measurable offset or deflection, 

although there can often be amplification of the background reflectivity above this 

position. The gentle sag-shaped reflections between TP1 and the top of the pipe are 

interpreted as having formed during a period after the initial pipe formation when 

continuous or episodic seepage resulted in reduced sediment accumulation above the 

pipe axis, and occasional pockmark formation at the seabed (see Chapter 4 

Discussion). The top of the wider pipes is interpreted as the datum when this 

seepage ceased to shape the seabed. This datum is used in the analysis of pipe 

distribution as Time Point 2 (TP2) (Fig. 5.1a).
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5.3.2 Seismic stratigraphic dating

In the absence o f direct chronostratigraphic calibration from boreholes, I established 

a relative chronostratigraphy by correlating 80 seismic reflections through an interval 

(TWT) that would include the positions of TP1 and TP2 for all 366 pipes in the study 

area. At least 27 reflections were correlated in their entirety throughout the survey 

area. I numbered these reflections consecutively from the seabed to the base of Post 

Rift 3 and for each pipe interpreted the reflection which correlated closest to the 

position of TP1 and TP2. For the narrow pipes, only a single datum (TP1) could be 

correlated. Where individual reflections provided only a local constraint on relative 

timing, groups o f reflections were chosen to provide full areal coverage, albeit at a 

lower temporal resolution (Fig. 5.2).

5.3.3 Errors and Limitations

No absolute dates are given for pipe formation because I lack direct biostratigraphic 

calibration. Errors in the relative dating are related to the correlation of the individual 

seismic reflections to the interpretation of TP1 and TP2 for each pipe. Individual 

dating of each pipe is therefore limited by the subjectivity o f interpretation of each 

Time Point, combined with any correlation error attached to any given seismic 

reflection. Because the data used is a 3D seismic survey, and there are no major 

obstacles to lateral correlation such as major faults, I can estimate the correlation 

error as 1 Omilliseconds (c. 10 m) over the area of the survey. It is important to note 

that the relative time scale is in reflection number, and is not likely to correlate 

linearly with geological time. Based on average sedimentation rates from nearby 

ODP boreholes during the Pleistocene, the periods defined by successive reflections 

represent c. 200,000 yrs.

Spatial statistics are highly susceptible to the precision of the coordinates in the point 

dataset and the mathematical boundary area imposed on the spatial analysis. The 

calculation of nearest neighbour statistic utilises coordinates which do not take into
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account pipe diameter, therefore pipes which have a minimum distance < 150 m 

from their nearest neighbour are in actual fact conjoined pipes. This applies to < 5 

pipes. In order to compare Moran’s I statistics between time intervals the 

mathematical boundary conditions on the search area had to remain fixed, and was 

therefore extended beyond the immediate area of the pipes in the calculation to cover 

the entire pipe coverage. Extending the boundary conditions will produce a tendency 

towards clustering as the proportion of pipes to free space is extended.
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Pipe Frequency Histogram

250ms

Figure 5.2 Arbitrary chronostratigraphic dating methodology. Each reflection and reflection 
package was consecutively numbered from seabed to the base of Post Rift 3. Example 
histogram does not display collected data. Only negative polarity reflections are labelled on the 
histogram. Reflection packages are not labelled. Pipe example is wide pipe P74.
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5.4 Results

5.4.1 Gross Distribution of the Pipe Population

The population of 366 pipes are irregularly distributed in the basin across a range of 

present day bathymetry from -600 m to -1800 m (Fig. 4.2a). The pipes have an 

average density of 2 pipes per km and occur in a broad north-south zone in the basin 

axis (Figs. 4.2a and 5.3). The largest pipes (height > 800 m and diameter > 200 m) 

are in the south with smaller pipes located towards the centre and north of the study 

area (Figs. 4.2a and 5.3). The large pipes in the south are spatially coincident with 

buried channels developed in the basal Post Rift 3 : upper Post Rift 2 sequence. This 

may imply that fluids were focused via more permeable units within the channel- 

levee complex (Bunz et al., 2003; Gay et al., 2003; Gay et al., 2006a; Gay et al., 

2006b; Ho viand and Svensen, 2006). A zone of polygonal faulting covers the basal 

third (300-400 m) of Post Rift 3 and top section of Post Rift 2 (c. 100 m - 400 m). In 

contrast with relationships identified elsewhere (Bemdt et al., 2003; Gay et al., 

2006b) there is no causal link between polygonal faulting and pipe formation or 

location.

On a gross scale, the total pipe population is distributed in a horseshoe pattern. The 

geographical distribution of the pipes does not show any quantifiable correlation with 

the structural or thickness maps of the main stratigraphic intervals, for example i.e. 

pipe diameter vs unit thickness* (Fig. 5.3). The crude horseshoe pattern loosely 

correlates with the thickest development of the Post Rift 2 succession (Fig. 5.3b) 

where it infills the flanking depressions to the large lensoid constructional mound 

within the Post Rift 1 sequence (Fig. 5.3a). The majority o f the pipes are arrayed 

around the margins of this mound suggesting that the source of the fluid was neither 

within the mound or focused upwards by it, since there are no pipes above the 

topographic culmination of this body.

* Graphs shown in Appendix A3
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There is a crude correlation between the pipe distribution and the thickest 

development o f the Syn Rift and Transitional sequences above the basement half 

graben (Fig. 5.3c,d). The largest pipes are observed above the thickest development 

of the Syn Rift, and this spatial pattern is also consistent with the location of the BSR 

in Post Rift 3 (Fig. 4.2). If the pipes are sourced from this depth, then it is 

conceivable that the pipes are sourced direct from a probable hydrocarbon kitchen 

(given the analogous depths to known kitchens in the Orange Basin, South Namibia) 

and that these pipes are spanning over 4 km of sealing sequence. If shown to be 

correct, these pipes are the first reported pipes sourced from a kitchen and to have 

column heights in excess of 1 km and are therefore unique within the published 

literature.
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600ms

4500ms

P o st  Rift 2  TW T th ic k n e ss

S vn  Rift TW T th ic k n e ssS vn  Rift top ograp h y

1600ms2400ms

6000ms

Figure 5.3 Spatial distribution of pipes in relation to underlying geology, a) Topographic surface of Post Rift 1. b) Thickness (TWT) map of Post Rift 2. c) Topographic surface of the Syn-Rift. d) Thickness (TWT) map of the Syn- 
Rift. All contours refer to the Post Rift 1 topographic surface and are spaced at 100m intervals. Pipe locations are represented by the white points. Point size is directly proportional to maximum pipe diameter.
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Similarly, there are no obvious correlations between the pipe distribution and the 

following features/structures; a) a prominent seabed failure scar*, b) 6 small circular 

seabed depressions, c) there is no direct relationship between the occurrence of BSR 

(Bottom Simulating Reflection) and the large number of pipes (< 20 %) which 

occupy the same spatial area (Fig. 4.2a). A minority of pipes (< 5) have been 

observed to emanate from the BSR (Fig. 5.4). d) with the exception of localised 

brightening of reflections and the high amplitude reflections trapped beneath the 

BSR (Fig. 5.4a), pipes are rarely observed to emanate from amplitude anomalies in 

Post Rift 3 (< 5 % of pipes). The paucity of amplitude anomalies associated with the 

presence of gas in Post Rift 3 is suggestive of a fairly efficient sealing unit overlying 

a fluid source which is deeper than Post Rift 3.

Map shown in Appendix A2
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Figure 5.4 Variation in pipe base setting, a) Narrow pipe P396 bleeding from a BSR (Bottom 
Simulating Reflector), b) Narrow pipe P231 bleeding from the high amplitude and polygonally 
faulted basal section of Post Rift 3, passing through a high amplitude body (HA) trapped by a 
polygonal fault and terminating in a shallow gas pocket (SGP) at the level of the current BSR. 
The shallow gas pocket appears to be sourced from the pipe, c) Narrow pipe P209 bleeding 
from an un-known position mid Post Rift 3. d) Wide pipe P20 bleeding from a palaeochannel 
levee (PC). The edges of neighbouring pipes are imaged on the far left (P64) and right (P9) of 
this figure, e) Conjoined pipes P201 and P202, and pipe P205. P201 has its base in Post Rift 2 
compared with P202 which has its base in Post Rift 3. Both pipes terminate at different 
stratigraphic depths in Post Rift 3. P205 has its base in Post Rift 3. PR3, mega unit boundary 
between Post Rift 2 and Post Rift 3.
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The Namibe Basin pipes are stratigraphically restricted to the Post Rift 2 and 3 

sequences (Fig. 3.1). No pipes have been observed in Post Rift 1 or older units. The 

identification of the upper limits to the pipes can be made with a high degree of 

precision. The vast majority (> 95 %) of the pipes terminate upwards at various 

levels within the Post Rift 3 sequence. The specific distribution of the upper zones of 

the pipes is considered more fully in the section below on timing of pipe formation.

The stratigraphic distribution of pipe bases is difficult to determine precisely. A 

large proportion of the population emanate from the very low amplitude seismic 

facies of Post Rift 2. Seismic interpretation within this unit i.s limited to the 

uppermost 100-400 m. Below this level seismic artefacts, background noise, 

amplitude anomalies and poor seismic continuity mask the true basal position of 

pipes. Continuity of stratal reflections is sufficiently high in the southern part of the 

study area to trace the majority of pipes 400 m into this unit. Coupled with 

observations of a small number of pipes that vertically transect channel fill units 

without any obvious change in their geometry or position, it is feasible that the 

majority of pipes in the north and west which become untraceable at the Post Rift 3 : 

Post Rift 2 unit boundary are indeed sourced from below this level.

In summary, it remains possible that the pipes cut deeper than I generally recognise, 

but no firm evidence can be found to support this at present. OveraLl, 40 % of pipes 

can be traced confidently into Post Rift 2, a further 40 % of pipes have their base 

within the high amplitude, highly faulted lower interval (c. 300-500 m thick) of Post 

Rift 3 and 20 % of pipes can be traced to channel levees or gas accumulations that 

are trapped at the base of the gas hydrate stability zone (Fig. 5.4).

5.4.2 Timing of pipe formation

The timing of pipe formation within the Namibe Basin is established using an 

arbitrary chronostratigraphic dating technique. As noted in the methodology (Chapter 

5), different methods are required for wide and narrow pipes respectively, due to 

differences in the imaging of pipe interiors. Consequently, three age distribution
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frequency histograms are presented: (1) time of formation taken as TP1 for all pipes; 

(2) time of cessation of pipe activity taken at TP2 for all pipes (and for narrow pipes 

this is assumed to coincide with TP1); (3) time of formation taken as TP1 for wide 

pipes (narrow pipes are excluded). The time scale used is relative and applies only to 

the study area.

Pipe formation frequency during the Neogene is presented in Figure 5.5 and 5.6. 

Figure 5.5 has been re-graphed in Fig 5.6 to express the difference in the number of 

reflections between TP1 and TP2 as box plots. This will be discussed in more detail 

below and mapped in Figure 5.7. All three histograms (Fig. 5.5) exhibit a longevity 

of pipe formation which stretches throughout the temporal period captured by Post 

Rift 3 (Fig. 5.5). In scenario 1 (TP1 for wide and narrow pipes), pipe formation 

spans the period from R71 to RIO (Fig. 5.5a). There are only two intervals (R9- RO 

and R18-19) with no pipe formation. This younger interval of inactivity probably 

represents the larger part of the Pleistocene, and possibly some of the Pliocene, based 

on extrapolations from nearby ODP drill sites. There are a number of distinct peaks 

in the histogram however some may be artificial because they represent groups of 

reflections rather than individual reflections (e.g. R46-60). Although there are some 

intervals with generally lower numbers of pipes forming than in others (e.g. R69-R71 

and R22-R23), the distribution can not be described as episodic. Instead, I propose 

pipe formation persisted through the gross time interval, with some periods of 

increased occurrence above the background level of c. 5 or 6 pipes per reflection 

increment.
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Time Point 1, wide pipes only, frequency histogram. Reflection packages are labelled.
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Figure 5.5 The timing of pipe formation, a) Time Point 1 frequency histogram, b) Time Point 2 frequency histogram.
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Figure 5.6 Difference in reflection between TP1 and TP2. Box plots span the time period 
represented by the difference in reflection nu m b e r  between the time o f  pipe formation (TP1) 
and the time when seepage ceased (TP2). Horizontal lines rep resen t those n a r ro w  pipes where 
only TP1 values could be m easured. Pipes were n u m b e r  from South to N orth  in the dataset; 
therefore  the increase in pipe nam e broadly corresponds to a south to nor th  shift in pipe 
location.

127



Chapter 5______________________________Spatial and Temporal Distribution. Namibia

Scenario 2 (TP2 for wide and narrow pipe) spans a greater range of reflections from 

R71 to R2, with two intervals where no pipes are recorded as being active (R3 to R5 

and R29) (Fig. 5.5b). This histogram shows a similar gross temporal distribution to 

that presented for TP1 (scenario 1)*. There is evidence for persistent activity 

throughout the Neogene and considerable fluctuation in the numbers of pipes 

forming per reflection increment.

Scenario 3 (TP1 for wide pipes) spans the smallest range of reflections from R24 to 

R66 (Fig. 5.5c)*. By excluding the smallest pipes whose time of formation is almost 

impossible to determine with confidence, and concentrating on the largest, most 

reliably imaged pipes, this histogram perhaps provides the most realistic 

representation of the true duration of pipe formation in the basin. Using the 

extrapolated average sedimentation rates from nearby ODP sites, this span of 

reflections may represent 7-8 Ma. Even if this was in error by a factor of two, this 

still suggests that pipes formed on a multi-million year time scale, with no strong 

evidence of episodicity, and no prolonged periods where there was a total absence of 

pipe formation.

The striking conclusion derived from these three contrasting approaches to ‘dating’ 

pipe formation or activity, is that the phenomenon of pipe growth was persistent 

through a long period of time, and was not episodic at the time scale captured by the 

seismic resolution of stratal reflections. Although the reflection-based chronology is 

unlikely to approximate a linear time scale, the fact that the three contrasting 

methodologies all convey a similar behaviour strengthens the basic conclusion of 

persistent activity of pipe growth.

Spatial distribution maps shown in Appendix A3
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5.4.3 Temporal distribution

5.4.3.1 Correlation with measurable geological parameters

Taking TP1 (scenario 1, Fig 5.5a) as a holistic representation of pipe formation 

within the Namibe Basin, pipe formation was quantitatively assessed against various 

geological parameters. I could find no systematic correlation between the timing of 

pipe formation and the depth (m), slope (°), aspect (°) and thickness (m) of the Post 

Rift 2 and the Syn-Rift sequences*. This supports the earlier qualitative conclusion 

that there is no obvious visual correlation between any of the mapped geological 

features and the pipe distribution.

Pipe bases are observed at a range of depths and stratigraphic intervals*. There is no 

systematic relationship between the timing of pipe formation (TP1) and a) the depth 

of the pipe base or b) the reflection value assigned to the pipe base. This suggests 

that pipe base depth can not be used as a proxy for determining when pipe formation 

occurred, and implies that pipes with common basal horizons do not necessarily form 

at the same time.

5.4.3.2 Incremental evolution of the population

Spatial statistics conducted on the total population of 366 pipes have shown that the 

pipes are statistically significantly clustered within the study area at the 95 % 

significance level (Rn 0.77 and a z score of -8.38, equations 1, 2, 3). This result is 

too coarse to provide insight into what factors might have influenced the clustering 

of pipes. Higher resolution analysis requires a subdivision of the total pipe 

population into subpopulations. This subdivision is based on distinctive frequency 

peaks within the pipe formation timing histogram (Fig 5.5a). These sub-populations 

can be regarded as early (R71 to R46), middle (R44-46 to R30), and late (R29 to 

RIO) ‘phases’ of formation. Mapped distributions of the three ‘phases’ indicate a 

spatial trend of older pipes in the north and west, and younger pipes in the south of

* Graphs shown in Appendix A3
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the study area. The youngest forming pipes (R29 to RIO) are distributed in a 

horseshoe pattern throughout the study area, similar to the general spatial pattern for 

the total pipe population (Fig. 5.6a).
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Figure 5.7 Spatial distribution of Time Point 1 values and statistical significance, a) Spatial distribution of Time Point 1 (TP1) values. Distribution shows a general trend of older forming pipes (R46 to R71) in the North and West, and 
younger forming pipes in the south (R30 to R44-46). b) Moran’s I (Ii) cluster and outlier analysis. Spatial statistics z values are shown. A positive value for z indicates that the pipe is surrounded by pipes with similar TP1 values. Such a 
pipe is part of a cluster. A negative value for z indicates that the pipe is surrounded by pipes with dissimilar TP1 values. Such a pipe is an outlier. The null hypothesis that there is no pattern to pipe formation timing (TP1) is rejected at 
the 95% level for all pipes with a z score <-2 or >2 i.e. dark blue or red. c) Number of reflections separating TP1 and TP2.
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The statistical significance of pipe formation spatial distribution was assessed using 

Moran’s I cluster and outlier analysis (equations 2, 3, 4 Chapter 2) (Fig. 5.7b). 

Moran’s I determines whether pipes of a given TP1 value are preferentially 

surrounded by pipes of either similar or dissimilar values. Pipes in the south of the 

study area have statistically similar TP1 values to those pipes around them (Ii z score 

> 2). The pipes in the north and west are a combination of statistically significant 

clusters and outliers (Ii z score > 2 and < 2). Outliers in this context are pipes that 

have a statistically significant different TP1 value to their neighbours. The pipes in 

the southern-central band are not statistically significant (Ii z score 1 to -1). The 

Moran’s I spatial statistic therefore supports the notion of two broad zones of 

successive pipe formation, initially in the north and west, then later in the south. The 

spatial distribution of TP1 values is statistically significant, and the null hypothesis 

that there is absolutely no pattern to the spatial distribution of TP1 values is rejected 

at the 95 % level (Fig. 5.7b).

The difference in the number of reflections between TP1 and TP2 is recorded in 

Figure 5.7c and 5.6. Pipes with a single reflection difference i.e. narrow pipes where 

it was not possible to distinguish between TP1 and TP2 reflection morphologies are 

scattered throughout the study area but compose the majority of the pipes in the north 

and west. Pipes with 2-26 reflections are mainly found in the south. The 

interpretation o f this “lag period” is open to debate however the spatial pattern of 

variation is consistent with the patterns described above (Fig. 5.7).

5.4.3.3 Individual time increment analysis

Incremental evolution has revealed a general pattern of younging of pipe formation 

towards the south of the study area. However, the time span represented in the 

tripartite grouping (Fig 5.7a) is still too crude to provide insight into what factors 

might have influenced the spatio-temporal distribution of pipe formation. The spatial 

distribution of pipes forming at individual reflections can also be displayed (Fig 

5.5a), and allows a narrower time range for pipe formation to be analysed (Figs. 5.8 

and 5.9). Furthermore, it permits the rapid comparison of pipe distributions in 

preceding and succeeding intervals (Figs. 5.9 and 5.11).

132



Chapter 5 Spatial and Temporal Distribution. Namibia

<o o a> o>

Figure 5.8 Spatial distribution of individual time periods, a) Clustered pipes forming during time period R66. b) Clustered pipes forming during time period R26-28. c) Clustered pipes with outliers forming during time period R34- 
40 (timing histogram peak), d) Clustered pipes with outliers forming during time period R33 (timing histogram peak), e) Dispersed pipes forming during time period R32. f) Dispersed pipes forming during time period R40. g) 
Linear band of pipes with outliers forming during time period R46-60 (timing histogram peak), h) Linear band of pipes with outliers forming during time period R42.
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Figure 5.9 Sequential pipe formation distribution and Nearest Neighbour (Rn) spatial statistical values, a) Pipe formation Stage 9. b) Pipe formation Stage 10. c) Pipe formation Stage 11. d) Pipe formation Stage 12. e) Pipe 
formation Stage 13. f) Pipe formation Stage 14. g) Pipe formation Stage 15. h) Pipe formation Stage 16. Sequential pipe distributions show new forming pipes occupy space between existing pipes in addition to expanding the total 
pipe coverage by colonising outlying areas.
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Figure 5.10 N eares t  ne ighbour  d istance box plots. Box plots d isplay the  range  of distances 
between an ind iv idual pipe and  its nearest neighbour form ing d u r in g  a single time period. The 
lower and  u p p e r  lines o f  the ’’box" are  the 25th and  75th percentiles. T he  d istance between the 
top and  bottom  of  the  box is the in te r-quarti le  range (IQR). The line in the middle of the box is 
the sam ple  median. T h e  m a jo r i ty  of reflections display a skewness in the  range  of nearest 
ne ighbour  d is tances i.e. the  median is not centred  in the box. T he  w hiskers  show the extent of 
the neares t  ne ighbour  distances (unless there a re  outliers). An outl ier  (cross) is a value tha t  is 
more than  1.5 tim es the  IQ R  aw ay from the top o r  bottom of the box. Reflections containing 
only 2 pipes a re  rep resen ted  by a line.

135



Chapter 5 Spatial and Temporal Distribution. Namibia

Figure 5.11 Voronoi polygons. Voronoi polygons were constructed for each pipe formation stage, a) In each individual stage, a Voronoi polygon contains a single pipe, b) Consecutively overlaying pipes formed in the latest stage (e.g. 
Stage 21) with Voronoi polygons from the preceding stage (e.g. Stage 20) displays a spatial pattern of available space for pipe formation with consideration of existing pipes, b), c), d) display a pattern of pipe formation within existing 
Voronoi polygons (solid circle) and at maximum distance from existing surrounding pipes (dashed circle), e) Stage 37, Voronoi polygons for the current total population of pipes. Boundary conditions have produced anomalously large 
edge polygons.
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The individual increment plots (Fig. 5.8) show that a maximum of 29 pipes (R34-40) 

and a minimum of 2 (RIO-18, R22, R23 and R46) formed during a single measurable 

time interval. For each time interval, the spatial distribution o f pipes can be roughly 

categorised into clustered, clustered with outliers, dispersed, linear and linear band 

with outliers (Fig. 5.8). The low frequencies of pipe formation per time interval 

prevent robust statistical sampling, however Rn values have been calculated for those 

intervals with the largest frequency values (see Fig. 5.8). Some o f these demonstrate 

clustering behaviour and are statistically significant at the 99 % level (intervals R34- 

40 (Rn 0.73, z -2.74), R33 (Rn 0.67, z -3.02) and R46-60 (Rn 0.55, z -4.50)) whilst 

others (e.g. R40 (Rn 1.10, z 0.83)) show no statistical clustering and are randomly 

distributed. The most frequently observed spatial distribution of pipes per increment 

is either dispersed or clustered with outliers. Figure 5.8 supports the qualitative 

assessment that pipes forming during the same time interval do not share a common 

pipe base datum.

The nearest neighbour distances of newly forming pipes are assessed for each 

individual time interval (Fig. 5.10). Minimum stand-off distances or nearest 

neighbour values range between 150-300 m. O f the 4 examples within the 

population, only a single conjoined pipe i.e. 2 pipes sharing a common pipe wall, is 

observed to form during the same time interval. This conjoined pipe is excluded 

from the analysis. The average distance between newly forming pipes are often 

lower than the median value, but maximum values are far in excess of the 75th 

percentile for individual time increments (Fig. 5.10). In summary, for a given time 

increment, the majority of newly forming pipes do not form in close proximity with 

one another.

The spatial positioning of newly forming pipes relative to existing pipes is expressed 

in Figure 5.9. The cumulative plots comprise a series of 37 incremental growth 

stages (younging from stage 1 to stage 37), o f which, only a selection of these are 

shown to demonstrate some of the key observations. At stage 9, previously formed 

pipes (R63, R64, R64-66, R66, R66-68, R68, R69, R70 and R71) were scattered 

throughout the north and west of the study area (Fig. 5.9a). Newly forming pipes in 

stage 10 have formed within this area, but also formed as outliers in the south of the 

study area (Fig. 5.9b). Stage 10 (new pipe formation population at R62) is the first
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stage to display pipe formation associated with the palaeochannels. Stages 11 and 12 

continue the pattern of infill and spatial expansion, mainly in the northwest of the 

study area. With the exception of stage 15, pipe formation stages 13, 14 and 16 are 

also associated with the palaeochannels. Stages 13 to 16 represent the start of a 

considerable extension of pipe formation into the southern part of the study area 

when compared with previous pipe formation patterns (Fig. 5.9). In general, the 

pipes display modes of infill and expansion of the population as it accumulates pipes 

through time. Newly formed pipes occupy areas in between existing pipes and also 

expand the areal extent of the total population by penetrating the succession in 

outlying areas. I also observe that newly forming pipes rarely form in close 

proximity to pipes which formed in the immediately preceding stage, but are nearest 

neighbours with pipes which formed several stages previously.

Nearest neighbour (Rn) values were calculated using equation (1) (see Chapter 2) for 

the spatial distribution of pipes from Stage 9 onwards (thereby ensuring a statistically 

significant population size). Calculated Rn values range between 0.67 and 0.75 (Fig. 

5.9). Since Rn values closer to 0 are equated to true clustering, and those closer to 1 

as a truly random distribution, this observed range can be interpreted as a relatively 

weak tendency towards clustering. This statistic was subjected to a large search area 

to encompass the dispersed pipe distributions (see limitations in methods Chapter 5), 

and it is likely that more narrowly defined search area would yield Rn values closer 

to 1. These spatial statistics support the notion that sequential pipe formation is 

spatially sporadic. Additional pipes are not producing clusters within the population 

or creating a more random distribution of pipes.

Finally, Voronoi polygons were constructed for each incremental stage. Voronoi 

polygons are areas around each pipe with the unique trait that the distance inside the 

polygon is closer to that pipe than the pipe in the neighbouring polygon (Fig. 5.1 la) 

(Dirichlet, 1850; Voronoi, 1907; Okabe et al., 2000). Voronoi polygon analysis has 

the ability to establish whether pipes are preferentially forming at the maximum 

possible distances from any pre-existing pipes, with the implication that there is a 

spatial ordering to their distribution. If this was true, then newly formed pipes are 

expected to be positioned on the Voronoi polygon boundaries.
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It is evident from the sequential distribution of Voronoi polygons that there is no 

spatial control on the location of newly forming pipes. New pipes can be seen to 

have formed equidistant from pre-existing pipes but also within Voronoi polygons 

(Fig. 5.1 lb, c, d). There is no statistically significant relationship between the size of 

the final stage Voronoi polygons (all 366 pipes, Fig. 13e) and TP1, pipe height or 

diameter. The artificial boundaries on the perimeter polygons produce anomalously 

large polygons but it is evident that each individual pipe has a unique Voronoi 

polygon size and the polygons are not arranged in a uniform pattern.

5.5 Discussion

5.5.1 Pipe Genetic Model

Our preferred spatio-temporal framework for Namibian pipe formation is that of 

intermittent and persistent formation through time with a pipe distribution that can be 

generalised on two scales. At the larger scale the distribution exhibits two broad 

zones of pipe formation (TP1), an older zone in the North and West and a younger 

southern zone (Fig. 5.7). On a more local scale pipe formation is sporadic, forming 

as both clusters and outliers at the same time.

These key observations and interpretations raise important questions regarding pipe 

genesis. For example, what types of geological conditions trigger pipe formation, 

such that it persists for perhaps 5-10 M yrs? Why is there no obvious episodicity over 

time periods longer than that resolved by the sequential seismic reflections? Why is 

there a general shift in pipe formation from north and west to the south? Finally, 

how do existing models for pipe formation best equate to these observations? This 

chapter goes some way towards tackling these sorts of questions however it is 

evident that further research in this area is required to fully understand the 

relationship between geological triggers, spatio-temporal distribution and pipe 

formation.
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Previous models for pipe formation share a common theme: namely, that they result 

from a cycle of pressure build-up and release in a shallow source region. It is 

considered that a pressure anomaly in a source region will lead to overpressure 

development and subsequent hydraulic fracturing in the overburden once pore 

pressures exceed the failure condition (Cartwright et al., 2007). Fracture dilation and 

vertical propagation towards the seabed follows seal breach as flow self organises. A 

hydraulic connection is established at the seabed, reducing pressure and resulting in a 

violent burst of escaping fluids forming a pockmark or crater (Bemdt et al., 2003; 

Loseth et al., 2003; Ligtenberg, 2005; Hustoft et al., 2007; Judd and Hovland, 2007). 

The following sections of this discussion are based on the adoption of this genetic 

mechanism. As mentioned in the Introduction (Chapter 5), other models of pipe 

formation have been proposed in areas of evaporite or carbonate dissolution, or in 

areas of hydrothermal activity, but neither of these is considered plausible in the 

Namibe Basin in the past 10 M yrs.

How then, do we specifically relate the geometrical observations of pipes in the 

study area to the question of timing and of genesis? The majority of previous models 

explaining pipes as due to pressure release and fluid escape invoke a single episode 

of highly focused fluid escape. Cartwright et al. (2007) referred to this type of pipe as 

a ‘blow out’ pipe to convey this model of an initial high flux release of fluid, driven 

by high overpressure. If vented to the seabed, such an episode of fluid expulsion can 

lead to pockmark formation with often significant erosional truncation of sediments 

close to the seafloor. This is the most likely scenario for TP1 in this genetic model. 

Time Point 2 (TP2) is defined as a position of infill of relief of the depressed 

reflections located at the top of the pipe. What then, is the relationship between TP1 

and TP2? This interval is clearly subject to seismic interpretational uncertainty (Fig. 

5.7c), but it is also open to at least two alternative genetic explanations. It clearly 

represents a period post-dating initial pockmark formation and pre-dating the final 

stage of fill, but how can the vertically stacked gently concave upwards reflection 

geometry be explained? Two end member interpretations are tentatively suggested:

1. The reflections between TP1 and TP2 represent evidence for vertical seepage 

following pipe formation, including the possibility of vertically stacked 

pockmarks.
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2. The deposition of dominantly hemipelagic or pelagic units following initial pipe 

formation results in a persistent drape of the original pockmark morphology 

until the depression in the palaeo-seabed is topographically healed.

Chapter 4 presented evidence in the form of localised columnar amplitude anomalies 

and measured variations in the concave reflection geometry between TP1 and TP2 to 

suggest possible post-formation fluid seepage. However, this seepage would have to 

be surprisingly uniform and long lived to give rise to the observed reflection 

geometries. As an example, in Pipe 9, there are 22 concave upwards reflections 

(c. 250 m) between TP1 and TP2, and at an average sedimentation rate of 40 m/My, 

seepage would need to remain active (either episodically or persistently) for over 

6 My. Even if the maintenance of this concave upward reflection geometry was 

through low frequency, low magnitude, seepage promoting the winnowing of fines 

from the palaeo-seabed depression, the scale of a system required to maintain this 

level of activity is unclear.

Conversely, persistent drape could produce the resultant geometry without requiring 

any perpetuation of the focusing of fluid escape up the pipe. However, this 

explanation fails to explain the distinct infilling at or close to TP2 for many pipes, 

and the presence of amplitude anomalies both within (between TP1 and TP2) and 

above the pipe. The significance of this upper section of the Namibian pipes thus 

remains unclear and these two explanations must therefore remain speculative. 

Chapter 6 further develops the arguments presented here, utilising a higher resolution 

dataset from the Nile Deep Sea Fan, to illuminate the zone above TP1.

5.5.2 Fluid Sources

The large number of pipes within a relatively small area offshore Namibia advocates 

that a large potential for fluid generation existed within this part of the basin. This is 

perhaps not surprising when it is considered that the Kunene River did not build a 

delta during the Neogene, but instead fed its sediment load directly onto the mid- 

lower slope of the Namibe Basin (Aizawa et al., 2000). The largely low amplitude,
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but partially channelised acoustic character of (upper) Post Rift 2 is strongly 

suggestive of a mid-dominated depositional system, and its progradational- 

aggradational geometry accords well with this concept of a diverted sediment load 

from the Kunene (Goudie, 2005). The rapid deposition of organic rich fine grained 

sediments of the ‘displaced’ delta would have been ideal for generation of excess 

pore pressure.

The Namibian pipe population described here provide much indirect evidence that 

their formation is linked to gas migration. Amplitude anomalies indicative of shallow 

free gas are common throughout the area (Figs. 5.1 and 5.4), and amplitude and 

velocity anomalies are abundant within and adjacent to the majority of the pipes 

(Figs. 5.1 and 5.4). It is therefore possible that in addition to disequilibrium 

compaction arising from the Kunene depositional system, gas generation may also 

play a role in pressure development (Osborne and Swarbrick, 1997). It is also 

possible that pressures were only built up locally through accumulation of gas into 

columns of sufficient height to exert a significant buoyancy pressure (Trehu et al., 

2004).

I was unable to determine the source of the fluids involved in pipe formation in the 

study area. The majority of the pipes transect the Post Rift 3 : Post Rift 2 boundary 

suggesting that a substantial fluid source exists within Post Rift 2 or deeper. The 

deepest pipes can be traced < 1500 m below seabed but deeper detection is prevented 

by the low amplitude, discontinuous and chaotic nature of Post Rift 2. At these 

minimum depths, pressures and temperatures, any gas in the system could be either 

biogenic or thermogenic methane.

The upper temperature limit for biogenic gas generation is debated (Whiticar, 1999; 

Holm and Charlou, 2001; Sleep et al., 2004; Kieft et al., 2005; Lollar et al., 2006; 

Roussel et al., 2008), but is commonly taken as c. 70 °C. Using present day 

temperature gradient data from the Walvis Basin, this would equate to a sub seabed 

depth of c. 2000 m. This would restrict biogenic methane generation to Post Rift 3 

and the upper portion of Post Rift 2. Biogenic gas generation is common in the slope 

sediments along the west African margin (Cunningham and Shannon, 1997), and the 

organic content of the slope sediments of the Namibe Basin is likely to be reasonably
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high due to the sourcing of this sediment wedge from the Kunene River with its large 

equatorial catchment (Fig. 2.4). Potentially enriched source regions for biogenic gas 

generation include the slope channel fills at the top of Post Rift 2 and gas hydrates 

within Post Rift 3.

Thermogenic gas has been encountered in a number of exploration boreholes further 

south in Namibia (Cartwright et al., 2008), and basin modelling studies indicate that 

Cretaceous source rocks in the Namibe Basin could certainly be in the gas generative 

window (Holtar and Forsberg, 2000). Direct (thermogenic) hydrocarbon indicators 

are observed in the Transitional / Post Rift 1 interval and the likely source interval 

for thermogenically generated hydrocarbons (Syn Rift Sequence). The onset of 

overpressure generation is generally thought to start c. 3000-4000 m below seabed in 

most basins (Swarbrick and Osborne, 1996). This would place the overpressure 

generation window or “transition zone” (Swarbrick and Osborne, 1996) below the 

Post Rift 1 mound and firmly within the Syn-Rift and Transitional intervals. Both 

suggestions must remain highly speculative because of the poor seismic resolution in 

Post Rift 2.

5.5.3 Spatio-temporal pipe formation

The spatial distribution of pipe formation is highly variable. In contrast, the timing 

of pipe formation is persistent throughout a long period, possibly extending to 5- 

lOM yrs. It is not possible to demonstrate synchroneity in the timing of pipe 

formation, although up to 24 pipes have formed within a single reflection, suggesting 

that they may have formed within 100-200 ka. It is evident therefore that any 

mechanism for generating anomalous pressure must have occurred many times in the 

overall period of pipe development and suggests a repetitive overpressure and release 

system.

The spatial analysis of pipe formation has established that there are two statistically 

significant broad zones of pipe formation, an older zone in the North and West and a 

younger, southerly zone. The distinction of two broad timing zones of older and
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younger pipes is suggestive of a pressure generative process that migrated with time, 

either in the same general stratigraphic interval (Hunt, 1990), or in intervals of 

markedly contrasting source depth (England, 1987). It is also conceivable that each 

pipe has its own fluid generation (and subsequent overpressure) cell, but this is 

considered less likely because there are clear clustering phenomena at work at least 

in some of the pipe forming increments (Fig. 5.7). In the absence of much clearer 

data for the depth of origin of the pipes, this uncertainty in the likely organisation of 

putative pressure cells is inevitable, but the data do at least indicate that pipe 

formation migrates on a semi-regional basis, and this alone gives some clues for 

further research into pipe genesis.

The long term temporal migration of pipe formation on a semi regional basis implies 

a large-scale spatial control on the location (and possibly timing) of overpressure 

generation and pipe formation. This control would need to have a minimal spatial 

coverage of -900 km and a possible maximum coverage at a basinal scale. Basin 

scale influences on pipe formation include, but are not restricted to, possible 

hydrocarbon generation, the location of primary source rocks, degre e (and any lateral 

direction) of primary migration, location of over pressure generation leading to 

primary or secondary migration, location of biogenic gas generation, subsidence 

patterns or sedimentary loading patterns. Our preferred model for the long term 

basinal controls on pipe formation in the Namibe Basin include those factors directly 

and indirectly relating to deep fluid sources.

Although the evidence suggests a broad scale basinal control on pipe formation over 

a longer time scale and an implied repetitive overpressure and release system, the 

evidence from a local scale suggests that pipe formation in the short term is more 

erratic, and not subject to any obvious, seismically resolvable structural controls. 

The incremental analysis of pipe formation indicates that over short time periods 

(c. 100-200 ka), 1) pipes form in both clusters and outliers often at great distances 

from one another, and 2) pipe formation takes advantage o f the available space 

between existing pipes and colonises frontier locations. I interpret this as evidence 

of primary localisation phenomenon that is partially independent of the gross 

regional controls. Pipe formation in the available space amongst existing pipes 

suggests a spatial control which is common to all pipes forming in a specific area

144



Chapter 5______________________________ Spatial and Temporal Distribution. Namibia

regardless of formation time. In contrast, the colonisation of frontier locations is 

suggestive of an independent formation process which is spatially distinct from the 

other pipes. Based on the spatio-temporal analysis I conclude that pipe formation in 

the study area is the result of both basinal and local controls.

At any specific location within the study area I infer the spatio-temporal pattern of 

pipe formation to result from a combination of processes operating at both the 

basinal and local scales. The interaction of these two superimposed, synchronous 

and symbiotic spatial systems is responsible for the spatio-temporal evolution of pipe 

formation within the Namib Basin. At the broadest scale, fluid is generated and 

primarily migrated within the basin. The location o f this broad scale control appears 

to move (North to South) over time. It is inferred that either a) the fluid migrates 

from a deep fluid source (primary migration has been discovered to occur over large 

km-scale distances), b) the location of widespread overpressure generation in a deep 

fluid source changes through time, or c) fluid is generated (and “overpressured”) in 

(c. 2?) different locations at different times. At the more local scale, a multitude of 

factors interact to determine more specifically where and when pipe formation 

occurs. Factors which include sediment permeability and porosity, seal strength and 

heterogeneities in the seal permeability, overpressure build-up, fluid flux into the 

reservoir or fluid generation rate, high permeability migration routes or sealing 

features i.e. faults. These factors vary on a local scale and combine to produce 

locally independent pressure cells.

5.5.4 Conceptual model

Overpressure variations within individual pressure cells may be caused by complex 

geological structures, sub seismic faults providing barriers to lateral flow or low 

permeability units inside the cells acting as barriers to the migration of fluids. 

Pressure generation, lateral dissipation and vertical sealing will influence the 

distribution of the individual pressure cells. It is anticipated that lateral flow patterns 

will, to a large extent, govern the magnitude of the overpressure and if a considerable 

rapid change in overpressure occurs in one pressure cell e.g. as a result of fluid
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generation or migration, the dissipation rates across cell boundaries will increase 

(Borge, 2002). This has implications for the spatial positioning of pipes. The 

pressure dissipation in one cell following the formation of a pipe may be transmitted 

to surrounding areas or cells reducing overpressure generation capabilities thereby 

preventing pipe formation in close proximity to the newly formed pipe. This spatial 

and temporal pattern is observed within the spatio-temporal analysis. Sequential 

pipe formation has shown that a new generation of pipes will form at a distance from 

existing pipes, and will rarely become the nearest neighbours to the pipes in the 

preceding time interval. Borge’s (2002) modelling, despite omitting fluid expansion 

as an overpressure generation mechanism, has shown that hydraulic leakage in one 

pressure cell tends to prevent similar leakage in the pressure compartments nearby 

due to fairly high lateral connectivity. This concept is further developed in Chapter 

7.

Within this conceptual model a multi-tiered, hierarchical system is in place 

permitting pressure redistribution post-dating its generation. Deep sourced, basin 

wide, fluid generation and/or migration into shallower, locally independent, pressure 

cells are envisaged. Pipe formation is intermittent and persistent through time, and 

the focus of the fluid source can shift with time, redistributing overpressures and 

varying pipe formation locations. This concept is not novel. Geological sections 

with multiple transition zones have previously been envisaged by Swarbrick and 

Osborne (1996). This research validates assumptions that periods of high 

overpressure interspersed with normal or reduced amounts o f overpressure are 

typical phenomena and that the width of the transition zone can change with time 

(Swarbrick and Osborne, 1996).

5.6 Conclusion

A total of 366 pipes are distributed in a horseshoe pattern in the centre of a 3D 

seismic dataset from North Namibia. A spatio-temporal framework utilising spatial 

statistics was constructed to analyse the spatial and temporal distribution of pipe
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formation. The outcome from this spatio-temporal analysis can be summarised as

follows;

• An arbitrary chronostratigraphic timescale has shown the timing of pipe 

formation to be both

o Intermittent; between 2 and 26 pipes formed during a single or group of 

reflections (approximately 100-200 ka).

o Persistent; pipes are observed to form throughout a 5-10 My interval 

(Neogene).

• The Namibian pipes did not form at the same time, nor was their formation 

restricted to specific time intervals.

• The pipes are not uniquely related to the up dip limit of structures or underlying 

stratigraphic units.

• The pipes are anti correlated with the mound apex in Post Rift 1, a classic 

structural trap in the form of a four way dip structure. Pipes have formed around 

the perimeter of the mound leaving the fold crest devoid of fluid flow features.

• Pipes with a common basal reflection or structure e.g. palaeochannel levee, do 

not form at the same time.

• Spatio-temporal pipe formation is neither clustered nor regular i.e. pipe formation 

is neither clustered or regularly (evenly) spaced in time and space.

• In an individual time period (c. 100-200 ka) pipe formation can be clustered, 

dispersed or linear.

• The large scale distribution of pipe formation displays two broad zones, an older 

North : West zone and a younger southern zone.

• At a local scale pipes can form as both clusters and outliers within the same time 

interval.

• Sequential pipe formation analysis has established that newly forming pipes take 

advantage of free available space between groups of existing pipes but also 

colonise new areas at a large distance from the main group.
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• New generation pipes are not nearest neighbours with pipes in the immediately 

preceding time interval, but form in closer proximity with pipes several time 

intervals older

• The Namibian pipes display no uniform spatial ordering to their formation i.e. 

newly forming pipes do not form at a maximum equidistance from existing pipes.

• A conceptual model is proposed in which pipe formation results from isolated 

pressure cells that are locally independent yet broadly controlled.
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Chapter 6
This chapter will be submitted for publication as Moss, J.L., and Cartwright, J., 2010, 

“Vertically stacked pockmark arrays: Evidence for highly focused, episodic fluid 

flow in sedimentary basins” to Marine and Petroleum Geology. Currently seeking 

permission to publish.

The work presented in this chapter is that of the lead author (JLM), editorial support 

was provided by the project supervisor (JAC) in accordance with a normal thesis 

chapter.
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6 VERTICALLY STACKED POCKM ARK 

ARRAYS: EVIDENCE FO R  HIGHLY 

FO C U SED , EPISODIC FLUID FLOW  IN 

SEDIMENTARY BASINS.

6.1 Abstract

A group of large (100-700 m diameter) buried pockmarks from the Rosetta Region of 

the Nile Deep Sea Fan have been analysed in terms of their time of formation and 

longevity of post formation fluid migration. This study has shown that pockmark­

like morphology of concave upwards reflections above a buried pockmark can result 

purely from drape-type deposition failing to infill the initial seabed crater, leaving 

vestigial relief. Definitive evidence is presented showing that this conduit can 

remain viable after lengthy periods of dormancy, and can be reactivated if the 

hydrodynamic conditions require a renewed phase of focused fluid expulsion (and 

pressure bleed-off). These conduits are interpreted as “pockmark arrays” and not 

stacked pockmarks. Chronostratigraphic dating has confirmed buried pockmark 

formation in the study area between 100,000 yrs BP and 15,000 yrs BP. The 

majority of buried pockmarks are observed to form at a single horizon, which 

arbitrary chronostratigraphic dating estimates to be c. 50,000-80,000 yrs BP. The 

formation of these large pockmarks is believed to result from a single triggering 

mechanism, possibly associated with eustatic sea level fall, releasing fluids trapped 

beneath a shallow level Mass Transport Deposit (MTD). Numerous (> 150) 

clustered unit pockmarks (10-20 m diameter) within the seabed expression of the 

pockmark arrays (depressions) are testament to a high frequency, low magnitude post 

formation fluid migration through these conduits. The longevity of post formation 

fluid migration is measured by the presence or absence of unit pockmarks and the
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height of the pockmark array. Longevity is estimated to be ~50,000-100,000 years in 

this part of the Rosetta complex.

6.2 Introduction

Pockmarks are circular to elliptically shaped, erosional depressions formed at the 

seabed by the localised expulsion of fluid from an overpressured source at depth via 

a low permeability pathway or pipe (Hovland and Judd, 1988). Pockmarks are 

therefore a valuable expression in the stratigraphic record of localised pore fluid 

overpressure generation and vertical fluid migration during a geologically rapid time 

interval, and their identification can shed light on basin hydrodynamics.

However, one of the least understood aspects of pockmark formation is the precise 

timing of formation and the longevity of the fluid migration associated with the 

feeder pipe and the pockmark. A number of open questions can be considered: for 

example, do pockmarks form instantaneously by a catastrophic flux of fluid or gas to 

the seabed, or do they form by slower, longer term seepage processes? Once formed, 

do the conduits that supplied fluid/gas to the seabed at the pockmark retain their 

potential for focusing fluid flow thereafter, and under what conditions does any later 

activity through the conduit occur? How do we recognise and correctly interpret 

evidence for rejuvenation of a pockmark conduit on seismic data?

A number of previous studies have implied that vertical stacking of pockmarks at a 

number of discrete stratigraphic intervals is evidence for repeated fluid expulsion 

using the same conduit (Cif?i et al., 2003; Curzi and Veggiani, 1985; Hovland and 

Judd, 1988; Mazzotti et al., 1987)*. This evidence commonly consists of an initial 

(basal) pockmark identified on seismic sections, with a series of similar shaped 

(concordant) concave reflections developed above this basal surface. This specific 

reflection geometry has been argued to suggest a longevity of the fluid expulsion 

process responsible for the initial pockmark formation.

* see A ppendix A4 fo r exam ples o f  buried and stacked pockm arks
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This chapter presents some examples of vertically stacked pockmarks from the Nile 

Deep Sea Fan (NDSF) imaged on ultra high resolution (UHR) 2D seismic profiles, 

and uses these to analyse the evolution of fluid flow to the seabed in this region (Fig. 

6.1). I show that vertical stacking of concordant concave reflections above a basal 

pockmark surface is not, by itself, an indication that successive pockmarks formed 

above the same conduit. I also provide evidence from a combination of side-scan 

sonar and Chirp profiler data gathered with AUVs (Automated Underwater Vehicles) 

calibrated with the high resolution seismic profiles that the same conduit can be re­

utilised for a considerable period of time after initial pockmark formation to produce 

a younger generation set of pockmarks nestled vertically above the basal pockmark.

This study has a number of wider implications for how stacked pockmarks are 

interpreted on seismic data, and also for the plumbing system at shallow levels 

within slope depositional settings. This study also helps explain recent features of 

stacked concave reflections observed at shallow levels above pipe-like fluid 

expulsion conduits identified using 3D seismic data (Chapter 4).

I follow previous studies in adopting a classical overpressure model for pockmark 

formation (Cathles et al., 2010; De Boever et al., 2009b; De Boever et al., 2006b; 

Heggland, 1998; Hovland, 2002; Hovland et al., 2010; Hovland et al., 1984; Judd 

and Hovland, 2007; Nyman et al., 2009). I use the standard definitions for “normal 

pockmarks” (> 50 m diameter) and extend the definition of “unit pockmarks” to refer 

to small pockmarks < 20 m diameter. Normal pockmarks are thought to result from 

periodic, rapid gas flow eruptions, which are subsequently sealed by Methane- 

Derived Authigenic Carbonate (MDAC) (Hovland, 2002). According to standard 

definitions, unit pockmarks are inferred to be the result of cyclic pore-water seepage 

as either “singular” features or “related” features forced to migrate away from the 

sealed centre of a normal pockmark to edge or rim localities (Hovland et al., 2010). 

Unit pockmarks are suggestive of episodic seepage of a high frequency, low 

magnitude fluid flux, compared to the low frequency, high magnitude flux associated 

with normal pockmarks. It is acknowledged that the influence of surface and near­

surface sediment grade (permeability and erodibility) would contribute to the 

manifestation of seepage.

152



Chapter 6 Vertically Stacked Pockmark Arrays, NDSF

2 Kilometres5 10 Kilometres

502000

Figure 6.1 Location map. a) Location on Western NDSF, b) Rosetta bathymetry (metres), Horns Mud Volcano (HMV), Palaeochannel (PC), c) Plateau dip map showing location of figures and cross sections referred to in the text.

153



Chapter 6 Vertically Stacked PQCkjTiark A rraV S, NDSF

6.3 Geological setting

Regional geology and tectonic setting of the NDSF is given in Chapter 3

6.4 Seismic data and methodology

The data used for this study consist of ~ 1000 km combine^ Autonomous 

Underwater Vehicle (AUV) sub bottom profiler (Chirp profiler) and $ide-scan sonar, 

and 2D Ultra High Resolution (UHR) seismic data collected by Fitgro Sdrvey, on 

behalf of BP, in 2004 and 2005 (see Chapter 2).

Seismic examples shown are restricted to those 2D seismic lines ’svhicp pas£ straight 

through the centre of the unit pockmark / seabed depression.

6.4.1 Dating pockmark formation, chronostratigr£Phy and 

arbitrary chronostratigraphic dating

As previously defined in Chapter 4, buried pockmarks have been identified finsed on 

the erosional truncation of reflections onto a single concave upwards sUrface of 

stratal truncation. Seismic interpretation focused on the recognition ahd datiP§ of the 

many small pockmarks in the Chirp profiler and side scan sonar data fijat were at or 

below the spatial resolution limit of the UHR profiles.

Dating pockmark formation relies upon correct identification of the er0$ional base of 

the pockmark. This is difficult to do with low frequency data, or when fiie pockmarks 

have diameters close to the spatial resolution limit. The age of the earliest onlap fill 

of the pockmark, or the earliest drape unit to be deposited on the pockmark et°sional 

surface is taken as the approximate time for pockmark formation. It is eofltma11 to see
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localised high amplitude reflections associated with the pockmark surface, most 

likely due to authigenic carbonates (Judd and Hovland, 2007) and a considerable loss 

o f signal directly beneath the pockmark surface due to scattering and localised 

velocity anomalies (Fig. 6.2).

Absolute dating o f pockmark formation was not possible, but the seismic 

stratigraphy could be interpreted and referenced to three prominent horizons that 

have been dated chronostratigraphically using C 14 methods (Fig. 6.2) from cores 

collected on behalf o f BP in 2006 and extrapolated across the Plateau. Horizons are 

dated at 9,000 yrs BP (A200), 15,000 yrs BP (CO) and 100,000 yrs BP (DO). An 

arbitrary chronostratigraphic dating scheme was implemented following similar 

methodologies formally proposed in Chapter 5. Six well-defined horizons were 

identified and correlated throughout the study area to form an additional relative 

chronological framework between the chronostratigraphic dated horizons for the 

intervening time periods spanning c. 100,000 yrs (Fig. 6.2).
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A200 (9 ,000yrsB P )
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— — . . .  H100

j^ ium s

DO (100 ,000yrsB P )

100m

Figure 6.2 Chronostratigraphic dating. Chronostratigraphic age dates given in years BP (solid lines), arbitrary chronostratigraphic dated horizons 
(dotted lines). Example core taken from the top <20ms capturing horizon A200 (9,000yrsBP). Label b, anomalously high amplitude zone. The vertical 
resolution of the Chirp profiler data is captured from Seabed to DO and is referred to in the text as Unit 4. Example shown is D117 (NE-SW transect).

H30
Temporal point of 
pockmark formation
CO (15 ,000yrsB P )
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6.4.2 Limitations

Vertically Stacked Pockmark Arrays. NDSF

Buried pockmark formation timings are restricted to those pockmarks which are 

clearly imaged by an AUV line. Consequently only 20 % o f identified pockmarks 

are arbitrarily dated. Buried pockmarks without a seabed expression are not included 

in the dataset as clear identification of the seismic expression as a pockmark (4-way 

dip structure) was not possible. Spatial statistics are highly susceptible to the 

precision of the coordinates in the point dataset and the mathematical boundary area 

imposed on the spatial analysis. The centre o f the pockmark was used for the 

analysis, however this may produce anomalous results for elliptical shaped 

pockmarks. The mathematical boundary was a minimum enclosing rectangle thereby 

producing a tendency towards clustering.

6.5 Results

6.5.1 Regional setting

The Western Nile fan is a complex province o f interacting channel, mass transport 

and fluid migration features (Loncke et al., 2009). The total area (-1000 km2) of 

seismic coverage, hereafter referred to as the Rosetta Region, has been 

geomorphologically mapped to demonstrate the regional setting o f the pockmarks 

(Fig. 6.3). A representative cross section is given in Figure 6.4. The Rosetta Region 

has been divided into zones based on the dominant geomorphological features in that 

area, and is briefly described below.
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Pockmark field

10 Kilometres

;IG Densely pockmarked surface
Clustered pockmarks above depression 
Seabed depression (buried pockmark) 

E3 Avulsed channel
□  Channel avulsion in channel deposition 

.■Channel avulsion thalweg
□  Channel avulsion bank failure
■  Channel avulsion bank erosion 
G  Surficial debris slide
□  MTC1
0  Large detachment block
□  Small detachment block
■  MTC 2 Translated intact material
■  MTC 2 Slide material
■  MTC 3 Debris slide material
■  MTC 3 Insitu debris slides
1  Mud volcano collapse zone
■  Mud flow
■  Mud flow debris deposits
■  Palaeo mud flow deposits
■  Mud volcano outer cone
■  Mud volcano surface
■  Mud volcano bank failure
■  Mud volcano concentric faults 
I  Mud volcano lobe
I  Mud volcano moat 
I  Mud volcano mud cone 
E3 Rosetta in channel deposition
■  Rosetta thalweg
□  Rosetta bank failure
□  Palaeochannel in channel deposition 
G  Palaeochannel bank failure
■  Palaeochannel thalweg
■  Plateau
G  Plateau surficial slide
■  Plateau bank failure 

Shelf
Slope

Figure 6.3 Geomorphological map. Broad geomorphological zones are shown. MV, mud volcano; PC, palaeochannel; P, Plateau; MTC, area of multiple MTC’s; RC, Rosetta channel; ES, Eastern Slope including the pockmark field 
(Chapter 7) are shown in the inset map. Black box represents the spatial statistics study area utilised in Chapter 7. The entire Rosetta Region represents a relict topography. The majority of the features mapped are the surface 
expression of geomorphological features buried by drape.
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6.5.1.1 Mud volcano zone (MV)

The western limit of the Rosetta Region is dominated by the Mud Volcano (Fig. 6.4). 

The mud volcano comprises a relatively flat, crenulated surface o f radial concentric 

faults, surrounding a central cone. The mud volcano is surrounded by a moat which 

is breached at a single location by a mud flow. There is evidence to suggest that 

several generations o f mud flow deposits are associated with the extrusive mud flow 

activity. The south-eastern margin o f the mud volcano has collapsed and is marked 

by extensional faulting. Most of the faults have minor displacements o f < 10 m.

The general slope area surrounding the Mud Volcano comprises localised normal 

faulting and isolated circular depressions and unit pockmarks. The circular 

depressions are interpreted as buried pockmarks (Chapter 6).

6.5.1.2 Palaeochannel zone (PC)

The palaeochannel represents a former position of the Rosetta Channel (Fig. 6.4). 

The palaeochannel is a relict feature delineated by marginal faulting and localised 

slope failures. The arcuate headscars of the rotational slope failures are lined with 

concentric tension cracks suggesting the failure maybe retrogressive. The 

palaeochannel bed contains surficial deposition from localised slope failures, buried 

pockmarks and surface pockmarks.

6.5.1.3 Plateau zone (P)

The Plateau zone is an undeformed section o f slope which has remained vertically 

prominent by slope failures and erosion of the adjacent slope by the palaeochannel 

and Mass Transport Complexes (MTC) (Fig. 6.4). The Plateau is dominated by 

circular to elliptical depressions and unit pockmarks. The depressions represent 

buried pockmarks, and are often the loci for clustered unit pockmark formation 

(Chapter 6).
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6.5.1.4 Mass T ransport Complex zone (MTC)

This zone comprises multiple MTCs at varying depths and scales (Fig. 6.4). The 

zone is delimited by a large relict MTC which extends from the Plateau zone in the 

west to the Rosetta Channel in the east (MTC 1). MTC movement is likely to be in a 

downslope (north) and easterly trajectory towards the Rosetta Channel. The toe of 

the MTC appears to disintegrate into debris slides as it meets a former avlusion of the 

Rosetta Channel. There are fault scarps in a mid slide position, possibly indicating 

minor failures within the main slide body.

Large blocks o f intact debris are observed on the Western side o f the large slide 

(MTC 1). These blocks may represent successive back rotated slide blocks from 

incipient failures on the Plateau margin or detachment blocks o f more solid material 

that have toppled/slid from the Plateau scarp post failure o f MTC 1.

6.5.1.5 Rosetta Channel (RC)

The Rosetta Channel zone incorporates the main channel / canyon and surrounding 

bank failures. Sediment waves are observed in the axis o f the channel indicating the 

likelihood of recurrent turbidity flows . The arcuate bank failure scars are sharp and 

well defined suggesting that they were recently reactivated (Fig. 6.4). The absence 

of any in channel deposition implies that channel flows are removing any debris and 

may be actively eroding the channel banks, a precondition for further bank failure.

6.5.1.6 Eastern Slone (ES)

The Eastern Slope is an unbroken slope unit dominated by unit pockmark 

development (Figs. 6.3 and 6.4). A well developed pockmark field is located in a 

central slope position, however unit pockmarks are observed to cover the entire 

eastern slope.

* see A ppendix A4 for a figure exam ple o f  sedim ent w aves in the Rosetta Channel
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Subtle seabed debris slides and flows have been observed in an up-slope position, in 

a similar water depth as the Rosetta Canyon head. It is likely that these slides and 

flows transfer terrigeneous material from a shelfal to a slope setting. Minor faulting 

and debris material associated with these slides / flows can be found within and on 

the margins of the pockmark field.

6.5.2 Seismic sequence stratigraphy of the Plateau

The study area is located on the mid slope region of the western flank of the NDSF 

(Fig. 6.1). The northwestern limit o f the study area is marked by a large failure scarp 

with a crescentic downslope-facing planform geometry (Fig 6.1). The Plateau seabed 

is generally smooth outside the immediate confines o f the Rosetta Palaeochannel, 

MTD zone and the large scarp (Fig.6.3), but is punctuated by hundreds of small 

depressions that are clearly visible on the seafloor bathymetry map (Fig. 6.1). Many 

of these are aligned, but equal numbers are isolated or organised in small groups. 

Low relief palaeoscarps are visible and form loci for the clustering of many small 

extensional faults whose strikes generally follow the local topography.

The Late Pleistocene to Holocene seismic sequence stratigraphy o f the slope 

sediments in the study area is divided here into a series of depositional units, based 

on their correlatability and on distinctive seismic facies characteristics. They are not 

subdivided based on sequence boundaries; hence they are referred to informally as 

seismic units rather than formal sequences. A representative seismic profile showing 

the typical acoustic features of each unit is presented as Figure 6.5. A summary of 

the characteristics o f each unit is given in Table 6.1. The slope package consists of 

alternations of laterally continuous units interpreted here as consisting of mainly 

hemipelagic clays with interfmgering of some discrete channel-levee complexes 

(Units 1-4 inclusive), with more chaotic units interpreted as mass transport deposits 

(MTDs 1-3). This interpretation accords with recent large-scale studies by Loncke 

and Mascle (2004), Garziglia et al. (2008) and Loncke et al. (2009).
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Figure 6.5 Stratigraphic cross section, a), b) NW-SE line, c), d) SW-NE line. Units 1 ,2 ,3  and 
4, MTD 1 ,2 ,2a and 3, palaeochannel-levee complexes (PC) and folds (F) are shown. MTDs 
associated with sliding on the edge of the Plateau are shown (not labelled). Seismic distortion 
(SD). Arrows represent possible fluid migration pathways (only a minority of examples are 
shown). Horizontal arrows represent potential lateral migration and/or temporary storage of 
fluid. Vertical limit of Chirp profiler penetration is to the base of Unit 4.
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Table 6.1 Seismic sequence stratigraphy
Reflection characteristics

Unit Basal unit 
boundary

Upper unit 
boundary Internal package Unit geometry Additional unit characteristics Interpretation

Unit
4

Crenulated, near 
continuous

Continuous,
seabed

Continuous, 
laminar, near 
horizontal 
reflections of 
varying 
amplitudes

Near uniform 
thickness c. 80-100ms

Near vertical, columnar zones of concave reflections 
transect Unit 4 for varying distances; The base of this 
unit is dated at c. 100,000yrs (horizon DO), a mid-unit 
horizon at 15,000yrs (CO) and an upper horizon at 
9,000yrs (horizon A200) (Fig. 6.2).

Fine grained, 
hemiplegic 
drape package

MTD
3

High amplitude, 
near continuous, 
sub horizontal, 
occasionally 
stepped

Crenulated, near 
continuous

Highly chaotic 
and disrupted 
reflections

Uniform thickness 
(c.50ms); thinning 
over the folds in Unit 
3

Unlike MTD1 and 2, MTD3 is restricted to the lateral 
extent of the Plateau, due to subsequent slumping of 
sediments at the margins of the Plateau.

Mass Transport 
Deposit: 
composed of 
probable sandy 
layers above a 
distinct shear 
surface

Unit
3

Conforms with 
MTD2 and 
MTD 2a

High amplitude, 
near continuous, 
sub horizontal, 
occasionally 
stepped

Variable 
amplitude and 
reflection 
continuity

Near uniform 
thickness (c. 300ms)

Amplitude anomalies are numerous and range from 
brightening to acoustic wipeout; Three U-shaped, high 
amplitude channel-levee complexes; Contacts between 
the channel bodies and the host stratigraphy are 
erosional, some onlap can be observed on the margins 
of the eastern channel; Two folds within Unit 3.

Fine grained, 
hemiplegic 
package with 
coarser grained 
facies
associated with 
the channelized 
intervals; folds

MTD
2

Above 
background 
amplification, 
continuous, near 
horizontal

High amplitude, 
near continuous, 
Highly crenulated, 
occasionally pitted,

Highly chaotic 
and disrupted

Uniform thickness 
(c.50-100ms); 
Pyramid-shaped 
reflections puncture 
the upper surface 
penetrating the unit 
above.

Unit contains seismic anomalies; MTD2a is observed 
to transect MTD2

Mass Transport 
Deposit: 
composed of 
probable sandy 
layers and large 
(<50ms) intact 
debris blocks
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Reflection characteristics

Unit Basal unit 
boundary

Upper unit 
boundary Internal package Unit geometry Additional unit characteristics Interpretation

MTD
2a

Above 
background 
amplification, 
continuous, near 
horizontal

Above background 
amplitude, 
crenulated, 
discontinuous

Amplitude and 
reflection 
continuity 
variation

Rectangular geometry 
c. 100ms thick

MTD 2a erosionally truncates Unit 2; Possible 
indication of slumping or remobilisation of surrounding 
sediments caused by MTD 2a; MTD2a erosionally 
truncates Unit 2.

Mass Transport 
Deposit
perpendicular in 
direction to 
cross section b 
(Fig. 6.4)

Unit
2

Crenulated, near 
continuous

Above background 
amplification, 
continuous, near 
horizontal

Sub horizontal,
near continuous,
laminar;
amplitude and
reflection
continuity
variation

Variable thickness 
(200-300ms)

Unit amplitude varies laterally from NE-SW, higher 
amplitudes observed in the SW; Faint trails of near 
vertical low amplitude columns transect this unit and 
may represent possible fluid migration routes.

Fine grained, 
hemiplegic 
drape package

MTD
1

High amplitude, 
near continuous, 
sub horizontal, 
occasionally 
stepped

Crenulated, near 
continuous

Highly chaotic 
and disrupted

Wedge-shaped 
package c.50-150ms 
thick; thickens 
towards the East and 
North.

Unit is broken by a distinct low amplitude seismic 
anomaly.

Mass Transport 
Deposit: 
composed of 
probable sandy 
layers and 
debris blocks, 
above a distinct 
shear surface

Unit
1

High amplitude, 
near continuous, 
sub horizontal, 
occasionally 
stepped

Low amplitude, 
continuous to 
discontinuous, 
sub horizontal

Unknown; Limit of 
UHR penetration.

Amplitude anomalies; Reflection signal of this unit is 
poor in places.

Fine grained, 
hemiplegic 
drape package
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6.5.3 Distribution and geometry of pockmarks

The main focus of this study is the interpretation of pockmarks at the present day 

seabed and in the shallow subsurface. The AUV data is limited to shallow 

penetration of c. 80-100 ms, hence only Unit 4 is really encompassed by the highest 

vertical resolution profiles. Pockmarks are clustered at two main stratigraphic 

positions in Unit 4, the present day seabed, and at or just above a marker referred to 

informally as DO, the base of Unit 4. The distribution and acoustic expression of the 

pockmarks at these two levels are described separately below, and inter-relationships 

between them are considered later in this section. Reliable identification of 

pockmarks at deeper stratigraphic levels is prevented by poor imaging in the 

complex and chaotic seismic facies of the MTDs and within the deeper buried 

palaeochannel-levee complexes.

6.5.3.1 Recent Pockmarks

Over 25,300 small, circular depressions on the present day seabed that are here 

interpreted as pockmarks have been mapped within the ~1000km Rosetta Region 

AUV coverage area. Seabed pockmarks are typically expressed as circular to sub- 

circular depressions, rimmed by multi azimuth slopes of 3 ° to > 6 ° . Pockmark 

diameters vary from < 20 m to -50 m and densities range between < 4 to > 400 

pockmarks per 1 km . The density variation reflects disparities in pockmark spacing 

between isolated unit pockmarks on the upper shelf and a pockmark field 

immediately east of the Rosetta Canyon (Fig 6.3.). Recent pockmarks are described 

further (with figures) in Chapter 7.

6.5.3.2 Plateau unit pockmarks

A total of 1728 unit pockmarks have been mapped on the Plateau, 787 (or 46 %) of 

which are contained within large hollows or depressions on the seabed. The 

pockmark density varies dramatically between those relatively isolated unit
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pockmarks located on the smooth ‘Plateau’ region and those distributed within the 

large seabed depressions. Isolated unit pockmark densities range between 1-2 

pockmark per 1 km whereas densities are > 90 pockmarks per 1 km for unit 

pockmarks clustered in the largest depressions. Unit pockmarks range between 7 m 

and 45 m diameter (average diameter is 18 m) and 0.1 m to < 3.5 m deep (average 

depth is 0.5 m). Their geometry is near circular with an average ellipticity ratio of 

1:1.5. The size and shape of the unit pockmarks within and outwith the depressions 

are comparable.

6.5.3.3 Depressions and buried pockmarks on the Plateau

The large depressions are an important feature of the Plateau region’s physiography. 

They are recognisable on the seafloor bathymetry map (Fig 6.1). In profile, the 

depressions can be seen to occur directly above buried pockmarks. An excellent 

example of this relationship is shown in Figure 6.2, where a c. 350 m wide pockmark 

is interpreted to occur at the CO horizon, based on an erosive margin and a zone of 

anomalously high amplitudes along the inferred pockmark base (labelled b). Above 

the buried pockmark, the highly laterally continuous reflections of the uppermost 

part of Unit 4 is interpreted to drape the underlying topography, since all the 

individual reflections up to the seabed are concordant with the pockmark base, and 

they therefore precisely mimic its geometry. The seabed depression can therefore be 

seen to be a vestigial feature that has formed solely due to drape of the topography of 

the underlying pockmark.

Also visible on the example shown in Figure 6.2, is the clustering of unit pockmarks 

at the seabed reflection in the area specifically encompassing the drape-induced 

depression. On this profile, for example, at least 6 unit pockmarks of variable size are 

transected, and high amplitude reflections are observed to be associated with several 

of these. Imaging quality is poor because of imaging artefacts (bow tie reflections 

and diffractions), and because they are narrow objects they are effectively below the 

lateral resolution of the method.
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142 of these large bowl-shaped seabed depressions have been identified on the 

Plateau region west of the Rosetta Canyon. The depressions range in size from 100 

m to > 700 m diameter and 0.5 m to > 20 m depth. On average, depression geometry 

is sub circular (average ellipticity ration 1:1.4) with a geometry ranging between 

circular (1:1 ellipticity ratio) to highly elliptical (1:3.7 ellipticity ratio).

The number of unit pockmarks clustered within depressions is highly variable. On 

average each depression contains 5 unit pockmarks, however 23 % of depressions do 

not contain unit pockmarks and 17 % contain only a single unit pockmark. The 

largest depression contains 152 unit pockmarks. The majority of the depressions 

appear to be geographically restricted to the northern end of the Plateau.

9 y
The depressions on the Plateau are unique within this -1000 km dataset. The 

depressions are geographically restricted to the Plateau, their seabed expression is 

larger and deeper than any other pockmark in the dataset, and they exhibit a greater 

variety in morphological expression than the smaller isolated unit pockmarks.

6.5.4 Seismic expression of pockmarks and depressions

The large population of unit pockmarks and depressions on the Plateau represent a 

broad spectrum of geometrical forms and dimensions. Seismic profiles through the 

seabed depressions and unit pockmarks indicate that despite a common concave 

geometry they occur at a range of stratigraphic levels in Unit 4. The identification 

and interpretation of these features is dependant, to a certain degree, on the amplitude 

characteristics and reflection geometry of the host stratigraphy. In general, they are 

more easily observed and more accurately defined within intervals with higher 

dominant frequency, acoustically finely layered and near-continuous reflections 

(Chapter 4). This limits clear identification of buried pockmarks to the top < 100 ms 

(limit of Chirp profiler resolution) of the sedimentary sequence.

The defining characteristic of all the unit pockmarks and depressions is the erosive 

nature of the seismic reflections in the host interval, suggesting formation of these
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features involves removal or remobilisation of the sediments close to the seabed at 

the time of formation. It is not always possible to distinguish truly eroded forms 

from ones where the host reflections are merely disturbed in situ, particularly for 

smaller candidate pockmarks. Disturbed seismic data quality is associated with 

reduced acoustic velocities and the specific distribution of gas within the sediments 

(Dangerfield, 1992; Granli et al., 1999; Amtsen et al., 2007). Gas charged zones can 

cause significant velocity anomalies which produce distortion in the seismic data 

whose effects can ‘propagate’ downward below the pockmark. This disruption 

varies vertically and laterally, and is often masked or influenced by the presence of 

artefacts and coherent noise, for example in the form of bow-tie artefacts (Fig 6.6.). 

The quality of the imaging beneath the unit pockmarks and depressions is generally 

consistent with seismic interference due to the presence of gas and a possible pipe or 

fluid migration pathway (Chapter 4). The identification of seismic anomalies is 

dependent on the spatial and vertical resolution and on pockmark size.

Detailed descriptions of the seismic expression are presented below for some 

representative examples from the large data set that has been interpreted, grouped 

into unit pockmarks, large depressions and large depressions with clustered unit 

pockmarks.

6.5.4.1 Unit pockmarks

An example of a small unit pockmark is presented in Figure 6.6. Pockmark P448 is 

an isolated unit pockmark located at the northern end of the Plateau (Fig. 6.1), and is 

c. 16 m in diameter and is <0.3 m deep at its deepest point so is at the limit of 

seismic resolution. It is identifiable on side scan sonar as an area of high reflectivity 

which is interpreted as resulting from the presence of carbonate cements or shallow 

gas (Fig. 6.6). It is expressed as a poorly resolved chaotic zone (between c. 1.119 s 

TWT and the seabed) with an acoustic impedance similar to the seabed and a bow-tie 

artefact at c. 1.119 s TWT (labelled x). Beneath the acoustic anomaly, concave 

deflection and subtle breaks in the reflection continuity are imaged that are several 

traces wide and stack vertically in a systematic fashion over a distance of c. 6-8 ms 

above a prominent disrupted reflection (A200) at c. 1.126 s TWT. Seismic distortion
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and subtle amplification of the background reflectivity surrounding A200 is evident 

between e. 1.124 s TWT and c. 1.128 s TWT. Beneath this distortion a linear zone 

with the same diameter as the pockmark (1-2 traces) is imaged as  a complete loss of 

signal.

It is important to note that all unit pockmarks on the Plateau (that are not contained 

within a depression) are observed to root at the level of the high amplitude horizon 

(A200) (±2ms) and the majority of unit pockmarks are observed to  display a chaotic 

high amplitude zone (x) within several milliseconds of the seabed. Horizon A200 

was deposited during an episode of Sapropel S la  form ation in the wider 

Mediterranean (Ducassou et al., 2007), however definitive Sapropel formation in the 

Rosetta Region can not be confirmed here. Clays containing d a rk  pyritic laminae, 

interpreted to have formed from individual dilute turbidity current/plume events, 

have been observed in some cores (Fig. 6.2). This suggests that bo ttom  waters might 

have been anoxic during deposition and that it is likely that the  dark laminae are 

associated with stratification of the water column during tim es of increased 

freshwater input.
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Figure 6.6 Unit pockmark P448. a) Chirp profiler data. A bow-tie artefact is imaged at position x. b) Seabed dip map c) Seabed side scan sonar. Cross 
section is taken NW-SE through the unit pockmark.
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6.5.42 Large depressions

Two examples of large depressions a r e  presented in Figure 6.7. Depression D85 and 

D 140 are examples of subtle s e a fld > o r  depressions in the northwestern sector of the 

Plateau. Depression D85 is c. 110 m  in diameter and 1 m deep at its deepest point. 

Depression D140 is c. 70 m in d ia« x n e te r and c. 0.6 m deep. Depressions D85 and 

D140are not identifiable on side s c r r^ n  sonar (Fig 6.7c). D140 is not crossed close to 

its cafe by any of the seismic profSLles.

Depression D85 is imaged on s e x s m i c  as a vertically stacked series of concave 

upwards reflections extending from seabed to 1.146 s TWT where a reduction in the 

signal to noise ratio prevents accura*Bte identification of the reflections (Fig 6.7a). The 

degree of concavity varies from c. H I  m  at the seabed to c. 3 m near the base (HI 00). 

The relief of the concave shapes s te ^ a d ily  decreases upwards with a prominent change 

in relief between 1.129 s TWT and 1.124 s TWT. It is observed that this change in 

relief is apparent within the s a m e  stratigraphic interval as a distinct change in 

reflection characteristics from d ilz rl use to higher amplitude contrast reflections. 

Above interval x reflections are irrcaag ed  as continuous, near parallel horizons with 

amplitudes above the background leve ls  of the host unit. These reflections are 

neither disrupted nor distorted.

Reflection H100 marks a distinct cM tiange in reflection characteristics. H I00 marks 

the deepest continuous traceable r»neflection and the maximum concave upwards 

relief. The reflections im m ediate^ly below H I00 are poorly imaged but show 

evidence of distortion, disruption aro*d  truncation. Several reflections are erosionally 

truncated against H1Q0. R eflec tieon  H I00 also represents a zone of reflection 

truncation for D140. Above this erozxsional surface, the suprajacent reflections appear 

to define an infill geometry over a  vertical extent of c. 20 ms, with alternating 

reflections exhibiting greater and l e s s e r  negative relief. A good example of an 

infilling reflection is shown at point _ _ y . Above H I00 reflections are observed to bend 

into the concave shape but show no evidence for truncation. Beneath H I00 

reflections in the low amplitude seisrzm ic facies are discontinuous due to loss of signal 

until a relatively prominent reflection* (DO) at c. 1.164 s TWT.
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Figure 6.7 Depression D85. a) Chirp profiler data, b) Seabed dip map, c) Seabed side scan 
sonar (white arrows highlight location of depressions not detected by the sonar). Cross section is 
taken diagonally NW-SE through the depression
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The interpretation of these reflection characteristics is that two buried pockmarks are 

interpreted at the level of H I00, one each directly beneath the concave stack of 

reflections underlying the two depressions at the seabed. This therefore fits the 

characteristics noted earlier that depressions overlie buried pockmarks. The relief of 

these pockmarks was only partially infilled after initial burial, and vestigial relief was 

then draped by the more continuous seismic facies nearer the surface, leaving 

residual relief present at the seabed.

6.5.4.3 Large depressions with clustered pockmarks

6.5.4.3.1 D86

Depression D86 is an example of a prominent depression in the northwest of the 

Plateau containing 3 small pockmarks (Figs. 6.1 and 6.8). Depression D86 is located 

< 110 m away from D85 which does not contain any surface expressions of fluid 

flow. Depression D86 is elliptical and is > 125 m in diameter (long axis, oriented 

NNE-SSW) and c. 6 m deep at its deepest point. A small cluster of small seabed 

depressions interpreted as unit pockmarks are visible on the seabed dip map and side 

scan sonar imagery (Fig. 6.8), and are aligned along the long axis. The largest unit 

pockmark within the depression is < 30 m in diameter. The pockmarks within D86 

are identifiable on side scan sonar as areas of high reflectivity associated with the 

presence of carbonate cements or shallow gas (Fig. 6.8).

The cross-sectional characteristics of D86 are illustrated using a Chirp profile (Fig. 

6.8) that crosses through the largest pockmark at the westernmost end of the 

depression. Most strikingly, the subsurface beneath Depression D86 is imaged as a 

vertical stack of concave reflections that are generally concordant to the seabed down 

to interval z. The concave geometry of these reflections changes to a v-shaped 

geometry at the marker H I00, although imaging plays a part in this geometry, with 

uncollapsed diffraction energy obscuring the true geometry. There is a slight 

increase in the diameter of the concave feature from c. 70 m at HI 00 to c. 100 m at 

the seabed.
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Figure 6.8 Depression D86. a) Chirp profiler data showing a unit pockmark within the 
depression, b) Seabed dip map. White arrow points to the precise location where the AUV line 
transects the pockmark, c) Seabed side scan sonar. Cross section is taken diagonally NW-SE 
through the depression.
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Reflection H I00 demarcates a distinct change in reflection characteristics, with those 

below being poorly imaged but with clear evidence of distortion, disruption and 

truncation. Several reflections are erosionally truncated against H I00 on the steeper 

flanks of the concave feature. Above this locally eroded surface, the suprajacent 

reflections appear to follow the reflection geometry of H I00 and bend into the 

structure. These suprajacent reflections show no evidence of truncation. Infill 

geometry is observed over a vertical extent of 40 ms, with alternating reflections 

exhibiting greater and lesser negative relief and infill. A good example of an 

infilling reflection is shown at point i. Taken together, the erosion at H I00 and the 

infill above are diagnostic of a pockmark at H I00, which as noted previously was 

then buried, and similarly to D85 and D140, left a vestigial feature at the seabed as a 

consequence of the inability of the sediments to completely infill the concave 

erosional hollow.

Beneath H I00 reflections in the low amplitude seismic facies are discontinuous due 

to proximity to the maximum penetration limit of the Chirp profiler, however a 

strikingly columnar zone of blanking occurs directly beneath the apical point of 

HI 00. This vertical zone of wipeout may be purely due to imaging, or may indicate 

the presence of a fluid migration conduit (Hustoft et al., 2007; Loseth et al., 2009).

One final important feature to note is the prominent high amplitude anomaly 

observed at c. 1.117 s TWT at the level of reflection A200. The acoustic anomaly 

appears to disrupt and distort reflection A200 and several of the reflections 

immediately below, possibly by the scattering of incident energy. This anomaly is 

attributed to the presence of shallow gas or carbonate cements. A columnar seismic 

distortion of localised reflection discontinuities is observed from 1.117 s TWT to the 

seabed. Above the columnar zone a prominent v-shaped notch is apparent in the 

seabed that corresponds to the unit pockmark identified on the Chirp profiler and 

sonar data. It is evident therefore that Depression D86 initially formed at the time 

marked by H I00, was buried, and then renewed fluid expulsion led to the formation 

of the seabed cluster of unit pockmarks.
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6.5.4.3.2 D117

Depression D117 is the largest example of a depression with clustered pockmarks in 

the dataset, and is located in the centre of the Plateau at a distance (> 4 km) from the 

main population of depressions further North (Fig. 6.1). Depression D117 is 

elliptical, > 700 m in long axis diameter (oriented WNW-ESE), covers an area of 

220 km2 and is > 18 m deep at its deepest point (Fig. 6.9). 152 unit pockmarks with 

an average diameter of c. 10-20 m are clustered within the bounds of the depression 

(Figs 6.9b,c). The unit pockmarks are fairly regularly spaced within the depression, 

with an average density of -10 pockmarks per 100 m2 and an average nearest 

neighbour distance of c. 15-20 m. The pockmarks within D117 are identifiable on 

side scan sonar as areas of high reflectivity associated with the presence of 

carbonates or shallow gas (Fig. 6.9c).

In profile (Fig. 6.9a), Depression D117 is imaged as a set of vertically stacked 

concave reflections from a chaotic high amplitude zone (b) at the level of reflection 

CO (c. 0.876 s TWT) to an undulating seabed. Above CO the background reflections 

are generally continuous, parallel and of near uniform thickness. The concave relief 

remains near constant between CO and the seabed as each subsequent reflection 

drapes underlying strata concordantly. A zone of high amplitude reflections is 

observed just above reflection A200.

Beneath CO the signal to noise ratio is comparatively lower, with a columnar near 

complete loss of signal beneath the depression. Reflections at the level of the high 

amplitude interval b and those immediately below, show evidence of distortion, 

disruption and truncation. Several reflections are erosionally truncated against zone

b. Strong de-amplification of the background reflectivity at depths greater than

c. 0.875 s TWT prevents clear imaging of reflections however partial reflections can 

be tentatively traced across at deeper intervals e.g. c. 0.902 s TWT. Based on the 

evidence lor erosional truncation and the gross geometry, a large buried pockmark is 

interpreted at the level of CO.
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Figure 6.9 Depression D117. a) Chirp profiler data showing multiple unit pockmark within the 
depression, b) Seabed dip map, c) Seabed side scan sonar. Cross section is taken diagonally 
NW-SE through the centre of the depression
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Zone a (at the level of A200) is a group of high amplitude reflections which are 

distinctly different from zone b. Zone b is a chaotic mass of distorted reflections 

whereas those localised above A200 represent sub-vertical swathes of distinct 

reflections within zone a. The host interval for these sub-vertical reflections is 

typified by near-continuous seismic facies, with localised amplification. 

Importantly, the sub-vertical high amplitude zones are not exclusively spatially 

consistent with v-shaped notches at the seabed that are interpreted as unit pockmarks 

(Fig. 6.9, labelled ad). Bow-tie artefacts are abundant beneath the unit pockmarks. 

Vertical blanking zones extend from the base of the high amplitude zones in zone a 

down to the level of the base of the large pockmark at CO, which as suggested above, 

could either be imaging problems or fluid flow conduits.

6.5.5 Geometry and spatial distribution

In order to determine potential relationships between geometrical variables e.g. 

diameter and depth, a sub population of unit pockmarks not associated with 

depressions, and the total population of depressions was analysed. The sub­

population of unit pockmarks was based on a quadrate system of 1 km2 grids. 

Representative samples (based on average diameter) were measured from each 

quadrate. In some quadrates the low number of unit pockmarks present made 

sampling inappropriate.

Basic geometrical measurements of unit pockmarks and depressions have been 

collated in Figure 6.10 and Appendix A4. Depression geometry is utilised as a proxy 

for buried pockmark geometry. Correlations between geometrical variables are not 

statistically significant but show a general positive trend between 1) unit pockmark 

diameter and depth, 2) depression diameter and depth, 3) unit pockmark area and 

depth, 4) depression area and depth, and 5) depression area, diameter and depth and 

number of unit pockmarks contained within the depression (Fig 6.10)*. Taken 

together, these correlations imply a scaling relationship to both unit pockmark and

* Not all graphs are shown -  consult appendix A4
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depression morphologies. Depressions which do not contain unit pockmarks show 

no correlation between geometries and therefore no scaling relationship (Fig. 6.10c).

Density plots of unit pockmark distribution show “hotspots” of unit pockmark 

occurrence (Fig. 6.11c,d). Density plots of total unit pockmark population (Fig. 

6.11c) and unit pockmark populations not associated with depressions (Fig. 6.1 Id) 

are shown. A background density of 1-20 unit pockmarks/km2 is evident, with a 

consistent zone of hotspots in the east of the Plateau. Above background densities 

(> 40 pockmarks / km2) in the northwest and north east suggest depressions are a 

focus for the spatial formation of unit pockmarks.

The number of unit pockmarks contained within a single depression ranges from 0- 

152. There is no spatial pattern between the number of unit pockmarks contained by 

a depression and the spatial location of the depression (Fig. 6.1 l.b). At a local scale, 

unit pockmarks appear to be preferentially positioned on the lateral margins of the 

Plateau, leaving a pockmark-free central zone (Fig. 6.1 la.). The only seabed features 

present within this zone are a minority of depressions which do not contain unit 

pockmarks. This small scale spatial absence of unit pockmarks (< 1 km width) is not 

detected by the density plots which average the number of unit pockmarks within a 

square kilometre.
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Figure 6.10 Geometrical relationships, a) Unit pockmark diameter and depth, b) Depression diameter and depth, coloured according to the number of unit pockmarks contained within the depression, c) Depression diameter and 
depth. Only those depressions without unit pockmarks are graphed, d) Depression diameter and number of unit pockmarks contained within the depression.
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Figure 6.11 Spatial distribution, a) Spatial distribution of unit pockmarks on the Plateau (outline). Note the absence of pockmarks in the centre-North of the Plateau, b) Spatial distribution of depressions, coloured 
number of unit pockmarks contained within the depression, c) Total unit pockmark population density plot, d) Unit pockmark density plot. Unit pockmarks contained within depressions are stripped out.

according to the
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6.5.6 Timing of buried pockmark formation

The preceding descriptions show clear evidence that pockmarks have formed at the 

seabed, and also at shallow depths of < 100 ms beneath the seabed. Those forming at 

the seabed are generally < 30 m in diameter, whereas the buried pockmarks are much 

larger, typically > 100 m diameter (using diameters measured for associated seabed 

depressions as a proxy). The unit pockmarks occurring at the seabed are interpreted 

to have formed since 9,000 years BP. Recent sedimentation rates are high 

(Maldonado and Stanley, 1979; Ducassou et al., 2007; Loncke et al., 2009), and for 

these 1,728 unit pockmarks to have survived intact at the seabed suggests a very 

recent time of formation. It has been noted that the unit pockmarks all seem to link in 

some way through high amplitude trails to Horizon A200, and this surface is dated 

by C14 chronostraigraphy at c. 9,000 yrs BP. This sets an upper time limit for the 

formation of these unit pockmarks. It is not known whether they formed 

synchronously or diachronously within this time interval.

The timing of buried pockmark formation is based on the identification of erosional 

truncation of host strata at depth, and the assignment of a marker horizon at the 

envelope of the individual erosional truncation points. Confident assessment of 

pockmark timing is restricted specifically to those buried pockmarks that are clearly 

imaged by the seismic profiles (20 % of total population), therefore inferences made 

below are based solely on this sub-group and can not be extrapolated to the total 

population.

There is a distinct clustering of buried pockmark timing in the interval immediately 

above horizon DO (Fig. 6.12). Buried pockmarks are only observed on half (4 out of 

9) of the arbitrary chronostratigraphic and chronostratigraphic dated horizons 

mapped, namely CO, H80, H I00 and DO. The results indicate that a significant 

proportion (75 %) of the buried pockmarks have formed at time period H I00. A 

further 4 formed during CO, 2 at H80 and 1 in DO (the horizon overlying MTD3). No 

large normal pockmarks have formed since CO. There is no correlation between the
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relative age of the buried pockmark and depression depth, diameter or number of

pockmarks*.

* Graphs presented in Appendix A4
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Figure 6.12 Spatio-temporal distribution of buried pockmark formation. Chronostratigraphic 
(CO and DO) and arbitrary chronostratigraphic (H80 and H100) dating shows no spatial pattern 
to the temporal formation of buried pockmarks. White outlines indicate those depressions 
which could not be dated.
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I infer from this that significant normal pockmark forming fluid migration on the 

Plateau has been intermittent yet persistent between the time of marker DO and CO. 

The sampled data suggests that normal pockmark formation was restricted to specific 

events in time as indicated by their stratigraphic occurrence on only a few specific 

horizons between the period 100,000 yrs BP (DO) to 15,000 yrs BP (CO). The 

majority of buried pockmarks formed during a single fluid expulsion phase, over an 

interval (H I00) midway between CO and DO, tentatively estimated at c. 50,000- 

80,000 yrs BP.

6.5.7 Summary and interpretation

The large depressions observed at the seabed collectively represent a form of relict 

topography whereby pockmarks with diameters generally > 100 m formed in the 

Late Pleistocene, and were then buried by the mainly hemipelagic sediments (clay 

rich) of Unit 4. The deposition of hemiplegic drape across the Plateau was 

insufficient to completely infill the large pockmarks, topographically smoothing the 

seabed. The drape layer “moulded” to the original pockmark morphology creating a 

near uniform thickness of sediments over the crater, perpetuating the pockmarked 

morphology through time. Fill of the pockmark crater is observed, and this 

preferential fill may be a function of the crater morphology protecting deposited 

sediments from erosion by bottom currents. To date, the majority of the identified 

buried pockmarks have not been completely in-filled.

The large depressions are not always the locus for unit pockmark formation at or 

close to the modem seabed, but c. 77 % of the total of 142 large depressions have at 

least 5 unit pockmarks within their confines. These unit pockmarks are associated 

with high amplitude reflections at shallow depths, and by analogy with similar 

anomalies seen below other pockmarks these could either be due to carbonate 

cements or to the presence of shallow gas (Judd and Hovland, 2007; Hovland et al., 

2010). In either case, there is evidently a renewed phase of fluid or gas expulsion in 

the very recent past. It seems most likely that whenever a conduit was formed during 

the initial stage of pockmark development, that this conduit was reactivated during
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this latest stage of fluid expulsion. The main evidence for this is the confinement of 

the clusters of unit pockmarks to within the boundaries of the depressions 

themselves, suggesting a high degree of fluid focusing during this last stage of fluid 

expulsion, and with the same locus as for that responsible for initial, larger pockmark 

formation. It is also notable that depressions without unit pockmarks are more 

thoroughly infilled by the drape deposits of Unit 4 than those with unit pockmarks, 

suggesting that a) there may be a tendency for this latest fluid expulsion episode to 

have suppressed the effectiveness of any infill mechanism or b) repeated or renewed 

venting eroded any infilling sediment.

An interesting and important observation is made regarding high amplitude 

fluctuations in the largest depressions containing multiple unit pockmarks (Fig. 6.9, 

labelled a a). The sub-vertical high amplitude zones observed beneath the unit 

pockmarks are an enigmatic feature of this dataset. This phenomenon is also 

observed within other parts of the study area and is not uniquely related to the 

depressions (see Chapter 7). It is clearly not related to layer-bound acoustic 

impedance contrasts because the high amplitude reflections cross-cut stratal 

reflections. I therefore speculate that this phenomenon is the result of biological 

processes which produce either gaseous or cemented by-products, which are 

detectable using high resolution seismics. My preferred interpretation is carbonate 

precipitates as the product of palaeo(?) microbial activity e.g. sulphate reduction or 

the anaerobic oxidation of methane (AOM). Similar high amplitude waveforms have 

been reported from the Arafura Sea, Northern Australia (Rollet et al., 2009), but as 

yet, their origin remains a mystery.

6.6 Discussion

Having established that there are essentially two modes of pockmark occurrence in 

this part of the NDSF during the Late Pleistocene to Recent, the remaining focus of 

this chapter tackles the questions of what hydrodynamic system was responsible for
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their formation, and what the wider implications of this work can be considered to 

be.

6.6.1 Fluid migration pathways and potential sources

A number of previous studies have shown that there is extensive evidence for 

widespread fluid migration within the NDSF (Loncke et al., 2002; Loncke and 

Mascle, 2004; Dupre et al., 2007; Garziglia et al., 2008; Bayon et al., 2009; Loncke 

et al., 2009). Highly focused fluid migration features such as mud volcanoes, mud 

pies, gas chimneys, pockmarks, carbonate crusts/pavements, chemosynthetic 

communities and mud mounds/diapirs are common (Bayon et al., 2009; Dupre et al., 

2007; Loncke and Mascle, 2004). It is not known precisely when these features 

formed or whether they are currently active, however given the widespread 

distribution (approx. 600 km x 300 km area of the NDSF) and the considerable 

number of these features it is likely that a significant flux has occurred episodically 

throughout the Late Pleistocene to Recent during a time of rapid sedimentation on 

the fan (Loncke and Mascle, 2004).

Highly focused fluid flow via vertical conduits, be they pipes or mud volcanoes, is 

generally attributed to the generation of localised overpressured cells (Swarbrick and 

Osborne, 1996; Cartwright, 2007; Cartwright et al., 2007; Loseth et al., 2009). If we 

assume that the flux is crudely related to the magnitude and volume of the 

overpressure cell (Gallo and Woods, 2004; Cathles et al., 2010), then given the 

considerable size variation between features i.e. mud volcanoes (c. 1-5 km diameter) 

and pockmarks (< 20 m diameter) (Loncke and Mascle, 2004), it seems likely that 

overpressured cells must vary by orders of magnitude over the NDSF (assuming all 

other factors are equal).

Methane generation is one likely mechanism to generate these localised 

overpressured conditions (Swarbrick and Osborne, 1996), or at the very least prime 

the sealed cells for subsequent overpressure excursions during rapid loading or 

unloading (Ingram et al., 2004). Both thermogenic and biogenic methane sources
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can be invoked in this area (Bayon et al., 2009), and results from exploration drilling 

confirm that both types of methane are present at relatively shallow depths in the 

sedimentary column (Vandre et al., 2007).

6.6.1.1 Buried pockmarks

Potential fluid migration pathways are presented in the plumbing diagram (Fig. 6.5). 

It is probable that both thermogenically and biogenically sourced methane migrates 

through the succession via a multitude of pathways to the level of MTD3. Vertical 

and lateral migration is considered to be facilitated by MTDs, faults, pipes, channel- 

levee complexes and folds in a range of seal bypass systems (Cartwright et al., 2007; 

Cobbold et al., 2009; Gay et al., 2003; Hustoft et al., 2010; Hustoft et al., 2009a; 

Hustoft et al., 2009b; Hustoft et al., 2007; Keller et al., 2007). For example, MTDs 

are commonly regarded as a potential seal unit, and migrating methane is often 

observed to be trapped at the basal shear surface of slides (Bunz et al., 2005; Frey- 

Martinez et al., 2006; Loncke et al., 2009). Localised amplitude brightening within 

MTD3 (Fig. 6.13) argues positively for methane migration through the slide 

complex, possibly via the complex juxtaposition of thin sandy layers contorted and 

connected via small faults and folds that are to be expected at the sub-seismic scale 

throughout such a deposit (Bull et al., 2009). These fluid migration indicators are 

frequently observed beneath buried pockmarks and may account for the spatial 

distribution of these larger pockmarks.
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6.6.1.2 Unit pockmarks

In contrast to the buried pockmarks, unit pockmarks are thought to be sourced from 

cyclic pore water seepage (Hovland et al., 2010). This is a reasonable assumption 

given the random spatial distribution of background unit pockmarks, their small size, 

shallow routing depth and disregard for structures at depth. However, it has been 

interpreted here that all the unit pockmarks are observed to root at the level of A200 

(±2ms), a seismic horizon of Holocene age (9,000yrs BP). The inferred high organic 

Carbon content of this layer suggests that biogenic methane generation may play a 

role in their formation (Parkes et al., 2000; Gontharet et al., 2007; Pimenov et al., 

2010). Chaotic acoustic disruption, high amplitude anomalies and acoustic wipe-out 

zones directly beneath unit pockmarks suggests that possible microbial activity 

associated with the A200 horizon, in addition to possible pore water seepage, may 

have contributed to the generation and composition of the fluids responsible for 

pockmark formation (Fig. 6.6). This could certainly account for the large number of 

unit pockmarks that are found throughout the study area away from the large 

depressions at the seabed.

Clustered unit pockmarks in depressions may have a different genesis as suggested 

by their clear spatial association with buried pockmarks. Unit pockmarks within and 

outwith the depressions are of comparable size and geometry, are acoustically similar 

and rooted at the same horizon, however they are distinguishable based on several 

significant observations; 1) significant spatial clustering of the unit pockmarks is 

only observed within the depressions, indicating a point source within the depression 

may cause clustering, 2) there is no seismically observable difference between 

horizon A 200 on the Plateau and inside the depressions which could possibly account 

for this clustering effect, 3) horizon A200 is observed within depressions which do 

not contain unit pockmarks suggesting it is not simply the presence of this horizon 

within a 4-way dip structure which influences unit pockmark location, 4) significant 

brightening and disturbance of horizon A200 above background levels is only 

observed in depressions with unit pockmarks (Fig. 6.9.), 5) wipe-out zones which 

may be indicative of gas migration are observed to link buried pockmarks with unit 

pockmarks (Fig. 6.9). Based on these arguments I suggest that the unit pockmarks 

are sourced via the same conduits that fed the initial pockmark formation by a
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combination of shallow-derived pore water and biogenic methane and deeper- 

sourced fluids (possibly pore fluid plus thermogenic or deeper biogenic methane). 

The plumbing system emplaced for the initial pockmark thereby provided a 

preferential focused fluid flow pathway for the migration of fluids to the seabed 

during this latest fluid expulsion episode.

6.6.2 Triggering mechanism

Multiple buried pockmarks on a single reflection implies widespread fluid migration 

and pockmark formation within a restricted time window. Based on a consideration 

of average sedimentation rates, available dating of specific shallow horizons and the 

c. 1-2 m vertical resolution of the AUV acquired high resolution seismic this is 

estimated to be < 1000 yrs. Potential deeper to shallow fluid migration routes on the 

plateau are likely to have been highly tortuous, involving vertical and lateral 

migration from depths in excess of 200 metres (Fig. 6.5). I suggest that fluid 

migrates across strata via bypass systems including faults and pipes, and then 

migrates up-dip along relatively permeable strata along local structures where it is 

temporarily trapped by low permeability seals such as the bases of MTDs or within 

levee complexes before migrating further upsection via crestal breakout features. At 

each trap locality on the vertical ascent route, fluid is trapped and accumulates to a 

threshold of local overpressure before seal breach is achieved and the fluid migrates 

out of this temporary storage. This model requires variable amounts of time for 

pressure build-up depending on the migration route, fluid flow pathway, number of 

temporary traps and the time taken to accumulate fluid in the trap and generate 

sufficient overpressures. Variability in the rate of ascent of fluid from a source at 

depth is inferred to produce pockmarks in a staggered time sequence as evidenced by 

buried pockmarks occurring at different reflections in the basal part of Unit 4.

Given that the majority of pockmarks formed at or very close to the same horizon, I 

suggest that the migration route for the initial phase of pockmark formation (leading 

to the set of large buried pockmarks) was probably of short distance and sourced 

from a single shallow storage layer. I suggest that MTD3 is the most likely source
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for the buried pockmarks because it is the shallowest layer that has amplitude 

anomalies indicative of trapped gas that extends across the full area where buried 

pockmarks have been observed (Fig. 6.13). I envisage a hydrodynamic system where 

deeper sourced pore fluid plus methane migrated from depth to the level of MTD3 

where it was trapped. Ingressing fluid accumulated through time building 

overpressure and priming the layer for fluid expulsion. I propose that an externally 

imposed triggering mechanism promoted multiple seal breaches and the formation of 

the suite of large pockmarks at the palaeoseabed, at some time post the 100,000 yr 

marker horizon (DO). It is probable that the significant difference between formation 

ages of those pockmarks in the North (HI00) and South (CO) of the plateau are due 

to substantial differences between the geodynamic and fluid-dynamic locations of the 

pockmarks, requiring different overpressure cells possibly within the same source 

layer (MTD3), or conceivably with a different source layer.

A number of potential triggering mechanisms can be considered: (1) waves, tides and 

atmospheric pressure variations, (2) sediment loading and unloading e.g. MTDs, (3) 

earthquakes and (4) changes in eustatic sea level (Judd and Hovland, 2007). Waves, 

tides and atmospheric induced pressure variations has been proposed as a cyclic 

“pumping” mechanism for unit pockmarks (Hovland et al., 2010) but are considered 

insufficient to produce large-scale MTD seal failure. Sediment loading from MTDs 

is not observed in the sedimentary succession, however it is possible that undated 

slope failure at the NE edge of the plateau (Fig. 6.1), or reactivation of MTD3 may 

have induced laterally extensive pressure variations. Slope failure can potentially be 

triggered by earthquakes and/or sea level change (Leynaud et al., 2009; Piper et al., 

1985; Reeder et al., 2002; Rothwell et al., 2000) therefore the triggering mechanisms 

may not be mutually exclusive.

Due to the position of the NDSF close to the zone of interaction between the 

Anatolian, African and Arabian plates (Fig. 3.2), the Egyptian passive continental 

margin has been affected by earthquakes, both in recent and historical time (El-Sayed 

et al., 2004). The Temsah and Rosetta fault trends are thought to have been mostly 

active in the early Cretaceous, however low magnitude earthquake epicentres 

(magnitudes not exceeding 6.7) have been reported offshore Egypt during the 

Quaternary and Holocene (McKenzie, 1970; El-Sayed et al., 1994; El-Sayed et al.,
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2004). Mean return periods for earthquakes in the Gulf of Suez are predicted to be

c. 10,000 yrs for magnitude 6 earthquakes (El-Sayed et al., 2004). Tentatively 

extrapolating the return period to the Late Pleistocene, it is possible that a magnitude 

> 6 earthquake could provide a triggering mechanism (Hasiotis et al., 1996), however 

the large distance from the epicentre may reduce the effects of pore pressure rise and 

sediment rearrangement due to shaking of the MTD seal.

Sea level has fluctuated in a generally falling trend during the late Pleistocene, 

reaching its lowest level c. 18,000 yrs BP (Fig. 3.2). Dates for significant normal 

pockmark formation at c. 50,000-80,000 yrs BP (approximated from sedimentation 

rates) and 15,000 yrs BP (chronostratigraphically dated) are of comparable age to 

two significant drops in sea level (Fig. 3.2). A dramatic fall in eustatic sea level is 

likely to reduce hydrostatic pressure and promote hydrofracturing and/or capillary 

migration in buoyant overpressured fluids (Judd and Hovland, 2007), such as those 

trapped beneath MTD3. Similar correlations between falling sea level and pockmark 

formation have been observed by Gay et al. (2007b).

6.6.3 Longevity of conduits

Although pockmarks have been recognised as resulting from highly focused fluid 

expulsion for nearly 40 years (King and MacLean, 1970), surprisingly little is 

understood of the conduits that presumably underlie the vast majority of these 

features. Pockmarks were first unambiguously linked to pipe-like conduits by 

Loseth et al (2001), since then a number of other studies have reported a close spatial 

association between pockmarks and a root conduit that is pipe-like (Gay et al., 

2006b; Haacke et al., 2009; Hustoft et al., 2010; Hustoft et al., 2007; Ligtenberg and 

Connolly, 2003; Pauli et al., 2008; Westbrook et al., 2008). This spatial association 

points to a relatively higher permeability for the pipe, but the manner in which the 

higher permeability is achieved, be it a static or dynamic property is poorly 

constrained (Cartwright et al., 2007). Nevertheless, it is often assumed that pipes 

contain a swathe of hydraulic fractures that propagated during the initial phase of
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fluid expulsion that led to a pockmark forming at the top of the pipe (Chapter 4 and 

references therein). The lack of knowledge of the conduits stems from their poor 

representation in the rock record (Hanken et al., 1996; Roberts et al., 2010) and the 

inability of the seismic method to directly image their internal characteristics (Perez- 

Garcia et al., 2009).

The clear association described in this study between an underlying pockmark, and a 

later cluster of smaller pockmarks thus provides additional insights into conduit 

behaviour at a time scale that is high resolution by normal geological standards. The 

main conclusion reached in this study is that the conduits were reactivated after a 

lengthy period of inactivity, suggesting that whatever the mode of higher 

permeability was for the initial period of pockmark formation, that it could be 

resurrected for a later period, even after a maximum time gap of < 100,000 yrs (DO). 

This is perhaps not surprising, since if the conduit is indeed a zone of high fracture 

permeability, then a later pressure pulse could easily dynamically re-open pathways, 

or at least selected pathways from the available fracture network.

Several previous studies have shown examples of episodic use of a single conduit 

over longer time scales of millions of years (Cartwright et al., 2007; Hansen, 2006). 

Longevity has been implied, for example, in seep studies where persistent gas 

leakage through pockmarks is common, supporting vent communities and the 

generation of sonar-detectable carbonate hardgrounds (Gay et al., 2007a; Gay et al., 

2006a; Gay et al., 2006b; Hovland, 2002; Hovland and Judd, 1988; Hovland and 

Svensen, 2006; Hovland et al., 2005; Pauli et al., 2008; Pauli et al., 1995). At the 

lower resolution of standard 2D or 3D seismic data longevity has been implied by the 

interpretation of vertically stacked concave reflection geometry as buried or stacked 

pockmarks (£if<?i et al., 2003; Curzi and Veggiani, 1985; Mazzotti et al., 1987) or by 

the localised high amplitude brightening above buried craters (Chapters 4 and 5). At 

outcrop, carbonate cemented pipes are testament to the endurance of fluid migration 

(Clari et al., 2004; De Boever et al., 2006b, a; De Boever et al., 2009b; Nyman et al.,

2009).

Longevity of conduit activity must surely be related to the precise hydrodynamic 

context, and the degree of reactivation of conduits must then be related to fluid flux.
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It seems reasonable that flux can be approximated from pockmark geometry (all 

other considerations being equal). In this study, the size of the buried pockmarks is 

several orders of magnitude larger than the unit pockmarks, and I suggest therefore, 

that an order of magnitude difference in flux was involved for the different sets of 

pockmarks. Given the size, number of features, planform geometry, spatial 

distribution, age and suggested mode of formation, buried pockmarks represent a low 

frequency, high magnitude flux. In contrast, unit pockmarks represent a higher 

frequency, lower magnitude process. Taking representative analogues it is possible 

this variation in observed flux is comparable with a violent eruptive phase followed 

by a quiet degassing phase as observed for some mud volcanoes (Clari et al., 2004; 

Clari et al., 2009).

Strong backscatter or hard sonar targets are indicative of MDAC or methane trapped 

within near-seabed sediments. The NDSF is an environment with high depositional 

and burial rates, therefore to see such a well-resolved, acoustically high amplitude 

expression of the seabed associated with unit pockmarks suggests a recent phase of 

activity. Those depressions without unit pockmarks are not visible in the backscatter 

sonar data, suggesting the Plateau hosts a combination of active, recently active, and 

totally dormant conduits.

Unit pockmarks have not been observed at depth within the drape package of Unit 4 

suggesting that the unit pockmarks began to form within the depressions recently 

(since Horizon A200 or c. 9,000 yrs). Unit pockmark clustering in the depressions is 

related to a spatially specific fluid source suggested here to be the MTD3. I suggest 

that clustered unit pockmarks represent a bifurcation or local scattering of a single 

highly focused fluid supply. Observations presented here suggest bifurcation may be 

caused by two end-member mechanisms. Firstly, fluid expulsion through the centre 

of the buried pockmark to the seabed (Fig. 6.8). This is an analogous mechanism to 

that suggested for unit pockmark formation by Hovland et al (2010) but without the 

forced migration of fluids to the buried pockmark edge. Secondly, fluid pressure 

builds up beneath a diagenetic seal (carbonate?) formed by the buried pockmark 

leading to seal breach and continued vertical migration (Fig. 6.9) (Hovland et al.,

2010). Fluid is focused by the pipe feeding the buried pockmark. By analogy with 

previous studies it is inferred that this pipe may represent an amalgamation of
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hydrofraclure networks or possibly small (below seismic resolution) “pipes” (Davies 

and Stewart, 2005).

Seepage through the system is perhaps implied but cannot be observed (Fig. 6.8). 

Seepage bifurcation suggests that fluid migration occurred under sufficiently low 

pressure gradients to permit migration along multiple branch-like hydrofracture 

networks (Fig. 6.14). Under low flux conditions, the fluid ‘batch’ selects random 

migration pathways based on paths of least resistance provided by heterogeneities in 

permeability. Each branch which reaches the seabed produces a single unit 

pockmark. It is assumed that each branch could potentially permit fluid migration on 

multiple occasions, however blockages due to sediment deposition and/or mineral 

precipitation would encourage the formation of additional unit pockmarks (Hovland, 

2002).
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Figure 6.14 Conceptual model. A) Buried pockmark covered with drape. B) Post formation 
fluid migration via seepage. Q . Post formation fluid migration following breach of a MDAC
seal.
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An alternative mechanism to produce bifurcation is the formation of a temporary seal 

(Fig. 6.14). Following formation of the normal pockmark, chemosynthetic

communities grow, sustained by methane migration. Through time MDAC develop. 

Their growth seals the pockmark (Hovland, 2002), restricting fluid/methane 

migration and chemosynthetic community growth, and the normal pockmark is 

buried by drape. Overpressures build beneath the seal, leading to small-scale, 

localised seal breach. By analogy with seep studies, vertical “pipe” pathways are 

established to the seabed forming a unit pockmark. This pipe may represent either; 

a) an open conduit, possibly carbonate cemented, b) a brecciated conduit, or c) a 

hybrid of these two states (De Boever et al., 2009a; De Boever et al., 2009b; De 

Boever et al., 2006a, b; Nyman et al., 2009). Similar to normal pockmarks, unit 

pockmark formation could either be a one off (triggered) event or intermittent but 

persistent through time (Chapter 5). As with the seepage mechanism, pathways may 

be reused or sealed. Interestingly, only the youngest (CO) buried pockmarks with the 

most abundant unit pockmarks clusters above, that are located in the south plateau 

area show evidence for a potential carbonate seal (Fig. 6.9. zone b). Drawing 

comparisons between unit pockmarks within and outwith depressions, it is possible 

that unit pockmark formation is a single eruptive event.

A conceptual model consisting of multiple individual pathways has the advantage of 

diachronous formation times. Local low flux bleed-off of pressure is a small-step 

valving process that prevents large scale blowout of the depression in a single more 

catastrophic event. I propose that the number of unit pockmarks in a cluster is a 

function of fluid flux, fluid composition, permeability heterogeneities in the drape, 

MDAC development, sediment deposition, mineral precipitation and overpressure 

development and release.

6.6.4 Implications

The most significant implication of this study is the definitive evidence that conduits 

remain viable after lengthy periods of dormancy, and can be reactivated if the
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hydrodynamic conditions require a renewed phase of focused fluid expulsion (and 

pressure bleed-off).

A secondary implication pertains to the interpretation of stacked pockmarks. This 

study has shown that some caution is required when interpreting concave upwards 

reflection configurations above buried pockmarks. This type of geometry has been 

referred to as “stacked pockmarks” in several previous studies (Baraza and Ercilla, 

1996; Cifipi et al., 2003), and has been linked to the possibility of slow seepage after 

an initial phase of more catastrophic fluid expulsion especially when imaged in 3D 

data (Chapter 4). This study has shown, however, that pockmark-like morphology of 

concave upwards reflections can result purely from drape-type deposition failing to 

infill the initial seabed crater, leaving vestigial relief. I suggest that observations of 

erosional truncation of host strata should be used to distinguish drape perpetuation 

above buried pockmarks from true stacked pockmarks.

6.7 Concluding remarks

One hundred and forty two buried pockmarks from the Rosetta Region of the 

Western Nile Deep Sea Fan have been analysed in terms of their time of formation 

and longevity of post formation fluid migration. Stacked concave reflections above 

the buried pockmarks are interpreted as pockmark arrays. Pockmark arrays represent 

a perpetuation of pockmark-like morphology of concave upwards reflections 

resulting from a purely drape-type deposition failing to infill the initial seabed crater. 

The main findings can be summarised as follows;

• The Plateau area contains 142 buried pockmarks and 1728 unit pockmarks. 46 % 

of unit pockmarks are clustered within seabed depressions above the buried 

pockmarks. Depressions can hold between 1 and 152 unit pockmarks.

• Buried pockmarks formed between 100,000 yrs BP and 15,000 yrs BP. The 

majority forming at a single reflection estimated to be c. 50,000-80,000 yrs BP.
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• The formation of the buried pockmarks is believed to result from a single 

triggering mechanism and is consistent with a steep drop in eustatic sea level 

c. 50,000-80,000 yrs BP.

• Pockmark arrays permit post-formation fluid migration through the buried 

pockmark to the seabed. These conduits remain viable after lengthy periods of 

dormancy, and can be reactivated if the hydrodynamic conditions require a 

renewed phase of focused fluid expulsion and pressure bleed-off.

• The longevity of post formation fluid migration is estimated to be ~50,000- 

100,000 years in this part of the Rosetta complex.
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Chapter 7
This chapter will be submitted for publication as Moss, J.L., and Cartwright, J., 2010, 

Overpressure and release: The drainage cell characteristics of a pockmark field, Nile 

Deep Sea Fan to Marine and Petroleum Geology. Currently seeking permission to 

publish.

The work presented in this chapter is that of the lead author (JLM), editorial support 
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7 O V E R PR E SS U R E  AND RELEASE; THE 

DRAINAGE CELL CHARACTERISTICS 

OF A POCKMARK FIELD, NILE DEEP 

SEA  FAN

7.1 Abstract

Over 25,000 seabed pockmarks were mapped from the Rosetta Channel region of the 

Western Nile Deep Sea Fan (NDSF) using concurrent Ultra High Resolution 2D, 

Chirp profiler and side scan sonar data which spans the Holocene-Pleistocene period. 

Within the region, a pockmark field containing > 13,800 pockmarks was analysed 

using spatial statistics to determine the distribution of pockmarks within the field. 

Pockmarks within the field are small (-16 m diameter), shallow (~0.5 m deep) 

circular depressions which formed within the last -6,500 years. The fluid source for 

the field is identified as an accumulation/generation of gas beneath a hemipelagic 

seal c. 20-40 ms beneath the seabed. Statistical spatial analysis of the field confirms 

the distribution of pockmarks is not random. An exclusion zone surrounding each 

individual pockmark is identified. The exclusion zone is a unique minimum radius 

around each pockmark which is not penetrated by any other pockmark. The 

exclusion zone works in unison with Self-Organised Criticality (SOC) in determining 

the spatial distribution of pockmarks within the field. The exclusion zone is 

interpreted as a pockmark “drainage cell”. A conceptual model for a pockmark 

drainage cell is proposed whereby pockmark formation dissipates a radius/area of 

fluid and overpressure, thereby preventing the formation of another pockmark within 

that cell. Consequently, pockmarks are observed to separate or produce anti­

clustering tendencies within the field.
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7.2 Introduction

One of the most significant processes involved in pockmark formation is 

overpressure and release. The presence of fluid escape features like seafloor 

pockmarks (Hovland and Judd, 1988) and seismic chimneys (Loseth et al., 2001) 

manifest localized zones of high fluid pressures in the subsurface (Judd and Hovland, 

2007). Overpressure (i.e. pore pressure in excess of hydrostatic) may develop from 

rapid sediment loading (> 1 m/ka) (Gibson, 1958; Rubey and Hubbert, 1959), 

tectonic compression and the rapid generation or storage of methane (Judd and 

Hovland, 2007) in low-permeability environments. Overpressure and release 

contribute to fluid venting where pressure gradients drive lateral, downdip, localised 

updip and vertical flow (Hustoft et al., 2009a)

Pockmark/chimney structures are regarded as subsurface pressure valves (Judd and 

Hovland, 2007), where their spatial distribution roughly approximates the location of 

maximum overpressure in the subsurface. Pockmark fields by analogy are loci for 

widespread overpressure generation and fluid migration from the shallow subsurface 

(Scanlon and Knebel, 1989; Kelley et al., 1994; Christodoulou et al., 2003; Garcia- 

Garcia et al., 2004; Chand et al., 2009; Rollet et al., 2009; Webb et al., 2009). For 

example a) The Nyegga pockmark field, mid Norwegian margin contains -400 

pockmarks (density 4-10 pockmarks/km2) is sourced from a contourite layer 300- 

400 ms TWT bsf (Hustoft et al., 2009b) , b) Fram Strait pockmark field, offshore 

NW Svalbard, contains > 100 pockmarks is believed to be sourced from the free gas 

zone beneath a BSR at -200 mbsf (Hustoft et al., 2009b), c) it is proposed that the 

Patras Gulf, Greece pockmark field (density 80 pockmarks/km2) is sourced from 

shallow gas trapped > 30 m bsf (Hasiotis et al., 1996), and d) Belfast Bay, Maine 

pockmark field contains 2,300 pockmarks (density 240-270 pockmarks/km2) is 

understood to be sourced > 10-40 mbsf (Rogers et al., 2006).

Pockmark fields represent multiple points of overpressure generation and release 

from a spatially extensive shallow fluid source(s). The spatial location of the points 

of overpressure is of particular importance when interpreting the genesis of 

pockmarks within a field. Quantitative interpretation of the spatial distribution of
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pockmarks is a relatively new technique within the fluid flow literature (Li et al., 

2007; Olu-Le Roy et al., 2007; De Boever et al., 2009b; Galeron et al., 2009; 

Hammer, 2009; Webb et al., 2009; Jane et al., 2010). The strength of this technique 

lies in coupling pockmarks with variations in the distribution of overpressure, fluid 

source and shallow seals e.g. hydrates, and reconstructing fluid flow patterns and 

spatio-temporal fluid migration characteristics.

In order to enhance our understanding of the spatial distribution of overpressured 

fluids within pockmark fields I integrate ultra high resolution 2D, Chirp profiler and 

side scan sonar data from a pockmark field on the Western Nile Deep Sea Fan 

(NDSF) (Fig. 7.1) with statistical spatial analysis. I aim to quantitatively describe 

the spatial distribution of pockmark formation within a field in order to address 

questions like why are pockmarks not tightly packed in a wall-to-wall honey-comb 

structure given a spatially extensive fluid source?
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Figure 7.1 Location map. a) Dip map of the Rosetta Region. Area of Chirp profiler and side scan sonar coverage, showing location of STACOR (black dot), Rosetta pockmark field (grey outline) and study area (black box). AUV 
examples (solid white lines) and UHR examples (dashed white lines) are shown, b) Location of Rosetta Region in the Western Nile Deep Sea Fan. Tributaries of the Nile River, Rosetta River and Damietta River are shown. The location 
of Alexandria is shown (black dot), c) Dip map of the study area within the pockmark field.
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7.3 Geological setting

Drainage Cell Characteristics. NDSF

Regional geology and tectonic setting of the NDSF is given in Chapter 3 (Fig. 3.2).

A 17.8 m STACOR core collected on behalf of BP in 2004 from the eastern bank of 

the Rosetta channel was geotechnically sampled (Fig. 2.5). The core indicated a 

Holocene-Pleistocene, predominantly clay (with some silt), package (Fig. 7.2). An 

important horizon, A030, was chronostratigraphically dated at 6,500 yrs BP.
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0 .0 0  -1  80m : CLAY, very soft

1 .80  - 2 .80m : CLAY, ca lca reo u s

2 .8 0  - 7 .80m : CLAY, ca lcareou s, soft 
becom ing firm, lam inations dark clay

7 .8 0  - 10 .80m : CLAY, lam inations of 
w eakly cem en ted  carbonate clay, 
strong H2S odour, fissured

1 0 .8 0  - 17.80m : CLAY, fissured, 
b lock yto  platy

Figure 7.2 Basic STACOR information 
is given in Figure 2.5.
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7.4 Data and methodology

The data used for this study comprised a combined survey of Autonomous 

Underwater Vehicle (AUV) and 2D Ultra High Resolution (UHR) seismic data were 

collected by Fugro Survey in 2004 and 2005.

Total AUV data coverage for this area (-1000 km ) is referred to as the Rosetta 

Region in the text. Smaller areas on the eastern bank of the Rosetta Channel are
9 9defined as the Eastern Slope (-150 km ), pockmark field (-75 km ) and the study 

area (4 km2) (Figs. 6.3 and 7.1)

For simplicity in handling a large pockmark population (> 13,800) a 2 km x 2 km 

study area was selected from within the pockmark field for the purpose of statistical 

analysis. Geometric information (diameter, depth, area, slope angle) was calculated 

for the 1,477 unit pockmarks within the study area based on the 3 m resolution 

bathymetry data. Density, nearest neighbour index, nearest neighbour distance, 

Ripley’s K, Voronoi polygons and Minimal Spanning Tree (MST) spatial statistics 

were utilised in the analysis.

7.4.1 Errors and limitations

All GIS models based on side scan sonar data have a resolution of 3 m ±1.5 m 

positioning error. Spatial statistics are highly susceptible to the precision of the 

coordinates in the point dataset and the mathematical boundary area imposed on the 

spatial analysis. The centre of each unit pockmark (x,y,z), described by a 4-way dip 

structure, was determined at a scale of 1:1,000 using an aspect (°) model. A random 

point distribution of 1477 points within a 4 km2 area was generated using the GIS 

(ArcView 9.2). A more robust test of the pockmark distribution against a random 

distribution would benefit from multiple random point generation models in addition 

to the single model applied here. Minimum Spanning Tree, hardcore distribution and 

Self-Organised Criticality simulations were compared to a random population

209



Chapter 7 Drainage Cell Characteristics, NDSF

generated from 100 trials of statistically random data. Minimum bounding rectangle 

boundary conditions were applied to the spatial statistics. Boundary conditions were 

fixed by selecting a square quadrate and study area for the pockmark field. Ripley’s 

K calculations were modelled using Ripley’s Edge Correction Formula. The 

calculation of nearest neighbour and MST statistic utilises coordinates that do not 

take into account pockmark diameter thereby restricting minimum distances where 

pockmark perimeters touch i.e. wall to wall pockmarks. This applies to 2 % of the 

population.

7.5 Results

The pockmark field is located in a mid slope position on the Eastern Slope 

(-150 km2) in 400-800 m water depth (Fig. 7.1). The pockmark field is identified as 

a large area of numerous, small, closely spaced pockmarks, distinct from the general 

background distribution of pockmark formation on the Eastern Slope. At the

regional scale, the pockmark field is defined by pockmark densities in excess of >
0 0 100 unit pockmarks/km . This covers an area of -75 km . The pockmark field is

believed to extend east, beyond the limits of the data present here, possibly up to <

18 km, to the eastward limit of the large headscarp (Figs. 2.5 and 7.3).
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503845 513845 523845 533845

Figure 7.3 S tru c tu re  m a p  of  the Rosetta Region. S tru c tu re  m ap  o f  the  la rge  Mass T ranspo r t  
Complex. C on tours  a re  dep th  to the M TC basal sh e a r  surface  (ms) (based on 3D data). Area of 
greatest density p ockm arks  within the field (stippled a re a )  and the s tudy  a re a  is indicated (black 
box). The p ockm ark  field is believed to extend beyond the boundar ie s  m apped  here. Slope 
failures associated with the headscarp  (black line) a re  shown in grey  do tted  lines.
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7.5.1 Seismic sequence stratigraphy of the pockmark field

The Eastern slope is a prograding wedge comprising complex seismic facies of 

interdigitated chaotic sequences at both the resolution o f the UHR and Chirp profiler 

data. This led to difficulty in mapping continuous coherent seismic units within the 

stratigraphy. The slope sediments in the study area are divided here into a series of 

depositional units, based on their correlatability and on distinctive seismic facies 

characteristics. They are not sub-divided based on sequence boundaries; hence they 

are referred to informally as seismic units rather than formal sequences. The 

recorded sequence is o f Holocene-Late Pleistocene age. The units are orientated in a 

downslope direction and display non-uniform unit thickness, with unit thicknesses 

diminishing and pinching out in a distal direction.

Five broad seismic stratigraphic units are identified within the pockmark field (Fig.

7.4). With the exception o f Unit H5 (drape package), these units do not correlate 

with those described in Chapter 6.
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10ms

Unit H5

Unit HP4

Unit HP3 

Unit HP2 1

Unit H5&

S i  Unit HP3

Unit HP2 %-■ " V-
■ w  -=-0 %■

- *-̂ 'r  
I 100 ms

Unit HP1i500m

Figure 7.4 Seismic sequence stratigraphy. 2D UHR data in dip (b) and strike (c) directions and 
Chirp profiler (a) data shown. Mass Transport Deposit units Holocene-Pleistocene 1-4, drape 
package unit Holocene 5. Bottom simulating reflection in the UHR data (Unit H5) is a bubble 
pulse artefact
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7.5.1.1 Unit HP1

Unit HP1 is a predominantly low amplitude seismic facies o f discontinuous and 

chaotic reflections with isolated pockets of high amplitude reflections (Fig. 7.4). The 

unit boundaries are difficult to distinguish but are marked by discontinuous, 

discordant, higher amplitude reflections. Unit HP1 is interpreted as a debris flow 

package with isolated pockets of coarser material (sand) which might contain gas.

7.5.1.2 Unit HP2

Unit HP2 is a predominantly low-medium amplitude seismic facies o f discontinuous 

and chaotic reflections with large isolated pockets o f high amplitude reflections (Fig.

7.4). The unit is of non-uniform thickness and locally thickens in a downslope 

direction before thinning. Unit boundaries are subtle discontinuous, non concordant, 

higher amplitude reflections and difficult to distinguish from the preceding and 

succeeding units. Unit HP2 is interpreted as a debris flow package with isolated 

pockets of coarser material (sand) which might contain gas.

7.5.1.3 Unit HP3

Unit HP3 is a predominantly high amplitude seismic facies of discontinuous and 

chaotic reflections with large zones of high amplitude reflections (Fig. 7.4). The unit 

is of near-uniform thickness but thins and pinches out in a downslope direction. Unit 

boundaries are discontinuous but concordant and horizontal in places, with the upper 

boundary erosionally truncated against Unit HP4. Unit HP3 is interpreted as a debris 

flow package which has been erosionally truncated at its distal end.

7.5.1.4 Unit HP4

Unit HP4 is a predominantly high amplitude seismic facies o f discontinuous and 

chaotic reflections with isolated reflections of above background amplitude (Fig.

7.4). Unit boundaries are discontinuous in places but concordant and parallel to the
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seabed. Internal reflections are highly chaotic but show evidence for minor faulting 

and thrusting propagating into Unit H5. Unit HP4 is interpreted as a debris flow 

package, the large number o f the high amplitude reflections suggest the unit may 

contain numerous sandy or permeable bodies which could contain gas.

7.5.1.5 Unit H5

Unit H5 is a predominantly high amplitude seismic facies of finely layered, 

concordant, slope parallel, near continuous reflections (Fig. 7.4). Unit H5 is 

interpreted as a hemipelagic drape package.

7.5.2 Shallow gas on the Eastern Slope

The Chirp profiler data reveals evidence for acoustic wipeout at the base of the 

shallow sedimentary interval (uppermost < 40 ms). On average, the depth to the 

acoustic wipeout zone is -20-40 ms below the seabed. The top of the acoustic 

wipeout zone is mapped on the basis o f acoustic amplitude of wipeout (high 

amplitude) and the degree to which the wipeout obscures the stratified layering of 

Unit H5 (total obstruction). At the small scale, top of the acoustic wipeout zone is 

not concordant with strata but oscillates with a variable height difference of -10- 

20 ms. The wipeout zone is interpreted as the top of a gas front (Floodgate and Judd, 

1992; Naudts et al., 2009). Similar imaging o f  oscillating gas fronts have been 

observed by Iglesias and Garcfa-Gill (2007) and Naudts et al (2009).

The character o f the gas front and its relationship with the background strata can be 

broadly categorised into three zones, proximal, central and distal (Fig. 7.5). The 

transition between zones is gradational in a downslope direction.
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Figure 7.5 Position of the gas front on the Eastern Slope, a) Proximal, b) Central, c) Distal, d) 
Example of chaotic debris flow material in the near surface
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7.5.2.1 Proximal

The proximal upper slope position is dominated by thinly bedded concordant seismic 

facies (Fig. 7.5). Where reflections are not disturbed by columnar vertical acoustic 

disruption, hereafter referred to as pipes (Loseth et al., 2009), reflections are 

continuous and seabed parallel. The uppermost -40 ms of the shallow sedimentary 

interval is interpreted as hemipelagic drape. The gas front is stratigraphically 

confined to the base of the sequence and does not penetrate into the overlying strata. 

Isolated pockmarks and pipes transect the interval from the level of the gas front to 

the seabed. The proximal zone is upslope of the pockmark field.

1.5.2.2 Central

Thinly bedded, concordant, seabed parallel seismic facies, indicative of hemipelagic 

drape are visible in the uppermost -20 ms of this mid-slope sequence (Fig. 7.5). The 

shallow sedimentary interval is obscured beneath this depth by semi-transparent 

acoustic disruption resulting in blanking of some areas of strata. Within the acoustic 

blanking, visible strata is discontinuous, discordant and of slightly higher amplitude 

than the blanking. It is not possible to map individual reflections due to the acoustic 

blanking effects, however I believe that these reflections represent localised shallow 

debris flow and/or debris slide units, hereafter simply referred to as debris flow units.

The Eastern Slope represents an accommodation zone for debris flow deposition 

from the large arcuate headscarp on the shelf break (Fig. 2.5). Material was probably 

deposited on the slope from 1) shelfal derived turbidite, debris flow and gully 

sources; 2) local instabilities in the headscarp and 3) reactivated shallow slope 

sliding in response to loading and fluid migration. Consequently, the seismic 

sequence stratigraphy is dominated by near-indistinguishable chaotic seismic facies 

which are difficult to separate into distinct seismic units.

The acoustic blanking of strata is visible from the -400 m depth contour and deeper 

(Fig. 7.1). It is probable that the blanking is the result of gas seepage, or generation, 

in the debris flow units both within Unit H5 and/or deeper. It is difficult to
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determine the top gas position, however the gas does appear to be trapped beneath 

the drape layer where present.

The pockmark field is located in this mid slope position (Fig. 7.1). There is an 

observational correlation between pockmarks and debris flow material (Fig. 7.5). 

Where the drape layer is absent, debris flow material is visible on the seabed and 

fewer pockmarks are observed. Localised high densities of pockmarks appear to 

bear an anti-correlation to surface debris flow material (this observation is further 

described in Fig 7.11).

7.5.2.3 Distal

The distal lower slope position is a complex interaction of semi-transparent acoustic 

blanking and visible discordant and concordant strata (Fig. 7.5). Similar to the 

Central zone, the distal seismic sequence stratigraphy shows evidence for thinly 

bedded, concordant, seabed parallel seismic facies, indicative of hemipelagic drape. 

Unlike, the central zone, this drape package is less spatially extensive and only 

visible with proximity to the former channel of the Rosetta Channel.

Discordant, non-seabed parallel, higher amplitude reflections, similar to the Central 

zone, are visible within the semi-transparent blanking. Equivalent to the Central 

zone, these reflections are interpreted as debris flow units. The units are more 

noticeable in this distal position and form more distinct packages.

The semi-transparent blanking in the distal zone is accompanied by regularly spaced 

vertical data collection artefacts. The gas front as described above is not evident in 

this zone. If present, the gas front is below the depth penetration of the Chirp 

profiler data (> 40 ms).
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7.5.3 Seismic expression, interpretation and timing of unit 
pockmark formation in the pockmark field

Within the Rosetta Region > 25,300 pockmarks have been mapped (Fig. 7.6). The 

pockmark field contains > 13,800 unit pockmarks. An additional -1,500 pockmarks 

are located on the Eastern Slope (totalling > 15,000 pockmarks) but are not 

considered to be within the pockmark field. Pockmark diameters within the field 

range between 5 -  41 m (average 17 m), with an average depth of 0.4-0.8 m. There 

is a positive correlation between pockmark diameter and depth. Their geometry is 

near circular with an average ellipticity ratio of 1:1.1 and 4-way dip slopes > 6 

(measurements taken from the study area).

Pockmarks in the field are considered to be of average size for the Rosetta Region 

with slightly smaller pockmarks found in the MTC zone and larger pockmarks in the 

palaeochannel zone (Fig. 6.3 and 7.7). The pockmarks in the Rosetta Region are 

slightly larger than unit pockmarks (< 5 m) and smaller than normal pockmarks (50- 

100 m), as previously defined by Judd and Hovland (2007).
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Figure 7.6 Distribution of >25,300 pockmarks within the Rosetta Region (black dots). Buried 
pockmarks are not mapped. Pockmark field is indicated by the blue outline. Seabed map is 
coloured according to slope (°). White box denotes the study area.
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Figure 7.7 Pockmark diameter box plots. Comparison of surface pockmark sizes between the 
different geoinorphological zones within the Rosetta Region (Fig. 6.3). Buried pockmarks are 
not included in the analysis.
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The unit pockmarks in the pockmark field are imaged as v-shaped seabed 

depressions in the Chirp profiler data. The depressions transect the uppermost 2-3 

reflections corresponding to < 5 ms beneath the seabed. Pockmarks are observed to 

either erosionally truncate the uppermost reflections or form short vertically stacked 

concave reflections 1-2 reflections high. The short stack of concave reflections is the 

same width as the pockmark and commonly dips into the centre of a bowtie artefact. 

Directly beneath the seabed depression, bowtie artefacts and other acoustic and 

amplitude anomalies are frequently observed e.g. chaotic inverted cone-shaped zones 

of high amplitudes or columnar vertical wipeout zones (Fig. 7.8). Both these 

artefacts are typically associated with the presence of gas within the sediments (Judd 

and Hovland, 2007).

Pockmarks are interpreted to have formed at the level of the deepest erosionally 

truncated reflection or deepest vertically stacked concave depression. This is 

predominantly at the A030 reflection for all the measured pockmarks within the field 

(Fig. 7.8) (I hereby recognise that this is a 2D dataset and despite closely spaced 

lines, it was not possible to sample all the pockmarks). It is feasible that the 

pockmarks may have formed either by hydraulic fracture or seepage of gas (and pore 

water) from a shallow reservoir. The erosional truncation of the reflections and the 

fine grained (clay) sediments suggest that hydraulic fracture may be the more likely 

scenario (Jain and Juanes, 2009) (Fig. 3.3).

Horizon A030 has been chronostratigraphically dated. The occurrence of pockmarks 

forming at this horizon places the timing of pockmark and pockmark field formation 

within the last 6,500 years. There is no evidence for buried pockmarks or fluid 

migration events before this time and continued fluid migration through these 

conduits is considered to be little to none given their recent formation.
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Figure 7.8 Unit pockmarks. Two contrasting examples of unit pockmarks within the field, a) 
series of stacked v-shaped depressions above a buried pockmark at the level of A030. High 
amplitude anomalies are present b) erosional truncation of surrounding reflections to the 
level of A030
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7.5.3.1 High amplitude reflections

High amplitude anomalies are detected in areas of well imaged, undisturbed, thinly 

bedded sedimentary layering (Fig. 7.8a). These anomalies are localised, short, high 

amplitude sections of reflections, that when viewed at the larger scale, appear to rise 

and fall in the sedimentary succession. The inability of the waveform to follow 

structural/sedimentary trends within the drape convinces me that this wave form is 

unrelated to geological processes. I tentatively suggest that these high amplitudes 

represent possible carbonate precipitates of (palaeo)biogenic microbial activity. 

Microbial activity produces CO (biotic reaction), which when dissolved reacts 

chemically with Ca to precipitate calcium carbonate in a chemical (abiotic) reaction 

(Libes, 1992). Without targeted drilling and sampling through this high amplitude 

seismic response, this interpretation must remain speculative. Similar high 

amplitude anomalies were also observed in the Rosetta Plateau pockmark arrays 

(Chapter 6, Fig. 6.8)

7.5.4 Spatial distribution

7.5.4.1 Qualitative observations from the pockmark field

Over 13,800 pockmarks have been identified in the pockmark field (-75 km2) 

(Fig.7.6). The pockmarks are located in a complex stratigraphic setting comprising 

multiple interdigitated debris flow units, an oscillating gas front and high amplitude 

reflections interpreted as resulting from carbonate cement.

It has been observed that the location of the pockmark field is loosely related to the 

degree of gas seepage through Unit H5 afforded by the shallow interleaving debris 

flow packages. However, pockmarks are absent where debris material is observed 

on the seabed (Fig. 7.5d), and fewer pockmarks are present in the distal reaches of 

the Eastern Slope despite chaotic debris units.
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At a more local scale, the position of individual pockmarks within the field is 

unrelated to the variable depth of the gas front or the high amplitude reflections 

(Fig.7.9).
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Figure 7.9 Gas front and high amplitude reflections, (a, b) Examples of oscillations in the hig:ti 
amplitude response and their relationship to the gas front, (c) Examples of oscillations in the t op 
of the gas front, (d) High amplitude chaotic “plume” located beneath a densely (>600 
pockmarks/km2) pockmarked area within the field.
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Pockmarks are located above both the peaks and troughs of the gas front and high 

amplitude reflections. Additionally, there is no correlation between the size 

(diameter, depth) of the pockmark and its spatial position with relation to the depth 

of the gas front i.e. large pockmarks are not uniquely correlated to the peaks in the 

gas front.

7.S.4.2 Spatial statistics : Rosetta Region and pockmark field

Over 25,300 pockmarks have been identified and mapped across the entire Rosetta 

Region (-1000 km2) (Fig. 7.6). The only exceptions are the central axis of the 

Rosetta Channel and the lower remobilised sections of the MTC zone where only a 

limited number of pockmarks are present (Fig. 6.3).

The spatial distribution of pockmarks within the Rosetta Region as a whole is the 

result of a combination of the complex heterogeneities in permeability (at all scales) 

in the subsurface combined with the structural and pressure history for the region. It 

is however noted that the spatial distribution of pockmarks east of the Rosetta 

Channel is markedly different to those on the west. First order characteristics of the 

statistical spatial distribution of pockmarks within the field have established that 

while the pockmark distribution is somewhat dispersed, the pattern may be due to 

random chance (Rn 1.02, z 1.22). Conversely, the spatial distribution of pockmarks 

west of the Rosetta Channel is clustered, and there is less than 1 % likelihood 

(critical value -2.58) that these clustered patterns could be the result of random 

chance. The palaeochannel pockmarks exhibit the greatest degree of clustering (Rn 

0.35, z -54.55), followed by the mud volcano zone pockmarks (Rn 0.4, z -37.14), 

plateau pockmarks (Rn 0.42, z -48.79) and MTC zone (Rn 0.48, z -50.79). The 

pronounced difference between the spatial distribution of pockmarks within the field 

and the highly clustered nature of pockmarks west of the Rosetta suggests that the 

fluid source for the pockmark field is more spatially extensive than the focused 

migration associated with clusters.

The density map of the Rosetta Region has highlighted hot spots of pockmark 

occurrence (Fig. 7.10). The lateral margins of the pockmark field are broadly

227



Chapter 7____________________________________ Drainage Cell Characteristics. NDSF

delimited by densities in excess of 100 pockmarks/km but densities in the centre of 

the field are in excess of 600 pockmarks/km . The detailed density map of the 

pockmark field reveals two hot spots of high density pockmark distributions within 

the field (Fig. 7.11). These hot spots are located in the centre of the field and are 

irregular in shape. Areas of low pockmark density within the field roughly 

correspond with areas of seabed debris flow deposition (Fig. 7.11).
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Figure 7.10 Density map. Density map of all surface pockmarks. Buried pockmarks are not 
included in the analysis. Density map shows average pockmark density per 1km2. Study area 
utilised in spatial statistical analysis is shown.
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Density (km2) 
■  High: >700

Rn Z Sample size
study area 33 1.02 1.22 1477
quadrate 40 0.94 -4.25 1217
quadrate 34 0.94 -4.25 1610
quadrate 48* 0.86 -8.87 1110
quadrate 42* 0.86 -9.15 1217
quadrate 28 0.82 -10.22 897
quadrate 41 0.82 -11.6 1142
quadrate 35 0.8 -10.39 703
quadrate 49* 0.8 -9.91 654
quadrate 21 0.77 -9.1 423
quadrate 29* 0.75 -13.19 751
quadrate 27 0.74 -12.92 687
quadrate 26* 0.72 -11.92 491
quadrate 32* 0.71 -15.32 746
quadrate 47** 0.68 -9.74 256
quadrate 22*** 0.64 -12.19 307
quadrate 23** 0.63 -11.79 277

515000 520000
Figure 7.11 Detailed density map of the pockmark field. Outline of pockmark field (dashed line), outline of surficial debris deposits (solid One), quadrates used in statistical analysis (wire frame), study area (black box) and Nearest 
Neighbour Index values for corresponding quadrates are shown. Given a critical value of -2.58 the null hypothesis that pockmarks are randomly distributed is rejected at the 99% level for all quadrates with the exception of study area
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The pockmark field was subdivided into 4 km quadrates in order to analyse 

pockmark spatial distribution at a smaller scale. First order spatial statistical 

characteristics have established that all the quadrates show a tendency towards a 

random distribution (Fig 7.11). Nearest neighbour values range between Rn 0.64, z - 

12.19 to Rn 1.02, z 1.22 (Fig. 7.11). The lowest values i.e. those displaying a lower 

tenancy towards a random distribution are located on the edge of the pockmark field 

or associated with smaller pockmark populations (e.g. quadrates 22, 23 and 47). 

Greater tendancies towards a random distribution are associated with the centre of 

the pockmark field and higher pockmark populations (e.g. quadrates 33, 33, 40).

7.5.4.3 Spatial statistics ; Study area

To facilitate more detailed statistical spatial analysis on such a large dataset I 

selected a 4 km study area for analysis (quadrate 33, Fig 7.11). The study area 

contains 1,477 unit pockmarks at a maximum average density of > 650 

pockmarks/km . The aim of the spatial analysis on the study area is to elicit any 

subtleties in the spatial distribution of pockmarks within a field.

First order statistical spatial analysis has established a tendency towards a random 

distribution within the study area. However first order characteristics only provide a 

general overview of a distribution based on average values within a single search 

radius. Second order characteristics look for patterns at multiple search radii (20m 

incremental buffering), providing a more robust assessment of spatial distributions. 

Ripley’s K statistic (L(d')) has detected a tendency towards clustering between 20- 

1160 m, however this distribution is only statistically significant at the 99 % level for 

distances between 40-700 m. The pockmark distribution also shows a tendency 

towards dispersion between 1180-2000m however this distribution is not statistically 

significant at the 90 % level*. This tendency towards clustering refers to two subtle 

areas of localised clustering in the northeast and southwest of the study area.

* Graphical statistical output is provided in Appendix A5
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Figure 7.12 Spatial analysis, a, b) normal distribution of pockmark diameters and map example. c,d) freq 
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Figure 7.12 Spatial analysis, a, b) normal distribution of pockmark diameters and map example. c,d) frequency of Voronoi polygon areas compared to a random population and map example. e,f) nearest neighbour distances 
compared to a random population and map example showing the derived exclusion zone. g,h) ratio between Voronoi and exclusion zone area and map example
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The graphs in Figure 7.12 compare measured frequencies with those for a random 

population. A random population of 1,477 data points within the 2km x 2km study 

area were generated by a random generator algorithm within the GIS and plotted 

against measured values to determine whether the values display an important trend.

The frequency histogram of pockmark diameters displays a normal distribution to 

pockmark sizes within the study area ranging between 5-41 m (Fig. 7.12). Voronoi 

polygon areas, nearest neighbour distances and the ratio between Voronoi polygon 

area and exclusion zone area (exclusion area radius generated from nn / 2) (see 

Chapter 2) show a positively skewed frequency distribution (Fig. 7.12). Voronoi 

polygon and exclusion zone areas are unrelated to pockmark diameter*. Nearest 

neighbour distances are unrelated to pockmark diameter*.

Voronoi polygon area, nearest neighbour distances and the ratio of Voronoi polygon 

area and exclusion zone area all show a slight deviation from a random distribution. 

The frequency distribution of Voronoi polygon area shows a slight positive skew 

(-500 m) towards smaller polygon areas, but essentially resembles a random 

distribution (Fig. 7.12). The ratio between Voronoi and exclusion zone area 

resembles a random distribution, with the exception of a frequency peak in ratios of 

1:3 (Fig. 7.12). The ratio of exclusion zone area and Voronoi polygon area gives an 

indication of the relationship between available space and minimum required space 

for each pockmark in the field. When the ratio values are mapped, it is clear that this 

peak is not exclusively associated with the areas of clustering*.

Nearest neighbour distances {nn) range between < 10 m to > 60 m, creating unique 

exclusion zone areas around each pockmark, defining a minimal area not penetrated 

by any other pockmark. Nearest neighbour distance show a distinct deviation from 

those of random population. Frequencies of nn distances between 15-28 m are 

greater than a random distribution and, importantly, there is a distinct absence of 

smaller nn distances (< 15 m) when compared to the random population (Fig. 7.12).

* Graphs and maps shown in Appendix A5
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The Minimal Spanning Tree (MST) measures shortest line distances (edges) between 

neighbouring points (Fig. 7.13) (see Chapter 2 and Appendix A7). The Minimal 

Spanning Tree records an absence of short edge lengths up to 12 m and an excess of 

edges 16-30 m in length when compared with a random population (Fig. 7.14).

To analyse the origins of the absence of short edge lengths, Minimal Spanning Tree 

statistic was re-run using parameters which define a hard core distribution and Self- 

Organised Criticality (SOC). A hard core distribution is a random distribution which 

is governed by a fixed exclusion zone around each point (Diggle, 1983, 2002). In 

test simulations, 14 m exclusion zone provided the closest match, mimicking the 

absence of short edges but fails to produce the peak ~15-25 m edges (Fig. 7.14). 

Self-Organised Criticality is a statistical law which describes the mechanism by 

which complexity arises in nature (Bak et al., 1987, 1988; Bak and Paczuski, 1995; 

Ball, 2004) (see Appendix A7). Self-Organised Criticality simulations run using 

10m exclusion zones (collapse event) are shown (Fig.7.14). Both the absence of 

short edges and the peak in edge lengths is reproduced. These simulations have 

shown that the spatial distribution of pockmarks within the field do not reflect a hard 

core distribution but are more closely related to SOC.
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Figure 7.13 Minimal Spanning Tree examples, a) and a’) MST model outputs, a) results from the study area, a’) results from a randomly generated set of data points. Black lines are short edges, red lines are short-medium edges, green 
lines are medium-long edges, blue lines are long edges b) seabed dip map of the study area, c) and d) MST model integrated with GIS and side scan sonar data, c) location of pockmarks and their associated MST edge (faded dip map 
background), d) MST edge lengths and exclusion zone areas (faded dip map background).
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Figure 7.14 Minimal Spanning Tree histograms, a) Histogram of edge lengths, red line 
indicates mean values for 100 trials of random data, green dotted lines indicate the confidence 
envelope (95%). b) Histogram for the hard core model, c) Histogram for the Self Organised 
Criticality model.
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7.5.5 Summary

Pockmark distributions are akin to a random distribution but show subtle deviations 

from “true” (statistically defined) Complete Spatial Randomness (CSR). This 

deviation from CSR may be a function of sub-clusters within the dataset (Ripley’s K) 

or the pronounced lack of short nearest neighbour distances. The lack of close 

neighbouring pockmarks is an important, if somewhat subtle, point illuminated by 

the Minimal Spanning Tree. Assumptions of a variable exclusion zone surrounding 

pockmarks are confirmed by the MST’s deviation from a hard core distribution with 

a fixed exclusion radius. Similarities between the pockmark distribution and Self- 

Organised Criticality emphasise an understated relationship between distribution, 

CSR and exclusion zone. The distribution of pockmarks w ithin the field represents 

possible natural complexity in nature but within the complexity there is an 

underlying exclusion process dispersing pockmarks.

7.6 Discussion

7.6.1 Shallow gas : a fluid source for the pockmark field?

The Rosetta pockmark field is spatially extensive requiring a fluid source of similar 

proportions. Minimum requirements for the source layer are -75 km2 spatial 

coverage, hydrocarbon or biogenic fluid (gas) generation, a perm eable reservoir unit 

and a sealing sequence. Additional consideration has to be given to the depth to the 

source layer.

Similar to previous studies, the acoustic distortion and wipeout at the maximum 

penetration of the Chirp profiler data is interpreted as a gas front resulting from gas 

migration (seepage) through the shallow sedimentary unit (Floodgate and Judd, 

1992; Iglesias and Garcia-Gil, 2007; Naudts et al., 2009). Both the gas front and the 

debris flow deposits are spatially comparable with the pockmark field. The gas front
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and debris flow packages extend > 6 km north and south of the pockmark field (total 

coverage -125 km , i.e. to the limit of Chirp profiler data on the Eastern Slope). The 

depth to the gas front is below the penetration limit of the Chirp profiler data (-40 

ms) at the distal limit of the pockmark field, and shallow debris flow packages in the 

UHR and Chirp profiler data originate from the level of a small arcuate scar at the 

proximal limit of the pockmark field, suggesting that the interaction of these two 

factors may be important in determining the position of the field.

The gas front is commonly trapped beneath the hemipelagic drape sealing sequence 

(20-40 ms depth) (Fig. 7.15). In areas of complex debris flow packages, the drape 

sequence is destroyed at depth and the occurrence of acoustic disturbance is observed 

to climb in the sequence which is suggestive of gas seepage through these more 

permeable layers. Gas seepage through these more permeable layers is probably 

trapped by a shallower drape package (-20 ms depth) (Boudreau et al., 2005). In 

areas of surficial debris flow material identified on the side scan sonar, both the 

drape package and unit pockmarks are not present suggesting that either the debris 

flow has eradicated the sealing sequence and pockmarks are prevented from forming 

or that any pockmarks present on the seabed prior to the MTD have been buried by 

the debris flow deposits.

The observations presented above help to explain pockmark density variations within 

the field (Fig. 7.11). The highest densities are recorded where the sealing sequence 

is obscured by a high amplitude, chaotic zone of distortion (Fig. 7.7). This zone 

probably represents an area of intense fracture (possibly pre-existing fractures) or 

extreme overpressure resulting in a focused “plume” of fluids towards the seabed. 

The lowest densities are recorded where flow debris is found at or close to seabed 

(Fig. 7.5). Medium densities, like those in the study area, reflect the interaction 

between debris flow units at depth, the depth to the gas front and the thickness and 

position of the sealing unit in Unit H5.
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Figure 7.15 Plumbing system conceptual model, a) Chirp profiler data, b) UHR 2D data, c) 
conceptual model. Thermogenic and/or biogenic fluid (possibly methane) is anticipated to climb 
through the (heterogenic permeability) debris flow units (Unit HP1-4) and potentially mixes 
with biogenic (methane) generation at the level of Units HP4-H5. Fluid is trapped at the level 
Unit H5 except where surficial debris flow deposits are observed within Unit H5. With the 
support of shallow debris flow deposits within Unit H5, gas penetrates the seal by seepage 
creating the gas front Seal breach at the level of the gas front results in pockmark formation.
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The depth to the putative source layer is difficult to determine due to the acoustic 

distortion of the stratigraphy by the gas front. Pockmark feeder pipes, where visible 

(Fig. 7.8), can be traced to the gas front at the level the Unit HP4 -  H5 unit boundary 

(Fig. 7.15). The origins of this gas front are unknown, but are likely to be related to 

1) deep sourced thermogenic or biogenic fluid migrating towards the seabed (Abdel 

Aal et al., 2001; Samuel et al., 2003; Loncke and Mascle, 2004), 2) shallow sourced 

biogenic fluid (gas) generation (Gontharet et al., 2007), or 3) a combination of both 

thermogenic and biogenic fluid (microbial alteration of thermogenic methane) 

(Vandre et al., 2007).

Geochemical analysis of cores from Early Miocene to Pliocene reservoirs on the 

Western NDSF slope (1527-4480 m) have established the dominant generation 

pathway for fluid, identified as predominantly methane, is from both microbial and 

thermogenic origins (Vandre et al., 2007). Translating this research to the Rosetta 

Region study area, it is anticipated that any deep sourced thermogenic or biogenic 

fluid will migrate to the level of Unit HP4 where it is trapped beneath the sealing 

sequence in Unit H5. The vertical migration of fluids is likely to be tortuous, 

utilising isolated high amplitude pockets in the UHR data, interpreted as gas filled 

sand bodies, as temporary reservoirs. Following breach, buoyant fluids are thought 

to climb through the more permeable portions of debris flow units (HP 1-4). At the 

small scale, I suggest fluids migrate across strata via bypass systems including small 

faults, and then migrate up-dip along relatively permeable strata along local 

structures where it is temporarily trapped by low permeability seals before migrating 

further up section via crestal breakout features. At shallower depths, it is possible 

that any terrigenous material transported onto the slope may have had a high organic 

content suitable for in-situ biogenic gas (methane) generation in Units HP4 and/or 

H5. The fluid source for the pockmark field is therefore most likely to be shallow 

(biogenic or thermogenic) gas (methane) and pore water trapped beneath the drape 

sequence in Unit H5.
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7.6.2 Fluid source and its relationship to the timing of 

formative events

Pockmarks within the field are believed to have formed within a small time window 

in a spatially extensive fluid migration event, within the last -6,500 years. 

Pockmarks within the field are observed to have formed at or above (< 2 ms) horizon 

H030 which has been chronostratigraphically dated at -6,500 yrs BP.

In order to obtain widespread simultaneous pockmark formation, I argue the case for 

a shallow fluid source and a triggering event. Triggering events could be 

earthquakes, variations in hydrostatic pressure caused by the passage of waves and 

tides, changes in eustatic sea level, sediment loading and unloading and 

steam/hydrothermal fluid injection (Judd and Hovland, 2007). Due to the pockmark 

fields location in a non-igneous, deep water setting (> 400 m), and lack of recent 

(-6,500 year) large scale sliding events (Garziglia et al., 2008; Loncke et al., 2009) 

or substantial changes in sea level (Fig. 3.2), it is argued here that the effects of 

earthquake generated overpressure and release are the most likely trigger for 

widespread pockmark formation.

Prior to 6,500 yrs BP, the NDSF experienced a period of rapid sedimentation, wetter 

climate (pluvial period) and relatively lower sea levels (Stanley and Wame, 1993; 

Ducassou et al., 2008). These factors are believed to have pre-conditioned the 

Eastern Slope to the retention of pore waters, overpressure development and 

localised debris flow mobilisation. In the event of an earthquake sediments compact 

and decrease in volume. Retention of released pore fluids and buoyant gases by the 

seal (Unit FI5) can potentially generate overpressures, which when released result in 

seal by-pass, “diapirism” and/or fluidisation and fluid escape (Gluyas and Swarbrick, 

2004; Swarbrick et al., 2004; Cartwright et al., 2007). It is argued here that 

numerous pockmark formations during a small time window (-6,500 yrs) would 

require a single earthquake event of sufficient magnitude, or several earthquakes in 

quick succession, releasing fluid from a shallow source and instantaneous, non­

interrupted vertical migration to the seabed via a short single pathway e.g. pipe (Fig. 

7.15).
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7.6.2.1 Unit pockmark formation

The two driving forces for fluid migration and pockmark formation are overpressure 

and buoyancy (Judd and Ho viand, 2007; Cathles et al., 2010). Overpressures, where 

pore pressures are in excess of hydrostatic, are commonly attributed to tectonic 

compression (considered unimportant given the Egyptian passive margin), the 

sedimentation rate/rapid sediment loading (influencing the rate/degree of compaction 

and underconsolidation) and the generation of fluid (methane) at a rate faster than it 

can be expelled (Swarbrick and Osborne, 1998; Swarbrick et al., 2004). Buoyancy, 

as a function of a density inversion between the potentially underconsolidated unit 

where buoyant fluids (methane) are accumulating (Unit HP4), and the overlying 

normally consolidated sediment (Unit H5, drape), may force “diapirism” and/or 

fluidisation and fluid escape (Gluyas and Swarbrick, 2004; Swarbrick et al., 2004).

Following an earthquake overpressure and municipal fluid buoyancy beneath Unit 

H5 (considered a seal) can potentially contribute towards seal by-pass (Cartwright et 

al., 2007). Seal breach can be instigated by capillary invasion or hydrofracturing 

depending on the grain size of the seal (Jain and Juanes, 2009). Grain sizes 

measured from the margin of the pockmark field show Unit H5 grain sizes of < 2 pm 

(clay, minimum sieve size used) suggesting either mechanism is feasible. However 

at the shallow subseabed depths, substantial overpressure would be required to 

induce fracturing in relatively unlithified sediments (Jain and Juanes, 2009). 

Following seal breach, flow self organises into a columnar conduit (Novikov and 

Slobodskoy, 1979), eroding sediments during seabed fluid expulsion creating a 

pockmark (Judd and Hovland, 2007).

7.6.3 Conceptual Model

Consideration of pockmark formation focuses on the vertical migration of fluid. 

Flere I consider whether the spatial positioning of pockmarks within a field can 

illuminate the lateral influence of these vertical processes.
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7.6.3.1 Spatial statistics summary ; emergence of a pockmark exclusion zone

The results presented here outline complexity within the pockmark field system 

which is not immediately apparent. First order characteristics produce baseline 

spatial statistics based on averages of the population. At this level, complexity is not 

apparent and the spatial distribution is merely described as random. Second order 

characteristics produce a more detailed level of analysis, searching for spatial 

patterns at variable scales. At this level of analysis, subtle clustering is observed and 

the distribution is no longer considered random. At the highest level of distribution 

analysis presented here, Complete Spatial Randomness (CSR), a statistically derived 

definition of random distribution, is rejected as complexities within the distribution 

are made apparent by the Minimal Spanning Tree. The pockmarks within the field 

are anti-clustered and an alternative explanation for their distribution is required.

Anti-clustering, or the decreased likelihood of finding neighbours within a close 

distance, suggests the pockmarks are separating or dispersing rather than grouping. 

Separation is captured by the nearest neighbour distance and the deviation from a 

Random Hardcore distribution (Diggle, 2002). The Hardcore or Diggle model 

(Diggle, 2002) produces a random distribution of points which is “buffered” by a 

fixed exclusion zone (14m radius) around each pockmark. Nearest neighbour 

distances record a variable exclusion zone around each pockmark, with a deficit of 

distances < 15 m compared to a random distribution. Exclusion zone distances are 

shown to be unique to each pockmark by the deviation from a Random Hardcore 

distribution. Pockmark distributions are shown to have more complexity than can be 

explained by a simple (Hardcore) exclusion zone policy.

Self-Organised Criticality (SOC) is considered to be one of the mechanisms by 

which complexity arises in nature. Following SOC discovery in statistical physics 

(Bak et al., 1987), Self-Organised Criticality is typically observed in slowly driven, 

non equilibrium systems where complexity could be generated as an emergent 

feature of extended systems with simple local interactions (Bak et al., 1987; Bak and 

Paczuski, 1995; Bak, 1996; Ball, 2004). Many examples of SOC have been 

identified in fields as diverse as ecology, evolutionary biology, astrophysics, 

astronomy, solar physics, geomorphology, natural hazards, neuroscience, economics
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and sociology (Georgoulis and Vlahos, 1998; Dendy et al., 1999; Ray et al., 2000; 

Allen et al., 2001; Watkins et a l, 2001; Ormerod, 2002; Andergasssen et al., 2003; 

Fonstad and Marcus, 2003; Pueyo, 2007; Suckling et al., 2008; Krenn and Hergarten, 

2009) but to date there is no known set of general characteristics that guarantee a 

system will display SOC (Ball, 2004). The pockmark distribution displays certain 

characteristics of Self-Organized Criticality when modelled using the equivalent of a 

minimum 10 m radius exclusion zone (avalanche). To the author’s knowledge, this 

is the first time that the possibility of self-organized criticality has been observed in 

seabed pockmarks.

It is evident from the spatial statistical analysis that a subtle, underlying phenomenon 

is influencing pockmark distribution within the field and preventing pockmarks from 

forming within close proximity of one another. I have been unable to prove precisely 

the nature of this phenomenon, but have shown statistical evidence for the possibility 

of an exclusion zone surrounding each pockmark producing anti-clustering 

tendencies and that there is a tendency for pockmarks to form just beyond the 

exclusion zone limit (Cartwright et al, submitted, Appendix A4). Below, I propose 

several conceptual models to explain this exclusion zone.

7.6.4 Conceptual model: Pockmark “drainage cell”

Pockmark formation comprises 3 key processes, overpressure generation, seal failure 

and vertical fluid (pipe) propagation. The spatial position of seal failure is 

commonly believed to be located at the point of maximum overpressure and focused 

by sub seismic heterogeneities in the seal e.g. small pre-existing fractures, localised 

small scale doming or minor permeability contrasts (Judd and Hovland, 2007).

It has been argued that a single, high magnitude, triggering event (possibly an 

earthquake) stimulated near-simultaneous overpressure generation and release in the 

Rosetta pockmark field. In a field setting with a spatially extensive, near uniform 

shallow depth fluid source with high lateral connectivity i.e. not faulted, 

overpressures need to be focused towards a single point location to form a pockmark.
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It is assumed that failure to focus overpressures would result in widespread 

perforation of the seabed as fluid escapes by an immeasurable number of 

infinitesimal fracture or seepage pathways and bleeds into the water column, It is 

argued that this “focusing” of overpressure has a spatial component which has been 

elicited by the spatial statistics i.e. the exclusion zone. The conceptual models 

outlined below suggest that the exclusion zone surrounding individual pockmarks is 

a function of the processes inherent in pockmark formation and prevents pockmarks 

from forming in close proximity.

7.6.4.1 Sand bodies in Unit HP4

The spatial distribution of pockmarks within the field may relate to the position of 

isolated sand bodies within Unit HP4. A triggering event of sufficient magnitude 

could cause localised overpressure generation in sand bodies surrounded by lower 

permeability material, resulting in the formation of a single pipe and pockmark. The 

distribution of these bodies could explain the spatial distribution of pockmarks within 

the field.

The likelihood of > 13,000 isolated sand bodies, at a similar depth below seabed, all 

containing sufficient (pore)fluids for pockmark formation and located between the 

400-800 m depth contour is considered to be fairly low.

7.6.4.2 Spatial ordering governed by the mode of seal failure

The spatial position of pockmarks may be determined at the level of the seal. Here it 

is considered whether the lateral influence of the mode of seal failure, hydrofracture 

or capillary invasion (Jain and Juanes, 2009), may produce an exclusion zone around 

a pockmark.

Capillary invasion involves the vertical migration of methane bubbles into the seal 

where the capillary entry pressure of the strata is exceeded (Jain and Juanes, 2009). 

It is envisaged that these bubbles will take various tortuous routes to the seabed as
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determined by the gas pressure minus the water pressure, exceeding the capillary 

entry pressure of the pore throat (Jain and Juanes, 2009). It is proposed that further 

pockmark formation will be prohibited at any location within the lateral expanse of 

capillary invasion as a flow network to a single pockmark is already established. A 

density contrast may encourage pore water or methane advection, diffusion or 

dispersion into the flow network from the surrounding sediments thereby extending 

the lateral limits of the drainage cell.

Where the fracture pressure of the seal is exceeded hydrofractures open and 

propagate towards the seabed, forcibly moving sediment grains apart. This 

movement of sediment grains away from the opening void creates compression 

between grains on the margins of the fracture (Jain and Juanes, 2009). Compression 

between grains decreases the permeability of this zone, thereby reducing the 

likelihood for further hydrofracturing and pockmark formation. The spatial extent of 

this reduced permeability caused by a columnar conduit of interrelated, dendritic 

hydrofracture networks could potentially indicate the lateral limits of the exclusion 

zone.

Both these failure modes have been numerically modelled at the small (grain) scale 

(Cathles et al., 2009; Jain and Juanes, 2009). The arguments governing the 

prevention of further pockmark formation within the hydrofracture / capillary 

invasion zone generated by these modes of seal failure seem plausible. However it 

remains unclear whether these processes can be extended beyond the lateral limits of 

the conduit they form to the exclusion zone radii ~10 m.

7.6.4.3 Pockmark “Drainage Cell”

The spatial position of pockmarks may be determined within the fluid reservoir at the 

level of the seal. In hydrogeology and groundwater modelling, the “radius of well 

influence” for an extraction borehole in an aquifer can be modelled (Kresic, 2007). 

The radius of well influence in groundwater modelling is the maximum distance the 

effects of aquifer drawdown can be detected. In other words, the area drained by the 

well. The radius of well influence in an unconfmed aquifer is a function of the well
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pumping rate (discharge), hydraulic conductivity (permeability), the hydraulic head 

(pressure difference between the bottom and top of the well) and the aquifer 

thickness (Kresic, 2007). Here I tentatively suggest that the interaction of similar 

processes may govern the exclusion zone around a pockmark.

It is postulated that at the moment of seal breach, a hydraulic connection is 

established and built up overpressure is released. Overpressures are built up either 

uniformly throughout the fluid source or within localised pockets. The limits of 

these pockets or “cells” are determined by (sub)seismic changes in permeability, for 

example, the lateral boundaries between hemipelagic drape and debris flow deposits 

at a given depth within Unit H5. Once a seal breach has formed, fluid is “drawn” 

into the pipe by the pressure differential between fluid source and seabed. The fluid 

is “drawn” in from a radius around the breach which is unique to each pipe. I 

propose that this distance is determined by permeability. It is unclear how much 

fluid can be extracted from the reservoir at any given radii, but given the size of the 

pockmark (cf. Chapter 6) and by analogy with previous studies I assume that the total 

volume of fluid escaping through the pockmark will be quite low (Judd and Hovland, 

2007).

Once the fluid has escaped and the pressure returned to hydrostatic, an area of fluid 

and/or pressure deficit surrounding the pockmark remains. Within this zone, further 

pockmark formation is prohibited by insufficient fluid and/or pressure build up (in 

the absence of a triggering mechanism fluid accumulation and overpressure 

generation are assumed to be related). I refer to either the area supplying a pockmark 

or drained by a pockmark as a pockmark drainage cell.

The drainage cell is a hypothetical concept which may only be applicable to certain 

well-layered pockmark fields, where 1) the fluid source is shallow and spatially 

extensive 2) any vertical fluctuations in the depth to the fluid source are minimal, 3) 

seabed gradients <1 °, 4) there are no obvious structures, faults, migration pathways 

e.g. buried channels or changes in sediment characteristic which would affect 

permeability or overpressure, and 5) the timing of pockmark formation can be 

constrained to a relatively short time period. It is unlikely that a drainage cell would 

be circular as depicted here but form an irregular polygon, the 3D size and shape of
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which is unique to each pockmark. It is conceivable that pressures (and possibly 

permeabilities), and therefore drainage cells, will vary with time, increasing the 

likelihood that drainage cells may overlap producing anomalously small exclusion 

zones when assessing pockmark fields based on a fixed point in time.

7.7 Summary and conclusions

A -1,000 km area in the Rosetta Channel region of the Western Nile Deep Sea Fan 

has been mapped using concurrent Ultra High Resolution 2D, Chirp profiler and side 

scan sonar data. Over 25,000 small circular seabed pockmarks were mapped, 

including > 13,800 pockmarks in a pockmark field, this subject of this chapter. The 

outcome of this mapping can be summarised as follows;

• Pockmarks have been mapped throughout the entire side scan sonar data 

coverage area known as the Rosetta Region (-1,000 km2). This dataset is 

thought to span Holocene -  Pleistocene period

• Pockmarks in the pockmark field on the Eastern Slope are of a similar size to 

those pockmarks located elsewhere in the dataset

• Pockmark density map of the Rosetta Region shows hot spots of pockmark 

formation in the palaeochannel and plateau zones, and distinctly defines the 

pockmark field which is unique in this dataset

• Pockmarks within the field have formed at (±1-2 ms) the same horizon, which 

has been chronostratigraphically date to -6,500 yrs BP.

• A triggering event (possibly an earthquake) is envisaged to have caused the 

overpressure generation and near-simultaneous pockmark formation.

• The fluid source for the pockmark field is believed to be shallow biogenic / 

thermogenic gas accumulation / generation trapped beneath a drape sealing 

sequence in Holocene Unit H5

• Complex pockmark density contrasts within the field are shown to relate to areas 

of high amplitude gas “plumes” (high density) and surficial debris flow deposits 

(low density).
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• Pockmarks within a 4 km2 study area within the pockmark field were analysed 

for the statistical spatial distribution.

• Pockmark distribution is not random.

• Pockmarks are anti-clustering i.e. there is a decreased likelihood of finding 

neighbours within a close distance, suggesting the pockmarks are separating or 

dispersing rather than grouping

• An exclusion zone is identified around each pockmark, which is not penetrated 

by any other pockmark.

• The exclusion zone is shown to be variable and unique to each pockmark and not 

a fixed distance

• Pockmark distributions display Self-Organising Criticality tendencies. Self- 

Organised Criticality (SOC) is a mechanism by which complexities arises in 

nature. Similar complexities are observed in fractal patterns.

A conceptual model is proposed whereby the exclusion zone surrounding each 

pockmark is interpreted as a “drainage cell”. A drainage cell represents an area 

“drained” by a pockmark. At the point of pockmark formation a radius of fluid is 

“drawn” into the cell based on the permeability’s (and overpressures) of the host 

reservoir. Once formed, a fluid / pressure deficit exists around the pockmark 

preventing further pockmark formation within close proximity to the existing 

pockmark. I have termed this a drainage cell.
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8 SUMMARY AND DISCUSSION

8.1 Introduction

The aims of this chapter are 1) to summarise the observations and interpretations 

from Chapters 4, 5, 6, and 7; 2) to incorporate key results from Namibia and the

Nile Deep Sea Fan into a single conceptual model; 3) to discuss the implications of 

this research; 4) to outline the limitations of this research; and 5) to suggest 

recommendations for further work

8.2 Summary

The 6 central themes of this research which dominate Chapters 4, 5, 6 and 7 are 

morphology and process, spatial and temporal distribution, and frequency and 

magnitude (Fig 1.5). These themes interact at the local and basinal scale interlinking 

the research presented in the preceding chapters through a common conceptual 

framework (Fig. 8.1).
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Chapter 7

Chapter 4

Figure 8.1 Schematic diagram representing a 3D pockmarked seabed. The themes covered in 
the previous four chapters of this thesis are placed within the context of this conceptual 
framework.
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8.2.1 Chapter 4

Chapter 4 described a population of nearly 400 large kilometre scale blowout pipes 

from offshore Namibia. Blowout pipe seismic expression and geometry was 

described for wide and narrow pipes, followed by a discussion of the validity of the 

internal structure (geology or artefact), potential fluid sources and formation 

mechanism (blowout). The main findings can be summarised as follows;

• Pipes are elliptical, and their geometry changes with height

• Formation of the pipe involves disrupting the sedimentary layering to the extent

that the reflections are disrupted. This implies a scale of disruption that is imaged

by the seismic wavefront

• Pipes have been shown to form by blowout induced collapse

• There is a scaling relationship between pipe height and diameter. An increase in 

pipe height is correlated with an increase in pipe diameter. Pipe widening may 

be implicit in pipe re-use

• An erosional blowout crater is observed within the pipe structure

• Possible post formation fluid migration through the pipe is identified

8.2.2 Chapter 5

Chapter 5 extends this analysis by describing the spatial and temporal distribution of 

the Namibian pipes. The timing of pipe formation is shown to be intermittent yet 

persistent through time, the spatial position of which is governed by the inferred 

north-south migration of a basin scale fluid source and localised sporadic cluster and 

outlier formation. A conceptual model is proposed whereby pipe formation is the 

result of isolated pressure cells which are locally independent yet broadly controlled. 

At a local scale, multiple local factors interact producing a sporadic pipe formation 

distribution through an inferred system of individual, locally controlled, pressure 

cells, which generate overpressure and pipe formation. The main findings can be 

summarised as follows;
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• Pipe formation is intermittent yet persistent through time

• Pipes with a common basal reflection do not form at the same time

• In a time sequence, sequential pipes do not form next to each other

• Pipes can form as clusters or outliers at the same time

• Pipes do not form at equidistance from existing pipes

8.2.3 Chapter 6

Chapter 6 tackles the theme of post formation fluid migration first proposed in 

Chapters 4 and 5. Utilising a higher resolution dataset from offshore Egypt, a group 

of large (100-700 m diameter) buried pockmarks were identified. Interpreted to have 

formed c. 50,000-80,000 yrs BP in response to eustatic sea level fall releasing fluids 

trapped beneath a shallow level Mass Transport Deposit, the large buried pockmarks 

have experienced high frequency, low magnitude post formation fluid migration 

resulting in the formation of seabed unit pockmarks. The main findings can be 

summarised as follows;

• Stacked concave reflections above the buried pockmarks are interpreted as 

pockmark arrays. Pockmark arrays represent a perpetuation of pockmark-like 

morphology of concave upwards reflections resulting from a purely drape-type 

deposition failing to infill the initial seabed crater, leaving vestigial relief.

• Longevity of fluid migration through pipes, buried pockmarks and pockmark 

arrays is identified

• There is a magnitude size difference between the flux of a normal pockmark and 

the flux of a unit pockmark

• Post formation fluid migration takes the form of clustered unit pockmarks above 

the original pipe/pockmark

• Post formation fluid migration on the NDSF plateau has been shown to last 

-15,000-100,000 yrs
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8.2.4 Chapter 7

Chapter 7 builds on the theme of pressure cells in pockmark formation. A pockmark 

field, offshore Egypt, containing over 13,000 small, circular, seabed pockmarks was 

analysed for their spatial distribution. A variable exclusion zone is identified 

surrounding each pockmark which is not penetrated by any other pockmark inducing 

anti-clustering tendencies within the field. The exclusion zone is interpreted as a 

pockmark “drainage cell”. The main findings can be summarised as follows;

• Pockmark distribution within a field is not random

• A variable exclusion zone (minimum 10-15 m radius) exists around each 

pockmark in the field producing anti-clustering tendencies

• Pockmark distributions do not represent a hardcore distribution (Diggle, 1983, 

2002)

• Spatial distribution of pockmarks within the Rosetta field holds an imprint of 

Self-Organised Criticality

• A conceptual model of a pockmark “drainage cell” is proposed to explain the 

exclusion zone in terms of a fluid/pressure deficit preventing further pockmark 

formation within the cell.
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8.3 Discussion

The crux of this thesis has been to analyse the spatial and temporal distribution of 

pipe and pockmark formation. In this discussion I focus on a selection of comments 

and issues touched upon in previous chapters and expand the analysis as part of the 

implications of this research. The issues I have chosen to address are; 1) what are 

the implications of these results for seal risk analysis?, 2) what is the significance of 

pipe planform geometry (Chapters 4, 5 and 6)1, 3) what is the significance of 

overpressured cells (Chapters 5 and 1)1, 4) is it possible to predict the spatial 

location of pockmark formation within a shallow sourced field (Chapter 1)1, And 5) 

what are the implications of Self Organised Criticality for pockmark science 

(Chapter 1)1

I start the discussion with a conceptual model to illustrate how the findings of 

Chapters 4, 5, 6 and 7 relate to one another.

8.3.1 4D spatio-temporal conceptual model of pipe and 

pockmark formation

The 4D model conceptualises, in a sequence of arbitrary time-steps, the cross 

sectional growth of a pipe and pockmark and the spatial position of the pipe in 

relation to other new forming pipes (Fig. 8.2). The passage of time is marked by the 

addition of reflections. Erosional truncation of the host strata is symbolised by a v- 

shaped notch in the reflection geometry, and drape by a u-shape reflection depression 

(as seen in 3D seismic data, Chapter 4). This is a generalised / idealised conceptual 

model and does not relate to a specific basin or example.
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Figure 8.2 4D conceptual model of pipe and pockmark formation and evolution through time (arbitrary time scale). V-shaped reflections represent erosional truncation of the host strata, u-shaped reflections represent drape. The 
identification of these reflections can be used to identify the periods of fluid migration activity.
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8.3.1.1 Time-step 1

A classic shallow (< 1 km depth) reservoir setting of fluid (thermogenic or biogenic 

gas) accumulation trapped beneath a fine grained, low permeability seal is implied 

(Fig.8.2). Density contrasts between the seal and reservoir encourage buoyancy in 

the immiscible fluids, promoting vertical migration of lower density fluids (gases) 

towards the seal (Gluyas and Swarbrick, 2004). Sub-seismic heterogeneities in the 

higher permeability reservoir stratigraphy and/or the sealing sequence help to define 

localised cells within the broader expanse of fluid accumulation trapped beneath the 

seal (Chapters 5 and 7). These cells may act as minor permeability barriers, focusing 

fluid and hence overpressure generation (Deming et al., 2002). It is probable that 

these cells are interconnected at the large scale, permitting “signals” of fluid and 

pressure level variations to be transmitted to other parts of the reservoir (Chapter 5) 

(Swarbrick and Osborne, 1996, 1998).

Overpressures are generated by fluid migration and accumulation in the trap and/or 

rapid sediment deposition. Pore pressures build exerting excess stress on the seal. In 

< 1 pm grain size environments, it envisaged that the seal will fail by hydraulic 

fracture (Jain and Juanes, 2009).

8.3.1.2 Time-step 2

Increase in pore pressures beneath the seal results in hydrofracturing (Hubbert and 

Willis, 1957) (Fig.8.2). The location of hydrofracturing is believed to be related to 

heterogeneities in the seal configuration, for example, locations where the seal 

locally domes (even if it is only by a matter of centimetres) or any natural small 

fissures. It is proposed that depending on the degree of pressure differential between 

the seabed and reservoir overpressure, the initiated (vertical) hydrofacture will either 

remain as a single fracture or bifurcate if the pressure and propagation velocity is 

below a threshold value (cf. Chapter 6). Hydrofracture propagation speeds are 

estimated to be 1000 m/yr (for hydrofractures of several meters length) (Nunn, 

1996). The hydrofractures will propagate as flow self-organises, forcing grains 

apart. It is anticipated that the opening of the fracture moves grains on the edge of
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the fracture closer together creating a halo of pore throat contraction and decreased 

relative permeability (Jain and Juanes, 2009).

A hydraulic connection is established when the hydrofractures reach the seabed 

resulting in “blowout”. Flow velocities are anticipated to be quicker for consolidated 

than unconsolidated clay and silt (Lowe, 1975). If a minimum fluidisation velocity is 

reached the drag exerted by the moving pore fluids exceeds the buoyant weight of 

the grains, lifting sediment up the pipe to be expelled at the seabed. Fluidised 

sediment will be distributed on the seabed according to entrainment drop out theory, 

i.e. the heavier material falls out of suspension quicker and in closer proximity to the 

pockmark than the finer material which will travel a greater distance or may be lost 

to the water column. This is similar to channel-levee sediment entrainment, transport 

and deposition (Summerfield, 1991).

It has been shown that pipe diameter and height are positively correlated implying a 

scaling relationship between geometries (Chapter 4). It is therefore conceivable that 

pressure and pipe height are loosely related, as it is assumed that a greater 

overpressure and duration of this pressure is required to initiate and maintain more 

energetic fracture propagation and form taller pipes.

It is proposed that a “drainage cell” forms around the pipe and pockmark (Chapter 7). 

The drainage cell represents an exclusion zone around the pockmark which is not 

penetrated by the formation of another pockmark. Here the Namibian and NDSF 

conceptual models separate in their implications. At the basinal scale, it is inferred 

that the exclusion zone is temporary, lasting a minimum c. 100,000-200,000 yrs 

(estimated from the Namibian example, timescale may vary between basins), the 

time span represented by a single reflection (Chapter 5). Conjoined pipes support 

this supposition. At the field scale, spatial statistics and SOC imply that the 

exclusion zone is permanent, for at least up to 1,000 yrs (Chapter 7). It is proposed 

that the size, shape and boundary of the drainage cell is a function of permeability 

heterogeneities, overpressure build-up, release and re-charge patterns.
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8.3.1.3 Tim e-step 3

Following formation of the initial pipe and pockmark, fluid migration continues 

through the conduit (Fig.8.2) (Chapter 5 and 6). Fluid flux is considered to be an 

order of magnitude smaller than the initial formative flux. Total blowout (high 

magnitude event, similar to the initial formation event) of the pipe is prevented by 

smaller scale overpressure and release episodes resulting in small unit pockmark 

formation (cf. Chapter 6). Post formation fluid migration may be either continuous 

or episodic. If continuous, it is likely that fluid is continuously migrating towards the 

pipe and seeping through the established conduit. Capillary infiltration may maintain 

seepage through the pipe if coarse material (sand) collapses into the conduit (Jain and 

Juanes, 2009). Continued migration prevents the settlement of hemiplegic drape 

above the pockmark thus maintaining the pockmark morphology (Pockmark array) 

through time.

Episodic migration is dictated by the timescale required for overpressure build up 

and release. Overpressure is built up by (re)forming a temporary seal within the pipe 

by either collapse of material into the pipe, sedimentation or MDAC build-up 

(Hovland, 2002). The shear strength of the temporary seal is not as strong as the 

original seal permitting failure at lower overpressures (cf. Chapter 6).

8.3.1.4 Time-step 4

Fluid continues to migrate through the pipe and pockmark, and the pockmark 

morphology perpetuates through time. Additional unit pockmarks may form above 

the pipe structure (Hovland et al., 2010). Multiple unit pockmarks may form above 

the pipe if the flow bifurcates in the pipe or if certain fractures or unit pockmarks 

become blocked. As fluid migration continues, the columnar seismic expression of 

the pipe grows with time and a slight increase in the width of the pipe is envisaged 

(cf. Chapter 4 and 5).

A new pipe (P2) forms, at a distance greater than the radius of the drainage cell of 

the existing pipe (PI) (Fig.8.2). As fluid is still migrating through PI, further 

pockmark formation is prevented within P i ’s drainage cell because fluid migration
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pathways are already established and preventing overpressure generation sufficient to 

form a new pipe (cf. Chapter 7). The new pipe forms by hydraulic fracture, 

establishing its own unique drainage cell.

8.3.1.5 Time-sten 5

Fluid migration through pipe and pockmark 1 has ceased and the pipe morphology 

has reached its penultimate stage. Post formation fluid migration continues through 

pipe and pockmark 2, creating additional unit pockmarks. A new pipe forms (P3). 

The spatial position o f P3 is closer to PI than P2 (Fig.8.2) (Chapter 5).

Pipe and pockmark 1 contains multiple unit pockmarks. It is likely that these 

pockmarks are in the order of 10-20 m diameter and are randomly distributed within 

the depression. An interesting component of Self-Organised Criticality (SOC) is the 

observation that the system displays Self-Similarity (SS). Self-Similarity is a form of 

scale invariance whereby the pattern is the same at all scales. Self-Organised 

Criticality was recognised within the Rosetta pockmark field, therefore, it is inferred 

that the pattern o f random pockmark distributions incorporating an exclusion zone is 

present at both the basinal, field and within pockmark scale (this is a highly 

contentious issue and can not be resolved without further work) (Chapter 7).

The position at which P3 forms is likely to utilise the space between existing pipes 

and form closer to PI than P2. Potentially, P3 could form as close to PI as the 

boundary of the PI drainage cell area. It is feasible that drainage area size and shape 

may change with time. Fluctuations in the drainage cell geometry may result from 

changes in 1) permeability e.g. from sedimentation or collapse within the pipe, 2) 

flux, 3) fluid migration into the pipe from depth, 4) degree and position of 

overpressure generation e.g. smaller amounts o f overpressure is necessary to form 

the unit pockmarks and 5) contraction or closing of fractures e.g. cementation or 

hydrate formation.
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8.3.1.6 Time-Step 6

Post formation fluid migration ceases through PI (Fig.8.2). The pockmark is filled 

with hemiplegic drape and the depression is topographically healed (cf. Chapters 1 

and 6). It is likely that fluid pressures within the drainage cell no longer exceed 

threshold values for capillary entry pressure or hydraulic fracture pressure. Reduced 

fluid pressures may be due to a decline in fluid generation or migration into the cell. 

The exclusion zone around PI will remain until overpressures are sufficient to form a 

new pockmark within the drainage cell or migration continues through PI (cf. 

Chapter 7). New pockmarks continue to form and post formation fluid migration is 

continuing through P2 and P3.

8.3.2 Implications

The 4D spatio-temporal conceptual model described above epitomises the research 

concept outlined in the introduction (Fig. 1.5). The implications outlined below were 

selected based on their close relationship to the research concept and the aims of this 

thesis, namely pipe / pockmark morphology and process, spatial and temporal 

distribution and magnitude and frequency.

This next section examines; 1) the implications for seal risk analysis; 2) the 

significance of pipe planform geometry; 3) the significance of overpressured cells;

4) predicting the spatial location of pockmark formation within a shallow sourced 

field; and 5) the implications of Self Organised Criticality.

8.3.2.1 Seal risk analysis

Seal risk analysis examines the possibility that a petroleum (or even CO2 

sequestration) reservoir seal has been (or could be) breached by a member of the Seal 

By-pass family (see Chapter 1) (Cartwright et al., 2007). Seal risk analysis is an 

important component of hydrocarbon play analysis (Gluyas and Swarbrick, 2004) 

and is invaluable in analysing the economic viability of a potential reservoir. As
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noted in the thesis rationale (Chapter 1) seal risk analysis is one of the main 

applications of the science of focused fluid flow analysis using seismic data.

As members of the Seal By-pass System (SBS), cross stratal fluid migration through 

pipes is a component o f seal risk analysis. The methodology adopted by this 

research (Chapters 3, 4, 5, 6 and 7) is generally applicable to analysing the spatial 

and temporal pattern o f leakage from hydrocarbon reservoirs. Trap failure and seal 

by-pass can be identified, the position of failure within the trap determined i.e. 

anticline apex, and arbitrary chronostratigraphic dating of when leakage occurred and 

when / if it ceased. Leakage patterns can potentially be identified and included in 

geological models or play analysis, for example, directionality in seal failure or any 

cyclicity in overpressure and seal breach.

Similar assessments can be made when assessing the suitability of former 

hydrocarbon reservoirs for carbon capture and storage (CCS). By assessing any 

previous modes of trap failure it may be possible to suggest locations for potential 

future failure if supercritical C02 is injected too fast or the fracture pressure is 

exceeded.

The scenarios described above could potentially relate to new emerging “reservoirs”, 

for example, gas hydrates. Analysing spatio-temporal patterns of pipe formation 

from BSRs at the base o f  the gas hydrate stability field could potentially contribute 

towards an understanding o f  gas hydrates as a trap, overpressure mechanisms and 

patterns, episodicity/cyclicity of overpressure generation and migration triggering 

mechanisms e.g. hydrate dissociation.

8.3.2.2 Pipe morphology as a proxy for stress patterns

Stress and strain patterns are manifested by the change in shape of geological 

structures or sediments (Maltman, 1994). Understanding subsurface (and sub- 

seismic) strain patterns is important for numerous petroleum disciplines including 

basin analysis and modelling, geohazards analysis, well bore stability, field 

installation stability and fluid migration. In this section I discuss whether pipe
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geometrical analysis may have implications for the analysis of stain patterns. This 

discussion is exemplified using the Namibian data presented in Chapter 4.

Hydraulic tensile fracturing (Hubbert and Willis, 1957) of low permeability top seals 

has been linked to pipe formation and the initiation of intrusive structures (Van 

Rensbergen et al., 1999; Dimitrov, 2002; Morley, 2003; Cartwright, 2010). Pressure­

generated permeability is instigated when the pore fluid pressures exceed the 

minimal principal stress and tensile strength of the sediment (Hubbert and Willis, 

1957; Secor, 1965; Luo and Vasseur, 2002; Hillis, 2003). Consequently 

hydrofractures develop perpendicular to the direction of minimum stress, which is 

often assumed to be horizontal (Bott, 1959). Under certain conditions, where 

horizontal and vertical stresses are equal, it is feasible that the sediment will fracture 

isotropically into a set of radial, geometrically complex, fractures (Jain and Juanes, 

2009). It is anticipated that isotropical conditions would produce random fracture 

sets therefore making any stress / strain pattern analysis virtually impossible to 

detect, but this is not considered here.

Planform geometry of the Namibian pipes (Chapter 4) has been shown to be variable 

throughout the pipe height changing from unidirectional and elliptical at depth to 

multi-directional and circular towards the top (Fig. 8.3). This is commonly observed 

in many pipe, mud volcano and diatreme-like structures (Brown, 1990; Loseth et al., 

2001; Davies and Stewart, 2005; Cartwright et al., 2007). In the Namibian example 

measured pipes are orientated in a NW-SE direction, crudely approximating the 

general slope strike (Chapter 4). This may represent the principle stress direction of 

the root zone stratigraphic unit. I suggest that the elliptical nature of the pipe root 

zone is related to the orientation of the seal hydrofracture which initiates the pipe or 

any pre-existing discontinuities near the root zone which may facilitate or direct 

focused flow e.g. faults (Hustoft et al., 2010).

Namibian pipes have been shown to be unrelated to polygonal faults in the base 

Miocene sequence (Fig. 8.4) suggesting orientations are related to deeper 

stratigraphic units or normal faults; however faults at depth have not been observed. 

Polygonal faults have no preferred orientation (assuming no stress bias during their 

formation (Hansen et al., 2005)) (Cartwright, 1994; Cartwright and Dewhurst, 1998),
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therefore it can be assumed that pipes bleeding from polygonal faults may display 

various elliptical orientations, and not aligned in a single orientation as shown here 

(orientations shown here are possibly related to downslope stresses (Clausen et al., 

1999)).
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Figure 8.3 Pipes in 3D. Pipe geometry changes with height. Example from offshore Namibia.
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Figure 8.4 Coherency slice showing the co-existence between pipes and polygonal faults, 
offshore Namibia. Coherency slice taken 644ms below seabed (Post Rift 3).
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Clear identification of the pipe root zone is of paramount importance if pipe 

orientation is to be used as a proxy for principle stress directions (cf. Chapter 4 and

5). It is acknowledged that pipe roots are difficult to constrain seismically because of 

1) layer deformation or 2) anisotropic velocities within the pipes which may scatter 

the seismic energy and potentially produce migration artefacts and/or shadow zones 

below the pipes (Hustoft et al., 2010). Nevertheless it is important to measure true 

pipe base orientation or inaccuracies in stress direction may be introduced by the 

structural geometric changes observed with pipe height (Chapter 4).

In diatremes, it is suggested that this change in geometry from an elliptical root zone 

to circular top zone is a function of higher flow velocities within the central conduit 

(Novikov and Slobodskoy, 1979). It is assumed that a combination of upward 

increasing flow velocity (e.g. due to gas lift) and lower confining rock strength will 

increase the relative power of the fluid compared to that of the host rock, causing 

pipes to self organise as a cylindrical column during fluid ascent (all other factors 

being equal). High flow velocities can potentially be obtained in columnar 

structures through reduced wall friction between the upward flowing fluid and the 

surrounding host rock, altering the geometry as a function of process. A similar 

mechanism is therefore probable for pipes, and explains the geometrical variations 

with height observed (Chapter 4).

In summary, tensile fractures develop perpendicular to the direction of minimum 

horizontal stress (Bott, 1959), and this knowledge could potentially be used to 

analyse failure patterns (Price and Cosgrove, 1990). Here I suggest the genetic link 

between pipe formation and hydraulic fracturing could potentially help elucidate 

principle stress directions within certain stratigraphic units. Pipe root zone 

orientation as defined by hydraulic fracturing could be used as a proxy for principle 

stress directions. Caution is advised when using this proxy as hydraulic fracture 

orientations may be influenced by factors other than the direction of minimum stress, 

e.g. heterogeneities in strength.
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8.3.2.3 Mapping overpressure and the significance of pipe diameter

In addition to utilising pipe root zone orientation as a proxy for principle stress 

directions, pipes represent loci for overpressure generation and release within a basin 

and are therefore ideal for locating previously overpressured cells (cf. Chapters 5 and 

7). Seepage pipes are excluded from this discussion.

Mapping and modelling overpressure development is an important component in 

basin analysis. Numerical models are utilised to good effect for analysing the 

distribution of pressure within a petroleum reservoir, however these models require 

detailed numerical input and can only provide reliable results after extensive 

reservoir characterisation (Gluyas and Swarbrick, 2004). In this section I discuss 

whether pipe distribution and size (diameter) could potentially be used as a proxy for 

the relative distribution and amount of overpressure in a rapid, “first-pass”, 

overpressure assessment prior to the main basin modelling. The Namibian pipes are 

utilised as a case study to exemplify this discussion (Chapters 4 and 5).

Pipe geometry alters with height (Chapter 5). Two different measurements of pipe 

diameter could potentially be used for this proxy; maximum pipe diameter and pipe 

base diameter.

Widest pipe diameters are commonly observed at the level of the blowout crater or 

several reflections immediately above. This marks the point of maximum flux which 

is subsequently modified by higher frequency, lower magnitude post formation fluid 

migration (Chapters 5 and 6). It is anticipated that initial seabed pockmark/crater 

formation is dependant on both the eruptive force and geotechnical properties of the 

seabed i.e. finer silty material may produce wider but shallower pockmarks when 

compared to stiffer clay-rich material (Van Rensbergen et al., 2007).

Pipe base diameters could not be measured within the Namibian dataset (Chapters 4 

and 5). In the majority of examples, pipe minimum diameter was recorded at the 

deepest seismically resolvable point of the pipe, however small diameters have also 

been recorded from the very top of some pipes (cf. Chapter 4, Fig 4.8b). The base 

of a pipe is located at the point of maximum overpressure and hydro fracture
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generation within a seal. Here I tentatively suggest that the diameter of the pipe base 

ellipse is roughly analogous to the fracture length at the time of blowout. It is 

acknowledged that flow through the hydrofracture will modify the original fracture 

geometry in terms of 2D size and shape i.e. width and possibly length; however 

analysing the degree of fracture propagation in response to fluid flow is beyond the 

scope of the discussion presented here.

Pipe diameter data previously analysed in this research (Fig. 4.2a) has been re­

graphed in Figure 8.5 for the purposes of this discussion. Similar to Figure 5.5, a 

temporal frequency histogram has been constructed for the mean value of minimum, 

average and maximum pipe diameters. The histograms show that mean pipe 

diameters fluctuate with reflection (stratigraphic) depth or “time” (Fig 8.5) *. Mean 

minimum pipe diameters show no trend with time. Mean average and maximum 

diameters show a similar trend with time. Against a background fluctuation in 

diameter with time, mean diameters can be seen to broadly increase from R71 (base 

Miocene) to peak at R29, where there is a dramatic decrease in mean pipe diameters 

over a period o f 1 reflection (R28), before mean pipe diameters steadily increase 

once again.

* P lease refer to  the digital appendix  to  view  the spatial position  o f  m ean  m axim um  pipe diam eters 
disp layed  on an increm ental reflection basis
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Figure 8.5 Temporal frequency histogram, a) Mean minimum pipe diameter (m), b) Mean average pipe diameter (m), c) Mean maximum pipe diameter (m). This graph is equivalent to maps showing pipe symbols proportional to 
maximum pipe diameter.
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The interpretation of pipe diameter and its relationship to overpressure and release is 

of paramount importance when discussing the implications of pipe diameter for 

mapping overpressures. Pipe diameter can be interpreted in a variety of ways, 1) 

originating from the size of the hydrofracture, 2) as a function of pipe re-use 

(Chapters 5 and 6) and pipe height (Chapter 4), 3) as a function of geology and 4) 

as a function of acoustic anomalies (Loseth et al., 2009).

It is acknowledged that both geological heterogeneities and acoustic anomalies have 

a significant impact on pipe diameter. Acoustic anomalies may mask true pipe 

diameter (Chapter 4 and 5), producing erroneously large measurement values. Pipe 

geometry may alter as a function of geology, for example, if a pipe is focused 

through a channel-levee complex diameters may vary depending on the strength of 

the different materials within the complex. Both variables are independent of 

overpressure and constitute considerable limitations to using pipe diameter as a 

proxy for overpressure.

Pipe conduits are potential locations for repeated fluid migration flux (Chapter 5 and

6). If the volume of flux is sufficient it is possible that this fluid flow may erode the 

pipe walls by abrasion, widening the diameter of the pipe. This is supported by 

observations of a scaling relationship between pipe height and diameter (Chapter 4). 

This proposition makes certain assumptions about the type of pipe conduit. If 

narrow, hollow conduits are opened, Darcy flow could potentially abrade pipe walls, 

however if pipes are an interrelated, dendritic network of hydrofractures, abrasion 

would not be possible and any increase in pipe width is likely to be manifested in an 

extension of the hydrofracture network composing the pipe. It has also been 

suggested that this post formation fluid flow is of a higher frequency but lower 

magnitude than the flux associated with initial pipe formation (Chapter 6). 

Nonetheless, lower flux fluid migration may still influence pipe geometry.

Similar studies have been made on tropical soil pipes (Richards et al., 1996). Soil 

pipes are small (< 10 cm diameter), buried (< 30 cm below the surface) hollow pipes 

found mainly in humid tropical river catchments with clay-rich soils, which 

contribute a significant proportion of overland flow to rivers (14-16 %) (Walsh and 

Howells, 1988). Studies have shown that minor erosion of the soil pipe walls can
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occur for both large and small rainfall (water) fluxes (Walsh, 1980; Walsh and 

Howells, 1988; Walsh, 1996; Sayer et al., 2004; Sayer et al., 2006).

Finally, pipe diameter may be a function of the degree of overpressure. It is 

conceivable that a greater degree o f pressure may produce a larger seal hydroffacture 

once the initial subseismic fracture has formed (given an instantaneous blowout to 

seabed conceptual model). However fracture size may also be dependant upon seal 

geology i.e. fracture potential, sediment type/composition heterogeneities, 

permeability or contextual setting / dip. If these factors can be shown to be 

homogeneous, it could be assumed that degree of overpressure is related to 

hydrofracture size.

Taken together, these inferences suggest that pipe diameter may provide a relative 

proxy for overpressure. Minimum pipe diameters might represent a proxy for 

overpressure at the time o f seal breach. Maximum pipe diameters may represent a 

proxy for both overpressure at the time of seal breach and any subsequent 

overpressure build up and release i.e. magnitude and frequency of flux. Applying 

this interpretation to the mean average and maximum pipe diameters Figure 8.5.b.c, 

implications are that within the Namib basin, broad scale overpressure has been 

slowly building since the Early Miocene to culminate in the Pliocene. Overpressures 

reached a critical limit (R29) and then dissipated to a level lower than recorded in 

R71. Following broad scale dissipation, pressures slowly build back up towards a 

critical limit in a possible large scale cyclic process. Mean minimum pipe diameters 

recorded here (Fig. 8.5.a) are not considered a proxy for hydrofracture size because 

clear identification o f the pipe root zones was not possible. This may explain why 

the minimum diameter graph does not show a similar trend to average and maximum 

mean diameters.

It should be noted that the peak in overpressure (R29) does not coincide with the 

frequency peak in pipe formation (R34-40, TP1 scenario 1, Fig. 5.5). This may 

suggest that the degree of overpressure and the frequency o f seal breach are unrelated 

or that the trend o f overpressure with time is a function o f conditions e.g. geological 

differences, other than overpressure. It has been noticed that the largest forming 

pipes are in the south o f the study area and that these represent more recent pipe
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formation*. The graph may therefore reflect geological conditions more suitable to 

large pockmark / crater formation in the south of the study area. However, 

geological variations (based on seismic stratigraphic observations) have not been 

noted in the south of the study area, and no confident correlations have been made 

between pipe timing, position and geometry and its relationship to the 

palaeochannels.

8.3.2.3.1 Implications for overpressured cells

I have suggested that the Namibian pipes are influenced by isolated pressure cells 

which are locally independent yet broadly controlled (Chapter 5). Pressure 

compartments or cells have previously been invoked to explain fluid movement and 

associated overpressure generation within petroleum basins (Bradley, 1975; Deming 

et al., 2002; Tingay et al., 2007). Overpressures have been shown to drive fluids 

within compartments (Bishop Stump and Flemings, 2000; Flemings et al., 2002) but 

the lateral connectivity or potential for overpressures to be redistributed or 

transferred to other pressure compartments over time is rarely discussed (Tingay et 

al., 2007). I believe that overpressure build up and dissipation with time shown in 

Figure 8.5 is another example in support my previous assumptions of pressure cells 

within the Namib Basin and also supports notions of connectivity between cells.

Overpressures are known to dissipate over time via fluid leakage (Borge, 2002), and 

consequently are thought to originate in close proximity to where they were 

generated (Swarbrick and Osborne, 1998). To approximate the two-scale model 

proposed here of localised over pressure and release (pipe formation) against a 

background of longer term, larger scale prolonged pressure build up and dissipation 

within the basin, I propose a conceptual model similar to Muggeridge et al (2004, 

2005). The broad scale build up of basin wide anomalous pressure consists of groups 

of pressure compartments or cells (Bradley and Powley, 1994; Ortoleva, 1994; 

Ortoleva et al., 1995). These cells may be independent or may lay within larger cells 

forming “megacompartments” within the general “megacompartment complex” (Al-

* See digital Appendix on CD
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Shaieb et al., 1994a, b; Muggeridge et al., 2004). Under this model the cells may 

have different degrees of overpressure (Muggeridge et al., 2004) but still retain 

connectivity to adjoining cells in the complex.

It has been suggested that the pressure gradient in a typical hydrocarbon reservoir 

compartment is anticipated to return to hydrostatic over timescales in the order of 

hours or days, but the rate of pressure dissipation from abnormally pressured 

compartments are likely to take periods of tens of thousands to hundreds of 

thousands of years (Muggeridge et al., 2005). The grouping of cells into 

“megacompartment complexes” may delay pressure dissipation for millions of years 

(Muggeridge et al., 2004). The time period (reflection) of a single interval recorded 

in the Namibian data is c. 100-200,000 years and the period between R71 and R29 

may be as much as > 270,000 years. I therefore tentatively suggest that the 

Namibian data may display characteristics in common with the “megacompartment 

complexes” of Muggeridge et al (2004, 2005) and reinforce the view that the 

Namibian pipes are influenced by isolated pressure cells which are locally 

independent yet broadly controlled.

8.3.2.4 Prediction : Generalised predictive model

Predicting the location and timing of any future pockmark formation is a component 

of the geohazard and risk analysis for seabed petroleum installations (Hovland et al., 

2002; Ligtenberg and Connolly, 2003; Orange et al., 2005). Geohazard and risk 

analysis is often concerned with potential events over the life of the field e.g. 

pockmark formation within the next 50 yrs. Though generally more applicable to 

pockmark fields, the research on pockmark exclusion zones presented here could be 

extrapolated to propose areas within a field that are likely and/or unlikely to be 

populated by new pockmark growth. Establishing the age of the existing pockmarks 

and any correlation to triggering mechanisms would help establish the likelihood for 

future pockmark growth within the life of the field.

A generalised, predictive, multi-layered model is proposed to broadly predict the 

location of new pockmarks within a pockmark field (Fig. 8.6). The model is outlined
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below using a case study example from the Rosetta pockmark field (Chapter 7). The 

model relies on average values (as stated in this thesis) and spatial distribution 

analysis only.



Chapter 8 Summary and Discussion

Figure 8.6 Generalised predictive model, a) existing pipe exclusion zone (white circles) for the total population of pockmarks within the Rosetta Region study area, b) buffered rings surrounding the exclusion zone providing minimum 

distances for the closest formation of new pockmarks to existing, c), possible positions for newly forming pockmarks at either d) maximum distance from existing pockmarks or e) close (clustering) distance from existing pockmarks.
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Utilising the results of the Rosetta pockmark field analysis, a 10-15 m buffer was 

applied around the existing pockmark exclusion zone (assuming the exclusion zone 

is not penetrated by the formation of new pockmarks) (Fig. 8.6). This distance is 

based on a) the 10 m avalanche radius in SOC analysis, b) the deficit of Minimal 

Spanning Tree short edge lengths < 12 m, c) 14 m hardcore model and d) the deficit 

of nearest neighbour distances < 15 m (Fig. 7.9 and 7.11). This buffer simulates the 

anticipated exclusion zone surrounding any newly forming pockmarks. For 

simplicity in handling the large dataset, the buffer has been applied to the existing 

pockmark exclusion zone, delimiting the closest minimum distance a new pockmark 

could form to an existing pockmark. This distance also reflects the peak in MST 

edge lengths (above that for a random population) observed beyond the deficit of 

short edge lengths or exclusion zone distance (Fig. 7.13).

The model anticipates overpressure release to produce a pockmark 17 m in diameter 

(current average size for Rosetta field pockmarks, Fig. 7.9) (Fig. 8.6). New 

pockmark formation is predicted to occur in a minimal seabed area of c. 2730 m2 

(ratio of 3:1, Theissen polygon available space vs exclusion zone area, Fig. 7.9), 

thereby reducing the possible locations for new pockmark formation within the field. 

It is unclear, whether new pockmark formation will occur at maximum distance 

from, or cluster close to existing pockmarks (Fig. 8.6). Previous analysis from 

Namibia (Chapter 5) has shown that new pipes can form as both clusters and outliers 

at the same time, however the Rosetta pockmarks have shown a tendency towards 

clustering which may be favoured here (Chapter 7).

Complexity can be added to the basic model described here by incorporating aspects 

of Self-Organised Criticality in positioning the new pockmark(s) (spatial constraints 

included). Additional map layers pertaining to soil variability, permeability, pre 

existing fluid migration conduits e.g. faults or structures e.g. palaeochannels can be 

incorporated into this spatial model to restrict or group pockmark formation within a 

field.

Generalised predictive modelling as described above is only advisable once detailed 

spatial analysis has been conducted. Predictive models have to be site specific and 

tailored to the specific spatial requirements. For example the spatial distribution of
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pockmarks within the Big Sur pockmark field, offshore California (Appendix A7), 

does not show any tendencies towards Self-Organised Criticality. Instead a linear 

density gradient has been observed which would need to be incorporated into any 

generalised predictive model.

This type of generalised spatial predictive model could be applied to pockmark fields 

above petroleum reservoirs. For example, multiple large petroleum accumulations 

have been discovered beneath pockmark fields, offshore Angola. Geohazard 

assessments and risk analysis to seabed installations in Angolan blocks may benefit 

from a general predictive approach.

8.3.2.5 Self-Organised Criticality and Self-Similar characteristics: 

implications for pockmark fields

A tendency towards Self-Organised Criticality (SOC) has been observed in the 

Rosetta pockmark field on the Nile Deep Sea Fan. Self-Organised Criticality is a 

relatively new approach to analysing complex systems, and is repeatedly claimed to 

be a new paradigm in universal theory of complex behaviour e.g. chaos theory 

(Frigg, 2003). To the author’s knowledge, this is the first observation of SOC in 

pockmark distributions, but caution is advised when applying this universal theory to 

a new domain for the first time (Anderson, 1996; Frigg, 2003). The defining 

characteristic of SOC is self-similar characteristics in the magnitude of events (Bak 

et al., 1987; Bak, 1996; Ball, 2004; Cartwright et al., In press). The methodologies 

and results presented here have been unable to obtain definitive information on the 

“magnitude” of pockmark formative processes, however their spatial distribution has 

been shown to hold an “imprint” of SOC behaviour (Cartwright et al., In press). 

Here I discuss what information would be necessary to demonstrate SOC behaviour 

in pockmark formative processes and, if found, what the implication of this would be 

for pockmark science.

The basic message of Self-Organised Criticality is that large fluctuations are vital to 

the dynamics of large systems (Bak et al., 1987; Anderson, 1996). The premise was 

first displayed using a Sand Pile model (Bak et al., 1987, 1988). Grains are added
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randomly to a slope composed of grains of sand. The additional grains cause the 

slope to become unstable and the slope fails (avalanche). The slope is maintained in 

a “critical state” at the angle of repose as grains are continuously added to the slope 

and the slope fails in response. In the model Bak et al (1987, 1988) found that a 

single grain can induce a slide of any magnitude. There is no characteristic scale to 

the system i.e. no there is no typical number of grains added to the slope which 

induce failure; it is scale-invariant or has self-similar characteristics. The probability 

of avalanche size is a power law or scaling law, describing the inverse relationship 

between avalanche size and the frequency of avalanches (/), commonly referred to as 

an \ / f  law or \ / f  behaviour (Ball, 2004). \ / f  behaviour is unpredictable but clearly 

distinct from a purely random process (Ball, 2004). The system is self-organised 

because the pattern occurs spontaneously and minor perturbations (adding grains) 

can lead to effects (avalanches) of all sizes i.e. there is no outside “agent” affecting 

the system.

Components o f SOC behaviour and scale invariance or self similar characteristics 

have been observed in a number of different situations within this research. Firstly, 

pockmark diameter and depth have been shown to be positively correlated at both the 

large and small scale for circular pockmarks (Chapters 6 and 7) (it is acknowledged 

that this may be a function of pockmark inner-slope stability). Secondly, in the 

hydrofractured mechanism for pockmark formation, a fracture is believed to initiate a 

near-circular pipe and resultant pockmark regardless of scale (the effects of imaging 

and acoustic artefacts are acknowledged) (Chapters 4 and 6). Finally, it is probable 

that the unit pockmarks above the buried pockmarks on the Rosetta Plateau hold an 

imprint of SOC in their spatial distribution despite their formation in a non-field 

environment (Chapter 6). Although not analysed, the unit pockmarks are small, 

circular, display a random distribution (according to first order characteristics) and 

have nearest neighbour values similar to the higher density regions of the pockmark 

field.

The formation o f pockmarks by the non-linear failure of a sealing sequence once a 

critical [state] fluid pressure is reached suggests SOC behaviour is a possibility, 

however, classifying the “magnitude” of pockmark formation is problematic and one 

of the inherent weaknesses of SOC (Frigg, 2003). The magnitude of pockmark
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formation could relate to 1) the size (height, depth, diameter) of the pockmark or 

pipe, 2) the degree of overpressure, 3) fluid flux (discharge rate, volume), 4) the 

geotechnical properties of the seal (composition, thickness), 5) depth to the fluid 

source or 6) permeability of the reservoir. Of the variables mentioned it has only 

been possible to measure pipe/pockmark size in this study. The frequency of 

Namibian pipe height and diameter (Chapters 4 and 5), Rosetta Plateau depression 

diameter (Chapter 6) and Rosetta field pockmark diameters (Chapter 7) do not show 

1 //behaviour* and it is therefore probable that “size” is not a proxy for formation 

magnitude under a SOC system (given a population of < 400 measured variables).

In consideration of SOC behaviour, the sample size is critical. The spatial and 

temporal sample size needs to be sufficient to describe dissipative systems with 

extended degrees of freedom (Bak et al., 1987). It remains unclear whether the 

sample size utilised in this study is adequate.

In a Self-Organised Criticality model inferences can be made about the magnitude of 

the processes operating within the pockmark system, but not which processes are 

operating. If size is not a proxy for formation magnitude, I suggest additional 

proxies should be tested to explain the imprint of SOC in the Rosetta pockmark field. 

For example minor changes in methane generation or reservoir permeability may 

lead to overpressure generation at all magnitudes, and if overpressure demonstrates 

Mf behaviour it may be possible that overpressure is the fundamental component 

which explains pockmark formation in a field environment.

Currently, SOC behaviour has been identified in the distances separating pockmarks, 

given a minimum avalanche size of 10 m. If this spatial behaviour proves to be an 

imprint of SOC behaviour in pockmark formation, it could have important 

implications for pockmark science. Self-Organised Criticality would suggest that, in 

principle, there is no difference between big and small pockmark formation, and that 

potentially, the frequency of the “magnitude” of formation could be “predicted” from 

the Mf power law. In other words, SOC opens up new lines of enquiry by isolating 

and exaggerating components of the fluid flow system.

* see Appendix A6

281



Chapter 8 S u m m a ry  and Discussion

The paradigm of Self-organised criticality is not w ithout i ts  drawbacks. Self- 

Organised Criticality and Self-Similar characteristics h a v e  been enthusiastically 

applied to many systems however not all systems fit the m o d e l as  well as the original 

sand-pile model belonging to Bak et al 1917 (Anderson, 1 9 9 6 ;  Frigg, 2003). One 

example being turbulence in the field of hydrodynamics w h i c h  displays a classic 

model for dissipative dynamics due to qualitative in h o m o g en e ity  of the system 

(Anderson, 1996). Rigorous testing of the application o f  SOC to pockmark 

formation is suggested before adopting this model.

8.3.3 Research limitations

The limitations of the research presented in the preceding c h a p te r s  are as follows;

• Well calibration: both the Namibian and Nile Deep Sea F a n  seismic data would 

have benefited from well calibration. Ideally multiple, d e e p  boreholes in close 

proximity to the area under investigation would have h e lp e d  to confirm the 

geology of different seismic stratigraphic units and p ro v id e  chronostratigraphic 

age control. For example, age data and geotechnical ch arac te ris tics  of Mega Unit 

Post-Rift 2, offshore Namibia, would help to confirm the u n i t ’s role as a sealing 

sequence.

• High resolution data: the Namibian research would have b e n e fite d  from a higher 

resolution seismic survey of Post-Rift 3. A high resolution seism ic survey would 

help to more precisely define the pipes and therefore im prove geometrical 

measurement accuracies (which currently stands at ~25 m  b y  —12 m)

• “Ground truthing” with ROV (Remotely Operated V e h ic le )  video footage and 

core sampling: the NDSF research would have b e n e fited  from either video 

footage or grab samples from within pockmarks to c o n f irm  methane seepage 

through the presence of MDAC, hard grounds, b e n th ic  communities or 

geochemical sampling.
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8.3.4 Further work

Open questions remain regarding the validity of some of the assumptions made 

during this research. Further work is proposed to address these issues;

8.3.4.1 Additional datasets

Robust testing o f the spatial analysis methodology is required. Application of the 

methodology to additional pockmark fields is necessary to determine whether 

tendencies towards Self-Organised Criticality is a general phenomena of pockmark 

fields or uniquely relates to the Rosetta Region (Chapter 7). Testing of the exclusion 

zone theory is paramount to the conclusions drawn here. If exclusion zones can be 

identified in other pockmark fields from around the world it strengthens the drainage 

cell hypothesis and suggests that, far from being random, pockmark formation 

adheres to some form of spatial positioning governed by the processes acting to form 

and maintain the focused fluid flow migration route (Chapter 7).

8.3.4.2 Pipe internal structure analysis

As mentioned in the introduction, the internal structure of pipes is very varied 

(Chapter 1). This may be a function of seismic imaging or processing etc or of 

genuine geology. Further research into the effects of imaging fluid escape structures 

with seismic data is required to resolve this issue.

8.3.4.3 Modelling

Modelling pipe and pockmark formation is a new paradigm within pockmark science 

(Cathles et al., 2009; Jain and Juanes, 2009). However, as noted in Chapter 7, these 

models are primarily concerned with 2D formation via vertical processes. Physical 

or numerical modelling which incorporated components to simulate the effects of
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permeability, pressure, flow velocity etc in 3D or 4D (time) would help support some 

of the conclusions gained from spatial analysis.

8.3.4.4 Detailed interpretation of the drainage cell

The drainage cell is proposed here as a conceptual model to explain the anti­

clustering observed in the spatial distribution of pockmarks (Chapter 7). The 

conceptual model requires robust testing (numerical modelling, physical modelling, 

geotechnical and geochemical sampling etc) to determine the influence of 

permeability, overpressure and fluid migration to the pockmark with distance 

(lateral). Additionally, other factors need to be addressed, for example whether a 

single process e.g. permeability, may have more of an influence on the size/shape of 

the drainage cell than other processes.

8.3.4.5 High amplitude reflection “waves”

A sampling campaign is required to fully analyse the high amplitude reflection 

“waves” observed in the Rosetta Region. Cores in excess of 50 m would be required 

to fully sample the stratigraphic sequence, both above and below the target. Cores 

(geomicrobiological and geotechnical) taken from the apex, syncline and shoulder of 

the “wave” could be analysed at regular intervals for pore water chemistry, in 

particular methane and sulphate, and relative elevated numbers of bacterial cell 

counts and activity. The “wave” could be sampled to test for calcium carbonate and 

the isotope composition of the calcium carbonate to determine if the precipitate is 

from biological or thermogenic sources e.g. 513 C -80 ppm to 513 C -50 ppm 

indicates biogenic sources and 513 C -50 ppm to 513 C -25 ppm indicates 

thermogenic sources (Horita and Bemdt, 1999). The three samples could be carbon 

dated to determine when the high amplitude “wave” formed.
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S.3.4.6 Self-Organised Criticalitv

Further analysis is required before claiming that pockmarks exhibit SOC behaviour. 

Firstly, identification of a pockmark formation process which exhibits a power law 

function between magnitude and frequency needs to be identified. Secondly, this 

process would need to show self-similar characteristics and third, testing of this 

theory would require a sufficiently large dataset. A large amount of 

multidisciplinary research is required before SOC behaviour can be endorsed.
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9 CONCLUSIONS

To the author’s knowledge, this research represents the first published spatio- 

temporal analysis of pipe and pockmark formation of its kind (especially in the 

utilisation of quantitative statistical methods). The studies presented here illustrate 

how a spatio-temporal methodology can reveal valuable insights into process 

frequency and magnitude. These range from analysis at the basinal scale presented 

in Chapters 4 and 5 to the field scale presented in Chapters 6 and 7. The summary 

and discussions of Chapter 8, and the study specific conclusions drawn in Chapters 4, 

5, 6 and 7, have provided observational, (semi)quantitative and interpretational 

conclusions. This section summaries the key findings and addresses the aims 

outlined in Chapter 1.

9.1 Extend the general descriptive base of Blowout 
pipes

• Chapter 4 has described a previously unknown group of pipes from offshore 

Namibia. The pipe family displays a great diversity and similarity in seismic 

characteristics. The pipes are clearly depicted in 3D seismic data from the 

recognition of systematic disruption and/or offset of the reflections within the 

pipe, augmented by observations of amplitude enhancement or dimming. Pipe 

bases are defined by a basal reflection that exhibits no disruption beneath the pipe 

and the upper terminus is defined by taking the first continuous reflection to cross 

above the pipe (this reflection often exhibits a fill morphology). Pipes range 

from < 100 m to > 300 m diameter and < 1100 m in height. Pipes are elliptical 

and their planform geometry changes with height. A scaling relationship 

between pipe height and diameter is observed. Wide pipes (> 100 m diameter) 

are characterised by an internal structure in which the majority of reflections are 

deflected downwards relative to the host stratigraphy (c. 10 to c. 60 m). In the
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deeper part of the pipes, the ‘sag’ is abrupt and sharply delimits the lateral 

margins, whereas the depressions in the shallower portions of the pipe are more 

gently curving, and the pipe margins are less abruptly defined. I interpret these 

observations as indicative of a violent burst of escaping fluid/sediment at the 

seabed which induced subsequent collapse of the overburden (by volume loss due 

to fluidization at the base of the pipe) creating a blowout crater. Continued fluid 

migration through the conduit is a distinct possibility.

9.2 Investigate the spatial distribution of pipes and 

pockmarks

• Chapter 5 analysed the spatial distribution of a family of blowout pipes, using 3D 

seismic data from North Namibia. The pipes are not uniquely related to the up 

dip limit of structures or underlying stratigraphic units. They do not share a 

common basal reflection. The pipes are anti correlated with a mound apex (a 

potential structural trap) and are observed to form at the mound perimeter leaving 

the fold crest devoid of fluid flow features. Gross pipe distributions cluster in a 

horseshoe pattern around the central mound. On a smaller scale, pipe 

distributions display multiple patterns i.e. they can be clustered, dispersed or 

linear. Pipe formation colonises gaps between existing pipes and at large 

distance from the main group (outlier positions).

• Chapter 7 investigated the spatial distribution of pockmarks within a field using a 

case study from the Rosetta Region of the Nile Deep Sea Fan (NDSF). 

Pockmark distributions within the field are shown to be non-random. The 

pockmarks display anti-clustering tendencies i.e. there is a decreased likelihood 

of finding neighbours within a close distance. The exclusion zone between 

pockmarks does not fit a Hardcore distribution e.g. a regular lattice, and is shown 

to be highly variable between pockmarks. Pockmark distributions hold an 

imprint of Self-Organised Criticality.

288



Chapter 9 Conclusions

9.3 Investigate the temporal distribution of pipes and 

pockmarks

• Chapter 5 analysed the sequential temporal distribution of blowout pipe 

formation in the Namib Basin, Namibia using an arbitrary chronostratigraphic 

timescale. Pipe formation is shown to be intermittent yet persistent through time. 

The pipes did not form at the same time, nor was their formation restricted to 

specific time intervals. The pipes are observed to form throughout a 5-10 My 

interval (Neogene) with 2 and 26 pipes forming during a single (or group) of 

reflections (approximately 100-200,000 years).

• Chapter 6 analysed the temporal formation pattern of buried pockmarks from the 

Rosetta Region of the NDSF and related their formation timings to potential 

triggering mechanisms. Buried pockmark formation has been shown to occur on 

4 separate horizons chronostratigraphically dated at 15,000 yrs BP,

100.000 yrs BP and arbitrarily chronostratigraphically dated at c. 50,000-

80.000 yrs BP. The majority of buried pockmarks formed during the c. 50,000-

80.000 yrs BP time window. This time period coincides with a period of 

relatively low eustatic sea level which is believed to have triggered fluid 

migration.

9.4 Investigate the longevity of post formation fluid 

migration and make inferences about the 

frequency and magnitude of flux

• Chapter 4 discussed the interpretation of “stacked pockmarks” in 3D data. 

Stratigraphically positioned above the blowout crater, the Namibian pipes 

exhibited a stacked sequence of gently curving concave depressions. It is 

difficult to determine the precise origin of the stacked concavities using 3D data 

alone, however maintenance of successive generations of concavity over an
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extended period of time and enhanced amplitude anomalies suggest fluid 

migration may be a component in their formation.

• Chapter 6 analysed and interpreted “stacked pockmarks” using high resolution 

2D data from the NDSF. Using higher resolution data it is evident that the 

concave reflection geometry above buried pockmarks is the perpetuation of 

pockmark-like morphology through drape and not stacked pockmarks. I term 

these conduits pockmark arrays

• Chapter 6 identified and interpreted seismic reflection characteristics which 

typify post formation fluid migration. Within the pockmark arrays, clustered unit 

pockmarks are interpreted as evidence for continued migration through the 

conduit following formation of the buried pockmark. Due to their number and 

size, unit pockmarks are interpreted to result from a fluid migration flux which is 

of smaller magnitude but higher frequency when compared to the parent (buried) 

pockmark. The longevity of post formation fluid migration with the Rosetta 

Region of the Nile Deep Sea Fan is anticipated to be c. 15,000-100,000 yrs.
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11 A P P E N D IC E S  ON CD

Chapter 11 : Appendix A1

• Additional data in support of Chapter 1

• Non-extensive database of published pockmark geometries and geological 

setting.

Chapter 12 : Appendix A2

• Additional data in support of Chapters 4

• Seabed dip map showing pipe locations

• Pipe base reflection frequency

• Top pipe relief graphs

• Base Miocene map showing pipe locations (pipe names)

• Raw data : basic measurements

• Raw data : RMS amplitude measurements

Chapter 13 : Appendix A3

• Additional data in support of Chapter 5

• Root zone frequency

• Correlation between structural and isopach maps and Post Rift 1, Post Rift 2 and 

the Syn Rift

• Map showing the spatial distribution of TP2 values (scenario 2)

• Map showing the spatial distribution of TP1 values (scenario 3)

• Correlation between the timing of pipe formation and the

o depth (m)

o slope (°)

o aspect (°)

o thickness (m)

o f the Post Rift 2 and the Syn-Rift sequences
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• Correlation between the timing of pipe formation TP1 and TP2

• the depth of the pipe base

• the reflection value assigned to the pipe base

• Individual time points (PowerPoint presentation, see attached CD)

• Pipes forming in sequence movie (see attached CD). Please note, no significance 

should be attached to the time taken between each set of pipes appearing

• Incremental time points (PowerPoint presentation, see attached CD)

• Incremental Voronoi polygon analysis (PowerPoint presentation, see attached 

CD)

Chapter 14 : Appendix A4

• Additional data in support of Chapter 6

• Stacked and buried pockmarks

• Frequency histograms of unit pockmark and depression a-axis diameters (m)

• Geometrical relationships : various graphical relationships between pockmark

area, depth, diameter and depression area, diameter, depth and number of unit

pockmarks

• Relationship between the temporal point of buried pockmark formation and 

depression area, diameter, depth and number of unit pockmarks

• Raw data table : Rosetta plateau pockmarks

• Raw data table : Rosetta plateau buried pockmarks

Chapter 15 : Appendix A5

• Additional data in support of Chapter 7

• Ripley’s K spatial statistic -  statistic graphical output

• Relationship between exclusion zone and Voronoi polygon area, and pockmark 

diameter

• Relationship between Nearest Neighbour distance and pockmark diameter

• Raw data table : Rosetta pockmark field study area
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Chapter 16 : Appendix A6

• Additional data in support of Chapter 8

• SOC magnitude log : log plots

Chapter 17 : Appendix A7 

New Statistical Methods (paper)

• This chapter has been submitted for publication as Cartwright, A., Moss. J. L. 

and Cartwright, J. (in review) New Statistical Methods for Investigating 

Submarine Pockmarks in Computers and Geoscience.


