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Thesis Summary: This thesis examines the migration strategy, diet and foraging ecology 

of the smallest Atlantic seabird, the European Storm Petrel Hydrobates pelagicus. Evidence 

was found for sex-specific migration behaviour, opportunistic feeding (including on prey of 

inshore and even terrestrial origin), temporal variation in diet, and the strategic regulation of 

energy reserves in response to varying environmental conditions, as a buffer against 

starvation during migration. Molecular sexing from feather and faecal samples revealed an 

unexpectedly strong female bias in the sex ratio of Storm Petrels attracted to tape-lures of 

conspecific calls, during their northwards migration past the coast of SW Portugal. This bias 

was broadly consistent across seven years (mean ±SD = 85.5% female ±4.1%). The thesis 

describes the development and application of molecular techniques, in combination with 

stable isotope analysis, to study Storm Petrel diet by the detection of prey DNA from faecal 

samples. The major category of prey detected was fish (chiefly European Sardines Sardina 

pilchardus). Other components of the diet were other pelagic and demersal fish species, 

Cephalopoda (primarily cuttlefish Sepia spp.), Amphipoda, Isopoda and a range of terrestrial 

invertebrates, which were presumably scavenged from the sea surface by the Storm Petrels. 

Large between-year fluctuations in the level of body reserves carried by these birds were 

observed over the 21-year study period (1990-2010). The pattern of body mass variation 

followed a smooth oscillation, which was not an artefact of differences among years in the 

distribution of capture effort, body size or sex ratio changes. Local sea surface temperature 

(SST), net primary production (NPP) and European Sardine biomass were shown to be key 

factors associated with between-year changes in Storm Petrel body reserves. The direction of 

these associations suggests that Storm Petrels strategically regulate their body reserves to 

buffer against starvation in years of low food abundance.
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Chapter 1 - Introduction 

Impacts of Climate Change on Marine Ecosystems

1.1 Overview

Seabirds are good indicators o f changes in the marine environment, since their 

reproductive and foraging parameters reflect oceanographic changes, including 

climate-driven changes in ocean ecosystems. Anthropogenic climate change has 

major implications for the future o f natural ecosystems as well as human societies 

(IPCC 2007). Understanding and predicting the diverse biological impacts o f global 

climate change is therefore the central ecological challenge o f our time, yet our 

ability to make such predictions is limited by the sheer complexity o f ecosystems and 

o f the interspecific interactions that they encompass. Emerging evidence of the 

impacts o f climate change on ecosystems has generated great concern among 

scientists, policy makers and the wider public (McCarty 2001, Walther et al. 2002). 

Compelling examples o f ecological change driven by the changing climate include 

case studies from marine ecosystems, involving commercially important species of 

fish and iconic seabirds.

One emblematic example is o f climate driven changes in the recruitment o f Atlantic 

Cod Gadus morhua in the North Sea. Variability in sea temperature affects cod 

survival mainly via their food supply; rising temperatures since the mid-1980s have 

modified plankton population cycles in a way that has reduced the food availability, 

survival and recruitment o f young cod (e.g. Brander et al. 2001, Beaugrand et al. 

2003, Sundby 2000, Ottersen & Loeng 2000). Similarly, there is a

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 1



Chapter 1 Impacts of Climate Change on Marine Ecosystems

well-documented relationship between sea temperature, sandeel Ammodytes marinus 

abundance, and the breeding success of seabird species also in the North Sea 

(Furness & Tasker 2000, Rindorf et al. 2000, Frederiksen et al. 2004a).

The study o f trophic interactions within biological communities is crucial for 

a better understanding o f the structure and function o f ecosystems, as well as for 

predicting their response or resilience to climate change. Oceanic food webs have 

been described in detail as a result o f concerns related to fisheries management as 

well as to climate change (e.g. Link 2002, Trites 2003, Dunne et al. 2004). However, 

most previous studies o f trophic pathways in pelagic ecosystems have relied on 

methods for studying diet that have important limitations. Prior to the recent advent 

o f biochemical approaches such as stable isotope and fatty-acid analysis (e.g. 

Williams et al. 2008), these methods primarily involved direct observations of 

foraging behaviour, or stomach-content analyses (e.g. Barrett et al. 2007, Monteiro et 

al. 1996). Combining such methods with new and complementary approaches has 

been shown to be highly beneficial (Trites 2003, Casper et al. 2007). Specifically, 

molecular techniques potentially provide a powerful new set o f analytical tools for 

the study o f foraging ecology and trophic relationships (e.g. Casper et al. 2007, 

Dunshea 2009, Lemer & Fleischer 2010). However, they have not yet been widely 

applied in ecological contexts in general, or in marine ecosystems in particular.

In this thesis, I investigate the foraging ecology and migration fuelling 

behaviour o f a small pelagic seabird, the European Storm Petrel Hydrobates 

pelagicus (henceforth abbreviated to “Storm Petrel” where appropriate) and its 

behavioural responses to temporal changes in the marine environment. I developed 

and applied DNA-based methods to study Storm Petrel diet and foraging ecology, in

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 2



Chapter 1 Impacts of Climate Change on Marine Ecosystems

order to better understand the trophic mechanisms underlying the behavioural 

response o f this species to the variable environment.

Evidence exists for the impacts o f climate on the breeding parameters 

(Rindorf et al. 2000, Laaksonen et al. 2006), timing o f migration (Miller-Rushing 

2008, Smallegange et al. 2010), demography (Both et al. 2006, Sandvik et al. 2008), 

and adult survival (Grosbois & Thompson 2005, Sandvik et al. 2005) o f different 

bird species. However, the present study is the first to invetesco's stigate in detail the 

connection between climate variation and the migration fuelling strategy of a seabird 

species. In this Introductory Chapter, I provide an overview o f (i) climate change and 

its impacts on marine ecosystems, (ii) the study species, the European Storm Petrel,

(iii) the range o f methods available to investigate seabird diet and (iv) the methods 

for molecular analysis o f diet and their development prior to the start o f this research. 

I finish the Introduction with an outline o f my studies that are presented in detail in 

the subsequent chapters o f this thesis.

1.2 Marine Ecosystems: Their Importance and Conservation

For tens o f thousands o f years, people have had a close relationship with the oceans 

and their resources (Roberts 2009). Throughout history, these resources have 

provided a rich source o f food (Roberts 2007), and are increasingly important for 

tourism, recreation, as a source o f renewable forms o f energy, and o f various 

additives for foods or cosmetics. Thus, the diversity and productivity of marine 

ecosystems remains important to the survival and well-being o f human societies.

Despite the importance and attractiveness o f the marine environment to 

humans, its physical and biological oceanographic systems, processes, and changes 

are rather poorly understood when compared to the terrestrial environment. For

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 3



Chapter 1 Impacts of Climate Change on Marine Ecosystems

instance, unlike the land, the water column and wide ocean basins tend to be 

envisaged as fairly monotonous, uniform ecosystems but, in fact, there are many 

features that punctuate our oceans abruptly or gradually, dividing them into many 

different environments (Miller 2004, Kaiser et al. 2005). Furthermore, while the 

concepts o f biomes and habitats are very well understood for the terrestrial 

environment, such patterns in the marine environment are often beyond our 

immediate perception. Only in the last few decades have technologies been applied 

(e.g. autonomous underwater vehicles with scientific instrumentation, or remote- 

sensors such as the NIMBUS satellite) to obtain a more detailed understanding of 

spatial and temporal patterns in the marine environment and the application of this 

understanding to the conservation o f the oceans (Kaiser et al. 2005).

In contrast to terrestrial habitats, it is commonplace for marine habitats to be 

dominated (in terms o f biomass) by animals rather than plants, and for the 

substratum to provide the main structure to the habitat (rather than plants providing 

the main structure, as in a forest). Only a small proportion o f marine habitats have 

obvious dominant species, e.g. kelp forests (Laminariales), mussel beds (Bivalvia) 

and maerl beds (Corallinaceae) . Many marine ecosystems are dominated by a few 

abundant mid-trophic species, usually pelagic schooling fish, with higher taxonomic 

diversity at lower and higher trophic levels (Rice 1995). These mid-trophic level fish 

(including the larval stages o f all fish) typically feed on zooplankton (Hays et al.

2005) and are a key prey for predatory fish, marine mammals and seabirds.

In the marine environment, patchiness in topography, physical properties 

(temperature, salinity, and turbidity), biological production and biomass, exists at a 

wide range o f spatial scales (cm to hundreds o f km) and temporal scales (min to 

decades; Kaiser et al. 2005). Because the offspring o f most marine species are small

The Migration Strategy, Diet & Foraging Ecology o f a Snail Seabird in a Changing Environment 4
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(and most are pelagic), they may be more vulnerable to physical influences than 

terrestrial young, and thus experience wide fluctuations in survival and recruitment. 

Therefore, marine populations and communities often respond rapidly to (and hence 

are more temporally coupled with) changes in their physical environment (Steele 

1985, 1998). This responsiveness is manifested over ecological time scales in 

dramatic changes in the composition o f pelagic and benthic communities during 

community “regime shifts” over the order of one to several decades (e.g. Roemmich 

& McGowan 1995, Hayward 1997, Francis et a l 1998). Though such regime shifts 

are driven by atmospheric processes (such as the decade-scale climate oscillations 

described below), biotic responses to decadal regime shifts have been argued to be 

far more dramatic in marine systems compared to terrestrial systems (Steele 1998).

Marine ecosystems are exposed to a wide range o f anthropogenic impacts, of 

which climate change and over-fishing are amongst those causing greatest concern 

(e.g. Beaugrand et al. 2002, Bhathal & Pauly 2007). The ecological impacts o f over­

fishing are intense and widespread. For example, more than 50% of the southeast 

Atlantic is either overexploited or depleted o f its marine fisheries resources; the same 

is true o f over 20% of the central east Atlantic and about 40% of the northeast 

Atlantic. Overall only 5%, 7%, 8% of the Mediterranean and Black Sea basin, 

southwest and northwest Atlantic, respectively, are still considered to be 

underexploited (Roberts 2007).

Despite abundant evidence o f the overexploited and degraded state of most of 

the world’s ocean ecosystems, the development o f conservation plans for marine 

areas, including marine reserves, has proven to be a great challenge. Thus, the effects 

o f local protection by marine reserves o f ecological communities may be less 

predictable and, in the short term, more difficult to detect and validate both locally

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 5



Chapter 1 Impacts of Climate Change on Marine Ecosystems

and regionally than the effects o f terrestrial nature reserves (but see Roberts 2007 for 

successful examples o f marine protected areas). As a consequence, regardless of the 

growing interest by resource managers, policy makers, and academics in the potential 

for reserves in marine ecosystems (e.g. Carr et al. 2003, Thompson et al. 2008, Sen 

2010), currently only 1% of the marine realm is protected within reserves, in contrast 

to over 12% in terrestrial systems (Groombridge & Jenkins 2002). This lack of 

protection from over-exploitation and degradation has obvious consequences for 

predators such as seabirds that rely on marine resources for their survival (Croxall 

1992).

1.3 Climate Change

1.3.1 Climate Change and Oceanography

The world’s oceans play a key role in shaping and regulating our climate and have a 

tremendous bearing on human future wellbeing in terms o f their value for food 

production and a wide range o f other ecosystem services, as well as their inherent 

biodiversity value (Kaiser et al. 2005). By absorbing, sequestering and releasing 

carbon, marine environments play a major role in the global carbon cycle and so 

directly influence the pace and extent of climate change (Takahashi 2004, Steinfeldt 

et al. 2009). One important ecosystem service provided by oceans over the historical 

period has been to buffer the climate against the anthropogenic increase in 

atmospheric carbon dioxide (CO2). Despite this buffering, compelling evidence has 

accumulated for directional climate change that has diverse impacts on marine 

environments. Over the last century, global sea temperatures have increased, sea 

levels have begun to rise as a result o f thermal expansion o f sea water, while storms 

and waves have become more damaging (Kaiser et al. 2005, reviewed by Brierley &

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 6
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Kingsford 2009). Furthermore, oceans around the world are becoming more acidic as 

a result o f the increased concentration of CO2 available to be absorbed at the sea 

surface (Kaiser et al. 2005, reviewed by Brierley & Kingsford 2009). Such changes 

are predicted to be amplified as atmospheric CO2 continues to rise, but there is 

considerable uncertainty over the future extent and timing o f these future impacts at 

global, regional or local scales (Watkinson et al. 2004). Similarly, predicting the 

frequency and timing o f extreme events, such as severe weather, is important for 

predicting the response o f ecological communities to a changing climate (Sutherland 

2004), but changes in the occurrence of extreme events are notoriously difficult to 

predict.

The Atlantic is, after the Pacific, the world’s second largest ocean, extending into 

both the Arctic and Antarctic. The North Atlantic region has an important climatic 

feature exerting a dominant influence over its marine system: the North Atlantic 

Oscillation (NAO), a decade-scale oscillation in latitudinal atmospheric pressure 

gradients across the North Atlantic (Stenseth et al. 2004), similar in nature to Arctic 

Oscillation (AO) in the polar region and the El Nino Southern Oscillation (ENSO) 

and Pacific Decadal Oscillation (PDO) in the Pacific Ocean. A high NAO index 

increases the degree o f westerly winds, and consequently milder temperatures, over 

northern Europe. A low NAO index is usually associated with weaker westerly 

winds, allowing colder northerly winds to dominate over northern Europe (Stenseth 

et al. 2004).

Although the NAO is a natural mode o f variability o f the atmosphere, 

stratospheric and surface processes (including anthropogenic processes) may also 

influence its phase and amplitude (Ottersen et al. 2004). For example, it has been 

found that oceanic processes such as long-term changes in sea surface temperatures

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 7
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can also have an important influence on the NAO, which in itself has a feedback 

impact on sea surface temperatures. However, there are different regional as well as 

seasonal patterns for this relationship and the mechanisms involved in it are poorly 

understood (Sutton et al. 2000, Edwards et al. 2001, Sutton & Hodson 2003).

The ecological effects of these cyclic decade-scale climate changes are of 

considerable interest, as they represent repeated “natural experiments”, from which 

the possible consequences o f longer term anthropogenic, directional changes may be 

inferred. In addition, the effects o f anthropogenic climate change may themselves be 

compounded or mitigated in the shorter term by the effects o f climatic cycles such as 

ENSO or the NAO.

The ecological effects o f the NAO are widely reported from marine, freshwater 

and terrestrial ecosystems (Stenseth et al. 2004). Effects o f the NAO on the 

organisms across a range o f trophic levels from phytoplankton to predators, suggest 

that the NAO may also influence the dynamics o f seabird populations, through 

variability in their food supply (e.g. Poloczanska et al. 2004, Bustnes et al. 2009). 

Indeed, recent studies have already shown associations between the NAO and 

different aspects o f seabird ecology (reviewed by Durant et al. 2004) such as the 

likelihood o f breeding (Thompson & Ollason 2001), timing o f breeding (e.g. 

Frederiksen et al. 2004b), reproductive success (Thompson & Ollason 2001) and 

adult survival (Sandvik et al. 2005, Votier et al. 2005). However, the trophic 

relationships and behavioural mechanisms that may mediate such ecological 

associations remain largely unknown (Stenseth et al. 2004, Moller et al. 2004a). 

Moreover, to date, very little is known about the impacts o f climate change on 

seabirds outside the breeding season or away from their breeding colonies.
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1.3.2 Biological Impacts of Climate Change

The ways in which climatic variation influences behaviour, physiology and life 

history has long been a central theme of research in animal ecology (e.g. White 1789, 

Andrewartha & Birch 1954, Elkins 1983). In the context o f anthropogenic climate 

change, this subject has gained an extra relevance and importance, providing a strong 

impetus and focus for new research on this topic (Moller et al. 2004a, McCarty 

2001). Although animals must have been responding to natural variation in climate 

throughout their evolutionary history, great uncertainty remains as to how well most 

species may be able to respond (through behavioural plasticity or evolutionary 

adaptation) to the predicted rapid and substantial future changes in climate.

Studying the response o f marine ecosystems to climate change is essential as 

we attempt to develop sustainable management o f our living marine resources 

(Stenseth et al. 2004). Ecological responses to climate fluctuations are reflected in 

the productivity o f marine ecosystems, from phytoplankton and the zooplankton 

communities that they sustain, to the dynamics o f fish populations (Cushing 1990) 

and top predators such as seabirds (Ballance et al. 2007).

Climate-driven fluctuations in plankton populations can result in long-term 

changes in fish recruitment (Beaugrand et al. 2003). Recent studies have found that, 

across much o f the world’s oceans, recent warmer surface temperatures have been 

associated with lower oceanic productivity and standing biomass. For example, in the 

NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) time series, global 

chlorophyll and productivity increased sharply during 1997-98 as temperatures fell, 

and then declined gradually to 2005 as temperatures increased (Behrenfeld et al. 

2006).
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These observed reductions in ocean productivity during the recent post-1999 

warming period provide insights into how future climate change might alter marine 

food webs, but these ocean-scale patterns are often far more complex at a regional or 

local scale. For example, a clearly discemable climate-plankton link is found 

primarily in the tropics and mid-latitudes, where there is limited vertical mixing of 

nutrients within the water column. At higher latitudes, productivity is often light- 

limited because more intense vertical mixing carries nutrients hundreds of metres 

down from the surface waters, into the deeper waters where sunlight does not 

penetrate. In these high-latitude regions, future warming and a greater influx of fresh 

water, mostly from increased precipitation and melting sea ice, is likely to contribute 

to reduced mixing that may actually increase productivity (Doney 2006). Climate- 

driven changes in sea surface temperature can therefore cause local primary 

production to either increase or decrease, depending on the nature o f the controls on 

productivity at different spatial scales (Behrenfeld et al. 2006).

Regardless o f the uncertainty over the magnitude and the timing of 

forthcoming climate changes, it is possible to predict qualitatively that the 

anticipated changes are likely to produce a wide range o f major ecological changes, 

including regional changes in marine productivity (as outlined above), changes in the 

phenology and physiology o f organisms, range shifts, changes in disease 

transmission, shifts in the structure o f communities and ecosystems, species 

extinctions and consequent degradation o f biodiversity (IPCC 2007). O f the types of 

change listed above, perhaps the most difficult to predict are changes at the 

community level, because o f the frequently non-linear nature o f species interactions. 

Migratory species, such as many seabirds, add extra complexity, since they can be 

affected by changes in climate across their whole distribution range, including
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entirely different ecosystems at their breeding and non-breeding grounds, and at 

foraging sites along the migratory route.

1.3.3 Seabirds as Sentinels of Environmental Change

Both climate change and over-exploitation o f resources by humans potentially exert 

strong effects on marine ecosystems. The manner in which the structure and function 

o f each ecosystem is regulated will determine how both climate change and fisheries 

will affect productivity at different trophic levels (Frederiksen et al. 2006). Three 

general mechanisms might control the structure and function o f the different 

ecosystems: strong bottom-up control, strong top-down control or weak trophic links 

(Cury et al. 2001).

Top-down effects imply control through predation, including fisheries, while 

bottom-up effects imply control through food abundance, often thought to be driven 

by climate or nutrient load. When bottom-up control is dominant, seabird populations 

are unlikely to be regulated through density-dependent prey depletion, because prey 

abundance will be controlled by production at lower trophic levels (Frederiksen et al.

2006). Instead, their foraging success, breeding productivity and ultimately 

population size are likely to track spatial and temporal variation in prey abundance 

(e.g. Frederiksen et al. 2005), although interference effects among seabirds and/or 

disturbance o f their prey may still lead to density-dependent reductions in prey 

availability around large seabird colonies (Lewis et al. 2001). Nevertheless, when 

bottom-up effects are predominant, seabirds can be reliable, and often financially 

cost-effective, indicators o f marine physical environmental conditions and biological 

productivity (Montevecchi 1993, Montevecchi & Myers 1996), if  long-term 

monitoring is available (McGowan 1990).

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 11



Chapter 1 Impacts of Climate Change on Marine Ecosystems

Many seabirds are highly mobile and undertake long migration journeys. 

Therefore, it is likely that the same species could be impacted by changes in widely 

separated areas o f the globe. For a more comprehensive understanding of these 

complex interactions it is important to study the ecology o f seabird species 

throughout their life cycle, as well as the trophic levels on which they forage 

(Stenseth et al. 2004).

The foraging niche o f most seabirds places them near the top o f the food 

chain and the response o f such species to climate change can be used as an 

integrative index o f the effect o f climate on the whole food web that sustains them 

(Stenseth et al. 2004). However, seabirds may take prey from various trophic levels, 

so that their relationship with climate may be highly complex, involving a large 

number o f physical and biological processes. Most studies o f the effect of climate on 

seabirds have focused on population-level effects, such as breeding performance and 

population change (e.g. Abraham & Sydeman 2004, Crick 2004, Both et al. 2006, 

Bustnes et al. 2009), but few studies have directly assessed the relationship between 

climate and behavioural change in seabirds in general, and north Atlantic seabirds in 

particular (Durant et al. 2004). Seabird behaviour may be directly affected by habitat 

features that differ with water mass (and may affect, for instance, thermoregulation), 

or they may respond to the availability o f their prey, which may change with water 

mass, current systems, or other oceanographic features (Ballance 2001).

1.4 Seabirds

1.4.1 A Seabird Case Study: The European Storm Petrel

Seabirds are represented by only four orders and in the Northern Hemisphere only 

three o f those are found: the Charadriiformes, Pelecaniformes and Procellariiformes.
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This study is focused on a species within the Procellariiformes: the European Storm 

Petrel. “Storm petrel” is the common designation for members o f the family 

Hydrobatidae, characterised by being the smallest o f the seabirds, with generally 

dark plumage, relatively short-wings, square or slightly forked tails and long weak 

legs. Probably due to their vulnerability to predators on land, storm petrels are 

generally nocturnal at the breeding colony and nest in burrows or crevices (Brooke 

2004). Like most o f the Procellariformes, storm petrels are long-lived species that 

tend to delay their breeding until they are at least two or three years old, breeding 

colonially on remote islands or areas o f difficult access and laying a single egg each 

breeding season (Brooke 2004).

The Atlantic subspecies o f the European Storm Petrel is the smallest Atlantic 

seabird (weighing on average ~26g) and a long distance migrant: These birds breed 

in NW Europe, from the west coast o f Spain to Iceland and northern Norway, but 

spend the winter in south Atlantic waters (Mainhood 1976, Cramp & Simmons 

1977). About 90% of the known breeding population is concentrated in the Faroe 

Islands, United Kingdom, Ireland and Iceland, with smaller colonies in France, 

Norway and Spain (Cramp & Simmons 1977, Tucker & Heath 1994). There is also a 

breeding population in the Mediterranean area (Greece, Italy and Malta), described 

as a different subspecies (H. pelagicus melitensis, Cramp & Simmons 1977, 

Bretagnolle 1998, Cagnon et al. 2004). Contrary to the Atlantic populations, the 

birds breeding in the Mediterranean are believed not to be long-distance migrants 

(Cramp & Simmons 1977) and it has until very recently remained uncertain whether 

they ever enter the Atlantic (Hashmi & Fliege 1994, Brooke 2004, Robb & 

Mullamey 2008). Indeed, a very recent analysis using genetic screening indicates 

that very few Mediterranean Storm Petrels leave the Mediterranean via the Straits of
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Gibraltar, with less than 1% of birds caught in Portuguese waters in early summer 

originating from Mediterranean breeding colonies (R.A. King, R. Medeiros et al., 

unpublished data).

Despite some evidence for population decline, the estimated population size 

for the European Storm Petrel is relatively large (1,3M - 1,5M birds, Tucker & Heath 

1994, Birdlife International 2004) and the species is classified as being of “Least 

Concern” under the IUCN Red List Classification. The major threats to this species 

seem to be related to the accidental introduction o f predators such as rats, at the 

breeding colonies (De Leon et al. 2006, Ruffino et al. 2009, Ratcliffe et al. 2010). In 

some areas, recent increases in numbers of avian predators o f Storm Petrels at 

breeding sites appear to have increased the rate o f predation (Cadiou 2003, Sanz- 

Aguilar et al. 2009). At sea, there may be some risk from eating contaminated food 

items, taking indigestible matter or suffer from oil spills (Azcona et al. 2006).

Due to their relatively high metabolic rate and high surface area/volume ratio, 

small seabirds are likely to be more sensitive and respond more rapidly to changes in 

climate than larger seabirds. Moreover, it has been suggested that long-distance 

migrants might be more vulnerable to the impacts o f climate change than short- 

distance or non-migratory species. This is because long-distance migrants rely on 

suitable conditions at a large number of locations during their annual cycle, any of 

which may be adversely affected by climate change. Furthermore, the cues they use 

to time their departure from their wintering grounds (e.g. photoperiod) do not change 

in response to climate, and these birds may be unable to take advantage of the earlier 

arrival o f spring on their breeding grounds (Both & Visser 2001, Coppack & Pullido 

2004). Certainly, there is evidence from among land-birds that long-distance
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migrants have not been able to respond as rapidly to climate change as short-distance 

migrants or residents (Rubolini et al. 2010).

Though bound to the land for reproduction, most Procellariiformes, including 

storm petrels, spend most o f their life at sea where they may forage over distances of 

hundreds to thousands o f kilometres in a matter o f days (Warham 1990, 1996). 

Although many details o f seabird reproductive biology have been successfully 

elucidated, for smaller species much of their life at sea remains a mystery owing to 

the logistical constraints o f research away from the breeding colonies. For example, 

satellite transmitters are not yet small enough to be applied to members of the 

Hydrobatidae.

Storm Petrels are fairly easy to capture at colony sites both using mist-nets at 

night or by capture on the nest. Pioneer work on this species was done by Ronald 

Lockley on Skokholm Island, Wales (which still holds a significant proportion of 

breeding European Storm Petrels in Europe) from the early 1930s (Lockley 1983). 

Many early studies o f the species focused on breeding biology (Hemery 1973), 

movements (Mainwood 1976), predation (Love 1976), vocalizations (Hall-Craggs & 

Sellar 1976), physiology (Warham et al. 1976), and parasite loads (Bakke & Barus 

1976). More recently, the focus has been on vocalization and its application for 

censusing (Slater 1991, Ratcliffe et al. 1998, Insley et al. 2002), on olfaction 

(Minguez 1997, Leon, Mingues & Belliure 2003, Nevitt 2008), metabolism and 

breeding strategy (Bolton 1995a,b, 1996, Minguez 1996, 1998) and demographics 

(Okill & Bolton 2005, Zuberogoitia et al. 2007, Cadiou et al. 2009, Sanz-Aguilar et 

al. 2009).

The great majority o f studies on this species have focused on the breeding 

period, when Storm Petrels are frequently on land. In contrast, Storm Petrels at sea
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are not easily accessible. A number of studies focused on the behaviour of European 

Storm Petrels at sea (Martinez-Abrain et al. 2002, Valeiras 2003, Poot 2008, Flood et 

al. 2009) but the information that can be derived from these studies is limited. The 

small size o f Storm Petrels constrains the use o f long-distance transmitters and 

remote-sensing technologies to study their movements, and samples such as feathers, 

vomit or faeces cannot be collected unless the birds themselves are captured. 

Procellariiformes are known to have a good olfactory sensitivity (Leon, Mingues & 

Belliure 2003, Bonadonna et al. 2004, Bonadonna et al. 2006, Nevitt 2008), so it is 

relatively simple to attract storm petrels close to a boat, at a considerable distance 

from the coast, using a “chum” o f mashed fish. Attempts have been made to capture 

the birds attracted to such food-bait at sea, but the cost and effort required is high for 

limited number o f successful captures that result (Brooke 2004, this study).

A different approach, developed by scientists collaborating with A Rocha, an 

environmental NGO in the south of Portugal, has proven to be efficient for capturing 

storm petrels away from their breeding colonies. Since 1990, large numbers o f storm 

petrels have been caught in mist-nets every year in the south west coast of Portugal, 

many miles away from any known breeding colony, by attracting them to the coast at 

night using tape-lures (Harris, Fowler & Okill 1993). My research is partly based on 

the data collected in this way before and during my PhD.

1.4.2 Seabird Diet and Foraging Ecology

The issue o f how seabirds locate their prey in the immense ocean is far from 

completely understood. In continental shelf systems, currents impinge upon 

topographically fixed features, such as reefs or seamounts, creating physical 

gradients predictable in space and time, at which seabirds can congregate to find
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aggregations o f food. In the open ocean, where currents and dynamic processes are 

less pronounced, locations o f aggregations can be much less predictable, and this has 

important consequences for the adaptations necessary for seabirds to locate and 

exploit their prey. Under these circumstances, prey behaviour is likely to be a 

primary mechanism responsible for seabird aggregation, if  seabirds are able to 

predict the behaviour o f their prey and consequently its spatial and temporal 

distribution. In this context, visual cues from the activity o f other birds and cetaceans 

are also good ways o f finding prey (Nevitt et al. 2004).

The Procellariformes also rely on their highly developed sense of smell to 

locate their prey (Bang 1966, Wenzel & Meisami 1987, reviewed by Nevitt 2008). 

Studies have shown that one o f the olfactory cues used by these birds is the dimethyl 

sulphide, a substance released by the phytoplankton while being grazed by 

zooplankton (Dacey & Wakeham 1986). Olfaction is more relevant for finding prey 

at large spatial scales, in order for the birds to orientate towards areas where 

phytoplankton accumulates and where animal prey is therefore likely to be abundant. 

Larger and more aggressive species, such as albatrosses, are better adapted to exploit 

a combination o f visual and olfactory cues to exploit large patches of high prey 

density, while smaller species, such as storm petrels, rely more exclusively on the 

sense o f smell and are adapted to forage opportunistically on small or less 

concentrated prey patches (Nevitt et al. 2004, Nevitt & Bonadonna 2005).

At the breeding grounds, seabirds are more restricted in terms o f foraging 

habitats and subject to higher inter- and intra-specific competition. The breeding 

season, is therefore likely to be a period when seabirds are particularly sensitive to 

changes in the availability and distribution o f their prey (Ricklefs 1987, 

Weimerskirch 1998). Accordingly, dietary studies on seabird colonies have
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investigated links between climate or fisheries and seabird demography, recruitment 

or productivity (e.g. Sydeman et al. 2001, Carscadden 2002, Abraham & Sydeman

2004). However, it is very likely that the birds adapt their foraging strategies to the 

requirements o f breeding, and that their diet can be strongly restricted by all the 

constraints that are inherent to the breeding process (e.g. the trade off between self­

feeding and chick provisioning, Ydenberg et al. 1994). Despite the importance of 

breeding success in population regulation, focusing dietary studies on the relatively 

short breeding period limits understanding o f the overall constraints on populations, 

particularly for long-lived birds such as Procellariiformes. These birds may delay the 

time o f their first breeding attempt until they are over four or five years old and 

spend most o f their lives at sea feeding in the open ocean, far from the breeding 

colonies. Nevertheless, almost all methods and studies on seabird diet refer to this 

period when birds are on or close to land, mainly because o f the obvious logistic 

difficulties o f accessing the birds at sea. Thus, because no satisfactory method of 

studying the diet o f seabirds at sea has yet been found there is an almost total lack of 

knowledge on what these birds eat when they are not breeding, including when they 

are immature and therefore not yet attending colonies (Barrett et al. 2007). 

Furthermore, even at the colonies, dietary studies o f seabirds face various limitations, 

as outlined below.

Commonly, studies on seabird diet (and the diets o f most animals in general) 

have been based on visual identification of prey remains in stomach sampling (e.g. 

Neves et al. 2006a) or in faeces or pellets (e.g. Naves & Vooren 2006, Neves et al. 

2006b), direct observations o f feeding behaviour (e.g. Sydeman et al. 2001, Paiva et 

al. 2006a,b) or, more recently, biochemical methods (e.g. Quillfeldt et al. 2005, 

Williams et al. 2008).
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Sampling o f stomach contents can be carried out by dissection o f dead birds, or 

by stomach flushing or spontaneous regurgitations from live birds. Dead birds can be 

hard to obtain, and samples from birds that have died from natural causes may 

anyway be unrepresentative o f the diet o f healthy, living birds. While killing birds to 

examine stomach contents was acceptable up to around 20 years ago (Duffy 1986), it 

is not an option that many modem ecologists would be willing to consider, or that 

most ethical committees would approve.

Stomach contents can be obtained from captured birds by a process called 

stomach flushing. This involves inserting a latex tube deep into the bird’s 

oesophagus and pumping salt water through the tube, causing the bird to vomit 

(Montalti & Ruben-Coria 1993, Neves et al. 2006a). A major disadvantage of this 

approach is that it is highly invasive (potentially causing mortality), and is becoming 

less acceptable at a time when most scientists are trying more and more to adopt non- 

invasive or even remote techniques for animal sampling (e.g. Waits & Paetkau

2005). Moreover, it is more successfully applicable in larger seabird species.

Captured seabirds sometimes spontaneously regurgitate partially-digested food 

during handling (i.e. without the stomach-flushing method being applied by 

researchers). However, these spontaneous regurgitations are only common among 

birds captured at the colonies of species that routinely regurgitate food to offspring. 

Furthermore, when at the colony it is hard to differentiate whether a regurgitated 

meal was meant to be digested by the adult or to be provided to the chicks. This issue 

may be important if  the diets of parents and offspring differ, as suggested by the 

results o f the few studies on this subject in seabirds (e.g. Davoren & Burger 1999, 

Wilson et al. 2004)
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The analysis o f faeces or pellets of undigested hard parts is non-invasive, but 

consists generally o f the visual identification o f prey remains and a major limitation 

of the method arises from biased recovery of the remains due to differential digestion 

and the difficulties o f identifying well-digested prey in the sample (e.g. Seefelt & 

Gillingham 2006, Tollit et al. 2007). Besides, not all taxa, including storm petrels, 

regularly produce pellets and for those that do, finding pellets is for practical reasons, 

once more restricted to the breeding colonies.

Direct observations o f foraging behaviour and prey choice have the advantage 

o f enabling the study o f seabird diet directly at sea and, for many species, also at the 

colonies (primarily those that do not breed underground and carry the entire prey in 

their bill, to deliver it to their nestlings). However, observations are very time 

consuming and it is often difficult to accurately identify what the birds are catching, 

due to the distance and brevity of most o f such observations. These observational 

studies are often anecdotal in nature, and have been most useful in highlighting 

unusual or previously unknown trophic links or to give some indication of where the 

birds feed rather than to provide detailed data on the composition o f their diet (e.g. 

Bocher et al. 2000).

More recently, analysis of mercury burdens (Monteiro et al. 1995), stable 

isotope ratios (Kelly 2000) or fatty acid signatures (Williams & Buck 2010) have 

been widely used to infer information about the diet o f seabirds. Such biochemical 

methods have the great advantage o f being relatively non-invasive and providing 

data about diet composition over long time scales, implying that information about 

the diet during the non-breeding period can be obtained. Nevertheless, these 

techniques have their own limitations, including that they provide information only 

on the overall trophic level or broad geographical regions in which birds have been
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foraging, from which can be inferred only broad dietary shifts or changes in foraging 

location (e.g. Monteiro et al. 1995, Quillfeldt et al. 2005).

Molecular techniques have also been recently developed to study the diet of 

predators by detecting prey DNA in their guts, regurgitations or faeces (reviewed by 

Symondson 2002, King et al. 2008). These molecular techniques have not yet been 

extensively explored for birds but are a promising tool to improve the study of 

multiple trophic links, including in marine ecosystems (e.g. Jarman et al. 2002, 

Blankenship & Yayanos 2005) and the seabirds that rely on them (Deagle et al.

2007). This research will take advantage o f these new techniques and I will develop 

their application in the Chapter 3.

Studies on the feeding ecology of Procellariiformes have been mostly directed 

to the families Diomedeidae (albatrosses, e.g. Pinaud & Weimerskirch 2002, 

Thompson et al. 2000) and Procellariidae (fulmars, shearwaters and other petrels; 

e.g. Hilton et al. 1998, Gray & Hamer 2001, Weimerskirch 1998). Hence, very few 

studies are available on the Pelecanoididae (diving petrels; Brooke 2004), the most 

distinct group o f petrels with only four species, restricted to the southern hemisphere. 

These are generally the least studied o f all the petrels (Brooke 2004). On the 

contrary, there is a wide literature available on the Hydrobatidae (storm petrels) but 

relatively few studies have so far focused on their foraging ecology. This is not 

surprising since the birds’ small size limits or at least complicates the range of 

techniques currently available for this type of study.

Many seabird species, including various species o f storm petrels, take prey 

from the surface layer, within a half meter o f the sea surface (Bried 1996, Flood et al. 

2009). It is broadly known from direct observations that storm petrels feed either 

solitarily or in small groups, by dipping, hovering or pattering on the sea surface,
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sometimes following ships or cetaceans, and may aggregate where food is 

concentrated, for example along hydrological fronts (Webb et al. 1990). Some 

species o f storm petrels have been observed to occasionally dive beneath the sea 

surface for food (e.g. Prince & Morgan 1987, Warham 1990) and a recent study 

using depth gauges has shown that this is a typical foraging behaviour for the 

Madeiran Storm Petrel* Oceanodroma castro in the Azores, although to very 

shallow depths (less than 1 m) and not for extended periods (Bried 2005). It is 

possible that this is a common behaviour also for other storm petrel species, 

including the European Storm Petrel (Flood et al. 2009, pers. obs.).

Cramp & Simmons (1977) reviewed the available information on the diet of 

European Storm Petrels, which can be summarised as follows. From a total of five 

birds from northern Europe, cephalopod remains were present in all five birds, with 

one containing the remains o f small fish together with aphid wings. European Storm 

Petrels may sometimes feed on whale carcasses, and offal and kitchen scraps from 

fishing boats. In studies o f breeding Storm Petrels in Wales, UK, Davis (1957) found 

that the nestlings are fed regurgitated pre-digested grey pulp and Scott (1970) found 

that chick diet is mainly composed of small Atlantic Herrings Clupea harengus and 

Sprat Sprattus sprattus, with crustaceans provided infrequently.

The most detailed study on the diet o f the European Storm Petrel was carried 

out by D ’Elbee & Hemery (1998), on the spontaneous regurgitations of adult birds 

caught at a colony in NW  France (these birds were presumably about to deliver the 

regurgitated prey to their chicks). In this study, each individual regurgitate sample 

contained on average only 3.6 identifiable organisms and very few samples 

contained more than two fish items. Taxa identified visually in these regurgitates 

include coelenterates, nematodes, chaetognaths, copepoda, isopods, ostracods, Cypris

* The denomination Madeiran Storm Petrel, Oceanodroma castro, has recently been attributed only to those birds 
that breed during the winter period. Those breeding during the summer were classified as a different species -  
Monteiro’s storm netrel O. monteiroi (Bolton et al. 20081.
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larvae (Cirripedia), decapod larvae, euphausiids, insects, fish larvae and plant seeds. 

Zooplankton represented 52% of the number o f identifiable prey items eaten, but in 

terms of biomass fish were the most important, belonging to four different families: 

Gadidae, Gobiidae, Myctophidae and Ammodytidae. One species o f gadid fish, Poor 

Cod Trisopterus minutus, was the most common species present in the regurgitations 

(11% of the total identifiable taxa) but the Gobiidae (mainly Pomatoschistus spp. and 

Aphia minutd) were the most common prey, found in the highest number o f samples. 

Intertidal nocturnally-active isopods belonging to two different species (Eurydice 

pulchra and E. afflnis) were also found to be an important food resource by number. 

The regular occurrence o f these intertidal isopods suggests that, besides foraging 

offshore, Storm Petrels must regularly exploit the intertidal zone. There was previous 

evidence o f inshore foraging at night (Maguire 1980) close to the breeding grounds. 

Thomas et al. (2006) reported similar behaviour far away from any known colonies, 

in southern Portugal. Some reports also suggest occasional diurnal inshore feeding 

(reviewed by D ’Elbee & Hemery 1998).

Thus, the few studies to have looked in any detail at European Storm Petrel diet 

were o f food delivered to nestlings by breeding birds (e.g. Bolton 1995a,b, D ’Elbee 

& Hemery 1998), but there are no data on the diet o f adult birds during migration. 

Even during reproduction, several studies o f other seabird species show that the food 

provided to chicks does not necessarily reflect the diet o f the adults at that same 

period; the adult diet consists o f prey items in different proportions to the diet of 

chicks, and the adult diet is generally less diverse (Baird 1991, Ramos et al. 1998, 

Shealer 1998).

Such a scarcity o f information on feeding ecology and diet is common to most 

storm petrels. The Leach’s Storm Petrel Oceanodroma leucorhoa is one o f the best
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studied species in terms o f feeding ecology and diet, and yet the literature available 

on the subject is nevertheless relatively scarce (some examples are Ricklefs et al. 

1987, Vermeer & Devito 1988, Pitman & Ballance 1990, Hedd & Montevecchi

2006). A number o f publications can also be found on the feeding ecology of the 

Wilson’s Storm Petrel Oceanites oceanicus (e.g Obst & Nagy 1993, Quillfeldt 2001, 

2002, Quillfeldt et al. 2005, Gladbach et al. 2007) and the Madeiran/Monteiro’s 

Storm Petrel (Harris 1969, Prince & Morgan 1987, Monteiro et al. 1995, 1996). Very 

few studies on the feeding ecology and diet o f other species o f storm petrels are 

available (summarised by Brooke 2004). The development o f a feasible and reliable 

method to study the diet o f non-breeding as well as breeding storm petrels is 

therefore required. Such a method will greatly facilitate the study and conservation of 

these remarkable birds and will promote the applicability o f similar techniques to 

other seabird and terrestrial species throughout their annual cycles.

1.4.3 Molecular Biology as a Tool to Study Seabirds

Over the last few decades, an increasing number o f studies in the behavioural 

ecology and population biology o f species belonging to great range o f taxa, have 

been based on molecular techniques (e.g. Parker et al. 1998, Freeland 2005). 

Seabirds have not been an exception and molecular studies have greatly improved 

our understanding o f several aspects of their ecology, such as mate fidelity (e.g. 

Swatschek et al. 1994, Mauck et al. 1995, Huyvaert et al 2006), kinship relationships 

(e.g. Nielsen et al. 2006), social behaviour (e.g. Hughes 1998) and population 

dynamics (e.g. Milot et al. 2008).

Many molecular studies on the phylogeny of seabirds have also been recently 

published (e.g. Nunn & Stanley 1998, Bretagnolle et al. 1998, Nunn et al. 1996,
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Kennedy & Page 2002, Austin et al., 2004, Gomez-Diaz et al. 2006) including 

phylogenies for the storm petrels. For example, Cagnon et al. (2004) have shown a 

phylogeographic differentiation o f European Storm Petrels, confirming the 

distinction o f two subspecies o f H. pelagicus, namely: H. p. melitensis for birds that 

breed within the Mediterranean basin and H. p. pelagicus for birds that breed in the 

north-east Atlantic.

More recently, DNA based techniques have been applied to the dietary study 

of predators and subsequently to the trophic links within the food webs that they are 

part of. This relies on identifying DNA sequences unique to particular prey taxa in 

diet samples from the predators (obtained from their guts, regurgitations or faeces; 

reviewed by Symondson 2002). Prey DNA can be identified from even well- 

digested, amorphous remains in these samples (e.g. Jarman et al. 2002, Kvitrud et al. 

2005, Parsons et al. 2005), but these studies depend upon appropriate primers that 

amplify target prey DNA from the samples. Primers can only be designed 

appropriately if  the DNA sequences for a good range o f species are available. 

Conveniently, a comprehensive database of animal DNA sequences from the 

mitochondrial Cytochrome Oxidase subunit I gene (COI) is being developed (Hebert 

et al. 2003a) and can be directly applied to identify prey DNA isolated in diet studies 

that used general primers to target the COI gene. This has been referred to as “DNA 

barcoding”, by analogy with the bar codes used to identify manufactured goods, and 

is available in public databases such as GenBank and the Barcode of Life Data 

systems (BOLD). The COI gene was considered the most appropriate target gene for 

DNA barcoding because it is evolutionarily conserved enough to be amplified with 

broad-range primers, yet divergent enough to allow species discrimination for the 

great majority o f taxa (Hebert et al. 2003b).
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The COI barcodes by themselves distinguish about 98 percent of species 

recognized through previous taxonomic studies (Stoeckle & Hebert 2008), but 

recently diverged species and species that have arisen through hybridization may not 

be resolved by COI sequencing. Similarly, plants have too little mitochondrial 

sequence diversity (probably due to hybridization and introgression), such that the 

COI is not a suitable gene to distinguish them. To overcome these problems, 

investigations are being carried out to find other genes that could be included into the 

barcoding database (Hollingsworth et al. 2009). The most common primers used so 

far for the barcoding o f invertebrate species target the region o f the COI amplified 

by primers designed by Folmer et al. (1994). These primers amplify a region of 

approximately 700 bp. This is too large to be used in dietary analysis because 

digestion rapidly degrades long sequences o f DNA into shorter sequences. Therefore, 

an amplified region o f 300bp is usually the maximum size used for studying DNA in 

diet samples. Ideally, primers used in dietary studies would amplify a smaller region 

within that amplified by the Folmer primers (Folmer et al. 1994), in order to 

maximise the chances o f finding matches in the databases. However, it is not always 

achievable to design taxon-specific primers within this region for the taxa o f interest 

and increasing the diversity o f amplified regions and genes available in the online 

databases will be very beneficial for the specificity o f taxonomic identification that 

will be possible in future dietary studies.

The use o f “universal” primers (i.e. primers which bind with DNA from any 

taxon) provides an alternative analytical approach when sequences o f potential prey 

taxa are not available, or to find unexpected components o f the diet. This approach 

involves amplifying the sequences bound to the universal primer, sequencing the 

amplified sequences, and comparing these sequences with those o f databases such as
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Genbank and BOLD. However, universal primers may fail to amplify all target 

sequences in these situations because the early round o f the PCR is dominated by the 

more common sequences and rarer sequences may fail to be selected. Even if  the 

target sequence is amplified, it then needs to be isolated from the pool of all 

amplified sequences. This generally involves cloning the PCR product and 

sequencing a number o f clones proportional to the diversity o f sequences in the 

library (Jarman et al. 2004, Deagle et al. 2007, Lemer & Fleischer 2010). The 

development o f “Next-Generation” DNA Sequencing techniques, capable of 

producing thousands or millions o f sequences at once and lowering the cost of each 

DNA sequence beyond what is possible with standard dye-terminator methods, 

greatly overcomes this problem and enhances the use o f molecular techniques in the 

study o f trophic interactions (Deagle et al. 2009). However, at the moment, the 

overall financial cost o f applying such techniques is still considerable.

In addition to the potential lack of appropriate taxon-specific primers, some 

limitations o f DNA-based methods to study predator diets can be (i) short or variable 

post-ingestion detection periods, (ii) secondary predation resulting in detection of 

DNA from the prey’s own gut, and (iii) cross-amplification by the primers of the 

predator’s DNA (King et al. 2008). Various predator taxa can differ markedly in 

their DNA digestion rates (e.g. Chen et al. 2000) and often this problem is overcome 

by performing feeding trials to quantify prey DNA detection periods. This involves 

keeping captive specimens o f the predator and feeding it with known prey under 

controlled conditions to investigate the detection period o f different prey types (e.g. 

King et al. 2010). However, this method may be unfeasible when dealing with 

species that cannot readily be kept in captivity, such as adult seabirds, in which case 

we can only refer to the available literature on their digestive physiology, or the
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results need to be interpreted with caution. If the digestion rate o f a certain species is 

very high, then the DNA detection periods for its prey will generally be short and 

effort needs to be put into obtaining samples that are as fresh as possible.

Secondary predation can lead to incorrect conclusions because the DNA- 

based techniques cannot distinguish what a secondary predator has eaten from what 

its prey (a primary predator) has eaten prior to itself being predated. This issue can 

be particularly serious for those studies using gut contents or regurgitation samples, 

rather than faecal samples (as the secondary prey is likely to have been thoroughly 

digested by the time it reaches the faeces o f a secondary predator). Even so, 

Sheppard et al. (2005), working on beetle diet, used an empirical approach to 

evaluate the potential bias o f secondary predation on DNA-based techniques and 

showed experimentally that secondary predation is only a problem when the primary 

predator had consumed its prey immediately before being consumed by the 

secondary predator. A similar issue to secondary predation is the accidental ingestion 

of non-prey organisms by marine predators, since large numbers o f small planktonic 

organisms may be ingested in sea water together with the intended prey.

Despite these limitations, DNA based studies have the major advantage of 

identifying components of the diet that are not apparent through physical 

examination. They allow us to study the diet o f vertebrate animals in a non-invasive 

way through analysis o f their regurgitates and faeces. As these DNA based 

techniques become more widely applied to study the diet o f wild animals, more DNA 

sequences, from different genes, will become available providing an enormous range 

of opportunities for research into diet and foraging ecology.

Nevertheless, in comparison with other sampling methods, few studies have 

yet applied molecular techniques to study the diet of animals (less than 100 in total,
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most o f which have been published since 2005). O f these, nearly 80% have focused 

on invertebrates, for example in soil food webs (e.g. Harwood & Obrycki 2005, Read 

et al. 2006, Cassel-Lundhagen et al. 2009, King et al. 2010). Within the marine 

invertebrates, molecular studies have been published on the diet o f copepods (e.g. 

Nejstgaard et al. 2003, Nejstgaard et al. 2008), mysids (Gorokhova 2006, Gorokhova 

& Lehtiniemi 2007), amphipods (Blankenship & Yayanos 2005), euphausiids 

(Passmore et al. 2006, Vestheim et al. 2008, Tobe et al. 2010), lobster Jasus 

edwardsii (Redd et al. 2008), brown shrimp Crangon crangon and shore crab 

Carcinus maenas (Albaina et al. 2010) as well as giant squid Architeuthis sp. 

(Deagle et al. 2005a). Most commonly in studies on invertebrate diets, DNA is 

extracted from the gut o f the predator after killing it, but some studies have also 

extracted DNA from faeces (Nejstgaard et al. 2003, Redd et al. 2008). When killing 

the predator is not an option, such as in most vertebrates, faeces or regurgitations are 

the only way o f assessing the diet of predators using DNA-based methods.

Most of the vertebrate literature on faecal analysis has the aim of extracting 

DNA from the predator for genotyping (e.g. Goossens et al. 2006, Gillett et al.

2008), rather than extracting the DNA of the prey. Many studies have focused on 

showing the feasibility o f using faecal samples for remote sampling o f vertebrate 

populations and this has become common practice over the last decade (e.g. Jalil et 

al. 2008, Fernandes et al. 2008). Molecular methods have been used to study the diet 

o f terrestrial mammals using faecal samples, including studies o f western Gorillas 

Gorilla gorilla and Black and White Colobus Monkeys Colobus guereza (Bradley et 

al. 2007) and even extinct species such as the Ground Sloths Nothrotheriops 

shastensis (Poinar et al. 1998). Several studies have used molecular methods to study 

the diet o f marine mammals: Steller’s Sea Lions Eumetopias jubatus (captive;
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Deagle et al. 2005b), seals Arctocephalus sp. (Parsons et al. 2005, Kvitrud et al. 

2005, Casper et al. 2007, Matejusova et al. 2008, Deagle et al. 2009), the Pygmy 

Blue Whale Balaenoptera musculus brevicauda (Jarman et al. 2002) and bottlenose 

dolphins Tursiops truncates (Dunshea 2009). A few molecular studies have also been 

published on the diet of fish (Rosel et al. 2002, Jarman & Wilson 2004, Smith et al. 

2005, Corse et al. 2010). The first study to apply molecular methods to study the diet 

of bird species was by Sutherland (2000), who successfully amplified and 

distinguished DNA from different species of Leptidoptera in the faecal samples of 

two species o f tit Parus sp. Sutherland’s (2000) study was a PhD project at Oxford 

University, UK, and some o f this work was repeated a year later by Casement (2001) 

in an unpublished report by the same University. The method was then tried very 

briefly in a seabird species, the Adelie Penguin Pygoscelis adeliae by Jarman et al. 

(2002). In 2006, Nystrom et al. published a study on the diet o f Gyrfalcon Falco 

rusticolus where DNA analysis was used to identify two species o f potential prey 

from remains collected at the nest sites. However, Deagle et al. (2007) presented the 

first detailed investigation o f a bird’s diet using a molecular approach, focusing 

specifically on a seabird species, the Macaroni Penguin Eudyptes chrysolophus.

Overall, with a few exceptions (Sutherland 2000, Deagle et al. 2007, 2010), 

nearly all the literature applying molecular techniques to the study o f animal diet is 

still either preliminary (e.g. Harper et al. 2006, Nejstgaard et al. 2008) or aims to 

evaluate the importance o f a single prey in the diet o f a certain predator (e.g. Jarman 

et al. 2002), rather than investigating the diversity of trophic interactions.
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1.5 Thesis Outline

The overall aim o f this PhD project was to combine a range o f datasets and analytical 

approaches to understand how environmental variation is affecting the diet, foraging 

ecology and migration fuelling strategy o f the European Storm Petrel. This species 

was chosen as a case study for its small size (and hence its anticipated sensitivity to 

environmental change), extreme migration strategy and ease o f capture during active 

migration at sites remote from the breeding colonies. To my knowledge, this is the 

first study o f temporal variation of diet and fuelling strategy in a migrating seabird. 

The Data chapters (Chapter 2 -  Chapter 4) were written as self-contained papers.

Chapter 2 reviews what is currently known about Storm Petrel migration 

strategy and identifies a dramatically female-biased sex ratio during migration past 

my Portuguese study site. The possible origins o f this sex ratio biased are discussed; 

furthermore, the bias is important to take into account (both qualitatively and 

statistically where necessary) in subsequent parts o f the thesis.

Chapter 3 describes the development and application o f molecular scatology 

methods, supported by stable isotope analysis, for a detailed investigation of the diet 

of migrating Storm Petrels.

Having identified possible key prey species in Chapter 3, Chapter 4 addresses 

the migration fuelling strategy o f Storm Petrels and identifies large inter-annual 

variations in the level o f fuel reserves carried by birds migration past SW Portugal. 

Causal mechanisms underlying these variations are then investigated, linking 

climate-driven changes in physical oceanographic conditions to cascading changes 

across trophic levels in the marine food web; from primary productivity to Storm 

Petrels.
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Chapter 2

Molecular Sexing Reveals a Strongly Female-Biased Sex Ratio 

among Migrating European Storm Petrels

2.1 Abstract

Molecular sexing revealed an unexpectedly strong female bias in the sex ratio of pre­

breeding European Storm Petrels Hydrobates pelagicus, attracted to tape-lures 

during their northwards migration past SW Portugal. This was consistent across 

seven years, ranging from 80.8% to 89.7% female (mean annual sex ratio ±SD = 

85.5% female ±4.1%). The sex ratio did not differ significantly from unity (i.e. 50% 

female) among (i) chicks at a breeding colony in NW France, (ii) adults found dead 

on beaches in southern Portugal, (iii) breeding birds attending nest burrows in 

Scotland, captured by hand, and (iv) adults captured near a breeding colony in 

Scotland using the same sound recordings as used in Portugal, indicating that females 

are not inherently more strongly attracted to tape lures than males. A morphological 

discriminant function failed to provide a good separation o f the sexes, despite males 

being significantly smaller than the females in terms o f wing length, body mass and 

one aspect o f bill morphology. There was no sex difference in the seasonal or 

nocturnal timing o f migration past Portugal, but there was a significant tendency for 

birds to be caught in sex-specific aggregations. The preponderance o f females 

captured in Portugal suggests that the sexes may differ in migration route or in their 

prospecting behaviour (susceptibility to tape-lures) far away from the original 

breeding colonies.
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2.2 Introduction

Many species o f bird exhibit marked differences between the sexes in aspects of their 

behaviour, including their foraging behaviour and migration strategies (e.g. Cramp & 

Simmons 1977, Cristol et al. 1999, Nebel 2007). Sex-specific foraging behaviour 

amongst birds is believed to be related either to social dominance and competitive 

exclusion (usual when one sex is larger than the other) or from niche specialization 

(related to differences in morphology or reproductive role; Marra 2000, Bearhop 

2006, Phillips et al. 2004). These differences in foraging behaviour can potentially 

lead to differences in migration strategies, with males and females migrating at 

different times, travelling by different migration routes, or travelling to/from 

different wintering grounds (Cristol et al. 1999). Identifying and investigating sex- 

differences in migration behaviour is important for our understanding of species’ 

ecology and conservation, but for monomorphic species such studies are hampered 

by the difficulty of identifying the sex of individuals, particularly outside the 

breeding season. Previous studies have attempted to address this problem by using 

morphometric methods such as discriminant function analysis, but such methods are 

by definition difficult to apply to monomorphic species, and often only a small 

proportion o f individuals can be sexed with confidence (Brooke 2004, O ’Dwyer et 

al. 2006, Warham 1996). As a result, there is a lack o f information for monomorphic 

species on sex-differences in behaviour in general, and on migration strategies in 

particular. Only a few studies have addressed sex-specific differences in seabird 

behaviour outside the breeding season; these studies were based on stable isotope 

signatures among various Procellariid species (e.g. Hedd & Montevecchi 2006, 

Phillips et al. 2009).
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The need to study species throughout their life cycle has been increasingly 

emphasised as more studies demonstrate the importance o f carry-over effects of non­

breeding processes into breeding productivity and population dynamics (e.g., 

Lindstrom 1999, Norris & Taylor 2006, Reudink et al. 2009). Molecular sexing 

methods now allow accurate sexing o f individuals o f even highly monomorphic 

species outside the breeding season (e.g., Bertellotti et al. 2002, Russello & Amato 

2001), and in this study we apply molecular diagnostics to study differential 

migration patterns in a monomorphic migratory seabird, the European Storm Petrel 

Hydrobates pelagicus.

Storm petrels (family Hydrobatidae) are small but long lived pelagic seabirds, 

with delayed reproductive maturation. Pair bonds tend to last for many years. 

Females lay one large egg per year which both adults incubate. Both adults also feed 

the chick for about two months, until shortly before the chick is ready to fledge 

(Brooke 2004).

The European Storm Petrel (henceforth abbreviated to “Storm Petrel” where 

appropriate) is the smallest Atlantic seabird (-26  g), and birds of the Atlantic 

population are long-distance migrants between the breeding colonies in the north­

east Atlantic and their wintering areas in the south Atlantic and Indian oceans, off 

southern Africa (Wemham et al. 2002). Like other Hydrobatidae, Storm Petrels 

normally come inshore only at night (Thomas et al. 2006), and pre-breeding birds 

can readily be attracted into mist-nets using nocturnal playbacks o f sound recordings 

of conspecific nesting calls. These “tape-lures” are effective for catching Storm 

Petrels during their summer northwards migration, even at locations in SW Iberia, far 

from the nearest known colonies (Harris et al. 1993, Wemham et al. 2002). Most of 

the birds caught with this method are aged 2-4 years, returning northwards in the
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years before their first breeding attempts in order to prospect for mates and breeding 

sites (Bolton & Thomas 2001, Wemham et al. 2002, Okill & Bolton 2005). Storm 

Petrels are usually absent from the Atlantic colony sites before the age of two and 

they usually only start breeding at the age of four or five (Okill & Bolton 2005). 

Little is known about what they do during the period before they begin returning to 

the colonies, but they are thought to remain in their wintering grounds at least during 

their first year (Bolton & Thomas 2001).

Breeding Storm Petrels are usually not attracted to playbacks of nesting calls 

since they tend to keep the same mate and nest site between years and they therefore 

cease to prospect for these once they are acquired. Breeding-age birds can still be 

caught in mist-nets without the need for tape-lures, but only at the colonies when 

they attend their nests. Nest sites are relatively easy to find, and both adults and 

chicks can be caught by hand in the nest. Therefore, as with other seabirds, much of 

what is known about Storm Petrels is derived from studies at or near the breeding 

colonies, where they are accessible to researchers. Like other storm petrels, European 

Storm Petrels are sexually monomorphic in terms o f plumage features (Brooke 

2004); breeding birds can (sometimes) be sexed on the basis o f cloacal morphology 

or breeding behaviour (Scott 1970, Copestake et al. 1988), or discriminant function 

analysis can be used to predict the sex of individuals on the basis o f biometric 

measurements (e.g. James 1983). As a result, little is known about sex-differences in 

the behaviour and ecology o f Storm Petrels, such as dietary preferences (see Chapter 

3), foraging and fuelling strategies (see Chapter 4), migration routes and natal site- 

fidelity. This lack o f knowledge is most marked for the long period when birds are 

away from the breeding colonies, because of the difficulties involved with observing, 

catching and sexing the birds during the non-breeding season. Previous studies have
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tested for differences between the sexes in the foraging behaviour o f storm petrels 

(Stewart et al. 1999, Cherel et al. 2005, Hedd & Montevecchi 2006, Phillips et al. 

2009, Gladbach 2009), but none of these involved the European Storm Petrel. Only 

one study (Gladbach 2009) found such a difference; in the chick provisioning 

strategies used by male and female Wilson’s Storm Petrels Oceanites oceanicus; this 

sex-difference was only apparent in years of food shortage.

Molecular sexing techniques now enable tape-lured migrating Storm Petrels 

to be accurately sexed for the first time, providing novel insights into the behaviour 

and ecology o f this pelagic seabird away from the breeding colonies. Instead of the X 

and Y chromosomes found in mammals, birds possess Z and W sex chromosomes, 

with males being homogametic (ZZ) and females being the heterogametic (ZW) sex. 

Griffiths et al. (1998), Kahn et al. (1998) and Fridolfsson & Ellegren (1999), 

published combinations o f primers that allow the sex o f individuals to be determined 

in most species o f birds, using a simple PCR reaction based on size differences of the 

introns present in both the CHD1-W and CHD1-Z genes (the W- or Z-linked genes 

coding for the chromodomain-helicase-DNA-binding protein), which are found in 

most extant non-ratite birds. Several authors have now reported the use of this 

technique to sex fledgling and adult birds, mostly in captive-breeding projects (e.g., 

Bertault et al. 1999, Russello & Amato 2001) but also in the field (e.g., Homfeldt et 

al. 2000, Bertellotti et al. 2002, Nogueira et al. 2008).

The majority o f molecular sexing studies have used DNA extracted from 

blood samples obtained relatively invasively (Bensch et al. 1999, Ewen et al. 2001, 

Genovart et al. 2003). However, molecular sexing can also be achieved much less 

invasively using DNA obtained from a single feather (Jensen et al. 2003, Harvey et 

al. 2006, Costantini et al. 2008) or a faecal sample (Waits & Paetkau 2005). Feathers
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are becoming more widely used for molecular sexing o f birds (Harvey et al. 2006), 

with the use o f faecal DNA samples mainly used in mammals (e.g., Yamauchi et al. 

2000, Bradley et al. 2001, Vidya & Kumar 2003). Despite a number of recent studies 

reporting successful DNA extraction from bird faeces, to our knowledge only four 

publications report molecular sexing by this means (Robertson et al. 1999, 

Segelbacher & Steinbriick 2001, Regnaut et al. 2006, Maki-Petays et al. 2007), but 

without presenting the details of the results obtained or methods used. This is 

possibly due to the greater challenge of amplifying nuclear DNA from faecal 

samples in comparison with mitochondrial DNA (Segelbacher 2002).

Using molecular sexing from feathers and faeces, the aims o f the present 

study are: (i) To investigate the sex ratio o f European Storm Petrels tape-lured to 

mist nets in Portugal over seven years, during the northwards migration o f pre­

breeders towards the Atlantic breeding colonies; (ii) To investigate if the sex ratios 

observed in Portugal are consistent with those in other parts o f the annual cycle; (iii) 

To use the molecular sexing data generated to test for sex differences in aspects of 

migration behaviour o f the species. The data on the sexes of the individual Storm 

Petrels in this dataset will also be used to examine sex differences in diet (Chapter 3) 

and migration fuelling (Chapter 4) in subsequent Chapters o f this thesis.

2.3 Methods

2.3.1 Fieldwork

Storm Petrels were caught in mist-nets at the base o f a sea-cliff on the south west 

coast o f Portugal (37° 04’ N, 8° 47’ W, Figure 2.1), using tape lures o f the calls that 

the males perform from their nest sites (usually referred to as the ‘Purr’ call; Cramp 

& Simmons 1977, Robb & Mullamey 2008). Tape-luring took place from dusk
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(2100 GMT) to dawn (0400), within the period mid-May to late June, in all years 

from 2003-2009. This sampling period spans the main period during which migrating 

storm petrels can be attracted to tape lures in Portugal (Harris 1993). European Storm 

Petrels sampled using tape lures at this Portuguese field site have been found (using a 

combination o f ringing data and molecular screening) to be comprised almost 

entirely o f birds originating from the Atlantic population, with a very small number 

o f vagrants (<1%) from the Mediterranean population (Robb & Mullarney 2008, 

Andrew King unpublished data).

Two sound recordings of Storm Petrel “purr calls” (James 1983, 1984) were 

used as tape-lures: (i) a recording obtained from the British Trust for Ornithology 

during the 1990s and (ii) track 11 of disc 1 in the CD collection by Roche (1997). 

The recording-locations o f both of these recordings were unknown. These tracks 

were played on Technika MP Series MP3 players coupled to a Martley Megaphone 

600 at a sound pressure level o f approx. 70 dB, and were clearly audible at a distance 

o f approx. 400 m offshore (personal observations). Males respond more strongly than 

females to playbacks o f these purr calls in terms o f calling in reply to the playbacks 

from inside the nest burrows (James 1984), but previous studies using tape-lures of 

purr calls to mist-net Storm Petrels in or near breeding colonies have found that there 

is no apparent sex bias in the birds attracted (see Table 2.IV).

Each captured individual was ringed and its age determined (as first-year or 

older than first-year, based on the abrasion and shape o f the primary flight feathers; 

Bolton & Thomas 2001). Biometric measures were taken o f body mass, wing length, 

tarsus length (from the depression in the angle o f the intertarsal joint to the base of 

the last complete scale before the toes diverge), culmen length (from the tip of the 

bill to the feathering at the base of the bill), “bill depth 1” (from the bottom of the
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mandible to the top o f the nostril tube, taken at the depression mid-way along the 

tube), “bill depth 2” (from the bottom of the mandible to the top o f the maxilla taken 

just anterior to the nostril), head-plus-bill length (from the tip o f the bill to the back 

o f the skull) and rump width (the anterior-posterior width o f the exposed white 

feathering o f the rump-patch). Wing length and body mass were the only measures 

taken during all seven years; the other measures were recorded only from 2006-2009 

with the exception o f head-plus-bill (recorded from 2006-2008) and rump width 

(only recorded in 2009). Between one and four breast feathers (most commonly two) 

were collected from each bird for molecular sexing, and kept in a paper envelope at 

ambient temperature. All the birds were processed at the site where they were caught, 

and were released shortly after capture.

We also acquired equivalent samples from Storm Petrel breeding locations in 

the NE Atlantic (Figure 2.1) - in July 2005, breeding birds attending nest burrows 

during daytime on Sanda Island, Scotland (55° 16 'N, 5° 34' W), were captured by 

hand; In August 2006, tape-luring was carried out close to a small breeding colony 

on Ailsa Craig, Scotland (55° 15' N, 5° 6' W), using the same procedures as those 

used in Portugal, including using exactly the same sound recordings to attract 

European Storm Petrels into mist nets. At both o f these sites, one breast feather was 

collected from each bird for molecular sexing, and kept in a paper envelope at room 

temperature. Fa ecal samples were collected from chicks at colonies in Brittany, 

France (48° 2 3 'N, 4° 57' W, Figure 2.1) during the 2005-06 breeding seasons and 

stored in 80% ethanol.

In addition, European Storm Petrels found dead on beaches in southern 

Portugal (37°07’N 08°36’ W) following severe storms in January 1996, were 

collected for anatomical sexing. On dissection, females were identified by the
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presence of the single ovary on the left side, and males by the presence of a testicle 

on each side. Unfortunately these corpses subsequently became decomposed and 

molecular sexing could not be tested on them for this study.
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Figure 2.1 Location of the study sites used in the present study to sample European Storm 

Petrels in migration (Portugal), at the breeding colonies (adults - Sanda Island and chicks - 

Brittany) and near a breeding colony (Ailsa Craig).
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2.3.2 Molecular Sexing

DNA from feathers was isolated using an adaptation o f the Chelex extraction method 

(Walsh et a l  1991). The barbs towards the base o f each feather were removed and 

approximately 5mm of the calamus of the feather was cut off. 50 pi o f distilled H2O 

and 20pl o f InstaGene™ Matrix (BioRad) were added to each sample. The samples 

were then incubated at 50°C for 30 minutes, followed by 8 minutes at 100°C. DNA 

from faecal samples was isolated using the QIAGEN® Stool Mini Kit, following the 

manufacturer’s standard protocol. In order to find the best primer combination for 

this species, preliminary primer testing was performed using primers P8/P2 (Griffiths 

et a l  1998), 1237L/1272H (Kahn et a l  1998), 2550F/2718R (Fridolfsson & Ellegren 

1999), P8/M5 (Bantock et a l  2007), and 2550F/TuWR/ TuZR (Regnaut et a l  2006). 

Our comparisons showed that the most effective primer pair for separating male and 

female Storm Petrels was 2550F/2718R (Fridolfsson & Ellegren 1999). These 

primers proved to be efficient at a wide range of temperatures and provided the 

greatest separation of bands (-200 base pairs), easily differentiated on a simple 

agarose gel.

The major criticisms made of molecular techniques for sexing birds are 

related to (i) preferential amplification of the Z fragment (Dawson et a l  2001), (ii) 

the fact that the male is defined by the absence o f amplification o f the W fragment, in 

other words, by a negative result (Robertson & Gemmell 2006), and (iii) 

polymorphism in the Z chromosome (Dawson et a l  2001, Casey et a l  2009). Errors 

related to criticisms (i) and (ii) would result in females being wrongly classified as 

males, which seems unlikely to have occurred in the present study, given the 

direction o f the sex-ratio bias in our main results. Primers 2550F/2718R have other 

advantages that minimise such potential sexing errors (Dawson et a l  2001, Casey et
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al. 2009). Shizuka & Lyon (2008) developed a new W-specific primer (GWR2) to be 

used in combination with 1237L/1272H. This approach is very promising but it could 

not be tested in the present study because it was published after this research had 

been completed.

All PCRs included two positive controls to test for the success o f the 

amplification and two negative controls, prepared with distilled water, to test for 

possible contamination. A gradient PCR was first performed in order to optimise the 

annealing temperature. One feather extraction and two faecal extractions were used 

for each temperature gradient PCR. These PCR reactions were performed on a 

BioRad PTC-225 DNA Engine® Peltier Thermal Cycle PCR machine (45°C to 60°C). 

The optimum annealing temperatures, obtained from these gradient PCRs, were 50°C 

for the feather samples and 47.5°C for faecal samples. Thirty individuals (15 males 

and 15 females) were selected at random to be sexed using both feathers and faeces, 

to compare the results obtained with the two types o f samples and check for their 

consistency. Each male result was always checked at least three times and about 25% 

of all female results were checked at least twice.

Amplifications from feather extractions were made with a standard PCR, 

carried out in accordance with Fridolfsson & Ellegren (1999), using 1 pi of DNA 

template (~10 ng/ul). Those from faecal extractions were performed using a 

Multiplex kit, carried out in 20 pi reactions containing lx  o f QIAGEN® Multiplex 

PCR Master Mix, 0.2 pM of each primer and 3 pi o f DNA template (~3 ng/ul). The 

thermal conditions were 95°C for 15 min, 35 cycles o f 95°C for 1 min, annealing 

temperature for 1 min 30 s, 72°C for 1 min 30 s, and a final extension at 72°C for 10 

min. All reactions were carried out using an Applied Biosystems GeneAmp® PCR
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System 9700 PCR machine. Samples were run on 2% weight/volume agarose gels 

stained with ethidium bromide, unless specified otherwise.

2.3.3 Statistical Analysis

Chi-square tests were used to test for deviation from the expected 50:50 sex ratio, 

except for cases in which one or more expected values were less than five, in which 

case Fisher’s exact test was used, /-tests were used to compare morphometric 

measurements between sexes and a discriminant function analysis was used to 

examine whether birds could be reliably sexed on the basis o f morphometric 

measurements. Most o f the analyses were carried out in SPSS vl5 .0 ; exceptions were 

the Fisher’s exact tests, which were computed at www.langsrud.com/fisher.htm. and 

binomial confidence intervals, which were calculated using a Bayesian calculator 

available at: www.causascientia.org/math stat/ProportionCI.html. Significance

thresholds were set at P = 0.05. Note that the P-values presented in our tables are not 

corrected for multiple comparisons (see e.g., Pemeger 1998, Moran 2003).

A runs test was performed in Rv2.6.7, to test the hypothesis that the European 

Storm Petrels captured using tape-lures in Portugal were captured in sex-specific 

groups. Given that unequal numbers o f males and females were captured, we used 

the simulation-based method for a “biased coin” runs test presented by Crawley 

(2007) to test whether the observed number of runs o f consecutive same-sex 

individuals was significantly different from the number o f such runs expected if 

individuals o f the two sexes occurred in a random sequence.
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2.4 Results

2.4.1 Sex Ratios of Adult European Storm Petrels

A strongly female biased sex ratio (mean ± SE = 85.0% female ± 1.39%) was found 

in the sample o f birds tape-lured in Portugal in all seven years (Table 2.1) with no 

significant differences in sex ratio among years (x2 = 11.794, d .f  = 6, P = 0.07) and 

no significant trend in sex ratio over the seven years (Pearson’s r = 0.062, n = 7 

years, P = 0.895). The vast majority o f the birds caught were at least two years old, 

with only 0.01% of either undetermined age, or definitely in their first year (cf. 

Bolton & Thomas 2001). Among the birds from Portugal that were sexed, many 

carried rings from other countries, or were later recaptured in other countries; a 

female-biased sex-ratio was also found in these birds regardless o f the country where 

they were previously ringed or subsequently recaptured (Table 2.II).

A total o f 18 dead Storm Petrels were recovered from beaches in Portugal in 

1996. Anatomical sexing revealed this sample to be comprised o f 12 males and only 

six females, but this apparent male-bias was not significantly different from 50% 

female (Table 2.1).

Adult Storm Petrels tape-lured in Scotland, close to their breeding grounds, 

using the same sound recordings as used in Portugal, also showed a sex ratio that was 

not significantly different from 50% female (Table 2.1), suggesting that the sex bias 

in Portugal was not simply an artefact o f the use of tape lures. Although this sex ratio 

is estimated from a relatively small sample of 30 birds, we found that 100 random 

sub-samples o f 30 birds from the much larger Portuguese sample gave a mean sex 

ratio (± SE) o f 84.7% (± 0.80), with only 4% of these sub-samples giving a female 

bias smaller than 64%, which was the upper 95% confidence interval o f the sample 

tape-lured in Scotland. Thus, the apparent difference in sex ratio between birds tape-
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lured in Portugal and Scotland does not appear to be an artefact o f small sample size 

o f the Scottish sample.

Breeding birds caught at their nest sites on Sanda Island in Scotland during 

the incubation period also showed a sex ratio that was not significantly different from 

50% female (Table 2.1). This was expected given that both sexes incubate eggs 

equally (Cramp & Simmons 1977). In the absence of birds o f known sex to validate 

the molecular sexing, this is a useful confirmation o f the reliability o f the molecular 

method.

2.4.2 Sex Ratio among European Storm Petrel Chicks

From the chicks examined at the breeding colony in France, nine faecal samples 

were collected in 2005 and 29 in 2006. In 2005, four chicks were found to be female 

and three were male (two samples could not be sexed); in 2006, 12 chicks were 

found to be female and 10 were male (seven could not be sexed). Data from both 

years were pooled to allow for statistical analysis. This indicated that the observed 

primary sex ratio o f sexable chicks at this breeding colony did not deviate 

significantly from 50% female (Table 2.1).

2.4.3 Sex Differences in Biometrics and Behaviour of European Storm Petrels 

Tape-Lured in Portugal

On average, male Storm Petrels had significantly lower body mass, shorter wings 

and deeper bills (in terms o f the measurement of bill depth 2) than females. 

However, there were no significant differences between the sexes in measurements 

of tarsus, culmen, bill depth 1, head-and-bill, or rump (Table 2.III). The best 

discriminant function, based on structural biometrics and using a randomly selected
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subset of females to equal the sample size o f the males, included two variables: the 

ratio o f bill depth 2 to culmen and the ratio of wing length to tarsus. The resulting 

function is as follows:

Discriminant score = -0.654 * billdepth2 / culmen + 0.810 * wing / tarsus 

(Wilks’ Lambda = 0.900, / =  9.396, P = 0.009).

This discriminant function correctly classified 63% of the individuals (n = 

92) sexed with the molecular techniques, 62.2% o f 45 males and 63.8% of 47 

females. This is not a very useful level o f discrimination in Portugal, since we could 

obtain a higher proportion o f birds correctly sexed (-85% ) by simply assuming they 

were all female.

Over the 1.5 months o f the annual study period, there was no significant 

seasonal difference in when males and females were captured (mean difference = 

males 0.21 days before females, 95% Cl limits -1.29 to +1.7 days, t-test = 0.280, d .f 

= 939, P = 0.781). Similarly, there was no significant difference in the time of night 

at which males and females were captured (mean difference = males 13 minutes 

before females, 95% Cl limits = -8 minutes, to +33 minutes, /-test = 1.22, d .f  = 939, 

P = 0.223). A runs test with unequal sample sizes showed that there were slightly, 

but significantly, fewer “runs” of consecutive catches o f birds o f the same sex (181 

runs), than expected from random sequences of males and females, using the 

observed sample sizes for each sex (P <0.01, 99% Cl limits for expected number of 

runs = 184-219 runs). This result indicates that the observed same-sex runs were 

slightly, but significantly, longer than expected; hence there was a tendency for 

Storm Petrels to occur in sex-specific groups at our tape-lures in Portugal.
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Table 2.1 Sex ratios of European Storm Petrel adults and chicks in different locations and years. All samples were sexed using DNA extracted from feathers, 

except for the storm-killed birds in Portugal (sexed by dissection) and the chicks sampled in France (sexed using DNA extracted from faeces - see Methods).

Year Female Male Total Sex ratio 
(% female)

95% Cl limits 
(% female)

X2  test for deviation from 
unity (1:1), d.f. = 1

Tape-lured birds, Portugal

2003 83 12 95 87.4 79.2-92.6 / 2 = 53 .1 ,P <  0.001

2004 81 17 98 82.7 73.9-88.9 X 1 = 41.8, P<  0.001

2005 122 16 138 88.4 82.0-92.7 X 2 = 81.4, P<  0.001

2006 105 25 130 80.8 73.1-86.6 X 2  =49.2, P<  0.001

2007 93 11 104 89.4 82.0-94.0 ? b\ IM V A O O o

2008 90 22 112 80.4 72.0-86.6 X 2 41.3, ,P< 0 001

2009 236 27 263 89.7 85.5-92.8 X2 =  166.1, P <  0.001

All years combined 810 130 940 86.2 83.8-88.2 X 2 =491.9, P <  0.001

Storm-killed birds, Portugal
(1996)

6 12 18 33.3% 16.3-5 6.6% X 2 = 6.096, P =  0.297

Tape-lured birds, Scotland (2006) 14 16 30 46.7% 30.2-64.0% ^  = 0.133, P = 0.715

Hand-caught birds, Scotland
(2005)

15 17 32 46.9% 30.8-63.6% ^  = 0.125, P = 0.724

Chicks, France (2005 + 2006) 17 12 29 58.6% 40.6-74.5% X 2 = 0.862, P = 0.353
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Table 2.II Sex ratio of European Storm Petrels controlled in different countries or re-trapped in

Portugal.

Location Males Females
Sex ratio 

(% female)
Fisher’s Exact test for 
deviation from unity

Iceland, Norway 
& Denmark 1 16 94.1 P=  0.007

UK & Ireland 13 56 81.2 P<  0.001

France, Spain & Italy 3 15 83.3 P = 0.07

Same-year re-traps 
in Portugal

0 5 100 P  = 0.17

Table 2.III Mean body measurements (mm) and body mass (g) for European Storm Petrels caught in

Portugal among 1989-2008 (± SE).

Sex Tarsus
Bill 

depth 1
Bill 

depth 2 Culmen
Head 
& Bill Wing Rump Body

Mass

Male

22.6 
±0.78 

(n = 81)

4.6 
±0.35 

(n = 52)

3.8 
±0.31 

(n = 52)

11.7 
±0.53 

(n = 71)

31.9 
±0.77 

(n = 53)

122.8 
±2.80 

(«= 130)

14.8
±2.23 

(n = 27)

26.0 
±2.05 

(n=  129)

Female

22.5 
±0.71 

(n = 473)

4.5 
±0.26 

(n = 343)

3.7 
±0.22 

(n = 343)

11.8 
±0.76 

(n = 432)

31.8 
±0.65 

(n = 239)

123.8 
±2.55 

(n = 806)

14.9 
±2.18 

(n = 234)

26.4 
±2.30 

( n = 805)

Mest
/ =1.57 

df = 552 
P = 0.118

f = 0.51 
df =393 

P = 0.132

t = 2.10 
df =58.5 

P  = 0.040

f =1.21 
df = 501 

P = 0.225

t = 0.79 
df = 290 

P = 0.428

t = 4.00 
df = 934 

P <  0.001

t = 0.26 
df =259 

P  = 0.795

t = 2.04 
df = 932 

P =  0.042
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Table 2.IV Previously published sex ratio data for European Storm Petrels. Sex ratios of birds caught at or near colonies are close to unity, regardless

of whether they are captured using “purr call” tape-lures, or not.

Location Year Reference At a 
colony?

Capture
method

Tape lure 
used?

Sexing
method Males Females Sex ratio 

(% female)
Sig. different 
from unity?*

Throughout
marine
range

Prior
1977

Cramp and 
Simmons 

1977

At 
colonies 
& at sea

Various Mainly no
Museum

skins
dissection

20 25 56 No

Skomer,
Wales

1981 & 
1982 James 1984 Yes

Breeders 
taken on 

nest
No Cloacal

inspection 43 39 48 No

Skomer,
Wales 1982 James 1983 Yes Mist nets Yes

Discriminant 
analysis 

(wing + tail)
31 26 46 No

Skomer,
Wales 1982 James 1983 Yes Mist nets No

Discriminant 
analysis 

(wing + tail)
23 20 47 No

Skomer,
Wales 1982 James 1983 Yes

Breeders 
taken on 

nest
No Cloacal

inspection 26 20 43 No

St. Kilda, 
Scotland 1983

R.W. 
Furness In 
Fowler et 
al. 1986

Yes
“loose

colony”
Mist nets No Dissection 11 10 48 No

Yell,
Shetland

1983 & 
1984

Fowler et 
al. 1986

No (but 
colony 

on same 
island)

Mist nets Yes Laparoscopy 21 28 57 No
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2.4.4 Consistency of Sexing from Feathers and Faecal Samples

Overall, the proportion o f feather samples that gave a result was 94% while that from 

faecal samples was 29.3%. When sexed from faecal samples, birds previously 

identified as female from the feathers often amplify only one o f the two fragments, Z 

or W. When the W-fragment (female specific) is evident, birds can still be sexed 

with confidence. However, when only the Z-fragment (shared by males and females) 

is visible, females will be misidentified as males. Accordingly, 100% of birds sexed 

as male from feathers were also sexed as male from faeces, but 43% of females 

sexed from feathers were initially sexed as male from faeces. This proportion 

dropped to 14% after repeating each male result three times. Correcting the number 

o f chicks that were potentially sexed incorrectly due to this type o f error would still 

result in a non-significant sex bias = 2.793, d.f. = 1, P = 0.095). For those birds 

sexed from feathers, less than 3% of the initial male results were found to be females 

after the three repeats and none of the initial female results appeared as males in 

subsequent testing.

2.5 Discussion

The molecular sexing analysis revealed a very strongly female-biased sex ratio 

among Storm Petrels sampled during their northwards migration past the Portuguese 

coast, several hundred kilometres from the nearest known breeding colonies. This 

sex ratio bias was broadly consistent over the seven years examined (varying 

between 81 and 90%), indicating that it is a stable feature o f the birds available for 

capture using tape lures at this location (comprised almost entirely o f wandering pre­

breeders from the Atlantic population). To our knowledge, this is the first time that 

such a result is reported for a monomorphic seabird during migration.
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The highly female-biased sex ratio that we observed among tape-lured birds 

in Portugal is strikingly and consistently different from the approximately 1:1 sex 

ratio found among European Storm Petrels of a variety o f age classes sampled using 

a variety o f techniques and sexing methods, at or near the NE Atlantic breeding 

colonies (Table 2.IV). We also found no evidence for any difference in geographical 

origin of the two sexes in our Portuguese sample (Table 2.II). This suggests that 

gender is more important than origin (and thus e.g., travel distance) in determining 

the migratory behaviour o f these birds.

The strong female bias observed amongst the sample o f birds caught in 

Portugal could be due to (1) a real sex-ratio bias in the population; (2) females being 

strongly attracted to the tape-lure, or (3) females being more likely to encounter the 

tape-lure (e.g., due to a sex difference in the timing or route o f the migration 

journey). None o f the above explanations are mutually exclusive, but we discuss 

them separately below.

For a sex ratio bias in a population to persist, a consistent bias in the primary 

sex ratio (amongst eggs/chicks) and/or a sex-specific mortality rate after fledging 

must be present. The primary sex ratio may be biased in some taxa, including some 

bird species (Mayr 1939, Sheldon 1998, Donald 2007). However, these are 

exceptional examples and most bird populations, especially in monogamous species, 

exhibit approximately 1:1 primary sex ratios (reviewed by Ellegren & Sheldon 

1997). There was no bias in the primary sex ratio among the chicks hatched by Storm 

Petrels breeding at a colony in NW France, suggesting that this is not the explanation 

for any sex-ratio bias in the adult population.

A female-biased adult sex-ratio could arise from an unbiased primary sex 

ratio if males suffer greater mortality than females. In contrast to mammals, greater
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male mortality is very uncommon among birds (reviewed by Donald 2007). The sex- 

ratio in the sample o f European Storm Petrels killed during winter storms off the 

Portuguese coast did not differ significantly from unity (though we note that more 

males than females were killed; see Table 2.1). In one species o f petrel (a diving 

petrel Pelecanoides urinatrix) a significant male biased mortality has been found 

among storm-killed individuals (Norman & Brown 1987). However, even if male 

Storm Petrels are more likely to be killed by storms, this may not be sufficient to 

give rise to a female-biased sex ratio, since other causes o f death might be of greater 

importance in determining the relative numbers of surviving males and females. A 

total of 45 museum skins o f Storm Petrels from throughout the species’ range and 

annual cycle also show an unbiased sex ratio (Table 2.IV) and no sex ratio biases 

were found in any o f the previous studies summarized in Table 2.IV. Furthermore, in 

the present study, the sex ratios among live birds tape-lured near a breeding colony in 

Scotland and among live birds captured without tape-lures at nest sites in Scotland 

were also unbiased. There is therefore little support for the hypothesis that there is an 

underlying bias in the sex ratio of the population as a whole.

The second hypothesis accounting for the female-biased sex ratio observed in 

Portugal is a sex bias in the attraction to the tape lures. It is possible that female 

Storm Petrels are inherently more attracted to tape lures o f conspecific calls than are 

males, but this is not consistent with the finding that use o f the same tape lures near a 

breeding colony resulted in an unbiased sex ratio. Similarly, the two studies 

presented in Table 2.IV on sex ratios o f Storm Petrels caught either at- or close to- a 

breeding colony with tape lures show no sex ratio bias. James (1984) found that male 

Storm Petrels in nesting burrows responded more strongly than females to playbacks 

o f “Purr” calls, which might be expected to result in a male bias among birds
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attracted to tape-lures. However, no significant male bias was detected in any of the 

samples o f tape-lured birds.

A differential attraction to the tape lures in Portugal could arise from a sex 

bias in the seasonality o f prospecting behaviour, or in the distance from the natal 

colony at which prospecting may occur. For example, a biased sex ratio among pre­

breeding Storm Petrels captured in Portugal could arise if  males and females are 

differentially attracted to the tapes at different times in the season (e.g., males being 

more attracted earlier in the season) or at different locations (e.g., females being 

more attracted further south). The former could arise if  males need to find their 

burrows earlier in the breeding season (Kokko et al. 2006), to which they 

subsequently attract a female, while the latter could occur if  males exhibit stronger 

natal site fidelity, meaning that females may be more likely to disperse between 

breeding colonies, and so be more willing to investigate breeding locations in 

Portugal, well outside their main breeding range. No research has apparently yet 

investigated these possibilities, but among the sample o f wandering pre-breeders in 

the present study, though there was temporal aggregation by sex over short 

timescales, there was no evidence o f temporal segregation o f males and females over 

the timescale o f the migration season within the sampling period.

The third hypothesis accounting for the female-biased sex ratio observed in 

Portugal is that a sex difference in migration strategy leads to more females than 

males being present in Portuguese coastal waters during the May-June study period. 

There are several potential underlying mechanisms. Females could begin to wander 

north at a younger age than males, meaning more prospecting females than males 

reaching Portuguese waters. Pre-breeding Storm Petrels tape lured in the UK have an 

unbiased sex ratio (Tables 2.1 and 2.4), but the observed female bias in Portugal
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could arise if younger females reach as far north as SW Portugal but do not wander 

all the way north to the breeding colonies.

Other possible mechanisms are a sex difference in the diurnal or seasonal 

timing of migration. Diurnal differences could arise since, at sea, European Storm 

Petrels are active both by day and by night (pers. obs.). Possibly, sex-differences in 

the diumal/noctumal pattern of migration along the Portuguese coast could make 

females more likely to come within hearing range the nocturnal tape-lures. However, 

there was no difference between males and females in the time o f night at which they 

were captured. Seasonal differences could be related to sex-differences in the time of 

arrival at the colonies. In many migrant species, the breeding males are the first to 

arrive back on the breeding grounds (protandry), to set up territories or secure a mate 

(Rubolini et al. 2004, Smith & Moore 2005, Catry et al. 2005). No difference 

between males and females in capture date in Portugal was found, indicating that if 

males really are migrating at a different season than females, then this male 

migration must take place outside the study period of late May-June.

Finally, the sexes could have different migration routes. A different migration 

route could be a consequence (or the cause) o f a difference in foraging strategy 

between the sexes. For example, due to differential nutritional demands, females may 

be more likely than males to exploit areas of high productivity (due to upwelling) 

close to the African and Portuguese Atlantic coasts (Stenseth et al. 2004), whereas 

males may migrate further offshore, along a more direct route between the wintering 

and breeding areas. This possibility could be tested by investigating the sex ratio of 

birds caught from boats further offshore than the range o f our land-based tape-lures. 

This has been piloted in the present study, but has proven to be extremely difficult 

and to date only four birds have been caught, o f which only one was a male.
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O f the above hypotheses, it seems most likely that sex-differences in natal 

site fidelity (Hypothesis 2) or migration strategies (Hypothesis 3) account for the 

strong sex-ratio bias among Storm Petrels migrating past Portugal, but the underlying 

mechanisms remain unclear. Future work could further test these hypotheses through 

studies of the genetic structure o f different breeding populations, and by capturing 

birds at different times o f year and at additional locations off the Portuguese coast, 

further north and south along the migration route, and in the wintering grounds. 

Nevertheless, recognising these patterns is a first important step to investigate 

potential mechanisms and incorporate such information into conservation strategies, 

such as the implementation of marine protected areas that are now under 

consideration in many parts of the world. For example, by combining molecular 

sexing information with molecular identification o f prey DNA in storm petrel faeces, 

it becomes possible to test for sex-differences in diet (Chapter 3), and migration 

fuelling strategies (Chapter 4). These findings show the importance of considering 

sex specific behaviour in interpreting ecological data.
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Chapter 3

Investigating the Diet of Migrating European Storm Petrels

Using Molecular Tools

3.1 Abstract

The diet o f storm petrels (Hydrobatidae) is largely unknown, particularly outside the 

breeding season, due to the lack of a reliable non-invasive method to study it in 

detail. The present study describes the development and application o f molecular 

techniques to study the diet o f the European Storm Petrel, in combination with stable 

isotope analysis. This was achieved by the detection o f prey DNA from faecal 

samples collected from Storm Petrels during their northwards migration past the 

coast o f SW Portugal between 2006 and 2009. The diet o f nestling Storm Petrels 

from a breeding colony in Brittany, NW France, was also studied in 2005 and 2006, 

for comparison with the migrating birds. Two complementary molecular approaches 

were used: 1) using taxon-specific primers to screen for the presence / absence of 

particular prey categories in individual faecal samples; and 2) amplifying prey DNA 

from a pool of samples using general primers, then using cloning and sequencing of 

the amplified sequences to identify the taxa present in the diet in each year. The 

major category o f prey detected was fish (chiefly European Sardines Sardina 

pilchardus). Other components of the diet were Cephalopoda (primarily cuttlefish 

Sepia spp.), Amphipoda, Isopoda and a range of terrestrial invertebrates (primarily 

Lepidoptera, Hymenoptera and other insects), which were presumably scavenged 

from the sea surface by the Storm Petrels. Many prey taxa could be identified to 

species level using the cloning and sequencing approach, including deep-water
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species that may have been made available to foraging Storm Petrels by the fishing 

industry. Individual migrating Storm Petrels typically had DNA o f one or two 

different prey categories in their faecal samples, with few birds having no 

amplifiable DNA, or DNA of three or more different prey categories. Fish appeared 

more frequently in the diet o f migrating birds than appeared in the diet of nestlings at 

the breeding colony. Furthermore, diet composition appeared to vary among years, 

and the migrating birds appeared to rely more on fish in 2009 than in the preceding 

three years. These results indicate that Storm Petrels may be opportunistic foragers, 

possibly varying their diet according to the changing availability o f different prey, 

including scavenged material.

3.2 Introduction

Investigating an organism’s diet is of primary importance for understanding its 

ecological requirements and its functional role in the ecosystems that it inhabits. 

However, most methods currently available for the study o f diet in wild animals are 

either invasive, or have important limitations in the information that they can 

provide, or both (see Chapter 1 and below). Studying the diet o f small, elusive, 

highly mobile animals such as the pelagic storm petrels (Hydrobatidae) is 

particularly challenging, with no satisfactory single method or combination of 

methods currently available. As a result, the diet and foraging ecology of such taxa is 

often poorly understood. There is therefore a major requirement for developing a 

widely applicable, non-invasive and objective method for the study o f animal diet in 

the wild (Barrett et al. 2007). Molecular analysis o f prey DNA in the faeces of 

foragers potentially fulfils this requirement, and this Chapter describes the 

application o f two complementary molecular approaches for the study of the diet of
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the European Storm Petrel Hydrobates pelagicus; (i) screening for presence / absence 

o f different prey taxa with taxon-specific primers and (ii) cloning and sequencing of 

prey DNA, amplified using general primers. The advantages and limitation of these 

molecular approaches are discussed in contrast to, and in combination with, other 

methods for investigating diet in seabirds, primarily stable isotope analysis.

3.2.1 Current Methods for Investigating Avian Diet; Advantages and 

Limitations

(i) Observations of Foraging Behaviour

One o f the most direct and basic approaches for studying diet and foraging ecology is 

simply to observe foraging animals and to visually identify food items as they are 

eaten or as they are being carried to feed offspring. This can be successfully applied 

to large animals eating large and conspicuous food items (e.g. a Peregrine Falcon 

Falco peregrinus capturing a Feral Pigeon Columba livia in flight) and it has been 

used in some seabird species such as puffins Fratercula spp. and terns Sterna spp. 

delivering food to their chicks (e.g. Paiva et al. 2006a,b). However, this approach is 

difficult or impossible to apply when the foragers are small, difficult to approach, or 

eating a mixture o f small or indistinct food items (e.g. swifts Apus spp. eating flying 

insects at high altitudes, or storm petrels (Hydrobatidae) taking small food items 

from the moving sea surface). Even if the individual food items can be discerned, 

specific identification is often impossible or biased towards larger and more easily 

identified prey.
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(ii) Examining the Contents of the Digestive Tract

The normal practice in many early studies o f animal diet was to kill a sample o f the 

animals and examine their stomach contents (e.g. much o f the dietary information 

summarised in Cramp & Simmons 1977). However, for ethical reasons this is 

increasingly unacceptable for many vertebrate taxa (Cuthill 1991, Broom & Johnson 

1993). Alternatively, the stomach contents o f animals that are found dead can be 

investigated, but the diet o f animals that have died from natural causes may not be 

typical o f healthy living individuals and the sample size is tipically small.

A commonly used, non-fatal method for sampling stomach contents, widely 

applied to large seabirds, is stomach flushing (also known as lavage). This involves 

inserting a tube down the oesophagus o f captured individual, and using a saline 

solution injected into the stomach/crop to flush the stomach contents out through the 

subject’s mouth. This procedure is generally considered to be invasive, even for 

relatively large species, and it can be risky to apply it to small species such as storm 

petrels (pers. obs.).

Food delivered to nestlings can be sampled from the very top of the digestive 

tract by applying temporary neck ligatures, which prevents the food put into the 

nestlings’ mouths by their parents from being swallowed. The food can then be 

scooped out from the mouth by the researcher and the ligature removed (e.g. Douglas 

et al. 2008). This is a very direct but invasive method for sampling chick diet, but 

cannot be used to study adult diet (which may differ from the diet provided to the 

chicks), or to study diet outside the nestling phase of the breeding season.

Prey remains may be made available to researchers by the animals 

themselves, through the natural regurgitation of pellets (i.e. a compact ball of 

undigested hard parts o f prey, regurgitated by many bird species) or the defensive
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regurgitations o f undigested or semi-digested meals by taxa such as Procellariiformes 

and herons Ardeidae when captured or closely approached (e.g. Gilbert et al. 2003). 

Such samples potentially provide less invasive means (or non-invasive means, in the 

case o f pellets) to study stomach contents.

Whatever the methods by which they are obtained, an important limitation of 

the visual identification o f prey in samples o f stomach contents is that digestion may 

already have begun to degrade the food items, so that taxa may become impossible to 

identify. Furthermore, different prey taxa may differ markedly in the rate at which 

they become unidentifiable; for example, soft-bodied taxa will generally be rapidly 

degraded, whereas certain hard parts (e.g. fish otoliths) may remain intact through 

the digestive tract. Such differences in digestibility and identifiability make it 

difficult to interpret direct comparisons of the contribution o f different food types to 

the diet. Furthermore, skills are needed for the identification o f these hard parts.

(iii) Stable Isotope Analysis

Many chemical elements have two or more stable (i.e. non-decaying) atomic forms, 

known as stable isotopes, which differ in the number o f neutrons that the nucleus of 

the atom contains. For example, carbon has two stable isotopes 12C (more common,

I
containing 6 neutrons) and C (less common, containing 7 neutrons). Nitrogen 

similarly has two stable isotopes, 14N (more common) and 15N (less common). The 

differences in the nuclear masses o f the atoms can result in small but consistent 

differences in the ways in which the heavy and light isotopes o f an element are 

affected by physical processes, and hence systematic spatial and temporal variation 

in the ratio o f different isotopes across the environment.
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On a molecular scale, heavier molecules have a lower diffusion velocity so, 

for example, they diffuse out o f cells more slowly than lighter molecules. 

Furthermore, the collision frequency with other molecules (the primary condition for 

chemical reactions) is lower for heavier molecules; this is one o f the reasons why 

lighter molecules tend to react faster. At the scale o f a living organism, the net effect 

o f these processes is fractionation; in effect, the selective metabolic loss of the lighter 

isotopes (12C and 14N) from living tissue. Fractionation o f isotopes of different 

molecular weights occurs progressively as elements pass between the different 

trophic levels o f a food chain, resulting in systematic variation in the ratio of 

different isotopes across trophic levels in any particular habitat. Measuring the 

isotopic delta-value (5; the ratio o f the heavier isotope to the lighter isotope, 

expressed as parts per thousand, %o) in tissues taken from foragers can therefore be 

used to infer information about the trophic level(s) or location(s) at which a forager 

has predominantly fed.

In marine food webs, fractionation generally results in an enrichment in 515N 

o f approximately 3.0 to 5.0%o and in 513C of 0.8%o per trophic level (Minagawa & 

Wada 1984, Owens 1987, Michener & Shell 1994), though these enrichment values 

can themselves depend on the specific type o f tissue sampled (Hobson & Clark 

1992). Enrichment rates measured in the transfer of isotopes into bird feathers have 

been in the order o f 0.8 to 0.9%o for 513C and 3.1 to 3.3%o for 515N compared to the

1 O |  c

equivalent 5 C and 6 N values in the diet components (Hobson 1995).

Stable isotopes o f different elements differ in the extent to which they are 

fractionated in different contexts, and hence in their suitability for addressing 

different types o f questions about foraging ecology. For example, the different stable 

isotopes o f nitrogen vary primarily across trophic levels (rather than between
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habitats). Therefore, nitrogen isotope ratios are commonly used to determine the 

trophic level at which foragers primarily feed.

In contrast, the relative abundance o f the different stable carbon isotopes 

varies primarily across habitats (rather than across trophic levels). For example,

1 'X 1 'Xmarine and terrestrial communities differ in their 5 C signatures, so that 8 C 

signatures in the tissues o f foragers may reflect their foraging habitat. Therefore, 

carbon isotope ratios are commonly used to assess foraging location, such as whether 

animals are foraging primarily from terrestrial versus marine, inshore versus offshore 

and pelagic versus benthic food webs. However, such inferences rely not only on 

prior knowledge o f the carbon isotope ratios in each habitat, but also of how these 

underlying differences may vary geographically across the globe.

Stable isotopes analyses have been widely used to study the nutrition of a 

range o f species from copepods to humans (Hobson et al. 2002, Tykot 2004), and 

have been increasingly applied to the study o f the foraging ecology of birds (e.g. 

Bearhop et al. 2006, Bond & Jones 2009, Weiss et al. 2009). This approach offers 

many advantages compared to the more traditional methods described above, namely 

being less invasive or even non invasive (depending on the tissue sampled), not 

biased towards less digestible material, and allowing for the study o f animal diet over 

a range o f time-scales. The time-scale over which stable isotope analysis can reveal a 

forager’s diet depends on the rate of molecular “turnover” in the tissue sampled. 

Metabolically inert tissues such as fully grown feathers can be used to infer diet at 

the time that these were grown (up to 1 year ago in most birds), whereas actively 

growing feathers can be used to infer recent diet (generally over less than 1 month). 

Different fractions o f blood samples differ in their molecular turnover, so that red 

blood corpuscles and blood plasma can provide information about diet over recent
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weeks and days, respectively. This is particularly relevant in the study of birds; for 

example, fully grown feathers can often be used to infer the diet of migratory birds 

on their wintering grounds (Bearhop et al. 2004, Wiley et al. 2010).

Stable isotopes have been used to study the diet o f many species of 

Procellariiformes from albatrosses and shearwaters (Bugoni et al. 2010, Paiva et al. 

2010, Wiley et al. 2010) to smaller petrels (Hedd & Montevecchi 2006). Despite 

their widespread application, stable isotopes analyses have important limitations in 

that knowing the isotopic signatures o f the prey is essential to interpret the data and, 

more importantly, in the lack o f taxonomic detail on the information obtained. New 

analytical developments such as isotope mixing-models (e.g. Bugoni et al. 2010) are 

allowing a degree o f quantitative discrimination o f the prey consumed, but these 

methods are still best applicable to species feeding on a limited range o f prey (two or 

three taxa) o f known isotopic signatures.

(iv) Fatty Acid Analysis

This method is based on the overall premise that fatty acid composition tends to vary 

more among species than within species, and that long chained fatty acids (>14 

carbon units) pass to the predator from the prey with relatively little degradation and 

are stored in the predators’ adipose tissue, which can be sampled using biopsies 

(Williams & Buck 2010). By comparison o f the predator’s fatty acid profile with 

those o f potential prey taxa,, some detail of diet composition can be assessed, rather 

than just the trophic level and/or foraging location obtained with the stable isotopes 

approach described above. However, fatty acid analysis still does not allow species- 

level identification o f dietary components. Further limitations of this technique are 

(i) that a fatty acid database o f all possible prey is needed to interpret predator fatty
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acid signatures accurately, and (ii) because most predators feed on more than one 

prey type, the interpretation of the fatty acid signatures is not straightforward. 

Possible errors o f measurement or interpretation o f fatty acid signatures can occur, 

related to the predator’s intrinsic rates o f fatty acid production and metabolism, 

variability o f fatty acid signatures between individuals o f the same prey species and 

the need to calibrate the metabolic shifts in fatty acid signatures between the forager 

and its food. This approach has been applied relatively frequently in the marine 

environment (e.g. Iverson 2009, Hanson et al. 2010, Young et al. 2010, Skoglund 

2010), including in the study o f seabird diet (e.g. Williams et al. 2008, Williams & 

Buck, 2010, Kakela et al. 2010). Although better than stomach flushing in terms of 

animal welfare, the biopsy procedure is still relatively invasive, especially if 

compared to the simple collection o f faecal samples used in the molecular 

approaches described below.

(v) Identification of Prey DNA from Predator Faeces

The biochemical methods described above, using “intrinsic markers” (stable 

isotopes, fatty acids), have improved the knowledge of the foraging ecology of many 

species o f animals (e.g. Hobson et al. 2002, Caut et al. 2008, Mancina & Herrera 

2010). However these methods are all still limited when used in isolation, 

particularly in that they do not provide species-specific prey identification. Molecular 

(i.e. PCR-based) methods, involving extraction and analysis o f prey DNA from the 

digestive tract o f foragers, have the clear advantages o f being non invasive and 

providing very detailed information on diet composition, potentially to the species 

level (Symondson 2002, King et al. 2008). Prey DNA becomes progressively 

degraded by digestion and therefore, these studies typically use primers that target
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relatively short DNA fragments from mitochondrial genes. Mitochondrial DNA is 

more abundant in animal cells than nuclear DNA and it is therefore more likely that 

intact fragments o f the relevant genes are available to be detected.

DNA-based studies require reference DNA sequences o f the prey consumed 

and the existence (or design) o f relevant primers for isolating prey DNA. Such 

primers would ideally amplify all the potential prey without amplifying the DNA of 

the predator. This is difficult to achieve, however, as primers general enough to 

amplify DNA from a range o f prey species will almost inevitably amplify the 

predator’s own DNA. Solutions to this problem have been developed, including 

blocking the amplification of predator DNA (Dunshea 2009), but there are still 

limitations as it is impossible to guarantee that prey DNA is not being blocked, 

especially if the predator’s diet includes species closely related to the predator itself.

An alternative molecular approach is to use taxon-specific PCR primers to 

screen samples for the presence or absence of particular prey taxa of interest. It is 

difficult to be certain that the primers used are amplifying all the species within the 

targeted group, or how specific they are to that group; nevertheless, a good level of 

group specificity can be achieved relatively easily. Moreover, as more sequences 

become available for potential prey species, and more taxon-specific primers are 

developed and tested, this approach will become even more powerful and easily 

applicable.

The only previous studies to apply molecular techniques to investigate diet o f a 

seabird species were published recently by Deagle et al. (2007) and Deagle et al. 

(2010). The first focused on adult Macaroni Penguins Eudyptes chrysolophus 

attending a colony. Deagle et al. (2007) used the two different molecular approaches 

described above, and compared the results with those from stomach content analysis.
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This was however a preliminary study with a relatively small sample size in a single 

breeding season. The second study was on Little Penguins Eudyptula minor, using 

pyrosequencing to scale-up the number o f prey DNA sequences that could be 

obtained (Deagle et al. 2010). Each of these studies described the diet o f the birds 

from just one colony in a single breeding season.

In the present study, a DNA-based method is used to analyse the diet of pre­

breeding (mainly 2-4 year old) European Storm Petrels, captured over four years 

(2006-2009) during migration past the coast o f Portugal, from their wintering 

grounds in the south Atlantic, en route to their future breeding sites along the NE 

Altantic seaboard, between the north coast of Spain and Iceland/Norway (Bolton & 

Thomas 2001). The diet o f nestling Storm Petrels from a breeding colony in Brittany, 

NW France, was also studied to some extent in 2005 and 2006, for comparison with 

the migrating birds.

European Storm Petrels (henceforth “Storm Petrels”) are amongst the smallest 

o f the seabirds (-26  g) and due to their small size, their movements at sea cannot be 

studied through any currently available remote-tracking equipment. Studies on their 

foraging ecology and diet have been limited to behavioural observations at sea 

(reviewed in Cramp & Simmons 1977, Poot 2008), early description of stomach 

contents o f dead birds (reviewed in Cramp & Simmons 1977), and a small number o f 

studies at breeding colonies (Davis 1957, Scott 1970, D ’Elbee & Hemery 1997). 

Molecular techniques have been tested in a wide range of predator species, but with 

greatest focus on invertebrate species (e.g. Symondson 2002, King et al. 2008). The 

present study is, to my knowledge, the first detailed investigation of the diet o f a 

seabird species during migration, and one o f the few to apply molecular techniques 

to investigate the diet of seabirds.
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In the present study, the same two molecular approaches used by Deagle et al. 

(2007) are applied, combined with stable isotope analysis, to investigate Storm Petrel 

diet. The first molecular approach was to determine the presence/absence of DNA 

from relevant prey taxa for each faecal sample. This was achieved by performing 

PCR tests using primers that specifically amplify DNA from certain relevant prey 

groups. This screening approach was used on faecal samples from migrating adult 

Storm Petrels caught in the south of Portugal and on faecal samples from nestlings at 

a Storm Petrel breeding colony in Brittany, France. This approach gives the 

proportion of individuals that consumed certain prey groups and requires some prior 

knowledge of taxa likely to appear in the predator’s diet.

The second molecular approach, used only for the migrating Storm Petrels, 

involves amplifying DNA from general prey groups (fish and non-fish) followed by 

cloning and sequencing the DNA to separate and identify individual prey sequences. 

This approach provides a list o f DNA sequences o f prey species consumed by the 

predator. These sequences can be identified by comparison against sequences of 

known species. In theory, the number of sequences obtained for each prey species 

should reflect the relative contribution by mass o f each prey taxon to the diet of the 

predator (based on the assumption that larger prey items contain greater amounts of 

DNA than smaller prey). However, prey species may differ in the number of 

mitochondria that their cells contain, and therefore some prey species will contribute 

more DNA per unit mass consumed than others, to the total amount of mitochondrial 

DNA present in the faecal sample. Furthermore, primers might not be equally 

sensitive to each prey species and preferably amplify some species over others.

To supplement and validate the information obtained from the molecular 

analyses, for a subset o f the years studied using the molecular approach (2008 and
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2009), stable isotope analysis of growing feathers was used to infer the overall 

trophic levels and foraging location (i.e. coastal/offshore) o f migrating Storm Petrels. 

The relative merits of the molecular and stable isotope methods, and the degree to 

which they are complementary, will be discussed.

3.3 Methods

3.3.1 Collection of Samples from European Storm Petrels

Faecal samples from Storm Petrel chicks from a colony in Brittany, NW France 

(48° 23' N, 4° 57' W) were collected from inside the nests during the 2005 and 2006 

breeding seasons, by a collaborator (B. Cadiou). These samples were collected onto 

filter paper and stored in 80% ethanol.

Migrating Storm Petrels were captured in mist nets during their northwards 

journey past the south-west coast o f Portugal (37° 04’ N, 8° 47’ W). Birds were 

attracted to shore using tape lures of storm petrel male song, played at night between 

dusk (approx. 22:00 and dawn approx. 05:00 GMT). Captured birds were ringed and 

weighed and biometric measurements were taken (see Chapter 2 for full details of 

these procedures). One to five breast feathers were taken for molecular sexing (see 

Chapter 2 for details). Faecal and vomit samples were collected over four field 

seasons in late spring (late May-mid June) between 2006 and 2009.

Throughout the capture and handling process, and while the birds were 

preparing to fly off following release, the birds were observed closely in order to 

collect any faeces or vomit that they produced. Birds were released onto flat rocks, a 

few metres away from the ringing area and most faecal samples were collected from 

this substrate after the bird had flown. More rarely, faecal samples were obtained 

during the ringing process, from the bird bag or other surfaces. In contrast, vomit
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samples were all obtained either when the bird was in the net or during the ringing 

process. The samples were collected into 2ml Eppendorf tubes using a paper disc or 

cotton bud and preserved with 80% ethanol. Each sample was labelled with the ring 

number of the individual bird that produced it, and subsequently stored at -20°C until 

the DNA was extracted in the laboratory. In 2007, samples were frozen directly in 

the field without ethanol. Before collecting each sample, the sampling equipment and 

the sampling surface were sterilized by flaming.

In 2008 and 2009, captured birds were inspected for any growing body 

feathers and these were collected for stable isotope analysis. Stable isotope values 

integrate diet during the period of feather growth. The time taken for a body feather 

to grow is not known for European Storm Petrels, but this species replaces all eleven 

of its primary flight feathers over a period o f approximately 7 months (Scott 1970). 

Since body feathers are much smaller than primaries, it was assumed that growing 

feathers integrate information about diet of storm petrels over a period o f one to two 

months.

3.3.2 Reference DNA Sequences

In order to increase the chances of identifying prey DNA sequences obtained from 

the faecal samples o f Storm Petrels, a reference collection was built, o f sequences 

from potential prey caught near the study site in Portugal. Samples of fresh potential 

prey were collected by sweeping the sea surface with nets from the coast and further 

offshore (up to 12km) from a boat, both during the night and during the day. These 

samples consisted mainly o f invertebrates later identified by experts in the different 

taxonomic groups encountered (pers. comm.). Samples o f fresh-caught local fish
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species were obtained from a market in the fishing port o f Lagos, 10km from the 

study site in SW Portugal.

DNA from these fresh invertebrates and fish was extracted with the Chelex 

method (Walsh et al. 1991). Extractions of fish DNA were made from the liver, cut 

into small pieces and dried at 45°C for 45 min. For each fish species, 30 mg of dried 

liver was used per extraction in 150 pi of water and 60 pi o f Instagene Matrix. One 

or two specimens o f each invertebrate species were used per extraction. These 

invertebrate samples were put into a 2 ml Eppendorf tube, in 50 pi o f water to which 

20 pi o f Instagene Matrix (Invitrogen) was added. Samples were mixed by vortex 

and incubated for lh  at 50°C, followed by 8 min incubated at 100°C.

Two different primer pairs were used to amplify DNA from the fish or the 

invertebrate species: one primer pair designed to amplify Osteichthyes (bony fish) 

DNA, and one initially designed to amplify DNA from a wide range o f invertebrate 

species, but that was subsequently found also to amplify some vertebrate species and 

thus will be referred to as “non-fish” (Table 3.1). Amplifications were performed 

using the Multiplex PCR Kit (Qiagen) in 25 pi reactions containing lx  Multiplex 

PCR Master Mix, 0.2 pM of each primer and 0.1 mg/ml o f BSA (New England 

Biolabs). The template was 1 pi o f the DNA extract. Thermal cycling conditions 

were as follows: 95°C for 15 min, 35 cycles (94°C for 30 s followed by 56°C (for 

F ishF l/R l) or 46°C (for CI-J-2183/CI-N-2353) for 90 s followed by 72°C for 90 s), 

concluding with 72°C for 10 min. A minimum of three negative controls (the 

extraction control, plus at least two distilled water blanks) were included in each set 

o f PCR amplifications. PCR products were separated by electrophoresis in 1.5% 

agarose gels and visualised by staining with ethidium bromide, visualised by 

transillumination with UV light.
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Prior to sequencing, PCR products were purified by filtration using the 

Qiagen Qiaquick cleaning kit according to the manufacturer’s protocol. Samples 

were sequenced in an Applied Biosystems 3130x1 Genetic Analyzer using a 50 cm 

capillary array with POP-7 polymer.

3.3.3 DNA Extractions from Faecal and Vomit Samples

DNA from storm petrel faecal and vomit samples was extracted using the QIAamp 

DNA Stool Mini Kit (Qiagen), following the manufacturer’s standard protocol. 

Depending on the size o f the faecal sample (i.e. number o f cotton buds or amount o f 

paper; total sample volume per extraction was approximately 0.5ml), one or more 

extractions (up to four) were performed so that DNA was extracted from the whole 

sample. For samples from which more than one extraction was performed, often the 

final extraction was done from the ethanol in which the sample had been immersed.

Vomit samples were typically larger in volume than the faecal samples, and 

three different approaches were used for these as appropriate: a) the sample was 

homogenized by vortexing and DNA was extracted from a subsample; b) the sample 

was centrifuged, the top lipid layer was removed and DNA was extracted from the 

bottom layer; c) the DNA was extracted from solid parts o f the sample (e.g. lumps of 

fish, parts o f invertebrates). For the latter approach, hard parts were separated and 

placed into fresh ethanol at least two days before extracting. To extract the DNA 

from vomit samples, both the Qiagen DNeasy Blood and the Qiagen Tissue Kit and 

the QIAamp DNA Stool Mini Kit were tried. One blank extraction, using only water, 

was included in each batch o f 24 extractions to test for any cross-over contamination.
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3.3.4 Testing for Presence / Absence of Prey DNA

In order to first test for the success o f the extraction process, DNA extracts were 

screened using primers specific to storm petrel DNA, which amplify a region of 

approximately 200 bp from the mitochondrial Cytochrome B gene. These primers 

were designed from sequences in GenBank (Cagnon et al. 2004) using the software 

Amplicon (Jarman 2004). Any samples giving a negative result were tested a second 

time, to confirm that they were indeed negative. Successful extracts were then 

screened for prey DNA. Solid parts of prey in vomit samples were identified as either 

fish or invertebrate and tested directly with the relevant primers (FishFl/R l or CI-J- 

2183/CI-N-2353) rather than with storm petrel primers.

Successful extracts were screened with the two more general sets of primers, 

targeting fish (F ishF l/R l) and non-fish prey (CI-J-2183/CI-N-2353), also used for 

the reference collection (described above). For the migrating birds caught in the 

south of Portugal but not for the samples from Brittany, representative faecal samples 

containing fish DNA were subsequently screened for the specific sequences o f 

clupeiformes. This order is represented in the seas off SW Portugal by the highly 

abundant European Sardine Sardina pilchardus (henceforth “Sardine”) and by five 

other species: Engraulis encrasicolus, Alosa fallax, A. losa, Sardinella aurita and 

Sprattus sprattus; Borges 2007). For those faecal samples containing non-fish DNA, 

the presence/absence o f four particular invertebrate prey taxa was determined with 

separate PCR assays using group-specific primers testing for: i) amphipods, ii) 

isopods, iii) Mysidacea, and iv) cephalopods (Table 3.1). These taxa were chosen to 

be screened for, as cephalopods (cuttlefish) and isopods have previously been 

described as part o f the Storm Petrel’s diet (D’Elbe & Hemery 1998, Thomas et al. 

2006); amphipods (sandhoppers) and mysidacea (opossum shrimps) were the most
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abundant taxa obtained from net sampling in the field (decapods were also abundant, 

but no specific primers were already available or could be successfully designed for 

these taxa), and Sardine is the most abundant fish in the area (FAO 2004).

Table 3.1 Primers used for predator and prey DNA screening from faecal samples of 

European Storm Petrels.

T arget Primer
nam e

Sequence

5’-3’
P roduct

size
Annealing

tem p. Reference

Storm Petrel

mitochondrial 
Cytochrome b

PetrelFl

PetrelRl

TCATCAGTCGCACACACATGC 

C AGTTGCT AT G AGGGTG AGT A
200 58°C This study

Osteichthyes
mitochondrial

12S

FishFl

FishRl

CGGTAAAACTCGTGCC

CCGCCAAGTCCTTTGGG
300 56°C Jarman

unpubl.

non-fish
species

mitochondrial
COI

CI-J-2183 

CI-N-2353

CAACATTTATTTTGATTTTTTGG

GCTCGTGTATCAACGTCTATWCC
216 46°C

Simon et 
al. 1994; 
Simon et 
al. 2006

Clupeiformes 
mitochondrial 
Cytochrome b

C-CB285dF

C-CB431R

CGCCCACATTGGNCGAGG

GTGGCCCCTCAGAAGGACATTTGGCC
147 61°C J6rome et 

al. 2003

Isopoda 
nuclear 18S 

rDNA

IsopodNSSfl

IsopodNSSrl

T CAT G ATT Y AT GGG ATGT 

AAGACCTCAGCGCTCGGC
201-278 57°C Jarman et 

al. 2006

Amphipoda 
nuclear 18S 

rDNA

AmphNSSfl

AmphNSSrl

CTGCGGTTAAAAGGCTCGTAGTTGAA 

ACTGCTTTRAGC ACT CT G ATTT AC
204-375 58°C Jarman et 

al. 2006

Mysidacea
mitochondrial

COI

M ysFl

MysR2

TTCCTTGAGCGTGCTGGTTC

GAGGAAAGGCCATATCAGGC
194 47°C

Swan & 
King, 

unpubl.

Cephalopoda 
nuclear 28S 

rDNA

Squid28SF

Squid28SR

CGCCGAATCCCGTCGCMAGTAAAMGG
CTTC

CCAAGCAACCCGACTCTCGGATCGAA
180 60°C Deagle et 

al. 2005

Amplifications were performed separately for each primer pair, using the 

Multiplex PCR Kit (Qiagen) in 20 pi reactions containing lx  Multiplex PCR Master 

Mix, 0.2 pM o f each primer and 0.1 mg/ml of BSA (New England Biolabs). The 

template was 2 pi o f the DNA extract. Thermal cycling conditions were as follows:
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95°C for 15 min, 35 cycles (94°C for 30 s followed by the primer specific annealing 

temperature for 90 s followed by 72°C for 90 s), concluding with 72°C for 10 min. A 

minimum of three negative controls (the extraction control, plus at least two distilled 

water blanks) were included in each set o f PCR amplifications. PCR products were 

separated by electrophoresis in 1.5% agarose gels and visualised by staining with 

ethidium bromide, visualised by transillumination with UV light.

3.3.5 Cloning and Sequencing Prey DNA

Subsets of the faecal samples that contained prey from 2006-2009, were used to 

make the clone libraries. One clone library was produced for each o f the two years, 

for each prey type (i.e. fish - F ishFl/R l or non-fish -  CI-J-2183/CI-N-2353). The 

DNA concentration o f the PCR products was measured using Picogreen and the 

samples were pooled according to their concentration. The number of samples 

pooled per treatment (year/prey type) varied between 6 and 19. Products were cloned 

using the TOPO TA cloning system (Invitrogen) following the manufacturer’s 

protocol. Colonies containing the recombinant clones were cultured in LB broth and 

plasmid DNA was amplified with M l3 primers in 25 pi reactions containing 1 pi of 

culture medium, lx  o f buffer, 0.1 mM of dNTPs (Invitrogen), 1 mM of Mg'2, 0.5 

pM of each and 0.4 U o f Taq (Invitrogen). Thermal cycling conditions were as 

follows: 94°C for 3 min, 35 cycles (94°C for 20 s followed by 60°C for 20 s followed 

by 72°C for 90 s), concluding with 72°C for 10 min.

The PCR products were sequenced in an Applied Biosystems 3130x1 Genetic 

Analyzer using a 50 cm capillary array with POP-7 polymer. Due to unexpected low 

efficiency o f the cloning reactions, the number o f sequences retrieved per treatment 

(year/prey type) was relatively small and uneven across the years. All the species /
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taxa identified from the clone library were confirmed to exist in the study region 

from published literature and/or from the reference sequences from locally-caught 

samples.

3.3.6 Primer Optimisation

All the primers used were initially optimised to the needs o f the study. Gradient 

PCRs (45° to 60°) were performed for each primer pair, in order to optimise the 

annealing temperatures of the target taxon. The highest temperature at which the 

primers were still amplifying target DNA was selected and a range o f cross-reactivity 

tests were performed to verify the specificity o f the primers. This way, the primers 

were optimised in a way that it would be more likely to underestimate the presence 

of a prey type (the primers failing to amplify all the species o f that prey type) than to 

overestimate it (the primers amplifying non-target prey types). Each primer pair was 

tested against European Storm Petrel, 13 species o f fish, 15 species o f Amphipoda, 

three species o f Decapoda, six species o f Isopoda, two species o f Mysidacea, one 

species o f Tanaidacea, Gastropoda, Copepoda, Cumacea, Cephalopoda and Annelida 

(Table 3.II). None o f the primers used amplified DNA from European Storm Petrel.

Fish primers (F ishF l/R l) designed for bony fish (Osteichthyes) were very 

robust and amplified all target fish species tested. As expected, they did not amplify 

ray (a cartilaginous fish o f the superorder Batoidea). The only non-target species that 

these primers amplified was an isopod. Other individuals o f the same species and 

other isopod species were not amplified with these primers and therefore, it was 

assumed that the amplification was due to the gut contents o f the isopod, which 

presumably had recently eaten fish flesh (which is likely, considering the foraging 

behaviour o f isopods; Thomas et al. 2006).
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Table 3.II List of taxa used for specificity tests and cross-reactivity tests of the primers used in 

this study.

Phylum Class O rder Family Species
Annelida Oligochaeta Haplotaxida Lumbricidae Unknown

Maxillopoda Copepod Unknown Unknown
Cumacea Unknown Unknown

Melitidae Melita her gens is

Dexaminidae Atylus swammerdami
Dexamine spiniventris

Hyalidae Hyale schmidtii
Talitridae Talitrus saltator

Gammaridae Echinogammarus
planicrurus

Amphipoda Ampithoidae Ampithoe helleri
Jassafalcate

Ischyroceridae Jassa ocia
Jassa marmorata
Jassa pusilla

Eusiridae Apherusa jurinei
Arthropoda Malacostraca Apherusa mediterranea

Podoceridae Podocerus variegates
Oedicerotidae Pontocrates arenarius

Tanaidacea Tanaidae Tanais dulongii
Gnathiidae Paragnathiaformica

Eurydice pulchra

Isopoda
Cirolanidae Eurydice spinima

Eurydice naylory

Sphaeromatidae Sphaeroma sp.
Dynamene sp.

Mysidacea Mysidae Gastrosaccus roscoffensis
Gardonae Siriella gracilipes

Unknown
Decapoda Grapsidae Pachygrapsus marmoratus

Portunidae Polybius henslowii

Mollusca Gastropoda Unknown Unknown Unknown
Cephalopoda Teuthida Unknown Unknown
Chondrichthyes Batoidea Unknown Unknown

Clupeiformes Clupeidae Sardina pilchardus
Engraulidae Engraulis encrasicolus

Gadiformes Phycidae Phycis sp.
Merlucciidae Merluccius sp.
Moronidae Dicentrarchus sp.

Chordata Osteichthyes Carangidae Trachurus sp.

Perciformes Sparidae Pagellus sp.
Sparidae Pagrus
Mullidae Mullus sp.
Scombridae Scomber sp.

Pleuronectiformes Soleidae Unknown
Salmoniformes Salmonidae Unknown
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As desired, the non-fish primers (CI-J-2183/CI-N-2353) amplified all the 

invertebrate species tested but they also, occasionally, amplified DNA from six of 

the fish species. This did not seem to a major problem since the amplification signal 

was weak (faint DNA bands in the agarose gels), not consistent among assays (it did 

not always amplify any o f the fish species in different PCRs), meaning that in the 

context of the faecal samples the likelihood o f amplification o f fish sequences was 

much lower than for non-fish sequences. Nevertheless, this was taken into account 

when interpreting the results and all the results and statistics presented were also 

repeated using only the subset o f samples that were certain to contain non-fish DNA 

(either because they did not test positive using the fish primers or they tested positive 

for one or more o f the invertebrate groups; Amphipoda, Isopoda, Mysidacea or 

Cephalopoda), to make sure that the nature of the results did not change.

Primers specific to the order Clupeiformes (C-CB285dF/C-CB431R) were 

optimised with the aim to reduce the number o f species amplified so that they could 

give an indication o f Sardine consumption only. After optimisation, these primers 

amplified DNA from Sardina pilchardus but not from Engraulis encrasicolus. It was 

not possible to test the other four potential species o f Clupeiformes since there were 

no reference sequences available for those species. However, according to Jerome et 

al. (2003), these primers were not very sensitive to Sprattus sprattus, even at lower 

temperatures than used in the present study, so it can be predicted that this species’ 

DNA was also not amplified from the Storm Petrel faecal samples. Amongst the 

species tested for cross-reactivity, these primers amplified DNA from two non-target 

fish species, both Perciformes: Mullus sp. and Chub Mackerel Scomber japonicus. 

The latter had only a weak amplification signal.
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The primers specific to the class Cephalopoda (Squid28SF/R) were not tested 

in a range o f cephalopod species in this study but these have been successfully used 

in previous studies, amplifying a good range o f species (Deagle et al. 2005, 2007). 

These primers were very consistent throughout all the different PCR assays. 

Amphipod primers (Am phN SSfl/rl) failed to amplify all the amphipod species 

tested due to the need to increase the annealing temperature in order to increase their 

specificity to the group. Although amphipod consumption is likely to be slightly 

underestimated, these primers still consistently amplified a good range o f species. 

Isopoda and Mysidacea are likely to be most underestimated groups in the Storm 

Petrel diet since the primers designed for these taxa (IsopodNSSfl/rl and M ysFl/R l, 

respectively) were not shown to be very reliable, since they failed to consistently 

amplify a range o f species within the target groups.

3.3.7 Stable Isotope Analysis

The sampled body feathers were washed vigorously in triple baths of 0.25 N sodium 

hydroxide solution, alternated with triple baths of deionized water, in order 

to remove adherent external contamination as well as any external lipid layer 

resulting from the bird’s preening oil. Each bath lasted 5 min, and an ultrasound 

system was used, to increase the efficiency of cleaning. Feathers were then dried in 

an oven for 24 h at 50°C and cut into small fragments for isotopic analysis. Stable 

carbon and nitrogen isotope assays were carried out on 0.35 ± 0.05 mg subsamples 

loaded into tin cups. Isotopic ratios were determined by continuous-flow isotope- 

ratio mass spectrometry (CF- IRMS). Results are presented conventionally as 5 

values (%o) relative to Pee Dee Belemnite (PDB) for 813C, and atmospheric nitrogen 

(N2) for 515N.
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3.3.8 Data Analysis

Chromatograms o f sequences obtained from the clone libraries were examined by 

eye to check base calling using Sequencher DNA Software. To identify these 

sequences they were analysed with two complementary approaches:

i) Sequences were compared with sequences in GenBank, using the BLAST 

software, and in the Barcode o f Life Data systems (BOLD) v2.5; Judgements on the 

level of identification (species, genus, family, order, class, phylum, etc.) were made 

using the degree o f match (% similarity) from both databases and the Maximum 

Score given in GenBank. The thresholds used were created based on the range of 

results obtained (e.g. by comparing all the values against one another) and the 

knowledge of the fauna present in the study area. The scores obtained from 

sequences o f known species o f potential prey collected in the area were also used as 

reference. The criteria for the thresholds varied between fish and non-fish data since 

sequences for the DNA region used for fish were more abundant in GenBank and the 

fragment size was bigger, meaning that fish sequences overall had much higher 

scores than non-fish sequences;

ii) Sequences were aligned, together with sequences from reference species 

collected at the field site, and grouped into clusters using a Neighbour-Joining 

phylogenetic analysis (Saitou & Nei 1987), conducted in MEGA4 (Tamura et al. 

2007). Cloned sequences were clustered together first and sequences of known 

species were added one at a time. Only those sequences from known species that 

helped the classification o f the cloned sequences stayed in the analysis.

Logistic regression analyses were used to test for differences in the likelihood 

of presence or absence o f prey taxa between sexes and among years, along the season 

(i.e. days from May 1st) and according to their body mass. Chi-square contingency
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tests or Fisher’s exact tests (2-tailed) were used where appropriate, to compare 

frequencies o f different prey taxa among years.

3.4 Results

Table 3.Ill summarizes the number o f birds caught and the numbers of different 

types o f samples (i.e. faeces, vomit or growing feathers) obtained in each year and 

location. The number o f samples obtained depended on the total number of birds 

caught and the proportion o f birds that yielded a sample. Overall, more than 10% of 

the birds caught produced faecal samples (range 9-14% per year, Table 3.Ill), 

whereas the number o f vomit samples obtained was comparatively lower in all years, 

with only 3% of birds producing vomit samples overall (range 2-7% per year, Table 

3.III).

Table 3.III Summary of faecal, vomit and feather samples obtained from European Storm 

Petrel nestlings at a breeding colony in NW France, and from migrating European Storm 

Petrels in SW Portugal.

Location / Birds caught No. of faecal No. of vomit No. of

Year samples (% of samples (% of growing

birds caught) birds caught) feathers

Portugal 2006 136 19(14%) 10 (7%) -

Portugal 2007 520 49 (9%) 14 (3%) -

Portugal 2008 639 82(13%) 7 (2%) 15

Portugal 2009 370 40(11%) 25 (7%) 29

Portugal total

(2006-2009) 1,665 190(11%) 56 (3%)

France 2005 - 12 9 -

France 2006 - 29 29 -

France total

(2005-6) 41 38
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Not only were faeces more frequently obtained than vomit samples, but 

faeces were much more likely to yield DNA; the overall proportion o f faecal samples 

from which DNA was successfully amplified was 88.3%. However, none of the 

vomit samples produced amplified DNA, except for the few samples where 

extractions could be attempted from solid items found within the liquid vomit.

3.4.1 Presence /  Absence of Prey DNA in Faecal Samples

(i) Prey DNA in the Faeces of European Storm Petrel Nestlings

At the breeding colony in NW France, in both 2005 and 2006 the proportion of 

nestlings whose faeces contained DNA from non-fish prey was higher than the 

proportion o f chicks whose faeces contained DNA from fish (Figure 3.1). This 

difference in the proportion o f the two prey categories was significant in 2006 

(Fisher’s exact test, P = 0.001) but not in 2005 (Fisher’s exact test, P = 0.294). 

Nevertheless, the proportion o f fish and non-fish prey was very similar in the two 

years studied (Fisher’s exact tests: Fish, P = 0.427; Non-fish, P = 0.678). The 

proportion o f faecal samples that contained amplifiable bird DNA but from which no 

prey DNA could be amplified (possibly indicating a period o f fasting), was not 

significantly different between 2005 (11%) and 2006 (3.4%) (Fisher’s exact test, P = 

0.422).
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60 
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20 

0

Figure 3.1 Proportion of European Storm Petrel chicks sampled in NW France, which 

tested positive for fish or non-fish DNA in 2005 and 2006.
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(ii) Prey DNA in the Faeces of Migrating European Storm Petrels

Amongst the migrating Storm Petrels caught in the south o f Portugal, across the four 

years, faecal samples from individual Storm Petrels typically tested positive for 

either one or two different prey “types” (i.e. prey DNA from the following categories 

tested: fish, Cephalopoda, Amphipoda, Isopoda, Mysidacea or other non-fish prey), 

with few birds having no amplifiable prey DNA or DNA from more than two prey 

types (Figure 3.2).
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Figure 3.2 Number of prey “types” (categories: fish, Cephalopoda, Amphipoda, Isopoda, 

Mysidacea, or other non-fish prey) detected in the faeces of individual European Storm 

Petrels sampled in SW Portugal among 2006 and 2009.

Neither season, sex nor body mass were significant predictors o f the presence / 

absence o f either fish or non-fish prey DNA in the faeces; Logistic regression: all 

W ald  values < 1.268, d .f  = 1, all P values > 0.260. The proportion of birds found to 

have consumed fish was not significantly different among years (Logistic 

Regression: W ald = 3.611, d .f  = 3, P = 0.317) but there was a significant difference 

among years in the proportion o f birds eating non-fish prey (Logistic Regression: 

W ald  = 9.198, d .f  =  3, P  = 0.027; Figure 3.3). Although direct comparisons between 

the presence / absence o f prey taxa detected using different primers cannot be made
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due to potential differences in the sensitivity o f the primers, it is worth noting that, 

contrary to all other years, in 2009 there was a significant increase in the relative 

frequency o f birds testing positive for fish compared to non-fish (for 2009, x*= 8.250, 

d.f. = \ ,P  = 0.002; for 2006-2008, all P values > 0.616; Figure 3.3).

■ Non-fish □ Fish

Figure 3.3 Proportion of European Storm Petrels sampled in SW Portugal among 2006 and 

2009 which tested positive for fish and non-fish prey in each year.

The shift in prey taxa detected in 2009 is mainly due to an increase in the proportion 

of birds which ate only fish (Logistic Regression: Wald= 9.275, d.f. = 3, P = 0.026; 

Figure 3.4), despite the proportion of birds eating only non-fish or both prey types 

remaining similar among years (Logistic Regression: both Wald values < 5.496, d.f. 

= 3, both P values > 0.139, Figure 3.4). The proportion o f birds eating only fish in 

2009 was significantly different from that in each other year (except 2006 when the 

difference was marginally non-significant, P — 0.061), suggesting that a higher 

proportion o f birds were specialising more on fish as their main prey in 2009. Very 

few faecal samples had no amplifiable prey DNA (<20% of samples in each year, 

Figure 3.4) and the proportion of samples yielding no prey DNA did not vary 

significantly among years (Logistic Regression: Wald= 3.161, d.f. = 3, P = 0.367).
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Figure 3.4 Proportion of European Storm Petrels sampled in SW Portugal among 2006 and 

2009 which tested positive in each year for only non-fish DNA, only fish DNA, both fish 

and non-fish DNA, or yielded no prey DNA.

A large proportion of the Storm Petrels that had consumed fish were subsequently 

shown (by screening with clupeiform-specific primers) to have consumed clupeiform 

fish (most likely to be European Sardine) in each year: 46% in 2006, 73% in 2007, 

57% in 2008 and 64% in 2009. There was no significant variation among years in the 

proportion of birds testing positive for clupeiform DNA (Logistic Regression: Wald 

= 1.350, d .f = 3, P = 0.717). The presence / absence of these prey was also not 

related to date, sex or body mass; Logistic regression: all Wald values < 1.750, d .f = 

1, all P values >0.186.

Amongst the non-fish taxa tested using more taxon-specific primers (Figure 

3.4), cephalopod DNA was abundant in all four years, particularly in 2009. 

Differences among years in the relative frequency of cephalopods were however, not 

statistically significant (Logistic Regression: Wald = 2.661, d .f = 3, P = 0.447). No 

birds were found to have eaten Mysidacea in any of the years studied, despite these 

crustaceans being highly abundant on the shoreline of the capture site during the 

migration season (Thomas et al. 2006, pers. obs.). A small proportion of birds tested
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positive for amphipods in 2006 (9%) and 2008 (13%), but in 2009 the proportion of 

birds positive for amphipods was just below 20% and in 2007 almost 30% of the 

birds. Isopods were detected, though in very low frequencies, in 2006, 2008 and 

2009, but not in 2007. These apparent differences in the presence / absence of 

amphipods and isopods among years were, however, not statistically significant 

(Logistic Regression: both W ald  values < 1.478, d.f. = 3, both P  values > 0.687). 

Furthermore, season, sex and body mass were also not significant predictors of the 

presence / absence o f amphipods or isopods; Logistic Regression: all W ald  values < 

2.020, d.f. = 1, all P  values >0.155.
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Figure 3.5 Proportion of European Storm Petrels sampled in S W Portugal among 2006 and 

2009 which tested positive for different invertebrate taxa, using taxon-specific primers.

3.4.2 Cloning and Sequencing of Prey DNA from the Faeces of Migrating 

European Storm Petrels

Across the four years, a high proportion of sequences (43%) obtained through 

cloning and sequencing non-fish DNA from Storm Petrel faecal samples were 

identified as fungi by comparison with sequences in GenBank. Although the species 

matches were not very high (mean match = 82%), it is entirely possible that these 

sequences are indeed from fungi. Since these do not represent prey taxa, they could

The Migration Strategy, Diet & Foraging Ecology o f a Small Seabird in a Changing Environment 85



Chapter 3 Investigating the Diet of Migrating European Storm Petrels

either represent unintentional ingestion o f fungal material with animal prey, 

mycological components o f the gut flora, or contamination o f the faecal samples with 

fungi after they were collected from the field site or in the lab. Therefore, these 

fungal sequences were not considered for further analysis.

Across the four years, a total o f 170 prey DNA sequences were obtained. 

Tables 3.IV and 3.V present, respectively, the results for the identification of 

sequences for fish and non-fish prey DNA in the four years o f study. For the fish 

prey it was possible to obtain species or genus level identification for a good 

proportion (70%) o f sequences. However, in general the specific identification of 

sequences from the non-fish primers was poor and many prey sequences could only 

be identified with certainty to the phylum level. The phylogenetic analysis was 

therefore performed for the non-fish prey as a complementary approach to improve 

the identification o f non-fish sequences. The sequences from Dolphin Delphinus sp. 

listed in Table 3.V were not included in this analysis, since these were the only 

mammal species detected.

This analysis provided another means o f visualising the taxonomic 

distribution o f sequences from non-fish diet components among years, and improved 

some o f the identification o f sequences from these primers (Figure 3.6). For example, 

a cluster o f sequences from 2008 that were mostly identified in GenBank as possible 

arthropods, grouped with a decapod species. Some sequences, also identified only to 

the phylum in GenBank, clustered with isopods o f the genus Eurydice. Another 

putative arthropod sequence clustered with an amphipod species. Furthermore, 

sequences from 2009 also identified only to the phylum Arthropoda clustered with 

one sequence from 2007 classified to the class (Insecta), suggesting that the former 

were also likely to be insects.
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Figure 3.7 presents the relative abundance o f each identified taxon for each 

year, combining information from the GenBank identification and the phylogenetic 

analysis. Decisions on the level o f identification o f the sequences were made based 

on the proportion o f match and on maximum scores (Tables 3.IV and 3.V). 

Sequences found comprised prey from a total o f 13 distinct taxa o f fish and 12 

distinct taxa o f non-fish. European Sardine was the most common species identified 

in all the years but significant differences were found in the proportion o f DNA 

sequences from this species among years (Fisher's exact test: P = 0.036). The order 

with higher representation is that o f the Perciformes, which includes families such as: 

Scombridae, Carangidae, Gobiidae and Sparidae. The Perciformes is also the most 

represented order in the study area, in terms o f number o f species (Borges 2007). 

Demersal fish (Gadidae, Phycidae, Myctophidae, Peristediidae and Pleuronectiform) 

were identified in all years, except 2007 (though it is possible that the unknown 

sequences belong to a demersal species, as suggested by Table 3.IV). Assuming that 

the unknown sequences in 2007 belong to a demersal fish species, there is no 

significant difference in the proportion o f demersal fish species among the years 

(Fisher’s exact test; P — 0.5271). The only species o f Peristediidae present in the 

study area is the African armoured searobin Peristedion cataphractum, therefore this 

must be the species consumed by the birds. The identification o f shark 

(Carcharhiniform) DNA in 2008 indicates that the fish primers do amplify some 

Chondrichthyes species.
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Table 3.IV Fish taxa identified in the faeces of European Storm Petrels using the cloning and sequencing 

approach. In ‘bold’ is the taxonomic detail determined by the Maximum Score and % Match.

Y ea r  
(no. Samples 

pooled)

S p ec ie s
C o m m o n

n am e

N u m b er  o f  

seq u en ces

% M a tch  

G e n B a n k

M ax .

S co re

F am ily  /  

O rd er

2006
(11)

Sardina
pilchardus

European
Sardine 9 100 564 Clupeidae

Clupeiform
Microgadus
proximus1

Pacific
Tomcod 2 93 440 Gadidae

Gadiform

Sardina
pilchardus

European
Sardine 14 100 564 Clupeidae

Clupeiform

2007

Scom ber
japonicus

Chub
Mackerel 8 100 553 Scombridae

Perciform

(13) Trachurus
japonicus2

Jack
Mackerel 8 99 545 Carangidae

Perciform
Crystallogobius

linearis Cristal Goby 6 92 250 Gobiidae
Perciform

Opisthoproctus 
spp. (unknown) Barreleye 4 82 259

Opisthoproctidae
Argentiniform

Sardina
pilchardus

European
Sardine 17 100 564

Clupeidae
Clupeiform

Scom ber
japon icus

Chub
Mackerel 2 100 553 Scombridae

Perciform

2008 Pagrus auriga Redbanded
seabream 2 94 459 Sparidae

Perciform
(6) Mustelus

manazo2
Smooth-
hound 7 93 315 Triakidae

Carcharhiniform

Solea solea Common
sole 1 86 320 Soleidae

Pleuronectiform

Opisthoproctus 
spp. (unknown)

Barreleye 2 82 259 Opisthoproctidae
Argentiniform

Sardina
pilchardus

European
Sardine 17 100 564

Clupeidae
Clupeiform

Scom ber
japon icu s

Chub
Mackerel 4 100 553 Scombridae

Perciform

Scomber
scombrus

Atlantic
Mackerel 5 96 492 Scombridae

Perciform
2009
(18)

Trachurus
japonicus2

Jack
Mackerel 2 99 545

Carangidae
Perciform

Satyrichthys
amiscus1

Armored
Gurnard 1 93 438

Peristediidae
Scorpaeniform

Phycis
blennoides

Greater
Forkbeard 5 99 337 Phycidae

Gadiform

Hygophum
hygomii

Bermuda 
Lantern Fish 1 99 401 M yctophidae

Myctophiform

1 Genus does not exist in the study area. 2 Species does not exist in the study area but Genus does.
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Table 3.V Non-fish taxa identified in the faeces of European Storm Petrels using the cloning and

sequencing approach. In ‘bold’ is the taxonomic detail determined by the Maximum Score and % Match.

Y ea r
N r. o f % M atch M ax . O rd er  / P h ylu m  /

(no. samples S p ec ies
G en B a n k S co re F a m ilyseq u en ces C lass

pooled)

Neodiprion  spp. 1 97 67.6
Hymenoptera Arthropoda

(unknown)
1 Diprionidae Insecta

Actinote thalia 1 92 196 Leptidoptera Arthropoda
Nymphalidae Insecta

Cicurina pam pa 10 90 185
Araneae Arthropoda

/  C. madia Dictynidae Arachnida
2006 Scathophaga 1 99 307 Diptera Arthropoda
(11) stercoraria 1 Scathophagidae Insecta

Dolichopoda 1 92 239 Orthoptera Arthropoda
makrykapa R h ap h idop h orid ae Insecta

Sepia officinalis 1 98 302
Sepiida

Sepiidae
Mollusca

Cephalopoda
Demodex

folliculorum 98 294 Acarina
Arthropoda
Arachnida

Unknown 1 - - - -
Protocalliphora l 86 202

Diptera Arthropoda
sialia 1 Calliphoridae Insecta

2 0 0 7
Acrodipsas 1 86 189 Leptidoptera Arthropoda

Xr V/V/ / 

(6)
m ortoni Lycaenidae Insecta

Charaxes i 92 244 Leptidoptera Arthropoda
marmax 1 Nymphalidae Insecta

Euphausia i 84 176
Euphausiacea Arthropoda

superba i Euphausiidae Crustacea
Apis mellifera 9 98 326 Hymenoptera Arthropoda

iberica Apidae Insecta
Aegla p r a d o / 8 86 193 Decapoda Arthropoda
A. denticulate Aeglidae Crustacea

Orconectes 9 82 106 Decapoda Arthropoda
etnieri z Cambaridae Crustacea

2008
(11)

Lepetodrilus spp. 
(unknown) 1 80 91.6 Lepetodrilidae Mollusca

Gastropoda

A rr hip is vassei 1 84 104 Coleoptera
Eucnemidae

Arthropoda
Insecta

N apeogenes "3 94 276 Leptidoptera Arthropoda
lycora

J Nymphalidae Insecta
Delphinus T 98 320

Cetacea Chordata
delphis Delphinidae Mammalia

Unknown 3 - - - -

Sepia officinalis 2 98 302
Sepiida

Sepiidae
Mollusca

Cephalopoda

2009
(11)

- 3 82 121 Curculionidae
Coleoptera

Arthropoda
Insecta

M yrmecocystus i 89 172
Hymenoptera Arthropoda

mexicanus 1 Formicidae Insecta
Unknown 3 - - - -
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The diversity o f taxa among years can not be directly compared due to the 

different number o f individuals pooled in each year and the differences in the number 

o f sequences obtained (e.g. higher diversity o f fish taxa found in 2009 is probably 

related to a higher number o f individual faeces samples pooled), but it is notable that 

the composition o f taxa seems to vary greatly among years, both for fish and non-fish 

prey (Figure 3.7; note that 2007 had a very small sample size for non-fish prey). In 

2008 there was a high proportion o f DNA sequences from Decapods but these were 

absent in other years. Sequences from terrestrial invertebrates (Leptidoptera, 

Hymenoptera and other insects) were present in all years but there was a significant 

difference in the proportion o f these prey among years (Fisher's exact test: P = 

0.003). Cuttlefish (Sepiidae sp.) were identified using the sequencing approach in 

2006 and (apparently more abundantly) in 2009, although no significant difference 

was found in the prevalence o f this prey among years (Fisher's exact test: P = 0.119).

Evidence for scavenging o f food from large species was found in 2008 by the 

detection o f Common Dolphin {Delphinus delphis) and hound shark (Triakidae: 

Carcharhiniformes) DNA. Though the latter are small sharks and some species 

produce eggs, even the eggs are probably too big for a Storm Petrel to consume, 

besides being protected by a hard, leather like, capsule (Flammang et al. 2007, 

Concha et al. 2010). Parasitic mites (Acarina) found in 2006 are likely to have been 

ingested by the birds during preening their feathers and therefore can not be 

considered as prey in the usual sense.
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□ Sardina pilchardus

□ Gadidae

Fish Prey Non-Fish
prey

2006

□ Acari - parasitic mite

□ Diptera

a  Orthoptera 

a  other Arthropoda 

■ Sepiidae

□ Unknown

Q Sardina pilchardus

o  Scomber japonicus

m Trachurus sp.

■ other Pereiform

□ Unknown 
Actinopterygii 2007

□ Leptidoptera

□ other Insecta

□ Amphipoda

□ Isopoda

2008

□ Leptidoptera

□ Apis mellifera 

□ Decapoda

□ Isopoda

B Delphinus sp.

□ Unknown

dSardina pilchardus 

o Scomber japonicus 

uTrachurus sp.

B Scombridae 

D Peristediidae 

□ Phycidae 

■ Myctophidae 2009

■ Sepiidae 

3  Insecta

■ other Arthropoda 

□ Unknown

Figure 3.7 Pie charts showing proportions of various fish and non-fish prey DNA sequences 

obtained from the faecal samples of European Storm Petrels and identified on 

GenBank/BOLD.

□ Sardina pilchardus 

a  Scomber japonicus 

B Sparidae

a  Carcharhiniform 

a Pleuronectiform

□ Unknown 
Actinopterygii
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3.4.3 Analysis o f Prey DNA from Hard Parts in Vomit Samples

The only successful way o f obtaining DNA from regurgitations was from the hard 

parts contained within the otherwise liquid vomit, using the stool extraction kit. 

However, only 18 o f the total 56 vomit samples included hard parts. Furthermore, 

prey DNA was successfully amplified from only two out o f six samples using fish 

primers and three out o f 12 samples using non-fish primers. The two fish sequences 

obtained from vomit samples showed a 100% match with Sardine Sardina pilchardus 

in GenBank. The invertebrates were all visually identified as isopods {Eurydice spp., 

c.f. Thomas et al. 2006) but no reliable matches for their sequences could be 

obtained from online sequence databases (GenBank and BOLD).

3.4.4 Stable Isotope Analysis

Mean 813C values were very similar in both years examined (2008 and 2009, t = 

0.555, d .f  = 41, P = 0.582), while mean 815N values were slightly higher in 2009, 

suggesting that the Storm Petrels may have been feeding at a higher trophic level in 

2009 than in 2008 (Figure 3.8). However, this apparent difference in the 815N 

isotopic signature between 2008 and 2009 was non-significant (/ = 1.716, d.f. = 42, P 

= 0.094). Differences in the isotopic signatures between sexes could not be tested, 

since there were not enough males in the dataset to allow a meaningful comparison. 

However, the proportion o f males in this analysis was similar to that in the overall 

study sample, so therefore differences between sexes should not be a confounding 

factor in the interpretation o f the results.
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Figure 3.8. Isotopic ratios from growing feathers of European Storm Petrels, sampled during 

their northwards migration past SW Portugal in 2008 and 2009.

3.5 Discussion

3.5.1 Overview

This study is one o f the first detailed studies of the diet o f the European Storm Petrel, 

including temporal variation in diet, and the first to examine diet o f any storm petrel 

species during migration. The molecular techniques used here allowed the 

identification o f many prey items to the species and genus levels, some of which 

would not be likely to be identified with any other method.

This study has also revealed potential shifts in the foraging strategy of Storm 

Petrels, depending on the stage o f the annual cycle (e.g. migrating adults appear to 

take fish more frequently than do birds foraging to feed nestlings), and among years 

(in particular, 2009 presented a range of differences in diet composition in relation to 

the preceding three years). The analysis of Storm Petrel body mass variations
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presented in Chapter 4 shows that in 2009, the birds were carrying greater body 

reserves than in the previous three years, but food availability was lower overall for 

that year; this potential shift in foraging strategy in relation to environmental 

conditions and migration strategy will be discussed in detail in Chapter 4.

The taxonomic breadth and apparent flexibility o f Storm Petrel diet revealed 

by the molecular analyses, together with the considerable variation in the taxonomic 

composition o f the diet among the four years, suggests that, overall European Storm 

Petrels may be opportunistic foragers, eating the most available prey in each year. 

This opportunistic foraging strategy appears to include eating terrestrial invertebrates 

(probably dead or dying prey items floating in the water, constituting an easy food 

source for the birds) and scavenging (from corpses or even faeces) o f other taxa that 

would otherwise be too large for Storm Petrels to consume (e.g. Common Dolphin 

and probably hound sharks).

Thus, Storm Petrels might respond to changes in their environment by 

changing their foraging strategy according to spatial or temporal changes in foraging 

conditions. The European Sardine was identified as a potentially very important 

component o f  the diet o f  migrating Storm Petrels across the four years, both in terms 

o f the number o f  birds consuming it, and the biomass consumed. Further 

investigations o f  inter-annual variations in the abundance and biomass o f Sardine 

populations o ff SW  Portugal, in the context o f Storm Petrel foraging ecology, are 

presented in Chapter 4.

The importance o f prey from higher trophic levels, such as fish, particularly 

in 2009, was supported by the stable isotope analysis, as suggested by the relatively 

high 815N values (see e.g. Bearhop et al. 2006, Weiss et al. 2009, Paiva et al. 2010). 

A connection to the coastal/benthic zones was also indicated by the stable isotope
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ratios, particularly by the relatively high values o f 8 13C in the growing feathers of 

Storm Petrels compared with those o f the pelagic-foraging Cory’s Shearwaters 

Calonectris diomedea sampled approximately 100km further north o f the study site, 

at the Berlengas Islands o ff the Portuguese coast (Paiva et al. 2010). This view of 

Storm Petrels as coastal foragers, rather than entirely pelagic foragers, is supported 

by previous observations o f Storm Petrels occasionally regurgitating undigested 

isopods o f species that are restricted to the intertidal zone (Thomas et al. 2006). 

Similarly, the identification o f the demersal fish taxa (Gadidae, Phycidae, 

M yctophidae, Peristediidae and Pleuronectiform) in the molecular analysis o f diet, 

supports the view that Storm Petrels may opportunistically take prey with a demersal 

origin, at least in some circumstances. Since Storm Petrels do not dive more than a 

few cm below the sea surface (Brooke 2004, Flood et al. 2009, pers. obs.), demersal 

prey was most likely to have been obtained from fisheries discards. Storm Petrels are 

not commonly seen following fishing boats during the day (perhaps in order to 

minimise the risk o f predation by larger seabirds such as gulls Larus spp.). However, 

they may do so more frequently by night and they readily appear around small boats 

when a “chum” o f mashed fish is placed into the water by day or night (pers. obs.).

The stable isotopes failed to detect significant differences in the foraging 

strategy o f  European Storm Petrels between 2008 and 2009 (note however the 

relatively small sample size). In a study o f stable isotopes in Sardine and plankton in 

Galicia, NW  Spain (Bode et al. 2004), young Sardines (< 18cm long) and older 

individuals (> 18cm) had mean 815N values o f 10.5%o and 813C of-17% o. Among

t *5
plankton, N values were between 3%o and 8%o, varying with size class; 8 C values 

ranged from -18%o to -22%o. Thus, both 813C and 815N values were considerably 

lower than found in the Storm Petrels in the present study, supporting the view that

The Migration Strategy, Diet & Foraging Ecology o f  a Small Seabird in a Changing Environment 96



Chapter 3 Investigating the Diet of Migrating European Storm Petrels

Storm Petrels forage mainly at higher trophic levels prior to their arrival at the 

Portuguese coast. Combining stable isotopes analysis with molecular scatology in the 

study o f animal species’ diet can greatly enhance the outcome results provided by 

each o f the methods separately.

3.5.2 Comparison and Integration of Results

The use o f primers o f varying taxonomic specificity to screen for the presence / 

absence o f prey DNA has the advantages o f giving a semi-quantitative measure of 

prey consumed, based on the proportion o f birds that consumed each prey type. This 

approach is typically more economical than the cloning and sequencing approach in 

terms o f  financial cost o f the analysis, and it is ideal to identify levels o f predation on 

one or few key prey types (e.g. Sardines and cuttlefish Sepia sp. in the present study). 

However, this approach is highly dependent on the availability or design o f primers 

o f appropriate specificity, which need to be designed, optimised and tested before 

they can be applied. Furthermore, it is almost impossible to be certain about the 

primers characteristics (e.g. sensitivity to the different prey, specificity), since it is 

virtually unfeasible to test most primers against all potential non-target species 

within a marine system. For example, in this study, primers designed to amplify 

invertebrate species (CI-N-2535/CI-J-2183), were shown to also amplify vertebrate 

species such as dolphin and some fish. This was not a problem in this study, since the 

cross-amplification o f  fish by “non-fish specific” primers was minor (controlling for 

it did not change the nature o f the results) and it allowed the detection o f a broader 

range o f non-fish prey. Similarly, primers designed for Clupeiformes (C- 

CB285dF/C-CB431R) amplified at least two species o f perciform fish. While one o f 

these, the perciform genus Mullus sp., did not seem to be a common prey for
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migrating Storm Petrels, DNA o f Scomber japonicus was found in relatively high 

proportions in most years. Although the Clupeiforme primers did not seem very 

sensitive to this species compared to Sardine, it is possible that amplification of 

Scomber japonicus might contribute to the high frequency o f Clupeiformes found 

across the years. Nevertheless, based on the clone library results and considering the 

different specificity o f the primers, Sardine DNA is likely to have made the major 

contribution to the high proportion o f birds testing positive for clupeiform DNA in 

the present study. The Osteichthyes (bony fish) primers (F ish F l/R l) also amplified 

unexpected prey DNA sequences from Chondrichthyes (cartilaginous fish), but 

again, in this case it was beneficial to the study in that additional fish taxa could be 

sequenced and identified. As more primers become designed and tested in future 

studies, the chances o f finding reliable primers for dietary studies will be increased.

The presence / absence screening approach has also the limitation o f 

requiring some prior knowledge or expectation o f the potential prey. While fish are 

obvious prey to search for in pelagic species such as Storm Petrels, specific groups of 

fish or non-fish prey are harder to predict as being important unless previous studies 

have shown them to appear in the birds’ diet. For example, in this study it was not 

expected to find such an apparently high contribution o f terrestrial invertebrates in 

the birds’ diet and, therefore, primers targeting Leptidoptera or other terrestrial 

invertebrates were not selected for the presence / absence approach.

Another limitation o f these molecular methods is that the comparison of 

results obtained from different primer pairs might not be valid due to differences in 

the sensitivity o f the different primers. Therefore, the relative abundance in the faecal 

samples o f fish and and non-fish, or o f the different invertebrates (Cephalopoda, 

Amphipoda, Isopoda, Mysidacea), can not be directly compared within each year.
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This is also true for the cloning approach. Nevertheless, it is possible to establish 

comparisons on the patterns among years. Furthermore, the faecal samples from 

nestlings showed a reverse pattern, suggesting that the patterns obtained for the 

migrating adults are not just related to differential sensitivity o f the fish and non-fish 

primers. Even assuming that the proportion o f birds feeding on non-fish prey was 

underestimated, the proportion o f birds consuming fish is high and a fish meal will, 

almost certainly, be more energy-rich on average than an non-fish meal o f equivalent 

mass (Beukema 1997, Hilton et al. 1998, Paiva et al. 2006a, Hilton et al. 2000).

Information on the predator’s digestive physiology is useful when applying 

molecular methods to dietary studies, since the rate at which a predator digests each 

prey taxon will affect the results obtained. Feeding trials with captive animals fed 

known prey can be performed in order to calibrate the results obtained from the wild 

(e.g. Deagle et al. 2005b, 2006, 2010). This has been done mainly with invertebrate 

species (e.g. Agusti et al. 2003, Harper et al. 2005, Juen & Traugott 2007) and 

captive mammals, such as Steller’s Sea Lions Eumetopias jubatus (Deagle et al.

2005). Feeding trials can not be easily be performed on Storm Petrels though this 

have been done for other purposes in a range o f seabird species, suggesting a 

digestion period for fish prey o f about five hours (Hilton et al. 2000). However, trials 

on young Little Penguins showed that the DNA signal o f fish prey items could be 

detected in the faeces o f  the penguins up to four days after feeding (Deagle et al. 

2010). These detection periods can also vary depending on the sensitivity o f the 

primers used. A feeding trial could potentially be performed on Storm Petrel 

nestlings at the colonies if  these are fed items not provided by the adults. On this 

matter, different prey will have different retention times (i.e. period o f time in which 

the prey is retained in the predators’ guts) (Hilton et al. 1998, Hilton et al. 1999) For
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instance, digestion rates o f fish were found to be higher than those for squid which 

are themselves digested more rapidly than crustaceans (W ilson et al. 1985, Jackson 

& Ryan 1986, Jackson 1992). Different species o f fish might also have different 

digestion times related to size or lipid content (Hilton et al. 1998). Furthermore, 

molecular methods have the limitation o f not distinguishing between age classes o f 

prey (e.g. eggs, larvae or fully developed individuals), making it harder to evaluate 

differences in digestion periods among different prey types.

In the context o f the present study, such variations in primer sensitivity, 

specificity and detection periods o f different prey taxa emphasise the need for 

caution in interpreting differences in the frequency with which different categories of 

prey are detected using different primer pairs. Nevertheless, such methods are 

potentially powerful tools for tracking changes in diet composition over space and 

time, when using the same primer combinations to examine diet composition in 

different contexts (e.g. among years and different stages o f the annual cycle.

The cloning approach provided novel and detailed information on the type of 

prey that the birds feed on and on changes in the composition o f  prey among years. 

The specificity o f taxonomic identifications possible using this approach frequently 

allows the presence o f individual species in the diet to be confirmed, and sometimes 

identification is even possible to the level o f subspecies (e.g. the Iberian subspecies 

o f honeybee, Apis mellifera iberica, Table 3.IV).

As with the presence / absence screening approach discussed above, caution 

is required in interpreting some aspects o f the cloning and sequencing results. For 

example, the frequency with which different sequences are detected will depend on 

primer sensitivity and specificity, as well as, potential differences in the number o f 

mitochondria per unit mass in different prey taxa. These limitations could be
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explored further in future work, for example by comparing the number o f sequences 

that can be amplified per unit biomass, from samples o f fresh prey (cf. Deagle et al. 

2010).

The success o f  the cloning reactions in this study was unexpectedly low 

which resulted in a limited number o f DNA sequences obtained for each year / prey 

type, particularly for non-fish prey in 2007. This increases the likelihood o f bias 

towards certain prey types and makes the interpretation o f the results more difficult. 

For example, the apparently high proportion o f terrestrial invertebrates in 2007 

(50%), is derived from only two DNA sequences and it is likely not to be 

representative o f the real composition o f the diet. In 2008, with a larger sample of 

sequences, this proportion is much lower.

Increasing the number o f  sequences obtained would allow a more reliable 

semi-quantitative interpretation o f the results (Deagle 2010). Even with higher 

success rates o f the cloning, the sequencing process is expensive and usually limits 

the number o f sequences one can get. Next-generation sequencing (e.g. 

pyrosequencing) can overcome this issue by producing massive amounts of 

sequencing data, largely reducing the individual cost o f each sequence (Deagle et al. 

2009, Lemer & Fleischer 2010, Deagle et al. 2010). Although molecular methods are 

currently a relatively costly way to study diet (compared to visual identification, 

stable isotopes or fatty acids), this is largely compensated by the being non-invasive 

and having the potential to describe an animal’s diet with extraordinary and 

unprecedented detail. The ongoing expansion o f DNA online databases (GenBank 

and BOLD) will continue to enhance the power and applicability o f molecular 

methods for the study o f the diet o f free-living animals.
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Chapter 4

Climate-Driven Changes in the Strategic Regulation of Body 

Reserves by Migrating European Storm Petrels

4.1 Abstract

Understanding and predicting the impacts o f climate change on ecosystems requires 

knowledge o f the mechanisms, such as climate-driven changes in trophic 

relationships, underlying such changes. In this study, I report large and previously 

undescribed changes among years in the body reserves o f European Storm Petrels 

Hydrobates pelagicus: small, surface-feeding oceanic seabirds, sampled over 21 

years (1990-2010) during their northward migration past the coast o f  southern 

Portugal. These changes in the birds’ body reserves are associated with local sea 

temperatures, marine primary productivity and the abundance o f  a major food source, 

the European Sardine Sardina pilchardus. European Storm Petrels were heavier 

during their summer migration in years when spring sea temperatures, summer 

primary productivity and Sardine abundance were lower. These relationships suggest 

that the large changes in body reserves among years were the result o f strategic 

regulation o f reserves as a buffer against starvation in response to changes in food 

availability. Local variables were more successful at accounting for among-year 

variance in body reserves than the ocean-basin scale North Atlantic Oscillation; the 

major index o f climate variability across the North Atlantic. This suggests that birds 

were responding directly to climate-driven changes in local foraging conditions, 

which are themselves driven by larger-scale climate processes. This study shows that
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body mass regulation behaviour can act as a sensitive bio-indicator o f the effects 

across trophic levels o f climate-driven environmental changes.

4.2 Introduction

Improving our understanding o f the potential impacts o f  climate change on different 

ecosystems requires knowledge o f the mechanisms underlying climate-driven 

ecological changes (Moller et al. 2004a). The impacts o f climate change are 

manifested at a range o f spatio-temporal scales (Miller 2004), from short-term 

changes in local phenomena (hours - days, 10s o f m) such as air temperature, wind 

speed and direction, through mesoscale phenomena (weeks - months, 100m - 100km) 

such as upwelling intensity, salinity, sea surface temperature and currents, to long­

term and large-scale phenomena (months - years, 100 - >1,000 km) including 

decadal climatic oscillations such as the North Atlantic Oscillation (NAO, Hurrell 

1995, Hurrell & van Loon 1997) and the apparent ongoing anthropogenic increases 

in global surface temperatures (IPCC 2007). Local, short-term variations are likely to 

most proximately mediate the impacts o f larger-scale and longer-term climate 

variations on animals (Moller et al. 2004a). However, phenomena such as the near 

simultaneous fluctuations o f fish stocks in widely separated regions support the view 

that such ecological effects can also be driven by climate processes operating at a 

global scale (Schwartzlose et al. 1999).

Climate variability can affect animals directly through physiological 

mechanisms (e.g. metabolism, reproduction, mortality), as well as indirectly through 

affecting their biological environment (e.g. predators, prey, within-population 

interactions and disease; Ottersen et al. 2004). Climate-driven change in trophic 

relationships is considered to be one o f the crucial mechanisms through which
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climate will impact ecosystems (Werner et al. 2004, Durant et al. 2007, Miller- 

Rushing et al. 2010). Indeed, the response o f seabirds to climate change appears to 

be a good integrative index o f the cumulative effects o f  climate across the trophic 

levels below their position in the food chain (Durant et al. 2004, Piatt et al. 2007 - 

but see Gremillet & Charmantier 2010 for important limitations o f such indices).

Although there has been an increasing number o f studies on the relationship 

between birds, food supply and climate (e.g. Furness & Tasker 2000, Frederiksen et 

al. 2004, Kendall et al. 2004), direct behavioural responses o f birds to climate are 

much less explored and have been identified as a priority for future studies (Moller et 

al. 2004b, Stenseth et al. 2004). In this Chapter, evidence is reported for an effect o f 

climate-driven ecological changes on a behavioural survival strategy, the regulation 

o f body reserves in a small migrating seabird -  the European Storm Petrel 

Hydrobates pelagicus. Small seabirds are likely to be more responsive to changes in 

their environment (e.g. thermal conditions, food supply) than larger seabirds because 

o f their higher metabolic rate and greater surface area / volume ratio, and therefore 

provide good case-studies to investigate impacts o f climate. However, the smallest 

seabirds (storm petrels) tend to be harder to study (e.g. due to underground nesting, 

being nocturnal at the colonies, more sensitive to disturbance), particularly away 

from the breeding grounds (e.g. being harder to observe, too small for tracking 

devices).

European Storm Petrels (henceforth “Storm Petrel”) are small (~26g), long- 

lived pelagic seabirds, which forage mainly in flight by picking small items o f food 

from the water surface (Cramp & Simmons 1977). The species breeds along the 

Atlantic seaboard o f Europe (the migratory subspecies H. p. pelagicus) and around 

the M editerranean basin (the apparently non-migratory subspecies H. p. melitensis,
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Robb & M ullamey 2008). Birds from the Atlantic breeding colonies migrate south to 

overwinter o ff the coasts o f Western and Southern Africa (W emham et al 2002). The 

present study investigated variation in the body reserves o f migrating birds o f the 

Atlantic population (i.e. H. p. pelagicus), sampled over a 21-year period, during their 

late spring / early summer northward return migrations past the coast o f south-west 

Portugal. The birds sampled were presumably mainly female pre-breeders 

prospecting potential breeding sites (see Chapter 2).

The most likely causal link between climate and the migration fuel loads of 

Storm Petrels is food availability (Stenseth et al. 2004). Storm Petrels, like most 

Procellariiformes, store energy in the form o f stomach oil (Place et al. 1989, Warham 

1990, 1996) and probably also as subcutaneous fat reserves (Blem 1990). Such 

energy storage has been interpreted as an adaptation to a pelagic feeding 

environment in the context o f reproduction (Lack 1968, Ashmole 1971), enabling the 

birds to buffer themselves against starvation during their incubation shifts, shared by 

both sexes, which lasts on average three days for the European Storm Petrel (Scott 

1970, Bolton 1996). Lipid accumulation is also very important for the nestlings, 

which are able to survive for many days without being fed by their parents (Warham 

1990, 1996). Although it is known that storm petrels carry stomach oil throughout 

their life cycle and not ju st during breeding (Jacob 1982), there is an almost total lack 

o f knowledge on its function as fuel as part o f the migration strategy. Similarly, very 

little is known about the diet o f storm petrels during migration (see Chapter 4). 

Studies o f European Storm Petrel diet come mainly from food provided to chicks at 

colonies (composed chiefly o f zooplankton, small fish and cephalopods) (Cramp & 

Simmons 1977, D ’Elbee & Hemery 1998) but there is evidence that this can be
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markedly different from the diet o f adults, even during the breeding season (Scott 

1970).

The abundance o f the taxa that comprise the diet o f Storm Petrels may itself 

depend ultimately on the level o f marine primary productivity, which can vary 

substantially from year to year, depending on climatic and oceanographic conditions. 

Previous work has shown that in the waters off the western seaboard o f Iberia, net 

primary productivity (NPP) is driven primarily by oceanographic conditions, 

particularly sea surface temperatures (SST) and changes in wind direction, at the end 

o f the winter (Relvas et al. 2007, Santos et al. 2007). However, the trophic links 

from primary productivity to the abundance and availability o f  food for seabirds are 

complex, with several other interrelated climatic and oceanographic variables 

contributing directly or indirectly to inter-annual variability in abundance and 

availability o f prey taxa. These variables include surface air temperature, sea-level 

pressure, wind speed and direction, upwelling intensity and changes in ocean 

currents (e.g. Abraham & Sydeman 2004, Behrenfeld 2006, Hipfner 2009).

W armer temperatures at the sea surface tend, in general, to decrease 

phytoplankton productivity, but there may be marked geographical variation in the 

relationship between SST and NPP. For example at a local scale, NPP is higher in 

areas o f upwelling and fronts between water bodies o f contrasting temperatures. At a 

larger spatial scale, NPP varies along gradients o f light and nutrient availability such 

that contrasting climate controls on ocean productivity can cause primary production 

to vary either positively or negatively with SST in different locations (Behrenfeld

2006). Furthermore, depending on the composition and flexibility o f seabird diet, 

climate-driven changes in sea temperatures may have varied effects on seabird 

foraging ecology and migration fuelling strategies (e.g. Kitaysky & Golubova 2000).
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During breeding, zooplankton taxa (other than fish larvae) seem to comprise 

a major part o f the diet o f European Storm Petrels (W itherby et al. 1965, D ’Elbee & 

Hdmery 1997), despite fish having higher calorific density (Beukema 1997, Perez 

1994, Paiva et al. 2006a). The analysis o f diet presented in Chapter 4 suggests that, 

during migration, Storm Petrels feed extensively on fish, o f  which the European 

Sardine (henceforth “Sardine”) is an important component (see Chapter 2). The 

Sardine is the most abundant fish species present o ff the coast o f Portugal (FAO

2004) and constitutes an energy-rich diet for the birds (Paiva et al. 2006b). The 

spawning season o f  Sardines in Iberian waters ranges from November to April, but 

along the southern coast o f Iberia it occurs mainly in the spring (March - May; Re et 

al. 1990, Santos et al. 2001). This means that by May - June, when Storm Petrels are 

migrating past this coast, the Sardines will be potentially available as prey for the 

birds mainly in the stages o f eggs, larvae or early juvenile (size range: 11-60 mm; 

Santos et al. 2005).

In the current Chapter, inter-annual variability in the North Atlantic 

Oscillation (NAO) index, temporal patterns in SST and NPP, as well as data on local 

surveys o f adult and juvenile Sardines, were used to investigate climate-driven 

changes in food availability for migrating European Storm Petrels and their 

consequent regulation o f  energy reserves during migration. To my knowledge this is 

the first study to investigate such links in a migrating seabird.

4.3 M ethods

4.3.1 Study Area and Ecosystem Features

This study was conducted on the SW coast o f Portugal (37° 04’ N, 8° 47’ W) in the 

temperate NE Atlantic region. The study area is located at the northern limit o f the
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North Atlantic Upwelling System, characterized as one o f the world’s major 

upwelling areas. In this area the upwelling is induced by the prevalence and 

steadiness o f northerly winds between April and September, strengthened during the 

summer by a thermal low pressure centre typically located over the Iberian 

Peninsula. Associated with the upwelling there is typically a bloom o f phytoplankton 

in April - May, which in turn triggers a bloom in zooplankton in May -  June 

(Aristegui et al. 2004). Since phytoplankton blooms are strongly influenced by SST 

(Stenseth et al. 2004), SST in March - April and NPP in April - May could 

potentially be useful indices o f inter-annual variability in the bottom-up control o f 

the marine ecosystem in Portuguese waters.

The study area is generally highly productive and the focus o f intensive 

commercial fisheries. The most commercially important fish species in this area is 

the European Sardine (37% o f landings by mass in 2004), followed by Atlantic 

Mackerel Scomber scombrus (9%) and Horse Mackerel Trachurus trachurus (8%) 

(FAO 2004).

4.3.2 European Storm Petrels

Between 1990 and 2010, Storm Petrels were captured at the study site during their

th
northward migration, between May 16th and August 17 (study periods varying to 

some extent between years; median dates ranged from 1st June to 29th June, with the

t f i  t hgreat majority o f  individuals caught between May 20 and June 20 ). Acoustic 

playbacks o f the species’ “purr” call (Cramp & Simmons 1977) were used to attract 

the birds into mist nets at night. Birds captured with this method are mainly 

immature birds (Fowler et al. 1982), migrating rapidly northwards (often 

>200km/day, Bolton & Thomas 1999) towards the Atlantic breeding colonies (Harris
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et al. 1993). Only a very small proportion o f the storm petrels caught are o f the 

Mediterranean subspecies H. p. melitensis (<1%, R.A. King, R. Medeiros et al., 

unpublished data) or are subsequently retrapped at the study site (<1%). There is a 

substantial female bias in the sex ratio o f the sampled birds, though this bias is 

largely consistent between years (mean sex ratio ± SD = 85.5% female ± 4.1%, see 

Chapter 2). All birds captured were weighed (to O.lg) and wing length (flattened, 

maximum chord in mm, Svensson 1992) was measured. Date (no. o f days from May 

1st) and time o f  capture (hours relative to midnight) was also recorded for each 

capture.

4.3.3 North Atlantic Oscillation (NAO)

The NAO is a cyclic oscillation in latitudinal pressure gradients across the North 

Atlantic, which captures a large amount o f the inter-annual variation in climatic, 

oceanographic and ecological conditions across the North Atlantic basin (Hurrell 

1995, Stenseth et al. 2004). The NAO can be quantified as an NAO index -  the 

difference in atmospheric pressure between Iceland and Lisbon in Portugal (Hurrell 

1995), Iceland and Gibraltar (Jones et al. 1997), or Iceland and the Azores (Walker 

1924, Uppenbrink 1999). The latitudinal pressure gradient across the NE Atlantic is 

most pronounced during the winter months, and NAO index values for the winter 

period have been shown to be more strongly associated with oceanographic and 

ecological processes than values over the rest o f the year (Hurrell 1995, Rogers 

1997). In the present study, the winter (December-March) NAO index values 

between Portugal and Iceland were used. Since delayed NAO impacts on ecosystems 

can sometimes be stronger than more direct ones (Stenseth et al. 2004), one-year and 

two-year lagged NAO index values were also tested (i.e. the winter NAO index value
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from 1 year and 2 years previously), henceforth referred to as NAO*1 and NAO*2 

respectively. These data were obtained for the whole study period, from the Climate 

& Global Dynamics Division o f the NCAR Earth System Laboratory, available to 

download from: http://www.cgd.ucar.edu/cas/ihurrell/indices.html (last accessed 

01/06/2010).

4.3.4 Sea Surface Temperatures (SST)

Means values for sea surface temperatures from January to June were obtained for 

1990-2010 from the British Atmospheric Data Centre, provided by the Hadley 

Centre at the UK Meteorological Office. These data are obtained from in situ sea 

surface observations and satellite derived estimates o f temperatures at the sea 

surface. Data available includes monthly mean gridded, global SSTs from 1870 to 

present, downloadable from: http://bade.nerc.ac.uk/home/index.html (last accessed 

01/08/2010).

The data are downloaded as grids, in which the grid spacing is 1° in both latitude and 

longitude. The sea area over which mean SST was calculated was defined by 

estimating the birds’ flight range over the period during which birds could be 

adjusting their stored energy reserves. This was achieved by taking the observed 

variance in individual mass across the whole study period (5 .2 lg ) and calculating the 

period o f  time over which this degree o f variation in body mass is likely to be 

generated, considering that a breeding European Storm Petrel gains weight at the rate 

o f 1.6g/day whilst away from the nest foraging at sea (Bolton 1996; 5 .2lg  / 1.6 g 

day*1 = 3.26 days). Using data from European Storm Petrels ringed in Portugal and 

subsequently recaught in different countries along the coasts o f NW  Europe, Bolton 

& Thomas (1999) estimated the average daily cross-country travel speed for
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migrating individuals as 192.4 km/day. Based on this, the estimated foraging range to 

account for the observed variation in mass was 3.26 days * 192.4km/day = 626.5km. 

A sea area o f 600km, just within this estimated flight range, between the bearings of 

South to SW from the capture location in SW Portugal (Appendix 4.1), was used to 

extract mean monthly SST values for each year o f the 21 year study period, for use in 

the subsequent analyses.

4.3.5 Net Primary Productivity (NPP)

Net primary productivity is defined as the carbon produced by photosynthesis that is 

not immediately used by the plants (in terrestrial habitats) or phytoplankton (in 

marine habitats) to support their own maintenance requirements. Data on NPP were 

obtained for the years 1998 to 2007 from the Sea-viewing Wide Field-of-view 

Sensor (SeaW iFS) database at: http://www.science.oregonstate.edu/ocean.

productivitv/index.php (last accessed 01/08/2010).

M ean monthly NPP values were downloaded for the months January to June 

in each year. This database comprises estimations made using the standard Vertically 

Generalized Production Model (VGPM, Behrenfeld & Falkowski 1997). The VGPM 

is a model that estimates NPP from the upper-ocean chlorophyll concentration using 

a tem perature-dependent description o f chlorophyll-specific photosynthetic 

efficiency, given as milligrams o f carbon fixed per day per unit volume (mg C / m / 

day). The global data are downloaded in a 1080 x 2160 grid, in an equidistant 

cylindrical projection, in which the grid spacing is 1/6 o f a degree in both latitude 

and longitude. As for the SST data described above, the monthly mean was obtained 

from the same 600km sea area, obtained by estimating the birds’ flight range over the
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period during which birds could be generating the variation observed in their stored 

energy reserves (Appendix 4.II).

4.3.6 Sardine Abundance and Biomass

Data on the abundance and biomass o f European Sardines in waters o ff the Algarve 

region o f southern Portugal were obtained from IPIMAR (Portuguese Research 

Institute for the Fisheries and the Sea) reports on sardine surveys, using acoustic 

survey methods together with standardised fishing data (Marques et al. 2005). Data 

were available on the following variables: (i) abundance o f adult Sardines, (ii) 

abundance o f juvenile Sardines, (iii) total biomass o f adults and juveniles. Data on 

total Sardine biomass were available for surveys performed between 1995 and 2005, 

but data on the numbers o f adults and juveniles are only available from 1995 until 

2002. These surveys were usually carried out in March, but the timing o f surveys 

varied to some extent across the years, between February and June (Marques et al.

2005).

4.3.7 Data Analysis

Data were analysed in SPSS v l6  (SPSS Inc.) and R v2.10.1 (The R Foundation for 

Statistical Computing, 2009). An initial general linear model (GLM) was performed 

to investigate the changes in body mass among years, accounting for other non- 

environmental variables (i.e. date, time o f night and sex) and controlling for wing 

length (as a measure for body size). The variable “date” was quantified as the 

number o f days from May 1st in each year. The model tested for linear and non-linear 

(quadratic and cubic) effects o f date and time. A stepwise approach was used, 

sequentially removing the least significant variables one at a time to reach the
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minimum adequate model containing only significant parameters (Appendix 4.III). 

From this “baseline model”, parameter values for each year were used to calculate 

the relative body mass for each year (i.e. body mass corrected statistically for wing 

length, date and time o f night). These annual mean relative body mass values were 

used to analyse the direct relationships with the environmental variables using 

Pearson correlations (n < 21 years).

Further analysis involved using GLMs to test for the effect o f different 

environmental variables that could account for the variation in body mass between 

years. Parameters from the baseline model described above (i.e. wing length, date 

(linear term), date2 (quadratic term), and time o f night) were all retained in all o f the 

models testing for associations between body mass and the following environmental 

variables: NAO, SST, NPP and the abundance or biomass o f Sardines. These 

environmental variables were included in models to test whether they could account 

for the observed variation in body mass among years and therefore year was not 

included in these models. A separate set o f models was run for each class of 

environmental variables (i.e. SST and NPP from January to June, direct and lagged 

NAO effects, numbers o f  juvenile and adult Sardines and total biomass o f adult and 

juvenile Sardines). The explanatory power and fit o f each o f these different models 

was compared within each class o f environmental variable, using a range o f statistics 

relating to individual variables (probability values, partial Eta2 values, parameter 

estimates) and model parameters (model R2 and model AIC values). The best 

individual predictors within each class o f environmental variable were compared 

using the m odels’ adjusted R values. The non-linear (quadratic) effect o f each 

environmental variable was also investigated and compared with the linear-only 

models using the model AIC values.
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4.4 Results

A total o f 5,258 individual European Storm Petrels was caught in the 21 years o f 

study. Mean body mass ± SD for the whole study period was 26.3 lg  ± 2.28g (range 

= 19.2g -  37.7g; 99% o f individuals weighed 20.9g -  33.2g). Mean annual relative 

body mass (i.e. controlling for variation in wing length, date and time of capture) 

varied dramatically among years, over a range o f 3.41 g over the whole study period 

(equivalent to 13% o f the mean body mass across all 21 years). Rather than varying 

erratically between successive years, the pattern o f variation in body mass followed a 

clear trend (mean relative body mass in one year was positively correlated with that 

in the next year, r = +0.453, n = 20 contrasts, p = 0.045), although in the last three 

years (i.e. 2008-9, 2009-10) changes between years have been more dramatic than 

over the rest o f the study period (Figure 4.1).
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F ig u re  4.1 C hanges in body m ass (m ean annual body m ass ±  1SE) o f  European Storm  

Petrels captured in SW  Portugal am ong 1990 and 2010. N um bers o f  birds sam pled each year 

are presented in Table 4.1.
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An initial GLM testing for significant variation in body mass according to 

sex, year, season and time o f night, showed no significant differences in the 

European Storm Petrels’ mean body mass between sexes (using the sex data for birds 

caught in 2003-9 see Chapter 2), but significant effects o f year, time o f night 

(increasing body mass over the course o f the night) and date (decreasing body mass 

over the course o f the migration season). The date effect is, furthermore, non-linear 

(the steepest decline in mass with date occurs at the start o f the migration season). 

Therefore, to control statistically for these effects, the variables date, date , time o f 

night and wing-length (as a measure o f body size) were included in all subsequent 

GLMs testing for the effects o f environmental conditions on changes in the birds’ 

body mass among years.

According to the results o f the GLMs, N A O '1, SST-April, NPP-May and 

biomass o f Sardines were the best individual predictors o f Storm Petrel body mass 

within each class o f environmental variable (Figure 4.2, Appendix 4.III.A). The 

direction o f the association between the Storm Petrels’ body mass and SST in each 

month from January to June was always negative, while that between body mass and 

NPP in each m onth changed from positive in February, to negative in May. NAO, 

N A O '1 and N A O '2 each had a positive association with the birds’ body mass. Local 

numbers o f juvenile and adult Sardines and total Sardine biomass were each 

negatively associated with the birds’ body mass, though the partial Eta values 

indicated that total Sardine biomass had the strongest relationship with the birds’ 

body mass.
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F ig u re  4.2 Parameter estim ates (±SE ) obtained from G LM  analyses, for the association  

betw een European Storm Petrel body m ass (dependent variable), and sea surface temperature 

(S ST ), net primary productivity (N PP), the North A tlantic O scillation  (N A O ) or the 

abundance and b iom ass o f  Sardines (independent variables). The sym bols indicate the 

sign ifican ce o f  the association  in the GLM; * indicates p <  0 .01 , ** indicates p <  0 .001.

Table 4.1 shows the annual mean values for the body mass o f Storm Petrels over the 

study period, together with the most relevant environmental variables identified by 

the comparisons o f GLM models shown in Appendix 4.III. According to the 

individual GLMs, SST-April is the variable that alone explains the highest 

proportion o f  variation in the birds’ body mass (summarised in Table 4.II, full details 

in Appendix 4.III). W hilst quadratic relationships did result in a very minor 

improvement in adjusted R values (Appendix 4.III), the relationships were broadly 

linear. In particular, there was no evidence to suggest that body mass peaked at 

intermediate values o f any o f the environmental variables, within the range of 

environmental variation observed in the present study (Figure 4.3). Since the
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deviation from a linear relationship was extremely small, the linear relationships are 

reported below.

Table 4.1 Inter-annual variation in the body mass of European Storm Petrels, together with 

equivalent data for environmental variables which GLM model comparisons identified as 

being most strongly associated with Storm Petrel body mass. Tests for temporal trends are 

also presented (Pearson correlations of each variable with year, n = no. of years). Mean 

relative body mass is the annual mean body mass corrected for individual variation in wing- 

length, date and time of night.

Y ear N A O 1
Index

(1-year
lag)

SST
A pril
(°C)

NPP 
M ay 

( mg C / 
m 2 / d a y )

Sardine
biomass

(kt)

M ean 
S torm  
P etre l 
body 

m ass (g)

M ean 
relative 

body 
m ass (g)

No. of 
Storm  
Petrels 
caught

1990 5.08 17.7 - - 26.9 26.6 7
1991 3.96 17.2 - - 28.4 28.2 31
1992 1.03 17.2 - - 28.5 28.2 52
1993 3.28 17.6 - - 27.4 27.3 340
1994 2.67 17.3 - - 27.4 27.1 483
1995 3.03 18.0 - 133 26.0 25.8 396
1996 3.96 18.3 - 106 25.4 25.1 19
1997 -3.78 18.9 - 96 25.6 25.3 180
1998 -0.17 18.3 714.12 65 26.2 26.0 786
1999 0.72 17.8 774.55 39 26.9 26.7 241
2000 1.7 17.8 618.21 59 27.4 27.2 28
2001 2.8 18.1 827.75 24 26.5 26.6 88
2002 -1.9 17.9 893.27 105 25.2 25.2 225
2003 0.76 18.1 888.04 60 25.7 25.6 112
2004 0.2 18.1 702.69 39 26.0 26.0 116
2005 -0.07 18.1 957.14 62 25.5 25.5 435
2006 0.13 18.4 784.88 - 26.0 25.9 136
2007 -1.09 18.2 806.45 - 26.3 26.2 519
2008 2.79 18.3 - - 25.7 25.6 637
2009 2.1 17.5 - - 27.5 27.5 367
2010 -0.41 18.7 - - 25.1 25.1 60

Tests for directional change over the sampling period
r = -2.85 0.514 0.401 -0.593 -0.536 -0.464 n.a.
n = 21 21 10 11 21 21 (effort-
P = 0.211 0.017 0.251 0.055 0.012 0.034 dependent)
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Table 4.II Summary o f four different general linear models (GLMs) explaining variation in 

body mass (dependent variable) of European Storm Petrels captured in SW Portugal in May 

- June. In addition to one of the environmental variables shown in the table, all four models 

also contained: wing, date, date2 and time of night. Full details o f these and related models 

are given in Appendix 4.III.

Environmental 
variable in the 
GLM

M odel R2 
(adjusted)

Partial
Eta2

Parameter
values

F (d.f.) P

NAO lag -ly r 0.060 0.019 + 0.168 96.973
(1,5045)

<0.001

SST-April 0.111 0.072 - 1.561 390.547 
(1, 5045)

<0.001

NPP-May 0.065 0.017 - 0.003 45.001
(1,2678)

<0.001

Total Sardine 
biomass

0.060 0.015 -0.009 40.689
(1,2622)

<0.001

Figure 4.3 summarizes the direct correlations amongst the four classes of 

environmental variables (i.e. NAO, SST, NPP and Sardines), and between each of 

these and the European Storm Petrels’ body mass. The direct relationships between 

mean annual relative body mass o f the Storm Petrels and each o f these parameters 

are shown in Figure 4.4.

r = 0.443* 
n=21J NAO

r = -0.536* 
n = 21 . r = -0.034= -0.310 

n =  10

r = -0.721*r = 0.078
Body
massNPP

r = -0.628*r = 0.295 
S j i = 8

r = 0.287
Sardine
biomass

r = -0.858 
n = 21

Figure 4.3 Direct correlations amongst environmental variables, prey abundance, 
and the mean annual relative body mass o f European Storm Petrels. Sample size 
(n) is the number o f years for which data was available for each correlation.
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Figure 4.4 Relative body mass (corrected for wing size) of European Storm Petrels captured in SW Portugal 

in May/June, plotted against a) 1-year lagged NAO index (NAO*1); b) mean Sea Surface Temperatures 

(SST) in April; c) mean Net Primary Productivity (NPP) in May; and d) Sardine biomass in Spring- Graphs 

a) and b) include data from 1990-201 0; graph c) includes data from 1998-2007. The open circles in Figure 

4.4b) represent those years (1998-2005) when data are also available for NPP and Sardine biomass.

Each o f these parameters aflone explained respectively 19.6% (NAO’1), 73.6% (SST- 

April), 52% (NPP-M ay) an«d 39.4% (Sardine biomass) o f the among-year variations 

in the birds’ relative body mass (Figure 4.4). However, note that the years for which 

data are available vary among the different environmental variables, so these values 

are not necessarily directly comparable. Although SST-April again explains most of 

the variation in the birds’ body mass, Figure 4.4a suggests that the period for which
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there are NPP and Sardine data available (open dots) did not show such a large 

amplitude in SST, compared with the whole sampling period o f 1990-2010.

4.5 Discussion

The large inter-annual variations in the body mass o f European Storm Petrels remain 

apparent and highly significant when structural body size (i.e. wing length), time of 

night and seasonal variations are controlled for statistically. These inter-annual 

variations span more than 13% o f the mean body mass across the study period, and 

therefore represent large fluctuations in the size o f the birds’ stored energy reserves 

(likely to be primarily subcutaneous fat and / 

or stomach oil).

Storm Petrels appear to respond sensitively to inter-annual changes in their 

environment, namely to SST, NPP and Sardine availability. Although migrating 

Storm Petrels probably sample food availability over a wide area prior to capture in 

Portugal, the level o f body reserves which these birds carry seems more sensitive to 

variations in local climate conditions (e.g. SST) than to large-scale climate variations 

(such as those captured by the NAO index). Other studies, focusing on variation in 

fish abundance and recruitment in Atlantic waters o ff the western Iberian coast have 

found a similar enhanced level o f responsiveness to local conditions compared to the 

NAO (Ottersen et al. 2001, Guisande et al. 2004).

The time-lag in the strong association between SST in April and the birds’ 

body reserves in the subsequent migration season (late May - late June) suggests that 

this relationship between sea temperatures and migration fuelling decisions is not a 

direct thermal effect (e.g. if  birds were increasing subcutaneous fat for thermal 

insulation when the sea was colder), but may instead be mediated via an effect o f sea
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temperatures on the birds’ food abundance. The direction o f these relationships 

indicates that Storm Petrels carry lower body reserves in years when the sea is 

warmer and food is abundant overall, as suggested by the higher levels o f primary 

productivity and o f  Sardine biomass in years when the birds have relatively low body 

mass. In other words, the body mass o f Storm Petrels does not appear to be directly 

limited by food availability; rather, the birds appear to be using their body reserves as 

a strategic “buffer” against starvation in years when food availability is relatively 

low. However, the lack o f a significant direct association between SST, NPP and 

Sardine biomass or abundance in the waters o ff SW Portugal (at least over the years 

for which such data are available) suggests that strong temperature regulation is not 

the main mechanism by which SST affects food abundance for migrating Storm 

Petrels, and that variation in SST and NPP is not the only mechanism driving 

changes in Sardine abundance. Therefore, changes in Storm Petrel body mass seem 

to integrate various levels o f variability in their environment. This illustrates the 

challenge o f predicting the impacts o f climate change across trophic levels in 

complex ecosystems.

Although well reported for terrestrial birds in the context o f overnight survival 

(Thomas & Cuthill 2002) and migration fuelling decisions (Bayly 2006), strategic 

adjustment o f  fuel reserves for migration during years o f food scarcity has not 

previously been reported in pelagic seabirds. The level o f body reserves carried by 

birds is always the outcome o f a trade-off between the costs and benefits o f carrying 

those reserves (W itter & Cuthill 1993) and these may depend on environmental 

conditions, particularly the availability o f food. The benefits o f carrying body 

reserves are perhaps obvious, as they act as “fuel” for long-distance migrations, such 

as that being undertaken by Storm Petrels as they pass the SW coast o f Portugal in
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early summer. This species forages largely by taking food from the sea surface in 

flight, by dipping briefly onto the water or by using their legs to “patter” across the 

sea surface, while using their bills to reach into the water to take food items (see 

Chapter 1). Therefore, since Storm Petrels can potentially migrate as they feed (i.e. 

by feeding in a particular direction), they may not need to migrate between discrete 

stopover sites as many terrestrial migrants do (e.g. Newton 2010, Bayly 2006, 

W emham et al. 2002). However, the distribution o f food across the ocean surface is 

not uniform (e.g. M iller 2004, Kaiser .et al. 2005), and body reserves may be 

important in avoiding starvation during migration between patches o f food in years 

when food availability overall is low.

Balanced against these benefits can be important costs, namely: greater body 

mass, resulting in increased flight costs (higher energy expenditure), reduced flight 

speed and decreased maneuverability. For a species that forages using aerobatic 

flight to take food from the moving sea surface, maneuverability and agility are 

likely to be particularly important for efficient foraging during migration. Increased 

body mass may also cause a reduced ability to evade predators in flight (Cuthill et al. 

2000). Although mortality at sea is estimated to be low for Storm Petrels (Cramp & 

Simmons 1977) and predation risk is not known as a major pressure for these birds, 

near the colonies the Storm Petrel is easily predated by bigger birds such as gulls 

Larus spp. and skuas Stercorarius spp. (Warham 1996). It is possible that this 

phenomenon has been underestimated when the birds are at sea. The trade-off 

between the benefits o f storing energy reserves and the suite o f mass-dependent costs 

will favour a reduction in body reserves in circumstances when starvation risk is low 

(Cuthill et al. 2000).
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Despite the observed responsiveness o f the body reserves o f Storm Petrels to 

climate-driven changes in foraging conditions, there are ultimately limits to the 

extent o f this response. Body reserves cannot fall below zero, or the bird will, by 

definition, starve to death. The lean body mass o f European Storm Petrels is likey to 

be around 18-19g (though individuals blown inland by gales, which may have 

metabolised additional muscle tissue, weighed only 14.5 -  17g, Cramp & Simmons 

1977). At the other extreme, body reserves cannot become so large that the bird 

cannot fly. Indeed, for a species relying on aerobatic flight, mass-dependent flight 

costs may effectively limit body reserves well before the maximum fuel load that can 

be carried in flight is reached. It is possible that some individual Storm Petrels in the 

present dataset may have reached such limits; the lightest bird captured in the present 

study was 19.2g and the heaviest was 37.7g, though 99% o f birds captured fell within 

the range 20.9 -  33.2g.

The molecular and stable isotope analyses o f diet described in detail in Chapter 

3, indicates that fish in general, and the European Sardine in particular, make up a 

major part o f the diet o f European Storm Petrels during their migration past SW 

Portugal. Predictions o f forthcoming climate change include mean SST increases of 

2-3°C off SW Iberia by 2100 (IPCC 2007). Over the study period (1990-2010), 

upwelling intensity has decreased (Perez et al. 2010) and sea surface temperatures 

have increased (Table 4.1). Fish populations are affected by these physical 

parameters, and studies suggest that the abundance o f Sardines has been decreasing 

in the south o f  Portugal, particularly in recent years (Santos et al. 2001, Marques et 

al. 2005). Although varying according to the geographical location (Planque et al.

2007), Sardine spawning activity is temperature dependent, with preferences for 

spawning in the study area at 14-15°C and avoidance for temperatures below 12°C
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and above 16°C (Stratoudakis et al. 2007). SST values in the present dataset vary 

between years as well as seasonally, but late-winter/spring SST values are generally 

above this range. In fact, the minimum temperature recorded across all months and 

years was 16.78°C (though these were monthly means and not instantaneous 

temperature values). Thus, an increase in SST within or above the current range will 

take conditions further from the optimal temperature range for Sardine spawning, 

accounting for the observed negative association between SST and spawning 

(Coombs et al. 2010). In contrast, higher temperatures are usually associated with 

increased growth rates in many marine organisms (e.g. W iedenmann et al. 2008), 

including small pelagic fish such as the Sardine (Montevecchi & Myers 1997). 

However, this might also reduce the food availability o f Storm Petrels at higher 

temperatures, since it reduces the period o f time in which the young fish are more 

vulnerable to predation (larvae and young juveniles). Despite these relatively direct 

and simple temperature dependent effects, it is important to acknowledge that the 

impact o f climate on fish stocks is highly variable, often indirect and complex 

(Stenseth et al. 2004). For example, there may be differing effects o f SST variations 

on different life-history stages o f different species o f fish, and these may vary 

geographically as well as being modulated by a range o f other environmental 

variables (e.g. upwelling intensity, wind conditions and offshore transport; Santos et 

al. 2001, Planque et al. 2007, Takasuka et al. 2008).

Thus, future increases in sea surface temperatures may have varied effects, 

depending on a species’ feeding biology (e.g. planktivorous or piscivorous, Kitaysky 

& Golubova 2000). In addition to using their body reserves as an energetic buffer 

against starvation, birds may respond to climate change by strategically adapting 

their diet to the changed foraging conditions. The analysis o f Storm Petrel diet
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presented in Chapter 3 suggests that this might indeed be how Storm Petrels behave, 

by eating more fish and possibly, squid in years when overall productivity (in terms 

o f NPP and hence zooplankton abundance) is low. Specifically, in 2009 when body 

mass was relatively high, unlike in the three previous years (2006-2008) when body 

mass was relatively low, there was a higher number o f birds presenting fish in their 

diet (Chapter 3). This makes ecological sense, since in years o f lower food 

availability the birds must increase their foraging effort in order to build up their 

body reserves. Focusing on more energetically efficient prey such as fish and squid 

(Adams et al. 1984, Beukema 1997, Perez 1994, Paiva et al. 2006b) is presumably a 

more efficient way to do so. However, the ability to store reserves is in itself 

dependent on the availability o f prey. If future changes in climate further reduce the 

abundance o f such prey, the ability to build up a strategic buffer o f body reserves in 

years o f low food availability might ultimately be reduced, resulting in a shift in the 

nature o f the relationships between environmental variables and the birds’ body 

mass, from the strategic buffering described in this Chapter, to direct limitation of 

energy reserves.

Although the Sardine appears to be a key prey species for European Storm 

Petrels during migration (Chapter 4), changes in the availability o f other prey types 

(e.g. other fish taxa, cephalopods, isopods, amphipods, decapods -  see Chapter 4) are 

potentially more directly mediated by SST or NPP, and are therefore also important 

to consider. These are more difficult to investigate since long-term studies o f such 

taxa in Iberian waters are scarce, incomplete or entirely lacking.

In the present study there is an apparent oscillation in the body reserves of 

Storm Petrels for the first 15 years (1990-2004) but this seems more erratic in more 

recent years (2005-2010). So far, the long-term trends in SST and NPP may be
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favouring the birds, since their body mass has shown an overall decrease over the 

study period (though total Sardine biomass has shown a significant decrease over an 

even shorter period, Table 4.1), Regardless o f the observed changes over the last 2 

decades, the scale o f the predicted increases in SST over the next 50-100 years may 

lead to severe disruption o f ecosystem processes and functions, ultimately leading to 

decreases in food availability and direct food limitation among migrating Storm 

Petrels.

Changes across trophic levels in marine ecosystem dynamics are difficult to 

monitor directly, but understanding the mechanisms underlying such changes is vital 

if  higher trophic level foragers such as Storm Petrels are to be used as monitors of 

the marine environment and bio-indicator o f climate change, as has been advocated 

(Furness and Camphuysen 1997, Gremillet and Charmantier 2010, Kazama et al. 

2010). Previous uses o f birds as bio-indicators o f climate change have focussed on 

breeding productivity, population dynamics, or phenology (Aebischer et al. 1992, 

Furness & Greenwood 1993, Crick et al. 1997, Dunn & Winkler 1999). The present 

study highlights the potential value o f the body mass regulation behaviour o f 

seabirds as a new and sensitive class o f bio-indicator o f climate change.
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4.6 Appendices

Appendix 4.1. Example of database for SST around the Portuguese and African coast in 

April 1998. Dark shading represents land and light shading represents the sea area used to 

calculate the mean SST for each month.
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Appendix 4.II. Example of database for NPP around the Portuguese and African coast in 

May 1998. Dark shading represents land and light shading represents the area used to 

calculate the mean NPP values for each month.
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Appendix 4.III. Summary table of general linear models explaining variation in body mass (dependent variable) of European Storm Petrels captured 

in SW Portugal in May - June. In addition to the environmental variables shown in the table, all models also contained the following variables from 

the baseline model: wing length, date. date2, time of night.

Models and variables F d.f. P Partial
Eta2

Parameter Model
AIC

Model R2 
(adjusted R2)

Years

Baseline model (independent variables: year, wing length, date, date2, time o f  night) 22,470 0.043 1990-2010

(a) Environmental variable: North Atlantic Oscillation (NAO) + wing length, date, date2, time o f  night. 1990-2010

NAO current yr 19.704 1, 5045 <0.001 0.004 +0.088 22,450 0.047 (0.046)

NAO current yr 15.745 1, 5044 <0.001 0.003 +0.093 22,450 0.047 (0.046)

(NAO current yr)2 0.165 1, 5044 0.685 <0.001 -0.003

NAO lag 1-yr 96.973 1,5045 <0.001 0.019 +0.168 22,370 0.061 (0.060)

NAO lag 1-yr 97.561 1, 5044 <0.001 0.019 +0.190 22,370 0.062 (0.061)

(NAO lag 1-yr)2 6.051 1,5044 0.014 0.001 -0.020

NAO lag 2-yr 54.880 1, 5045 <0.001 0.011 +0.101 22,410 0.054 (0.053)

NAO lag 2-yr 55.198 1, 5044 <0.001 0.011 +0.101 22,410 0.056 (0.054)

(NAO lag 2-yr)2 10.891 1, 5044 0.001 0.002 +0.019
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Appendix 4.III., continued.

Models and variables F d.f. P Partial
Eta3

Parameter Model
AIC

Model R3 
(adjusted R3)

Years

(b) Environmental variable: Sea Surface Temperature (SST) + wing length, date, date2, time of night. 1990-2010

SST January 15.797 1, 5045 <0.001 0.003 -0.279 22,450 0.046 (0.045)

SST January 10.643 1, 5044 0.001 0.002 + 16.593 22,440 0.048 (0.047)

(SST January)2 11.006 1, 5044 0.001 0.002 -0.469

SST February 6.664 1, 5045 0.010 0.001 -0.187 22,460 0.044 (0.044)

SST February 1.554 1, 5044 0.213 <0.001 -8.000 22,460 0.045 (0.044)

(SST February)2 1.482 1, 5044 0.224 <0.001 +0.223

SST March 14.644 1, 5045 <0.001 0.003 -0.300 22,450 0.046 (0.045)

SST March 97.993 1, 5044 <0.001 0.019 -73.051 22.360 0.064 (0.063)

(SST March)2 97.202 1, 5044 <0.001 0.019 +2.065

SST April 390.547 1, 5045 < 2.2e-16 0.072 -1.561 22,090 0.112 (0.111)

SST April 27.395 1, 5044 <0.001 0.005 -28.788 22,070 0.116(0.115)

(SST April)3 24.510 1, 5044 <0.001 0.005 +0.757

SST May 2.4247 1, 5045 0.119 <0.001 -0.127 22,470 0.044 (0.043)

SST May 61.151 1. 5044 <0.001 0.012 -62.466 22,410 0.055 (0.054)

(SST May)2 60.909 1, 5044 <0.001 0.012 + 1.635

SST June 53.231 1, 504 5 <0.001 0.010 -0.563 22,420 0.053 (0.052)

SST June 31.025 1, 5044 <0.001 0.006 -47.310 22,390 0.059 (0.058)

(SST June)2 30.294 1, 5044 <0.001 0.006 + 1.129
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Appendix 4.III., continued.

Models and variables F d.f. P Partial
Eta2

Parameter Model
AIC

Model R2 
(adjusted R2)

Years

(c) Environmental variable: Net Primary Productivity (NPP) + wing length, date, date2, time of night. 1998-2007

NPP January 1.0302 1, 2678 0.310 <0.001 +0.001 11,610 0.051 (0.049)

NPP January 18.179 1, 2677 <0.001 0.007 -0.286 11,590 0.058 (0.056)

(NPP January)2 18.357 1. 2677 <0.001 0.007 <+0.001

NPP February 10.965 1, 2678 <0.001 0.004 +0.003 11,600 0.055 (0.053)

NPP February 12.877 1, 2677 <0.001 0.005 +0.047 11,590 0.059 (0.057)

(NPP February)2 11.478 1, 2677 <0.001 0.004 -3.500e-l

NPP March 1.1577 1, 2678 0.282 <0.001 +0.001 11,610 0.051 (0.049)

NPP March 28.595 1, 2677 <0.001 0.011 +0.092 11,580 0.061 (0.059)

(NPP March)2 28.257 1, 2677 <0.001 0.010 -5.819e-l

NPP April 0.1577 1, 2678 0.691 <0.001 +2.424e-04 11,610 0.051 (0.049)

NPP April 25.530 1, 2677 <0.001 0.009 +0.068 11,580 0.060 (0.058)

(NPP April)2 25.400 1, 2677 <0.001 0.009 -5.885e-5

NPP May 45.001 1, 2678 <0.001 0.017 -0.003 11,560 0.066 (0.065)

NPP May 5.554 1, 2677 <0.019 0.002 +0.021 11,560 0.069 (0.067)

(NPP May)2 7.292 1, 2677 <0.007 0.003 -1.483e-5

NPP June 0.186 1, 2678 0.666 <0.001 +1.733e-04 11,610 0.051 (0.049)

NPP June 21.633 1, 2677 <0.001 0.008 -0.048 11,590 0.059 (0.056)

(NPP June)2 21.821 1, 2677 <0.001 0.008 +3.117e-5
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Appendix 4.III., c o n tin u e d .

Models and variables F d.f. P Partial
Eta2

Parameter Model
AIC

Model R2 
(adjusted R2)

Years

(d) Environmental variable: Sardine abundance or biomass + wing length, date, date2, time of night.

Juvenile Sardine abundance 6.868 1, 1958 0.009 0.003 -4.03c-07 8,597 0.040(0.038) 1995-2002

Juvenile Sardine abundance 12.376 1, 1957 <0.001 0.006 +2.078e-6 8,580 0.049 (0.046)

(Juvenile Sardine abundance)2 18.920 1, 1957 <0.001 0.010 -2.660e-12

Adult Sardine abundance 51.816 1, 1958 <0.001 0.026 -5.10e-07 8,553 0.061 (0.059) 1995-2002

Adult Sardine abundance 40.393 1, 1957 <0.001 0.020 -1.960e-6 8,580 0.072 (0.070)

(Adult Sardine abundance)2 23.228 1, 1957 <0.001 0.012 4.532c-13

Juvenile + adult Sardine biomass 40.689 1,2622 <0.001 0.015 -8.854e-03 11,370 0.061 (0.060) 1995-2005

Juvenile + adult Sardine biomass 44.656 1,2621 <0.001 0.017 -0.051 11,340 0.073 (0.070)

(Juvenile + adult Sardine biomass)2 31.604 1,2621 <0.001 0.012 <0.001
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Chapter 5 

General Discussion

5.1 Overview

The work presented in this thesis has provided novel insights into the migration 

strategy, diet and foraging ecology o f the European Storm Petrel Hydrobates 

pelagicus, one o f the world’s smallest seabird species. Despite its small size, the 

European Storm Petrel (henceforth “Storm Petrel”) is remarkably long-lived 

(longevity is regularly in excess o f 20 years, with the oldest known individual 

exceeding 38 years, M. Bolton, pers. comm.). Storm Petrels are generally thought to 

spend most o f their life on the open ocean, coming onshore only to breed. They breed 

on mainly small, rat-free, islands in the north Atlantic with colonies located from 

Norway and Iceland in the north o f the breeding range, to the Canary Islands in the 

south (Cramp & Simmons 1977, Brooke 2004). When the nestlings fledge, they are 

assumed to undertake their first migration to the southern hemisphere and spend their 

first year in the south Atlantic, o ff the coast o f South Africa (Cramp & Simmons 

1977, W emham et al. 2002). The birds sampled in this study in SW Portugal were 

pre-breeders (aged 2-5 years old; Bolton & Thomas 2001, W emham et al. 2002) 

undertaking their northwards migration to prospect colonies for future breeding 

attempts. Over the course o f the subsequent annual cycles, Storm Petrels complete 

this long-distance migration from the breeding colonies in the NE Atlantic, to 

wintering areas in the southern hemisphere (W emham et al. 2002). The extreme 

nature o f the Storm Petrel’s biology makes it an excellent case-study for examining 

the impacts o f climate variation on migration behaviour and foraging ecology, which 

is the central theme o f this thesis.
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A range o f approaches was applied in this research, to describe and 

understand the mechanisms underlying the impacts o f climate variability on such a 

diminutive and distinctive species. Evidence was found for sex-differences in 

migration behaviour, opportunistic (non-specialist) feeding, including prey o f inshore 

and even terrestrial origin, temporal variation in diet, and the strategic regulation of 

energy reserves in response to varying environmental conditions, as a buffer against 

starvation during migration. This study is one o f few to look in detail at the ecology 

o f migrating non-breeding seabirds; a class o f birds that is usually not easily 

accessible to researchers. This is also one o f the few studies to look at the 

relationship between climate change and the behaviour o f individual birds. Such 

behavioural responses to changing environments may be important mechanisms by 

which the effects o f climate variation may manifest themselves at a population level, 

leading to the observed widespread changes in avian distribution, phenology, 

demographics, breeding success and population size (reviewed by Stenseth et al. 

2004, Crick 2004).

These analyses have linked field biology, molecular ecology and the analysis 

o f long-term datasets (bird-ringing, fisheries and remote-sensing datasets). Each of 

these approaches can potentially be developed much further than has been possible 

within the scope o f a time-limited PhD project. However, this thesis illustrates the 

value o f an integrated approach to studying seabird behaviour and ecology, by 

combining several normally distinct areas o f research to obtain novel insights. This 

final Chapter reviews the progress achieved in each area and highlight priorities and 

opportunities for further developing this research.
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5.2 Sex-Specific Migration Behaviour of Storm Petrels

Storm Petrels are sexually monomorphic, so very little has previously been known 

about sex differences in their migration behaviour. M olecular sexing methods now 

allow accurate and relatively non-invasive sexing o f birds from routinely collected 

field samples (feathers and faeces). In Chapter 2, this method was refined and 

applied to Storm Petrels, revealing an unexpectedly strong female bias in the sex 

ratio o f pre-breeding Storm Petrels attracted to tape-lures during their northwards 

migration past SW Portugal. This sex bias was remarkably consistent across seven 

years, ranging from 80.8% to 89.7% female (mean annual sex ratio ±SD = 85.5% 

female ±4.1%).

While the initial aim in sexing the birds was primarily to study differences 

between sexes in the birds' diet and body reserves (see below), the discovery o f the 

strong female bias in the sampled population raised new questions about sex-specific 

migration behaviour. No definitive explanation for the sex bias is yet available, but 

hypotheses include a different distribution o f the two sexes at sea during migration, 

sex-differences in the seasonal timing o f migration, or differences in the willingness 

to explore potential colonies as far south as Southern Iberia. Testing these hypotheses 

could involve catching Storm Petrels at other times o f year (e.g. in April and July, to 

test whether males are migrating much earlier or later than females) or in other 

locations (e.g. at sea o ff the Portuguese coast, to test whether males are migrating 

further o ff shore than females). Ultimately, remote-tracking devices may become 

small enough to be fitted to Storm Petrels o f each sex, revealing much more detail 

about sex-differences in migration and behaviour at sea.

There was a slight tendency for male and female Storm Petrels to be captured 

in sex-specific aggregations, suggesting that there may be some segregation o f the
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sexes at sea. Although some comparisons could be made between the sexes in terms 

o f diet (Chapter 3) and the regulation o f body reserves (Chapter 4) between males 

and females, no substantial sex-differences in foraging ecology were found. 

However, the small sample size for males restricted the power o f some o f these 

analyses, and the continued use o f molecular sexing to build up the sample size of 

male birds will soon allow more powerful comparisons o f diet, foraging ecology and 

migration fuelling strategies between male and female Storm Petrels sampled during 

their migration past the Portuguese coast.

5.3 M olecular Investigations of Storm Petrel Diet and Foraging Ecology

A detailed understanding o f an animal’s diet is fundamentally important for 

understanding its ecological requirements (and hence its conservation needs), its 

functional role in an ecosystem, and its potential as a biological indicator of 

environmental change. For many organisms, such as small pelagic seabirds, there are 

major practical, logistical or ethical obstacles to studying diet in the field (Barrett et 

al. 2007). As a result, the diet o f Storm Petrels is largely unknown, particularly 

outside the breeding season, due to the lack of an appropriate method to study it in 

detail. Stable isotope analysis and fatty acid analysis are increasingly widely applied 

to the study o f avian diet, but these approaches are limited in the degree o f 

taxonomic resolution that can be achieved, particularly for studying the diet o f 

generalist foragers whose diet may be composed o f a large number o f prey taxa, 

originating from a wide range o f different habitats and trophic levels (Bond & Jones 

2009). The emerging field o f molecular scatology (extraction and identification of 

DNA o f food taxa from a forager’s faeces) provides a potentially powerful toolkit for 

the non-invasive investigation o f diet in free-living animals (Symondson 2002, King
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et al. 2008, Lemer & Fleischer 2010). Chapter 3 describes the refinement and 

application o f methods for molecular scatology in the context o f Storm Petrel diet 

and foraging ecology.

Two complementary molecular approaches were used: 1) using taxon- 

specific primers to screen for the presence / absence o f particular prey categories in 

individual faecal samples; and 2) amplifying prey DNA from a pool o f samples using 

general primers, then using cloning and sequencing o f the amplified sequences to 

identify the taxa present in the diet in each year. Each o f these methods has its 

advantages and limitations, but together, particularly in combination with analysis o f 

carbon and nitrogen stable isotope signatures from growing feathers, they can 

provide a comprehensive account o f diet, from identification o f individual prey taxa 

right down to the level o f subspecies (cloning and sequencing), through semi- 

quantitative assessments o f the occurrence o f key prey taxa in the diet at a population 

level (screening with taxon-specific primers), to an overall assessment o f the location 

and trophic level at which the storm petrels had fed over larger spatial and temporal 

scales, prior to their capture on the Portuguese coast.

This study identified European Sardine (Sardina pilchardus) as a major prey 

species eaten by Storm Petrels at this stage o f their migration. This information was 

important in informing the parallel investigation o f the strategic response of 

migrating Storm Petrels to fluctuations in their foraging environment, presented in 

Chapter 4. Other notable results from this part o f the analysis included the regular 

occurrence o f prey DNA from terrestrial invertebrates (which are likely to be blown 

out to sea and taken from the sea surface by the foraging petrels), as well as fish from 

deep in the water column (which would normally be inaccessible to foraging Storm 

Petrels, but may be brought to the sea surface by human fisheries. These results
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provide abundant detail about the foraging ecology o f Storm Petrels, and suggest that 

they are overall rather generalist foragers, exhibiting substantial variation in their diet 

among years, perhaps in response to changes in the availability o f different prey taxa.

In addition to revealing in detail aspects o f diet and foraging ecology of 

species that are otherwise difficult to study, molecular methods for the identification 

o f prey DNA in predator gut contents are o f great relevance to conservation 

organisations seeking to manage adequate food supplies for taxa o f conservation 

concern. Future developments to enhance the value o f this approach for ecologists 

and conservationists is the use o f next-generation sequencing technologies, such as 

pyrosequencing, to scale up the capacity and hence greatly increase the level of detail 

and the quantitative analysis o f dietary data that can be achieved.

5.4 Responses to Climate-Driven Changes in the Foraging Environment

Since the early 1990s, a vast number o f studies have been published describing 

associations between climate variables and ecological changes. Bird studies have 

been prominent in this rapidly developing field, with many studies describing 

climate-linked changes in the timing o f migration, timing o f breeding, changes to 

breeding or wintering ranges, and population changes (reviewed in Moller et al. 

2004a). However, most studies described observed patterns on birds’ response to 

climate change but fail to provide the underlying mechanisms driving those patterns 

(Stenseth et al. 2004). Furthermore, most studies are restricted to the breeding period 

and breeding area, but changes in climate are likely to have different impacts at 

different stages o f the birds’ annual cycle (Moller et al. 2004b). Studies o f bird 

migration in the context o f climate change have typically been constrained to 

describe patterns in terms o f migration timing, mainly timing o f arrival at the
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breeding areas (M oller et al. 2004a). In the present study, changes in the abundance 

o f food supply, in particular, the abundance o f an identified potential key prey 

species, the European Sardine, has been identified as one o f the mechanisms driving 

the observed pattern o f changes in European Storm Petrels’ body mass during 

migration. The birds were heavier in years when the sea was colder and food 

abundance was lower, suggesting strategic foraging behaviour to increase the body 

reserves and buffering against starvation in years when food resources were less 

predictable, similar to the responses o f small terrestrial birds to energetic stress over 

the winter or during the night (Cuthill and Houston 1997)

The migration ecology o f the Storm Petrel represents an extreme case-study 

for examining the impacts o f climate change on a migratory seabird. This species is 

the smallest o f the Atlantic seabirds with an average body mass o f only 26g, 

potentially making it particularly susceptible to climate-driven changes in the marine 

environment. The long-distance migration undertaken by these birds, spanning a 

large part o f the western hemisphere, potentially makes Storm Petrels susceptible to 

environmental changes across the Atlantic latitudes from the breeding colonies in 

NW  Europe, to the wintering grounds off southern Africa. Migratory species inhabit 

widely separated locations over the course of their annual cycle, and are therefore 

exposed to a range o f different climatic patterns that can themselves have differential 

ecological impacts. Changes in climate, manifested as variations in sea surface 

temperatures, are not constant across the globe and, even the same climate patterns 

might have different ecological impacts in different areas o f the globe. Behrenfeld et 

al. (2006) showed that between 1999 and 2004 all four combinations o f changes in 

SST and NPP occurred in different areas o f the globe (increasing SST with 

increasing NPP, increasing SST with decreasing NPP, decreasing SST with
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increasing NPP and decreasing SST with decreasing NPP). During this period, there 

was an overall decrease in SST and increase in NPP for the south Atlantic and the 

inverse patterns for the North Atlantic (Behrenfeld et al. 2006). There is however a 

marine area o ff the Iberian coast where the observed changes between 1999 and 2004 

were o f an increase in both SST and NPP (Behrenfeld et al. 2006), which is in 

accordance with the data presented in Chapter 4.

Despite the behavioural flexibility o f Storm Petrels in regulating their own 

body reserves according to environmental conditions during migration, during the 

breeding season the birds are limited to foraging in the proximity o f the colony 

(particularly when feeding nestlings) which might contrain their ability to cope with 

such changes (W eimerskirch 1998, Quillfeldt 2001, Pinaud and Weimerskirch 2002). 

If  the trend described in Behrenfeld et al. (2006) o f increasing temperatures and 

decreasing marine productivity in the north Atlantic (where most o f the Storm Petrel 

colonies are located) continues in the future, as suggested by many climatic models 

(IPCC 2007), negative impacts on breeding productivity and population size might 

become a serious problem for the European Storm Petrel.

5.5 Conclusions

The field o f climate change biology has developed rapidly over the past 20 years, in 

which the biological impacts o f climate change have become one o f the central issues 

in the study o f ecology as well as o f great concern in society as a whole. Several 

authors (e.g. M oller et al. 2004b, Stenseth et al. 2004, Crick 2004) identified priority 

areas for research to address issues arising from the increasing volume o f studies into 

how birds respond to changing climate. This PhD research has focused on 

investigating several o f these priorities, using the European Storm Petrel as a major
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case-study. Table 5.1 summarises a number o f key ways in which this thesis has 

addressed these priorities.

Typically, in addressing such problems, many new questions are raised, illustrating 

the complexity o f the marine ecosystem, o f the climate that drives ecological 

changes, and o f the individual behavioural decisions, such as what to eat and how 

much to eat. These behavioural decisions constitute a key set o f mechanisms by 

which animals may respond effectively to changing environments, potentially 

enabling them to track even rapid directional changes in ecosystems. Such 

behavioural plasticity may itself provide some o f the phenotypic variation on which 

selection can act, in turn leading to micro-evolutionary change. Nevertheless, there 

may be limits to the extent that behavioural plasticity may facilitate adaptation to 

rapid climate change, and continued monitoring o f Storm Petrel food resources, diet, 

foraging ecology and migration fuelling decisions will be used as an ongoing case- 

study o f the ecological impacts o f climate change.
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Table 5.1. A selection of Moller et al.’s (2004b) list of areas of research where further investigation of the effects of climate change on birds may be 

particularly rewarding, together with a brief summary of how the present thesis addresses the highlighted problems.

4^

Problem Studies required Contribution of the present thesis

Geographical distribution of 
studies

Studies from other regions than northern 
temperate zones

Study area o f Portugal-N Africa spans the temperate- 
sub-tropical boundary

Taxonomic distribution of studies Studies o f orders other than passerines Storm Petrels are passerine-sized Procellariiformes

Spatial scale o f weather conditions The relative role of local and global weather 
systems

Direct comparison of SST and NAO effects on 
Storm Petrel fuelling decisions

Scientific approach More experiments are needed Use o f novel methodologies to understand 
mechanisms underlying associations

Interspecific interactions Changing impact o f predators and parasites Strategic responses to changes in prey availability

Effects of climate change on 
phenotypic plasticity

Degree of phenotypic plasticity under different 
environmental conditions

Upper and lower limits to fuel load

Trait-specific responses to climate 
change

Which traits respond to climate change and 
why?

Migratory fuelling and prey choice are behavioural 
traits mediating responses to climate change

Complex annual cycles Relative role of environmental conditions during 
breeding, migration and wintering for adaptation

Focus on environmental conditions along the 
migration route

Heterogeneity in responses to 
climate change

Age and sex differences in response to climate 
change

Tested for sex-differences in migration timing, 
migratory fuelling and diet

Chapter 
5 
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