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Summary

In this thesis two different models and numerical methods have been developed to
investigate the dynamics of bubbles in viscoelastic fluids. In the interests of gaining
crucial initial insights, a simplified system of governing equations is first considered.
The ambient fluid around the bubble is considered incompressible and the flow irrota-
tional. Viscoelastic effects are included through the normal stress balance at the bubble
surface. The governing equations are then solved using a boundary element method.
With regard to spherical bubble collapse, the model captures the behaviour seen in
other studies, including the damped oscillation of the bubble radius with time and the
existence of an elastic-limit solution. The model is extended in order to investigate
multi-bubble dynamics near a rigid wall and a free surface. It is found that viscoelastic
effects can prevent jet formation, produce cusped bubble shapes, and generally prevent
the catastrophic collapse that is seen in the inviscid cases.

The model is then used to investigate the role of viscoelasticity in the dynamics of rising
gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised
by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump
discontinuity. The model predicts the cusp at the trailing end of a rising bubble to
a high resolution. However, the irrotational assumption precludes the prediction of
the negative wake. The corresponding absence of the jump discontinuity supports the
hypothesis that the negative wake is primarily responsible for the jump discontinuity,
as mooted in previous studies.

A second model is developed with the intention of gaining further insight into the
role of viscoelasticity and corroborating the findings of the first model. This second
model employs the full compressible governing equations in a two dimensional domain.
The equations are solved using the spectral element method, while the two phases are
represented by “marker particles”. The results are in qualitative agreement with the
first model and confirm that the findings presented are a faithful account of bubble
dynamics in viscoelastic fluids.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the development of numerical methods to investigate
the dynamics of bubbles in viscoelastic fluids. When a body of liquid is heated under
constant pressure, or when its pressure is reduced at a constant temperature; vapour
and/or gas filled bubbles can form and grow. The latter process of rupturing a fluid
by a decrease in pressure is often called cavitation [29]. The occurrence of bubbles in
Nature and industry is innumerable and their role in fluid systems is one of fundamen-
tal importance. A few example industrial systems are combustion engines, pipelines,
pumps, and distillation columns [124]. In medicine and biology, bubbles are important
in ultrasound [166] and shock-wave lithotripsy [51,85] procedures. In Nature, besides
the world’s oceans and rivers being natural bubbly flows, bubbles are utilised by living

organisms such as the snapping shrimp in subduing their prey [96].

Many of the fluids in such systems are best described by non-Newtonian, and in par-
ticular, viscoelastic models. This is especially true of common biological and industrial
fluids such as blood, oils, and lubricants. Briefly, viscoelastic fluids are those which
possess characteristics of both the elastic solid and viscous fluid. In 1867 Maxwell first
proposed a mathematical model for a viscoelastic material. By combining the concepts
of the ideal elastic solid proposed by Hooke (1676) with the ideal viscous fluid proposed

by Newton (1687), Maxwell derived the well-known constitutive equation

oT .



relating the stress T to the rate of strain (or rate of deformation) 4. The constants of
proportionality u and A are called the viscosity and relaxation time, respectively. The
relaxation time is an important property of viscoelastic materials and, broadly speak-
ing, provides an order of magnitude estimate of the time it takes for the stress to relax
to some limiting value. Physically, the relaxation time is associated with the rate at
which structures within the material change their configurations. In the case of water
the relaxation time is approximately 107!2s, while that of low density polyethylene is
about 10s. It is often the case, for example in polymeric liquids, that there will be a
range of time constants associated with a range of polymer molecule configurations,
and consequently the fluid will have a spectrum of relaxation times. Due to their com-
plex structure, in reality few viscoelastic materials obey the simple linear relationship
proposed by Maxwell, particularly in flows with large deformations. In a landmark
paper, Oldroyd [109] discussed the use of frame invariant rheological models, suitable
for application to all conditions of motion and stress. This set up the framework for
the development of non-linear constitutive equations and, to this day, ever more so-
phisticated rheological models are being proposed to better describe viscoelastic flow

behaviour.

The dynamics of viscoelastic fluids are interesting and varied, and can differ greatly
from Newtonian fluids. One can then expect the behaviour of bubbles within a vis-
coelastic fluid to differ drastically from a Newtonian fluid. Despite their prevalence
and more interesting dynamics, bubbles in viscoelastic fluids have received little at-
tention compared to their Newtonian counterparts. Theoretical and numerical studies
are, in the most part, restricted to spherical bubble dynamics and the solution of the
governing non-linear ODE. In reality, bubbles rarely remain spherical. While a multi-
tude of numerical methods have been developed to simulate non-spherical Newtonian
dynamics, numerical studies into non-spherical viscoelastic dynamics are sadly lacking.
The bubble dynamic process which receives the greatest attention in this thesis is

arguably the most important and interesting; that of bubble collapse.

1.2 Bubble Collapse and Cavitation Damage

Bubble collapse occurs implosively and is a catastrophic phenomenon producing high

pressures, velocities, temperatures, loud noises and even light [29]. As a result of



such high pressures and velocities, bubble collapse can cause substantial damage to
nearby surfaces; so called cavitation damage. As stated by Knapp et al. [84]: “Cav-
itation is a most unpleasant hydrodynamic phenomenon, whose harmful effects are
both widespread and obvious and seriously handicap many phases of science and en-
gineering”. Figure 1.1 shows images of a propeller which has succumbed to cavitation

damage.

Figure 1.1: Cavitation damage on a propeller bladel.

One of the first studies of cavitation damage was under commission from the British
Admiralty, which wanted research carried out to determine the cause of damage to
ship propellers. It was reported that damage was due to ‘“hydraulic blows” to the
blades from collapsing cavitation bubbles [18]. The first serious theoretical study of
cavitation was undertaken by Lord Rayleigh in 1917 [126]. Considering the collapse
of a spherical void in an infinite bath of fluid, it was shown that collapse created high
pressures and velocities in close proximity to the bubble surface. For fifty years the
development of high pressures was seen as a sufficient reason for cavitation damage.
It was not until the pioneering experimental work of Benjamin and Ellis [9] in 1966,
that it was realised a more complex dynamic occurred. During collapse near a wall
the bubble no longer remains spherical. In fact a high speed liquid jet forms, which
can penetrate and thread the bubble and impact upon the wall. The resulting bubble
can then have a toroidal form. A simple diagrammatic representation of this process
is given in Figure 1.2

Jet velocities during bubble collapse can typically reach 100ms-1 [86,138]. It was sub-

sequently proposed that the impact of this liquid jet upon a nearby surface was the

Picture available for reuse under licence, see http://creativecommons.org/licenses/by-
sa/2.5/deed.en
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Figure 1.2: Sketch of jet formation and impact during collapse near a rigid wall - and
the possible damage that results.

primary mechanism for cavitation damage [158]. More recently it was found that, fol-
lowing jet impact, the subsequent toroidal dynamics can produce large pressure shock
waves, which also contribute to cavitation damage [115]. The proposed source of these
shock waves is a “splashing effect”, which arises from the collision of fluid from the
liquid jet with the oppositely directed flow [151]. Hence, whether acting directly or
indirectly, jet formation is a major factor in the creation of cavitation damage. Cav-
itation damage remains a subject of intense research due to its prevalence in many
different processes. These include shockwave lithotripsy (cavitation damage can occur
on internal organs during the procedure [51]), the flow around hydrofoils [47] and jour-
nal bearings [44] (both of which can succumb to cavitation damage) and interestingly,
the snapping shrimp (their snapping claw produces bubbles which collapse, stunning
their prey [96]).

1.3 Numerical Approaches in the Modelling of Bub-

ble Dynamics

Bubble dynamics falls under the broader subject of multi-phase flows; the bubble is
comprised of one phase (gas or vapour), while the ambient fluid comprises of another
(liquid). One need not dwell on the importance of multi-phase flows, but their incred-
ible prevalence means that they have been a subject of intense research for decades.
Short of analytical solutions but for the simplest cases, a multitude of numerical meth-
ods have been developed to simulate their dynamics. Broadly speaking, the numerical
methods can be split into two groups; fixed (Eulerian) mesh techniques or moving
(Lagrangian) mesh techniques. The main methods within these two groups, and their

relative merits, will be briefly discussed.



1.3.1 Eulerian Techniques

Since the computational mesh is fixed, additional functions need to be defined to trace
fluid boundaries. These functions can be designed and implemented in such a way as
to capture large deformations and coalescence/splitting with ease. The are two distinct

approaches - surface tracking methods and volume tracking methods.

Surface Tracking

Surface tracking methods specify a set of marker points or use height functions to
describe the surface explicitly. Extensively used techniques include the front track-
ing method of Unverdi and Tryggvason [156] and the level set method of Osher and
Sethian [111]. The front tracking method and the level set method are typically ap-
plied in “one-fluid” methods. Briefly, all phases are governed by one set of governing
equations with densities and viscosities varying appropriately for each phase (for ex-
ample the density of the region describing the bubble should be less than the ambient
fluid). The front tracking method specifies a series of marker points on the bubble
surface. The surface is well defined but the sharp change in variables across the sur-
face is smoothed as information is passed on to the fixed grid. The level set method
defines a function ¢ that is zero on the boundary, positive in one phase, and negative
in the other. Since the function is advected with the flow and the boundary, ¢ will
theoretically retain these values indefinitely. The set of points such that ¢ = 0 defines
the position of the surface, but as with the front tracking method, smoothing is re-
quired over the interface when passing information onto the fixed grid. The advantage
the level-set method has over the front tracking method is that no special treatment is
required when interfaces meet. In the former the interface needs to be reconstructed
accordingly, while for the latter the interface is always defined by ¢ = 0. The level
set method, however, suffers from poor mass conservation, with mass being spuriously

created or destroyed, especially under significant topological changes of the interface.

The MAC method, originally of Harlow and Welch [64], is not dissimilar to the front
tracking method in the respect that the surface is traced by advected marker points.
However, marker points are also distributed throughout the fluid bulk, and so the
method can be considered more a volume tracking technique rather than surface track-
ing. Here marker points indicate the position of the fluid interface on the grid and so

where the free surface boundary conditions can be applied. In the original implemen-
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tation, the free surface boundary conditions were included in a crude manner as no
detail regarding the form of the free surface could be deduced (only its whereabouts on
the grid). However, this has since been considerably refined. For example, Popinet and
Zaleski [121] in their finite volume study, interpolate such marker points using cubic
splines - producing a well defined surface allowing for an accurate implementation of

the boundary conditions.

Volume Tracking

The most commonly used volume tracking techniques are variations and extensions
of the well known “volume of fluid” method (VOF). A volume fraction parameter, f
(sometimes called a colour function), is assigned to each of the grid cells such that it is
full of liquid if f =1, is empty if f = 0, and partially full if 0 < f < 1. The function f
is then calculated at subsequent time steps using an advection equation. As with the
level set method, the major benefit is its ability to deal with large deformations and
changes in topology without any additional effort. The volume fraction f is simply
updated using the advection equation to determine what portion of fluid is in each
grid cell. The major problem is that the interface is not explicitly described. There
have been a number of methods which infer the interface geometry in a variety of
ways, including SLIC (simple line interface calculation), PLIC (piecewise linear inter-
face construction) and ELVIRA (efficient least squares VOF interface reconstruction
algorithm). However such techniques can lead to unwanted smoothing of the surface,
i.e. “numerical surface tension”. Consequently the accuracy of surface tension forces
can be significantly affected. Though traditionally used in conjunction with finite dif-
ference grids, VOF methods have also been used with finite element methods, see for
example [103]. The main benefit of doing so is that boundary conditions on the in-
terface can be implemented in a more natural and physical way using appropriately
shaped elements along fluid interfaces. “One fluid” finite difference methods typically
accommodate such conditions through an additional body force term in the equation
of motion. Different methods exist for calculating this body force, such as the CSF
(continuum surface force) method, but these inevitably require smoothing the force

over a finite interface.

The marker particle (MP) method of Rider and Kothe [128] bears a semblance to
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both the volume of fluid and MAC method. In a similar manner to VOF, a colour
function C is updated using the usual advection equation. However, instead of directly
tracking volume, massless marker particles are tracked. Each particle is assigned a
particular “colour” depending upon the phase in which it resides. Since a particle of
fluid will remain of that fluid type (assuming no change in phase), a particle will keep its
colour indefinitely. Within fluid-fluid interface regions, where two (or more) differently
coloured sets of marker particles reside, an average is taken of the surrounding particles
to determine an interpolated colour at the point in question. To accurately describe
the different phases, the whole computational domain is filled with a high density of
these marker particles, with each being updated to a new position every time step.
An obvious disadvantage compared to VOF methods is the additional computational
cost in tracking such a large number of particles. The main advantages include the
ease of implementation, the trivial extension to compressible flows, and the minimal
numerical diffusion of the colour function over time (particle information is never lost).
Furthermore, the method retains the VOF’s ability to deal with large deformations

and topology changes automatically.

1.3.2 Lagrangian and Semi-Lagrangian Techniques

Alternatively, one can eliminate the need for additional phase defining functions through
the employment of a moving or Lagrangian mesh technique. Defining the surface of
the bubble or drop to be the boundary of the computational domain, one can solve the
governing equations and update the mesh to determine the evolution in bubble shape.
Generally such an approach allows an accurate implementation of the stress boundary
conditions between phases, which is indeed necessary to complete the system of gov-
erning equations. In most cases however, and in contrast to many one-field Eulerian
models, the gas/vapour phase is not explicitly modelled (but its influence can still be
exerted through the boundary conditions).

Finite element methods are a popular choice in solving such moving mesh problems
due to their flexibility in handling irregular geometries. However, a limitation of La-
grangian techniques is the development of large distortions in the mesh, as it deforms
with the flow. To prevent stretching and distortion of the mesh, and subsequent on-
set of numerical instability, substantial remeshing has to be undertaken. Appropriate
remeshing can be difficult and can itself introduce additional errors in the solution. The

Arbitrary Lagrangian Eulerian (ALE) method attempts to alleviate mesh distortion,
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by mapping the advecting physical domain onto a computational domain. The com-
putational domain is moved with a velocity that can be different from that of the flow.
This allows its deformation to be controlled, enabling it to stay relatively structured
even though the physical domain is heavily distorted [124]. In two or more dimen-
sions, Lagrangian and semi-Lagrangian techniques can be quite tricky to implement.
Boundary element methods (BEM) have been very popular in describing multiphase
flows as the dimensionality of the problem is effectively reduced by one. Not only is
this more computationally efficient, but updating and redistributing the mesh is easier
to implement. Consequently, BEM methods are adept in handling large flow deforma-
tions. However, boundary element methods are best reserved for the numerical solution
of linear PDE’s. Though it is possible to extend BEM to non-linear equations - this
will inevitably involve some domain calculations [59]. As a result, boundary element
methods are well suited to solving incompressible and irrotational flows (governed by
Laplace’s equation: V2¢ = 0), and Stokes flows (V - ¢ = 0). The use of boundary
element methods in solving Stokes’ equation for bubble and drop problems has been
investigated by Khayat [75], for example. Khayat looks at several industrial processes,
such as cavity flow in polymer solutions with moving boundaries [75] (the polymeric
liquid under study is assumed to be of Jeffrey’s type), drop deformation in confined
flow [76], and extrusion of a viscous fluid through a solid cylinder [77]. Though able to
describe extremely slow or viscous flows [43], the Stokes approximation cannot be used

to describe high speed cavitation phenomena, such as jet formation and bubble collapse.

In previous studies of non-spherical bubble collapse, the application of Laplace’s equa-
tion has proven most successful. The problem was first tackled by Plesset and Chap-
man [119] who assumed an inviscid, incompressible and irrotational fluid, and solved
Laplace’s equation using a finite difference method. Blake et al. [19] then solved the
same model problem using the more efficient and accurate boundary element method.
Following experimental observations, axisymmetry was also assumed. Their results
show the production of the liquid jet (up until the point of impact upon the lower
bubble surface) and bear good agreement with experiment. Subsequent developments
to the model include a cubic spline representation of the boundary and the surface
functions [46], the inclusion of non-condensible bubble contents [11], the simulation of
bursting of bubbles near free surfaces 26}, and fully 3D calculations [122,167]. Best [10]
also extended the theory to study the dynamics of the toroidal bubble created after the



liquid jet penetrates the cavity. Subsequent numerical studies of the toroidal splashing
effect have been reported in [151]. These studies have all assumed the fluid around
the bubble to be inviscid. There is a common misconception that an irrotational flow
implies an inviscid fluid. Importantly, and as recently stressed by Joseph [70], this is

certainly not the case.

1.4 The Direction of this Thesis

In the interests of gaining some crucial insights into viscoelastic bubble dynamics, a
simplified system of governing equations is first considered. Given the success of the
irrotational boundary element method in describing inviscid bubble collapse, the first
course of action is to extend the method to include viscoelastic effects. The assump-
tion is that the viscoelastic (and viscous) effects are important only in the immediate
proximity of the bubble surface, with the ambient fluid flow remaining irrotational.
This model will allow a valuable and unique insight into dynamics, as well as provide a
particularly good approximation to inertia dominated flows, such as jet formation. In
such flows viscous/viscoelastic effects are important only in thin boundary layers near
the bubble surface.

Indeed, the irrotational flow approximation has provided some very satisfactory results
for a range of viscous/viscoelastic bubble and drop phenomena. As mentioned, an ir-
rotational flow does not imply an inviscid fluid; viscous, and indeed viscoelastic effects,
still reside and can appear through the boundary conditions. This is a fact that has
been reemphasised in a number of recent papers by Joseph and co-workers (see for
example [70]). The ability of viscous/viscoelastic irrotational flows to provide good
approximations to full solutions arises from the small amount of vorticity generated
at the bubble’s shear stress-free free surface. As stated by Batchelor [7] p. 366, there
is only a small variation in velocity across the boundary layer, and energy dissipation
is dominated by the external irrotational flow. Studies where viscous and viscoelastic
potential flows have been particularly fruitful are in the study of rising bubbles in vis-
cous liquids [88,106,107], capillary instabilities in viscous [56] and Maxwell fluids [57],
and in the Rayleigh-Taylor instability of viscoelastic drops [71]. Furthermore, such
potential flow approximations are not necessarily restricted to high Reynolds numbers.

An analysis of spherical cap bubbles using a viscous potential flow approximation gives



excellent agreement with experiment for Reynolds numbers as low as Re = 0.1 [69].
Similarly, agreement between experiment and potential flow calculations for viscous

rising bubbles are fairly good for even for Re ~ O(1) [70].

Such is the dearth of numerical research into viscoelastic bubble dynamics, and par-
ticularly bubble collapse, that employing an irrotational assumption and solving the
simplified system is an important first step. This approach was recommended indepen-
dently by Brujan [32]. With regard to simulating bubble collapse near rigid boundaries
in viscoelastic fluids, Brujan suggests the model proposed here; employing an irrota-

tional approximation in the bulk with viscoelastic effects included at the bubble surface.

Besides being able to provide a faithful approximation to many bubble phenomena, the
model can be used to provide other unique and useful insights into viscoelastic bubble
dynamics. In particular, the model allows one to ascertain the relative importance of
surface and bulk viscoelastic effects, and also (in situations where they are known to
occur) the importance of wake structures on dynamics, which are prevented under the

irrotational approximation.

The overall aim of the model is to provide valuable and accessible initial insights
into bubble dynamics in viscoelastic fluids, using an effective and efficient numerical

method. It is an important first step in the development of more sophisticated models.

Following this first venture, and given that the potential flow approximation does pre-
clude an exacting account of the role of viscoelasticity, a second model and numerical
method is then developed to describe bubble dynamics in viscoelastic fluids. The in-
tention is to gain further insight into the role of viscoelasticity, but also to support
the findings of the boundary element study. Now both the bubble and the ambient
fluid are directly modelled, and the full governing equations are solved over the whole
fluid domain. Whereas the boundary element method is a fully Lagrangian technique,
the second method is (mostly) Eulerian. It is a one-field model with the compress-
tble equations of motion being solved on an Eulerian grid using the spectral element
method. Compressibility is necessary, given that the fluid within the bubble is now
explicitly modelled and requires the ability to change volume during collapse. It is also

well known that during collapse compressibility effects can be important in the am-
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bient fluid, particularly in the final stages, when collapse velocities are non-negligible
compared to the speed of sound [30]. Necessarily, a suitable constitutive equation for
compressible viscoelastic fluids will also be discussed. The multiphase description to
be employed is the marker particle method described in the previous section. As men-
tioned, particular benefits of the scheme include the ease of implementation, the trivial
extension to compressible flows, the minimal numerical diffusion of the colour function
over time, and the ability to deal with large deformations and topology changes auto-

matically.

While particularly good quantitative agreement between the two models is not to be

expected (given the notable differences), the extent of their qualitative agreement will
be discussed.

1.5 The Outline of this Thesis

This thesis is structured as follows: Chapter 2 introduces the first mathematical model
and describes the numerical solution of the governing equations. The numerical scheme
is validated through comparison with available analytical solutions. The dynamics of
spherical bubble collapse in viscoelastic fluids is discussed and the predictions of the
model compared with those of the literature. The majority of the work in this chapter
has been published in the Journal of Non-Newtonian Fluid Mechanics [94].

Chapter 3 utilises the model of Chapter 2 and investigates the role of viscoelasticity in
the collapse of a bubble near a rigid wall/boundary. The numerical scheme is validated
through the comparisons with the results for the inviscid case, which are available in
the literature. Viscous and viscoelastic effects are then included and the subsequent
dynamics discussed. A version of this chapter has been submitted to Theoretical and

Computational Fluid Dynamics [92].

Chapter 4 extends the work of Chapter 3 and looks at the dynamics of two bubbles
near a rigid boundary. For in reality bubbles rarely form in single configurations but
as a part of large bubble clouds. Consequently, an understanding of the bubble-bubble

interaction when near a wall is important.
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Chapter 5 investigates the dynamics of a single bubble near a free surface. This is an-
other important situation, particularly in biological applications, where bubbles form
near flexible membranes and tissue. Bubble collapse near such surfaces can then result
in cell and tissue damage. Furthermore, a study of the role of viscoelasticity is impor-
tant, as many biological fluids (e.g. blood, plasma) are viscoelastic in nature. A version

of this chapter is in preparation for submission to the Journal of Fluid Mechanics [91].

Chapter 6 investigates the dynamics of gas bubbles rising in viscoelastic fluids. It is a
fundamental problem of great importance and has received much attention from exper-
imentalists. The dynamics are drastically different to their Newtonian counterparts.
Viscoelastic phenomena includes the formation of trailing end cusps, a negative wake,
and a jump in the rise velocity for bubbles over a certain volume. The aim is to resolve
the debate in the literature over the cause of this “velocity jump discontinuity” seen
in experiment. The irrotational assumption precludes the formation of the negative
wake, allowing important insights into the dynamics. Much of the work in this chapter
is to appear in a paper that has been accepted for publication in the Journal of Non-
Newtonian Fluid Mechanics [90].

In Chapter 7, we return to the problem of bubble collapse near a wall. Here however
the full compressible governing equations are solved using a spectral element method.
A volume-of-fluid-like scheme called the marker particle method is used to track and
distinguish the bubble and ambient fluid phases. The results are compared with those
of Chapter 3 with the aim of corroborating the previous findings and gaining more in-
sight into the effect of viscoelasticity on cavitation dynamics. A version of this chapter

is in preparation for submission to the Journal of Computational Physics [93].
In Chapter 8, the conclusions of the thesis are presented. This includes a summary

of the findings, a critical analysis of the numerical methods, and the possibilities for

further research.
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Chapter 2

Spherical Bubble Collapse in

Viscoelastic Fluids

2.1 Introduction

As mentioned in Chapter 1, the dynamics of cavitation bubbles play a crucial role in
many different areas of science, medicine and engineering. The importance is reflected
in the plethora of studies, both experimental and theoretical, that are available in the
literature. Cavitation processes occur frequently in non-Newtonian fluids in indus-
try and in medicine. Given their importance, an understanding of spherical bubble

dynamics is an essential first port of call.

2.1.1 The Rayleigh-Plesset Equation

The Rayleigh-Plesset equation is the non-linear ordinary differential equation govern-
ing the dynamics of a spherical bubble in a Newtonian fluid. First derived for the
inviscid case by Lord Rayleigh [126], with viscous effects introduced by Plesset [120],
it can be readily derived by considering the Naiver-Stokes equations in spherical polar

co-ordinates.

Consider a spherical bubble of radius R(t), in an infinite domain of fluid with a pressure
Poo(t) at infinity. The fluid is considered incompressible with a constant density p and
viscosity p. It is assumed the bubble contents are homogenous and the pressure py(t)
uniform. In the spherically symmetric geometry, the Navier-Stokes equations are given
by
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Oou ou 6p 28u 2u
ot +ou ot = 87‘ (r2 Br( ) B ;3) ' 21)

Conservation of mass requires that

u(r,t) = Er%tl (2.2)

In the case of zero mass transfer across the surface, u(R,t) = dR/dt = R and so
F(t) = R2R. This can be shown to be a good approximation even when evaporation

or condensation occurs at the interface [29]. Therefore, (2.2) can be written as

R?R
Substituting (2.3) into (2.1) and integrating gives
o 0 i " _
2RR*+ R’R _R'R _ P~ P (2.4)

r 274 p

using the fact that p — p when r — oo.

Now consider the stress boundary condition on the bubble fluid interface: the resultant
stress on an infinitely thin lamina radially outwards is given by

28

(Orr)r=r + Pp — R (2.5)

where p, is the pressure inside the bubble and S the surface tension. In the absence of
mass transfer, this stress must be zero and hence
R 28
p=p+ 4ll§ —F (2.6)
(Since o,, = —p+2p4%) Finally, substituting (2.6) into (2.4) gives the Rayleigh-Plesset
equation; a description of spherical bubble dynamics in a Newtonian fluid:
3 R 25 py—Pw
RR R2 dp—+ = =
+5R s+ p

For the inviscid case (¢ = 0), if one neglects surface tension (S = 0) then (2.7) can be

P (2.7)

integrated in time to give the form derived by Rayleigh [126]:
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R= (2(”%@ (%z - 1))1/2. (2.8)

From this one can derive the collapse time t. for a spherical cavity in an inviscid
incompressible fluid (the time it takes for R — 0), to give

_ p Y2T(5/6)T(1/2) p\"
=R (gpy) ot oo (Glg) - @9

The inviscid collapse time t. allows important comparisons to be made and is a useful
time scale for bubble collapse phenomena.

The Rayleigh-Plesset equation (2.7) is a second order, non-linear ODE that can be
solved in a straightforward manner using standard numerical techniques. Using a
fourth-order Runge-Kutta scheme, the numerical solution of (2.7) can be obtained for
different values of viscosity u (see Fig. 2.1). The effects of surface tension are neglected

(S = 0) in the interest of determining the effects of fluid rheology on dynamics.

u=0

5 - — — - u=0.01
- —-——- u=0.1

08 I D u=0.05

——— - u=0.2

Figure 2.1: Numerical solution of the Rayleigh-Plesset equation for different viscosities.

As expected intuitively, an increase in viscosity results in an increase in the collapse
time; the dynamics being increasingly damped in the presence of increasing viscous

forces.
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2.1.2 Viscoelastic Spherical Bubble Dynamics

In a similar manner to the Newtonian case, a general Rayleigh-Plesset equation can
be derived given a general equation of motion with an extra stress tensor T. The
spherical symmetry of the system means that all shear stress components are zero and

that Ty = T,,. Consequently, the equation of motion is given by

ou Ou\ _ dp 0T,  2(Tr — Toe)
p(:97+u5;) - 6r+( ar T ) (2.10)

The stress balance on the bubble/fluid surface (again neglecting surface tension) is

given by

p="pp+ Tpr. (2.11)

Furthermore, it is commonly assumed that the extra stress tensor is trace free (T}; =
0), allowing the stress components to be written in terms of 7, only. Subsequent

integration of (2.10) between R and oo gives the generalised Rayleigh-Plesset equation:

RR + ng =B _pp°° - %/ j;f’dr (2.12)
R

A primary characteristic of spherical bubble collapse (or expansion) in most viscoelastic

fluids, is the damped oscillation of the bubble radius in time. This intuitive effect is
due to the competition between inertial, viscous and elastic forces - and occurs only in
fluids with characteristically large elasticities, such as the Maxwell and Oldroyd models
(it is consequently not seen in a second order fluid {50]).

Many authors have noted this and other effects by solving a generalised Rayleigh-
Plesset equation for a range of different constitutive relations. Fogler and Goddard [54]
undertook one of the first theoretical studies of collapse in a viscoelastic medium, using
a Rayleigh-Plesset equation to solve the problem of a collapsing spherical cavity in a
linear Maxwell fluid. For a range of Reynolds and Deborah numbers, the viscoelastic
Rayleigh-Plesset equation was solved using finite difference methods. Their results
show for very large Deborah numbers the bubble will either oscillate about an equi-
librium radius, or collapse without oscillation, depending on some critical value. The
important finding of the study is that elasticity in the liquid can significantly retard the
collapse of a void and produce large oscillatory motion whenever the relaxation time

of the fluid is of the same order of magnitude as the Rayleigh collapse time. Later,
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the Jeffreys model was investigated by Ellis and Ting [50] and also Tanasawa and
Yang [148]. Again, the oscillation of the bubble radius in time was predicted. It was
also noted that, due to the presence of elasticity, viscous damping effects on collapse
are less in a viscoelastic fluid than in a purely viscous Newtonian fluid.

More recently Kim [78] investigated collapse in an upper convected Maxwell fluid, and
solved the appropriate Rayleigh-Plesset equation using a 1D finite element method.
The study notes the “highly oscillatory behaviours observed for moderate to high De”.
Additionally, it was observed that collapse is faster in the early stages, but slower in
the later stages; remarking that this retardation could suppress catastrophic collapse
and reduce cavitation damage in viscoelastic fluids.

Many other studies on spherical viscoelastic bubbles exist in the literature. Fogler and
Goddard [53] and Allen and Roy [2] have investigated bubble dynamics in an Oldroyd
fluid, but with applications to acoustics. Hence, frequency forcing terms were included
in the models to study bubble oscillation. Brujan [30] considered the influence of com-
pressibility on the spherical collapse of a bubble in a Jeffreys fluid. The study showed
that rebound and the period of oscillation during collapse are significantly less than
in the incompressible case, as energy is lost through sound radiation. The important
thing to note is that, despite the subtle differences in each study, each one captures

the essential viscoelastic dynamics - the damped oscillation of the radius with time.

The Rayleigh-Plesset equation is restrictive in the sense that its solution describes only
spherical dynamics. However, some of the most important bubble dynamic processes,
such as jet formation, are non-spherical (yet still axisymmetric [19]). In this chapter
we present the first of two numerical methods developed in the study of non-spherical
viscoelastic bubble collapse. Under the assumption of irrotationality and incompress-
ibility, the mass continuity equation is solved using an axisymmetric boundary element
method. An equation of motion is then formulated in terms of a generalised Bernoulli
equation. Although developed with the ultimate intention of simulating non-spherical
dynamics, in this chapter we present the details of the numerical scheme and its predic-
tions for spherical bubble dynamics only. Non-spherical investigations are reserved for
the subsequent chapters. The model is shown to describe all the important spherical
phenomena observed in the literature for the well-studied Maxwell fluid. The dynamics

of more complicated constitutive equations are also investigated using this method.
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In Section 2, the mathematical model and governing equations are presented. In Section
3 the numerical technique for solving the governing equations is described. Then in
Section 4, some numerical results are presented for several viscoelastic models detailing
the influence of the Deborah and Reynolds numbers on bubble dynamics. Conclusions

to the study are presented in Section 5.

2.2 Mathematical Model and Governing Equations

Consider a spherical bubble of initial radius Ry in an infinite expanse of fluid. Let the
fluid domain be labelled 2 with the fluid boundary, or equivalently the bubble surface,
labelled 0S2. A description of fluid and bubble dynamics can be determined by solution

of the equations governing fluid motion; the conservation of mass

Dp
r ‘u= 1
D T pV-u=0, (2.13)

and the conservation of momentum,

Du
Dt

Here p is the fluid density, u the velocity, p the pressure and T is the extra stress

=-Vp+V.T. (2.14)

tensor.

As noted in the theoretical studies of Brujan [30,31], the effects of compressibility can
be important, particularly in the late stages of collapse, when bubble interface velocities
become non-negligible compared to the speed of sound in the liquid. Despite this, we
follow the majority of other works in the literature, and assume only a small fraction
of bubble kinetic energy is radiated away as sound, and so impose incompressibility.

Hence the conservation of mass (Equation (2.13)) reduces to,

V-u=0. (2.15)

As stated in Chapter 1, in the interests of gaining some crucial initial insights into
viscoelastic bubble dynamics, a simplified system of governing equations is considered.

As suggested by Brujan [32], the fluid flow is assumed to be irrotational,

V xu=0, (2.16)

with viscous and viscoelastic effects included at the bubble surface. Besides allowing
18



a valuable and unique insight into dynamics, this assumption can provide a faithful
approximation, especially in the modelling of inertia dominated phenomena such as jet
formation. In such cases it is well known that viscous effects are important only in thin
boundary layers near surfaces [7]. The fluid outside of these boundary layers behaves
as if it is inviscid and the flow is irrotational. Similarly, in the case of viscoelastic fluids,
Beard and Walters [8] and Denn [45] assume such an (effectively) inviscid external flow
in their study of viscoelastic boundary layers. In the case of bubbles (and drops), the
shear stress-free free surface generates little vorticity and so flow within the boundary
layer is only slightly perturbed from irrotationality [7]. Thus, to a good approximation,
the bulk of the fluid can be modelled as (effectively) inviscid and irrotational, with vis-
cous and viscoelastic effects appearing through the normal stress boundary condition
at the bubble interface.

This approximation has proven extremely fruitful in many studies of viscous and vis-
coelastic drop and bubble dynamics. These include the study of rising bubbles in vis-
cous liquids [88,106,107], capillary instabilities in viscous [56] and Maxwell fluids [57],
and in the Rayleigh-Taylor instability of viscoelastic (Oldroyd B) drops [71]. Due to
the complexity of some problems, several studies necessarily employ the boundary ele-
ment method (BEM) in their viscous potential flow solution. Georgescu et al. [60] and
Boulton-Stone and co-workers [25,26] undertake a viscous potential flow study of a
bursting bubble near a free surface, with the results of the former showing good agree-
ment with experiment. Similarly Rush and Nadim [135] use a viscous potential BEM
in their study of viscous drop oscillation; as do Canot and Davoust [40] in their study
of viscous buoyant bubbles near walls. Evidently, the viscous/viscoelastic potential
flow approximation has provided a successful description of many multiphase systems,

and in many cases gives excellent agreement with experiment.

The success of the description is due to reduced vorticity generation at the free sur-
face, compared to the corresponding no-slip surface. Consequently, not only can the
irrotationality of the ambient fluid be maintained, but the potential flow can provide a
better than expected approximation at lower Reynolds numbers. An analysis of spher-
ical cap bubbles using a viscous potential flow approximation gives excellent agreement
with experiment for Reynolds numbers as low as Re = 0.1 [69]. Similarly, agreement

between experiment and potential flow calculations for rising bubbles are fairly good
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for even for Re ~ O(1) [70].

Besides being able to provide a faithful approximation to many bubble phenomena, the
model can be used to provide other unique insights into viscoelastic bubble dynamics.
This includes information on the relative importance of surface and bulk viscoelastic
effects, and also (in situations where they are known to occur) the importance of wake
structures on dynamics, which are prevented under the irrotational approximation. In
any case, the model will provide a valuable and accessible first insight into problems
that notoriously require complex numerical implementations and excessive computa-

tional resources.

The spherical symmetry of the problems studied in this chapter means that the flow is
inherently irrotational. However, the analysis presented here is kept completely gen-
eral and is applicable to any irrotational flow and to non-spherical dynamics. In the
interests of primarily studying the viscoelastic effects, the following assumptions are
also made: the effects of gravity are negligible and the bubble contents are comprised

of a uniform vapour or gas.

Following the assumptions of incompressibility and irrotationality, it follows from the
conservation of mass that there exists a velocity potential ¢ which satisfies Laplace’s
equation:

Vip =0, (2.17)

in the region (2, exterior to the bubble. By Greens theorem, there exists an integral

solution to (2.17), defined in terms of the boundary integral [113]

@00 = [ (F2@6r.a) - o5 (b)) ds 219

where the constant c¢(p) is given by

2m if p € 092,
c(p) = .
4 if p € Q\0N

In 3D, the Greens function G(p,q) is given by
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1
lp—dl
As mentioned, the boundary 02 represents the bubble surface. Hence the bubble is

G(p,q) = (2.19)

represented by a void in the fluid domain 2 and is not explicitly modelled. In reality,
bubbles will never be complete voids or vacuums, hence any dynamics associated with
the bubble contents are introduced artificially through the boundary conditions on the
bubble surface (as in the Rayleigh-Plesset equation).

Given an initial potential ¢q on the bubble surface 952, the integral equation (2.18) can
be solved numerically (details of which will be given later) for the normal velocity to
the surface g—z. The tangential velocity %‘f can be calculated given the potential ¢y, and
the surface geometry 0. Hence the velocity on the surface is completely described.
Fluid particles with position vector x initially on the surface 92 will remain there.

Consequently, the surface can be updated in a Lagrangian manner according to

Dx
Dt

To update the potential ¢ we require an appropriate equation of motion. For an

= Vo, xe€o0. (2.20)

irrotational velocity field u = V¢, the conservation of momentum (Eqn. (2.14)) can

be rewritten as

% , ) =
v( P |v¢| )—V-T. (2.21)

Hence one can formulate an irrotational equation of motion (a generalised Bernoulli

equation) provided that

V.T = Vy, (2.22)

for some real scalar function . So, assuming such a function exists, a Bernoulli

equation (of motion) results from the integration of (2.21),

8¢>
6t

Equation (2.22) is not satisfied for general constitutive equations in general irrotational

|V¢I"’ +p—v=C(t). (2.23)

flows [72]. In this study, viscous and viscoelastic effects are confined to the bubble
surface. The bulk contribution is negligible in comparison (i.e. V - T = 0) and so the

condition on the stress (Eqn. (2.22)) is satisfied by any constant 1.

21



If it is assumed that ¢,9% — 0 as x — oo, then by (2.23) C(t) = pe, the pressure at
infinity. On the surface of the bubble therefore, the following equation holds,
D
p(x) = — De + £|V¢|2 + Poo, X € O (2.24)
Dt 2
Consider an infinitely thin lamina across a segment of the surface. Assuming that there

is no mass transfer, the resultant forces must be zero [29] and so we have

Dy = —O',m(X) + S’{v (225)

where p, is the pressure inside the bubble and o,, is the normal component of the
normal stress vector o -n at the point x € 9€2. The surface tension and total curvature
of the surface are given by S and k, respectively. The fluid pressure on the surface

p(x) can now be related to the pressure p, inside the bubble given by (2.25) through

P(x) = pp + Tnn(x) — Sk x € ON. (2.26)

As in Kim [78], we here choose to neglect the effect of surface tension (set S = 0) and
focus solely on the viscoelastic effects.
Hence a dynamic boundary condition on the bubble surface is given by

D¢ _p

The evolution of ¢ in time can be determined using (2.27). Subsequently, the integral
equation (2.18) can be solved to determine 9¢/dn and hence the velocity field. The
particle positions are then updated using (2.20). This serves to determine the new
location of the bubble surface and the process is repeated to obtain a complete de-

scription of the bubble dynamics.

Bubble Contents

A description of the internal bubble pressure, py, requires some consideration. A stan-
dard approach is to assume the bubble contents are uniform and contain either some
condensible vapour (see, for example, Blake et al. [19]) or non-condensible gas (Best
and Kucera [11]). Condensible vapour contents can be adequately approximated by a

constant bubble pressure, due to the vapour evaporation during bubble expansion and
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condensation during contraction [87]. The non-condensible gas contents are commonly

modelled by an adiabatic ideal gas law viz.,

Po = py + po(Vo/ V)", (2.28)

where V' and V; are the current and initial volumes of the bubble, respectively, p, is
a constant vapour pressure, and < is the ratio of specific heats. The presence of these
contents induce oscillation in the bubble during collapse, due to the high pressures
built up by the internal gas. Consequently, in this chapter we assume a simple constant
vapour pressure within the bubble, so the effects of viscoelasticity on dynamics can be

clearly seen.

2.2.1 Modelling Newtonian Dynamics

The extra stress tensor T for a Newtonian fluid is given by

T = py = p ((Vu) + (Vu)T) . (2.29)

Under the irrotational assumption, the velocity gradient is symmetric, and hence

T = 2u(Vu). (2.30)

If the velocity gradient is then expressed in terms of boundary fitted co-ordinates
(n, s), where n and s are the normal and arclength, respectively, then using the Frenet
formulae, the normal-normal component of the stress T,,,, can be expressed in the form

62
Tpn = 2“5_752' (2.31)

Therefore the equation of motion for the Newtonian problem is given by

D¢ _ P2 62¢
P = 318" = 255 + P — o (2.32)

This model has been applied to many different studies in the literature, including jet
drop ejection [60], viscous buoyant bubbles near walls [40], and the oscillation of drops
with viscous effects [135].

The second normal derivative can be expressed in a more tractable form by making

use of Laplace’s equation (2.17) expressed in boundary fitted coordinates. Considering
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a cylindrical geometry, Laplace’s equation can be written as

C—+- Sr—=—

P ¢ 06 1( 06 00\ _
on? ' 9s® ' on r(nr%-*- 63)—0’ (233)

where n,, s, are the components of the normal and tangent vectors (in the radial
direction), respectively, and C is the in-plane curvature. On the axis of symmetry
(r = 0), equation (2.33) becomes
&?¢ ¢ 0¢
— +2—+2C— =0.
on? + 0s? + on

The first normal derivative is found directly from the boundary element method, while

(2.34)

the first and second derivatives with respect to arclength are approximated using cen-

tred differences. The second normal derivative is thus fully determined from equations
(2.33) and (2.34).

As in [19], the variables are non-dimensionalised as follows. Lengths are scaled with
respect to the initial bubble radius Ry,

rt=—, Zr=—, 2.35
Ry Ry (2:35)
and time, pressure and the potential are scaled, respectively, according to
/2
. t (Do — pb) '
tr = — , 2.36
Ry ( p (2.36)
= PP (2.37)
DPoo — b
. ¢ ( p )1/ ?
= = . 2.38
¢ RO Poo — Db ( )

This choice of non-dimensionalisation yields a Reynolds number defined by

Ro((poo — pv)p)*/?
ﬂ .

Note that our definition of Reynolds number, defined with respect to pressure not

Re =

(2.39)

velocity, can still permit high speed flow and significant inertia at lower values. Hence
the irrotational assumption can still provide a valid approximation to the flow, even if
the Reynolds number defined by (2.39) is not particularly large.

So, (re-labelling dimensionless variables without asterisks) the dimensionless Newto-
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nian equation of motion reads

D¢ _ 1, 2 0%
= =1+l - =20 (2.40)

2.2.2 Modelling Viscoelastic Effects

Initially we choose to model the viscoelastic effects using the Maxwell rheological model.
The reason for this is that the Maxwell model is the simplest model that provides
significant elastic effects. The linear version of this model, though fundamentally ap-
plicable, is limited since it is only able to describe viscoelastic effects under small
deformations [15]. For this reason, the so called “material” Maxwell model will be
used to describe the viscoelastic effects. The partial time derivative in the linear model
is replaced by a material derivative. This provides us with a more physically astute
constitutive relation, which allows for substantial deformation. The material Maxwell
model has been applied successfully in other studies of spherical viscoelastic bubble
dynamics, including Brujan [30,31] and Fogler and Goddard [54]. Perhaps the most
satisfying feature of the model is that the extra stress tensor on the bubble surface
can be calculated with ease, since the material derivative reduces to the ordinary time
derivative in the particle reference frame. Furthermore, under the assumption of an ir-
rotational flow, the material derivative also satisfies frame invariance. This can be seen
by considering the frame invariant Jaumann derivative, which reduces to the material
derivative in an irrotational flow [68].

The constitutive equation for the material Maxwell model is given by

DT ,
Mgy + T = (2.41)

Where A is the relaxation time and p the viscosity.
The choice of scaling in the previous section yields an additional dimensionless param-

eter associated with elastic effects: the Deborah number

De = £ (7”) . (2.42)
The dimensionless equation of motion is then,
D 1
2% 14 Suf ~ Ton (2.43)
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where T,,,, is found from the constitutive equation

DT, 1
oo s 9.44
Dt Re” (2.49)

It is not immediately obvious that T, satisfies the above equation, given that the

De

boundary fitted co-ordinate system (n, s) is advected with the flow. However, it can be
shown that in a general axisymmetric geometry, the material derivative of the normal

vector is parallel to the tangent vector s [102]. Specifically,

Dn_ (00 0 (%
Dt (C ds 0Os (8n)> S (245)

Consequently, given the physical requirement that shear stresses are zero (n-T-s = 0)
on the bubble free surface,
DTwn _ Dn T -n+n DT n+n-T Dn—n bT n
Dt Dt Dt Dt~ Dt

Equation (2.44) then follows directly from Equation (2.41).

2.3 Numerical Solution of Governing Equations

Much of the relevant phenomena in cavitation bubble dynamics, such as spherical col-
lapse and jet formation near a boundary, is seen to be axisymmetric [19]. In making
this assumption the dimensions of the problem effectively reduce from 3D to 2D, as

the third dimension is treated analytically.

In terms of cylindrical polar co-ordinates (p = (ro,0,20), @ = (7,0, 2)), the Green’s

function (2.19) can be written as

1
Gp.q) = [(r 4+ 70)% + (2 — 20)% — 4r7g cos?(0/2)]1/?’ (2.46)
and similarly,
rcosf —rg,rsinf, z — 2
VG(p,q) = ———— : d (2.47)

[(r 4+ 70)? + (2 — 20)2 — 4rrg cos?(0/2)]3/2
The boundary 92 (the bubble surface) is discretised into N segments and N + 1 nodes,
with nodes 1 and N + 1 lying on the axis of symmetry on the top and bottom of the

bubble, respectively. The surface variables 7(s) and z(s) and the potential ¢(s), are

26



represented by cubic splines so that

ai(s) = gio + gir (s — 8i) + qia(s — 8:)% + gis(s — 8:), (2.48)

for s; < s < 841, ¢ = 1,...,N. Note that s; is the cumulative arclength along the
surface from node 1 to i. The choice of cubic spline is essential for the accuracy of
the discretisation. Given that both ¢(s) and z(s) are symmetric about the axis of
symmetry (even variables with respect to total arclength), their first derivatives with
respect to arclength are thus zero on this axis. Therefore, clamped cubic splines are
used to represent these variables; enforcing zero derivatives on the axis. The variable
r(s) is antisymmetric (odd with respect to total arclength), and hence has a zero second
derivative on the axis of symmetry. A natural cubic spline is used to represent r(s)
and enforce this requirement. Details on the construction of these splines can be found
in Appendix A. The normal derivative of the potential %ﬁ is represented linearly with
respect to arclength.

Following the above discretisation, the integral solution to the Laplace equation (2.18)

can be written as

c(pi)d(pi) = Z/SJH 0¢ ( A G(pi, s)r(s) d9) ds
;/:H ¢(3)( Ozwg—g(pi,S)r(S) d0) ds (2.49)

The azimuthal integrations can be calculated analytically and give

o Gl $\r(s) df = 4r(s) K (k(s))
| Gpis)r(s)dd = T+ (ols) 27 (2.50)
oG r(s)df =
0 677
r dz dr 2r;dz| E(k) 2r;dz
e (ot - Be -0 - B S Faaw)

(2.51)

where
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4r(s)r;
(r(s) + 1:)? + (2(s) — z:)?’

and K (k) and E(k) are complete elliptical integrals of the first and second kind, re-

K(s) = (2.52)

spectively. These integrals are approximated by

K(kk) = PQ-k»—-Q@1-kY)log(1 — k?), (2.53)
E(k) = RQ -k —S(1—k?log(l - k?), (2.54)

where P, Q, R, S are tabulated polynomials [1].

Equation (2.49) can now be written as a system of N + 1 linear equations thus,

N N
c(pi)di + Z A= Z(Bij¢j + Cij¥j+1), (2.55)

j=1 j=1
i=1,...,N+1. Here 9; denotes the unknown value of the normal derivative %nQ at node

j- Let a;(s) and B;(s) denote the azimuthal integrals (2.51) and (2.50) respectively,

then the remaining coefficients are

Ay = [ 6(s)ai(s) ds (2.56)
B; = / ﬁi’*AlS]__—s)ﬁ,-(s)ds (2.57)
Cij = /sjj (SA-Sjj)ﬁi(S)dS (2.58)

The integrals are approximated using a 10-point Gaussian quadrature rule. A weak
logarithmic singularity occurs whenever integration is done over a segment that con-
tains the collocation point p;. This integration is then treated separately using a
log-Gaussian quadrature rule [142]. Further details on this special treatment can be
found in Appendix B.

The resulting matrix system is generally full but is very small compared to other nu-

merical schemes. Hence Gaussian elimination is used to solve the system for ;.

After solving the system (2.55) for the normal velocity, the tangential velocity is deter-

mined in order to completely describe the velocity on the surface. Given the potential
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¢, the tangential velocity and higher derivatives are found from the finite difference
formulae for non-uniform grids given in [89]. Typically a fourth or sixth order centred

difference scheme is used.

With the velocity fully described on 052, the bubble surface can now be evolved in a
Lagrangian manner over a time step according to (2.20). Similarly, the potential is
updated using the equation of motion (2.43). Both equations are integrated using a

fourth-order Runge-Kutta time stepping scheme.

The constitutive equation for the extra stress (Eqn. (2.44)) is solved either using a

simple backward Euler approximation (as in {76]),

Tnn(x(t)) t) - Tnn(x(t _ At)’t — ZXt)
De ( A

)+ Tnlox(018) = om0, (259)

or a second-order trapezoidal approximation. Investigations have shown that results
between the two discretisations are indistinguishable.

In phenomena such as bubble collapse, the velocity can increase rapidly in time. In
order to capture the high speed dynamics, a variable time step is used. In particular,

following Blake et al. [19], we choose

Atmaz

At = el T (/2N

(2.60)

This choice ensures the time step is sufficiently small enough to capture any high speed

dynamics. The value of At,,,. is taken to be 1073 for the simulations undertaken.

At each time step, the points on the bubble surface are redistributed to ensure equal
spacing with respect to arclength to prevent “bunching up” and the subsequent on-
set of instabilities. Such remeshing is standard procedure and is often required with

Lagrangian methods.
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2.4 Numerical Results and Discussion

2.4.1 Validation

Laplace Solver

To validate the Laplace solver, numerical results are compared with the analytical

solution for a spherical void of radius 1, in an infinite domain with a potential ¢ = 1

on the boundary. The exact solution is g—ﬁ = —1.
No of Segments Linear Splines
4 1.336 x 107! [ 1.232 x 1073
8 3.120 x 1072 | 7.070 x 1075
16 7.664 x 1073 | 4.630 x 107°
32 1.907 x 1073 | 5.530 x 1077
64 4.762 x 107* | 3.921 x 107

Table 2.1: Relative error of the normal velocity % for the test case of a sphere of radius
R=1.

The comparison of the relative errors in the computed value of g—f using linear surface
segments and cubic splines is listed in Table 2.1. As can be seen, the use of cubic
splines produces very accurate results - even at low mesh refinement. Note that the
small decrease in the error from increasing the number of segments from 32 to 64, does
not warrant the increase in computational time. For this reason, for the simulations

undertaken in this study, 40 segments are usually used.

Inviscid Spherical Bubble Collapse

The full numerical code is compared with the analytical Rayleigh equation (2.8) for
a spherical void collapsing in an infinite inviscid fluid. Setting T}, = 0 in equation
(2.27) gives the appropriate inviscid equation of motion, with which surface potential
is updated

%if =1+ %|u|2.
Figure 2.2 shows a plot of the solution of the Rayleigh equation (2.8). Figure 2.3 shows

(2.61)

the relative error of the BEM code, and its variation with cavity radius.

As can be seen from Fig. 2.3, the relative error stays small until the very final stages

of collapse. Instabilities in the radial velocity start to occur when R =~ 5 x 1073. The
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Figure 2.2: A plot of the solution of the Rayleigh equation.
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Figure 2.3: Relative error in the radial velocity of a spherical cavity in an inviscid fluid,
varying with radius
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collapse time at this point is ¢, = 0.914680 (6sf); which is in excellent agreement with
the analytical result (see Eqn. (2.9)).

Viscous Newtonian Spherical Bubble Collapse

The Newtonian bubble boundary element code is validated through comparison with
the numerical solution of the Rayleigh-Plesset equation (Eqn. (2.7)). The non-linear
ODE is solved using a 4th order Runge-Kutta scheme. Comparisons are made for
Reynolds numbers Re = 100 (Fig. 2.4(a)), Re = 20 (Fig. 2.4(b)), and Re = 10 (Fig

2.4(c)). As can be seen the results are in good agreement.

——— BEM
— — — - Rayleigh-Plesset

BEM 1
-- == Rayhlgh-?bmi—\

PR BRI PRSI PR . PR | M |
0 0.2 04 0.6 08 1 0 0.25 0.5 0.75 1

Time Time
(a) Re =100 (b) Re =20

—— BEM
— - Rayleigh-Plesset

NS B . N IR |
0 0.25 0.5 0.75 1
Time

(¢) Re=10

Figure 2.4: Comparison of the BEM to the numerical solution of the Rayleigh-Plesset
equation for a selection of Reynolds numbers.
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2.4.2 Viscoelastic Dynamics

In this sectidn, we investigate the influence of viscoelasticity on the dynamics of spher-
ical bubble collapse and compare the predictions of the model with other studies in
the literature. We begin by investigating the large Reynolds number case. Figure 2.5
displays the evolution of bubble radius for a range of De at Re = 100. It is evident that
for such a large Reynolds number the dynamics do not differ greatly from the inviscid
case. At De = 0, the solution obtained matches that of the Newtonian Rayleigh-Plesset
equation. Increasing the Deborah number, leads to a decrease in the collapse time and
~ the dynamics tend to those of the inviscid bubble as the increasing elastic effects negate
the viscous damping effects - as reported in [148]. In fact at De = 100, the collapse

time agrees with that for the inviscid bubble to 4 significant figures.

De=0
— — — - De=0.1
——————— De=1
De=10
— —— - De=100

Figure 2.5: Variation of the radius of spherical bubble with time for different De.
Re = 100.

When Re = 10 (Fig. 2.6) we see similar behaviour as before. When De = 0, the
Newtonian result is obtained. Yet as the Deborah number is increased, the collapse
time decreases, and the dynamics tend towards the inviscid case as elastic effects begin
to negate the viscous effects. Mathematically, the reason for this can be easily seen
from equation (2.44). We can see that the viscous term on the right hand side of (2.44)
is already reasonably small given the choice of high Reynolds numbers. Increasing the
Deborah number means that the derivative term is large, and so the other terms in the

equation are negligible in comparison. With the zero initial extra stress condition, the
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effective equation describing the extra stress is

DT
- = T(0) = 0. 2.62

Therefore the extra stress is zero on the moving bubble surface throughout collapse

and so the dynamics are identically inviscid.

De=0

1 — — — - De=0.1

[ ——— De=1
De=10

—— —- De=100

03

02f

01F

T U S SR
0 0.25

Figure 2.6: Variation of radius of spherical bubble with time for different De. Re = 10

More interesting results are seen when the Reynolds number is decreased further. Fig-
ure 2.7 shows the variation of bubble radius with time for Re = 1. For a small Deborah
number we can see there is little effect on the dynamics since elastic effects are damped
by the large viscous forces. By increasing the Deborah number to be of the order of
the Reynolds number we see the damped oscillation of the bubble radius; the typical
dynamic of bubbles in viscoelastic fluids, as seen in previous work such as Kim [78§].
By increasing the Deborah number further, rebound does not occur and the dynamics
resemble the Newtonian case. A similar effect at a large Deborah number was reported
by Fogler and Goddard [54], and will be discussed in more detail shortly.

Figure 2.8 shows the effect of decreasing the Reynolds number further. As can be seen,
oscillations are considerably more damped and require larger values of the Deborah
number to be induced in the first instance. Yet still, if the Deborah number is large
enough, the bubble will not rebound and dynamics similar to the Newtonian case result.
Fig. 2.9 shows the effect of increasing De within the rebound limit, for a fixed Re. As

reported in previous studies, the increase in elastic effects results in increasingly large
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Figure 2.7: Variation of radius of spherical bubble with time for different De. Re =1

oscillations and a decrease in their frequency (the bubble taking longer to rebound
larger distances). As the bubble collapses, the frequency of oscillation then increases
as the amplitude attenuates. Fig. 2.10 shows the effect of Re, while keeping De fixed.
Again, we obtain the expected results of increasingly damped oscillations with decrease
in Reynolds number (increase of viscous effects). With such a range of effects present

in this phenomenon, it is clear that the ratio (or product) of the Deborah and Reynolds

number is a crucial parameter in describing the dynamics.
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Figure 2.8: Variation of radius of spherical bubble with time for different De. Re = 0.1
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Figure 2.9: Variation of radius of spherical bubble with time for different De. Re = 0.2

To draw quantitative comparison with experimental results is difficult. The number of
experimental papers in the literature is limited and, in most cases, they are restricted to
the study of the collapse of cavities near rigid boundaries. Consequently, given the non-
spherical nature of bubble dynamics near boundaries, to make meaningful comparisons
with the spherical case studied here is not strictly valid. Despite this, some general
observations made in experiments are relevant to the present study. Importantly,
Chahine and Fruman [41] and Brujan et al. [34,37] note the inhibiting effect of polymer
additives on bubble collapse. In essence, this effect is predicted using the numerical
scheme presented here. The inclusion of elastic effects causes the oscillation in radius
and inhibits the catastrophic bubble collapse seen in the Newtonian case.

Fig. 2.11 compares the results of Kim [78] with those of the present study for Re =
0.5 and De = 0.5. Kim [78] solves the full Rayleigh-Plesset equation for the upper
convective Maxwell model. However, the qualitative similarity in the model predictions
is evident. The amplitude and number of the oscillations are very similar, and the

maximum difference in radius is approximately 10%.

Collapse Phenomena at Large Deborah Number

As already mentioned, the rebound limit at large Deborah number was reported also
by Fogler and Goddard [54]. In the limit of very large Deborah numbers, a rebound

condition on De and Re is derived analytically. Their condition states, that if
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Figure 2.10: Variation of radius of spherical bubble with time for different Re. De = 5

2 2
DeRe > % (2.63)
then collapse will occur without rebound. Vice versa, if

2
DeRe < 2T, (2.64)

9
then rebound will occur before collapse. The same phenomenon is apparent in the
model under investigation in the present paper. The corresponding Rayleigh-Plesset
equation relevant to our model is that with the viscoelastic effects present in the stress

boundary condition at the bubble surface, viz.,

p(RR + gR2) = Db — Poo — 4 /0 tM(t — ) (%) dt', (2.65)

where M(t) = (u/A) exp(—t/N).
Consider the asymptotic case A — oo. Since exp(—t/\) — 1 as A — oo for finite ¢,

equation (2.65) becomes

p(RR + 2R ) =DPb — Poo 4/\ In (Ro) (2.66)
in the limit A — co. Multiplying (2.66) by 2R? and integrating over [Ry, R] gives an

expression for the kinetic energy viz.
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Figure 2.11: Variation of radius of spherical bubble with time for Re = 0.5, De = 0.5.
The solid line shows the result of Kim [78], and the dashed line is that of the present
study.

: _2 3 pof? R
pR’R® = g(p(,o —m)(Ry — R®) — 8% /RO In (E) R%dR (2.67)

The first term on the right-hand side is the work done by the pressure and the second
is the elastic potential energy. If the kinetic energy is equated to zero, then the roots
of the resulting equation will give the radii at which rebound occurs. Subsequent

simplification and non-dimensionalisation yields the following energy function

f(R)=4In(R)R® + (g ~ DeRe) (1-R¥)=0. (2.68)

Considering the limit of rebound at R = 0, equation (2.68) yields,

DeRe = % (2.69)

Hence, for the bubble to collapse without rebound we require

4
DeRe > 3 (2.70)
and for collapse with rebound
4
DeRe < 3 (2.71)
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Figure 2.13 shows the collapse with and without rebound, near to the DeRe = 4/3

limit.

f0.2
OO TTT T TTITINTT T T TTT]
0 0.25 0. .0
R
-0.

Figure 2.12: Plot of energy function f(R); the roots of which indicate a zero kinetic
energy.

A plot of energy function f(R) for DeRe = 1 < 3 is given in Fig. 2.12. Figure 2.14
shows the near elastic oscillations of the radius with time for a large Deborah number
(De = 100, Re = 0.01) calculated using the BEM. From Fig. 2.14 we can see the
first rebound radius is approximately 0.45804. The corresponding root of equation
(2.68) (using a simple bisection method) is found to be 0.45892 (5 s.f.). This is a
reasonably good agreement (the relative percentage error is approximately 0.2% ) given

the numerical method is unable to attain the analytical limit.

Jeffreys Fluid

With prior use of the viscous Newtonian and Maxwell models - extending the viscoelas-
tic model to the Jeffreys fluid is straightforward. The Jeffreys constitutive equation is

given by

DT D4
T+ \—= ) — .
;g =u (140 2.1

It can be shown, through the decomposition of the stress into solvent and polymeric
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DeRe~1.351
1 — — — - DeRe=1.315

Figure 2.13: Variation of radius with time for DeRe above and below the rebound
limit DeRe = 4/3 =~ 1.333 (De = 100).

Figure 2.14: Near elastic oscillation of radius with time for De = 100, Re = 0.01)
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contributions, that the Jeffreys model can be rewritten as,

T = pusy+ 7. (2.73)

where T is given by the Maxwell constitutive equation

Dr
= A 2.74
T +/\1 Dt ,up'y, ( 7 )

and p, and p, are the solvent and polymeric viscosities, defined respectively as

X

Hs = x#v (275)

by = (1—%) " (2.76)
1

Re-casting the constitutive equation in the form of (2.73) - as the sum of a viscous and
polymeric stress - allows the problem to be solved easily given that both contributions
(Newtonian and Maxwellian) have been studied previously. Let the above constitutive
equation be rewritten in dimensionless variables, with De and Re defined previously
and 8 = p,/p.

The results for the Jeffreys model are as expected. Figure 2.15 shows the evolution of
bubble radius R for values of 3 as a fraction of the Reynolds number Re (equivalent to
a varying solvent viscosity us). The Deborah number here is De = 10 and a constant
polymeric viscosity is assigned by setting (1 — 3)/Re = 10. For 3 = 0, expectedly
the Maxwell case is recovered and the results match those of Fig. 2.6 for De = 10.
Increasing the solvent viscosity causes the oscillations to become increasingly damped.
Indeed, increasing the solvent viscosity enough would damp oscillations until the New-
tonian result is obtained as the polymeric part becomes small in comparison. Notably,
the amplitude of the oscillations decrease but the period remains approximately con-
stant as u, varies. This indicates that the relaxation time A, is the controlling factor
in determining the frequency of oscillation.

By setting 3 = 1 (equivalent to a zero polymeric viscosity), as expected (regardless of
the value of De), one obtains the corresponding Newtonian dynamics with a Reynolds
number Re (Fig. 2.16).
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Figure 2.15: Variation of radius with time for a Jeffreys fluid, with De = 10
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Figure 2.16: Variation of radius with time for a Jeffreys fluid, with A; = 10 and p,=0
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The Generalised Maxwell Model

It should be mentioned that further extensions to the viscoelastic model can be easily
made. The above models are limited to a single set of parameters. To fit experimental
data, more parameters are often required [101]. It is for this reason that one can define

a generalised or multi-mode model viz.,

N
T=) T (2.77)
k=1

where each T} obeys its own constitutive equation:

DT,
T, + A
kT Ak Di

The model then has a spectrum of relaxation times and viscosities which allow greater

—w, k=1,....N (2.78)

flexibility in fitting model predictions to experimental data. The convention is that

A1 > Ay > -+ > A\y. Typically, N = 3,4 or 5 in the representation (2.77) [101].

If necessary, one can select the parameters px, Ay with the following empiricisms [15]:
i = u@ﬁ; N=22 (2.79)

The Rouse molecular theory for dilute polymer solutions very nearly gives equations

(2.79), with o = 2. In a similar manner, the Doi-Edwards molecular theory for polymer

melts suggests the following parameters [15]:

A&
Bk = poxm——337
zk,odd ’\i

Taking a maximum of three terms for each model, Figure 2.17 shows the variation of

Ao

m2k2’

Ak (2.80)

bubble radius with time for the Rouse and Doi-Edwards theories.

It can be seen that, for the parameter set considered, the Rouse model exhibits a
small oscillation in the radius, while the Doi-Edwards does not. This is because the g
associated with a given p; are smaller in the Doi-Edwards model. Consequently the

elastic forces are not large enough to induce a rebound.

43



— — — - Doi-Edwards
Rouse

Figure 2.17: Variation of bubble radius with time for Rouse and Doi-Edwards like
fluids, with Ag = 0.5, o = 0.5.

2.5 Conclusions

The effect of viscoelasticity on spherical bubble dynamics has been studied for several
different constitutive equations. A novel boundary element scheme has been developed,
with the ultimate intention of gaining insights into non-spherical dynamics. Even
though viscoelastic effects only appear through the normal stress condition on the
free surface, we find the model predicts all the important phenomena seen in other
studies. More specifically, the model predicts the damped oscillation of the bubble
radius with time, the near elastic oscillations in the high Deborah number limit, and
the no-rebound condition. Consequently, one can argue that it is the surface effects that
primarily govern the bubble dynamics, in comparison to those viscoelastic effects within
the bulk of the fluid. This is not surprising as, of course, the dynamics of the bubble are
directly governed by its boundary with the fluid. Any internal viscous or elastic effects
of the fluid on the bubble, are likely to be small compared to those directly experienced
at the interface. On consideration of the Jeflreys constitutive relation in the model,
we see the expected result of an increasingly damped radius with increasing solvent
viscosity. Increasing the solvent viscosity, of course, has no effect on the relaxation
time, and hence the period of oscillation for the model remains approximately constant.
One can generalise the Maxwell model, allowing for a spectrum of relaxation times and

viscosities to be prescribed. Empiricisms relating to Rouse and Doi-Edwards molecular
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theories are used to prescribe the parameters. The Doi-Edwards model does not exhibit
any oscillation in bubble radius. Only a slow decay of bubble radius with time is
predicted. In comparison, the Rouse model predicts a small low amplitude rebound
before being completely damped. This is in stark contrast to the more elastic behaviour

predicted by the Maxwell and Jeffreys models.
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Chapter 3

The Influence of Viscoelasticity on
the Collapse of Bubbles Near a
Rigid Boundary

3.1 Introduction

In this chapter, the mathematical model developed in Chapter 2 is extended in order
to simulate the dynamics of a bubble near a rigid boundary. As mentioned in Chapter
1, when a bubble collapses near a rigid boundary, a high speed liquid jet can form and
penetrate the bubble. This jet can either inflict damage directly by impacting upon the
boundary, or indirectly by initiating the “splashing” effect which can release damaging
pressure shock-waves. It was the experimental work of Benjamin and Ellis [9] that
first observed these jets and postulated on their damage capability. The popularity
of numerical simulation in subsequent decades meant that this otherwise intractable

problem could be attacked with gusto.

Due to the high velocities seen in bubble collapse and jet formation, the common ap-
proach was to assume that the fluid was inviscid and the flow irrotational. Plesset and
Chapman [119] undertook one of the first numerical studies, solving Laplace’s equation
using finite difference techniques. Blake et al. [19,20] then solved the same model prob-
lem using the more efficient and accurate boundary element method. The application
of the boundary element method to this problem proved extremely fruitful and spawned

a wide range of extensions to the model. These included cubic spline representation
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of the boundary and the surface functions [46], the inclusion of non-condensible bub-
ble contents [11], fully 3D calculations [167], the extension to toroidal dynamics [10],
prediction of the splashing effect [21,151], the study of pulsating buoyant bubbles [38],
bubbles bouncing off walls [40], explosion bubbles near structures [80], investigations

into the effect of surface tension [171], and collapse near curved rigid boundaries [150].

Few studies of bubble collapse near rigid boundaries have considered anything other
than an inviscid fluid. To the author’s knowledge, the only theoretical studies of this
phenomenon that include viscous effects are those of Popinet and Zaleski [121] and
Kim et al. {79]. In both contributions, the full Navier-Stokes equations are solved nu-
merically - the first uses a finite volume technique, while the second utilises a finite
element approach with an ALE formulation. Both note the mitigating effect viscosity
has on the jet dynamics - slowing the jet down and even preventing formation. Nu-
merical studies of viscoelastic dynamics have numbered even less. In a recent paper,
Brujan [32] notes the particularly slow pace of theoretical and numerical research into
cavitation dynamics near a rigid wall in a viscoelastic fluid. Given the difficult nature
of the problem and the success of the boundary element method, Brujan independently
suggests the model developed in Chapter 2; employing a potential flow approximation
with viscoelastic effects included at the bubble surface. In this chapter we present
and discuss the predictions of this model for viscoelastic bubble collapse near a rigid
boundary.

Section 3.2 summaries the aforementioned mathematical model and the extensions re-
quired to include the rigid boundary. In Section 3.3, the numerical results are presented

and discussed, and conclusions are drawn in Section 3.4.

3.2 Mathematical Model and Governing Equations

As mentioned, it is known that experimentally cavitation collapse near a rigid boundary
is, to a high degree of accuracy, an axisymmetric phenomena [19]. Hence, as in previous
studies, we consider the axisymmetric problem geometry shown in Fig. 3.1. Initially,
the bubble has radius Ry and its centre is located at a distance h from a rigid wall.

We recall the key features of the model developed in Chapter 2. The ambient fluid is

considered to be incompressible

47



N
—lp

Rigid Wall r

Figure 3.1: Schematic set up of bubble collapse near a wall problem.

and the flow irrotational,

V xu=0. (3.2)

Hence the velocity field of the fluid can be expressed as the gradient of some scalar
potential function ¢ (u = V¢), which satisfies Laplace’s equation. By Green’s theorem,

Laplace’s equation can be recast as integral over the bubble surface 9 viz.,

@o(p) = | (Ge@6(p.a) - o5 (b)) dS 53)

where the constant c¢(p) is given by

2r if p € 09,
c(p) = .
4 if p € Q\0N2

In contrast to the previous study of spherical dynamics, the bubble now resides near a
rigid boundary positioned at z = 0. The boundary is represented by a no-penetration
condition, viz.

0¢

5, =0 z=0. (3.4)

In order to satisfy equation (3.4), the Green’s function, G(p, q), is given by
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1,
p—qal [|p'—q|

This is the sum of two free space Green’s functions, where p’ is the reflected image of

G(p,q) = (3.5)

p in the rigid wall. The use of (3.5) means the boundary condition (3.4) automatically
holds, so no integration over the expanse of the wall is necessary.
On the premise that viscous and viscoelastic effects are important only in the immediate
proximity of the bubble surface, a generalised Bernoulli equation at the surface provides
an equation of motion for the potential ¢,

22— 14l ~ T (3.6)
The normal-normal component of the extra stress Ty, is found from an appropriate
constitutive equation. This study, for the most part, considers viscoelastic effects as
described by the material Maxwell model
DT,, 1

T'n.n = —Ynn-
Dt + R67

The Deborah number De and the Reynolds number Re are defined as previously, in

De

(3.7)

equations (2.42) and (2.39) respectively.

Equation (3.3) is solved using collocation, with nodal points on the bubble surfaces
and the potential ¢ interpolated using cubic splines. The discrete system is solved
for the normal velocity using Gaussian elimination. The tangential velocity and higher
derivatives of ¢ are found using generalised centred difference formulae found in [89]. A
fourth-order Runge-Kutta scheme is then used to update the bubble surface and poten-
tial using (2.20) and (3.6) respectively. In the presence of viscoelasticity (De # 0), the

constitutive equation is updated using an implicit second-order time stepping method.

Note that the transition to the toroidal phase of dynamics is not currently modelled
in this study. The investigation into viscoelastic effects shows that, in the majority of

cases, collapse into a toroidal bubble will not occur.

As in almost every study of cavitation dynamics using the boundary element method,
(see [19,20,170], for example) instabilities can develop in the surface during computa-
tion. These are suppressed using the 5-point smoothing formula of Longuet-Higgins and

Cokelet [97], which is implemented every 5-20 times steps as in Best and Kucera [11].
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3.3 Numerical Results and Discussion

3.3.1 Validation

To validate the algorithm, the problem of inviscid growth and collapse of a bubble
near a rigid horizontal wall is examined, allowing direct comparison with the results
of Blake et al. [19]. Figure 3.2 shows the bubble wall profiles at different times for
the growth and collapse of an initially small bubble (Ry = 0.1), centred at a distance
h = 1.0 from the boundary. The bubble profile shapes obtained agree well with those
of Blake et al. [19] and Taib [146]. Figure 3.3 shows the jet velocities for a selection of
heights. The maximum jet velocities obtained here are given by v, = 8.5 for h = 1.0,
Umaz = 10.8 for h = 1.5, and v,,q, = 15.4 for A = 2.0. These compare well to the jet
velocities obtained by Blake et al. [19], given respectively by v, = 8.6,11.0,16.1.
The difference in the values can be attributed to the surface discretisation used in each
study. Blake et al. [19] use linear piecewise elements, while cubic splines are used here.
As with previous investigations, we see a plateau in the jet velocity in the final stages
of collapse for a cavity near to the wall. Also, we note that during the growth phase
the transient behaviour of the jet velocity is independent of the initial distance A from

the wall. The influence of ~ can only be seen in the final stages of collapse.
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— — - =0.34399
—-—-- m1.96182
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Figure 3.2: Bubble surface profiles at different stages of growth and collapse at an
inception distance h = 1.0 from the boundary
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Figure 3.3: Jet velocities during growth and collapse of an inviscid bubble at varying
initial distances from the rigid wall.
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3.3.2 Newtonian Dynamics

In extending to the viscous Newtonian and non-Newtonian cases, only the collapse of
a cavity near a wall is considered. This allows the simulations to run for longer in
the more interesting phase of the dynamics. Simulations are carried out for a range
of Reynolds and Deborah numbers at dimensionless distances h = 1.1,1.5,2.0 from
the wall to the initial bubble centroid with Ry = 1. The values of the Reynolds
and Deborah numbers are chosen to demonstrate the dependence of dynamics on the
material parameters.

Figure 3.4 shows a selection of profiles during the collapse of an inviscid bubble at a

distance h = 1.1 from the wall.
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Figure 3.4: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = o0

It can be seen that close to the wall the bubble surface undergoes large deformation
during collapse with a significantly pronounced jet forming in Fig. 3.4. For bubbles
positioned further from the wall, collapse is less asymmetric with the liquid jet being
less pronounced. Also, the lessened deformation means the final volume of the bubbles
is smaller. The jet velocities associated with different h values can be seen in Fig. 3.5.
The maximum jet velocities in each case are v,,,, = 12.9,16.9,26.9 for h = 1.1, 1.5, 2.0,
respectively. It is generally true that closer to the wall the fluid velocities are smaller

in magnitude. This is to be expected as the presence of a rigid boundary restricts
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the flow of the fluid. Note that for h = 1.1 and h = 1.5 the jet tip plateaus in the
final stages of collapse. As mentioned by Best and Kucera [11]; when the bubble
collapses much of the fluid momentum manifests itself in the jet. Since only a finite
amount of momentum can be transferred to the jet, it cannot continue to accelerate
following the finite momentum transfer. Also, as a result of smaller velocities, the
lifetime t; of the bubble increases the closer it is to the wall; given in each case by
t; = 1.079,1.032,1.004, respectively. We define the bubble lifetime (or collapse time)
as the time at which either the liquid jet impacts upon the bubble underside or the jet

velocity displays near-singular behaviour.
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Figure 3.5: Jet velocities for the collapse of an inviscid bubble at different initial
distances from a rigid wall.

We now look at the bubble dynamics following the inclusion of viscous effects. Figure
3.6 shows the influence of h on jet velocities for Re = 100. The maximum jet velocities
in this case are vy, = 13.1,18.0,30.1 for A = 1.1,1.5,2.0, while the final collapse
times t; are given by t; = 1.089,1.042,1.013. Despite there being little difference in
the collapse times compared to the inviscid case, there is a marginal increase in the
maximum jet velocity. This results from the bubble reaching a slightly smaller size
before jet formation occurs. Consequently, surface velocities are larger - producing a

slightly faster jet.

Figures 3.7-3.9 display bubble wall profiles for Re = 20. It is clear that increasing the
viscosity has a more marked effect on the wall profiles and the dynamics. Fig. 3.7
53



0.5
Time

Figure 3.6: Jet velocities during collapse with Re = 100 for different initial distances
from wall.

shows the wall profiles at h = 1.1. It can be seen that the formation of the liquid jet
occurs much later in the collapse (when the cavity is substantially smaller) than in the
inviscid case. The surface velocities are larger overall and while the jet penetrates, the
bubble continues to collapse at a high speed. This results in the formation of an arrow-
head bubble profile, as the underside comes up to meet the jet. The same mechanism
explains the collapse behaviour shown in Figures 3.8 and 3.9, in which thin almost disc-
like bubbles are produced. Note that the collapse times are also significantly longer
than those obtained at higher Re with ¢y = 1.126,1.083,1.054, for h = 1.1,1.5, 2.0,
respectively.

It is clear then that viscosity has a prohibitive effect on jet production, as reported in
Popinet and Zaleski [121] and Kim et al. [79]. Perhaps the most important phenomena
in Newtonian bubble dynamics, namely the complete suppression of the formation of
the liquid jet, can be observed if viscous effects are increased further. Figures 3.10-3.12
show the bubble wall profiles for Re = 10. Note that in each case (h =1.1,1.5,2.0) no
jet forms on the top side of the bubble. Only in the very final stages, when the bubble
is very small, does the top side of the surface dimple slightly but does not continue
to produce a penetrating jet. Another interesting occurrence is the elongation and
“cusping” on the underside of the bubble. The same phenomena is reported by Kim
et al. [79] for moderate Reynolds numbers, in their finite element study of collapse

of a Newtonian bubble near a rigid wall. This cusping results from the left and right
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Figure 3.7: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re =20

sides of the bubble surface moving slightly faster than the bubble underside. Evidently,
viscous forces are more effective at inhibiting movement of the underside, due to the
increased strain rates nearer the wall. Indeed, cusping is more pronounced closer to
the wall (for h = 1.1, 1.5), where differences in velocity between the top and underside
of the bubble are larger. Further from the wall (h = 2.0), as the velocity field is more
uniform, the viscous forces inhibit almost uniformly, causing the bubble to remain very

nearly spherical as it collapses.

As expected, collapse times are again longer, given the decrease in Reynolds number
(ty = 1.183,1.142,1.115 for h = 1.1,1.5,2.0 respectively). Also, as can be seen from
Figure 3.14 the (jet) velocities become extremely large as the bubble is able to collapse

to a very small size, without there ever being jet impact.
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Figure 3.8: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re =20
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Figure 3.9: Bubble surface profiles at different stages of collapse at a distance h = 2.0,
Re =20
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Figure 3.10: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re =10
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Figure 3.11: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re =10
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Figure 3.12: Bubble surface profiles at different stages of collapse at a distance h = 2.0,

Re =10
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For ease of comparison, Figures 3.13 and 3.14 show the evolution of jet positions and
jet velocities for various Reynolds numbers at a fixed distance, h = 1.1 from the wall.
Here the jet position is defined as the axial co-ordinate on the top of the bubble (the
North Pole); it is the position where the jet is expected to form. Clearly, at a given
distance, a decrease in Reynolds number slows collapse and so extends the collapse
time. Fig. 3.13 shows the jet positions at h = 1.1. Note that in the inviscid case, the
jet position decreases sharply in the final stages of collapse. The profile then becomes
smoother as one decreases Re. Similarly, studying the jet velocities at h = 1.1, at a
given time the velocity decreases with the Reynolds number. Since the bubbles are
able to attain smaller sizes with increasing viscosity, the collapse times are longer and
the final velocities much larger. So much so, that for moderate Reynolds numbers, the

jet velocity exhibits singular behaviour.
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Figure 3.13: Position of jet point on z axis with time, at a distance of h = 1.1, with
varying Re.
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Figure 3.14: Jet velocities during collapse with varying Re. h = 1.1.
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3.3.3 Viscoelastic Dynamics

The inclusion of elastic effects produces some very interesting dynamics, particularly
when close to the rigid wall. As seen in spherical studies of viscoelastic cavitation dy-
namics e.g. [54], bubble oscillations occur during collapse. However, unlike the spherical
case, the presence of the rigid wall induces an asymmetry in the oscillating bubble. As
in the moderate Reynolds number Newtonian case, jet formation is completely sup-
pressed in the viscoelastic case. Jet suppression has also been seen experimentally in
viscoelastic fluids by Brujan et al. [37] and Chahine and Fruman [41]. Additionally, we

observe cusping of varying degrees close to the wall, for some of the parameters studied.

Figure 3.15 shows bubble profiles for Re = 1, De = 1,h = 1.1. Due to the close prox-
imity of the wall, the deformation in the underside is significant. The bubble rebounds
due to elastic effects and during the second stage of collapse, a portion of the bubble
underside meets on the central axis, and the computation breaks down. Of course, the
presence of elasticity causes the bubble to rebound, and subsequently collapse times
are significantly longer. Similarly, the velocities are reduced as the oscillating bubble

does not have a chance to attain a large velocity before it rebounds.
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Figure 3.15: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re=1, De=1.

Figure 3.16 shows the variation of the jet position with time for different initial dis-
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tances of the bubble from the wall. Note that the time at which the bubble first
rebounds decreases with increasing distance from the wall. This is due to the lower
velocity near the wall preventing the generation of sufficient elastic energy to balance
the work done by the external pressure in compressing the bubble. From looking at the
jet velocities in Fig. 3.17 one can see a plateau and small decrease in the jet velocity
(for h = 1.1) at t =~ 1.25. Similar perturbations can be seen near the other peaks
and troughs for h = 1.5 and also h = 2.0. This is an interesting occurrence, and is a
consequence of the cusping and the subsequent out of phase oscillation of the top and
bottom of the bubble. For example, as the bubble begins to collapse and then cusp, it
seems the extra fluid drawn to the underside from the bulk of fluid around the bubble,
causes the jet velocity to fall slightly. It then increases as fluid is replenished from

elsewhere.

As the initial distance of the centre of the bubble from the wall increases, the perturba-
tion in the jet velocity decreases. Also, we note that further from the wall, the lifetime
of the bubble is longer: ¢y = 2.72 and 3.59 for h = 1.5 and 2.0, respectively. This is
due to the reduced deformation of the bubble further from the wall. Away from the
wall, the flow around the bubble is not as irregular, and it takes longer for the bubble
to deform into its self-destructive shape (as in Fig. 3.15).

Figures 3.18-3.20 show the jet velocities for different De at each of the studied distances
from the wall. As in the spherical dynamics, a large enough De results in the bubble

not rebounding, but instead resembling the Newtonian dynamics.

62



h=1.1
3 ——- h=1.5
——— - h=20

Figure 3.16: Position of jet point on z axis with time, Re = 1, De = 1, for varying
height.
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Figure 3.17: Jet velocities during collapse with varying height. Re =1 and De = 1.
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Figure 3.18: Jet velocities during collapse with varying De. Re =1 and h = 1.1.
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Figure 3.19: Jet velocities during collapse with varying De. Re =1 and h = 1.5.
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Figure 3.20: Jet velocities during collapse with varying De. Re =1 and h = 2.0.
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Figure 3.21 demonstrates the integrity of the solution with mesh refinement for the
case De = 1, Re = 1 and h = 1.5. The differences in the jet velocity are negligible as

the number of segments N is increased from N = 40 to N = 100.

N=40

Jet Velocity

0.5

Time

Figure 3.21: Jet velocity with different mesh refinements for De =1, Re=1, h=1.5

Figure 3.22 shows the bubble profiles during collapse for Re = 2.0, De = 0.5. In
a similar manner to Fig. 3.15, note the development of a sharp cusp on the bubble
underside. However, despite being able to induce cusping, the reduced elastic effects
are, in this case, unable to instigate bubble rebound.

Figure 3.23 shows the jet velocities for varying Reynolds numbers, with De = 0.5,
h = 1.1. As expected, an increase in Reynolds number results in dynamics that
increasingly resemble the inviscid case. The bubble changes from having a cusped
underside with a rounded body (Fig. 3.22), to a shape with a pronounced jet formation
(as previously observed in Fig. 3.4 for example).

Figures 3.24-3.26 show the bubble profiles for Re = 0.2 and De = 5 for h = 1.1,
1.5, and 2.0, respectively. Of course, one should be cautious of these lower Reynolds
numbers which test the validity of the irrotational flow approximation. However, as
mentioned, depending on the Deborah number, high velocity and hence high local
Reynolds number flows are still permissible. Combined with the fact that vorticity
generation is reduced on a free surface, these lower Reynolds numbers can still provide
some important physical insights. As in the previous case, a cusping of the underside

of the bubble occurs which is more pronounced for smaller values of h. At h = 1.1
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Figure 3.22: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re =2, De = 0.5.

(Fig. 3.24) a sharp cusp develops in the final stages. Until then the deformation is not
quite as extensive as that seen in the Re = 1, De = 1 case, due to the increased viscous
effects. At h = 1.5 (Fig. 3.25) cusp formation becomes noticeably less pronounced,
while at h = 2.0 (Fig. 3.26), deformation is further reduced with the bubble remaining
nearly spherical.

Figure 3.27 shows the jet positions during the collapse, for different distances from the
wall. It can be seen that, as in the Re = 1, De = 1 case, the time between oscillations
decreases slightly (i.e. the frequency of oscillation increases) with increasing distance
from the wall, though the amplitude of oscillation remains very similar with varying h.
Also, perturbations in the gradient of the jet position are visible in the h = 1.1 case.
Studying the jet velocities, these becomes more evident as significant perturbations
appear in the velocity near its peaks and troughs (Fig 3.28). Figure 3.29 allows the
comparison of jet positions and velocities at h = 1.1, and the corresponding pertur-
bations, to be made more easily. Initially, as the underside cusps and rebounds, the
top and underside of the bubble begin to oscillate slightly out of phase. This disrupts
the uniformity of the flow around the bubble and creates the perturbations in the jet
velocities. In particular a large jump occurs during the second rebound stage at about
t = 4.2. This results from the underside rebounding before the top and throwing fluid
out from the bubble vicinity; this then aids the top in rebounding, causing a sharp in-

crease in rebound velocity. The oscillation of the velocity at the North and South pole
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Figure 3.23: Jet velocities during collapse with varying Re. De = 0.5 and h = 1.1.

of the bubble are shown in Fig. 3.30. One can see a clear time lag between the time
the top and the bottom of the bubble rebound (when the velocity is zero). From Fig.
3.28, we can see that for larger initial distances from the wall, the reduced deformation

in the bubble shape means that this effect is less prominent.

Figures 3.31-3.33 show jet velocities at different distances for a selection of Deborah
numbers, for Re = 0.2. For h = 1.1 the perturbations in the jet velocity at De = 5.0 can
be significantly damped by decreasing De, as the viscous forces become more dominant.
So much so, that for De = 1.0 the jet velocities tend toward to zero, indicating that
the system is tending to a steady state. The effect of the damping can be seen at each
distance h, and in fact at A = 2.0, the influence of the wall is suppressed to the extent

that the velocity profile is almost indistinguishable from the spherical case.

The Effect of the Deformation Terms

In this section, we will briefly discuss the effect of the upper convected Maxwell (UCM)
viscoelastic model on bubble dynamics. Namely by including the missing deformation
terms in the material Maxwell model. Given the diagonal form of stress tensor on the
shear-stress-free free surface, the normal-normal component of the extra stress, Th,,, is

found from
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Figure 3.24: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re =10.2, De = 5.
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Figure 3.34 shows the bubble profiles and jet velocity for De = Re = 1, h = 1.1,
using the UCM model. Firstly, note that the primary characteristics associated with
viscoelastic bubble collapse are still predicted; namely the oscillation of the bubble
radius with time and the development of a cusped underside near the wall. Making
more quantitative comparisons between the two models, we find that the dynamics
predicted by the UCM model are more damped than those of the material model. Not
only are the jet velocities (Fig. 3.34(b)) lower in amplitude, but deformation in the
bubble is inhibited to the extent that the bubble no longer “pinches off”’, as in the
material case (see Fig. 3.15). Consequently, the computation continues for longer with
the bubble assuming a thin prolate tear-drop shape, with a longer, sharper cusp (Fig.
3.34(a)).

Such behaviour is not unexpected because, as can be seen from Eqn. (3.8), the addi-
tional deformation terms resemble the viscous rate of deformation term on the right-
hand side. Hence one would anticipate that dynamics are not dissimilar to those
observed when viscous effects are increased.

Figure 3.35 shows the bubble profiles and jet velocities when the initial distance of the

bubble from the wall is increased to h = 2.0. The usual response to increasing distance
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Figure 3.25: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re = 0.2, De = 5.

is observed. Firstly, deformation is reduced and the bubble remains close to spherical
for most of its lifetime. Secondly, as a consequence of the reduced deformation, the
jet velocity profile is more regular (see Fig. 3.35(b)) than in the A = 1.1 case (Fig.
3.34(b)). The perturbations in the velocity profile, that result from the unsynchronised
oscillations of the bubble surface when close the wall, are no longer seen.

In summary, while the dynamics of the UCM and material models differ quantita-
tively, their behaviour and predictions are in general agreement and confirm the role
of viscoelasticity on bubble collapse. The UCM model also predicts oscillatory bubble

collapse, pronounced cusping, and perturbations to the jet velocity when near the wall.
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Figure 3.26: Bubble surface profiles at different stages of collapse at a distance h = 2.0,
Re =0.2, De = 5.

h=1.1
——— - h=1S§
h=2.0

4
Time

Figure 3.27: Position of jet point on z axis with time, Re = 0.2, De = 5, for varying
height.
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Figure 3.28: Jet velocities during collapse with varying height. Re = 0.2 and De = 5.
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Figure 3.29: Comparison of jet positions and velocities, for h = 1.1, Re = 0.2 and
De = 5.
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Figure 3.30: Comparison of North and South pole velocities, for h = 1.1, Re = 0.2 and
De =5.
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Figure 3.31: Jet velocities during collapse with varying De. Re = 0.2 and h = 1.1.
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Figure 3.32: Jet velocities during collapse with varying De. Re = 0.2 and h = 1.5.
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Figure 3.33: Jet velocities during collapse with varying De. Re = 0.2 and h = 2.0.
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Figure 3.34: Bubble collapse near a wall using the UCM model. De = Re=1, h=1.1
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Figure 3.35: Bubble collapse near a wall using the UCM model. De=Re =1, h=2




3.3.4 The Pressure Field

The high pressures associated with bubble collapse are still considered to be a factor in
phenomena such as cavitation damage. Therefore, it is important to study the pressure
field surrounding the bubble and, interestingly, how this pressure field depends upon

viscoelastic effects. The pressure field is calculated from the Bernoulli equation viz.,

px)=-p”*-~|V 0|2+ Poo (3.9)

The internal potentials $>are calculated at a selection of points using the boundary
integral formula. Internal velocities can then be found using finite differences. To test
the accuracy of the pressure contours produced, the spherical Rayleigh bubble in an
infinite medium was initially considered. Figure 3.36 shows the pressure contour plots
for a radius of R & (//20)Ro. Rayleigh [120] states that the pressure just outside the
bubble at this radius should be approximately p = 1260. The contour plot shows a

good agreement with this calculation.

Figure 3.36: Pressure contours following the collapse of the Rayleigh bubble to a radius
R=""R

Considering the Newtonian case Re = 10, Figure 3.37 displays the pressure contours

at distance 2 = 1.1 from the wall. The suppression of jet formation, and the resulting

small bubble sizes attained mean that the pressures around the bubble are very large

- of the order of those produced by the Rayleigh bubble. The high pressure regions
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are indicative of regions of large accelerations and deformation. Expectedly therefore,
we see a high pressure region on the top of the bubble (where the bulk of fluid is
preferentially drawn) and on the underside of the bubble (where the cusping and high

curvatures exist).
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Figure 3.37: Pressure contours in the final stages of collapse, with 2 = 1.1, Re = 10,
De = 0.
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Pressure contours for Re = 1, De = 1 are displayed in Figures 3.38 and 3.39. The
pressures are significantly smaller than the previous case as elastic effects prevent the
catastrophic collapse and the associated high pressures. For 2 = 1.1 (Fig. 3.38) we see
a high pressure region at the point of “pinch-off” - where the rate of surface deforma-

tion is the greatest.
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Figure 3.38: Pressure contours in the final stages of collapse (¢ « 1.600), with 2 = 1.1,
Re =1, De = 1.

At h = 2.0 (Fig. 3.39) the high pressure region is again found around the bubble
underside, near the cusp. The larger curvatures in this region mean the surrounding
pressures are slightly larger than in the # = 1.1 case. Figure 3.40 shows the maxi-
mum pressure in the field plotted with time. Note that close to the wall, there are
perturbations in the maximum pressure much like those previously observed in the jet
velocity profiles, indicative of the increased deformation in the bubble near the wall.
The variation in the maximum pressure then becomes more regular as the distance
from the wall is increased and bubble deformation is decreased.

Figure 3.41 shows the pressure contours for Re = 0.2,De = 5 at a distance 7 = 1.1. A
higher pressure region at the cusp is noticeable as before. Again the pressures remain
small in comparison to the Newtonian case, as the rebounding bubble prevents the
build up of large pressures. Fig. 3.42 shows the maximum pressure variation with
time. As in the De = 1, Re = 1 case, we see perturbations in the pressure close to the
wall, which diminish with increasing distance. Also, the further the bubble is from the
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Figure 3.39: Pressure contours in the final stages of collapse (¥ « 3.580), with & = 2.0,
Re= 1, De = 1.

wall, the decrease in deformation results in a slight decrease in the maximum pressure
on average.

From the results presented in this section it is clear that viscoelasticity has a significant
effect on the dynamics of bubbles near a rigid wall. Jet formation can be completely
suppressed and entirely different dynamics can emerge. There are marked changes in
bubble shape with varying distances from the wall. For example, close to the wall one
can observe cusping in the bubble underside, while at greater distances, the bubble
can remain near sphericity. Viscoelastic effects can prevent the catastrophic collapse
observed in Newtonian fluids and the subsequent build up of large pressures. Given
these results, it is clear that fluid rheology is the dominating factor in bubble dynamics,

rather than the presence of a rigid boundary.

3.4 Conclusions

The effect of viscoelasticity on the dynamics of cavitation bubbles near boundaries has
been studied. We validate the inviscid predictions with the literature and note the
effect of viscosity in inhibiting jet formation and jet speed. For the values of Reynolds
number and Deborah number necessary to induce oscillation, we find that during col-
lapse near a wall the liquid jet will not form. Instead, the underside of the bubble can

cusp and cause parts of the bubble surface to oscillate out of phase. The incoherent
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Figure 3.40: Maximum pressure with time at different heights Re = 1, De = 1.

oscillations disrupt flow around the bubble causing perturbations in its position and
velocity profiles. The cusping and perturbations are more noticeable closer to the wall,
and less perceptible as one moves further away. Increasing viscous effects can prevent
large deformations in bubble shape, regardless of distance from the rigid wall; and
so reduce the incoherent oscillations and perturbations in the velocity. Viscoelastic
effects can prevent the catastrophic collapse and the associated high pressures seen in
the Newtonian cases. The bubbles oscillate near the wall for a significant period of
time, without significant changes in volume. For some parameters, the results suggest
that a steady state can be attained, as inertial forces become balanced by the elastic

and viscous forces.

The implications of this investigation to cavitation damage are clear. The suppression
of the liquid jet and the lower velocities and pressures suggest that viscoelasticity has
a mitigating effect. Although this has been proposed experimentally by Williams et
al. [165], this chapter is the first attempt to predict these effects using a mathematical
model for bubble collapse in viscoelastic fluids. Provided the parameters are such that
elastic rebound of the bubble can occur, velocities and pressures will not be as large
as the inviscid case - and, consequently, one can postulate that cavitation damage will

be less prominent.
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Figure 3.41: Pressure contours in the final stages of collapse (¢ « 5.720), with & = 1.1,
Re = 0.2, De = 5.
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Figure 3.42: Variation of maximum pressure with time at different heights: Re = 0.2,
De = 5.
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Chapter 4

'The Effect of Viscoelasticity on the
Dynamics of Two (Gas Bubbles
Near a Rigid Boundary

4.1 Introduction

In reality, bubbles do not occur in isolation but in large numbers or bubble clouds.
Given the importance of bubble dynamics in science, industry and medicine, and the
implications to cavitation damage, a theoretical understanding of bubble-bubble in-
teraction, as well as the bubble-boundary interaction, is extremely important. Also,
in many practical situations, the ambient fluid is not ideal and fluid rheology plays a
crucial role in the dynamics. Many important fluids (oils, lubricants, blood) are best
modelled by non-Newtonian and viscoelastic constitutive equations. Multi-bubble dy-
namics have been studied numerically in the literature for some time. For example
Bunner and Tryggvason [39] undertake a numerical study of the dynamics of bubbly
flows, while Lu et al. [99] consider the effect of bubbles on wall drag in turbulent chan-
nels. The focus has tended towards studying the effect of bubbles on the fluid flow,
and not on the near wall bubble dynamics and mechanisms of cavitation damage, such
as jet formation. Blake et al. [16] use a boundary element technique to describe the
growth and collapse of two cavitation bubbles near a rigid wall in an inviscid fluid. The
resulting dynamics and jet formation show good agreement with experiment. Zhang
and Zhang [172] consider the same problem, but include the effect of surface tension.

They note that surface tension resists deformation in the cavity, as well as causing
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faster collapse.

In this chapter, a numerical investigation is undertaken to determine the effect of
viscoelasticity on multi-bubble dynamics near a rigid boundary. The boundary element
method described in Chapter 2, which allows for the inclusion of viscoelastic effects,
is extended to deal with multi-bubble geometries. However, in this chapter we only
present results for the dynamics of {wo bubbles situated on an axis of symmetry near
a wall.

4.2 Mathematical model

The fluid domain 2 surrounding the bubbles is assumed to be incompressible and the
motion irrotational. It follows from the conservation of mass that there exists a velocity

potential ¢ which satisfies Laplace’s equation:

V3¢ =0, (4.1)

in the region 2. By Greens theorem, there exists an integral solution to (4.1), defined
in terms of the boundary integral [113],

@) =3 [ (e -s@FEea)ds @)

where 0%); is the surface of bubble ¢, and the constant ¢(p) is given by
27 if pPE 39,-,
c(p) = .
4 if p € Q\0Q;
In 3D, the appropriate Greens function G(p, q) is given by
1 n 1
lp—al P-4’

where p’ is the image of p in the rigid boundary. Consequently the no penetration

G(p,q) =

(4.3)

condition on the rigid boundary is immediately satisfied.

Given an initial potential ¢y on the bubble surface 0, the integral equation (4.2) can
be solved numerically for the normal velocity to the surface %f. The tangential velocity
%f can be calculated given the potential ¢, and the surface geometry 952;. Hence the
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velocity on the surface is completely described. The fluid particles with position vector
X initially on the surface 92; will remain there. Consequently, the surface can be

updated in a Lagrangian manner according to

Dx

D V¢, x €N (4.4)
A generalised Bernoulli equation provides an equation of motion from which the po-
tential ¢ can also be updated in a Lagrangian manner

D
e R (45)

Here T,,, is the normal normal component of the extra-stress, p., is the fluid pressure far
from the bubbles, and p, is the internal bubble pressure. The viscoelastic constitutive

equation for T, is restricted to Maxwell type, and is given by

DT
Dt

Note that setting A = 0 recovers a Newtonian fluid of constant viscosity u.

A + Ton = tan- (4.6)

In contrast to the previous chapters, we include the bubble growth from an initially
small spherical bubble, in addition to studying the bubble collapse. In the previous
chapter, bubble growth near the wall does not significantly impact upon bubble shape,
and the shape just before collapse was very nearly spherical. Here however, the presence
of an additional bubble adds an extra perturbation to the flow. The two deformable
bubble surfaces are unlikely to remain spherical during growth and so the initial shapes
just before collapse are unlikely to be spherical. The shape prior to collapse is likely
to play an important role in the subsequent dynamics.

Bubble growth is driven by the internal bubble pressure p, which, as in many physical
situations, results from the non-condensible gas content of the bubble. Assuming this

gas to be ideal and adiabatic, the bubble pressure can be expressed as

Db = Do (%)7 , (4.7)

where Vj is the initial bubble volume, and + is the ratio of specific heats - in this case
taken to be v = 1.25.
As a consequence of also modelling bubble growth, the physical variables in the above

equations are non-dimensionalised in a slightly different way to that described in Chap-
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ter 2, viz.,

oot (pw>”2
R, \ p ’
A

[e o]
poo ’

- where R,, is the maximum radius a single gas bubble would attain in an inviscid,

(4.8)

3
[
3

Fle

infinite fluid domain. The subsequent non-dimensional equations are then given by

(dropping asterisks)

D¢ 1 o\ /
D = 1+ §|u| —Tun — € (T/—) , (4.9)
where Ty, is found from
DT, 1
De Dt -+ T,-m = E’Ynn. (410)

The dimensionless parameters for the problem (slightly different to the previous chap-
ters) are defined viz.: the Deborah number,

1/2
De = ﬁ (’%”) : (4.11)
the Reynolds number,
1/2
Re = R’"‘_(p;’;p)__’ (4_ 12)
and the bubble “strength”
€= z%' (4.13)

Initially, we consider two bubbles of small radii at rest. As mentioned, bubble growth
is then driven by the internal compressed gas content. The initial conditions on the
bubble surface are then ¢(x,0) = 0 and Tp,(x,0) = 0. The bubble strength of each
bubble is taken to be ¢ = 100 for all results in this study. Given this choice of € we

can find the initial bubble radius required for a single bubble in an infinite inviscid
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fluid to expand to a maximum radius of R,, = 1. This then ensures a consistent
non-dimensionalisation. To find the initial radius Ry, the following variation of the

Rayleigh-Plesset equation is solved numerically,

~_(RY-R})=-1+R (4.14)

vy-1
For the stated values of v and €, Equation (4.14) provides an initial radius of Ry ~
0.149.

'Figure 4.1 details the initial configuration. In the interests of efficient nomenclature,
the bubbles shall be referred to as B; and B, with B; always referring to the bubble
closest to the wall. The heights h; and h, are the respective initial distances from the
wall to each bubble centroid.

B,

®

Rigid Wall

h,

h,

Figure 4.1: Schematic diagram detailing initial configuration.

Equation (4.2) is solved using collocation, with nodal points on the bubble surfaces
and the potential ¢ interpolated using cubic splines. The discrete system is solved for
the normal velocity using Gaussian elimination. The tangential velocity and higher
derivatives of ¢ are found using generalised centred difference formulae found in [89).
A fourth-order Runge-Kutta scheme is then used to update the bubble surface and
potential using (4.4) and (4.9), respectively. In the presence of viscoelasticity (De #
0), the constitutive equation is updated using an implicit second-order time stepping
method. The nodal points on the bubble surfaces are redistributed with respect to

arclength at each time step and, as is necessary with such boundary integral schemes,
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smoothing is periodically used to prevent the onset of numerical instability.

4.3 Numerical Results

4.3.1 Validation

An initial validation of the multi-bubble code is to compare the dynamics of two identi-
cal bubbles in an infinite expanse of fluid, with that of a single bubble near a rigid wall.
The formulations are mathematically identical, but differ slightly in computation. In
‘the rigid wall case, the boundary conditions on the wall are imposed by the inclusion
of a mirror image of the bubble on the other side of the wall. To do this a single image
term is added to the Green’s function in the single bubble integral (Eqn. 4.3).

To validate the two bubble case, this second (mirror) bubble is explicitly modelled with
its surface being summed over and updated in time in the usual way. Figure 4.2 shows
the near identical jet velocities obtained in both cases.

o
T

o
T

Jet Velocity
)

-
o
]

— = — ~ 1 bubble near a rigid wall

2 identical bubbles

D
--
o

N
S

Figure 4.2: Jet velocities for a bubble near a rigid wall and one bubble near an identical
bubble

To validate the code further, the results are compared with those of Blake et al. [16].
Their study concerns the interaction and dynamics of two inviscid bubbles near a rigid
boundary.
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In the paper of Blake et al. [16], the lengths are scaled with respect to the maximum
equivalent bubble radius. To prescribe the correct initial potentials to give the max-
imum bubble radii observed in experiment, the following Newton-Raphson iterative
scheme is used,

¢t = of = [J7M(R: - RY), (4.15)

where J is the Jacobian matrix element and is calculated using finite differences. Here
R; is the desired maximum radius of bubble 7. It typically takes 3-4 iterations to attain
"an error in Rﬁ‘ of less than 0.5%. Note that the choice of scaling here is such that if B
has the largest radius, then R; = 1 with 0 < R; < 1, and vice versa.
Two cases are presented here in the interest of validation. Figure 4.3 shows the bubbles
shapes during the collapse of two approximately equal-sized bubbles near a wall. The
results indicate that the lower bubble perceives the upper bubble as an identical one,
and consequently acts much like an image system, with the collapse of the upper bubble
resembling that near a rigid wall. The lower bubble behaves as if it were between two
rigid parallel plates, and so begins collapse from the side, producing the observed
elongated shape. Identical profiles are observed in Fig. 9(a) of Blake et al. [16].
Figure 4.4 shows the centroid motion of each bubble in time - again showing excellent
agreement with [16].

r

Figure 4.3: Bubble shapes of two approximately equal-sized bubbles near a rigid bound-
ary. hy = 0.99, h; = 3.60, R, = 0.94. Different colours indicate different instances in
time.
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Centroid

Figure 4.4: Evolution of bubble centroids. hy; = 0.99, h; = 3.60, R; = 0.94 '

Figure 4.5 shows the bubble shapes for two different-sized bubbles near a rigid wall.
The dynamics are markedly different. The growth near the rigid boundary causes the
flattening of the underside of the lower bubble. During the collapse, the fluid flow
parallel to the rigid boundary is far less restricted than that in the normal direction.
Consequently, an annular jet penetrates the lower bubble, while the upper bubble
displays a marked protrusion on its underside. Figure 4.6 shows the variation of the
bubble centroid with time. Again, these results are in excellent agreement with those
of Blake et al. [16].
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Figure 4.5: Bubble shapes of two different-sized bubbles near a rigid boundary. hy =
0.47, hy = 2.17, R, = 0.57. Different colours indicate different instances in time.

Figure 4.6: Evolution of bubble centroids. hy; = 0.47, h; = 2.17, R, = 0.57.
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4.3.2 The Growth and Collapse of Gas Bubbles near a Rigid
Boundary

Equal-sized bubbles

In this section we present some numerical results showing the growth of two initially
equal-sized gas bubbles. Firstly let us consider a fixed height configuration (hi = 1.0,
h2= 3.6) and investigate the influence of fluid parameters. Figure 4.7 displays bubble
profiles for the inviscid case (De = 0, Re = o0). The profiles resemble closely those
seen in Fig. 4.3 and so suggest that in this instance, the inclusion of non-condensible
gas content has little effect on bubble dynamics. Figure 4.8 shows bubble profiles but
with Newtonian effects included (Re = 100). Expectedly, given the high Reynolds
number, the profiles resemble those for the inviscid case shown in Figures 4.7 and 4.3.

time *1.215

time = 2.383

4.5
35

25

0.5

-

Figure 4.7: Bubble shapes for De = 0, Re = oo, hi = 1.0, 12 —3.6. Different colours
indicate different instances in time.

Figure 4.9(a) shows the North pole jet velocities of each bubble for Re = 100. One can
plainly see the larger final velocity in B2 that coincides with the liquid jet penetrating
the bubble. The velocity vectors for the flow can then be seen in Fig. 4.9(b), and their
notably larger values in the jet region. Additionally, the pressure contours show the
creation of a high pressure region just above B2. This is often seen in jet formation in
single bubble dynamics near a wall, but here the maximum pressure is smaller due to

the presence of Bi and the associated restriction in fluid flow and acceleration.
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Figure 4.8: Bubble shapes for De = 0, Re = 100, 42| = 1.0, h2= 3.6. Different colours
indicate different instances in time.
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots.

Figure 4.9: (a) North pole jet velocities, (b) velocity vector and pressure contour plots
at t « 2.3 for De = 0, Re = 100, hi = 1.0, h2= 3.6
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Figure 4.10 shows bubble profiles with the inclusion of viscoelastic effects for De = 1
and Re = 2. The dynamics are markedly different. A liquid jet penetrates while
one only begins to form in B2. This is almost the opposite occurrence to the previous
cases where the jet would first penetrate B2. In Fig 4.11(a) we see a large difference in
the North pole jet velocities as the velocity rapidly grows in J?i, but in B2 it becomes
negative as the bubble begins to rebound. As we have seen in previous chapters,
bubble rebound is a well-known characteristic of viscoelastic bubble dynamics. The
above behaviour can be explained as follows: During the growth phase the viscous
dissipation prevents either bubble from attaining as large a volume as the previous
cases. Consequently, bubble interaction between the two is considerably less - the
main influence of B\ therefore is the wall. In wanting to revert to a prior state, elastic
forces then encourage collapse in the early stages, but as inertia quickly increases, they
can do little to inhibit collapse and jet formation in the final stages. In B2 meanwhile,
due to its distance from the wall, a jet does not fully form and the bubble collapses
until a combination of the elastic stresses and gas content on the bubble cause the
bubble to rebound.

As is typical with jet formation, in Fig. 4.11(b) we see a high pressure region develop

above Z}, whereas around BJ) the pressure is considerably lower and more uniform.

35

2.5

0.5

Figure 4.10: Bubble shapes for De = 1, Re = 2, hi = 1.0, h2= 3.6. Different colours
indicate different instances in time.

In Figure 4.12 the Deborah number is increased to De = 2.5. We see that the general
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t « 1.04.

Figure 4.11: North pole jet velocities and velocity vector and pressure contour plots
for De = 1, Re =2, hi = 1.0, hi = 3.6

profile shape reverts back to dynamics similar the Newtonian cases - a jet forms first
in B2but not in B\. In this case though, note that B\ is of a much smaller size than
that attained in a Newtonian fluid. Thus the growth/collapse process occurs more
quickly, with jet impact occurring at ¢ & 1.36 in the viscoelastic case and ¢ « 2.36
in the Newtonian (Re = 100). In the growth phase the larger elastic contribution
counteracts viscous dissipation, consequently the bubbles grow to a slightly larger size
than in the De = 1 case (but still smaller than the Newtonian), and so interaction
between the bubbles is greater. The influence of B2 on B\ then inhibits jet formation
in Bi as in the Newtonian case. The high pressure region above B2 (Fig. 4.13(b)) is
also greater in magnitude than in the Newtonian case. This is most probably due to
the increased freedom of the ambient fluid, as the influence of B\ is reduced due to its
smaller size. The jet velocities here (Fig. 4.13(a)) bear semblance to the Newtonian
case (Fig. 4.9(a)) as contributions from the extra-stress are in the most part dwarfed

by the high inertia during the growth and once again during collapse.
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Figure 4.12: Bubble shapes for De = 2.5, Re = 2, h\ = 1.0, h2= 3.6. Different colours
indicate different instances in time.

Now let us consider the dynamics of equal-sized bubbles, with fixed fluid parameters
De = 1, Re = 2, at varying height configurations. Figure 4.14 shows bubble profiles
for hi = 0.5, h2 = 2.0. Note the jet formation in B\, but given the close proximity
of B2, B2 itself deforms considerably into a heart-like shape. Evidently, the underside
has deformed inwards towards the central axis as a result of the fluid flow forming the
jet of Bl. Meanwhile, the influence of the wall and Bl means that a jet also begins to
form in B2

We see in Fig. 4.15, as B2 is moved further away to a distance 4#2 = 4.0, and the
influence of Bi and the wall decrease, deformation in B2 is minimal and the profile
remains mostly spherical. The primary influence of Bl is again the wall, and we see
collapse with jet formation in a manner very similar to Fig. 4.14.

The two bubbles are now moved away from the wall slightly, with 4\ = 1.0 and 42 = 2.5,
in the hope that bubble-bubble interaction becomes more evident. This is the case in
Fig. 4.16, where the profile of B2 resembles closely that in Fig. 4.14, but now being
further from the wall, is more susceptible to the influence of B2. This is evidenced by
the inception of an upwards directed jet on the underside of B\, as well as a fully
formed downward jet from the topside (indicating that the wall is still the dominant
influence).

If B2 is moved further away to 42 = 4.5, as in Fig. 4.17, we see that B\ is almost

entirely influenced by the wall, with the formation of a single downward jet during
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t« 135

Figure 4.13: North pole jet velocities and velocity vector and pressure contour plots

for De = 2.5, Re =2, = 1.0, h2= 3.6

collapse. Meanwhile B2, under little influence from the near wall dynamics, remains

approximately spherical while oscillating due to the effect of the elastic stresses and

gas content.
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Figure 4.14: Bubble shapes for De = 1, Re = 2, hi = 0.5, h2= 2.0. Different colours
indicate different instances in time.
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Figure 4.15: Bubble shapes for De = 1, Re = 2, hi = 0.5, h2= 4.0. Different colours
indicate different instances in time.
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Figure 4.16: Bubble shapes for De = 1, Re = 2, hi = 1.0, /2= 2.5
indicate different instances in time.
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Figure 4.17: Bubble shapes for De = 1, Re = 2, h\ = 1.0, hi = 4.5
indicate different instances in time.
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Different-sized bubbles

We will now consider the dynamics of two initially different-sized bubbles. The initial
radius of Bu will always be half that of B2. As previously, we consider a fixed height
configuration and vary the fluid parameters at first. Then the influence of varying i
for a fixed fluid will be studied.

Figure 4.18 shows bubble profiles for the inviscid case. The height configuration (hi =
0.5, h2 = 2.25) is similar to Fig. 4.5. We see a similar annular jet penetrate the
bubble from the side, but due to the presence of non-condensible gas content, the
upper segment of B then expands in volume. Consequently, this creates a much larger

upper lobe than that seen in Fig. 4.5.

tin*-1.125
™- 1.656
time * 2.061

25

0.5

Figure 4.18: Bubble shapes for De = 0, Re = oo, hi = 0.5, h2= 2.25. Different colours
indicate different instances in time.

Figure 4.19(a) shows the North pole jet velocities, which remain small as no high speed
axial jet forms. Similarly, the pressure contours remain small, with the highest pressure
region developing above B2, possibly anticipating jet formation.

Figure 4.20 shows the bubble profiles with the inclusion of Newtonian effects (Re =
100). In the equal bubble case there was little difference between the inviscid and
Newtonian dynamics at Re = 100 (Figures 4.7 and 4.8). Here however, the dynamics
between the two are drastically different. In Bi there is no sideways annular jet -
the bubble only becomes more prolate during collapse and in the final stage possible

jet inception occurs on F?i’s underside. In B2 meanwhile, a downward jet (directed
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t « 2.05.

Figure 4.19: North pole jet velocities and velocity vector and pressure contour plots
for De = 0, Re = oo, h\ = 0.5, h2= 2.25

towards the wall) forms during collapse. The reason for the drastic difference between
the profiles in Figures 4.18 and 4.20 results from the inhibiting effect of viscosity on
deformation. In Fig. 4.18, due to the presence of B2 and the wall, fluid flows in from
the sides to produce the annular penetrating jet. The width of this jet is thin, and
velocities and curvatures - and consequently velocity gradients, will be high in this
region. The presence of large velocity gradients mean that viscous effects will also be
large and will act to inhibit fluid flow. As well as this, velocity gradients are larger in
smaller bubbles. Hence the fact that B\ was initially half the size of B2, and so subject
to larger viscous effects, is the crucial reason for such differing dynamics between the
inviscid and Re = 100 case.

Figure 4.21(a) shows the jet velocity profiles. We see the significantly larger velocity
of the liquid jet in B2 which has been able to form due to the extended lifetime of B\
(Bi has not succumbed to the annular jet and split). As expected, the jet formation
also coincides with a high pressure region above B2 (Fig. 4.21(b)).
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Figure 4.20: Bubble shapes for De = 0, Re = 100, hi = 0.5, h2 = 2.25. Different
colours indicate different instances in time.

Including viscoelastic effects (De = 1, Re = 2) we see in Fig. 4.22, as in the equal-sized
case, the bubble behaviour switches; Bl succumbs to jet penetration, while B2 remains
almost spherical. Here, however, we see no sign of jet inception in B2 compared with
Fig. 4.10, as the influence of Bi is diminished due to its smaller size.

Figure 4.23(a) shows the jet velocity profiles. Note the small oscillation in B\ before the
velocity increases rapidly as the jet forms. Meanwhile in B2, the jet velocity increases
before it rapidly becomes negative as the bubble begins to rebound (again a result of
elastic effects and bubble gas content). Here we also demonstrate the integrity of the
numerical solution, by presenting the jet velocity profiles obtained with different mesh
refinements. Increasing the number of elements N from 50 to 100 makes no visible
difference to the results, and so setting N = 50 elements on each bubble surface is
deemed sufficient. As is expected, the high pressure region now appears above Bl in
correspondence with the jet formation (Fig. 4.23(b)). The maximum pressure though
is significantly lower here than the corresponding equal-size case (Fig. 4.11(b)), as Bl
is closer to the wall and so fluid flow is more restricted. This also explains why the
final jet velocity in B\ in this case is also slightly smaller comparatively.

Increasing the Deborah number to De = 2.5 (Fig. 4.24), we again note a considerable
difference in dynamics. A jet now forms in B2 as in the equal-size case, but we now also
see jet formation in Bl. Figure 4.25(a) shows the similarity in the jet velocity profiles

of each bubble, and the approximately equal final velocity. It seems that in this case
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
1« 2.17.

Figure 4.21: North pole jet velocities and velocity vector and pressure contour plots
for De = 0, Re = 100, hi = 0.5, h2 = 2.25

the increased elastic effects have counteracted the viscous effects to allow both bubbles
to grow to a slightly larger size. Consequently, B2 is large enough to be influenced by
B\ and the wall (and so a jet forms), but it is not so large as to negate the effect of
the wall on B! and prevent jet formation there. Hence high speed jets form in both
bubbles. As we see jet formation in the two bubbles we see a high pressure region
develop above each of them (Fig. 4.25(b)). The maximum pressure although resides

above B2 where fluid flow is less restricted.
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Figure 4.22: Bubble shapes for De = 1, Re = 2, hl = 0.5, h2= 2.25. Different colours
indicate different instances in time.

We shall now fix the fluid parameters (De = 1, Re = 2) and study dynamics for
different height configurations. For 4i = 0.5 and 2= 1.5 (Fig. 4.26) the wall effects
dominate and we see the formation of a liquid jet in B\ and, due to the close proximity
of B2, jet inception also begins to take place on B2s topside.

Moving B2 away from the wall to 42 = 3.0 (Fig. 4.27), as expected we see that Bl
is still dominated by the presence of the wall, while B2 - now under little external
influence, remains near sphericity, undergoing oscillatory collapse.

Figure 4.28 shows jet velocities in B\ as B2 is moved further away (as 42 is increased).
We see that with increasing # the final jet velocity also increases, as fluid flow around
B\ becomes less restricted. To accompany this, the oscillations in B\ also increase in
magnitude with increasing #2. The pressure fields behave similarly with increasing /42
(Fig. 4.29). For B2 close to B\, the pressure around Bl is small compared to that
around B2 (Fig. 4.29(a)). As h”" is increased the maximum pressure now occurs above
B\ (Fig. 4.29(b)) and then continues to increase with increasing 22 (Fig. 4.29(c)), as
fluid motion becomes increasingly less restricted.

In Figure 4.30 the bubbles are moved away from the wall slightly with 4l = 1.0, h2=
2.0. It is clear that bubble-bubble interaction plays a greater role than previously. The
collapse of B\ results in the formation of an annular axial liquid jet, which penetrates B\
to leave an axial bubble “spike”. Similar bubble shapes are seen in bubbles collapsing

next to infinitely long free surfaces which include viscoelastic (see Chapter 5) and
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(a) North pole jet velocities for different mesh re- (b) Velocity vector and pressure contour plots at
finement. t « 0.9.

Figure 4.23: North pole jet velocities and velocity vector and pressure contour plots
for De = 1, Re= 2, hi = 0.5, h2= 2.25

elastic effects [81]. This suggests the smaller bubble B|, sees B2 almost as an infinite
free surface and in fact B2 has become the dominant influence over B\, instead of the
wall.

Predictably, as B2 moved further away (Fig. 4.31), its influence on B/ is less compared
to the wall, and the usual jet formation in B\ results. Expectedly, B2 remains very

nearly spherical.
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Figure 4.24: Bubble shapes for De = 2.5, Re = 2, hi = 0.5, h2 = 2.25. Different
colours indicate different instances in time.
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
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Figure 4.25: North pole jet velocities and velocity vector and pressure contour plots

for De = 2.5, Re = 2, hx= 0.5, h2 =225
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Figure 4.26: Bubble shapes for De = 1, Re = 2, hl = 0.5, h2= 1.5. Different colours
indicate different instances in time.
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Figure 4.27: Bubble shapes for De = 1, Re = 2, h\ = 0.5, h2 = 3.0. Different colours
indicate different instances in time.
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Figure 4.28: Jet velocities in B\ at il = 0.5, for varying h2 (De = 1, Re = 2).

(¢) h2= 3.0
Figure 4.29: Pressure contour plots for varying 42 with De = 1, Re = 2, hi = 0.5
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Figure 4.30: Bubble shapes for De = 1, Re = 2, hi = 1.0, h2= 2.0. Different colours
indicate different instances in time.
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Figure 4.31: Bubble shapes for De = 1, Re = 2, hi = 1.0, h2 = 3.5. Different colours
indicate different instances in time.
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4.4 Conclusion

The dynamics of two bubbles near a rigid boundary are both interesting and varied,
and are made more so with the inclusion of viscoelastic effects. The dynamics are
strongly dependent on initial bubble size, the distance between the bubbles and the

wall, and on the fluid parameters. Table 4.1 summarises the behaviour observed in this

study.
Equal-sized Different-sized
Inviscid B,: Large, prolate B;: Annular side jet
B;: Jet formation Bs,: Large, near-spherical
Newtonian B,: Large, prolate B,: Jet formation
B;: Jet formation B,: Possible jet inception
Viscoelastic B;: Jet formation B,: Jet formation
(moderate De) | B,: Possible jet inception B,: Jet inception
Viscoelastic B,: Small, near-spherical B,: Jet formation
(larger De) B;: Jet formation B,: Jet formation

Table 4.1: Summarising observed bubble behaviour for different bubble sizes and fluid
parameters

Bubble-bubble interaction clearly plays an important role, but does not necessarily
dominate when including viscoelasticity. Jets readily form in certain situations in
viscoelastic fluids (a sign of greater wall influence) but not in the corresponding New-
tonian case (suggesting bubble-bubble interaction dominates). This may provide some
explanation for the ambiguity present in the experimental works which directly mea-
sure cavitation damage in viscoelastic fluids. Ashworth and Procter [4] and Shima
et al. [139] find an increased incidence and rate of cavitation damage in dilute poly-
mer solutions, while other studies e.g. Brujan et al. [33] note a decrease in cavitation
damage. The fact that jet formation is so subtly dependent on bubble size, distances
from the wall and each other, and the fluid parameters, means that it is reasonable to
expect that instances of cavitation damage will be high for some viscoelastic fluids and
low for others, and will depend crucially on neighbouring bubbles. Given that these
bubbles can exist in “clouds™ where they number thousands, to attempt to control or
model bubble interaction, and the subsequent influence on cavitation damage, is nearly
impossible. The ideal theoretical situation studied here, and the range of behaviours
observed, merely highlights the complex situation that exists in nature. Evidently,

more experimental and theoretical research on multi-bubble dynamics and the role of
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viscoelasticity is required. Obvious extensions to the current theory include the de-
velopment of a fully 3D system that allows for multi-bubble dynamics which are not
restricted to the axis of symmetry.
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Chapter 5

The Effect of Viscoelasticity on the
Dynamics of GGas Bubbles Near

Free Surfaces

5.1 Introduction

The study of bubble dynamics near a free surface has received considerable attention
for a number of years. Since World War 11, the problem has been studied extensively
given the application to underwater explosions. More recently however, the interaction
of cavitation bubbles with such deformable boundaries has become of great importance
to the medical field, particularly with the advent of ultrasound and laser techniques.
The creation of bubbles within the body plays a crucial role in shock lithotripsy [42],
drug delivery [166], and tissue and cell damage [85)].

One of the first numerical studies of a bubble near a free surface was undertaken by
Dommermuth and Yue [46]. Under the assumptions of incompressibility and irrotation-
ality, the boundary element method was used to calculate, amongst other free surface
problems, the growth and collapse of a cavity near a free surface. This work was ex-
tended by Blake et al. [20], who used the same techniques to specifically study bubble
collapse near a free surface in more detail. Their results showed good agreement with
the experimental work of Blake and Gibson [17], and highlighted the formation of a
free surface liquid jet and a liquid jet which penetrates the bubble. Depending on the
magnitude of buoyancy forces the bubble will either migrate away (small buoyancy
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forces) or towards the boundary with the bubble jet directed away or toward the free
surface, respectively.

Given the success of the boundary element method in free surface studies, research
using such techniques continued. Boulton-Stone and Blake [26] used the BEM to in-
vestigate the bursting of gas bubbles near a free surface, and the subsequent free surface
jet. The motivation behind the study being the cell damage observed in bioreactors as
a result of such bursting bubbles. The study also included viscous effects at the bubble
surface. This study was extended by Boulton-Stone [25] to include the presence of
surfactants on the bubble surface, where it was found that surface dilatational viscos-
ity can slow and even prevent the formation of the liquid jet. The bursting bubble
problem was also investigated by Georgescu et al. [60] who, using a similar boundary
element scheme, included the drop ejection from the formed liquid jet. Viscous effects
were included solely through the normal stress balance and their results showed good

agreement with experiment.

Simultaneously, improvements were made to techniques in studying the collapse of
bubbles near free surfaces. Wang et al. [161] used a nonlinear distribution of nodes
on the free and bubble surface which allowed for greater surface deformations and
closer bubble-surface proximities which were unattainable in [20]. This work was then
extended in [160] to include non-condensible gas content of the bubble and also the
evolution of the bubble into toroidal form following jet impact. Similarly Robinson
et al. [132] undertook a numerical and experimental investigation into one and two
bubble dynamics near a free surface. Using a non-linear node distribution and cubic
splines in their BEM scheme, they were able to reproduce the sharp free surface spikes
and bubble centroid motions observed in their experiments. The work of Pearson et
al. [114] then extended this work to include the transition of the bubble into toroidal

form.

While the aforementioned work was concerned with bubble interaction with free sur-
faces, biological application motivated study in the theoretically similar, but more gen-
eral, bubble interaction with fluid/fluid interfaces. The aim being to better model the
fluid difference across tissue boundaries and cell membranes. Klaseboer and Khoo [81]
used the boundary element method to describe bubble dynamics near an interface of
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two fluids of different densities. In the limit of the density of the external fluid tending
to zero, the free surface situation mentioned above is reached. Conversely, if this den-
sity was to approach infinity, the bubble dynamics mirror those near a rigid boundary.
Consequently a liquid jet within the bubble could be directed away or toward the in-
terface, depending on the density ratio of the two fluids. Given that biological fluids
exhibit elastic properties, Klaseboer and Khoo [82] extended their previous work to
model bubble dynamics (in an inviscid fluid), near an elastic fluid. The elasticity of
the second fluid being modelled through a pressure term at the fluid-fluid interface.
A wide range of bubble shapes were observed, including the usual liquid jetting but
also mushroom-like bubble shapes and bubble splitting. Good agreement was found
with the experimental work of Brujan et al. [35,36], who investigated the comparable
situation of the dynamics of laser induced cavitation bubbles in water near a poly-
acrylamide gel. A similar study by Turangan et al. [155] proceeded to investigate
experimentally and numerically, the bubble dynamics near an elastic membrane. They
noted that bubble shapes closely resemble those near elastic boundaries, despite the
different boundary physics.

This chapter investigates the effect of viscoelasticity on bubble dynamics near a free
surface. While the Newtonian dynamics have been well documented, the influence
of viscoelasticity on bubble and free surface dynamics has not. The experimental
literature is also sparse, but for the work of Williams et al. [165], on liquid free surface
jets formed by bubbles in non-Newtonian fluids. They note that jet production is
markedly suppressed in elastic fluids than in their Newtonian counterparts. We shall
comment on these results in relation to the numerical ones to be presented here. Also,
given the semblance with the aforementioned work on bubbles near elastic boundaries,

appropriate comparisons will be made.

5.2 Mathematical model

The fluid in domain €2 is assumed to be incompressible and the fluid motion irrotational.
It follows from the conservation of mass that there exists a velocity potential ¢ which

satisfies Laplace’s equation:
V3¢ =0, (5.1)
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in the region 2. By Greens theorem, there exists an integral solution to (5.1), defined
in terms of the boundary integral [113],

«®)o(p) = [ (G@6m ) - o5 (b.a)) a5 (52)

where 0§} = 0X U 0B is the boundary of the fluid domain and 0¥ and OB are the
boundaries of the free surface and the bubble respectively. The constant ¢(p) is given
by

2 if p € 09,
c(p) = .
4 if p € Q\oN

In 3D, the appropriate Greens function G(p, q) is given by

G(p,q) =

Ip—q| (5:3)

Given an initial potential ¢y on the fluid surface 952, the integral equation (5.2) can be
solved numerically for the normal velocity to the surface % The tangential velocity
%‘g can be calculated given the potential ¢y, and the surface geometry 9€2. Hence
the velocity on the surface is completely described. The fluid particles with position
vector x initially on the surface J€2 will remain there. Consequently, the surface can
be updated in a Lagrangian manner according to

PD—): =V¢, x€. (5.4)
As previously, a generalised Bernoulli equation provides an equation of motion from
which the potential ¢ can also be updated in a Lagrangian manner. This equation takes
a slightly different form on the free and bubble surfaces. The normal fluid stresses are
balanced by the internal bubble pressure p, on the bubble surface 3B and by the

hydrostatic pressure p,, on the free surface 9X. Hence we have

Dé _ P -
th = 2|u| Ton +Poo —P» on OB, (5.5)
and s
Do _ppp2_
PDs 2|u| Tpn on 0. (5.6)

For the same reasons as the previous chapter, bubble growth as well as bubble collapse
is modelled. The internal bubble pressure p, results from the ideal and adiabatic gas
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content of the bubble, described by equation (4.7). The governing equations are non-
dimensionalised in an identical manner to the previous chapter (see equations (4.8)),

to give,
D¢ 1, Vo\”
Dt = 1+ 2|u| Ton — € (V) on 0B, (5.7)
and Dé 1
pr——— 2 [—
Dt 2Iul Tﬂﬂ on aza (5.8)
where T, is found from
DT, 1.
DCW + T,m = Re")(,m. (59)

Equation (5.2) is solved using collocation, with nodal points on 92 and the potential
¢ interpolated using cubic splines (which are parameterised with respect to arclength
s). The free surface JX requires special consideration. As in [114] the free surface is
partitioned into an analytic portion in the far field, and treated numerically within the
vicinity of the bubble. It can be argued that in the far field leading order behaviour
is like that of a dipole with the velocity decaying like O(|r|~3). Consequently the
quantities z, ¢ and 9 are taken to be of the form

f(r,t) = (fﬂ)a Foasrt) if 7] > Tonae- (5.10)

r
Tmaz denotes the last point of the numerical portion of 9X. As in [161] we take e, =
10R,, (ten maximum bubble radii). Consequently, equation (5.10) forces the cubic
spline interpolants to be clamped at the far-field end of the free surface, by enforcing
the following

dr 1

dz 3z

s -~ T Dr (512)
d¢ 3¢

o ¥ 1
ds Dr’ (5.13)

with D = (1 + (3z/r)?%)*/2.
The subsequent discretisation of (5.2) gives
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2 N, 2 N
c(p)di+ D) A+ Pi=Y Y (B + Civian) + Livy, s (5.14)

s=1 j=1 s=1 j=1
where i varies over all the collocation points on 92, ¢ = 1,..., Np, where Ny =
Ny + 14 Ny + 1 is the total number of points on 9§2. Subscript label 1 refers to
the free surface, and label 2 to that of the bubble. P; and L; represent the integration

over the analytic portion of the free surface.

The discrete system is solved for the normal velocity 1 using Gaussian elimination.
The tangential velocity and higher derivatives of ¢ are calculated using the spline in-
terpolation. A fourth-order Runge-Kutta scheme is then used to update the bubble
surface and potential from equations (5.4), (5.5) and (5.6). In the presence of viscoelas-
ticity (De # 0), the constitutive equation is updated using an implicit second-order
time stepping method.

As in [114], the nodal points on the bubble surface are redistributed equally with respect
to arclength at each time step. On the free surface, the redistribution is enacted using

the following function

g Smax (IZ1NT() ! (5.15)
2 M (N — i +2)? '

for i = 2,...,(N; + 1). The above redistribution function ensures a high density of

nodes near the axis of symmetry allowing the formation of any free surface jets to be
captured accurately.

As is necessary with such boundary integral schemes, smoothing is periodically used
to prevent the onset of numerical instability. Smoothing needs only to be applied to
the bubble surface given the employment of (5.15) on the free surface. To preform
the smoothing, as in [114] a scheme based on the fourth-order diffusion-like equation

is used

of _ _ 9
ot O0st’

which damps high order modes, but leaves lower order modes virtually unchanged.

(5.16)

Here f is the function to be smoothed and o' is a diffusive constant. Solution of (5.16)
using an Euler scheme for the time derivative and a centred difference scheme for the

spatial derivative yields the following applicable formula
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fi = fi — a(fi—a — 4fj—1 + 65 — 4fi1 + fisa)- (5.17)
f is the smoothed function and « is a smoothing parameter. The presence of this pa-
rameter means one has more freedom in choosing to what degree smoothing is applied
(other than how frequently). A choice of @ = 1/16 gives the previously used smoothing
formula of Longuet-Higgins and Cokelet [97]. In practice one can smooth sufficiently
for a value of & < 1/16, regardless of bubble distance from the free surface. In most

situations this formula is applied every ten time steps.

Initially, we consider a single gas bubble of small radius at rest a distance A from an
unperturbed free surface z = 0. A schematic diagram of the set up is given in Fig.
5.1. Bubble growth is then driven by the internal compressed gas content. The initial
conditions on the bubble and free surface are then ¢(x,0) = 0 and T,,(x,0) = 0. The
bubble strength is taken to be € = 100 for all results in this study. As in the previous
chapter, to ensure a consistent non-dimensionalisation, this choice of € requires an
initial radius of Ry =~ 0.149.

Free Surface

Figure 5.1: Schematic diagram of initial set up.
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5.3 Numerical Results

5.3.1 Validation

The free surface boundary element formulation is now validated through comparison
with the free surface results of Wang et al. [161] for an inviscid bubble. The bubble
is assumed to have zero gas content and is prescribed an initial velocity through an

initial potential given by

$o=—A- Ry (% ((%)3 - 1))0.5, (5.18)

A=1-— (5.19)

Equation (5.18) is like that for the potential of an inviscid spherical bubble in an in-

where

finite fluid, as used in [19], but for the inclusion of parameter A (Equation (5.19)),

which accommodates the presence of the free surface.

Fig. 5.2 shows the bubble/free surface profiles for a distance of h = 0.5 from the un-
perturbed free surface. The bubble and free surface shapes show very good agreement.
The maximum height reached by the free surface jet is 2,0, =~ 2.8 - as predicted by
Wang et al. [161].

Fig. 5.3 shows the bubble/free surface profiles for h = 1.0. Again, there is excellent
agreement. The bubble and free surface shapes are identical to those in [161] with the
free surface jet reaching the same maximum height, 2., =~ 0.85.

Fig. 5.4 presents the variation of the bubble centroid with time for different distances

h. Once again, the results show excellent agreement with those of Wang et al. [161].

5.3.2 Newtonian Dynamics

Now, we present results for the growth and collapse of a gas bubble near a free surface,
and investigate the influence of viscous effects. Fig. 5.5 shows the bubble/free surface
profiles for h = 0.5 in the inviscid case. The profile shapes resemble closely those of
previous results, where instead the bubble was prescribed an initial velocity with zero

gas content. A tall thin, free surface jet forms, while a thin jet penetrates the bubble,

118



t=0.343
t= 0.648
t=0.934

-3.5

-2.5

-0.5

05 k -

Figure 5.2: Bubble and free surface shapes for # = 0.5. Different colours indicate
different instances in time.

directed in the opposite direction.

Figure 5.6 shows a three dimensional visualisation of Fig. 5.5, the instant before bubble
jet impact. The tall, thin free surface jet, in relation to the bubble size and shape, can
be fully appreciated.

If viscous effects are included with Re = 50, we see the small effects of viscous dissipa-
tion playing a part in the dynamics. Figure 5.7 shows the bubble/free surface profiles
for Re = 50, h = 0.5. Most notably, the free surface jet now attains a smaller height
(Zmax ~ 2.2) than in the inviscid case (zmax « 2.5). Kinetic energy that would be
provided by the growing gas bubble to the free surface jet, is reduced as a result of the
energy lost to viscous dissipation in both the bubble and free surface. We also note
the formation of a slightly thinner sharper jet being formed in the bubble as a result
of the viscous effects. Increasingly thinner jets with decreasing Reynolds number were
noted by Popinet and Zaleski [121] in their study on the effect of viscosity on bubble
collapse near a rigid wall. This results from viscosity inhibiting fluid flow into the jet,

creating a less voluminous jet, with a subsequently sharper tip.
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Figure 5.3: Bubble and free surface shapes for # = 1.0. Different colours indicate
different instances in time.

Figure 5.8 displays bubble/free surface profiles for an inviscid bubble at 2z = 1.0. In
being further from the free surface, the interaction between it and the bubble is less
than the # = 0.5 case. The free surface jet is much smaller and broader, attaining a
maximum height of zmax « 0.8. Similarly, the bubble jet forms and grows wider during
collapse, causing the bubble to assume a more bowl-like shape in the final stages.

Figure 5.9 shows bubble/free surface profile shapes following the inclusion of viscous
effects (Re = 50). We note a similar occurrence to the 42 = 0.5 case - namely, a shorter
free surface jet (“max = 0.6), and a slightly thinner bubble jet. But again, in general

appearance, the form and shape of the bubble are still similar to the inviscid case.
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Figure 5.4: Bubble centroid positions for a range of values of %

Figure 5.10 shows the pressure contours and velocity vector plot in the final stages of
collapse for the inviscid 42 = 0.5 case. Notable aspects are the high pressure region
above and below the bubble and free surface jet respectively; a point of focus as fluid is
drawn in to form either jet. The velocity vectors then highlight the significant velocities
in both of the liquid jets, directed in opposite directions.

Figure 5.11 shows the pressure contours/velocity vectors for an inviscid bubble a dis-
tance 4 = 1.0 from the unperturbed free surface. A high pressure region is observed
above the bubble jet where fluid acceleration is greatest. The maximum magnitude
of the pressure is higher here (pmax « 12.3) than in the # = 0.5 case (pmax w 2.0),
as a greater volume and mass of fluid is focused into the bubble jet region, with a
comparative increase in fluid momentum.

Figure 5.12 shows the pressure contour/velocity vectors at 2 = 1.0 for Re = 50. The
general form of the fields is similar to the inviscid case, but expectedly, the high pressure
region is slightly smaller in magnitude as fluid flow is inhibited slightly by the effects
of viscous dissipation.

Figure 5.13 displays the free surface jet height varying with time, for different 4 and
Re. As we have seen, the distance of the bubble from the free surface is the dominant
factor in determining jet height. Jets are taller and thinner for bubbles closer to a
free surface than for bubbles further away. The effect of viscosity, though small in

comparison, is also evident. Increasing viscous effects results in decreased jet heights
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Figure 5.5: Bubble and free surface shapes for an inviscid fluid at # = 0.5. Different
colours indicate different instances in time.

as the kinetic energy that would be used in the formation of these jets is lost through

viscous dissipation.
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Figure 5.6: 3D visualisation of Fig. 5.5

time = 0.458
time = 0.790
time = 0.981

Figure 5.7: Bubble and free surface shapes with Re = 50 at & = 0.5. Different colours
indicate different instances in time.
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Figure 5.8: Bubble and free surface shapes for an inviscid fluid at # = 1.0. Different
colours indicate different instances in time.

time = 0.643
time = 1.341
time =1.545

Figure 5.9: Bubble and free surface shapes with Re = 50 at A = 1.0. Different colours
indicate different instances in time.
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Figure 5.10: Pressure contours and velocity vectors at 0.973 for an inviscid fluid
(h =0.5).
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Figure 5.11: Pressure contours and velocity vectors at ¢ = 1.595 for an inviscid fluid
(h = 1.0).
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Figure 5.12: Pressure contours and velocity vectors at ¢ = 1.545 with Re = 50 {h =
1.0).
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Figure 5.13: Jet height varying with time for different Reynolds number at # = 0.5
and & = 1.0.
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5.3.3 Viscoelastic Dynamics

With the inclusion of viscoelastic effects we see a marked change in the dynamics.
Figure 5.14 shows the bubble and free surface profiles for De = 1.0, Re = 1.0, & = 0.5.
Interestingly, the usual axial jet does not form. Instead we see the formation of an
annular, ring-like jet which is centred on the axis of symmetry. This produces an
“apsidedown mushroom” like bubble shape, with a sharp stem. Similar bubble shapes
are seen by Klaseboer and Khoo [82] and Turangan et al. [155] following bubble collapse
near an elastic surface and membrane. The similarities between these studies will be

discussed in more detail in Section 5.3.4.

time = 0.168
time = 0.322
time = 0.393

NO

Figure 5.14: Bubble and free surface shapes with De = 1, Re = 1 at & = 0.5. Different
colours indicate different instances in time.

To ensure that a sufficient mesh refinement is used in obtaining these results, Fig.
5.15 shows the jet velocity on the free surface with different mesh refinements on the
bubble and free surface. From this it can be seen that Nf = 75 and Nb = 50 provides
a sufficiently refined mesh, and is consequently used in obtaining the following results.
Also, to ensure that the distance to which the numerical portion of the free surface
extends is large enough, Fig 5.16 displays the free surface jet velocity at rmax = 10 and
20 for different mesh refinements. For the mesh with Nb = Nf = 75, increasing rmax
to 20, creates a discrepancy in the results as increasing the length of the free surface
causes the mesh to become under-refined. If the mesh refinement is then increased,
the results match those of the rmax = 10, Nb = Nf = 75 case well. This suggests that
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Figure 5.15: Free surface jet velocity for De =1, Re = 1, with mesh refinement

Tmaz = 10 is indeed sufficiently long enough to describe the numerical portion of the
free surface.

If the Deborah number is decreased to De = 0.5, we observe a bubble shape similar
to that for De = 1 (Fig. 5.14). Here though, the annular jet which forms, continues
to travel through to the opposite side of the bubble. Also, during collapse, the bubble
begins to expand as a result of the internal gas content and the effect of the elastic
stresses. This helps to create the small ringed jet, with a thin bubble “stem” and
a large surrounding body. Given that viscous dissipation effects are more dominant
now, the height reached by the free surface is significantly less (2., & 0.2) than that
reached in the De = 1.0 case (zZmar = 0.4).

Figure 5.18 shows a 3D visualisation of the final stage of collapse for De = 0.5, Re =
1.0. The annular jet, having penetrated the top of the bubble about the thin axial
stem, can be seen clearly.

Now if the Deborah number is increased to De = 2.5 (Fig. 5.19), we see a reversion in
the dynamics. Instead of an annular ring jet, an axial jet, much like those seen in the
Newtonian case, forms. Although, this jet is considerably larger and the jet tip broader
and flatter than its Newtonian counterparts. The increase in Deborah number means
that viscous effects are suppressed by the increasing elastic effects. Consequently,
the effect of viscous dissipation is less and the bubble is able to expand to a larger

volume and interact and deform with the free surface. With viscous effects reduced,
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Figure 5.16: Free surface jet velocity for De = 1, Re = 1, with varying mesh refinement
and 7,,., values.

the bubble now succumbs to more dominant inertia terms and the usual axial jet forms
and penetrates the bubble. In addition, the free surface jet produced is significantly
taller (2,42 = 1.0), but still less than half the size of its inviscid Newtonian counterpart
(Fig. 5.5) - emphasising that viscosity still plays a considerable role.

The effect of varying Deborah number can be readily seen in Figures 5.20 and 5.21. As
the Deborah number is increased, so do the jet velocity and height on the free surface.
For De = 0.5 viscous dissipation plays a more important role and consequently the
free surface jet velocity and free surface height are smaller, as energy is dissipated
into the fluid. Also, note the rebound in the jet velocity at ¢ = 0.3, describing the
re-expansion of the bubble due to elastic and internal gas effects. By increasing the
Deborah number one increases the effect of elasticity, but also inertia, as viscous effects
are offset. Subsequently, the velocity of the jet and the height reached by the jet
increase.

Similar behaviour is observed with the bubble. Figure 5.22 shows the variation of
the bubble centroid position with time. Evidently, the mobility of the bubble’s centre
of mass increases with Deborah number. Reduced viscous dissipation results in the
bubble being able to move more freely along the axis of symmetry.

Figures 5.23 and 5.24 display the pressure contours and velocity vectors for the above
parameters.

For Deborah number De = 2.5 (Fig. 5.23), we see a pressure field much like that
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Figure 5.17: Bubble and free surface shapes with De = 0.5, Re = 1.0 at 7 = 0.5.
Different colours indicate different instances in time.

observed in the Newtonian case, with the formation of the axial jet accompanied by
the corresponding high pressure region between the bubble and free surface. The
maximum pressure here is larger than the corresponding Newtonian case, given the
greater volume/mass of fluid focused into the larger, voluminous bubble jet.

Fig. 5.24 displays corresponding results for De = 1.0, Re = 1.0, & = 0.5. Expectedly,
a high pressure region occurs in the vicinity of the bubble - specifically along the thin,
sharp ‘“stem” that is produced during collapse. This is a consequence of the extremely
high curvatures near the tip of this stem and the subsequent large normal stresses.
Note the larger velocities around the axis of symmetry, forming the annular ring jet.
For a Deborah number of De = 0.5 (Fig. 5.25), we see the high pressure region form
at the tip of the annular jet that penetrates and impacts upon the opposite side of the
bubble. The maximum value of this pressure is significantly less than the De =1.0
case as the surface curvatures in this region are smaller, and the increased effect of
viscous dissipation acts to suppress the high pressures. Note the negative pressure
around the outer body of bubble, indicating the expansion of this outer segment, due

to the expansion of the internal gas content and elastic stresses.
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Figure 5.18: 3D visualisation of Fig. 5.17.
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Figure 5.19: Bubble and free surface shapes with De = 2.5, Re = 1.0 at h = 0.5.
Different colours indicate different instances in time.
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Figure 5.20: Free surface jet velocity for 2 = 0.5 with different De.
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Figure 5.21: Free surface jet height for £ = 0.5 with different De.
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Figure 5.22: Bubble centroid position for # = 0.5 with different De.
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Figure 5.23: Pressure contours and velocity vectors at + = 0.574 with De = 2.5,
Re = 1.0 (h = 0.5).
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Figure 5.24: Pressure contours and velocity vectors at ¢ = 0.393 with De = 1.0,
Re = 1.0 {h = 0.5).
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Figure 5.25: Pressure contours and velocity vectors at ¢ = 0.388 with De = 0.5,
Re = 1.0 (h =0.5).
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We shall now briefly comment on the dynamics when the bubble is positioned further
away from the free surface at an initial distance # = 0.75. Figure 5.26 shows the
bubble and free surface profiles for De = 1.0 and Re = 1.0, 4 = 0.75. Interestingly, the
annular jet that was seen in the # = 0.5 case is no longer seen for # = 0.75. The bubble
expands and causes slight deformation in the free surface, then during collapse the top
of the bubble flattens before an axial liquid jet penetrates the bubble and impacts upon
the underside. Indentations in the flattened bubble surface at # = 0.435 indicate the
possibility of an annular jet forming, before the irresistible action of the axial jet.
time = 0.197

time = 0.435
time = 0.467

-0.5 -

Figure 5.26: Bubble and free surface shapes with De = 1.0, Re = 1.0 at & = 0.75.
Different colours indicate different instances in time.

Figure 5.27 shows the bubble and free surface profiles when the Deborah number is
decreased to De = 0.5. As before, viscous forces become more dominant, and inertia
plays a smaller role. Consequently the elastic effects become more discernible from the
inertial. During growth, the bubble undergoes minimal deformation, and perturbs the
free surface only slightly. The collapse is then characterised by the oscillation of the
bubble surface with time. Such oscillation being due to the action of the compressed
gas content and the elastic stresses. No jet of any kind forms, and the deformation in
the bubble throughout its oscillation is small.
This oscillation can be seen readily in the graphs of the free surface jet velocity (Fig.
5.28) and jet height (Fig. 5.29). For De = 1.0 there is a single oscillation in the
free surface, despite there being no oscillations in the bubble. For De = 0.5 there are
several oscillation during the growth phase and collapse phase, but with the jet velocity
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Figure 5.27: Bubble and free surface shapes with De = 0.5, Re = 1.0 at & = 0.75.
Different colours indicate different instances in time.

or height never reaching as large a value as seen for De = 1.0, due to the increased
effect of viscous dissipation.

Similarly, the plot of centroid position with time (Fig. 5.30) highlights the difference
in the oscillatory nature of the dynamics. The De = 1.0 case resembles the centroid
profiles observed previously, while De = 0.5 displays a marked difference as the bubble

centre of mass undergoes a large oscillation first, before subsequent smaller oscillations.
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Figure 5.28: Free surface jet velocity for 2 = 0.75 with different De.
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Figure 5.29: Free surface jet height for A = 0.75 with different De.
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Figure 5.30: Bubble centroid position for 2 = 0.75 with different De.
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The initial position of the bubble from the free surface is now increased to # = 1.0.
Figure 5.31 shows the bubble and free surface profiles for De = 1.0, Re = 1.0, 1 = 1.0.
Expectedly, the deformation in the free surface is less as the influence of the bubble
decreases with increasing distance. No discernible free surface jet forms. As in the
previous case when 4 = 0.75, there is no annular jet, but an axial one which penetrates

the bubble, while the bulk of the bubble expands due to the gas content and elasticity.

time - 0.224
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-

Figure 5.31: Bubble and free surface shapes with De = 1.0, Re = 1.0 at A = 1.0.
Different colours indicate different instances in time.

If the Deborah number is decreased to De = 0.5 (Fig. 5.32), as in the 2 = 0.75
case, the effects of inertia are suppressed by the viscous effects, so jet formation is
prevented and the elastic effects become more apparent. The bubble oscillates as it
grows and collapses, and given the increased distance of the bubble from the free
surface the bubble remains very nearly spherical throughout its lifetime, with minimal
deformation in the free surface.

Figures 5.33 and 5.34 display the free surface jet velocity and jet height, respectively.
The oscillation in the free surface for both De = 1.0 and De = 0.5 is evident. Given
the reduced effects of viscous dissipation, the maximum velocity and height of the free
surface jet is larger in the De = 1.0 case. Whereas the computation stops following jet
impact for De = 1.0, the near-spherical oscillations for De = 0.5 are able to continue.
Figure 5.35 shows the variation of the bubble centroid positions with time. The plots
resemble those of the # = 0.75 case, with the bubble migrating from the boundary
when De = 1.0 (as also seen in the Newtonian case). But when De = 0.5, the bubble
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Figure 5.32: Bubble and free surface shapes with De = 0.5, Re = 1.0 at & = 1.0.
Different colours indicate different instances in time.

centroid undergoes low amplitude oscillations near its initial position.

As alluded to, the bubble and free surface will continue to oscillate until an apparent
steady state is reached. In fact such a situation occurs for 2 = 0.75, De = 0.5, Re = 1.0
also, but we just discuss the results for the # = 1.0 case here. Figure 5.36 shows the
bubble centroid, free surface jet height and jet velocity over a larger time interval for
the parameters De = 0.5, Re = 1.0, # = 1.0. The arrival at a steady state is clear as
beyond ¢ « 8.0 each measure reaches a constant value, with the jet velocity very nearly

ZLro.

Considering the pressure contours and velocity vectors, Fig. 5.37 plots an instant in
time just before jet impact for De = 1.0. In contrast to the pressure fields usually
seen for axial jets, the high pressure region occurs within the jet, with a maximum at
the jet tip. This is a result of the high curvatures present in the sharp jet tip and the
subsequently large normal stresses.

For the De = 0.5 case, the apparent arrival at a steady state is confirmed. The
pressure throughout the fluid is approximately p « 1.0, namely hydrostatic pressure.
With little variation from the hydrostatic pressure the fluid must be near stationary,
with the gas pressure inside the bubble and the atmospheric pressure beyond the free
surface, balanced exactly by the fluid pressure.

Note that steady states were also observed for the collapse of viscoelastic cavities near
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Figure 5.33: Free surface jet velocity for # = 1.0 with different De.

rigid boundaries in Chapter 3 and suggests that this is a consistent phenomenon in

viscoelastic bubble dynamics.
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Figure 5.34: Free surface jet height for # = 1.0 with different De.
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Figure 5.35: Bubble centroid position for 2 = 1.0 with different De.
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Figure 5.36: Bubble centroid position, free surface jet position and free surface velocity
for h = 1.0, De = 0.5, Re = 1.0.
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Figure 5.37: Pressure contours and velocity vectors at ¢ = 0.532 with De = 1.0,
Re = 1.0 (h = 1.0).
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Figure 5.38: Pressure contours and velocity vectors at ¢ = 17.6 with De = 0.5, Re

(h= 1.0).
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5.3.4 Comparison with bubbles near elastic boundaries

As mentioned in Section 5.3.3, the mushroom-like bubble shapes produced in the cur-
rent work are similar to those produced when a bubble collapses near an elastic medium
or membrane. Figure 5.39(a) presents the results of [82] (Fig. 3) which show a bubble
collapsing near an elastic medium. The density ratio between the two fluids is 0.967,
and the elasticity coefficient is 0.799. The experimental images below (Fig. 5.39(b))
are those of Brujan et al. [35] for a bubble near a PAA/ 85% water sample. The results

show good agreement until the very final stages.
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Figure 5.39: Bubble collapse near an elastic medium?2.

Note the similarity in the bubble shapes of Fig. 5.39(a), Frame A, to that of Fig. 5.14
for example. The studies of Klaseboer and Khoo [82] and Turangan et al. [155] note that
such shapes are not produced when elasticity is not present in the external medium. In
concurrence with the Newtonian studies presented here, no such shapes are observed.
The current work seems to confirm the role of elasticity in the formation of such
mushroom shaped bubbles in close proximity to (visco)elastic surfaces. The presence of
the free surface is the crucial factor, for if the bubble is positioned further from the free
surface, as seen in Fig. 5.27, the mushroom shape does not form, despite the presence

of viscoelasticity. Interestingly, such mushroom shapes were observed in the study of

2Reprinted with permission from E. Klaseboer and B. C. Khoo, An oscillating bubble near an
elastic material, Journal of Applied Physics, 2004, Vol. 96, 5808. Copyright 2004, American Institute
of Physics.

145



two bubble dynamics near a wall in Chapter 4. For two bubbles positioned a moderate
distance from the wall, the lower smaller bubble forms into a mushroom-like shape,
under the influence the upper, larger bubble. Evidently, the smaller bubble views
the larger bubble as an approximation to an infinite free surface, and subsequently,
exhibits similar dynamics. As described in Klaseboer and Khoo [82], the reason for the
formation of these shapes is the introduction of a perturbation in the bubble surface,
by the neighbouring free surface. Deformations resulting from the elastic responses of
the free surface exert a force on the neighbouring bubble, introducing perturbations
in its surface. In [82], depending on parameters, these perturbations can travel along
the whole length of the bubble, or only a short distance before the bubble collapses,
producing different shapes. In the current work, the perturbations do not seem to
travel far from the north-pole of the bubble before fluid inertia causes bubble collapse,
and creates the observed annular jets and thin-stemmed mushrooms with voluminous
bodies. Figure 5.40 highlights the formation of this perturbation graphically. Without
a doubt it is the effect of viscous dissipation that dampens the propagation of these
perturbations along the bubble surface, in comparison to [82], where no dissipative

mechanisms are present.

6 u

Figure 5.40: The instigation of a perturbation in the bubble surface by the free surface,
resulting in annular jet formation.
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5.3.5 Comment on comparison with experimental work of Williams

et al. [165]

Williams et al. [165] performed an experimental study of the liquid jets formed in free
surfaces by bubble collapse in viscoelastic fluids. The study utilises the novel exper-
imental technique described in [164] in creating the free surface jets. A gas bubble
created in a cylindrical column of viscoelastic fluid rises through the column to a free
surface, coming to rest directly beneath it. The liquid column is then subject to dy-
namic tension causing cavitation bubbles to form. The collapse of these cavitation
bubbles creates a shockwave which then drives the collapse of the gas bubble near the
free surface, creating the free surface jet. Figure 5.41 shows the gas bubble near the
free surface, and the subsequent jet produced by bubble collapse. The experimental
technique in fact approximates in vivo situations where multiple cavities are formed,

and the interaction of'shocks with bubbles play an important part in cavitation damage.

Although modelling this situation using the BEM is possible, considerable extensions
to the theory are necessary. A pressure pulse can be introduced into the scheme as in
the work of Klaseboer et al. [83]. Their BEM results compare well to other compress-
ible numerical methods in studying bubble collapse in an infinite medium due to shock

waves, despite their theory being incompressible.

The pressure pulse incident on the gas bubble is assumed to have the simplest possible
form (that of a square waveform, see Fig. 5.42), with amplitude Ps, velocity Us, and
width Ws. A schematic depiction is given in Fig. 5.43. The propagation of the pulse is
then included by setting the hydrostatic pressure in Equation (5.5) to the pressure
of the pulse when the pulse passes through the region of space in question, while poo is

set to a reference pressure Pref everywhere else. Mathematically,

P ref ifz< zo+tUs~ Ws
Poo Ps ifz0+ tUs - Ws <z <z0+ tUs
Pref if z>zo+ tUs
The variables are non-dimensionalised as in Section 5.2 but with respect to the refer-

3Reprinted from the Journal of non-Newtonian Fluid Mechanics, Vol. 76, P. R. Williams and P.
M. Williams and S. W. J. Brown, A study of liquid jets formed by bubble collapse under shock waves
in elastic and Newtonian liquids, 307-325, Copyright (1998), with permission from Elsevier.
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Figure 5.41: Jet formation in Newtonian silicon oil, with a shear viscosity of 0.18Pa-s.3

ence pressure, Pref, instead of hydrostatic pressure p”. The reference pressure Pref is
taken to be atmospheric pressure, Pref = 1x 105Pa. To attempt to model the phenom-
ena observed in experiment, we place an initially spherical bubble near a free surface
at & = 1.5, before initiating its collapse by subjecting it to the shockwave defined
above. The simulation starts at the instant the shockwave strikes the bubble, hence
z(0 = 2.5. From the pressure record provided by Williams et al. [165], the amplitude
of the shockwave is Ps « 1.3 x 107Pa, while the speed of the shock is of the order
of Ua ~ 400ms-1. Scaling with respect to the reference pressure, maximum bubble
radius (approximately 2.5mm), and assuming the fluid density p « 1000kgm-3, the
non-dimensional parameters are, = 1, Pa= 130, and U3= 40. The shock width is
taken to be Wa= 100.
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Figure 5.42: Form of pressure pulse

The fluid used in the experiment of Fig. 5.41 was Newtonian with a shear viscosity
of p = 0.18Pa-s. By Equation (4.12), the corresponding Reynolds number is approxi-
mately Re = 140. Hence assuming the fluid to be inviscid is a viable approximation,
certainly for illustrative purposes. Figure 5.44 shows the computed bubble and free
surface profiles during collapse.

The top left image details the initial configuration, with the incident shockwave rep-
resented by the red horizontal line. The shockwave then initiates collapse, and as it
passes through the bubble, a liquid jet begins to form. The jet begins to penetrate the
bubble, travelling in the direction of the shockwave - the opposite direction to the jets
observed in Section 5.3.2. These results are promising, closely resembling the transi-
tion from frame 2 to frame 3 of Fig. 5.41. That is, the moment before the arrival of
the shockwave (frame 2) and the thin flattened bubble produced before the formation
of the free surface jet (frame 3). In the experiment, the liquid jet then completely
penetrates the bubble, passing through to the free surface to create a thin free surface
jet (frames 4-8) - much like those seen in Section 5.3.2. Meanwhile, the newly formed
toroidal bubble continues to collapse. In the current study however, the theory has
yet to be extended to include the evolution to a toroidal geometry. This is a necessity
in order to model the high speed jet fully penetrating the bubble and creating that
observed in the free surface. The most popular methodology in modelling toroidal
dynamics was introduced by Best [10]. Considering the dynamics immediately prior to
and after jet impact, Best derived the following integral equation appropriate for the
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Free Surface

Figure 5.43: Schematic diagram of pulse, bubble, and free surface

doubly-connected toroidal geometry,

c(p)d(p) = /m (%(Q)G(P, q) - ¢(<1)%%(p,q)) dS - A¢ /T %%(p,q) ds, (5.20)

where T denotes the surface over which jet impact takes place. This surface is retained
throughout the simulation, acting as an imaginary link across the centre of the toroidal
bubble in order to restore the singly-connected geometry. The quantity A¢ is the jump
in potential across T and is equal to the circulation set up in the flow following jet
impact. This extension to a toroidal geometry and the study of post-penetration

dynamics is reserved for future work.
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Figure 5.44: Bubble collapse under a shockwave, near a free surface, in a Newtonian
inviscid fluid
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5.4 anclusions

This chapter has investigated the effect of viscoelasticity on the dynamics of gas bub-
bles near free surfaces. The phenomenon is most befitting to biological applications
and has implications for cell damage and drug delivery to name only two. Besides
this, the work gives a greater understanding of the role of viscoelasticity in bubble
dynamics in general. A range of dynamics is seen to occur, with a subtle dependence
on the Deborah number, Reynolds number and the initial distance of the bubble from
. the free surface. In the presence of viscoelasticity, the motion of free surface jets can be
significantly retarded compared to the Newtonian cases, and the bubbles take a wide
range of shapes. Provided inertial forces are not too large, the usual axial jet observed
in many instances in the Newtonian dynamics, is no longer seen. Instead, an annular,
ring like jet forms and can penetrate the bubble to produce mushroom-like shapes.
Similar shapes are observed in bubbles collapsing near purely elastic boundaries, and
are due to perturbations in the bubble surface resulting from the elastic responses of
the free surface. This study acts to confirm the role of elasticity in producing such
shapes. But the proximity of the free surface is crucial, for if the bubble is moved fur-
ther away from the free surface, little interaction takes place and the bubble collapses
in a near-spherical, oscillatory manner, before reaching some steady state. Given that
no high speed jets form in the bubble or free surface, the implications for cavitation/cell
damage can clearly be mitigatory. But the role of elasticity is not generally inhibitive,
for it is the balance between inertial, viscous and elastic effects that determines dynam-
ics. Increasing elastic effects can abate viscous effects to the extent that in fact inertia
dominates dynamics, so that at higher Deborah number, a reversion to Newtonian-like
dynamics occurs, with the formation of an axial bubble jet. The observed dynamics,
though veracious in exhibiting viscoelastic behaviour, is of course constitutive model
dependent. The simple material Maxwell model has been used here, and so future work
will entail further studies on the same situations but with other compatible viscoelastic
models.

Brief comparisons with the experimental work of Williams et al. [165] have also been
made. The model was extended to include the propagation of shock waves and shock-
induced bubble collapse. The results are promising in the early stages, but to recreate
the observed free surface jets, the theory needs to be extended to include evolution
to a toroidal geometry, to allow the liquid jet to fully penetrate the bubble and form
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the free surface jet. Future work will include this extension to the theory, allowing full

comparisons to be made.
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Chapter 6

‘The Effect of Viscoelasticity on a
Rising Gas Bubble

6.1 Introduction

The study of the motion of air bubbles in liquids has received much attention for many
years due to its fundamental and practical importance. The rise of bubbles in New-
tonian fluids has been studied intensively both theoretically and experimentally. The
dynamics of rising Newtonian bubbles depends primarily on the effects of surface ten-
sion and the Reynolds number. When surface tension effects are dominant the bubble
can remain spherical during ascension. Similarly at very small Reynolds numbers, de-
formation is small and the bubble remains spherical. In the limit of negligible inertia,
Stokes approximation for a translating rigid sphere [141] provides a reasonable approx-
imation to the flow and the drag on the bubble [29]. This approximation was extended
independently by Hadamard [62] and Rybzynski [136], who considered a fluid sphere
which allowed for slip and a zero shear stress on the bubble surface. Levich [88] and
Moore [106] employed a viscous potential flow approximation, and their drag predic-
tion is in better agreement with experiments in cases where inertia is not negligible.
As its size increases, the bubble deviates from its spherical shape. At progressively
larger volumes the bubble evolves into a prolate ellipsoid with an increasingly flat-
tened underside until, at negligible surface tension effects, a spherical cap bubble can
form [163]. There are many numerical studies examining the deviation from the spher-
ical shape seen in Newtonian fluids. The work of Boulton-Stone [24,27] and Robinson
et al. [131] use the boundary element method to study the deformation in rising gas
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bubbles in an inviscid fluid for the 3D axisymmetric and 2D cases, respectively. Their
numerical simulation studies reproduce many of the bubble shapes observed in ex-
periment. Similarly, Pozrikidis [122] uses a boundary element method to study the
oscillations in rising bubbles for the fully 3D problem, noting that rising bubbles oscil-
late at higher frequencies than stationary bubbles. Miksis et al. [105] use a boundary
element method to study the bubble shapes produced in a steady-state viscous poten-
tial flow. Again, their results bear a strong resemblance to experimental observations
and empirical results. Non-BEM studies include that of Pillapakkam and Singh [116],
“who use a level set finite element method, and similarly Sussman et al. [144] who use a
level set method but with finite differences. Ryskin and Leal [137] solve a steady-state
reformulated Navier-Stokes equation to determine terminal bubble shapes, while Tryg-
gvason et al. [154] use a front tracking scheme combined with a finite volume method,
in modelling rising bubbles and associated phenomena. Each of these studies captures

many of the essential features observed experimentally for the Newtonian rising bubble.

Unsurprisingly, the characteristics of a rising viscoelastic bubble differ drastically from
the Newtonian case. Subsequently, the interesting dynamics associated with viscoelas-
tic fluids has spurred a plethora of experimental studies, although comparatively few
theoretical and numerical ones. At low Reynolds numbers one still observes near spher-
ical rise as viscous effects dominate and inhibit deformation. However, larger bubbles
form more prolate ellipsoidal shapes with the underside becoming increasingly drawn
out. As explained by Bird et al. [15], this results from an additional tension along the
streamlines, squeezing the bubble at the equator. Beyond a certain critical volume, a
cusp can then form at the trailing end [118]. Accompanying the change in shape from
fully concave to cusped can be a large increase in the terminal rise velocity. Given the
small change in volume over which this transition takes place, it effectively represents
a discontinuity [72]. One of the first studies of this velocity jump was undertaken by
Astarita and Apuzzo [6] who attributed it to a transition from a Stokes to Hadamard
regime. Subsequent studies have proposed other reasons such as drag reduction [95],
the presence of surface active agents [133] combined with surface tension forces [134],
and the appearance of a negative wake [66] in the flow behind the rising bubble. The
negative wake behind a rising gas bubble in a non-Newtonian elastic liquid is a typical
occurrence, first observed by Hassager [65]. It is a non-Newtonian phenomenon but not

unique to gas bubbles, having also been observed behind spheres settling in viscoelastic
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liquids [3,63]. Although there have been several studies of the flow field around the
rising bubble (e.g. Funfschilling and Li [58]), a full explanation of the appearance of
the negative wake behind bubbles is not yet available. Herrera-Velarde et al. [66] find
that the negative wake only appears at bubble sizes above the critical volume. But
as pointed out by Kemiha et al. [73], the deformation in the surface (cusping) at the
critical volume cannot fully explain the origin of the wake, given that it is also seen
behind settling rigid spheres. They conclude that the viscoelastic properties of the

fluid must be responsible.

Numerical studies are fewer in number than their experimental counterparts. Wag-
ner et al. [159] and Frank and Li [55] use 2D Lattice Boltzmann methods to study
the problem, using Maxwell type constitutive equations for the ambient fluid. Both
are able to predict the observed cusp, with the latter also predicting the formation
of the negative wake. However, the velocity jump discontinuity is not observed in ei-
ther of these studies. Mélaga and Rallison [102] undertake an axisymmetric boundary
element study of the problem, under the assumption of Stokes flow in a FENE fluid.
Once again, despite reproducing a small cusp at the trailing end, no jump discontinuity
was observed. The numerical technique which seems to have borne most fruit is that
of Pillapakkam et al. [117]. They make use of a 3D level-set finite element method to
solve the full equations of motion with an Oldroyd B constitutive equation. Not only
do they observe a cusp and the negative wake, but also the velocity jump discontinuity.
As in Herrera-Velarde et al. [66], they attribute the principal cause of the jump to the

negative wake.

The above review highlights the complex and fascinating dynamics observed in rising
bubbles in viscoelastic fluids. Furthermore, it emphasises that little is still known about
the three characteristic phenomena - the formation of the cusp, the jump discontinu-
ity, the negative wake, and crucially, their relationship to one another. The variety of
explanations given in the experimental literature, and the sparsity of numerical results
means there is much work still to be done in gaining a full understanding of the dy-
namics. In this chapter we use a modification of the theory presented in chapter 2 to
attempt to describe the dynamics of a gas bubble rising in a viscoelastic fluid. The
choice assumptions allow crucial insights into the dynamics that could not be made in

experiments, allowing us to vindicate theories proposed in previous experimental and
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numerical works.

6.2 Mathematical Model and Governing Equations

As in previous numerical studies (for example [24,102, 131]), we consider the rise of
a constant volume gas bubble. This is also consistent with experimental observa-
tions [118] and, in effect, means that the change in hydrostatic pressure as the bubble
rises is small compared to the ambient fluid pressure. The bubble rises under the action
of buoyancy forces, and is subject to viscoelastic effects as it ascends. As outlined in
chapter 2, the fluid surrounding the bubble is assumed to be incompressible and irro-
tational, with viscoelastic effects appearing in the normal stress balance on the bubble

surface. Consequently, the conservation of mass is described by Laplace’s equation

V3¢ =0, (6.1)
while the potential is governed by the following irrotational equation of motion

p%f = glu|2+poo —p+ pg2, (6.2)
where u is the fluid velocity and p the fluid density. Note the additional buoyancy
term due to the inclusion of the gravity body force, where g is the acceleration due to
gravity and z is the vertical displacement from some reference height.

At any instant in time, the fluid pressure p is related to the bubble pressure py(t) and

viscoelastic effects, through the normal stress balance

p= pb(t) — 0K+ Tnm (63)

where o is the surface tension, x is the curvature, and T, is the normal-normal com-
ponent of the extra stress.

We assume the bubble is initially spherical and that it starts at rest, centred at z = 0.
The reference pressure p, is defined such that p = p,, at z = 0, and thus the initial

normal stress balance gives

P = m(0) = - (6.4)

(Noting that T}, = 0 since the fluid is at rest). Substituting equations (6.4) and (6.3)
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in equation (6.2) gives the following equation of motion, in terms of bubble pressure
term Apy(t) = pu(t) — pp(0)

D¢ _

Plul? _ _1
P = glal" +Ap —Tun+0 (ﬂ Ro) + pgz, (6.5)

with the rheological properties governed by the Maxwell constitutive equation viz.,

DT
Dt

where X is the relaxation time and p is the shear viscosity. Meanwhile, the solution of

A

+ Tnn = ;uf;)’nna (66)

Eq. (6.1) can be expressed in the usual integral form,

@) = [ (560 - o5 @) as (67)

where 00 is the boundary of the bubble in fluid domain 2, and the constant c¢(p) is
given by

c(p) =

2m if p € 092,
47 if p € Q\00

Spatial variables are non-dimensionalised with respect to the initial bubble radius Ry,

while time, pressure and the potential are scaled, respectively, according to

t

t* = W, (68)
P* = PQLRO’ (69)
S W. (6.10)

The subsequent non-dimensionalised governing equations are (dropping asterixes),

D¢ 1 ., 4
. A Apy — T + — (k — , :
D = 31U+ 4 + g5 (k=D +2 (6.11)
and DT, 1
De==™ 4 T = —5 12
“Dt T Re™ (6.12)

with the conservation of mass given as in Eqn. (6.7). The non-dimensional parameters

are the Deborah number,
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)\91/2

the Reynolds number,
1/2 p3/2
Re= PO (6.14)
7
and the Eotvos number,
2
E6 = i’iiﬁ. (6.15)

The E6tvos (or Bond) number can be described as a ratio between the buoyancy and

surface tension forces.

As mentioned, experimental observation shows that rising gas bubbles in Newtonian
and viscoelastic fluids remain very nearly constant in volume. Therefore, during bubble
ascension, the internal bubble pressure p(t) must vary in accordance with the changing
external hydrostatic pressure. This provides an additional unknown with an additional
equation provided by the volume constraint. The equation of motion (Eq. (6.11)) and
the conservation of mass (Eq. (6.7)) now need to be recast to remove dependence on

the unknown pressure term Ap,. Define a new potential ¢, such that

p=¢+k(t), (6.16)

where

ko = [ Bot) - po0)) . (6.17)

Crucially, the fluid velocity is independent of this definition since Vk(¢) = 0 and so
u = Vy = V¢. Consequently, substituting Eq. (6.16) into the equation of motion
(Eq. (6.11)) results in ‘

% - —;—|u|2—Tnn+E45(n—1)+z. (6.18)
In particular, note that Ty,(¢) = Tnn(¢) as we start from an initial zero extra stress
and Ay, = g%% = %‘é. Equation (6.18) is essentially the same as Eq. (6.11) but for the
absence of the internal bubble pressure term Apy.
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Secondly, substituting Eq. (6.16) into Eq. (6.7) gives,

Oy 0G
c(p)p = 4nk + ./aa (%G’ — cp%) ds. (6.19)

The first term on the right hand side derives from the property that ¢ = [ % dS =2m
on the bubble boundary.

To determine k(t) one requires an additional equation provided by the volume con-
straint. If the volume of the bubble is to remain constant, then the net flux of fluid

into the bubble surface must be zero. Therefore,

Op
/s Geds =0 (6.20)

Equivalently, for a constant volume bubble, the divergence of the velocity u* of some

hypothetical fluid within V}, must be zero. Hence, by the divergence theorem of Gauss

0= V-u*de/ u*-n*dS=—/ ?—(edS', (6.21)
\ Sk Sy an

and we arrive at Eq. (6.20).

Given a potential ¢, Eqns (6.19) and (6.20) can be solved simultaneously to obtain
the normal velocity %n‘ﬁ and the pressure integral k(). Subsequently, the potential
can be updated using Eq. (6.18), and the motion of the bubble tracked, in the usual

Lagrangian manner.

6.3 Numerical Solution of Governing Equations

Many of the phenomena in bubble dynamics, such as spherical collapse and jet forma-
tion near a boundary, are seen to be axisymmetric [19]. Rising bubbles in viscoelas-
tic fluids are also known to maintain axisymmetry over the jump inclusive volume
ranges [118]. Consequently, as in the numerical study of Mélaga and Rallison [102], we
assume axisymmetry about the direction of motion. The problem is then effectively

reduced from 3D to 2D, as the third dimension is treated analytically.

The boundary (the bubble surface) 02 is discretised into N segments, characterised

160



by the nodes s;, 1 < i < N + 1, with nodes 1 and N + 1 lying on the axis of symmetry

on the top and bottom of the bubble, respectively. The surface variables r(s) and z(s)

and the potential ¢(s), are represented by cubic splines so that

2:(s) = qio + g (s — 83i) + qia(s — Si)2 + giz(s — 31)31

(6.22)

for s; < s < s;41,1=1,.., N. The normal derivative of the potential %n‘ﬁ is represented

linearly with respect to arclength.

Subsequent discretisation of the integral conservation of mass (Eq. (6.19)) and the

volume constraint (Eq. (6.20)) results in the following linear system for k and the

normal velocities (1;) at each nodal point,

N N
c(pi)pi + Z Aij = 4mk + Z(Biﬂ/}j + Cijthinn),

i=1 i=1

N
Z(Dj"/’j + Ej4j41) = 0.

=1

The coefficients in Egs. (6.23) and (6.24) are given by

Si+1
Ay = [ et ds
Sj+1 . —_
Bij = / (S']-Z—SS)ﬂl(S) dS,
8; J
Si+1 S— 8.
Cij = / %,@,(S) dS,
8j J
D, = /st —(sj+1 — S)r(s) ds
’ 5 As;

_ [ (5=s)
i = /8 —A?T(S)d&

J

where «; and (3; denote the analytical azimuthal integrations viz.,

2w aG

ai(s) = A %(Pus)r(s)do,

27

Bi(s) = A G(ps, s)r(s) dé.
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The integrals in (6.25) are approximated using a 10-point Gaussian quadrature rule
while Gaussian elimination is used to solve the linear system (Eq. (6.23) and (6.24)).
After solving the system for the normal velocity, the tangential velocity and higher
derivatives of ¢ are found using a high-order finite difference approximation on non-
uniform grids [89]. With the velocity now fully described on 052, the bubble surface
is advected in a Lagrangian manner while the potential and extra stress are updated
using Egs. (6.18) and (6.12), respectively. A fourth-order Runge Kutta method is
used in updating the surface and the potential, with a second-order trapezoidal rule

employed for the extra stress.

6.4 Rising Bubbles in a Newtonian Fluid

In this section we present the numerical results obtained in studying the rise of a gas
bubble in a Newtonian fluid, and investigate the influence of the Reynolds and E6tvos
numbers on the rise dynamics and terminal bubble shape. Figure 6.1 shows the bub-
ble profile for Re = oo and a high E6tvés number, E6 = 106 (near negligible surface
tension), at different points during the bubble ascent. The bubble shapes are identical
to those obtained in the boundary element study of Boulton-Stone [24] and the level-
set approach detailed by Sussman et al. [144]. Here inertia and buoyancy dominate,
creating a fluid jet that forms on the underside of the bubble and then travels upward,
in the direction of bubble motion, before impacting on the upper surface. If the the-
ory allowed for toroidal geometries, a toroidal vortex ring bubble would then form, as

modelled by Lundgren and Mansour [100].

Figure 6.2 shows the rising bubble profiles following a decrease in the Eotvos number to
E6 = 6.6. Once again the bubble profiles agree well with those of Boulton-Stone [24].
As the jet forms, surface tension forces act to prevent deformation, creating a much
broader jet with an increasingly thin outer rim. Surface tension forces then act to
retract this outer rim, causing the bubble to pinch off the outer lobe (see final frame)

creating a second thin ring bubble.

Figure 6.3 shows the bubble profiles for E6 = 2.4. The effects of surface tension are

such that no distinguishable liquid jet forms. The upward action of the buoyancy force
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Figure 6.1: Bubble profiles at select times during ascent for Re = oo and Fé = 106.

combined with the retractive effect of surface tension causes the bubble to evolve into a
thin disk-like shape. Eventually the bubble thickness decreases to the point where up-
per and lower surfaces meet, allowing a possible transformation into a toroidal shape.

Again, these results agree closely with those of Boulton-Stone [24].

Figure 6.4 shows the evolution of bubble profiles for two E6tvés numbers, E£6 = 106 and
Eo = 2.4, following the inclusion of viscous effects with Re = 50. Clearly the Reynolds
number is still rather large and consequently there is no great difference in the terminal
bubble shapes. However, the presence of viscosity has still had a noticeable effect on
the transient dynamics. In particular, the time at which the final (non-toroidal) bubble
shape occurs, has increased in both cases. This increase is substantial for E6 = 2.4,
with t; ~ 6.7 for Re = oo, but ¢y ~ 14.5 for Re = 50. Subsequently, the final height
reached is significantly larger, with h,., = 9.4 for Re = 0o and hpye. =~ 21.8 for
Re = 50. Evidently viscosity is acting in the usual manner - inhibiting the fluid flow
and bubble deformation. Consequently, bubbles undergo deformation at a slower rate

and so exist (in their initial singly-connected form) for longer.

163



t=0.00 t=1.530

t=2.214 t=2.700

Figure 6.2: Bubble profiles at select times during ascent for Re = o0 and E6 = 6.6.

In the interests of conciseness, Figure 6.5 displays the final or steady state bubble shapes
for a selection of Reynolds and E6tvos numbers. One can clearly see the wide range of
bubble shapes produced, exemplifying the combined inhibitive role viscosity and surface
tension have in preventing jet formation and bubble deformation. At E6 = 106, the
final bubble shapes are nearly identical for all chosen values of the Reynolds number.
Decreasing the E6tvos number to E6 = 6.6, at high Reynolds number we see the
skirted bubbles discussed previously, whereas at moderate Reynolds number Re < 20,
steady state bubble shapes are achieved. A curved thin disk forms for Re = 20,
while a fatter perturbed ellipsoid is produced for Re = 10. In fact, for Re < 20 and
Eo < 6.6 all the bubbles attain a steady state, with the profiles resembling those seen
by Sussman and Smereka [145] and Ryskin and Leal [137] at comparable Reynolds
and Weber numbers (an alternative dimensionless parameter for the surface tension).
At the lower E6tvos and Reynolds numbers the combined resistance to deformation
means that the steady state shapes are very nearly ellipsoidal, a comparatively small

deviation from the original spherical shape.
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Figure 6.3: Bubble profiles at select times during ascent for Re = oo and Fé6 = 2.4.

Figures 6.6-6.8 show the rise velocity of the bubble with time, at each E6tvos number

and Reynolds number. The rise velocity U is defined in the following way,

.d
U= liteds (6.28)

smaz

Essentially, this is an average of the z-component of velocity over the arc-length of the
bubble surface. Figure 6.6 shows the variation of U with time for E6 = 106 at a selec-
tion of Reynolds numbers. The bubbles exist for a comparatively short time (¢ < 2.5)
in their singly-connected state, and expectedly, a decreasing Reynolds number results

in a reduced rise velocity, but an increase in lifetime as deformation is slowed.

Figure 6.7 shows the rise velocity when E6 = 6.6. The rise velocities in this case are
slightly smaller in magnitude compared to the corresponding E6 = 106. This is a
consequence of the more oblate shape assumed and the absence of a distinguishable
liquid jet due to the increase in surface tension. Once again, at like times, decreasing

the Reynolds number is accompanied by a decrease in the rise velocity, but notably for
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Figure 6.4: Bubble profiles at select times during ascent for Re = 50.

Reynolds numbers Re = 10, 20 the rise velocity attains a constant value as the rising
bubbles reach their steady state terminal velocity Ur. For Re = 20, Ur = 0.73, while
for Re = 10, Ur =~ 0.52.

Figure 6.8 displays the rise velocity for E6 = 2.4. As before, for like times, decreasing
Reynolds number results in a decrease in rise velocity. Again, for Re = 20 and Re = 10
the bubble attains a steady state, with the rise velocity tending to its terminal value.
For Re = 20, Ur = 0.96, while for Re = 10, Uy = 0.50. For Re = 10, the terminal
rise velocity is approximately equal (Ur =~ 0.5) for both E6 = 6.6 and Eo = 24.
For Re = 20 however, the difference is more significant with Ur = 0.73 and 0.96
for E6 = 6.6 and 2.4, respectively. This difference can be explained by the differing
drag on the bubbles, resulting from their different shapes - itself a consequence of the
different surface tensions. At E6 = 6.6, the bubble is noticeably thinner, and has a
larger surface area exposed to the flow direction. Thus the drag is larger and so its
terminal velocity smaller, regardless of the fluid rheology. It seems that for Re = 10,
the difference in shape between E6 = 6.6 and F6 = 2.4 is not significant enough to

produce a significant change in drag.
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Figure 6.5: The terminal bubble shapes for different values of the Reynolds and E6tvos
number.
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Figure 6.6: Evolution of the rise velocity for a selection of Reynolds numbers with
Eo6 = 106.
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Figure 6.7: Evolution of the rise velocity for a selection of Reynolds numbers with
Eo6=6.6.
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Figure 6.8: Evolution of the rise velocity for a selection of Reynolds numbers with
E6=24.
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6.5 Rising Bubbles in Viscoelastic Fluids

6.5.1 The Rise of a Near-Spherical Gas Bubble

The rise of a spherical gas bubble in a Newtonian fluid under the effect of gravity has
been well documented. Analytical approximations to the drag on the bubble can be
found by approximating the form of the ambient flow. The three main flow approxima-
tions yield the Stokes, Hadamard-Rybczynski, and Levich drag, with the former two
giving a better experimental agreement when inertia is negligible, and the lattermost
otherwise. Each equation for the drag is of the same form (to leading order), namely
D = ArRuU7, for some dimensionless constant A. Balancing the drag with the dis-
placed fluid weight allows one to derive an expression for the terminal rise velocity Ur
of the bubble, viz.

AnRuUp = gnR?’Apg = Up = LeA”iRz, (6.29)
where Le is Levich number and takes the following values depending on the drag
approximation

2 (Stokes)
Le={ 1% (Hadamard)
5 (Levich)

The numerical results of Brabston [28] show that the rise velocity is in fact bounded
below and above by the Levich and Stokes approximations, respectively. The increased
complexity of viscoelastic constitutive equations means that equivalent expressions for
viscoelastic fluids are intractable for all but for the simplest cases. Joseph and Liao [72],
in their study of viscoelastic potential flow consider a rising spherical bubble in second
order and linear Maxwell fluids. In both cases the drag equals the Levich drag at steady
state, with no dependence on elastic parameters. This is a surprising result, and as
reported by Astarita [5], is not seen in experiments. In fact, in the moderate Reynolds
number regime, the observed Levich number is much less (about 50%) than the New-
tonian Le = 1/9, with Le ~ 0.05. Astarita uses an order-of-magnitude dimensional
analysis to gain some insight into the motion of spherical bubbles in Maxwell fluids.
The approach is applicable to more general Maxwell models, like the material Maxwell

model used here. As such we adopt a similar analysis in an attempt to confirm the
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behaviour observed numerically.

The terminal velocity is found from equating the drag to the displaced fluid weight, or
equivalently balancing the rate of dissipation in the flow,
Ep = / T : Vudv, (6.30)
v

with the rate of positional energy loss

EP = %WApgR3UT (631)

If rates of strain are taken to be of order Ur/R, and the derivatives of T of order

[T]Ur/R, then a dimensional analysis of the Maxwell constitutive equation gives,

(T] + {A%TT} + [u%] =0. (6.32)

The square brackets indicate the appearance of one or more terms, the order of mag-
nitude of which is given within the brackets. The order of magnitude of the stress is
thus

pUr

[T] = f(We) - R (6.33)
where f is some function of the Weissenberg number, which is defined as
Ur
We= 7. (6.34)

Substituting Eq. (6.33) into Eq. (6.30), yields the leading order energy dissipation
rate
Ep = f(We)uRUZ. (6.35)

Equating this with the positional energy (Eq. (6.31)) one obtains a leading order

equation for the terminal rise velocity

(6.36)

Note that this is of the same form as Eq. (6.29) - suggesting that in the case of a

Maxwell fluid, the Levich number will be some function of the Weissenberg number
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(We), or without loss of generality, the Deborah number (De). Namely,

Le = f(De). (6.37)

Thus, for a fixed Deborah number, the terminal rise velocity of a spherical bubble in a
Maxwell fluid behaves as in a Newtonian fluid (to leading order). Non-dimensionalising

Eq. (6.36) yields the following expression in terms of Reynolds number Re,

Ur = LeRe. (6.38)

Thus, for a fixed Deborah number, the terminal rise velocity Ur should still vary linearly
with the Reynolds number Re (over not too large a range). Figure 6.9 displays the
numerically obtained rise velocity for different Reynolds numbers, at fixed De = 0.1.
The Reynolds numbers are restricted to a range in which the sphericity of the bubble
is near-preserved. Unlike the analytical studies, this is not explicitly enforced. The

relationship is clearly linear, supporting the theoretical argument presented above.

0os

0045

003

0m

0.
00
oo

Figure 6.9: Variation of terminal rise velocity with Reynolds number in a Maxwell
fluid. The equation of the linear fit to the data is Ur = 0.044Re.
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6.5.2 The Rise of a Non-Spherical Gas Bubble

As described in the introduction, the rise of a bubble in a viscoelastic fluid is charac-
terised by three distinct phenomena: (i) the formation of a cusp at the trailing end of
the bubble, (ii) an apparent discontinuity in the steady state velocity as a function of
bubble volume, and (iii) the presence of a negative wake in the region of the trailing
edge. As discussed, the relation between each of these phenomena is still a matter for
debate.

Figure 6.10 shows snapshots of the bubble profile during ascension for a viscoelastic
fluid with De = 0.93 and Re = 1.18. As the bubble rises it begins to assume a more
prolate shape before the underside becomes drawn out, eventually forming a trailing

edge cusp as seen in the final frame.

t=0.00 t=3.93

E

05 P B EEUYST DN SrE |

Figure 6.10: Bubble profiles at select times during ascent for De = 0.93, Re = 1.18

The bubble shape observed in the final frame of Figure 6.10 is typical of that seen in
experiments (see, for example, Astarita and Apuzzo [6]). In Figure 6.11 one can see
the particularly striking resemblance of the numerical profile to the picture found in

Wagner et al. [159] of a bubble rising through liquid soap.
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Figure 6.11: Comparison of numerical bubble profile (left) with the experimental image
of a bubble rising in liquid soap (right)4

Similar cusp-like shapes are reproduced in other numerical studies, but to the knowl-
edge of the authors, no numerical study has reproduced such a sharp interface. Full
domain numerical studies such as the level-set finite element studies of Pillapakkam
et al. [116,117] and the lattice Boltzmann studies of Wagner et al. [159] and Frank
and Li [55], produce visibly rounded tips. It seems that factors such as the mollified
density change over the fluid interface by the level-set method and the computational
restrictions in mesh refinement in both schemes, results in an under resolved cusp.
The boundary element method provides a truly discontinuous pressure/density inter-
face, and allows for an easy re-distribution of nodes and refinement in the vicinity of
the cusp, without costly domain calculations. Such benefits apply to the boundary el-
ement scheme of Malaga and Rallison [102], but it seems the lack of a sharp elongated
cusp in their work results from the neglect of inertia in their model and the associated

reduction in deformation.

Liu et al. [95] find from their experiments that the 2D-cusps formed by rising bubbles
adopt a universal asymptotic form of z = a|r|2/3. Although the cusps here are axisym-
metric, not 2D, it is interesting to see if they can fit a similar analytical expression.
Figure 6.12 shows a close up of the cusp formed for De = 0.934, Re = 1.180. Using the
method of least squares, the curve z = 1.01|r|038l (shown in red) is found to give a fit

with a residual mean square of 1.46 x 10-3. This suggests that perhaps more general

4Reprinted from Computer Physics Communications, Vol. 129, A. J. Wagner, L. Giraud and C.
E. Scott, Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method,
227-232, Copyright (2000), with permission from Elsevier.
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cusps can be described by analytical expressions of the form z = ajr|n, certainly to

leading order. Note that n < 1in order that the surface be convex.

0.4
f

Figure 6.12: The numerical cusp (circles) from Fig. 6.10 and the associated least
squares fit (red line).

The variation in bubble volume is an important focus of experiment studies, especially
due to the velocity jump discontinuity that takes place once the bubble exceeds a cer-
tain critical volume. Figure 6.13 displays the terminal bubble profiles of a rising bubble
at increasing volumes. The fluid has fixed material parameters but given the change
in volume, the relevant Reynolds and Deborah number are given within each frame.
The transition in shape for Re = 0.21 to Re = 1.18, is qualitatively very similar to
the transition in bubble shape seen experimentally when increasing volume. See for
example Pilz and Brenn [118] or Soto et al. [140]. At the lower Reynolds numbers,
Re = 0.21,0.30, viscous effects dominate and inhibit deformation so terminal bubble
shapes deviate little from sphericity. At Re = 0.42 the viscous effects abate slightly,
and elastic effects play a more significant role as the bubble becomes more prolate
with evidence of a more pointed underside. Between Re = 0.42 and Re = 0.50 the
shape undergoes a marked change from a wholly convex interface to the underside now
displaying a concave portion with an accompanying pseudo-cusp. By increasing the
volume further, the increased effect of elasticity causes this pseudo-cusp to sharpen and

lengthen, culminating in the terminal cusped bubble shape observed for Re = 1.18,
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De = 0.93. The shapes beyond this (those outside of the red box) do not seem to
reach a steady state. The shapes shown are those before the computation undergoes
numerical difficulties. Yet, once again one can see there is a general transition in bubble
shape. A cusp no longer forms and instead a liquid jet seems to form on the bubble
underside, as in the Newtonian case studied in Section 6.4. Evidently the increase
in volume is such that viscous and elastic effects are subdued by the increasing effect
of buoyancy and inertia. Subsequent bubbles have increasingly larger jets, with the
shape tending from a prolate to a more oblate form. At Re = 6.67, De = 0.53 viscous
and elastic effects have diminished to the extent that the profile resembles that of the

inviscid Newtonian case with negligible surface tension, as seen in Fig. 6.5.

Figure 6.13: Final profiles of rising bubbles of different volumes in a viscoelastic fluid.
Steady state bubble shapes reside within the red box.

Figures 6.14-6.17 display the transient rise velocity with time for a selection of the
above profiles. Figure 6.14 shows the rise velocity for Re = 0.21, De = 1.66. The
damped oscillation in the velocity, a characteristic of so many viscoelastic phenomena,
is the most notable feature. The impulse provided by the buoyancy force initialises
the repeated over and undershoots in the velocity, which decay in magnitude until U
reaches a steady-state value of Ur ~ 0.01. Oscillations in the rise velocity are also
seen by Pillapakkam et al. [117] in their study of a bubble rising in an Oldroyd B

fluid. Generally, their oscillations number less but this is consistent with the increased
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viscous properties of the Oldroyd model over the more elastic Maxwell model used here.
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Figure 6.14: Variation of rise velocity U with time for Re = 0.21, De = 1.66.

Figure 6.15 shows the rise velocity with time for Re = 0.5, De = 1.25. The increased
volume and Reynolds number means that buoyancy plays a more prominent role. Con-
sequently the maximum and terminal rise velocities are larger, with Ur = 0.02. Also,

the frequency of the oscillations is markedly reduced.
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Figure 6.15: Variation of rise velocity U with time for Re = 0.5, De = 1.25.

The trend continues when the volume is increased further with Re = 1.18 and De =
0.93 (Fig. 6.16). The increased buoyancy force results in a larger maximum and
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terminal velocity (Ur = 0.05). Once again, the frequency of the oscillations is also
reduced but the oscillations themselves seem less structured and coherent. This can be
explained by the increased irregularity in the bubble shape, caused by the formation

of the cusp as the bubble rises.
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Figure 6.16: Variation of rise velocity U with time for Re = 1.18 and De = 0.93.

Figure 6.17 shows the variation of rise velocity with time for some of the larger bubble
volumes. Expectedly, oscillations no longer occur due to the decrease in viscous and
elastic effects over the increased strength of buoyancy forces. By the same means the
rise velocity continues to increase with volume, but as mentioned, does not necessarily
tend to a steady state (as has also been observed with Newtonian dynamics). Un-
surprisingly, in increasing the Reynolds number to Re = 6.67, the behaviour of the

transient rise velocity begins to bear semblance to the Newtonian rise velocity profile
(Fig. 6.6).

Studying the terminal rise velocity of a rising bubble in a viscoelastic fluid for a range
of bubble volumes, experimentalists can observe a single large jump in the magnitude
of the velocity over a small change in volume. This change is such that it effectively
resembles a discontinuity. The size of the jump varies from study to study and, of
course, depends on the ambient fluid, but can range from a two to ten fold increase in
the rise velocity [95,117]. As mentioned in the introduction, the reason for this jump
is still debatable. Furthermore, its relationship to cusping and the negative wake is

not fully understood. Astarita and Apuzzo [6] attributed the jump to a change in the
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Figure 6.17: Variation of rise velocity U with time for a selection of Reynolds and
Deborah numbers.

bubble dynamics from the Stokes to Hadamard regime. Later studies recognised that
the jump takes place at a critical volume where the bubble underside first becomes
convex and starts to cusp. Liu et al. [95] suggest that the jump is due to the reduction
in drag caused by the cusped bubble shape. Rodrigue et al. attributed the jump to
the presence of surface active agents (such as polymer molecules) [133] combined with
surface tension forces [134]. Herrera-Velarde et al. [66] conclude that the jump is due
to the appearance of the negative wake, which they found only appears for bubbles
larger than the critical volume. Soto et al. [140] report that the jump is the direct
result of the appearance of (measurable) elastic stresses, which causes the change in
shape and so a drag reduction which causes the jump (as in [95]). They then form a
dimensionless group comparing elastic to capillary forces to determine a jump condi-
tion for the liquids tested. Similarly, Pilz and Brenn [118] derive empirical relations for
the critical bubble volume. They then postulate that the jump discontinuity is due to
the relaxation of polymer chains, with the change in conformation being accompanied

by forces which push the bubble upwards.

Figure 6.18 displays plots of the terminal rise velocity Uy with increasing bubble vol-

ume V. We find no discernible velocity jump as one increases bubble volume. The

inserted bubble profiles indicate approximately the point where the cusp first forms,

which according to experiment should be the point at which the discontinuity appears.

The results have been repeated for a range of viscosities, relaxation times and surface
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tensions, without any indication of the rise velocity jump being present.

10

s DD
10":- DD \ O

i,
v

Figure 6.18: Terminal rise velocity for different bubble volumes. Noteworthy bubble
shapes are indicated at particular bubble volumes.

By not predicting the jump discontinuity, important insights can still be gained in
understanding this phenomenon. Firstly, the cusping of the bubble surface can be
predicted, but given that this change in shape does not result in a significant increase
in velocity, it suggests that the decrease in drag due to the cusping is not the reason
for the jump (the affirmative was suggested by Liu et al. [95] and Soto et al. [140]).
Also, the proposition of Rodrigue et al. [133,134] that the discontinuity is a surface
phenomenon is unlikely. They claim that the presence of surface active agents, such as
polymer molecules or surfactants, can cause the jump. The action of polymer molecules
and the surface physics on the bubble is modelled here (all be it simply) through the
normal stress balance and the Maxwell constitutive law (in effect assuming molecules
are infinitely extendable dumbbells in a negligible viscosity Newtonian solvent). The
results suggest that the presence of the molecules produces the observed change in
shape and cusping, but does not create any additional forces that would cause the
jump in velocity. The cause of the jump therefore, must lie within the ambient fluid.

In particular, there is one occurrence in the dynamics of a rising bubble that the current
method certainly cannot predict - the negative wake. The imposition of an irrotational
flow around the bubble suppresses the formation of the rotational flow that comprises

the vortex ring seen in the wake. Figure 6.19 displays the velocity vectors in the field
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around the cusped bubble for Re = 1.18 and De = 0.93. Expectedly, there is no

evidence of a negative wake in the region behind the rising bubble.
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Figure 6.19: Velocity field in the fluid around the rise bubble. The velocity in the wake
of the bubble is everywhere directed upwards, i.e. there is no negative wake.

The absence of both the jump discontinuity and the negative wake corroborates the ex-
perimental findings of Herrera-Velarde [66] who concluded that the negative wake was
the main reason for the jump discontinuity. This is supported by the numerical study
of Pillapakkam et al. [117] which, to the author’s knowledge, is the only numerical
study that can predict the jump. As in [66] they find the formation of a negative wake
once the bubble begins to cusp. They note that the additional surface tension force
created by the cusp is not significant enough to explain the large jump observed (the
effect of surface tension will be discussed further in the next section). Also the bubble
shape does not change drastically with increasing concentration parameter, but the
magnitude of the jump and the negative wake do - indicating that the jump depends
more importantly on changes in the external flow than on bubble shape and drag ef-
fects. They provide the following explanation for the negative wake creating the jump.
Consider a box-shaped control volume surrounding the rising bubble, as in Fig 6.20.
In the steady state the sum of the net momentum through sidewalls BC and DA must
be zero (else there would be sideways movement). In a Newtonian fluid the velocity

through the surfaces AB and CD is always directed upwards. The net momentum flux
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through these surfaces is then determined by the difference in the velocity magnitudes,
and should bé positive given the bubble is rising upwards, i.e. M,.; = Mcp—Map > 0.
In a viscoelastic fluid with a negative wake, the velocity through bottom surface AB is
pointed downwards and consequently, the net momentum flux is guaranteed to be pos-
itive and will be larger than if there was no negative wake, i.e. M, = Mcp + Mupg.
This results in an additional thrust in the upward direction. It can be thought of
in a similar way to the jet engine, with thrust provided by the expulsion of gas in
the opposite direction (Newton’s third law). In this case the oppositely directed flow

" (the negative wake) is formed purely as a consequence of the viscoelasticity of the fluid.
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Figure 6.20: Indication of direction of velocities in rising bubble with negative wake,
resulting in an additional upward thrust.

6.5.3 The Effect of Surface Tension

In this section we briefly discuss the effect of surface tension on the rising viscoelastic
bubble. From Section 6.4 on the Newtonian rising bubble it is clear the surface tension
plays an important role in determining bubble shape and subsequently drag and termi-
nal rise velocity. Figure 6.21 shows the terminal bubble shapes for a selection of E6tvos
numbers, with Re = 1.18 and De = 0.93. For zero surface tension (E6 = oo) we see
the case presented previously, with the sharp cusp formed on the bubble underside.
For E6 = 53 there is a clear difference in profiles, with surface tension forces acting
to smooth out the sharp cusp and prevent high curvature deformations. The shape
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is still representative of a pseudo-cusp, with a region of convexity on the underside
and so in expériment one would still expect to see this beyond the jump discontinuity.
The rightmost figure has the largest surface tension with £6 = 6.6. The prevention of
deformation is such that no evidence of cusping occurs and the shape is near-spherical
but still visibly prolate in form. Consequently, we would expect such a shape to form

at a volume smaller than that at the jump discontinuity.

ES = oo Eé=53 | | E6=6.6

Figure 6.21: Terminal bubble profiles at varying E6tvos numbers, with Re = 1.18 and
De = 0.93.

Figure 6.22 displays the transient rise velocities of the rising bubble for the different
E6tvos numbers. Despite large variations in surface tension, the effect on the rise
velocity is minimal. The plots for E6 = oo and E6 = 53 follow each other closely,
while that for F6 = 6.6, despite exhibiting high frequency oscillations, still follows
the general trend on the larger scale. The high frequency oscillations are interesting
and describe the fast, localised low amplitude oscillations in the bubble surface as
the whole bubble rises with a viscoelastic, oscillatory, overall velocity. An analogous
response to the increase in surface tension can be found in a stretched elastic band.
Under increasing tension, oscillations are higher in frequency and smaller in amplitude.
Notably the terminal velocities are very nearly equal, with the rise speed for E6 = oo
being only slightly larger. Evidently, the rise velocity has little dependence on the
surface tension for the viscoelastic rising bubble. This then supports the claim made
by Pillapakkam et al. [117] that the effect of surface tension is not significant enough
to explain the jump discontinuity. Additionally, given that both the pre- and post-
jump bubble shapes have approximately the same terminal rise velocity, this again
shows that drag reduction due to cusping is negligible and cannot be responsible for

the velocity jump.
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Figure 6.22: Rise velocity with time for a selection of Eotvos numbers with Re = 1.18
and De = 0.93

6.5.4 The Effect of the Deformation Terms

It is interesting to note the effect of the deformation terms, which would otherwise
appear in the Upper Convected Maxwell model, on dynamics. While it can be expected,
given the above discussion, that they will have no effect on the jump discontinuity, they
are likely to play a measurable role in forming the bubble shape. Figure 6.23(a) shows
the steady state bubble shape for the same material parameters as studied previously.
The volume is such that the Reynolds number is Re = 1.18 and the Deborah number
De = 0.93. Comparing this to the corresponding case for the material Maxwell model
(Fig. 6.10), we see that on including the deformation terms, the bubble is much more
stretched and elongated with a longer trailing-end cusp. By reducing the Deborah
number to De = 0.47 (Figure 6.23(b)), the length of the cusp decreases and there is a

greater degree of concavity in the bubble’s underside.

6.6 Conclusions

In this chapter, the dynamics of a rising gas bubble under the influence of viscous and
viscoelastic effects are studied. The bubble is assumed to be constant in volume, rising
through an incompressible fluid under an irrotational flow. Viscous and viscoelastic ef-
fects act directly on the bubble through the normal stress boundary condition. Results
for the Newtonian rising bubble show good agreement with previous studies and steady

state bubble shapes qualitatively match full domain solutions. In the viscoelastic case,
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Figure 6.23: Steady state bubble shapes for the Upper Convected Maxwell (UCM)
constitutive equation.

the results predict the bubble’s prolate shape and the formation of the trailing end
cusp. The method allows for high curvatures and deformations and so can capture
the sharpness of the cusp to a higher degree than seen in other numerical schemes.
Furthermore, the cusped bubble profile bears a good qualitative agreement to experi-
mental observations. The imposition of an irrotational flow prevents the formation of
the negative wake, allowing insights into the mechanisms of the velocity jump discon-
tinuity that cannot be ascertained experimentally. Proposed reasons for the velocity
jump include drag reduction due to cusping [95], the action of surface forces [133] and
the negative wake [66]. Here, we include the appropriate surface effects and inertia
terms and observe cusping, but detect no velocity jump discontinuity. This suggests
that the negative wake is primarily responsible for its occurrence, corroborating previ-

ous experimental and numerical findings [66,117].
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Chapter 7

‘The Prediction of Bubble Dynamics

using a Spectral Element Marker
Particle Method

7.1 Introduction

In this chapter we return to the problem of bubble collapse near a rigid wall, in a
viscoelastic fluid. In Chapter 3 a simplified model was devised and solved using the
boundary element method. The model assumed that viscoelastic effects were confined
to thin layers near the surface, and that the ambient fluid was irrotational. Predictions
include the ability of viscoelasticity to the prevent jet formation, and to form cusps
in the underside of the bubble when near the wall. Despite the insight gained by em-
ploying the above model, the potential flow approximation does preclude an exacting

account of the role of viscoelasticity, as mentioned in Chapter 1.

Hence, in this chapter, the aim is to solve the full governing equations over the whole
fluid domain. This is done not only to gain further insight into the role of viscoelas-
ticity, but also to validate the predictions of the boundary element study. While the
boundary element method fell squarely within the Lagrangian class of multiphase nu-
merical methods, in this chapter a mainly Eulerian approach will be employed. It is a
one-field model [124], so a single set of governing equations will be used in describing
the both the fluid (gas) comprising the bubble and ambient liquid. Fluid properties,

such as viscosity, then vary appropriately within each phase. For example, the density
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and viscosity in the region describing the bubble should be less than the ambient fluid.
The compreésible governing equations must be solved given the requirement for the

bubble to change volume during collapse.

The multiphase description is provided by the marker particle method. The marker
particle (MP) method of Rider and Kothe [128] bears a semblance to both the volume
of fluid and MAC method. In a similar manner to VOF, a colour function C' is up-
dated using the usual advection equation. However, instead of directly tracking volume,
" massless marker particles are tracked. Each particle is assigned a particular “colour”
depending upon the phase in which it resides. Since a particle of fluid will remain of
that fluid type (assuming no change in phase), a particle will keep its colour indefi-
nitely. Within fluid-fluid interface regions, where two (or more) differently coloured
sets of marker particles reside, a weighted average is taken of the surrounding particles
to determine an interpolated colour at the point in question. To accurately describe
the different phases, the whole computational domain is filled with a high density of
these marker particles, with each being updated to a new position every time step. An
obvious disadvantage compared to VOF methods is the additional computational cost
in tracking such a large number of particles. The main advantages include the ease of
implementation, the trivial extension to compressible flows, and the minimal numerical
diffusion of the colour function over time. Furthermore, the method retains the VOF’s

ability to deal with large deformations and topology changes automatically.

Traditionally, the marker particle method has been combined with finite difference
schemes and with a high degree of success. However, in prescribing velocities to parti-
cles from the grid, a low order interpolation is typically used. This can be a significant
source of error and can produce a velocity field which is not divergence free (for the
incompressible case) [12]. Also finite difference grids can be restrictive in the sense
that mesh refinement around regions of interest, and so improved efficiency, can be
tricky. Discretising non-rectangular domains is also a particularly cumbersome task.
To overcome these shortfalls, we present a new numerical scheme where we combine
the marker particle method with the spectral element method (SEM). The SEM will
solve the compressible governing equations, while the marker particle method provides
the overlying multiphase description. The spectral element method is, in essence, a

high-order finite element method and so is more adept at discretising irregular domains
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and selective mesh refinement. Additionally, the marker particles can be prescribed a

very accurate velocity by using high-order polynomial approximations on each element.

In Section 7.2 we will present the mathematical model and governing equations. Sec-
tion 7.3 will then provide details on the combined spectral element and marker particle
method. Within Section 7.4 we validate the numerical method with the available liter-
ature before presenting results obtained for bubble collapse near a wall in a viscoelastic
fluid.

7.2 The Mathematical Model and Governing Equa-

tions

Consider a bubble of initial density p;, surrounded by fluid of initial density p, (all
subsequent variables with index 1 shall refer those associated with the bubble, while
those labelled 2, with the ambient fluid). A schematic depiction of this is given in Fig.
7.1. As mentioned in the introduction, a “one field” model is utilised in describing
the two phases. Here a single set of governing equations is solved with the different
phases possessing different material parameters such as viscosity and relaxation time.
Therefore, in solving the governing equations one must note that these material pa-
rameters are required to vary as one moves from one phase into the next (but they can

be constant within each phase).

Ambient Fluid
Bubble P
2
P, M,
”’1 Az

1

Figure 7.1: Schematic of bubble and ambient fluid, each with different densities and
material properties.

In general, the equations governing fluid motion are the mathematical statements of

conservation of momentum
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Du
_— = .S .
Dt Vp+ V-8, (7.1)
and conservation of mass
Dp
T)—Z+pV-u—0. (72)

In modelling bubble dynamics, particularly growth or collapse, one needs to account
for the change in volume of the bubble and so any fluid which may reside within
must be modelled as compressible. In utilising a “one field” model, where the bubble
content as well as the ambient fluid is described, the full conservation of mass equation
needs to be retained. Consequently, to complete the system of governing equations, a
thermodynamic equation of state needs to be prescribed. The choice of an appropriate
equation of state is itself a non-trivial task. Initially, we take the equation of state to

be the ideal gas law viz.,

p=c?p, (7.3)

where c is the speed of sound within the medium. Despite its simplicity, the model
is a valid choice. Firstly, it can provide an accurate thermodynamic description for
the bubble’s gaseous contents. Secondly, by adopting a variable speed of sound, one
can use an increased value within the ambient fluid to attain near-incompressibility.
Furthermore, it is well known that the compressibility of the ambient fluid plays an
important role in bubble collapse, particularly during the final stages [29]. Such a

model enables the role of compressibility to be easily investigated.

7.2.1 Rheological Equations of State for Compressible Fluids
A Compressible Newtonian fluid

The constitutive equation, or rheological equation of state, for a compressible New-
tonian fluid is well known. A Newtonian fluid is defined by the extra stress S being

proportional to the velocity gradient, namely

Buk
Sij = Aijkla_xl, (7-4)

where A;ji is a fourth-order isotropic tensor, detailing the material properties. Any
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fourth-order isotropic tensor can be written as a combination of Kronecker delta func-

tions viz.,

Aiji = Mmoikbji + m20i;0k1 + n36:0;x, (7.5)

for scalar constants 7y, 12, n3. The symmetry of the Cauchy stress tensor implies
symmetry of the extra stress S;;, and so A;ju is symmetric with respect to ¢ and j.

Consequently, from Equation (7.5), 71 = 13 and so the extra stress becomes,

_ ou; an Ouy
S,;j =M (81:, + 8.’1?,) =+ 72 (azk) (51,], (76)

or, in vector notation,

S = m(Vu+ Vu?) + n2(V - u)L. (7.7)

This is the most general constitutive equation for a Newtonian fluid, having imposed
no restrictions on compressibility or on the scalars 7, 2. Here 7; is named the (dynamic)
shear viscosity coefficient while 7, is the dilatational viscosity coefficient. Commonly,
one abides by Stokes’ Hypothesis and sets the bulk viscosity k, defined k = (%?71 + 7)2) )
to zero [49]. Consequently the pressure p in Equation (7.1) becomes equivalent to a

mean mechanical pressure p* since

1

2
p = —30a =P~ (gﬂl + 772) (V-u)=p. (7.8)

By assuming ( %771 + 772) = 0, the extra stress S is now trace free i.e. S;; = 0.

We must emphasise that generally p # p*, and so care must be exercised in applying
the correct pressure to the thermodynamic equation of state. As reiterated by both
Oldroyd [110] and Truesdell [153], it is p not p* that should be used. Generally, the
Cauchy stress is always split into a part that does work which is recoverable pé;; and a
part which is always dissipative, S;;. However, (in the Newtonian case) Stokes’ hypoth-
esis (equivalently S; = 0, p = p*) means that there is no energy dissipation due to a
change of volume within the fluid, and so all changes in volume are thermodynamically
recoverable. Although it may provide a good approximation in some cases, such an
assumption is clearly unphysical. In fact, the Stokes hypothesis has been debated for

many years, see for example Truesdell [152]. Even Stokes himself had doubts over its
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validity {149]. It is a moot point for incompressible fluids since the contestable term
vanishes since V - u = 0. Within this work Stokes’ hypothesis is not adopted, and
the more general form of the compressible Newtonian extra stress (Equation (7.7)) is

retained.

Compressible Maxwell/Oldroyd type models

Satisfied in the choice of a constitutive equation for a compressible Newtonian fluid, the
question remains as to what form non-Newtonian compressible constitutive equations
assume. The answer is not entirely straightforward and there has been much incon-
sistency in compressible viscoelastic models in the literature, particularly in those of
Maxwell/Oldroyd type, which of course is an essential first port of call in compiling
compressible viscoelastic models. In the incompressible case, the Oldroyd B constitu-

tive equation is

v v
S+ /\18 =T (’3’ + /\2")’) , (79)

where 4 = (Vu + VuT) is the usual rate of strain tensor.

This can then be recast in terms of solvent and polymeric contributions viz.,

S=ny+T, (7.10)

with

T+ MT = npY- (7.11)

Here 7, and 7, are the solvent and polymeric viscosities, respectively, defined by

e = Mo, Tp = (1 - %f) To- (7.12)
Note that ng = ns + 7p.
Keshtiban et al. [74], in extending this model to study compressible viscoelastic con-
traction flows, include the appropriate compressible term in the rate of deformation

as in Equation (7.7). This is the only compressible term present in their model. A

slightly different model is used by Matusa-Necasov4 et al. [104] who include compress-
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ible effects only in the solvent contribution to the stress, leaving the polymeric part in
its incompressible form. Edwards and Beris [48] show that if one includes compress-
ibility in the kinetic theory derivation of the Oldroyd B model, an additional term of
the form V - uS, appears in the convected derivative. However, they do not include
a compressible term in the rate of deformation. Sureshkumar [143] undertakes a sta-
bility analysis of a compressible UCM fluid. The compressible term of Edwards and
Beris [48] is incorporated while the term 7(V - u)I from Eq. (7.7) is added as a forcing

term to the momentum equation. It is not included as part of the constitutive equation.

The above discussion highlights the rather eclectic range of compressible viscoelastic
models in the literature. With the aforementioned studies in mind, the aim is to con-
struct a compressible Oldroyd constitutive model which is as general as possible. One
must firstly include the additional compressible terms that appear in the convected
derivative (as derived by Edwards and Beris [48]). Secondly, as these models originate
from simple relations between stress and the rate of strain, if the rate of strain (Eq.
(7.7)) contains compressible components then these should appear within the consti-
tutive equation in the usual way (as in [74]), and not as detached forcing terms (as
in [143]). Finally, one should ensure that the model is consistent in the appropriate
limits. For example, if Ay = 0, one should attain a compressible UCM fluid. Then if
A1 = 0, a compressible Newtonian fluid, as described by Equation (7.7), should result.
Furthermore, in the incompressible limit, compressible terms should vanish and the
familiar incompressible Oldroyd B constitutive equation (Eq. (7.9)) should remain.

Consequently, the following compressible Oldroyd B constitutive equation is proposed:

S =n{(Vu+Vul) +55(V-u)l+ 7 (7.13)

with

TN (T (V- u)f) = i2(Vu+ VuT) + (V- u)I (7.14)
where superscripts s and p indicate solvent and polymeric viscosities respectively. The
above form is general in the respect that it contains all known compressible terms and
retains them in the UCM and Newtonian limits.

Compressibility is an important property and in general should be compatible with any
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rheological constitutive equation. Consequently, we will briefly discuss the extension
of other popular rheological models to compressible fluids.
Compressible Generalised Newtonian models

One of the earliest empiricisms in attempting to describe non-Newtonian effects ob-
served in rheometry, was to extend the Newtonian model by assuming some dependence
of viscosity on the scalar invariants of the rate of strain tensor. Hence the constitutive
equation becomes

S = (I, 11,1114, (7.15)

where the viscosity 7 is some function of the scalar invariants I, I1, I11, defined by,

I = %, (7.16)

IT = > A (7.17)
1,5

I = > A (7.18)
.5,k

The standard assumptions are then that the fluid is incompressible (in which case
I = 0), and that the flow is shearing or very near shearing (as for simple shear 1] = 0).
The viscosity can then be expressed as a function of the magnitude of the rate of strain,
or the strain rate , defined viz.,

) 1

¥ = 5[ I. (7.19)
Despite the assumptions of shear flow in this empiricism, the model is frequently ap-
plied to more complicated flows and can be a successful description, particularly in
flows with large shear components [15]. Then under the assumption of a such a model
providing a good description of the flow, the contribution of compressibility becomes
moot since, for a shearing flow, the divergence of the velocity field is zero - despite
the fluid being compressible. Hence, assuming a dominant shear component to re-
move dependence on III in Equation (7.15), automatically removes a dependence on
I, without making any assumptions on the fluids compressibility. Consequently, in the

application of generalised Newtonian models to compressible flows, given the assump-
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tions inherently made, one can argue that the current models for viscosity (such as the
Carreau-Yasuda or Power-Law models) provide a sufficient description. Such is the
approach of Taliadorou et al. [147], in their study of a compressible Herschel-Bulkley

fluid, with the incompressible expression for the viscosity being retained.

Compressible Order Fluids

In wishing to construct a constitutive equation that describes small departures from
- Newtonian behaviour, the extra stress can be expressed as a series expansion of in-
creasing powers of the rate of strain tensor 4 and of its (convected) derivatives (a
“retarded motion” expansion) [15]. Retaining only the second order terms results in
the constitutive equation for the second-order fluid, which for an incompressible fluid

is

v
S = al"y + 012".)' + an(*'y . ".}’) + al:l('? : "')')I (720)

Prud’homme and Bird [125], in their study of the dilatational properties of suspensions
of gas bubbles, discuss the generalisation of a second order constitutive model to a
compressible fluid. They note that, in analogy to the derivation of the incompressible
model, a compressible second order fluid would contain all possible combinations of 4
and V - u which yield tensors that are quadratic in velocity. Of course an identical
approach allows generalisation to N** order fluids. Hence, the constitutive equation

for a compressible second order fluid will take the form,

S = a1y +61(V-u)l+ (a2y + ﬂZ(V -u)I)
+an - + Bu(V - u)y + (a1 (¥ 0 ¥) + Bra(V - u)?)L (7.21)

The scalars «;, 3; are retarded motion expansion coefficients. Note that by retaining
only the first order term, the constitutive equation is that of a compressible Newtonian

fluid, with the shear viscosity given by «; and the dilatational viscosity by ;.

In this chapter, the focus will be on rheological models of the Maxwell and Oldroyd

type, with the other models reserved for future work.
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7.2.2 Non-dimensionalisation of the Governing Equations

Velocities are non-dimensionalised with respect to some reference velocity U. In the
benchmark problem of planar Poiseuille flow, U corresponds to the centreline steady-
state velocity, while in bubble dynamic problems, U is some reference speed of sound.
Distances are scaled with respect to the channel width, or in bubble dynamics problems,
the initial bubble radius R. Similarly, the density is scaled with respect to initial fluid
density or initial bubble density p,. Hence pressures and stresses are scaled with respect

to ppU?, with non-dimensional viscosities n* scaled thus
P n

n* = pb?] = (7.22)

A Reynolds number can be defined as Re = 1/n*, but it is perhaps more beneficial to
continue to refer to non-dimensional viscosities given the several viscous parameters
present in compressible models. In the case of viscoelastic flows, one has the usual

dimensionless parameter for the relaxation time, the Weissenberg number,

_ AU
AU

Therefore, dropping asterixes, the non-dimensional governing equations for a compress-

We (7.23)

ible Oldroyd B fluid are the equation of motion,

Du

D = -Vp+ V.S, (7.24)
the conservation of mass,

Dp
Di + pV - u=0, (7.25)

the thermodynamic equation of state,
p=cp, (7.26)

and finally, the constitutive equation,
S =n}(Vu+Vu?) +3(V-u)l + T, (7.27)

where the polymeric stress 7 is given by
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T+ We (-)7' +(V- u)‘r) = (Vu+ Vu?) + p5(V - u)L. (7.28)

7.2.3 The Log-Density Formulation of the Governing Equa-

tions

As in Bollada and Phillips [22], we note that the dynamic viscosities 7 » vary linearly

with density, such that

m=upp, T =Up, (7.29)

for some kinematic viscosities u and v.

Defining a log density viz.

g:=Inp, (7.30)

the conservation of mass and momentum can be rewritten in the following forms,

Du dp
and
Dq
—E-{-V-u—o, (732)

where T is a kinematic extra stress defined such that S = pT. Note that for the ideal
gas equation of state (7.3), gﬁ = ¢? (for a constant speed of sound with respect to

density).

The constitutive equation for the kinematic extra stress follows directly from Equation
(7.13), to give

T = ps(Vu+ Vu?) + 1,(V-u)I + P, (7.33)

where ps, v, are solvent kinematic viscosities and P is the kinematic polymeric stress
(with 7 = pP).

Similarly, one can determine the constitutive equation for P, given that 7 = pP satisfies
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the original polymeric constitutive equation (7.14) viz.,

v
We(pP) + We(pP)(V - u) + (pP) = ppp(Vu + Vu’) + pv,(V - u)L. (7.34)
Making use of the definition of the upper-convected derivative on scalars,

s _Dp
p—Dt’

and the conservation of mass (7.2), the compressible term of Edwards and Beris [48]

(7.35)

~ vanishes to give

v
WeP + P = p,(Vu+ Vu?) + 1,(V - u)L. (7.36)

Although the compressible term of Edwards and Beris [48] does not appear explicitly
in the recast form of the polymeric constitutive equation, it is, of course, present im-

plicitly through the implementation of the log-density formulation.

So finally, the set of reformulated, non-dimensional governing equations to be solved
are,

the equation of motion (conservation of momentum),

D
Fltl =-?Vqg+V-T+Vq-T, (7.37)
the conservation of mass, D
q
—_— . = 0 .
Dt +V.u=0, (7.38)
and the constitutive equation,
T=T;+P, (7.39)

where the polymeric stress P is found from,
v
WeP +P =T,. (7.40)

Here, T, denotes the solvent stress

T, = ps(Vu+ Vu®) 4+ 4,(V - u)l, (7.41)
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and T, the corresponding rate of deformation contribution to the polymeric stress,

T, = pp(Vu+ Vu?) + 15,(V - u)L. (7.42)

Note that henceforth, in referring to density and stress, we in actuality mean the log
density and kinematic stress, given the simple relation between these quantities and

their log form.

7.3 Numerical Solution of the Governing Equations

7.3.1 Time discretisation

As in Bollada and Phillips [22, 23] we employ a semi-Lagrangian treatment of the
material derivative in the momentum equation. In discretising the constitutive equation
we will investigate two different approaches. A 1st order semi-Lagrangian scheme which
is semi-implicit with respect to the stress, and a 2nd order Eulerian scheme which is
explicit with respect to the stress. We first provide details of the semi-Lagrangian

treatment of the material derivative.

Semi-Lagrangian Treatment of the Material Derivative

A first order Lagrangian approximation to the material derivative is,
Du - un+1(xn+1) _ un(xn)
Dt = At

where X" denotes the position of a fluid particle at time t™ that is at the point x

time t"*1. The function f is the right hand side of the equation of motion (7.37). Given

= f(u™*?), (7.43)

n+1 at

"+1 at each nodal point (note that

u”, we wish to solve Equation (7.43) implicitly for u
by construction x"*! lies upon a nodal point). Hence, in order to approximate the
material derivative, one needs the previous position x™ of the fluid particle that moves
onto the node with velocity u™*!. This is illustrated in Fig. 7.2. We solve for u™*!

iteratively, and give details of the scheme below.

1. Firstly provide an initial approximation ug*! to u™*!(x;) at a nodal point x;,

namely u™(x;)
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7.

. Then use uj*! to approximate previous position of particle X7, using

n o__ n+1
X =X; —uy At

Then u™(x%) is calculated (as u™ is known everywhere).

.Setm=1

. The next approximation to u™*!(x;) can then be found by solving the equation

of motion,
upt(xi) — u"(x7,_y)

A = f(ui™).

An improved approximation to the previous particle position xJ, is now found

using the mid point approximation

SR ) + 0 () (7.44)

The velocity at this new particle position is then u™(x?,).

. If maxg |[u™(x},) — u™(x},_;)| < € then we have converged upon the previous

particle position x[, and its velocity. Hence the material derivative is correctly
approximated, and so we can set u"*t(x;) = u"!(x;) to obtain the converged
velocity at node ¢, time step n + 1. The computation can then proceed to the

next time step.

Else, if maxg |[u™(x?) — u™(x?,_;)| > € then set m := m + 1 and return to step 4.

Here ¢ is some small tolerance (typically € = 1 x 107%). Having converged upon the

previous position x™ of the fluid particle at node i, the material derivative of other

quantities such as density ¢ can be found directly from the approximation,

P_‘I _ qn+1(xi) — qn(xn)

Dt At (7.45)

Discretisation of the Polymeric Stress

Two discretisations of the polymeric stress are investigated. Firstly we present the

second-order scheme as used in van Os and Phillips [157] and Fiétier and Deville
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Figure 7.2: Movement of fluid particle at x™ at time n on to GLL node at time n + 1.
The position x™ and the velocity at the GLL node at time m + 1 are determined
iteratively.

[62]. The material derivative is approximated using a second order backward difference

formula viz.,

DP oP 3Pn+l —4P" + Pn—l n n n—1 n—1

The deformation terms, labelled thus F = (Vu)P + P(Vu)?, are then approximated

using a second order extrapolation scheme

Fr+l x 0F" — L, (7.47)

The rate of deformation terms T, (and the solvent stress T,) are treated implicitly.
The semi-discrete polymeric constitutive equation is therefore
W

A:)P"“ — T2+ = AB", (7.48)

1+ 22°¢
1+3

where B™ is given by

1

B" = oA

4P" — P 1) — (2u" - VP" —u™ ! . VP 1) 4+ (2F" — F™1).  (7.49)

The second scheme to be investigated incorporates the semi-Lagrangian treatment
already being used in the conservation of momentum. The material derivative of the

stress is approximated using an identical first order Lagrangian description,
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DP _P"*(x;) — P"(x")
Dt ~ At ’

where X" is the previous particle position, already found iteratively from the process
p p p Yy p

(7.50)

described in subsection 7.3.1. The remaining terms, the deformation terms F and rate

of deformation are treated semi-implicitly to yield the following semi-discrete equation,

(1 + —VA‘%) P™ — We ((Vu™P™ + PH(Vu™thT) — Tot! = %Pn(xn). (7.51)
Note that it is indeed possible to implement a fully implicit equation with respect to
both P and u by replacing P" by P"*! in the deformation terms. However, as will

be explained shortly, to do so would result in a significant increase in computation time.

To summarise, the time discretised governing equations to be solved using the spectral

element method are:

The equation of motion,

un+1 —u"
T — _CZan+l +V- Tn+1 + an+1 . Tn+1. (752)
The conservation of mass,
qn+1 _ qn
AT +V.u't!l =0. (7.53)

The constitutive equation,

T =T + P = g, (Vut + (Vu™™)T) + 4, (V- u™ I+ P (7.54)

The polymeric stress P"*! is found either from the second order scheme (henceforth
called scheme A),

(1 + 3;2:) P! — TP = WeB", (7.55)

where B" is given in Equation (7.49), or from the first order Lagrangian scheme (scheme
B),
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We

TP (x"). (7:56)

(1 N Y‘Z) P — We ((Vu™)P" + PY(Vu™*)T) — T2t =

7.3.2 The Spectral Element Method
The Weak Formulation

Let Q represent the whole fluid domain, comprised of both the bubble and the ambient
“fluid. Let the boundary of this domain be 0. In solving Equations (7.52)-(7.54) by
the spectral element method, the weak form of said equations must first be derived.
The dependent variables u, ¢ and stresses T, P, are chosen from the following function

spaces,

ueVc[H(Q)P], (7.57)
g €Q=[H'(Q) (7.58)
T,,P € R=[H'(Q)]%. (7.59)

Here V is some subset of [H'(€2)]? whose entries satisfy the desired velocity boundary
conditions on 92, while R is the space of symmetric 2 X 2 tensors whose components

belong to H'(f2). Furthermore, we define the following test space for the velocity

Vo = {v € [H'(Q)]?,v = 0 on 6Q}. (7.60)

Multiplying the strong form of the governing equations by the appropriate test function

and then integrating, we arrive at the weak formulation:

FindueV, g€ P, and T, P € R such that,

/u—u -v+/(Ts+P):Vv=02/qV-v+/Vq-(Ts+P)-v Vv € Vg, (7.61)
o At Q Q Q

/(q"q +V-u)p=0 Vp € Q, (7.62)
o A
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/ T, W - / 1V : (W + WT) = / (V- -u)tr(W) YW e R,  (7.63)
Q Q Q

Scheme A

3We ) _ ) T
L(1+2At>P.W - /Q,L,,vu.(WJFW)

+ /QVP(V -u)tr(W) + /Q WeB™: W YW € R(7.64)

Scheme B

/Q(l—k%:)P:W = /Ququ:(W-{-WT)
+ /Q v, (V - u)tr(W)

+ / We((Vu)P™ + P*(Vu)') : W
Q

+ [Yepn.w vwer (7.65)
AL

Transfinite Mapping

The physical domain €2 is discretised into a number of non-overlapping, conforming,
convex quadrilateral spectral elements labelled €2, 3. As in finite element methods, one
has the freedom to design meshes suited to the problem geometry and to create highly
resolved meshes near any regions of interest. Each spectral element is mapped onto

the parent element D = [—1, 1] x [—1, 1] using the simple bilinear transfinite mapping,

x = 21-9(1~Cbxa+ 1+~ xot 31+ 1+ O+ (1—E) 1+, (7.66)

where (£, () € D corresponds to point x = (z(£,¢),y(£,¢)) € Qq g, with the vertices of
4, given by Xy, ..., x4 (See Figure 7.3).
Spectral Approximation

The velocity, density and the stresses, are approximated on each element using La-

grangian interpolation through a select set of nodal points, called Gauss-Lobatto-
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1.1 4 (1.1)

(-1-1) (1,-1)

X,

Figure 7.3: Illustration of mapping between quadrilateral spectral element and parent
element.

Legendre (GLL) points. In one dimension, the N + 1 GLL points are roots of the
polynomial (1 — £2)L/y (&), where Ly is the Legendre polynomial of degree N. Conse-
quently, the standard Lagrange interpolant

H;/:o,j;éi(f - fj)
[0 z&i— &)

hi(§) = (7.67)

can be shown to take the form

(1-&)Ly(§)
hi(§) = — , 7.68
© N(N +1)Ln(&)(€ - &) (7.68)
with GLL points &, 0 < ¢ < N. Also, note that by the definition of the Lagrange

interpolant,

hi (51) = 5ij- (7.69)

The Legendre polynomials are a subset of the polynomial eigenfunctions (Jacobi poly-
nomials) of the singular Sturm-Liouville problem. This means that the expansion of a
C® function in terms of these eigenfunctions converges with spectral accuracy [112].

Hence, an expansion in terms of the Lagrange interpolants h; (Equation (7.68)) ex-
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hibits spectral properties, while also naturally lending itself to Gauss-Lobatto numeri-

cal quadrature.

In 2D, the GLL points form a (N + 1)? grid within each element, interpolation over

which yields the representation of the velocity component a over the parent element

=> "> ufh(&h (7.70)

=0 ;=0
where uf; is the approximation to u® at GLL nodal point (;, (;).

Slmllarly, the stress components and density are represented as,

P*(¢,¢) = ZZP“"h ) (¢)- (7.71)

=0 j=0

)= ah(©Ri(0). (7.72)

i=0 j=0
The Discrete Equations

The integrals in the weak form are calculated using the Gauss-Lobatto quadrature rule

f / FEOdedc~ 33 F(En A (7.73)

i=0 j=0
for GLL points (&;, (;) and weights A;. The approximation is exact when f is a polyno-
mial of degree 2N —1 or less in each of the independent variables. The discrete equations
are obtained by inserting the variable expansions (Equations (7.70) - (7.72)), into the
weak form (Equations (7.61) - (7.65)). By applying the above quadrature rule and the
properties of the Lagrangian interpolant, substitution yields the following local arrays

for each spectral element,

A = /D J(E Oh(©)h; (O Eh(C) = Jhdsbxidis, (7.74)

Dikalj, c=1

Chim = /[)ZCb(E, ORi(E)R; (Ol (€) ()] = )‘i)‘jZic;'J{ (7.75)

5kiDjlv c=2
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Here J is the Jacobian of the mapping (given by Equation (7.66)) from the spectral to
the parent element , while Z are the geometric factors associated with the mapping,
defined

a (]
Zg = (&iﬂ) (&, G- (7.76)

The matrix D with entries D;; = h(¢;) is known as the Legendre pseudospectral
differentiation matrix. Closed form expressions for the entries of D may be found

using the properties of the Legendre polynomials

( 1 Lyn(&)

; i # 7
(& — &) Ln(&5)
D;; = <
N +1
N(N +1) L
L T, 2-—-]=N.

In effect, the matrix A,-jkl contains the weights and Jacobian of the spectral element
mappings, while C‘fjk, is the discretisation associated with the gradient operator. The
global matrices A;jr and Cf’jk, can be assembled from the local matrices, Aijkl and

C}.4» using the following construction:
We define a matrix f,,-jkl with global indices ¢, k € [0, N ], 3, €0, M ] thus,

jaB __
Lijkl =

L, if 4,4,k,1 € [0, N]
0 otherwise.

Here N + 1 and M + 1 are the total number of GLL points (within domain ) in the
x and y directions respectively.
The global matrix L;j; can then be assembled by summing over the contributing

spectral elements, viz.,

B
Liju = Z L?faN,j—ﬁN,k—aN,l—ﬂN‘ (7-77)

205



Co-ordinates (o, 3) label each spectral element, with (& + 1), (3 + 1) denoting the

number of spectral elements in the x and y directions, respectively.

Consequently, in terms of the global arrays, the discretisation of the weak form yields
the following set of discrete governing equations,

the conservation of momentum,

ufy Ay + AT + P5)Chu = (W) Aum + Atcqi; Ciiy + At (To)if + P& Crygy

(7.78)
the conservation of mass,
@i Aigi + Atul;Chyis = @ Aijhas (7.79)
the solvent part of the extra stress,
(Ts)?;Aijkl = ufj [(Hs)kl(cglijdac + C;:lij(sbc) + (VS)klczlijdab:l ) (7.80)

the polymeric part of the extra stress, discretised using scheme A,

3(We
(1+ 20798 ) Pet A = s [ )e(Chd™ + Cgd™) + (4G5 DB A
(7.81)

and then scheme B,

We
(1+( ”") PP A = S [()ia(Cliusd™ + Ciusd™) + (0)aClns8® + (We)uTRACE ]

At
(Welu

AL

(P™)& Aiji, (7.82)
where I'??*? in Equation (7.82), is given by

[abed — goc(pr)bd o gbe(pryad, (7.83)

In the above equations the summation convention is employed over ¢, j and c, d.
Substituting the stresses 72°, P* and the density g, into the conservation of momentum

yields the following linear system for u”,

M“k,uZJ = V. (sum over ¢, j, b) (7.84)
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where M is the stiffness matrix, given by

My = 6% Aijut+ At[(As Cri i A A Coi i+ Toc Ch 4 @24CE N CE o+ ALECY . C

Pq -~ pqij Pqij pgij Pqij
(7.85)
with summation over p, ¢ and c, d.
Here, the matrix of dilatational viscosity coefficients T;‘;’ is given by
T = ( (v,)i; + W)y 8%, (7.86)
N (Cr)ii
while the matrix of shear viscosity coefficients is
A% = ((us)ij COTAPS (7.87)
Y (Cr)ys

@;?}’Cd contains the non-linear convection terms from the constitutive equation and arises

only in the semi-implicit treatment (scheme B). Hence

0 for scheme A,

Pabed —

(We)i; /(Cr)i; (8°0(P™)st + 8% (P)ad for scheme B.

The right-hand side of Eq. (7.84), vg, is given by

vy = (u”);‘injk; + czAtq{‘j ik T Atyg, — AtGY ka,, (7.88)

where ngb is given by,
(We)ij
(Cr)ij (Bn) for scheme A,
Gg;’ =

(We): n a
At(—c;ij(P (z™)3 for scheme B.

The stiffness matrix M needs to be calculated at every time step, since parameters
like viscosity and Weissenberg number are permitted to vary. Hence M ! needs to be
calculated at each time step used in the iterative process to calculate u™*1.

It is for this reason that scheme B is not fully implicit in P, because to use P™™!
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within the stiffness matrix would require compilation, factorisation, and inversion of
the matrix for each iteration within each time step. Such an approach is far too
costly in terms of computation time. Note that for scheme A, the stiffness matrix
becomes symmetric in the sense that, M35, = M}, although this is not true for
scheme B. Hence at each time step M is factorised once, using LU decomposition in
the asymmetric case, and Cholesky decomposition in the symmetric case. Given the
sparsity of the stiffness matrix following a spectral element discretisation, the parallel
direct sparse solver routine PARDISO* is used to factorise and invert M. This first
requires that the stiffness matrix be recast in terms of three full one dimensional arrays,

detailing the value and position of the non-zero elements.

7.3.3 Marker Particle Method

The marker particle method is a Lagrangian scheme to track multiple fluid phases and
interfaces. A large number of particles placed within the domain act as “markers”,
providing the identity of the fluid at a point in time and space. The approach was first
suggested by Rider and Kothe [128,129] and shows favourable comparisons with VOF
and level set methods. Particular benefits include the absence of numerical diffusion
and numerical surface tension, and the ability to handle severe topological changes
with ease. Furthermore, the scheme is straightforward to implement and is very ro-
bust [128]. It has been subsequently applied in Newtonian drop dynamics studies by
Bierbrauer and Zhu [14] and Bierbrauer and Phillips [13].

The fluid domain € is filled with initially equally spaced massless particles - a specified
number per unit area. Every marker particle p is initially located at a unique position

(Tp, Yp), and assigned a colour, or identity, C7* defined by

om { 1 if particle p is in fluid m, (7.89)

0 if particle p is not in fluid m.
Assuming no change in phase, particles initially of fluid m will remain so indefinitely
and will be advected with fluid m. Hence the colour function satisfies the advection

equation viz.

DCr
Dt

=0. (7.90)
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Note the similarity with VOF and level set methods. Here (7.90) is ensured through
the Lagrangian treatment of the marker particles, whereas VOF/level set methods
solve an analogous equation to (7.90) explicitly in an Eulerian manner for the volume
fraction/level set function. As the particles remain of type fluid m, they can be assigned
the constant material properties associated with fluid m. In this study, the material
properties constant within each fluid are the viscosities p,,, 1, ,, the relaxation time
A1 (which we have non-dimensionalised to the Weissenberg number) and the speed of

sound c?.

Grid to particle interpolation.

The marker particles, and hence the position of the relative phases, are updated using
the velocities calculated on the Eulerian spectral element grid. The velocities are in-
terpolated to each marker particle and the particles are advected with these velocities
according to u = Dx/Dt. The benefits of a spectral element formulation mean that
internodal velocities can be found with ease and high accuracy using the Lagrange in-
terpolant expansions (7.70). Therefore a particle at (z,, y,) can be easily and accurately

assigned a velocity u(z,,y,) and hence updated in position accordingly.

Particle to grid interpolation

The fluids’ material properties, carried with the marker particles, then need to be
projected onto the grid before solving the governing equations for the next time step.
Analogous to the many articles in the literature on volume-of-fluid (VOF) methods (for
example [61]), it seems reasonable to assign material properties, such as viscosities and
relaxation times, to each Gauss-Lobatto-Legendre node using the following averaging

process

M

dij =Y _ ¢"Cy. (7.91)

m=1
Here ¢,, denotes a material constant within fluid m, and M the total number of sepa-
rate phases/fluids. Note that in this study M = 2, as we have only two distinct phases
- the bubble and the ambient fluid.

The quantity C7} is the interpolated colour function at the point (3,7) given by,
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N m
Zp:pl S(.’L'p — Ty Yp — yj)Cp
N
Zp:pl S(xp — T Yp — 'yj)

where Np is the total number of particles and S(z,y) a bilinear weighting function

cp = : (7.92)

given by,
R E= 1—|t9-i if 0 < z-l“u <1,
S(x—xi,y"'yi) — ( | Az |)( Ay ) I Az | Ay | =
0 otherwise.

'Also, note that by definition,

M

> Cp=1 (7.93)

m=1

Although C7} is found by summing over all particles in the domain (see Eq. (7.92)),
only those within a square of area 4AzAy contribute to determine the average colour
function at GLL node (¢, 7). The average colour function will be weighted towards the
colour function (Eqn. (7.89)) of the majority of particles which are in close proximity
to point (7, ). Consequently, by Eqn. (7.91), the material constants will be weighted
toward those of the dominant fluid about (7, 7). Of course this is important only in
regions near the interface where two distinct fluid types are present. Within the bulk
of fluid m = 1 say, C; = 1, while C? = 0 for all particles p near (i,5). So C}; = 1 and
C2 =0 and hence ¢;; = 3_%,_; $™CP = ¢'.

We have some choice in specifying the size of the search square 4AzAy. For regular
finite difference meshes, Ax, Ay are taken to be the regular grid spacings. However,
the GLL points are unequally spaced. Consequently it seems prudent to leave the size
of the search square as an independent parameter, which can be altered to suit the

problem at hand, under the restriction that

min(A¢;) < Az, Ay < max(Ag;), (7.94)

where A§; = |€i41—&i|, ¢ = 0, ..., N —1, is the spacing between consecutive GLL points.
In most instances, setting the search lengths Az, Ay to be an average of the A¢;, gives

very reasonable results.
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Particle boundary conditions

It may be the case that particles near the boundary in the current time step, may step
outside the boundary in the next. To remedy this the particles are simply reflected
back into the domain by the amount at which they exceed it. This exact approach is

used by Bierbrauer and Zhu [14] in their finite difference study.

7.4 Validation

7.4.1 Marker Particle Test Solutions

In this section the marker particle scheme will be validated through the employment
of some standard interface tracking tests. In particular, the simple rotation, the time
reversed vortex, and the Zalesak slotted disk rotation test will be considered. In each
test, an initially circular body of fluid type 1 is surrounded by a fluid of type 2,
within a domain €2. The identity of each fluid can be determined by its constituent
marker particles according to definition (7.89). The fluid is advected by some analytical
velocity field before returning to its initial position. Error measurements are made on
differences in data between the initial and final states. Specifically we measure the L,

error in the initial and final interpolated colour functions,

Eo = [ I04(T) - Cl0)] (7.95)

and the error in the mass of fluid 1,

EM = lMezact - Mnume'rical (796)

where

Mopumorical = f Cl. da. (7.97)
Q

The exact mass is known from the analytical initial conditions: for example, M. =
nr?, where r is the radius of a circle of fluid 1. We also monitor the size of the
transition region between fluids 1 and 2. Ideally this transition region should be as
small as possible, and remain so, in order to resemble the discontinuous boundary

between two fluid phases. A transition function AT;; is defined such that,
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Mesh MP Density Ec Epm Max A¢r
No of GLL points (&+1) (8+1) N | (particles/unit area)
1. 1012 10 10 10 1017 6.23 x 10~ % | 2.23x 107% [ 1.50 x 1077
2. 2012 6.33x 1074 | 2.13x 1074 | 2.02 x 102
3. 3012 6.23 x 1074 | 1.38 x 1074 | 2.25 x 102
4. 6012 6.43 x 104 | 451 x 1075 | 2.35 x 10~2
5. 20 20 5 3012 6.47 x 1074 | 1.18 x 107 | 2.22 x 1072
6. 5 5 20 3012 6.14 x 104 [ 1.28 x 1074 | 2.17x 1072
7. 2012 10 10 20 2012 6.42x 1074 | 2.16 x 104 | 7.05 x 10~3
8. 6012 6.34 x 1074 | 8.19 x 107 | 1.09 x 102

Table 7.1: Errors between initial and final states for the simple rotation problem.

0 otherwise

1 if0<Ci; <1
ATij={ ' 7

A measure of the area of the transition region at a point in time can then be found

from

Ay = / AT;; dS. (7.98)
Q

Note that this by no means gives an accurate measure of the interfacial area, but pro-

vides an indication of its size and any variation thereof.

Simple rotation

An initially circular body of fluid 1, radius r = 0.15, is ensconced in fluid 2, within
domain 2 = [0, 1]2. Both fluids are advected according to velocity field

u = —2m(y—0.5), (7.99)
v = 2n(z—0.5), (7.100)

causing all fluid elements to rotate about the point (0.5,0.5). The body will undergo a
single rotation in 1 time unit, without changing shape. The initial interpolated colour
function is shown in Figure 7.4.

The problem is studied for several different Gauss-Lobatto meshes and marker particle
densities. The meshes are regular, containing equally sized spectral elements, and are
defined by the number of elements &+1 and B+1 in the z and y directions respectively,

and the polynomial order N. Table 7.1 presents the meshes and the associated errors.
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Figure 7.4: The initial colour function for the simple rotation and vortex test problems.

Importantly note the independence of the error in the colour function Ec from the
mesh and marker particle density. This demonstrates perhaps the most alluring fea-
ture of the marker particle method. That once interpolation error from the particles
to grid has been removed, numerical diffusion of the colour function is minimal as a
fixed number of particles will carry the fluid information indefinitely. The primary
source of error in Ec comes from the time stepping scheme used in updating each
particle, which in this case is a second order trapezium rule with 4¢ = 1 x 10-2. This
is corroborated by decreasing the time step to A¢ = 1X 10~3, in which case the error,
Ec, for mesh 3 reduces to 6.23 x 10~6. Em provides an indication of the interpolation
error from particle to grid, as we compare an interpolated mass, with the analytical
Manalytical — nr2+ For mesh 1, increasing the density of marker particles results in
increasingly accurate approximations to the mass. Refining the grid allows a more re-
fined interface and a smaller transition region between the two fluids. However, to have
accompanying improvements in Em requires a corresponding increase in the particle
density to ensure enough particle information is read in over the refined interpolation

region. The maximum measure of the transition area A¢r is suitably small, with no
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Mesh MP Density Ec EMm Max Atr

(«+ 1) 0+D N (particles/unit area)
10 10 10 3012 329 x 10"5 222xnr4 125x 10"1

Table 7.2: Errors between initial and final states for the time reversed vortex problem.

significant dependence on the choice of mesh. Increasing the marker particle density
results in a very slight increase in the transition area as regions near the interface are
more likely to contain particle contributions from another fluid (and so A = 1). Ex-
pectedly, refining the grid results in a smaller transition area as the interpolation area
decreases with the average grid spacing. Note that for all the above error measures,
varying the number of spectral elements and polynomial order while keeping the total

number of GLL points constant, does not have a significant effect.

Time reversed vortex

Using identical initial conditions to the simple rotation (see Fig. 7.4), the fluid is now

distorted according to the vortex flow

u = —sin(27n/) sin2(t:c), (7.101)
v = sin(27ra:) sin2(%?). (7.102)

This is a far more stringent test, with significant stretching and deformation of the
fluid. By multiplying the above velocity field by cos(7¢/Tf), the flow will reverse at
time ¢t = 7f/2 and return to its initial position at t = Tf. Figure 7.5 shows the deformed
fluid at + —T7f/2, where the final time 7f = 8.0.

Table 7.2 shows the errors associated with the flow for a single mesh. Once again,
despite the severity of the flow, we note that the error in the initial and final solutions
Ec, and in the mass EM, remain very small. The transition area shows a marked
increase in this test, which is to be expected given the strong deformation and stretching
of the diffuse interface. Once again these errors compare well to other marker particle
studies [12,128].

In particular, note the error E%t in the scheme compared to other algorithms at similar
mesh refinements (see Table 7.3). Error EQ is defined as Ec, but includes the interpo-

lation error from an initial “exact” colour function. The scheme performs favourably,
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Figure 7.5: The colour function for the time reversed vortex problem at £= T//2 = 4.0.

with an error of a similar magnitude to other schemes. However, in subtracting the
initial error we recognise the scheme’s superior conservation properties. The remaining
error E ¢, which arises from the advection of the colour function between the initial and
final states, is very small Ec = 3.08 x 10-5. This again demonstrates, interpolation
aside, that numerical diffusion of the colour function over time is minimal, even under

such a stringent test.

Zalesak slotted disk rotation

In this test a slotted disk is revolved once around the centre of the computational
domain with a constant angular velocity, as in the simple rotation. The disk is of
radius 0.5, with the rectangular slot having dimensions (0.12 x 0.6). The initial set up
is given in Fig 7.6.

For comparison with previous studies, an additional measure of the error in the colour

function is made,
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Method E:,
Rider and Kothe [130] 1.44 x 1073
EMFPA /Youngs [98] 213 x 1073
Adaptive triangular grid [168] | 5.09 x 10~*
THINC/WLIC [169] 2.75 x 1073
Present study 2.34 x 1073
Present study (initial error) | 2.31 x 1073

Table 7.3: Error Ef, (E¢ including initial interpolation error) in colour function for
time reverse vortex Ty = 8.0. In each case grid sizes are 128 x 128.

Mesh MP Density Ec Ey Max A,
(@+1) (B+1) N | (particles/unit area)
10 10 20 6012 8.79 x 1073 [ 3.16 x 10~% | 1.97 x 107!

Table 7.4: Errors between initial and final states for the Zalesak slotted disk rotation
problem.

_ ZQ IC” - C:fﬂd (7 103)
ZQ Cf];act : :

Here C;7° is the exact colour function at the nodal points (7,j), i.e. there is no

Ez

interpolation over the boundary of the two phases. Hence, as well as the error arising
from advection of the particles, Fz contains the error associated with the interpolation
from the particles to grid. The computation is also done on a more refined grid with
2012 GLL points and 6012 marker particles being used. The errors for this test are
given in Table 7.4.

Once again, the marker particle scheme performs well with the error in the colour
function E- and mass Ej, suitably small. The maximum transition area is somewhat
larger than the rotating disk study, but only because the area of the slotted disk in
this case is larger (the radius here is 0.5 compared to 0.15). Table 7.5 shows the error
in the colour function E; compared with other studies in the literature at similar
mesh refinements. Clearly the scheme compares favourably with the other methods,
and particularly well when the initial interpolation error is subtracted. Again this
emphasises a defining property of the marker particle method. While interpolation
can introduce a significant source of error (which will indeed be present in all diffuse

interface methods), subsequent error in the colour function is minimal.
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Figure 7.6: The initial colour function for the Zalesak slotted disk rotation problem.

7.4.2 Transient Poiseuille Flow of a near-incompressible New-

tonian Fluid

To test the validity of the numerical solution of the governing equations, the velocity
field is first compared with the analytical velocity for start up of Newtonian Poiseuille
flow (in the near-incompressible limit). The analytical solution for an incompressible

fluid viz.

u=-4yy- 1)- 324 -1nAAJ H) exp(-n2yst/H 2) (7.104)
n=1

is prescribed at the inflow and outflow. Test points are chosen in the centre of the
domain, where we compare the numerical and analytical velocity field, and on the
boundary y = 0 where the error in the steady state stress is measured. The only

non-trivial component of the stress is the shear stress

— MOy —M®@  8Y). (7.105)

217



Method E;
SLIC VOF [108] 838 x 102
Hirt-Nichols VOF [67] 9.62 x 1072
Adaptive triangular grid [168] | 1.25 x 102
THINC/WLIC [169) 2.46 x 1072
Present study 4.87 x 1072
Present study (initial error) | 4.69 x 1072

Table 7.5: Error E; for the Zalesak disk test for different multi-phase algorithms.

Figure 7.7 shows the numerical solution u at the test point (0.5,0.5) for a selection of
(solvent) viscosities. In this case = [0, 1]? and is partitioned into four equally sized
spectral elements with o, = 1 and N = 6. The time step is At = 1 x 1072, The time

averaged error in the velocity, calculated using

f Iuanalytical - unumericall dt
Eu = T ’
f

(7.106)

and the relative error in the stress Ep, are given in Table 7.6.

Hs E, Er

0.1]4.26x107°]6.08x107°
0.5]1.00x107*|535x%x10"*
1.0 1.78 x 107% | 1.07 x 1073

Table 7.6: Errors for Newtonian Poiseuille Flow for a selection of viscosities.

It is interesting to note the relationship between the channel length L and the com-
pressibility of the fluid. Consider the case ¢? = 1 x 103, u, = 0.5 with a longer channel
length of L = 10. We see a significant difference in the numerical and analytical ve-
locity at the domain centre (Fig. 7.8). The initial increase in the velocity from zero
is delayed and then exhibits an overshoot of about 0.1, before oscillating down to the
steady state value. This suggests that the value of c is not large enough to approx-
imate an incompressible fluid in this extended geometry. What is being observed is
the transient Poiseuille flow of a compressible Newtonian fluid. A truly incompressible
fluid transmits information instantaneously, whereas a compressible fluid does so at
some finite speed. In the shortened geometry, the speed of sound was sufficiently large
in approximating the instantaneous transmission of the boundary conditions to the

centre of the domain, and subsequently good agreement was obtained with the analyt-
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Figure 7.7: Numerical approximation of horizontal velocity component u(0.5,0.5,t)
with time for Poiseuille flow. Here ¢ = 1 x 10 and the channel length is L = 1.

ical incompressible solution. By lengthening the domain the effect of compressibility
becomes apparent as the time to transmit information to the centre of the domain
increases. This explains the time lag observed in the initial increase in the numerical
velocity. As can be seen from Fig. 7.8, by increasing the speed of sound, the numerical
compressible solutions converge toward the incompressible analytical solution, allowing

one to recapture the incompressible solution in this longer channel.
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Figure 7.8: Incompressible analytical and compressible numerical solutions for velocity
u for transient Poiseuille flow. By increasing the speed of sound the compressible
solutions tend towards the incompressible solution. The channel length in this case is
L =10.
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7.4.3 Transient Poiseuille Flow of a near-incompressible Ol-
droyd B fluid

The implementation of the Oldroyd B model, with the two temporal discretisations,
will now be compared with the analytical solution for transient Poiseuille low. The
analytical solution for start-up transient Poiseuille flow of an incompressible Oldroyd
B fluid was derived by Waters and King [162] for Re # 0. The non-trivial velocity

component u is given by

sm(Ny) ant
= —dy(y —
y(y —1) 322 ( A ) G (t), (7.107)
where Gy (t) is defined as
Bnt 1+ N?(S; —251)\ . Bt
t) = . .

Gn(t) = cosh (251) + ( . sinh 25, (7.108)

The remaining parameters are
= (2n — D), (7.109)

We

S = e’ (7.110)
Sy = 51, (7.111)
ay =1+ SN?, (7.112)
Bn = ((1 + SaN?)% — 48, N2, (7.113)

Direct comparisons are made with the study by Van Os and Phillips [157], who employ
a spectral element method in their solution of transient viscoelastic flows. Consider a
2% 2 (o, B = 1) spectral element gird, with N = 6. The numerical solution is calculated
for 3=1/9, We =1 and Re = 1 for a channel length L = 16. Here we choose a large
speed of sound (¢ = 1 x 10%) to ensure compressibility effects are minimal. The
numerical velocity and stress are measured on the penultimate vertical grid line, and
compared with the boundary conditions at the inflow. Figure 7.9 shows the velocity
and stress components calculated using both temporal discretisation schemes. One
can see the divergence in the numerical solution using the second order explicit scheme
(scheme A) at around ¢ ~ 22.0 time units. The first order implicit scheme (scheme

B) on the other hand seems to remain stable indefinitely, with a time averaged error
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in the velocity of E, = 1.44 x 107%. Such a divergence in the explicit solution was
observed by Van Os and Phillips [157], for identical mesh and material parameters, at
approximately ¢ &~ 10.8 time units. Decreasing the channel length to L = 8 (Fig. 7.10)
sees the onset of divergence at an earlier stage for the explicit scheme, at ¢t ~ 3.8 (Van
Os and Phillips [157] observed divergence at ¢t =~ 4.2). However, once again the implicit
scheme demonstrates superior stability properties, showing no evidence of divergence.
The time averaged error in this case is E, = 3.92 x 107%. Van Os and Phillips [157]
found that keeping the channel length fixed, but increasing the number of streamwise
elements, also decreases the time at which the solution diverges (Fig. 7.11). Using a
4x 2 (a=3,8=1) mesh with L = 16 (Fig. 7.11(a)) we find for the explicit scheme
the solution diverges at t = 3.9, while once again, the implicit scheme remains stable
with E, = 2.55 x 10~%. Only by decreasing the channel length to L = 8 (Fig. 7.11(b))
do we see the implicit scheme succumb to numerical instability. The solution diverges
at t = 11.6 for the implicit scheme, while at ¢t ~ 1.3 for the explicit (Van Os and
Phillips [157] observe divergence at ¢ =~ 1.0).

Figures 7.12 and 7.13 display the velocities and stresses for Poiseuille flow for We = 0.1
and We = 10, respectively. Calculations are performed using the semi-implicit scheme
with a single spectral element and N = 4. Despite the two orders of magnitude
difference in We, the scheme maintains its integrity with the numerical approximation
being indistinguishable from the analytical solution.

The implementation of the Oldroyd B constitutive equation has been validated through
comparison with the transient analytical solution of Waters and King [162]. Despite
being a compressible model, a near incompressible limit can be attained which provides
accurate solutions to the incompressible flow. Broadly speaking, the spectral element
scheme here exhibits similar stability properties seen in other spectral element studies
[52,157]. Namely, increasing the number of elements in the streamwise direction or
shortening the channel length, brings forward the onset of instability. From the above
discussion it is clear that the implicit scheme has more favourable stability properties,
as well as being remarkably accurate in describing transient viscoelastic flows. It is
for these reasons that the implicit scheme shall be used in the forthcoming study of

viscoelastic multi-phase flows.
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Figure 7.9: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow for different numerical schemes. L = 16, We = 1, Re = 1, § = 1/9. The grid
parameters are: N =6,a=1, =1
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Figure 7.10: Analytical and numerical component of velocity  with time for an Oldroyd
B fluid in Poiseuille flow. L =8, We =1, Re =1, § =1/9. The grid parameters are:
N=6,a=1,0=1
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Figure 7.11: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow for different numerical schemes at different channel lengths L, with increased
streamwise mesh refinement. The grid parameters are: N =6, a =3, = 1.
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Figure 7.12: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow. L =16, We = 0.1, Re = 1, 8 = 1/9. The grid parameters are: N = 4, a = 0,
B =0.
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Figure 7.13: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow. L = 16, We = 10, Re = 1, 8 = 1/9. The grid parameters are: N =4, a = 0,
B =0.
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7.5 Numerical Results

7.5.1 Bubble Collapse in a Newtonian Fluid

In this section we present the numerical predictions for bubble collapse near a rigid
boundary, within a Newtonian fluid. As described in the introduction, the bubble
is initially represented as a circular region with a separate density and viscosity to
the ambient fluid. Particles within this region are assigned an identity which they
retain indefinitely. Hence the position of the bubble can be tracked by following these
particles. We consider the bubble dynamics for a selection of ambient fluid viscosities
and heights from the rigid boundary. In all cases, unless otherwise stated, we assume
that the bubble contents consist of a compressible Newtonian fluid with viscosity fis =
1 x 10-5 (an order of magnitude similar to air) and initial density ¢ = 0. The initial
density of the ambient fluid is taken to be g = In4 « 1.386. Hence the density p of the
ambient fluid is four times that of the bubble phase. The rigid boundary in question
is taken to be the line y = 0 in a computational domain D = [0,10]2. On y = 0 and
the remaining boundaries the no-slip condition applies. The mesh is refined around
the area of interest, namely the bubble, with larger elements fanning outwards to the
edges of the computational domain. An example mesh is given in Figure 7.14. Typical
mesh parameters are a = /3 = N = 8 and the time step used in the simulations is
At =5x 1CI3.

Figure 7.14: An example of the spectral element mesh used in the bubble collapse
problems.

We consider first a bubble initially positioned to be just touching the rigid boundary.
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Figure 7.15 shows the colour function at a selection of times for an ambient fluid
viscosity /is — 1 x 10“3. The initial difference in pressure between the bubble and
ambient fluid initiates and drives bubble collapse. During collapse the bubble flattens,
with its contents being pushed towards the wall by the greater bulk of fluid above it.
As fluid follows most freely along the centre of the domain, a jet of fluid begins to form
and then penetrate the body of the bubble. As the jet proceeds towards the wall, the
bulk of the bubble is pushed out in either direction. The speed at which collapse occurs
is so great that the outer edges of the bubble break up in an effect not dissimilar to
“splashing”. Splashing has been observed experimentally and predicted numerically,
and is caused by the collision of fluid from the jet (travelling outwards from the centre)
with the fluid from the oppositely directed ambient flow. Consequently, the fluid (or
splash) is projected upwards from the boundary and can cause surface breaking and

the formation of smaller cavities [151].
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Y

Figure 7.15: Bubble collapse near a wall in a Newtonian fluid with /is= 1 x 10 3.

Evidently, besides predicting the well-known phenomenon of jet formation, phenom-
ena such as splashing and bubble break up can be handled straightforwardly by the

method. This is a clear advantage of the marker particle algorithm over the BEM,
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where modelling bubble break up requires special treatment. By increasing the viscos-
ity ofthe ambient fluid we see a similar response to that of our boundary element study.
Figure 7.16 shows the colour function for fis = 1 x 10-2. In this case jet formation
is not as pronounced, with the top of the bubble being only slightly indented during
collapse. However, a jet of sorts still forms, impinging on the boundary and pushing
the bubble contents out towards the side walls. Also, bubble break up on the outer

fringes is significantly reduced.

Figure 7.16: Bubble collapse near a wall in a Newtonian fluid with fis = 1 x 10 2.

If the viscosity is increased further to /is = 0.1 (Fig. 7.17) we see that jet formation
is almost completely suppressed. As the bubble collapses, it deforms into a flattened,
bowl like shape with no discernible jet formation. Any further spreading of the bubble
and any bubble break up is also prevented.

Increasing the viscosity further to fi3 = 1.0 (Fig. 7.18) we find that, not surprisingly,
jet formation is once again prevented, although in this case, the effect of viscosity is so
great that deformation in the bubble is minimal and it does not deviate significantly
from sphericity. Following an initial decrease in volume, the bubble also quickly settles
down into a steady state. Note that the bubble shape is such that the underside is
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Figure 7.17: Bubble collapse near a wall in a Newtonian fluid with fia = 0.1.

drawn inward, producing a more pointed bottom. Comparing this shape to those in
Figure 3.10, one can see that these features, including jet prevention, are also predicted
by the BEM for significant viscosities.

Figure 7.19 shows the variation of the jet position with time, for the aforementioned
viscosities. As before, the jet position is defined as being the material point on the north
pole ofthe bubble, where the jet is expected to form. In the very early stages of collapse,
the profiles are indistinguishable as inertia dominates. The bubble collapses rapidly
before rebounding due to the compressed fluid content within the bubble. After these
initial stages, the effects of viscosity become more apparent. Expectedly, /is= 1x 10-3
shows the fastest decrease in position, with the jet proceeding toward the wall with the
largest velocity. This rate decreases with increasing viscosity, with /is = 1.0 attaining
a steady state, as the jet position becomes constant and the jet velocity zero. Clearly,
increasing viscosity can delay, slow and if large enough, prevent jet formation. This
is well-known and has been observed in the previous boundary element study, and in
other numerical studies such as that by Popinet and Zaleski [121]. While this behaviour
is qualitatively similar to that predicted by the BEM, the jet position profiles are rather
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Figure 7.18: Bubble collapse near a wall in a Newtonian fluid with ps = 1.0.

different. The liquid jet constantly accelerates during collapse in the previous BEM
study, but can decelerate here. The reason for this is that the bubble in the BEM
study was modelled as containing a constant pressure pb. Here, the bubble is modelled
as a compressible Newtonian fluid. Hence, as mentioned at the start of the paragraph,
the bubble contents act to resist collapse and decelerate the surrounding fluid. The
build up in pressure within the bubble can be sufficient to temporarily slow, stop, and
even reverse collapse. This also explains the small, low amplitude oscillations in the
jet position.

Figure 7.20 shows the variation ofjet position with time for ps = 0.1, for different mesh
refinements. On varying the polynomial order N there is little change in the solution
(to within an acceptable tolerance) for N > 6, suggesting that a choice of N = 8 does
indeed provide a sufficient level of refinement.

We will now consider the effect of increasing the distance of the bubble from the rigid
boundary. Figure 7.21 shows the colour function at different times for an ambient fluid
viscosity ps = 0.1, a distance 42 = 1.1 from the lower wall. Compared to Fig. 7.17,

where the bubble was just attached to the wall, the small increase in distance causes
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Figure 7.19: Position of jet with time for varying solvent viscosity ji.

the bubble shape to change quite substantially. As in the boundary element study (see
Figure 3.11 for example), increasing distance from the wall causes a decrease in the
deformation of the bubble. Closer to the wall, the bubble is more elongated along the
x axis, with the topside more flattened. Increasing the distance to 2 = 1.1, the bubble
has now deformed in a similar manner but to a lesser extent. For in the near wall case,
fluid flows most easily from above the bubble, causing it to push down upon the bubble
and create the more elongated shape and flatten topside. While this flow mechanism
is still apparent for # = 1.1, it is not to the same extent. Fluid is able to flow more
freely from all directions around the bubble, and so collapse is more uniform.

Increasing the distance from the wall further to 42 = 2.0 (Fig. 7.22) we note a further
decrease in bubble deformation, as expected. In fact, the distance is such that de-
formation in the bubble is minimal, with it hardly changing from its initially circular
shape. The fluid around the bubble is able to flow more freely from all sides, so the
collapse is extremely uniform. This is also predicted in the equivalent Newtonian BEM
case; see Figure 3.12. Here though the bubble collapses and decreases in volume, but

given the fluid content of the bubble acting to resist collapse, it quickly settles down
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Figure 7.20: Dependence of the position of the jet on mesh refinement for /is = 0.1.

to a steady state.

To conclude the discussion on Newtonian dynamics, we reiterate the qualitative agree-
ment in the dynamics observed here, to those predicted by the boundary element
study in Chapter 3. Close to the wall deformation in the bubble is severe as fluid flow
is restricted near the wall, while unrestricted from above the bubble. In both cases,
depending on viscosity, the preferential fluid flow from above can cause the bubble
topside to flatten, with the possibility of jet formation. Further from the wall, as the
flow around the bubble is more regular, the deformation in the bubble is more uni-
form, and can in fact remain near sphericity/circularity during collapse. Additionally,
both methods predict a decrease in deformation and jet prevention for large enough

viscosities.
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Figure 7.21: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a Newtonian fluid with /is = 0.1, h = L 1.
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Figure 7.22: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a Newtonian fluid with 4s = 0.1, » = 2.0.

235



7.5.2 Bubble Collapse in an Upper Convected Maxwell Fluid

In this subsection we investigate the role of viscoelasticity on bubble collapse. The
rheological properties of the ambient fluid are determined by the upper convected
Maxwell (UCM) constitutive equation. The bubble contents remain Newtonian, with
the parameters assigned previously. Figure 7.23 displays the colour function at various
points in time, indicating bubble shape during collapse. The Weissenberg number of
the ambient fluid is We = 0.03 and the polymeric viscosity np — 0.1. The bubble is
initially positioned such that 2 = 1.1. Comparing Figure 7.23 with the corresponding
Newtonian case (Fig. 7.21), one can see a notable difference in the bubble shapes
due to the presence of viscoelasticity. During collapse, the bubble shapes are more
prolate than their Newtonian counterparts and also form a marked cusp feature on
their underside. Figure 7.24 shows a close up of the bubble for both the viscoelastic

and Newtonian cases, at time ¢ = 0.5.

Figure 7.23: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a UCM fluid with fiv= 0.1, We = 0.03, h = 1.1.

In the viscoelastic case (on the left), a more elongated and cusped underside is clearly
visible, in comparison to the Newtonian case on the right. The cusping and extensive
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concavity of the bubble underside, when near the wall, is also predicted by the boundary
element method (see Fig. 3.15, for example). It is interesting to note that over the
course of this project, cusp formation has been a recurring feature in viscoelastic bubble

dynamics.

Figure 7.24: A plot of the colour functions in a UCM fluid (left) and Newtonian fluid
(right) at time ¢ = 0.5.

Evidently, near the wall there is a mechanism encouraging concavity in the bubble
surface, which arises from the elastic properties of the surrounding fluid. While this
also occurs in the BEM study, the full domain solution here can perhaps afford more
insights into cusping mechanisms. A cusp forms when fluid just around the tip flows at
a higher velocity than the tip itself, suggesting the presence of an additional stress that
“squeezes” the bottom of the bubble from the sides. Figure 7.25 shows the contours
of the different components of the extra stress near the wall. In the viscoelastic case,
there is an extra stress layer in the 7Txx component which is absent in the Newtonian
case (see Fig. 7.26). This stress layer can become very large, particularly in the initial
stages of collapse, where inertia is dominant and thin velocity boundary layers exist on
the wall. In fact, this large stress layer can be a major source of numerical instability
and the reason that results for Weissenberg numbers greater than We ~ 0.03 cannot be
obtained in this case. This Weissenberg number limit will be discussed in more detail
later. Though this value of Weissenberg number seems rather small, the alternative
dimensionless measure of elasticity, the Deborah number De = XRo (Ap/p)ly2, yields
an initial value of De & 0.82. This is a much more satisfactory upper bound and
suggests that perhaps De provides a better measure of elastic effects for such problems.
By our definition, the Deborah number provides a time scale associated with the flow

process, while the Weissenberg number is associated with fluid characteristics. The

237



reason the Deborah number is not used here is because it is not constant, but varies
with bubble density and pressure.

It seems that this build up of an elastic normal stress, which is directed along the x
axis around the underside of the bubble, is the likely reason for cusp formation. The
build up of normal stress in the vicinity of the cusp also occurs in the BEM study (see
Fig 3.38, for example). Though quite different in structure, it is clear in both cases
that additional viscoelastic stresses preferentially develop about the bubble underside.
After all, the basic flow structure that exists between the bubble and rigid wall during

collapse, should be similar in both cases.
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Figure 7.25: Contour plots of the extra stress components near the rigid boundary at
time ¢ = 0.5. It is a UCM fluid with zr= 0.1, We = 0.03, & = 1.1.

The shear stress 7xy contours are similar to the Newtonian case (see Fig. 7.26) in both
magnitude and structure, suggesting that 7xy plays a minor role in cusp formation.
Similarly the normal stress 7yy, although different in structure, is small in both cases.
Figure 7.27 shows the jet velocities in a Newtonian and UCM fluid. We compare the
velocities after the initial collapse and rebound phase, as in this phase inertia dominates

and the differences in dynamics are negligible. Even after this stage, the difference in
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Figure 7.26: Contour plots of the extra stress components near the rigid boundary at
time ¢ = 0.5. The fluid is Newtonian with fis = 0.1, A = 1.1.

the jet velocities is small, demonstrating that in this study the bubble content is the
principal cause of bubble oscillation. The oscillations in the UCM fluid are fractionally
larger in amplitude in most instances - alluding to the ability of the viscoelastic stresses
to induce oscillation in the bubble. The combined effect of this and the bubble contents
then create oscillations of a slightly larger amplitude. Increased amplitude oscillation
with increased Deborah/Weissenberg number is of course a well known characteristic
of viscoelastic bubble dynamics, and is predicted by the BEM in the spherical and
non-spherical cases studied in the preceding chapters. See, for example, Figure 2.9.
Figure 7.28 shows the colour function at select times when the bubble has been moved
from the wall to a distance 2~ = 2.0. As in the Newtonian case, deformation in the
bubble is markedly reduced and it remains very nearly circular during collapse.
Figure 7.29 shows the bubble jet velocities, after the initial collapse phase, at different
distances from the wall. Expectedly, we see that further from the wall the amplitude
of the oscillation in jet velocity is larger, because the fluid flow is less restricted and

can flow at larger speeds. Increasing jet velocities with distance from the wall was also
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Figure 7.27: Variation ofjet velocity with time (after the initial collapse) in a Newto-
nian and UCM fluid, fiv= 0.1, & = 1.1.

predicted by the BEM study (see Fig. 3.5, for example). Interestingly, note the small
perturbations in the jet velocity for # = 1.1 at about ¢ = 2, for example. These were
also observed in the BEM study (see Fig. 3.17 and the accompanying paragraph), and
result from the wall perturbing flow around the bubble and causing it to oscillate “out
of phase”, i.e. the lower part of the bubble may collapse, while the upper part expands.
In turn, the unsynchronised flow field around the bubble produces perturbations in the
jet velocity.

Additionally, at greater bubble distances from the wall, larger upper bounds on the
Weissenberg number are permitted. For # = 2.0 for example, the maximum Weis-
senberg number for which stability is sustained is Wemax ~ 0.15. This is not surpris-
ing, as a greater bubble distance from the wall means that the flow adjacent to the
wall is less severe (reduced velocities and increased uniformity). Consequently, velocity
gradients are significantly smaller and so the stress boundary layers, the most likely

source of the numerical instability, are smaller in magnitude.
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Figure 7.28: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a UCM fluid with gip= 0.1, We = 0.03, h = 2.0.
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Figure 7.29: Variation of the jet velocity with time, at different distances 4 from the
wall, in a UCM fluid with fip = 0.1, We = 0.03.
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7.5.3 Bubble Collapse in an Oldroyd B Fluid
Variation of Solvent Viscosity

In this section we investigate the dynamics of a bubble within a fluid whose rheological
properties are governed by the Oldroyd B constitutive equation. It is well known
that the Oldroyd B equation is comprised of the UCM model but with an additional
Newtonian solvent stress contribution (see Equation (7.9)). It can be anticipated that,
as is often observed in the literature, that this additional viscous stress will abate
elastic effects and permit higher upper bounds on the Weissenberg number. Figure
7.30 shows the colour function at time ¢ = 0.5 for a selection of solvent viscosities. The
Weissenberg number is We = 0.03 (for comparison with the previous UCM studies)
and the initial bubble distance from the wall is # = 1.1. Unsurprisingly, by increasing
the solvent viscosity the small cusp on the bubble underside becomes less prominent
and the somewhat sharpened underside becomes smoothed out. As expected, the
elastic effects, which we know to be the reason for cusp formation, are suppressed with
increasing solvent viscosity. This can be further appreciated by studying the stress

component 7xx for each solvent viscosity.

n* 1.0

Figure 7.30: A plot of the colour function at # = 0.5 in an Oldroyd B fluid for different
solvent viscosities /zs. The remaining parameters are /xp = 0.1, We = 0.03, 7 = 1.1.

The contours of the stress component 7xx are shown in Figure 7.31. We know that
this component of stress differs drastically in the Newtonian and viscoelastic cases,
and that it is the dominant stress component in cusp formation. Expectedly we see
significantly different stress contours for the different solvent viscosities. For fis = 0 we
see the thin, relatively high magnitude stress boundary layers observed in Fig. 7.25. By
increasing the solvent viscosity to fis = 0.1, viscous effects begin to abate elastic effects

and the stress layers become thicker and decrease in magnitude. Increasing viscosity
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to /is = 1.0, we see that no discernible stress layers form and that the contour field
resembles the Newtonian case (both in structure and magnitude). Evidently, increasing
viscous effects increasingly suppress the elastic effects, thus providing an explanation of

the transition in bubble shape from a cusped/concave to smoothed/convexed underside.

Figure 7.31: The stress contours of component 7Txx for different solvent viscosities fis.
The remaining parameters are /ip = 0.1, We = 0.03, 7 = 1.1.

Figure 7.32 shows the variation of the jet velocity with time for the different solvent
viscosities discussed above. Once again, the behaviour is as expected. By increasing
the viscosity the amplitude of oscillation decreases due to increased energy loss through
viscous dissipation. Consequently, the bubble attains a zero kinetic energy steady state
with fIs = 1.0, before the cases fi3 = 0,0.1. A similar response to increasing solvent
viscosity has been predicted by the BEM when using the Jeffreys model, in the case of
spherical bubble dynamics. Figure 2.15, for example, shows the increasingly damped

oscillations of the radius with time.
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Figure 7.32: Variation of the jet velocity with time for different solvent viscosities, with
/ip= 0.1, We = 0.03, and 4 = 1.1
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Variation of Weissenberg Number

Considering the case fip = (is = 0.1, h = 1.1, we shall now investigate the effect
of varying the Weissenberg number. As we have mentioned, it is well known that the
inclusion of a solvent stress can permit larger upper bounds on the Weissenberg number.
Such is the case in this study. The inclusion of a solvent viscosity fis =0.1 has allowed
an order of magnitude increase in the maximum attainable Weissenberg number, with
JUenox « 0.65. Figure 7.33 shows the colour function at ¢ = 0.5 for a selection of
Weissenberg numbers. The difference in the bubble shapes is not particularly striking,
but one does notice an increasingly cusped underside for Weissenberg numbers We =

0.1 and 0.5. Once again, this highlights the role of elasticity in the formation of cusps.

We=0.03 We=0.1 We=0.5

Figure 7.33: A plot of the colour function at # = 0.5 for different Weissenberg numbers.
The remaining parameters are = fis= 0.1, h = 1.1

The contours of stress component 7xx are given in Fig. 7.34. For We = 0.03, we see
the thickest layers and smallest in magnitude. Increasing the Weissenberg number to
We = 0.1, results in slightly thinner and more elongated layers with values of 7xx which
are larger in magnitude. The increased magnitude of the stress is evidently responsible
for the increased cusping. Increasing the Weissenberg number further to We — 0.5,
we see yet thinner layers develop, with values of 7xx which are again significantly
larger in magnitude. Such behaviour of the stress boundary layers, when varying
Weissenberg number, has been well documented in the literature. For example, for the
UCM model, Renardy [127] noted that boundary layer thickness decreased as We~/
with increasing Weissenberg number. Under-refinement of these layers can result in
numerical instability, and in many studies in computational rheology this is cited as the
reason for the high Weissenberg number problem [112]. This also seems the case here.
For We = 0.5, accompanying the thin boundary layers, are lower amplitude spurious
oscillations originating from the boundary. Though these are not significant enough
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to pollute and destroy the whole solution, it clearly indicates that we are nearing the
limiting Weissenberg number for this problem. As stated, this was found to be at
around Wemax & 0.65. Further refinement of these layers is possible and while it may

allow increases in Weissenberg number, it merely postpones the issue.

107y60 54421

Figure 7.34: The stress contours of component 7xx for different Weissenberg numbers.
The remaining parameters are jip = fia = 0.1, » = 1.1.

Despite considerable differences in the stress contours for varying Weissenberg numbers,
as we can see in Figure 7.35, the difference in the jet velocities is not as pronounced.
It seems elastic effects are most significant near the wall and primarily act to alter
bubble shape in this region. We do, however, see a slight increase in the amplitude
of oscillation with increasing Weissenberg number, due to the increased elastic energy
in the system over viscous dissipation. Of course, we know this to be a quintessential

characteristic of viscoelastic bubble dynamics.
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Figure 7.35: (a) Variation of jet velocity with time (after initial collapse) for different
Weissenberg numbers, with fip = fis = 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the increasing amplitude oscillations with We.
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Variation of Polymeric Viscosity

Now the solvent viscosity and the Weissenberg number will be keep fixed at We =
ys = 0.1, but the polymeric viscosity will be varied. Figure 7.36 shows plots of the
colour function at # = 0.5 for various polymeric viscosities. By increasing the poly-
meric viscosity, the bubble goes from having a more rounded shape with an appreciable
cusped tail, to a more prolate (squashed along the y axis shape), with a less distin-
guishable cusp. Once again the stress contours 7xx can provide important insights into
the formation of these different shapes.

Hp=0.05 Hp=0.10 H=0.50

Figure 7.36: A plot of the colour function at ¢+ = 0.5 for different polymeric viscosities.
The remaining parameters are We = fis = 0.1, h = 1.1.

Figure 7.37 shows the Txx contours for the different polymeric viscosities. Increas-
ing the polymeric viscosity does not particularly effect the thickness or length of the
stress boundary layer, for as we have discussed, this is primarily determined by the
Weissenberg number. However, an increase in Hp does result in stresses of increased
magnitude, which vary in structure further from the boundary. For fip = 0.05 and
p = 0.1 the stress field in the region around the bubble, just away the wall, is quite
uniform. Consequently, in both cases, the uniform distribution of stress results in the
bubble shape, away from the wall, remaining relatively circular. For yp = 0.5, besides
the sizable increase in the overall magnitude of Txx, there is a notable difference in
structure, with a region of high stress around the bottom half of the bubble and a
lower stress region around the top half. The increased magnitude, particularly around
the lower half of the bubble, has the effect of squashing the bubble and producing a
more prolate shape with no definite cusp formation.

Figure 7.38(a) shows the jet velocities for the selection of polymeric viscosities. As
expected, increasing yp sees a decrease in the amplitude of oscillation, as elastic effects
which would act to encourage oscillation, are suppressed due to increased viscous dis-
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Figure 7.37: The stress contours of component 7Txx for different polymeric viscosities.
The remaining parameters are We = fis = 0.1, h = 1.1.

sipation. Of course, such a response is well known and has been observed in the BEM

study in the spherical and non-spherical cases (see, for example, Figure 2.10)
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Figure 7.38: (a) Variation of jet velocity with time (after initial collapse) for different
polymeric viscosities, with We = fis = 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the decrease in the amplitude of oscillations with increasing viscosity.
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Variation of the Speed of Sound

We shall now investigate the bubble dynamics for different fluid compressibilities. This
property is parameterised by the speed of sound. Figure 7.39 shows the colour function
at t = 0.5 for different speeds of sound c2. The material parameters are ps = pp =
We = 0.1, with » = 1.1. Decreasing the speed of sound causes a notable change
in bubble shape. At c2 = 1000 we see the usual rounded bubble with a protruding
cusped tail. At c¢2 = 500, the cusped tail is no longer visible but the underside is at
the limit of concavity. For ¢2 = 100 there is no sign of concavity in the surface and the
bubble has assumed a more prolate form. This transition from initial to final shape is
not dissimilar to that observed when one increases the solvent or polymeric viscosity
(as in Figures 7.30 and 7.36, respectively). Since the equation of state is p — ¢?p,
and the initial density difference Ap is a constant, this means that the initial pressure
difference Ap between to two phases varies linearly with ¢2. Hence a large c2 implies
a large initial pressure difference, and consequently, produces large initial inertias and
collapse velocities. By decreasing the speed of sound, the initial pressure difference and
hence the inertia also decrease. Of course, increasing the viscosity produces a similar
effect, as can be seen by considering the alternative definition of Reynolds number used
in the preceding chapters, Re* = Ro(pAp)I"2/p. Despite the similar inertial effects,
compressibility and viscosity are of course two different fluid properties and do produce
different physical effects. The unique role of compressibility can be readily seen from

the jet velocity profiles shown in Fig. 7.40.

c =500

Figure 7.39: A plot of the colour function at ¢ = 0.5 for different speeds of sound c2.
The remaining parameters are We = ps =pp = 0.1, h = 1.1.

The most notable difference in the jet velocities is the frequency of the oscillations.

Decreasing the speed of sound c2, results in a decrease in the frequency of bubble

oscillation. This is essentially due to the pressure differences between the bubble and
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ambient fluid. For large speeds of sound the pressure difference is large, which causes
the bubble to collapse rapidly. However, as the bubble collapses and decreases in
volume, there is a rapid increase in bubble density, and hence a rapid increase in
pressure within the bubble as p = c¢Zp. This large pressure then halts collapse and
causes the bubble to rapidly expand, with this process of rapid expansion/contraction
then continuing, but becoming progressively slower due to viscous dissipation. At lower
speeds of sound, collapse is not as rapid and it takes longer for the bubble density to
increase to the point where the pressure is large enough to cause bubble rebound.

Consequently, the frequency of the bubble oscillations is much lower.
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Figure 7.40: (a) Variation of jet velocity with time (after initial collapse) for different
speeds of sound, with We = ps = pp= 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the increase in the frequency of oscillations with increasing sound speed.

Due to the smaller pressure difference at lower speeds of sound and the subsequently
smaller initial collapse velocities, the associated reduction in the severity of the flow
suggests that larger Weissenberg numbers can be obtained. This is indeed found to
be the case. In fact, reducing the speed of sound to ¢2 = 100 seems to eliminate
any upper bound on the Weissenberg number. Figure 7.41 shows the jet velocities
for different We with c2 = 100. As usual, we see an increase in the amplitude of
oscillation resulting from the increasing elastic effects. However, continually increasing
We sees progressively smaller changes in the amplitude as the solution tends to a
Hookean elastic limit. The reduced inertia and smaller velocity gradients mean that

upon increasing the Weissenberg number, the constitutive equation for the polymeric
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stress

P+We-'P =VPe“VP(Vu+ Vur) (7.114)

becomes increasingly better approximated by

A\
P=0. (7.115)

It seems that the velocity gradients are small enough to permit increases in We with-
out amplifying the troublesome deformation terms in the upper convected derivative.
Such a high Weissenberg number limit was observed in the BEM study and in other
studies of viscoelastic bubble dynamics (e.g. [54]). The models predicted an elastic
limit that resembles the inviscid solution for bubble collapse (see Figure 2.7, and the
accompanying explanation, for example). Similarly, according to Equation (7.115), the
polymeric stress P remains constant on following a deforming parcel of fluid. Since
we have a zero initial stress condition, P = 0 indefinitely. The solution is not inviscid

however, as we still have a non-zero Newtonian solvent stress contribution.
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Figure 7.41: (a) Variation of jet velocity with time (after initial collapse) for different
Weissenberg numbers, with /is = fip = 0.1, c2= 100, A = 1.1. (b) Close up of the jet
velocities, indicating a limiting elastic solution at larger Weissenberg numbers.
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7.6 Conclusions

In this chapter we have developed a numerical method to simulate two-phase viscoelas-
tic flows. The full compressible, two-dimensional governing equations are solved using
a spectral element method. The two phases are modelled using a marker particle
method - a scheme which bears a strong resemblance to volume of fluid techniques. On
the understanding that compressibility can play an important role in bubble collapse,
we briefly discuss the modelling of compressible viscoelastic fluids and subsequently
propose a more complete model to those used previously in the literature. The marker
particle method is validated using some standard test problems, and this has high-
lighted the beneficial properties of the scheme, including minimal numerical diffusion
and robustness. The spectral element solution of the governing equations was validated
through comparison with the analytical solution for transient Poiseuille flow, in both
the Newtonian and viscoelastic (Oldroyd B) cases. The agreement in both cases is
excellent. The compressible formulation can be used to approximate the solution of
the incompressible problem to a high degree of accuracy by simply increasing the speed
of sound. Two different temporal discretisations for the polymeric stress were investi-
gated; a second order explicit scheme which has been used previously by Fiétier and
Deville [52] and Van Os and Phillips [157], and a first order semi-implicit scheme. The
semi-implicit scheme was found to be considerably more stable and was subsequently
employed in the study of two-phase viscoelastic lows. The compressible formulation
was found to enhance stability slightly compared to the incompressible approach, but
in general it exhibited the same behaviour with varying polynomial order and number

of spectral elements.

The results for bubble collapse near a rigid boundary qualitatively agree with the
dynamics observed in the boundary element study, other numerical studies, and exper-
imental observations. Given the differences in the different models, a good quantitative
agreement was not expected, and indeed, not observed. In the Newtonian case, for low
viscosities, the model predicts jet formation and a splashing-like phenomenon. As vis-
cosity is increased, jet formation is suppressed and bubble deformation is restricted.
Including viscoelastic effects, firstly in the form of the Upper Convected Maxwell model,
we find that during collapse jet formation can be prevented and a cusp can form on the
bubble underside. This was also observed in the BEM study of Chapter 3, and is due to

a build up of (visco)elastic stresses around the cusp when near the wall. In this study
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large stress boundary layers can form, which can cause the solution to breakdown if the
Weissenberg number exceeds a certain value. This upper bound on the Weissenberg
number was found to increase with increasing distance from the wall. As is generally
the case, the Oldroyd B model proved able to support considerably higher Weissenberg
numbers, due to the inclusion of a solvent viscous stress. As in the UCM case, predic-
tions from the Oldroyd B model include cusp formation on the bubble underside and
also larger amplitude oscillations in the jet velocity with increasing Weissenberg num-
ber. Once again, this behaviour was also predicted by the BEM study and has been
well documented in other numerical studies of spherical bubble dynamics. It was found
that increasing the compressibility of the two fluids (by decreasing the speed of sound)
resulted in smaller inertial effects and smaller initial collapse velocities. The frequency
of the oscillation of the bubble was also markedly reduced. Due to the smaller inertial
effects, and subsequently smaller velocity gradients near the wall, the elastic boundary
layers were also significantly smaller in magnitude. Consequently, because these layers
are unable to grow enough in magnitude to induce numerical instability, there seems
to be no upper limit on the Weissenberg number. There is however an “elastic” solu-
tion in the limit of large Weissenberg numbers, as the polymeric constitutive equation
reduces to a simpler form. An elastic limit was observed in the BEM study for the
particular model used, and has also been predicted in other numerical /theoretical work
on spherical bubble dynamics.

In conclusion, this study confirms the role of viscoelasticity in the dynamics of bubble
collapse near a wall; a role which was first ascertained in the BEM study. Such vis-
coelastic effects include increased bubble oscillation with Weissenberg/Deborah num-
ber, considerable deformation and cusping near the wall, and perhaps most importantly,
the ability to prevent jet formation. One might say that this reaffirms the opinion that
viscoelasticity has a mitigating effect on cavitation damage. As we have guessed, it
appears that perhaps such a statement might not be so simple. Specifically in the case
of viscoelasticity, we have seen that large stresses can build up on the boundary. It
is very possible that these may have a detrimental effect on the surface. Evidently,
more research needs to be carried out, and in particular with more advanced rheolog-
ical models which can perhaps give a more physical description of dynamics near the
wall. Another important modelling extension is the study of more advanced equations

of state and thermodynamic effects. There are, of course, a plethora of equations of
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state, such as the equation of Tait, which may be better suited to describing the ther-
modynamic properties of the system. Indeed, it may even be possible to combine two
equations of state, one for each phase, in a manner like the viscosity. Further exten-
sions include modelling multi-bubble dynamics, studying the dynamics of an array of
bubbles above, below and adjacent to one other. For in reality, bubbles rarely form
singly but as part of a bubble cloud, with substantially different dynamics and impli-
cations for cavitation damage. Improvements to the numerical scheme include being
able to support a larger (and more realistic) difference in initial densities between the
bubble and ambient fluid, while still being able to attain a satisfactory Weissenberg
number. Perhaps including SUPG or similar schemes might be beneficial with regard

to increasing the Weissenberg number limit.
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Chapter 8
Conclusions

In this thesis two different models and numerical methods have been developed to

investigate the dynamics of bubbles in viscoelastic fluids.

8.1 The First Model

In the interests of gaining some crucial initial insights into viscoelastic bubble dynam-
ics, a simplified system of governing equations is considered. The bubble is modelled as
a void in the computational domain and the ambient fluid is considered incompressible
and the flow irrotational. Viscous and viscoelastic effects then appear through the
normal stress balance at the bubble surface. The model can be a good approximation,
particularly for moderate to high velocity phenomena such as bubble collapse, due to
the small amount of vorticity generated at free surfaces and the confinement of vis-
cous/viscoelastic effects to thin boundary layers. Following experimental observations
of bubble dynamics, axisymmetry is assumed, effectively reducing the problem from a
three-dimensional one to a two-dimensional one. An efficient and versatile boundary

element method is then developed to solve the governing equations.

8.1.1 Spherical Bubble Dynamics

In Chapter 2 the predictions of the model for spherical viscoelastic bubble dynamics
are investigated. The model is first validated through comparison with the inviscid
and viscous solutions for collapse of a spherical cavity, as described by the Rayleigh-
Plesset equation. The predictions of the model with regard to spherical viscoelastic

bubble dynamics are then discussed for several different constitutive equations. Even
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though viscoelastic effects only appear through the normal stress condition on the free
surface, the model predicts all the important phenomena seen in other spherical dy-
namics studies. More specifically, the Maxwell model predicts the damped oscillation
of the bubble radius with time, the near elastic oscillations in the high Deborah number
limit, and the no-rebound condition. Furthermore, the results are in good quantitative
agreement with full solutions of the viscoelastic Rayleigh-Plesset equation. This sup-
ports the argument that surface effects alone can offer a comprehensive description of
bubble dynamics. Considering the Jeffreys constitutive relation, predictions include an
increasingly damped radius with increasing solvent viscosity. A generalised Maxwell
model is also investigated, with empiricisms relating to Rouse and Doi-Edwards molec-
ular theories prescribing the parameters. The Doi-Edwards model does not exhibit any
oscillation in bubble radius - only a slow decay of bubble radius with time is predicted.
In comparison, the Rouse model predicts a small low amplitude rebound before being
completely damped. This is in stark difference to the more elastic behaviour predicted
by the Maxwell and Jeffreys models. The majority of the work in this chapter has been
published in the Journal of Non-Newtonian Fluid Mechanics [94]

8.1.2 Bubble Dynamics Near a Rigid Wall

In Chapter 3, the numerical scheme is modified to study bubble collapse near a rigid
wall. When a bubble collapses near a rigid wall, a liquid jet can form which can pene-
trate the bubble and possibly impact upon the wall. It is well known that this jet plays
an important role in the creation of cavitation damage. The numerical scheme is vali-
dated through comparison with the inviscid results available in the literature. Viscous
Newtonian investigations confirm the effect of viscosity in inhibiting jet formation and
jet speed, as reported in other numerical studies. For the values of Reynolds number
and Deborah number necessary to induce oscillation, we find that during collapse near
a wall the liquid jet will not form. Instead, the underside of the bubble can cusp and
cause parts of the bubble surface to oscillate out of phase. The incoherent oscillations
‘disrupt flow around the bubble causing perturbations in its position and velocity pro-
files. The cusping and perturbations become less perceptible as one moves further from
the wall. Increasing viscous effects can prevent large deformations in bubble shape,
regardless of distance from the rigid wall; and so reduce the incoherent oscillations
and perturbations in the velocity. Crucially, viscoelasticity can prevent catastrophic
bubble collapse. Instead the bubbles can oscillate near the wall for a significant period
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of time, without significant changes in volume. For some parameters, steady states
can be attained. The suppression of the liquid jet suggests that viscoelasticity has a
mitigating effect on cavitation damage. A version of this chapter has been submitted
to Theoretical and Computational Fluid Dynamics [92]

8.1.3 Two Bubble Dynamics Near a Rigid Wall

Chapter 4 is an extension of Chapter 3 and considers the dynamics of two bubbles near
a rigid wall. The motivation is that bubbles in nature rarely form singly, but as part
of bubble clouds. Hence bubble-bubble interaction near a wall requires consideration.
The dynamics are interesting and varied, and strongly depend on initial bubble size, the
fluid properties, and the distances between the bubbles and the wall. Jets readily form
in certain situations in viscoelastic fluids (a sign of greater wall influence) but not in
the corresponding Newtonian case (suggesting bubble-bubble interaction dominates).
Though this behaviour seems to contradict the findings of the previous chapter, it in
fact highlights the importance bubble-bubble interactions have on the overall dynamics.
This may provide some explanation for the ambiguity present in the experimental
literature, where direct measurements of cavitation damage in viscoelastic fluids have
been contradictory. Cavitation dynamics depends as much on neighbouring bubbles as
it does on the fluid properties.

8.1.4 Bubble Dynamics Near a Free Surface

In Chapter 5, the effect of viscoelasticity on bubble dynamics near a free surface is
investigated. The situation is pertinent to biological applications and has implications
for cell damage and drug delivery. A range of dynamics is seen to occur, with a subtle
dependance on the Deborah number, Reynolds number and the distance from the
free surface. In the presence of viscoelasticity, the motion of free surface jets can be
significantly retarded compared to the Newtonian cases, and the bubbles take a wide
range of shapes. On including viscoelastic effects, the usual axial jet observed in so
many instances in the Newtonian dynamics, is no longer seen. Instead, an annular,
ring like jet can form and can penetrate the bubble to produce mushroom-like shapes.
Similar shapes are observed in bubbles collapsing near purely elastic boundaries, and
are due to perturbations in the bubble surface resulting from elastic responses in the

free surface. Further from the free surface however, the bubble can collapse in a near-
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spherical, oscillatory manner, before reaching some steady state. The conclusions are
similar to those of bubble collapse near a rigid wall: Given that no high speed jets
can form in the bubble or free surface, the implications for cavitation/cell damage are
mitigatory. Brief comparisons with the experimental work of Williams et al. [165] have
also been made. The model was extended to include the propagation of shock waves
and shock-induced bubble collapse. The results are promising in the early stages, but
to recreate the observed free surface jets, the theory needs to be extended to include
evolution to a toroidal geometry, to allow the liquid jet to fully penetrate the bubble
and form the free surface jet. A version of this chapter is in preparation for submission
to the Journal of Fluid Mechanics [91]

8.1.5 Rising Gas Bubbles

In Chapter 6, we apply the model to the study of rising bubbles in viscoelastic fluids.
The bubble is assumed to be constant in volume, rising through an incompressible
fluid under an irrotational flow. Results for the Newtonian rising bubble show good
agreement with previous studies and steady state bubble shapes qualitatively match
full domain solutions. In the viscoelastic case, the results predict the bubble’s prolate
shape and the formation of the trailing end cusp. The method allows for high cur-
vatures and deformations and so can capture the sharpness of the cusp to a higher
degree than seen in other numerical schemes. Furthermore, the cusped bubble profile
bears a good qualitative agreement with experimental observations. Proposed reasons
for the velocity jump include drag reduction due to cusping [95], the action of surface
forces [133] and the negative wake [66]. Here, we include the appropriate surface effects
and inertia terms and observe cusping, but detect no velocity jump discontinuity. This
suggests that the negative wake is primarily responsible for its occurrence, corroborat-
ing previous experimental and numerical findings [66,117]. Much of the work in this
chapter is to appear in a paper that has been accepted for publication in the Journal
of Non-Newtonian Fluid Mechanics [90]

8.2 The Second Model

In Chapter 7, we return to the problem of Chapter 3, that of bubble collapse near a
rigid wall. However, a new model and numerical method are devised. The intention
being to gain further insight into the role of viscoelasticity, but also to corroborate the
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findings of Chapter 3. The second model employs the full compressible equations of
motion in a two dimensional domain. In contrast to the boundary element method,
the governing equations are solved on a fixed Eulerian grid using the spectral element
method. The two phases are modelling using a marker particle method. On the under-
standing that compressibility can play an important role in bubble collapse, we briefly
discuss the modelling of compressible viscoelastic fluids and subsequently propose a
more complete model to those used previously in the literature. The marker parti-
cle method is validated using some standard test problems, and this has highlighted
the beneficial properties of the scheme, including its minimal numerical diffusion and
robustness. The spectral element solution of the governing equations was validated
through comparison with the analytical solution for transient Poiseuille flow, in both
the Newtonian and viscoelastic (Oldroyd B) cases. The agreement in both cases is
excellent.

The results for bubble collapse near a rigid boundary qualitatively agree with the
dynamics observed in the boundary element study, other numerical studies, and exper-
imental observations. Given the differences in the different models, a good quantitative
agreement was not expected, and indeed, not observed. In the Newtonian case, for low
viscosities, the model predicts jet formation and a splashing-like phenomenon. As vis-
cosity is increased, jet formation is suppressed and bubble deformation is restricted.
Including viscoelastic effects, firstly in the form the Upper Convected Maxwell model,
we find that during collapse jet formation can be prevented and a cusp can form on the
bubble underside. This was also observed in the BEM study of Chapter 3, and results
from a build up of (visco)elastic stresses near the wall. In this case large stress bound-
ary layers can form, which can cause the solution to breakdown if the Weissenberg
number exceeds a certain value. This upper bound on the Weissenberg number was
found to increase with increasing distance from the wall. As is generally the case, the
Oldroyd B proved able to support considerably higher Weissenberg numbers, due to the
inclusion of a solvent viscous stress. As in the UCM case, predictions of the Oldroyd
B model! include cusp formation on the bubble underside and also larger amplitude
oscillations in the jet velocity with increasing Weissenberg number. Once again, this
behaviour was also predicted by the BEM study and has been well documented in
other numerical studies of spherical bubble dynamics. It was found that increasing
the compressibility of the two fluids (by decreasing the speed of sound) resulted in

smaller inertial effects and smaller initial collapse velocities. The frequency of the os-
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cillation of the bubble was also markedly reduced. Due to the smaller inertial effects,
and subsequently smaller velocity gradients near the wall, the elastic boundary layers
were also significantly smaller in magnitude. Consequently, because these layers are
unable to grow enough in magnitude to induce numerical instability, there seems to
be no upper limit on the Weissenberg number. There is however an “elastic” solution
in the limit of large Weissenberg numbers, as the polymeric constitutive equation re-
duces to a simpler form. Similarly, an elastic limit was observed in the BEM study for
the particular model used, and has also been predicted by other numerical/theoretical
works on spherical bubble dynamics. A version of this chapter is in preparation for

submission to the Journal of Computational Physics [93].

8.3 Model Comparisons

As already mentioned, the models are too different to expect good quantitative agree-
ment. The first model assumes a 3D axisymmetric irrotational flow with viscoelastic
effects included at the bubble surface, while the second model solves the 2D governing
equations and employs an ideal gas equation of state for the fluid and bubble. However,
despite these considerable differences, it is reassuring to see that both models predict

the same qualitative behaviour, including:

Increased amplitude bubble oscillations with increasing We, De.

Jet prevention.

The formation of a cusped bubble underside when near the wall.

The existence of an elastic limit solution for large enough We, De.

Identical responses to increases in viscosity or distance from the wall.

This helps to confirm that the findings presented in this thesis are a veracious account

of viscoelastic bubble dynamics near a rigid wall.

Both models have their pros and cons. It can be argued that the second model provides
a fuller description of the physics, by making no restrictions on the structure of the
ambient flow. However, the more developed model can pose further modelling issues,

such as determining an appropriate equation of state. The ideal gas equation is a less
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than satisfactory choice. The model is also a two dimensional approximation to a three
dimensional problem. Computationally, the BEM method is quick and efficient and re-
quires little memory. Conversely, the spectral element marker particle method (SEMP)
is computationally expensive and requires substantial computing resources due to the
increased domain calculations and the large numbers of particles involved. Currently,
without further parallelisation, the extension to a three dimensional system would be
computationally prohibitive. As a free surface model, the BEM has the advantage that
the bubble surface is a true density/pressure discontinuity, far more representative of
real situations. The accurate surface discretisation also means that surface physics and
boundary conditions can be included to a high degree of accuracy. In contrast, the bub-
ble surface in the SEMP method is not well defined, and is essentially an average of the
different fluid properties over a finite distance. Furthermore, from a numerical point
of view, SEMP does not permit large discontinuities, for example in density, between
phases. Spectral methods are at their most powerful when approximating problems
that have smooth solutions, in which case exponential convergence can be achieved. A
major advantage of the scheme however is the ability to handle topology changes, such
as jet penetration and bubble break-up, with ease. Though possible with the BEM

method, topology changes require cumbersome, ad-hoc mesh treatments.

The two methods developed in this thesis originate from two very different approaches
in modelling multiphase flows. As mentioned, the fact they predict the same qualita-
tive behaviour is an assurance that findings in this work are a faithful description of
viscoelastic bubble dynamics. The above discussion highlights the fact that no method
is perfect. In choosing to accurately or efficiently describe one aspect of your system,
you sacrifice accuracy or efficiency elsewhere. This is one reason why multiphase flows
remain the subject of intense research. They pose some of the greatest numerical and
computational challenges in science and engineering, and will continue to do so, for

many years to come.

8.4 Further Work

There is a great deal of scope for further work with both the boundary element and
spectral element marker particle method. Work common to both studies, is firstly, the

necessity to investigate dynamics for more complex rheological constitutive equations.

265



In this thesis the models were restricted to Maxwell/Oldroyd type in order to gain
important initial insights into the role of viscoelasticity. There are a range of more
physical constitutive equations which deserve investigation. Secondly, both methods
need to be extended to include general multi-bubble configurations. Bubbles often
form as a part of bubble clouds and, as highlighted in Chapter 4, bubble-bubble inter-
action is crucial in providing further insight into the mechanisms of cavitation damage.

Ideally, this extension would include development to fully 3D models in both cases.

With regard to the BEM method only, further work includes the ability to model post-
jet impact toroidal dynamics. This would allow computations to continue and permit
phenomena such as the free surface jets that form under shock-waves (see Section 5.3.5,
Chapter 5). For the second model, further work to be done includes an investigation
into an appropriate thermodynamic equation of state. Indeed, a separate thermody-
namic relation may need to be applied in each phase. With regard to the numerical
scheme, improvements include the ability to support larger (and more realistic) den-
sity differences between the bubble and ambient fluid, while still being able to attain a
satisfactory Weissenberg number. Perhaps including SUPG or similar schemes might

be beneficial with regard to increasing the Weissenberg number limit.
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Appendix A

Cubic Spline Construction

The cubic spline is an extremely effective tool in interpolation.

Given a set of points P;, i = 1,...,(n + 1) on surface S, g¢; is cubic spline in [P}, P, ]
if:

1. S, when restricted to [P;, Pi41], is a polynomial of degree at most 3, and

2. S G C2[P1,Pn+1]

Let ¢;(s) be defined parametrically w.r.t arclength s on [P;, P,,] by

¢:(s) = ai(s — ;)% + bi(s — 8;)> + ci(s — ;) + d; (A.1)

fori=1,..,n.

Then by point 2 above, the following conditions must be enforced:

1. qi(Si+1) = ¢iy1(Si+1) to ensure function continuity.
2. gi(si+1) = ¢/;1(si+1) to ensure continuity in the first derivative.

3. ¢/(si+1) = ¢/',1(si+1) to ensure continuity in the second derivative.

Therefore, applying these conditions to equation (1), gives the following restriction on

the coefficients a,, b;, ¢;, d;,

di+l = (11'5? + b1'§12 + Cigi + d,;,
Ciy1 = 30,,‘5? + 2bi§i + Ci, (A2)
biyi = 3a;i8;+ by,
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where 5:‘ = Si+1 — Si-

A.1 Natural Spline

The natural cubic spline imposes a zero second derivative condition at the end points

viz.,
d'(s1)) = 0 (A.3)
Gn(Sns1) = 0. (A.4)

This implies that b, = 0 and 3a,5, + b, = 0.
Substituting into (A.2) and rearranging, one can obtain a linear system of equations

for b;:

[ 201+ 52) 3 0 0 \ [ b)) [ d;
§2 2(52 -+ 53) §3 0 b3
0 | _3
gn—2 2(§n—2 + gn—l) §n—l bn—l
\ 0 Ga 2t )\ 8 ) \d)
(A.5)
Where Ji = d‘*;:d‘ — d’;’l“, 1=2,...,n.

A.2 Clamped Spline

The clamped cubic spline imposes a zero first derivative condition at the end points

Viz.,

di(s1) = 0 (A.6)

¢.(sns1) = O. (A7)

Consequently, ¢; = 0 and 3a,5% + 2b,5, + ¢, = 0. Substituting into (A.2) and rear-

ranging yields the following linear system;
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(25 & 0 o N[ ) [ &)
51 2(51+35) & 0 by ;
0 ~i
=3
'§n-—1 2(gn—l + gn) gn bn
\ 0 & 25 ) \ben ) \ﬁﬂ-ﬂt/

(A.8)
The above tri-diagonal systems can be solved with ease and efficiency for b; using the
Thomas algorithm [123]. The remaining spline coefficients can then be found from
substitution into (A.2).
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Appendix B

Treatment of the Logarithmic
Singularity in the Boundary
Integral

As mentioned in Section 2.3, the azimuthal integration of the Green’s function G(p, Q)

and its normal derivative can be calculated analytically and give

w 4r(s)K (k(s))
/o Cdb = (& T ) + (2(5) — 22 (B.1)

and
2n
0 g—f df =
e (B e R ot R ek ®).
(B.2)
where
k2(s) = dr(s)r: (B.3)

(r(s) +1:)? + (2(s) — 2)*
and K (k) and E(k) are complete elliptical integrals of the first and second kind, re-

spectively. These integrals are approximated by
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K(k) = P(1-k*)—-Q(1-k?log(1—k?), (B.4)
E(k) = R(1-k* - S(1-k*log(1—k?), (B.5)

where P,Q, R, S are tabulated polynomials [1].

From equation (B.3) we can see that if collocation point (r;, z;) = (r(s), 2(s)) then
k? = 1 and a logarithmic singularity will occur in the elliptical integrals K (k) and E(k).
Evidently, this will only occur if the collocation point lies on a segment over with we
want to integrate - and then only at the endpoints of the segment. To demonstrate this
we consider the singularity at the point (r(s;), 2(s;)) over segment As = s;11 — s;. To
deal with this singularity the logarithm in (B.4) is split into a singular and non-singular

contribution viz.

osl) = loe (((s Ve

) + 2log((s — s5)/As), (B.6)

where £ = 1— k2. The singular contribution is now contained in the second term on the
right hand side of (B.6). Substituting (B.6) into (B.4) and subsequently into integrals

(B.1) and (B.2), one is then able to factor out the singular component. For example,

2
/ Gdf =
4r(s) Ol x <
/ [(s) 7o + (2(5) — )12 (P Qlog ( (- s,»>/As>2>> ot

8r(s)  Olen (s — 5.
/sJ [(r(s) + 1:)2 + (2(s) — 2:)2]/2 (P —Qlog((s —s;)/As)) ds (B.7)

The first integral is not singular and can be treated with standard Gaussian quadra-
ture. The second integral can be integrated using a special quadrature scheme that
incorporates the singularity; the details of which (the appropriate quadrature points

and weights) are found in [142].
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