The Migration Strategy, Diet
& Foraging Ecology of a Small Seabird
in a Changing Environment

Renata Jorge Medeiros Mirra

September 2010

Thesis submitted for the degree of
Doctor of Philosophy,
Cardiff School of Biosciences,
Cardiff University



UMI Number: U516649

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U516649
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Acknowledgements

Firstly, I thank the Portuguese Fundag@o para a Ciéncia e a Tecnologia for the financial support that
made this work possible and A Rocha Portugal, which started this research project 21 years ago.

Especial thanks to the pioneers, Colin Jackson and Peter Harris.

Secondly, I want to express my profound gratitude to my unparalleled team of supervisors: Dr. Rob
Thomas, Prof. Bill Symondson, Dr. Jaime Ramos and Dr. Mark Bolton for their continuous support
and crucial guidance, for challenging me, for their great enthusiasm as scientists and for everything I
was able to learn from their great minds, throughout my research. In particular, thank you Rob for the
privilege of being part of your team and for everything! Especial thanks to Andy King for teaching me
everything in the lab with all the patience it required and for his continuous involvement and support
to this project. I would like to show my appreciation to the examiners of this thesis, Dr. Mike Brooke
and Prof. Mike Bruford, for their constructive criticism and for providing me an enjoyable and

memorable viva.

The quantity and quality of the data presented in this thesis wouldn’t have been possible without the
support and willingness of the many scientists, volunteers and friends that joined the ‘stormies’ in the
Algarve and gave a whole different meaning to experience of fieldwork. Although I can not possibly
name all of those that have been there, I want to express my gratitude to each one of you, in particular
to Colin Beale, Dave Kelly, Heather Coats and Nicola Marples. I am deeply grateful to Paula, Bébé,
Marcial, D. Violinda, Will, Rachel and all the various team members that received us so well and
made me feel at home each year. Especial thanks to Pipas, Bea, Ben, Zé and Rosie and also to Bobby

and Linda for adding so much fun to my time there.

I would also like to send my appreciation to the taxonomists who identified the invertebrates in this

study pro-bono: Luis Fonseca and Margarida Machado (Amphipoda), Karl Wittmann (Mysidacea),

David Jones (Isopoda).

iii



I also want to thank the people from the BEPG Group in the School of Biosciences for receiving me
very well and providing such a friendly and enthusiastic working environment. Many thanks to my
friends and colleagues from Cardiff University (Adam, Bettina, Dan, David S, Geoff, Jo B., Jeff,
Loys, Pier Francesco, XZ) for the great environment in the office, for your friendship, ideas and
support. Also to the Portuguese gang (Leila, Joana, Mafaldas, Rui, and Ténia) for bringing me a taste
of home (often literally). Especial thanks to those who helped me with the lab work, in particular Zoe
Deakin, Helen Gath and Sigrid Mensch; and to Vanessa Judd and Ménica Florencio for dissecting the
storm-killed birds. I would also like to thank the various project students that contributed to this
project with their ideas and dedicated work: Alice Kershaw, Ellie Johnston, Katherine Booth-Jones,
Lorna Gribbin, Lucy Rouse, Rachael Ashby, Sam Whitfield, Stephen Howell and Vanessa Bradbury. 1
am grateful to Bernard Cadiou, Bernie Zonfrillo, Filipe Ceia, Jo&l Bried, Rab Morton, Ricardo Ceia,
Verénica Neves and Vitor Paiva, for samples collection, the discussion of ideas or other “little

things”. And THANK YOU Alex!

Thank you Coralie, David, Gabi, Milena, Mireille, Sigrid and Viola for being there!

I must thank to those that have “always” been there, even at a distance, helping me being a better

person just for being part of my life: Bébé, Leonor, Rita, Riben. Also to my parents: Brazinda e Jorge,

por tudo.

My greatest appreciation goes to my little ones, Edgar and Raquel, and to André, for giving me a life

beyond my PhD, and thereby keeping me (considerably) sane!

iv



Thesis Summary: This thesis examines the migration strategy, diet and foraging ecology
of the smallest Atlantic seabird, the European Storm Petrel Hydrobates pelagicus. Evidence
was found for sex-specific migration behaviour, opportunistic feeding (including on prey of
inshore and even terrestrial origin), temporal variation in diet, and the strategic regulation of
energy reserves in response to varying environmental conditions, as a buffer against
starvation during migration. Molecular sexing from feather and faecal samples revealed an
unexpectedly strong female bias in the sex ratio of Storm Petrels attracted to tape-lures of
conspecific calls, during their northwards migration past the coast of SW Portugal. This bias
was broadly consistent across seven years (mean +SD = 85.5% female +4.1%). The thesis
describes the development and application of molecular techniques, in combination with
stable isotope analysis, to study Storm Petrel diet by the detection of prey DNA from faecal
samples. The major category of prey detected was fish (chiefly European Sardines Sardina
pilchardus). Other components of the diet were other pelagic and demersal fish species,
Cephalopoda (primarily cuttlefish Sepia spp.), Amphipoda, Isopoda and a range of terrestrial
invertebrates, which were presumably scavenged from the sea surface by the Storm Petrels.
Large between-year fluctuations in the level of body reserves carried by these birds were
observed over the 21-year study period (1990-2010). The pattern of body mass variation
followed a smooth oscillation, which was not an artefact of differences among years in the
distribution of capture effort, body size or sex ratio changes. Local sea surface temperature
(SST), net primary production (NPP) and European Sardine biomass were shown to be key
factors associated with between-year changes in Storm Petrel body reserves. The direction of
these associations suggests that Storm Petrels strategically regulate their body reserves to

buffer against starvation in years of low food abundance.
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Chapter 1 - Introduction

Impacts of Climate Change on Marine Ecosystems

1.1 Overview

Seabirds are good indicators of changes in the marine environment, since their
reproductive and foraging parameters reflect oceanographic changes, including
climate-driven changes in ocean ecosystems. Anthropogenic climate change has
major implications for the future of natural ecosystems as well as human societies
(IPCC 2007). Understanding and predicting the diverse biological impacts of global
climate change is therefore the central ecological challenge of our time, yet our
ability to make such predictions is limited by the sheer complexity of ecosystems and
of the interspecific interactions that they encompass. Emerging evidence of the
impacts of climate change on ecosystems has generated great concern among
scientists, policy makers and the wider public (McCarty 2001, Walther et al. 2002).
Compelling examples of ecological change driven by the changing climate include
case studies from marine ecosystems, involving commercially important species of
fish and iconic seabirds.

One emblematic example is of climate driven changes in the recruitment of Atlantic
Cod Gadus morhua in the North Sea. Variability in sea temperature affects cod
survival mainly via their food supply; rising temperatures since the mid-1980s have
modified plankton population cycles in a way that has reduced the food availability,
survival and recruitment of young cod (e.g. Brander e al. 2001, Beaugrand et al.

2003, Sundby 2000, Ottersen & Loeng 2000). Similarly, there is a

The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment 1



Chapter 1 Impacts of Climate Change on Marine Ecosystems

well-documented relationship between sea temperature, sandeel Ammodytes marinus
abundance, and the breeding success of seabird species also in the North Sea
(Furness & Tasker 2000, Rindorf et al. 2000, Frederiksen et al. 2004a).

The study of trophic interactions within biological communities is crucial for
a better understanding of the structure and function of ecosystems, as well as for
predicting their response or resilience to climate change. Oceanic food webs have
been described in detail as a result of concerns related to fisheries management as
well as to climate change (e.g. Link 2002, Trites 2003, Dunne et al. 2004). However,
most previous studies of trophic pathways in pelagic ecosystems have relied on
methods for studying diet that have important limitations. Prior to the recent advent
of biochemical approaches such as stable isotope and fatty-acid analysis (e.g.
Williams et al. 2008), these methods primarily involved direct observations of
foraging behaviour, or stomach-content analyses (e.g. Barrett et al. 2007, Monteiro et
al. 1996). Combining such methods with new and complementary approaches has
been shown to be highly beneficial (Trites 2003, Casper et al. 2007). Specifically,
molecular techniques potentially provide a powerful new set of analytical tools for
the study of foraging ecology and trophic relationships (e.g. Casper et al. 2007,
Dunshea 2009, Lerner & Fleischer 2010). However, they have not yet been widely
applied in ecological contexts in general, or in marine ecosystems in particular.

In this thesis, I investigate the foraging ecology and migration fuelling
behaviour of a small pelagic seabird, the European Storm Petrel Hydrobates
pelagicus (henceforth abbreviated to “Storm Petrel” where appropriate) and its
behavioural responses to temporal changes in the marine environment. I developed

and applied DNA-based methods to study Storm Petrel diet and foraging ecology, in

The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment 2



Chapter 1 Impacts of Climate Change on Marine Ecosystems

order to. better understand the trophic mechanisms underlying the behavioural
response of this species to the variable environment.

Evidence exists for the impacts of climate on the breeding parameters
(Rindorf et al. 2000, Laaksonen et al. 2006), timing of migration (Miller-Rushing
2008, Smallegange et al. 2010), demography (Both et al. 2006, Sandvik et al. 2008),
and adult survival (Grosbois & Thompson 2005, Sandvik et al. 2005) of different
bird species. However, the present study is the first to invetesco's stigate in detail the
connection between climate variation and the migration fuelling strategy of a seabird
species. In this Introductory Chapter, I provide an overview of (i) climate change and
its impacts on marine ecosystems, (ii) the study species, the European Storm Petrel,
(iii) the range of methods available to investigate seabird diet and (iv) the methods
for molecular analysis of diet and their development prior to the start of this research.
I finish the Introduction with an outline of my studies that are presented in detail in

the subsequent chapters of this thesis.

1.2 Marine Ecosystems: Their Importance and Conservation
For tens of thousands of years, people have had a close relationship with the oceans
and their resources (Roberts 2009). Throughout history, these resources have
provided a rich source of food (Roberts 2007), and are increasingly important for
tourism, recreation, as a source of renewable forms of energy, and of various
additives for foods or cosmetics. Thus, the diversity and productivity of marine
ecosystems remains important to the survival and well-being of human societies.
Despite the importance and attractiveness of the marine environment to
humans, its physical and biological oceanographic systems, processes, and changes

are rather poorly understood when compared to the terrestrial environment. For

The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment 3



Chapter 1 Impacts of Climate Change on Marine Ecosystems

instance, unlike the land, the water column and wide ocean basins tend to be
envisaged as fairly monotonous, uniform ecosystems but, in fact, there are many
features that punctuate our oceans abruptly or gradually, dividing them into many
different environments (Miller 2004, Kaiser et al. 2005). Furthermore, while the
concepts of biomes and habitats are very well understood for the terrestrial
environment, such patterns in the marine environment are often beyond our
immediate perception. Only in the last few decades have technologies been applied
(e.g. autonomous underwater vehicles with scientific instrumentation, or remote-
sensors such as the NIMBUS satellite) to obtain a more detailed understanding of
spatial and temporal patterns in the marine environment and the application of this
understanding to the conservation of the oceans (Kaiser et al. 2005).

In contrast to terrestrial habitats, it is commonplace for marine habitats to be
dominated (in terms of biomass) by animals rather than plants, and for the
substratum to provide the main structure to the habitat (rather than plants providing
the main structure, as in a forest). Only a small proportion of marine habitats have
obvious dominant species, e.g. kelp forests (Laminariales), mussel beds (Bivalvia)
and maerl beds (Corallinaceae). Many marine ecosystems are dominated by a few
abundant mid-trophic species, usually pelagic schooling fish, with higher taxonomic
diversity at lower and higher trophic levels (Rice 1995). These mid-trophic level fish
(including the larval stages of all fish) typically feed on zooplankton (Hays et al.
2005) and are a key prey for predatory fish, marine mammals and seabirds.

In the marine environment, patchiness in topography, physical properties
(temperature, salinity, and turbidity), biological production and biomass, exists at a
wide range of spatial scales (cm to hundreds of km) and temporal scales (min to

decades; Kaiser et al. 2005). Because the offspring of most marine species are small
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Chapter 1 Impacts of Climate Change on Marine Ecosystems

(and most are pelagic), they may be more vulnerable to physical influences than
terrestrial young, and thus experience wide fluctuations in survival and recruitment.
Therefore, marine populations and communities often respond rapidly to (and hence
are more temporally coupled with) changes in their physical environment (Stecle
1985, 1998). This responsiveness is manifested over ecological time scales in
dramatic changes in the composition of pelagic and benthic communities during
community “regime shifts” over the order of one to several decades (e.g. Roemmich
& McGowan 1995, Hayward 1997, Francis et al. 1998). Though such regime shifts
are driven by atmospheric processes (such as the decade-scale climate oscillations
described below), biotic responses to decadal regime shifts have been argued to be
far more dramatic in marine systems compared to terrestrial systems (Steele 1998).

Marine ecosystems are exposed to a wide range of anthropogenic impacts, of
which climate change and over-fishing are amongst those causing greatest concern
(e.g. Beaugrand et al. 2002, Bhathal & Pauly 2007). The ecological impacts of over-
fishing are intense and widespread. For example, more than 50% of the southeast
Atlantic is either overexploited or depleted of its marine fisheries resources; the same
is true of over 20% of the central east Atlantic and about 40% of the northeast
Atlantic. Overall only 5%, 7%, 8% of the Mediterranean and Black Sea basin,
southwest and northwest Atlantic, respectively, are still considered to be
underexploited (Roberts 2007).

Despite abundant evidence of the overexploited and degraded state of most of
the world’s ocean ecosystems, the development of conservation plans for marine
areas, including marine reserves, has proven to be a great challenge. Thus, the effects
of local protection by marine reserves of ecological communities may be less

predictable and, in the short term, more difficult to detect and validate both locally
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and regionally than the effects of terrestrial nature reserves (but see Roberts 2007 for
successful examples of marine protected areas). As a consequence, regardless of the
growing interest by resource managers, policy makers, and academics in the potential
for reserves in marine ecosystems (e.g. Carr et al. 2003, Thompson et al. 2008, Sen
2010), currently only 1% of the marine realm is protected within reserves, in contrast
to over 12% in terrestrial systems (Groombridge & Jenkins 2002). This lack of
protection from over-exploitation and degradation has obvious consequences for
predators such as seabirds that rely on marine resources for their survival (Croxall

1992).

1.3 Climate Change

1.3.1 Climate Change and Oceanography

The world’s oceans play a key role in shaping and regulating our climate and have a
tremendous bearing on human future wellbeing in terms of their value for food
production and a wide range of other ecosystem services, as well as their inherent
biodiversity value (Kaiser et al. 2005). By absorbing, sequestering and releasing
carbon, marine environments play a major role in the global carbon cycle and so
directly influence the pace and extent of climate change (Takahashi 2004, Steinfeldt
et al. 2009). One important ecosystem service provided by oceans over the historical
period has been to buffer the climate against the anthropogenic increase in
atmospheric carbon dioxide (CO,). Despite this buffering, compelling evidence has
accumulated for directional climate change that has diverse impacts on marine
environments. Over the last century, global sea temperatures have increased, sea
levels have begun to rise as a result of thermal expansion of sea water, while storms

and waves have become more damaging (Kaiser et al. 2005, reviewed by Brierley &
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Kingsford 2009). Furthermore, oceans around the world are becoming more acidic as
a result of the increased concentration of CO, available to be absorbed at the sea
surface (Kaiser et al. 2005, reviewed by Brierley & Kingsford 2009). Such changes
are predicted to be amplified as atmospheric CO; continues to rise, but there is
considerable uncertainty over the future extent and timing of these future impacts at
global, regional or local scales (Watkinson et al. 2004). Similarly, predicting the
frequency and timing of extreme events, such as severe weather, is important for
predicting the response of ecological communities to a changing climate (Sutherland
2004), but changes in the occurrence of extreme events are notoriously difficult to
predict.

The Atlantic is, after the Pacific, the world’s second largest ocean, extending into
both the Arctic and Antarctic. The North Atlantic region has an important climatic
feature exerting a dominant influence over its marine system: the North Atlantic
Oscillation (NAO), a decade-scale oscillation in latitudinal atmospheric pressure
gradients across the North Atlantic (Stenseth et al. 2004), similar in nature to Arctic
Oscillation (AO) in the polar region and the El Nifio Southern Oscillation (ENSO)
and Pacific Decadal Oscillation (PDO) in the Pacific Ocean. A high NAO index
increases the degree of westerly winds, and consequently milder temperatures, over
northern Europe. A low NAO index is usually associated with weaker westerly
winds, allowing colder northerly winds to dominate over northern Europe (Stenseth
et al. 2004).

Although the NAO is a natural mode of variability of the atmosphere,
stratospheric and surface processes (including anthropogenic processes) may also
influence its phase and amplitude (Ottersen et al. 2004). For example, it has been

found that oceanic processes such as long-term changes in sea surface temperatures
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can also have an important influence on the NAO, which in itself has a feedback
impact on sea surface temperatures. However, there are different regional as well as
seasonal patterns for this relationship and the mechanisms involved in it are poorly
understood (Sutton e al. 2000, Edwards et al. 2001, Sutton & Hodson 2003).

The ecological effects of these cyclic decade-scale climate changes are of
considerable interest, as they represent repeated “natural experiments”, from which
the possible consequences of longer term anthropogenic, directional changes may be
inferred. In addition, the effects of anthropogenic climate change may themselves be
compounded or mitigated in the shorter term by the effects of climatic cycles such as
ENSO or the NAO.

The ecological effects of the NAO are widely reported from marine, freshwater
and terrestrial ecosystems (Stenseth er al. 2004). Effects of the NAO on the
organisms across a range of trophic levels from phytoplankton to predators, suggest
that the NAO may also influence the dynamics of seabird populations, through
variability in their food supply (e.g. Poloczanska et al. 2004, Bustnes et al. 2009).
Indeed, recent studies have already shown associations between the NAO and
different aspects of seabird ecology (reviewed by Durant ef al. 2004) such as the
likelihood of breeding (Thompson & Ollason 2001), timing of breeding (e.g.
Frederiksen et al. 2004b), reproductive success (Thompson & Ollason 2001) and
adult survival (Sandvik et al. 2005, Votier et al. 2005). However, the trophic
relationships and behavioural mechanisms that may mediate such ecological
associations remain largely unknown (Stenseth er al. 2004, Meller et al. 2004a).
Moreover, to date, very little is known about the impacts of climate change on

seabirds outside the breeding season or away from their breeding colonies.
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1.3.2 Biological Impacts of Climate Change

The ways in which climatic variation influences behaviour, physiology and life
history has long been a central theme of research in animal ecology (e.g. White 1789,
Andrewartha & Birch 1954, Elkins 1983). In the context of anthropogenic climate
change, this subject has gained an extra relevance and importance, providing a strong
impetus and focus for new research on this topic (Meller et al. 2004a, McCarty
2001). Although animals must have been responding to natural variation in climate
throughout their evolutionary history, great uncertainty remains as to how well most
species may be able to respond (through behavioural plasticity or evolutionary
adaptation) to the predicted rapid and substantial future changes in climate.

Studying the response of marine ecosystems to climate change is essential as
we attempt to develop sustainable management of our living marine resources
(Stenseth et al. 2004). Ecological responses to climate fluctuations are reflected in
the productivity of marine ecosystems, from phytoplankton and the zooplankton
communities that they sustain, to the dynamics of fish populations (Cushing 1990)
and top predators such as seabirds (Ballance et al. 2007).

Climate-driven fluctuations in plankton populations can result in long-term
changes in fish recruitment (Beaugrand et al. 2003). Recent studies have found that,
across much of the world’s oceans, recent warmer surface temperatures have been
associated with lower oceanic productivity and standing biomass. For example, in the
NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) time series, global
chlorophyll and productivity increased sharply during 1997-98 as temperatures fell,
and then declined gradually to 2005 as temperatures increased (Behrenfeld et al.

2006).
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These observed reductions in ocean productivity during the recent post-1999
warming period provide insights into how future climate change might alter marine
food webs, but these ocean-scale patterns are often far more complex at a regional or
local scale. For example, a clearly discernable climate—plankton link is found
primarily in the tropics and mid-latitudes, where there is limited vertical mixing of
nutrients within the water column. At higher latitudes, productivity is often light-
limited because more intense vertical mixing carries nutrients hundreds of metres
down from the surface waters, into the deeper waters where sunlight does not
penetrate. In these high-latitude regions, future warming and a greater influx of fresh
water, mostly from increased precipitation and melting sea ice, is likely to contribute
to reduced mixing that may actually increase productivity (Doney 2006). Climate-
driven changes in sea surface temperature can therefore cause local primary
production to either increase or decrease, depending on the nature of the controls on
productivity at different spatial scales (Behrenfeld et al. 2006).

Regardless of the uncertainty over the magnitude and the timing of
forthcoming climate changes, it is possible to predict qualitatively that the
anticipated changes are likely to produce a wide range of major ecological changes,
including regional changes in marine productivity (as outlined above), changes in the
phenology and physiology of organisms, range shifts, changes in disease
transmission, shifts in the structure of communities and ecosystems, species
extinctions and consequent degradation of biodiversity (IPCC 2007). Of the types of
change listed above, perhaps the most difficult to predict are changes at the
community level, because of the frequently non-linear nature of species interactions.
Migratory species, such as many seabirds, add extra complexity, since they can be

affected by changes in climate across their whole distribution range, including
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entirely different ecosystems at their breeding and non-breeding grounds, and at

foraging sites along the migratory route.

1.3.3 Seabirds as Sentinels of Environmental Change

Both climate change and over-exploitation of resources by humans potentially exert
strong effects on marine ecosystems. The manner in which the structure and function
of each ecosystem is regulated will determine how both climate change and fisheries
will affect productivity at different trophic levels (Frederiksen et al. 2006). Three
general mechanisms might control the structure and function of the different
ecosystems: strong bottom-up control, strong top-down control or weak trophic links
(Cury et al. 2001).

Top-down effects imply control through predation, including fisheries, while
bottom-up effects imply control through food abundance, often thought to be driven
by climate or nutrient load. When bottom-up control is dominant, seabird populations
are unlikely to be regulated through density-dependent prey depletion, because prey
abundance will be controlled by production at lower trophic levels (Frederiksen et al.
2006). Instead, their foraging success, breeding productivity and ultimately
population size are likely to track spatial and temporal variation in prey abundance
(e.g. Frederiksen et al. 2005), although interference effects among seabirds and/or
disturbance of their prey may still lead to density-dependent reductions in prey
availability around large seabird colonies (Lewis et al. 2001). Nevertheless, when
bottom-up effects are predominant, seabirds can be reliable, and often financially
cost-effective, indicators of marine physical environmental conditions and biological
productivity (Montevecchi 1993, Montevecchi & Myers 1996), if long-term

monitoring is available (McGowan 1990).
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Many seabirds are highly mobile and undertake long migration journeys.
Therefore, it is likely that the same species could be impacted by changes in widely
separated areas of the globe. For a more comprehensive understanding of these
complex interactions it is important to study the ecology of seabird species
throughout their life cycle, as well as the trophic levels on which they forage
(Stenseth et al. 2004).

The foraging niche of most seabirds places them near the top of the food
chain and the response of such species to climate change can be used as an
integrative index of the effect of climate on the whole food web that sustains them
(Stenseth et al. 2004). However, seabirds may take prey from various trophic levels,
so that their relationship with climate may be highly complex, involving a large
number of physical and biological processes. Most studies of the effect of climate on
seabirds have focused on population-level effects, such as breeding performance and
population change (e.g. Abraham & Sydeman 2004, Crick 2004, Both et al. 2006,
Bustnes et al. 2009), but few studies have directly assessed the relationship between
climate and behavioural change in seabirds in general, and north Atlantic seabirds in
particular (Durant et al. 2004). Seabird behaviour may be directly affected by habitat
features that differ with water mass (and may affect, for instance, thermoregulation),
or they may respond to the availability of their prey, which may change with water

mass, current systems, or other oceanographic features (Ballance 2001).

1.4  Seabirds
1.4.1 A Seabird Case Study: The European Storm Petrel
Seabirds are represented by only four orders and in the Northern Hemisphere only

three of those are found: the Charadriiformes, Pelecaniformes and Procellariiformes.
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This study is focused on a species within the Procellariiformes: the European Storm
Petrel. “Storm petrel” is the common designation for members of the family
Hydrobatidae, characterised by being the smallest of the seabirds, with generally
dark plumage, relatively short-wings, square or slightly forked tails and long weak
legs. Probably due to their vulnerability to predators on land, storm petrels are
generally nocturnal at the breeding colony and nest in burrows or crevices (Brooke
2004). Like most of the Procellariformes, storm petrels are long-lived species that
tend to delay their breeding until they are at least two or three years old, breeding
colonially on remote islands or areas of difficult access and laying a single egg each
breeding season (Brooke 2004).

The Atlantic subspecies of the European Storm Petrel is the smallest Atlantic
seabird (weighing on average ~26g) and a long distance migrant: These birds breed
in NW Europe, from the west coast of Spain to Iceland and northern Norway, but
spend the winter in south Atlantic waters (Mainhood 1976, Cramp & Simmons
1977). About 90% of the known breeding population is concentrated in the Faroe
Islands, United Kingdom, Ireland and Iceland, with smaller colonies in France,
Norway and Spain (Cramp & Simmons 1977, Tucker & Heath 1994). There is also a
breeding population in the Mediterranean area (Greece, Italy and Malta), described
as a different subspecies (H. pelagicus melitensis, Cramp & Simmons 1977,
Bretagnolle 1998, Cagnon et al. 2004). Contrary to the Atlantic populations, the
birds breeding in the Mediterranean are believed not to be long-distance migrants
(Cramp & Simmons 1977) and it has until very recently remained uncertain whether
they ever enter the Atlantic (Hashmi & Fliege 1994, Brooke 2004, Robb &
Mullarney 2008). Indeed, a very recent analysis using genetic screening indicates

that very few Mediterranean Storm Petrels leave the Mediterranean via the Straits of
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Gibraltar, with less than 1% of birds caught in Portuguese waters in early summer
originating from Mediterranean breeding colonies (R.A. King, R. Medeiros et al.,
unpublished data).

Despite some evidence for population decline, the estimated population size
for the European Storm Petrel is relatively large (1,3M - 1,5M birds, Tucker & Heath
1994, Birdlife International 2004) and the species is classified as being of “Least
Concern” under the IUCN Red List Classification. The major threats to this species
seem to be related to the accidental introduction of predators such as rats, at the
breeding colonies (De Leon et al. 2006, Ruffino et al. 2009, Ratcliffe et al. 2010). In
some areas, recent increases in numbers of avian predators of Storm Petrels at
breeding sites appear to have increased the rate of predation (Cadiou 2003, Sanz-
Aguilar et al. 2009). At sea, there may be some risk from eating contaminated food
items, taking indigestible matter or suffer from oil spills (Azcona et al. 2006).

Due to their relatively high metabolic rate and high surface area/volume ratio,
small seabirds are likely to be more sensitive and respond more rapidly to changes in
climate than larger seabirds. Moreover, it has been suggested that long-distance
migrants might be more vulnerable to the impacts of climate change than short-
distance or non-migratory species. This is because long-distance migrants rely on
suitable conditions at a large number of locations during their annual cycle, any of
which may be adversely affected by climate change. Furthermore, the cues they use
to time their departure from their wintering grounds (e.g. photoperiod) do not change
in response to climate, and these birds may be unable to take advantage of the earlier
arrival of spring on their breeding grounds (Both & Visser 2001, Coppack & Pullido

2004). Certainly, there is evidence from among land-birds that long-distance
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migrants have not been able to respond as rapidly to climate change as short-distance
migrants or residents (Rubolini et al. 2010).

Though bound to the land for reproduction, most Procellariiformes, including
storm petrels, spend most of their life at sea where they may forage over distances of
hundreds to thousands of kilometres in a matter of days (Warham 1990, 1996).
Although many details of seabird reproductive biology have been successfully
elucidated, for smaller species much of their life at sea remains a mystery owing to
the logistical constraints of research away from the breeding colonies. For example,
satellite transmitters are not yet small enough to be applied to members of the
Hydrobatidae.

Storm Petrels are fairly easy to capture at colony sites both using mist-nets at
night or by capture on the nest. Pioneer work on this species was done by Ronald
Lockley on Skokholm Island, Wales (which still holds a significant proportion of
breeding European Storm Petrels in Europe) from the early 1930s (Lockley 1983).
Many early studies of the species focused on breeding biology (Hemery 1973),
movements (Mainwood 1976), predation (Love 1976), vocalizations (Hall-Craggs &
Sellar 1976), physiology (Warham et al. 1976), and parasite loads (Bakke & Barus
1976). More recently, the focus has been on vocalization and its application for
censusing (Slater 1991, Ratcliffe er al. 1998, Insley et al. 2002), on olfaction
(Minguéz 1997, Léon, Mingués & Belliure 2003, Nevitt 2008), metabolism and
breeding strategy (Bolton 1995a,b, 1996, Minguéz 1996, 1998) and demographics
(Okill & Bolton 2005, Zuberogoitia et al. 2007, Cadiou et al. 2009, Sanz-Aguilar et
al. 2009).

The great majority of studies on this species have focused on the breeding

period, when Storm Petrels are frequently on land. In contrast, Storm Petrels at sea
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are not easily accessible. A number of studies focused on the behaviour of European
Storm Petrels at sea (Martinez-Abrain et al. 2002, Valeiras 2003, Poot 2008, Flood et
al. 2009) but the information that can be derived from these studies is limited. The
small size of Storm Petrels constrains the use of long-distance transmitters and
remote-sensing technologies to study their movements, and samples such as feathers,
vomit or faeces cannot be collected unless the birds themselves are captured.
Procellariiformes are known to have a good olfactory sensitivity (Léon, Mingués &
Belliure 2003, Bonadonna et al. 2004, Bonadonna et al. 2006, Nevitt 2008), so it is
relatively simple to attract storm petrels close to a boat, at a considerable distance
from the coast, using a “chum” of mashed fish. Attempts have been made to capture
the birds attracted to such food-bait at sea, but the cost and effort required is high for
limited number of successful captures that result (Brooke 2004, this study).

A different approach, developed by scientists collaborating with A Rocha, an
environmental NGO in the south of Portugal, has proven to be efficient for capturing
storm petrels away from their breeding colonies. Since 1990, large numbers of storm
petrels have been caught in mist-nets every year in the south west coast of Portugal,
many miles away from any known breeding colony, by attracting them to the coast at
night using tape-lures (Harris, Fowler & Okill 1993). My research is partly based on

the data collected in this way before and during my PhD.

1.4.2 Seabird Diet and Foraging Ecology

The issue of how seabirds locate their prey in the immense ocean is far from
completely understood. In continental shelf systems, currents impinge upon
topographically fixed features, such as reefs or seamounts, creating physical

gradients predictable in space and time, at which seabirds can congregate to find
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aggregations of food. In the open ocean, where currents and dynamic processes are
less pronounced, locations of aggregations can be much less predictable, and this has
important consequences for the adaptations necessary for seabirds to locate and
exploit their prey. Under these circumstances, prey behaviour is likely to be a
primary mechanism responsible for seabird aggregation, if seabirds are able to
predict the behaviour of their prey and consequently its spatial and temporal
distribution. In this context, visual cues from the activity of other birds and cetaceans
are also good ways of finding prey (Nevitt e al. 2004).

The Procellariformes also rely on their highly developed sense of smell to
locate their prey (Bang 1966, Wenzel & Meisami 1987, reviewed by Nevitt 2008).
Studies have shown that one of the olfactory cues used by these birds is the dimethyl
sulphide, a substance released by the phytoplankton while being grazed by
zooplankton (Dacey & Wakeham 1986). Olfaction is more relevant for finding prey
at large spatial scales, in order for the birds to orientate towards areas where
phytoplankton accumulates and where animal prey is therefore likely to be abundant.
Larger and more aggressive species, such as albatrosses, are better adapted to exploit
a combination of visual and olfactory cues to exploit large patches of high prey
density, while smaller species, such as storm petrels, rely more exclusively on the
sense of smell and are adapted to forage opportunistically on small or less
concentrated prey patches (Nevitt et al. 2004, Nevitt & Bonadonna 2005).

At the breeding grounds, seabirds are more restricted in terms of foraging
habitats and subject to higher inter- and intra-specific competition. The breeding
season, is therefore likely to be a period when seabirds are particularly sensitive to
changes in the availability and distribution of their prey (Ricklefs 1987,

Weimerskirch 1998). Accordingly, dietary studies on seabird colonies have
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investigated links between climate or fisheries and seabird demography, recruitment
or productivity (e.g. Sydeman et al. 2001, Carscadden 2002, Abraham & Sydeman
2004). However, it is very likely that the birds adapt their foraging strategies to the
requirements of breeding, and that their diet can be strongly restricted by all the
constraints that are inherent to the breeding process (e.g. the trade off between self-
feeding and chick provisioning, Ydenberg et al. 1994). Despite the importance of
breeding success in population regulation, focusing dietary studies on the relatively
short breeding period limits understanding of the overall constraints on populations,
particularly for long-lived birds such as Procellariiformes. These birds may delay the
time of their first breeding attempt until they are over four or five years old and
spend most of their lives at sea feeding in the open ocean, far from the breeding
colonies. Nevertheless, almost all methods and studies on seabird diet refer to this
period when birds are on or close to land, mainly because of the obvious logistic
difficulties of accessing the birds at sea. Thus, because no satisfactory method of
studying the diet of seabirds at sea has yet been found there is an almost total lack of
knowledge on what these birds eat when they are not breeding, including when they
are immature and therefore not yet attending colonies (Barrett et al. 2007).
Furthermore, even at the colonies, dietary studies of seabirds face various limitations,
as outlined below.

Commonly, studies on seabird diet (and the diets of most animals in general)
have been based on visual identification of prey remains in stomach sampling (e.g.
Neves et al. 2006a) or in faeces or pellets (e.g. Naves & Vooren 2006, Neves et al.
2006b), direct observations of feeding behaviour (e.g. Sydeman et al. 2001, Paiva et
al. 2006a,b) or, more recently, biochemical methods (e.g. Quillfeldt et al. 2005,

Williams et al. 2008).
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Sampling of stomach contents can be carried out by dissection of dead birds, or
by stomach flushing or spontaneous regurgitations from live birds. Dead birds can be
hard to obtain, and samples from birds that have died from natural causes may
anyway be unrepresentative of the diet of healthy, living birds. While killing birds to
examine stomach contents was acceptable up to around 20 years ago (Duffy 1986), it
is not an option that many modern ecologists would be willing to consider, or that
most ethical committees would approve.

Stomach contents can be obtained from captured birds by a process called
stomach flushing. This involves inserting a latex tube deep into the bird’s
oesophagus and pumping salt water through the tube, causing the bird to vomit
(Montalti & Ruben-Coria 1993, Neves et al. 2006a). A major disadvantage of this
approach is that it is highly invasive (potentially causing mortality), and is becoming
less acceptable at a time when most scientists are trying more and more to adopt non-
invasive or even remote techniques for animal sampling (e.g. Waits & Paetkau
2005). Moreover, it is more successfully applicable in larger seabird species.

Captured seabirds sometimes spontaneously regurgitate partially-digested food
during handling (i.e. without the stomach-flushing method being applied by
researchers). However, these spontaneous regurgitations are only common among
birds captured at the colonies of species that routinely regurgitate food to offspring.
Furthermore, when at the colony it is hard to differentiate whether a regurgitated
meal was meant to be digested by the adult or to be provided to the chicks. This issue
may be important if the diets of parents and offspring differ, as suggested by the
results of the few studies on this subject in seabirds (e.g. Davoren & Burger 1999,

Wilson et al. 2004)
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The analysis of faeces or pellets of undigested hard parts is non-invasive, but
consists generally of the visual identification of prey remains and a major limitation
of the method arises from biased recovery of the remains due to differential digestion
and the difficulties of identifying well-digested prey in the sample (e.g. Seefelt &
Gillingham 2006, Tollit et al. 2007). Besides, not all taxa, including storm petrels,
regularly produce pellets and for those that do, finding pellets is for practical reasons,
once more restricted to the breeding colonies.

Direct observations of foraging behaviour and prey choice have the advantage
of enabling the study of seabird diet directly at sea and, for many species, also at the
colonies (primarily those that do not breed underground and carry the entire prey in
their bill, to deliver it to their nestlings). However, observations are very time
consuming and it is often difficult to accurately identify what the birds are catching,
due to the distance and brevity of most of such observations. These observational
studies are often anecdotal in nature, and have been most useful in highlighting
unusual or previously unknown trophic links or to give some indication of where the
birds feed rather than to provide detailed data on the composition of their diet (e.g.
Bocher et al. 2000).

More recently, analysis of mercury burdens (Monteiro et al. 1995), stable
isotope ratios (Kelly 2000) or fatty acid signatures (Williams & Buck 2010) have
been widely used to infer information about the diet of seabirds. Such biochemical
methods have the great advantage of being relatively non-invasive and providing
data about diet composition over long time scales, implying that information about
the diet during the non-breeding period can be obtained. Nevertheless, these
techniques have their own limitations, including that they provide information only

on the overall trophic level or broad geographical regions in which birds have been
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foraging, from which can be inferred only broad dietary shifts or changes in foraging
location (e.g. Monteiro et al. 1995, Quillfeldt ef al. 2005).

Molecular techniques have also been recently developed to study the diet of
predators by detecting prey DNA in their guts, regurgitations or faeces (reviewed by
Symondson 2002, King et al. 2008). These molecular techniques have not yet been
extensively explored for birds but are a promising tool to improve the study of
multiple trophic links, including in marine ecosystems (e.g. Jarman et al. 2002,
Blankenship & Yayanos 2005) and the seabirds that rely on them (Deagle et al.
2007). This research will take advantage of these new techniques and I will develop
their application in the Chapter 3.

Studies on the feeding ecology of Procellariiformes have been mostly directed
to the families Diomedeidae (albatrosses, e.g. Pinaud & Weimerskirch 2002,
Thompson et al. 2000) and Procellariidae (fulmars, shearwaters and other petrels;
e.g. Hilton et al. 1998, Gray & Hamer 2001, Weimerskirch 1998). Hence, very few
studies are available on the Pelecanoididae (diving petrels; Brooke 2004), the most
distinct group of petrels with only four species, restricted to the southern hemisphere.
These are generally the least studied of all the petrels (Brooke 2004). On the
contrary, there is a wide literature available on the Hydrobatidae (storm petrels) but
relatively few studies have so far focused on their foraging ecology. This is not
surprising since the birds’ small size limits or at least complicates the range of
techniques currently available for this type of study.

Many seabird species, including various species of storm petrels, take prey
from the surface layer, within a half meter of the sea surface (Bried 1996, Flood et al.
2009). It is broadly known from direct observations that storm petrels feed either

solitarily or in small groups, by dipping, hovering or pattering on the sea surface,
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sometimes following ships or cetaceans, and may aggregate where food is
concentrated, for example along hydrological fronts (Webb er al. 1990). Some
species of storm petrels have been observed to occasionally dive beneath the sea
surface for food (e.g. Prince & Morgan 1987, Warham 1990) and a recent study
using depth gauges has shown that this is a typical foraging behaviour for the
Madeiran Storm Petrel* Oceanodroma castro in the Azores, although to very
shallow depths (less than 1 m) and not for extended periods (Bried 2005). It is
possible that this is a common behaviour also for other storm petrel species,
including the European Storm Petrel (Flood et al. 2009, pers. obs.).

Cramp & Simmons (1977) reviewed the available information on the diet of
European Storm Petrels, which can be summarised as follows. From a total of five
birds from northern Europe, cephalopod remains were present in all five birds, with
one containing the remains of small fish together with aphid wings. European Storm
Petrels may sometimes feed on whale carcasses, and offal and kitchen scraps from
fishing boats. In studies of breeding Storm Petrels in Wales, UK, Davis (1957) found
that the nestlings are fed regurgitated pre-digested grey pulp and Scott (1970) found
that chick diet is mainly composed of small Atlantic Herrings Clupea harengus and
Sprat Sprattus sprattus, with crustaceans provided infrequently.

The most detailed study on the diet of the European Storm Petrel was carried
out by D’Elbée & Hémery (1998), on the spontaneous regurgitations of adult birds
caught at a colony in NW France (these birds were presumably about to deliver the
regurgitated prey to their chicks). In this study, each individual regurgitate sample
contained on average only 3.6 identifiable organisms and very few samples
contained more than two fish items. Taxa identified visually in these regurgitates

include coelenterates, nematodes, chaetognaths, copepoda, isopods, ostracods, Cypris

* The denomination Madeiran Storm Petrel, Oceanodroma castro, has recently been attributed only to those birds
that breed during the winter period. Those breeding during the summer were classified as a different species —
Monteiro’s storm netrel Q. monteiroi (Bolton et al. 2008).
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larvae (Cirripedia), decapod larvae, euphausiids, insects, fish larvae and plant seeds.
Zooplankton represented 52% of the number of identifiable prey items eaten, but in
terms of biomass fish were the most important, belonging to four different families:
Gadidae, Gobiidae, Myctophidae and Ammodytidae. One species of gadid fish, Poor
Cod Trisopterus minutus, was the most common species present in the regurgitations
(11% of the total identifiable taxa) but the Gobiidae (mainly Pomatoschistus spp. and
Aphia minuta) were the most common prey, found in the highest number of samples.
Intertidal nocturnally-active isopods belonging to two different species (Eurydice
pulchra and E. affinis) were also found to be an important food resource by number.
The regular occurrence of these intertidal isopods suggests that, besides foraging
offshore, Storm Petrels must regularly exploit the intertidal zone. There was previous
evidence of inshore foraging at night (Maguire 1980) close to the breeding grounds.
Thomas et al. (2006) reported similar behaviour far away from any known colonies,
in southern Portugal. Some reports also suggest occasional diurnal inshore feeding
(reviewed by D’Elbée & Hémery 1998).

Thus, the few studies to have looked in any detail at European Storm Petrel diet
were of food delivered to nestlings by breeding birds (e.g. Bolton 1995a,b, D’Elbée
& Hémery 1998), but there are no data on the diet of adult birds during migration.
Even during reproduction, several studies of other seabird species show that the food
provided to chicks does not necessarily reflect the diet of the adults at that same
period; the adult diet consists of prey items in different proportions to the diet of
chicks, and the adult diet is generally less diverse (Baird 1991, Ramos et al. 1998,
Shealer 1998).

Such a scarcity of information on feeding ecology and diet is common to most

storm petrels. The Leach’s Storm Petrel Oceanodroma leucorhoa is one of the best
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studied species in terms of feeding ecology and diet, and yet the literature available
on the subject is nevertheless relatively scarce (some examples are Ricklefs et al.
1987, Vermeer & Devito 1988, Pitman & Ballance 1990, Hedd & Montevecchi
2006). A number of publications can also be found on the feeding ecology of the
Wilson’s Storm Petrel Oceanites oceanicus (e.g Obst & Nagy 1993, Quillfeldt 2001,
2002, Quillfeldt er al. 2005, Gladbach er al. 2007) and the Madeiran/Monteiro’s
Storm Petrel (Harris 1969, Prince & Morgan 1987, Monteiro et al. 1995, 1996). Very
few studies on the feeding ecology and diet of other species of storm petrels are
available (summarised by Brooke 2004). The development of a feasible and reliable
method to study the diet of non-breeding as well as breeding storm petrels is
therefore required. Such a method will greatly facilitate the study and conservation of
these remarkable birds and will promote the applicability of similar techniques to

other seabird and terrestrial species throughout their annual cycles.

1.4.3 Molecular Biology as a Tool to Study Seabirds
Over the last few decades, an increasing number of studies in the behavioural
ecology and population biology of species belonging to great range of taxa, have
been based on molecular techniques (e.g. Parker et al. 1998, Freeland 2005).
Seabirds have not been an exception and molecular studies have greatly improved
our understanding of several aspects of their ecology, such as mate fidelity (e.g.
Swatschek et al. 1994, Mauck et al. 1995, Huyvaert et al 2006), kinship relationships
(e.g. Nielsen et al. 2006), social behaviour (e.g. Hughes 1998) and population
dynamics (e.g. Milot et al. 2008).

Many molecular studies on the phylogeny of seabirds have also been recently

published (e.g. Nunn & Stanley 1998, Bretagnolle et al. 1998, Nunn et al. 1996,
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Kennedy & Page 2002, Austin et al., 2004, Gomez-Diaz et al. 2006) including
phylogenies for the storm petrels. For example, Cagnon et al. (2004) have shown a
phylogeographic differentiation of European Storm Petrels, confirming the
distinction of two subspecies of H. pelagicus, namely: H. p. melitensis for birds that
breed within the Mediterranean basin and H. p. pelagicus for birds that breed in the
north-east Atlantic.

More recently, DNA based techniques have been applied to the dietary study
of predators and subsequently to the trophic links within the food webs that they are
part of. This relies on identifying DNA sequences unique to particular prey taxa in
diet samples from the predators (obtained from their guts, regurgitations or faeces;
reviewed by Symondson 2002). Prey DNA can be identified from even well-
digested, amorphous remains in these samples (e.g. Jarman et al. 2002, Kvitrud ef al.
2005, Parsons et al. 2005), but these studies depend upon appropriate primers that
amplify target prey DNA from the samples. Primers can only be designed
appropriately if the DNA sequences for a good range of species are available.
Conveniently, a comprehensive database of animal DNA sequences from the
mitochondrial Cytochrome Oxidase subunit I gene (COI) is being developed (Hebert
et al. 2003a) and can be directly applied to identify prey DNA isolated in diet studies
that used general primers to target the COI gene. This has been referred to as “DNA
barcoding”, by analogy with the bar codes used to identify manufactured goods, and
is available in public databases such as GenBank and the Barcode of Life Data
systems (BOLD). The COI gene was considered the most appropriate target gene for
DNA barcoding because it is evolutionarily conserved enough to be amplified with
broad-range primers, yet divergent enough to allow species discrimination for the

great majority of taxa (Hebert et al. 2003b).
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The CO1 barcodes by themselves distinguish about 98 percent of species
recognized through previous taxonomic studies (Stoeckle & Hebert 2008), but
recently diverged species and species that have arisen through hybridization may not
be resolved by COI sequencing. Similarly, plants have too little mitochondrial
sequence diversity (probably due to hybridization and introgression), such that the
COI is not a suitable gene to distinguish them. To overcome these problems,
investigations are being carried out to find other genes that could be included into the
barcoding database (Hollingsworth et al. 2009). The most common primers used so
far for the barcoding of invertebrate species target the region of the CO1 amplified
by primers designed by Folmer et al. (1994). These primers amplify a region of
approximately 700 bp. This is too large to be used in dietary analysis because
digestion rapidly degrades long sequences of DNA into shorter sequences. Therefore,
an amplified region of 300bp is usually the maximum size used for studying DNA in
diet samples. Ideally, primers used in dietary studies would amplify a smaller region
within that amplified by the Folmer primers (Folmer et al. 1994), in order to
maximise the chances of finding matches in the databases. However, it is not always
achievable to design taxon-specific primers within this region for the taxa of interest
and increasing the diversity of amplified regions and genes available in the online
databases will be very beneficial for the specificity of taxonomic identification that
will be possible in future dietary studies.

The use of “universal” primers (i.e. primers which bind with DNA from any
taxon) provides an alternative analytical approach when sequences of potential prey
taxa are not available, or to find unexpected components of the diet. This approach
involves amplifying the sequences bound to the universal primer, sequencing the

amplified sequences, and comparing these sequences with those of databases such as
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Genbank and BOLD. However, universal primers may fail to amplify all target
sequences in these situations because the early round of the PCR is dominated by the
more common sequences and rarer sequences may fail to be selected. Even if the
target sequence is amplified, it then needs to be isolated from the pool of all
amplified sequences. This generally involves cloning the PCR product and
sequencing a number of clones proportional to the diversity of sequences in the
library (Jarman et al. 2004, Deagle et al. 2007, Lerner & Fleischer 2010). The
development of “Next-Generation” DNA Sequencing techniques, capable of
producing thousands or millions of sequences at once and lowering the cost of each
DNA sequence beyond what is possible with standard dye-terminator methods,
greatly overcomes this problem and enhances the use of molecular techniques in the
study of trophic interactions (Deagle ef al. 2009). However, at the moment, the
overall financial cost of applying such techniques is still considerable.

In addition to the potential lack of appropriate taxon-specific primers, some
limitations of DNA-based methods to study predator diets can be (i) short or variable
post-ingestion detection periods, (ii) secondary predation resulting in detection of
DNA from the prey’s own gut, and (iii) cross-amplification by the primers of the
predator’s DNA (King et al. 2008). Various predator taxa can differ markedly in
their DNA digestion rates (e.g. Chen et al. 2000) and often this problem is overcome
by performing feeding trials to quantify prey DNA detection periods. This involves
keeping captive specimens of the predator and feeding it with known prey under
controlled conditions to investigate the detection period of different prey types (e.g.
King et al. 2010). However, this method may be unfeasible when dealing with
species that cannot readily be kept in captivity, such as adult seabirds, in which case

we can only refer to the available literature on their digestive physiology, or the
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results need to be interpreted with caution. If the digestion rate of a certain species is
very high, then the DNA detection periods for its prey will generally be short and
effort needs to be put into obtaining samples that are as fresh as possible.

Secondary predation can lead to incorrect conclusions because the DNA-
based techniques cannot distinguish what a secondary predator has eaten from what
its prey (a primary predator) has eaten prior to itself being predated. This issue can
be particularly serious for those studies using gut contents or regurgitation samples,
rather than faecal samples (as the secondary prey is likely to have been thoroughly
digested by the time it reaches the faeces of a secondary predator). Even so,
Sheppard et al. (2005), working on beetle diet, used an empirical approach to
evaluate the potential bias of secondary predation on DNA-based techniques and
showed experimentally that secondary predation is only a problem when the primary
predator had consumed its prey immediately before being consumed by the
secondary predator. A similar issue to secondary predation is the accidental ingestion
of non-prey organisms by marine predators, since large numbers of small planktonic
organisms may be ingested in sea water together with the intended prey.

Despite these limitations, DNA based studies have the major advantage of
identifying components of the diet that are not apparent through physical
examination. They allow us to study the diet of vertebrate animals in a non-invasive
way through analysis of their regurgitates and faeces. As these DNA based
techniques become more widely applied to study the diet of wild animals, more DNA
sequences, from different genes, will become available providing an enormous range
of opportunities for research into diet and foraging ecology.

Nevertheless, in comparison with other sampling methods, few studies have

yet applied molecular techniques to study the diet of animals (less than 100 in total,
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most of which have been published since 2005). Of these, nearly 80% have focused
on invertebrates, for example in soil food webs (e.g. Harwood & Obrycki 2005, Read
et al. 2006, Cassel-Lundhagen et al. 2009, King et al. 2010). Within the marine
invertebrates, molecular studies have been published on the diet of copepods (e.g.
Nejstgaard et al. 2003, Nejstgaard et al. 2008), mysids (Gorokhova 2006, Gorokhova
& Lehtiniemi 2007), amphipods (Blankenship & Yayanos 2005), euphausiids
(Passmore et al. 2006, Vestheim et al. 2008, Tobe et al. 2010), lobster Jasus
edwardsii (Redd et al. 2008), brown shrimp Crangon crangon and shore crab
Carcinus maenas (Albaina et al. 2010) as well as giant squid Architeuthis sp.
(Deagle et al. 2005a). Most commonly in studies on invertebrate diets, DNA is
extracted from the gut of the predator after killing it, but some studies have also
extracted DNA from faeces (Nejstgaard et al. 2003, Redd et al. 2008). When killing
the predator is not an option, such as in most vertebrates, faeces or regurgitations are
the only way of assessing the diet of predators using DNA-based methods.

Most of the vertebrate literature on faecal analysis has the aim of extracting
DNA from the predator for genotyping (e.g. Goossens ef al. 2006, Gillett et al.
2008), rather than extracting the DNA of the prey. Many studies have focused on
showing the feasibility of using faecal samples for remote sampling of vertebrate
populations and this has become common practice over the last decade (e.g. Jalil et
al. 2008, Fernandes ef al. 2008). Molecular methods have been used to study the diet
of terrestrial mammals using faecal samples, including studies of western Gorillas
Gorilla gorilla and Black and White Colobus Monkeys Colobus guereza (Bradley et
al. 2007) and even extinct species such as the Ground Sloths Nothrotheriops
shastensis (Poinar et al. 1998). Several studies have used molecular methods to study

the diet of marine mammals: Steller’s Sea Lions Fumetopias jubatus (captive;
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Deagle et al. 2005b), seals Arctocephalus sp. (Parsons et al. 2005, Kvitrud et al.
2005, Casper et al. 2007, Matejusova et al. 2008, Deagle et al. 2009), the Pygmy
Blue Whale Balaenoptera musculus brevicauda (Jarman et al. 2002) and bottlenose
dolphins Tursiops truncates (Dunshea 2009). A few molecular studies have also been
published on the diet of fish (Rosel ef al. 2002, Jarman & Wilson 2004, Smith et al.
2005, Corse et al. 2010). The first study to apply molecular methods to study the diet
of bird species was by Sutherland (2000), who successfully amplified and
distinguished DNA from different species of Leptidoptera in the faecal samples of
two species of tit Parus sp. Sutherland’s (2000) study was a PhD project at Oxford
University, UK, and some of this work was repeated a year later by Casement (2001)
in an unpublished report by the same University. The method was then tried very
briefly in a seabird species, the Adelie Penguin Pygoscelis adeliae by Jarman et al.
(2002). In 2006, Nystrom et al. published a study on the diet of Gyrfalcon Falco
rusticolus where DNA analysis was used to identify two species of potential prey
from remains collected at the nest sites. However, Deagle et al. (2007) presented the
first detailed investigation of a bird’s diet using a molecular approach, focusing
specifically on a seabird species, the Macaroni Penguin Eudyptes chrysolophus.
Overall, with a few exceptions (Sutherland 2000, Deagle et al. 2007, 2010),
nearly all the literature applying molecular techniques to the study of animal diet is
still either preliminary (e.g. Harper et al. 2006, Nejstgaard et al. 2008) or aims to
evaluate the importance of a single prey in the diet of a certain predator (e.g. Jarman

et al. 2002), rather than investigating the diversity of trophic interactions.
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1.5 Thesis Outline

The overall aim of this PhD project was to combine a range of datasets and analytical
approaches to understand how environmental variation is affecting the diet, foraging
ecology and migration fuelling strategy of the European Storm Petrel. This species
was chosen as a case study for its small size (and hence its anticipated sensitivity to
environmental change), extreme migration strategy and ease of capture during active
migration at sites remote from the breeding colonies. To my knowledge, this is the
first study of temporal variation of diet and fuelling strategy in a migrating seabird.
The Data chapters (Chapter 2 — Chapter 4) were written as self-contained papers.

Chapter 2 reviews what is currently known about Storm Petrel migration
strategy and identifies a dramatically female-biased sex ratio during migration past
my Portuguese study site. The possible origins of this sex ratio biased are discussed;
furthermore, the bias is important to take into account (both qualitatively and
statistically where necessary) in subsequent parts of the thesis.

Chapter 3 describes the development and application of molecular scatology
methods, supported by stable isotope analysis, for a detailed investigation of the diet
of migrating Storm Petrels.

Having identified possible key prey species in Chapter 3, Chapter 4 addresses
the migration fuelling strategy of Storm Petrels and identifies large inter-annual
variations in the level of fuel reserves carried by birds migration past SW Portugal.
Causal mechanisms underlying these variations are then investigated, linking
climate-driven changes in physical oceanographic conditions to cascading changes
across trophic levels in the marine food web; from primary productivity to Storm

Petrels.
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Chapter 2
Molecular Sexing Reveals a Strongly Female-Biased Sex Ratio

among Migrating European Storm Petrels

2.1 Abstract

Molecular sexing revealed an unexpectedly strong female bias in the sex ratio of pre-
breeding European Storm Petrels Hydrobates pelagicus, attracted to tape-lures
during their northwards migration past SW Portugal. This was consistent across
seven years, ranging from 80.8% to 89.7% female (mean annual sex ratio £SD =
85.5% female +4.1%). The sex ratio did not differ significantly from unity (i.e. 50%
female) among (i) chicks at a breeding colony in NW France, (ii) adults found dead
on beaches in southern Portugal, (iii) breeding birds attending nest burrows in
Scotland, captured by hand, and (iv) adults captured near a breeding colony in
Scotland using the same sound recordings as used in Portugal, indicating that females
are not inherently more strongly attracted to tape lures than males. A morphological
discriminant function failed to provide a good separation of the sexes, despite males
being significantly smaller than the females in terms of wing length, body mass and
one aspect of bill morphology. There was no sex difference in the seasonal or
nocturnal timing of migration past Portugal, but there was a significant tendency for
birds to be caught in sex-specific aggregations. The preponderance of females
captured in Portugal suggests that the sexes may differ in migration route or in their
prospecting behaviour (susceptibility to tape-lures) far away from the original

breeding colonies.
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2.2 Introduction

Many species of bird exhibit marked differences between the sexes in aspects of their
behaviour, including their foraging behaviour and migration strategies (e.g. Cramp &
Simmons 1977, Cristol et al. 1999, Nebel 2007). Sex-specific foraging behaviour
amongst birds is believed to be related either to social dominance and competitive
exclusion (usual when one sex is larger than the other) or from niche specialization
(related to differences in morphology or reproductive role; Marra 2000, Bearhop
2006, Phillips et al. 2004). These differences in foraging behaviour can potentially
lead to differences in migration strategies, with males and females migrating at
different times, travelling by different migration routes, or travelling to/from
different wintering grounds (Cristol et al. 1999). Identifying and investigating sex-
differences in migration behaviour is important for our understanding of species’
ecology and conservation, but for monomorphic species such studies are hampered
by the difficulty of identifying the sex of individuals, particularly outside the
breeding season. Previous studies have attempted to address this problem by using
morphometric methods such as discriminant function analysis, but such methods are
by definition difficult to apply to monomorphic species, and often only a small
proportion of individuals can be sexed with confidence (Brooke 2004, O’Dwyer et
al. 2006, Warham 1996). As a result, there is a lack of information for monomorphic
species on sex-differences in behaviour in general, and on migration strategies in
particular. Only a few studies have addressed sex-specific differences in seabird
behaviour outside the breeding season; these studies were based on stable isotope
signatures among various Procellariid species (e.g. Hedd & Montevecchi 2006,

Phillips et al. 2009).
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The need to study species throughout their life cycle has been increasingly
emphasised as more studies demonstrate the importance of carry-over effects of non-
breeding processes into breeding productivity and population dynamics (e.g.,
Lindstrom 1999, Norris & Taylor 2006, Reudink ef al. 2009). Molecular sexing
methods now allow accurate sexing of individuals of even highly monomorphic
species outside the breeding season (e.g., Bertellotti et al. 2002, Russello & Amato
2001), and in this study we apply molecular diagnostics to study differential
migration patterns in a monomorphic migratory seabird, the European Storm Petrel
Hydrobates pelagicus.

Storm petrels (family Hydrobatidae) are small but long lived pelagic seabirds,
with delayed reproductive maturation. Pair bonds tend to last for many years.
Females lay one large egg per year which both adults incubate. Both adults also feed
the chick for about two months, until shortly before the chick is ready to fledge
(Brooke 2004).

The European Storm Petrel (henceforth abbreviated to “Storm Petrel” where
appropriate) is the smallest Atlantic seabird (~26 g), and birds of the Atlantic
population are long-distance migrants between the breeding colonies in the north-
east Atlantic and their wintering areas in the south Atlantic and Indian oceans, off
southern Africa (Wernham et al. 2002). Like other Hydrobatidae, Storm Petrels
normally come inshore only at night (Thomas et al. 2006), and pre-breeding birds
can readily be attracted into mist-nets using nocturnal playbacks of sound recordings
of conspecific nesting calls. These “tape-lures” are effective for catching Storm
Petrels during their summer northwards migration, even at locations in SW Iberia, far
from the nearest known colonies (Harris et al. 1993, Wernham et al. 2002). Most of

the birds caught with this method are aged 2-4 years, returning northwards in the
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years before their first breeding attempts in order to prospect for mates and breeding
sites (Bolton & Thomas 2001, Wernham et al. 2002, Okill & Bolton 2005). Storm
Petrels are usually absent from the Atlantic colony sites before the age of two and
they usually only start breeding at the age of four or five (Okill & Bolton 2005).
Little is known about what they do during the period before they begin returning to
the colonies, but they are thought to remain in their wintering grounds at least during
their first year (Bolton & Thomas 2001).

Breeding Storm Petrels are usually not attracted to playbacks of nesting calls
since they tend to keep the same mate and nest site between years and they therefore
cease to prospect for these once they are acquired. Breeding-age birds can still be
caught in mist-nets without the need for tape-lures, but only at the colonies when
they attend their nests. Nest sites are relatively easy to find, and both adults and
chicks can be caught by hand in the nest. Therefore, as with other seabirds, much of
what is known about Storm Petrels is derived from studies at or near the breeding
colonies, where they are accessible to researchers. Like other storm petrels, European
Storm Petrels are sexually monomorphic in terms of plumage features (Brooke
2004); breeding birds can (sometimes) be sexed on the basis of cloacal morphology
or breeding behaviour (Scott 1970, Copestake et al. 1988), or discriminant function
analysis can be used to predict the sex of individuals on the basis of biometric
measurements (e.g. James 1983). As a result, little is known about sex-differences in
the behaviour and ecology of Storm Petrels, such as dietary preferences (see Chapter
3), foraging and fuelling strategies (see Chapter 4), migration routes and natal site-
fidelity. This lack of knowledge is most marked for the long period when birds are
away from the breeding colonies, because of the difficulties involved with observing,

catching and sexing the birds during the non-breeding season. Previous studies have
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tested for differences between the sexes in the foraging behaviour of storm petrels
(Stewart et al. 1999, Cherel et al. 2005, Hedd & Montevecchi 2006, Phillips et al.
2009, Gladbach 2009), but none of these involved the European Storm Petrel. Only
one study (Gladbach 2009) found such a difference; in the chick provisioning
strategies used by male and female Wilson’s Storm Petrels Oceanites oceanicus; this
sex-difference was only apparent in years of food shortage.

Molecular sexing techniques now enable tape-lured migrating Storm Petrels
to be accurately sexed for the first time, providing novel insights into the behaviour
and ecology of this pelagic seabird away from the breeding colonies. Instead of the X
and Y chromosomes found in mammals, birds possess Z and W sex chromosomes,
with males being homogametic (ZZ) and females being the heterogametic (ZW) sex.
Griffiths et al. (1998), Kahn et al. (1998) and Fridolfsson & Ellegren (1999),
published combinations of primers that allow the sex of individuals to be determined
in most species of birds, using a simple PCR reaction based on size differences of the
introns present in both the CHD1-W and CHD1-Z genes (the W- or Z-linked genes
coding for the chromodomain-helicase-DNA-binding protein), which are found in
most extant non-ratite birds. Several authors have now reported the use of this
technique to sex fledgling and adult birds, mostly in captive-breeding projects (e.g.,
Bertault er al. 1999, Russello & Amato 2001) but also in the field (e.g., Hornfeldt et
al. 2000, Bertellotti ef al. 2002, Nogueira et al. 2008).

The majority of molecular sexing studies have used DNA extracted from
blood samples obtained relatively invasively (Bensch ef al. 1999, Ewen et al. 2001,
Genovart et al. 2003). However, molecular sexing can also be achieved much less
invasively using DNA obtained from a single feather (Jensen et al. 2003, Harvey et

al. 2006, Costantini ez al. 2008) or a faecal sample (Waits & Paetkau 2005). Feathers
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are becoming more widely used for molecular sexing of birds (Harvey et al. 2006),
with the use of faecal DNA samples mainly used in mammals (e.g., Yamauchi et al.
2000, Bradley et al. 2001, Vidya & Kumar 2003). Despite a number of recent studies
reporting successful DNA extraction from bird faeces, to our knowledge only four
publications report molecular sexing by this means (Robertson et al. 1999,
Segelbacher & Steinbriick 2001, Regnaut et al. 2006, Miki-Petdys et al. 2007), but
without presenting the details of the results obtained or methods used. This is
possibly due to the greater challenge of amplifying nuclear DNA from faecal
samples in comparison with mitochondrial DNA (Segelbacher 2002).

Using molecular sexing from feathers and faeces, the aims of the present
study are: (i) To investigate the sex ratio of European Storm Petrels tape-lured to
mist nets in Portugal over seven years, during the northwards migration of pre-
breeders towards the Atlantic breeding colonies; (ii) To investigate if the sex ratios
observed in Portugal are consistent with those in other parts of the annual cycle; (iii)
To use the molecular sexing data generated to test for sex differences in aspects of
migration behaviour of the species. The data on the sexes of the individual Storm
Petrels in this dataset will also be used to examine sex differences in diet (Chapter 3)

and migration fuelling (Chapter 4) in subsequent Chapters of this thesis.

2.3 Methods

2.3.1 Fieldwork

Storm Petrels were caught in mist-nets at the base of a sea-cliff on the south west
coast of Portugal (37° 04’ N, 8°47° W, Figure 2.1), using tape lures of the calls that
the males perform from their nest sites (usually referred to as the ‘Purr’ call; Cramp

& Simmons 1977, Robb & Mullarney 2008). Tape-luring took place from dusk
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(2100 GMT) to dawn (0400), within the period mid-May to late June, in all years
from 2003-2009. This sampling period spans the main period during which migrating
storm petrels can be attracted to tape lures in Portugal (Harris 1993). European Storm
Petrels sampled using tape lures at this Portuguese field site have been found (using a
combination of ringing data and molecular screening) to be comprised almost
entirely of birds originating from the Atlantic population, with a very small number
of vagrants (<1%) from the Mediterranean population (Robb & Mullarney 2008,
Andrew King unpublished data).

Two sound recordings of Storm Petrel “purr calls” (James 1983, 1984) were
used as tape-lures: (i) a recording obtained from the British Trust for Ornithology
during the 1990s and (ii) track 11 of disc 1 in the CD collection by Roche (1997).
The recording-locations of both of these recordings were unknown. These tracks
were played on Technika MP Series MP3 players coupled to a Martley Megaphone
600 at a sound pressure level of approx. 70 dB, and were clearly audible at a distance
of approx. 400 m offshore (personal observations). Males respond more strongly than
females to playbacks of these purr calls in terms of calling in reply to the playbacks
from inside the nest burrows (James 1984), but previous studies using tape-lures of
purr calls to mist-net Storm Petrels in or near breeding colonies have found that there
is no apparent sex bias in the birds attracted (see Table 2.IV).

Each captured individual was ringed and its age determined (as first-year or
older than first-year, based on the abrasion and shape of the primary flight feathers;
Bolton & Thomas 2001). Biometric measures were taken of body mass, wing length,
tarsus length (from the depression in the angle of the intertarsal joint to the base of
the last complete scale before the toes diverge), culmen length (from the tip of the

bill to the feathering at the base of the bill), “bill depth 1” (from the bottom of the
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mandible to the top of the nostril tube, taken at the depression mid-way along the
tube), “bill depth 2” (from the bottom of the mandible to the top of the maxilla taken
just anterior to the nostril), head-plus-bill length (from the tip of the bill to the back
of the skull) and rump width (the anterior-posterior width of the exposed white
feathering of the rump-patch). Wing length and body mass were the only measures
taken during all seven years; the other measures were recorded only from 2006-2009
with the exception of head-plus-bill (recorded from 2006-2008) and rump width
(only recorded in 2009). Between one and four breast feathers (most commonly two)
were collected from each bird for molecular sexing, and kept in a paper envelope at
ambient temperature. All the birds were processed at the site where they were caught,
and were released shortly after capture.

We also acquired equivalent samples from Storm Petrel breeding locations in
the NE Atlantic (Figure 2.1) - in July 2005, breeding birds attending nest burrows
during daytime on Sanda Island, Scotland (55° 16’ N, 5° 34' W), were captured by
hand; In August 2006, tape-luring was carried out close to a small breeding colony
on Ailsa Craig, Scotland (55° 15'N, 5° 6' W), using the same procedures as those
used in Portugal, including using exactly the same sound recordings to attract
European Storm Petrels into mist nets. At both of these sites, one breast feather was
collected from each bird for molecular sexing, and kept in a paper envelope at room
temperature. Fa ecal samples were collected from chicks at colonies in Brittany,
France (48° 23'N, 4° 57' W, Figure 2.1) during the 2005-06 breeding seasons and
stored in 80% ethanol.

In addition, European Storm Petrels found dead on beaches in southern
Portugal (37°07°N 08°36° W) following severe storms in January 1996, were

collected for anatomical sexing. On dissection, females were identified by the
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presence of the single ovary on the left side, and males by the presence of a testicle
on each side. Unfortunately these corpses subsequently became decomposed and

molecular sexing could not be tested on them for this study.
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Figure 2.1 Location ofthe study sites used in the present study to sample European Storm
Petrels in migration (Portugal), at the breeding colonies (adults - Sanda Island and chicks -

Brittany) and near a breeding colony (Ailsa Craig).

The Migration Strategy, Diet & Foraging Ecology of a Snail Seabird in a Changing Environment 40



Chapter 2 Female-Biased Sex Ratio among Migrating European Storm Petrels

2.3.2 Molecular Sexing

DNA from feathers was isolated using an adaptation of the Chelex extraction method
(Walsh et al. 1991). The barbs towards the base of each feather were removed and
approximately Smm of the calamus of the feather was cut off. 50 pl of distilled H,O
and 20pl of InstaGene ~ Matrix (BioRad) were added to each sample. The samples
were then incubated at 50°C for 30 minutes, followed by 8 minutes at 100°C. DNA
from faecal samples was isolated using the QIAGEN® Stool Mini Kit, following the
manufacturer’s standard protocol. In order to find the best primer combination for
this species, preliminary primer testing was performed using primers P8/P2 (Griffiths
et al. 1998), 1237L/1272H (Kahn et al. 1998), 2550F/2718R (Fridolfsson & Ellegren
1999), P8/M5 (Bantock et al. 2007), and 2550F/TuWR/ TuZR (Regnaut et al. 2006).
Our comparisons showed that the most effective primer pair for separating male and
female Storm Petrels was 2550F/2718R (Fridolfsson & Ellegren 1999). These
primers proved to be efficient at a wide range of temperatures and provided the
greatest separation of bands (~200 base pairs), easily differentiated on a simple
agarose gel.

The major criticisms made of molecular techniques for sexing birds are
related to (i) preferential amplification of the Z fragment (Dawson et al. 2001), (ii)
the fact that the male is defined by the absence of amplification of the W fragment, in
other words, by a negative result (Robertson & Gemmell 2006), and (iii)
polymorphism in the Z chromosome (Dawson et al. 2001, Casey et al. 2009). Errors
related to criticisms (i) and (ii) would result in females being wrongly classified as
males, which seems unlikely to have occurred in the present study, given the
direction of the sex-ratio bias in our main results. Primers 2550F/2718R have other

advantages that minimise such potential sexing errors (Dawson ef al. 2001, Casey et
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al. 2009). Shizuka & Lyon (2008) developed a new W-specific primer (GWR2) to be
used in combination with 1237L/1272H. This approach is very promising but it could
not be tested in the present study because it was published after this research had
been completed.

All PCRs included two positive controls to test for the success of the
amplification and two negative controls, prepared with distilled water, to test for
possible contamination. A gradient PCR was first performed in order to optimise the
annealing temperature. One feather extraction and two faecal extractions were used
for each temperature gradient PCR. These PCR reactions were performed on a
BioRad PTC-225 DNA Engine® Peltier Thermal Cycle PCR machine (45°C to 60°C).
The optimum annealing temperatures, obtained from these gradient PCRs, were 50°C
for the feather samples and 47.5°C for faecal samples. Thirty individuals (15 males
and 15 females) were selected at random to be sexed using both feathers and faeces,
to compare the results obtained with the two types of samples and check for their
consistency. Each male result was always checked at least three times and about 25%
of all female results were checked at least twice.

Amplifications from feather extractions were made with a standard PCR,
carried out in accordance with Fridolfsson & Ellegren (1999), using 1 pl of DNA
template (~10 ng/ul). Those from faecal extractions were performed using a
Multiplex kit, carried out in 20 pl reactions containing 1x of QIAGEN® Multiplex
PCR Master Mix, 0.2 uM of each primer and 3 pl of DNA template (~3 ng/ul). The
thermal conditions were 95°C for 15 min, 35 cycles of 95°C for 1 min, annealing
temperature for 1 min 30 s, 72°C for 1 min 30 s, and a final extension at 72°C for 10

min. All reactions were carried out using an Applied Biosystems GeneAmp® PCR
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System 9700 PCR machine. Samples were run on 2% weight/volume agarose gels

stained with ethidium bromide, unless specified otherwise.

2.3.3 Statistical Analysis

Chi-square tests were used to test for deviation from the expected 50:50 sex ratio,
except for cases in which one or more expected values were less than five, in which
case Fisher’s exact test was used. s-tests were used to compare morphometric
measurements between sexes and a discriminant function analysis was used to
examine whether birds could be reliably sexed on the basis of morphometric
measurements. Most of the analyses were carried out in SPSS v15.0; exceptions were

the Fisher’s exact tests, which were computed at www.langsrud.com/fisher.htm, and

binomial confidence intervals, which were calculated using a Bayesian calculator

available at: www.causascientia.org/math_stat/ProportionCL.html.  Significance

thresholds were set at P = 0.05. Note that the P-values presented in our tables are not
corrected for multiple comparisons (see e.g., Perneger 1998, Moran 2003).

A runs test was performed in Rv2.6.7, to test the hypothesis that the European
Storm Petrels captured using tape-lures in Portugal were captured in sex-specific
groups. Given that unequal numbers of males and females were captured, we used
the simulation-based method for a “biased coin” runs test presented by Crawley
(2007) to test whether the observed number of runs of consecutive same-sex
individuals was significantly different from the number of such runs expected if

individuals of the two sexes occurred in a random sequence.
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24 Results

2.4.1 Sex Ratios of Adult European Storm Petrels

A strongly female biased sex ratio (mean + SE = 85.0% female + 1.39%) was found
in the sample of birds tape-lured in Portugal in all seven years (Table 2.I) with no
significant differences in sex ratio among years ()(2 =11.794,df. = 6, P = 0.07) and
no significant trend in sex ratio over the seven years (Pearson’s » = 0.062, n = 7
years, P = 0.895). The vast majority of the birds caught were at least two years old,
with only 0.01% of either undetermined age, or definitely in their first year (cf.
Bolton & Thomas 2001). Among the birds from Portugal that were sexed, many
carried rings from other countries, or were later recaptured in other countries; a
female-biased sex-ratio was also found in these birds regardless of the country where
they were previously ringed or subsequently recaptured (Table 2.1I).

A total of 18 dead Storm Petrels were recovered from beaches in Portugal in
1996. Anatomical sexing revealed this sample to be comprised of 12 males and only
six females, but this apparent male-bias was not significantly different from 50%
female (Table 2.1).

Adult Storm Petrels tape-lured in Scotland, close to their breeding grounds,
using the same sound recordings as used in Portugal, also showed a sex ratio that was
not significantly different from 50% female (Table 2.I), suggesting that the sex bias
in Portugal was not simply an artefact of the use of tape lures. Although this sex ratio
is estimated from a relatively small sample of 30 birds, we found that 100 random
sub-samples of 30 birds from the much larger Portuguese sample gave a mean sex
ratio (= SE) of 84.7% (£ 0.80), with only 4% of these sub-samples giving a female
bias smaller than 64%, which was the upper 95% confidence interval of the sample

tape-lured in Scotland. Thus, the apparent difference in sex ratio between birds tape-
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lured in Portugal and Scotland does not appear to Be an artefact of small sample size
of the Scottish sample.

Breeding birds caught at their nest sites on Sanda Island in Scotland during
the incubation period also showed a sex ratio that was not significantly different from
50% female (Table 2.I). This was expected given that both sexes incubate eggs
equally (Cramp & Simmons 1977). In the absence of birds of known sex to validate
the molecular sexing, this is a useful confirmation of the reliability of the molecular

method.

2.4.2 Sex Ratio among European Storm Petrel Chicks

From the chicks examined at the breeding colony in France, nine faecal samples
were collected in 2005 and 29 in 2006. In 2005, four chicks were found to be female
and three were male (two samples could not be sexed); in 2006, 12 chicks were
found to be female and 10 were male (seven could not be sexed). Data from both
years were pooled to allow for statistical analysis. This indicated that the observed
primary sex ratio of sexable chicks at this breeding colony did not deviate

significantly from 50% female (Table 2.1).

2.4.3 Sex Differences in Biometrics and Behaviour of European Storm Petrels
Tape-Lured in Portugal

On average, male Storm Petrels had significantly lower body mass, shorter wings
and deeper bills (in terms of the measurement of bill depth 2) than females.
However, there were no significant differences between the sexes in measurements
of tarsus, culmen, bill depth 1, head-and-bill, or rump (Table 2.III). The best

discriminant function, based on structural biometrics and using a randomly selected
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subset of females to equal the sample size of the males, included two variables: the
ratio of bill depth 2 to culmen and the ratio of wing length to tarsus. The resulting
function is as follows:

Discriminant score = -0.654 * billdepth2 / culmen + 0.810 * wing / tarsus

(Wilks’ Lambda = 0.900, y*= 9.396, P = 0.009).

This discriminant function correctly classified 63% of the individuals (n =
92) sexed with the molecular techniques, 62.2% of 45 males and 63.8% of 47
females. This is not a very useful level of discrimination in Portugal, since we could
obtain a higher proportion of birds correctly sexed (~85%) by simply assuming they
were all female.

Over the 1.5 months of the annual study period, there was no significant
seasonal difference in when males and females were captured (mean difference =
males 0.21 days before females, 95% CI limits -1.29 to +1.7 days, t-test = 0.280, d.f.
=939, P = (.781). Similarly, there was no significant difference in the time of night
at which males and females were captured (mean difference = males 13 minutes
before females, 95% CI limits = -8 minutes, to +33 minutes, ¢-test = 1.22, d.f. = 939,
P =0.223). A runs test with unequal sample sizes showed that there were slightly,
but significantly, fewer “runs” of consecutive catches of birds of the same sex (181
runs), than expected from random sequences of males and females, using the
observed sample sizes for each sex (P < 0.01, 99% CI limits for expected number of
runs = 184-219 runs). This result indicates that the observed same-sex runs were
slightly, but significantly, longer than expected; hence there was a tendency for

Storm Petrels to occur in sex-specific groups at our tape-lures in Portugal.
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Table 2.1 Sex ratios of European Storm Petrel adults and chicks in different locations and years. All samples were sexed using DNA extracted from feathers, g
=
except for the storm-killed birds in Portugal (sexed by dissection) and the chicks sampled in France (sexed using DNA extracted from faeces - see Methods). a
[\
Year Female | Male | Total Sex ratio 95% CI limits X2 test for deviation from
(% female) (% female) unity (1:1),df =1

Tape-lured birds, Portugal

2003 83 12 95 87.4 79.2-92.6 x> =53.1,P <0.001
2004 81 17 98 82.7 73.9-88.9 ¥* =418, P<0.001
2005 122 16 138 88.4 82.0-92.7 x> =81.4, P<0.001
2006 105 25 130 80.8 73.1-86.6 22 =49.2, P<0.001
2007 93 11 104 89.4 82.0-94.0 72656, P<0.001
2008 90 22 112 80.4 72.0-86.6 £ =413, P<0.001
2009 236 27 263 89.7 85.5-92.8 ¥ =166.1, P <0.001
All years combined 810 130 940 86.2 83.8-88.2 ¥ =4919, P<0.001

Storm-killed birds, Portugal

sjan194 w0} ueadoing SurpeiSij Suoure oljey Xag paselig-ojewa,]

o _ ) — =
(1996) 6 12 18 33.3% 16.3-56.6% 2 =6.096, P=0297
Tape-lured birds, Scotland (2006) 14 16 30 46.7% 30.2-64.0% £=0133, P=0.715
Hand-caught birds, Scotland 15 17 32 46.9% 30.8-63.6% £ =0125, P=0.724
(2005)
Chicks, France (2005 + 2006) 17 12 29 58.6% 40.6-74.5% ¥ =0862, P=0353
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Female-Biased Sex Ratio among Migrating European Storm Petrels

Table 2.11 Sex ratio of European Storm Petrels controlled in different countries or re-trapped in

Portugal.
Location Males | Females (3:’:-;;::;) F:Z:f:;:oﬁ’;.:s:?;;;r
Icil,:rl‘)d’enli‘l’arrwkay 1 16 94.1 P=0.007
UK & Ireland 13 56 81.2 P <0.001
France, Spain & Italy 3 15 833 P=0.07
Samg-year re-traps 0 5 100 P=017
in Portugal

Table 2.III Mean body measurements (mm) and body mass (g) for European Storm Petrels caught in
Portugal among 1989-2008 (+ SE).

Bill

Bill

Head

. Body
Sex Tarsus depth 1 depth 2 Culmen & Bill Wing Rump Mass
22.6 4.6 3.8 11.7 319 122.8 14.8 26.0
Male +0.78 +0.35 +0.31 +0.53 +0.77 +2.80 +2.23 +2.05
(n=281) (n=152) (n=152) (n=171) (n=53) | (n=130) | (n=27) | (n=129)
225 4.5 3.7 11.8 31.8 123.8 14.9 26.4
Female +0.71 +0.26 +0.22 + (.76 + 0.65 +2.55 +2.18 +2.30
(n=473) | (n=343) | (n=343) | (n=432) | n=239) | (n=1806) | (n=234) | (n=2805)
t=1.57 t=0.51 t=2.10 t=1.21 t=0.79 t=4.00 t=0.26 t=2.04
t-test df =552 df =393 df =58.5 df =501 df =290 df =934 df =259 df =932
P=0.118 | P=0.132 | P=0.040 | P=0.225 | P=0.428 | P<0.001 | P=0.795 | P=0.042
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Table 2.IV Previously published sex ratio data for European Storm Petrels. Sex ratios of birds caught at or near colonies are close to unity, regardless

of whether they are captured using “purr call” tape-lures, or not.

. Ata Capture | Tape lure Sexing Sex ratio Sig. different
Location Year Reference colony? method used? method Males | Females (% female) | from unity?*
Throughout Prior Cramp and At Museum
marine 1977 Simmons colonies Varnious | Mainly no skins 20 25 56 No
range 1977 & at sea dissection
Breeders
Skomer, 1981 & James 1984 Yes taken on No . Cloacgl 43 39 48 No
Wales 1982 mnspection
nest
Sk Discriminant
omet, 1982 | James 1983 Yes Mist nets Yes analysis 31 26 46 No
Wales : .
(wing + tail)
Sk Discriminant
omel, 1982 | James 1983 Yes Mist nets No analysis 23 20 47 No
Wales ! .
(wing + tail)
Breeders
Skomer, 11000 | James1983 |  Yes | takenon | No Cloacal 2% 2 £ No
Wales mspection
nest
RW. .
St. Kilda, Fumness In Yes . ) )
Seotland 1983 Fowler ef c;ﬁ)f\f” Mist nets No Dissection 11 10 48 No
al. 1986 ’
No (but
Yell, 1983 & | Fowlerer colony . i
Shetland 1984 ol 1086 on same Mist nets Yes Laparoscopy 21 28 57 No

1sland)

Z Jaydey)
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2.4.4 Consistency of Sexing from Feathers and Faecal Samples

Overall, the proportion of feather samples that gave a result was 94% while that from
faecal samples was 29.3%. When sexed from faecal samples, birds previously
identified as female from the feathers often amplify only one of the two fragments, Z
or W. When the W-fragment (female specific) is evident, birds can still be sexed
with confidence. However, when only the Z-fragment (shared by males and females)
is visible, females will be misidentified as males. Accordingly, 100% of birds sexed
as male from feathers were also sexed as male from faeces, but 43% of females
sexed from feathers were initially sexed as male from faeces. This proportion
dropped to 14% after repeating each male result three times. Correcting the number
of chicks that were potentially sexed incorrectly due to this type of error would still
result in a non-significant sex bias (y* = 2.793, d.f. = 1, P = 0.095). For those birds
sexed from feathers, less than 3% of the initial male results were found to be females
after the three repeats and none of the initial female results appeared as males in

subsequent testing.

2.5  Discussion

The molecular sexing analysis revealed a very strongly female-biased sex ratio
among Storm Petrels sampled during their northwards migration past the Portuguese
coast, several hundred kilometres from the nearest known breeding colonies. This
sex ratio bias was broadly consistent over the seven years examined (varying
between 81 and 90%), indicating that it is a stable feature of the birds available for
capture using tape lures at this location (comprised almost entirely of wandering pre-
breeders from the Atlantic population). To our knowledge, this is the first time that

such a result is reported for a monomorphic seabird during migration.
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The highly female-biased sex ratio that we observed among tape-lured birds
in Portugal is strikingly and consistently different from the approximately 1:1 sex
ratio found among European Storm Petrels of a variety of age classes sampled using
a variety of techniques and sexing methods, at or near the NE Atlantic breeding
colonies (Table 2.1V). We also found no evidence for any difference in geographical
origin of the two sexes in our Portuguese sample (Table 2.II). This suggests that
gender is more important than origin (and thus e.g., travel distance) in determining
the migratory behaviour of these birds.

The strong female bias observed amongst the sample of birds caught in
Portugal could be due to (1) a real sex-ratio bias in the population; (2) females being
strongly attracted to the tape-lure, or (3) females being more likely to encounter the
tape-lure (e.g., due to a sex difference in the timing or route of the migration
journey). None of the above explanations are mutually exclusive, but we discuss
them separately below.

For a sex ratio bias in a population to persist, a consistent bias in the primary
sex ratio (amongst eggs/chicks) and/or a sex-specific mortality rate after fledging
must be present. The primary sex ratio may be biased in some taxa, including some
bird species (Mayr 1939, Sheldon 1998, Donald 2007). However, these are
exceptional examples and most bird populations, especially in monogamous species,
exhibit approximately 1:1 primary sex ratios (reviewed by Ellegren & Sheldon
1997). There was no bias in the primary sex ratio among the chicks hatched by Storm
Petrels breeding at a colony in NW France, suggesting that this is not the explanation
for any sex-ratio bias in the adult population.

A female-biased adult sex-ratio could arise from an unbiased primary sex

ratio if males suffer greater mortality than females. In contrast to mammals, greater
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male mortality is very uncommon among birds (reviewed by Donald 2007). The sex-
ratio in the sample of European Storm Petrels killed during winter storms off the
Portuguese coast did not differ significantly from unity (though we note that more
males than females were killed; see Table 2.I). In one species of petrel (a diving
petrel Pelecanoides urinatrix) a significant male biased mortality has been found
among storm-killed individuals (Norman & Brown 1987). However, even if male
Storm Petrels are more likely to be killed by storms, this may not be sufficient to
give rise to a female-biased sex ratio, since other causes of death might be of greater
importance in determining the relative numbers of surviving males and females. A
total of 45 museum skins of Storm Petrels from throughout the species’ range and
annual cycle also show an unbiased sex ratio (Table 2.IV) and no sex ratio biases
were found in any of the previous studies summarized in Table 2.IV. Furthermore, in
the present study, the sex ratios among live birds tape-lured near a breeding colony in
Scotland and among live birds captured without tape-lures at nest sites in Scotland
were also unbiased. There is therefore little support for the hypothesis that there is an
underlying bias in the sex ratio of the population as a whole.

The second hypothesis accounting for the female-biased sex ratio observed in
Portugal is a sex bias in the attraction to the tape lures. It is possible that female
Storm Petrels are inherently more attracted to tape lures of conspecific calls than are
males, but this is not consistent with the finding that use of the same tape lures near a
breeding colony resulted in an unbiased sex ratio. Similarly, the two studies
presented in Table 2.1V on sex ratios of Storm Petrels caught either at- or close to- a
breeding colony with tape lures show no sex ratio bias. James (1984) found that male
Storm Petrels in nesting burrows responded more strongly than females to playbacks

of “Purr” calls, which might be expected to result in a male bias among birds
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attracted to tape-lures. However, no significant male bias was detected in any of the
samples of tape-lured birds.

A differential attraction to the tape lures in Portugal could arise from a sex
bias in the seasonality of prospecting behaviour, or in the distance from the natal
colony at which prospecting may occur. For example, a biased sex ratio among pre-
breeding Storm Petrels captured in Portugal could arise if males and females are
differentially attracted to the tapes at different times in the season (e.g., males being
more attracted earlier in the season) or at different locations (e.g., females being
more attracted further south). The former could arise if males need to find their
burrows earlier in the breeding season (Kokko er al. 2006), to which they
subsequently attract a female, while the latter could occur if males exhibit stronger
natal site fidelity, meaning that females may be more likely to disperse between
breeding colonies, and so be more willing to investigate breeding locations in
Portugal, well outside their main breeding range. No research has apparently yet
investigated these possibilities, but among the sample of wandering pre-breeders in
the present study, though there was temporal aggregation by sex over short
timescales, there was no evidence of temporal segregation of males and females over
the timescale of the migration season within the sampling period.

The third hypothesis accounting for the female-biased sex ratio observed in
Portugal is that a sex difference in migration strategy leads to more females than
males being present in Portuguese coastal waters during the May-June study period.
There are several potential underlying mechanisms. Females could begin to wander
north at a younger age than males, meaning more prospecting females than males
reaching Portuguese waters. Pre-breeding Storm Petrels tape lured in the UK have an

unbiased sex ratio (Tables 2.1 and 2.4), but the observed female bias in Portugal
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could arise if younger females reach as far north as SW Portugal but do not wander
all the way north to the breeding colonies.

Other possible mechanisms are a sex difference in the diurnal or seasonal
timing of migration. Diurnal differences could arise since, at sea, European Storm
Petrels are active both by day and by night (pers. obs.). Possibly, sex-differences in
the diurnal/nocturnal pattern of migration along the Portuguese coast could make
females more likely to come within hearing range the nocturnal tape-lures. However,
there was no difference between males and females in the time of night at which they
were captured. Seasonal differences could be related to sex-differences in the time of
arrival at the colonies. In many migrant species, the breeding males are the first to
arrive back on the breeding grounds (protandry), to set up territories or secure a mate
(Rubolini et al. 2004, Smith & Moore 2005, Catry et al. 2005). No difference
between males and females in capture date in Portugal was found, indicating that if
males really are migrating at a different season than females, then this male
migration must take place outside the study period of late May-June.

Finally, the sexes could have different migration routes. A different migration
route could be a consequence (or the cause) of a difference in foraging strategy
between the sexes. For example, due to differential nutritional demands, females may
be more likely than males to exploit areas of high productivity (due to upwelling)
close to the African and Portuguese Atlantic coasts (Stenseth et al. 2004), whereas
males may migrate further offshore, along a more direct route between the wintering
and breeding areas. This possibility could be tested by investigating the sex ratio of
birds caught from boats further offshore than the range of our land-based tape-lures.
This has been piloted in the present study, but has proven to be extremely difficult

and to date only four birds have been caught, of which only one was a male.
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Of the above hypotheses, it seems most likely that sex-differences in natal
site fidelity (Hypothesis 2) or migration strategies (Hypothesis 3) account for the
strong sex-ratio bias among Storm Petrels migrating past Portugal, but the underlying
mechanisms remain unclear. Future work could further test these hypotheses through
studies of the genetic structure of different breeding populations, and by capturing
birds at different times of year and at additional locations off the Portuguese coast,
further north and south along the migration route, and in the wintering grounds.
Nevertheless, recognising these patterns is a first important step to investigate
potential mechanisms and incorporate such information into conservation strategies,
such as the implementation of marine protected areas that are now under
consideration in many parts of the world. For example, by combining molecular
sexing information with molecular identification of prey DNA in storm petrel faeces,
it becomes possible to test for sex-differences in diet (Chapter 3), and migration
fuelling strategies (Chapter 4). These findings show the importance of considering

sex specific behaviour in interpreting ecological data.
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Investigating the Diet of Migrating European Storm Petrels

Using Molecular Tools

3.1 Abstract

The diet of storm petrels (Hydrobatidae) is largely unknown, particularly outside the
breeding season, due to the lack of a reliable non-invasive method to study it in
detail. The present study describes the development and application of molecular
techniques to study the diet of the European Storm Petrel, in combination with stable
isotope analysis. This was achieved by the detection of prey DNA from faecal
samples collected from Storm Petrels during their northwards migration past the
coast of SW Portugal between 2006 and 2009. The diet of nestling Storm Petrels
from a breeding colony in Brittany, NW France, was also studied in 2005 and 2006,
for comparison with the migrating birds. Two complementary molecular approaches
were used: 1) using taxon-specific primers to screen for the presence / absence of
particular prey categories in individual faecal samples; and 2) amplifying prey DNA
from a pool of samples using general primers, then using cloning and sequencing of
the amplified sequences to identify the taxa present in the diet in each year. The
major category of prey detected was fish (chiefly European Sardines Sardina
pilchardus). Other components of the diet were Cephalopoda (primarily cuttlefish
Sepia spp.), Amphipoda, Isopoda and a range of terrestrial invertebrates (primarily
Lepidoptera, Hymenoptera and other insects), which were presumably scavenged
from the sea surface by the Storm Petrels. Many prey taxa could be identified to

species level using the cloning and seqﬁencing approach, including deep-water
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species that may have been made available to foraging Storm Petrels by the fishing
industry. Individual migrating Storm Petrels typically had DNA of one or two
different prey categories in their faecal samples, with few birds having no
amplifiable DNA, or DNA of three or more different prey categories. Fish appeared
more frequently in the diet of migrating birds than appeared in the diet of nestlings at
the breeding colony. Furthermore, diet composition appeared to vary among years,
and the migrating birds appeared to rely more on fish in 2009 than in the preceding
three years. These results indicate that Storm Petrels may be opportunistic foragers,
possibly varying their diet according to the changing availability of different prey,

including scavenged material.

3.2  Introduction

Investigating an organism’s diet is of primary importance for understanding its
ecological requirements and its functional role in the ecosystems that it inhabits.
However, most methods currently available for the study of diet in wild animals are
either invasive, or have important limitations in the information that they can
provide, or both (see Chapter 1 and below). Studying the diet of small, elusive,
highly mobile animals such as the pelagic storm petrels (Hydrobatidae) is
particularly challenging, with no satisfactory single method or combination of
methods currently available. As a result, the diet and foraging ecology of such taxa is
often poorly understood. There is therefore a major requirement for developing a
widely applicable, non-invasive and objective method for the study of animal diet in
the wild (Barrett et al. 2007). Molecular analysis of prey DNA in the faeces of
foragers potentially fulfils this requirement, and this Chapter describes the

application of two complementary molecular approaches for the study of the diet of
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the European Storm Petrel Hydrobates pelagicus; (i) screening for presence / absence
of different prey taxa with taxon-specific primers and (ii) cloning and sequencing of
prey DNA, amplified using general primers. The advantages and limitation of these
molecular approaches are discussed in contrast to, and in combination with, other

methods for investigating diet in seabirds, primarily stable isotope analysis.

3.2.1 Current Methods for Investigating Avian Diet; Advantages and
Limitations

(i) Observations of Foraging Behaviour

One of the most direct and basic approaches for studying diet and foraging ecology is
simply to observe foraging animals and to visually identify food items as they are
eaten or as they are being carried to feed offspring. This can be successfully applied
to large animals eating large and conspicuous food items (e.g. a Peregrine Falcon
Falco peregrinus capturing a Feral Pigeon Columba livia in flight) and it has been
used in some seabird species such as puffins Fratercula spp. and terns Sterna spp.
delivering food to their chicks (e.g. Paiva et al. 2006a,b). However, this approach is
difficult or impossible to apply when the foragers are small, difficult to approach, or
eating a mixture of small or indistinct food items (e.g. swifts Apus spp. eating flying
insects at high altitudes, or storm petrels (Hydrobatidae) taking small food items
from the moving sea surface). Even if the individual food items can be discerned,
specific identification is often impossible or biased towards larger and more easily

identified prey.
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(ii) Examining the Contents of the Digestive Tract

The normal practice in many early studies of animal diet was to kill a sample of the
animals and examine their stomach contents (e.g. much of the dietary information
summarised in Cramp & Simmons 1977). However, for ethical reasons this is
increasingly unacceptable for many vertebrate taxa (Cuthill 1991, Broom & Johnson
1993). Alternatively, the stomach contents of animals that are found dead can be
investigated, but the diet of animals that have died from natural causes may not be
typical of healthy living individuals and the sample size is tipically small.

A commonly used, non-fatal method for sampling stomach contents, widely
applied to large seabirds, is stomach flushing (also known as lavage). This involves
inserting a tube down the oesophagus of captured individual, and using a saline
solution injected into the stomach/crop to flush the stomach contents out through the
subject’s mouth. This procedure is generally considered to be invasive, even for
relatively large species, and it can be risky to apply it to small species such as storm
petrels (pers. obs.).

Food delivered to nestlings can be sampled from the very top of the digestive
tract by applying temporary neck ligatures, which prevents the food put into the
nestlings’ mouths by their parents from being swallowed. The food can then be
scooped out from the mouth by the researcher and the ligature removed (e.g. Douglas
et al. 2008). This is a very direct but invasive method for sampling chick diet, but
cannot be used to study adult diet (which may differ from the diet provided to the
chicks), or to study diet outside the nestling phase of the breeding season.

Prey remains may be made available to researchers by the animals
themselves, through the natural regurgitation of pellets (i.e. a compact ball of

undigested hard parts of prey, regurgitated by many bird species) or the defensive
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regurgitations of undigested or semi-digested meals by taxa such as Procellariiformes
and herons Ardeidae when captured or closely approached (e.g. Gilbert et al. 2003).
Such samples potentially provide less invasive means (or non-invasive means, in the
case of pellets) to study stomach contents.

Whatever the methods by which they are obtained, an important limitation of
the visual identification of prey in samples of stomach contents is that digestion may
already have begun to degrade the food items, so that taxa may become impossible to
identify. Furthermore, different prey taxa may differ markedly in the rate at which
they become unidentifiable; for example, soft-bodied taxa will generally be rapidly
degraded, whereas certain hard parts (e.g. fish otoliths) may remain intact through
the digestive tract. Such differences in digestibility and identifiability make it
difficult to interpret direct comparisons of the contribution of different food types to

the diet. Furthermore, skills are needed for the identification of these hard parts.

(iii) Stable Isotope Analysis

Many chemical elements have two or more stable (i.e. non-decaying) atomic forms,
known as stable isotopes, which differ in the number of neutrons that the nucleus of
the atom contains. For example, carbon has two stable isotopes ?C (more common,
containing 6 neutrons) and C (less common, containing 7 neutrons). Nitrogen
similarly has two stable isotopes, '*N (more common) and "N (less common). The
differences in the nuclear masses of the atoms can result in small but consistent
differences in the ways in which the heavy and light isotopes of an element are
affected by physical processes, and hence systematic spatial and temporal variation

in the ratio of different isotopes across the environment.
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On a molecular scale, heavier molecules have a lower diffusion velocity so,
for example, they diffuse out of cells more slowly than lighter molecules.
Furthermore, the collision frequency with other molecules (the primary condition for
chemical reactions) is lower for heavier molecules; this is one of the reasons why
lighter molecules tend to react faster. At the scale of a living organism, the net effect
of these processes is fractionation; in effect, the selective metabolic loss of the lighter
isotopes (’C and 'N) from living tissue. Fractionation of isotopes of different
molecular weights occurs progressively as elements pass between the different
trophic levels of a food chain, resulting in systematic variation in the ratio of
different isotopes across trophic levels in any particular habitat. Measuring the
isotopic delta-value (3; the ratio of the heavier isotope to the lighter isotope,
expressed as parts per thousand, %o) in tissues taken from foragers can therefore be
used to infer information about the trophic level(s) or location(s) at which a forager
has predominantly fed.

In marine food webs, fractionation generally results in an enrichment in §'°N
of approximately 3.0 to 5.0%o and in 8">C of 0.8%o per trophic level (Minagawa &
Wada 1984, Owens 1987, Michener & Shell 1994), though these enrichment values
can themselves depend on the specific type of tissue sampled (Hobson & Clark
1992). Enrichment rates measured in the transfer of isotopes into bird feathers have
been in the order of 0.8 to 0.9%o for 3°C and 3.1 to 3.3%o for 8'°N compared to the
equivalent 5"°C and 8'°N values in the diet components (Hobson 1995).

Stable isotopes of different elements differ in the extent to which they are
fractionated in different contexts, and hence in their suitability for addressing
different types of questions about foraging ecology. For example, the different stable

isotopes of nitrogen vary primarily across trophic levels (rather than between
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habitats). Therefore, nitrogen isotope ratios are commonly used to determine the
trophic level at which foragers primarily feed.

In contrast, the relative abundance of the different stable carbon isotopes
varies primarily across habitats (rather than across trophic levels). For example,
marine and terrestrial communities differ in their 8'>C signatures, so that §"C
signatures in the tissues of foragers may reflect their foraging habitat. Therefore,
carbon isotope ratios are commonly used to assess foraging location, such as whether
animals are foraging primarily from terrestrial versus marine, inshore versus offshore
and pelagic versus benthic food webs. However, such inferences rely not only on
prior knowledge of the carbon isotope ratios in each habitat, but also of how these
underlying differences may vary geographically across the globe.

Stable isotopes analyses have been widely used to study the nutrition of a
range of species from copepods to humans (Hobson et al. 2002, Tykot 2004), and
have been increasingly applied to the study of the foraging ecology of birds (e.g.
Bearhop et al. 2006, Bond & Jones 2009, Weiss et al. 2009). This approach offers
many advantages compared to the more traditional methods described above, namely
being less invasive or even non invasive (depending on the tissue sampled), not
biased towards less digestible material, and allowing for the study of animal diet over
a range of time-scales. The time-scale over which stable isotope analysis can reveal a
forager’s diet depends on the rate of molecular “turnover” in the tissue sampled.
Metabolically inert tissues such as fully grown feathers can be used to infer diet at
the time that these were grown (up to 1 year ago in most birds), whereas actively
growing feathers can be used to infer recent diet (generally over less than 1 month).
Different fractions of blood samples differ in their molecular turnover, so that red

blood corpuscles and blood plasma can provide information about diet over recent
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weeks and days, respectively. This is particularly relevant in the study of birds; for
example, fully grown feathers can often be used to infer the diet of migratory birds
on their wintering grounds (Bearhop et al. 2004, Wiley et al. 2010).

Stable isotopes have been used to study the diet of many species of
Procellariiformes from albatrosses and shearwaters (Bugoni et al. 2010, Paiva et al.
2010, Wiley et al. 2010) to smaller petrels (Hedd & Montevecchi 2006). Despite
their widespread application, stable isotopes analyses have important limitations in
that knowing the isotopic signatures of the prey is essential to interpret the data and,
more importantly, in the lack of taxonomic detail on the information obtained. New
analytical developments such as isotope mixing-models (e.g. Bugoni et al. 2010) are
allowing a degree of quantitative discrimination of the prey consumed, but these
methods are still best applicable to species feeding on a limited range of prey (two or

three taxa) of known isotopic signatures.

(iv) Fatty Acid Analysis

This method is based on the overall premise that fatty acid composition tends to vary
more among species than within species, and that long chained fatty acids (>14
carbon units) pass to the predator from the prey with relatively little degradation and
are stored in the predators’ adipose tissue, which can be sampled using biopsies
(Williams & Buck 2010). By comparison of the predator’s fatty acid profile with
those of potential prey taxa,, some detail of diet composition can be assessed, rather
than just the trophic level and/or foraging location obtained with the stable isotopes
approach described above. However, fatty acid analysis still does not allow species-
level identification of dietary components. Further limitations of this technique are

(1) that a fatty acid database of all possible prey is needed to interpret predator fatty
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acid signatures accurately, and (ii) because most predators feed on more than one
prey type, the interpretation of the fatty acid signatures is not straightforward.
Possible errors of measurement or interpretation of fatty acid signatures can occur,
related to the predator’s intrinsic rates of fatty acid production and metabolism,
variability of fatty acid signatures between individuals of the same prey species and
the need to calibrate the metabolic shifts in fatty acid signatures between the forager
and its food. This approach has been applied relatively frequently in the marine
environment (e.g. Iverson 2009, Hanson et al. 2010, Young et al. 2010, Skoglund
2010), including in the study of seabird diet (e.g. Williams et al. 2008, Williams &
Buck, 2010, Kakela et al. 2010). Although better than stomach flushing in terms of
animal welfare, the biopsy procedure is still relatively invasive, especially if
compared to the simple collection of faecal samples used in the molecular

approaches described below.

(v) Identification of Prey DNA from Predator Faeces

The biochemical methods described above, using “intrinsic markers” (stable
isotopes, fatty acids), have improved the knowledge of the foraging ecology of many
species of animals (e.g. Hobson et al. 2002, Caut et al. 2008, Mancina & Herrera
2010). However these methods are all still limited when used in isolation,
particularly in that they do not provide species-specific prey identification. Molecular
(i.e. PCR-based) methods, involving extraction and analysis of prey DNA from the
digestive tract of foragers, have the clear advantages of being non invasive and
providing very detailed information on diet composition, potentially to the species
level (Symondson 2002, King et al. 2008). Prey DNA becomes progressively

degraded by digestion and therefore, these studies typically use primers that target
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relatively short DNA fragments from mitochondrial genes. Mitochondrial DNA is
more abundant in animal cells than nuclear DNA and it is therefore more likely that
intact fragments of the relevant genes are available to be detected.

DNA-based studies require reference DNA sequences of the prey consumed
and the existence (or design) of relevant primers for isolating prey DNA. Such
primers would ideally amplify all the potential prey without amplifying the DNA of
the predator. This is difficult to achieve, however, as primers general enough to
amplify DNA from a range of prey species will almost inevitably amplify the
predator’s own DNA. Solutions to this problem have been developed, including
blocking the amplification of predator DNA (Dunshea 2009), but there are still
limitations as it is impossible to guarantee that prey DNA is not being blocked,
especially if the predator’s diet includes species closely related to the predator itself.

An alternative molecular approach is to use taxon-specific PCR primers to
screen samples for the presence or absence of particular prey taxa of interest. It is
difficult to be certain that the primers used are amplifying all the species within the
targeted group, or how specific they are to that group; nevertheless, a good level of
group specificity can be achieved relatively easily. Moreover, as more sequences
become available for potential prey species, and more taxon-specific primers are
developed and tested, this approach will become even more powerful and easily
applicable.

The only previous studies to apply molecular techniques to investigate diet of a
seabird species were published recently by Deagle et al. (2007) and Deagle et al.
(2010). The first focused on adult Macaroni Penguins Eudyptes chrysolophus
attending a colony. Deagle et al. (2007) used the two different molecular approaches

described above, and compared the results with those from stomach content analysis.
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This was however a preliminary study with a relatively small sample size in a single
breeding season. The second study was on Little Penguins Eudyptula minor, using
pyrosequencing to scale-up the number of prey DNA sequences that could be
obtained (Deagle et al. 2010). Each of these studies described the diet of the birds
from just one colony in a single breeding season.

In the present study, a DNA-based method is used to analyse the diet of pre-
breeding (mainly 2-4 year old) European Storm Petrels, captured over four years
(2006-2009) during migration past the coast of Portugal, from their wintering
grounds in the south Atlantic, en route to their future breeding sites along the NE
Altantic seaboard, between the north coast of Spain and Iceland/Norway (Bolton &
Thomas 2001). The diet of nestling Storm Petrels from a breeding colony in Brittany,
NW France, was also studied to some extent in 2005 and 2006, for comparison with
the migrating birds.

European Storm Petrels (henceforth “Storm Petrels”) are amongst the smallest
of the seabirds (~26 g) and due to their small size, their movements at sea cannot be
studied through any currently available remote-tracking equipment. Studies on their
foraging ecology and diet have been limited to behavioural observations at sea
(reviewed in Cramp & Simmons 1977, Poot 2008), early description of stomach
contents of dead birds (reviewed in Cramp & Simmons 1977), and a small number of
studies at breeding colonies (Davis 1957, Scott 1970, D’Elbée & Hémery 1997).
Molecular techniques have been tested in a wide range of predator species, but with
greatest focus on invertebrate species (e.g. Symondson 2002, King et al. 2008). The
present study is, to my knowledge, the first detailed investigation of the diet of a
seabird species during migration, and one of the few to apply molecular techniques

to investigate the diet of seabirds.
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In the present study, the same two molecular approaches used by Deagle ef al.
(2007) are applied, combined with stable isotope analysis, to investigate Storm Petrel
diet. The first molecular approach was to determine the presence/absence of DNA
from relevant prey taxa for each faecal sample. This was achieved by performing
PCR tests using primers that specifically amplify DNA from certain relevant prey
groups. This screening approach was used on faecal samples from migrating adult
Storm Petrels caught in the south of Portugal and on faecal samples from nestlings at
a Storm Petrel breeding colony in Brittany, France. This approach gives the
proportion of individuals that consumed certain prey groups and requires some prior
knowledge of taxa likely to appear in the predator’s diet.

The second molecular approach, used only for the migrating Storm Petrels,
involves amplifying DNA from general prey groups (fish and non-fish) followed by
cloning and sequencing the DNA to separate and identify individual prey sequences.
This approach provides a list of DNA sequences of prey species consumed by the
predator. These sequences can be identified by comparison against sequences of
known species. In theory, the number of sequences obtained for each prey species
should reflect the relative contribution by mass of each prey taxon to the diet of the
predator (based on the assumption that larger prey items contain greater amounts of
DNA than smaller prey). However, prey species may differ in the number of
mitochondria that their cells contain, and therefore some prey species will contribute
more DNA per unit mass consumed than others, to the total amount of mitochondrial
DNA present in the faecal sample. Furthermore, primers might not be equally
sensitive to each prey species and preferably amplify some species over others.

To supplement and validate the information obtained from the molecular

analyses, for a subset of the years studied using the molecular approach (2008 and
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2009), stable isotope analysis of growing feathers was used to infer the overall
trophic levels and foraging location (i.e. coastal/offshore) of migrating Storm Petrels.
The relative merits of the molecular and stable isotope methods, and the degree to

which they are complementary, will be discussed.

3.3  Methods

3.3.1 Collection of Samples from European Storm Petrels

Faecal samples from Storm Petrel chicks from a colony in Brittany, NW France
(48°23'N, 4° 57' W) were collected from inside the nests during the 2005 and 2006
breeding seasons, by a collaborator (B. Cadiou). These samples were collected onto
filter paper and stored in 80% ethanol.

Migrating Storm Petrels were captured in mist nets during their northwards
journey past the south-west coast of Portugal (37° 04’ N, 8° 47° W). Birds were
attracted to shore using tape lures of storm petrel male song, played at night between
dusk (approx. 22:00 and dawn approx. 05:00 GMT). Captured birds were ringed and
weighed and biometric measurements were taken (see Chapter 2 for full details of
these procedures). One to five breast feathers were taken for molecular sexing (see
Chapter 2 for details). Faecal and vomit samples were collected over four field
seasons in late spring (late May-mid June) between 2006 and 2009.

Throughout the capture and handling process, and while the birds were
preparing to fly off following release, the birds were observed closely in order to
collect any faeces or vomit that they produced. Birds were released onto flat rocks, a
few metres away from the ringing area and most faecal samples were collected from
this substrate after the bird had flown. More rarely, faecal samples were obtained

during the ringing process, from the bird bag or other surfaces. In contrast, vomit
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samples were all obtained either when the bird was in the net or during the ringing
process. The samples were collected into 2ml Eppendorf tubes using a paper disc or
cotton bud and preserved with 80% ethanol. Each sample was labelled with the ring
number of the individual bird that produced it, and subsequently stored at -20°C until
the DNA was extracted in the laboratory. In 2007, samples were frozen directly in
the field without ethanol. Before collecting each sample, the sampling equipment and
the sampling surface were sterilized by flaming.

In 2008 and 2009, captured birds were inspected for any growing body
feathers and these were collected for stable isotope analysis. Stable isotope values
integrate diet during the period of feather growth. The time taken for a body feather
to grow is not known for European Storm Petrels, but this species replaces all eleven
of its primary flight feathers over a period of approximately 7 months (Scott 1970).
Since body feathers are much smaller than primaries, it was assumed that growing
feathers integrate information about diet of storm petrels over a period of one to two

months.

3.3.2 Reference DNA Sequences

In order to increase the chances of identifying prey DNA sequences obtained from
the faecal samples of Storm Petrels, a reference collection was built, of sequences
from potential prey caught near the study site in Portugal. Samples of fresh potential
prey were collected by sweeping the sea surface with nets from the coast and further
offshore (up to 12km) from a boat, both during the night and during the day. These
samples consisted mainly of invertebrates later identified by experts in the different

taxonomic groups encountered (pers. comm.). Samples of fresh-caught local fish
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species were obtained from a market in the fishing port of Lagos, 10km from the
study site in SW Portugal.

DNA from these fresh invertebrates and fish was extracted with the Chelex
method (Walsh et al. 1991). Extractions of fish DNA were made from the liver, cut
into small pieces and dried at 45°C for 45 min. For each fish species, 30 mg of dried
liver was used per extraction in 150 pl of water and 60 pl of Instagene Matrix. One
or two specimens of each invertebrate species were used per extraction. These
invertebrate samples were put into a 2 ml Eppendorf tube, in 50 pul of water to which
20 pl of Instagene Matrix (Invitrogen) was added. Samples were mixed by vortex
and incubated for 1h at 50°C, followed by 8 min incubated at 100°C.

Two different primer pairs were used to amplify DNA from the fish or the
invertebrate species: one primer pair designed to amplify Osteichthyes (bony fish)
DNA, and one initially designed to amplify DNA from a wide range of invertebrate
species, but that was subsequently found also to amplify some vertebrate species and
thus will be referred to as “non-fish” (Table 3.I). Amplifications were performed
using the Multiplex PCR Kit (Qiagen) in 25 pl reactions containing 1x Multiplex
PCR Master Mix, 0.2 uM of each primer and 0.1 mg/ml of BSA (New England
Biolabs). The template was 1 pl of the DNA extract. Thermal cycling conditions
were as follows: 95°C for 15 min, 35 cycles (94°C for 30 s followed by 56°C (for
FishF1/R1) or 46°C (for CI-J-2183/CI-N-2353) for 90 s followed by 72°C for 90 s),
concluding with 72°C for 10 min. A minimum of three negative controls (the
extraction control, plus at least two distilled water blanks) were included in each set
of PCR amplifications. PCR products were separated by electrophoresis in 1.5%
agarose gels and visualised by staining with ethidium bromide, visualised by

transillumination with UV light.
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Prior to sequencing, PCR products were purified by filtration using the
Qiagen Qiaquick cleaning kit according to the manufacturer’s protocol. Samples
were sequenced in an Applied Biosystems 3130x] Genetic Analyzer using a 50 cm

capillary array with POP-7 polymer.

3.3.3 DNA Extractions from Faecal and Vomit Samples
DNA from storm petrel faecal and vomit samples was extracted using the QlAamp
DNA Stool Mini Kit (Qiagen), following the manufacturer’s standard protocol.
Depending on the size of the faecal sample (i.e. number of cotton buds or amount of
paper; total sample volume per extraction was approximately 0.5ml), one or more
extractions (up to four) were performed so that DNA was extracted from the whole
sample. For samples from which more than one extraction was performed, often the
final extraction was done from the ethanol in which the sample had been immersed.
Vomit samples were typically larger in volume than the faecal samples, and
three different approaches were used for these as appropriate: a) the sample was
homogenized by vortexing and DNA was extracted from a subsample; b) the sample
was centrifuged, the top lipid layer was removed and DNA was extracted from the
bottom layer; c¢) the DNA was extracted from solid parts of the sample (e.g. lumps of
fish, parts of invertebrates). For the latter approach, hard parts were separated and
placed into fresh ethanol at least two days before extracting. To extract the DNA
from vomit samples, both the Qiagen DNeasy Blood and the Qiagen Tissue Kit and
the QIAamp DNA Stool Mini Kit were tried. One blank extraction, using only water,

was included in each batch of 24 extractions to test for any cross-over contamination.
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3.3.4 Testing for Presence / Absence of Prey DNA

In order to first test for the success of the extraction process, DNA extracts were
screened using primers specific to storm petrel DNA, which amplify a region of
approximately 200 bp from the mitochondrial Cytochrome B gene. These primers
were designed from sequences in GenBank (Cagnon et al. 2004) using the software
Amplicon (Jarman 2004). Any samples giving a negative result were tested a second
time, to confirm that they were indeed negative. Successful extracts were then
screened for prey DNA. Solid parts of prey in vomit samples were identified as either
fish or invertebrate and tested directly with the relevant primers (FishF1/R1 or CI-J-
2183/CI-N-2353) rather than with storm petrel primers.

Successful extracts were screened with the two more general sets of primers,
targeting fish (FishF1/R1) and non-fish prey (CI-J-2183/CI-N-2353), also used for
the reference collection (described above). For the migrating birds caught in the
south of Portugal but not for the samples from Brittany, representative faecal samples
containing fish DNA were subsequently screened for the specific sequences of
clupeiformes. This order is represented in the seas off SW Portugal by the highly
abundant European Sardine Sardina pilchardus (henceforth “Sardine”) and by five
other species: Engraulis encrasicolus, Alosa fallax, A. losa, Sardinella aurita and
Sprattus sprattus; Borges 2007). For those faecal samples containing non-fish DNA,
the presence/absence of four particular invertebrate prey taxa was determined with
separate PCR assays using group-specific primers testing for: i) amphipods, ii)
isopods, iii) Mysidacea, and iv) cephalopods (Table 3.I). These taxa were chosen to
be screened for, as cephalopods (cuttlefish) and isopods have previously been
described as part of the Storm Petrel’s diet (D’Elbé & Hémery 1998, Thomas et al.

2006); amphipods (sandhoppers) and mysidacea (opossum shrimps) were the most
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abundant taxa obtained from net sampling in the field (decapods were also abundant,

but no specific primers were already available or could be successfully designed for

these taxa), and Sardine is the most abundant fish in the area (FAO 2004).

Table 3.1 Primers used for predator and prey DNA screening from faecal samples of

European Storm Petrels.

Target Primer Sequence Product | Annealing
A Reference
name 5.3 size temp.
Storm Petrel | peirelF TCATCAGTCGCACACACATGC 200 seoc | This stud
1 i 1S §
mitochondrial | oo o0y CAGTTGCTATGAGGGTGAGTA y
Cytochrome b
Osteichthyes | pishF] CGGTAAAACTCGTGCC Jarman
mitochondrial . 300 56°C
125 FishR1 CCGCCAAGTCCTTTGGG unpubl.
non-fish Simon et
Species CI‘J'2183 CAACAI I IATI I IGATI I I I IGG 2]6 46°C al. 1994’
mitochondrial | C[-N-2353 GCTCGTGTATCAACGTCTATWCC Simon et
COol al. 2006
Clupeiformes | c_cB285dF CGCCCACATTGGNCGAGG Jérome et
mitochondrial 147 61°C al. 2003
Cytochrome b | C-CB431R | GTGGCCCCTCAGAAGGACATTTGGCC .
Isopoda IsopodNSSfl TCATGATTYATGGGATGT
nuclear 188 | 0P 201-278 | sc | Jarmanes
IsopodNSSr1 AAGACCTCAGCGCTCGGC al. 2006
rDNA P
Amphipoda | AmbhNSSfl | CTGCGGTTAAAAGGCTCGTAGTTGAA Jarman et
nuclear 18S 204-375 58°C
'DNA AmphNSSr1 | ACTGCTTTRAGCACTCTGATTTAC al. 2006
Mysidacea MysF1 TTCCTTGAGCGTGCTGGTTC Swan &
mitochondrial 194 47°C King,
COI MysR2 GAGGAAAGGCCATATCAGGC unpubl.
Cepha]opoda Sauid28SF CGCCGAATCCCGTCGCMAGTAAAMGG
nuclear 28S d . CTTC 180 60°C I();azg(l)%gt
rDNA Squid28SR | A AGCAACCCGACTCTCGGATCGAA :

Amplifications were performed separately for each primer pair, using the

Multiplex PCR Kit (Qiagen) in 20 pl reactions containing 1x Multiplex PCR Master

Mix, 0.2 uM of each primer and 0.1 mg/ml of BSA (New England Biolabs). The

template was 2 pl of the DNA extract. Thermal cycling conditions were as follows:

The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment

73




Chapter 3 Investigating the Diet of Migrating European Storm Petrels

95°C for 15 min, 35 cycles (94°C for 30 s followed by the primer specific annealing
temperature for 90 s followed by 72°C for 90 s), concluding with 72°C for 10 min. A
minimum of three negative controls (the extraction control, plus at least two distilled
water blanks) were included in each set of PCR amplifications. PCR products were
separated by electrophoresis in 1.5% agarose gels and visualised by staining with

ethidium bromide, visualised by transillumination with UV light.

3.3.5 Cloning and Sequencing Prey DNA
Subsets of the faecal samples that contained prey from 2006-2009, were used to
make the clone libraries. One clone library was produced for each of the two years,
for each prey type (i.e. fish - FishF1/R1 or non-fish — CI-J-2183/CI-N-2353). The
DNA concentration of the PCR products was measured using Picogreen and the
samples were pooled according to their concentration. The number of samples
pooled per treatment (year/prey type) varied between 6 and 19. Products were cloned
using the TOPO TA cloning system (Invitrogen) following the manufacturer’s
protocol. Colonies containing the recombinant clones were cultured in LB broth and
plasmid DNA was amplified with M13 primers in 25 pl reactions containing 1 pl of
culture medium, 1x of buffer, 0.1 mM of dNTPs (Invitrogen), 1 mM of Mg’z, 0.5
uM of each and 0.4 U of Taq (Invitrogen). Thermal cycling conditions were as
follows: 94°C for 3 min, 35 cycles (94°C for 20 s followed by 60°C for 20 s followed
by 72°C for 90 s), concluding with 72°C for 10 min.

The PCR products were sequenced in an Applied Biosystems 3130x1 Genetic
Analyzer using a 50 cm capillary array with POP-7 polymer. Due to unexpected low
efficiency of the cloning reactions, the number of sequences retrieved per treatment

(year/prey type) was relatively small and uneven across the years. All the species /
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taxa identified from the clone library were confirmed to exist in the study region
from published literature and/or from the reference sequences from locally-caught

samples.

3.3.6 Primer Optimisation
All the primers used were initially optimised to the needs of the study. Gradient
PCRs (45° to 60°) were performed for each primer pair, in order to optimise the
annealing temperatures of the target taxon. The highest temperature at which the
primers were still amplifying target DNA was selected and a range of cross-reactivity
tests were performed to verify the specificity of the primers. This way, the primers
were optimised in a way that it would be more likely to underestimate the presence
of a prey type (the primers failing to amplify all the species of that prey type) than to
overestimate it (the primers amplifying non-target prey types). Each primer pair was
tested against European Storm Petrel, 13 species of fish, 15 species of Amphipoda,
three species of Decapoda, six species of Isopoda, two species of Mysidacea, one
species of Tanaidacea, Gastropoda, Copepoda, Cumacea, Cephalopoda and Annelida
(Table 3.II). None of the primers used amplified DNA from European Storm Petrel.
Fish primers (FishF1/R1) designed for bony fish (Osteichthyes) were very
robust and amplified all target fish species tested. As expected, they did not amplify
ray (a cartilaginous fish of the superorder Batoidea). The only non-target species that
these primers amplified was an isopod. Other individuals of the same species and
other isopod species were not amplified with these primers and therefore, it was
assumed that the amplification was due to the gut contents of the isopod, which
presumably had recently eaten fish flesh (which is likely, considering the foraging

behaviour of isopods; Thomas et al. 2006).
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Table 3.1I List of taxa used for specificity tests and cross-reactivity tests of the primers used in

this study.
Phylum Class Order Family Species
Annelida Oligochaeta Haplotaxida Lumbricidae Unknown
Maxillopoda Copepod Unknown Unknown
Cumacea Unknown Unknown
Melitidae Melita hergensis
Dexaminidae Atylus Sammer damz:
Dexamine spiniventris
Hyalidae Hyale schmidtii
Talitridae Talitrus saltator
Gammaridae Echifzogammarus
planicrurus
. Ampithoidae | Ampithoe helleri
Amphipoda : Jas{:a falcate
. Jassa ocia
Ischyroceridae
Jassa marmorata
Jassa pusilla
.. Apherusa jurinei
Arthropoda | Malacostraca Eusiridac Aﬁherusa mediterranea
Podoceridae Podocerus variegates
Oedicerotidae | Pontocrates arenarius
Tanaidacea Tanaidae Tanais dulongii
Gnathiidae Paragnathia formica
Eurydice pulchra
Isopoda Cirolanidae Eurydzice spinima
Eurydice naylory
Sphaeromatidae Sphaeroma sp.
Dynamene sp.
. Mysidae Gastrosaccus roscoffensis
Mysidacea Gzrdonae Siriella gracilipes -
Unknown
Decapoda Grapsidae Pachygrapsus marmoratus
Portunidae Polybius henslowii
Mollusca Gastropoda Unknown Unknown Unknown
Cephalopoda Teuthida Unknown Unknown
Chondrichthyes | Batoidea Unknown Unknown
. Clupeidae Sardina pilchardus
Clupeiformes ; : .
Engraulidae Engraulis encrasicolus
. Phycidae Phycis sp.
Gadiformes Merlucciidae | Merluccius sp.
Moronidae Dicentrarchus sp.
Chordata Osteichthyes Carap gidae Trachurus sp.
Perciformes Spar?dae Pagellus sp.
Sparidae Pagrus
Mullidae Mullus sp.
Scombridae Scomber sp.
Pleuronectiformes | Soleidae Unknown
Salmoniformes | Salmonidae Unknown
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As desired, the non-fish primers (CI-J-2183/CI-N-2353) amplified all the
invertebrate species tested but they also, occasionally, amplified DNA from six of
the fish species. This did not seem to a major problem since the amplification signal
was weak (faint DNA bands in the agarose gels), not consistent among assays (it did
not always amplify any of the fish species in different PCRs), meaning that in the
context of the faecal samples the likelihood of amplification of fish sequences was
much lower than for non-fish sequences. Nevertheless, this was taken into account
when interpreting the results and all the results and statistics presented were also
repeated using only the subset of samples that were certain to contain non-fish DNA
(either because they did not test positive using the fish primers or they tested positive
for one or more of the invertebrate groups; Amphipoda, Isopoda, Mysidacea or
Cephalopoda), to make sure that the nature of the results did not change.

Primers specific to the order Clupeiformes (C-CB285dF/C-CB431R) were
optimised with the aim to reduce the number of species amplified so that they could
give an indication of Sardine consumption only. After optimisation, these primers
amplified DNA from Sardina pilchardus but not from Engraulis encrasicolus. It was
not possible to test the other four potential species of Clupeiformes since there were
no reference sequences available for those species. However, according to Jérome et
al. (2003), these primers were not very sensitive to Sprattus sprattus, even at lower
temperatures than used in the present study, so it can be predicted that this species’
DNA was also not amplified from the Storm Petrel faecal samples. Amongst the
species tested for cross-reactivity, these primers amplified DNA from two non-target
fish species, both Perciformes: Mullus sp. and Chub Mackerel Scomber japonicus.

The latter had only a weak amplification signal.
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The primers specific to the class Cephalopoda (Squid28SF/R) were not tested
in a range of cephalopod species in this study but these have been successfully used
in previous studies, amplifying a good range of species (Deagle et al. 2005, 2007).
These primers were very consistent throughout all the different PCR assays.
Amphipod primers (AmphNSSfl/rl) failed to amplify all the amphipod species
tested due to the need to increase the annealing temperature in order to increase their
specificity to the group. Although amphipod consumption is likely to be slightly
underestimated, these primers still consistently amplified a good range of species.
Isopoda and Mysidacea are likely to be most underestimated groups in the Storm
Petrel diet since the primers designed for these taxa (IsopodNSSfl/r1 and MysF1/R1,
respectively) were not shown to be very reliable, since they failed to consistently

amplify a range of species within the target groups.

3.3.7 Stable Isotope Analysis

The sampled body feathers were washed vigorously in triple baths of 0.25 N sodium
hydroxide solution, alternated with triple baths of deionized water, in order
to remove adherent external contamination as well as any external lipid layer
resulting from the bird’s preening oil. Each bath lasted 5 min, and an ultrasound
system was used, to increase the efficiency of cleaning. Feathers were then dried in
an oven for 24 h at 50°C and cut into small fragments for isotopic analysis. Stable
carbon and nitrogen isotope assays were carried out on 0.35 + 0.05 mg subsamples
loaded into tin cups. Isotopic ratios were determined by continuous-flow isotope-
ratio mass spectrometry (CF- IRMS). Results are presented conventionally as &
values (%o) relative to Pee Dee Belemnite (PDB) for §13C, and atmospheric nitrogen

(N>) for 815N.
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3.3.8 Data Analysis
Chromatograms of sequences obtained from the clone libraries were examined by
eye to check base calling using Sequencher DNA Software. To identify these
sequences they were analysed with two complementary approaches:
i)  Sequences were compared with sequences in GenBank, using the BLAST
software, and in the Barcode of Life Data systems (BOLD) v2.5; Judgements on the
level of identification (species, genus, family, order, class, phylum, etc.) were made
using the degree of match (% similarity) from both databases and the Maximum
Score given in GenBank. The thresholds used were created based on the range of
results obtained (e.g. by comparing all the values against one another) and the
knowledge of the fauna present in the study area. The scores obtained from
sequences of known species of potential prey collected in the area were also used as
reference. The criteria for the thresholds varied between fish and non-fish data since
sequences for the DNA region used for fish were more abundant in GenBank and the
fragment size was bigger, meaning that fish sequences overall had much higher
scores than non-fish sequences;
ii)  Sequences were aligned, together with sequences from reference species
collected at the field site, and grouped into clusters using a Neighbour-Joining
phylogenetic analysis (Saitou & Nei 1987), conducted in MEGA4 (Tamura et al.
2007). Cloned sequences were clustered together first and sequences of known
species were added one at a time. Only those sequences from known species that
helped the classification of the cloned sequences stayed in the analysis.

Logistic regression analyses were used to test for differences in the likelihood
of presence or absence of prey taxa between sexes and among years, along the season

(i.e. days from May 1*) and according to their body mass. Chi-square contingency
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tests or Fisher’s exact tests (2-tailed) were used where appropriate, to compare

frequencies of different prey taxa among years.

3.4 Results

Table 3.III summarizes the number of birds caught and the numbers of different
types of samples (i.e. faeces, vomit or growing feathers) obtained in each year and
location. The number of samples obtained depended on the total number of birds
caught and the proportion of birds that yielded a sample. Overall, more than 10% of
the birds caught produced faecal samples (range 9-14% per year, Table 3.III),
whereas the number of vomit samples obtained was comparatively lower in all years,
with only 3% of birds producing vomit samples overall (range 2-7% per year, Table

3.110).

Table 3.III Summary of faecal, vomit and feather samples obtained from European Storm
Petrel nestlings at a breeding colony in NW France, and from migrating European Storm

Petrels in SW Portugal.

Location / Birds caught No. of faecal No. of vomit No. of
Year samples (% of samples (% of growing
birds caught) birds caught) feathers
Portugal 2006 136 19 (14%) 10 (7%) -
Portugal 2007 520 49 (9%) 14 (3%) -
Portugal 2008 639 82 (13%) 7 (2%) 15
Portugal 2009 370 40 (11%) 25 (7%) 29
Portugal total
(2006-2009) 1,665 190 (11%) 56 (3%)
France 2005 - 12 9 -
France 2006 - 29 29 -
France total
(2005-6) 41 38
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Not only were faeces more frequently obtained than vomit samples, but
faeces were much more likely to yield DNA; the overall proportion of faecal samples
from which DNA was successfully amplified was 88.3%. However, none of the
vomit samples produced amplified DNA, except for the few samples where

extractions could be attempted from solid items found within the liquid vomit.

3.4.1 Presence/ Absence of Prey DNA in Faecal Samples

(i) Prey DNA in the Faeces of European Storm Petrel Nestlings

At the breeding colony in NW France, in both 2005 and 2006 the proportion of
nestlings whose faeces contained DNA from non-fish prey was higher than the
proportion of chicks whose faeces contained DNA from fish (Figure 3.1). This
difference in the proportion of the two prey categories was significant in 2006
(Fisher’s exact test, P = 0.001) but not in 2005 (Fisher’s exact test, P = 0.294).
Nevertheless, the proportion of fish and non-fish prey was very similar in the two
years studied (Fisher’s exact tests: Fish, P = 0.427; Non-fish, P = 0.678). The
proportion of faecal samples that contained amplifiable bird DNA but from which no
prey DNA could be amplified (possibly indicating a period of fasting), was not
significantly different between 2005 (11%) and 2006 (3.4%) (Fisher’s exact test, P =

0.422).
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Figure 3.1 Proportion of European Storm Petrel chicks sampled in NW France, which

tested positive for fish or non-fish DNA in 2005 and 2006.
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(ii) Prey DNA in the Faeces of Migrating European Storm Petrels

Amongst the migrating Storm Petrels caught in the south of Portugal, across the four
years, faecal samples from individual Storm Petrels typically tested positive for
either one or two different prey “types” (i.e. prey DNA from the following categories
tested: fish, Cephalopoda, Amphipoda, Isopoda, Mysidacea or other non-fish prey),
with few birds having no amplifiable prey DNA or DNA from more than two prey

types (Figure 3.2).
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Figure 3.2 Number of prey “types” (categories: fish, Cephalopoda, Amphipoda, Isopoda,
Mysidacea, or other non-fish prey) detected in the faeces of individual European Storm

Petrels sampled in SW Portugal among 2006 and 2009.

Neither season, sex nor body mass were significant predictors of the presence /
absence of either fish or non-fish prey DNA in the faeces; Logistic regression: all
Wald values < 1.268, d.f = 1, all P values > 0.260. The proportion of birds found to
have consumed fish was not significantly different among years (Logistic
Regression: Wald = 3.611, d.f = 3, P = 0.317) but there was a significant difference
among years in the proportion of birds eating non-fish prey (Logistic Regression:
Wald = 9.198, d.f. = 3, P = 0.027; Figure 3.3). Although direct comparisons between

the presence / absence of prey taxa detected using different primers cannot be made
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due to potential differences in the sensitivity of the primers, it is worth noting that,
contrary to all other years, in 2009 there was a significant increase in the relative
frequency of birds testing positive for fish compared to non-fish (for 2009, ¥’=18.250,

df =1, P=0.002; for 2006-2008, all P values > 0.616; Figure 3.3).
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Figure 3.3 Proportion of European Storm Petrels sampled in SW Portugal among 2006 and
2009 which tested positive for fish and non-fish prey in each year.

The shift in prey taxa detected in 2009 is mainly due to an increase in the proportion
of birds which ate only fish (Logistic Regression: Wald = 9.275, df. = 3, P = 0.026;
Figure 3.4), despite the proportion of birds eating only non-fish or both prey types
remaining similar among years (Logistic Regression: both Wald values < 5.496, d.f.
= 3, both P values > 0.139, Figure 3.4). The proportion of birds eating only fish in
2009 was significantly different from that in each other year (except 2006 when the
difference was marginally non-significant, P = 0.061), suggesting that a higher
proportion of birds were specialising more on fish as their main prey in 2009. Very
few faecal samples had no amplifiable prey DNA (<20% of samples in each year,
Figure 3.4) and the proportion of samples yielding no prey DNA did not vary

significantly among years (Logistic Regression: Wald = 3.161, d.f =3, P = 0.367).
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Figure 3.4 Proportion of European Storm Petrels sampled in SW Portugal among 2006 and
2009 which tested positive in each year for only non-fish DNA, only fish DNA, both fish
and non-fish DNA, or yielded no prey DNA.

A large proportion of the Storm Petrels that had consumed fish were subsequently
shown (by screening with clupeiform-specific primers) to have consumed clupeiform
fish (most likely to be European Sardine) in each year: 46% in 2006, 73% in 2007,
57% in 2008 and 64% in 2009. There was no significant variation among years in the
proportion of birds testing positive for clupeiform DNA (Logistic Regression: Wald
= 1.350, d.f = 3, P = 0.717). The presence / absence of these prey was also not
related to date, sex or body mass; Logistic regression: all Wald values < 1.750, d.f =
1, all P values >0.186.

Amongst the non-fish taxa tested using more taxon-specific primers (Figure
3.4), cephalopod DNA was abundant in all four years, particularly in 2009.
Differences among years in the relative frequency of cephalopods were however, not
statistically significant (Logistic Regression: Wald = 2.661, d.f =3, P = 0.447). No
birds were found to have eaten Mysidacea in any of the years studied, despite these
crustaceans being highly abundant on the shoreline of the capture site during the

migration season (Thomas ef al. 2006, pers. obs.). A small proportion of birds tested
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positive for amphipods in 2006 (9%) and 2008 (13%), but in 2009 the proportion of
birds positive for amphipods was just below 20% and in 2007 almost 30% of the
birds. Isopods were detected, though in very low frequencies, in 2006, 2008 and
2009, but not in 2007. These apparent differences in the presence / absence of
amphipods and isopods among years were, however, not statistically significant
(Logistic Regression: both Wald values < 1.478, df. = 3, both P values > 0.687).
Furthermore, season, sex and body mass were also not significant predictors of the
presence / absence of amphipods or isopods; Logistic Regression: all Wald values <

2.020,d.f =1, all P values > 0.155.
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Figure 3.5 Proportion of European Storm Petrels sampled in SW Portugal among 2006 and

2009 which tested positive for different invertebrate taxa, using taxon-specific primers.

3.42 Cloning and Sequencing of Prey DNA from the Faeces of Migrating
European Storm Petrels

Across the four years, a high proportion of sequences (43%) obtained through
cloning and sequencing non-fish DNA from Storm Petrel faecal samples were
identified as fungi by comparison with sequences in GenBank. Although the species
matches were not very high (mean match = 82%), it is entirely possible that these

sequences are indeed from fungi. Since these do not represent prey taxa, they could
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either represent unintentional ingestion of fungal material with animal prey,
mycological components of the gut flora, or contamination of the faecal samples with
fungi after they were collected from the field site or in the lab. Therefore, these
fungal sequences were not considered for further analysis.

Across the four years, a total of 170 prey DNA sequences were obtained.
Tables 3.IV and 3.V present, respectively, the results for the identification of
sequences for fish and non-fish prey DNA in the four years of study. For the fish
prey it was possible to obtain species or genus level identification for a good
proportion (70%) of sequences. However, in general the specific identification of
sequences from the non-fish primers was poor and many prey sequences could only
be identified with certainty to the phylum level. The phylogenetic analysis was
therefore performed for the non-fish prey as a complementary approach to improve
the identification of non-fish sequences. The sequences from Dolphin Delphinus sp.
listed in Table 3.V were not included in this analysis, since these were the only
mammal species detected.

This analysis provided another means of visualising the taxonomic
distribution of sequences from non-fish diet components among years, and improved
some of the identification of sequences from these primers (Figure 3.6). For example,
a cluster of sequences from 2008 that were mostly identified in GenBank as possible
arthropods, grouped with a decapod species. Some sequences, also identified only to
the phylum in GenBank, clustered with isopods of the genus Eurydice. Another
putative arthropod sequence clustered with an amphipod species. Furthermore,
sequences from 2009 also identified only to the phylum Arthropoda clustered with
one sequence from 2007 classified to the class (Insecta), suggesting that the former

were also likely to be insects.
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Figure 3.7 presents the relative abundance of each identified taxon for each
year, combining information from the GenBank identification and the phylogenetic
analysis. Decisions on the level of identification of the sequences were made based
on the proportion of match and on maximum scores (Tables 3.IV and 3.V).
Sequences found comprised prey from a total of 13 distinct taxa of fish and 12
distinct taxa of non-fish. European Sardine was the most common species identified
in all the years but significant differences were found in the proportion of DNA
sequences from this species among years (Fisher's exact test: P = 0.036). The order
with higher representation is that of the Perciformes, which includes families such as:
Scombridae, Carangidae, Gobiidae and Sparidae. The Perciformes is also the most
represented order in the study area, in terms of number of species (Borges 2007).
Demersal fish (Gadidae, Phycidae, Myctophidae, Peristediidae and Pleuronectiform)
were identified in all years, except 2007 (though it is possible that the unknown
sequences belong to a demersal species, as suggested by Table 3.IV). Assuming that
the unknown sequences in 2007 belong to a demersal fish species, there is no
significant difference in the proportion of demersal fish species among the years
(Fisher’s exact test; P = 0.5271). The only species of Peristediidae present in the
study area is the African armoured searobin Peristedion cataphractum, therefore this
must be the species consumed by the birds. The identification of shark
(Carcharhiniform) DNA in 2008 indicates that the fish primers do amplify some

Chondrichthyes species.
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Table 3.1V Fish taxa identified in the faeces of European Storm Petrels using the cloning and sequencing

approach. In ‘bold’ is the taxonomic detail determined by the Maximum Score and % Match.

Year . Common Numberof % Match  Max. Family /
(no. Samples Species GenBank S ord
pooled) name sequences enBan core rder
2006 :S'ardina European 9 100 564 Clupéldae
(n pilchardus Sardine Clupeiform
Microgadus Pacific Gadidae
proximus’ Tomcod 2 23 440 Gadiform
Sardina European Clupeidae
pilchardus Sardine 14 100 564 Clupeiform
Soe O s S
2007 P
Trachurus Jack Carangidae
13
(13) Jjaponicus® Mackerel 8 99 343 Perciform
Crystallogobius a1 Goby 6 92 250 Gobiidae
linearis Perciform
i Opisthoproctidae
Opisthoproctus g ojove 4 82 259 PISHROPTO
spp. (unknown) Argentiniform
Sardina European Clupeidae
pilchardus Sardine 17 100 564 Clupeiform
:S‘comfber Chub 2 100 553 Scomprldae
Jjaponicus Mackerel Perciform
. Redbanded Sparidae
2008 Pagrus auriga seabream 2 94 459 Perciform
6 _ . q.
) Muste[ug Smooth 7 93 315 Triakidae
manazo hound Carcharhiniform
Solea solea Common 1 86 320 Soleidae
sole Pleuronectiform
Opisthoproctus Barreleye 2 82 259 Oplsthopr(?ctldae
spp. (unknown) Argentiniform
Sardina European Clupeidae
Dpilchardus Sardine 17 100 564 Clupeiform
.Scom.ber Chub 4 100 553 Scomprldae
Jjaponicus Mackerel Perciform
Scomber Atlantic Scombridae
scombrus Mackerel 3 96 492 Perciform
2009 Trachurus Jack Carangidae
: T 2 99 545 )
(18) Japonicus Mackerel Perciform
Satyrichthys Armored Peristediidae
O 1 93 438 .
amiscus Gurnard Scorpaeniform
Phycis Greater Phycidae
blennoides  Forkbeard 3 99 337 Gadiform
Hygophum Bermuda 1 99 401 Myctophidae
hygomii Lantern Fish Myctophiform
! Genus does not exist in the study area. 2 Species does not exist in the study area but Genus does.
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Table 3.V Non-fish taxa identified in the faeces of European Storm Petrels using the cloning and

sequencing approach. In ‘bold’ is the taxonomic detail determined by the Maximum Score and % Match.

Year
Species Nr. of % Match  Max. Order/ Phylum /
(no. samples P sequences GenBank Score Family Class
pooled)
Neodiprion spp. 1 97 676 Hymenoptera Arthropoda
(unknown) ) Diprionidae Insecta
Actinote thalia 1 92 lgg  Leptidoptera  Arthropoda
Nymphalidae Insecta
Cicurina pampa 10 90 185 Arangae Arthropoda
/ C. madla Dictynidae Arachnida
2006 Scathophaga 1 99 307 Diptera Arthropoda
(an Stercoraria Scathophagidae Insecta
Dolichopoda 1 9 239 Orthoptera Arthropoda
makrykapa Rhaphidophoridae Insecta
Sepia officinalis 1 98 302 Sst::ﬂ;:id:e Cel\gl?elllll;;c: da
Demodex . Arthropoda
Jfolliculorum 2 o8 294 Acarina Arach‘rzida
Unknown 1 - - - -
Protocalliphora I 86 202 Diptera Arthropoda
sialia Calliphoridae Insecta
2007 A crodipsgs I 86 189 Leptidoptera Arthropoda
6) mortoni Lyc:aenldae Insecta
Charaxes 1 9 244 Leptidoptera Arthropoda
marmax Nymphalidae Insecta
Euphausia 1 84 176 Euphausi'gcea Arthropoda
superba Euphausiidae Crustéacea
Apis mellifera 2 08 326 Hymenoptera Arthropoda
iberica Apidae Insecta
Aegla prado / 8 86 193 Decapoda Arthropoda
A. denticulate Aeglidae Crustacea
Orconectes 2 82 106 Decapoda Arthropoda
etnieri Cambaridae Crusticea
Lepetodrilus spp. - Mollusca
2((1)(1);; I()unknown)p p 1 80 91.6 Lepetodrilidae Gastropoda
Arrhipis vassei 1 84 104 EC oleopt.era Arthropoda
ucnemidae Insecta
Napeogenes 3 94 276 Leptidop.tera Arthropoda
lycora Nymphalidae Insecta
Delphinus 3 98 320 Cetcha Chordatz_i
delphis Delphinidae Mammalia
Unknown 3 - - - -
Sepia officinalis 2 98 302 Ssei)pi;:id:e ng}?:lg;? da
Curculionidae Arthropoda
2(??? ) 3 82 121 Coleoptera Insec‘:a
Myrmecocystus 1 89 172 Hymeqoptera Arthropoda
mexicanus Formicidae Insecta
Unknown 3 - - - -
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Figure 3.6 Phylogenetic tree of invertebrate prey DNA sequences. The percentage of replicate trees in which the associated taxa clustered together in the
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The diversity of taxa among years can not be directly compared due to the
different number of individuals pooled in each year and the differences in the number
of sequences obtained (e.g. higher diversity of fish taxa found in 2009 is probably
related to a higher number of individual faeces samples pooled), but it is notable that
the composition of taxa seems to vary greatly among years, both for fish and non-fish
prey (Figure 3.7; note that 2007 had a very small sample size for non-fish prey). In
2008 there was a high proportion of DNA sequences from Decapods but these were
absent in other years. Sequences from terrestrial invertebrates (Leptidoptera,
Hymenoptera and other insects) were present in all years but there was a significant
difference in the proportion of these prey among years (Fisher's exact test: P =
0.003). Cuttlefish (Sepiidae sp.) were identified using the sequencing approach in
2006 and (apparently more abundantly) in 2009, although no significant difference

was found in the prevalence of this prey among years (Fisher's exact test: P = 0.119).

Evidence for scavenging of food from large species was found in 2008 by the
detection of Common Dolphin (Delphinus delphis) and hound shark (Triakidae:
Carcharhiniformes) DNA. Though the latter are small sharks and some species
produce eggs, even the eggs are probably too big for a Storm Petrel to consume,
besides being protected by a hard, leather like, capsule (Flammang et al. 2007,
Concha et al. 2010). Parasitic mites (Acarina) found in 2006 are likely to have been
ingested by the birds during preening their feathers and therefore can not be

considered as prey in the usual sense.
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Figure 3.7 Pie charts showing proportions of various fish and non-fish prey DNA sequences

obtained from

GenBank/BOLD.

the faecal samples of European Storm Petrels and identified on
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3.4.3 Analysis of Prey DNA from Hard Parts in Vomit Samples

The only successful way of obtaining DNA from regurgitations was from the hard
parts contained within the otherwise liquid vomit, using the stool extraction Kkit.
However, only 18 of the total 56 vomit samples included hard parts. Furthermore,
prey DNA was successfully amplified from only two out of six samples using fish
primers and three out of 12 samples using non-fish primers. The two fish sequences
obtained from vomit samples showed a 100% match with Sardine Sardina pilchardus
in GenBank. The invertebrates were all visually identified as isopods (Eurydice spp.,
c.f. Thomas et al. 2006) but no reliable matches for their sequences could be

obtained from online sequence databases (GenBank and BOLD).

3.4.4 Stable Isotope Analysis

Mean 613C values were very similar in both years examined (2008 and 2009, ¢ =
0.555, d.f = 41, P = 0.582), while mean 815N values were slightly higher in 2009,
suggesting that the Storm Petrels may have been feeding at a higher trophic level in
2009 than in 2008 (Figure 3.8). However, this apparent difference in the 815N
isotopic signature between 2008 and 2009 was non-significant (t = 1.716, d.f. = 42, P
= 0.094). Differences in the isotopic signatures between sexes could not be tested,
since there were not enough males in the dataset to allow a meaningful comparison.
However, the proportion of males in this analysis was similar to that in the overall
study sample, so therefore differences between sexes should not be a confounding

factor in the interpretation of the results.
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Figure 3.8. Isotopic ratios from growing feathers of European Storm Petrels, sampled during

their northwards migration past SW Portugal in 2008 and 2009.

3.5 Discussion

3.5.1 Overview

This study is one ofthe first detailed studies ofthe diet ofthe European Storm Petrel,
including temporal variation in diet, and the first to examine diet of any storm petrel
species during migration. The molecular techniques used here allowed the
identification of many prey items to the species and genus levels, some of which
would not be likely to be identified with any other method.

This study has also revealed potential shifts in the foraging strategy of Storm
Petrels, depending on the stage of the annual cycle (e.g. migrating adults appear to
take fish more frequently than do birds foraging to feed nestlings), and among years
(in particular, 2009 presented a range of differences in diet composition in relation to

the preceding three years). The analysis of Storm Petrel body mass variations
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presented in Chapter 4 shows that in 2009, the birds were carrying greater body
reserves than in the previous three years, but food availability was lower overall for
that year; this potential shift in foraging strategy in relation to environmental
conditions and migration strategy will be discussed in detail in Chapter 4.

The taxonomic breadth and apparent flexibility of Storm Petrel diet revealed
by the molecular analyses, together with the considerable variation in the taxonomic
composition of the diet among the four years, suggests that, overall European Storm
Petrels may be opportunistic foragers, eating the most available prey in each year.
This opportunistic foraging strategy appears to include eating terrestrial invertebrates
(probably dead or dying prey items floating in the water, constituting an easy food
source for the birds) and scavenging (from corpses or even faeces) of other taxa that
would otherwise be too large for Storm Petrels to consume (e.g. Common Dolphin
and probably hound sharks).

Thus, Storm Petrels might respond to changes in their environment by
changing their foraging strategy according to spatial or temporal changes in foraging
conditions. The European Sardine was identified as a potentially very important
component of the diet of migrating Storm Petrels across the four years, both in terms
of the number of birds consuming it, and the biomass consumed. Further
investigations of inter-annual variations in the abundance and biomass of Sardine
populations off SW Portugal, in the context of Storm Petrel foraging ecology, are
presented in Chapter 4.

The importance of prey from higher trophic levels, such as fish, particularly
in 2009, was supported by the stable isotope analysis, as suggested by the relatively
high 8'°N values (see e.g. Bearhop et al. 2006, Weiss et al. 2009, Paiva et al. 2010).

A connection to the coastal/benthic zones was also indicated by the stable isotope
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ratios, particularly by the relatively high values of §'°C in the growing feathers of
Storm Petrels compared with those of the pelagic-foraging Cory’s Shearwaters
Calonectris diomedea sampled approximately 100km further north of the study site,
at the Berlengas Islands off the Portuguese coast (Paiva et al. 2010). This view of
Storm Petrels as coastal foragers, rather than entirely pelagic foragers, is supported
by previous observations of Storm Petrels occasionally regurgitating undigested
isopods of species that are restricted to the intertidal zone (Thomas et al. 2006).
Similarly, the identification of the demersal fish taxa (Gadidae, Phycidae,
Myctophidae, Peristediidae and Pleuronectiform) in the molecular analysis of diet,
supports the view that Storm Petrels may opportunistically take prey with a demersal
origin, at least in some circumstances. Since Storm Petrels do not dive more than a
few cm below the sea surface (Brooke 2004, Flood et al. 2009, pers. obs.), demersal
prey was most likely to have been obtained from fisheries discards. Storm Petrels are
not commonly seen following fishing boats during the day (perhaps in order to
minimise the risk of predation by larger seabirds such as gulls Larus spp.). However,
they may do so more frequently by night and they readily appear around small boats
when a “chum” of mashed fish is placed into the water by day or night (pers. obs.).
The stable isotopes failed to detect significant differences in the foraging
strategy of European Storm Petrels between 2008 and 2009 (note however the
relatively small sample size). In a study of stable isotopes in Sardine and plankton in
Galicia, NW Spain (Bode et al. 2004), young Sardines (< 18cm long) and older
individuals (> 18cm) had mean 8'°N values of 10.5%0 and 5"°C of —17%o. Among
plankton, N values were between 3%o and 8%o, varying with size class; 8'C values
ranged from -18%o to -22%o. Thus, both 8"3C and 8'°N values were considerably

lower than found in the Storm Petrels in the present study, supporting the view that
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Storm Petrels forage mainly at higher trophic levels prior to their arrival at the
Portuguese coast. Combining stable isotopes analysis with molecular scatology in the
study of animal species’ diet can greatly enhance the outcome results provided by

each of the methods separately.

3.5.2 Comparison and Integration of Results

The use of primers of varying taxonomic specificity to screen for the presence /
absence of prey DNA has the advantages of giving a semi-quantitative measure of
prey consumed, based on the proportion of birds that consumed each prey type. This
approach is typically more economical than the cloning and sequencing approach in
terms of financial cost of the analysis, and it is ideal to identify levels of predation on
one or few key prey types (e.g. Sardines and cuttlefish Sepia sp. in the present study).
However, this approach is highly dependent on the availability or design of primers
of appropriate specificity, which need to be designed, optimised and tested before
they can be applied. Furthermore, it is almost impossible to be certain about the
primers characteristics (e.g. sensitivity to the different prey, specificity), since it is
virtually unfeasible to test most primers against all potential non-target species
within a marine system. For example, in this study, primers designed to amplify
invertebrate species (CI-N-2535/CI-J-2183), were shown to also amplify vertebrate
species such as dolphin and some fish. This was not a problem in this study, since the
cross-amplification of fish by “non-fish specific” primers was minor (controlling for
it did not change the nature of the results) and it allowed the detection of a broader
range of non-fish prey. Similarly, primers designed for Clupeiformes (C-
CB285dF/C-CB431R) amplified at least two species of perciform fish. While one of

these, the perciform genus Mullus sp., did not seem to be a common prey for
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migrating Storm Petrels, DNA of Scomber japonicus was found in relatively high
proportions in most years. Although the Clupeiforme primers did not seem very
sensitive to this species compared to Sardine, it is possible that amplification of
Scomber japonicus might contribute to the high frequency of Clupeiformes found
across the years. Nevertheless, based on the clone library results and considering the
different specificity of the primers, Sardine DNA is likely to have made the major
contribution to the high proportion of birds testing positive for clupeiform DNA in
the present study. The Osteichthyes (bony fish) primers (FishF1/R1) also amplified
unexpected prey DNA sequences from Chondrichthyes (cartilaginous fish), but
again, in this case it was beneficial to the study in that additional fish taxa could be
sequenced and identified. As more primers become designed and tested in future
studies, the chances of finding reliable primers for dietary studies will be increased.

The presence / absence screening approach has also the limitation of
requiring some prior knowledge or expectation of the potential prey. While fish are
obvious prey to search for in pelagic species such as Storm Petrels, specific groups of
fish or non-fish prey are harder to predict as being important unless previous studies
have shown them to appear in the birds’ diet. For example, in this study it was not
expected to find such an apparently high contribution of terrestrial invertebrates in
the birds’ diet and, therefore, primers targeting Leptidoptera or other terrestrial
invertebrates were not selected for the presence / absence approach.

Another limitation of these molecular methods is that the comparison of
results obtained from different primer pairs might not be valid due to differences in
the sensitivity of the different primers. Therefore, the relative abundance in the faecal
samples of fish and and non-fish, or of the different invertebrates (Cephalopoda,

Amphipoda, Isopoda, Mysidacea), can not be directly compared within each year.
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This is also true for the cloning approach. Nevertheless, it is possible to establish
comparisons on the patterns among years. Furthermore, the faecal samples from
nestlings showed a reverse pattern, suggesting that the patterns obtained for the
migrating adults are not just related to differential sensitivity of the fish and non-fish
primers. Even assuming that the proportion of birds feeding on non-fish prey was
underestimated, the proportion of birds consuming fish is high and a fish meal will,
almost certainly, be more energy-rich on average than an non-fish meal of equivalent
mass (Beukema 1997, Hilton et al. 1998, Paiva et al. 2006a, Hilton et al. 2000).
Information on the predator’s digestive physiology is useful when applying
molecular methods to dietary studies, since the rate at which a predator digests each
prey taxon will affect the results obtained. Feeding trials with captive animals fed
known prey can be performed in order to calibrate the results obtained from the wild
(e.g. Deagle et al. 2005b, 2006, 2010). This has been done mainly with invertebrate
species (e.g. Agusti et al. 2003, Harper et al. 2005, Juen & Traugott 2007) and
captive mammals, such as Steller’s Sea Lions Eumetopias jubatus (Deagle et al.
2005). Feeding trials can not be easily be performed on Storm Petrels though this
have been done for other purposes in a range of seabird species, suggesting a
digestion period for fish prey of about five hours (Hilton et al. 2000). However, trials
on young Little Penguins showed that the DNA signal of fish prey items could be
detected in the faeces of the penguins up to four days after feeding (Deagle et al.
2010). These detection periods can also vary depending on the sensitivity of the
primers used. A feeding trial could potentially be performed on Storm Petrel
nestlings at the colonies if these are fed items not provided by the adults. On this
matter, different prey will have different retention times (i.e. period of time in which

the prey is retained in the predators’ guts) (Hilton et al. 1998, Hilton et al. 1999) For
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instance, digestion rates of fish were found to be higher than those for squid which
are themselves digested more rapidly than crustaceans (Wilson et al. 1985, Jackson
& Ryan 1986, Jackson 1992). Different species of fish might also have different
digestion times related to size or lipid content (Hilton et al. 1998). Furthermore,
molecular methods have the limitation of not distinguishing between age classes of
prey (e.g. eggs, larvae or fully developed individuals), making it harder to evaluate
differences in digestion periods among different prey types.

In the context of the present study, such variations in primer sensitivity,
specificity and detection periods of different prey taxa emphasise the need for
caution in interpreting differences in the frequency with which different categories of
prey are detected using different primer pairs. Nevertheless, such methods are
potentially powerful tools for tracking changes in diet composition over space and
time, when using the same primer combinations to examine diet composition in
different contexts (e.g. among years and different stages of the annual cycle.

The cloning approach provided novel and detailed information on the type of
prey that the birds feed on and on changes in the composition of prey among years.
The specificity of taxonomic identifications possible using this approach frequently
allows the presence of individual species in the diet to be confirmed, and sometimes
identification is even possible to the level of subspecies (e.g. the Iberian subspecies
of honeybee, Apis mellifera iberica, Table 3.1V).

As with the presence / absence screening approach discussed above, caution
is required in interpreting some aspects of the cloning and sequencing results. For
example, the frequency with which different sequences are detected will depend on
primer sensitivity and specificity, as well as, potential differences in the number of

mitochondria per unit mass in different prey taxa. These limitations could be
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explored further in future work, for example by comparing the number of sequences
that can be amplified per unit biomass, from samples of fresh prey (cf. Deagle e al.
2010).

The success of the cloning reactions in this study was unexpectedly low
which resulted in a limited number of DNA sequences obtained for each year / prey
type, particularly for non-fish prey in 2007. This increases the likelihood of bias
towards certain prey types and makes the interpretation of the results more difficult.
For example, the apparently high proportion of terrestrial invertebrates in 2007
(50%), is derived from only two DNA sequences and it is likely not to be
representative of the real composition of the diet. In 2008, with a larger sample of
sequences, this proportion is much lower.

Increasing the number of sequences obtained would allow a more reliable
semi-quantitative interpretation of the results (Deagle 2010). Even with higher
success rates of the cloning, the sequencing process is expensive and usually limits
the number of sequences one can get. Next-generation sequencing (e.g.
pyrosequencing) can overcome this issue by producing massive amounts of
sequencing data, largely reducing the individual cost of each sequence (Deagle et al.
2009, Lerner & Fleischer 2010, Deagle et al. 2010). Although molecular methods are
currently a relatively costly way to study diet (compared to visual identification,
stable isotopes or fatty acids), this is largely compensated by the being non-invasive
and having the potential to describe an animal’s diet with extraordinary and
unprecedented detail. The ongoing expansion of DNA online databases (GenBank
and BOLD) will continue to enhance the power and applicability of molecular

methods for the study of the diet of free-living animals.
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Chapter 4
Climate-Driven Changes in the Strategic Regulation of Body

Reserves by Migrating European Storm Petrels

4.1 Abstract

Understanding and predicting the impacts of climate change on ecosystems requires
knowledge of the mechanisms, such as climate-driven changes in trophic
relationships, underlying such changes. In this study, I report large and previously
undescribed changes among years in the body reserves of European Storm Petrels
Hydrobates pelagicus: small, surface-feeding oceanic seabirds, sampled over 21
years (1990-2010) during their northward migration past the coast of southern
Portugal. These changes in the birds’ body reserves are associated with local sea
temperatures, marine primary productivity and the abundance of a major food source,
the European Sardine Sardina pilchardus. European Storm Petrels were heavier
during their summer migration in years when spring sea temperatures, summer
primary productivity and Sardine abundance were lower. These relationships suggest
that the large changes in body reserves among years were the result of strategic
regulation of reserves as a buffer against starvation in response to changes in food
availability. Local variables were more successful at accounting for among-year
variance in body reserves than the ocean-basin scale North Atlantic Oscillation; the
major index of climate variability across the North Atlantic. This suggests that birds
were responding directly to climate-driven changes in local foraging conditions,

which are themselves driven by larger-scale climate processes. This study shows that
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body mass regulation behaviour can act as a sensitive bio-indicator of the effects

across trophic levels of climate-driven environmental changes.

4.2 Introduction

Improving our understanding of the potential impacts of climate change on different
ecosystems requires knowledge of the mechanisms underlying climate-driven
ecological changes (Moller er al. 2004a). The impacts of climate change are
manifested at a range of spatio-temporal scales (Miller 2004), from short-term
changes in local phenomena (hours - days, 10s of m) such as air temperature, wind
speed and direction, through mesoscale phenomena (weeks - months, 100m - 100km)
such as upwelling intensity, salinity, sea surface temperature and currents, to long-
term and large-scale phenomena (months - years, 100 - >1,000 km) including
decadal climatic oscillations such as the North Atlantic Oscillation (NAO, Hurrell
1995, Hurrell & van Loon 1997) and the apparent ongoing anthropogenic increases
in global surface temperatures (IPCC 2007). Local, short-term variations are likely to
most proximately mediate the impacts of larger-scale and longer-term climate
variations on animals (Meller er al. 2004a). However, phenomena such as the near
simultaneous fluctuations of fish stocks in widely separated regions support the view
that such ecological effects can also be driven by climate processes operating at a
global scale (Schwartzlose ef al. 1999).

Climate variability can affect animals directly through physiological
mechanisms (e.g. metabolism, reproduction, mortality), as well as indirectly through
affecting their biological environment (e.g. predators, prey, within-population
interactions and disease; Ottersen ef al. 2004). Climate-driven change in trophic

relationships is considered to be one of the crucial mechanisms through which
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climate will impact ecosystems (Werner et al. 2004, Durant et al. 2007, Miller-
Rushing et al. 2010). Indeed, the response of seabirds to climate change appears to
be a good integrative index of the cumulative effects of climate across the trophic
levels below their position in the food chain (Durant et al. 2004, Piatt et al. 2007 -
but see Gremillet & Charmantier 2010 for important limitations of such indices).

Although there has been an increasing number of studies on the relationship
between birds, food supply and climate (e.g. Furness & Tasker 2000, Frederiksen et
al. 2004, Kendall et al. 2004), direct behavioural responses of birds to climate are
much less explored and have been identified as a priority for future studies (Moller ef
al. 2004b, Stenseth et al. 2004). In this Chapter, evidence is reported for an effect of
climate-driven ecological changes on a behavioural survival strategy, the regulation
of body reserves in a small migrating seabird — the European Storm Petrel
Hydrobates pelagicus. Small seabirds are likely to be more responsive to changes in
their environment (e.g. thermal conditions, food supply) than larger seabirds because
of their higher metabolic rate and greater surface area / volume ratio, and therefore
provide good case-studies to investigate impacts of climate. However, the smallest
seabirds (storm petrels) tend to be harder to study (e.g. due to underground nesting,
being nocturnal at the colonies, more sensitive to disturbance), particularly away
from the breeding grounds (e.g. being harder to observe, too small for tracking
devices).

European Storm Petrels (henceforth “Storm Petrel”) are small (~26g), long-
lived pelagic seabirds, which forage mainly in flight by picking small items of food
from the water surface (Cramp & Simmons 1977). The species breeds along the
Atlantic seaboard of Europe (the migratory subspecies H. p. pelagicus) and around

the Mediterranean basin (the apparently non-migratory subspecies H. p. melitensis,
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Robb & Mullarney 2008). Birds from the Atlantic breeding colonies migrate south to
overwinter off the coasts of Western and Southern Africa (Wernham et al 2002). The
present study investigated variation in the body reserves of migrating birds of the
Atlantic population (i.e. H. p. pelagicus), sampled over a 21-year period, during their
late spring / early summer northward return migrations past the coast of south-west
Portugal. The birds sampled were presumably mainly female pre-breeders
prospecting potential breeding sites (see Chapter 2).

The most likely causal link between climate and the migration fuel loads of
Storm Petrels is food availability (Stenseth et al. 2004). Storm Petrels, like most
Procellariiformes, store energy in the form of stomach oil (Place et al. 1989, Warham
1990, 1996) and probably also as subcutaneous fat reserves (Blem 1990). Such
energy storage has been interpreted as an adaptation to a pelagic feeding
environment in the context of reproduction (Lack 1968, Ashmole 1971), enabling the
birds to buffer themselves against starvation during their incubation shifts, shared by
both sexes, which lasts on average three days for the European Storm Petrel (Scott
1970, Bolton 1996). Lipid accumulation is also very important for the nestlings,
which are able to survive for many days without being fed by their parents (Warham
1990, 1996). Although it is known that storm petrels carry stomach oil throughout
their life cycle and not just during breeding (Jacob 1982), there is an almost total lack
of knowledge on its function as fuel as part of the migration strategy. Similarly, very
little is known about the diet of storm petrels during migration (see Chapter 4).
Studies of European Storm Petrel diet come mainly from food provided to chicks at
colonies (composed chiefly of zooplankton, small fish and cephalopods) (Cramp &

Simmons 1977, D’Elbee & Hemery 1998) but there is evidence that this can be
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markedly different from the diet of adults, even during the breeding season (Scott
1970).

The abundance of the taxa that comprise the diet of Storm Petrels may itself
depend ultimately on the level of marine primary productivity, which can vary
substantially from year to year, depending on climatic and oceanographic conditions.
Previous work has shown that in the waters off the western seaboard of Iberia, net
primary productivity (NPP) is driven primarily by oceanographic conditions,
particularly sea surface temperatures (SST) and changes in wind direction, at the end
of the winter (Relvas et al. 2007, Santos et al. 2007). However, the trophic links
from primary productivity to the abundance and availability of food for seabirds are
complex, with several other interrelated climatic and oceanographic variables
contributing directly or indirectly to inter-annual variability in abundance and
availability of prey taxa. These variables include surface air temperature, sea-level
pressure, wind speed and direction, upwelling intensity and changes in ocean
currents (e.g. Abraham & Sydeman 2004, Behrenfeld 2006, Hipfner 2009).

Warmer temperatures at the sea surface tend, in general, to decrease
phytoplankton productivity, but there may be marked geographical variation in the
relationship between SST and NPP. For example at a local scale, NPP is higher in
areas of upwelling and fronts between water bodies of contrasting temperatures. At a
larger spatial scale, NPP varies along gradients of light and nutrient availability such
that contrasting climate controls on ocean productivity can cause primary production
to vary either positively or negatively with SST in different locations (Behrenfeld
2006). Furthermore, depending on the composition and flexibility of seabird diet,
climate-driven changes in sea temperatures may have varied effects on seabird

foraging ecology and migration fuelling strategies (e.g. Kitaysky & Golubova 2000).
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During breeding, zooplankton taxa (other than fish larvae) seem to comprise
a major part of the diet of European Storm Petrels (Witherby et al. 1965, D’Elbée &
Hémery 1997), despite fish having higher calorific density (Beukema 1997, Pérez
1994, Paiva et al. 2006a). The analysis of diet presented in Chapter 4 suggests that,
during migration, Storm Petrels feed extensively on fish, of which the European
Sardine (henceforth “Sardine”) is an important component (see Chapter 2). The
Sardine is the most abundant fish species present off the coast of Portugal (FAO
2004) and constitutes an energy-rich diet for the birds (Paiva et al. 2006b). The
spawning season of Sardines in Iberian waters ranges from November to April, but
along the southern coast of Iberia it occurs mainly in the spring (March - May; Ré et
al. 1990, Santos et al. 2001). This means that by May - June, when Storm Petrels are
migrating past this coast, the Sardines will be potentially available as prey for the
birds mainly in the stages of eggs, larvae or early juvenile (size range: 11-60 mm;
Santos et al. 2005).

In the current Chapter, inter-annual variability in the North Atlantic
Oscillation (NAO) index, temporal patterns in SST and NPP, as well as data on local
surveys of adult and juvenile Sardines, were used to investigate climate-driven
changes in food availability for migrating European Storm Petrels and their
consequent regulation of energy reserves during migration. To my knowledge this is

the first study to investigate such links in a migrating seabird.

4.3 Methods
4.3.1 Study Area and Ecosystem Features
This study was conducted on the SW coast of Portugal (37° 04’ N, 8° 47> W) in the

temperate NE Atlantic region. The study area is located at the northern limit of the
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North Atlantic Upwelling System, characterized as one of the world’s major
upwelling areas. In this area the upwelling is induced by the prevalence and
steadiness of northerly winds between April and September, strengthened during the
summer by a thermal low pressure centre typically located over the Iberian
Peninsula. Associated with the upwelling there is typically a bloom of phytoplankton
in April - May, which in turn triggers a bloom in zooplankton in May — June
(Aristegui et al. 2004). Since phytoplankton blooms are strongly influenced by SST
(Stenseth et al. 2004), SST in March - April and NPP in April - May could
potentially be useful indices of inter-annual variability in the bottom-up control of
the marine ecosystem in Portuguese waters.

The study area is generally highly productive and the focus of intensive
commercial fisheries. The most commercially important fish species in this area is
the European Sardine (37% of landings by mass in 2004), followed by Atlantic
Mackerel Scomber scombrus (9%) and Horse Mackerel Trachurus trachurus (8%)

(FAO 2004).

4.3.2 European Storm Petrels

Between 1990 and 2010, Storm Petrels were captured at the study site during their
northward migration, between May 16th and August 17" (study periods varying to
some extent between years; median dates ranged from 1** June to 29" June, with the
great majority of individuals caught between May 20" and June 20™). Acoustic
playbacks of the species’ “purr” call (Cramp & Simmons 1977) were used to attract
the birds into mist nets at night. Birds captured with this method are mainly
immature birds (Fowler er al. 1982), migrating rapidly northwards (often

>200km/day, Bolton & Thomas 1999) towards the Atlantic breeding colonies (Harris
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et al. 1993). Only a very small proportion of the storm petrels caught are of the
Mediterranean subspecies H. p. melitensis (<1%, R.A. King, R. Medeiros et al.,
unpublished data) or are subsequently retrapped at the study site (<1%). There is a
substantial female bias in the sex ratio of the sampled birds, though this bias is
largely consistent between years (mean sex ratio = SD = 85.5% female + 4.1%, see
Chapter 2). All birds captured were weighed (to 0.1g) and wing length (flattened,
maximum chord in mm, Svensson 1992) was measured. Date (no. of days from May
1**) and time of capture (hours relative to midnight) was also recorded for each

capture.

4.3.3 North Atlantic Oscillation (NAO)

The NAO is a cyclic oscillation in latitudinal pressure gradients across the North
Atlantic, which captures a large amount of the inter-annual variation in climatic,
oceanographic and ecological conditions across the North Atlantic basin (Hurrell
1995, Stenseth et al. 2004). The NAO can be quantified as an NAO index — the
difference in atmospheric pressure between Iceland and Lisbon in Portugal (Hurrell
1995), Iceland and Gibraltar (Jones et al. 1997), or Iceland and the Azores (Walker
1924, Uppenbrink 1999). The latitudinal pressure gradient across the NE Atlantic is
most pronounced during the winter months, and NAO index values for the winter
period have been shown to be more strongly associated with oceanographic and
ecological processes than values over the rest of the year (Hurrell 1995, Rogers
1997). In the present study, the winter (December-March) NAO index values
between Portugal and Iceland were used. Since delayed NAO impacts on ecosystems
can sometimes be stronger than more direct ones (Stenseth et al. 2004), one-year and

two-year lagged NAO index values were also tested (i.e. the winter NAO index value
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from 1 year and 2 years previously), henceforth referred to as NAO™ and NAO?
respectively. These data were obtained for the whole study period, from the Climate

& Global Dynamics Division of the NCAR Earth System Laboratory, available to

download from: http://www.cgd.ucar.edu/cas/jhurrell/indices.html (last accessed
01/06/2010).

4.3.4 Sea Surface Temperatures (SST)

Means values for sea surface temperatures from January to June were obtained for
1990-2010 from the British Atmospheric Data Centre, provided by the Hadley
Centre at the UK Meteorological Office. These data are obtained from in situ sea
surface observations and satellite derived estimates of temperatures at the sea
surface. Data available includes monthly mean gridded, global SSTs from 1870 to
present, downloadable from: http://badc.nerc.ac.uk/home/index.html (last accessed
01/08/2010).

The data are downloaded as grids, in which the grid spacing is 1° in both latitude and
longitude. The sea area over which mean SST was calculated was defined by
estimating the birds’ flight range over the period during which birds could be
adjusting their stored energy reserves. This was achieved by taking the observed
variance in individual mass across the whole study period (5.21g) and calculating the
period of time over which this degree of variation in body mass is likely to be
generated, considering that a breeding European Storm Petrel gains weight at the rate
of 1.6g/day whilst away from the nest foraging at sea (Bolton 1996; 5.21g/ 1.6 g
day" = 3.26 days). Using data from European Storm Petrels ringed in Portugal and
subsequently recaught in different countries along the coasts of NW Europe, Bolton

& Thomas (1999) estimated the average daily cross-country travel speed for
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migrating individuals as 192.4 km/day. Based on this, the estimated foraging range to
account for the observed variation in mass was 3.26 days * 192.4km/day = 626.5km.
A sea area of 600km, just within this estimated flight range, between the bearings of
South to SW from the capture location in SW Portugal (Appendix 4.I), was used to
extract mean monthly SST values for each year of the 21 year study period, for use in

the subsequent analyses.

4.3.5 Net Primary Productivity (NPP)

Net primary productivity is defined as the carbon produced by photosynthesis that is
not immediately used by the plants (in terrestrial habitats) or phytoplankton (in
marine habitats) to support their own maintenance requirements. Data on NPP were
obtained for the years 1998 to 2007 from the Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) database at: http://www.science.oregonstate.edu/ocean.

productivity/index.php (last accessed 01/08/2010).

Mean monthly NPP values were downloaded for the months January to June
in each year. This database comprises estimations made using the standard Vertically
Generalized Production Model (VGPM, Behrenfeld & Falkowski 1997). The VGPM
is a model that estimates NPP from the upper-ocean chlorophyll concentration using
a temperature-dependent description of chlorophyll-specific photosynthetic
efficiency, given as milligrams of carbon fixed per day per unit volume (mg C / m? /
day). The global data are downloaded in a 1080 x 2160 grid, in an equidistant
cylindrical projection, in which the grid spacing is 1/6 of a degree in both latitude
and longitude. As for the SST data described above, the monthly mean was obtained

from the same 600km sea area, obtained by estimating the birds’ flight range over the
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period during which birds could be generating the variation observed in their stored

energy reserves (Appendix 4.1I).

4.3.6 Sardine Abundance and Biomass

Data on the abundance and biomass of European Sardines in waters off the Algarve
region of southern Portugal were obtained from IPIMAR (Portuguese Research
Institute for the Fisheries and the Sea) reports on sardine surveys, using acoustic
survey methods together with standardised fishing data (Marques et al. 2005). Data
were available on the following variables: (i) abundance of adult Sardines, (ii)
abundance of juvenile Sardines, (iii) total biomass of adults and juveniles. Data on
total Sardine biomass were available for surveys performed between 1995 and 2005,
but data on the numbers of adults and juveniles are only available from 1995 until
2002. These surveys were usually carried out in March, but the timing of surveys
varied to some extent across the years, between February and June (Marques et al.

2005).

4.3.7 Data Analysis

Data were analysed in SPSS v16 (SPSS Inc.) and R v2.10.1 (The R Foundation for
Statistical Computing, 2009). An initial general linear model (GLM) was performed
to investigate the changes in body mass among years, accounting for other non-
environmental variables (i.e. date, time of night and sex) and controlling for wing
length (as a measure for body size). The variable “date” was quantified as the
number of days from May 1% in each year. The model tested for linear and non-linear
(quadratic and cubic) effects of date and time. A stepwise approach was used,

sequentially removing the least significant variables one at a time to reach the
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minimum adequate model containing only significant parameters (Appendix 4.III).
From this “baseline model”, parameter values for each year were used to calculate
the relative body mass for each year (i.e. body mass corrected statistically for wing
length, date and time of night). These annual mean relative body mass values were
used to analyse the direct relationships with the environmental variables using
Pearson correlations (n < 21 years).

Further analysis involved using GLMs to test for the effect of different
environmental variables that could account for the variation in body mass between
years. Parameters from the baseline model described above (i.e. wing length, date
(linear term), date? (quadratic term), and time of night) were all retained in all of the
models testing for associations between body mass and the following environmental
variables: NAO, SST, NPP and the abundance or biomass of Sardines. These
environmental variables were included in models to test whether they could account
for the observed variation in body mass among years and therefore year was not
included in these models. A separate set of models was run for each class of
environmental variables (i.e. SST and NPP from January to June, direct and lagged
NAO effects, numbers of juvenile and adult Sardines and total biomass of adult and
juvenile Sardines). The explanatory power and fit of each of these different models
was compared within each class of environmental variable, using a range of statistics
relating to individual variables (probability values, partial Eta’ values, parameter
estimates) and model parameters (model R? and model AIC values). The best
individual predictors within each class of environmental variable were compared
using the models’ adjusted R? values. The non-linear (quadratic) effect of each
environmental variable was also investigated and compared with the linear-only

models using the model AIC values.
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4.4 Results

A total of 5,258 individual European Storm Petrels was caught in the 21 years of
study. Mean body mass + SD for the whole study period was 26.31g + 2.28g (range
= 19.2g - 37.7g; 99% of individuals weighed 20.9g — 33.2g). Mean annual relative
body mass (i.e. controlling for variation in wing length, date and time of capture)
varied dramatically among years, over a range of 3.41g over the whole study period
(equivalent to 13% of the mean body mass across all 21 years). Rather than varying
erratically between successive years, the pattern of variation in body mass followed a
clear trend (mean relative body mass in one year was positively correlated with that
in the next year, r = +0.453, n = 20 contrasts, p = 0.045), although in the last three
years (i.e. 2008-9, 2009-10) changes between years have been more dramatic than

over the rest of the study period (Figure 4.1).
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Figure 4.1 Changes in body mass (mean annual body mass + 1SE) of European Storm
Petrels captured in SW Portugal among 1990 and 2010. Numbers of birds sampled each year

are presented in Table 4.1.
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An initial GLM testing for significant variation in body mass according to
sex, year, season and time of night, showed no significant differences in the
European Storm Petrels’ mean body mass between sexes (using the sex data for birds
caught in 2003-9 see Chapter 2), but significant effects of year, time of night
(increasing body mass over the course of the night) and date (decreasing body mass
over the course of the migration season). The date effect is, furthermore, non-linear
(the steepest decline in mass with date occurs at the start of the migration season).
Therefore, to control statistically for these effects, the variables date, date?, time of
night and wing-length (as a measure of body size) were included in all subsequent
GLMs testing for the effects of environmental conditions on changes in the birds’
body mass among years.

According to the results of the GLMs, NAO™, SST-April, NPP-May and
biomass of Sardines were the best individual predictors of Storm Petrel body mass
within each class of environmental variable (Figure 4.2, Appendix 4.II1.A). The
direction of the association between the Storm Petrels’ body mass and SST in each
month from January to June was always negative, while that between body mass and
NPP in each month changed from positive in February, to negative in May. NAO,
NAO™ and NAO™ each had a positive association with the birds’ body mass. Local
numbers of juvenile and adult Sardines and total Sardine biomass were each
negatively associated with the birds’ body mass, though the partial Eta’ values

indicated that total Sardine biomass had the strongest relationship with the birds’

body mass.
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Figure 4.2 Parameter estimates (+SE) obtained from GLM analyses, for the association
between European Storm Petrel body mass (dependent variable), and sea surface temperature
(SST), net primary productivity (NPP), the North Atlantic Oscillation (NAO) or the
abundance and biomass of Sardines (independent variables). The symbols indicate the

significance of the association in the GLM; * indicates p < 0.01, ** indicates p < 0.001.

Table 4.1 shows the annual mean values for the body mass of Storm Petrels over the
study period, together with the most relevant environmental variables identified by
the comparisons of GLM models shown in Appendix 4.III. According to the
individual GLMs, SST-April is the variable that alone explains the highest
proportion of variation in the birds’ body mass (summarised in Table 4.1II, full details
in Appendix 4.III). Whilst quadratic relationships did result in a very minor
improvement in adjusted R? values (Appendix 4.II1), the relationships were broadly
linear. In particular, there was no evidence to suggest that body mass peaked at
intermediate values of any of the environmental variables, within the range of

environmental variation observed in the present study (Figure 4.3). Since the
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deviation from a linear relationship was extremely small, the linear relationships are

reported below.

Table 4.1 Inter-annual variation in the body mass of European Storm Petrels, together with

equivalent data for environmental variables which GLM model comparisons identified as

being most strongly associated with Storm Petrel body mass. Tests for temporal trends are

also presented (Pearson correlations of each variable with year, n = no. of years). Mean

relative body mass is the annual mean body mass corrected for individual variation in wing-

length, date and time of night.

Year NAO' SST NPP Sardine Mean Mean No. of
Index April May  biomass Storm relative Storm
(1-year (°C) (mgC/ (kt) Petrel body Petrels
lag) m?/ day) body mass (g) caught
mass (g)
1990 5.08 17.7 - - 26.9 26.6 7
1991 3.96 17.2 - - 284 28.2 31
1992 1.03 17.2 - - 28.5 28.2 52
1993 3.28 17.6 - - 27.4 273 340
1994 2.67 17.3 - - 274 27.1 483
1995 3.03 18.0 - 133 26.0 25.8 396
1996 3.96 18.3 - 106 254 25.1 19
1997 -3.78 18.9 - 96 25.6 253 180
1998 -0.17 18.3 714.12 65 26.2 26.0 786
1999 0.72 17.8 774.55 39 26.9 26.7 241
2000 1.7 17.8 618.21 59 27.4 272 28
2001 2.8 18.1 827.75 24 26.5 26.6 88
2002 -1.9 17.9 893.27 105 25.2 25.2 225
2003 0.76 18.1 888.04 60 25.7 25.6 112
2004 0.2 18.1 702.69 39 26.0 26.0 116
2005 -0.07 18.1 957.14 62 25.5 25.5 435
2006 0.13 18.4 784.88 - 26.0 25.9 136
2007 -1.09 18.2 806.45 - 26.3 26.2 519
2008 2.79 18.3 - - 25.7 25.6 637
2009 2.1 17.5 - - 27.5 27.5 367
2010 -0.41 18.7 - - 25.1 25.1 60
Tests for directional change over the sampling period
r= -2.85 0.514 0.401 -0.593 -0.536 -0.464 n.a.
n= 21 21 10 11 21 21 (effort-
p= 0.211 0.017 0.251 0.055 0.012 0.034 dependent)
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Table 4.I1 Summary of four different general linear models (GLMs) explaining variation in
body mass (dependent variable) of European Storm Petrels captured in SW Portugal in May
- June. In addition to one of the environmental variables shown in the table, all four models
also contained: wing, date, date’ and time of night. Full details of these and related models

are given in Appendix 4.111.

Environmental Model R’ Partial Parameter F (d.f.) P

variable in the (adjusted) Eta® values

GLM

NAO lag-lyr 0.060 0.019 +0.168 96.973 <0.001
(1, 5045)

SST-April 0.111 0.072 - 1.561 390.547 <0.001
(1, 5045)

NPP-May 0.065 0.017 - 0.003 45.001 <0.001
(1, 2678)

Total Sardine 0.060 0.015 -0.009 40.689 <0.001

biomass (1,2622)

Figure 4.3 summarizes the direct correlations amongst the four classes of
environmental variables (i.e. NAO, SST, NPP and Sardines), and between each of
these and the European Storm Petrels’ body mass. The direct relationships between
mean annual relative body mass of the Storm Petrels and each of these parameters

are shown in Figure 4.4.

Figure 4.3 Direct correlations amongst environmental variables, prey abundance,
and the mean annual relative body mass of European Storm Petrels. Sample size
(n) is the number of years for which data was available for each correlation.
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Figure 4.4 Relative body mass (corrected for wing size) of European Storm Petrels captured in SW Portugal
in May/June, plotted against a) 1-year lagged NAO index (NAO™); b) mean Sea Surface Temperatures
(SST) in April; ¢) mean Net Primary Productivity (NPP) in May; and d) Sardine biomass in Spring. Graphs
a) and b) include data from 1990-2010; graph c) includes data from 1998-2007. The open circles in Figure
4.4b) represent those years (1998-2005) when data are also available for NPP and Sardine biomass.

Each of these parameters allone explained respectively 19.6% (NAO™), 73.6% (SST-
April), 52% (NPP-May) and 39.4% (Sardine biomass) of the among-year variations
in the birds’ relative body nnass (Figure 4.4). However, note that the years for which
data are available vary among the different environmental variables, so these values
are not necessarily directly comparable. Although SST-April again explains most of

the variation in the birds® body mass, Figure 4.4a suggests that the period for which
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there are NPP and Sardine data available (open dots) did not show such a large

amplitude in SST, compared with the whole sampling period of 1990-2010.

4.5 Discussion

The large inter-annual variations in the body mass of European Storm Petrels remain
apparent and highly significant when structural body size (i.e. wing length), time of
night and seasonal variations are controlled for statistically. These inter-annual
variations span more than 13% of the mean body mass across the study period, and
therefore represent large fluctuations in the size of the birds’ stored energy reserves
(likely to be primarily subcutaneous fat and /

or stomach oil).

Storm Petrels appear to respond sensitively to inter-annual changes in their
environment, namely to SST, NPP and Sardine availability. Although migrating
Storm Petrels probably sample food availability over a wide area prior to capture in
Portugal, the level of body reserves which these birds carry seems more sensitive to
variations in local climate conditions (e.g. SST) than to large-scale climate variations
(such as those captured by the NAO index). Other studies, focusing on variation in
fish abundance and recruitment in Atlantic waters off the western Iberian coast have
found a similar enhanced level of responsiveness to local conditions compared to the
NAO (Ottersen et al. 2001, Guisande et al. 2004).

The time-lag in the strong association between SST in April and the birds’
body reserves in the subsequent migration season (late May - late June) suggests that
this relationship between sea temperatures and migration fuelling decisions is not a
direct thermal effect (e.g. if birds were increasing subcutaneous fat for thermal

insulation when the sea was colder), but may instead be mediated via an effect of sea
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temperatures on the birds’ food abundance. The direction of these relationships
indicates that Storm Petrels carry lower body reserves in years when the sea is
warmer and food is abundant overall, as suggested by the higher levels of primary
productivity and of Sardine biomass in years when the birds have relatively low body
mass. In other words, the body mass of Storm Petrels does not appear to be directly
limited by food availability; rather, the birds appear to be using their body reserves as
a strategic “buffer” against starvation in years when food availability is relatively
low. However, the lack of a significant direct association between SST, NPP and
Sardine biomass or abundance in the waters off SW Portugal (at least over the years
for which such data are available) suggests that strong temperature regulation is not
the main mechanism by which SST affects food abundance for migrating Storm
Petrels, and that variation in SST and NPP is not the only mechanism driving
changes in Sardine abundance. Therefore, changes in Storm Petrel body mass seem
to integrate various levels of variability in their environment. This illustrates the
challenge of predicting the impacts of climate change across trophic levels in
complex ecosystems.

Although well reported for terrestrial birds in the context of overnight survival
(Thomas & Cuthill 2002) and migration fuelling decisions (Bayly 2006), strategic
adjustment of fuel reserves for migration during years of food scarcity has not
previously been reported in pelagic seabirds. The level of body reserves carried by
birds is always the outcome of a trade-off between the costs and benefits of carrying
those reserves (Witter & Cuthill 1993) and these may depend on environmental
conditions, particularly the availability of food. The benefits of carrying body
reserves are perhaps obvious, as they act as “fuel” for long-distance migrations, such

as that being undertaken by Storm Petrels as they pass the SW coast of Portugal in
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early summer. This species forages largely by taking food from the sea surface in
flight, by dipping briefly onto the water or by using their legs to “patter” across the
sea surface, while using their bills to reach into the water to take food items (see
Chapter 1). Therefore, since Storm Petrels can potentially migrate as they feed (i.e.
by feeding in a particular direction), they may not need to migrate between discrete
stopover sites as many terrestrial migrants do (e.g. Newton 2010, Bayly 2006,
Wernham et al. 2002). However, the distribution of food across the ocean surface is
not uniform (e.g. Miller 2004, Kaiser.et al. 2005), and body reserves may be
important in avoiding starvation during migration between patches of food in years
when food availability overall is low.

Balanced against these benefits can be important costs, namely: greater body
mass, resulting in increased flight costs (higher energy expenditure), reduced flight
speed and decreased maneuverability. For a species that forages using aerobatic
flight to take food from the moving sea surface, maneuverability and agility are
likely to be particularly important for efficient foraging during migration. Increased
body mass may also cause a reduced ability to evade predators in flight (Cuthill ez al.
2000). Although mortality at sea is estimated to be low for Storm Petrels (Cramp &
Simmons 1977) and predation risk is not known as a major pressure for these birds,
near the colonies the Storm Petrel is easily predated by bigger birds such as gulls
Larus spp. and skuas Stercorarius spp. (Warham 1996). It is possible that this
phenomenon has been underestimated when the birds are at sea. The trade-off
between the benefits of storing energy reserves and the suite of mass-dependent costs
will favour a reduction in body reserves in circumstances when starvation risk is low

(Cuthill ef al. 2000).
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Despite the observed responsiveness of the body reserves of Storm Petrels to
climate-driven changes in foraging conditions, there are ultimately limits to the
extent of this response. Body reserves cannot fall below zero, or the bird will, by
definition, starve to death. The lean body mass of European Storm Petrels is likey to
be around 18-19g (though individuals blown inland by gales, which may have
metabolised additional muscle tissue, weighed only 14.5 — 17g, Cramp & Simmons
1977). At the other extreme, body reserves cannot become so large that the bird
cannot fly. Indeed, for a species relying on aerobatic flight, mass-dependent flight
costs may effectively limit body reserves well before the maximum fuel load that can
be carried in flight is reached. It is possible that some individual Storm Petrels in the
present dataset may have reached such limits; the lightest bird captured in the present
study was 19.2g and the heaviest was 37.7g, though 99% of birds captured fell within
the range 20.9 — 33.2g.

The molecular and stable isotope analyses of diet described in detail in Chapter
3, indicates that fish in general, and the European Sardine in particular, make up a
major part of the diet of European Storm Petrels during their migration past SW
Portugal. Predictions of forthcoming climate change include mean SST increases of
2-3°C off SW Iberia by 2100 (IPCC 2007). Over the study period (1990-2010),
upwelling intensity has decreased (Pérez et al. 2010) and sea surface temperatures
have increased (Table 4.I). Fish populations are affected by these physical
parameters, and studies suggest that the abundance of Sardines has been decreasing
in the south of Portugal, particularly in recent years (Santos et al. 2001, Marques et
al. 2005). Although varying according to the geographical location (Planque et al.
2007), Sardine spawning activity is temperature dependent, with preferences for

spawning in the study area at 14-15°C and avoidance for temperatures below 12°C
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and above 16°C (Stratoudakis ef al. 2007). SST values in the present dataset vary
between years as well as seasonally, but late-winter/spring SST values are generally
above this range. In fact, the minimum temperature recorded across all months and
years was 16.78°C (though these were monthly means and not instantaneous
temperature values). Thus, an increase in SST within or above the current range will
take conditions further from the optimal temperature range for Sardine spawning,
accounting for the observed negative association between SST and spawning
(Coombs et al. 2010). In contrast, higher temperatures are usually associated with
increased growth rates in many marine organisms (e.g. Wiedenmann et al. 2008),
including small pelagic fish such as the Sardine (Montevecchi & Myers 1997).
However, this might also reduce the food availability of Storm Petrels at higher
temperatures, since it reduces the period of time in which the young fish are more
vulnerable to predation (larvae and young juveniles). Despite these relatively direct
and simple temperature dependent effects, it is important to acknowledge that the
impact of climate on fish stocks is highly variable, often indirect and complex
(Stenseth et al. 2004). For example, there may be differing effects of SST variations
on different life-history stages of different species of fish, and these may vary
geographically as well as being modulated by a range of other environmental
variables (e.g. upwelling intensity, wind conditions and offshore transport; Santos et
al. 2001, Planque et al. 2007, Takasuka et al. 2008).

Thus, future increases in sea surface temperatures may have varied effects,
depending on a species’ feeding biology (e.g. planktivorous or piscivorous, Kitaysky
& Golubova 2000). In addition to using their body reserves as an energetic buffer
against starvation, birds may respond to climate change by strategically adapting

their diet to the changed foraging conditions. The analysis of Storm Petrel diet
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presented in Chapter 3 suggests that this might indeed be how Storm Petrels behave,
by eating more fish and possibly, squid in years when overall productivity (in terms
of NPP and hence zooplankton abundance) is low. Specifically, in 2009 when body
mass was relatively high, unlike in the three previous years (2006-2008) when body
mass was relatively low, there was a higher number of birds presenting fish in their
diet (Chapter 3). This makes ecological sense, since in years of lower food
availability the birds must increase their foraging effort in order to build up their
body reserves. Focusing on more energetically efficient prey such as fish and squid
(Adams et al. 1984, Beukema 1997, Pérez 1994, Paiva et al. 2006b) is presumably a
more efficient way to do so. However, the ability to store reserves is in itself
dependent on the availability of prey. If future changes in climate further reduce the
abundance of such prey, the ability to build up a strategic buffer of body reserves in
years of low food availability might ultimately be reduced, resulting in a shift in the
nature of the relationships between environmental variables and the birds’ body
mass, from the strategic buffering described in this Chapter, to direct limitation of
energy reserves.

Although the Sardine appears to be a key prey species for European Storm
Petrels during migration (Chapter 4), changes in the availability of other prey types
(e.g. other fish taxa, cephalopods, isopods, amphipods, decapods — see Chapter 4) are
potentially more directly mediated by SST or NPP, and are therefore also important
to consider. These are more difficult to investigate since long-term studies of such
taxa in Iberian waters are scarce, incomplete or entirely lacking.

In the present study there is an apparent oscillation in the body reserves of
Storm Petrels for the first 15 years (1990-2004) but this seems more erratic in more

recent years (2005-2010). So far, the long-term trends in SST and NPP may be
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favouring the birds, since their body mass has shown an overall decrease over the
study period (though total Sardine biomass has shown a significant decrease over an
even shorter period, Table 4.I), Regardless of the observed changes over the last 2
decades, the scale of the predicted increases in SST over the next 50-100 years may
lead to severe disruption of ecosystem processes and functions, ultimately leading to
decreases in food availability and direct food limitation among migrating Storm
Petrels.

Changes across trophic levels in marine ecosystem dynamics are difficult to
monitor directly, but understanding the mechanisms underlying such changes is vital
if higher trophic level foragers such as Storm Petrels are to be used as monitors of
the marine environment and bio-indicator of climate change, as has been advocated
(Furness and Camphuysen 1997, Gremillet and Charmantier 2010, Kazama et al.
2010). Previous uses of birds as bio-indicators of climate change have focussed on
breeding productivity, population dynamics, or phenology (Aebischer et al. 1992,
Furness & Greenwood 1993, Crick et al. 1997, Dunn & Winkler 1999). The present
study highlights the potential value of the body mass regulation behaviour of

seabirds as a new and sensitive class of bio-indicator of climate change.
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Chapter 4

4.6 Appendices

Strategic Regulation of Body Reserves by Migrating Storm Petrels

Appendix 4.1. Example of database for SST around the Portuguese and African coast in

April 1998. Dark shading represents land and light shading represents the sea area used to

calculate the mean SST for each month.

14.47

14.87

15.39

15.86

16.25

16.63

16.97

17.30

17.60

17.84

18.02

18.23

18.44

18.58

18.72

18.79

14.42

14.84

15.38

15.84

16.21

16.59

16.96

17.30

17.58

17.80

17.95

18.14

18.38

18.48

18.48

14.38

15.32

15.75

16.10

16.52

17.00

17.39

17 64

17.84

17.98

18.16

18.40

18.47

18.43

14.41

14.83

15.29

15.69

16.06

16.50

16.98

17.38

17.64

17.98

18.12

18.46

14.48

14.92

15.31

15.68

16.11

16.56

17.26

17.56

17.77

17.94

18.07

18.12

15.16

15.16

16.79

16.88

17.44

17.54

16.79 16.62

17.06 16.94 16.62

17.33 17.10

17.44

The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment 127



Chapter 4

Strategic Regulation of Body Reserves by Migrating Storm Petrels

Appendix 4.1I. Example of database for NPP around the Portuguese and African coast in

May 1998. Dark shading represents land and light shading represents the area used to

calculate the mean NPP
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Appendix 4.II1. Summary table of general linear models explaining variation in body mass (dependent variable) of European Storm Petrels captured
in SW Portugal in May - June. In addition to the environmental variables shown in the table, all models also contained the following variables from

the haseline model: wing lenoth. date. date?. time of night.
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Models and variables F d.f. P Partial Parameter Model Model R? Years
Eta? AIC | (adjusted R?)

Baseline model (independent variables: year, wing length, date, date?, time of night) 22,470 0.043 | 1990-2010

(2) Environmental variable: North Atlantic Oscillation (NAO) + wing length, date, date?, time of night. 1990-2010

NAO current yr 19.704 1, 5045 <0.001 0.004 +0.088 22,450 0.047 (0.046)

NAO current yr 15.745 1, 5044 <0.001 0.003 +0.093 22,450 0.047 (0.046)

(NAO current yr)? 0.165 1, 5044 0.685 <0.001 -0.003

NAOIlag 1-yr 96.973 1, 5048 <0.001 0.019 +0.168 22,370 0.061 (0.060)

NAOlag 1-yr 97.561 1, 5044 <0.001 0.019 +0.190 22,370 0.062 (0.061)

(NAO lag 1-yr)y? 6.051 1, 5044 0.014 0.001 -0.020

NAO lag 2-yr 54.880 1, 5045 <0.001 0.011 +0.101 22,410 | 0.054 (0.053)

NAO lag 2-yr 55.198 1, 5044 <0.001 0.011 +0.101 22410 0.056 (0.054)

(NAO lag 2-yr)? 10.891 1, 5044 0.001 0.002 +0.019

Continued overleaf
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Appendix 4.111., continued.

Models and variables ¥ da.r. P Partial Parameter Model Model R2 Years
Eta? AIC | (adjusted R?)
(b) Environmental variable: Sea Surface Temperature (SST) + wing length, date, date?, time of night. 1990-2010
SST January 15.797 1, 5045 <0.001 0.003 -0.279 22,450 0.046 (0.045)
SST January 10.643 1, 5044 0.001 0.002 +16.593 22,440 0.048 (0.047)
(SST January)? 11.006 1, 5044 0.001 0.002 -0.469
SST February 6.664 1, 5045 0.010 0.001 -0.187 22,460 0.044 (0.044)
SST February 1.554 1, 5044 0.213 <0.001 -8.000 22,460 0.045 (0.044)
(SST February)? 1.482 1, 5044 0.224 <0.001 +0.223
SST March 14.644 1, 5045 <0.001 0.003 -0.300 22,450 0.046 (0.045)
SST March 97.993 1, 5044 <0.001 0.019 -73.051 22,360 0.064 (0.063)
(SST March)? 97.202 1, 5044 <0.001 0.019 +2.065
SST April 390.547 1, 5045 <22e-16 0.072 -1.561 22,090 0.112 (0-111)
SST April 27.395 1, 5044 <0.001 0.00s -28.788 22,070 0.116 (0.115)
(SST April)? 24.510 1, 5044 <0.001 0.00s +0.757
SST May 2.4247 1, 5045 0.119 <0.001 -0.127 22,470 0.044 (0.043)
SST May 61.151 1, 5044 <0.001 0.012 -62.466 22,410 0.055 (0.054)
(SST May)? 60.909 1, 5044 <0.001 0.012 +1.635
SST June 53.231 1, 5045 <0.001 0.010 -0.563 22,420 0.053 (0.052)
SST June 31.025 1, 5044 <0.001 0.006 -47.310 22,390 0.059 (0.058)
(SST June)? 30.294 1, 5044 <0.001 0.006 +1.129
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Appendix 4.111., continued.

Models and variables F d.f. P Partial Parameter Model Model R2 Years
Eta? AIC | (adjusted R Q
]
=2
S
(c) Environmental variable: Net Primary Productivity (NPP) + wing length, date, date2, time of night. 1998-2007 a
NPP January 1.0302 1, 2678 0.310 <0.001 +0.001 11,610 0.051 (0.049)
NPP January 18.179 1, 2677 <0.001 0.007 -0.286 11,590 0.058 (0.056)
(NPP January)? 18.357 1, 2677 <0.001 0.007 <+0.001
4
NPP February 10.965 1, 2678 <0.001 0.004 +0.003 11,600 0.055 (0.053) §
(¢}
®.
NPP February 12.877 1, 2677 <0.001 0.00s +0.047 11,590 0.059 (0.057) ;
(NPP February)? 11.478 1, 2677 <0.001 0.004 -3.500e-1 Cg
[=
=Y
NPP March 1.1577 1, 2678 0.282 <0.001 +0.001 11,610 0.051 (0.049) o
=
=
NPP March 28.595 1, 2677 <0.001 0.011 +0.092 11,580 0.061 (0.059) w
Q
(INPP March)? 28.257 1, 2677 <0.001 0.010 -5.819e-1 '3.
&
NPP April 0.1577 1, 2678 0.691 <0.001 +2.424e-04 11,610 0.051 (0.049) (('nb
5
NPP April 25.530 1, 2677 <0.001 0.009 +0.068 11,580 0.060 (0.058) g_
(NPP April)? 25.400 1, 2677 <0.001 0.009 -5.885e-5 ‘2
(ﬁ.
NPP May 45.001 1,2678 <0.001 0.017 -0.003 11,560 0.066 (0.065) =4
-
1]
NPP May 5.554 1,2677 <0.019 0.002 +0.021 11,560 0.069 (0.067) ZJ
o
(NPP May)? 7.292 1,2677 <0.007 0.003 -1.483e-S 5
o
NPP June 0.186 1, 2678 0.666 <0.001 +1.733e-04 11,610 0.051 (0.049) S
o
7
NPP June 21.633 1, 2677 <0.001 0.008 -0.048 11,590 0.059 (0.056)
(NPP June)? 21.821 1, 2677 <0.001 0.008 +3.117e-5
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Appendix 4.111., continued.

Models and variables F d.f1. P Partial | Parameter | Model Model R? Years
Eta? AIC | (adjusted R?)

(d) Environmental variable: Sardine abundance or biomass + wing length, date, date?, time of night.

Juvenile Sardine abundance 6.868 1, 1958 0.009 0.003 -4.03e-07 8,597 0.040 (0.038) | 1995-2002

Juvenile Sardine abundance 12.376 1, 1957 <0.001 0.006 +2.078e-6 8,580 | 0.049(0.046)

(Juvenile Sardine abundance ) 18.920 1, 1957 <0.001 0.010 -2.660e-12

Adult Sardine abundance 51.816 1, 1958 <0.001 0.026 -5.10e-07 8,553 0.061 (0.059) | 1995-2002

Adult Sardine abundance 40.393 1, 1957 <0.001 0.020 -1.960e-6 8,580 | 0.072(0.070)

(Adult Sardine abundance)? 23.228 1, 1957 <0.001 0.012 4.532¢-13

Juvenile + adult Sardine biomass 40.689 1,2622 <0.001 0.015 -8.854¢-03 11370 | 0.061 (0.060) | 1995-2005

Juvenile + adult Sardine biomass 44.656 1,2621 <0.001 0.017 -0.051 11,340 | 0.073 (0.070)

(Juvenile + adult Sardine bioinass)? 31.604 1,2621 <0.001 0.012 <0.001
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Chapter 5

General Discussion

5.1  Overview

The work presented in this thesis has provided novel insights into the migration
strategy, diet and foraging ecology of the European Storm Petrel Hydrobates
pelagicus, one of the world’s smallest seabird species. Despite its small size, the
European Storm Petrel (henceforth “Storm Petrel”) is remarkably long-lived
(longevity is regularly in excess of 20 years, with the oldest known individual
exceeding 38 years, M. Bolton, pers. comm.). Storm Petrels are generally thought to
spend most of their life on the open ocean, coming onshore only to breed. They breed
on mainly small, rat-free, islands in the north Atlantic with colonies located from
Norway and Iceland in the north of the breeding range, to the Canary Islands in the
south (Cramp & Simmons 1977, Brooke 2004). When the nestlings fledge, they are
assumed to undertake their first migration to the southern hemisphere and spend their
first year in the south Atlantic, off the coast of South Africa (Cramp & Simmons
1977, Wernham et al. 2002). The birds sampled in this study in SW Portugal were
pre-breeders (aged 2-5 years old; Bolton & Thomas 2001, Wernham et al. 2002)
undertaking their northwards migration to prospect colonies for future breeding
attempts. Over the course of the subsequent annual cycles, Storm Petrels complete
this long-distance migration from the breeding colonies in the NE Atlantic, to
wintering areas in the southern hemisphere (Wernham et al. 2002). The extreme
nature of the Storm Petrel’s biology makes it an excellent case-study for examining
the impacts of climate variation on migration behaviour and foraging ecology, which

is the central theme of this thesis.
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Chapter 5 General Discussion

A range of approaches was applied in this research, to describe and
understand the mechanisms underlying the impacts of climate variability on such a
diminutive and distinctive species. Evidence was found for sex-differences in
migration behaviour, opportunistic (non-specialist) feeding, including prey of inshore
and even terrestrial origin, temporal variation in diet, and the strategic regulation of
energy reserves in response to varying environmental conditions, as a buffer against
starvation during migration. This study is one of few to look in detail at the ecology
of migrating non-breeding seabirds; a class of birds that is usually not easily
accessible to researchers. This is also one of the few studies to look at the
relationship between climate change and the behaviour of individual birds. Such
behavioural responses to changing environments may be important mechanisms by
which the effects of climate variation may manifest themselves at a population level,
leading to the observed widespread changes in avian distribution, phenology,
demographics, breeding success and population size (reviewed by Stenseth e al.
2004, Crick 2004).

These analyses have linked field biology, molecular ecology and the analysis
of long-term datasets (bird-ringing, fisheries and remote-sensing datasets). Each of
these approaches can potentially be developed much further than has been possible
within the scope of a time-limited PhD project. However, this thesis illustrates the
value of an integrated approach to studying seabird behaviour and ecology, by
combining several normally distinct areas of research to obtain novel insights. This
final Chapter reviews the progress achieved in each area and highlight priorities and

opportunities for further developing this research.
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5.2  Sex-Specific Migration Behaviour of Storm Petrels

Storm Petrels are sexually monomorphic, so very little has previously been known
about sex differences in their migration behaviour. Molecular sexing methods now
allow accurate and relatively non-invasive sexing of birds from routinely collected
field samples (feathers and faeces). In Chapter 2, this method was refined and
applied to Storm Petrels, revealing an unexpectedly strong female bias in the sex
ratio of pre-breeding Storm Petrels attracted to tape-lures during their northwards
migration past SW Portugal. This sex bias was remarkably consistent across seven
years, ranging from 80.8% to 89.7% female (mean annual sex ratio £SD = 85.5%
female +4.1%).

While the initial aim in sexing the birds was primarily to study differences
between sexes in the birds' diet and body reserves (see below), the discovery of the
strong female bias in the sampled population raised new questions about sex-specific
migration behaviour. No definitive explanation for the sex bias is yet available, but
hypotheses include a different distribution of the two sexes at sea during migration,
sex-differences in the seasonal timing of migration, or differences in the willingness
to explore potential colonies as far south as Southern Iberia. Testing these hypotheses
could involve catching Storm Petrels at other times of year (e.g. in April and July, to
test whether males are migrating much earlier or later than females) or in other
locations (e.g. at sea off the Portuguese coast, to test whether males are migrating
further off shore than females). Ultimately, remote-tracking devices may become
small enough to be fitted to Storm Petrels of each sex, revealing much more detail
about sex-differences in migration and behaviour at sea.

There was a slight tendency for male and female Storm Petrels to be captured

in sex-specific aggregations, suggesting that there may be some segregation of the
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sexes at sea. Although some comparisons could be made between the sexes in terms
of diet (Chapter 3) and the regulation of body reserves (Chapter 4) between males
and females, no substantial sex-differences in foraging ecology were found.
However, the small sample size for males restricted the power of some of these
analyses, and the continued use of molecular sexing to build up the sample size of
male birds will soon allow more powerful comparisons of diet, foraging ecology and
migration fuelling strategies between male and female Storm Petrels sampled during

their migration past the Portuguese coast.

5.3 Molecular Investigations of Storm Petrel Diet and Foraging Ecology

A detailed understanding of an animal’s diet is fundamentally important for
understanding its ecological requirements (and hence its conservation needs), its
functional role in an ecosystem, and its potential as a biological indicator of
environmental change. For many organisms, such as small pelagic seabirds, there are
major practical, logistical or ethical obstacles to studying diet in the field (Barrett et
al. 2007). As a result, the diet of Storm Petrels is largely unknown, particularly
outside the breeding season, due to the lack of an appropriate method to study it in
detail. Stable isotope analysis and fatty acid analysis are increasingly widely applied
to the study of avian diet, but these approaches are limited in the degree of
taxonomic resolution that can be achieved, particularly for studying the diet of
generalist foragers whose diet may be composed of a large number of prey taxa,
originating from a wide range of different habitats and trophic levels (Bond & Jones
2009). The emerging field of molecular scatology (extraction and identification of
DNA of food taxa from a forager’s faeces) provides a potentially powerful toolkit for

the non-invasive investigation of diet in free-living animals (Symondson 2002, King
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et al. 2008, Lerner & Fleischer 2010). Chapter 3 describes the refinement and
application of methods for molecular scatology in the context of Storm Petrel diet
and foraging ecology.

Two complementary molecular approaches were used: 1) using taxon-
specific primers to screen for the presence / absence of particular prey categories in
individual faecal samples; and 2) amplifying prey DNA from a pool of samples using
general primers, then using cloning and sequencing of the amplified sequences to
identify the taxa present in the diet in each year. Each of these methods has its
advantages and limitations, but together, particularly in combination with analysis of
carbon and nitrogen stable isotope signatures from growing feathers, they can
provide a comprehensive account of diet, from identification of individual prey taxa
right down to the level of subspecies (cloning and sequencing), through semi-
quantitative assessments of the occurrence of key prey taxa in the diet at a population
level (screening with taxon-specific primers), to an overall assessment of the location
and trophic level at which the storm petrels had fed over larger spatial and temporal
scales, prior to their capture on the Portuguese coast.

This study identified European Sardine (Sardina pilchardus) as a major prey
species eaten by Storm Petrels at this stage of their migration. This information was
important in informing the parallel investigation of the strategic response of
migrating Storm Petrels to fluctuations in their foraging environment, presented in
Chapter 4. Other notable results from this part of the analysis included the regular
occurrence of prey DNA from terrestrial invertebrates (which are likely to be blown
out to sea and taken from the sea surface by the foraging petrels), as well as fish from
deep in the water column (which would normally be inaccessible to foraging Storm

Petrels, but may be brought to the sea surface by human fisheries. These results
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provide abundant detail about the foraging ecology of Storm Petrels, and suggest that
they are overall rather generalist foragers, exhibiting substantial variation in their diet
among years, perhaps in response to changes in the availability of different prey taxa.

In addition to revealing in detail aspects of diet and foraging ecology of
species that are otherwise difficult to study, molecular methods for the identification
of prey DNA in predator gut contents are of great relevance to conservation
organisations seeking to manage adequate food supplies for taxa of conservation
concern. Future developments to enhance the value of this approach for ecologists
and conservationists is the use of next-generation sequencing technologies, such as
pyrosequencing, to scale up the capacity and hence greatly increase the level of detail

and the quantitative analysis of dietary data that can be achieved.

5.4 Responses to Climate-Driven Changes in the Foraging Environment

Since the early 1990s, a vast number of studies have been published describing
associations between climate variables and ecological changes. Bird studies have
been prominent in this rapidly developing field, with many studies describing
climate-linked changes in the timing of migration, timing of breeding, changes to
breeding or wintering ranges, and population changes (reviewed in Mogller et al.
2004a). However, most studies described observed patterns on birds’ response to
climate change but fail to provide the underlying mechanisms driving those patterns
(Stenseth et al. 2004). Furthermore, most studies are restricted to the breeding period
and breeding area, but changes in climate are likely to have different impacts at
different stages of the birds’ annual cycle (Meller et al. 2004b). Studies of bird
migration in the context of climate change have typically been constrained to

describe patterns in terms of migration timing, mainly timing of arrival at the
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breeding areas (Moller et al. 2004a). In the present study, changes in the abundance
of food supply, in particular, the abundance of an identified potential key prey
species, the European Sardine, has been identified as one of the mechanisms driving
the observed pattern of changes in European Storm Petrels’ body mass during
migration. The birds were heavier in years when the sea was colder and food
abundance was lower, suggesting strategic foraging behaviour to increase the body
reserves and buffering against starvation in years when food resources were less
predictable, similar to the responses of small terrestrial birds to energetic stress over
the winter or during the night (Cuthill and Houston 1997)

The migration ecology of the Storm Petrel represents an extreme case-study
for examining the impacts of climate change on a migratory seabird. This species is
the smallest of the Atlantic seabirds with an average body mass of only 26g,
potentially making it particularly susceptible to climate-driven changes in the marine
environment. The long-distance migration undertaken by these birds, spanning a
large part of the western hemisphere, potentially makes Storm Petrels susceptible to
environmental changes across the Atlantic latitudes from the breeding colonies in
NW Europe, to the wintering grounds off southern Africa. Migratory species inhabit
widely separated locations over the course of their annual cycle, and are therefore
exposed to a range of different climatic patterns that can themselves have differential
ecological impacts. Changes in climate, manifested as variations in sea surface
temperatures, are not constant across the globe and, even the same climate patterns
might have different ecological impacts in different areas of the globe. Behrenfeld et
al. (2006) showed that between 1999 and 2004 all four combinations of changes in
SST and NPP occurred in different areas of the globe (increasing SST with

increasing NPP, increasing SST with decreasing NPP, decreasing SST with
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increasing NPP and decreasing SST with decreasing NPP). During this period, there
was an overall decrease in SST and increase in NPP for the south Atlantic and the
inverse patterns for the North Atlantic (Behrenfeld e al. 2006). There is however a
marine area off the Iberian coast where the observed changes between 1999 and 2004
were of an increase in both SST and NPP (Behrenfeld et al. 2006), which is in
accordance with the data presented in Chapter 4.

Despite the behavioural flexibility of Storm Petrels in regulating their own
body reserves according to environmental conditions during migration, during the
breeding season the birds are limited to foraging in the proximity of the colony
(particularly when feeding nestlings) which might contrain their ability to cope with
such changes (Weimerskirch 1998, Quillfeldt 2001, Pinaud and Weimerskirch 2002).
If the trend described in Behrenfeld er al. (2006) of increasing temperatures and
decreasing marine productivity in the north Atlantic (where most of the Storm Petrel
colonies are located) continues in the future, as suggested by many climatic models
(IPCC 2007), negative impacts on breeding productivity and population size might

become a serious problem for the European Storm Petrel.

5.5 Conclusions

The field of climate change biology has developed rapidly over the past 20 years, in
which the biological impacts of climate change have become one of the central issues
in the study of ecology as well as of great concern in society as a whole. Several
authors (e.g. Moller et al. 2004b, Stenseth et al. 2004, Crick 2004) identified priority
areas for research to address issues arising from the increasing volume of studies into
how birds respond to changing climate. This PhD research has focused on

investigating several of these priorities, using the European Storm Petrel as a major
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case-study. Table 5.1 summarises a number of key ways in which this thesis has
addressed these priorities.

Typically, in addressing such problems, many new questions are raised, illustrating
the complexity of the marine ecosystem, of the climate that drives ecological
changes, and of the individual behavioural decisions, such as what to eat and how
much to eat. These behavioural decisions constitute a key set of mechanisms by
which animals may respond effectively to changing environments, potentially
enabling them to track even rapid directional changes in ecosystems. Such
behavioural plasticity may itself provide some of the phenotypic variation on which
selection can act, in turn leading to micro-evolutionary change. Nevertheless, there
may be limits to the extent that behavioural plasticity may facilitate adaptation to
rapid climate change, and continued monitoring of Storm Petrel food resources, diet,
foraging ecology and migration fuelling decisions will be used as an ongoing case-

study of the ecological impacts of climate change.
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Table S.1. A selection of Moller et al.’s (2004b) list of areas of research where further investigation of the effects of climate change on birds may be

particularly rewarding. together with a brief summary of how the present thesis addresses the highlighted problems.

Problem Studies required Contribution of the present thesis
Geographical distribution of Studies from other regions than northern Study area of Portugal-N Africa spans the temperate-
studies temperate zones

sub-tropical boundary

Taxonomic distribution of studies

Studies of orders other than passerines

Storm Petrels are passerine-sized Procellariifformes

Spatial scale of weather conditions

The relative role of local and global weather
systems

Direct comparison of SST and NAO effects on
Storm Petrel fuelling decisions

Scientific approach

More experiments are needed

Use of novel methodologies to understand
mechanisms underlying associations

Interspecific interactions

Changing impact of predators and parasites

Strategic responses to changes in prey availability

Effects of climate change on
phenotypic plasticity

Degree of phenotypic plasticity under different
environmental conditions

Upper and lower limits to fuel load

Trait-specific responses to climate
change

Which traits respond to climate change and
why?

Migratory fuelling and prey choice are behavioural

traits mediating responses to climate change

Complex annual cycles

Relative role of environmental conditions during
breeding, migration and wintering for adaptation

Focus on environmental conditions along the
migration route

Heterogeneity in responses to
climate change

Age and sex differences in response to climate
change

Tested for sex-differences in migration timing,
migratory fuelling and diet
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