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Summary
Exosomes are nanometre-sized vesicles secreted by most cells into the extracellular milieu. 
They have been proposed as a good source of disease-related markers as they are available 
non-invasively (for example from urine) and express a repertoire of proteins enriched in 
cancer antigens and stress proteins. The major aim of this thesis was to perform the first 
ever proteomics study on bladder cancer exosomes.

Initially, exosomes were isolated from urine specimens but hypervariable yields and poor 
sample quality made proteomics analysis challenging. As an alternative approach, 
exosomes were isolated from HT1376 bladder cancer cells. Exosomes were purified by 
ultracentrifugation on a sucrose cushion, and preparations verified as high quality by 
immunoblotting, flow cytometry and electron microscopy.

For global proteomics analysis, the sample was solubilised using SDS and DTT and 
subjected to LC-MALDI-TOF/TOF MS. We identified 353 proteins with high confidence 
and 63 of these have not been previously identified in other proteomics studies on human 
exosomes.

Overrepresentation analysis demonstrated that the proteome was consistent with that of 
other exosomes with significant overlap with exosomes of carcinoma origin. Comparisons 
with the Gene Ontology database also highlighted strong associations with carcinoma of 
the bladder and other sites. A GeneGo generated protein interaction network highlighted c- 
Myc as a major node of protein interaction within this dataset.

Several MS-identified proteins were confirmed as genuinely exosomally expressed using a 
combination of immunoblotting, flotation on continuous sucrose gradients, and flow 
cytometry. Expression was also verified in exosomes from a variety of sources, including 
urine.

In conclusion we report the first proteomics dataset on exosomes derived from bladder 
cancer cells. We identified 353 exosomal proteins with high quality MS data and highly 
pure exosomes. The data will aid our understanding of exosome biogenesis and function 
and may inform the development of urine exosome-based clinical tools in bladder cancer.
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Chapter 1

Introduction



Introduction

1.1 Bladder cancer

Bladder cancer (BCa) is the 5th most common cancer in the UK and is ranked 9th in the 

world [1]. Every year in the UK alone around 10,000 people (17 per 100,000 of the 

population) are diagnosed with BCa. Of these 90% are diagnosed with transitional 

(urothelial) cell carcinomas (TCC) with the remaining 10% being squamous cell 

carcinomas (SCC) or adenocarcinomas. TCC is the second most common cancer of the 

genitourinary tract, prostate cancer being the first, and hence represents a significant 

clinical problem. Yet it is a research area that remains under-investigated.

The urinary bladder is a muscular organ that acts as a reservoir for urine, produced by the 

kidneys, prior to its excretion through the urethra. The area where an individual is most 

likely to develop carcinoma of the bladder is in a triangular region of the bladder known as 

the trigone (Figure 1.1). It is here where the two ureters enter the bladder and the urethra 

exits [2].
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Figure 1.1: Anatomy of the bladder

The trigone region o f the bladder highlighted is the area in which a carcinoma is most likely to develop (from 

SEER Training Modules, NIH, US, 9,h March 2010 [3])
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1.1.1 Risk factors and aetiology

The UK male: female ratio of bladder cancer is 5:2 and worldwide is 10:3 and there is a 

racial trend with increased incidence amongst Caucasians than Afro-Caribbeans. The 

incidence of BCa increases with age; rising steadily from the fifth decade peaking in the 

six and seventh decades [1,4].

Smoking is a major risk factor in BCa with a two to six-fold increased risk of BCa in 

smokers compared to non-smokers [5, 6]. This increased risk is probably caused by the 

excretion of carcinogens such as 4-aminobiphenyl and its subsequent storage for extended 

periods within the urine -  in contact with the bladder urothelium. Continuing to smoke 

increases the rate of progression of non-invasive cancer. Conversely stopping smoking 

reduces the risk of development but the return to normal risk levels is unlikely to occur.

In addition TCC is associated with exposure to industrial chemicals such as aniline dyes, 2- 

naphthylamine, 4-aminobiphenyl, 4-nitrobiphthol, benzidine, 2-amino-l-naphtol and 

acrolein [7]. Industries have taken measures to reduce the risk of developing TCC 

associated with these chemicals.

BCa is also linked to chronic bladder infection particularly in the Middle East where it is 

associated with chronic infection caused by schistosomiasis (a waterborne parasitic 

flatworm). In these instances the disease is usually SCC and the mean age of onset is 

usually earlier than that of TCC [1, 4, 7].

1.1.2 Diagnosis, treatment and monitoring

The most common presentation of BCa is gross painless haematuria (85% patients). Other 

symptoms include urgency, urinary frequency and dysuria (painful urination). All of these 

symptoms can however be indicative of less serious problems such as urinary tract 

infections, so cannot be used as definitive diagnostic tools alone, and patients require 

further investigations. The evaluation of suspected BCa usually includes urine cytology, 

flexible cystoscopy and imaging of the upper urinary tracts by ultrasound and intravenous 

pyelography (IVP). Transurethral resection of the bladder tumour (TURBT) is performed
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under general anaesthesia using a resectoscope (cystoscopy is an endoscopic procedure in 

which the inside of the bladder can be visually examined) removing all visible tumour as 

well as biopsy of the surrounding muscle. This tissue may provide important information 

about the cancer grade and tumour depth. Local staging may also be furthered by MRI 

scanning of the tumour.

If bladder cancer is confirmed, careful staging is important as treatment is dependent on the 

stage of the disease at presentation. Detailed classification for malignant carcinomas of the 

bladder is given in Table 1.1 and depicted in Figure 1.2. This classification offers a 

shorthand description of bladder tumours at presentation. For example T1 is representative 

of tumours that are limited to the lamina propria whereas T4 represents tumours that have 

invaded local structures such as the vagina, prostate (T4a) or abdominal wall (T4b). 

Knowing the depth of tumour invasion also indicates the risk of lymph node metastasis. 

Individuals with cancer limited to the lamina propria (T l) have a 20% risk of developing 

lymph node metastasis whereas patients with full-thickness muscle invasion (T2b) the risk 

increases to 60%.

There are three grades of BCa G l, G2, and G3. Low grade G1 is the least aggressive. Here 

the cells are well differentiated and analogous to normal bladder cells. G3 is known as high 

grade disease and exhibits the most anaplastic (de-differentiated) cells which have a more 

embryonic form compared to the normal cells. G3 tumours have the highest growth rate, 

risk of recurrence and metastatic potential [8]. Carcinomas in situ are non-invasive flat 

lesions of the bladder epithelium and are likely to be high grade malignancies.

Once the stage and grade of the cancer has been determined, the treatment may consist of a 

combination of surgery, radio-, immuno-, and chemo-therapy. Superficial/papillary 

tumours (Ta/Tl) account for 70% of TCCs and are usually of relatively low malignant 

potential (Gl or 2). These are removed by TURBT or diathermy where the tumour tissue is 

destroyed using an electric current. Regular cystoscopic follow-up is also performed due to 

a tendency to recur. The risk of recurrence and risk of progression to muscle invasive 

disease (T2-T4) can be predicted from the history, tumour stage, grade and multifocality. If
_  .  _  -  5
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recurrence is considered likely, adjuvant intravesical chemotherapy with mitomycin C or 

immunotherapy with BCG (bacillus Calmette-Guerin) may be used [9].

The standard curative treatment options for muscle-invasive tumours (T2-T4) are surgery 

or complete TURBT followed by external beam radiotherapy. Cystectomy is standard 

practice in the US and there is increasing evidence that extended lymph node clearance 

improves outcome. Quality of life following cystectomy is affected by the need to divert 

urinary flow directly or indirectly into a stoma bag, but modem surgical techniques can 

overcome much of this with the creation of continent neo-bladders. Radical radiotherapy 

allows preservation of the organ function of the bladder in the majority of patients. 

However, patients require life-long cystoscopic follow-up and approximately 15% will 

require salvage cystectomy for locally recurrent disease. Chemotherapy used pre or post 

operatively has been shown to improve survival rates by about 5%. Where 

adenocarcinomas and SCCs are concerned the tumours tend to be insensitive to 

radiotherapy and therefore the treatment of choice is surgery.

Bladder cancer is a difficult cancer to manage, from its initial presentation to its treatment 

and monitoring, it involves a lot of careful staging and interpretation of clinical 

information. Many of the patients are elderly, have significant medical co-morbidities 

(most are smokers), and require repeated invasive cystoscopic assessment. Hence there is a 

need for tools that can reduce the amount of invasive clinical work needed to diagnose and 

monitor these patients.
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Table 1.1: TNM bladder cancer staging

Primary Tumour (T)
Tis Carcinoma in situ
Ta Noninvasive papillary tumour
T1 Tumour invades the lamina propria, but not beyond
T2 Tumour invades the muscularis propria

pT2a Tumour invades superficial muscle (inner half)
pT2b Tumour invades deep muscle (outer half)

T3 Tumour invades perivesical tissue
pT3a Microscopically
pT3b Macroscopically (extravesical mass)

T4 Tumour invades any of the following: prostate, uterus, vagina, pelvis or abdominal 
wall

T4a Tumour invades prostate, uterus, vagina
T4b Tumour invades pelvis or abdominal wall

Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
NO No regional lymph node metastasis
N1 Metastasis in a single lymph node, 2cm or less in greatest dimension
N2 Metastasis in a single lymph node >2cm but <5cm in greatest dimension, or multiple 

lymph nodes, none >5cm in greatest dimension
Distance Metastasis (M)
MX Distant metastasis cannot be assessed
MO No distant metastasis
M1 Distant metastasis

From the American Joint Committee on Cancer 2002 [4]
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Deep Muscle

Prostate

Muscylaris Propria

Lamina Propria

Superficial Muscle

Bladder Lining 
(Urothelium)

Peritoneum

Fat

Urethra
Abdominal Wall

: carcinoma in situ
: non-invasive papillary carcinoma
: tumour limited to lamina propria
: tumour invades lamina propria
: invades superficial muscle
: invades deep muscle
: tumour invades perivesical tissue
: invading neighbouring structures (prostate, 
uterus, vagina)
: involvement of rectum, fixed to pelvic wall

Figure 1.2: Tum our staging of b ladder cancer in a male patient

(adapted from Bladder Cancer UK, CancerStats, CRUK (2006) and DeVita (2007) [1,4])
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1.1.3 Molecular alterations in bladder cancer

There is believed to be two main pathways in the pathogenesis of BCa which has triggered 

many studies investigating the known genetic alterations in BCa. These two pathways are 

thought to be linked to whether a tumour is superficial or invasive or CIS. Low-grade 

superficial tumours (pTa) have been identified to have few molecular alterations. Those 

that have been identified include deletions involving chromosome 9 and mutations of the 

FGF receptor 3 [10]. Mutations in the FGF receptor 3 gene in one study were found in 

around 80% of low grade pTa tumours but not all in CIS and at much lower levels in pTl 

and above [11]. With respect to CIS and muscle invasive tumours more genetic alterations 

have been found in the p53 gene compared with pTa tumours [12]. Other genetic 

alterations in high grade muscle invasive disease include mutations in PTEN, RB, and 

TP53 [10, 13]. These genetic alterations and others (reviewed in [10, 13, 14]) may be 

reflected in the protein composition of BCa cells.

1.1.4 Bladder cancer markers

In order to diagnose and monitor the progression of the disease, regular cystoscopies and 

urine cytological analysis is performed. Cystoscopies are currently the most efficient 

method for detecting primary and/or recurrent TCC. It is nevertheless an invasive 

procedure causing significant discomfort to the patient. Therefore eradicating or reducing 

the need for cystoscopies is likely to be beneficial not only for the patient but may also 

reduce the time in clinic and costs. Urine cytology is the standard method for detection or 

follow up of urothelial carcinomas. The cytological analysis examines exfoliated cells 

present in voided urine analysing morphological abnormalities (e.g. size, shape, and 

prominent nucleoli). Urine cytology is sensitive for the detection of high grade tumours, 

but problems arise with low grade tumours as the cell abnormalities are minor. The 

detection rate of urine cytology is highly variable (10 to 90%) with the highest rate of 

detection for high grade carcinomas in situ. Flow cytometry has also been used to assess 

the DNA content of cells to determine the aneuploid population, but this has been found 

not to be particularly valuable [15]. The variability of urine cytology means that better 

urinary markers for detection are needed to identify early stage high grade disease before it 
-...      *  “ .....        9
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becomes invasive, and to detect low grade superficial TCC recurrence. This would enable 

earlier treatment which is more effective.

1.1.4.1 What makes an ideal tumour marker?

A biomarker is a molecule whose presence, absence, or abnormal physiological status can 

be used as an indicator of disease or injury. An assay, as a means of measuring/detecting 

the biomarker needs to be simple, highly sensitive and specific, reproducible and ideally 

low cost. The marker may be useful for different purposes such as screening, diagnosis 

and/or disease monitoring.

Screening involves testing seemingly healthy individuals for disease and is normally 

performed on a specific group in a population. For example a test for prostate specific 

antigen (PSA) combined with digital rectal examination has been approved by the U.S. 

food and drug administration (FDA) to screen men over the age of 50 for elevated levels of 

PSA which may be indicative of prostate cancer. Markers for diagnosis may be most 

important in situations where biopsy is not feasible for example in certain brain cancers. 

An assay for monitoring disease should be quantitative for a given marker of interest, and 

suited to longitudinal analysis. The levels of the marker could be useful for determining 

whether: the treatment has been successful, there is disease recurrence, or disease 

progression.

Simple detection methods
For BCa, finding a minimally invasive means of detection is important as the current gold 

standard for detection is cystoscopy which is an invasive procedure. Ideally therefore, an 

assay for detecting a marker should be suitable for use with voided urine specimens, 

because BCa extends into the urine therefore the urine itself has the potential to contain 

numerous biomarkers for TCC. These markers may be in the soluble fraction, present on 

excreted tumour cells or within the urine sediment.

Ideally any biomarker assay should be a point-of-care assay (performed in clinic, at 

patients’ bedside, or through a quick response laboratory) giving an immediate result to the



Introduction

clinician and patient. This would reduce stress for the patient and the need to send sample 

to the laboratory. This is however not essential and may not always be possible, as other 

non-invasive tests such as PSA for prostate cancer require samples to be sent to the 

laboratory [16]. The most important thing is that it is simple to perform and analyse and is 

accurate. Some currently available tests and those under investigation for both point of care 

and tests requiring laboratory analyses will be discussed later.

Accuracy

How accurate an assay is depends on several features including the inherent sensitivity and 

specificity of the marker being detected, but also the instability of the specimen, poor 

specimen storage, or shelf life of the assay. Furthermore, the population being tested will 

also influence not the accuracy of the assay but certainly the accuracy of the biomarker 

considerably. For example patients with benign genitourinary conditions such as benign 

prostatic hypertrophy or a urinary tract infection (UTI) may cause an increase in false 

positives due to the biomarker being present in these benign conditions. Conversely 

excluding these patients may decrease the number of false positives. Therefore it is 

important that the biomarker is tested thoroughly taking into account different patient 

groups allowing the reliability and accuracy of the biomarker to be thoroughly analysed. It 

is also important to know for what group of people the test is being designed. For example 

is the test going to be used for screening of the general population, for people presenting 

with suspected bladder cancer, or being followed up for known bladder cancer. If an 

biomarker was used that had not been thoroughly tested a patient could be misdiagnosed 

potentially leading to a patient not receiving treatment or having to go through unnecessary 

procedures [17].

Therefore the efficiency of the marker, as an indicator of disease, and the assay to detect 

the marker effectively are statistically analysed using a contingency table. This consists of 

four compartments representing the following in terms of BCa marker and assay evaluation 

respectively: 1) True positives -  BCa and biomarker present/ positive test; 2) False 

negatives -  BCa and but biomarker not present/ negative test; 3) True negatives -  no BCa
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and biomarker not present/ negative test; 4) False positives -  no BCa but biomarker 

present/ positive test [17].

This information is used to calculate the sensitivity, false negative rate, specificity and 

false positive rate. Sensitivity is the percentage of people with BCa and a positive test 

calculated as true positive/ (true positive + false negative) x 100, whereas false negative 

rate is the opposite (false negative/ (true positive + false negative) x 100). An ideal tumour 

marker or tumour marker assay should have a sensitivity approaching 100% and a false 

negative rate approaching 0%.

Specificity is the percentage of individuals without BCa with a negative test calculated as 

true negative/ (true negative + false positive) x 100. Conversely the false positive rate is 

calculated by false positive/ (true negative + false positive) x 100. Again an ideal tumour 

marker assay should have a specificity approaching 100% and a false positive rate 

approaching 0%. Therefore to have an accurate tumour marker assay both the sensitivity 

and specificity have to be high.

Prior to development of a biomarker assay it is paramount the biomarker is tested and 

found to be highly sensitive and specific. Without assessing the markers capability to be 

indicative of the disease, any subsequent assay development would be flawed as the true 

effectiveness of the test would not be determinable.

Marker assay development

Once a putative biomarker has been identified a detection assay has to be developed and 

tested prior to being clinically approved. Lokeshwar (2005) describes the need for 

standardising the phases of assay development and describes four phases summarised here 

[17].

Phase 1: Assay development and evaluation of clinical prevalence (feasibility studies)

Feasibility studies are the first step where an assay has to be optimised and shown to be 

reproducible. Feasibility studies should record the prevalence and expression of any
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markers and also examine the markers association with demographic and clinical 

characteristics in a representative study cohort.

Phase 2: Evaluation studies for clinical utility

Further optimisation may be performed to improve the assay, but the ultimate goals are to 

(1) refine hypothesis and (2) define standards for phase 3 studies so the assay can be 

performed precisely by other investigators.

Phase 3: Confirmation studies

Phase 2 is repeated with sufficient power in a larger defined clinical setting of an 

independent prospective cohort of patients. The clinical utility of an assay its performance 

and interpretation is established here.

Phase 4: Validation and technology transfer as application studies

The aims here are to (1) transfer techniques and established methods of assays and other 

aspects of the technology and (2) to evaluate other investigators abilities to apply the 

methods and interpret the results. In this phase the assay is incorporated into clinical 

practice [17].

Phase 1 and 2 are often carried out within a single institute whereas phases 3 and 4 require 

multi-institutional and international involvement to obtain as much information from as 

many patients as possible allowing all aspects of the assay to be examined thoroughly.

1.1.4.2 Current and potential bladder cancer tests

Reviewing all of the available literature on current and potential BCa markers is beyond 

the scope of this work. However a number of the non-invasive clinically approved BCa 

tests and markers under investigation will be reviewed and many others are detailed in 

Table 1.3.
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BTA stat and TRAK

BTA stat (Polymedco Inc., Redmond, Washington, USA) is and immunochromatographic 

assay for BTA (bladder tumour antigen). The antigen detected by the test was identified to 

be a human complement factor H-related protein (hCFHrp) [18]. The test detects BTA 

using five drops of voided urine placed into the test device which is left for 5 min to allow 

the reaction to take place [19]. The urine comes into contact with latex particles coated 

with IgG targeted against BTA. When agglutination occurs there is a colour change 

indicating a positive result.

There is also a laboratory based test, BTA TRAK, which is a quantitative sandwich 

immunoassay measuring the levels of hCFHrp. As with other tests variability was seen 

between stages and grades of tumours the sensitivity being highest for high grade tumours. 

Both BTA stat and BTA TRAK show improvements in sensitivity in comparison to urine 

cytology especially in low tumour grade superficial TCC detection. The sensitivity for Gl 

was 13% to 55% and G2 and G3 were 36% to 67% and 63% to 90% respectively 

furthermore the specificity of the tests was >90% [17].

A major drawback of these tests is the increase in false positives in patients with benign 

genitourinary conditions, particularly haematuria. Patients presenting with these conditions 

would therefore have to be excluded. However, the tests may aid in the monitoring of 

patients with a history of BCa. They have the advantage of being clinic-based with an 

almost immediate result.

ImmunoCytrM
ImmunoCyt™ (Diagnocure, Inc., Saint-Foy, Quebec, Canada) is an immunofluorescence 

based test for three cellular markers. These markers are tumour associated antigens M344, 

19A211 and LDQ10. The M344-antibody identifies a mucin-like high molecular weight 

determinant on a cytoplasmic protein, while the 19A211 -antibody detects a highly 

glycosylated form of carcinoembryonic antigen (CEA). Lastly the LDQ 10-antibody is 

directed against a mucin [15, 20]. The assay detects these markers in exfoliated cells of the 

transitional epithelium [21]. This laboratory based test requires 20-40 ml of urine that is
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fixed immediately with 50% ethanol followed by the addition of a special fixative solution. 

The cells are then filtered out and fixed onto slides for immunocytochemical analysis [22].

The combination of urine cytology and ImmunoCyt™ has been shown to give an overall 

sensitivity of 92% (89, 88, and 94% for grade 1-3 malignancies respectively) in one study. 

The overall sensitivity for ImmunoCyt™ alone was 89% (89, 86, and 91% for grade 1-3 

malignancies respectively) whereas cytology was 50% (11, 55, and 74% grade 1-3 

malignancies respectively). The specificity of cytology was however 98% [15].

This test may provide a useful addition to urine cytology in the management of BCa but is 

insufficient to replace urine cytology. In addition the assay could not be used to determine 

tumour grade as the distinction between the grades is too small.

NMP22 test

Nuclear matrix protein 22 (NMP22) test kit (Matritech, Inc., Newton, Massachusetts, 

USA) is an immunoassay detecting elevated levels of a nuclear mitotic apparatus protein 

which is a component of the nuclear matrix. NMPs make up the non-chromatin structure 

that confers nuclear shape, organises the chromatin and regulates critical aspects of mitosis 

[23]. This test is the only one approved for use in diagnosing BCa for patients displaying 

symptoms or at high risk of developing TCC [22].

The test kit is able to detect complexed and fragmented forms of the protein quantitatively 

via a microtiter sandwich enzyme-linked immunoassay (ELISA). Simon et al., (2003) 

offers a simple review of NMP22 test studies showing an overall test sensitivity of 60-70% 

and specificity of 60-90%. Simon noted that the ranges observed may be influenced by the 

cut off point (recommended to be 10 U/ml) and the patient cohort used in a study [22].

Overall the NMP22 test has shown potential to be used by clinicians to help them 

determine a suitable time frame for repeat cystoscopies thus potentially decreasing patient 

discomfort and anxiety and also costs. This test cannot differentiate between tumour grades 

and is influenced by other medical conditions but has found a role in a specific cohort of 

patients.
-    -   -   —      .............
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Mcm5

A potential new test to detect BCa is an immunofluorometric marker assay (analytical 

sensitivity of 10 pmol/L; equivalent of -4,000 cells) to measure the level of 

minichromosome maintenance 5 (Mcm5) protein in exfoliated cells in the urine. This test 

is currently undergoing phase three clinical trials. Mcm5 protein expression is deregulated 

in epithelial cells in the first stages of carcinogenesis [24]. The results so far have shown 

92% sensitivity (cf. 15% for urine cytology) and a negative predictive value (true 

negative / (true negative + false negative)) of 97% for patients with low grade superficial 

cancer. In addition applying a higher cut off point (6,000 cells) to samples from patients 

with a higher risk for BCa may be more applicable and also improve performance of the 

test for high grade disease detection.

Improvements in performance are needed to reduce the number of false-negatives. 

Additional trials are underway to determine whether the Mcm5 assay can replace or reduce 

the frequency of cystoscopies in the management of patients with or at high risk of 

developing TCC. Furthermore, the Mcm5 assay showed potential for the detection of 

different tumour types such as prostate carcinomas so may not be BCa specific [25].



Table 1.2: Bladder tumour markers for detection and surveillance

Test/Marker Marker Detected Specimen Assay Type Marker Type Manufacturer Sensitivity (%) Specificity (%)
Cytology Tumour cells Voided urine,

barbotage
specimen

Microscopy Cell
morphology

Diagnostic
reference
laboratories

11-76 >90

Haematuria
detection

A: Haemoglobin A: Voided 
urine

A: Dipstick A: Soluble 
protein

A: Bayer 
Diagnostics t

A: 50-90 A: Low

B: Red blood cells B: Voided 
urine

B: Interference- 
contrast microscopy 
or red blood cell 
analyser

B: Red blood 
cell morphology

B: - B: -100 B: -100

BTA-Stat hCFHrp (also 
CFH)

Voided urine Dipstick immunoassay Soluble antigen Polymedco 
Inc. ¥

36-89 (low for low 
grade tumours, low 
tumour volume)

50-70 (low among benign 
urologic conditions)

BTA-TRAK hCFHrp (also 
CFH)

Voided urine Sandwich ELISA Soluble antigen Polymedco 
Inc. ¥

57-83 (depends on 
cut-off limit selection)

-50  in benign urologic 
condition; -90  in healthy 
individuals

NMP-22 Nuclear mitotic 
apparatus protein

Voided urine Sandwich ELISA 
(newer version: point-of- 
care device)

Soluble antigen Matritech, Inc
H

47-100 (depends on 
cut-off limit selection, 
tumor volume and 
patient population)

55-80 (depends on 
presence of benign 
urologic conditions)

BLCA-4 Nuclear matrix 
protein

Voided urine ELISA (using a rabbit 
polyclonal antibody)

Soluble antigen 96.4 100 in healthy individuals; 
81 in other urologic 
conditions

Introduction



Table 1.2: Bladder tumour markers continued

Test/Marker Marker Detected Specimen Assay Type Marker Type Manufacturer Sensitivity (%) Specificity (%)
Survivin

UBC

A member of 
inhibitors of 
apoptosis gene 
family

CK8 and 18
(cytoskeletal
proteins)

Voided urine

Voided urine

Bio-dot test (dot blot 
assay using a rabbit 
polyclonal antibody)

Sandwich ELISA or 
point-of-care test

Soluble antigen -

Soluble antigen IDL Biotech *

100

36-79 (may be low to 
detect Ta, T1 
tumours)

87-100

88-92 (may be low in 
benign urologic 
conditions)

Cytokeratin
20

Cytoskeletal
protein

Exfoliated
cells

RT-PCR or 
immunocytology

mRNA or cell-
associated
protein

82-87 55-70 (low in benign 
urologic conditions)

CYFRA 21-1

HaA-Haase

Microsatellite
DNAtest

CyK 19 (a Voided urine Immunoradiometric
cytoskeletal assay or
protein) electrochemiluminesc

Hyaluronic acid Voided urine 
and Hyaluronidase

Microsatellite 
markers on 
chromosomes

Exfoliated
cells

ent immunoassay

ELISA-like assays 
using a biotinylated 
HA-binding protein

Soluble antigen Cis-Bio 75-97; -55  to detect
International 0; G1 tumours 
Roche
Diagnostics i

2 soluble matrix - 
components

Genomic DNA PCR Genomic DNA

88-94

72-97

67-71 (low for urolithiasis, 
stenosis, BPH, and UTI)

Overall 84; 63-71 in 
recurrent tumours: 60 % 
false positives turn true 
positive in 5 months

>95 in healthy individuals; 
false positives if BPH, 
cystitis

Telomerase Enzyme activity Exfoliated TRAP assay Cell-associated Qbiogene § 70-90; but as low as 60-70 (low if UTI,
(TRAP assay) cells enzyme 7-46 (enzyme urolithiasis, or

unstable in urine) inflammation present)



Table 1.2: Bladder tumour markers continued

Test/Marker Marker Detected Specimen Assay Type Marker Type Manufacturer Sensitivity (%) Specificity (%)
Telomerase
(hTERT)

hTERT Exfoliated
cells

RT-PCR (conventional 
or real-time)

mRNA for 
hTERT

83-95 (but as low as 
24)

60-70 (low if UTI, 
urolithiasis, or 
inflammation present)

ImmunoCyt CEA, 2 bladder 
tumour cell- 
associated 
mucins

Exfoliated
cells

Immunocytochemistry Cell-surface
antigen

DiagnoCure, 
Inc. U

38-90 (low for low 
grade tumours)

73-80 (low id 
microhematuria, BPH, 
cystitis present)

DD23 185-kDa tumour-
associated
antigen

Exfoliated
cells

Immunocytochemistry Cell-surface
antigen

Urocor h 73-100 33-67.5

Quanticyt Mean nuclear 
shape and DNA 
content

Exfoliated
cells

Computerised analysis Nucleus, DNA
of light microscopy
images

- 59-69 70

Mcm5 Mcm5
(minichromosome 
maintenance 5) 
protein

Exfoliated
cells

Immunofiuorometric Cellular antigen - 92 73

UroVysion Alterations in 
chromosomes 3, 
7, 17, and 9p21

Exfoliated
cells

Multicoloured, 
multiprobe FISH

Denatured
chromosomal
DNA

Vysis ¥¥ 68-87; (low for low- 
grade tumours [36- 
55])

>90

M f 
VO :h

Introduction



Table 1.2: Bladder tumour markers continued

BPH = benign prostate hyperplasia; BTA = Bladder tumour antigen; CYFRA = cytokeratin fragment; ELISA = enzyme-linked immunosorbent assay; FISH = 
fluoresence in situ hybridisation; HA = hyaluronic acid; HAase = hyaluronidase; hTERT -  human telomerase reverse transcriptase; NMP = nuclear matrix protein; 
PCR = polymerase chain reation; RT = reverse transcription; TRAP = telomeric repeat amplification protocol assay; UBC = urinary bladder cancer.

iRoche Diagnostics, Burgess Hill, UK 
§Qbiogene, Geron Corp., Menlo Park, CA 
t t  DiagnoCure, Quebec City, Quebec, Canada 
HH Urocor, Oklahoma City, OK 
¥¥ Vysis/Abbott Labs, Abbott Park, IL

t  Bayer Diagnostics, Leverkusen, Germany
¥ Polymedco Inc. (formerly Bard/Bion Diagnostics, Redmond, WA)
Matritech, Inc., Newton, MA H
*IDL Biotech, Borlabger, Sweden
0 Cis-Bio International, Gif-sur-Yvette, France

from Lokeshwar et a l, (2005) [17]
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1.1.5 The future for bladder cancer markers

Overall the marker assays currently available for use by clinicians all have their uses but no 

single marker has excellent sensitivity and specificity for all TCCs in order to replace 

cystoscopies or even urine cytology. Many of the assays such as ImmunoCyt may 

nevertheless complement urine cytology and thus reduce the interpreter subjectivity seen 

with urine cytology. Other assays such as BTA-TRAK and the NMP-22 test could be used 

to help the clinician determine a suitable time period between cystoscopies.

Unfortunately many of the tests listed in Table 1.3 are also affected by one or more benign 

conditions and/or other cancers. As described earlier it is very important to thoroughly test 

an assay with samples from individuals with varying benign conditions and stages and 

grades of cancer. However, if it is established that a test is affected by conditions such as 

haematuria, increasing the number of false positives, how useful can that assay actually be? 

Especially when taking into account that 85% of people diagnosed with bladder cancer 

present with haematuria, thus limiting such an assay to those patients not presenting with 

haematuria. Only 15% of bladder cancers would therefore be identified. However, it might 

be useful in the follow-up phase.

Any new potential markers need to be thoroughly examined assessing various aspects such 

as its detectability, stability, and quantification of the effects of benign conditions. 

Furthermore, is the assay specific to a particular stage or grade of tumour or does it detect 

them all equally? Where quantitative assays are concerned it is important to establish a 

suitable cut off point giving the assay its best sensitivity and specificity. This also needs to 

be maintained throughout multicentre trials. Once all the data has been collected and 

analysed it may then be possible to determine an assays best possible application. For 

example a test such as the HAase ELISA may be able to identify high grade disease 

specifically and potentially before it becomes invasive [26]. Others may be useful in 

identifying recurring disease such as the UBC test which showed higher low grade tumour 

sensitivity than other available tests although sensitivity was only 66% [27]. It is apparent 

that many years of work and data analysis is required to determine a markers true potential. 

~    ’    '     '       21
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In recent years it has become clear that the molecular heterogeneity of bladder tumours 

makes it unlikely that one molecule will enable an accurate diagnosis. There is therefore a 

need for a panel of markers which are likely to be more useful in the diagnosis and 

monitoring of the TCC [28-30]. One way of identifying molecular markers may be through 

molecular profiling. However, the molecular heterogeneity of cancers may also pose 

problems here as subpopulations of cells may be present within the tumour that are specific 

to a particular stage in the tumours evolution [30]. Alternatively, some studies have 

demonstrated the benefit of using several of the currently available urine based BCa tests. 

For example Sanchez-Carbayo (2001) examined the use of UBC, CYFRA 21-1 and NMP- 

22 together as a means to individualise intervals between cystoscopies [31].

It may be beneficial to perform molecular profiling on many different tumours allowing the 

identification of genes and proteins that are common to the different grades and stages of 

disease. This may help identify a panel of markers that may be useful in diagnosing and 

monitoring BCa. These markers could also be important in the pursuit for new therapeutic 

targets and understanding the molecular pathways of the disease. Markers identified may 

also allow for improvements in patient stratification to maximise therapeutic interventions 

which is the holy grail of individualised medicine.

In order to identify a potential marker panel it may be necessary to utilise novel urine 

biomarker sources because of the complexity of the urinary proteome and genome. 

Looking at the urinary proteome specifically it is likely that this will contain abundant 

proteins such as Tamm-Horsfall protein (THP) that may mask other less abundant proteins 

of interest in BCa. Chattergee (2005) compared the proteome of lyophilised urine samples 

from BCa patients and patients presenting with microhaematuria under suspicion of 

bladder cancer (their control). They identified just three proteins (Reg-1, CK2, and CD5) 

elevated in cancer [32]. This was probably due to high levels of abundant proteins masking 

the less abundant proteins that may be relevant in cancer. Other contributing factors which 

may impact upon the complexity of the urine include proteinuria and haematuria [33]. 

Proteinuria would lead to a large number of abundant non disease specific proteins whereas

haematuria would alter the cellular composition of the compartment and introduce blood
_ _ _ _  -  - - - - —      22
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proteins to the sample, such as highly abundant albumin and immunoglobulins. The 

volume of fluid poses problems when analysing urine as potential biomarkers may be very 

dilute. Also in relation to dilution is the hydration state of the individual this may affect the 

solute concentration and potential biomarker concentration. Also the presence of salt 

within the urine may create difficulties in analysing it, particularly with respect to 

proteomics where salt is a major interfering substance. Proteases present may also affect 

the susceptibility of the sample to spontaneous degradation. Furthermore the biological 

content of the urine will be derived from multiple cell types (from the kidney and 

downstream of the renal tract) [34-36] and thus urine represents the genitourinary tract as a 

whole and is not a means of selecting just bladder derived proteins.

Therefore it may be prudent to examine a sub-proteome of the urine which is likely to 

contain fewer if none of the most abundant proteins in urine, such as THP, thus reducing 

the sample variability. This may reveal relatively low abundant proteins which may be of 

greater clinical interest. Smalley et al., (2008) undertook a proteomics study examining one 

such subset: urinary microparticles and identified eight proteins that had altered levels in 

bladder cancer compared to healthy donors [33]. However, the method used here means the 

sample analysed although a subset of the urinary proteome it is still nonetheless a highly 

complex mixture of microvesicles, exosomes and other urinary constituents that can be 

pelleted by high speed ultracentrifugation. As a consequence, the true source of the 

markers is unknown. If there was a single source for all of the markers of interest, such as 

excreted tumour cells, they would be more likely to be consistently present and possibly 

related functionally to one another. This study does nevertheless offer insight into the 

potential advantages of analysing a subset of the urinary proteome for biomarker 

identification.

Of the urinary constituents, nanometre sized vesicles termed exosomes may offer 

themselves as a particularly good source of potential biomarkers. Exosomes are secreted 

into the extracellular space by most if not all cell types. Many tumour cells have been 

shown to secrete particularly high amounts of exosomes and these are known to be 

enriched in tumour associated antigens and membrane proteins in particular [37-42]. _  _
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With respect to BCa, cancerous urothelial cells due to their proximity to the urinary space 

are likely to secrete exosomes into the urine. These exosomes can be purified from the 

urine [34] and might provide a complex panel of BCa associated proteins that could 

represent disease status.

1.2 Exosome biology and purification

Exosomes are nanometre sized vesicles (30-100 nm in diameter) naturally secreted by 

living cells into the extracellular milieu both in vivo and in vitro. They were first described 

in the 1980’s as a means of purging cellular mass and transferrin receptor from 

reticulocytes during their maturation into erythrocytes [43]. They have since been shown to 

be released by numerous cells types including B-cells [44-47], T-cells [48, 49], mast cells 

[50-53], neuronal cells [54, 55], hepatocytes [56], fibroblasts [44], numerous cancer cells 

[40, 57, 58] and others. Furthermore they have been isolated from biological fluids 

including urine [34, 59, 60], saliva [61], breast milk [62], blood [63-65] and malignant 

effusions [66-68]. Exosomes have been isolated from various mammalian species (humans 

and rodents), reptiles and birds [69-71]. Furthermore the cellular compartment that gives 

rise to exosomes is present in yeast and plants [71, 72]. Exosomes may therefore be a 

fundamental feature of eukaryotic cells.

1.2.1 Exosome formation

Exosomes are formed in the endocytic tract within multivesicular body (MVB) 

compartments. The pre-exosomes contained within these compartments are released into 

the extracellular fluid space when the outer membrane of the MVB fuses with the plasma 

membrane. This endosomal origin of exosomes has been shown by several electron 

microscopy studies demonstrating the fusion of MVBs with the cell membrane releasing 

the exosomes (Figure 1.3) [47, 73, 74]. However, more recently an additional mechanism 

for formation and release of exosomes from T cells (specifically Jurkat) has been 

presented. This mechanism involves the outward budding of plasma membrane domains 

enriched in exosomal and endosomal proteins [75]. It has also been proposed that this
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manner of exosome formation may be hijacked by HIV for the formation of infectious 

particles [76, 77].

For endocytic tract exosome formation, proteins are segregated in the outer membrane of 

the MVB prior to being internalised by membrane invagination. It has long been thought 

that the sorting of proteins within the MVB involves a group of proteins known as the 

endosomal sorting complex required for transport (ESCRT). This sorting normally 

involves the mono-ubiquitinylation of proteins as a means of tagging them for recruitment 

by the ESCRT machinery [78, 79]. A proportion of cellular proteins within the endosomal 

tract may ultimately be delivered through MVBs to the lysosome for degradation. 

Alternatively, this compartment can also result in vesicular secretion.

Endosomal sorting of MHC class I into MVBs has been shown to involve the ESCRT 

machinery as follows (Figure 1.4). Once the MHC class I protein is ubiquitinated it appears 

to be recruited by the ESCRT machinery into the endosomal pathway at the MVB limiting 

membrane. The recruitment is in association with ESCRT-O/clathrin lattices. ESCRT-I 

then binds to the ubiquitinated cargo protein which activates ESCRT-II. ESCRT-II initiates 

the oligomerisation of more than four small coiled-coil proteins forming the ESCRT-III 

complex which is a large endosomal associated structure. In this final complex the 

ubiquitin tag is removed prior to sorting into the MVB. The ESCRT-III complex also 

appears to be involved in the concentration of the MVB cargo [78, 80, 81]. The ESCRT 

components found in secreted vesicles may help distinguish these vesicles from the plasma 

membrane and plasma membrane derived micro vesicles. Nevertheless, not all proteins 

found in exosomes are ubiquitinated. Furthermore the selective knockdown of certain 

ESCRT constituents impacts upon the lysosomal/degradation route but may not adversely 

affect exosome formation. Therefore, the ESCRT pathway does not offer a full explanation 

for exosome formation.

An alternative pathway for the sorting of cargo in to MVBs has been demonstrated relating 

to the lipid membrane constituents of the MVB. In this sorting mechanism raft based 

microdomains within the MVB are thought to help segregate the proteins for lysosomal

~  _  ’  ~  25



Introduction

degradation from those to be incorporated into exosomes. These microdomains within the 

limiting membrane of MVBs contain large concentrations of sphingolipids. Ceramide is 

produced from the sphingolipids by the action of neutral sphingomyelinase. This ceramide 

is able to induce spontaneous domain budding in the MVB (Figure 1.5). Interestingly 

exosomes have been found to be enriched in ceramide but upon the inhibition of neutral 

sphingomyelinases the release of exosomes was reduced [82]. It is thus likely that these 

sphingolipid rich microdomains and the formation of ceramide from these sphingolipids 

may be responsible for exosome formation within the MVB.

In addition, Rab GTPases have been shown to be involved in exosome secretion. Rab27a 

and Rab27b have been demonstrated to have different functions in MVB docking at the 

plasma membrane. The silencing of two known Rab27 effectors has been shown to inhibit 

exosome release [83]. Another study using oligodendrocytes suggests that Rab35 may also 

be involved in exosome release [84]. It is clear that exosome formation is still poorly 

understood and requires more research to enable us to fully understand the processes 

involved.

During exosome formation cytosolic proteins are incorporated into their lumen and thus 

extracellular domains of the transmembrane proteins (Figure 1.5) are oriented toward the 

extracellular environment following release into the extracellular milieu. This membrane 

protein orientation has been demonstrated by labelling whole mounts of exosomes for the 

extracellular domains of membrane proteins such as MHC class II molecules for immuno- 

electron microscopy [47, 85]. Clayton et al., (2001) also showed that beads coated with 

antibody specific for MHC class II molecules can bind exosomes in cell-culture 

supernatants. Furthermore, these exosome-bead complexes also stained for an array of 

other membrane proteins such as CD63, ICAM-1 and CD59 [86]. These observations are 

consistent with the proposed membrane orientation and ‘inward budding’ model exosome 

biogenesis.

Electron microscopy studies have demonstrated the relative enrichment of membrane 

proteins and cholesterol in the exosome membrane. The exosome fusion electron
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micrograph shown in Figure 1.3 illustrates that cholesterol and MHC class 1 labelling is 

almost entirely restricted to the exosomes [87], whereas the plasma membrane and the 

limiting membrane of the MVB show very little labelling. The recruitment and enrichment 

of proteins and lipid constituents are fundamental properties of exosomes. It is this specific 

enrichment of proteins in the exosome membrane, compared to the plasma membrane, 

which may be of particular importance in facilitating the identification of novel biomarker 

proteins.
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Figure 1.3: Fusion of MVB with the plasma mem brane releasing exosomes rich in cholesterol and 

MHC class 11 into the extracellular fluid space

Cryosections of B-cells (RN cells) demonstrating the fusion profile (indicated by arrows) between a 

multivesicular body (MVB) and plasma membrane (PM), releasing exosomes (E) into the extracellular fluid 

space. The sections were double-labelled for cholesterol (10 nm) and MHC class II (15 nm) showing the 

staining to be almost entirely on the vesicles and not on the plasma membrane or MVB limiting membrane. 

Image taken from Wubbolts et al., (2003) [87].
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Figure 1.4: The involvement of the ESCRT complex in M HC class I MVB incorporation

Ubiquitinated MHC Class I associated with ESCRT-O/clathrin lattices in the MVB limiting membrane. 

ESCRT-I then binds to the ubiquitinated Class I, this activates ESCRT-II. ESCRT-II initiates the 

oligomerisation o f more than four small coiled-coil proteins forming the ESCRT-III complex. In this final 

complex the ubiquitin tag is removed prior to sorting into the MVB.
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Figure 1.5: Schematic of exosome formation and secretion

Some apical membrane proteins undergo endocytosis and are targeted to the multivesicular body (MVB) by 

the ESCRT pathway. The inclusion of proteolipid proteins into the MVB is thought to depend on ceramide 

generation on the cytosolic side by neutral sphingomyelinase 2 (nSMase2). Both pathways include the 

invagination of the MVB membrane which also encapsulates cytosolic proteins within the exosomes. The 

extracellular domain o f the membrane proteins are returned to the outer surface o f the membrane. After many 

vesicles have accumulated, the MVB fuses with the apical membrane releasing the exosomes in to the 

extracellular fluid space. From Marsh and van Meer, (2008) [88]. This scheme suggests the potential for 

multiple types of nano-vesicle perhaps within the same MVB.
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1.2.2 What is the composition of exosomes?

Exosomes are highly complex nano-vesicles that comprise of an array of lipids, proteins 

and nucleic acids (Figure 1.6). This molecular repertoire is dynamic, influenced by 

exogenous and endogenous factors, and of course is dictated by cell type.

1.2.2.1 Lipid composition of the exosome membrane

Exosomes are composed of a partially detergent resistant lipid bilayer (Figure l .6). The 

exosome membrane has a composition consistent with lipid rafts (detergent resistant 

membranes). The membranes of a number of different exosomes has been studied 

including B-cell exosomes which have been found to be enriched in cholesterol, 

shingomyelin and GM3 [87]. However, a study by Laulagnier et al., (2004) on mast cell 

and dendritic cell (DC) derived exosomes did not show the same enrichment of cholesterol. 

Laulagnier did nonetheless observe the loss of phospholipid asymmetry in exosomes with 

increase in flip-flop of lipids between the two leaflets compared with the parent cell [89].

A preliminary study by the same group proposed that the lipid lysobiophosphatidic acid 

(LBPA) may be essential for exosome biogenesis, within the MVB, but that the LBPA is 

not passed on to the exosomes. It was also proposed by Wubbolts et al., (2003) that the 

recruitment of proteins into the limiting membrane of MVBs may involve their 

incorporation in to tetraspanin-containing detergent resistant membrane domains [87].

Exosome membranes have also been found to contain phosphatidylserine (PS) that is 

distributed equally between inner and outer leaflets. This is something unlike the plasma 

membrane of normal cells where PS is principally located in the inner leaflet. PS becomes 

exposed on the cell surface early during apoptosis where it is recognised by macrophages 

and mediates phagocytosis of apoptotic cells [90]. Exosomal surface PS has been 

demonstrated by flow cytometry of Annexin-V stained exosome-bead complexes [63, 91]. 

Another protein with PS binding properties identified in exosomes is soluble protein milk 

fat globule-epidermal growth factor-factor VIII (MFG-E8). MFG-E8 (lactadherin) 

associates with exosomes through binding to the PS exposed on the exosome surface
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through its C1C2 domain. MFG-E8 is also able to bind through its EGF-like domain to 

avp5 and avp3 integrins on the surface of dendritic cells (DCs) and macrophages [85]. 

This integrin binding facilitates the uptake of MFG-E8-PS bound entities such as apoptotic 

cells by macrophages. In terms of exosomal function and MFG-E8, Zeelenberg et al., 

(2005) demonstrated in vivo that dendritic cells could uptake and cross-present antigens 

that were coupled to the C1C2 domains of lactadherin (i.e. exosomally expressed). This 

form of antigen acquisition was superior to the uptake of soluble antigen in eliciting anti­

cancer immunity [92].

Tim-1 and Tim-4 (T-cell immunoglobulin- and mucin-domain-containing molecule) also 

bind PS and may assist in the uptake of exosomes [90]. The PS exposed on the surface of 

exosomes therefore may be a key mechanism for exosomal uptake by cells such as DCs, 

macrophages and others [85, 90, 92, 93]. Overall, the role of lipids in exosomes is an 

understudied aspect of these vesicles and certainly warrants further study.

1.2.2.2 Protein composition of exosomes

The protein composition of exosomes has been studied more extensively and has been 

shown not to fully represent the proteome of the parent cell. Exosomes may be viewed as 

depleted of proteins of the endoplasmic reticulum (ER), Golgi apparatus, mitochondrial 

and nuclear origin, but enriched in some membrane proteins.

A large number of proteins common to many exosomes have been identified including 

membrane adhesion proteins such as integrins [40, 62, 87], which are cell specific. For 

example aM on DCs, p2 on DCs, mast cells B cells and T cells, and a4pi on reticulocytes 

[94]. Other classes of proteins identified include tetraspanins (CD9, -63, -81, -82) [34, 64, 

85, 95-97]; heat-shock proteins -  HSP90 [34, 56, 57], HSC70 [62, 87, 98]; proteins 

involved in membrane transport and fusion -  annexins [34, 56, 57, 95], Rab protein family 

[34, 61, 95, 99]; cytoskeletal components -  actin [40, 53, 99, 100], cofllin [34, 62, 95, 

101], tubulin [97, 99, 100]; antigen presentation -  MHC class I [48, 58, 74, 100, 102], 

MHC class II [59, 61, 62], ICAM-1/CD54 [46, 103, 104]; lysosomal markers -  LAMP1 

[46, 59, 101], LAMP2 [46, 59, 64] and metabolic enzymes -  enolase-1 [62, 87, 96]. A 
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schematic representation of an exosome is depicted in Figure 1.6 showing the proposed 

structure of an exosome.

Exosomes may also contain cell type specific proteins and hence may serve some functions 

akin to the parent cell. For example cell specific proteins such as A33, cadherin-17, CEA, 

epithelial cell surface antigen (EpCAM), and mucin 13 were identified in colon tumour cell 

line LIM1215 [96]. Some proteins that are associated with cancers can be found in 

abundance in cancer exosomes.

Exosomal proteins have been identified by a number of means including western blotting 

[36, 46-48, 51, 58, 74], flow cytometric analysis of exosome coated beads [46, 48, 86, 99], 

and using proteomics technologies such as two-dimensional electrophoresis (2DE) coupled 

with mass spectrometry (MS) [40, 105] or IDE liquid chromatography tandem MS (LC- 

MS/MS) [96, 101, 106]. Proteomics analysis of exosomes using various technologies has 

expanded our knowledge of proteins expressed by exosomes greatly in the last decade and 

will be discussed in detail later.

Some of these exosome studies have also helped confirm that exosomes are not just 

membrane fragments because they lack some abundant cell surface receptors. For example 

DC derived exosomes do not express Fc receptor [99] and B-cell derived exosomes lack 

transferrin receptor [47, 86]. Furthermore, some of the exosomal proteins such as annexin 

II, RAB5/RAB7 and TSG101 can be found in the endocytic pathway further supporting the 

endosomal origin of exosomes [99, 107]. TSG101 in particular has specifically been 

identified to be important in the transport of proteins in to the endocytic tract and has also 

been shown to be enriched in exosomes [107, 108].

Overall the protein composition of exosomes is not fixed it is dynamic and heterogeneous, 

changing as the cell responds to its environment perhaps changing their extracellular 

function. Dai et al., (2005) showed that exosomes derived from heat shocked CEA positive 

tumour cells contained increased levels of HSP70. These exosomes were also more 

efficient in priming cytotoxic T lymphocytes (CTL) than unstressed cells of the same
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origin [109]. This is a classical example whereby change in cell status is reflected through 

molecular changes in the exosomes produced, and this has bearing on exosome function.

In terms of the phenotype plasticity of exosomes, cancer cells may be of particular interest 

as they can be considered as stressed cells because they may be deprived of oxygen and 

nutrition and are also under attack from the immune system. This endogenous stress may 

therefore be reflected in the exosomes. The presence of stress associated proteins such as 

NKG2D ligands have been identified in exosomes derived from cancer cells. These 

exosomes were able to function in the suppression of NKG2D expression in peripheral 

blood leukocytes. As a consequence these exosomes were able to aid the tumour in evading 

the immune system [110]. Therefore the function and composition of cancer exosomes 

may be different from non-cancer sources making them a potentially good source of cancer 

biomarkers.

1.2.2.3 RNA content of exosomes

The presence of messenger RNA (mRNA) and microRNAs (miRNA) in exosomes was 

first discovered recently by Valadi et al., (2007). Valadi revealed the presence of 1,300 

mRNA and 120 miRNAs in exosomes derived from mouse and human mast cells many of 

which were not present in the cytoplasm of the parent cell. This indicated a mechanism for 

specifically selecting these RNA species for inclusion into exosomes. The authors also 

coined the term exosome shuttle RNA (esRNA) for these observations. They further 

demonstrated that the mRNA was transferable from one cell to another and that the mRNA 

can be functional in its new location leading to the translation of the acquired RNA. This 

was demonstrated by new mouse proteins being transiently expressed in recipient cells 

[111].

Exosomal miRNA have since been identified in circulating tumour-exosomes from ovarian 

cancer patients and lung adenocarcinoma patients, isolated using magnetic beads coated 

with anti-EpCAM antibody. These studies identified differences in the miRNA profiles of 

patients and control samples. The profiles of the cancer patient miRNA were also 

established to be very similar to the tumour tissue profiles [112, 113]. Other identified

  ................   ~           34



Introduction

sources of exosomal miRNAs include circulating placental derived exosomes, human 

saliva, and EBV-infected B-cell exosomes [114-116].

Recently it has been demonstrated that exosomal regulatory miRNAs are functional in their 

target cells. Pegtel et al., (2010) showed that exosomes derived from EBV-infected cells 

were able to transfer miRNA to an uninfected cell and once in the cell the miRNA were 

able to repress EBV target genes [116]. The incorporation of miRNAs into exosomes and 

their secretion in to the extracellular environment is proposed to be independent of the 

ESCRT machinery [117]. It appears that the shuttling of specific RNA into exosomes may 

play an important role in the functioning of exosomes. mRNA and particularly current 

miRNA analysis of exosomes may offer additional options for identifying disease relevant 

molecules.
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Figure 1.6: Schematic representation o f the proposed structure of an exosome

The exosome bounded by a lipid bilayer, which contains cytosol-like intraluminal components from the 

parent cell. The extracellular domains o f various transmembrane proteins are exposed at the exosome surface. 

Proteins from the groups denoted are known to be expressed by exosomes; mRNA and miRNA are also 

known to be contained within the lumen. Exosomes are recognised to be between 30 and 90 nm in diameter 

(from most cell types and most publications).
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1.2.3 Comparison of exosomes with other secreted vesicles

Exosomes are not the only vesicles to be secreted by cells into the extracellular space. 

Other vesicles are released after various biological stimuli including apoptotic blebs, 

microparticles (MPs), micro vesicles (MVs) and others. It is important to know about these 

other secreted vesicles in order to distinguish exosomes from them. Some of these other 

vesicles will be described here and others are summarised in Table 1.4.

Microparticles (ectosomes)

MPs are released from a cell by exocytic budding of the plasma membrane and are 100 to 

1000 nm in size and shed by cells in vitro and in vivo [118]. They are defined as lacking a 

nucleus, containing a membrane cytoskeleton, containing variable amounts of surface 

phosphotidylserine, and can be pro- or anti-coagulant. They are released under various 

stimuli such as shear stress, activation, or proapoptotic stimulation. MPs may be involved 

in numerous processes including vascular function, tumour metastasis and angiogenesis 

[119]. The term MPs has also been used to describe membrane vesicles purified from 

urine. However, these membrane vesicles may also include exosomes [33]. This is because 

high speed centrifugation forms a complex pellet that may contain a host of particulate 

material including exosomes.

Microvesicles

The term MVs appears in some instances to cover MPs and exosomes as well as other 

particles/vesicles [101, 120]. It is unclear whether these are distinct bodies or a mix of 

different secreted vesicles including MPs and exosomes this is something that needs to be 

clarified.

Prostasomes

Prostasomes (aposomes or seminosomes) are 50-500 nm vesicles secreted from the apical 

region of prostatic luminal epithelial cells [121]. Prostasomes are enveloped in a storage 

vesicle and are released into the seminal fluid by diacytosis or exocytosis [122]. Diacytosis 

is a mechanism by which the storage vesicles tear a repairable hole in the plasma
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membrane to release the prostasomes [123]. Prostasomes have high cholesterol to 

phospholipid ratio as well as high sphingomyelin and monounsaturated fatty acid content, 

giving the membrane a highly ordered structure [121].

Confusing nomenclature

These descriptions of some of the different secreted vesicles demonstrate the confusion in 

the terminology for secreted vesicles. There is a need for clearer definitions to reduce the 

ambiguity in the literature. A consensus on the definition of secreted vesicles would allow 

researchers to characterise their samples correctly reducing the number of 

misidentifications and renaming. Furthermore it is my belief that published works should 

demonstrate that their sample is what it is claimed to be, based on a given definition. Part 

of the problem here is the lack of a formal definition for these vesicles (including 

exosomes) and also the heterogeneity within these particulate populations.

1.2.4 Defining exosomes

I would define an exosome as is a secreted vesicle of MVB origin less than 100 nm in 

diameter consisting of a partly detergent resistant lipid bilayer containing exposed 

phosphatidylserine. Exosomes have a specific floatation density between 1.1 and 1.2 g/ ml. 

They contain mRNA and miRNA specifically shuttled to the exosome and are enriched 

with endosomal and tetraspanin proteins. Furthermore they express some classical MVB 

markers such as ESCRT components TSG101, VPS, and LAMP1. They are rich in 

membrane and cytosolic proteins and contain minimal ER, Golgi, nuclear, and 

mitochondrial proteins. Lastly the extracellular domains of their transmembrane proteins 

are oriented toward the extracellular environment. Whilst some non-exosomal vesicles may 

share some of these properties, it is the overall features which best summarise exosomes.



Table 1.4: Characterisation of selected secreted vesicles

Particle name Size Density in sucrose Lipid composition Intracellular origin Comments
Exosomes 30-90nm 1.12-1.2 g/ml Enriched in Endosomes Marker proteins include tetraspanins (CD9,

M cholesterol and CD63), Alix and TSG101.
0)
E diaglycerol; expose
o
M phophotidylserine
o
X

U1
Dexosome Exosomes released from dendritic cells;

membrane enriched in shingomyelin; contain 
CD9. CD81, MHC class I and II.

Microparticles (MP) and 0.1-1 pm Size and characteristics of MP defined by
ectosomes Scientific and Standardisation committee 

(SSC) of the ISTH.

m
E

Microvesicles (MV) 0.03-1 pm nd Expose Plasma membrane Term MV covers both exosomes and MPs?
phosphotidylserine

o
M P2 and P4 particles -600 nm (P2); nd nd nd Both particles contain CD133; P4-particlea
O
X (prominosomes) 50-80 nm (P4) lack CD63
9
c Prostasomes 50-500 nm Shed from the prostate gland in to the
oz (mean 150 nm) seminal fluid; not clear whether they are 

exosomes/MPs or a mixture; 
cholesterol/phospholipid ratio very high (-2)

Apoptotic vesicles 50-500 nm 1.16-1.28 g/ml nd nd contain histones
OMVs 20-250 nm Released by Gram-negative bacteria
Exosome-like vesicles 20-50 nm 1.1 g/ml Do not contain lipid Internal contain 7NFRI

© rafts compartments?
:= Argosomes nd Exosome-like vesicles isolated from
©
E Drosophila
o
M Epididymosomes nd Exosome-like vesicles isolated from human
o
X sperm; cholesterol/phospholipid ratio high

UJ

Tolerosomes -40 nm
(~2)
Exosome-like vesicles that contain MHC II

Adapted from Simpson et al., (2008) and Thery et al., (2009) [123, 125].

nd: not determined.
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1.2.5 What functions do exosomes have?

Originally exosomes were thought to be a means of ridding the cell of unwanted membrane 

proteins, such as transferrin receptor from maturing red blood cells [73], However, 

exosomes are now thought to have a multitude of roles in normal physiology and assorted 

pathological scenarios. Mechanisms underlying these functions are varied and complex and 

include combinations of ligands capable of binding different cell-surface receptors on the 

target cell stimulating a response. Furthermore, exosomes may be taken up by target cells 

transferring exosome surface molecules, cytosolic contents and/or RNA. Unfortunately 

little is truly known about the biological function of exosomes. Some in vivo work has 

been performed suggesting some specific roles for exosomes. The vast majority of studies 

have concentrated on the possible effects of exosomes on immune function [38, 39, 47, 58, 

74, 92, 124]. There are too many to discuss in the context of this thesis nevertheless, Thery 

et al., (2009) offers an excellent review of proposed functions of exosomes with respect the 

immune system and these are summarised in Figure 1.7 [125]. A few of these exosome 

immunological studies will be discussed in more detail along with potential non-immune 

functions of exosomes.

1.2.5.1 Exosomes in immune function

Activating effects o f exosomes on the immune system

The first report of exosome involvement in immune function was of the direct presentation 

of antigens by exosomes to T-cells (Figure 1.7 (1)). Raposo et al., (1996) demonstrated 

that multivesicular MHC class II-enriched compartments (MIIC) of B cells are exocytic. 

When the MIlCs fused with the plasma membrane they released exosomes into the culture 

media. The MHC class 11 molecules on the surface of these exosomes were recognisable by 

helper T lymphocytes (CD4+ T cells). The interaction of these exosomes with CD4+ T cells 

stimulated T cell proliferation in a peptide specific, MHC restricted manner [47]. It is 

thought that in vivo the exosomes from antigen presenting cells (APC) like B cells and 

particularly dendritic cells may function as carriers of MHC class II complexes for 

amplifying the immune response.

    "         ’.........  4 0
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Wolfers et al., (2001) reported that tumour derived exosomes may also serve an immune 

activating function. Exosomes can act as a source of tumour rejection antigens for dendritic 

cell-uptake and processing leading to efficient cytotoxic lymphocyte (CTL) cross­

presentation (Figure 1.7 (2)). DCs pulsed with tumour-derived exosomes were able to 

trigger T-cell-mediated anti-tumour responses in vivo (in mice with recently implanted 

tumours). These responses lead to autologous tumour rejection and strong immune 

responses against tumours of different origins. These “cross protective” exosomes indicate 

that they may contain tumour-antigens shared with other cancers. Although the role of 

murine-viruses in the transmission of this apparent ‘shared tumour rejection’ process 

remains a possible alternative explanation. These same effects were not observed with 

tumour lysates or apoptotic bodies, suggesting these effects are mediated preferentially by 

the exosomes. Exosomes may therefore act as miniature antigen presenting cells in 

amplification of immunity, or as vehicles for antigenic transfer [58].

Inhibitory effects o f exosomes on immune function

There is also evidence that tumour exosomes may in fact exhibit immune evasive 

functions. Tumour exosomes have been shown to selectively impair lymphocyte responses 

to interleukin-2 (IL-2). Strong inhibition of IL-2-driven lymphocyte proliferation has been 

observed in the presence of tumour exosomes. The lymphocyte subsets were also examined 

individually showing the main anti-proliferative effect was through CD4+ T-cells 

implicating an influence on regulatory T cells. In fact exosomes can support inducible T 

regulatory cells (T-reg), defined by FOXp3 expression, and enhance their suppressive 

functions [39].

The cytokine, transforming growth factor-beta 1 (TGFpi) found on exosomes appears to 

be responsible for T-reg activation (Figure 1.7 (3)) [38, 39]. TGFpl expression has been 

shown to be the principle mechanism for the down-regulation of NKG2D expression on 

CD8+ T-cells and natural killer cells. NKG2D is an activating receptor for natural killer, 

CD8+ and y5+ T cells and its loss in cancer is a key mechanism for immune evasion [38].
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This work suggests that NKG2D is a likely physiological target for tumour derived 

exosomes.

The apparent conflict between immune-activation/suppression in the literature is not easy 

to explain. One view is that the molecular phenotype of exosomes is absolutely key to their 

functions. Exosomes produced by well established, bulky tumours are likely to express a 

markedly different phenotype from exosomes produced by small neoplastic lesions. Also, 

differences in how exosomes are handled in these studies may be quite different and may 

therefore give different outcomes. However it is emerging that obtaining immune 

responses any tumour exosomes require manipulation of the system. For example heat 

shock or the addition of adjuvants. It is not likely that exosomes from advanced cancers 

attack immune activation as the cancers progress unhindered by the immune system.

1.2.5.2 Exosomes in non-immune functions

Role o f exosomes in sperm maturation

The surfaces of sperm undergo modification in macromolecular structure as they travel 

along the male reproductive tract. Sperm cells have no cellular machinery for protein 

manufacture and therefore are unable to facilitate these modifications [126]. The majority 

of modifications occur in the epididymis where the epididymal epithelium secretes 

exosomes, coined epididymasomes, into the lumen of the epididymis. Some of the 

exosome associated proteins are subsequently transferred to the spermatozoa. The transfer 

of a selection of proteins is thought to aid the fertilising capabilities of sperm during their 

maturation including the P26/P34H family which are involved in sperm-zona pellucida 

binding [127-129]. Overall it appears that exosomes may play a considerable role in the 

maturation of sperm in a number of mammalian species.

Exosome involvement in angiogenesis

Proteins associated with angiogenesis have also been identified on the exosome surface. 

For example exosomally expressed tetraspanin CO-029/D6.1A has been demonstrated, in 

vitro, to trip an angiogenic switch supporting angiogenic factor transcription in target cells.
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The ability of exosomes to move around the body through the circulation means that this 

angiogenic effect could be systemic thus aiding tumour progression [130].

The most recent work in this area focuses on exosomal tetraspanin 8 (Tspan8) using a rat 

adenocarcinoma model (AS-Tspan8) to examine the effects of exosomal Tspan8 on 

angiogenesis. Here D6.1 was shown to inhibit the uptake of Tspan8 exosomes into target 

endothelial cells. Tspan8 was found in association with CD49d and this complex is thought 

to aid exosome uptake. The mRNA profiles of AS and AS-Tspan8 exosomes were also 

examined showing the Tspan8 exosomes to have elevated levels of five mRNAs expected 

to be relevant in targeted endothelial cells. Of these two were shown to be transiently 

expressed in the target cell confirming AS-Tspan8 exosomes uptake [131]. It is also 

thought that exosomal RNA may be involved in intracellular communication, cellular 

development, protein synthesis, post-translational modification and possibly stem cell 

differentiation control [116, 132]. It appears that exosomes certainly exert an influence 

over angiogenesis potentially through both protein and mRNA loading onto endothelial 

cells.
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1.2.6 Exosome purification strategies

Prior to any kind of analysis the exosomes need to be purified. There are many ways in 

which to do this some more stringent than others. The main methods published for 

isolating exosomes (from cell conditioned medium (CM) or biological fluids) include 

differential ultracentrifugation, continuous sucrose gradient, preparation on a 30% sucrose 

cushion or another dense medium, and immunoisolation [133]. There are some reports of 

alternative methods such as free-flow electrophoresis and column chromatography 

nevertheless these methods are not widely used in the field.

The first and most basic is the differential ultracentrifugation method where the CM or 

biological fluid is subjected to increasing centrifugal forces over several steps (Figure 1.8a) 

[47]. This method may result in more protein aggregates and other smaller cellular debris, 

including other vesicles, contaminating the final exosome fraction. Filtration may be used 

to replace the centrifugation step prior to the 100,000 x g  ultracentrifugation [95, 99]. If 

such samples are used in any proteomics analyses it may lead to the identification of 

contaminating proteins as well as exosomal proteins. Furthermore less abundant 

exosomally expressed proteins may be missed because they are masked by high abundance 

contaminants.

At the other extreme is separation of exosomes using a continuous sucrose gradient [47]. 

This method utilises the physical properties of exosomes like their buoyant density which 

is between 1.12 and 1.19 g/ ml for most exosomes reported [46, 47]. For this, the exosomes 

and contaminating proteins are pelleted and re-suspended in 2.5 M sucrose solution and 

overlaid with a continuous sucrose gradient followed by an overnight high speed 

centrifugation step and subsequent fraction collection (Figure 1.8b). This method is 

however very labour intensive and is therefore not widely used for functional studies but 

may prove useful as an analytical tool.

A compromise between these two methods utilises a sucrose cushion along with 

differential ultracentrifugation. This method was first utilised by Andre et al, (2002) to 

isolate exosomes from malignant ascites fluid [67]. Our group has subsequently adapted

    45
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the method which involves overlaying the source material onto a 30% sucrose deuterium 

oxide (D2 O) (density of 1.2 g/ ml) cushion allowing the majority of exosomes to be 

retained within the sucrose D2 O cushion [38, 39, 44, 134]. The sucrose fraction is then 

collected and the exosomes within are washed and pelleted (Figure 1.8c). The sucrose 

cushion method in combination with a cross flow ultrafiltration process was the FDA- 

approved mechanism for clinical DC-exosome preparations [42].

Exosomes can also be isolated using an immuno-magnetic isolation approach in which 

there is no need for ultracentrifugation. One example utilises magnetic beads coated with a 

particular antibody against a known exosomal membrane protein. For example when 

isolating exosomes from antigen-presenting cells an anti-MHC class II antibody may be 

used [86, 87]. The CM or biological fluid is incubated with the beads for 24 h ensuring 

bead saturation. The bead exosome complexes are then thoroughly washed leaving just the 

exosome coated beads which can be subsequently analysed.

Immunoisolation offers some advantages over the ultracentrifugation techniques as it 

allows the capture of exosomes from samples, CM or biological fluids, which contain 

many contaminants or substances that may interfere with purification by 

ultracentrifugation such as foetal bovine serum (FBS) in cell culture medium or albumin 

and other abundant proteins in plasma [68]. It is also arguably a gentler process that 

minimises damage to vesicles. However there is one key issue the decision on which 

antibody to use for exosome capture, as a single antibody may not be suitable for capturing 

all exosomes. Capture antibodies utilised in various studies include anti-CD63 [64], anti- 

MHC class II [86, 87, 104], anti-Her2 [135] anti-EpCAM [65, 112], and colon epithelial 

cell specific anti-A33, essentially selecting a sub-population of vesicles expressing these 

molecules and do not always reflect the composition or function of the entire exosome 

population. This technique is also not suited to purifying high numbers of exosomes from 

samples. Lastly the effect of immunoisolation on the functionality of the exosome is not 

known therefore exosomes captured by this method may not be appropriate for use in 

functional immunology and other studies. The exosomes may need to be liberated from the 

antibody/bead complex and this extra step may cause damage to the vesicle.^
. ..     — .    " ' 4 6
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The decision on which exosome purification strategy to use will ultimately be based on the 

sample purity required, the quantity of exosomes needed, the complexity of the sample 

source, and whether the exosomes need to be functional. Irrespective of the method of 

isolation used it is imperative that the sample is characterised and that the true nature of the 

sample is known. There is currently no consensus with respect to the criteria for exosome 

purity which is something that needs to be addressed. Simpson et al, (2009) support this 

view especially with respect to exosome samples to be used in proteomics studies, but we 

would advocate this is equally if not more important for exosome functional studies.
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1.3 Proteomics analysis of exosomes

The use of proteomics technologies to study the proteome of exosomes may offer a 

gateway to identify potential biomarkers for cancers and other diseases. It may also offer 

insights into exosome biogenesis and function. Over the past 15 years there has been 

increasing interest in the exosome proteome and its potential as a biomarker source. Until 

recent years much exosome proteome analysis has relied on two-dimensional 

electrophoresis (2DE) and western blotting. The depth of coverage of these techniques is 

restricted to the more highly abundant proteins thus limiting the data that can be collected 

[136]. Significant improvements in all aspects of proteomics workflows, including both 

hardware and software, have occurred over the past several years [137-139]. These 

developments have lead to a substantial increase in the number of exosomal protein 

identifications possible, from as few as nine protein identifications in 1999 to as many as 

1132 in 2009 (presuming that all of the these protein identifications are genuine) [59, 85]. 

Furthermore the availability of ExoCarta, a database cataloguing exosome proteome and 

RNA studies, will enable groups undertaking exosome proteome studies to compare their 

datasets in silico with those generated by others [140].

Exosomes derived from both cell culture and biological fluids have been investigated and 

some of this work will be discussed in detail. Simpson (2008, 2009) reviews the exosome 

proteome studies to date and incorporates a summary table of published works [123, 141]. 

This has been included here for reference (Table 1.5). In addition a summary of the main 

proteomics workflows used in exosome proteome studies to date can be seen in Figure 1.9. 

In 2001 Thery et al., reported the first extensive protein map of a particular exosome 

population in this instance dendritic cell exosomes. Less than 50 proteins were identified of 

which 21, mainly cytosolic proteins, were newly identified as exosomal. Exosomes were 

purified by differential centrifugation and the proteins were separated by one-dimensional 

electrophoresis (IDE), and stained protein bands were excised and trypsin digested. 

Matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass 

spectrometry (MS) was performed followed by peptide mass fingerprinting (PMF) for



Introduction

protein identifications. This study confirmed exosomes as uniquely different to apoptotic 

blebs by their protein constituents and structure (by electron microscopy) [99].

A study of B-cell derived exosomes by Wubbolts et al., (2002) used a different approach to 

purifying exosomes utilising several of the methods described earlier (section 1.2.6). 

Initially differential ultracentrifugation was used followed by separation on a sucrose 

gradient. Exosome fractions were then incubated with anti-MHC class II magnetic beads 

allowing specific capture of MHC class II expressing exosomes. The proteins from these 

magnetic bead coupled exosomes were then subjected to separation by IDE and protein 

band excision followed by MALDI-TOF MS or quadrupole-TOF (Q-TOF) with a 

nanoelectrospray (ESI) source. Only proteins identified with two or more peptides were 

reported. Amongst these identifications were heat shock proteins, cytoskeletal proteins, and 

enzymes involved in glycolysis [87],

The exosome proteomics work to date (Table 1.5) demonstrates the numerous ways in 

which exosomes have been isolated from CM and biological fluids for this type of analysis 

and furthermore what sort of proteomics approaches have been taken by various research 

groups to analyse their exosome samples. Yates et al., (2009) and others present good 

reviews of the general MS-based proteomics approaches used and advances made [138, 

139, 142]. A very common workflow in the field is IDE coupled with either MALDI-TOF 

MS or more recently, with the advances in technologies, liquid chromatography (LC)- 

MS/MS. This later method, IDE LC-MS/MS has yielded the highest number of protein 

identifications. However IDE LC-MS/MS is likely to be the most expensive in both time 

and money. In one study identifying 1132 proteins 40 gel slices were analysed requiring 

extensive amounts of time for processing. The peptides from each slice were separated by 

reverse-phase LC followed by analysis using a linear ion trap mass spectrometer with a 

nano-electrospray ion source. For many researchers, this kind of equipment infrastructure 

and support funds for consumables and research time is not available. It is therefore 

essential to plan any proteomics study carefully and utilise the best available technology to 

identify as many proteins as possible.
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1.3.1 Proteomics analysis of exosomes derived from biological fluids

The first considerable proteomics examination of biological fluid derived exosomes was of 

urinary exosomes, an exosome source which may be particularly useful in the search for 

bladder, prostate and renal cancer markers [34]. Exosomes were purified from healthy 

donor urine by a simple differential ultracentrifugation method the product of which the 

authors describe as low-density urinary membranes. Pisitkun did however demonstrate the 

presence of exosomes within their preparations by transmission electron microscopy 

(TEM) and immunogold TEM. The samples were subjected to IDE and the gels were 

stained with coomassie blue. The gel lane was cut into over 30 slices from which the 

proteins were extracted and trypsinised. The peptides were subjected to nanospray liquid 

chromatography tandem mass spectrometry (LC-MS/MS).

295 proteins were identified using this approach and the vast majority were membrane and 

cytoplasmic proteins which is expected of exosomes. However, only 184 of the 295 

proteins had two or more unique peptides designated to it and furthermore no data was 

provided on the quality of these sequences (for example, no expectation values were 

provided). The inclusion of identifications based on single peptides means that a proportion 

of these 295 identifications will not be genuine. Despite this few nuclear, Golgi, 

mitochondria, or ER proteins were identified which is consistent with an exosomes 

phenotype. At the time of publication only 50 out of the 295 proteins identified had been 

previously published as exosomally expressed. Other proteins identified associated with 

MVBs and exosome formation were also identified supporting their argument that the low- 

density urinary membranes isolated consist largely of exosomes [34].

In the most recent study published by the same group, large-scale proteomics and 

phosphoproteomics of urinary exosomes were performed expanding the known urinary 

exosome proteome. A total of 1132 proteins were reported to be identified using IDE LC- 

MS/MS. Out of these 205 proteins had been previously identified [59]. Again their dataset 

includes identifications based on single peptides and the author also states that the 

proteomic profiling performed is “of a low-density membrane fraction from human urine
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consisting chiefly of exosomes” which suggests, as before, a certain degree of non- 

exosomal contaminating proteins [34].

Out of all the protein identifications, 177 proteins were found to be associated with disease 

according the Online Mendelian Inheritance of Man (OMIM) database. Twenty-four of 

these are known to be associated with renal disease. The authors concentrated on one 

particular protein NKCC2 in which the gene coding for this protein is known to be mutated 

leading to the Bartter syndrome type 1. They demonstrated in a few patients the total 

absence of the protein NKCC2 in their urinary exosomes even though it was present in 

healthy donor urine [59], Their earlier study also identified 21 proteins associated with 

renal or systemic diseases each of which has the potential to be a biomarker for their 

respective diseases. One protein in particular they identified as putative biomarker of 

autosomal dominant polycystic kidney disease was polycystin-1. They describe how it has 

low abundance in kidney tissue but is readily detectable in urinary exosomes [34].

In 2006 Zhou et al., utilised comparative 2D gel based proteomics to specifically search for 

non-invasive urinary biomarkers of acute kidney injury using a cisplatin-induced AKI rat 

model. The exosomes isolated, by the same method as Pisitkun et al., (2004) [34, 143], 

from urine prior to cisplatin treatment and post treatment were compared using 2D 

difference gel electrophoresis (DiGE). Unfortunately only 20% of the proteins picked were 

identified highlighting potential issues in using 2D gel methods for exosome proteomics 

analysis. However, one protein was identified to be of interest as a kidney injury 

biomarker, Fetuin A. The levels of Fetuin A increased after kidney injury. Urinary 

exosomes from normal healthy donors did not identify Fetuin A. Furthermore, the 

evaluation of urine from acute kidney injury patients demonstrated a 50-fold increase in the 

levels of Fetuin A [34, 144].

Utilising urinary exosomes or exosome enriched urinary sediment as a sub-proteome of the 

biological fluid has yielded some interesting results giving insight into the complexity and 

potential clinical value of the urinary exosome proteome. The information obtained may be 

useful in investigating the biogenesis and function of the exosomes as well as identifying
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potential biomarkers for disease. All of these studies [34, 59, 144] highlight the need for 

more work to validate the potential biomarkers and that there is huge potential for these 

exosomes to be used as a non-invasive source of biomarkers. Improved urine collection 

and purification is however needed to ensure the samples are of highest quality.

Although urinary exosome proteomics has yielded the most protein identifications for body 

fluid-derived exosomes a large numbers of identifications have also been achieved from 

saliva exosomes. In this instance a shotgun proteomics approach (multidimensional protein 

identification technology; MudPIT) was utilised. This study highlighted the presence of 

exosomal proteins which have links to specific diseases [61]. Gonzalez-Begne utilised a 

similar purification method to Pisitkun et al.,(2004) [34]. A total of 491 proteins were 

detected (false discovery rate of 5%). Numerous proteins associated with exosome 

biogenesis were identified as well as proteins associated with salivary secretion potentially 

reflecting the unique characteristics of parotid exosomes. This work suggests salivary 

exosomes as a potential source of disease markers and this would again offer a good non- 

invasive source for clinical exosome analysis.

Biological fluids allow researchers to study the proteome of exosomes secreted in vivo 

potentially giving rise to protein information pertaining to the in vivo function of exosomes 

and to biomarkers for disease. Biological fluids may be a source of potential biomarkers 

but unfortunately the nature of the sample may hinder the identification of less abundant 

proteins significant to disease. Exosomes derived from any biological fluids are likely to 

have been secreted from many of if not all the cells in which the fluid comes in contact 

with. Furthermore, there may be difficulties with variation between individuals or between 

samples ds the likely diverse physiological parameters that modulate exosome 

production/composition are essentially unknown. It may therefore be prudent to perform 

exosome proteomics analysis on in vitro derived exosomes with the potential to apply any 

knowledge gained to developing a test using in vivo derived exosomes to detect disease.
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1.3.2 Identifying exosomal proteins of interest in disease

In vitro exosome proteomics studies have been performed identifying a multitude of 

proteins that may be of interest in disease or may be suitable biomarkers. For example 

Hegmans et al., (2004) isolated exosomes by differential centrifugation from seven 

different mesothelioma cell lines established from human tissue. The proteins were 

analysed using a IDE MALDI-TOF MS approach. The authors used a protein 

identification cut off of five or more matching peptide masses to give high quality 

proteomics data. Protein information was deduced from PMF analysis identifying 38 

proteins. Included amongst these were previously identified exosomal proteins such as 

MHC Class I, HSPs, annexins, and cytoskeletal proteins. Interestingly the protein 

identifications included developmental endothelial locus-1 (DEL-1), a tumour associated 

protein. DEL-1 is involved in angiogenesis and may also be involved in targeting 

exosomes to dendritic cells (DCs) for cross-presentation [57]. Although empirical evidence 

is shown this has not yet been published.

With proteomics analysis of any biological sample the quality of the sample going into the 

workflow will reflect the quality of the data coming out. In the case of exosome based 

proteomics studies problems with the data quality may not only be reflected by the quality 

of the MS data reported but also the sample being analysed. In order to identify truly 

exosomal proteins the method used for exosome purification needs to be verified as 

producing high quality exosome preparations. The higher quality preparations of exosomes 

are likely to come from isolation procedures which involve a sucrose cushion or gradient 

[103, 145] or immunoisolation [87, 96] as each of these techniques utilise inherent 

properties of exosomes eliminating most if not all contaminating proteins.

Unfortunately many exosome proteomics studies do not go to these lengths and use the 

simple differential centrifugation technique [34, 40, 53, 59, 61, 99]. This may lead to the 

incorporation of more protein aggregates and other smaller cellular material in the final 

pellet and ultimately the identification of both exosomal and contaminating proteins. In an 

article focussed on protocols for isolating and characterising exosomes the inclusion of an
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additional purification step, to remove more contaminants, is suggested for applications 

such as proteomics analysis [133]. As a general rule any published exosome manuscript 

should present convincing data (for example flow cytometry, immunoblotting analysis 

and/or electron microscopy images) characterising the sample to demonstrate the quality of 

the samples used but unfortunately this data is more often lacking.

Overall the exosome proteomics studies carried out to date have brought to light the 

capability of exosome proteomics to identify proteins involved in their biogenesis and 

likely function as well as identifying potential biomarkers for disease. With further 

proteomics investigations it may be possible to identify clinically relevant information 

from exosomes that may be developed into an exosome based diagnostics platform or for 

disease monitoring.
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Table 1.5: Methods of isolation and characterisation of exosomes from cell lines and body fluids

Isolation 
strategiesa>

Validation D’ Proteomic
strategies

Proteins identified Ref.

Cell lines
Hematopoietic cells 
B cell (RN HLA- 
DR15*)

B cell (RN HLA- 
DR15*)

DC, DG and
immunobeads
(MHC-II)

DC, DG

DCs (D1) DC, F

Dendritic cells (MD- DC, DG 
DC)

DCs (D1 and BM-DC) DC, DG

Dendritic cells (D1 
and BM-DC)

F, UC, DG

Mast cell (MC/9, HMC- DC, F, DG 
1, BMMC)

WB (MHC-II)

IEM (MHC-II, CD53, 
and CD82), WB 
(MHC-II, HLA-DM, 
CD37, CD63, CD81, 
CD82, and CD86)

EM, WB (MHC-II 
and Lamp2) FCS 
(MHC-I and -II, CD9, 
Mac-1, and CD86)

EM, WB

EM, IEM (MHC-II), 
WB (MHC-II)

EM, WB (Clathrin, 
hsc70, annexin II, 
CD9, flotillin 1, 
ICAM-1, MHC-II, 
TSG101, MHC I, 
MFGIE8), FACS 
EM, FACS (CD63)

1-DE,
MALDI-TOF
MS

1-DE,
MALDI-TOF
MS

1-DE, LC- 
MS/MS

1-DE, LC- 
MS/MS

1-DE,
MALDI-TOF 
MS, and 
nESI/MS/MS

1-DE,
MALDI-TOF 
MS, and 
nESI/MS/MS

21 including: MHC-I and [87]
II, CD45, integrin a4, 
hsc70, hsp90, Gia2, actin, 
tubulin, moesin, clathrin,
GAPDH, enolase, and 
EF1a1
Including: CD37, CD53, [46]
CD63, CD81, CD82, and 
CD86

37 including: actin, [99]
tubulin, cofilin, MFG-E8, 
annexins, rabs, CD9, 
hsp90|3, TSG101, 
syntenin, histones, Alix,
14-3-3 proteins, galectin- 
3, gag, reverse 
transcriptase/pol, and 
Mac-1 a[3

-3 5  including alix, [146]
annexins, ICAM-1 and
cofilin

9 including CD9, gag, [85]
Mac-1, MFG-E8, hsc73, 
and annexin-ll

-150  including: CD9, [147]
annexin-ll, ICAM-1 and 
TSG101

271 including: m ast [111]
carboxypeptidase A, 
tubulins, TCP proteins, 
ezrin, moesin, 40S 
ribosomal proteins, 14-3-3 
proteins, CD43, CD63,
CD97, annexins, MHC-I, 
histones, hsc70, and 
integrin-a6

Mast cell (MC/9, HMC- DC 
1, BMMC) and 
mastocytoma (P815)

T-cells (Jurkat cells, T F, UC 
cell blasts, E* cells, 
and MART-1* T cell)

EM, IEM (polyclonal 
Abs to exosomes)

EM, IEM and WB 
(TCR p and CD3e), 
FACS (CD63, TCR 
P, CD3e, MHC-I and 
-II)

1-DE,
MALDI-TOF 
MS, ELISA

WB, FACS

Including: MHC-II, CD40, [53]
CD40L, CD86, LFA-1,
ICAM-1, CD13, annexin- 
VI, actins, and CDC25

Including: TCRp, CD3e, [48]
and C MHC-I and -II,
CD2, CD18, chemokine 
receptor CXCR4, c-Cbl, 
tyrosine kinase Fyn, and 
Lck

Taken from Simpson et al., (2009) [141]

57



Introduction

Table 1.4: continued

Isolation 
strategies a>

Validation Proteomic
strategies

Proteins identified Ref.

Tumour colls
Breast
adenocarcinoma (BT- 
474 and MDA-MB-231)

DC, F, DG,
immunobeads
(HER2)

EM, FACS (HER2), 
WB (HER2, actin)

WB, FACS HER2 identified [135]

Colorectal cancer 
(HT29)

DC,
diafiltration 
(100 K), DG

EM, WB (CD63 and 
CD81)

1-DE, LC- 
MS/MS

547 including: annexins, 
ARFs, Rabs, ADAM 10, 
CD44, NG2, ephrin- 
B1,MIF, p-catenin, 
Junction plakoglobin, 
galectin-4, RACK1, and 
tetraspanin-8

[101]

Colon carcinoma cell 
lines (SW403, 
1869col, and 
CRC28462)

DC EM, IEM (CD63,
FasL, and TRAIL),
WB and FACS (CD63, 
FasL, TRAIL, CEA, 
and MHC-I)

WB FasL and TRAIL 
identified

[148]

Colorectal cancer 
(LIM1215)

F, diafiltration 
(5 K), UC, 
immunobeads 
(A33)

EM, IEM (A33), WB 
(CD9, A33, TSG101, 
and hsc70)

1-DE, LC- 
MS/MS

-400  including: A33, 
CEA, EGFR, ADAM 10, 
dipeptidase 1, ephrin-B1, 
hsc70, tetraspanins, 
ESCRT proteins, 
integrins, annexins,
Rabs, and G TPases

[96]

Mammary 
adenocarcinoma 
(TS/A, H-2d), P815 
mastocytoma (H-2d), 
melanoma (Fon and 
Mel-888)

DC, DG EM, WB (hsc70 and 
MHC-I)

WB, IEM MHC-I, hsp70, MART-1, 
and TRP identified

[58]

Melanoma (MeWo and 
SK-MEL-28)

F, UC WB (MHC-I, MART-1, 
Mel-CAM, and 
annexin II)

2-DE,
MALDI-
TOF/TOF
MS

41 including: Alix, hsp70, 
Gip2, Gia, moesin, 
GAPDH, malate 
dehydrogenase, p120 
catenin, PGRL, syntaxin- 
binding protein 1 and 2, 
septin-2, and WD repeat- 
containing protein 1

[40]

Mesothelioma (PMR- 
MM7 and 8)

DC IEM (CD63) 1-DE,
MALDI-TOF
MS

30 including: annexins, 
actins, actinin-4 tubulins, 
hsc70, hsp90, integrins, 
fibronectin, GAPDH, 
MHC-I, PLVAP, and 
DEL-1

[57]

Brain tumour 
(EGFRvlll- transfected 
SMA560)

DC, DG 
(Optiprep)

EM, WB (Alix, 
GAPDH, a-anti- 
trypsin, CD9, PD1, 
CRT, transferrin, 
GPNMB, TGF-31 and 
EGFRvlll),
Acetyl choli nesterase 
assay

2DE,
MALDI-
TOFrrOF

[105]

Taken from Simpson et al., (2009)



Introduction

Table 1.4: continued

Isolation 
strategiesa>

Validation Proteomic
strategies

Proteins identified Ref.

Primary and normal 
cells

Cortical neurons (8- 
day primary culture)

DC, DG EM, WB (Alix, 
TSG101, and 
flotillin)

1-DE, LC- 
MS/MS

19 including: GLAST1, 
brain-specific 
cerulaplasmin, L1 cell 
adhesion molecule, GPI- 
anchored prion protein, 
and GluR2/3

[54]

Intestinal epithelial 
(HT29-19A and T84- 
DRB1*0401/CIITA)

DC, DG EM, IEM and WB 
(CD26, CD63, MHC- 
I, and lla), WB (TfR 
and Na*K* -ATPase)

1-DE,
MALDI-TOF
MS

28 including: syntaxin-3, 
syntaxin-binding protein 2, 
EPS8, microsomal 
dipeptidase in AM and 
A33, epithelial cell surface 
antigen, and major vault 
protein BM

[149]

Microglia (N9 and 
primary culture from 
SJL/J mice)

DC, DG EM, WB (CD9, 
CD63, syntaxin-8, 
rab7, rab11, clathrin, 
Lamp-1 and -2, Vti- 
1A, and -1B)

1-DE, LC- 
MS/MS

59 including:
aminopeptidase N (CD13), 
MCT-1, cathepsin S, MHC 
class 11-associated 
chaperone li, CD14, NAP- 
22, FcR for IgE, and GP42

[97]

Oligodendrocytes 
(primary culture and 
Oli-neu)

DC, DG EM, WB (Alix, PLP, 
CNP, and TSG101)

LC-MS/MS 143 including CD81, 14-3- 
3 proteins, actins, tubulins, 
histones, EF1 and 2, 
hsp90, hsc70, 
Na+K+ATPase a  chains, 
PLP, CNP, MBP, and 
MOG

[145]

Human
tracheobronchial 
epithelial cell

DC, F, DG EM, WB (MUC1, 
EBP50, CD133, 
Annexin II, TSG101, 
CD63)

1DE, LC- 
MS/MS

-4 0  including: CD63, 
TSG101, Mucins, actins 
and tubulins

[150]

Keratinocytes (2-day 
culture from foreskin)

DC,
diafiltration 
(100K), DG

EM, WB (Hsc70 and 
LAMP2)

WB 14-3-3o (stratifin) [151]

Hepatocytes DC, DG EM, WB (TSG101, 
Alix, integrin-pi, 
CD63, CD81, ICAM- 
1 and lactadherin)

1DE, LC- 
MS/MS

251 including: 
tetraspanins, ASGR, 
cytochromes P450, 
cytoskeletal proteins, 
apolipoprotein-E and -AV, 
paraoxonase-1 and -3 
regucalcin, UDP- 
glucuronosyltransferases

[56]

Virus-Infected cells
Rov epithelial and Mov 
neuroglial calls 
infected with PrP

DC, DG IEM and WB (PrP, 
flotillin, TSG101, 
and TfR), WB 
(hsc70)

1-DE, LC- 
MS/MS

93 including 14-3-3 
proteins, annexins, hsc70, 
integrins, rabs, actin, 
tubulins, MFG-E8, Gi2a, 
histones, PrP, and PrPsc

[106]

Taken from Simpson et al., (2009)
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Table 1.4: continued

Isolation 
strategies a>

Validation D) Proteomic
strategies

Proteins identified Ref.

Bodv fluids 
Blood
Activated platelets DC, DG EM, IEM and WB 

(CD63)
WB, FACS CD63 identified [63]

Blood (2 day old- 
PBMC and plasma)

DC, F, DG EM, IEM (CD63), 
FACS (CD9, 
CDE41a, CD63, 
CD81, Lamp-2, and 
MHC-II), WB (CD9, 
CD63, MHC-1 and - 
II, and TfR)

WB, FACS CD81, CD41a, CD3C and 
Lamp-2 identified

[64]

Pregnancy (blood) Size
exclusion, 
UC, immuno­
beads (CD3, 
CD19, CD56, 
CD83, and 
PLAP)

EM WB PLAP, FasL, and PD-L1 [152]

Serum from patients 
with high grade glioma

DC EM, WB (HSP, 
HSC70, EGRF and 
TGF-p1)

WB HSP, HSC70, EGFR, and 
TGF-P1

[105]

Plasma Size
exclusion,
DG

IEM, WB 1-DE, LC- 
MS/MS

66 [153]

Other body fluids
Breast milk DC, F, DG IEM (CD63 and 

HLA-DR), WB and 
FACS (HLA-DR, 
CD81, and hsc70), 
FACS (MUC-1)

In-solution
trypsinisation,
SCX-LC-
MS/MS

73 proteins including: 
MFG-E8, MUC1, hsp70, 
ARF-1, EH domain- 
containing protein 1, 
CD36, butyrophillin, and 
polymeric-lg receptor

[62]

Bronchoalveolar 
lavage fluid

DC, immuno­
beads (MHC-
II)

IEM (HLA-DR and 
CD63), FACS 
(HLA-DR, CD54, 
CD63, and CD86)

[104]

Malignant pleural 
effusions

DC, DG EM 1-DE,
MALDI-TOF
MS

50 including: MHC-I, actin, 
G protein, hsp90, BTG1, 
Bamacan, PEDF, BTG-1, 
TSG14, and TSP2

[68]

Taken from Simpson et al., (2009)
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Isolation 
strategies a>

Validation D) Proteomic
strategies

Proteins identified Ref.

Malignant pleural 
effusions and 
malignant ascites

DC, DG EM, IEM (MHC-I 
and -II, TRP, gp 
100, and CD81), 
WB (MHC-I and -II, 
MART-1, HER2, 
and hsc70)

WB MART-1, TRP, gp100, and 
HER2

167]

Synovial fluid (RA, OA 
and reactive arthritis)

DC, DG EM, IEM (IgG) 2-DE, WB,
MALDI-TOF
MS

Citrullinated fibrin a-chain, 
CD5 antigen-like, 
fibrinogen fragment D, and 
P-chain

[154]

Urine and amniotic 
fluid

DC, DG EM, WB (hsp70, 
AQP2, annexin-1 
and CD9)

WB CD24 [155]

Urine UC EM, IEM (APN, 
AQP2, CD9, and 
NCC), WB 
(TSG101, Alix, CD9, 
Rab-4, -5B and -11, 
SNX18, and others)

1-DE, LC- 
MS/MS

295 including: VPS 
protein, AQP2, polycystin- 
1, carbonic anhydrase II, 
and IV

[34]

Urine DC 1-DE, LC- 
MS/MS

1132 including: AQP2, 
vacuolar H+ ATPase 
subunits and ESCRTs. 14 
phophorylated protein 
identified, including NCC, 
GPRC5B and GPRC5C

[59]

Urine (prostate cancer 
patient)

SC WB (TSG101, 5T4, 
PSA, PSMA, 
GAPDH, CD9)

WB TSG101, 5T4, PSA, 
PSMA, GAPDH and CD9

[36]

Saliva UC EM, WB (Alix, 
Aquaporin 5, CD81, 
and CD63)

1-DE, LC- 
MS/MS

491 including: Alix, AQP5, 
UBA1, VPS28 and 
annexins

[61]

Taken from Simpson et al., (2009)

a) DC: differential centrifugations; DG: sucrose density gradient; SC: sucrose cushion; F: filtration (0.1pm 

and/or 0.2 pm filter; UC: ultracentrifiigation.

b) WB: western blot; IEM: immunoelectron microscopy; FACS: fluorescence-activated cell sorted; EM: 

electron microscopy



Introduction

1.4 Exosomes as a source of novel bladder cancer markers

Bladder cancer patients would benefit from the identification of novel disease biomarkers 

that could be used to help diagnose and monitor their disease. Various aspects of exosome 

biology suggest they may be a good source for novel disease biomarkers. Firstly exosomes 

can be purified from CM and biological fluids including urine [34, 96]. Therefore it may be 

possible to collect exosomes from the urine of BCa patients and healthy donors which 

could be used to identify and/or verify putative markers of BCa.

Exosomes are also a sub-proteome of the whole cell which presents an advantage in 

identifying lower abundance protein particularly membrane proteins. They are also 

enriched in tumour associated antigens and may reflect the stress status of their parent cell. 

The tumour cell environment may be subject to stresses such as hypoxia which may 

increase stress proteins that can be detected in exosomes. The presence and enrichment of 

tumour associated antigens and stress proteins particularly on the cell surface may offer a 

panel of markers, available from a single source. These could potentially be used in a 

multiplex diagnostic test.

Therefore, BCa exosome proteomics may be able to identify numerous marker proteins, 

associated with this under-investigated disease, that have potential to be used in the clinic 

to help diagnose and monitor the disease.
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1.5 Study Aims

In this ambitious study we wanted to use exosomes as a platform for biomarker discovery 

in bladder cancer.

The approach from the outset was to isolate exosomes from urine specimens collected from 

BCa patients and healthy donors, and to use proteomics approaches to identify 

differentially expressed proteins. The proteins identified would subsequently be validated 

for their suitability to discriminate health from disease.

However, in order to pursue this objective it was necessary to develop methods for urine 

exosome purification and quality assurance, and devise a suitable proteomics workflow for 

analysis of exosome specimens. BCa cell lines in culture would provide a reliable stable 

source of exosomes to assist in the development of the methods required.
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Materials and methods

2.1 Materials

All general reagents, unless otherwise stated, were analytical grade and purchased from 

Sigma-Aldrich Co. Ltd (Poole, UK), Invitrogen Ltd (Paisley, UK), Lonza Group Ltd 

(Basel, Switzerland), GE Healthcare (Bucks, UK), Fisher Scientific UK Ltd 

(Loughborough, UK). All water described was purified using a Milli-Q Biocel system 

(Millipore UK Ltd, Watford, UK).

2.2 Culture of human cell lines

All cells were maintained at 37°C at 95-98% humidity. They were tested monthly and 

confirmed negative for mycoplasma contamination using MycoAlert® mycoplasma 

detection kit (Lonza). Culture media and supplements for each cell line are detailed in 

Table 2.1. All cultures to be used for exosome preparations were supplemented with FBS 

(Invitrogen) depleted of bovine exosomes (FBSex0). FBSexo' was produced by 

ultracentrifugation at 100,000 g  for 16 h at 4°C and filtering using a 0.22 pm filter. 

Aliquots were stored at -20°C.

2.2.1 Monolayer culture

Monolayer cultures were established in 75 cm culture flasks (Greiner Bio-One Ltd, 

Stonehouse, UK) and sub-cultured once confluent. This was typically at a ratio of 1:3 

following 5 min incubation with 2 ml 0.05% (v/v) trypsin and 0.53 mM EDTA solution 

(Invitrogen). The protease activity was neutralised by the addition of FBSex0\  The cell 

suspension was subsequently pelleted at 300 g  for 5 min. The cells were then resuspended 

in the required medium with supplements (Table 2.1) and seeded into fresh 75 cm culture 

flasks.
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Table 2.1: Details of cell lines used their growth media and supplements

Cell line Original ceil source Medium Supplements

T24 * Bladder cancer [156] RPMI-1640 Pen/Strep L-glutamine
HT1376 * Bladder cancer [157] DMEM Pen/Strep
HT1197 ¥ Bladder cancer [157] EMEM Pen/Strep L-glutamine 1% NEAA
RT112 ¥ Bladder cancer [158, 159] RPMI-1640 Pen/Strep L-glutamine
RT4 ¥ Bladder cancer [158, 159] RPMI-1640 Pen/Strep L-glutamine
LnCAP§ Prostate cancer [160] RPMI-1640 Pen/Strep L-glutamine
Caco-2 V Colon cancer [161] EMEM Pen/Strep L-glutamine 1% NEAA
MCF7 ¥ Breast cancer [162] EMEM Pen/Strep L-glutamine 1% NEAA

#15 H Mesothelioma RPMI-1640 Pen/Strep L-glutamine
HFFs § Human foreskin fibroblasts RPMI-1640 Pen/Strep L-glutamine

SKOV3¥ Ovarian cancer RPMI-1640 Pen/Strep L-glutamine
1% Sodium 
pyruvate

AG02262
t Human lung fibroblasts DMEM F12 Pen/Strep L-glutamine

All cells were supplemented with 10% FBSex0 (v/v)

Pen/Strep -penicillin (100 U/ml), streptomycin (100 pg/ml) (Lonza)

L-glutamine - 2mM (Invitrogen)

Company
* Cancer Research UK (CRUK)

¥ European Collection of Cell Cultures (ECACC) (Health Protection Agency, Salisbury, UK)

§ American Tissue Culture Collection (ATCC, LGC Standards, Middlesex, UK)

n Established by Dr Zsuzsanna Tabi, Section of Oncology and Palliative Medicine, School of Medicine, Cardiff University, 
UK
X Coriell Cell repositories (Coriell Institute for Medical Research, NJ)
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2.2.2 Bioreactor culture in Integra CELLine™ flasks

Obtaining sufficient quantity of exosomes from adherent culture cells is difficult. Ideally, 

large cell numbers in a low volume of medium is needed but such conditions are 

unfavourable for maintaining cells with good viability. One approach adapted by our 

laboratory involves the Integra CELLine bioreactors (Integra Biosciences AG, Chur, 

Switzerland) originally designed for hybridoma cultures. These flasks have two 

compartments a cell compartment and a nutrient medium compartment (Figure 2.1). The 

cell compartment is small (maximum volume around 20 ml) and the cells are attached to 

woven polyethylene terephtalate (PET) matrix, providing a large surface area. The semi- 

permeable membrane allows nutrient and waste exchange with the medium compartment 

which holds a significant volume (up to 1000 ml). The cells are therefore maintained in 

500-1000 ml of culture medium whilst present within the cell compartment which also 

retains the exosomes. Exosomes can therefore be purified from a much smaller volume 

thus allowing higher exosome yields to be processed from a lesser volume of liquid. The 

yields from these bioreactors can be 8 to 10 times greater than the traditional monolayer 

cultures thus reducing costs, labour and time needed to obtain enough exosomes for 

experimentation [163].

In total eight cell lines were grown in Integra CELLine™ AD (adhere) 1000 flasks 

including five transitional cell carcinomas (TCC) of the bladder and three non-TCC 

carcinomas. The five TCC lines (HT1376, HT1197, T24, RT4, and RT112) were selected 

as they are well characterised in the literature [8, 158, 164, 165]. They are also from 

varying stages and grades of the disease giving an in vitro representation of human TCCs 

of varying severity (Table 2.3). In addition, the patients from which all five cell lines were 

established had no prior chemotherapy or radiotherapy. Therefore there should be no 

alterations in cell phenotype caused by medical intervention(s). The three non-bladder 

human carcinoma cell lines were chosen to represent other carcinomas. These were breast 

(MCF7) [162], colon (Caco-2) [161], and prostate (LnCAP) [160] (Table 2.2).
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Cells were seeded into the cell compartment of Integra CELLine™ flasks at an initial 

density of 1.5-3 xlO7 cells in 15 ml of required supplemented culture medium plus 10% 

(v/v) FBSexo\  The outer chamber was filled with 500 ml cell line specific medium and 10% 

(v/v) FBS. Cell conditioned media (CM) were collected from the cell compartment each 

week and prepared for exosome purification (see section 2.6). The cell compartment was 

washed three times with medium to remove any non-adherent cells or dead cells/debris 

before the addition of fresh of FBS supplemented medium to both compartments. After six 

or more weeks in culture (giving the cells time to fully acclimatise to the growth 

conditions) the amount of FBS used was reduced to 5% (v/v) to reduce the protein content 

of the CM that could interfere with downstream analysis.
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Membrane Compartment 

(1000ml)
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(20ml)
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** Proteins
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Figure 2.1: Integra CELLine™  flask

Originally designed for hybridoma culture, Integra CELLine™ flasks have two compartments a cell 

compartment and a nutrient medium compartment. The cell compartment is much smaller but allows the cells 

to attach to a PET matrix providing a large surface area for cell attachment. The 10 kDa semi-permeable 

membrane allows nutrient and waste exchange with the medium compartment and efficient gas exchange is 

achieved through a silicone membrane at the base of the cell compartment. Along with the cells and proteins 

(>10 kDa), exosomes are also retained within the cell compartment. A comparison of exosome quality and 

levels from CELLine™ flasks compared to traditional culture flasks is described in Mitchell et al., (2008) 

[163]. Adapted from Integra CELLine™ Flyer (INTEGRA Bioscience AG, Switzerland) [166].
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Table 2.3: Bladder TCC cell lines. Information on the stage and grade of originating tumour and its differentiation status in vitro

Cell line Origin of tumour biopsy originating tumour vitro Year established Patient sex

HT1376 Bladder primary G 3 ,12 minimum Mostly differentiated 1973 Female

HT1197 Recurrent in bladder G4, T2 minimum
Pleiomorphic; mixture of 
differentiated and anaplastic 1972 Male

RT112 Bladder primary G1, 12 Well differentiated 1973 Female
RT4 Recurrent in bladder G2, stage not reported Moderately differentiated 1967 Male
EJ* Recurrent in bladder G3, T2 minimum Anaplastic 1970 Female

(*EJ cell line confirmed to be same MHC Class I haplotype (A 1, A3/B18/Cw5) [165] as the T24 cell line used in the current study (MHC Class I 
haplotype determined by the Welsh Blood Service, UK))

Table 2.2: Non-bladder carcinoma cell lines. Information on the stage and grade of originating tumour and its differentiation status in vitro

Cell line Origin
Stage and grade of 
originating tumour

Differentiation status in  
vitro Year established Patient sex

MCF7
Breast adenocarcinoma 
pleural effusion

Metastatic cancer - no further 
details No details found 1970 Female

Caco-2 Colorectal adenocarcinoma No details found No details found 1974 Male

LnCAP
Metastatic lesion of prostate 
adenocarcinoma

Metastatic cancer - no further 
details No details found 1977 Male

"sio
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2.3 Light microscopy of live cells

Light microscopy was used to demonstrate the general morphology of each cell line when 

growing in monolayer culture. 80-100% confluent live cells in 75 cm3 culture flasks were 

imaged using a Zeiss Axiovert 40 CFL microscope (Carl Zeiss Ltd, Welwyn Garden City, 

UK). Phase contrast images were taken using the 20x objective lens, Canon Powershot G6 

digital camera and Canon utilities remote capture (v.2.7.5.27).

2.4 Immunohistochemistry of fixed cells

The wells of 8 chambered cover glass slides (Fisher) were seeded with 50-60,000 

cells/well and incubated overnight or until -50%  confluent. The cells were washed with 

phosphate buffered saline (PBS) (Lonza) then fixed in ice cold 1:1 acetone /methanol (v/v) 

(both Fisher Scientific) for 10 min and subsequently air dried.

The cells were washed three times with PBS and then blocked with 1% (w/v) Bovine 

serum albumin (BSA) in Flanks’ balanced salt solution (HBSS) (both Sigma) for 1 h at 

room temperature (RT). The wells were washed twice with 0.1% (w/v) BSA in HBSS. The 

cells were incubated in 40 pg/ ml primary antibody (Ab) (Table 2.5) in 0.1% (w/v) BSA in 

HBSS overnight at 4°C followed by 3 washes in 0.1% (w/v) BSA in HBSS. Samples were 

then incubated for 1 h in 25 pg/ ml fluorescein isothiocyanate (FITC) conjugated F(ab’)2 

Ab (DAKO UK Ltd, Ely, UK) in 0.1% (w/v) BSA in HBSS, at RT in the dark, followed by 

2 washes in 0.1% (w/v) BSA in HBSS. The cells were incubated with a solution of 4',6- 

diamidino-2-phenylindole (DAPI) (14.3 mM) (Invitrogen) diluted to 1:40,000 in 0.1% 

(w/v) BSA in HBSS for 30 s followed by 3 further washes in 0.1% (w/v) BSA in HBSS. 

The wells were subsequently filled with PBS (300 pi per well) and imaged using a Zeiss 

Axiovert 40 CFL microscope fitted with 20x and 40x oil lenses, a UV lamp and filters at 

emission wavelengths of 518 nm (FITC) and 458 nm (DAPI).
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2.5 Phenotyping of cells by flow cytometry

Trypsinised cells were prepared for flow cytometry by washing in PBS followed by 

centrifugation at 300 g  for 5 min at RT. The cell pellet was resuspended in autoMACS™ 

(Milltenyi Biotec Ltd, Bisley, UK) running buffer at a density of approximately 100,000 

cells per 100 pi. For each antibody test 100 pi of cell suspension was incubated with 10 

pg/ml of primary Ab (Table 2.5) for 45 min on ice. Cells were washed and centrifuged at 

300 g  for 5 min at RT and then incubated with secondary antibody in 100 pi autoMACS™ 

for 30 min on ice. A final wash was performed and the cells resuspended in 300 pi 

autoMACS™ running buffer for flow cytometry. Cells were analysed using a BD 

FACSCanto™ (Becton Dickinson, Oxford, UK) and BD FACSDiva v6 software (Becton 

Dickinson).

2.6 Purification of exosomes using a sucrose cushion

The CM was pre-cleared by serial centrifugation to remove cells, 400 g  for 5 min at 25°C, 

followed by centrifugation at 2000 g  for 15 min at 5°C to remove any large cell debris. The 

supernatants were then frozen at -80°C.

Samples were defrosted in a water bath heated to 37°C and mixed briefly. The supernatants 

were subjected to a further clearing step of 10,000 g  for 45 min [42, 67]. The samples were 

underlain with 4 ml of 30% sucrose/ deuterium oxide (D2 O) (density of 1.2 g/ml) and 

ultracentrifuged at 100,000 g  for 2 h (with a SW32 rotor, and an Optima LE80K 

Ultracentrifuge, Beckman Coulter, High Wycombe, UK). Around 2 ml of the centre most 

part of the sucrose cushion was then collected and diluted in excess PBS to wash away the 

sucrose [39, 42, 67]. The exosomes were then pelleted by ultracentrifugation at 100,000 g 

for 2 h (with a fixed angle 70Ti rotor, and an Optima LE80K, Beckman Coulter). Exosome 

pellets were typically resuspended in 50-150 pi PBS and stored at -80°C [46, 47].

Exosome samples were quantified by protein concentration determined using a Micro BCA 

protein assay (Thermo Fisher Scientific Inc, UK). A standard curve was performed by 

serial dilution of 1 pg/ml BSA to 0 pg/ml by 10 points. Typically exosome preparations
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were diluted 1:8 with PBS. Absorbance values were extrapolated from the standard curve 

to calculate the protein content of the exosome preparations.

2.7 Purification of exosomes using a continuous sucrose 

gradient

Pre-cleared samples were defrosted at 37°C and mixed briefly. The supernatants were 

subjected to ultracentrifugation at 10,000 g  for 30 min at 4°C using a TLA110 rotor in an 

Optima-Max ultracentrifuge (Beckman Coulter). The supernatant was transferred to fresh 

centrifuge tubes and subjected to a further ultracentrifugation at 150,000 g  for 30 min at 

4°C. The supernatant was then removed and discarded and the remaining pellet was 

resuspended in 200 pi PBS.

Continuous sucrose gradients were created using a gradient maker (Hoefer S614, GE 

Bioscience). The chamber adjacent to the outflow aperture was filled with 0.2 M sucrose 

solution and the second chamber was filled with an equal volume of 2.5 M sucrose 

solution. The gradient was then poured in an open top polyallomer centrifuge tube 

(Beckman Coulter). Two gradients were always made in order to provide a balance. The 

resuspended pellet was the overlaid on top of the gradient and the samples subjected to 

ultracentrifugation at 210,000 g  for 16 h at 4°C (using an MLS-50 rotor in an Optima-Max 

ultracentrifuge). Once centrifugation was complete 330 pi aliquots were carefully taken 

from the top of tube until all liquid had been removed (usually 15 aliquots).

The refractive index of collected fractions was measured at 20°C using an automatic 

refractometer (J57WR-SV, Rudolph Scientific) and from this the density was calculated as 

described previously [47], using the conversion table in the Beckman Coulter 

ultracentrifuge manual. Typical refractive index measurements can be seen in Figure 2.2. 

The relationship between density and refractive index is linear (at fixed temperature and 

pressure).
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Figure 2.2: Typical refractive index measurements for fractions of sucrose gradient separated 

exosomes

A. demonstrates the linear relationship between density and refractive index. B and C show typical plots o f 

refractive index and densities o f sucrose gradient fractions.
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2.8 Preparation of cell lysates

Cell lysates (CL) were prepared by resuspending lxlO6 cells in 100 pi lysis buffer (lx  

protease inhibitor cocktail (Roche Diagnostics GmbH, Germany) plus 2% NP40) and 

incubating on ice for 30 min. Cells were vortexed and homogenised using a 1 ml syringe 

and 25 gauge needle. Samples were centrifuged twice at 10,000 g  for 10 min. The 

subsequent supernatant was then split into aliquots and stored at -80°C. Protein 

concentration was determined by Micro BCA protein assay (Thermo Fisher Scientific Inc, 

UK).

2.9 Analysis of samples by immunoblotting

Samples were diluted a minimum of 1:1 sample to sample buffer (0.5 M Tris pH 6.8, 25% 

Glycerol (BDH Chemicals Ltd, Poole, UK), 1% SDS, Bromophenol blue), either reducing, 

with the addition of 20 mM Dithiothreitol (DTT) (Sigma) or non-reducing. All samples 

were heated for 10 min at 96°C using a DNA amplifier (DNA Amplifier MIR-D30, Sanyo 

electric Co. Ltd, Japan).

Using the XCell SureLock™ Novex Mini-Cell system (Invitrogen) 12 well 1 mm, or 15 

well 1.5 mm pre-cast NuPAGE 4-12% Bis-Tris gradient gels (Invitrogen) were loaded with 

a ladder marker (Precision Plus Protein™ Standards, Invitrogen) and the samples. The gels 

were run, using lx NuPAGE® MOPS SDS running buffer (Invitrogen) and Invitrogen 

PowerEase™ 500 power supply until the dye front reached the bottom of the gel (200 V 

constant, start: 100-115 mA/gel, end: 60-70 mA/gel).

Proteins were transferred onto methanol activated PVDF membranes (GE Healthcare) 

using 25 mM Tris, 192 mM glycine (both Sigma) pH 8.3 transfer buffer and a BioRad 

Mini Trans-Blot® Electrophoretic Transfer Cell (BioRad Laboratories Inc, Hemel 

Hempstead, UK). In addition to the recommended cooling conditions (frozen Bioice 

cooling unit in the tank) the tank assembly was placed in ice. The blots were run for 1 h at 

a constant 80 V and the membranes were then blocked overnight at 4°C in WestemDot™ 

blocking buffer (Invitrogen).
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The membranes were incubated for 1 h at RT with primary Ab between 0.2 pg/ml and 1 

pg/ml, where the optimal dose was empirically determined for each antibody (Table 2.4). 

The membranes were then washed 3x 5 min with lx WestemDot™ wash buffer and 

incubated with a Biotin-conjugated anti-mouse or anti-rabbit secondary antibody for 1 h at 

RT. After a further 3x 5 min washes membranes were incubated Qdot® 625 streptavidin 

conjugate for 1 hour. The membranes were washed 3x 5 min in wash buffer followed by 1 

wash in water. The bands were detected using a MiniBIS-Pro (DNR Bio-Imaging Systems 

Ltd, Jerusalem, Israel) imager fitted with a UV lamp drawer.



Table 2.4: Antibody details and concentrations for immunoblotting
Specificity Clone Isotype Size (kDa) Working concentration 

(pg/ml)
Conditions Com pany Cat. No

5T4 H8 igGi 72 0.5 Non-reducing Oxford bioMedica Gift from R Harrop, Oxford bioMedica

Basigin 806 igGi 55 1.3 Reducing Insight Biotech sc-21746
Calnexin AF18 igG, 90 1 Reducing Insight Biotech sc-23955
CD44 DF1485 igG, 90-95 1 Non-reducing Insight Biotech sc-7297

CD63 MEM-259 igG, 40-60 1 Non-reducing Serotec MCA2142

CD73 2B6 igG2b 67-71 2 Reducing Insight Biotech sc-130006
CD81 1D6 •gG, 22-26 0.2 Non-reducing Serotec MCA1847EL
CD9 209306 igG2b 24 0.2 Non-reducing R&D MAB1880
CK17 Q-09 igG, 46 1 Reducing Insight Biotech sc-100930

CK18 DC-10 igG, 45 1 Reducing Insight Biotech sc-6259

Galectin-3 9C4 igG, 31 1:200 culture supernatant Reducing Insight Biotech sc-56108

GAPDH 1A10A11 igG 36-38 0.1 Reducing BioChain Y3322GAPOH

GRP 94* N/A igG2a 94 1 Reducing Stressgen SPA-850

Her2/neu F-11 igG2a 185 2 Reducing Insight Biotech sc-7301

HLA-G 4H84 igG, 39 2.5 Reducing Insight Biotech sc-21799

hnRNPK D-6 igG,. 65 0.04 Reducing Insight Biotech SC-28380
HSP 90 a/p F-8 •gG,a 90 0.75 Reducing Insight Biotech sc-13119
LAMP-1 H4A3 igG, 110 2 Reducing Insight Biotech sc-20011
LAMP-2 H4B4 igG, 120 2 Reducing Insight Biotech sc-18822

MHC Class 1 HC10 igG,b 46 1:1000 hybridoma 
supernatant

Reducing MRC co-operative Cardiff University

THP** D-20 igG 85 1.5 Reducing insight Biotech sc-19552

TSG101 G-2 igG,. 45 2 Reducing Insight Biotech sc-7964

a Tubulin B-7 igG,. 50-55 2.5 Reducing Insight Biotech sc-5286
P-eaten in*** Polyclonal 94 1:10,000 whole antiserum Reducing Sigma C2206

■ All primary antibodies were raised in mice unless otherwise indicated. Primary antibodies were compatible with anti-mouse or anti-goat horseradish 

; peroxidase conjugated secondary antibodies or mouse immunoglobulins HRP. The Ab clone, isotype, specific protein size, working concentration, 

: conditions to be run under, company and catalogue number are indicated in the table. Secondary Ab was either Anti-mouse immunoglobulins horseradish

j peroxidise (HRP) conjugated secondary antibody (Insight Biotechnology Ltd., UK), Anti-rabbit immunoglobulins HRP, anti-goat immunoglobulins HGP
i

N l‘ or an anti-mouse immunoglobulins HRP (DAKO), which is cross-reactive for rat antigens (* raised in rat, **raised in goat, ***raised in rabbit).
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2.10 Exosome quality assurance assay (ExoQA)

This method was used to evaluate the purity of exosome preparations. White surfactant 

free aldehyde sulphate 3.9 pm diameter latex micro-beads (Interfacial Dynamics, Portland, 

Oregon) were washed twice in MES buffer (0.025 M MES, 0.154 M NaCl (both Sigma), 

pH 6) at 2000 g  for 10 min at RT. The subsequent bead pellet was resuspend in MES 

buffer and the equivalent of 1 pi of stock micro-beads were incubated with 1 pg of purified 

exosomes made up to a total voluipe of 100 pi with MES buffer. The samples were shaken 

for 1 h at RT followed by rolling overnight at 4°C. The exosome micro-bead complexes 

were then washed at 2000 g  for 10 min at RT and blocked for 2 h in 1% BSA MES 

(wt/vol). The blocking buffer was washed away and the exosome micro-bead complexes 

were resuspended in 1 ml 0.1% BSA MES.

For each condition to be tested 50 pi of exosomes coupled to micro-beads were plated out 

onto a 96 well plate. To each well 1 pg of primary Ab (Table 2.5) was added and after 1 

min on a plate shaker the samples were incubated for 1 h on ice. The exosome micro-bead 

complexes were subsequently washed twice with 0.1% BSA MES (2000 g, 10 min, RT) 

and incubated with 50 pi FITC conjugated secondary Ab (1:50) (DAKO) for 1 h on ice, 

before two more washes. The exosome micro-bead complexes were finally resuspend in 

100 pi per well of MES buffer and analysed by flow cytometry using a FACSCanto 

instrument configured with a high throughput sampling module running FACSDiva v6.1.2 

software. A graphical summary of the method can be seen in Figure 2.3.

Micro-bead populations were identified by forward and side scatter properties and a gate 

(PI; Figure 2.3) was drawn around the single-bead population, thus ignoring bead doublets 

and triplets. Histograms on gated events were used to determine median fluorescence 

values for each antibody tested.
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Wash

FITC-A

|  Latex bead (3.9 pm)

• Exosom e (30-90 nm)

Y Primary Antibody

Y FITC Conjugated Secondary
9 Antibody

They were then subjected to flow cytometry

Figure 2.3: Flow diagram of flow cytometry o f exosome coated latex micro-beads

Latex micro-beads were incubated with purified exosome sample in MES buffer and then washed and 

blocked. After a further wash the exosome coated micro-beads were then incubated with primary antibody 

followed by two washes and incubation in the FITC conjugated secondary. After a further two washes the 

exosome bead complexes were subjected to flow cytometry, where a population of single micro-beads (PI) 

was identified and all analysis was performed on this gated population.
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Table 2.5: Primary antibodies used for immunohistochemistry and flow cytometry based analysis

Specificity Clone Isotype Company Cat. No

5T4 H8 igG, Oxford
bioMedica

Gift from R. Harrop, 
Oxford bioMedica

Basigin 8D6 igGi Insight Biotech sc-21746

Calnexin AF18 igG2a Insight Biotech sc-23955

CD10 MEM-78 igGi BioLegend sc-309901

CD36 1.BB.344 igGi Insight Biotech sc-70642

CD44 DF1485 igG, Insight Biotech sc-7297

CD63 MEM-259 igGi Serotec MCA2142

CD73* AD2 igG!
BD
Pharmingen 550257

CD81 1D6 igG, Serotec MCA1847EL

CD9 209306 igG2b R&D Systems MAB1880

Cytokeratin 18 DC-11 CM

oo> Insight Biotech sc-6259

Her2/neu F-11 igG2a Insight Biotech sc-7301

HSP90 a/p F-8 igG2a Insight Biotech sc-13119

MHC Class I* W6/32 igG2a BioLegend 311406

Mouse IgG^k Isotype Control P3 eBioscience 14-4714-85

Mouse lgG2a Isotype Control eBM2a eBioscience 14-4724-82

Mouse lgG2b Isotype Control eBMG2b eBioscience 14-4732-81

MUC1 VU4H5 igGi Insight Biotech sc-7313

pan-cytokeratin D-12 igGi Insight Biotech sc-17843

Vimentin 5G3F10 igGi Insight Biotech sc-66002

a6-integrin MP4F10 igG2b Insight Biotech sc-53356

p1-integrin P5D2 igGi Insight Biotech sc-13590

Rablb LD-S3 igG2a Insight Biotech sc-130474

HSP90 F-8 igG2a Insight Biotech sc-13119

hnRNPK D-6 igG2a Insight Biotech sc-28380

CK7 RCK105 igGi Insight Biotech sc-23876

CK17 Q-09 igGi Insight Biotech sc-100930

CK18 DC-10 igGi Insight Biotech sc-6259

CK19 BA16 igGi Insight Biotech sc-53257
All primary antibodies were mouse derived monoclonal Ab detected with Polyclonal Goat anti-mouse 

immunoglobulins/ FITC Conjugated F(ab’)2 Ab (F047902; DAKO UK Ltd, Ely, UK). The Ab clone, 

isotype, company and catalogue number are indicated in the table. Note: Not all Ab were used for both 

techniques. (*PE conjugated)
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2.11 Analysis o f exosome sucrose gradient purified exosomes by 

flow cytometry

The same procedure (section 2.10) was also used for exosome sucrose gradient fractions 

but one third of each fraction was incubated with the equivalent of 0.4 pi original stock 

beads. The rest of the procedure remained the same.

2A2 Analysis o f exosome micro-bead complexes using fixation 

and permeablisation

In some instances a fixation and permeablisation (IntraPrep kit™, Beckman Coulter) 

procedure was used to examine the expression of intraluminal proteins. In this instance, 

once the wash buffer had been washed away, the samples were incubated in fixative 

solution for 10 min at RT. Exosome micro-bead complexes were then washed as for 

ExoQA. The beads were resuspended in permeabilising solution plus primary Ab and 

incubated on ice for 45 min. The procedure then remained the same as for the ExoQA 

method apart from incubating the exosome micro-bead complexes with secondary Ab in 

permeabilising solution for 45 min on ice. The flow cytometry analysis remained the same.

2.13 Imaging exosomes using transmission electron microscopy

Previously frozen exosomes were thawed on ice and resuspend in 1 % (v/v) glutaraldehyde 

(Sigma) in PBS (pH 7.4). A 5 pi drop of suspension was transferred on to pioloform-coated 

copper grid and incubated at room temperature for 5 min. The grid was transferred into a 

50 pi drop of water for 2 min. This process was repeated seven times (total of eight 

washes). The sample was stained with a 5 pi drop of 2% methyl cellulose containing 2% 

uranyl acetate (both Sigma) and incubated on ice for 10 min. Any excess fluid was 

removed with filter paper (Whatman Ltd, UK) and allowed to air dry for 10 min before 

viewing by transmission electron microscopy (Philips EM 208, FEI Co, Eindhoven, The 

Netherlands).
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2.14 Separation o f exosoma I proteins by two dimensional 

electrophoresis

Proteins were separated by two dimensional electrophoreses (2DE) by firstly rehydrating 

the IPG (immobilised pH gradient) strips (Immobiline DryStrip pH 3-10 NL, 24 cm, GE 

Healthcare) in with rehydration buffer (7M Urea, 2M Thiourea (both GE Healthcare), 4% 

(w/v) CHAPS (Sigma), 0.005% (v/v) bromophenol blue and 0.5% (v/v) immobilised pH 

gradient (IPG) buffer pH 3-10NL) (both GE Healthcare) in Immobiline™ DryStrip 

reswelling trays (GE Healthcare). Strips were covered with DryStrip cover fluid (GE 

Healthcare) and left at RT for 12 h to rehydrate.

The exosome samples were then prepared for isoelectric focussing (IEF) by re-pelleting at 

100,000 g  for 45 min at 4°C in order to increase the efficiency of solubilisation and to 

remove interfering substances such as salt. The subsequent pellet was resuspended in lysis 

buffer (rehydration buffer plus 20 mM DTT) and incubated at RT for 1 h with vortexing 

every 10 min. The sample was then centrifuged at 12,000 g  for 10 min to pellet any 

remaining insoluble material. The supernatant containing the solubilised proteins were 

subjected to protein precipitation using a 2D clean-up kit (GE Healthcare) performed 

according to the manufacturer’s instructions and subsequently resuspend in 50-150 pi lysis 

buffer. The sample was then loaded on to the IEF strip via anodic cup loading in a 

manifold using an Ettan™ IPGphor™ 3 (GE Healthcare) IEF system. The strip(s) were 

then subjected to isoelectric focussing for 1 h at 500 V, 7 h up to 1,000 V, 3 h up to 10,000 

V (gradient), 4 h at 10,000 V, 1 h down to 500 V and 6 h at 500 V. Overall current limit 

was 75 pA per strip.

A minimum of five hours prior to preparing the second dimension 10% polyacrylamide 

gels were poured into the DALTs/x Gel Caster (GE Healthcare). Once the gels were set the 

IPG strips were rinsed with water and then equilibrated in equilibration buffer (50 mM 

Tris-HCL pH 8.8, 6 M urea, 2% SDS (GE Healthcare), 30% Glycerol, 0.002% 

bromophenol blue) supplemented with 1% (w/v) DTT (Sigma). This was followed by 

equilibration with equilibration buffer supplemented with 2.5% (w/v) iodoacetamide (GE
        ’ '' ' * g2
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Healthcare). The strips were then carefully placed on top of the second dimension gel and 

sealed in place with an agarose (GE Healthcare) solution (5%) ensuring there were no 

bubbles between the first and second dimension gels.

The gels were then placed in an Ettan DALTs/x Electrophoresis Unit (GE Healthcare) with 

the lower chamber was filled with anodic buffer (25 mM Tris, 192 mM Glycine, 0.1% 

SDS) and the upper chamber with cathodic buffer (50 mM Tris, 384 mM Glycine, 0.2% 

SDS). An electric current was applied to the gels overnight at 12°C using the following 

settings: Step one 10 mA/gel, 80 V, 1 W/gel for 1 h; Step 2 12 mA/gel, 150 V, 2 W/gel for 

14-16 h. The gels were run until the bromophenol blue dye front had reached the bottom of 

the gel. The gels were then separated from the glass plates and placed in fixative for 30 

min (10% acetic acid, 40% ethanol (both Fisher Scientific) and subsequently silver stained 

using PlusOne™ Silver Staining Kit (GE Healthcare) with minor adjustments to the 

manufacturers’ protocol. No glutaraldehyde was used and formaldehyde was only used in 

the developing stage of the protocol. Gels were scanned using an image scanner (UMAX 

PowerLook 1120, GE Healthcare) and saved as 256 greyscale, 600 dpi .tiff files.

2.14.1 Gel plug sample preparation for mass spectrometry

In order for peptides to be recovered from a IDE or 2DE gels for MS analysis several 

objectives have to be met. This includes de-staining of protein spots, reduction and 

alkylation of the protein, fragmentation of proteins into peptides and transfer of the 

peptides onto a MS plate for analysis.

In brief gel plugs (1.5 mm diameter) were excised using a manual spot cutting pipette 

(Spot Picker OneTouch Plus; Web Scientific Ltd) and the gel spots placed into Ettan 

Digestor 96 well plates the peptides were recovered following trypsin digestion using a 

slightly modified version of the Shevchenko et al, (1996) method [167]. Sequencing grade 

modified trypsin (Promega UK Ltd) was used at 6.25 ng/pl in 25 mM NH4HCO3 and 

incubated at 37°C for 3 h. Finally the dried peptides were resuspended in 50% (v/v) 

acetonitrile in 0.1% (v/v) trifluoroacetic acid (TFA; 5pi) for mass spectrometry (MS)
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analysis. An aliquot corresponding to 10% of the material (0.5 pi) was spotted onto a 384 

well MS plate. The samples were allowed to dry and were then overlaid with a-cyano-4- 

hydroxycinnamic acid (CHCA, Sigma; 0.5 pi prepared by mixing 5 mg matrix with 1 ml of 

50% (v/v) acetonitrile in 0.1% (v/v) TFA).

2.14.2 Mass spectrometry and data analysis of 2DE separated 
proteins

Mass spectrometry was performed using a matrix assisted laser desorption ionisation time 

of flight-time of flight (MALDI TOF/TOF) mass spectrometer (Applied Biosystems 4800 

MALDI TOF/TOF Analyzer; Foster City, CA, USA) with a 200 Hz solid state laser 

operating at a wavelength of 355 nm [168-171]. MALDI mass spectra and subsequent 

tandem MS (MS/MS) spectra of the 8 most abundant MALDI peaks were obtained 

following routine calibration. Common trypsin autolysis peaks and matrix ion signals and 

precursors within 300 resolution of each other were excluded from the selection and the 

peaks were analysed with the strongest peak first. For positive-ion reflector mode spectra 

800 laser shots were averaged (mass range 700-4000 Da; focus mass 2000). In MS/MS 

positive ion mode 4000 spectra were averaged with 1 kV collision energy (collision gas 

was air at a pressure of 1.6 x 10-6 Torr) and default calibration.

Combined peptide mass fingerprinting (PMF) and MS/MS queries were performed using 

the MASCOT Database search engine v2.1 (Matrix Science Ltd, London, UK) embedded 

into Global Proteome Server (GPS) Explorer software v3.6 (Applied Biosystems) on the 

Swiss-Prot database [172]. Searches were restricted to the human taxonomy with trypsin 

specificity (one missed cleavage allowed) and the tolerances set for peptide identification 

searches at 50 ppm for MS and 0.3 Da for MS/MS. Cysteine modification by 

iodoacetamide was employed as a fixed modification with methionine oxidation as a 

variable modification. Search results were evaluated by manual inspection and conclusive 

identifications confirmed if there was high quality tandem MS (good y-ion) data for two or 

more peptides (expect (e) value p < 0.05 for each peptide; overall p < 0.0025) or one 

peptide (only if the e value was p < 0.0001).
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2.15 Separation of exosomai peptides by nano-liquid 

chromatography

2.15.1 Preparation of exosome-derived peptides for nano-LC

Exosome preparations were repelleted at 118,000 g  for 45 min at 4°C (using a TLA-110 

rotor and Optima-Max ultracentrifuge). The pellets were solubilised in 100 pi 

triethylammonium bicarbonate (TEAB) lysis buffer (20 mM TEAB) containing 20 mM 

DTT and 1% (w/v) SDS. Samples were incubated at RT for 10 min then heated to 95°C for 

10 min and then left for a further 10 min at RT. They were subjected to an additional 

ultracentrifugation step (118,000 g for 45 min at RT) and supernatants (now free of 

insoluble material) were subjected to solvent precipitation to remove salts, lipids and 

detergent (using 2D clean-up kit). The resulting pellets were resuspended in 20 mM TEAB 

and left overnight at 4°C.

The protein content was then determined using a BCA protein assay kit (Sigma). Samples 

were then reduced, denatured and alkylated using an Applied Biosystems iTRAQ labelling 

kit and standard protocol. The proteins were subjected to digestion with trypsin (0.8 pg per 

sample) and incubated at 37°C for 12-16 h. The samples were then dried and resuspended 

in water with 0.1% (v/v) TFA.

2.15.2 LC-MALDI and protein identification

Digested peptides were separated on a nano-LC system (UltiMate 3000, Dionex, 

Sunnyvale, USA) using a two-dimensional salt plug method as described by Brennan et a i, 

(2009) as follows. Peptides corresponding to 2 pg of undigested protein were separated on 

a nano-LC system (UltiMate 3000, Dionex, Sunnyvale, USA). Peptides were applied to a 

strong cation exchange (SCX) cartridge (Bio-SCX, 500 pm, 15 mm, 5 pm, Dionex) that 

was plumbed upstream of the reverse phase (RP) desalting cartridge (PepMaplOO, 300 pm, 

5 mm, 100 A, Dionex).

The samples were separated on the SCX cartridge using 20 pi step elutions with increasing 

concentrations of NaCl (Breakthrough, 100 mM, 200 mM, 400 mM, 800 mM, and 1M).
 ............................................................  85
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Each step elution was loaded onto the RP column where the eluting peptides were desalted. 

Peptides were then separated using a C18 column (PepMap75 pm id, 30 cm, 3 pm, 100 A, 

Dionex) at a flow rate of 300 nL/min. The buffers used were: A: 2% acetonitrile in water 

with 0.05% (v/v) TFA and B: 90% acetonitrile in water with 0.01% (v/v) TFA. Peptides 

were separated using a two-step gradient with the first step from 5 to 20% solvent B for 25 

min and the second step from 20% to 50% solvent B for 21 min. Fractionation of the 

peptides into 8 second spots on an LC-MALDI sample plate was performed with a Probot 

microfraction collector (Dionex). CHCA (Sigma) was used as MALDI matrix (2 mg/ml in 

70% (v/v) acetonitrile in 0.1% (v/v) TFA containing 10 fmol/pl Glu-Fib) which was 

continuously added to the column effluent via a p-tee mixing piece at a flow rate of 

1.4pL/min [169].

Mass spectrometry was performed using an Applied Biosystems 4800 MALDI TOF/TOF 

mass spectrometer with a 200 Hz solid state laser operating at a wavelength of 355nm. The 

protocol used was the same as that described by Brennan et al., (2009). After screening of 

all LC-MALDI sample positions in MS positive reflector mode using 800 laser shots (mass 

range 700-4000 Da; focus mass 2000) the fragmentation of up to 6 automatically selected 

precursors was performed (most intense ion signals per spot position with S/N above 50 

and strongest analysed first). Internal calibration of each spot in MS was achieved against 

the Glu-Fib added to the matrix. Common trypsin autolysis peaks and matrix ion signals 

and precursors within 300 resolutions of each other were excluded from the selection. In 

MS/MS positive ion mode 4000 spectra were averaged with 1 kV collision energy 

(collision gas was air at a pressure of 1.6 x 10-6 Torr) and default calibration [169].

The MS/MS data was used to search the Swiss-Prot database (Version 57.7; release date 

20090901; 497293 sequences; human taxonomy) using the MASCOT Database search 

engine v2.1.04 (Matrix Science Ltd, London, UK), embedded into GPS Explorer software 

v3.6 Build 327 (Applied Biosystems). Default GPS parameters were used and the 

following MASCOT parameters were set: 1 missed cleavage allowed, fixed modification of 

MMTS(C), variable modifications of oxidation (M), pyro-glu (N-term E) and pyro-glu (N-
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term Q), 150 ppm mass tolerance in MS and 0.3 Da mass tolerance for MS/MS. These are 

recommended published tolerances for LC-MALDI [169-171].

In order for a protein to be identified there needed to be a minimum of two peptides with 

MASCOT e-values less than 0.05. There was a false discovery rate (FDR) of 0% which 

was determined using the same Swiss-Prot database with the entire sequence randomised. 

Where more than one protein was identified the protein with the highest MOWSE score in 

MASCOT was reported.

2.16 Bioinformatics analysis o fLC MALDI MS-identified proteins

The MS-identified protein dataset was analysed for any biological enrichment against 

previously defined lists using MetaCore GeneGO (Version 5.4) and selected ExoCarta 

submissions (MS-based data containing 10 or more matching gene identifiers) [140]. Using 

44 studies from ExoCarta gene sets, our protein list was converted from Swiss-Prot 

accession numbers to EntrezGene identifications using BioMart. Overrepresentation 

analysis (ORA) was then performed using the hypergeometric distribution in R against a 

background of all human genes with EntrezGene identifications. For ORA in MetaCore the 

data was first converted into Swiss-Prot identifications (using BioMart) before analysis 

using hypergeometric tests.
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Purification of exosomes from cancer cells lines

3.1 Introduction

Exosomes are known to be secreted from a large number of cell types by fusion of 

multivesicular bodies (MVB) with the cell membrane [94]. Exosomes contained with the 

MVB are then released into the extracellular fluid space from which they can be purified. 

Most exosome research groups utilise ultracentrifugation as a principal tool for exosome 

purification. This is true of samples obtained ex-vivo (such as urine, malignant effusions 

and saliva) and from cell-conditioned media (CM). Biological fluids, given their micro­

particulate and molecular complexity, present a major challenge in terms of exosome 

purification. Using cell culture systems presents certain drawbacks such as culture-related 

artefacts. However, it does offer an opportunity to obtain exquisite pure exosomes as CM 

are significantly less complex, less variable and more easily obtained.

Even though CM offers an accessible and consistent source of exosomes, the use of 

traditional cell culture means high volumes of CM needs to be processed in order to obtain 

good exosome yields. This is because it is difficult to grow adherent cells in high density 

culture in traditional cell culture flasks due to issues with surface area to volume ratio (SA: 

V) making it very difficult to obtain CM rich in exosomes. For example in one study 3.2 L 

of CM was required to yield 250 pg of exosomes which was sufficient for just one two 

dimensional electrophoresis gel (2DE) experiment [98]. Processing such large volumes of 

CM is time consuming, expensive and inefficient.

Another approach to culturing cells in order to obtain high exosome yields efficiently 

involves the use of bioreactor flasks (Integra CELLine™ flasks) a technique for cell 

culture for exosome analysis developed in our department [163]. Exosomes can 

subsequently be purified from this concentrated sample source. For this study the 30% 

sucrose cushion method was used as this method offers good exosome recovery and 

eliminates more of the contaminating proteins than the basic pelleting method [133], 

without the lengthy time and effort involved with isolation via a linear sucrose gradient 

(section 1.2.6).
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Once the exosomes have been isolated it is paramount that the quality of the exosome 

preparations is checked in order to establish whether a sample is pure enough for 

proteomics analysis. One method of analysing sample quality is immunoblotting for known 

exosome markers and for proteins not exosomally expressed; such as nuclear, Golgi, 

mitochondrial and endoplasmic reticulum (ER) proteins [133]. Proteins known to be 

expressed and enriched in exosomes include the tetraspanins CD9, CD81, and CD63 [42, 

46, 63], also the MVB associated protein TSG101 [108]. These and more are used by our 

lab [39, 44, 134] and others [42, 64] to characterise preparations as exosomal.

In addition, transmission electron microscopy (TEM) of a typical sample should be 

performed giving detail on the size and morphology of any exosomes and highlight the 

presence of visible non-exosomal debris. Both immunoblotting and TEM offer useful 

information about the purified exosomes but they are both time and sample intensive. 

Using an exosome quality control assay, where exosome coated latex micro-beads are 

stained for known exosomal surface proteins and then subject flow cytometry (FC), may 

allow efficient monitoring of sample purity while retaining most of the sample for 

subsequent analysis by proteomic methods.

3.2 Aims

The aims of this chapter were to:

• establish a work flow to generate large quantities of pure exosomes from adherent 

cancer cell lines

• establish a reliable method to purify highly pure exosomes from CM

• investigate the exosome phenotypes of each cell line

• develop a reliable method for quality controlling exosome samples

• establish a stock of exosomes from different cell sources that can be used to help

verify any putative biomarkers identified
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3.3 Characterisation o f cell lines

Some straightforward checks were performed to confirm the cells exhibited the expected 

morphology and phenotype compared to published material [8]. In addition, we assessed 

the level of expression of some characteristic exosome markers.

3.3.1 Cell morphology

The morphology of each cell line growing in monolayer was assessed by light microscopy. 

The images of HT1376, T24, and RT112 (Figure 3.1a, c, and e) show a typical polygonal 

morphology seen in transitional epithelium not under stretch. The only TCC cell line to 

appear particularly different was the RT4 cells (Figure 3 .Id). In this case the cells did not 

form a monolayer by adhering to the plastic of the culture flask but grew in islands of a 

more dome like shape of densely packed cells in polygonal formation. However, this is 

normal for this cell line (personal communication, Professor J Masters of University 

College London) [8]. The HT1197 cell line did appear morphologically to have more than 

one cell population, which has been described in the literature [157]. Many of the cells 

appeared to have the typical cobble stone like appearance, but others were larger and more 

stellate in appearance accounting for approximately 50% of the cells.

The three non-bladder carcinoma cell lines all had a different morphology to the TCC cell 

lines. MCF7 and LnCAP both appeared to grow without contact inhibition and formed 

overlapping cell layers after reaching confluence. The LnCAP cells appeared slightly 

spindle-like consistent with the literature. Caco-2 cells had morphology closer to that of the 

TCC cells but the cells were less compact and many contained vacuoles. It has been noted 

in the literature that Caco-2 cells can have varying morphologies [173]. In summary, the 

morphology of all the cell lines was consistent with the literature.
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3.3.2 Cell phenotyping by immunohistochemistry and flow cytometry

Immunohistochemistry (IHC) and flow cytometry (FC) were performed on all cell lines to 

qualitatively and quantitatively check for epithelial phenotypes. In addition, the expression 

of tumour associated and other antigens reportedly enriched in exosomes isolated from 

other cell types were assessed. A panel of antibodies was used including exosomally 

expressed proteins such as CD63, -81, and -9 [42, 46, 63].

We first tested whether the carcinoma cell lines expressed cytokeratin (CK) a classical 

epithelial marker [174]. We initially used a pan-cytokeratin antibody and expected strong 

filamentous staining across all epithelial cells lines. We also examined fibroblasts as a 

negative control. However, this antibody demonstrated weak and heterogeneous staining 

across the various cell types including the fibroblasts (Figure 3.1). We concluded that 

overall staining was largely non-specific with this particular Ab and that this Ab was 

unsuitable for its intended purpose.

We then examined a particular cytokeratin CK18 which is known to be expressed by the 

transitional epithelium of the urinary bladder, colon, and the MCF7 cell line [174]. The 

staining was much stronger and more specific than the pan-cytokeratin (Figure 3.1) and its 

presence was confirmed by FC (Figure 3.3). Two cell lines HT1376 and MCF7 

demonstrated particularly strong staining for CK18 (Figure 3.1a, f).

The mesenchymal cell marker vimentin was used as it is not expressed by normal epithelial 

cells but is expressed for example by fibroblasts. Therefore we used human foreskin 

fibroblast cells (HFFs) as a positive control (Figure 3.1 i), which demonstrated specific 

structural staining whereas only staining of a low-level non-specific nature was observed in 

the other cell lines (Figure 3.1). In conclusion based on this very simple epithelial cell 

phenotyping the data agrees with the morphological information that these cell lines are 

indeed epithelial.

We also looked at the expression of tumour associated antigens Mucinl (MUC1) and 

Human epidermal growth factor receptor 2 (Her2/neu) which are commonly over­
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expressed by many carcinomas. MUC1 expression is normally seen on the apical surface 

of epithelial cells but altered expression is seen in numerous carcinomas and is known to 

promote tumour progression through its anti-adhesive affects [175, 176].

Two cell lines (HT1376 and MCF7; Figure 3.1a, f) were shown to have particularly strong 

IHC staining for MUC1. Cell surface expression was confirmed by FC (Figure 3.3) for 

HT1376 but not MCF7. This may be due to the heterogeneous IHC staining in the MCF7 

cell population. Around 75% of the cell population demonstrated perinuclear staining of 

MUC1 whereas the remainder of the cells showed diffuse staining of MUC1 within the 

cell. However, little expression of MUC1 was observed in six of the cell lines which did 

not correspond to the literature [177-179]. This may have been caused by problems during 

the fixation process.

Her2/neu is normally involved in cell growth and differentiation but it has been noted to be 

over expressed in breast and other carcinomas. IHC staining was observed for many of the 

cell lines (Figure 3.1) although in most cases the staining was weak which does not 

correspond with data presented by others [180, 181]. This may have been caused by an 

incompatibility of the Ab with the acetone: methanol fixation method used in our IHC or 

the levels of the protein may have been below detection levels.

In terms of expected exosome markers the molecular chaperone HSP90 (heat shock protein 

90) showed uniform expression by all the cell lines observed by IHC and FC (Figure 3.1) 

[94]. Low levels of tetraspanin staining by IHC were observed which was disappointing 

because other studies have found high levels of tetraspanins in exosomes [42, 46, 63]. 

However, FC on unfixed cells (Figure 3.2 and Figure 3.3) revealed strong staining for the 

three tetraspanins examined. These differences may be caused by an incompatibility of the 

IHC fix-perm method with these tetraspanin antibodies particularly CD9 and -81. The IHC 

staining for CD63 did show some instances of distinct perinuclear binding of the antibody 

(Figure 3.1a, c-d).
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In summary, the cell lines appear to be epithelial confirming their expected 

morphology/phenotype. In addition we have evaluated the levels of some known exosomal 

proteins, including two tumour associated antigens, giving us an indication of what we 

might expect to be expressed in exosomes derived from these cells-lines.
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A. HT1376

Iso type  IgGi

Iso type  lgG2;

CD63

^ n r jg ,

•J*» V •

Vimentin

CD81

p an  Cytokeratin

Her2/Neu

Figure 3.1: M orphological and immunohistochemical characterisation of bladder cancer and other 

carcinoma cell lines

A. HT1376. Light microscopy images were taken of live cells under phase contrast. Immunofluorescence 

images were taken of fix-perm cells labelled for the target protein followed by a goat anti-mouse FITC 

conjugated secondary (left hand image of each pair). The cells were additionally stained with DAPI (right 

hand image of each pair). (Scale: light 100pm; IHC 50pm)
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B.HT1197 

Vimentin

Isotype IgGi

Isotype lgG2b

CD63

CD9
\  • 

- ■ m / *
•  •pan  Cytokeratin

Her2/Neu

Figure 3.1. continued. B. HT1197 (Scale: lOOjim)
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C .T 24

Isotype IgG
i

Isotype lgG2 Vimentin

CD63 CD81

HSP90

MUC1

Cytokeratin  18

pan  Cytokeratin

H er2/N eu

Figure 3.1. continued. C. T24 (Scale: light lOÔ m; IHC white 50|im; IHC green lOÔ m)
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D.RT4

Isotype IgGi

*1

Isotype lgG2

VimentinCD63

CD81

MUC1p an  Cytokeratin

H er2/N eu
‘  &

_  I C ytokeratin  18

Figure 3.1. continued. D. RT4 (Scale: light 100|im; IHC 50fim)
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E. RT 112

Iso type IgGi

ofceppy h  £Iso type lgG2l

CD63 Vimentin

CD81

pan  Cytokeratin MUC1

H er2 /N eu Cytokeratin  18

Figure 3.1. continued. E. RT112 (Scale: lOOjim)
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F. MCF7

Vimentin

CD81

MUC1

Isotype IgGi

y  lA  • *  

• _

Isotype lgG2b

CD63

CD9

Pan  Cytokeratin

Her2/Neu

Figure 3.1. continued. F. MCF7 (Scale: light 100; IHC 50^im);
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G. LNCaP

Isotype IgGi

Iso type lgG2

Figure 3.1. continued. G. LnCAP (Scale: 100)im);
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H. Caco-2

Iso type IgGi

.v  7 ;  r  ,

7
Light M icroscopy —

Isotype lgG2a Vimentin

CD81CD63

HSP90

•v

pan  Cytokeratin MUC1

Cytokeratin  18H er2/N eu

Figure 3.1. continued. H. Caco2 (Scale: 100p.m);
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Vimentin

MUC1

I. H um an Foresk in  F ib rob las t  (HFF)

Figure 3.1. continued. I. HFF (Scale: 50(am).
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Isotype

0 10‘-230
FITC-A

CD81

10-76
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MUC1
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Figure 3.2: Example histograms of cell line 

characterisation by flow cytometry

RT4 cells were subject to staining with a panel 

of primary Ab (as indicated), followed by 

detection with a FITC conjugated secondary, 

and analysed by flow cytometry (FACS Canto, 

BD). A representative histogram for each 

protein is shown; and the median fluorescent 

intensity.
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3.4 Isolating exosomes from cultured cancer cells

Once the cell line phenotypes had been confirmed the cells were seeded into Integra 

CELLine™ bioreactors (section 2.2.2). As soon as the cells were established and growing 

well in the bioreactors each cell lines exosomes were isolated from the CM collected by the 

sucrose cushion method. This method of exosome purification has been used by this 

laboratory [38, 44, 134] and others [42, 67, 163] as a suitable method for separating 

exosomes from non-exosomal cellular debris in CM and is detailed in the general materials 

and methods.

In order to examine the efficacy of the CELLine™ flasks in producing concentrated 

exosomes the exosome concentration of the CM had to be determined. Firstly the protein 

concentration of the final exosome product was ascertained by BCA-protein assay. To 

calculate the exosome concentration of the CM the quantity of purified exosomes was 

divided by the volume of CM used.

We have established multiple cell types successfully in long-term culture in the 

CELLine™ bioreactor flasks. In addition we are able to generate significant quantities of 

exosomes using this approach. The results however demonstrated that the exosome 

concentration of CM varied greatly between the cell lines (Figure 3.4). This may reflect 

different cell numbers in the flasks and/or different exosome production capacity among 

the cell lines. As the number of cells per CELLine™ flask is not known and is technically 

very challenging to determine for adherent cell cultures in this system, measuring the 

exosome content of the CM was the best comparator for determining the exosome 

production of each cell line. There are several other variables that may influence exosome 

content of CM including the potential effect of the originating tumour grade/stage but this 

does not appear to be the case. The different cell lines may also have different exosome 

production capacities or the number of days between feeding influencing the CM exosome 

content a vital parameter which effects the CM exosome content [163]. Lastly some 

variation will also occur during purification even though a standardised method was used.
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To summarise, we have shown that it is possible to isolate good quantities of exosomes 

from cell lines grown in CELLine™ bioreactor flasks purifying 10-12 times more 

exosomes than the same volume of CM from traditional cell culture. This demonstrates 

that using CELLine™ bioreactor flasks is a more time and cost effective way of culturing 

cells for exosome analysis.
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Figure 3.4: Exosome concentration of cell-conditioned media

The exosome content was determined by dividing the quantity o f purified exosomes (within the final 

exosome pellet) by the volume o f CM used in the purification to give the exosome concentration o f the CM 

in pg/ ml. n=number o f purifications; error bar = SEM.
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3.5 Analysis of exosome preparations by flow cytometry

Although we had measurable protein present in the ‘exosome pellet’ it was important to 

confirm that this protein was principally exosome-related and not due to non-exosomal 

constituents. Purity of exosome preparations is usually determined by immunoblot staining 

for known exosomal proteins and for suspected contaminating proteins. TEM may also be 

used to determine whether the sample contains exosomes and/or other material. Both 

immunoblotting and TEM are time consuming and use sizable amounts of limited sample. 

With this in mind we developed a flow cytometric approach for analysis of exosome 

coated latex micro-beads, a method first described by Blanchard et al., (2002) [48].

Our method utilises only 1 pg of purified exosomes thus using a minimal amount of 

sample [86]. Exosomes and non-exosomal contaminants are able to couple to the micro­

beads. It is expected that if a sample is poor quality (containing many contaminants) the 

signal strength for exosome related proteins will be considerably lower than that of a good 

preparation (based on the ratio of contamination to actual exosomes). In addition to 

estimating contamination the method also highlights that the molecules detected are 

present on the outer exosome surface and is therefore a flexible tool to aid understanding of 

exosome structure.

A good exosome preparation was deliberately contaminated with increasing concentrations 

(0.0001 to 10%) of FBS, the most likely source of contamination in our preparations, to 

test the theory that the purity of a sample could be determined by the signal of known 

exosomal proteins. The samples were then coupled to micro-beads and stained for CD9 

and matching isotype, and analysed by flow cytometry.

The data showed 0.1, 1, and 10% FBS contamination to have significant changes in CD9 

signal intensity (p<0.001). With just 0.01% FBS contamination CD9 signal intensity was 

reduced by around 25% (Figure 3.5). This shows the assay is sensitive in detecting changes 

in the availability of CD9 which is likely to be exosomal. We felt this level of 

contamination to be unacceptable for downstream proteomic applications hence a decision 

was made to discard any exosome samples with a median FITC fluorescence value below 
    ....~  .....................    109
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1000. This was chosen as the optimal threshold because samples with lower FITC values 

would have significantly more contaminants. Conversely having a threshold above 1000 

would yield too few samples for downstream analysis. N.B. in later sections of the thesis 

the FITC conjugated secondary was substituted for an Alexa Fluor® 488 conjugated 

secondary giving an overall (fivefold) brighter stain for this assay. Therefore the threshold 

was raised to 5000.

An example of a good and poor exosome sample (Figure 3.6) shows the dramatic 

differences in sample quality the assay is able to detect. The low CD9 fluorescence in the 

poor sample is caused by a high contamination to exosome ratio therefore fewer exosomes 

could become coupled to the micro-beads thus decreasing the CD9 signal.

The results of the ExoQA for all the cell lines show the samples are generally of high 

quality with the scores for CD9 typically over 1000 (Figure 3.8). However, three cell lines 

(HT1197, MCF7, and Caco-2) had CD9 signals below the cut-off point. Unfortunately due 

to limited data it was not possible to determine whether these were truly poor samples 

caused by poor preparation. Alternatively, the results may highlight biological variance 

between exosomes from different sources. In addition, as we don’t know whether 

tetraspanin levels within the cells are highly variable or stable therefore it was useful to 

examine all three tetraspanins. In general they were similarly expressed across the cell 

lines but did not reflect the expression pattern of the parent cells. The MUC1 results were 

variable and did not correspond well with the expression in the cells themselves. However, 

MCF7 and HT1376 (Figure 3.7) had the highest expression of MUC1 in the exosomes and 

also have the highest expression out of all the cells.

To summarise, the theory behind the ExoQA assay appears to be sound showing it is 

possible to detect significant decreases in the fluorescence of known exosomal proteins 

with increasing levels of contaminants. The ExoQA data for the different cell lines showed 

the samples were principally of high quality. However, the occasional sample which was a 

little poor possibly may have been caused by poor preparation, for example by overloading 

the sucrose cushion. In addition, the assay further supports the use of the sucrose cushion 

method to purify exosomes of high quality compatible with assorted cell lines.
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Figure 3.S: Testing of the exosome quality control assay by deliberate contamination

A previously quality assured HT1376 exosome preparation, shown to have positive expression o f tetraspanin 

molecules on the surface, was contaminated with 0.0001, 0.001, 0.01, 0.1%, 1% and 10% FBS respectively 

and then incubated with latex micro-beads. The exosome bead complexes were stained for CD9 and a 

matched isotype and subject to flow cytometry, where the median fluorescence was measured. The graph 

shows a decrease in signal intensity for CD9 (mean + SEM, n=6, **p<0.001, 1-way ANOVA with Tukey’s 

post test), as a percentage o f the highest peak fluorescence for CD9. The results are representative o f over 5 

experiments.
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Isotype CD9 CD81 CD63 Isotype CD9 CD81 CD63

Good Poor
Figure 3.6: Differences in exosomal protein signal intensity between good and poor exosome 

preparations determined by ExoQA

Shown here are examples o f exosome quality assurance assays (ExoQA) of a good and a poor exosome 

preparation, using exosome from the prostate cell line PC3 (CM provided by Dr Jason Webber). Displayed is 

the median fluorescence (FITC) o f the protein o f interest. The dashed line represents an arbitrary cut off point 

o f 1000 for CD9 as a threshold for proteomics grade exosome preparations. Anything below this cut-off is 

deemed poor quality.
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Figure 3.7: Representative flow cytometry histograms for the ExoQA antibody panel

The histograms shown are from a HT1376 exosome bead assay. Each histogram represents the median 

fluorescence (FITC-A) for each exosome coated bead on a logarithmic scale for 5 proteins stained for CD9, 

CD81, CD63, and MUC-1), plus an isotype control (IgGl). The median fluorescence value is shown. The dot 

plot, bottom right, shows the exosome coupled micro-bead population based on forward scatter (FSC) and 

side scatter (SSC).
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3.6 Characterising exosomes by immunoblotting

Exosomes from the cell lines used have not previously been examined apart from LnCAP 

[36, 37] and T24 [182]. Exosomes from each source were characterised by immunoblotting 

using a panel of antibodies to establish whether their exosomes expressed typical/expected 

exosomal proteins and whether these proteins were enriched compared with their parent 

cells. In addition, we determined whether proteins not normally expressed by exosomes 

could be detected in our samples.

Immunoblotting was performed on whole cell lysates (CL) and their corresponding 

exosomes allowing us to assess relative expression of proteins of interest in exosomes 

compared to the parent cell. Loading wells with equal quantity of protein was a 

straightforward means of achieving this.

Enrichment of the MVB protein TSG101 was seen in all but two of the cell lines. This is 

absolutely consistent with having purified something exosome like. T24 and Caco-2 

showed expression approximately equivalent to that of the CL (Figure 3.9). This may 

indicate a poor exosome sample, minor enrichment, or possibly reduced incorporation of 

TSG101 into the exosomes during their formation.

Expression levels of LAMP1 (Lysosomal-associated membrane protein 1), a member of a 

family of membrane glycoproteins expressed within the endosomal/lysosomal system, 

differed between the cell types. Some cell lines showed increased expression in exosomes 

and some decreased relative to the CL. LAMP2 on the other hand was generally expressed 

to the same degree by the cells and their exosomes or there was some exosomal 

enrichment. The expression levels of the common cellular protein heat shock protein 90 

(HSP90) were either similarly expressed or lesser in the exosomes.

When looking at the tetraspanins (CD9, -81,-63) it was clear to see enrichment of all three 

in all of the cell lines examined (Figure 3.9). In many instances dramatic enrichment was 

seen in the exosomes. Conversely, the cancer associated protein Her2/neu, which may be 

enriched in exosomes derived from bodily fluids [67, 135], was not identified in any of the
  '       ~ ' 115
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exosomes by immunoblot. As only 5pg of protein was loaded onto the gels as a result any 

Her2/neu might have been below detectable levels or it may be that these exosomes do not 

express Her2/neu. It is certainly not enriched in these exosomes.

MHC Class I was only examined in the five TCC cell lines where the expression differed 

greatly. Only HT1376 and RT4 (Figure 3.9a) showed classical exosomal enrichment for 

MHC Class I. HT1197 unusually only had positive staining in the CL, a unique discovery. 

Most exosomal MHC studies have focussed on EBV (Epstein Barr virus) immortalised B- 

cells or dendritic cells. Such cells, given their direct roles in immunity as antigen 

presenters are expected to produce exosomes replete with MHC molecules [47, 74]. 

However the MHC locus in cancer is often impacted with low levels of surface Class I 

expression common amongst cancer cell lines.

The cytosolic protein marker Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

showed equal expression in the main in exosomes and CL. The endoplasmic reticulum 

(ER) chaperone protein GRP 94 is not putatively expressed by exosomes so acted as a 

control for purity [58]. It was identified in all CL and stained very weakly in some of the 

exosome samples. This may indicate a small level of non-exosomal material present in 

these preparations or it possible that this protein is expressed somewhat by exosomes.

The immunoblotting results show that the end product of exosome purification from each 

cell line is consistent with previously published molecular phenotyping of exosomes. This 

shows that overall each of the proteins was expressed in the expected way [94, 133]. 

Furthermore, the high degree of enrichment of the tetraspanins in the exosomes strongly 

suggests very active selection/recruitment of these proteins into exosomes during their 

intracellular manufacture. In conclusion the data support very successful purification of 

exosomes from all cell lines which are either free/low in putative non-exosomal proteins 

like GRP 94.
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Figure 3.9: lmmunoblot characterisation of cell line derived exosomes

Five fig of cell lysate (CL) or exosomal proteins (Exo) of each cell line was solubilised and then subjected to IDE and immunoblotting with a panel 

of antibodies in order to determine whether the samples expressed a protein repertoire typical of exosomes. The protein labelled and its molecular 

weight is shown on the right-hand side. A. Transitional cell carcinoma cell lines. B. Other carcinoma cell lines.
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3.7 Analysis of exosome size by transmission electron 

microscopy

Even though the phenotype of the samples is suggestive of the presence of exosome the 

addition of TEM allows the visualisation of the purified product thus permitting the size 

and morphology of the exosomes to be studied. Exosomes were visualised by TEM and 

exosome size was evaluated using scanned images (Figure 3.10). The diameters of up to 

six intact exosomes were measured per image using Powerpoint (Office 2007, Microsoft 

Corporation). The length of the scale bar for each image and each exosome was recorded. 

The approximate size of each exosome was then calculated ((A/B) x 100 = C where A= 

Exosome diameter (mm); B= Scale bar length (mm); C= Estimated exosome diameter 

(nm)) (Figure 3.11).

All of the images for the four cell lines showed the presence of exosomes (Figure 3.10). 

The vesicles were heterogeneous in size demonstrating that the population of exosomes 

produced by the cells are not absolutely uniform, as expected. Furthermore, the average 

diameter the exosomes from all four cell lines were within 15 nm of each other. This shows 

a particular population size is purified by the sucrose cushion method (Figure 3.11). Some 

of the images appeared to have non-vesicular/denser material present (Figure 3.10). The 

nature/origin of this is unknown but may reflect a low level of contamination by protein 

aggregates or cellular fragments. All images also showed the presence of damaged 

vesicles. However, the intact vesicles were all well within the recognised exosome size of 

30 to 90 nm (Figure 3.1 Of) and distinct from microvesicles and apoptotic blebs/debris [94].

To summarise, exosomes of correct size were observed with minimal sample 

contamination further supporting the use of the sucrose method for purifying exosomes.
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Figure 3.10: Imaging of exosomes by TEM and measurement of exosome diameter

The diameters of vesicles from each image of exosomes from four cell lines were measured as indicated by a purple line (A-D). A representative close up 

of an exosome is shown in F. The black line (bottom right of each image) is a 100 nm scale bar.
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Figure 3.11: Estimation of the size of exosomes produced by four different cell lines

Measurements were taken from transmission electron microscopy images and the estimated average size was 

plotted, n = number o f measurements, error bars = standard deviation.
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3.8 Discussion

The main aims of this chapter were to develop methods for the purification of exosomes 

from CM and to evaluate the quality of exosomes obtained. Several experiments using both 

qualitative and quantitative techniques were performed on a number of different cell lines 

in order to optimise the methodologies. The culture conditions for each of the cell lines 

were optimised to achieve good quantities of exosomes efficiently from CM of CELLine™ 

culture flasks.

The cell lines (five TCC and three non-TCC) chosen for the study were confirmed as 

epithelial based on cell morphology, IHC and FC analysis of each cell line. Known 

epithelial cell proteins (CKs) and the non-epithelial intermediate filament protein vimentin 

were examined and all the cell lines were found to be CK18 positive and vimentin 

negative.

Two cell lines showed particularly strong staining for CK18, HT1376 and MCF7, 

compared to the other cell lines examined. This may be related to alterations in the cells 

normal expression as it is known to be up-regulated in several carcinomas including breast, 

colon, and TCC [164]. Although without a non-malignant primary urothelial cell for

comparison it is hard to deduce whether this is normal or abnormal expression of CK18. It

may be interesting to look for CK18 expression in exosomes particularly HT1376 and 

MCF7.

The cell lines were all successfully established in the specialised CELLine™ culture flasks. 

Furthermore, the HSP90 levels of exosomes produced within these flasks were not elevated 

indicating that the cells were not unduly subjected to stress such as hypoxia and/or 

starvation which is consistent with previous studies [163]. If they were subjected to stress 

one may expect to see HSP90 elevated in the exosomes [134].

The amount of exosomes produced in each of the flasks, isolated using the sucrose cushion 

method, varied from 16.74 ±7.37pg/ ml (n=3) to just 0.92 ±0.75pg/ ml (n=4). This was 

comparable to the yields from a mesothelioma cell line [163]. This mesothelioma cell line
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yielded 12 times more exosomal protein from the CELLine™ flask compared to standard 

cell culture in 75cm3 flasks. Although this difference was not measured in the current 

study, as we did not do the direct comparison of exosome yields from traditional flasks 

here, it is expected that the results would be comparable for these cell lines. Variability in 

exosome content of the CM of the different cell lines, measured as protein captured within 

the sucrose cushion, could be caused by differing cell numbers in the flasks or possibly 

differences in the exosome production capacity of the cell lines. To further evaluate this 

one could trypsinise the flasks and quantify the ratio of cells to exosomes produced over a 

specified period of time. However, this would have set the study back by several months as 

it can take many weeks for a cell line to become well established in the CELLine™ flasks.

The exosome quality assurance assay developed by our laboratory based on an already 

established method [48] differs in a number of ways from techniques used by others. Other 

groups use a much higher saturating ratio of exosomes to micro-beads (3:1) compared to 

our lpg :lp l ratio using much less sample to simply analyse quality [183]. Micro-beads 

have also been coupled with an antibody such as CD63 in order to immunoisolate the 

exosomes [64].

The initial theory that more contaminants in the sample would lead to reduced tetraspanin 

signal was confirmed. We established that as little as 0.01% contamination was required to 

reduce the signal intensity for CD9 by 25%. Increasing the contamination further to 0.1% 

significantly reduced the signal intensity, by over 40% (p<0.001%). This assay is a novel 

technique for assessing sample quality and will reduce the amount of sample and time 

needed to distinguish between excellent and poor quality preparations. As it is a 

quantitative technique the results are more easily interpreted than the usual immunoblots 

and as such the standardised method is well suited for batch to batch variation testing.

The theory behind the ExoQA assay was only tested using exosomes from the HT1376 cell 

line in which the 1000 threshold was based on. Most exosome samples from other cell 

lines performed well but certain cell lines did not perform as well using this assay. This 

may have been caused by inefficient clearing of the CM. For example, based on
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observations, if there is a large pellet and debris stuck to the sides of the centrifuge tube 

after the 10,000 g  clearing step more of this debris is likely to become re-suspended in the 

supernatant. Conversely, if the poor ExoQA results for these three cell lines (HT1197, 

MCF7, and Caco-2) were not due to contamination it could mean that the assay and 

arbitrary threshold may have to be adjusted to take this into account. Also, the level of a 

particular tetraspanin may be highly variable across the cell lines. For example some cell 

lines may express significantly less CD9 than HT1376 but when looking at a different 

tetraspanin (CD63) this difference is less marked. For instance the difference in the 

expression of CD63 in T24 cells compared to HT1376 cells is much less than CD9 (Figure 

3.3). This suggests there is an advantage in looking at more than one tetraspanin to 

evaluate different cell types. In addition the arbitrary threshold (1000) for CD9 may not be 

appropriate for different cell types.

Each cell lines exosomes were characterised using a comprehensive panel of antibodies 

something which has not been previously performed on any of the cell lines. All the cell 

line derived exosomes were shown to express well known exosomal proteins (TSG101, 

CD9, and LAMP1) confirming the presence of exosomes within the sample and supporting 

the results of the ExoQA. In addition it suggests active recruitment of proteins such as 

TSG101, CD9, CD81, and CD63 into exosomes as indicated by the stronger staining 

observed in the exosome samples compared to whole cell lysates. Lastly minimal 

contamination with the ER protein GRP94 was observed demonstrating that the samples 

are low in contaminating cellular debris.

The results of the TEM also agree with this statement showing the presence of a 

heterogeneous population of vesicles within the accepted size range for exosomes. 

However, some of the vesicular structures did appear to be damaged perhaps by the 

techniques used. Microvesicles and/or apoptotic blebs were not observed but some images 

did show non-exosomal material which may be protein aggregates or cell debris.

Overall, this chapter has shown that reasonable quantities of exosomes of high quality can 

be obtained efficiently from the CM of the cell lines grown in the CELLine™ flasks using
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the sucrose cushion method. A method for quality assuring exosome samples has been 

developed and is a flexible tool for routine sample analysis that preserves the bulk of each 

specimen for other downstream analysis. In addition, we now have a diverse bank of 

cancer exosomes of defined quality to use in subsequent studies of exosome constituents. 

This will prove a valuable tool for validating any newly discovered proteins accrued from 

proteomics studies.



Chapter 4:

Analysis of urine exosomes
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4.1 Introduction

Several putative biomarkers for diseases of the genitourinary tract have been identified in 

exosomes supporting their use in biomarker discovery research [34, 144, 184]. To our 

knowledge urinary exosomes have not been studied in the context of renal or bladder 

cancer (BCa). However, there is one report describing microparticles derived from BCa 

patient urine. Here a complex mixture of microvesicles, exosomes and other urine 

constituents were analysed. Due to the large mixture of protein sources it is unknown 

whether the proteins identified, including eight with altered expression in cancer, are 

exosomal [33].

Exosomes were first isolated from urine by Pisitkun et al., (2004) and were found to 

contain numerous proteins associated with renal disease and hypertension [34]. Since then 

urine exosome studies have mainly focussed on renal disease. In one study the use of 

differential proteomics methods identified exosomal Fetuin-A as a potential urinary 

biomarker for acute renal injury. Fetuin-A levels increased 50 fold following nephrotoxin 

exposure in rats. Exosomal-Fetuin-A was also found to be elevated in patients with acute 

renal injury before changes were seen in urinary creatinine [144]. Another study identified 

exosomal-aquaporin-1 (AQP1) as a potential biomarker for renal ischemia-reperfusion 

(I/R) injury. The researchers showed a reduction in the amount urinary exosome AQP1 just 

6 h after renal I/R [184]. However, not all exosomally expressed proteins are informative 

markers of clinical value. For example exosomal sodium transporters did not alter in 

hypertensive patients [185].

Research has been performed on urinary exosomes with respect to prostate cancer (PCa) 

identifying mRNA for markers PCA-3 and the fusion protein TMPPRSS2-ERG [35]. Our 

group has also analysed urine exosomes from PCa patients. Exosomes were purified from 

fresh spot urine samples taken longitudinally during standard therapy and analysed for any 

changes in the levels of known prostate antigens PSA and PSMA. The cancer associated 

protein 5T4 was also identified in PCa patient urine exosomes but not healthy donor urine
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exosomes [36]. This prostate study was carried out in parallel to the current study therefore 

some of the data was collected for both studies and will be discussed in this chapter.

Urine exosomes from BCa patients may offer a suitable non-invasive source of BCa 

biomarkers, as tumours are in direct contact with the urine they will likely secrete 

exosomes directly into the urinary space. Cancer cells have also demonstrated elevated 

exosome secretion due to aberrant p53-related pathways. As a consequence there may be 

more exosomes present in cancer patient urine compared with healthy controls. This is an 

aspect that will be examined in this chapter [186]. In addition, urinary exosomes from BCa 

patients and healthy donors will be examined to determine if it is feasible to analyse them 

for potential biomarkers.

This feasibility stage is important as we expect this, as any other study of biological fluid, 

to be challenging. Exosomes from biological fluids will be derived from heterogeneous cell 

types. For example, exosomes derived from plasma are likely to contain exosomes from 

lymphocytes, platelets, endothelial cells [64], as well a proportion from highly vascularised 

organs, such as the liver [56]. Exosomes present in urine will also be derived from multiple 

cell types including urothelial cells of the kidney and cells downstream of the renal tract 

[34-36]. Hence, it will be difficult to quantify the proportion of cancer-derived exosomes 

within the total urinary exosome pool.

The samples are further complicated by the presence of highly abundant non-exosomal 

proteins contaminating the preparations. For example, in a study where exosomes were 

prepared from malignant pleural effusions by sucrose gradient separation and only 

fractions containing exosomes (determined by electron microscopy) were analysed, soluble 

proteins including albumin, immunoglobulin and complement components were identified. 

These were not associated with the exosomes but had co-isolated with them [68]. Tamm- 

Horsfall protein (THP) is the most abundant protein in urine and has also been identified in 

exosome samples derived from urine [34]. It is therefore important to take into 

consideration the impact of the sample complexity when analysing data. Requiring 

particular attention when validating any newly discovered proteins of interest.
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In order to maximise the potential to obtain exosomes rich in tumour antigens we intended 

to obtain urine specimens from patients with bulky bladder tumours following trans­

urethral resection of bladder tumour (TURBT) but prior to the start of any other treatment. 

Analysing exosomes from this subset of transitional cell carcinoma (TCC) patients may 

increase the probability of identifying exosomal tumour associated proteins, while 

eliminating the effects of chemo-, immuno-, or radiotherapy that may have complex non­

specific effects on the pelvic area. Currently there is little understanding about the stability 

of exosomes within the urinary tract {in vivo or ex vivo) and therefore aimed to process 

samples as rapidly as possible and certainly within 30 min of collection.

The use of differential ultracentrifugation with the addition of a sucrose cushion is 

considered to be a suitable method for isolating exosomes of good quality from CM as 

demonstrated in Chapter 3. Other studies examining exosomes utilise a simple pellet 

method for successful urine analysis (first described by Pisitkun et al., (2004) [34]). We 

hypothesise that a sucrose cushion approach may improve sample quality, and yield clearer 

results, facilitating interpretation.

4.2 Aims

The overall aims of this chapter were to:

• Demonstrate it is possible to isolate exosomes from bladder cancer urine 

specimens

• Determine whether there are more exosomes present in the urine from patients 

compared with healthy donors

• Evaluate the quality of the urine exosomes

• Determine whether urine exosomes can be realistically used for proteomics 

analysis
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4.3 Collection and processing o f spot urine samples

Ethics permission was granted by the South Wales Local Research Ethics Committee 

(LREC) to undertake a pilot study to establish feasibility of using urine exosomes as a 

biomarker source for genitourinary cancers including prostate, bladder and kidney. Urinary 

exosomes of renal cancer patients were not examined as the affected kidney is usually 

removed early following diagnosis. We took the view that any residual disease would 

unlikely contribute greatly toward the total urinary exosome pool because only minimal 

tumour tissue would be exposed to the urinary space. However, fresh spot urine samples 

were collected from healthy donors and BCa patients. In addition PCa patient urine was 

collected for a study running in parallel and some of the data is included here for 

comparison.

Up to 180 ml spot urine samples were collected from 12 healthy donors (10 male (M) and 

2 female (F)), and three BCa patients (2M, IF) with bulky disease whom had had no prior 

chemo-, immuno-, or radiotherapy. The samples were brought to the laboratory for 

processing within 30 min of collection and various information was collected including 

urine dipstick test results (Combur5 Test®D; Roche Diagnostics Ltd, Burgess Hill, UK) 

detailing the blood, protein, glucose and ketone content of the urine as well as the pH 

(Table 4.1). This would highlight any unusual samples that may be affected by complex 

parameters such as diabetes or infection of the urinary tract (UTI).

The results (Table 4.1) demonstrate that none of the healthy donor samples exhibited gross 

protein- or haematuria. Haematuria was identified in bladder and prostate cancer donors, 

which was not unexpected. Gross proteinuria was not identified in any of the cancer patient 

samples. This data highlighted that the samples were typical as expected and therefore no 

samples were excluded from the study.

Samples were pre-cleared of cells and cell-debris (400 g  5 min 4°C and 3000 g  15 min 4°C) 

and filtered through 0.22 pm vacuum filters (Fisher Scientific UK Ltd, Loughborough, 

UK). Vacuum filtering, rather than our usual 10,000 g  pre-clearing step, was utilised as the 

BCa specimens contained more visible debris than CM possibly due to haematuria.
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Through observation, CM samples with high levels of visible contamination were not 

effectively cleared by the 10,000 g  step highlighting potential issues with the technique 

when high levels of visible contamination were present. Vacuum filtration offered a viable 

alternative in removing this visible contamination and was also quicker than the 10,000 g 

centrifugation thus reducing the sample processing time. Filtration has been used in other 

exosome studies without any apparent problems [40, 187]. The filtrate was subjected to 

ultracentrifugation with the addition of a 30% sucrose/D20 cushion as described in the 

general materials and methods. Protein content was determined using a Micro BCA protein 

assay. In addition, unlike other urine exosome studies, we did not use protease inhibitors as 

the exosomes were being prepared from fresh urine within half an hour of urination and not 

from urine stored long term (months) [143].
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Table 4.1: Details of urine specimens collected from healthy donors (HD), bladder cancer patients (BC) and prostate cancer patients (PC)

Donor Age Sex Dipstick

Blood Protein Glucose Ketones pH

Specimen 
Volume (ml)

Total
Exosomes 
Recovered (pg)

Exosome
Concentration
(ng/ml)

BC01 86 Male 4 1 1 0 5 155 13.5 87.3
BC02 74 Female 2 1 0 0 5 180 10.9 60.4
BC03 75 Male 4 1 0 0 5 140 6.1 43.6
HD01 29 Male 0 0 0 0 7 180 9.8 54.4
HD02 37 Male 0 1 0 0 7 180 115.2 640.0
HD03 37 Male 0 1 0 0 7 180 32.3 179.4
HD04 65 Male 2 0 0 0 5 180 55.4 307.8
HD05 61 Male 0 1 0 0 7 180 154.7 859.4
HD06 50 Male 0 1 0 0 7 180 8.7 48.3
HD07 49 Male 0 0 0 0 6 150 61.2 408.0
HD08 55 Male 0 1 0 0 6 180 37.2 206.7
HD09 56 Male 0 0 4 0 7 145 28.5 196.6
HD10 57 Male 0 1 0 0 8 170 130.3 766.5
HD11 25 Female 0 0 0 0 5 130 18.2 139.8
HD12 27 Female 0 1 0 0 8 180 6.7 37.1
PC01 66 Male 1 1 0 0 7 90 72.9 810.0
PC02 62 Male 1 1 0 0 - 170 125.5 738.2 >3
PC03 70 Male 4 2 4 0 5 180 72.9 405.3 OJ_
PC04 65 Male 0 1 0 0 5 95 25.4 268.0 <00
PC05 69 Male 4 0 0 0 5 180 38.4 213.6 tn
PC06 70 Male 0 0 0 0 4 180 19.4 108.1 o- H
PC07 53 Male 3 1 1 0 6 97 39 402.1 c
PC08 61 Male 0 1 1 0 6 150 125.1 834.4 3 '
PC09 66 Male 0 1 0 0 5 120 8.2 68.3 I U

rt>
PC10 71 Male 0 1 0 0 5 120 19.4 162.3 X

coO
3fD
to
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4.4 Compatibility o f the sucrose cushion method with urine as a 

source material

We first examined whether or not our standard sucrose cushion method was compatible 

with urine as a source material. These experiments were performed using healthy donor 

(HD) urine specimens which were readily available.

Samples were collected from each stage of the exosome purification process: unprocessed 

urine, urine from 2000 g  centrifugation, and urine from above the sucrose cushion after the 

ultracentrifugation. The wells of a one dimensional electrophoresis (IDE) gel were loaded 

with 10 pi of supernatant from one of these steps or 10 pi of purified urine exosomes. 

Samples were then subjected to electrophoresis and subsequently used for immunoblotting 

or silver staining.

The amount of sample used per gel was limited and therefore silver staining was needed. It 

is more sensitive at detecting proteins than coomassie staining and is able to detect proteins 

down to nanogram levels. Immunoblotting was performed using a panel of antibodies for 

known exosomal proteins and other gels were silver stained to broadly examine the protein 

profile of the samples.

The silver stained one-dimensional (ID) gel (Figure 4.1a) shows a principal band of ~80 

kDa detected in the crude urine samples (lanes 1-3) is absent from the final exosome 

product (lane 4) as well as others in the lower molecular weight region. This suggests the 

elimination of this protein and perhaps other contaminants. On the other hand the complex 

banding observed in the purified exosomes demonstrates enrichment for a highly complex 

assortment of proteins spanning a wide molecular weight range. The results of the 

immunoblotting (Figure 4.1b) suggest the enrichment of exosomes. This is shown by the 

detectable levels of exosome markers (TSG101, CD9, HSP90, and LAMP1) only in 

purified exosomes. Overall, the data shows that the standardised sucrose cushion method is 

effective for purifying exosomes from spot urine samples of healthy donors.
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Figure 4.1: Purification of urine derived exosomes dem onstrates concentration of proteins

Fresh healthy donor urine was subjected to exosome purification, and at each step, lOpl of sample was 

removed and then separated by IDE. (A) Silver stained gel demonstrating effective removal of the principal 

non-exosomal protein bands. (B) Immunoblot analysis, using antibodies against typical exosome proteins as 

indicated, revealing effective concentration of expected exosomal proteins by this method.
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4.5 The sucrose cushion method is superior to pelleting alone

Although we can purify exosomes using the sucrose cushion method we wanted to 

establish whether our method is comparable or superior to the urine exosome pelleting 

method described by Pisitkun et al., (2004) [34]. In other words was this extra effort 

beneficial in terms of sample quality? Hence, the methods were compared using fresh 

healthy donor urine and CM as an exosome source. The two methods were run in parallel 

using the same samples.

The sucrose cushion method was performed as previously described. For the alternative 

method, we used the protocol described by Pisitkun et al., (2004) [34] whereby the samples 

were subjected to centrifugation at 17,000 g  for 15 min at 4°C (with a 70Ti rotor, and an 

Optima LE80K Ultracentrifuge, Beckman Coulter). The supernatants were collected and 

subjected to further ultracentrifugation at 200,000 g  for 1 h at 4°C (using the same rotor 

and ultracentrifuge). The subsequent pellet was re-suspended in sterile PBS and stored in 

aliquots at -80°C.

The protein content of each final sample was determined by the Micro BCA protein assay. 

Immunoblotting was performed for a panel of antibodies. The immunoblots (Figure 4.2) 

show higher levels of all the exosomal proteins using the sucrose cushion method, purified 

from both CM and healthy donor urine. This suggests the pellet from the sucrose cushion 

method is richer in exosomes and poorer in non-exosomal contaminants compared with the 

alternative method. Good enrichment of the tumour associated antigen 5T4 (Figure 4.2a) 

was seen using the sucrose method, but was barely/not detected by using the simple 

pelleting protocol. However, whilst the non-exosomal endoplasmic reticulum (ER) protein 

calnexin was identified using both methods this band was much less prominent in the 

sucrose method. Similarly the abundant urine protein THP was only weakly present in the 

sucrose preparations.

The data presented supports the use of the sucrose method in purifying exosomes from 

fresh spot urine samples. Although practically more involved it showed significant benefits 

in terms of deriving exosomes of superior quality compared with competitor methods.
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Figure 4.2: Com parison of exosome purification methods using imm unoblotting with exosome m arkers

Two methods o f exosome purification, ultracentrifugation using a sucrose cushion and differential 

ultracentrifugation, were compared using cell-conditioned media (A) and healthy donor urine (B). 5 pg of 

protein from each condition was solubilised and subjected to IDE and immunoblotting with a panel of 

antibodies in order to compare the purification methods.
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4.6 The concentration o f exosomes from urine samples

Tumours are known to secrete exosomes enriched in tumour-antigens [58, 67], but they 

have also been shown to have elevated exosome secretion [186]. Therefore cancers of the 

genitourinary tract may secrete elevated levels of exosomes into the urine. We 

hypothesised that urine exosome preparations from patients with a genitourinary cancer 

will contain more exosomes compared with healthy donor samples. Furthermore, the 

physiological parameters influencing the exosome content of urine have not been 

established and comparisons between individuals or preparations from the same individual 

on different days have hitherto never been made.

As patient urine samples are of limited availability and there is a processing volume limit 

(180 ml) for any one time (because of the capacity of the ultracentrifuge), it was important 

to determine the likelihood of obtaining enough protein from fresh spot urine samples for 

proteomics analysis. The volume of urine for analysis was recorded (Table 4.1) and 

subjected to the standard sucrose cushion exosome purification protocol used in our 

laboratory. The total exosome content of each sample was determined using the Micro 

BCA protein assay and the urine exosome concentration subsequently calculated (ng/ml).

The exosome content of urine samples from 12 individual healthy donors, three BCa 

patients, and 10 PCa patients undergoing androgen deprivation therapy (ADT) were 

determined (Figure 4.3). The results show a large range and standard error of the mean 

(SEM) in the exosome content of urine from healthy donors (37.1 to 859.4 ng/ml, 320.3 

±82.8 ng/ml; n=12) but a smaller range for the BCa patients (43.6 to 87.3 ng/ml, 63.8 

±12.7 ng/ml; n=3) was observed. The very limited number of samples for the BCa patients 

made it difficult to perform statistical analysis. Therefore the PCa patient urine exosome 

results from another study (Table 4.1) were included for comparison [36]. Here the range 

was from 68.3 to 896.3 ng/ml (428.5 ±99.2 ng/ml; n=10). This again demonstrated the 

large variation observed between samples. No significant difference was detected between 

the exosome yields of HD and PCa samples (/-test; p<0.05).
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The sample numbers were still very limited and in order to get a more accurate picture of 

the exosome yields from healthy donor, BCa, and PCa urine more samples would need to 

be processed. Variability in exosome content was also observed in preparations from 

different days from a single healthy donor varying from 45.6 to 182.2 ng/ml (102 ± 55.6 

ng/ml; n=5) (Table 4.2). This signifies that variability is not just between different 

individuals but also between specimens from the same donor.

The results have shown that the amount of exosomal protein that can be isolated from a 

spot urine sample is very variable both between healthy donors and cancer patients as well 

as for an individual donor. Although a significant volume of urine was processed, often 

utilising the full capacity of the ultracentrifuge, the total exosomes available was very low. 

For example, 180 ml healthy urine may yield a total of just 6.7 pg of exosomes (Table 4.1). 

This variability along with the low exosome yields from fresh spot urine samples would 

pose problems for any further analysis and for future utility of urinary exosomes in the 

clinic. Other urine exosome studies appear to yield up to 30 times more exosomes from 

urine samples using alternative methods [143] and we were therefore surprised to see so 

little material in our samples.

The results do not support the hypothesis that urine exosome preparations from patients 

with a genitourinary cancer contain more exosomes than healthy donor samples. Instead, 

the results highlight the variability in the samples used. This may be caused by differences 

between individuals, the time of day the sample was given, the health of the individual, or 

the presence of blood or proteins in the urine. Other studies have also noted difficulties 

with yield variability suggesting THP as a cause. This study used the reducing agent 

dithiothreitol (DTT) to release exosomes from the THP polymeric network allowing more 

exosomes to be pelleted during the high speed (200,000 g) centrifugation step [188]. 

Although this method appears to increase the number of exosomes in the final pellet the 

original users of this method acknowledge that the THP is also pelleted, meaning this final 

pellet is not pure exosomes. Furthermore, DTT is likely to disrupt the disulphide bonds of 

exosomal proteins and aid in solubilising what would otherwise be exosomally associated

proteins. Differences in the yields between our present study and others could be due to
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many factors. These might include higher levels of contamination, the effect of proteases, 

or osmotic damage on the exosomes.

In conclusion, the comparisons made using urine from a range of sources show that there is 

no gross elevation in urine exosome quantity in disease. The unpredictably low yields 

achieved with some specimens may mean that proteomics analysis based on such samples 

is unfeasible.
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Figure 4.3: Exosome content of spot urine samples from healthy donors, bladder and prostate cancer 

patients

Spot urine samples from different individuals were processed and the exosome content o f a urine sample was 

determined. The average exosome content o f healthy donor urine was 320.3 ±82.8 ng/ml (SEM); n=12, 

bladder cancer patients (BCa) 63.77 ±12.71 ng/ml, n=3, and prostate cancer patients (PCa) 428.5 ±99.23 

ng/ml; n=10.
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Table 4.2: Details of urine specimens collected from one healthy donor on different days

Donor

Blood Protein

Dipstick

Glucose Ketones pH

Specimen
Volume
(ml)

Total
Exosomes
Recovered
(»9)

Exosome
Concentration
(ng/ml)

HD1 0 0 0 0 7 180 9.8 54.4
HD1a 0 2 0 0 6 180 18.79 104.4
HD1b 0 1 0 0 7 180 32.79 182.2
HD1c 0 0 0 0 6-7 180 22.22 123.5
HD1d 0 0 0 0 7 180 8.2 45.6
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4.7 Determination of the quality of urine exosomes

We next examined the urine exosome samples for the presence of exosome markers. As 

described in the previous chapter the recognised method of analysing exosome sample 

purity is by immunoblotting using antibodies to known exosome markers. In addition to 

this we have developed an exosome quality assurance assay (ExoQA; sections 2.10 and 

3.5) allowing the quality of limited samples to be examined while retaining the majority of 

the sample for further analysis. Both techniques were used to analyse the end product of 

urine exosome purification.

Urinary exosomes from six healthy donors were characterised by immunoblotting but 

unfortunately there was insufficient sample material to include the BCa exosome samples. 

The exosomes were probed for several known exosomal proteins (TSG101, GAPDH and 

CD9). These exosomal proteins were identified in most healthy donor (HD) samples, but at 

much lower levels than in exosomes purified from cultured PCa cell (LnCAP) derived 

exosomes (Figure 4.4). In most instances the CD9 staining intensity was higher than that of 

the LnCAP cell lysate (CL) suggesting there are at least some exosomes present in the 

samples and that the preparations were enriched in exosome markers compared with whole 

cell lysates. Even though the samples loaded on to the gel were all normalised by protein 

amount, there was substantial variability seen between all of the donors. This is likely to be 

caused by variation in the exosome to contaminant ratio in the preparation.

As with the cell line derived exosome samples BCa and HD urine exosome preparations 

were subjected to ExoQA by coupling 1 pg of sample to latex micro-beads and analysis by 

flow cytometry. Three BCa urine exosome preparations and six HD samples were analysed 

along with examples of HT1376 and T24 derived exosomes as positive controls. Only two 

of the urine derived exosome preparations, BC01 and HD la, could be classed as good 

quality utilising the arbitrary CD9 fluorescence threshold of 1000 (Figure 4.5). This shows 

that the vast majority of the urine exosome samples were of poor quality compared with 

preparations obtained from cell lines.
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Given the complexity and variability of the source material for the urinary exosome 

preparations it is perhaps not surprising that the samples do not match the quality achieved 

with cell culture sources. This suggests that the sucrose cushion method as it is may not be 

entirely suitable for urinary exosome preparation. It is possible that the urine exosomes 

may be predominantly at a density not compatible with the method so that we are only 

isolating a small proportion of the total exosomes present. Alternatively the exosomes 

floating within the sucrose cushion may be present at low levels compared with other 

soluble contaminants such as THP or albumin, which may coincidently co-localise with the 

exosomes within the sucrose. Another possibility is that urine may have an effect on the 

exosome membrane integrity and hence impact their flotation properties. Alternatively the 

conditions in the urine may be highly proteolytic and cause damage to the proteins of 

interest.

In conclusion we have found that, in addition to exosome quantity variation, there is 

variation in the actual exosome-expressed molecules within the sample (normalised for 

protein differences). This difference does not appear to correlate with exosome quantity. In 

other words high protein does not necessarily equate to low or high quality samples.
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Figure 4.4: Characterisation of healthy donor urine exosomes using im munoblotting for exosomal 

markers

Six healthy donor (detailed in Table 4.1) fresh spot urine samples were subjected to exosome purification. 

Immunoblotting was performed using 5 pg of protein from each sample per well, with the addition of a well 

containing 5 pg LnCAP derived exosomes (Exo) and another containing 5 pg LnCAP whole cell lysates 

(CL). The blots were probed for CD9, GAPDH, and TSG101 as indicated.
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Figure 4.5: Exosome quality assurance of urine derived exosomes assessed by flow cytometry

Purified exosomes from fresh spot urine samples from three bladder cancer patients (BC), and six healthy 

donors (HD), along with CM derived exosome controls (T24 and HT1376) were coupled to micro-beads and 

stained for CD9 or CD81, or matching isotype IgG2b. Flow cytometry was then performed and the median 

fluorescence recorded. The dashed line represents the arbitrary CD9 median fluorescence threshold of 1000 

for a good quality sample.
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4.8 The exosome membrane is resistant to osmotic damage

We hypothesised that, the variable hydration state of individuals may cause differences in 

water/salt content of their urine and that this may damage urine exosomes. Any damage 

would impact upon the flotation characteristic of the exosomes and may explain the 

variability and low yields observed using the sucrose cushion method.

Calcein-AM is a fluorescent dye used for labelling the cytosol. It was utilised to assess 

osmotic influence on exosome membrane integrity. In live cells and the exosomal lumen 

Calcein is de-esterified and becomes trapped in the lumen. Therefore when the exosomal 

membrane becomes damaged the detectable levels of Calcein will be reduced [189].

B-cell line derived exosomes immobilised onto anti-MHC Class-II coated DYNAL® 

magnetic beads (Invitrogen Ltd, Paisley, UK) loaded with Calcein-AM were used as a 

model system to examine membrane integrity [86]. B-cell line derived exosomes have been 

successfully used by our group to assess complement dependant lysis of the exosome 

membrane using these approaches [189].

In brief, purified B-cell exosomes were incubated with anti-MHC Class-II beads for 24 h 

rolling at RT. The exosome micro-bead complexes were incubated for 20 h at 37°C with 

Calcein-AM (Invitrogen) to achieve complete bead saturation [189]. Calcein-loaded 

exosome-bead complexes were then exposed to various salt-solutions or to fresh urine, 

pooled from several donors, and incubated at room temperature for 1 h. Fluorescence was 

analysed by flow cytometry ((FACScan; Becton Dickinson (BD) Biosciences, Oxford, 

UK), running Cell Quest software (BD Biosciences)). Calcein-fluorescence was compared 

with fluorescence of anti-Class-I (RPE) (DAKO) stained exosome-beads in parallel tubes 

as a measure of whether exosomes remain attached to the bead surface.

The data are expressed as the ratio of Calcein:Class-I fluorescence. The results show that 

with decreasing salt concentration the ratio reduces indicating a loss of exosome-associated 

calcein, therefore increased exosome permeability (Figure 4.6a). When examining the 

effect of urine (Figure 4.6b) the Calcein: Class-I ratio remained stable.
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These results suggest that exosomes are robust in osmotically hypotonic conditions and the 

signal remains at 70% of the control even in pure water. Urine from healthy donors has 

little or no affect on exosome membrane integrity, disproving the hypothesis that the 

differences in the hydration state of individuals may cause damage to urine exosomes.

4.9 Exosomes are resistant to endogenous urinary proteases

We also hypothesised that urine pro teases may act to damage exosome constituents in vivo 

and/or ex vivo causing the apparent poor sample quality. To test this cell line (LnCAP) 

derived exosomes were incubated with fresh urine from three healthy donors, in the 

presence or absence of protease inhibitors (10 mM EDTA, 1 pg/ml Pepstatin-A, 1 pg/ml 

Leupeptin and 1 mM PMSF (Sigma Aldrich, Inc.)). Samples were incubated for 2 h or 18 h 

and then examined by immunoblotting for the expression of CD9 and TSG101. As a 

positive control for proteolysis exosomes were treated with the serine protease trypsin 

(Lonza Group Ltd). The results show there to be little/no urine mediated damage to 

exosome proteins TSG101 and CD9 in the presence or absence of pro tease inhibitors 

(Figure 4.6). The trypsin control however does show that exosomal proteins are subjected 

to damage in the presence of trypsin and that this damage can be prevented by the cocktail 

of protease inhibitors used.

In conclusion this shows that any proteolytic activity in fresh urine is unlikely to cause 

significant damage to exosomes. This suggests that while the exosomes are retained within 

the bladder, or are being handled for exosome purification, the endogenous protease 

activity is not sufficient to grossly impact the exosomally expressed proteins examined.
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Figure 4.6: Examination of exosome membrane integrity and proteolytic damage

Immortalised B-cell line derived exosomes coupled to anti-MHC class II magnetic micro-beads were labelled 

with Calcein-AM, prior to incubation with various concentrations of NaCl (A) or with fresh urine specimens 

from four healthy donors (HD-A-D) (B). In parallel, identical beads were set up, in the absence o f Calcein- 

AM dye, stained instead with anti-MHC Class-I (RJPE) conjugated antibody. After lh at room temperature, 

the fluorescence Calcein signal was compared with Class-I. Graphs A and B show the ratio of Calcein to 

Class I fluorescence (normalised to exosomes in PBS). To examine proteolytic damage to exosomes by urine, 

immunoblots (C) were performed for CD9 and TSG101 on LNCaP-derived exosomes; incubated for 2 or 18 

h with fresh urine specimens (from three healthy donors), in the presence or absence of protease inhibitors. 

Trypsin was used as a positive control for proteolysis.
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4.10 Discussion

The aims of this chapter were to establish whether it is possible to purify high quality 

exosomes from the urine of BCa patients and healthy donors, and importantly to assess the 

feasibility of using urinary exosomes in subsequent proteomics analysis. Initially it 

appeared possible to purify exosomes from spot urine samples using the sucrose cushion 

method. This was demonstrated by the elimination of the principal contaminating proteins 

during the purification process and also the concentration of a highly complex protein 

repertoire which included known exosomal proteins. In addition, our sucrose cushion 

purified samples appeared to be more enriched with exosomes and harboured less 

contaminants than the pelleting method used by competitor groups [34]. Although a 

decrease in exosome yields when using the sucrose cushion method was expected, due to 

reduction in the level of contaminants, our yield was up to 30 times lower than those 

observed in previous reports [143]. However, we suspect that preparations using the 

alternative method not only contain exosomes but other components such as microvesicles, 

apoptotic debris, membrane fragments, protein aggregates, all pulled down in the 

centrifugation process [99]. These reports therefore likely significantly overestimate the 

true exosomal content of urine as no attempt has been made to fractionate the various 

components of the 200,000 g  pellet.

We know that when the exosome content of the source material is consistent, for example 

when using the CELLine™ flask system, the variation due to using the sucrose cushion 

method of preparation is less than 1% [163]. This suggests that the variability in the sample 

series is not introduced by the purification method used. The difficulty in using spot urine 

samples is that we do not know if serial collections from the same individual within hours 

of each other would give similar or different levels of urinary exosomes. However, we 

have shown that samples from the same individual do vary (up to four fold) from day to 

day. One potential way of creating a more consistent sample would be 24 h urine collection 

to average the sporadic variability that may occur during a 24 h period. Other 

modifications could include normalisation of the samples by comparing ratios of urine 

exosomes to urine creatinine instead of urine volume [143]. It is unknown whether this is a
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fair comparison as there has been no documented correlation between urine exosomes and 

urine creatinine. Normalisation based on the level of THP contamination in the 200,000 g  

pellet of the pelleting method has also been suggested as levels of THP appeared to 

correlate with the levels of exosomal markers Alix and TSG101 [188]. However, this does 

mean that the exosome sample would be known to be contaminated with non-exosomal 

proteins and therefore interpreting any analysis performed on such preparations as an 

analysis of urinary exosomes is dubious.

The quality of the samples also appeared to be poor compared with CM as a source 

although the quality was still superior to the simple pelleting method. Even though the 

amount of protein was normalised for all of the samples, there were large variations in 

expression of expected exosomal proteins with only two samples considered as good 

quality based on the ExoQA assay.

The physiological parameters which influence the exosomal content of urine remains 

completely unknown. One may speculate that variations in hydration state, circadian 

rhythm, and renal function of the individual and/or the presence of protein or blood in the 

urine (a particular problem in BCa) may also have an influence on urine exosome content 

or the apparent urine exosome content. For example the presence of blood or protein in the 

urine may lead to an elevation in contaminants in the exosome sample. The results of the 

urine dipstick test for blood, protein, glucose and pH did not appear to correlate with the 

variation on quantity and quality. However, high blood levels were detected in the BCa 

patient samples. All of these had relatively low exosomes yields but HD and PCa patient 

samples containing blood did not show such low yields. Therefore blood may not have 

been the main influencing factor here.

One study examining urine microparticle proteomes in BCa discovered that contamination 

of urine samples with trace amounts (<0.002%) of blood led to noticeable differences in 

protein profiles [33]. Thus the samples were likely to be contaminated with non-exosomal 

proteins due to haematuria affecting both the quality and quantity of exosomes. However, 

similar variations were observed in the HD cohort where blood was not an influence.
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Consequently the effect of haematuria on the exosome yield variation observed does not 

offer a full explanation for the data. Unfortunately there were also too few samples to 

perform any meaningful statistical analysis to investigate this further.

The potential effect of the hydration status of the donor on the integrity of the exosome 

membrane was investigated as a possible explanation for the low exosome yields we 

obtained. We speculated that hypotonic urine may damage exosome membrane integrity 

and this would in turn impact on their capacity to float on a sucrose cushion. The results 

showed that exosomes were not grossly affected by the hydration status of the donor. Pure 

water affected the membrane the most yet surprisingly exosomes still retained 70% of the 

control signal, demonstrating that they are structurally robust vesicles unlikely to be 

significantly damaged by osmotic variations of urine.

We hypothesised that endogenous protease activity in the fresh urine samples may have an 

effect on exosomal proteins. However this was deemed unlikely based on 18 h incubations 

with and without protease inhibitors where no/little affect on selected exosome proteins 

was observed. Therefore we would not expect to see significant exosome damage 

occurring in vivo or within the time frame of purification ex vivo. In contrast the effect of 

proteases on urine exosomes has previously been noted when using urine samples that have 

been frozen for prolonged periods of time (months). In this instance it is recommended that 

protease inhibitors are used [143].

In order to obtain a purer sample it may be necessary to utilise more labour intensive 

methods of exosome isolation. For example, utilising the linear sucrose method of 

purifying exosomes and only analysing the fractions of known exosomal density (1.12 and 

1.19 g/ml) [47]. However, problems with co-localisation of common soluble proteins, such 

as albumin and immunoglobulins, with exosomes have been noted using this technique 

[68]. This may pose a problem if a urine sample is positive for blood or protein. 

Alternatively, exosomes could be isolated using an immunoaffinity capture method, 

utilising antibodies against known exosomal surface antibodies [133]. Immunoisolation has 

recently been used to isolate exosomes from CM for proteomics analysis [96], Therefore, it
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may be possible to isolate exosomes using an immunoaffinity based approach from more 

complex material such as biological fluids [64]. However, utilising such methods as linear 

sucrose gradients and immunoisolation does not alleviate the problems of low yields which 

seems a property inherent in the sample.

The poor exosome yields pose a problem when considering proteomics analysis of the 

samples. For two dimensional electrophoresis (2DE) a minimum of 50 pg of protein is 

usually required per gel to visualise the proteins and with protein yields as little as 6 pg 

from both healthy donors and BCa patients this is not feasible.

Another consideration would be to use the alternative simple pelleting method, to yield a 

greater amount of protein. However, proteomics analysis would not just identify exosomal 

proteins as other cell components, such as microvesicles, protein aggregates, membrane 

fragments, and apoptotic blebs in the pellet may also be co-purified. Abundant non- 

exosomal protein contaminants such as THP could mask less abundant exosomal proteins 

and it may be that such low abundance proteins that are of greater interest as biomarkers. 

However, the use of the reducing reagent DTT has been demonstrated to disrupt the 

polymeric network of THP from pelleted exosome preparations [188]. Nevertheless, this 

does not eliminate non polymeric THP as a contaminating protein and DTT may also 

significantly damage the exosome structure by attacking the extensive disulphide bridges 

that have been suggested as integral to stability of exosome structure [190].

When scrutinising studies utilising this pelleting method for proteomics analysis of urine 

exosomes [34, 59] and exosomes from other biological fluids [61] the characterisation of 

the exosome sample presented has been insufficient. This makes it difficult to determine 

how pure the sample is and therefore how many of the protein identifications are genuinely 

exosomal.

In conclusion it remains very challenging to isolate exosomes in high enough quantity and 

of good enough quality from fresh spot urine samples from BCa patients or healthy donors. 

It may be possible to modify the strategy for collection and purification, but this may be
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very difficult and time consuming and is beyond the scope of this study. However, it may 

be possible to utilise a similar quantity of urinary exosomes obtained using the approaches 

described in this chapter to verify any candidate exosomal biomarkers. It may be that we 

have to use such an approach given the current limitations of urinary exosome purification.



Chapter 5:

Proteomics analysis of 

bladder cancer exosomes
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5.1 Introduction

Proteomics analysis of exosomes may allow the identification of disease associated 

proteins as subcellular organelles offer a simpler proteome for analysis compared with the 

whole cell [191]. This proteome may be enriched in a subset of membrane and cytosolic 

proteins specifically incorporated in to the exosome. In addition unlike subcellular 

organelles such as the mitochondria, nucleus, and Golgi, exosomes are naturally secreted 

by the cell into the extracellular environment making exosomes an even more attractive 

non-invasive source for novel disease biomarkers. Exosome proteome studies have 

uncovered important proteins in exosome biology, such as MHC Class I [102] and II 

proteins [47], integrins [57, 95, 192] and annexins [34, 56, 61, 95]. With respect to our 

study, analysing a transitional cell carcinoma (TCC) exosome proteome presents an 

opportunity to identify cancer or bladder cancer specific proteins that may be novel 

biomarkers or potential targets for therapy.

This type of analysis is a developing field which has its inherent issues. Firstly, the diverse 

methods used to purify exosomes from simple ultracentrifugation to immunoisolation 

results in differences in the quality of the exosomes being analysed. It is therefore likely 

that a number of exosome proteomics studies report numerous false identifications with 

proteins present in the sample yet not in fact exosomally expressed. Exosomes from both 

biological fluids [34, 36, 59, 61, 62] and cell line sources [41, 47, 52, 100] have been 

isolated and analysed using proteomics. Biological fluid derived exosomes are nonetheless 

unavoidably complicated by the heterogeneous exosome sources, donor-related variability, 

sample contaminants such as Tamm-Horsfall protein (THP), and other factors [36, 188]. 

These issues therefore make biological fluid-derived exosomes a very challenging source 

of sample for exosome analysis.

An alternative approach using a homogenous cell line as an exosome source minimises 

variability considerably. We utilised a key biophysical property of exosomes, their ability 

to float on sucrose [42, 47], to isolate exosomes while further minimising contamination 

with other cellular components. This method was confirmed to produce very high quality

154



Proteomics analysis of bladder cancer exosomes

exosome samples (Chapter 3) from the cell conditioned medium (CM) of the different cell 

lines- including the well characterised TCC cell line HT1376, which will be used in the 

subsequent analyses in this chapter [157].

The second issue complicating this research field are the mass spectrometry (MS) 

approaches used to identify proteins. Many early exosome proteome studies relied upon 

peptide mass fingerprinting (PMF), which lacks robust protein sequencing database 

comparisons [87, 99]. The use of PMF has been superseded by tandem mass spectrometry 

(MS/MS), which enable sequence data to be generated to facilitate unequivocal protein 

identification. However, stricter search criteria that are generally recommended for MS- 

derived sequence data have not been specified in all studies [59] and hence confidence in 

some reported identifications is not always high across all such studies.

Our study used a liquid chromatography-matrix assisted laser desorption/ionisation (LC- 

MALDI) MS workflow. Only peptides with good quality MS/MS data and proteins 

identifications from two or more peptides were included in the final results. It would 

nevertheless have been equally valid to use an electrospray ionisation (ESI) approach. 

MALDI and ESI are methods of soft ionisation for analysing proteomes and the most 

common mass analyser for a MALDI approach is a time of flight (TOF) analyser. This 

type of analyser offers good mass accuracy, high resolving power and sensitivity. Details 

of the different approaches for protein analysis using mass spectrometry will not be 

discussed further here. However, there are several good reviews on the subject [142, 193].

The proteomes of exosomes from different sources have been examined using various 

proteomics workflows including two dimensional electrophoresis (2DE) [40, 154], 

difference gel electrophoresis (DiGE) [95], and IDE coupled with liquid chromatography- 

tandem mass spectrometry (IDE, LC-MS/MS) [34] as discussed in detail in the main thesis 

introduction. The LC-MALDI TOF/TOF-MS approach used in our study is a further high 

throughput technique that provides global proteomics data from the exosome source 

sample.
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The proteins must be solubilised from a sample prior to any proteomic analysis. In our 

system the exosomes were purified and then stored in phosphate buffered saline (PBS). 

The exosomes cannot be solubilised in PBS as it will dilute the lysis buffer making 

solubilisation inefficient. In addition PBS contains salt which is incompatible with the 2D 

salt plug LC method used. Therefore the exosomes were repelleted and resuspended in 

Triethylammonium bicarbonate (TEAB) lysis buffer containing 20mM dithiothreitol 

(DTT) and 1% sodium dodecyl sulphate (SDS).

A typical biological membrane is made up of around 50% proteins by mass [194]. 

Exosomes on the other hand are known to be enriched in membrane proteins [87]. This 

high level of hydrophobic membrane protein which are poorly soluble in aqueous 

solutions necessitates the use of strong solubilising solutions to prevent aggregation and 

precipitation of the proteins [195]. Exosomes are also made of a partially detergent 

resistant membrane similar to lipid rafts which are known to be particularly difficult to 

solubilise by standard Triton X-100 or NP40 solubilisation [87, 193]. Furthermore, 

exosomes contain disulphide linked proteins that may be difficult to solubilise [196]. Due 

to the potential importance of exosomal membrane protein enrichment in disease and in the 

function of exosomes it was imperative that these membrane proteins are extracted 

efficiently.

5.2 Aims

The main aims of this chapter were to:

• Use a 2DE gel based approach to separate exosomal proteins and identify these 

proteins by MS

• Develop an LC-MALDI TOF/TOF MS workflow to enable high quality proteomics 

data to be achieved

• Identify large numbers of proteins from exosomes using the LC-MALDI workflow

• Compare the 2DE-MS and LC-MALDI workflows for protein identification

• Examine the protein identifications manually to identify any interesting or 

unexpected exosomal proteins
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5.3 Using 2DE-MS to separate and identify exosomal proteins

Prior to analysing exosomes using an LC-MALDI approach a two dimensional 

electrophoresis (2DE) workflow was used. We found it problematic to identify proteins 

from preparative gels loaded with 100 pg of proteins. The spots picked contained too little 

material to yield confident protein identifications by MS. Consequently the amount of 

exosomal protein loaded onto the gel was increased to 500 pg. Thirty two spots from a 

highly loaded gel (Figure 5.1a) were picked and peptides recovered by in gel trypsin 

digestion prior to MS identification. Overall proteins from 17 spots of intermediate level 

silver staining were successfully identified with publication quality data (high quality 

tandem MS data for 2 or more peptides) (Figure 5. la-c).

The protein identifications included integrins a3 and a6, gelsolin, cytosolic enzymes 

lactate dehydrogenase and glyceraldehydes-3-phophate dehydrogenase (GAP DH), 

cytoskeletal proteins actin and cytokeratins, ezrin, and others (Figure 5.1b). Overall the 

identification hit rate for the 2DE approach was approximately 50%. This was 

unsatisfactory considering that 500 pg of protein was apparently loaded on to the gel. 

Furthermore, the usual level of positive identifications for human samples from 2D silver 

stained gels are approximately 70-80% for spots of the intensity picked (Ian Brewis, 

personal communication).

A number of factors relating to 2DE and membrane proteins may account for this relatively 

low identification rate. For example, membrane proteins are often insoluble in isoelectric 

focussing (IEF) compatible detergents such as urea, thiourea and CHAPS. SDS is the most 

effective detergent for hydrophobic proteins but it is incompatible with 2DE due to its 

negative charge [195]. Therefore, it is likely that certain membrane proteins were either not 

solubilised or were precipitated during IEF or SDS-PAGE resulting in either much reduced 

presence or absence on the final 2D gel. Identification of membrane proteins by MS can 

also be difficult due to problems with under-representation of transmembrane domains. 

This can be caused by issues with trypsin digestion where there is a lack of trypsin 

cleavage sites in these transmembrane domains. Poor protease accessibility to these
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domains can also be a problem. Difficulties with protein solubility may also create 

difficulties as hydrophobic domains may aggregate and precipitate on removal of SDS. 

Extracting the peptides from the gel has also been documented as an issue [195].

158



A) C)
y i y2

MS/MS Spectra of Peptide of mass 1191.9
y3 y4 y5 y6 y7 y9 y10 Precursor

175.1 272.2 343.2400.2 487.3 586.3 733.4 947.5 1076.5 1191.9

- a t e - — > j « ---------- » * - •  >* >

JlkkL

994 1200582 788'170 376
Mass (m/z)

B)
S p o t

N u m b e r P r o t e i n  N a m e
A c c e s s i o n

N u m b e r S e q u e n c e  1
E x p e c t  

V a l u e  1 S e q u e n c e  2
E x p e c t  

V a l u e  2 S e q u e n c e  3
E x p e c t  
V a lu e  3

21* Actin, cytoplasmic 1 ACTB HUMAN QEVDESGPSIVHR 2.00E-07 VAPEEHPVLLTEAPLNPK 1 00E-06 SYELPDGQVITIGNER 4 90E-06
22* Actin, cytoplasmic 1 ACTB HUMAN SYELPDGQVITIGNER 7.00E-10 VAPEEHPVLLTEAPLNPK 7 90E-10 QEYDESGPSIVHR 3 80E-08
2 7 Actin, cytoplasmic ACTG HUMAN QEYDESGPSIVHR 5.10E-05 SYELPDGQVITIGNER 0 0042
26** Annexin A4 ANXA4 HUMAN GAGTDEGCLIEILASR 1 60E-05 AEIDMLDIR 0 0 048
25** Annexin A4 ANXA4 HUMAN GLGTDEDAIISVLAYR 4 10E-12 GAGTDEGCLIEILASR 8 70E-12 NHLLHVFDEYKR 8 OOE-11
12 Ezrin EZRI HUMAN KAPDFVFYAPR 1 00E-08 APDFVFYAPR 1 90E-06 QLFDQW K 0.00012
7 Gelsolin GELS HUMAN EVQGFESATFLGYFK 0.0022 H W PN EV W Q R 0.0035
31 Glyceraldehyde-3-phosphate dehydrogenase G3P HUMAN LVINGNPITIFQER 0.018 AGAHLQGGAK 0.03
1 Integrin alpha-3 ITA3 HUMAN EAGNPGSLFGYSVALHR 00004 YLLLAGAPR 0 0021 ARPVINIVHK 0.0022
2 Integrin alpha-3 ITA3 HUMAN EAGNPGSLFGYSVALHR 3.00E-07 YTQVLWSGSEDQR 7 00E-05 YLLLAGAPR 0.00019
8 Integrin alpha-6 ITA6 HUMAN NSYPDVAVGSLSDSVTIFR 7.10E-09 DGEVGGAVYVYMNQQGR 5.90E-07 DGWQDIVIGAPQYFDR 8 60E-07
9 Integrin alpha-6 ITA6 HUMAN GIVSKDEITFVSGAPR 1.90E-09 DEITFVSGAPR 3.30E-09 NSYPDVAVGSLSDSVTIFR 6 60E-09
1 0 Integrin alpha-6 ITA6 HUMAN DGE V GGAVYVYMNQQGR 9.70E-10 DEITFVSGAPR 2 60E-08 NSYPDVAVGSLSDSVTIFR 1.20E-07
11 Integrin alpha-6 ITA6 HUMAN DEITFVSGAPR 5.10E-06 DGEVGGAVYVYMNQQGR 1.30E-05 NSYPDVAVGSLSDSVTIFR 0 0 016
5 Programmed cell death 6-interacting protein PDC6I HUMAN FYNELTEILVR 0.002 FLTALAQDGVINEEALSVTELDR 0.019 ELPELLQR 0.038
1 6 Rho GTPase-activating protein 1 RHG01 HUMAN NPEQEPIPIVLR 730E-05 FLLDHQGELFPSPDPSGL 00074 LEQLGIPR 0.048
1 4 T-complex protein 1 subunit alpha TCPA HUMAN AFHNEAQVNPER 4.40E-06 EQLAIAEFAR 0.0046
* excised from the sam e spot ** excised from the sam e spot

W
ID

Figure 5.1: Analysis of HT1376-derived exosomes using 2DE and MS

Protein extracts from HT1376 derived exosomes were resolved by 2DE on a pH 3-10 non linear gradient. 32 spots were chosen at random and 

excised and peptides recovered following trypsin digestion (A). 17 of which, annotated in A, yielded protein identifications (B). A 

representative MS/MS analysis from the data set is shown in C. The peptide is from integrin a6 (spot 10) Sequence 2. The peptide has a 

precursor mass of 1191.9 and is annotated to show the derived peptide sequence.
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5.4 Identification of exosomal proteins by LC-MALDI MS

Due to the challenges in identifying exosomal proteins from 2DE gels a gel free approach 

(LC-MALDI) was used. Once the proteins had been solubilised they were subjected to 

trypsin digestion and the resulting peptides were then separated by a two-dimensional salt 

plug method (section 2.15.2). This comprised of a strong cation exchange (SCX) column 

using elutions of increasing concentrations of NaCl and a desalting reverse phase column. 

A total of 1530 peptide spots (255 from each of six salt plugs) were spotted onto a sample 

plate. Matrix assisted laser desorption/ionisation- time of flight/ time of flight (MALDI 

TOF/TOF) MS was then performed. Base peak chromatograms and extracted ion 

chromatograms were examined for each MS/MS run to confirm that there were broadly 

similar total levels of peptide present. This established that there was no significant loss of 

sample during the LC. The MS/MS data was used to search the Swiss-Prot database using 

the MASCOT database search engine.

In total, four runs were performed (two biological replicates and two technical replicates). 

The combination of these four runs resulted in the identification of 353 proteins (Table 

5.1). Only proteins with two or more peptides and an expect (e) value of less than 0.05 

were included in the results. These strict criteria produced a false discovery rate (FDR) of 

0%. This was determined using the same Swiss-Prot database with the entire sequence 

randomised. Other exosome proteomics studies do not use such strict criteria and include 

one peptide data in their results [34, 59, 61]. If single peptide protein identifications were 

included here with an expect value of less than 0.0025, there would be an additional 261 

proteins but the FDR would increase to 2.6% (approximately 16 false identifications). 

However, these extra 261 proteins will inevitably include some valid assignments.

We compared the LC-MALDI results with the 2DE-MS data and this revealed that 10 of 

the 11 unique proteins identified from the gel based approach (Figure 5.1c) were also 

identified by the LC-MALDI approach (Table 5.1). The only unique protein identified 

using the 2DE approach was Actin, cytoplasmic (ACTG HUMAN). This comparison of 

proteomics approaches shows there is high agreement between these two methods for
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resolving exosomal proteins or peptides. The LC-MALDI approach was nonetheless 

superior in identifying large numbers of high quality identifications.
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Table 5.1: LC-MALDI MS-based protein identifications of HT1376-derived exosomes
Novel

ID
A c c e ss io n

N um ber P ro te in  Neme
P ep tide
C ount P ep tid e  1 E-value 1 P ep tid e  2 6 v a lu e  2 P ep tid e  3 6 v a lu e  3

1433B HUMAN 14-3-3 protein beta/alpha 6 AVTEQGHaSNffi* 000089 KEMQPTHRR 0 00033 EMQPTVPR 0 0057

1433E HUMAN 14-3-3 protein epsilon 2 NLLSVAYK 0 033 DSTLMQLLR 7 9 0 6 0 9
1433G HUMAN 14-3-3 protein gamma 4 BHMQPTVPR 0 00018 NLLSVAYK 0033 NVtH.NB4.SNffiR 8 6 0 6 0 6
1433S HUMAN 14-3-3 protein sigma 6 YH3MAAFVK 3 2 0 6 0 6 GAVEKGEB-SCEER 4 8 0 6 0 6 SAYQEAkCXSK 1 4 0 6 0 7

1433T HUMAN 14-3-3 protein theta 7 KBOPTHPR 000033 QTENSQGAYQEAFOISK 3 1 0 6 1 7 B4Q PD RR 00057

1433Z HUMAN 14-3-3 protein zeta/delta 6 KB4QPTHPR 000033 SV1EQGAB.SNEER 1 406-05 YLAEVAAGCOKK 0 0047
✓ PRS6B HUMAN 26S pro tease regulatorv subunit 6B 2 GVLMYGFPGCGK 5 006-05 AVAHHTTAAFR 1.00608
✓ PRS7 HUMAN 26S pro tease regulatory subunit 7 2 QTLQSEQPLQVAR 1.906-09 GVLLFGFPGTGK 0.024
✓ PSD13 HUMAN 26S proteasoma non-ATPase regulatory subunit 13 2 VHMJWVQPR 3.70605 YYQT1GNHASYYK 6.80606

PSNC2 HUMAN 26S proleasome non-ATF&se regulatory subunit 2 2 AVPLALALtSVSffR 00034 FLRPHYGK 0 0035

RS16 HUMAN 40S ribosomal protein S16 2 GPLQSVQVFGR 9 6 0 6 0 7 GGGHVAQIYAR 2 0 0 6 0 7

RS4X HUMAN 40S ribosomal protein S4, X isoform 4 HPGSFDVVWK 7 1 0605 GNKFWSLPR 8 4 0 6 0 5 GFHLVTt-OAR 3 1 0 6 0 6

RSSA HUMAN 40S ribosomal protein SA 2 FTPGTFTNQIQAAFR 2 70607 FAAATGATPIAGR 0 049

4F2 HUMAN 4F2 cett-surface antigen heavy chain 11 VAGSPGWVR 00077 LKLffHBSLLLR 7 6 0 6 0 9 GLVLGPSK 5 6 0 6 0 6

5NTD HUMAN 5'-nucleotidase 6 YPFIVTSDDGR 00065 KAF&tSVHR 5 7 0 6 0 5 GAB/AhFVNALR 2 0 0 6 1 0

✓ RL10 HUMAN 60S ribosomal protein L10 3 GAFGKPQGTVAR 0.0068 VHK3GVMSR 0.0023 L H T W R 00 0 1 3

✓ RL15 HUMAN SOS ribosomal protein L15 2 GATYGKPVFHGVNQLK 9 .10609 RNFOTQWtlKPVfK 0.0034

✓ K6PP HUMAN 6-phosphofructokinase type C 2 KFLEH.SGAGK 1.20606 VTLGW QR 0.00019

GRP78 HUMAN 78 kDa qtucose-requlated protein 12 INBTAAAIAYGLDK 5 40611 TWNDPSVQQDK 1 80 6 0 6 SOOBVLVGGSTR 0 025

✓ THC HUMAN Acetyt-CoA acetyltransferase, cytosolic 2 LVULHTLBt 0.00037 AFHAYLR 9.00606

ACTC HUMAN. Actin, alpha cardiac muscle 1 8 BTALAPSTM< 7 10605 FOGVMVGMGQK 2 5 0 6 0 9 IWFHTFYhB-R 7 50 6 0 9

ACTB HUMAN, Actin, cytoplasmic 1 14 IWHHTFYNB.R 7 5 0 6 0 9 BTALAPSTM< 7 1 0605 VAFraFVLLTEAPLNPK 1 00 6 1 2

✓ ACL6A HUMAN Acbn-lilte protein 6A 2 SPLAGOFTTMQCR 0.00096 QOGP1YYOINALR 3.70606

ARP2 HUMAN Actin-retated protein 2 2 HtVLSGGSW PGLPSR 5 2 0 6 1 4 GYAFM-tSADFEIVR 000064

LYPA2 HUMAN Acyt-protein thioesterase 2 2 TYPGVMHSSCPQB4AAVK 2 6 0 6 0 9 YICPHAFR 00014

ADK HUMAN Adenosine kinase 4 FKVEYHAGGSTQNSK 00067 VFTQGR 00012 VAQWMQQPFK 7 30607

SAHH HUMAN Adenosylhomocysteinase 3 VADtGLAAWGR 0 00062 YPQLLPGR 4 7 0 6 0 6 ALDtAENENRGLMR 1 60 6 0 5

ARF1 HUMAN, ADP-ribosylatbn factor 1 2 MLAH3B.R 00 1 3 CCLPNANNAAEITOK 8 0 0 6 1 2

AGRN HUMAN Agrin 5 RPLQ&IVR 0 005 SFLAFPTLR 0 0017 AAAVSSGFDGAQLVSLGGR 0.011

AK1A1 HUMAN Alcohol dehydrogenase [NADP+] 3 HHPEDVBtALR 0042 IVR.IGLGTWK 0 0011 YALSVGYR 0018

PPB1 HUMAN Alkaline phosphatase, placental type 2 GFFLFVEGGR 0022 VQHASRAGTYAHTVhR 1 2 0 6 0 8

ACTN1 HUMAN Alpha-actinin-1 6 LASDLLEWR 00004 KHEAFESCLAAHQDR 2.90606 HTNYTVBHR 3 3 0 6 0 5

ACTN4 HUMAN Alpha-actinin-4 9 MAFYQGPOAVPGALDYK 00 3 9 LSNRFAFVPSEGK 0 0012 LASOLLEVYR 0.0004

ACTZ HUMAN Alpha-centractin 4 TLFSNWLSGGSTLFK 000058 IWQYVYSK 000096 AQYYLFCGSTBGPSR 000013

04OA HUMAN Alpha-enolase 7 GNPTVEVOLFTSK 1 30606 YISPDQLADLYK 2 4 0 6 0 7 IGAEVYI-NLK 1 10607

AMPB HUMAN Aminopeplidase B 2 KKPFVYTQGQAVLhR 7 4 0 6 0 7 LFGPYVWGR 000027

ANXA1 HUMAN Annexin A1 14 AA Y LQETTGKFLDETLK 3 30611 GGPGSA V SPY PTFNPSSCV AALHK 5 6 0 6 1 0 CATSKRAFFAB< 6 2 0 6 0 7

ANX11 HUMAN Annexin A11 5 DESTNVDMSLAQR 0.007 AH.VAVF7CYCR 6 1 0 6 0 7 GTITDAPGFOPLR 0011

ANXA2 HUMAN Annexin A2 16 AEDGSVDYH.DQQAR 2 8 0 6 0 9 AYTNFDAfft 9 7 0 6 0 6 TRAQYDASB.K 4 7 0 6 0 8

ANXA3 HUMAN Annexin A3 5 HYGYSLYSAK 0 0018 LTFDEYR 0014 GtGTDB=TLhR 0 018

ANXA4 HUMAN Annexin A4 3 ISQTYQQQYGR 1 20 6 0 9 FLTVLCSR 000047 AASGFNAkCDAQTLR 0 026

ANXA5 HUMAN Annexin A5 8 QVYEffYGSSLHXtVVGDTSGYYCtR 6 8 0 6 1 2 GTVTDFPGFOB^ 1 30 6 0 5 SBDLFNR 2 2 0 6 0 6

ANXA6 HUMAN Annexin A6 2 SLH3ALSSDTSGHFR 0.0019 GFGSDKEALDIfTSR 00023

ANXA7 HUMAN Annexin A7 3 QMFAQMYQK 00031 GFGTD6QAIVCWVANR 0036 VLBLCTR 0 037

ANXA8 HUMAN, Annexin A8 4 FITLCTR 0.0043 LIVALMYFPYR 5 2 0 6 0 7 LVCLLQGSR 1 50 6 0 5

ASSY HUMAN Argininosuccinate syn thase 3 GQVYLGR 00064 MFffYNR 0 0011 QHGfiPVTFK 2 9 0 6 0 7

SYRC HUMAN ArginyMRNA synthetase, cytoplasmic 3 GNTAAY LLY AFTR 3 0 0 6 0 8 LFffAGYDVLR 0.023 GFDLGKFVQR 0 0016

ARRD1 HUMAN Arrestin domain-containing protein 1 2 WYSPGB=LAGTVR 2 0 0 6 0 5 VQLFBSLSHGR 6 4 0 6 0 6

Protein accession number, name, peptide count, and top three peptides sequences with e-values are detailed. Novel identifications of proteins

previously not identified as exosomal are marked and highlighted.
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Table 5.1: continued
Novel

ID
A c c e ss io n

Number Protein Name
Peptide
Count Peptide 1 6 v a lu e  1 Peptide 2 6 value 2 Peptide 3 6 value 3

✓ SYDC HUMAN AspartyMRNA synthetase, cytoptasrric 5 VTM.FLGLHNVR 0.0017 FGAfWAGGGGLER 1 1 0 6 0 5 QSNSYDMFNR 0.043
ATFB HUMAN ATP synthase subunit beta, mrtochondrial 2 VALVYGQMNBTCAR 0.031 AHGGYSVFAGVGER 3 3 0607

ACLY HUMAN ATP-citrate synthase 2 AKRAMPQDSVPSPR 8 .00606 TlAftAEGPEALTR 9 1 0 6 0 5
✓ KU70 HUMAN ATRdependent ONk helicase 2 subunit 1 2 SOSFBdVLQOFR 1.10E-05 KPGGFDtSLFYR 4 7 0 6 0 5
✓ KUB6 HUMAN ATP-dependent DNA helicase 2 subunit 2 3 LGGHGPSFPLK 8.10606 HSHWPCR 0 0 2 AhPQVGVAFPHK 8.6 0 6 0 9
✓ DHX9 HUMAN ATF-dependent RNA helicase A 2 YQLPLHSQFR 3.10605 H La#*H FG SW 1 8 0 6 0 5

PG8M HUMAN Basement membrane-specific heparan sutfate proteoqlycan core protein 7 SRAYTLVWTR 0.0058 CVVPGQAHAQVTWFK 0.015 SVPQGGSHSLR 0 0013

BASI HUMAN Basigin 5 SELHENLNMEADPGQYR 2 00E-06 SESVPPVTDWAWYK 0.0051 FFVSSSQGR 1 1 0605

B2MG HUMAN Beta-2-microglobulin 2 VB-BDLSFSK 7.20607 VNHVTLSQPK 2 8 0 6 0 6

ACTBL HUMAN Beta-actin-like protein 2 5 VAPDBHPLLTEAPLNFK 2 2 0 6 0 6 HQGVMVGMGQK 2 5 0609 SYB_PDGQvmGNBR 4 9 0 6 1 3
✓ ACTY HUMAN Beta-centractn 2 IWQYVYSK 0.00096 YCFPNYVGRW 3.70605

BGAL HUMAN Beta-galactosidase 3 TEAVASSLYDLAR 0 008 QHYGFVLYR 00025 YSGSHYSR 2 4 0 6 0 5

✓ SYEP HUMAN Bifunctional anrinoacYMRNA synthetase 3 QFVAAOGSSR 3.80606 AQGGTS1+LGQNFSK 1.70&12 KPYWEYSR 0.0021

PUR9 HUMAN Bifunctional purine biosynthesis protein PURH 2 YGNMWmAQLYTLQFK 6 60 6 0 6 TLFGLHLSQK 0 00011

CALR HUMAN Calretculin 3 KVFMFNYK 7 10606 VHVFW K 00017 KDFDASKPECWD6R 4 3 0 6 0 6

CTNA1 HUMAN Catemn alpha-1 4 KHVNPVQALSffK 4 4 0 6 0 9 LAEQVASFQffl< 0.012 TSVQTHTOLAGQSAR 3 7 0 6 1 2

CTNB1 HUMAN Catenm beta-1 5 NEGVATYAAAVLFR 0 00069 LVQNCLWTLR 0 00013 LHVGLFVVVK 2 706-07

CTND1 HUMAN Catemn delta-1 7 FHPBYGLEDOQR 0.00011 ALSAIADLLTNBHB? 0.00011 SNAAAYLQHLCYR 2 9 0605

GATD HUMAN Cat heps m D 10 QPGfTFLAAK 7.20608 YYTVFDR 0 00045 EGCEAIV DTGTSLMVGFV DEV R 1 60E-07

CD44 HUMAN CD44 antigen 5 YGFIEGHVVFR 1 6 0 6 0 7 SQBA/HLVNK 2 2 0 6 0 6 FAGVFHVB< 2 7 0 6 0 6

✓ CO70 HUMAN CO70 antigen 3 LYWQGGPALGR 3.00E-07 SFLHGPB-DKGQLR 2 8 0 6 0 5 LSFHQGCmSQR 1.90&05

CD9 HUMAN CD9 antiqen 2 EVQB^Y KDTThK 1 40E-07 KEWLETFTVK 3.40608

CDC42 HUMAN Ceil division control protein 42 homolog 2 TPFLLVGTQCLR 1 80 6 1 2 WVFBTHHCFK 5 3 0 6 0 6

CLC1 HUMAN Chloride intracellular channel protein 1 5 LHIVQVVCK 1 90 6 0 7 Yl SNAYAR 0.042 LAALNPESNTAGLDFAK 5 50 6 0 5

CTL2 HUMAN Choline transporter-like protein 2 8 DGDCFAVLPSKPLAR 0 0044 CQFA FY GGESG Y HR 1.00607 CFFAHAYK 1 60 6 0 6

CtSY HUMAN Citrate synthase, mitochondrial 3 VVPGYGHAVLR 1 70608 ALGFPLB3K 0.0028 GLVYETSVLDPOEGR 0 00063

CL HI HUMAN Qathrm heavy chain 1 24 TSDAYDNFDNISLAQR 3 2 0 6 0 9 VGEQAQVVBDMNDPSNPR 00 1 3 RPtSADSAIYNPASK 0 00029

CLH2 HUMAN CJathnn heavy chain 2 2 IVLDNSV FSEHR 00013 NLQNLLLTAK 1 2 0 6 0 6

OOPA HUMAN Coatomer subunit alpha 2 QLFLQTYAR 0043 QQPLFVSGGOCfYK 1.10608

COF1 HUMAN Cofilin-1 3 YALYQATYETK 1 .50605 EL VGDVGQTV DOFY ATFV K 0027 F&.QANCYEEVKDR 0 00063

COCA1 HUMAN Collagen alpha-l(XIi) chain 3 QYLVTYTFVAGGETQEVTVR 2 0 0 6 1 0 ITYQPSTGBGNEQTTnGGR 1.40611 NLQPOTSYTVTVVFVYTEGOGGR 0 0098

CPNE3 HUMAN Copme-3 2 DtVQFVPFR 0.0014 NNLNFVWRPFK 0.0057
✓ H2AY HUMAN Core histone macro-H2A.1 5 AGVFFVGR 1.10605 GKLEAITPPRAK 0 00028 ffVEAVLB-R 0.021

H2AW HUMAN Core histone macro-H2A.2 2 AGVFFVGR 1.10605 HLLAVANDffl-NQLLK 0 0032

CAND1 HUMAN CuHin-associated NGDD6-dissociated protein 1 3 ADVFHAYLSLLK 00 2 9 MLTGfV Y SQSTALTVK 6 3 0 6 0 6 MLTRNLVR 00 3 9

DYHC1 HUMAN Cytoplasmic dynem 1 heavy chain 1 4 FTQDTQFHYIYSPR 0.00069 VAAFDWVFTLDTVR 00 1 2 QYASYEFVQR 0 00064

CYFP1 HUMAN Cytoplasmic FMR1-interacting protein 1 4 ALNLAYSSIYGSYR 6 6 0 6 0 6 YAR.HLVPL0* 0.0031 IMN=MYFQR 0 0012

AMPL HUMAN Cytosol aminopeptidase 3 MFLFBTYTR 0.041 QLMETPANB4TRTR 3 2 0 6 0 5 TLB^LLR 0 0056

SB*A HUMAN D-3-phosphoqlycerate dehydrogenase 2 QPQATASMK 0.00029 DLFLLLFR 0.00019

0FYL2 HUMAN Dihydropyrimdinase-related protein 2 3 VFNLYPR 0.013 QJG04-MPGGVK 0.049 MVPGGOVHTR 0 002

DNJA1 HUMAN DnaJ homotog subfamtfy A member 1 2 TlVfTSHPGQfVK 3.306-06 QSQAYEVLSDAK 1.20605

BHD1 HUMAN EH domain-containing protein 1 8 KLNAFGNAFLNR 2 306-09 BHQtSPGDFPSLR 3 0 0 6 0 9 OFFSl MPSQVVK 520E-08

& 0 2  HUMAN EH domain-containing protein 2 8 VYGALIWVALGK 0.0013 MQB.LMAHDFTK 4.10608 KLNPFGNTFLISK 2 4 0 6 0 6

BHD3 HUMAN EH domain-containinq protein 3 5 KLNAFGNAFLNR 2306-09 YLLEQDFPGMT 003 3 VHAYBSSLK 2 9 0607

BHD4 HUMAN EH domain-containing protein 4 6 LFBYQLQR 3 70606 LFEAEAQDLFR 0.0028 VHAYBSYLK 3.10608

B=1A1 HUMAN. Bonqation factor 1-alpha 1 6 THMYVlGHVDSGK 9 7 0 6 1 4 YYVTIOAPGHR 1.10605 B-ALLAYTLGVK 3 5 0 6 0 8

✓ f f 1 0  HUMAN Bongation factor 1-delta 2 ATAPQTQWSWR 0.0043 LVPVGYGR 0.0042

ff1 G  HUMAN Bonqation factor 1-qamma 5 ALIAAQYSGAQVR 1 30606 KLDPGSSTQTLVR 0.0055 AKDFFAHLFK 0.0011

EF2 HUMAN Bonqation factor 2 11 KHXYLKPQR 7.20607 GPLMMYtSK 0 00035 CLYASVLTAQFR 6 9 0 6 0 6
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Table 5.1: continued
Novel

10
A c c e ss io n

N um ber P ro te in  Name
P ep tide
C ount P ep tid e  1 6-value 1 P e p tid e  2 6 value 2 P e p tid e  3 6 value 3

ENPL HUMAN Endoplasmn 6 FAFQAEVM* 0 00077 FQSSFHPTDfTSLDQYVER 0 00065 GVVDSDOLR-NVSR 2 2 0 6 0 5
B W 2  HUMAN Ephrin type-A receptor 2 2 YLAM W VHR 0 0026 QSPH3VYFSK 2 3 0 6 0 6
EGFR HUMAN Epidermal grow th factor receptor 4 R.BSLQAR 7 10E-06 NLQBLHGAVR 0 0012 ELVER. TPSGEAFNQALLR 8 10605
ES8L2 HUMAN Epidermal grow th factor receptor kinase substrate  8-like protein 2 2 SQFV SQR-TY ESGPD6V R 1 .30610 YWGRASPTHK 0 0017
ERR- HUMAN Epiplakin 2 QPLQATFR 0.0013 LLEAQiATGGV CfV  HSUR 6 6 0 6 0 5
DDR1 HUMAN Epithelial discoidin domain-containing receptor 1 5 LHLVALVGTQGR 5 70E-06 n l y a g d y y r 004 9 LLLATYARFPR 0 041

ER01A HUMAN ER01-like protein alpha 3 LlAhMPESGPSYEFHLTR 4 8 0 6 0 6 FDGLTEGEGPR 0.00061 QEVSLFNAFGR 0 0011

F4A1 HUMAN Eukaryotic initiation factor 4A-I 3 GIYAYGFEKPSAOQR 7 00611 LQMEAPHtfVGTPGR 8 4 0 6 0 7 kfrVLDEAD0A.SR 6 9 0606
IF4A2 HUMAN Eukaryotic initiation factor 4A-II 3 GfYAYGFB<PSAQQR 7.00611 LOAEAFHVVGTPGR 0 0014 kiFVLDEAOEM-SR 6 9 0 6 0 6

✓ F4A3 HUMAN Eukaryotic initiation factor 4A -I 2 GIYAYGFBCPSAOQR 7 00611 KLDY G O W  V AGTPGR 9.40611

EF3A HUMAN Eukaryotic translation initiation factor 3 subunit A 2 MH.SQIQR 000036 SGNALFHASTU-F 2 10E-06
✓ BF3B HUMAN Eukaryotic translation initiation factor 3 subunit B 3 SVSFYHVK 0.0026 GTYLATFHQR 0.0016 FAVLHGEAPR 0 022
✓ BF3C HUMAN Eukaryotic translation initiation factor 3 subunit C 3 SEQDQAENEGEDSAVLMBR 0 0092 QGTYGGYFR 0.003 QRXGPFEShR 4 9 0 6 0 6
✓ BF3L HUMAN Eukaryotic translation initiation factor 3 subunit L 2 QLB'YTSGGOFESVAGEYGR 1.80615 VFSDB/QQQAQLSTR 0.009
✓ XP01 HUMAN Btportin-1 2 AVGtVFVIQLGR 1 706-08 AIASNM7MGGYPR 0.0047

XP02 HUMAN Exportin-2 2 A A DEAFB3NSSYR 7 1 0609 HAQSLFK 1 70 6 0 5

EZRI HUMAN Eznn 11 IGFFWSBR 8 7 0 6 0 7 APDFVFYAPR 8 6 0 6 0 9 FVKPDKK 4 70605

FPPS HUMAN Farnesyl pyrophosphate synthetase 2 VL7H3aOfE)GDAIAR 1 2 0 6 0 8 GLTVVVAFR 0 0075

FSCN1 HUMAN Fas c in 7 GB4GFIGCR 6.70605 YLKGDHAGVLK 0 0017 LVARFWATGYUffR 0 046

FAS HUMAN Fatty acid synthase 19 DNLEFFLAGIGR 0.0097 VTAHDRATVF 3 7 0 6 0 7 FPQLDSTSFANSR 0 017

✓ FCRLA HUMAN Fc receptor-Kke A 2 LLFSFYK 0.00086 QSPQLBR 8.00605

FRiH HUMAN Ferritin heavy chain 2 YFLHQSHEER 7.506-07 RGOHVTNLR 000025

FINC HUMAN Fibronectin 9 GDSPASSKPtSMYR 0.0079 WLPSSSfVTGYR 0026 YB<PGSPPR 0 023

FLNA HUMAN Filamin-A 13 TGVaGKPTHFTVNAK 2 4 0 6 0 8 YAPSEAGLHBOR 000088 YGGQPVPNFPSK 7 5 0605

FINB HUMAN Filamin-B 11 APLNi/QFNSR-PGCAVK 0.00019 VVPCLV7WTGR 0 00036 YGGB.VFVFRAR 4 6 0 6 0 5

✓ FLNC HUMAN Ftamin-C 3 LiALLEVLSQK 3.206-06 LIALLEVLSQKR 0.021 YGGDH’YSPFR 0 022

FL0T1 HUMAN FlotMin-1 2 LTGVSISQVNFKPLR 2 5 0 6 0 5 AQQVAVQEQBAR 1 4 0 6 0 9

ALDOA HUMAN Fructose-bisphosphate akJolase A 6 IG&fTPSA LA MB4A NV LA R 0022 L Q S lG T B ^ra^tR 0.001 ADDGRPFPQVK 1 5 0606

✓ G G S 2  HUMAN/ G antigen family Em sm ber2 2 B X P G o a m n 0.00039 GMX3ESSQfVGSVMQB3TG3< 0.0039
✓ LEG1 HUMAN Galectin-1 2 DSMLCLHFNFR 4.70607 LPOGYffK 8 .30607

LEG3 HUMAN Galectin-3 3 GNDVAFHFNPR 6.80606 |QVLVB3DHFK 1.10605 V AV NQAFLLQY NHR 6 2 0 6 1 1

LG3BP HUMAN Galectin-3-bindinq protein 4 aSEALGQFDSQR 2 0 0 6 0 6 YSSDYFQAPSDYR 2 9 0 6 0 5 AVDTWSWGB* 4 3 0 6 0 6

✓ 0FU I2 HUMAN GCP-fucose protein O -fucosyRransferase 2 2 QCVPSLB3AVR 0.022 LYHWOSFDHQVR 00013

G a s  HUMAN Gelsolin 3 HVVRCVVVQR 2 5 0 6 0 6 QTQVSVLPEGGETR-FK 000044 AGKEPGLQWR 0 00017

✓ GFPT1 HUMAN G tuco8am ne-fructose-6-pho8phate am inotransferase fisomsrizingl 1 3 SVHFPGQAVG7R 6 .40606 WATHGEPSfVNSHPQR 0.00092 VFLHJCDVAAVVDGR 0 0069

G6PD HUMAN G lucose-6-phosphate 1-dehydrogenase 3 NSYVAGQYDDAASYQR 0.0014 LSNHSSLFR 0 0002 FGPfWNR 0 00014

GSTP1 HUMAN Glutathione S-transferase P 5 DQQEAALVOMYNDGVHX-R 00037 ASCLYGQLPK 0.00013 PFYTVVYFFVR 8 1 0 6 0 9

G3P HUMAN Glyceraldehyde-3-phosphate dehydrogenase 9 VPTANVSVVDLTCR 4 4 0 6 1 4 LEKPAKYDDK 0.00052 a g a h l q g g a k 1 2 0606

PYGB HUMAN Glycogen phosphorylase, brain form 5 LLPLVSDEVFR 0 00047 QAVDQSSGFFSFK 3 7 0 6 0 9 HLBIYANQR 0012

✓ PYGL HUMAN Glycogen phosp torytase, liver form 3 DYYFALAHTVR 7.20605 LHSFLGOOi/FLR 2.10605 VR-B4YR 0.00099

✓ GT251 HUMAN Glycosyltransferase 25 farriy  member 1 2 NAAHALPTUGALER 0.00012 RTRAYPF 0.032

SYG HUMAN GlycyFtRNA synthetase 5 TFFSFRAVVAPFK 000054 LPFAAAQIGNSFR 1.10606 MYTVFBfTFHVR 0 0042

GPC5C HUMAN G-protein coupled receptor family C group 5 member C 2 SSPEQSYQGDMYPTR 9 5 0 6 0 9 VPSEGAYDHLFR 4 5 0 6 0 5

RAN HUMAN GTF-binding nuclear protein Ran 4 SNYNFOTFLWLAR 0.00015 ISLQYYDiSAK 0.0016 FNVWDTAGQB< 5 4 0 6 0 8

GNAI2 HUMAN Guanine nucleotide-bindinq protein G(i), alpha-2 subunit 2 TTGWETHFTFK 0.00018 lAQSDY FTQQCA/LR 3 2 0 6 0 8

GNAS1 HUMAN n Guanine nucleotide-bindinq protein G(s) subunit alpha isoforms Xlas 3 YI IFtUATPEPGEDR^ 7.10606 QADYVPSDQDLLR 2.40611 TTSVLRNK 0.0013

GBLP HUMAN Guanine nucleotide-binding protein subunit beta-2-like 1 2 VWGVTIGTR 0.0014 YWLCAATGPSK 0.0023

HSF71 HUMAN Heat shock 70 kDa protein 1 15 irJOTAAAIAYGLDR 4 4 0 6 1 5 DAGVIAGLNVLR 5 4 0 6 1 0 AFYPfflSSMVLTK 0.00034

HS71L HUMAN Heat shock 70 kDa protein 1L 9 □AGVIAGLNYLR 5.40610 INBTAAAIAYGLDK 5.40611 TTPSYV A F1L) 1 fcR 5 40611
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Table 5.1: continued
Novel

ID
A c c e ss io n  

Num b e r P ro te in  Name
P ep tid e
C ount P ep tid e  1 6-value 1 P e p tid e  2 B v alu a  2 P ap tid a  3 6 v a lu a  3

HSP76 HUMAN Heat shock 70 kDa protein 6 5 INEPTAAA AY GLCR 4.406-15 TTPSYVAFTDTER 5 40611 FEB.CSDLFR 1 8 0607

HSP7C HUMAN Heat shock cognate 71 kDa protein 18 NQVAMNPTNTVFDAK 0 0001 HNEPTAAAIAY GLDK 5.406-11 DAGT1AGLNVLR 4 6 0 6 0 8
HSPB1 HUMAN Heat shock protein beta-1 7 lATQShBTFVTFESR 5.106-13 VSlDVNHFAPDELTVK 5206-09 GPSWCPFR 3 2 0 6 0 5
KS90A HUMAN Heat shock protein HSP 90-aipha 14 HFSVEGQLB=R 1 306-09 KHLENWSHETLR 2 906-07 GVVDSBXFLMSR 4 20 6 0 9
HS90B HUMAN Heat shock protein HSP 90-beta 15 HFSVEGQLEFR 1.306-09 KHSQFIGYPtTLYLEK 2 4 0 6 0 9 GVVOSEDLR.NSR 4 2 0 6 0 9
HBA HUMAN Hemoglobin subunit alpha 2 TYFFHFDLSHGSAQVK 1.10E-09 VGAHAGEYGAEALER 6506-05

m O  HUMAN Hemoglobin subunit delta 2 LHNDPBSFR 0 00032 LIVVYPWTQR 4 506-06

HGS HUMAN Hepatocyte growth factor-regulated tyrosine kinase substrate 2 QEYLEVQR 00008 ALQNAVTTFVNR 0 00043
✓ HNRPF HUMAN Heterogeneous nuclear ribonucleoprotein F 2 VHBGTOGR 0.044 QSGEAFVB-GS8XVK 0.00015

HNRPK HUMAN Heterogeneous nuclear ribonucleoprotein K 3 LLHQSLAGGBGVK 4 606-05 TDY NASVSV FOSSGPB* 4 8 0 6 0 9 GSCFDCELR 0 0023

H15 HUMAN Histone H1 5 2 KATGPFVSELfTK 3.306-07 ALAAGGYCWEX 2 2 0 6 0 5

H2A1B HUMAN „ H stone H2A type 1-B/E 2 AGLQFFVGR 6 7 0607 VT1AQGGVLPNOAVLLPK 9 7 0 6 1 0
✓ H2AV HUMAN/ H stone H2A.V 2 AGLQFR/GR 6 7 0 6 0 7 ATIAGGGVRHH< 5.60610

H2B1A HUMAN Histone H2B type 1-A 3 VLKQVt-PDTGtSSK 0012 QVHPDTGtSSK 2 7 0609 LLLPGB_AK 1 6 0 6 0 8

✓ H2B1B HUMAN, H stone H2B type 1-B 6 VLKQYHPDTG6SK 0.012 KESYSIYVYK 5.50608 QVHPDTGSSK 2 7 0 6 0 9

✓ HCB1C HUMAN* H stone H2B type 1-C/BF/G/l 6 V LKQV FPDTGISSK 0.012 Q VW TGISSK 2.70 6 0 9 AMGMNSFVICFST 5 7 0 6 0 5

H33 HUMAN Histone H3 3 2 BAQOFKTDLR 9 5 0606 YRPGTVALR 000059

H4 HUMAN Histone H4 9 VFLBWR 9 4 0 6 0 7 SGLIY^TR 1 1 0609 tv t a m d v v y a l k r 1 00 6 0 9

✓ HAG HUMAN histone H 44to protein type G 3 TVTAMAVVYVLK 0.03 K7VTAMAVVYVLK 1.30606 LGUYffTR 3 6 0 6 0 5

1A24 HUMAN HLA c lass I histocompatibility antigen, A-24 alpha chain 13 FIAVGYVDOTQFVR 3 9 0 6 1 4 GYHQYAYDGKDYIALK 1 6 0 6 1 2 GYHQYAYDGK 6 30606

1A80 HUMAN HLA c lass I histocompatibility antigen, A-80 alpha chain 4 KGGSYSQAASSDSAQGSCVSLTACK 00043 DGEDQTQOTH.VETRRAGDGTFQK 0 014 SWTAADMAAQITK 2 4 0607

HLAG HUMAN HLA class I histocompatibility antigen, alpha chain G 4 AFWVEQEGPEYWSTR 0.0099 WAAVVVPSGffiQR 3 60611 FIAMGYVOOTQFVR 0 0027

1815 HUMAN HLA class I histocompatibility antiqen, B-15 alpha chain 10 FIAVGYVDOTQFVR 3 9 0 6 1 4 DGHXJTQDTH.VFTRRAGOR 00083 APWEQEGPEYWCR 6 2 0 6 1 1

1052 HUMAN HLA class I histocompatibility antigen, B-52 alpha chain 9 FIAVGYVDOTQFVR 3 9 0 6 1 4 DGHXJTQDTH.VETRRAGOR 0 0083 THVTHHFVSDHEATLR 1 0 0608

1B54 HUMAN HLA c lass I histocompatibility antigen, B-54 alpha chain 8 FIAVGYVDOTQFVR 3 .90614 WAAVVVPSGffiQR 3 60611 AFWVEQEGPEYWDR 0 015

1B59 HUMAN HLA class I histocompatibility antigen, B-59 alpha chain 8 FIAVGYVDOTQFVR 3 9 0 6 1 4 DGHX3TQDTH.V ETRRAGDR 00083 APWEQEGPEYWOR 6 20611

1B08 HUMAN HLA class I histocompatibility antigen, B-8 alpha chain 5 AFWEQEGPEYWDR 6.20611 WAAVVVPSGffiQR 3 60611 DGEDQTQDTB-VETRRAGGR 00083

1C01 HUMAN HLA class I histocompatibility antigen, Cw-1 alpha chain 3 AFWVEQEGFEYWDR 0.015 THVTHFFVSDHBVTLR 1 0 0608 FDSQAASPR 00044

1012 HUMAN HLA class I histocompatibility antigen, Cw-12 alpha chain 7 FIAVGYVODTQFVR 3 9 0 6 1 4 WAAVVVPSGEEQR 3 60E-11 AFWVEQEGPEYWDR 0 0 1 5

1C14 HUMAN HLA c lass I histocompatibility antigen, Cw-14 alpha chain 6 FIAVGYVDOTQFVR 3.90614 WAAVVVPSGffiQR 3 60611 AFWVEQEGPEYWDR 001 5

1C17 HUMAN HLA c lass I histocompatibility antigen, Cw-17 alpha chain 6 FIAVGYVDOTQFVR 3 90 6 1 4 AFWVEQEGPEYWDR 0.015 YFYTAVSRPGR 0 0013

1C03 HUMAN HLA c lass I histocompatibility antigen, Cw-3 alpha chain 8 GB^HFIAVGYVDDTQFVR 0.00082 MYGCOVGPDGR 2 1 0 6 0 6 WAAVVVPSGffiQR 3 6 0 6 1 1

IGSF8 HUMAN Immunoglobulin superfamily member 8 8 SRPLFVHVR 0.05 LV AQLDTEGV GSLGPGY EGR 4 90 6 1 3 h a a y s v g w b w v p a g a p g p g r 1 5 0610

ITA2 HUMAN Integrin alpha-2 10 VFSPFHK 000082 PLLYDAEHLTR 5 90611 TQVGLIQYANNFR 2 6 0 6 0 6

ITA3 HUMAN Integrin alpha-3 12 ARFVNVHK 2 2 0 6 0 5 FMGAVFLLSQEAGGDLR 4 4 0 6 0 8 VNGWA7LFLR 5 70605

rTA6 HUMAN Integrin alpha-6 10 WhNVKFFt 5 9 0 6 0 5 AFCVTAAA04R 4 4 0 6 0 6 TAHDVHFLK 1 9 0606

rTAV HUMAN Integrin alpha-V 5 SHQWFGASVR 1.10609 LQEVGQVSVSLQR 7 10606 AM-HLQWPYK 0 0014

fTB1 HUMAN Integrin beta-1 10 GEVFNELVGK 000052 LLV FSTDA GFVFA GOGK 8 30 6 1 3 DKLPQFVQPOFVSHCK 0 0022

[TB4 HUMAN Integrin beta-4 25 NVISLTH)VD0=R 4 9 0 6 0 7 LVFSALGPTSLR 7 8 0 6 0 9 LCTB9.LKPDTR 7 3 0 6 0 5

ICAM1 HUMAN Intercellular adhesion molecule 1 3 VB.AR.PSWQFVGK 7 0 0 6 0 5 DGTFRPIGESVTVTR 000013 TR.TVYWTPBT 00044

✓ MX1 HUMAN Interferon-induced GTP-binding protein total 7 DVRXUDLPGTTR 0.0076 0.00062 Al FPFWVOMXTVTDW/R 0 0095

tFMI HUMAN Interferon-induced transmembrane protein 1 2 MVGCVTGAQAYASTAK 2 9 0 6 1 7 KMVGOVTGAQAYASTAK 2 5 0 6 1 3
✓ SV C  HUMAN IsoteucyMRNA synthetase, cytoplasmic 2 QLSSSLBQFQK 1.50607 YAHQSGFWDR 0.0045

PLAK HUMAN Junction plakoglobin 4 LVQNCLWTLR 0.00013 HVAAGTQQPYTDGVR 7 4 0 6 0 9 TTTYTQGVPPSQGOLEYQMSTTAR 0 0002

JAM1 HUMAN Junctional adhesion molecule A 3 LSCAYSGFSSPR 0.00021 VTFLPTGfTFK 3 8 0 6 0 7 KV1YSQPSAR 1 3 0 6 0 5

K1C13 HUMAN Keratin, type I cytoskeletal 13 2 TRLEQQATYR 0.0032 LEQBATYR 000036

K1C14 HUMAN Keratin, type I cytoskeletal 14 9 TKYETBLM_R 0.0017 VLD6-TLAR 3 5 0 6 0 5 TRLEQBATYR 00032

K1C16 HUMAN Keratin, type I cytoskeletal 16 5 VLDQ.TLAR 3 50 6 0 5 TRLEQBATYR 00032 LEQBATYR 0 00036

K1C17 HUMAN Keratin, type I cytoskeletal 17 10 GQVGGENVBWDAAPGVDLSR 0.00017 LTATVONANLLQDNAR 00003 VL0B.TLAR 3 5 0 6 0 5
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Table 5.1: continued

i 9 A c c e ss io n
N um ber P ro te in  Nam e

P ep tide
C oun t P e p tid e  1 6 v a lu e  1 P e p tid e  2 & value 2 P ep tid e  3 6  value 3

K1C18 HUMAN Keratin, type I cytoskeletal 18 4 VLQCNAR 0.011 VKLEA BATYR 0 01 CWSHYFK 0 0065

K1C19 HUMAN Keratin, type I cytoskeletal 19 5 VLD6LTLAR 3 50 6 0 5 IVLQONAR 0011 DYSHYYmQOLR 3 1 0 6 0 5
K2C1 HUMAN Keratin, type II cytoskeletal 1 3 YEELQdAGR 0 0038 QlSNLQQStSOAEQR 6 0 0614 GGGGGGY GSGGSSY GSGGGSY GSGGGGGGGR 4 9 0 6 0 9

K2C5 HUMAN Keratin, type II cytoskeletal 5 6 NLDLDSBAEVK 9 90E-06 LALDV BATYR 0 00021 QNLBR.FEQY NNLR 0011

K2C6B HUMAN Keratin, type ll cytoskeletal 6B 10 NLDLDSHAEVK 9 90 6 0 6 YffiLQVTAGR 3 5 0605 ADTLTDBNFLR 1 10608

K2C7 HUMAN Keratin, type II cytoskeletal 7 3 AKQffl-EAALQR 0 024 LPDFEAQIAGLR 1 8 0607 Cm EA A LQ R 3 9 0 6 0 7

K2C8 HUMAN Keratin, type II cytoskeletal 8 7 LSB-EAALQR 0.012 WSLLQQQK 0 012 IEGLTD0SFLR 1 60 6 0 6

MFGM HUMAN Lactadhenn 6 LFVAWFNR 6.10607 FPGhWVDNHSHKK 0 00079 FPGNWDNHSm 1.10&07
✓ LAMA3.HUMAN Lamnin subunit alpha-3 3 LPQBXKPR 0.0016 QtSGTDGEGNNVPSGDFSR 2 90 6 0 6 AFVYLGSFPSGKPK 7.00606
✓ LAMB3 HUMAN Laminin subunit beta-3 7 CQLHYFR 0.0034 VAEVQ0VLRRAB< 0 00063 GYHaPSAYYAVSQLR 1 6 0 6 0 5

✓ LAMC2 .HUMAN Lamnin subunit oamma-2 4 HPSAHTYLEGAGLR 9.00&12 AQGGOGWPDTBLEGR 3 0 0 6 0 8 L A B lf/eS A S N k eX T R 0 0014

LAT1 HUMAN Large neutral am no acids transporter small subunit 1 2 SAOGSAPAGEGEGV TLQR 5.20612 ALAARAAffl<SAR 3 8 0607

LSR HUMAN Lipolysis-stimulated lipoprotein receptor 2 AATSGVPSfYAPSTYAHLSPAK 1 4 0 6 0 7 QGNAVTLGOYYQGR 5 00611

LDHA HUMAN L-lactate dehydrogenase A chain B LKGBVMDLQHGSlFLR 0 0027 VrtVSTM K 0 00024 F8RWVK 0 0027

SCRB2 HUMAN Lysosome membrane protein 2 2 VaVGPYTYR 1 80 6 0 5 KLDDFVETGDR 00011

LAMP2 HUMAN lysosom e-associated  membrane qlycoprotein 2 2 GLTVDELLAR 1.50606 PLNDLFR 1 00 6 0 6

MF HUMAN Macrophage m qraton inhibitory factor 2 PfWFIVNTNVPR 1 1 0609 LLCGLLAB* 1 50605

MVP HUMAN Major vault protein 16 VPHNAAVQVYDYR 4 9 0 6 1 2 VSHQAGOHWLR 1 4 0 6 0 8 B.B.VYAR 0 00083

MDm  HUMAN Malate dehydrogenase, mitochondrial 6 TIR.ISQCTPK 6.80E-07 GYLGP6QLP0CLK 0.0018 GCDVVVPAGVPR 3 4 0 6 0 8

✓ SYMC HUMAN MethionyMRNA synthetase, cytoplasmic 2 QOGVLALRPY LQK 6.206-05 AL7HDHSLSR 0.027

MOES HUMAN Moesin 7 GFFWSBR 8 7 0 6 0 7 APDFVFYAPR 8 60 6 0 9 FVKPOKK 4 7 0605

MOT1 HUMAN Monocarboxylate transporter 1 3 KDLHDANTDLIGR 0.0031 DLHDANTDLtGR 1 8 0607 e s k k t s c v a g k r c v t k 0 037

MUC1 HUMAN Mucin-1 3 DTYHFMSEYPTYHTHGR 2.10611 KNYGQLDFRAR 0 00018 NYGQLDFRAR 5 90 6 0 5

✓ MPZL2 HUMAN Myelffi protein zero-like protein 2 3 NPFCVDGVIGB* 9.60&09 l s w h t v r 0.00025 YDASLLWK 0 0001

MYOF HUMAN Myoferlin 7 GKDGSNLPLPPQR 2.10606 PANQLAB.WLK 0 021 LHQHLGAFBER 3 10607

MYL6 HUMAN Myosin light polypeptide 6 2 NKDQGTYH3YVEGLR 1 .40605 EAFQLFDR 00011

✓ MRLC2 HUMAN, Myosin regulatory light chain MFLC2 2 G M W S T R 0.004 FTDffi/OELYR 6.70606

MYH10 HUMAN Myosin-10 4 ADFCIHYAGK 3 6 0 6 0 5 LDPFLVLDQLR 0 00014 VKRlQVTR 000083

MYH11 HUMAN My os in-11 3 NWQWWR 0.0038 KFFR QAALAR 1 8 0605 V K R lQVTR 0 00083

MYH14 HUMAN Myosin-14 2 KEEELQAALAR 1 80 6 0 5 VKPLLQVTR 000083

MYH9 HUMAN Myosin-9 22 QAQQB^DQ-ADGANSSGK B90E-07 M GiffiQM GLLR 1 20 6 1 0 a d f o h y a g k 3 6 0 6 0 5

MY01C HUMAN Myosin-lc 3 KRPETVATQFK 0 0003 Gffl_LSPLM_EQAAYAR 0 015 TSFLLhLR 0 0061

MARCS HUMAN Myristoylated alanine-rich C-kinase substrate 3 GSAAAAAPEAGASPV B< 9 .40610 EARA6GEAAEPGSPTAAEGEAASAASSTSSPK 5 0 0 6 0 6 g e a a a b v g e a a v a s s p s k 5 7 0 6 0 5

NHRF1 HUMAN Na(+)/H(+) exchanqe regulatory cofactor NHE-RF1 2 AQEAPGGAfffiAAAEVQGAGNBJffR 9.80E-07 KGPSGYGFNLHSOK 0 0069

NQ01 HUMAN NAD(P)H dehydroqenase fquinonel 1 3 FGLSVGHH.GK 1 80 6 0 8 EGHLSPCXVAEQK 5 10606 ALfVLAHSS* 000032

NEP HUMAN Neprrlysm 3 FMOLVSSLSR 1 .70606 YACGGWLK 00 0 6 NSVNWHCOPR 6 90 6 0 6

GANAB HUMAN Neutral alpha-glucosidase AB 4 G LLff& QR 0.021 NNOY LQGSGETPQTCV R 0.00074 v v u g a g k r a a v v l g tk 0 0018

AAAT HUMAN Neutral am no acid transporter B{0) 2 NFPSNLVSAAFR 5.30611 EVLDSFLDLAR 2 0 0606

NBR1 HUMAN Next to BRCA1 gene 1 protein 3 GAEGKPGVEAGQBAEAGB* 0011 RFVVGSSffFCHSK 0.018 KR_AHYSSLVR 4.00610

N6L1 HUMAN Niban-like protein 1 3 VEGfiAFTDAR 0.025 FQ aFH )FA R 2 9 0 6 0 7 VQQVQRAMQAVR 0 00023

NICA HUMAN Nicastrin 2 SGAGVPAVLR 0.0028 LLYGFLK 2 2 0 6 0 5

NAMPT HUMAN Nicotinamide phosphoribosyltransferase 3 AVPEGFVPR 1 .00605 GVSSQETAGlGASAHLVNFK 1.10607 VYSYFECR 0015

PNC8 HUMAN Nicotmate phosphoribosyltransferase 2 AAFVAYALAFPR 3.50E-08 LDSGDLLQQAQBR 0 0054

NADC HUMAN Nicotinate-nucieotide pyrophosphorylase [carboxylatmq] 3 GAGWTGHVAGTR 0.00024 YGLLVGGAASHR 7 .80606 GRAHCLLLGBR 2 80605

NIT2 HUMAN Nitrtlase homoioq 2 3 LALIQLQISSK 6.10606 FAB_AQIYAQR 4 2 0605 AVDNQVYVATASRAR 1.30607

NOKA HUMAN Nucleoside diphosphate kinase A 3 TFIAKPDGVQR 2.60606 DRPFFAGLVK 0.025 V M.GETNRA DSKPGTR 2 50607

NDKB HUMAN Nucleoside diphosphate kinase B 3 TFIAKPDGVQR 2.60606 DRPFFPGLVK 000077 VM.GETNRADSKPGTR 2 5 0607

✓ OPTN HUMAN Optineurin 2 QEEDLETMTLR 8.0064)7 QSLNBAQSR 0.0026

PPIA HUMAN Feptidyt-protyt cis-trans isom erase A 8 EGMWEAMB* 4406-08 FEDBJFLK 6 40 6 0 6 VSFaFADK 5 30608
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Table 5.1: continued

19 A c c e ss io n
Number Protein Name

Peptide
Count Peptide 1 E-value 1 Peptide 2 6-value 2 Peptide 3 E-value 3

PRDX1 HUMAN Fteroxredoxin-1 7 LVQAFQFTDK 9 50E-08 TIAQDYGVLK 0.00081 QITVNDLFVGR 9.20608

PRDX5 HUMAN Fteroxiredaxin-5, mitochondrial 4 LLADPTGAFGK 0 0002 GV LFGV PGAFTPGCSK 0 00039 VM_AB_FK 5 5 0 6 0 6

PRDX6 HUMAN Reroxredoxm-6 2 LSLYPATTGR 0.0011 LFFPSDOR 5.606-07

PGK1 HUMAN Phosphoglycerate kinase 1 9 VSHVSTGGGASLELLEGK 1.10E-08 ALESFOTFLALGGAK 3.10608 AHSSMVGVNLPQK 2.60611
PGAM1 HUMAN Phosphoglycerate mutase 1 3 HYGGLTGLhK 0.00015 HGESAWNLBJR 000039 VLIAAHGNSLR 4.30605

✓ PKP3 HUMAN Rakophiirv3 2 GGYHTLQAGPSSR 9.306-09 LFM4ANQP/QR 0.0056
✓ AT2B1 HUMAN Plasma merTtorane calcium-transporting ATWse 1 2 SSttFMTHPEFR 0.00076 QWAVTGOGTMDGFALK 2.20607
✓ AT2B4 HUMAN Has ms manrferane calcium-transporting ATFtase 4 2 QWAVTGDG7NDGRALK 2 .20607 AFHSSLteSIQKPYNQK 0.0014

C l HUMAN Rasma protease C1 inhibitor 2 FQFTLLTLPR 0.0029 GVTSVSQFHSPDLAR 0.00071
PLEC1 HUMAN Flectin-1 12 rtCPLLCMhK 4.B0E-05 Q ffi-Y S aQ A R 0.0001 LHMALB* 0.013
PC8P1 HUMAN M y(rC)“binding protein 1 2 6STGAQVQVAGDMLFNSTB* 6.50607 HTUGPTNAFK 9 0 0 6 0 5

✓ PTRF HUMAN M yrm rase I and transcript release factor 3 QABieGAVQSIQGB.SK 0.0053 VPPFTFHVK 0.00013 KSFTPOWVYAR 1 .30605
A TWA HUMAN Fbtasswrrvtransporting ATPase alpha chain 1 2 LIFDNLKK 000025 VDNSSLTGESBOTR 0 00061
SAP HUMAN FYoactrvator polypeptide 2 KLVGYLDR 0.0045 GCSFLPDFVOK 0 0036

PLODl HUMAN Ftocoflagen-iysine^-oxoglutarate 5-dioxygenase 1 2 LQLNYLGNYFR 7 .90605 ITHYFEGLFTTR 0.0014
PROF1 HUMAN FYofilin-1 5 DSLLQDGEFSMDLR 8.806-08 CYBAASHLR 0.015 TFVNITPAEVGVLVGK 1.40609

PDC6I HUMAN FYogrammed cell death 6-interactinq protein 13 HCMQANAEYHQSLAK 1.60608 LANQAADYFGDAFK 6.206-06 F1QQTYPSGGEEQAQYCR 2.30607

FCC06 HUMAN FYogrammed ce l death protein 6 5 LSDQFHDLR 3.10E-09 QALSGFGYR 1 10607 SXSIwFDR 4 6 0 6 0 5
PROM2 HUMAN FYorrinin-2 3 APGLLDSLYGTVR 0.02 RDLEALQSSGLQR 0.036 FLGPABHLTFTFAAR 0.0033

FPRP HUMAN FYostaglandin F2 receptor neqative regulator 11 FTVSWYYR 0.00018 CSTPS7DATVQGNYEDTVQVK 8.80605 BTTDTFNFR 8 2 0 6 0 6
✓ PS84 HUMAN FYoteasoms subunit beta type-4 2 QFVLSQTEAR 0.00028 AHSWLTR 0.0047

PCHA1 HUMAN FYotem disulfide-isomerase 3 VQATffiSOLAQQYGVR 9.10E-10 THLLFLPK 6306-05 LB=FGLK 4.00605
PCHA3 HUMAN FYotem disulfide-isomerase A3 6 MDATANDVPSFYEVR 4 .00605 FVMQHFSR 0.00014 aSORSYLQR 3.10607
PCXA4 HUMAN FYotein disulfide-isomerase A4 3 RSPPFLAK 0.0072 YALPLVGHR 0.0031 GESDPAYQQYQDAANNLR 0.027
RACN3 HUMAN FYotem kinase C and casein kinase substra te  in neurons protein 3 5 a q y e q t u a b .h r 0.0022 DLHQGEAASDfflXR 2 10607 LSALhLEVR 0.00069
MDRG1 HUMAN FYotem NDRG1 4 GNRFV LTY HDIGKtJHK 0.0001 TASGSSVTSLDGTR 4 2 0 6 0 8 s m g m g tg a g a y ltr 1 40 6 1 5
PP1R7 HUMAN Protein phosphatase 1 regulatory subunit 7 2 QDATFVR 0.0011 KVMLALPSVR 0.0071

✓ RCC2.HUMAN FYotein R0C2 5 7KDGQLFVFWVVR 0.00016 EYOCaVPR 0.00078 VFSWGFGGYGR 2.10608
S10AA HUMAN FYotein S100-A10 2 BTCFLBIQKDPLAVDK 3 9 0 6 0 6 F’SQMEHAMETMMFTFHK 7.30612
S10AE HUMAN R-otein S100-A14 4 SFWB.IGEAAK 7.60605 SANAB>AQB:SC V m 3.90613 NFHQYSVEGGK 0.0027
S10AG HUMAN FYotein S100-A16 2 LlQNLOANhCGR 1.106-05 AVMLVBFYK 1.20606
S10A8 HUMAN FYotein S100-A8 2 GNFHAVYR 3 4 0 6 0 5 LLETB3PQYR 0.018
S10A9 HUMAN FYotein S100-A9 2 NET1NTFHQYSVK 3.20609 LGFPDTLNQGBK 3 .20608

✓ H2B2C_HUMANm ftitative histone H2B type 2-C 2 KESYSIYVYK 5.506-08 ESYSIYVYK 2.40607
TBA4B HUMAN FUtative tubulin-like protein alpha-4B 2 QFFPEQLfTGK 7.20610 LtSQVSSUASLR 1.60610

KFYM HUMAN Pyruvate kinase isozymes M1/M2 15 EAEAAfYHLQLfmR 7.006-11 COBJLWLDYK 0.0033 NTGCTIGFYASR 2 2 0 6 0 8
GDB HUMAN Rab GOP dissociation inhibitor beta 2 FKPGSPPESMGR 3.60E-08 DLGTESQFtSR 0.012

RAD HUMAN Ftadixm 9 tGFFWSBR 8.70E-07 APOFVFYAFR 860E-09 FVKPCKK 4 70605
RAC1 HUMAN Ras-related 03 botulinumtoxm substra te  1 4 KLTPTTYPQGLAMAK 8.50E-11 TVFDEAR 2.80605 LTHTYPQGLAMAK 0.0054

RA910 HUMAN Ras-related protein Rab-10 3 LQIWDTAGQB* 1.306-06 FHTTTTSYYR 9 .50608 AFLTIAHXR 2.80606
RAB1B HUMAN Ras-related protein Rab-1B 4 MGPGAASGGERFNLK 0.042 QWLQGDR 3 9 0 6 0 5 LCHWDTAGQER 1.30606
RAB5A HUMAN Ras-related protein Rab-5A 2 YHSLAPMYYR 7.50E-08 GAQAAIVV Y DfTNESFAR 0.0024

RAB5C HUMAN Ras-related protein Rab-5C 3 YHSLAPMYYR 7.506-08 GV0LQBJNRASR 0.028 GAQAA VVY DfTNTDTFAR 0.017

RAB6A HUMAN Ras-related protein Rab-6A 2 SLPSYR 0.036 LQLWDTAGQB* 1.306-06

RAB7A HUMAN Ras-related protein Rab-7a 8 QETEVB-YNffPEPK 7.30E-05 OPBJFPFWLGNK 3 0 0607 [m iQ A S fR 0.045

RRAS HUMAN Ras-related protein R-Ffes 3 YQEQB.FPSPPSAPR 0.012 LNYDEAFEQLVR 0.0057 KYQEQaPPSPPSAPR 0.0024

PTPRF HUMAN Receptor-type tyrosine-protein phosphatase F 3 LVNM^VB-TR 0.016 TQQGVFAQPADFQAEVESDTR 0.00035 CHQYWRABR 0.02
✓ RTN4 HUMAN Rebculon-4 2 HQAQCHYLGLANK 1.00609 GRBAAPFVAPB* 1 .30605

RAG HUMAN Retmorc acid-induced protein 3 3 TNVNVFSB.SAPR 0.00061 AHAWPSFYK 6.00605 AHAWPSPYKDYEVK 7.10608
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Table 5.1: continued

Rho GTPase-activaling protein 1

Rho-related GTF-binding protein RhoG

RNAS7 HUMAN Rfaonuclawe 7 OSQQFH-VFVmR 0.00012 SYWACKPFQK
Segues tosoma-1
Serine/threonine-protein kinase MRCK alpha

Serine/threonine-prolein phosphatase PPI-bela catalytic subunit

KyPOVSTTTlVEVSR
Small proline-rich protein 3 QPSQFFPQBFVPTTKQTFTPPPQLQQQQVK
Sodiunrpotassxjm. transporting ATPase subunit alpha-1 AVFQANQB4-PIK
Sodiunypotassium-transpofting ATPase subunit beta-1 VAPPGLTQFQOK

AT1B3_HUMAN Sodiunypotasalum-trarttporting ATFhse subunit beta-3 LFiytfTTGgt.GR
SCSA6 HUMAN SodiunHtependent nuMvitamin transporter SYGQDHJTGLFPB<PR

Solute carrier famHy 2. facilitated glucose transporter member 1
SNX33. HUMAN QQLFYQR 0.00051 LTPTHAAStVYR

2.50E-06UAP56 HUMAN Spfceosome RNA haicase BAT1 0.0024GSYVSHSSGFR 7.30&07
TVQGSGHQBINFK

Stress-lnduced-phosphoprotein 1
Synaptic vesicle membrane protein VAT-1 homolog

Syndecan-1 NQSFVDQGATGASQGLLDR

Syntenin-2

T-comptex protein 1 subunit alpha A FW EA Q V M gl
T-complex protein 1 subunit beta GATQQLDEAER

QMQVLHPAART-complex protein 1 subunit delta

T-complex protein 1 sutxjnit epsilon QQSLATQWR
T-complex protein 1 subunit eta GGABQFMEETBt

T-complex protein 1 subunit gamma AVAQALB/PR

T-complex protein 1 subunit theta

Endoplasmic reticulum resident protein ERp44

Threonyl-tRNA synthetase, cytoplasmic
Throrrbos pondin-1

Toll-interacting protein AIQDMFPNMOQEVR

Transforming protein RhoA

Transgelin-2

Transitional endoplasmic reticulum ATRtse

Transnerrbrane BAX inhibitor motif-containing protein 1TMBI1_HUMAN
Triosephosphate isomerase

LY QQHGAGLFEMTRLFGGbFAHQASVARTripeptidyl-peptidase 1

AGAFBHLPSLR 0.0022Trophoblast glycoprotein
QLFFFEQLfTGKTBA1B.HUMAN Tubulin alpha-1 B chain

Tubulin alpha-1 C chain

QLFFPEQLITGKTubulin alpha-4A chain

ALVDLSYjTMJSVR ISVYYNEATGGKTBB5 HUMAN

TBB2A HUMAN

ALTVPS-TQQAfDAK

FVAAVHYEdPTOB-RTumor-associated calcium signal transducer 2TACD2 HUMAN
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Table 5.1: continued
Novel

ID
A c c e ss io n

Number Protein Name
Peptide
Count Peptide 1 E-value 1 Peptide 2 E-value 2 Peptide 3 6 value 3

✓ U520 HUMAN U5 sm al nuclear ribonucleoprotein 200 kOa hohcnoe 5 QLPHFTSBHK 0.0042 TNLLLQAHLSR 00 0 3 6 MTC»#**YYMQG6H% 0 0 0 2 6

UBIQ HUMAN Ubiqurtm 5 TLSUYMQK 9 80E-05 EGFFOQQR 3 70E-05 TTTLEVEFSDTEfWK 3 4 0 6 1 2

UBA1 HUMAN Ubiquitin-like modifier-activating enzyme 1 7 LAGTQPLEVLEAVQR 9.50E-10 QF*B*/NQYLT6R< 6 30 6 1 0 l q t ssv l v sg l r 0 0088

✓ UROK HUMAN Urokinase-type plasminogen activator 2 VSrt=UW F 6406*06 MTLTGMSWGR 1 3 0 6 0 5

VPS28 HUMAN Vacuolar protein sorting-associated protein 28 homoloq 2 QVQGSBSSD0=CR 5 2 0 6 0 8 MSHLPPDFEGR 1 8 0 6 0 5

VPS4B HUMAN Vacuolar protein sorting-associated protein 4B 3 lY R .Pff’HAR 0 043 GLLFGPPGTGK 0 0085 FPHLFTGK 0 0013

VASP HUMAN Vasoddator-stinulated phosphoprotem 2 YNQATPNFHQWR 3 6 0 6 0 5 VQIYHNPTANSFR 0 019
✓ VARA HUMAN Vesicle-associated membrane protein-associated protein A 2 VAHSOKRGSTSTASFR 5.306-05 k v a h s o k p g s t s t a s f r 0 0046

VATA HUMAN V-type proton ATTfcse catalytic subunit A 5 HFTH=VR.R 000012 VGHSELVGEHR 0 0017 FTWQVWPVR 0 00016

VATG1 HUMAN V-type proton ATFfese subunit G 1 2 ffiAQABEQYR 000071 MTLQTYFR 00034

✓ WBP2 HUMAN WW domain-binding protein 2 2 QFVR3A NY K 0.0031 KGTVYLTPYR 3 7 0 6 0 6

Some erf the proteins identified could equaRy have been different isoforms, based on the se t erf peptides identified, these are indicated below 
,  - ACTSJHUMAN 
0 -ACTG_HUMAN 
c - ARF3_HUMAN 
a - AXA82_HUMAN 
.  - B=1A3_HUMAN 
, - GGEE3HUMAN 
g - GNAS2_HUMAN
* - H2A1CJHUMAN; H2A1D_ HUMAN, H2A1H_HUMAN; H2A1J_HUMAN H2A1JHUMAN; H2A2A_HUMAN; H2AC_ HUMAN H2A3_HUMAN H2AJ_HUMAN

H2A2_HUMAN
, - H2B1J_HUMAN; K2B10_HUMAN K2B2E_HUMAN, H2B3B_HUMAN
* - H2B1D_HUMAN; H2B1HJHUMAN; H2B1 K_HUMAN; H2B1 L_HUMAN; H2B1M_HUMAN; H2B1NJHUMAN; H2B2F_HLMAN H2BFS_HUMAN 

WRLC3JHUMAN
m-H2B2D_HUMAN
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5.5 DTT is required for effective exosome solubilisation

In order to obtain exosome-derived trypsin digest peptides for nano-LC we first used a 

protocol encompassing a 1% (w/v) SDS extraction, normally sufficient to solubilise 

membrane proteins [195]. Unfortunately initial attempts with this standard protocol yielded 

very low numbers of protein identifications. Only three proteins with multiple peptide 

assignments were identified even though we performed the experiment several times. 

Cultured cell lysates commonly processed in the laboratory generally yield 300-500 protein 

identifications using this method and this has been achieved for a number of different 

samples (I.A. Brewis, personal communication) and see [169] for an example. This 

highlighted significant issues with the exosome protein solubilisation possibly caused by 

their partially detergent resistant membrane or due to the high levels of disulphide cross­

links, which are a property of exosomes [87, 196]. Comparisons of the effectiveness of 

different solubilising buffers using IDE have been made by members of our group and 

demonstrated that using SDS alone produced poorer solubilisation than using SDS and 

DTT combined. The protocol (section 2.15.1) was therefore modified to include 20mM 

DTT, 1% SDS and heating at 95°C to achieve greater solubilisation efficiency of the 

exosomes and yielded more than 100 times more protein identifications.

5.6 Preliminary observations regarding the identified proteome

Manual assessment of the 353 protein identifications revealed a number of proteins 

consistent with exosome biosynthesis. For example the list included members of the 

endosomal sorting complex required for transport (ESCRT) family, including vacuolar 

protein sorting-associated protein 28 homolog (vps-28), vacuolar protein sorting-associated 

protein (vps-4B), ubiquitin-like modifier-activating enzyme, and ubiquitin. This indicated 

that the sample analysed was of multivesicular body (MVB) origin.

Membrane trafficking and proteins involved in fusion processes were also identified 

(Clathrin heavy chain 1, Rab-llB , Rab-5A, Rab-6a, Rab-7a, Rab GDP dissociation

17 0
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inhibitor beta, Annexin A l, A2, A3, A4, A5, A6, A7, Annexin A8-like protein and 

Annexin All) .

Markers of endosomes and lysosomes were also present (EH domain-containing protein 1 

and 2, Lysosome membrane protein 2, Lysosome associated membrane protein-2, 

tripeptidylpeptidase 1, Cathepsin-D, Sequestosome-1). Furthermore several proteins with 

chaperone functions were identified (HSP70, hsc70, HSP90, stress-induced-

phosphoprotein 1, T-complex protein 1, endoplasmin).

Due to the way in which the exosomes are formed it is expected that the exosome lumen 

contains components of the cytosol. An assortment of cytosolic enzymes (Glyceraldehyde- 

3-phosphate dehydrogenase, cytosol aminopeptidase, cytosolic acetyl-Co A

acetyltransferase, nicotinate phosphoribosyltransferase) and cytoskeletal constituents 

(actin, Alpha-actinin-4, cytokeratins, ezrin, tubulin, myosin) were identified.

Diverse transmembrane proteins were also abundant in the list, including multiple integrins 

(pi, p4, a3, a6, aV), MHC molecules, tetraspanins, EGF-R, Mucin-1, CD44, syndecan-1 

and various membrane transporters such as solute carrier family 2 and 3, 4F2 cell-surface 

antigen heavy chain, Choline transporter-like protein, Sodium/potassium-transporting 

ATPase subunit beta-3. The proteome identified here is broadly consistent with that 

expected for exosomes and comparable to proteomic identifications made by other 

exosome researchers [141].

The dataset was manually compared with the exosome proteome database ExoCarta 

identifying 63 proteins (highlighted in Table 5.1) not previously identified in exosome 

proteome studies, present in the ExoCarta database (accessed 15th February 2010). The 

comparisons were made using corresponding EntrezGene identifications for associated 

protein encoding genes. Amongst the unique proteins identified were three subunits of the 

complex glycoprotein laminin (Laminin subunit a-3, p-3 and y-2), which is thought to be 

involved in cell attachment. Various membrane proteins were also newly identified as 

exosomal, including CD70, which is involved in T-cell activation. A known tumour
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associated protein trophoblast glycoprotein (5T4) was also identified. 5T4 has not been 

previously identified by proteomics means, but has been confirmed to be expressed by 

prostate cancer patient urine exosomes by immunoblotting by our group [36]. Two 

specifically vesicle related proteins were also identified, Syntaxin-4 and Vesicle-associated 

membrane protein-associated protein A (VAMP-A). Syntaxin proteins are thought to play 

a role in the docking of vesicles and VAMP-A is thought to be involved in vesicle 

trafficking and fusion.

To further evaluate the dataset to identify any potential bladder cancer markers, PubMed 

searches were performed for each of the proteins in the dataset plus the term “cancer” 

and/or “bladder cancer”. This helped identify numerous proteins that may be involved in 

the pathology of bladder cancer including p-catenin, galectin-3 and -1, cathepsin D, CD44, 

CD70, epidermal growth factor receptor, hnRNP K, cytokeratins (CK) 17, 18, and 19, 

Nicotinamide phosphoribosyltransferase, peroxiredoxin V, neprilysin, basigin, urokinase- 

type plasminogen activator and more. It is evident that many of the proteins identified are 

associated with cancer and therefore may be potential tumour markers requiring further 

investigation.

Overall the results demonstrate a high quality dataset in both sample and MS data quality 

and amongst the highest number of protein identifications from an exosome sample. The 

dataset is broadly consistent with that of other exosome proteome studies and furthermore 

shows the potential to help identify novel BCa markers and proteins of importance in 

exosome biogenesis and function.

5.7 Anomalous MHC class I identifications

During manual inspection of the proteomics dataset some unexpected MS identifications 

occurred, it was therefore important to question the validity of these anomalies. In the 

current study the LC-MALDI MS data contained multiple identifications for HLA 

molecules. These identifications all passed our quality criteria (Expect values <0.05 and 

identifications based on more than one peptide). However the number of HLA
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identifications was higher than physiologically possible as they included five HLA-B 

alleles and five HLA-C alleles (Table 5.2) from one homogenous cell source.

This anomaly could have been caused by contamination of the source cell line with other 

cells from different donor(s), inadvertent contamination of the sample by researchers, or 

issues related to how MASCOT designated HLA haplotype nomenclature based on peptide 

sequences generated from MS. In order to investigate these possibilities PCR-based MHC 

haplotype analysis was carried out of the researcher and HT1376 cell line, by a clinical 

diagnostic service (Welsh Blood Service, Llantrisant, Wales, UK). The results of which 

showed the researcher to have no alleles that corresponded to those in the MS list, whereas 

the HT1376 cells were haplotyped as HLA-A*24; -B* 15(62); Cw*03(9), confirming it as a 

homogenous cell line.

Subsequently the peptide sequences obtained by MS were examined in more detail to 

evaluate how they were assigned by MASCOT to give HLA nomenclature (Table 5.2). 

From this analysis it was clear to see several peptide sequences had been assigned to 

multiple HLA types. For example, sequence FDSDAASPR was designated to HLA-B 15, - 

52, -54, and -59 and to HLA-C01, -C l2, -C l7, and -C03. However there were also some 

peptides that were only assigned to a single designation. These unique sequences were 

assigned to HLA-A24 (APWIEQEGPEYWDEETGK, AYLEGTCVDGLR, and 

WEAAHVAEQQR), HLA-G (APWVEQEGPEYWEEETR, FLAMGYVDDTQFVR, and 

THVTHHPVFDYEATLR) and HLA-C03 (GEPHFLAVGYVDDTQFVR). There were no 

unique peptides for any HLA-B allele, although of the HLA-B subtypes identified HLA- 

B15 was assigned the greatest number of peptides. This highlighted the need for manual 

analysis of peptides designated as MHC Class I identifications to clarify any potential 

confusion arising from such MASCOT results.

The confusion with the MHC class I peptide designations brought into question the 

designations of peptides to other groups of proteins. Therefore some of these groups were 

also manually examined including 14-3-3 proteins, CKs, heat shock proteins (HSP) and 

histones. Of the 14-3-3 proteins only one (14-3-3s) out of six had no unique peptides
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designated to it and hence casts some doubt on the validity of this identification. Again for 

the cytokeratins, only one (CK13) out of the 11 CK designations had no unique peptides. 

All seven of the HSP proteins had unique peptides designated to them whereas only eight 

out of the 12 histone designations (Table 5.3) had unique peptides assigned. This manual 

analysis of the data, to examine how MASCOT assigns peptide sequences to protein 

identifications, highlights potential issues with proteins that exhibit certain levels of 

homology. This is a known issue in the field of proteomics, but is normally not addressed. 

Manual analysis of homologous proteins in this manner is therefore recommended for 

gaining full confidence in the MS/MS-derived identifications made.
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Table 5.2: Examination of MASCOT-designated MHC Class-I identifications, highlighting the 

assignment of peptide sequences to more than one protein identification

MASCOT Designated HLA-identifications

Peptide Sequences assigned a HLA- 
___________designation__________
FIAVGYVDDTQFVR
APWVEQEGPEYWDR
APWVEQEGPEYWEEETR3
APWIEQEGPEYWDEETGK3
APWVEQEGPEYWDR
AYLEGTCVDGLR3
AYLEGLCVEWLR
DGEDQTQDTELVETRPAGDR
DGEDQTQDTELVETRPAGDGTFQK
FDSDAASPR
FIAMGYVDDTQFVR3
GEPHFIAVGYVDDTQFVR3
GGSYSQAASSDSAQGSDVSLTA
GYHQYAYDGKDYIALK 
GYHQYAYDGK 
KGGSYSQAASSDSAQGSDVSLTACK 
KWEAAHVAEQQR
MYGCDVGPDGR
SWTAADMAAQITK
THVTHHPVSDHEATLR
THVTHHPVFDYEATLR3
THVTHHPISDHEATLR
THMTHHPISDHEATLR
WAAVVVPSGEEQR
YFYTAVSRPGR
YFSTSVSRPGR
YFYTAMSRPGR
WEAAHVAEQQR3

a. Peptide sequences highlighted in bold, represent those assigned to a single HLA identification

b. Indicates HLA-Haplotype o f  H T 1376 cells by PCR

c. Positive expression confirmed by immunoblotting
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Table 5.3: Examination of MASCOT-designated Histone identifications, highlighting the assignment of 

peptide sequences to more than one protein identification

MASCOT Designated Histone identifications
Peptide Sequences 
assigned a Histone 

designation
AGLQFPVGR

AGVIFPVGR
ALAAGGYDVEK
AMGIMNSFVNDIFER
AT AGGGVIPHIHK
DNIQGITKPAIRR
DNIQGITKPAIR
DAVTYTEHAK
EIAQDFKTDLR
ESYSIYVYK
ESYSVYVYK

GKLEAIITPPPAK
HILLAVANDEELNQLLK
ILGLIYEETR
ISGLIYEETR
KATGPPVSELITK
KTVT AM AVVYVLK
KTVT AM DVVYALK
KESYSVYVYK
KESYSIYVYK
LLLPGELAK
QVHPDTGISSK

TVT AM AVVYVLK
TVT AM DVVYALKR
TVTAM DVVYALK
VLKQVHPDTGISSK
VFLENVIR
VTIAQGGVLPNIQAVLLPK
YRPGTVALR

a. Peptide sequences highlighted in bold, represent those assigned to a single histone identification
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5.8 Discussion

The aims of this chapter were to establish a proteomics workflow for obtaining high 

quality protein identifications from exosomes using an LC-MS/MS approach. In Chapter 3 

it was established that exosome purification utilising a sucrose cushion was sufficient to 

yield good quantities of high quality exosomes. However, it was apparent that exosome 

samples could not be prepared for proteomic analysis by LC-MS/MS in the standard way 

used for whole cell lysates (1% NP40) [169]. Exosomes are difficult samples to work with 

as they are composed of a cholesterol and sphingolipid rich membrane which is partially 

detergent resistant. This is similar to that of plasma membrane microdomains lipid rafts 

and caveolae and unlike that of the overall plasma membrane [87, 193]. These require 

stronger conditions, either 1% NP40 or 1% SDS and heating, to disrupt the membrane. In 

fact common detergents such as Triton X-100 are used to specifically isolate these 

detergent resistant microdomains [193]. The use of the strong reducing agent DTT was 

required to disrupt the high levels of disulphide cross-links in exosomes. The DTT, SDS 

and boiling provided vastly more effective exosome solubilisation compared with SDS 

alone. SDS is however normally sufficient for membrane protein solubilisation [195].

The 2DE work performed also highlighted probable issues with exosomal membrane 

proteins. Even on a preparative gel loaded with 500 pg of protein only approximately 50% 

of the protein spots picked yielded high quality protein identifications. These unidentified 

proteins may be hydrophobic membrane proteins which are difficult to identify due to 

under-representation of transmembrane domains. Furthermore, the incompatibility of ionic 

detergents such as SDS with IEF prevents the effective solubilisation of hydrophobic 

membrane proteins [195]. The inefficiency of the 2DE workflow led us to explore gel-free 

methods of identifying exosomal proteins. The subsequent LC-MALDI MS workflow 

identified 353 proteins. This is amongst the highest number exosomal proteins identified in 

a single study [141]. Furthermore, the data presented are also of the highest quality in the 

exosome field.
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Along with the numerous known exosomal proteins identified, membrane and cytosolic, 

other proteins not thought to be expressed by exosomes were also identified including 

proteins known to be associated with organelles such as the ER, mitochondria and nucleus. 

Although samples were checked for the degree of contamination by immunoblotting for 

known ER proteins gp96 and calnexin, it is possible that the levels of these and other 

unexpected proteins are below the detection limits of the immunoblotting technique.

Generally in the exosome field it is accepted that exosomes contain minimal proteins from 

these different cellular compartments but it is not entirely known to what degree this rule is 

true. Furthermore, our dataset is not the first to identify proteins from cellular 

compartments thought to be under represented in exosomes. For example nuclear proteins 

such as histones have been identified in numerous studies [56, 61, 99, 101, 106, 111] 

including studies using highly purified immunoisolated exosomes [96]. The 

mitochondrial/nuclear protein peroxiredoxin has also been identified in numerous studies 

[56, 62, 98, 99, 101]. It is not known whether these proteins are specifically loaded into the 

exosomes or alternatively taken up from the microenvironment into the endosomal system 

and packaged into exosomes [197]. Given the interrelationship between exosome

production and the degradation machinery of the cell it may be that proteins from diverse 

cellular compartments do at some point encounter multivesicular body (MVB)

compartments. As a consequence a proportion of these proteins may be secreted in 

exosomes instead of entering the lysosome. In addition, cancer cells have many poorly 

understood cellular alterations which may modify the normal trafficking of some proteins. 

For example, the protein hnRNPK identified in the current study usually located in the 

nucleus may locate to the cytoplasm in certain cancers changing its normal distribution 

[198, 199]. These unexpected proteins may therefore be genuinely expressed in exosomes 

and it would be of interest to clarify if exosomal expression of proteins such as hnRNP K is 

representative of abnormalities within neoplastic cells.

ExoCarta, a repository for exosome proteomics studies, was a useful tool for comparing 

data from our study with other exosome proteomics data deposited in ExoCarta [140]. It

allowed us to check that our proteome was consistent with that of other exosomes and
 ........~...............  ........~ ........ . ............... * 178
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furthermore demonstrated that we were not the only group identifying unexpected nuclear, 

ER and mitochondrial proteins [59, 61, 96, 101]. Through manual checking of our dataset 

we were also able to identify 63 previously unidentified exosomal proteins. BCa-exosomes 

have never been analysed by proteomics methods before therefore some of the 63 unique 

identifications may be bladder or bladder cancer specific. The potential of these proteins as 

BCa specific markers is something that requires further investigation.

The examination of the physiologically impossible number of HLA identifications in our 

exosome dataset has highlighted the inability of MASCOT to distinguish between correct 

and incorrect HLA identifications. It also shows potential problems with other protein 

groups exhibiting homologous sequences. Proteins which are particularly homologous, 

such as HLA proteins, may be particularly difficult for MASCOT to pin point. MASCOT 

will potentially designate peptides to more than one protein when in fact only one of the 

proteins is the true identification. This may be the case with some of the histone proteins 

identified but more investigations would be required to clarify this. Whilst this is beyond 

the scope of this study this problem is no doubt one that affects numerous proteomics 

studies and is a problem that is not to our knowledge widely discussed or raised.

The LC-MALDI MS workflow used in the current study has been shown to be effective in 

identifying large numbers of exosomal proteins of high quality and more than double that 

of the only other LC-MS/MS study [145]. Other exosome proteomics studies have 

identified more exosomal proteins but these utilise a IDE LC-MS/MS approach allowing a 

further degree of protein separation [59, 61, 96, 101]. Fewer fractionation steps were 

performed for our analysis compared with IDE LC-MS/MS therefore less processing time 

on the LC and MS was required likely reducing the cost, in time and money, of our study. 

Even though our proteins were not subjected to this high level of separation overall results 

are comparable. This suggests such intensive fractionation may not be required to obtain 

good resolution of exosomal peptides.

Although these IDE LC-MS/MS studies appear to have many more protein identifications 

the study with the most rigorous purification procedure utilising an immunocapture method
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only identified around 50 more proteins than the current study. Two IDE LC-MS/MS 

studies used simple pelleting methods and as a consequence probably analysed samples 

containing cellular constituents other than exosomes, therefore identifying numerous non- 

exosomal proteins [59, 61]. Furthermore, these two studies also analysed samples from 

bodily fluids, urine and saliva, which are much more complex source materials for 

exosomes and likely contain many contaminants. THP has been shown to be a contaminant 

of urine derived exosomes prepared by the simple pelleting method, thus one could assume 

that this is unlikely to be the only contaminating protein of the samples analysed by 

Gonzales et al., (2009) [59, 188]. Insufficient evidence is presented within several 

exosome LC-MS/MS studies to confirm that the sample analysed is that of pure exosomes 

[59, 61, 96, 101]. However, one of the studies does present some vesicle size data showing 

the majority of vesicles present to be consistent with exosomes, but there are a significant 

number of vesicles over 100 nm also present and non-vesicular fibrillar material was also 

observed in a similar study by the same group [34, 61].

The data presented in the urine exosome study that has the highest number of exosome 

protein identifications recorded (1132) included one peptide identifications in their results 

[59]. As a consequence the data will have a much higher FDR than our study (0%). 

Therefore many of the identifications may not be genuine. Looking at the exosome 

proteomics studies with larger datasets highlights the problems faced with comparing our 

dataset to others. There are clearly issues with sample quality and data analyses that need 

to be addressed within the field, which are discussed in the thesis introduction (section 

1.3).

In conclusion our dataset is one of the highest quality in the field due to the strict protein 

identification criteria and well characterised high quality exosome samples used for 

analysis. This new dataset will provide a platform for future studies in the realm of 

exosome biogenesis and exosome biology (functions) and may contain protein 

identifications of interest in terms of biomarkers for BCa. Nevertheless, this established 

knowledge in handling this difficult sample for such a global proteomics workflow will 

provide enormous scope for follow up studies with exosomes from other sources.
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6.1 Introduction

Having generated a large complex proteomics dataset from BCa derived exosomes it was 

essential to test the validity of the data. We believed that our dataset was amongst the 

highest quality in the field based on the quality of the prepared samples and the strict 

identification criteria used. Nevertheless, the dataset required interrogation using a number 

of approaches to help ascertain the true quality of the proteomics results. In silico analysis 

using database tools is one approach. Computational techniques can be used to allocate 

proteins to categories based on predefined gene ontology (GO) information. Although this 

is useful in many proteomics studies this categorisation may become biased by the 

researcher. For example, if a protein is present in more than one cell compartment the 

researcher may chose to allocate this protein to the compartment that most fits their 

requirements. With respect to the exosome proteomics field the method of allocating a 

protein to a specific category is not always indicated [34]. In addition, when database 

analysis is included it is not necessarily statistically based and this may potentially 

incorporate bias into a study [59, 61, 101, 200]. However, there are some exosome 

proteomics studies that use statistical analysis such as over representation analysis (ORA) 

or specific analysis of domain/motif enrichment [56, 96].

ORA enables the identification of statistically significant enrichment or depletion of gene 

set categories to which the proteins identified have been allocated. Comparisons of an 

experimental dataset with predefined databases can highlight associations with key 

biological themes. Furthermore, because this approach is statistically informed these 

associations are unlikely to occur by chance and no bias is introduced by the researcher. 

Conde-Vancells et al., (2008) used ORA to analyse rat hepatocyte exosome proteomics 

data. A number of high associations were identified with functional activities and 

biological processes that may be associated with the physiological role of hepatocyte 

derived exosomes, such as lipid metabolism and cell signalling [56]. We believe that using 

an ORA approach will reveal any statistically significant associations within our dataset
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with respect to key biological themes, such as molecular function and biological processes, 

as well as any significant associations with disease.

There are also other bioinformatics tools available which may provide useful insights into 

the potential of the dataset which include the building of theoretical protein interaction 

networks. These can be produced to show the theoretical interactions of identified proteins 

within a dataset. In addition, repositories such as BioGRID allow interactions with other 

proteins (not necessarily identified within a study) to be explored [201]. Graner et al, 

(2009) utilised pathway analysis software (Ingenuity Systems Inc.) to identify significant 

interaction networks associated with proteins identified in brain tumour derived exosomes. 

Networks involved in immunological functions and cancer were identified [105]. 

Formulating theoretical protein interaction networks using the current dataset may help 

identify proteins of interest with respects to the function of exosomes in BCa. Network 

analysis could also help to elucidate the role of proteins within exosomes with currently 

unknown functions. Furthermore, interaction networks may help identify potential 

therapeutic targets for disease by highlighting pathways that feature greatly or abnormally 

in cancer cells.

By performing in silico analysis of a proteomics dataset the results can be examined as a 

whole making it possible to identify potentially important features particularly with respect 

to disease. Furthermore, statistical comparisons with other exosome proteome datasets 

should enable us to establish whether our dataset is consistent with what is expected of a 

high quality exosome proteomics dataset. For example, is the data consistent with a 

proteome of vesicle/endosomal origin? Also, are the molecular functions associated with 

the dataset in agreement with the known functions of exosomes?

It is also equally important to gather empirical evidence to confirm that protein 

identifications are of exosomally expressed proteins and that the dataset is therefore of high 

quality, and not replete with false identifications. However, it is unfeasible to verify all 353 

protein identifications. Therefore, it would be useful to focus attention on proteins that
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have associations with bladder cancer (BCa) as they may be of particular interest. It may 

also be valuable to validate proteins with potential specific exosomal significance.

Exosomal proteins identified by MS in other studies are not always extensively verified. 

Nevertheless, where evidence is presented verification is generally by means of 

immunoblotting [96, 202]. However, the verification of a protein is sometimes 

demonstrated as present in the purified sample but this is not necessarily demonstrating a 

protein as unequivocally exosomally expressed. One means of demonstrating genuine 

exosomal expression is by immunogold electron microscopy [34, 47, 58, 100]. Another 

approach is by continuous sucrose gradient purification of exosomes. Here the expression 

can be correlated with sample density to reveal if the protein is predominantly present 

within the accepted range of exosome density (1.12 -  1.2 g/ml) [47, 87, 96]. In order to 

verify any MS-identified proteins as exosomal it is therefore essential to utilise one or more 

of these techniques.

In order to evaluate the bladder specific/selective expression of some of the proteins 

identified it would also be useful to examine whether the verified HT1376-exosome MS- 

identified proteins are specific to this particular exosome population or specific to BCa- 

exosomes when compared with exosomes from other carcinoma sources. This preliminary 

analysis would not provide any definitive evidence of biomarker validation. It would 

nonetheless give an indication of the broad or restricted expression of these proteins within 

exosomes. It may also provide clues as to whether any proteins that may be indicative of 

BCa. The opportunity also presents itself to evaluate ex vivo exosomes, given that we had 

some urinary exosome preparations from both healthy donors and bladder cancer patients, 

for expression of some of the MS-identified proteins.
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6.2 Aims

The aims of this chapter were to:

• Perform unbiased bioinformatics analysis of the MS dataset to reveal any biological 

themes within the dataset

• Verify proteins from the MS dataset are genuinely present in exosomes using a 

range of laboratory techniques

• Analyse the expression of verified MS-identified proteins in exosomes from a 

variety of sources
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6.3 The MS dataset is consistent with an exosome phenotype

The exosome database ExoCarta is a repository for proteins and RNA identified in 

exosomes from a variety of sources and was developed in order to help researchers identify 

reliable exosome markers [140]. The database contains data from 75 exosome studies 

(accessed 19th June 2010) and provides an invaluable resource for researchers. This 

repository enabled us to compare our dataset with all other exosome proteomics datasets 

within the ExoCarta database.

We compared our dataset with ExoCarta submissions containing a minimum of 10 

matching gene identifiers to our study (total of 44). Comparisons were also limited to 

human studies using MS-based approaches [40, 57, 87, 96, 100, 101, 150]. Our dataset was 

converted from Swiss-Prot accession numbers to EntrezGene identifications using 

BioMart. ORA using hypergeometric distribution was then applied in R against a 

background of all human genes with EntrezGene identifications. This was to determine 

whether there were more overlapping genes with ExoCarta gene sets than could be 

expected by chance. FDR correction was applied to control for multiple testing.

The results revealed significant associations with seven (out of the 44 examined) MS based 

exosome proteomics studies (Figure 6.1a). Of particular interest was that our data showed 

very significant overrepresentation of protein-encoding genes isolated from colorectal 

carcinoma cells [96, 101]. Furthermore, four of the studies were of exosomes derived from 

cancer cells (mesothelioma, melanoma and colorectal) and five were of exosomes of 

epithelial origin (intestinal, mesothelioma, tracheobronchial and colorectal). This indicated 

that the proteome characterised by our data is in agreement with other studies of similar 

cells, with particularly significant overlaps with high quality proteomics studies of 

colorectal cancer.



Validation of the exosome proteomics dataset

6.4 Unbiased overrepresentation analysis of the MS dataset

Utilising GeneGO MetaCore (Version 5.4), similar ORA analyses were performed 

comparing our dataset with gene sets from GO and proprietary GeneGO data (converted 

into SwissProt identifications using BioMart). Four gene set categories were analysed 

(disease biomarker, diseases in general, biological process and cellular compartment; 

Figure 6.1b-e respectively) in order to determine whether the dataset is consistent with a 

proteome of vesicle/endosomal origin, whether the overall functional associations 

identified are similar to known exosomal functions and also to assess associations with 

disease. The top ten results for each category are shown (Figure 6.1b-e) and ordered by 

ORA p  value.

Where the disease biomarker category is concerned, the data indicated the most significant 

associations to be with bladder cancer (Figure 6.1b). This finding was reassuring and 

supported the premise that exosomes may be a useful tool for identifying sets of disease 

specific markers. Other carcinomas, of the colon and breast, also showed highly significant 

associations suggesting extensive representation of proteins common to various types of 

carcinoma.

Associations with cancer of the gastrointestinal tract were revealed when examining 

general disease association, as well as metastatic cancer, respiratory tract disease (including 

lung cancer), and carcinomas (Figure 6.1c). Although significant overrepresentation was 

not identified with diseases of the genitourinary tract (including BCa) within the top 10 

associations significant associations were identified within the top 40. The association of 

BCa within the top 40 rather than the top 10 may be related to the accuracy of ORA as it is 

limited by the quality and size of the gene sets queried. Also, there may be a 

disproportionate amount of respiratory and gastrointestinal studies compared with bladder 

studies and this may have skewed the results. However, our statistically based analysis did 

suggest that HT1376-exosomes express proteins strongly related to neoplastic disease and 

in particular carcinomas (Figure 6.1b and c).
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The biological process results revealed significant associations with cytoskeletal control, 

intercellular adhesion, matrix adhesion, antigen presentation and protein folding (Figure

6. Id). Examination of the cellular compartment associations demonstrated significant 

associations with membrane vesicles, the cytoplasm and cytoskeleton (Figure 6.1e). One 

would expect to see associations with membrane vesicles and cytoplasm based on the 

origin of exosomes and the cytoplasmic content of their lumen. However, associations with 

the cytoskeleton were surprising although a number of cytoskeletal proteins have been 

identified in other exosome proteome studies [56, 96, 145]. The most unexpected results 

were the predominant associations with melanosomes and pigment granules. These are 

specialised compartments of pigments cells of the eye and skin and hence one would not 

expect to find them in association with BCa-exosomes.

In summary, the statistically based unbiased analyses used here demonstrated that our BCa 

exosome proteome had statistically significant similarities to other exosome proteome 

studies and that the BCa exosome proteome identified showed phenotypic indicators 

suggestive of a proteome of carcinoma origin.
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Figure 6.1: Summary of over-representation analysis of the nano- 

LC/M S-derived protein identifications against gene sets from 

ExoCarta and GeneGO

Our protein list was first converted to an EntrezGene-identified gene list 

before undertaking ORA using hypergeometric distribution. Results were 

filtered to include comparisons with MS-based studies only and those 

reporting 10 or more matching genes. How well our data compared with 

exosome protein profiles from specified cell types is displayed as the -log 

(p value) corrected for false detection rate A). ORA analysis utilising 

MetaCore used the Swiss-Prot identifications for the identified protein 

list. The top 10 overrepresented genes contained within each of the 

following group headings are shown: disease biomarker (B), diseases (C), 

biological process (D), and cellular compartment (E). The dotted line 

indicates p= 0.05; hence, columns to the left of this are not statistically 

significant.

189



Validation of the exosome proteomics dataset

6.5 Identification of protein interaction networks from the 

exosomal proteins identified

We also wanted to discover whether any of our MS-identified proteins had any interactions 

with one another that may be of interest in exosome biology. In order to examine this gene 

identifiers derived from our dataset went through a process called auto expand. GeneGO 

describes this as “Auto expand: Gradually expands sub-networks around every object from 

the root object list. At every step, preference is given to objects with more connectivity to 

the initial object. Connectivity is directional (to and from the initial object), and both 

directions are considered separately. Expansion halts when the sub-networks intersect, or 

when the overall network size reaches some pre-established limit (50 by default, but may 

be changed in the Advanced Options section).” [203]. The result of auto expand was a 

protein network displaying protein interactions with the HT1376-exosomal proteins 

identified (Figure 6.2).

The most apparent exosomal proteins that have known interactions with other exosomal 

proteins appeared to be epidermal growth factor receptor (EGFR), ubiquitin, Ras-related 

C3 botulinum toxin substrate 1 (Racl), and transforming protein RhoA (RhoA). EGFR, a 

cell surface receptor for epidermal growth factors, was shown to have a positive effect on 

six proteins including guanine nucleotide-binding protein G(i), alpha-2 subunit (G-protein 

alpha-i2), glutathione S-transferase P (GSTP1), MUC1, pi integrin (ITGB1), MHC Class I 

(HLA-Cw3). EGFR was also shown to have a negative influence on plakoglobin and a2 

integrin and was negatively influenced by ubiquitin.

Ubiquitin is a regulatory protein which predominantly functions to label proteins for 

proteasomal degradation. However, ubiquitinylation of proteins is also known to be 

involved in the shuttling of some proteins to the multivesicular body (MVB) for inclusion 

in to exosomes. Here, ubiquitin was shown to have a negative effect on exosomally 

identified proteins filamin C, P-catenin, EGFR, RhoA, hnRNP K, and fibronectin. 

Ubiquitin was only shown to have a positive influence on one protein, namely 26S protease
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regulatory subunit 6B (PSMC4) and to be positively influenced by Ubiquitin-like modifier- 

activating enzyme 1 (UBE1).

RhoA and Rac 1 are small GTPases involved in numerous cellular events including cell-cell 

adhesion and cytoskeletal rearrangement. In this HT1376-exosome protein network they 

were mainly positively influenced by proteins including EGFR. Racl and ubiquitin 

nevertheless both have a negative effect on RhoA. Also of note were the links with integrin 

proteins which appeared to influence and be influenced by these small GTPases.

Other proteins that appeared to have significant interactions with numerous exosomal 

proteins identified in the current dataset included c-Myc and cytoskeletal actin. C-Myc is a 

transcription factor regulating the expression of 15% of all genes and is often over 

expressed in cancer [204]. This consequently causes altered expression of c-Myc regulated 

genes involved in cell proliferation leading to cancer. C-Myc within this network is the 

protein exerting the most influence over other proteins (23). Some of these proteins exert 

negative feedback on c-Myc. Actin is a cytoskeletal protein that is involved in cell 

structure, vesicle transport and cell motility and in this network cytoskeletal actin interacts 

with five proteins identified in HT1376 exosomes. Cytoskeletal actin was shown to exert 

positive effects on profllin 1, vasodilator-stimulated phosphoprotein (VASP), cytoplasmic 

FMR1-interacting protein 1 (CYFIP1), alpha-actinin 1, andmoesin.

This protein network provided new insights into the potential protein interactions involved 

in exosome biogenesis and function offering future opportunities to manipulate these and 

modulate exosome biology. These protein interactions are derived from literature evidence 

nevertheless it is important to note that the exosomal interactions of these proteins are 

unknown and would therefore require experimental validation.
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6.6 Proteins identified by MS are present in HT1376-exosomes

In order to confirm the presence of a number of proteins identified by MS proteins were 

validated firstly by immunoblotting. Up to 20 pg of HT1376-exosome protein was 

analysed using a panel of antibodies (Figure 6.3). The MVB marker protein TSG101, 

known to be enriched in exosomes, was labelled as an indicator for the presence of 

exosomes [108]. Although TSG101 was not one of the 353 proteins identified it was 

nevertheless present in the dataset by the identification of a single peptide. Strong positive 

staining was observed for LAMP-2, a protein well known to be expressed by exosomes. 

The HLA-G identification needed to be verified due to the MHC class I anomalies 

identified in the dataset. The results also showed very strong staining for HLA-G 

demonstrating its expression by HT1376-exosomes.

A number of the intermediate filament proteins cytokeratins (CK) were chosen as a total of 

11 CKs (type I cytoskeletal keratins 1, 5, 6B, 7, 8, 13, 14, 16, 17, 18, and 19) were 

identified by MS yet the cytoskeletal composition of exosomes has not previously received 

any attention. This is perhaps surprising as profiling changes in CK in transitional cell 

carcinoma (TCC) may be clinically informative in terms of disease monitoring [164], The 

expression of CK17 and CK18 were confirmed in our HT1376-exosome preparations. The 

expression of CK18 was only detectable with 20 pg of exosomes. However, this 

identification was readily made by LC-MALDI MS showing this to be a sensitive method 

for identifying exosomally expressed proteins which are sometimes difficult to detect by 

traditional antibody-based methods.

Membrane proteins with various associations with cancer were also detected by 

immunoblotting, including membrane proteins galectin-3, basigin, and CD73 [205-208]. 

Soluble cancer associated proteins hnRNP K and P-catenin were also detected [198, 199, 

209]. In summary, all of the proteins examined were shown to be expressed in our exosome 

samples even if some proteins were more readily detected than others. This could be due to 

the relative abundance of the protein or differences in the antibody efficacy in detecting the 

protein by immunoblotting.
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Figure 6.3: Detection of proteins of interest in HT1376-exosome samples by immunoblotting.

Three doses (5, 10 and 20 pg) of HT1376-exosome (Exo) protein were solubilised and then subjected to IDE 

and immunoblotting with a panel of antibodies in order to determine whether the samples expressed a 

selection of proteins identified by LC-MALDI MS. The protein labelled and molecular weights are shown.
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6.7 Validation o f exosomal expression of proteins based on 

exosome flotation characteristics

To truly confirm the expression of these MS-identified proteins by HT1376-exosomes the 

exosomes were purified from CM using a continuous sucrose gradient which was split in to 

15 fractions. This method takes advantage of the flotation characteristics of exosomes [46, 

47]. Fractions were taken from the gradient and their density determined by refractometry. 

Each of the fractions, of known density, were analysed by immunoblotting and by flow 

cytometry of exosome-coated micro-beads (detailed in section 2.10). This made it possible 

to determine whether the proteins of interest, identified by MS, were present between the 

densities if 1.1 and 1.2 g/ml and therefore expressed by HT1376-exosomes rather than a 

contaminant in the preparation.

The fractions containing exosomes were identified by staining for TSG101 highlighting 

densities of 1.1 to 1.2 g/ml (Figure 6.4a-c). Some staining was observed in denser fractions 

(>1.2 g/ml) (Figure 6.4a), but this was generally weak and may be due to the presence of 

exosome or protein aggregates. The expression of several proteins of interest, such as 5T4, 

CD44 and p-catenin, all co-localised at the same density range which is consistent with 

their exosomal expression. The expression of HLA-G was also present at this density range 

(Figure 6.4c). Both CD73 and CK17 (Figure 6.4 a and b respectively) co-localised 

predominantly at the same density range. However, they both also appeared in the more 

dense regions from 1.17 and 1.28 g/ml. The only protein not to be found predominantly at 

classical exosomal densities was a tubulin (Figure 6.4c) which was found spanning the 

density range of 1.1 to 1.24 g/ml. There was no predominant staining at exosomal densities 

(highlighted by TSG101 staining). It is therefore not clear if a tubulin is genuinely 

exosomally expressed or if it is a soluble constituent.

Overall, out of the 11 proteins examined all but one appears to be genuinely exosomally 

expressed. This validation emphasises quality of the original preparations used for the 

proteomics analyses. It also demonstrates that the MS dataset is one of high quality 

containing genuine exosomal proteins.
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Figure 6.4: Expression of proteins of interest by immunoblotting of HT1376 exosomes separated by 

linear sucrose gradient.

HT1376-exosomes were purified by three different continuous sucrose gradients (a-c) and split in to 15 

fractions. Two thirds of each fraction was then solubilised and subjected to IDE and immunoblotting for a 

panel of antibodies to identify whether proteins identified by LC-MALDI MS are genuinely exosomally 

expressed. The protein labelled and its molecular weight is shown.
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6.8 MS-identified membrane proteins are expressed at the 

exosome membrane

HT1376-exosomes isolated using the sucrose-gradient approach were also coupled to latex 

micro-beads and labelled for a panel of MS-identified membrane associated proteins. The 

labelled exosome micro-bead complexes were subjected to flow cytometry. The median 

fluorescence of the histogram for each membrane protein of interest was recorded. 

Example histograms for each fraction collected from the sucrose gradient, labelled for 

CD9, are shown in Figure 6.5 and demonstrated the fluorescence shift in CD9 staining 

appearing at exosome containing densities. The fluorescence levels of fractions one to three 

were low (28-53 median fluorescence) but this increased significantly in the exosome 

containing fractions (57,333 at 1.125 g/ml).

The tetraspanins CD9 and CD81 were used to identify the exosome containing fractions 

along with MHC Class I as they are known to be expressed on the surface of HT1376- 

exosomes. In this instance they revealed a clear principal peak at a density of 1.12 g/ml 

(Figure 6.6) which was within the expected exosome density range. This fraction is 

therefore likely to contain the majority of the exosomes. The fluorescence magnitude was 

10-60,000 at these peak fractions which was much stronger than our best ExoQA assay. 

This suggested that this fraction was very pure. Therefore in order to get highly pure 

preparations the gradient approach is a very effective method.

This principal exosome fraction (1.12 g/ml) revealed positive surface staining for a number 

of MS-identified proteins including pi integrin, CD36, and basigin. One of the proteins 

included in the panel was 5T4 which is a protein not previously identified in any other 

exosome proteomics study. Nonetheless, 5T4 demonstrated positive but weak surface 

staining on the exosomes (Figure 6.6).

We have also shown the technique to be reproducible demonstrating similar levels and 

patterns of expression for a number of membrane associated proteins (CD9, basigin, 5T4
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and MHC Class I) (Figure 6.7). The peak fractions at around 1.1 g/ml (gradients A and B) 

were consistent with the expected exosome range with all the antibodies tested.

Fractions were also labelled with a calnexin-specific antibody (Figure 6.6) which revealed 

low levels of expression in the exosome containing region. Slightly elevated levels were 

observed in the denser fractions. This confirmed the absence of calnexin, an endoplasmic 

reticulum (ER) protein, as expected. Furthermore, it demonstrated the specificity of the 

staining for the other proteins tested and their correct membrane orientation.

Overall, the data presented demonstrated that a number of the proteins identified, using the 

LC-MALDI workflow, are expressed by HT1376 exosomes. Furthermore, we have 

demonstrated that using our modified solubilisation method (SDS and DTT) we have been 

successful in the identification of genuine membrane-associated exosomal proteins which 

are often difficult to solubilise. Further validation is however required with respect to the 

association of this panel of proteins with BCa or cancer.
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Figure 6.7: Reproducibility of protein verification using flow cytometry of linear sucrose gradient separated HT1376-exosomes.

Fractions from two continuous sucrose gradient separations (A and B) of HT1376-exosomes were coupled to latex micro-beads and labelled with a 
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demonstrating the reproducibility of the technique.
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6.9 Some MS-identified proteins are enriched in exosomes from 

other sources

Proteins may be specifically incorporated into exosomes to serve a specific purpose. For 

example MHC class II is enriched in B cell exosomes and these exosomes are capable of 

activating CD4+ T cells [47]. To investigate whether the verified MS-identifled proteins 

were particularly enriched within exosomes, and hence may serve a physiological role, the 

expression of the proteins in exosomes and cell lysates (CL) from various TCC and non- 

TCC carcinoma cell lines (previously characterised, Chapter 3) were compared (Figure 

6 .8).

The MHC class I identification HLA-G showed significant high expression only in 

HT1376-exosomes. Furthermore, the level of HLA-G expression in the exosomes was not 

enriched compared with the HT1376 CL. Out of the other membrane proteins examined 

basigin and 5T4 appeared to be enriched in all but one (T24) of the exosome sources 

examined (Figure 6.8). The staining observed for basigin also appeared in multiple bands, 

highlighting probable isoforms of the protein. CD44 was enriched in exosomes from all 

sources. Interestingly T24-derived exosomes appear to have poor expression for almost the 

entire protein panel apart from CD44, in which it showed definite enrichment. The T24 cell 

line appears therefore to produce unusual exosomes with a highly restricted protein 

repertoire. Exosomal enrichment was not observed for proteins (3-catenin and galectin 3. 

Furthermore, the intraluminal proteins examined also showed no particular exosomal 

enrichment.

Overall, a number of the membrane proteins (basigin, 5T4 and CD44) were demonstrated 

to be enriched in exosomes from a variety of sources suggesting they may be specifically 

incorporated into exosomes for exosome related functions. The results indicate that 

membrane associated proteins may be better candidate exosome based BCa biomarkers as 

these proteins may be easier to detect because of their enrichment. Furthermore, they may 

also be important in the physiological role of exosomes in the cancer environment.
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A flow cytometry based approach was also employed to analyse the surface expression of 

some of the MS-identified membrane proteins. A number of proteins were expressed on the 

surface of all the cell line-exosomes examined (CD81 and MUC1). However, the majority 

were expressed to varying degrees in the different cell line derived exosomes. For example 

5T4 was only expressed by HT1376, RT4, RT112, MCF7 and Caco2 exosomes. Some 

possible trends in the data were identified including the expression levels of integrin a6 and 

CD44 being overall two or more time higher on the BCa-derived exosomes compared with 

the three non-TCC derived exosomes (Figure 6.9). There also appeared to be a number of 

possible trends seen between TCC cell line exosomes with different differentiation status. 

For example CD44 (Figure 6.9) showed a decrease in expression with an increase in 

differentiation (RT112- well differentiated, RT4- moderately differentiated, T24- 

anaplastic) [156, 158, 159]. The results for calnexin confirmed that this endoplasmic 

reticulum (ER) protein was not expressed on the exosome surface and was not a 

contaminating protein of our exosome preparations.

Overall, all of the MS-identified membrane proteins examined were expressed at the 

surface of several of the cell line-exosomes analysed. However, none of the proteins tested 

showed any discrimination between BCa and other cancer types. Possible trends in 

expression were observed but due to the limited preliminary data available no conclusions 

regarding biomarker potential can be made from the data presented.
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6.10 Exosoma I intra-luminal proteins can be semi-quantitatively 

measured by flow cytometry

In order to assess the exosomal expression of intraluminal proteins of interest exosome 

bead complexes were subjected to a fixation and permeablisation (fix-perm) procedure 

using Beckman Coulters IntraPrep™ kit (see section 2.12). This enabled us to use a panel 

of antibodies to label intraluminal proteins of interest. Fix-perm had never been performed 

before on exosome micro-bead complexes and therefore preliminary investigations were 

performed using a number of cell line-derived exosomes.

Exosome micro-bead complexes from the same batch were subjected to either fixation 

alone or fix-perm and labelled for the membrane protein CD9, intraluminal protein Rablb 

or stained with an isotype matched to the antibody. The data shown in Figure 6.10a is 

representative of three experiments on exosomes derived from three different sources. A 

minimum of a tenfold increase in the median fluorescence for Rablb was measured in all 

fix-perm samples compared with fixation alone. CD9 and the isotype fluorescence levels 

did not significantly alter.

The levels of four CKs and other intraluminal proteins were measured using this fix-perm 

method and exosomes from multiple cell sources were evaluated. Two proteins, HSP90 and 

hnRNP K, demonstrated relatively low expression (median fluorescence <500) in all cell 

line exosomes suggesting these proteins are poorly represented in exosomes. Expression of 

Rablb varied (2,200-30,000) with the highest expression in three of the TCC cell lines 

exosomes (HT1197, RT4 and RT112). The expression of the four CKs examined showed 

very different profiles. Only HT1376 and HT1197-exosomes demonstrated the presence of 

CK7 and CK19. Expression levels were highest for CK17 with particularly high median 

fluorescence in FIT1197, RT4, and RT112. Overall, intraluminal proteins could be detected 

using the fix-perm technique. However, none of the MS-identified intraluminal proteins 

were able to distinguish between BCa and other carcinomas.
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In summary, the data presented showed that the MS-identified proteins examined were 

broadly expressed by exosomes of diverse cellular origins. Overall, none of the proteins 

examined showed any BCa specificity.
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6.11 Proteins of interest are found in urine exosomes from biadder 

cancer patients

We also evaluated the expression of the protein panel in exosomes derived from BCa 

patient and healthy donor urine. This allowed us to examine the expression of these MS- 

identified proteins in exosomes derived from an ex vivo source. Furthermore, as we had 

urinary exosome samples, although very limited, from both healthy donors and BCa 

patients we were also able to take a preliminary look at the possible differences in protein 

expression profiles of BCa urinary exosomes compared with healthy donor urinary 

exosomes. The urinary exosomes were analysed by flow cytometry of exosome micro-bead 

complexes (by necessity due to some specimens of 2.5 pg protein).

The quality of each urinary exosome sample was determined by examining the CD9 

expression level (fluorescence >5000 required to be considered high quality). Only three 

(HD04, HD11 and BC02) out of the seven samples analysed were considered high quality 

(Figure 6.11). The purest BCa sample, BC02, demonstrated the highest expression of all of 

the proteins in the BCa group apart from 5T4. However, the two purest healthy donor 

samples showed very different expression profiles from one another (Figure 6.11). The 

normal level of CD9 on urinary exosomes is not known. We also do not know if these 

levels fluctuate with time of day or with other physiological variables. The data shown 

suggests that there are intrinsic differences between urinary exosomes derived from 

different individuals.

All of the MS-identifled membrane associated proteins examined such as integrin pi and 

basigin were detected on urine exosomes but showed no significant differences between 

BCa and healthy donors (Figure 6.11). The expression levels of all the proteins varied 

greatly within the healthy donor and BCa group. The levels of the ER protein calnexin, not 

considered to be constitutively expressed by exosomes, also fluctuated greatly. In all cases 

levels were higher than that of the cell line-exosomes suggesting a degree of non-exosomal 

material to be present in these preparations (Figure 6.9).
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We also used the fix-perm method on these samples. Significant expression of Rablb was 

seen in two of the healthy donor samples but expression was poor throughout the BCa 

samples. Cytokeratin 17 expression was observed in four out of five healthy donors 

compared with no expression in the BCa urinary exosomes. Higher expression was seen for 

all three intraluminal proteins in the healthy donor urinary exosomes compared to BCa 

patient urinary exosomes (Figure 6.12). This indicated a possible loss of these proteins in 

urinary exosomes from patients with BCa or the presence of interfering substances in BCa 

that make the CK difficult to detect.

Overall, this preliminary examination of urinary exosomes showed it is possible to detect 

most of these proteins in urinary exosomes, albeit with considerable sample-sample 

heterogeneity. This variation may be caused by the difficulties in isolating pure exosomes 

from urine which is a complex source material (detailed in Chapter 4). Alternatively, donor 

variation in exosome protein constituents may also account for these differences. However, 

it should be noted that both the membrane protein and intraluminal protein results 

presented are preliminary and more samples would need to be analysed to determine the 

significance of these findings.
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Figure 6.11: Examination of the expression of proteins of interest on the surface of urinary exosomes 

from healthy donors and bladder cancer patients.

Latex micro-beads were coated with urinary exosomes and labelled with a panel o f Abs to identify any 

expression differences between healthy donors and BCa patients. Exosome-micro-bead complexes were 

subsequently counterstained with an Alexa Fluor-488 conjugated secondary and analysed by flow cytometry. 

The dashed line represents an arbitrary cut o ff point of median fluorescence 5000 for CD9 as a threshold for 

high quality exosome preparations.
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Figure 6.12: Examination of the expression of internal proteins of interest in urinary exosomes from 

healthy donors and bladder cancer patients.

Latex micro-beads were coated with urinary exosomes and subjected to fix-perm and labelling with a panel o f 

Abs to identify any expression differences between healthy donors and BCa patients. Exosome-micro-bead 

complexes were subsequently counterstained with an Alexa Fluor-488 conjugated secondary and analysed by 

flow cytometry.
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6.12 Discussion

The main aims of this chapter were to perform unbiased bioinformatic analysis of our 

HT1376-exosome proteome dataset, to verify that MS-identifled exosomal proteins are 

present in exosome preparations and determine if these proteins are differentially expressed 

in exosomes from different sources.

The statistically based bioinformatics approach showed that our results are consistent with 

an exosome phenotype when compared with MS-identifled exosomal protein datasets from 

other studies. The GeneGO MetaCore ORA demonstrated that the HT1376-exosome BCa 

proteome had the highest associations with bladder cancer in the disease biomarker 

category. This suggested that the exosome proteome may reflect the status of the 

originating cell very well and points to exosome analysis as a viable approach for 

discovering disease relevant proteins. Furthermore, other highly significant associations 

were observed with other carcinomas which indicated that the exosome proteome may 

contain a repertoire of proteins characteristic of a diverse range of carcinomas. The ORA 

also showed high associations with various vesicular compartments and the cytoplasm 

which is indicative of the origin of exosomes.

However, the analysis raised a number of issues with unexpected results such as 

predominant associations with the control of the cytoskeleton. Through manual inspections 

of the data this statistically discovered association appears to be valid. Cytoskeletal 

proteins identified included multiple cytokeratins (type I cytoskeletal keratins 1, 5, 6B, 7, 

8, 13, 14, 16, 17, 18, and 19), actins (cytoplasmic 1, actin-like protein 6A, actin-related 

protein 2, and a cardiac muscle 1), myosin (myosin-lc, -10, and -14), tubulin (putative 

tubulin-like protein a-4B and tubulin p chain), and cytoskeletal linking proteins (filamin-A 

and -B, a-actinin-1 and -4, and plectin-1). Actin and myosin are both involved in vesicle 

transport, indicating that they may be involved in exosome formation or intracellular 

transport. Furthermore, some of these were confirmed by immunoblotting and/or flow 

cytometry of exosome coated micro-beads. The importance of cytoskeletal proteins in 

exosome biology is currently unknown.
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There were also unexpected results in the cell compartment associations. Strong 

associations were identified with tissue specific organelles melanosomes and pigment 

granules. These are responsible for the storage of melanin in pigment cells of the eye and 

skin. This was a surprise as it is highly unlikely that BCa cells resemble pigment cells. 

Melanosomes are however a specialised endosomal compartment that strongly resembles 

multivesicular bodies in morphology and composition. Therefore, one explanation for this 

association is that the highly conserved molecular machinery involved in protein chaperone 

functions, membrane fusion and budding events, and trafficking of proteins to the 

melanosome may bear considerable resemblance to the machinery giving rise to exosomes 

[210].

A protein network was created from the dataset using GeneGO to give a theoretical 

indication of potential protein interactions that may influence formation, composition, and 

function of exosomes. For example, the oncogene c-Myc is often unregulated in cancer and 

this may increase the presence of proteins involved with cell proliferation, cell motility or 

adhesion [204]. It would be interesting to examine the effect of c-Myc inhibition on the 

protein composition of exosomes and subsequent function. However, this inhibition would 

likely be severely detrimental to the cell and cells that are dying/dead do not actively 

secrete exosomes. Here other targets within the network are probably better candidates for 

testing the validity of this network.

We also checked if some of the MS-identifications were in fact proteins expressed by 

exosomes. Each of the proteins chosen for verification was selected for its 

relevance/importance in cancer or exosome biology. All of the proteins examined were 

confirmed to be present in HT1376-exosomes. Only one protein we examined, a tubulin, 

was identified to be expressed equally in known exosome containing fractions (1.12 -  1.2 

g/ml) and the hyperdense fractions of continuous sucrose gradient purified exosomes. This 

suggests that a tubulin may be a soluble constituent or is also present in denser vesicles, 

protein aggregates, or cell debris, as well as being exosomally expressed, having said that a 

tubulin has been identified by proteomics analysis of exosomes isolated by
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immunocapture. This method eliminates soluble proteins which suggests that the presence 

of a tubulin in exosomes is genuine [96].

Other proteins (CD44 and CK17) were shown by immunoblotting to be expressed more 

strongly at denser regions of the exosome range. This could be due to protein or exosome 

aggregation or that these particular proteins may only be present in a dense sub-population 

of vesicles, but this needs to be confirmed. The presence of different proteins in different 

sized exosomes is something that has been explored. Kang et al., (2008) discovered that 

different sized exosomes have different protein profiles but the functional/physiological 

relevance of such distinct subpopulations remains unclear [211].

Investigations into the expression of several MS-identifled proteins in exosomes of other 

cell line origins identified four membrane proteins (basigin, CD44, CD73 and 5T4) that 

were enriched in exosomes compared to corresponding CLs. These enriched proteins may 

be specifically incorporated in to the exosomes and might therefore play an important role 

in their biogenesis or function. When comparing TCC to non-TCC derived exosomes few 

trends in expression were observed. This implies that these proteins are not a good disease 

selective choice. CD44 and a6 integrin showed a slight trend towards higher expression in 

TCC-exosomes. Some trends were also observed between anaplastic, moderately 

differentiated and well differentiated cell derived exosomes. However, these findings are 

not yet fully convincing and would require additional studies with clinically-derived 

materials. Another way to further analyse a proteins biomarker potential would be to 

analyse protein expression in normal and BCa tissue.

The development of a fix-perm assay for examining the intraluminal proteins of exosomes 

is not yet a fully validated and reproducible assay. Nevertheless, the assay has allowed us 

to demonstrate protein expression of cytokeratins by exosomes with scarce specimen 

quantity. Alterations in the cytokeratin profile of exosomes may be clinically useful 

because the CK profile can change with epithelial differentiation [164]. Exploring ex vivo 

exosomal CK profiles may therefore have the potential to help diagnose or act as a 

prognostic indicator for BCa. This is something which is worth investigating further.
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However, the fix-perm assay would require further validation and many more samples 

would be needed to perform this.

The evaluation of the urinary exosome samples from BCa patients and healthy donors 

confirmed the presence of each protein in some if not all urinary exosomes examined. This 

confirmed that it is possible to detect potential biomarkers in exosomes derived from 

biological fluids, such as urine. Due to the limited number of samples available for analysis 

all of the data collected is preliminary. As a result any trends observed warrant further 

investigation. In addition, the few samples we did have were very variable in quality and 

quantity and this would need to be addressed if exosomes of consistently high quality were 

to be purified from urine samples.

This pilot ex vivo work highlighted the fact there is great variability between individuals 

and that each and every patient’s cancer is different. All TCCs are not caused by the same 

genetic abnormality and therefore different patients may have different alterations in 

protein expression [212]. This heterogeneity needs to be taken in to consideration when 

looking for biomarkers. Some genetic alterations may be common to many subtypes of 

TCC leading to the altered expression of a common set of proteins. Therefore, it would be 

prudent to evaluate the biomarker potential of multiple proteins altered in cancer in order 

to form a biomarker panel. A biomarker panel is more likely to be able to take into account 

these individual differences compared with a single biomarker.

Overall, the MS-identified proteins chosen for verification in exosomes were present in 

some if not all exosome samples tested, including exosomes derived from BCa patient 

urine. The verification of these proteins using several different techniques helped to 

confirm the high sample and MS data quality used in this study. The examination of 

protein expression in exosomes and cell lysates has shown some proteins to be specifically 

enriched in exosomes. These proteins were membrane proteins suggesting that it is 

primarily membrane proteins that are incorporated into exosomes. This also implies that 

these enriched proteins could have specific functions in exosomes. The roles of most of 

these proteins in exosome biology remain unknown to date and therefore require more
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attention. The proteins chosen for verification and evaluation were selected based on 

literature searches. This does not mean that other proteins within the dataset are not worthy 

of investigation or that the proteins examined were the most likely biomarkers.

In summary, the combination of the verification approaches used to assess the MS-dataset 

generated has shown that the exosome samples analysed were of high quality. We also 

demonstrated the genuine exosomal expression of a number of these identified proteins. 

The preliminary data presented here offers a platform for further investigations of the 

proteins identified. It may be particularly useful to evaluate the 63 unique exosomal protein 

identifications as these are the proteins which may only be present in BCa-exosomes and 

not in exosomes from other sources. Overall, the combination of protein verification, ORA, 

and protein networks has highlighted proteins potentially significant to exosome biology.
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7.1 Summarising discussion

Bladder cancer (BCa) is the fifth most common cancer in the UK and second only to 

prostate cancer as the most common cancer of the genitourinary tract [1]. The management 

of BCa involves a lot of careful staging and interpretation of clinical information. There are 

currently no sufficient non-invasive tests available to replace the invasive cystoscopic 

procedures required to further investigate suspected BCa and monitor its recurrence. The 

currently available non-invasive tests, such as BTA-stat, NMP22, and ImmunoCyt™ are 

unable to identify all BCa with high sensitivity and specificity and this is often be due to 

the influence of benign conditions. This highlights the need for new tools that can reduce 

the amount of invasive clinical work needed to diagnose and manage BCa. The research 

presented within this thesis has focussed on the identification and characterisation of 

proteins in purified exosomes. This work is important for improved biological 

understanding and the future potential for the development of novel BCa protein biomarker 

assays.

It has been proposed that molecular profiling or combining currently available diagnostic 

tests may improve the diagnosis and monitoring of BCa as opposed to using a single 

marker test [30, 31]. Whether multiple or single biomarkers are the way forward it is clear 

that exosomes are an ideal source of material for such assays. They are a subcellular 

fraction of the whole cell and known to be enriched in tumour antigens and membrane 

proteins [37-42]. These enriched proteins are thought to be specifically incorporated in to 

exosomes during their biogenesis in the endocytic tract [78, 79, 82]. As well as membrane 

proteins, some stress-related proteins can also be elevated in exosomes from cells 

undergoing forms of stress (hypoxia, heat and radiation). In this situation exosomes can 

represent the stress states of the parent cell. Overall, BCa derived exosomes may provide a 

complex panel of BCa associated protein markers that could be detected using an exosome 

based multiple biomarker assay.

There is no single accepted method for the purification of exosomes and this has

unfortunately led the use of a variety of methods each providing samples with varying
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degrees of purity. Methods utilising the intrinsic properties of exosomes [42, 47, 67, 133] 

rather than a simple pelleting method [47] should produce purer samples [133]. This was 

demonstrated by comparing our sucrose cushion method [67] to the simple pelleting 

method commonly used in other exosome studies [34, 59, 61, 99]. The sucrose cushion 

method purified exosomes showed higher expression of known exosomal proteins (for 

example CD9, CD81 and TSG101) and lower expression of the endoplasmic reticulum 

(ER) proteins compared with the simple pelleting method. Although more elaborate 

methods could improve the purity further (such as linear gradients) the sucrose cushion 

provided a good compromise approach satisfying purity, yield and preparation time.

The issues concerning the quality of exosome samples are something that needs to be 

addressed in the field and a consensus needs to be reached. Based on this study we take the 

view that at least one intrinsic property of exosomes is used for their isolation. Future 

studies should provide evidence demonstrating both enrichment of known exosome 

proteins, compared with the corresponding whole cell lysate, and the lack of known non- 

exosomal constituents. This evidence should also not be based on just a single technique 

but a combination such as immunoblotting, electron microscopy or flow cytometry 

analysis of exosomes micro-bead complexes. Overall the exosome sample analysed should 

be consistent with the exosome definition proposed in the thesis introduction (section 

1.2.4). Most published studies do not reach these standards and this may call into question 

conclusions drawn from this work.

In the current study, high quality exosomes were consistently purified from the CM of 

several cell lines and when characterised were shown to be consistent with an exosome 

phenotype. The development of an exosome sample quality assurance assay (ExoQA) 

using minimal material to analyse the sample quality allowed us to measure the presence of 

tetraspanins in the samples as an indicator of quality. This flow cytometric assay of 

exosome micro-bead complexes also provided the basis for the verification of MS- 

identified proteins later in the study. The initial work optimising exosome purification and 

sample quality control was extremely important in ensuring that any further analysis of
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these exosomes was of samples consistent with exosomes and not a complex mixture of 

vesicles, cell debris, and protein aggregates. Furthermore, it also established a bank of high 

quality cell line derived exosomes that could be used in future analyses. Overall, the 

sucrose cushion method for exosome purification was sufficient to achieve high sample 

quality which was determined using a minimal amount of sample.

When we purified exosomes from urine using the sucrose cushion method we were able to 

produce purer samples than the simple pelleting used by other groups [34]. We 

demonstrated that it was possible to purify exosomes from the urine of BCa patients and 

healthy donors. Unfortunately, the protein yield was 30 times lower than previously 

reported [143]. However, the pelleting method produced samples containing more non- 

exosomal contaminants giving an inaccurate overestimation of the true physiological 

concentration of urinary exosomes. We also observed variability in exosome yield which 

has been indicated in another urinary exosome study [188]. Differences in quantity and 

quality were observed between different donors as well as different samples from the same 

donor. It is not known what effect hydration state, proteinuria, haematuria or other 

variables have on the exosome content of urine. The potential effect of hydration status and 

endogenous protease activity was investigated in the current study, neither of which 

appeared to have any significant effect on exosome integrity and hence would not impact 

their capacity to be isolated using the sucrose cushion method. Whilst it was encouraging 

to have purified exosomes from urine the variability observed is a significant concern. We 

would need to address this before conducting meaningful proteomics analysis on such 

specimens. This was a major justification for examining a single homogenous TCC cell 

line as a more consistent source of BCa-exosomes for proteomics analysis.

Proteomics studies on exosomes have previously identified proteins of importance in 

exosome biology and also potentially significant proteins in disease [56, 57, 95, 144]. One 

major source of variation is the methods for preparing exosomes. Beyond this another 

significant problem lies in interpreting MS datasets in other studies. It is difficult to 

compare our dataset with other studies that have used peptide mass fingerprinting (PMF) or

221



General discussion

MS/MS as it is common for the search criteria not to be reported [59, 87, 99]. Overall 

interpretation of nearly all exosome proteomics studies is difficult even with the 

development of the exosome proteome database ExoCarta [140].

In this study high quality exosomes, confirmed by ExoQA, derived from a well 

characterised human TCC cell line (HT1376) resulted in the identification of 353 proteins 

using LC-MALDI. Only proteins with good quality MS/MS data and two or more peptides 

were reported in the final results giving a false discovery rate (FDR) of 0%. If protein 

identifications based on one peptide had been included, as they are in some other exosome 

proteome studies [34, 59, 61], the FDR would have increased to 2.6%. This reaffirms the 

value of using a conservative approach to accept protein identifications.

The number of protein identifications made in the current study is amongst the highest in 

the exosome proteomics field [59, 61, 96, 101]. Furthermore, out of the 353 protein 

identifications 63 were unique to our study when compared with other studies in the 

ExoCarta database. The dataset presented is also arguably one of only two studies [96] 

with large numbers of identifications (>250) in which both strict exosome purification 

(utilising an inherent property of exosomes) and strict protein identification criteria (for 

example two or more peptides) are used. Our study and that of Mathivanan et al., (2009) 

on colon carcinoma exosomes furthermore demonstrate similar numbers of protein 

identifications (353 and 394 respectively) [96]. The dataset presented in the current study 

also demonstrated a significant overlap with their exosome data. This suggests correlations 

with the protein phenotype of exosomes derived from carcinomas.

Unbiased statistical bioinformatics analysis (overrepresentation analysis (ORA)), 

comparing our dataset with the whole human genome showed our results to have high 

association with bladder and other carcinomas. Coupled with the comparisons with other 

human exosome proteomics studies which showed particularly high associations with 

exosomes from diverse carcinomas [96, 101], the bioinformatics analysis indicated that 

exosomes derived from BCa cells reflect shared features of carcinoma cells. The 

bioinformatics analysis has shown that using an unbiased method of analysis still
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demonstrates that our BCa proteome is consistent with a typical/expected exosomal 

phenotype.

Manual inspection of our proteomics dataset revealed physiologically impossible numbers 

of MHC class I proteins. This issue appeared to be caused by homologous protein 

sequences within the MHC class I protein group. This is an important consideration when 

analysing proteomics data containing proteins with homologous sequences. It is an issue 

that will impact on most global proteomics studies and emphasises the importance of 

manually curating data.

Other unexpected results were also uncovered including the identification of a number of 

proteins from cellular compartments not considered to be represented in exosomes 

(nucleus, mitochondria and ER). However, many of these proteins were found in numerous 

other exosome proteome studies including those using rigorous purification techniques 

suggesting that they are indeed exosomally expressed [96]. Statistically high associations 

with the cytoskeleton were also uncovered and appeared to be true. A lot of the identified 

cytoskeletal proteins were cytokeratins. Interestingly the expression profile of cytokeratins 

is known to alter with differentiation of bladder epithelial cells. Therefore the cytokeratin 

profile of exosomes may be worth investigating further as they may reflect that of the 

parent cell. This may indicate the presence of a tumour and assist in tumour grading [164].

Several MS-identified proteins were verified as unequivocally present in HT1376 exosome 

samples using ultracentrifugation on continuous sucrose gradients. This approach 

identified 5T4, basigin, and others to be predominantly present at expected exosomal 

densities. Two of the proteins (CK17 and CD73) were expressed at a density slightly 

greater than expected. This indicated that exosomes of different densities may have 

different protein profiles which has also been shown by Kang et al., (2008) [211]. Such 

details emphasise that even a homogenous cell source can produce an assortment of 

exosome subpopulations. Studies on the physiological importance of such populations, 

bearing distinct proteomes, have not yet been performed.

223



General discussion

Overall, out of all the proteins verified the membrane proteins appeared to be of most 

interest. Only membrane proteins were found to be specifically enriched in cell line 

exosomes compared with their CLs. It appears that these proteins may be incorporated 

during exosome biogenesis to play specific roles in the extracellular functioning of 

exosomes. These enriched proteins may therefore be worth investigating further as 

biomarkers for cancer and with respect to their biological function.

Preliminary investigations regarding the expression of these MS-identified proteins in 

different BCa cell line and non-TCC cell line-exosomes uncovered no definite trends in 

protein expression. However, the expression of cell adhesion related proteins integrin a6 

and CD44 were slightly elevated in the TCC-exosome compared with the non-TCC- 

exosomes indicating that these proteins require further investigation. Both of these proteins 

have incidentally also been shown to have altered expression in BCa [213, 214]. We also 

established that MS-identified proteins could be detected in urinary exosomes derived from 

BCa patient and healthy donor urine. Unfortunately, due to the very limited number of BCa 

samples we were unable to identify any specific trends in protein expression between 

health and disease. Further evaluation using a large number of high quality urinary 

exosome preparations and evaluation of their expression in healthy and BCa tissue is 

needed.

In summary, we have developed an LC-MALDI workflow for the analysis of BCa derived 

exosomes. This first published proteomics study on bladder cancer exosomes has yielded 

high quality protein identifications from high quality samples. The importance of using 

well characterised exosome specimens and strict MS criteria have been highlighted. The 63 

previously unreported exosomal proteins could hold potential to be exosome BCa markers 

and may have the potential to be used in a multi-marker BCa test. Many of the proteins 

discovered may also have biological significance to exosome formation or function. The 

use of unbiased statistical bioinformatics analysis has demonstrated that our proteomics 

dataset reflects features of carcinoma cells further supporting the use of exosomes as a 

source of disease biomarkers. In addition, the proteins chosen for verification were present
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in cell line derived and BCa urine exosomes. The study has opened the door to 

investigating the functions of exosomes with respect to BCa and in general. However, far 

more work is required to examine the proteins identified with respect to their biomarker 

potential and their exosomal function.

7.2 Future directions

The current study has generated a vast amount of data that may be significant in 

discovering BCa biomarkers. However, all of the potential marker proteins identified need 

substantial further evaluation ideally using clinically derived samples. Although such 

materials can be challenging in terms of exosome purification, as we demonstrated for 

urine, it remains important to pursue these aspects using such difficult samples. In addition 

to marker evaluation, the identifications summarise a complex molecular repertoire. The 

functions of most of these identifications in exosome biogenesis and function remain 

unexplored. There are many options moving forward and some of the most promising are 

discussed below.

7.2.1 Comparative proteomics analysis of urinary exosomes to 
identify BCa markers

Comparative proteomics of BCa patient and healthy donor urinary exosomes is the 

ultimate goal and this approach should highlight the differences between health and 

disease. However, in Chapter 4 of this thesis it was found that urine was a very challenging 

source of exosomes. Urinary exosomes purified by our sucrose cushion method were found 

to be very variable in quantity and quality. Therefore much work is required to optimise 

preparation methods to obtain purer exosomes and to reduce the variability observed. One 

way of reducing the irregularity in quantity in order to create a more consistent sample may 

be to do a 24 h urine collection with the intention of averaging out the periodic variability 

that occurs throughout the day. However, it is not known whether 24 h urine collection or 

improved purification procedures will actually increase the total amount of exosomes 

purified. If urine exosome levels are inherently low these methods cannot themselves 

elevate the yields significantly as this is a physiological issue.
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To reduce the variability in sample quality one approach that could address this would be 

modifying the purification procedure possibly by using linear sucrose gradient purification. 

The fractions of known exosomal density (1.12 and 1.2 g/ml) would then be analysed [47]. 

However, co-localisation of common soluble proteins (albumin and immunoglobulins) 

with exosomes has been observed with this method of isolation [68]. This could be a 

particular problem if haematuria or proteinuria is present [68]. Alternatively or in 

combination with sucrose gradient isolation, urinary exosomes could also be isolated using 

an immunoaffinity capture method [133]. For example an anti-CD9 antibody may be the 

best choice of capture antibody as CD9 was shown to be expressed on the surface of all of 

the cell line and urine derived exosomes examined. The use of this common exosomal 

protein may improve the chances of capturing all of the exosomes compared with using a 

specific antibody which may only capture a subset of the exosomes. For example, one 

group has utilised the colon cancer antigen A33 to immunoisolate exosomes for proteomic 

analysis [96]. However, there is still a danger of missing any sub populations that are CD9 

negative. Immunoisolation, with or without sucrose gradient purification, may be the best 

method for isolating exosomes from complex material such as biological fluids because the 

presence of common contaminating proteins or haematuria should not affect the quality of 

the sample [33, 64].

It may be possible to use limited clinical samples to perform differential proteomics 

analysis by tagging the peptides using iTRAQ (isobaric tag for relative and absolute 

quantitation) followed by LC-MS/MS. This would allow the relative expression of each 

protein identified to be quantified and any differences could be examined.

7.2.2 Validation of the GeneGo protein network

The auto expand tool in GeneGo provided information regarding the theoretical 

interactions of exosomal proteins identified in the current study. Further investigations are 

required to examine whether these interactions are real and if they are significant to 

exosome composition and/or function. Several MS-identified exosomal proteins were 

found to be prominent nodes in the network including EGFR, ubiquitin, Racl, and RhoA.
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Mutations in the EGFR gene are known to lead to upregulation of EGFR in BCa and has 

been suggested as a prognostic indicator [215]. Using a small interfering RNA (siRNA) to 

impede the expression of EGFR might allow any changes in the exosomal expression of 

proteins associated with EGFR in our network, such as guanine nucleotide-binding protein 

G(i), alpha-2 subunit (G-protein alpha-i2), glutathione S-transferase P (GSTP1), MUC1, pi 

integrin (ITGB1), MHC Class I (HLA-Cw3), to be examined. This would demonstrate 

whether cellular EGFR has an influence on exosome protein composition and would be the 

first step I propose for validating this network.

Similar studies could be performed examining Racl and RhoA both of which are known to 

be involved in cancer [216]. The inhibition of RhoA in particular could theoretically have a 

negative effect on the expression of pi integrin and sequentially effect the expression of 

4F2 cell-surface antigen heavy chain and large neutral amino acids transporter small 

subunit 1. Furthermore the interactions of our proteins with other proteins exosomal or 

non-exosomal can also be explored using ExoCarta [140]. ExoCarta provides interaction 

network information for known exosomal proteins from BioGRlD a protein interaction 

database [201]. GeneGo MetaDrug™ may also prove useful in identifying protein targets 

and which compounds can be used to disrupt their function. In addition MetaDrug™ can 

provide in silico predictions of toxicity. It can also present network information visualising 

signalling and metabolic pathways that may be useful in choosing a target and/or seeing its 

potential effect on a pathway [217].

Using the information provided by the network formed from our dataset may provide a 

highly novel approach to gain insight into the complex interactions and pathways of 

relevance to exosome biogenesis. It may also present other opportunities to intervene in a 

strategic manner to generate “designer exosomes” with enhanced or attenuated function.
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7.2.3 Further investigations of the unique exosomal protein 
identifications

Out of the 353 proteins identified in HT1376 BCa exosomes 63 proteins have not been 

identified in exosomes from any other source. This suggests that there may be value in 

these 63 proteins as features unique to bladder epithelia or BCa. Further evaluation of this 

list is required to investigate their biomarker potential and/or their possible relevance in 

cancer biology and exosome function. As far as biomarker potential is concerned, literature 

searches looking for relationships between the protein and cancer may be a reasonable 

starting point to highlight candidates. Also analysis of the biological function of proteins in 

general would be informative in order to evaluate relationships with cellular events such as 

angiogenesis, cell adhesion, cell proliferation, cell migration and invasion, and immune 

modulation which are all affected in cancer.

One example could be the laminin complex. The dataset included three laminin subunit 

proteins (laminin subunit a-3, [3-3 and y-2) of the extracellular complex glycoprotein 

laminin. Laminins are involved in cell adhesion, cell migration, signal transduction and 

chemotaxis. The gene ontology information available categorises these proteins as cell 

membrane and extracellular. These three subunits in particular form laminin-5 which is 

expressed by epithelial cells [218]. In a review of the role of laminin-5 in epithelial tumour 

invasion, by Katayama and Sekiguchi (2003), the relationship between a6(34 and a3pl 

integrins (all identified in the current exosomal protein dataset) and laminin-5 were 

described in detail. Bound laminin-5 and a6p4 integrins were particularly implicated in 

invasion and metastasis [218]. The information available suggests that laminin-5 along 

with a6p4 integrins may be of potential importance in the function of exosomes in tumour 

invasion and metastasis. It is not known whether laminin-5 is expressed by the exosome or 

that it is extracellular and bound to the exosomal integrins. Furthermore their reported 

increased expression in the tumour environment may be reflected in exosomes hence the 

laminin-5 subunits may be exosomal biomarkers for BCa [218].
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Membrane proteins of potential interest in exosome biology include vesicle-associated 

membrane protein-associated protein A and syntaxin-4 as they are involved with vesicle 

transport and fusion. Hematopoietic cell protein CD70 was also identified and is normally 

involved in T-cell activation. However it has been found to be aberrantly expressed in 

epithelial cell carcinomas. This aberrant expression has sparked interest in CD70 as a 

target for therapy [219]. Therefore it may be useful to know if it is genuinely exosomally 

expressed and if this expression is BCa specific. Urokinase-type plasminogen activator 

(uPA) could also be of interest as an exosomal BCa marker as it has been previously found 

to be elevated (16 fold) in TCC tissue compared with matched normal tissue [220]. 

Furthermore, measuring uPA levels in urine in addition to NMP22 and urine cytology has 

been shown to improve their ability to predict TCC [221]. UPA may therefore be worth 

investigating further. There are many more examples of this sort buried within the 63 

unique protein list that could be explored in the future in the context of clinical utility.

7.2.4 Do certain exosomal proteins influence cancer biology?

Several membrane proteins from the list of MS-identifled proteins were verified within the 

study and were shown to be enriched in exosomes relative to whole cell lysates. This 

phenomenon is an aspect documented for several proteins that have exosome-related 

functions (such as MHC molecules). This suggests such proteins may therefore be 

particularly important in terms of the natural physiological functions of exosomes. The 

expression of functional membrane associated adhesion/signalling molecules or enzymes 

by exosomes offers a unique mechanisms for distributing these within the local 

microenvironment or even systemically.

Whilst there are many examples of molecular shedding from the plasma membrane an 

exosome route of dispersal holds the potential advantage of retaining the full functionality 

of the molecule. Soluble versions of membrane molecules are often relatively poorly 

efficient in their functions (e.g. CD59 [222]) or may even exhibit opposing functions 

compared to the membrane bound counterpart (e.g. betaglycan that sequesters TGF0- 

functions [223, 224]). Thus the exosome pathway generates a vast surface area for
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disseminating membranous proteins and hence aid in amplifying some of these functions. 

It would be interesting to examine the potential function of some of these exosomal 

proteins in and their potential influence on varied aspects of cancer biology. Some 

examples are briefly described below.

CD44

The cell surface glycoprotein CD44 is the principle surface receptor for hyaluronic acid 

(HA) (hyaluronan). CD44 is involved in many biological processes including regulation of 

growth, survival, differentiation and motility [214]. CD44 expression is upregulated in 

many cancers and can predict progression of several cancers [214, 225]. HA interaction 

with CD44 has been previously shown, by Misra et al., (2008), to activate the ErbB2, 

phosphoinositide 3-kinase (PI3K)/AKT, (3-catenin pathway. The activation of this pathway 

promotes cell survival [225]. Misra indicated a positive feedback loop between HA and 

PI3K/AKT, pathway induced by the interaction of CD44 with HA [226]. Exosomes 

derived from cancer cells may potentially aid cell survival through passing on their CD44 

to another cell by a mechanism currently unknown, perhaps by fusion with a recipient cells 

plasma membrane. Although this process has not yet been convincingly demonstrated for 

exosomes such a mechanism has been shown for microvesicles bearing epidermal growth 

factor receptor (EGFR). The study shows a micro vesicular mechanism for dissemination of 

EGFR with neighbouring cells resulting in hyper-responsiveness to EGF [227]. This type 

of delivery would increase the number of CD44 proteins available at the cell surface for 

binding to HA for the induction of the PI3K/AKT survival pathway. This may further 

enhance the positive feedback loop involving HA and the PI3K/AKT pathway. However, it 

is not known if exosomes sequester rather than enhance this HA-CD44 signalling. In 

addition CD44 is thought to interact with the glycoprotein basigin (CD 147, emmprin) 

which was identified in the current study to be enriched in exosomes from various cancer 

cell lines.

23 0



General discussion

Basigin

Basigin (EMMPRIN or CD 147) also stimulates HA production and therefore downstream 

signalling cascades [207, 208] and is a member of the immunoglobulin superfamily 

capable of inducing matrix metalloproteinase (MMP) expression in fibroblasts. MMPs 

mediate the break down and remodelling of matrix for cell migration [228]. The function 

of exosomal basigin has been investigated with respect to cardiomyocyte progenitor cell- 

derived exosomes and their effect on the migratory capacity of endothelial cells. Exosomes 

were able to stimulate endothelial cell migration using an in vitro scratch wound assay 

[229]. Basigin has also been previously described in microvesicles (MV) and its release 

has been suggested to be involved in tumour-stromal interactions. This study showed the 

presence of basigin on the surface of MV but not exosomes. However, exosomes were a 

constituent of their MV sample and hence it might be the case that exosomal basigin is 

responsible for this effect [230]. The current study has shown unequivocal expression of 

basigin in HT1376-exosomes purified by continuous sucrose gradient using both 

immunoblotting and flow cytometry of exosome micro-bead complexes. This suggests that 

exosomes may influence tumour-stromal interactions aiding tumour invasion and 

metastasis.

Basigin has also been demonstrated to be associated with integrin isoforms a6pi and a3(31 

which are involved in several processes related to metastasis. It is thought that basigin may 

regulate the integrin/laminin-5 association mentioned in the previous section [231]. 

Finding such associations in the literature serves to underline the value of performing 

exosome proteomics as we have done. It also emphasises that such multi-molecular 

complexes, with previously defined roles, are likely present as functionally viable intact 

complexes in/on exosomes.

CD73

CD73 or 5’-nucleotidase is a glycosyl phosphatidylinositol (GPI) anchored enzyme and 

was the first protein to be identified in association with exosomes [232]. It is able to 

hydrolyse the phosphate group from adenosine monophosphate (AMP) to generate
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extracellular adenosine. This adenosine can then be detected by adenosine binding 

receptors (Al, A2A, A2B, and A3) on the surface of assorted granulocytes and 

mononuclear cells and modulate inflammatory responses. For T cells, adenosine is a potent 

suppressor of effector functions [233],

Jin et al, (2010) demonstrated that the CD73 on the tumour cell surface was able to impair 

T cell responses through the generation of extracellular adenosine [206], and that 

adenosine production may be an important immune suppressive mechanism for regulatory 

T cells [234]. We hypothesise that exosomally expressed CD73 may be functional in 

adenosine generation. Exosomally generated adenosine would contribute to adenosine in 

the tumour microenvironment and mediate immune suppressive/anti inflammatory effects.

7.3 Concluding comment

This thesis has demonstrated that it is possible to generate a proteomics dataset of high 

quality using BCa exosomes. This has not been previously done and therefore this data is 

of notable value. The data agrees with proteomics studies on exosomes from other sources 

in that the proteome is classically one of an exosome phenotype. Given the extensive 

quality control during exosome purification, detailed characterisation of exosomes and 

careful proteomics analysis performed this study is one of the very strongest proteomics 

analyses performed to date on exosomes.

Follow up studies based on some of these identifications will significantly aid our 

understanding of the biogenesis, interactions and functions that cancer derived exosomes 

may perform. In addition it is a valuable resource for further studies in the realm of 

biomarker discovery.
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Abstract
Background: Recently, nanometer sized vesicles (termed exosomes) have been described as a 
component of urine. Such vesicles may be a useful non-invasive source of markers in renal disease. 
Their utility as a source of markers in urological cancer remains unstudied. O ur aim in this study 
was to investigate the feasibility and value of analysing urinary exosomes in prostate cancer patients 
undergoing standard therapy.

Methods: Ten patients (with locally advanced PCa) provided spot urine specimens at three time 
points during standard therapy. Patients received 3-6 months neoadjuvant androgen deprivation 
therapy prior to radical radiotherapy, comprising a single phase delivering 55 Gy in 20 fractions to 
the prostate and 44 Gy in 20 fractions to  the pelvic nodes. Patients were continued on adjuvant 
ADT according to clinical need. Exosomes were purified, and the phenotype compared to  
exosomes isolated from the prostate cancer cell line LNcaP. A control group of 10 healthy donors 
was included. Serum PSA was used as a surrogate treatment response marker. Exosomes present 
in urine were quantified, and expression of prostate markers (PSA and PSMA) and tumour- 
associated marker 5T4 was examined.

Results: The quantity and quality of exosomes present in urine was highly variable, even though 
we handled all materials freshly and used methods optimized for obtaining highly pure exosomes. 
There was approx 2-fold decrease in urinary exosome content following 12 weeks ADT, but this 
was not sustained during radiotherapy. Nevertheless, PSA and PSMA were present in 20 of 24 PCa 
specimens, and not detected in healthy donor specimens. There was a clear treatment-related 
decrease in exosomal prostate markers in I (of 8) patient.

Conclusion: Evaluating urinary-exosomes remains difficult, given the variability of exosomes in 
urine specimens. Nevertheless, this approach holds promise as a non-invasive source of multiple 
markers of malignancy that could provide clinically useful information.

Page 1 of 13
(page number not for citation purposes)

mailto:Paul.Mitchell@velindre-tr.wales.nhs.uk
mailto:Joanne.Welton@velindre-tr.wales.nhs.uk
mailto:John.Staffurth@velindre-tr.wales.nhs.uk
mailto:Lyn.Court@velindre-tr.wales.nhs.uk
mailto:masonmd@cardiff.ac.uk
mailto:Zsuzsanna.Tabi@velindre-tr.wales.nhs.uk
mailto:Aled.Clayton@velindre-tr.wales.nhs.uk
http://www.translational-medicine.eom/content/7/l/4
http://creativecommons.Org/licenses/by/2.0


Journal o f Translational Medicine 2009, 7:4 http://www.translational-medicine.eom/content/7/1/4

Background
Prostate cancer (PCa) rem ains the m ost prevalent m ale 
cancer in the west, w ith projected 186,000 new cases, and
28,000 deaths in the USA expected in 2008 (American 
Cancer Society, Atlanta, Georgia 2008). W hilst advances 
are being made in understanding the biology underlying 
this disease, and in m any respects in its treatm ent, there 
remains a need for better tools for PCa diagnosis and 
m onitoring.

Disease-related biom arker(s) should  ideally be non-inva- 
sively available; urine-analysis fits this requirem ent well. 
Several urine-borne molecules are currently being evalu­
ated as PCa-indicators [1-10], bu t recently, approaches 
measuring several candidate urine-m arkers at once may 
give a more complete clinical picture [11-13].

Nano-meter sized vesicles (term ed exosomes) are an addi­
tional com ponent of urine [14], w hich have been pro ­
posed as a possible source of m ultiple b iom arkers o f renal 
disease [14,15] in particular, bu t perhaps also o f interest 
in urological cancer. Exosomes are a no tab le feature of 
malignancy, with elevated exosome secretion [16] and 
tum our-antigen enrichm ent o f exosom es associated with 
cancer cells [17,18]. The physiological im portance o f can­
cer exosomes remains unclear. There are several studies 
suggesting they may act as an advantageous source o f m ul­
tiple tum our rejection antigens for activating anti-cancer 
im m une responses [17-19]. Cancer exosom es have been 
proposed by some as possible therapeutic vaccines [20]. 
Paradoxically, however, there is also a growing num ber o f 
reports dem onstrating active im m une-suppressive func­
tions for cancer exosomes, assisting cancers evade 
im m une attack [21-24]. Cancer exosomes m ay also con­
tribute to angiogenic processes [25], m ay dissem inate 
metastatic potential in certain settings [26] and  could play 
roles in drug resistance [27].

From a biom arker perspective, the expression o f tum our- 
associated antigens by exosomes naturally  raises ques­
tions about the possible value o f these nano-vesicles as 
markers of malignancy. Furthermore, exosom es m ay be a 
source o f im portant cancer-associated antigens no t availa­
ble as soluble molecules w ithin biological fluids, such as 
the oncofetal glycoprotein-5T4; w hich is over expressed 
by epithelial cancers bu t no t shed from  the cell surface 
[28]. Biological changes related to  m alignancy o f the gen­
itourinary tract, or to  therapy, may perhaps be m irrored 
by changes in urinary exosomes.

In this report, we present a p ilo t study w ith the key aim  of 
evaluating the feasibility of studying urine exosomes of 
PCa patients, as tools for m onitoring  response to  treat­
ment. W hilst we have discovered som e difficulties such as 
variability and low quantity  o f urine-borne exosomes, the

study provides the first encouraging evidence suggesting 
tha t further m olecular analyses of urine exosomes in PCa 
are warranted.

Methods
Prostate Cancer patients and healthy donors
Ten PCa patients, participating in a local Phase II Clinical 
Trial, were recruited, together w ith 10 healthy male volun­
teers. The patients were confirm ed positive for PCa by 
biopsy, and the tum our stage, Gleason score, serum-PSA 
and  age is sum m arised in Table 1. Patients received 3 -6  
m onths neoadjuvant androgen deprivation therapy 
(ADT) prior to  radical radiotherapy (RT), which consisted 
o f a single phase delivering 55 Gy in 20 fractions to the 
prostate and  44 Gy in 20 fractions to the pelvic nodes. 
Patients were continued  on  adjuvant ADT according to 
clinical need. The trial was approved by the South East 
Wales Ethics Com m ittee.

Urine sample collection
Urine, up to 200 ml volum e, collected into sterile contain­
ers (M illipore), was b rought to  the laboratory for process­
ing w ithin 30 m inutes. Samples were collected m id to  late 
m orning, and these were n o t first-m orning urine. Urine 
was tested for b lood, proteins, glucose and Ketones and 
the pH was measured; (by C om bur5 Test®D, dipstick 
(Roche)) (sum m arised in Table 2). PCa-patient urine was 
collected at three tim e points: "ADT4" (0 -4  weeks after 
initiation o f ADT), "ADT12" (following three m onths of 
ADT) and "RT20" (after 20 fractions o f Radiotherapy). At 
intervals during treatm ent (ADT4, ADT12 and at 4 weeks 
post Radiotherapy), serum  PSA levels were measured.

Exosome purification
Urine was subjected to  serial centrifugation, removing 
cells (300 g, 10 m in), rem oving non-cellular debris (2000 
g, 15 m in). The supernatant was then  underlayed with a 
30% sucrose/D 20 cushion, and  subjected to  ultracentrif­
ugation at 100,000 g for 2 h  as described [17,23,29], The 
cushion was collected, and  exosomes washed in PBS. Exo­
som e pellets were resuspended in 100-150 ul o f PBS and 
frozen at -80 °C. The quantity  o f exosomes was deter­
m ined by the micro BCA protein assay (Pierce/Thermo 
Scientific).

Cell culture
LNCaP and DU145 prostate cancer cell lines (from 
ATCC), were seeded in to  bioreactor flasks (from Integra), 
and m aintained at high density culture for exosome pro­
duction as described [30].

Electrophoresis and Immuno-blotting
Cell lysates were com pared to  exosomes by im m uno-blot­
ting as described [31]. Primary m onoclonal antibodies 
included m ouse an ti-hum an PSA (a gift from Dr Atilla
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Patient Clinical Stage 
(all NO)

Gleason Score Age
(years)

Serum PSA
a d t 4

(ng/ml)

Serum PSA
a d t 12
(ng/ml)

Serum PSA 
at 6 months 

(ng/ml)

I T2b 7 (3+4) 66 10.5 2.I0 1.2

2 T2b 7 (3+4) 62 134.0 0.20 <0.01

3 T2 8 (3+5) 70 8.3 1.40 <0.1

4f n/d 7(3+4) 65 83.2 83.40 t

5 T2c 7 (3+4) 69 95.2 4.I0 <0.1

6 T2 8 (4+4) 70 10.8 O.IO <0.1

7 T3a 7 (3+4) 53 36.5 7.20 0.3

8 T3b 6 (3+3) 61 14 .1 0.80 0

9 T2 7 (4+3) 66 2I.I 0.20 <0.1

10 T2 8 (4+4) 71 28.1 1.3 n/d

f  Patient died from an unrelated brain tumour prior to  Radiation Treatment, 
n/d not determined.

Turkes, Cardiff and Vale NHS Trust, Cardiff), anti- 
TSG101, anti-LAMP-1, anti-HSP90, anti-Calnexin, anti- 
CD81 and anti-PSMA (from Santa Cruz Biotechnology), 
anti GAPDH (from BioChain Institute, Inc), anti CD9 
(from R&D systems). Anti-5T4 was a gift from  Dr R Har- 
rop (Oxford BioMedica UK Ltd). Goat polyclonal anti- 
Tamm Horsfall Protein (THP) was from Santa Cruz, and 
bands were detected using anti-goat-HRP (Dako). M em­
branes were stripped using the Restore Plus™ western b lo t­
ting stripping buffer (Pierce/Thermo Scientific), blocked 
overnight, and re-probed.

Examining exosome membrane integrity
To investigate if urine damages exosom e-m em branes, 
exosomes isolated from  B-cell lines, were im m obilised 
onto anti-MHC Class-II coated dynal-beads (Dynal/Invit- 
rogen) [32]. The exosome-bead complexes incubated 
overnight at 3 7 °C in 25 mM Calcein-AM as described
[31], Calcein-loaded exosome-bead complexes were 
exposed to various salt-solutions or to  fresh urine, at room  
temperature for 1 h. Fluorescence was analysed by flow 
cytometry (FACScan, BD), m nning  Cell Quest software 
(BD). Calcein-fluorescence was com pared to  fluorescence 
of anti-Class-I (RPE) stained exosome-beads, in parallel 
tubes; a measure of w hether exosomes rem ain attached to 
the bead surface. Results are expressed as the  ratio of Cal- 
cein: Class-I fluorescence.

Examining proteolytic damage o f  exosomes by urine
Exosomes purified from  LNCaP cells, were treated with 
fresh urine in the presence or absence o f protease inh ib i­
tors (including EDTA, Pepstatin-A, Leupeptin and PMSF). 
After 2 h or 18 h, sam ples were exam ined by western b lo t 
for expression o f CD9, PSA and TSG101. As a positive 
control for proteolysis, exosomes were treated with 
trypsin (Cambrex).

Results
Purification o f urinary exosomes
We used a standardised m ethod, designed for exosome- 
purification from cell culture supernatant, and have 
applied this to fresh-urine as an exosome source. W ith this 
m ethod, exosomes are isolated based on  their buoyancy 
characteristics [33]. Analysis o f protein content o f urine at 
m ultiple steps th roughou t purification, revealed the 
m ethod was effective in elim inating principal contam i­
nants (Fig la ), (such as the band  at 80 Kd) while signifi­
cantly concentrating vesicles bearing a distinct protein 
repertoire, across the entire m olecular weight spectrum 
(Fig la). Perform ing im m uno-blo t analyses on parallel 
gels revealed typical exosom al proteins were only detected 
in the final exosom e-product (Fig lb ).

Com paring this m ethod w ith the m ethod o f Pisitkun et al 
[14], using cell culture supernatants (Fig lc) or healthy 
donor urine (Fig Id ) as source material, showed the
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Table 2: Details of urine specim ens collected from PCa patients

Patient Time Point Dip-Stick
Blood, Protein, Glucose, Ketones, pH

Specimen Volume 
(m l)

Total Exosomes 
Recovered 

(Pg)

Exosome
Concentration

(ng/ml)

1 a d t 4 1 1 0 0 7 90 72.9 810.0
ADT |2 0 1 0 0 5 180 141.9 788.3

r t20 0 0 0 0 7 180 19.6 109.3

2 a d t 4 1 1 0 0 . 170 125.5 738.2
ADT, 2 1 2 0 0 7 180 2.61 14.5

r t20 0 0 0 0 5 90 39.2 435.7

3 a d t 4 4 2 4 0 5 180 72.9 405.3
ADT l2 2 1 1 0 5 180 70.9 393.9

r t20 0 1 1 0 5 60 8 133.3

* t a d t 4 0 1 0 0 5 95 25.4 268.0
ADT l2 1 3 3 0 5 55 6.54 118.9

r t20 - - - - - - - -

5 a d t 4 4 0 0 0 5 180 38.4 213.6
ADT l2 1 2 0 0 7 90 27.1 301.2

r t20 1 1 0 0 6 150 5.1 34.5

6 a d t 4 0 0 0 0 6 180 19.4 108.1
ADT, 2 1 0 0 0 5 180 6.2 34.7

r t20 1 1 0 0 5 120 9.1 76.1

7 a d t 4 3 1 1 0 6 97 39 402.1
ADT l2 0 1 0 0 5 120 12.1 101.0

r t 20 1 1 0 0 5 45 17.7 395.1

8 a d t 4 0 1 1 0 6 150 125.1 834.4
ADT ,2 0 1 0 0 5 1 10 26 236.4

r t20 1 3 0 0 7 60 34.4 574.0

9 a d t 4 0 1 0 0 5 120 8.2 68.3
ADT ,2 0 1 0 0 6 180 17 94.4

r t20 2 3 4 0 6 60 133.1 2218.7

10 a d t 4 0 1 0 0 5 120 19.4 162.3
ADT l2 0 0 0 0 7 180 1 1.4 63.4

r t20 0 0 0 0 6 170 88.3 519.4

f  Patient 4 died before RT 
- Not recorded, or sample unavailable

sucrose m ethod results in a pellet which is more enriched 
in exosomes, evident by strong band intensity for exo­
some markers such as CD9, TSG101 and LAMP-1. Im por­
tantly, the sucrose m ethod resulted in good enrichm ent of 
tum our associated antigens; in this case 5T4 (Figure lc), 
indicating an im portant advantage in analysis of exo­
somes over pelleted sedim ent [14]. Although many mark­
ers were detected in the com parator preparation, these 
were at a lower level. The more intense band  for calnexin 
(a non-exosomally expressed marker), is evidence for

more contam inants w hen using the com parator m ethod 
(Fig lc). Similarly, w ith urine as the source material, the 
sucrose-cushion m ethod again proved advantageous (Fig 
Id), showing higher levels o f exosome expressed proteins, 
and reduced contam ination  w ith Tam m  Horfsall protein 
(THP). The data support this approach for enriching exo­
somes from fresh urine specimens; and confers some 
advantages over previously published urine-exosome pro­
tocols.
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Figure I
Purification of urine-derived exosom es. Healthy donor urine was subjected to  exosom e purification, and at each step, 10 
pi of sample was kept for electrophoretic analysis (4-20% gradient polyacrylamide gel, silver stained) (A), demonstrating effec­
tive removal of the principal non-exosomal protein bands such as that at ~80 Kd, and significant enrichment of diverse protein 
species in the final exosome product (A). Parallel gels were run for immuno-blot analyses, using antibodies against typical exo­
some proteins as indicated (B). Comparing the sucrose cushion method, with a simpler method of Pisitkun e t al, where cell cul­
ture media (C) o r fresh urine (D) were subject to  centrifugation at 17,000 g followed by pelletting at 200,000 g. Exosomes 
(from sucrose method) and the 200,000 g pellet were normalised for protein differences, and 2.5 pg/well analysed by western 
blot for markers as indicated.

Changes in urine-exosome quantity during PCa therapy
The quantity o f exosomes present in each preparation was 
measured, corrected for starting urine volume, and values 
compared across the patient (Table 2) and healthy donor 
(Table 3) groups are summarised in figure 2. Prostate can­
cer patients on average had 1.2-fold higher levels of uri­
nary exosomes (at ADT4) compared to healthy men. There 
was broad variation in the exosome-content across both 
the healthy donors (366.8 + 92.56, n = 10 mean ± SE) and 
patients (443.2 ± 109.7, n = 10, ADT4). After three months 
of androgen deprivation therapy (ADT12) there was a ~2- 
fold decrease in exosome levels (224.9 ± 82.7, n = 10), 
with 8 out of 10 patients showing a decrease in exosome 
quantity. In terms of radiation treatm ent (RT20, 499.6 + 
225.6, n = 9), there was no significant difference com­
pared to ADT4 or to ADT12, as 3 out of 9 patients dem on­
strated a further decrease in exosome levels, whilst 6 out 
of 9 had increasing urinary exosome levels. There was a 
decrease in serum PSA levels in 9/10 patients, demonstrat­
ing that standard therapy was successful in tum our bulk 
reduction.

In conclusion it is not possible to dem onstrate a correla­
tion between locally advanced PCa with the quantity of 
exosomes present in urine, and there is no correlation 
between serum PSA and urinary-exosome levels. From the 
current data set, there is some suggestion however, that at 
ADT12 there is a decrease in the am ount of exosomes 
present.

Prostate Cancer cell lines produce typical exosomes, 
positive for prosta te and cancer-associated antigens
Two prostate cancer cell lines were m aintained in culture, 
as a source of PCa-exosomes, and the expression of typical 
exosome-markers (e.g. the tetraspanin CD9) and some 
known markers of prostate (PSA and PSMA) were exam­
ined. The LNCaP cells (whole cell lysates) were directly 
compared to LNCaP-exosomes by immuno-blot, reveal­
ing positive exosomal expression o f PSA and PSMA. There 
was also clear positive exosomal expression of 5T4 by 
LNCaP-exosomes. Both PSA and 5T4 were particularly 
enriched in exosomes, com pared to the parent cell (Fig 
3A). The DU145 cell line, which does not express PSA or 
PSMA served as a control dem onstrating specific staining.
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F igure 2
Q u a n tifica tio n  o f  u r in e -d er iv ed  e x o s o m e s ,  in h ea lth y  
d o n o rs , and  P r o s ta te  C a n c e r  p a tien ts . The quantity of 
exosomes present in each preparation was measured using 
the BCA protein assay. Values were corrected for urine- 
specimen volume, and are represented as ng Exosomes per 
ml of urine. Preparations from 10 healthy donors and 10 PCa 
patients undergoing standard therapy, at ADT4 (after 4 
weeks ADT), ADT, 2 (after 3 months of ADT), and at RT20 
(and after 20-fractions of radiotherapy) are compared. Bars 
represent mean+SE. *p < 0.5 using the Wilcoxon matched 
pairs test are shown.

Staining for GAPDH showed equal loading of wells. We 
concluded that exosomes isolated from PCa cells express 
molecules typical of exosomes from other cellular sources 
together with prostate markers and tumour-associated 
antigen(s). This im m uno-blot panel was considered suit­
able for analysis o f urinary exosomes in following studies.

The phenotype o f healthy donor urinary exosomes
We performed analyses of urinary-exosomes from healthy 
donors (HD), and compared expression levels for these 
molecules to those of LNCaP-derived exosomes. Markers 
such as TSG101 and CD9 were detected in m ost HD-spec- 
imens by western blot, albeit at low levels com pared to 
the LNCaP standard, suggesting that at least some exo­
somes were present in these specimens. There was consid­
erable variability in band intensity obtained across these 
donors, even though analyses were all norm alised for dif­
ferences in protein. Prostate markers (PSA and PSMA)

were no t expressed in any healthy donor specimens, indi­
cating that few if any exosomes in healthy donor urine 
arise from the prostate. The tum our antigen 5T4 was not 
found in any of the HD specimens (Figure 4).

In conclusion, exam ining urinary-exosomes obtained 
from  different donors by this m ethod is certainly feasible, 
and this is sufficient to reveal variation in exosome-qual- 
ity across the samples. Nevertheless, in cases where exo- 
som e-quality was m oderate/good (i.e. com parable to 
LNCaP exosomes), healthy donor urinary-exosomes 
could be confirm ed negative for PSA, PSMA and 5T4.

Phenotype o f  PCa-patient's urinary exosomes, and 
evaluating changes with treatm ent
PCa patient derived exosomes were examined in a similar 
m anner. The data from  8 individual patients are shown 
(Fig 5). Overall there was variability in band intensity 
(with m ultiple markers) across the sam ple series, with 
weak staining in m ost occasions com pared to the LNCaP- 
exosomes, yet there was som e positivity for exosome- 
markers in 20 o f 24 samples. There was variation across 
the patient cohort, and variation from  w ithin an individ­
ual's sam ple series (ADT4, ADT12 and RT20). As great atten­
tion was paid tow ards loading 5 pg o f sam ple per well, we 
believe the results m ore likely reflect the variable exo­
somal content o f the sample, rather than  technical issues 
of sam ple loading. Bands for prostate-derived proteins 
PSA or PSMA were evident in 5 patients (p i, p7, p8, p9, 
plO), indicating tha t at least som e o f the exosomes 
present in the urine were o f prostate origin. Given the var­
iation in band  intensity across the three tim e points in 
m ost o f these sam ples it is no t possible to dem onstrate 
phenotypic changes in response to treatm ent. The excep­
tion  to this is show n by patien t 8, in which band  intensi­
ties for exosome-markers were stable at all three time 
points. This patient dem onstrated  a strong band for PSA 
at ADT4, which d im inished w ith treatm ent, becoming 
undetectable at RT20. The band  for PSMA also followed 
this pattern to an extent, w hilst the tum our-antigen 5T4 
rem ained detectable at RT20, suggesting that there may be 
some elem ent o f residual disease present, and that exo­
somal 5T4 may reflect this. The data are sum m arised in 
Table 4.

Urine does not osmotically damage exosome membrane 
integrity
O ur study highlighted variable quantity  o f exosomes in 
urine specimens. This was ~ 10-times lower than expected, 
according to others [34], We hypothesised that variable 
hydration state o f individuals providing urine specimens 
may lead to som e differences in water/salt content of 
urine; and that this may dam age exosomes present in 
urine. This w ould im pact on exosom e-flotation character-
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Table 3: Details of urine specim ens collected from  healthy donors

H ealthy D onor Age of do n o r Dip-Stick Specim en  V olum e E xosom es E xosom e
Blood, Protein, Glucose, Ketones, pH (m l) R ecovered  C o n cen tra tio n

(pg) (ng/m l)

1 29 0 0 0 0 7 180 9.8 54.4

2 37 0 1 0 0 7 180 1 15.2 640.0

3 37 0 1 0 0 7 180 32.3 179.4

4 63 2 0 0 0 5 180 55.4 307.8

5 61 0 1 0 0 7 180 154.7 859.4

6 50 0 1 0 0 7 180 8.7 48.3

7 49 0 0 0 0 6 150 61.2 408.0

8 55 0 1 0 0 6 180 37.2 206.7

9 56 0 0 4 0 7 145 28.5 196.6

10 57 0 1 0 0 8 170 130.3 766.5

that exosomes are surprisingly resistant to high and low 
salt solutions (Figure 6a). Incubating exosomes in urine 
specimens had no impact on the integrity o f the m em ­
brane (Figure 6b). We conclude that urine does not 
osmotically damage the exosome membrane, and this is 
unlikely to impact on the buoyancy characteristics of exo­
somes.

Exosomes are not prone to  proteolysis by urine
Proteolytic damage o f exosomal constituents, by urine- 
proteases, may also explain low exosome levels we 
observed. Unlike Pisitkun et al, we used fresh urine speci­
mens without protease inhibitors. To test this, we purified 
exosomes from LNCaP cultures, and incubated these with 
urine specimens in the presence/absence of protease 
inhibitors. Analysis o f exosome markers by western blot 
revealed fresh urine specimens did no t cause degradation 
of exosome-markers tested. We conclude that exosomes 
can largely resist endogenous proteolytic activity of urine 
(for at least 18 hours at 37 °C) (Figure 6c).

Discussion
We present the findings o f a pilot study, investigating uri­
nary exosomes in prostate cancer patients. We had two 
main aims in the study; firstly to assess the feasibility of 
using urine as an exosome source in the context o f a clin­
ical trial, and secondly to  dem onstrate changes occurring 
in response to standard PCa-therapy. We anticipated 
being able to show differences in urinary exosome quan­
tity, between healthy individuals, and individuals with
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istics, and may explain the variability and low quantity we 
observed using the sucrose-cushion method.

Experiments were performed, using exosomes loaded 
with a fluorescent dye, to assess how various osmotic con­
ditions might damage exosome membranes; revealing
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Figure 3
C haracterising exosom es produced by LNCaP-pros- 
ta te  cancer cell line. Prostate cancer cell lines (LNCaP and 
DU 145), as indicated, were maintained in culture as a source 
of positive-control prostate cancer exosomes (for subse­
quent analyses). W hole cell lysates (CL) o r exosomes (Exo) 
were analysed by SDS-PAGE (5 pg/well), with a panel of anti­
bodies as indicated.

http://www.translational-medicine.eom/content/7/1/4


Journal of Translational Medicine 2009, 7:4 http://www.translational-medicine.eom/content/7/1/4

A g e of d o n o r
61 5 0

1_____ L

C D 9 -

G A P D H

T S G 1 0 1  ■

P S M A -I _ _

P S A

■22Kd

■36kd

■46kd

■72Kd

■ 10OKd

■ 3 3 K d
1---------1--------1------- 1------- l “ t l --------- 1-------- 1-----

HD1 HD2 HD3 CL Exo HD4 HD5 HD6
 1------
LNCaP

Figure 4
C haracterising ex o so m e s from  healthy donor urine. Six healthy donors (detailed in Table 3), provided urine specimens 
and exosomes w ere purified. W estern blots were performed with 5 pg urine-derived exosomes/well, o r with 5 pg LNCaP- 
derived exosomes (Exo) o r 5 pg LNCaP whole cell lysates (CL). Blots were probed with antibodies against PSA, TSG10 1, 5T4, 
CD9 and GAPDH, as indicated.

locally advanced prostate cancer, together with diminish­
ing exosomally expressed PCa-markers in response to 
therapy.

Firstly, it is certainly feasible to collect spot urine speci­
mens (up to 200 ml) from PCa patients, at multiple time 
points during standard treatment. The exosome purifica­
tion method is laborious however, with 30 samples occu­
pying 30-days of preparation time. This approach is not 
suited to larger scale trials or screening programmes, but 
was aimed at achieving the best quality preparations pos­
sible.

Our study highlights considerable variation in the quan­
tity of exosomes available from spot urine specimens, and 
this was 10x lower than expected based on previous 
reports [34], where exosomes were not isolated based 
upon their buoyancy. Whilst some effort was invested in 
accounting for this discrepancy, such as evaluating the 
impact o f urine protease activity on exosomes, or the 
effect of osmotic conditions on exosome membrane 
integrity, this discrepancy may simply be due to the pres­
ence of more non-exosomal contaminants present when 
using a simple pelletting approach; and that exosomes are 
therefore less abundant in urine than originally thought.

Comparing urinary-exosome quantity as we have done 
here is unlikely to provide meaningful inform ation to the 
clinic, as there was no real difference between healthy 
men and those with locally advanced disease. We did 
observe a 2-fold decrease in urinary exosomes following 
3-months ADT, where 8 o f 10 patients showed a reduc­
tion in their urinary exosome content, and of these, 6 had 
reductions of >50%. This lower exosome level was not 
well maintained, with 5 o f 9 patients showing elevated 
exosome levels with radiotherapy. In contrast, serum PSA 
levels demonstrated that all but one patient had 
responded well to treatm ent, with levels below 1.5 ng/ml 
at 6 m onths post treatm ent. There was no correlation 
between this surrogate cancer-marker, and the quantity of 
urinary exosomes. O ne may speculate that the reduction 
in prostate volum e caused by ADT may explain the 
decrease in urinary-exosomes, and that radiation, a docu­
mented stimulus for exosome secretion [16], and a potent 
inducer of a robust local inflam m atory response, may ele­
vate exosomal urine content following radiotherapy. 
These aspects require further investigation.

Measuring protein quantity  (present in purified exosome 
preparations), is clearly no t sufficient to discriminate can­
cer cell derived exosomes, from a "high background" of 
non-cancer cell exosomes present in this complex mixed
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Figure 5
C haracterising ex o so m es from  PCa patients. Urinary exosomes (5 pg/well), isolated from 8 PCa patients (at ADT4, 
ADT!2or R T 2 o ) .  were subject to  western blot analyses with a panel of antibodies as indicated. W hole cell lysates (CL) o r exo­
somes (Exo) of LNCaP (5 pg/well) was included on each gel as positive controls.

exosome population in urine. A future approach could 
involve an immuno-affinity based method, for identifying 
(and quantifying) the proportion of tum our marker posi­
tive exosomes present in urine. One group has previously 
reported an approach, based upon EpCAM expression by 
ovarian cancer derived exosomes, for analysing exosomes 
present in the circulation [35]. We and likely others are 
working to develop an ELISA-like approach, better suited 
as a screening tool for cancer-derived exosomes in urine 
and other body fluids. Knowledge from this study will 
assist us in developing this tool.

In terms of exosome-phenotype, this study has high­
lighted some interesting observations from some of the 
PCa patients' specimens. Firstly, it was not previously 
known that the prostate can contribute any exosomes to 
the total urine exosome-pool. In healthy donors there was 
no positive staining for the prostate markers PSA or PSMA,

and the tum our marker 5T4 was also negative. In the 
patient cohort, PSA was evident in 8/20, and PSMA 
present in 9/20 specimens (where 20/24 specimens were 
positive for one or more exosome-markers; i.e. evaluable 
as exosome-positive). Staining for 5T4 showed positivity 
in 14/20 samples. Together, this dem onstrates for the first 
time, expression o f prostate and cancer-associated mark­
ers by urinary exosomes.

One particular patient (p8) dem onstrated comparable 
exosomes at each o f the three time points, and a clear loss 
of exosomal-PSA in response to therapy. Unexpectedly, 
5T4 remained strongly expressed, even following 20-frac­
tions of radiotherapy, suggesting this may be a candidate 
marker for assessing the presence of residual malignant 
cells, refractory to the effects o f androgen-ablation or radi­
otherapy. This aspect certainly warrants follow up studies,
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E xosom e Markers C ancer Marker Prostate Markers

Patient Tim e CD9 GAPDH TSGIOI 5T4 PSMA PSA Sum m ary

LNCap N/A ++++ +++ +++ +++ ++++ ++++ The Comparator "Standard" 
Sample

Good Quality p8 a d t 4

a d t i2

r t 20

+++

+++

+++

++

++

++

++

++

++

++

++

+

++

++

+++

+

Consistent, High Quality 
Exosomes.
Prostate markers diminish 
with treatment.
5T4 still evident at RT20

P7 a d t 4 ++ + ++ + + + Good quality exosomes, but
inconsistent, (increasing
with treatment).

ADT, 2 ++ ++ +++ ++ + + Prostate markers & 5T4 still
evident at RT20

r t20 +++ +++ +++ ++ ++ ++

Intermediate Quality Pi a d t 4 + . . + . + Inconsistent,
(increasing with treatment)

ADT, 2 ++ - - + - - Prostate markers barely
detected, no clear pattern.

r t 20 +++ + ++ + + - 5T4 still evident at RT20

p3 a d t 4 + + . + . . Inconsistent,
(increasing with treatment)

ADT 12 + ++ + - - Prostate markers absent.
r t 20 +++ ++ - ++ - - Strong 5T4 at RT20

Poor p9 a d t 4 +++ + + + + + Inconsistent,
(decreasing with treatment)

ADT 12 ++ + - - - - Prostate markers barely
detected, no clear pattern.

r t 20 + - - - + - No 5T4 at RT20

PS a d t 4 - - . . . . Poor quality at 2/3 time-
points

ADT 12 - - - - - - N ot Evaluable
R.T2o +++ - ++ - - -

Very Poor Quality plO a d t 4 +++ ++ +++ + + + Poor quality at 2/3 time-
points

ADT,2 - - - - - - N ot Evaluable
RT2o + - - - - -

p6 ADT4 + . . . . . Poor quality at 3/3 time-
points

ADT, 2 ++ - - - - - N ot Evaluable
r t20 - - - - - -

as there is a need for markers suited to identifying the 
presence of treatment-resistant cells.

The future of urine-exosome analysis in prostate cancer 
remains uncertain. This study has dem onstrated that 
extensive steps taken to freshly process and highly purify 
exosomes from urine are labour intensive, yet results in a

variable product w ith only 17% o f attem pts containing 
exosomes of com parable quality to those obtained from 
cell culture. W hen the exosom e content o f source material 
is consistent, variation due to  the preparation m ethod 
used is <1% [30]. It may be possible to overcome this 
degree of heterogeneity in the exosome content o f the 
source material, for exam ple by 24 hr urine collection or
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Figure 6
Evaluating urine-m ediated dam age o f exosom es. Exosomes coupled to  microbeads w ere labelled with a luminal fluores­
cent dye (Calcein-AM), prior to  incubation with various concentrations of NaCI (A) o r with fresh urine specimens from four 
healthy donors (HD I-4) (B). In parallel, identical beads were set up, in the absence of Calcein-AM dye, stained instead with 
anti-MHC Class-I (R.PE) conjugated antibody. After I h at room temperature, the fluorescence signal present in the FL-I chan­
nel (Calcein) was compared to  FL-2 fluorescence (Class-I-RPE). Graphs show ratio of Calcein to  Class I fluorescence. To 
examine proteolytic damage of exosomes (C), western blot was performed for CD9, TSGIOI and PSA on LNCaP-derived 
exosomes; which were incubated for 2 h o r 18 h with fresh urine specimens (from th ree healthy donors), in the presence or 
absence of protease inhibitors. Trypsin was used as a positive control for proteolysis.
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by collection after prostate massage. Such modifications 
together with improved methods for normalisation of the 
sample (e.g. compare ratio of exosomes to urine creati­
nine for example as suggested [34]), should be adopted 
for future studies. Regardless of these difficulties, the uri­
nary exosome com partm ent genuinely holds promise as 
non-invasive source o f tumour-associated antigens, for 
PCa and likely other malignancies of the urological tract.
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Proteomics Analysis of Bladder Cancer 
Exosomes*®
Joanne L. Weltoni, Sanjay Khanna§, Peter J. Giles§, Paul Brennan§U, Ian A. Brewis§H, 
John Staffurthf, Malcolm D. Mason}:, and Aled Claytont||

Exosomes are nanometer-sized vesicles, secreted by var­
ious cell types, present in biological fluids that are partic­
ularly rich in membrane proteins. Ex vivo analysis of exo­
somes may provide biomarker discovery platforms and 
form non-invasive tools for disease diagnosis and moni­
toring. These vesicles have never before been studied in 
the context of bladder cancer, a major malignancy of the 
urological tract. We present the first proteomics analysis 
of bladder cancer cell exosomes. Using ultracentrifuga­
tion on a sucrose cushion, exosomes were highly purified 
from cultured HT1376 bladder cancer cells and verified as 
low in contaminants by Western blotting and flow cytom­
etry of exosome-coated beads. Solubilization in a buffer 
containing SDS and DTT was essential for achieving pro­
teomics analysis using an LC-MALDI-TOF/TOF MS ap­
proach. We report 353 high quality identifications with 72 
proteins not previously identified by other human exo­
some proteomics studies. Overrepresentation analysis to 
compare this data set with previous exosome proteomics 
studies (using the ExoCarta database) revealed that the 
proteome was consistent with that of various exosomes 
with particular overlap with exosomes of carcinoma ori­
gin. Interrogating the Gene Ontology database highlighted 
a strong association of this proteome with carcinoma of 
bladder and other sites. The data also highlighted how 
homology among human leukocyte antigen haplotypes 
may confound MASCOT designation of major histocom- 
patability complex Class I nomenclature, requiring data 
from PCR-based human leukocyte antigen haplotyping to 
clarify anomalous identifications. Validation of 18 MS pro­
tein identifications (including basigin, galectin-3, tropho- 
blast glycoprotein (5T4), and others) was performed by a 
combination of Western blotting, flotation on linear su­
crose gradients, and flow cytometry, confirming their 
exosomal expression. Some were confirmed positive on 
urinary exosomes from a bladder cancer patient. In sum­
mary, the exosome proteomics data set presented is of 
unrivaled quality. The data will aid in the development of
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urine exosome-based clinical tools for monitoring disease 
and will inform follow-up studies into varied aspects of 
exosome manufacture and function. Molecular & Cellu­
lar Proteomics 9:1324-1338, 2010.

Bladder cancer is one of the eight most frequent cancers in 
the Western world, and the frequency of transitional cell carci­
noma (TCC),1 which accounts for 90% of bladder cancers, is 
second only to prostate cancer as a malignancy of the genito­
urinary tract. Urine cytology and cystoscopy remain the pre­
dominant clinical tools for diagnosing and monitoring the dis­
ease, but cytology is poorly sensitive, particularly for low grade 
tumors, and does not serve as a prognostic tool. Cystoscopy is 
an invasive procedure, and there is pressing need to identify 
informative molecular markers that can be used to replace it.

Recently, small cell-derived vesicles termed exosomes that 
are present in body fluids (1-5) have been proposed as a po­
tential source of diagnostic markers (2, 6-8). These nanometer­
sized vesicles, which are secreted by most cell types, originate 
from multivesicular bodies of the endocytic tract and reflect a 
subproteome of the cell. Exosomes are enriched in membrane 
and cytosolic proteins, and this molecular repertoire appears to 
be of particular functional importance to the immune system (9). 
Exosomes also comprise an array of lipids, mRNA, and mi- 
croRNA, which are likely involved in conveying intercellular 
communication processes (10). Importantly, many exosomal 
components are simply not present as free soluble molecules in 
body fluids, such as certain microRNA species, which are en­
capsulated within the exosome lumen (6, 10). Therefore, the 
ability to isolate exosomes from urine (2), plasma (1), saliva (11), or 
other physiological sources (3) holds significant potential for ob­
taining novel and complex sets of biomarkers in a non-invasive 
manner. Exosome analysis may therefore be of value in disease 
diagnosis and monitoring in a variety of settings (6, 7, 12-14).

1 The abbreviations used are: TCC, transitional cell carcinoma; 5T4, 
trophoblast glycoprotein; BCA, bicinchoninic acid; FDR, false discov­
ery rate; HLA, human leukocyte antigen; hsp90, heat shock protein 90; 
LAMP, lysosome-associated membrane protein; MHC, major histo- 
compatability complex; TEAB, triethylammonium bicarbonate; TSG101, 
tumor susceptibility gene 101; NHS, National Health Service; FBS, fetal 
bovine serum; RT, room temperature; Bis-Tris, 2-[bis(2-hydroxyeth- 
yl)amino]-2-(hydroxymethyl)propane-1,3-diol; hnRNP, heterogeneous 
nuclear ribonucleoprotein; 2DE, two-dimensional electrophoresis; ID, 
identifier; ORA, overrepresentation analysis.
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Exosomes as indicators of pathology were first docu­
mented in the context of renal injury where a differential 
proteomics approach revealed changes in urinary exosom e 
phenotype following renal injury (7). The researchers identified 
exosomally expressed Fetuin-A as a marker that becam e 
elevated 50-fold within hours following nephrotoxin exposure 
in rodents. Exosomal Fetuin-A elevation was also apparent in 
patients with acute renal injury before changes in urinary 
creatinine were observed (7). Clinical exosome analysis may 
also prove useful for solid cancers, such as ovarian or lung 
cancer, where the quantity of epithelial cell adhesion mole­
cule-positive serum exosomes may correlate with tumor 
stage/grade. Such disease-associated exosomes express mi- 
croRNA species not detected in healthy subjects (6, 12), 
although in this respect, there is little correlation between 
microRNA and disease bulk (6, 12). Other recent examples 
include studies of urinary exosom es in prostate cancer with 
exosomes expressing protein markers 5T4 (15), prostate can­
cer gene 3 (PCA-3) (8), or mRNA (TMPRSS2-ERG) (8, 16) 
associated with prostate cancer. To our knowledge, exo­
somes have not yet been studied in the context of other 
urological malignancies such as renal cancer, and to date, 
only one report describes the urine-derived microparticles 
from bladder cancer patients (17). In that report, they exam­
ined the proteome of a highly complex mixture of mi­
crovesicles, exosomes, and other urinary constituents that 
can be pelleted by high speed ultracentrifugation, identifying 
eight proteins that may be elevated in cancer. However, given 
the nature of the sample analyzed, it is unknown whether 
these proteins are exosomally expressed.

Identification of the principal and most relevant molecular 
markers in these and other clinical scenarios remains a major 
challenge. In part, this is because exosomes present within 
complex body fluids originate from heterogeneous cell types. 
For example, plasma exosom es may be derived from plate­
lets, lymphocytes, or endothelial cells (1), and a proportion 
may arise from well perfused organs such as the liver (18) and 
likely other organs as well (16). Similarly, exosom es present in 
urine arise from urothelial cells of the kidney and downstream 
of the renal tract (2, 8, 15).

Importantly, all proteomics studies of exosom es isolated 
from body fluids are unavoidably com plicated by the pres­
ence of high abundance non-exosomal proteins contami­
nating the preparations. Examples include albumin, immu­
noglobulin, and complement com ponents present in 
exosom es prepared from malignant effusions (5) and 
Tamm-Horsfall protein present in exosom es purified from 
urine (2). As such, great care must be taken in the interpre­
tation of the large data se ts  produced by proteomics stud­
ies, requiring careful validation of the proteins of interest. 
The protein composition of exosom es using a single ho­
m ogenous cell type is one approach that may be used to 
uncover the protein com ponents of exosom es produced by 
various cell types.

There remain two major issues in the realm of exosom e 
proteomics that complicate our interpretation of lists of iden­
tified proteins. Foremost are the diverse methods chosen for 
exosom e purification that in som e studies have involved at­
tem pts to remove contaminants through a key biophysical 
property of the vesicles, i.e. their capacity to float on sucrose 
(19, 20) or other dense media (21). Not all published studies, 
however, have taken such steps, preferring a far simpler pellet 
(or pellet and wash) approach. These latter preparations may 
be significantly contaminated by com ponents of the cellular 
secretom e, cell fragments, and other components. All of these 
factors could lead to false positive identifications of exosome 
proteins. The second key issue centers on the MS ap­
proaches utilized in various exosom e proteomics studies. 
Many early exam ples relied only on a peptide m ass finger­
printing approach, lacking robust peptide sequence data (22, 
23), and more recently, search criteria that are generally rec­
ommended for MS-derived sequence data have not been 
specified in all studies. In this study, we have listed only those 
proteins identified by good quality MS/MS data for two or 
more peptides. Variability in the  robustness and bias in bioin­
formatics analysis of data  se ts  and in the steps taken to 
validate identified proteins is an additional factor that impacts 
the confidence in the identification lists produced.

In this study, we aimed to perform the first proteomics 
analysis of human bladder cancer exosom es. We took exten­
sive steps to produce high purity and quality-assured exo­
some preparations prior to  beginning proteomics workflows. 
Solubilizing the sam ple with SDS and a reducing agent (DTT) 
was a critical step that allowed for global protein identification 
using nanoscale liquid chromatography followed by MALDI- 
TOF/TOF m ass spectrometry. In this study, we present the 
identification of a significant number of exosomally expressed 
proteins (353 in total) of unrivaled quality. Critical manual 
examination of these identifications revealed issues with mul­
tiple (physiologically impossible) MHC Class I identifications 
that were attributed to a misdesignation of nomenclature by 
MASCOT due to peptide (and target protein) homology. The 
data were subjected to unbiased overrepresentation analysis 
(examining ExoCarta and Gene Ontology databases) to reveal 
a proteome consistent with exosom es, particularly of carci­
noma origin. Validation of several identified proteins, by com ­
bining ultracentrifugation on a linear sucrose gradient with 
Western blotting and/or analysis of exosom e-coated latex 
beads, dem onstrated correct surface orientation of several 
MS-identified m embrane proteins at densities consistent with 
exosomes.

The robust approaches taken emphasize our confidence in 
the validity of the identifications generated and highlight that 
72 (of 353) proteins have not been previously shown to be 
exosomally expressed by other human proteomics studies. 
The data will be useful for future studies in this underinvesti­
gated disease and will form a platform not only for future 
clinical validation of som e of these putative markers but also
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to aid further investigations into novel aspects of exosome 
function and manufacture.

EXPERIMENTAL PROCEDURES

Cell Culture—HT1376 is a cell line originating from a primary TCC 
of the bladder (Stage T2, Grade G4) (24). In vitro cultured HT1376 
cells were used as the exosom e source for this study because they 
have been extensively characterized previously and are representa­
tive of the behavior and phenotype of TCC (24, 25). The cells were 
maintained in Dulbecco’s modified Eagle’s medium (Lonza) supple­
mented with penicillin/streptomycin and 5% FBS (which had been 
depleted of exosom es by overnight ultracentrifugation at 100,000 x  g 
followed by filtration through 0.2-/xm and then 0.1 -/xm vacuum filters 
(Millipore)). The cells were seeded into bioreactor flasks (from Integra) 
and maintained at high density culture for exosome production as 
described (26). Cells were confirmed negative for mycoplasma con­
tamination by monthly screening (Mycoalert, Lonza). Additional well 
characterized bladder cancer cell lines (HT1197, RT4, RT112, and 
T24) (25, 27) were obtained from ATCC or from Cancer Research UK 
cell bank and cultured similarly.

Exosome Purification—The culture medium of HT1376 cells (typi­
cally 15-30 ml) was subjected to serial centrifugation to remove cells 
(400 x  g for 10 min) and cellular debris (2000 x g  for 15 min). The 
supernatant was then centrifuged at 10,000 x g for 30 min, and the 
supernatant was further purified by underlaying with a 30% sucrose, 
D20  cushion and subjected to ultracentrifugation at 100,000 x g for 
2 h. The cushion was collected, and exosom es were washed in PBS 
as described previously (20, 28, 29). Exosome pellets were resus­
pended in 100-150 /nl of PBS and frozen at -8 0  °C. The quantity of 
exosom es w as determined by the micro-BCA protein assay (Pierce/ 
Thermo Scientific), and this gave an average of 12 ju,g (±2.2 S.E., n = 
5) exosomes/ml of culture medium for the HT1376 cell line. Trans­
mission electron microscopy of exosomal preparations was per­
formed as described (29).

Determinination of Exosome Density—To quantify the density of 
exosomes produced by HT1376, we used a protocol similar to that 
described previously based on ultracentrifugation on a linear sucrose 
gradient (19, 30). Briefly, cell culture supernatant was subjected to 
differential centrifugation, and the pellet at 70,000 x  g was overlaid 
on a linear sucrose gradient (0.2 m  up to 2.5 m  sucrose). Specimens 
were centrifuged at 4 °C overnight at 210,000 x  g using an MLS-50 
rotor in an Optima-Max ultracentrifuge (Beckman Coulter). The refrac­
tive index of collected fractions was measured at 20 °C using an 
automatic refractometer (J57WR-SV, Rudolph Scientific), and from 
this, the density was calculated as described previously (19). Frac­
tions were washed in buffer (PBS or MES buffer; discussed below) by 
ultracentrifugation at 150,000 x  g (in a TLA-110 rotor in an Optima- 
Max ultracentrifuge), and pellets were resuspended in MES buffer for 
coupling to microbeads or in SDS sample buffer for analysis by 
Western blot.

Flow Cytometric Analyses of Exosome-coated Beads—One micro­
gram of purified exosom es w as incubated with 1 ix\ of latex beads 
(surfactant-free, aldehyde sulfate 3.9-p.m beads, Interfacial Dynam­
ics) that had been washed twice in MES buffer (0.025 m  MES, 0.154 
m  NaCI, pH 6). For analysis of sucrose gradient fractions, 30% of each 
fraction was coupled to 0.5 jllI of stock beads. Exosome beads were 
incubated in a final volume of 100 pJ of MES buffer at room tem per­
ature (RT) for 1 h on a shaking platform followed by rolling overnight 
at 4 °C. Beads were blocked by incubating with 1 % BSA, MES buffer 
for 2 h at RT. Blocking buffer was washed away, and beads were 
resuspended in 0.1 % BSA, MES buffer. Primary monoclonal antibod­
ies were used (at 2-10 for 1 h at 4 °C. After one wash, goat
anti-mouse Alexa Fluor 488-conjugated antibody (Invitrogen) di­
luted 1:200 in 0.1% BSA, MES buffer w as added for 1 h. After

washing, beads were analyzed by flow cytometry using a FACS- 
Canto instrument configured with a high throughput sampling m od­
ule running FACSDiva Version 6.1.2 software (BD Biosciences). The 
conditions used for exosom e coupling to beads and subsequent 
antibody staining were determined experimentally as described 
previously (30).

One-dimensional Electrophoresis and lmmunoblotting—Ce\\ ly­
sa tes were compared with exosom e lysates by immunoblotting as 
described (31) where protein (up to 20 /xg/well) was solubilized by the 
addition of a 30% volume of 6 m  urea, 50 i t im  Tris-HCI, 2% SDS, 20 
mM DTT, and 0.002% (w/v) bromphenol blue. Samples were electro- 
phoresed through 4 -12%  Bis-Tris gels (Invitrogen) and transferred to 
PVDF m em branes that were blocked and probed with antibodies 
using the Qdot® system (Invitrogen). Bands were visualized using the 
MiniBIS Pro imaging system (DNR Bio-Imaging Systems). The follow­
ing primary monoclonal antibodies were used: TSG101, lysosome- 
associated mem brane protein 1 (LAMP-1), hsp90, calnexin, HLA-G, 
galectin-3, basigin, hnRNPK, gp96, cytokeratins 18 and 17, and CD44 
(Santa Cruz Biotechnology), glyceraldehyde-3-phosphate dehydro­
genase (BioChain Institute, Inc.), CD9 (R&D Systems), and CD63 and 
CD81 (Serotec). Anti-5T4 was a  gift from Dr. R. Harrop (Oxford 
BioMedica UK Ltd.).

Two-dimensional Electrophoresis and M S—A gel-based approach 
was used to examine the exosom e protein profile using a standard 
2DE protocol. Briefly, exosom es (750 p.g) were solubilized for 1 h at 
RT in 150 jul of lysis buffer (7 m  urea, 2 m  thiourea, 20 mM DTT, 4% 
(w/v) CHAPS, 0.005% (w/v) bromphenol blue, and 0.5% (v/v) IPG 
buffer pH 3-10 non-linear (GE Healthcare)). Extracted proteins were 
then solvent-precipitated using the 2D Clean-Up kit (GE Healthcare) 
before the pellet w as resuspended in lysis buffer. From this, 500 ju,g of 
protein was recovered, and this was subjected to isoelectric focusing 
using 18-cm pH 3-10 non-linear IPG rehydrated strips, an Ettan 
IPGphor III IEF system (GE Healthcare), and recom mended voltages. 
Subsequently, the IPG strip was equilibrated for 15 min in equilibra­
tion buffer (50 mM Tris-HCI, pH 8.8, 6 m  urea, 2% (w/v) SDS, 30% (v/v) 
glycerol, and 0.002% (w/v) bromphenol blue) containing 1% (w/v) 
DTT followed by 15 min in equilibration buffer containing 2.5% (w/v) 
iodoacetamide. Equilibrated IPG strips were subjected to second 
dimension separation using the Ettan™ DALTsix system (GE Health­
care). Silver staining was performed, and randomly selected gel spots 
were excised, subjected to trypsin digestion, and MALDI-TOF/TOF 
m ass spectrometry analysis as described previously (32). The data­
base search settings used were the sam e as described later for 
LC-MALDI protein identification except that a precursor m ass toler­
ance of 50 ppm was used.

Preparation of Exosome-derived Peptides for Nano-LC—HT1376- 
derived exosome preparations were repelleted at 118,000 x  g for 45 
min at 4 °C in a TLA-110 rotor in an Optima-Max ultracentrifuge 
(Beckman Coulter). The pellets were solubilized in 100 /aI of triethyl- 
ammonium bicarbonate (TEAB) lysis buffer (20 mM TEAB) containing 
20 mM DTT and 1 % (w/v) SDS at RT for 10 min, then heated to 95 °C 
for 10 min, and then left for a further 10 min at RT. The sam ples were 
subjected to an additional ultracentrifugation step (118,000 x  g for 45 
min at RT), and supernatants (now free of insoluble material) were 
subjected to solvent precipitation to remove salts, lipids, and deter­
gent (using the 2D Clean-Up kit, GE Healthcare). The pellets were 
resuspended in 20 mM TEAB and left overnight at 4 °C. The protein 
content was then determined using a BCA protein assay kit (Sigma). 
Samples were then reduced, denatured, and alkylated using an Ap­
plied Biosystems iTRAQ (isobaric tags for relative and absolute quan­
titation) labeling kit and standard protocol. The proteins were sub­
jected to digestion with trypsin (0.8 ^g/sample) and incubated at 
37 °C for 12-16 h. The sam ples were then dried and resuspended in 
water with 0.1% (v/v) TFA.
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LC-MALDI and Protein Identification—Digested peptides were 
separated on a nano-LC system (UltiMate 3000, Dionex, Sunnyvale, 
CA) using a two-dimensional salt plug method as described previ­
ously (32). Mass spectrometry was performed using an Applied Bio­
systems 4800 MALDI-TOF/TOF m ass spectrometer as described 
(32). The MS/MS data were used to search the Swiss-Prot database 
(Version 57.7; release date, Septem ber 1, 2009; 497,293 sequences; 
human taxonomy) using MASCOT database search engine Version 
2.1.04 (Matrix Science Ltd., London, UK) embedded into GPS Ex­
plorer software Version 3.6 Build 327 (Applied Biosystems) (default 
GPS Explorer parameters; one missed cleavage allowed; fixed mod­
ification of methyl methanethiosulfonate (Cys); variable modifications 
of oxidation (Met), pyro-Glu (N-terminal Glu), and pyro-Glu (N-terminal 
Gin); 150-ppm m ass tolerance in MS and 0.3-Da mass tolerance for 
MS/MS, which are recommended published tolerances for LC-MALDI
(32)). For a protein to be identified, there needed to be a minimum of 
two peptides with MASCOT E-values less than 0.05. There was a 
false discovery rate (FDR) of 0%, which was determined using the 
sam e Swiss-Prot database with the entire sequence randomized. 
Where more than one protein was identified, the protein with the 
highest MOWSE (molecular weight search) score in MASCOT is re­
ported. The analysis was performed with two biological replicates, 
each including a technical replicate.

MS Data Analysis—The resultant protein list was analyzed for any 
biological enrichment against previously defined lists using MetaCore 
GeneGO (Version 5.4) and selected ExoCarta submissions (33) (MS- 
based data containing 10 or more matching gene identifiers). For 
analysis using 44 studies from ExoCarta gene sets, our protein list 
was converted from Swiss-Prot accession numbers to EntrezGene 
IDs using BioMart before overrepresentation analysis (ORA) using the 
hypergeometric distribution in R against a background of all human 
genes with EntrezGene IDs. For ORA in MetaCore, data were first 
converted into Swiss-Prot IDs (using BioMart) before analysis, again 
using hypergeometric tests.

Urinary Exosomes—Freshly collected urine specimens (up to 250 
ml) were subjected to the sam e exosom e purification protocol as 
described earlier. Fresh urine was collected from three patients with 
confirmed diagnoses of transitional carcinoma of the bladder. The 
specimens were obtained following transurethral resection of bladder 
tumor prior to the start of any other treatment. Purification of exo­
som es commenced within 30 min of sample collection. As controls, 
urine specimens were also collected freshly from four healthy volun­
teers. Ethical approval was obtained from South East Wales Ethics 
Committee, and institutional approval for the study was obtained from 
the Velindre NHS Trust Research Committee and Cardiff and Vale 
NHS Trust.

RESULTS

Characterization o f HT1376 Exosom es—Exosomes were 
purified from HT1376 cells, and preparations were subjected 
to several forms of analysis to evaluate sample quality/purity 
prior to analysis using proteomics workflows.

First, Western blots were performed to com pare whole cell 
lysates with exosomes to examine the expression of expected 
published exosomal markers (30) and to evaluate the relative 
expression of these markers compared with the parent cell as 
a whole. As we expected, the multivesicular body marker 
TSG101 was strongly enriched in exosome preparations com­
pared with cell lysates (Fig. 1 A). Additionally, a number of 
other molecules, including MHC Class I, the tetraspanins CD9 
and CD81, the lysosomal protein LAMP-1, and to some extent

glyceraldehyde-3-phosphate dehydrogenase, were similarly 
enriched. Such features are typical of exosom es produced by 
varied cell types (30). The heat shock protein hsp90 was not 
exosomally enriched, and this is typical of cells that are not 
under stress conditions (26, 34, 35). Staining for cytokeratin 
18 revealed a strong band in cell lysates but little or no 
detectable band in exosomes. Similarly, the endoplasmic re­
ticulum-resident gp96 was readily detected in cell lysates but 
just detectable in exosomes, which indicated that little if any 
contaminating cellular debris was present in the exosome 
preparations.

The markers present on the exosome surface were also 
examined, following coupling of exosomes to latex beads, by 
flow cytometry (Fig. 1B). This was performed to demonstrate 
the expression of correctly oriented proteins on the exosome 
surface. Tetraspanins were the choice markers for this be­
cause their expression is a well documented feature of exo­
som es from multiple cell types. The analyses showed very 
strong expression of the tetraspanin CD9 and readily detect­
able expression of CD81 and CD63 (Fig. 1B) for this and other 
bladder cancer cell lines (see Fig. 5A). Moreover, this assay 
can also highlight the presence of significant contaminating 
proteins in the preparations. When contaminants, rather than 
exosomes, bind to the bead surface during the coupling re­
action, the assay subsequently yields low fluorescence signal 
for exosomal markers like CD9 (Fig. 1B, line graph). Intentional 
contamination of purified exosom es with FBS (the likeliest 
source of contaminants in a cell culture model) revealed that 
adding 0.01% FBS is sufficient to decrease CD9-specific 
staining by around 30%. Thus, we set an arbitrary threshold 
for the purity of exosome preparations; those with a CD9 
staining below 5000 median fluorescence units were deemed 
low quality and not utilized further.

As well as expression of a typical exosomal molecular profile, 
we also investigated another key feature of exosomes, that is 
their density characteristics. HT1376 exosomes, pelleted at
70,000 x  g, were overlaid on a linear sucrose gradient and 
subjected to ultracentrifugation for 18 h. Fifteen fractions were 
collected, and analysis by Western blot revealed the presence 
ofTSG101 floating at a density range around 1.1-1.19 g/ml (Fig. 
1C). Such analysis confirms that HT1376 cells produce exo­
somes of typical density similar to that described for exosomes 
from other cell types (19). This method, in combination with the 
latex microbead assay (above), was also used as a tool for 
validating MS protein identifications (see Results, Validation 
of Exosomal proteins identified in Fig. 4B). Electron micros­
copy of exosom e preparations was also performed (Fig. 1D), 
revealing nanovesicular structures within a size range consis­
tent with their definition as exosom es (30-100 nm). Taken 
together, the data indicate that HT1376 bladder cancer cells 
produce exosom es that have molecular and biophysical char­
acteristics similar to exosom es of other cell types and that our 
exosome preparations are of high quality and virtually free of 
contaminating cellular debris.
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Fig. 1. Characterization of HT1376-derived exosom es using W estern blotting, flow cytometry, and electron microscopy. Cell (CL) and 
exosome (Exo) lysates (5 ju.g/well) were compared by Western blotting using a range of antibodies as indicated. This demonstrated relative 
enrichment of several proteins in exosomes. Some markers, such as gp96, were absent from exosomes, indicating negligible contamination 
of the preparations by cellular debris (this is representative of three experiments) (A). Exosomes coupled to latex beads were analyzed by flow 
cytometry, and this revealed positive expression of tetraspanin molecules on the exosome surface. Median fluorescence intensity values (MFI) 
are shown (representative of >5 experiments) (B). Intentional contamination of purified exosomes with increasing amounts of FBS prior to 
coupling to latex beads reveals a decrease in signal intensity for CD9 (mean ± S.E.; n = 6; **, p <  0.001, one-way analysis of variance with 
Tukey’s post test) (fi, line graph). Material pelleted at 70,000 x g from cell-conditioned medium was overlaid on a linear sucrose gradient 
(0.2-2.02 m) and ultracentrifuged for 18 h at 210,000 x g. Collected fractions were analyzed by refractometry to ascertain fraction density and 
thereafter by Western blot using antibodies to TSG101, which is an exosome marker. TSG101 floats at typical exosome densities of between 
1.1 and 1.2 g/ml (representative of four experiments) (C). Transmission electron micrograph of a typical exosome preparation reveals 
heterogeneous vesicles between 30 and 100 nm in diameter (D). CK, cytokeratin.

Identification o f  Exosomal Proteins b y  LC-MALDI M S—To 
obtain exosome-derived trypsin digest peptides for nano-LC, 
we used a protocol encompassing a 1 % (w/v) SDS extraction 
that would normally be sufficient to solubilize membrane pro­
teins (36). However, our initial attempts with this standard 
protocol revealed som e major issues with the efficacy of 
exosome solubilization, resulting in very low numbers of 
proteins identified (three in total with multiple peptide a s ­
signments) compared with other cell types commonly pro­
cessed in the laboratory (we usually identify 300-500 pro­

teins for cultured cell lysates). We therefore modified the 
sample preparation protocol to achieve more efficient sol­
ubilization of exosom es by simply including DTT in the 
solubilization buffer.

This process resulted in the identification of 353 proteins 
(supplemental Table 1). Importantly, we include only proteins 
identified with two or more peptides and an expect value of 
less than 0.05, criteria that produce an FDR of 0%. By includ­
ing identifications based upon a single peptide with an expect 
value of less than 0.0025 (an additional 261 proteins), the FDR

1328 Molecular & Cellular Proteomics 9.6



Bladder Cancer Exosome Proteomics

increases to 2.6%, although inevitably some of these assign­
ments would be valid.

Exploring these identifications revealed several proteins 
consistent with exosome biosynthesis. For example, mem­
bers of the ubiquitin-dependent complex ESCRT (endosomal 
sorting complex required for transport) were present, includ­
ing vacuolar protein sorting-associated protein 28 homolog 
(vps-28), vacuolar protein sorting-associated protein 4B (vps- 
4B), ubiquitin-like modifier-activating enzyme, and ubiquitin. 
These identifications suggest a multivesicular body origin for 
the sample analyzed. Proteins involved in membrane traffick­
ing and fusion processes were also evident (clathrin heavy 
chain 1; Rab-11B; Rab-5A; Rab-6a; Rab-7a; Rab GDP disso­
ciation inhibitor /3; annexins A1, A2, A3, A4, A5, A6, and A7; 
annexin A8-like protein; and annexin A11). Markers of endo- 
somes and lysosomes were also present (EH domain-contain­
ing proteins 1 and 2, lysosome membrane protein 2, lyso- 
some-associated membrane protein 2, tripeptidyl-peptidase 
1, cathepsin-D, and sequestosome-1), and several proteins 
with chaperone functions were identified (hsp70, hsc70, 
hsp90, stress-induced phosphoprotein 1, T-complex protein 
1, and endoplasmin). Components of the cytosol are also 
expected to be found within the exosome lumen, a natural 
consequence of the membrane budding process during mul­
tivesicular body formation, and here also we found a diverse 
assortment of cytosolic enzymes (glyceraldehyde-3-phos- 
phate dehydrogenase, cytosol aminopeptidase, cytosolic 
acetyl-CoA acetyltransferase, and nicotinate phosphoribosyl- 
transferase) and cytoskeletal constituents (actin, a-actinin-4, 
cytokeratins, ezrin, tubulin, and myosin). Diverse transmem­
brane proteins were also abundant, including multiple inte- 
grins (f31, (34, a3, a6, and av), MHC molecules, tetraspanins, 
epidermal growth factor receptor, mucin-1, CD44, synde- 
can-1, and various membrane transporters such as solute 
carrier families 2 and 3, 4F2 cell surface antigen heavy chain, 
choline transporter-like protein, and sodium/potassium-trans­
porting ATPase subunit (3-3. The proteome identified here is 
therefore broadly consistent with that expected for exosomes; 
it is comparable with proteomics identifications highlighted by 
other researchers investigating exosom es from other cellular 
or physiological sources (37). Of interest, when comparing our 
data set with MS identifications obtained from microparticles 
isolated from the urine of bladder cancer patients (17), pro­
teins common to each study were only 7.5% (detailed in 
supplemental Fig. 1). This is perhaps not surprising given the 
differences in source material and sample preparation ap­
proaches, but it does indicate that some exosomal proteins 
are present within such microparticle preparations.

Exocarta and Gene Ontology Analysis— Having manually 
reviewed the MS/MS identifications for interesting hits related 
to exosome biology, we next subjected our results to a less 
biased assessm ent focused on characterizing the key biolog­
ical themes within the protein list. Our 353 protein identifica­
tions were first compared with the multiple proteomics exo­

some studies published in ExoCarta (33) (a database collating 
lists extracted from exosome-related research publications), 
revealing that 72 proteins within this list have not previously 
been identified by human exosome proteomics studies 
(matches made using corresponding EntrezGene IDs for a s ­
sociated protein-encoding genes). Subsequently, ORA using 
the hypergeometric distribution was applied to explore 
whether there were more genes overlapping with ExoCarta 
gene sets than could be expected by chance (statistics cal­
culated using the R environment for statistical computing). We 
limited the comparisons to studies utilizing MS-based pro­
teomics approaches and to those with at least 10 matching 
(23, 38-43) identifications and applied an FDR correction to 
control for multiple testing. The results suggest that our iden­
tifications are consistent with data originating from exosomes 
and interestingly show a very significant overrepresentation of 
protein-encoding genes isolated from colorectal carcinoma 
cells (42, 43) (Fig. 2A).

Similar overrepresentation analyses were performed in 
GeneGO MetaCore (Version 5.4), contrasting our list with 
gene sets derived from Gene Ontology and proprietary 
GeneGO data. Results in Fig. 2, B-E, show the top 10 results 
(gene sets ordered by ORA p  value) from four gene set cate­
gories: disease biomarker, diseases in general, biological 
process, and cellular compartment (analyses against four 
other categories were uninformative). For the disease biomar­
ker category, our data indicated the most significant associ­
ation to be with bladder cancer, supporting therefore the 
premise that exosome analysis may well be a useful tool for 
disease-specific biomarker identification. Other biomarker a s ­
sociations included carcinomas of colon and breast (Fig. 2B). 
Similarly, a query examining general disease associations 
revealed features related to cancer of the gastrointestinal 
tract, metastatic cancer, respiratory tract diseases (including 
lung cancer), and carcinoma (Fig. 2C). Significant overrepre­
sentation of encoding genes within our data related to geni­
tourinary tract gene sets (including bladder neoplasm) was 
identified, but within the top 40. Although the accuracy of 
ORA can be limited by the quality and size of the gene sets 
queried, our analysis suggests that HT1376 exosomes ex­
press proteins strongly related to neoplastic diseases in gen­
eral and to carcinomas in particular (Fig. 2, B and C).

Our proteome contained proteins whose encoding genes 
are located within m em branous vesicles, the cytoplasm, 
and the cytoskeleton (Fig. 2E). Examination of the biological 
processes associated  with this proteome revealed signifi­
cant associations with the control of the cytoskeleton, in­
tercellular adhesion, matrix adhesion processes, and pro­
tein folding-related p rocesses (Fig. 2D). In summary, the 
statistically based, unbiased analyses undertaken reveal 
aspects of a bladder cancer exosom e proteome that show s 
similarity to those determined from other exosom e sources 
and em phasize a proteom e particularly implicated in 
carcinoma.
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Fig. 2. Summary of overrepresentation analysis of nano-LC/MS-derived protein identifications again st gene se ts  from ExoCarta and 
GeneGO. To facilitate comparison with ExoCarta gene sets, our protein list was first converted to an EntrezGene-identified gene list before 
undertaking ORA using the hypergeometric distribution. Results were filtered to include comparisons with MS-based studies only and with 
those reporting 10 or more matching genes, yielding seven studies (23, 38-43). This demonstrates how well our MS data compare with 
exosome protein profiles from specified cell types, displayed as the -log(p value) corrected for false detection rate (A). ORA analysis using 
MetaCore utilized the Swiss-Prot IDs for the identified protein list. For clarity, we report the top 10 overrepresented genes contained within each 
of the following group headings: disease biomarker (B), diseases (C), biological (Biol) process (D), and cellular compartment (E). The dotted line 
indicates p = 0.05; hence, columns to the left of this are not statistically significant (ns).

Validation of Nano-LC Approach Using 2DE— We per­
formed 2DE with the aim of selecting random spots for MS 
identification and to confirm the absence/presence of these 
proteins in the main identification list. Running preparative 
gels, with 100 pg of purified exosomes per gel, was problem­
atic because the spots picked contained too little material to

yield confident protein identifications by MS. Increasing the 
amount of protein to 500 pg  of exosom es per gel, however, 
resulted in an identification hit rate of >53% . Seventeen spots 
of intermediate staining intensity (silver-stained) were suc­
cessfully identified by MS analysis (Fig. 3). These included 
integrins a3 and a6, gelsolin, cytosolic enzymes lactate dehy-
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Fig. 3. Analysis of HT1376-derived exosom es using 2DE and MS. Protein extracts from HT1376 exosom es were resolved by 2DE on a 
pH 3-10 non-linear gradient. Proteins were visualized by silver staining (A). Thirty-two spots were randomly chosen, gel plugs were excised, 
and peptides were recovered following trypsin digestion. Of these, successful identifications were obtained for 17 spots (annotated in A), and 
the details of the MS identifications are listed (S). A representative MS/MS analysis from the data set is shown in C; the peptide is from integrin 
a6 (spot 10). The peptide has a precursor mass of 1191.9 and is annotated to show the derived peptide sequence.

drogenase and glyceraldehyde-3-phosphate dehydrogenase, 
cytoskeleton proteins actin and cytokeratins, ezrin, and oth­
ers. Nineteen of the 21 identifications from this gel-based 
approach were also identified by the nano-LC method, dem­
onstrating excellent agreement (90%) between these different 
methods for resolving exosomal proteins or peptides.

Validation o f Proteins Identified: Anomalous MHC Class I 
Identifications—As with any such proteomics data set, it is 
important to evaluate the list manually for any unexpected or 
unexplainable MS identifications and to question the validity 
of any anomalies discovered in the data. In the current anal­
ysis, the LC-MALDI MS data contained multiple identifications 
for HLA molecules that passed our quality criteria (Expect 
values <0.05 and IDs based on more than one peptide). 
These identifications, however, were not physiologically pos­
sible as they included five HLA-B alleles and five HLA-C 
alleles (Table I) from a homogenous cell line. Explanations for 
this could include contamination of the source cell line with

other cells from different donor(s), inadvertent contamination 
of the specimen by researchers, or issues related to how 
MASCOT designated HLA haplotypes nomenclature based 
on the peptide sequences generated from MS. To address 
these possibilities, a clinical diagnostic service (Welsh Blood 
Service, Llantrisant, Wales, UK) carried out haplotype analysis 
of the researcher and the HT1376 cell line. The researcher had 
no HLA alleles that corresponded to those in the MS list, 
whereas the HT1376 cells were haplotyped as HI_A-A*24; 
-B*15(62); -Cw*03(9), confirming a homogenous cell line. This 
led us to examine in more detail the peptide sequences ob­
tained and to evaluate how these were assigned by MASCOT 
to a given HLA nomenclature (Table I). It was apparent that 
several peptide sequences had been assigned to multiple 
HLA types. For example, sequence FDSDAASPR was desig­
nated to HLA-B15, -B52, -B54, and -B59 and to HLA-C01, 
-C12, -C17, and -C03. In contrast, however, there were some 
peptides that appeared in only a single designation. These
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T a b l e  I

Examination of MASCOT-designated MHC class I identifications, 
highlighting assignment of peptide sequences to more than one pro­

tein identification

MASCOT Designated HLA-identifications

Peptide Sequences 
assigned a HLA-designation
FIAVGYVDOTQFVR

APWVcQEGPCVWOk

AYLEOTCVDOLR
AYLEGLCVEWLR

FDSDAASPR 
FWMdYVDOTCirVR*
OEPMFlAVOYVOOTQFVjr
GYHQYAYDGKOYIALK
GYHQYAYDGK

KWEAAHVAEOQR

SWTAADMAAQTTK
THVTmHPVSOHEATlh

TMVTHHPVFOYeATUr
THVTHHPISDHEATLR
THm THHPISOHEATIh

W AAW vPSGEEQn

y f y t a m s r p g r

weaahvaeqqr>

a Peptide sequences highlighted in bold represent those assigned 
to a single HLA identification. 

b HLA haplotype of HT1376 cells by PCR. 
c Positive expression confirmed by Western blot.

unique sequences were assigned to  HLA-A24 (APWIEQEG- 
PEYWDEETGK, AYLEGTCVDGLR, and WEAAHVAEQQR), 
HLA-C03 (GEPHFIAVGYVDDTQFVR), and HLA-G (APW- 
VEQEGPEYWEEETR, FIAMGYVDDTQFVR, and THVTHH- 
PVFDYEATLR). There were no unique peptides for any HLA-B 
allele, although of the HLA-B subtypes identified, HLA-B15 
was assigned the greatest number of peptides. In conclusion, 
manual analysis of peptides designated as MHC Class I iden­
tifications is recommended to clarify potential confusion aris­
ing from such MASCOT results.

Validation o f Exosomal Expression o f Proteins Identified— It 
is also important to determine the validity of som e MS- 
identified proteins by confirming their presence in the sam ­
ple by other techniques. With a list as large as 353 proteins, 
it was not possible to do this wholesale so we restricted 
such validation to  a set of proteins that may be of biological 
interest.

We performed a series of Western blot panels, analyzing up 
to 20 pg  of HT1376 exosom es per well, to determine whether 
some MS-identified proteins were detectable in our exosome 
preparations. We stained for TSG101 as our choice marker for 
multivesicular bodies and hence exosomes. This protein was 
incidentally detected by MS by only a single peptide se ­
quence and was therefore excluded from our data on this 
basis. LAMP-2, a molecule we expected to be present in 
exosomes, was detected in our sample by MS and was con­

firmed here to be strongly positive by Western blot (Fig. 4A). 
Among the MS identifications were numerous cytokeratin 
identifications (type I cytoskeletal keratins 1,7, 13, 14, 16, 17, 
18, and 19). We confirmed expression of cytokeratin 17 and 
cytokeratin 18 in the preparations, revealing abundant ex­
pression of exosomal cytokeratin 17. Cytokeratin 18, how­
ever, was only detectable with 20 pg  of exosomes per well, 
suggesting that exosom es genuinely do express multiple cy­
toskeletal constituents and that the LC-MALDI MS approach 
is sufficiently sensitive to detect molecules such as cytokera­
tin 18 that are difficult to reveal by traditional Western blotting 
methods. Because of the anomalous issues surrounding MHC 
identifications, it was important to determine whether or not 
HLA-G was in fact expressed by HT1376 exosomes as this 
was not included in the PCR haplotyping of HT1376 cells. 
HLA-G was unequivocally confirmed to be present in exo­
som es by Western blot. Other m em brane-associated (galec- 
tin-3, basigin, and CD73) or soluble (hnRNPK and j3-catenin) 
molecules with docum ented associations in varied aspects of 
cancer biology were confirmed to be positively expressed by 
HT1376 exosomes.

Validation o f Flotation Characteristics o f Identified Exoso­
mal Proteins—Although the standard exosom e purification 
method used here is robust, it remains possible that some 
non-exosomal contaminating material is present in the prep­
arations and that som e of these MS identifications are not 
genuinely exosomally expressed proteins. To dem onstrate 
that these proteins were exosomally expressed, we ultracen­
trifuged HT1376 culture medium at 70,000 x g, and the 
resuspended pellet was subjected to a second ultracentrifu­
gation on a linear sucrose gradient. This was done to deter­
mine the capacity of the identified proteins to float at exoso­
mal densities. Each of 15 fractions collected from the gradient 
was split: one-third was used for analysis by flow cytometry of 
exosome-coated beads, and two-thirds was used for Western 
blotting. The former method would reveal possible expression 
of candidate proteins at the exosom e surface, whereas solu­
bilizing exosomes for Western blot would allow surface and 
intraluminal constituents to be revealed. In the flow cytometry 
assay, exosome-containing fractions were identified by 
strong staining for tetraspanins CD9 and CD81 and for MHC 
Class I, which are known to be expressed on the surface of 
HT1376 exosomes, revealing a clear and principal peak at a 
density of 1.12 g/ml (Fig. 4B), which is within the expected 
exosomal density (Fig. 1C). This fraction, containing most of 
the exosomes, therefore also revealed positive surface stain­
ing for the MS-identified proteins jS-, and a 6 integrins, CD36 
(lysosome m embrane protein 2), CD44, CD73 (5'-nucleotid- 
ase), CD10 (neprilysin), MUC1, and basigin (CD147). 5T4, a 
protein not previously identified by any other exosome pro­
teomics study, w as included in this panel, demonstrating 
positive surface expression. The sam e fractions were also 
stained with a calnexin-specific antibody, revealing low level 
expression predominantly at densities greater than the exo-
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Fig. 4. Validation of som e MS-identified proteins by W estern blot and flow cytom etric analysis. HT1376 exosom es (5-20 jug/well), 
purified by the standard sucrose cushion method, were analyzed by Western blot for expression of a range of MS identified proteins as 
indicated (-4). The 70,000 x g pellet, obtained from HT1376 cell-conditioned medium, was subjected to fractionation by centrifugation on a 
linear sucrose gradient (0.2-2.5 m). Fifteen total fractions were collected, and the density was measured by refractometry. Thereafter, one-third 
of each fraction was coupled to latex beads followed by flow cytometric analysis for exosomal surface expression as indicated (B). In parallel, 
the remaining two-thirds of each fraction was subjected to Western blotting for proteins as indicated (C). The data reveal proteins floating at 
a recognized exosomal density range (1.12-1.2 g/ml). (The data are representative of two experiments.) CK, cytokeratin.

some-containing fractions. This confirms the specificity of 
staining for the other markers tested and the absence of 
calnexin in exosome-containing fractions as expected (Fig. 
4B). To reveal relevant fractions in the Western blot panel, we 
stained forTSG101, highlighting densities of 1.12-1.2 g/ml as 
exosome-containing (Fig. 4C). There was some positive stain­
ing at hyperdense fractions (>1.2g/ml), but this was relatively 
weak and may be due to exosome or protein aggregates. The 
proteins 5T4, CD44, basigin, galectin-3, and /3-catenin all 
co-localized at the same density range, consistent with their 
exosomal expression. Overall, these data show that 18 of the 
MS protein identifications achieved in this study are con­
firmed to be expressed by HT1376 exosomes and that mem­
brane-associated molecules, often difficult to solubilize and 
identify by MS approaches, have been successfully identified 
and validated as localized to the exosome membrane.

Preliminary Validation o f Presence of Som e MS-identified 
Proteins Present on Urinary Exosomes from Bladder Can­
cer Patients—Although we have previously examined exo­
somes present in the urine of prostate cancer patients (15), 
there are no studies to date specifically describing urinary 
exosomes of bladder cancer patients, although as we have

mentioned, there is one report about urinary microparticles from 
this disease setting (17). Although a thorough examination of 
this question is outside the scope of this report, we have made 
preliminary efforts to ascertain the feasibility of doing such 
analyses of exosomes with bladder cancer patient-derived urine 
using the sucrose cushion purification method.

We first confirmed that the ultracentrifugation approach 
(sucrose cushion method) would be effective in isolating qual­
ity exosomes from other bladder cancer cell lines. We used 
the latex bead assay (as shown in Fig. 1) to evaluate the 
quality of the exosomes purified. Analysis of an additional four 
bladder cancer cell lines revealed it was possible to achieve 
purifications of quality comparable to those from HT1376 
cells. The method should therefore be well suited for captur­
ing bladder cancer exosom es irrespective of nuances of den­
sity that may differ slightly across different cells (Fig. 5A).

We next embarked on purifying exosomes from urine spec­
imens using this method. Urine specimens were collected 
from four healthy individuals and from three patients with 
transitional cell carcinoma of the bladder prior to the com­
mencement of any treatment. The latex bead assay was per­
formed (Fig. 5B), revealing good levels of signals for the three
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tetraspanin molecules tested (CD9, CD81, and CD63), but 
only one preparation from each cohort passed our arbitrary 
quality threshold (over 5000 units for CD9 staining). These 
high quality specimens were examined further for expression 
of surface-oriented membrane proteins (similar to the panel in 
Fig. 4B), revealing that it is possible to detect positive expres­
sion (above isotype-stained controls) for most of these pro­
teins tested. Importantly, some differences in the exosome 
profile between health and disease may be apparent using 
such a comparative test, such as elevated exosomal CD36, 
CD44, 5T4, basigin, and CD73 in cancer (Fig. 5C). We em­
phasize caution, however, in overinterpretation of these data 
based on the few clinical specimens that were available to us. 
Nevertheless, this aspect appears promising and warrants 
future follow-up studies.

DISCUSSION

Exosomes are highly complex nanometer-sized vesicles 
that are ubiquitous in biological systems. There is consider­
able research interest in understanding the physiological 
functions of exosomes in various settings, no more so than in 
elucidating their role in diseases like cancer. Studies of exo­
somes in various malignancies like prostate (8, 15,16), breast 
(28), and colorectal cancers (44); melanoma (40, 45); pleural 
mesothelioma (5); malignancies of the central nervous system 
(21, 46); and others have begun. Collectively, these studies

highlight expression of multiple tumor-related antigens by 
exosomes and perhaps general roles in immune modulation 
or in other aspects of cancer biology. In recent years, there 
has been particular interest in utilizing exosomes, isolated 
from patients, as tools for diagnosing disease (8, 11-14) or for 
discovering novel molecular markers (7). To date, however, 
there is only one report in the context of bladder cancer that 
highlights some disease-related differences in the protein 
constituents of urine-derived microparticles (17). Whether or 
not these proteins relate specifically to the exosomes present 
in such complex samples remains unclear.

This is an area that calls for some attention as managing 
and monitoring this disease are challenging, involving highly 
invasive and expensive procedures. Development of non- 
invasive tools for bladder cancer would therefore be particu­
larly welcome. The direct contact between bladder urothelial 
cells and urine presents ample opportunity for secretion of 
exosomes directly into the urinary space (2). Collection and 
analysis of urinary exosom es in this disease setting hold 
promise as a novel diagnostic platform. However, exploitation 
of urinary exosom es requires a substantive high quality pro- 
teomic description of bladder cancer exosomes to be per­
formed. Thus, this study provides essential solid ground that 
will greatly facilitate future developments in this understudied 
disease.
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We have examined exosom es isolated from the HT1376 cell 
line, a good example of transitional cell carcinoma of bladder, 
and they seem typical of exosomes from other cellular 
sources. They are classically nanometer-sized vesicles that 
express high levels of tetraspanins, MHC molecules, markers 
of the endocytic tract, and adhesion molecules, and the ves­
icles exhibit the capacity to float at characteristic densities on 
sucrose gradients (19). This latter property is a very useful 
feature that can be used as a mode of separating exosomes 
from non-exosomal protein material that may co-pellet under 
high speed ultracentrifugation, an aspect that has perhaps not 
been fully appreciated in all exosome proteomics studies (2, 
39, 40, 47, 48), resulting in possible false positive identifica­
tions. Our choice protocol is based on the method of Lam- 
parski et al. (20) that provides a good exosome yield of very 
high purity. Similar approaches have also been used by other 
recent proteomics studies (21, 43, 49), and this vital invest­
ment in deriving maximal purity of input sample is essential for 
confidence in data arising from downstream proteomics 
analyses.

A major difficulty in the field, however, is to accurately 
estimate levels of sample contamination. One approach used 
by us and others is to perform Western blots for molecules not 
putatively expressed by exosomes, such as markers of the 
endoplasmic reticulum (e.g. calnexin or gp96), mitochondria, 
and nucleus. The difficulty here is that although such com­
partments may be relatively poorly represented in the exo­
some proteome it is not clear to what degree this rule is 
absolutely true (i.e. they may be present in exosomes at low 
levels). Our MS approach has indeed identified several pro­
teins that are normally located to the endoplasmic reticulum 
or other compartments not well represented by exosomes, 
and this is also true of other exosome proteomics studies (37). 
These identifications may reflect the higher sensitivity of MS 
workflows for detecting these relatively low abundance con­
taminants that may not be detected efficiently by Western 
blotting. An alternative explanation, however, may be that 
these constituents are genuinely expressed by exosomes. If 
not directly loaded into/onto exosomes during manufacture, it 
may be possible that some proteins may be present at low 
levels at the outer surface of the cell and subsequently be­
come taken up into the endosomal system and packaged into 
exosomes (50). In addition, a host of poorly understood cel­
lular alterations occurring in cancer cells may modify traffick­
ing of some proteins, resulting in inappropriate distributions, 
such as hnRNPK, which may become cytoplasmically rather 
than nuclearly located in certain cancers (51, 52). The abso­
lute exclusion of endoplasmic reticulum-resident proteins (or 
proteins related to other cellular compartments) from exo­
som es may be a rule that is bent or broken in cancerous cells. 
Our use of “sticky” latex microbeads is a simple but effective 
method for estimating the degree of contamination of prepa­
rations by non-exosomal soluble proteins. Preparations re­
plete with contaminants would result in beads poorly coated

with exosomes, giving poor signal strength by flow cytometry 
for exosome surface markers like CD9. An arbitrary threshold 
value for this assay was set intentionally high as a m eans of 
assuring that the highest quality preparations only were sub­
jected to proteomics. However, developing methods that dis­
criminate well between exosomally expressed proteins and 
low abundance contaminants remains a challenge. Further­
more, establishing the precise route by which proteins are 
loaded into exosom es is far from straightforward. These may 
be aspects to be examined on a protein by protein basis 
during subsequent validation steps.

We used an LC-MALDI MS workflow, successfully identify­
ing 353 proteins. This number of identifications is among the 
highest in the exosom e proteomics field, and we are confident 
about the quality of such identifications because of the nature 
of the sam ple analyzed and because we report identifications 
based on a minimum of two peptides. A key issue for us in 
analyzing the data was to understand how our study com­
pares with other exosom e proteomics studies. We found 
ExoCarta (33), a da tabase  repository for exosom e proteomics 
studies, to be a useful tool. By obtaining gene lists from these 
studies and our own, we were able to perform an overrepre­
sentation analysis of the data, that is to discover whether 
there were more genes overlapping with ExoCarta gene sets 
than could be expected by chance. This statistical method, 
therefore, represents an unbiased approach for bioinformatics 
examination of our MS data. In essence, this revealed sub­
stantial data matching, particularly with high quality studies of 
colorectal cancer exosom es (42, 43), showing the HT1376 
exosome proteome to be strongly consistent with exosom es 
of carcinoma origin. Similar results were evident using 
GeneGO MetaCore, emphasizing strong associations with 
carcinoma (of various sites) above other d isease types. The 
GeneGO analysis, however, has also raised som e issues that 
were not entirely expected, such as the predominant associ­
ations with control of the cytoskeleton. This statistically dis­
covered association seem s valid because multiple cytokera- 
tins (cytokeratins 1, 5, 6B, 8 ,1 3 ,1 4 ,1 6 ,1 7 ,1 8 , and 19), actins 
(cytoplasmic 1, actin-like protein 6A, actin-related protein 2, 
and a  cardiac muscle 1), myosin (myosin-1 c, -10, and -14), 
tubulin (putative tubulin-like protein a-4B and tubulin chain), 
and cytoskeletal linking proteins (filamin-A and -B, a-actinin-1 
and -4, and plectin-1) were present in the identifications, and 
we confirmed expression of som e by Western blot. The im­
portance of these proteins in terms of exosome biology is 
unknown. Exploring exosomal cytokeratin profiles ex vivo may 
be clinically useful in bladder cancer as these can change with 
epithelial differentiation and with invasive properties and may 
help predict the outcom e or assist differential diagnoses (27). 
An additional unexpected aspect, arising from the cell com ­
partment GeneGO query, was the apparent strong associa­
tions with specific compartments, the melanosome and 
pigment granule. These tissue-specific organelles are respon­
sible for the manufacture and storage of melanin in pigment
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cells of skin and eye. One would certainly not expect bladder 
cancer cells to strongly resemble pigment cells, and as such, 
this was a surprising finding. However, the melanosome is a 
specialized endosomal com partm ent that is derived from 
early endosomal interm ediates that strongly resemble mul- 
tivesicular bodies in morphology and composition. Thus, 
the highly evplutionally conserved molecular machinery in­
volved in protein chaperone functions, in membrane fusion 
and budding events, and in transportation of proteins to the 
melanosome bears significant resemblance to the generic 
machinery giving rise to exosom es (53), which may explain 
this association.

We also, albeit briefly, investigated whether exosomes 
could be isolated from other bladder cancer cell lines and 
more importantly from urine specimens using the same exo­
some purification method. This was highly successful, giving 
comparable levels of purity assessed by our latex bead assay, 
when using an additional four bladder cancer cell lines. When 
applying the techniques to freshly collected urine specimens, 
a source that is significantly more complex and more variable 
than cell culture supernatant as we described previously (15), 
most preparations did not reach our “exosome quality thresh­
old.” Nevertheless, preparations from healthy donors and 
bladder cancer patient urine stained strongly for the tet- 
raspanin proteins CD9, CD81, and CD63. This aspect is of 
particular note because it may be attractive in future clinical 
studies to move away from the reliance on ultracentrifugation 
methods, which are cum bersom e and impractical for large 
sample sets, and replace these with an affinity approach. 
Such tetraspanins, therefore, would be a good choice for 
antibody-mediated exosome capture either directly onto mi­
crotiter plates or onto microbeads (1) followed by an analysis 
for additional protein markers of interest (i.e. those within 
our MS identifications). In fact, we were able to dem onstrate 
that several MS-identified exosom e m em brane proteins 
were expressed at relatively higher levels in exosom es iso­
lated from a bladder cancer patient com pared with exo­
som es isolated from a healthy donor. Although not exhaus­
tive, such data suggest that urinary exosom e analysis in the 
context of bladder cancer may prove fruitful and is certainly 
worthy of further attention.

In summary, we have achieved the first high quality pro- 
teomic description of bladder cancer cell-derived exosomes 
and have learned three key lessons that have wide applica­
bility to other proteomics studies. First, we show the useful­
ness of DTT as part of a solubilization buffer. This agent 
increased the number of identifications more than 100-fold. 
Second, we highlight that care must be taken with identifica­
tions of proteins showing considerable homology (with HLA 
proteins being an excellent case study). Our work demon­
strates that MASCOT is not capable of distinguishing between 
the incorrect and correct HLA molecules present in exo­
somes. We believe this problem has probably affected many 
other proteomics studies. Third, we emphasize the impor­

tance of careful sample preparation both as part of a pro­
teomics workflow and for validation. The particular example in 
our study was our use of latex microbeads. This allowed us to 
quality control our specimens before commencing proteomics 
and, using this approach, also allowed us to validate, quantify, 
and confirm the orientation of 12 proteins in a way that is 
impossible with just Western blotting. Follow-up investigations, 
informed by this report, are now planned to identify the pres­
ence of candidate markers in the urine of bladder cancer pa­
tients with the ultimate goal of replacing highly invasive proce­
dures currently utilized in diagnosis and monitoring with a fully 
non-invasive urinary exosome-based technique.
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