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ABSTRACT

In recent times, several machine learning techniques have been applied successfully to
discover useful knowledge from data. Cluster analysis that aims at finding similar
subgroups from a large heterogeneous collection of records, is one of the most useful

and popular of the available techniques of data mining.

The purpose of this research is to design and analyse clustering algorithms for numerical,
categorical and mixed data sets. Most clustering algorithms are limited to either
numerical or categorical attributes. Datasets with mixed types of attributes are common
in real life and so to design and analyse clustering algorithms for mixed data sets is quite
timely. Determining the optimal solution to the clustering problem is NP-hard. Therefore,

it is necessary to find solutions that are regarded as “good enough” quickly.

Similarity is a fundamental c‘oncept for the definition of a cluster. It is very common to
calculate the similarity or dissimilarity between two features using a distance measure.
Attributes with large ranges will implicitly assign larger contributions to the metrics than
the application to attributes with small ranges. There are only a few papers especially
devoted to normalisation methods. Usually data is scaled to unit range. This does not
secure equal average contributions of all features to the similarity measure. For that

reason, a main part of this thesis is devoted to normalisation.
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The first part of the thesis concentrates on the development of a mathematically rigorous
approach to normalisation of the feature vectors for mixed data sets based on a unified
statistical approach. The most common cases of metrics, namely the Euclidean metrics
are used as a measure for continuous numerical features, while the matching
dissimilarity measure is used to deal with categorical attributes. The introduced
normalised metrics secure that the average contributions of all attributes to the measures

are equal to each other from statistical point of view.

The second part of the thesis concentrates on the application of the unified statistical
approach to the general case of the Minkowski metrics and the development of a novel
algorithm for hard clustering using the Minkowski distances with an appropriate
objective function. The algorithm may be used in these cases, while the k -prototypes is

not applicable.

The third part of the thesis introduces the RANKPRO (the Random Search with k-
prototypes algorithm). It combines the advantages of the Bees and k-prototypes
algorithms and outperforms the latter algorithm. The RANKPRO balances two
objectives: first it explores the search space effectively due to random selection of new
solutions, and on the other hand it improves promising solutions fast due to employment

of several steps of the k-prototypes algorithm.
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Chapter 1

Introduction

This chapter introduces the motivation and objectives of the research, and a general
description of adopted methods and approaches. The chapter also outlines the general

structure of the thesis.

1.1 Motivation

There is an increasing amount of data being collected everyday but only the part that can
be used for extracting knowledge becomes valuable. Data Mining (DM) may be defined
as a process of extracting useful knowledge in the form of relations and structure from
large amount of data. The derived knowledge can then be applied to achieve economic,

operational or other benefits.

In this thesis DM is considered as a synonym to the knowledge discovery process or
knowledge discovery in databases. This process consists of a set of processing steps that
should be followed to discover relations and structure in data. DM needs to develop

appropriate tools to efficiently and effectively extract previously unknown information



from raw collections of data. In this thesis we deal with objective function-based

clustering that is also called partition based clustering.

Partitioning is a natural way of studying complex problems in a number of areas like
pattern recégnition, classification and clustering. In a number of fields of machine
intelligence, an object is represented by a vector variable (the feature vector). In
application to data sets organised as flat files, the rows represent records, the columns
represent features that are called attributes, and hence the feature vector can be defined
as a set of attributes. Each attribute can take on a finite or infinite (continuous) number
of possible values. In many traditional applications, it is assumed usually that all the
features are the same type. Clustering of numerical data sets are the most studied
problem. However, real-life data sets are often mixed, i.e. they consist of both numerical
and categorical types. Currently methods for analysis of data in mixed feature space are
still an issue. Hence, design and analysis of clustering algorithms for numerical,

categorical and mixed data sets are very timely.

In this thesis we will deal with normalisation. Strictly speaking normalisation has to be
applied to all records of data sets before clustering. Indeed, if the data is not normalised
then the average contribution of each feature to the similarity measure depends on the
units of measurements of the feature and, therefore, the contribution of the features are
scale dependent. If the units of a measurement are changed then the contribution of a
feature to the similarity measure can change dramatically. This is why normalisation of

data sets is widely used in a number of fields of machine intelligence.



In the overwhelming majority of published normalisation procedures, data have been
scaled to unit range. However, after this kind of data set normalisation, the average
contributions of all features to the similarity measure may be not equal to each other.

It has been often suggested also to truncate the out-of-range components assuming that it
is just eliminating the outliers. However, truncating the out-of-range components could

lead to loss of information from the data set.

In spite of the importance of data normalisation, there have been only few papers
specifically devoted to normalisation methods for data sets. It has been correctly realised
that a normalisation procedure for numerical data sets, has to be a transformation of the
attribute to a random variable with zero mean and unit variance. Indeed, this scaling
provides equal contributions of variables to the Euclidean similarity measure. However,
one needs to apply normalisation not only to numerical attributes but also to categorical

attributes.

A natural way for normalisation of all numerical, categorical and mixed data sets is to
employ a statistical approach. However, early papers on statistical approaches were not
targeted to clustering of mixed data sets and normalisation of metrics. It was stated that
methods for analysis of data in mixed feature space are still an issue. For example, one
can expect that the mean of the distance between two categorical attributes that may
have only two states (e.g. male - female or white - black) is not the same as the mean of
the distance between two categorical attributes that may have twenty different states.

Some authors have used the averages of distance measures for normalisation. However,



nothing was known about statistical consistency of the proposed estimators. In addition,
the estimators were biased and these approaches were not applicable to some metrics.
Hence, mathematically rigorous treatment of the normalisation procedure is needed and

explicit presentation of normalised mixed metrics has to be provided.

After normalisation of data, appropriate algorithms for efficient and effective clustering
of data sets with mixed numerical and categorical values have to be developed. Currently
the most popular is the k-prototypes algorithm for clustering of mixed data sets. This
algorithm is a generalisation of the k-means algorithm. The latter is applicable only to
numerical data sets. These algorithms have the same common drawback, namely the
search process of new solutions converges often not to a global minimum but to a local
minimum. Hence, new algorithms have to balance two objectives: to explore the search
space effectively and to utilise the most promising solutions during the work of the

algorithm.

1.2 Research Objectives

The aim of this research is to design and analyse new clustering algorithms for numerical,
categorical and mixed data sets. Most clustering algorithms are limited to either
numerical or categorical attributes. Datasets with mixed types of attributes are common
in real life and so to design and analyse clustering algorithms for mixed data sets is quite

timely.



The specific objectives are:

1.

To develop a mathematically rigorous approach to normalisation of feature
vectors for mixed data sets based on a unified statistical approach.

To analyse the clustering algorithms with proposed new normalised metrics in
the case of the matching dissimilarity measure being used to deal with categorical
attributes, and the general Minkowski metrics being used as a measure for

continuous numerical features, including the particular cases p,, =2 (the

Euclidean metric).

. To develop a new algorithm to be used in the cases where p,, # 2, since the & -

prototypes cannot be used in those cases. This clustering algorithm was earlier
suggested only for fuzzy clustering. It will be developed and applied for hard
clustering using Minkowski norm distances.

To develop a new unsupervised clustering algorithm for numerical, categorical
and mixed data sets that will have less probability for premature convergence
than the k-prototypes algorithm. The algorithm has to balance two objectives: to
explore the whole search space effectively, and to improve promising solutions
fast. The new algorithm has to combine the advantages of both the Bees and the

k-prototypes algorithms and to outperform the algorithms.



1.3 Methods and approaches

For the four objectives targeted in this thesis, several methods and approaches will be

employed. They are summarised as follows:

1.

A unified statistical approach to both numerical and categorical attributes is
applied for normalisation of the feature vectors for mixed data sets in both
cases; the Euclidean and the general Minkowski metrics. Normalised
Minkowski and Euclidean metrics and metrics for mixed data sets are
introduced in an explicit way. The introduced generalised statistical
procedure assures that the means of the different normalised attributes are
equal to each other and therefore, these variables give equal contributions to
the similarity measures.

In the case where p,, =2, the k-prototypes clustering algorithm will be

implemented and applied to data sets from the UCI repository with and
without normalisation of attributes and the accuracy of clustering results will
be compared by both a new approach for calculating the accuracy and the

traditional Rand index.

. A unified statistical approach to general cases of the Minkowski distances

and the development of a novel algorithm for hard clustering using the

Minkowski distances with an appropriate objective function. Implemented



codes are applied to two data sets from the UCI repository with and without

normalisation of attributes for various values of the Minkowski power p,, .

4. A new clustering algorithm called RANKPRO: the Random Search with k-
prototypes algorithm will be presented. The algorithm combines the
advantages of the Bees and k-prototypes algorithms. The algorithm balances
two objectives: it explores the search space effectively due to random
selection of new solutions, and improves promising solutions fast due to
employment of the k-prototypes algorithm. The RANKPRO algorithm will be
applied to various data sets, including data sets with mixed numerical and
categorical values and its performance will be compared with the

performance of the k-prototypes algorithm.

1.4 Outline of the thesis

The thesis is organised in six chapters. The topics addressed in each chapter are as

follows:

Chapter 2: In this Chapter notations and definitions of some concepts related to
clustering, similarity measures for numerical, categorical and mixed data sets, objective
functions, and statistical estimators, are recalled. The chapter ends with a literature
review of the most recent applications of object-function based clustering for mixed data

sets.



Chapter 3: In this Chapter a unified statistical approach to both numerical and
categorical attributes is applied in order to normalise the feature vectors for mixed data
sets. The most common cases of metrics, namely the Euclidean metrics are used as a
measure for continuous numerical features, while the matching dissimilarity measure is
used to deal with categorical attributes. New normalised metrics are introduced such that
the average contributions of all attributes to the measures are equal to each other from
statistical point of view. Advantages of the introduced normalised metrics are

demonstrated on examples of their applications to various data sets.

Chapter 4: In this chapter, a new statistical approach introduced in Chapter 3 is
developed further and applied in the case of the Minkowski metrics being used as a
measure for continuous numerical features, while to deal with categorical attributes
again the matching dissimilarity measure is used. Various mathematical problems related
to the normalisation of mixed metrics are resolved. The introduced metrics are applied to
some data sets when it is more advantageous to apply the general Minkowski metrics

(including the Tchebysheff and city-block metrics) instead of a particular case p,, =2

(the Euclidean metrics). Since the k& -prototypes cannot be used in the cases

where p,, #2, a new algorithm to be used in those cases will be developed. This

clustering algorithm was earlier suggested only for fuzzy clustering. It will be developed

and applied for hard clustering using Minkowski norm distances.

Chapter 5: In this Chapter a new clustering algorithm called RANKPRO: the Random

Search with k-Prototypes Algorithm is presented. The algorithm combines the



advantages of a recently introduced by Pham et al. (2006b) population-based search
algorithm called the Bees Algorithm (BA), and A-prototypes algorithm proposed by
Huang (1997b) as an extension of the k-means algorithms to cluster large data sets with
mixed numerical and categorical values. The RANKPRO algorithm balances two
objectives: it explores the search space effectively due to random selection of new
solutions, and improves promising solutions fast due to employment of the k-prototypes
algorithm. The efficiency of the new algorithm is demonstrated by clustering several

numerical, categorical and mixed data sets.

Chapter 6: In this Chapter conclusions and the main contributions of this thesis are

presented. Finally, suggestions for future research in this field are provided.



Chapter 2

Preliminaries and Literature Review

In this Chapter notations and definitions of some concepts related to data models,
clustering, similarity measures for numerical, categorical and mixed data sets, and
objective functions, are recalled. Some mathematical and statistical notions used in
clustering analysis are also reminded. The chapter ends with a literature review of the

most recent applications of objective - function based clustering for mixed data sets.

2.1 Data and data types

It is well known (see e.g. Jain and Dubes, 1988, Cios et al., 2007) that data can have
diverse formats and can be stored trough a variety of different storage models. In a
number of fields of data mining an object is represented by a vector variable, namely the

feature vector A (Jain et al. 1999). In application to databases, the features are called

attributes, and hence A can be defined as a set of attributes A =(A1,A2,...,A ) The

p+l
collection of objects described by the same features is called a data set. Data sets may be
stored as flat files and in other formats using databases and data warehouses. Flat
(rectangular) files are the most common way to store the data sets and further we will
deal only with flat files. The rows represent objects (also known as records, individuals,

patterns, data points) and the columns represent features.

10



Each attribute can take on a finite or infinite (continuous) number of possible values. In
many traditional applications, it is assumed usually that all the features are the same type.
However, real-life data sets are often mixed, i.e. they consist of both numerical and
categorical types. It is known that the measurement scale of a categorical variable
consists of a set of categories. Only two data types of attributes are considered here,

namely numerical and categorical because other types of attributes can be transformed to

these two types. For mixed data, the vector of features A can be split into A = (A", A° ) ,
namely the vector of numerical features A" = (A{',...,A;) and the vector of categorical

features A° = (Af sees AL ) .

2.1.1 Original Stevens’ classification of variables.

It is generally accepted that the "levels of measurement”, or scales of measure are
expressions that typically refer to the classification of scale types developed by the
psychologist S.S. Stevens. Stevens (1946) argued that measurements can be classified

into four different types of scales: nominal, ordinal, interval and ratio.
Stevens’s classification said that nominal is synonym of categorical. There has been, and

continues to be, debate about the merits of Stevens’s classification, particularly in the

cases of the nominal and ordinal classifications (Michell, 1986).
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The Table 2.1 presents a slightly modified classification of variables and appropriate

statistical notions and mathematical operations that should be used for analysis of each

scale type of variables

Scale Type

Permissible Statistics

Admissible Scale
Transformation

Mathematical
structure

nominal (also

standard set

denot?d as mode, chi square Equality (=) structure
categorical or
. (unordered)
discrete)
ordinal median, percentile Order (<) z(;ttally ordered
. mean, sFandard deV} ation, Subtraction (—) and .
interval correlation, regression, analysis of { . affine line
. weighted average
variance
All statistics permitted for interval
. scales pl}ls the followmg:. Addition (+) and
ratio geometric mean, harmonic mean, field

coefficient of variation,
logarithms

multiplication (x)

Table 2.1: A modified Stevens’ classification of variables (scale types), and appropriate

statistical notions, mathematical operations and structure.
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2.1.2 Accepted classification of variables.

In this thesis we accept the term categorical as a general term that can be split into
levels: nominal and ordinal. If categorical variables have ordered scales they are called
ordinal variables, while the variables having no ordered scales are called nominal
variables. Hence, for nominal variables, the order of listing the categories is irrelevant,
and the statistical analysis should not depend on that ordering (Agresti 1996). We

consider also binary variables as categorical.

Further, in this thesis we accept the scale types: interval and ratio are numerical variables.
For numerical or quantitative features, the feature domain Dom (A ;) can be represented
on the real line, i.e. they are continuous variables. For categorical features (sometimes
these features are also called qualitative), the domain is a finite set of different states.
Evidently, categorical features may be represented by numerical codes of possible
different states of the feature. A data set can be represented as a matrix of size
Nx(p+Il) where N is the number of records, and (p+1) is the total number of
attributes, i.e. the i -th row of the matrix represents the 7 -th record of the data

set(1<i< N). This row is a vector (x,,...,X,,Yy,---» ;) » Whose values x,,...,x,, are

numerical, while the values y,,,...,y, are categorical.

One can see from the above Table that the central tendency of a categorical attribute can

be represented by its mode, but the mean cannot be defined. This observation was used
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by Huang (1997, 1998) in his generalisation of a very popular clustering algorithm, the
k-means algorithm. If the k -means algorithm can be applied only to numerical data sets,
the k -modes algorithm can be applied to categorical data sets. These algorithms will be

discussed later.

2.2 Constructing data models

As it has been noted in Chapter 1, the aim of Data Mining is to extract knowledge from
data. Methods of machine analysis of data can be roughly divided into two fundamental

groups: supervised and unsupervised learning.

In supervised learning, characteristics to records of data sets are given. The
characteristics can be expressed either in the form of some discrete labels or as some
values of auxiliary continuous variables. In the former case, we deal with a classification
problem; while in the later case we deal with a regression, or an approximation, or
continuous prediction problem (see e.g. Cios et al., 2007). Supervised learning includes
various approaches such as statistical methods, including Bayesian methods (Pham and
Ruz, 2009); neural networks; decision trees, rule algorithms, and their hybrids. Any
supervised learning method has to be provided with a training data set that represents
information about some domain of the data set. In classification problems, the objective
of supervised learning is to construct a function (classifier) that generates for each record

(individual) a class label as its output. Using a training data set rules are produced; these
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rules are used to predict the labels of new unseen examples (i.e., examples not in the

training set).

Unsupervised learning assumes that the data knowledge process does not involve any
supervision and it discovers a structure in data automatically. Unsupervised learning
includes various approaches such as association rules and clustering. Clustering aims at
finding smaller, more homogeneous groups from a large heterogeneous collection of
items (Anderberg, 1973, Berry and Linoff, 1997). Computer-assisted analysis must
partition objects into groups, and must provide an interpretation of this partition (Berry

and Linoff, 1997).

As it is well known, clustering is an inductive process (Bezdek and Pal, 1992, Estivill-
Castro, 2002). This means that using particular observations of data, isolated facts are
explained first by some empirical generalisations (working hypotheses) and then by a
general theory. In application to clustering of data sets, this means that any partition
produced by an algorithm or a human is a hypothesis to suggest (or explain) groupings in
the data. The mathematical formulation of the inductive principle is called clustering
criterion (see e.g. Kim et al., 1988; Doherty et al., 1988, Estivill-Castro and Murray,
1998, Halkidi et al., 2000; 2001). It discriminates one grouping hypothesis over another
one for the same data set. The models are the structures used to represent clusters, while
the induction principle selects a “best fit” model for a given data set. Several induction

principles corresponding to specific clustering algorithms will be discussed later.
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By breaking the object into smaller homogeneous parts that can be each analysed and
explained separately, one can understand very sophisticated phenomena. The selected
hypothesis becomes a model for the data, and can potentially constitute a mechanism to
classify unseen instances of the data. This is the reason why clustering algorithms have
been studied so extensively. In particular, efficient clustering is a fundamental task in

data science, where the goal is to discover similarities within a large data set.

2.3 Some mathematical notions used in clustering

analysis

The cluster analysis in general and the objective function-based cluster analysis in
particuiar are mathematically based disciplines where one needs to work with various
mathematical notions like norm, metric, distance, and others. Hence the definitions of
these mathematical concepts and the proper use of the concepts are crucial for cluster
analysis. Indeed, the aim of clustering is to group the closest data points together. Hence,
clustering relays on calculating distances between records. Thus, to measure
quantitatively the distinction between elements of the data sets, i.e. to formulate
similarity or dissimilarity criteria, one needs to use the concept of the distance and other

above mentioned concepts.
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2.3.1 Concepts of metric and distance.

Let us consider a set M . A metric on a set M is a function which defines a positive real

number (distance) between any two elements x and y of the set. Forallx, y, zin M ,a

metric should satisfy the following conditions:

Identity of indiscernibles: p(x,y) =0 ifand only if x = y.

Non-negativity: p(x,y) 2 0.

Symmetry: p(x,y) = p(y,x).

The triangle inequality: p(x,z) < p(x,y) + p(y,2) .

An example of a trivial metric is the discrete metric, i.e. if x =y then p(x,y)=0.
Otherwise, p(x,y) =1. However, the most popular example is the Euclidean distance;
the distance between distinct points is positive and the distance from x to yis the same

as the distance from y to x. The latter metric is translation and rotation invariant.

Other examples of metrics will be given later. We will consider mainly Minkowski

metrics of degree p,, that include the Euclidean metric as a particular case ( p,, =2).
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2.3.2 Concept of norm.

Let us consider a real vector space R”, i.e. its elements x € R" are vectors with real-

valued entries. A norm of a vector x is denoted by|x|. This is a function that assigns a

strictly positive real number to all vectors in the vector space, other than the zero vector.

A norm should satisfy the following conditions:

1. |x|> 0 if x = 0,and || =0 ifand only if x=0.

2. A norm is a linear function, i.e. multiplying a vector by a real number « changes its

norm linearly

oo =a] | -

3. A norm satisfies the triangle inequality for any two elements x and y .

b+ A <A+ A
In the case of norm beign a distance, this inequality means that the distance from point A

through B to C is never shorter than going directly from A to C.

The above mentioned definitions allow the researcher to dismiss some models suggested
for clustering. For example, Wu and Yang (2002) introduced an alternative to c-means

clustering algorithm and they employed the following function:

d(x,y) = 1-exp(-Blx - ).

18



They called this function “distance” and claimed that it is a metric. However, one can
see that d does not satisfy the triangle inequality and therefore this function is not a

metric.

There is the following relation between norms and metrics:
Every norm determines a metric and some metrics determine a norm.

Norms are used in Chapters 3 and 4.

2.3.3 Concepts of random variables, mathematical expectation, mean,

mode and median.

Throughout this thesis we will employ statistical treatment of data sets. In the framework
of our approach each record (the row) of a data set will be regarded as a random sample
of a population under consideration, i.e. a data set is treated as a set of N observations
(samples), while each sample (record) is considered as a realisation of possible values of
the feature vector A. Of course, the basic concepts can be found elsewhere (see, e.g.
Spiegel, 1975). Hence, only some concepts of probability theory and statistics that will
be actively used in the thesis will be recalled. As usual, capital letters X and ¥ will be

used to denote random variables and lower-case letters, x and y to denote the specific

values that those variables may take.
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For a continuous random variable X that has a density function f(x), the mathematical

expectation of E(X) is defined as

E(X)= {xf(x)dx.

—00

Another term for the mathematical expectation is the mean that is denoted by x, or by

4 . It represents the average of the values of the random variable.

The median of the random variable X corresponds to an ordinate which separates the
area under the density function graph into two parts having equal areas, i.e. the median is
that value x for which

1

P(XSx)=P(X2x)=2

The mode is that value x which occurs most often or, in other words, has the greatest

probability of occurring. At this value f(x) has its maximum.

2.3.4 Concepts of statistic and estimators.

For statistical treatment of feature vectors, one needs to know the probability
distributions of their attributes. Probability distributions are normally unknown because
one has only a random sample. It is known that estimation is a way of extracting

valuable information about the distribution of probability that generated it from a sample.
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An observable function of the random data variable is called a statistic. If there is an
unknown real parameter @ taking values in a real parameter space then a real-valued
statistic that is used to estimate the parameter is called an estimator of this parameter. An

estimator can be treated as a guess of the true value 6, of the parameter 8. It is expected
that estimates are close to the true value 8, . However, since an estimator is a random

variable and it is characterised itself by its probability distribution, one cannot say with
certainty that an estimate is close to the true value of a parameter of the distribution. It is
only possible to hope that the central region of the distribution of the estimator is close to
the true value of the parameter. To express this hope in a mathematical way, the concept
of unbiased estimators is introduced. The properties of estimators will be considered

below.

2.3.5 Desirable properties of estimators.

For any given parameter, different estimators are possible. Hence, it is generally
accepted that estimators have to satisfy the following main desirable properties: an

estimator has to be unbiased, consistent and efficient.

Let us consider a statistic of size N . An estimator is said to be unbiased if

E[0]y =0, for any size N .
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Here E means the expectation of a variable. Roughly speaking, the above definition
means that the distribution mean of the estimator is equal to the true value of the
parameter for any size of the statistic. An estimator whose expectation is not equal to the

true value is said to be biased.

An estimator is a consistent estimator of the parameter, if as sample size increases, the
estimator gets closer and closer to the value of the parameter being estimated. In other
words, if one has a sequence of values of the estimator as a function of the sample size,
then as the size expands ad infinitum, this sequence converges in probability to the true

value of the parameter being estimated. Otherwise the estimator is said to be inconsistent.

The term of efficient estimator is used when there exist two or more unbiased estimators
of the parameter. For example, the sample mean and the sample median are both
unbiased estimators of the distribution mean. For a given sample size N , it is possible to
define the relative efficiency of one estimator with respect to another one as the ratio of
their variances. Only in some cases an unbiased efficient estimator exists, that has the
lowest variance among unbiased estimators. Since we will not consider more than one
unbiased estimator for a parameter, the property of efficiency of estimators will not be

discussed further.

Estimators are used in Chapters 3 and 4; see for example 3.4.1,3.4.3,3.4.4,4.2 and 4.3.
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2.3.6 Similarity measures.

It is known that clustering analysis is the organisation of a collection of records into
clusters where the elements within a cluster have a certain degree of similarity, and
hence the similarity is a fundamental concept for definition of a cluster (see, e.g. Jain et
al., 1999). Any measure of the degree of closeness (likeness) is called similarity measure
(Looney 1997). It is very common to calculate the similarity or dissimilarity between
two features using a distance measure. In clustering analysis of numerical data sets, the

similarity or dissimilarity between two feature vectors X, =(x,..,x,) and
X, =(x,;5--X,,) is often calculated using a square distance measure. Indeed, it is very

natural to use the Euclidean metric (distance) p, (or L, metric)

P (X, Xy) =X, =X, |, = (ﬁ:(xu "x21)2)

=
as a measure for continuous numerical features because this metric is in everyday use.
For example, the most popular clustering algorithm for numerical data sets is the k-

means algorithm that uses the Euclidean distance.

It is evident that the Euclidean distance is a particular case ( p,, =2) of the following

Minkowski distance p, (or L, metric)

1/ py
p )
Po, X, X)EX, -X, IIPM =( E Lxlj — X, I”“}
Jj=1

where p,, is a positive number, 1< p,, <+o.
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Another particular case of the Minkowski distance is the city block (Manhattan) distance

(or L, metric)

P
AX,X)HI X -X, (= Zl’xlj — Xy
=

The Tchebysheff (Chebyshev) or maximum norm metric. It gives the maximum of

absolute difference between the feature vectors.

P X, X)) =1l X =X e = m;‘."xlxu _x2j| .

This metric can be also obtained from the Minkowski distance if the following limit is

taken p,, » .

One can see that other distances like the Hamming, Mahalanobis, Hausdorff and so on,
are also used in clustering analysis. The Hamming distance between two strings of equal
length is the number of positions at which the corresponding symbols are different. This
distance can be treated as a particular case of the city block (Manhattan) distance when
all features are binary (Jain and Dubes, 1988). The Mahalanobis distance is based on
correlations between variables and it is used mainly for solving supervised learning
problems. A non-formal explanation of the Hausdorff distance is the following:
according to this distance two sets are close to each other if every point of either set is

close to some point of another set.

24



Each metric imposes its own geometry. The Euclidean distance leads to spherical shapes
of equidistant regions. Points with a constant Mahalanobis distance to the centre are
located on a hyperellipsoid that envelops the centre of the object points (Varmuza and
Filzmoser, 2009). The Hamming distance imposes diamond-like geometry, while the

Tchebysheff distance forms hyper squares (Cios et al., 2007).

It is claimed (Berkhin, 2002) that lower values of the power p,, of the usual Minkowski

distance correspond to more robust estimations in applications to numerical data

(therefore, less affected by outliers).

It is more difficult to introduce similarity measures for categorical data. Clustering
mixed (numeric and categorical) data is a rather difficult problem. Indeed, when all
attributes are of the same kind then the inter- and intra-cluster similarity can be defined
according to one similarity measure between records, while for mixed data usually one

needs to employ two different similarity measures.

2.3.7 Proximity and similarity indices.

Let us consider a finite set of observationsu, € U . The index of similarity S(u,,u,) is a

real valued function defined on U xU that satisfies the following conditions:

Non-negativity:
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S(u;,u;)20 forany u,,u, eU.

Normalisation (Identity of indiscernibles):

S(u;,u;)=1 forany u, €U.

Symmetry:

S(u;,u;)=S(u,,u,) forany u,u, eU.

Contrary to distances that are normally used in application to numerical data , the indices
of similarity are often applied to all kinds of variables, including categorical variables

(Duran and Odell, 1974, Giudici, 2003).

Goodall (1966) (see also Jain and Dubes, 1988) proposed an index of similarity using
probabilistic approach. It was suggested that the index has a uniform distribution when
the data are random. Gower’s similarity coefficient (Gower, 1971) is another popular

measure of proximity for mixed data types.

Using the above mentioned similarity coefficients and indices, and other dissimilarity
measures (Gowda and Diday, 1991), the standard hierarchical clustering methods can
handle data with numerical and categorical values. However, the quadratic
computational cost makes them unacceptable for clustering large data sets (Anderberg,

1973, Jain and Dubes, 1988).
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The proximity index d(u;,u,) between two observations u,,u; €U is a real valued

function defined on U xU that satisfies the following conditions:

The inequality that is used to measure similarity:

d(u;,u;) 2 maxd(u;,u;) forany u,u, eU.
J

Non-negativity:

d(u,u)20 forany u,,u, eU.

Symmetry:

d(u;,u;)=d(u;,u;) forany u,u, eU.

If identity of indiscernibles is used to measure proximity between identical observations:
d(u,u)=1 for any u, €U then 0<d(u,,u;)<1 for any observations u,,u, €U . Note

that this definition of the proximity index is slightly different from the definition given

by Jain and Dubes (1988).

The proximity index d(u,,u,) between two categorical variables u,,u, € U can be used

as indicator of mismatch or as a distance function in the categorical space. In this case

the index takes just two values

27



I, if u,=u,
0, if u,#u,

d(ui’uj) ={

for any u,u, €U . Huang (1998) used the notation &(u,,u;) as the indicator of

mismatch (simple matching measure)

0, ifu=u,
1, if u,#u,

O(u,u;)= {
However, the above notation can be confused with the common notation of the
Kronecker delta &, , while the latter delta 6, =1 if i=j and 6, =0 if i # j. Therefore,

we will use the notation @ for matching measure. Hence, the distance between two

categorical feature vectors Y, = (y,;,..., ) and Y, =(»,,...,y,,) is defined as:

Pea (Y1, Y) =03, v5) +. .+ @ (3, 1))
where

0 for y,; =y,

w(yu’y2f)={1 for y,#y,

2.4 Minkowski distance or L” space

The Minkowski distance of order p, based on the Minkowski norm ( L”) is defined as:
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1/p
n
Pp (XI,XZ) =” X, —X, ”p =(leli —xzj IP J
=

where X, =(x,,...,%,) and X, =(x,,,...,%,,) .

p does not need to be an integer, but it cannot be less than 1, because otherwise the
triangle inequality does not hold.

Further we will consider a data set represented as a matrix of size N x(p+/). Here N is

the number of records, p is the number of numerical attributes and / is the number of

categorical attributes. Because we consider p as the number of numerical attributes, we

have to change » in the above mentioned definition of the Minkowski norm for p , and

also we will use p,;, instead of p as the Minkowski power and the formula will be:

» Vpy
Pp, (x,%,) =l x; —x, “pM = (Zbﬁj — Xy, [P )
J=1

As we mentioned before, a norm satisfies the triangle inequality for any two elements x

and y.
[+ A< bl + I

The triangle inequality in L” spaces is:

If+g L <lf 1)+ lig 1,

where fand g are elements of L” (S ) .
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2.5 Typical steps in clustering activity

Cluster analysis is the organisation of a collection of records into clusters based on
similarity (Jain and Dubes, 1988). Typical clustering activity involves the following

steps (Jain and Dubes, 1988):

(a) Representation of records (optionally including feature extraction and/or
selection): record representation refers to the number of classes, the number of records,
and the number, type, and scale of the features available to the clustering algorithm.
Some of this information may not be controllable by the researcher. We should also try
to avoid correlated variables that could lower the performance of some methods. Feature
selection is the process of identifying the most effective subset of the original features to
use in clustering. Feature extraction is the use of one or more transformations of the
input features to produce new salient features. Either or both of these techniques can be

used to obtain an appropriate set of features to use in clustering.

(b) Definition of a record proximity measure appropriate to the data domain.
Record proximity is usually measured by a distance function defined on pairs of data

points.

(c) Clustering or grouping. Clustering as we will see later can be divided in three
main categories: objective function-based (partition-based), hierarchical clustering and

model-based clustering.
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(d) Data abstraction (if needed). This is the process of extracting a simple and

compact representation of a data set.

(e) Assessment of output (if needed). Cluster validity analysis is the assessment of a

clustering procedure’s output.

Feature selection is very important in a number of new applications with very large input
spaces. This is because these applications critically need space dimensionality reduction
for efficiency and efficacy of the predictors. In particular, these applications include
bioinformatics (DNA microarrays, mass-spectrometric data, etc.), combinatorial
chemistry (e.g. high throughput screening of drug candidates), text processing (e.g. spam
filtering), decision making (e.g. oil drilling), pattern recognition (e.g. handwriting

recognition), speech processing, and vision.

There are various methods for supervised feature selections (see, e.g. Cios et al. (2007)).
For example, minimum redundancy feature selection, filtering approach of feature
selection, wrapper approach of feature selection. The supervised methods assume that
class label information for each data record is given. For unsupervised feature selection

several methods have been developed.

There are many transformations for feature extraction; some of these methods do not

alter the space dimensionality (e.g. normalisation), while others enlarge it (non-linear
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expansions, feature discretisation), reduce it (space embedding methods) or can act in
either direction (extraction of local features). In this thesis we will study normalisation

methods.

2.6 Main types of clustering

Cluster analysis or clustering can be divided in three main types: objective function-
based clustering (partition-based), hierarchical clustering and model-based clustering

(Estivill-Castro, 2002, Cios et al., 2007).

2.6.1 Hierarchical clustering.

This kind of clustering is based on creating a hierarchical decomposition of the set of
data points using some criterion or models. However, it is based not on continuous
mathematical models like probability distributions, but on discrete, structural models. As
a result, hierarchical clustering produces a representation of data in a form of a graph
(dendrogram). There are two different approaches: the bottom-up, also known as
agglomerative approach, and top-down also known as divisive approach (Cios et al.,
2007). The former approach treats each record as a single-element cluster and then
successively merges the closest clusters. At each pass, the two closest clusters are
merged. The process repeats until the current number of clusters is equal tok, or a

predefined threshold value is reached. The later approach works in the opposite direction.
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The entire set is initially treated as a single cluster, and it is kept splitting into smaller
clusters. Almost all hierarchical clustering algorithms are agglomerative, as divisive
methods present a huge computational task. This kind of clustering will not be used in

the thesis.

2.6.2 Model-based clustering.

Let us describe the model-based clustering following Cios et al. (2007). In model-based
clustering methods, each observation is obtained from a mixture of ¢ sources of data

with given prior probabilities p,, p,,..., p,, component-specific conditional probability

density function and its parameters. It is assumed in this kind of clustering that there is a
certain probability model of the data, i.e. there is a set of equations which describes the
behaviour of the data under consideration in terms of random variables and the
associated probability distributions of the variables. These probability distributions
define the clusters. Each object is generated by one and only one of these distributions;

hence belongs to one and only one cluster.

The parameters of the model have to be estimated. A popular method used for fitting a
statistical model to data is the maximum likelihood estimation. This method picks the
values of the model parameters that maximize the probability (likelihood) of the sample
data, i.e. these values make the data “more likely" than any other values would make

them. The maximum likelihood approach is used under assumption that each data item
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was independently drawn form the statistically distributed data mixture. The principle is
used to find the distribution parameters and, hence, one may obtain the proportions in the
clusters, their location and scatter, and for each individual item, the probability that it

belongs to the i-th cluster.

Since it is assumed that the data are a result of a mixture of ¢ sources of data, the above
structure is called mixture density model. These sources might be considered as clusters

with given prior probabilities p,, p,,..., p, that are also called the mixing parameters.
Each component of this mixture is described by some conditional probability density

function, p(x]B,,) characterised by a vector of parameters §,. Under these assumptions,

the model is additive and comes in the form of mixture densities:

p(x|91,92,...,0c)=2p(x|0,.)p,. .
i=

To build the model, one has to estimate the parameters of the contributing probability

density functions. To do so we have to assume that p(x, 6)is identifiable which means

that if 6 # 8 then there exists a x such that p(x|6) # p(x|6'). As it has been mentioned

above, the standard approach used to discover the clusters is to carry out maximum
likelihood estimation. Most of the work in this area has assumed that the individual

components of the mixture density are Gaussian.
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The induction principle of the Maximum Likelihood approach says “choose the model
that maximizes the probability of the data being generated by such model” (Kalbfleisch,
1985). This iterative algorithm converges to local optima and is the well-known
expectation maximisation (EM) method (Dempster et al., 1977). EM algorithms do not
require the specification of distance measures and therefore, it admits both categorical

and continuous attributes.

Although the statistical approaches will be intensively used in the thesis, these
approaches will be applied to objective function-based clustering. Thus, the above

described model-based clustering will not be used in the thesis.

2.6.3 Objective function-based clustering.

A very general category of clustering is concerned with building partitions (clusters) of

data sets on the basis of some performance index known also as an objective function.

Here we need to distinguish hard and fuzzy cluster methods. It is known that a
partitioning method constructs k£ groups. If these groups together satisfy the following
requirements of a partition (Kaufman and. Rousseeuw, 1990):

1. each group must contain at least one object, and

2. each object must belong to exactly one group,
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then this is hard clustering. Thus, in hard clustering, data is divided into distinct clusters,
where each data element belongs to exactly one cluster. In fuzzy clustering, data
elements can belong to more than one cluster, and associated with each element is a set

of membership levels (Jain et al., 1999).

It is known that an objective function, known also as cost function, is a function
associated with an optimisation problem where the best element from some set of
available alternatives is chosen to minimize or maximize the function. The value of this
function determines how good the chosen solution is. There are various clustering
algorithms for objective function-based clustering because it is practically unfeasible to
find a global optimum for the objective function by considering all possible
combinations of elements (exhaustive search). Indeed, to present k clusters of the total »

elements, we need to consider all N(n,k) (Stirling’s number) possible partitions:

Lo i k) ox
N(n,k) =;cl—!§(—1) (i)i

where the notation

)

denotes the binomimal coefficient

K k!
i) iWk-i)
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N(n,k) is one of Stirling’s numbers (see, e.g. Jensen, 1969). With increasing n this

soon becomes intractable, so that inevitably, partitioning algorithms do not consider all

partitions and can normally find only local optima.

Objective function-based clustering means: there is an objective function whose value
depends on the chosen partition and how small this value is determines how good the
particular clustering is. The main design challenge of clustering lies in formulating an
objective function that is capable of reflecting the nature of the problem so that its

minimisation reveals a meaningful structure in the data set (Pedrycz, 2005).

2.6.4 Hybrids of supervised and unsupervised learning.

There are also other kinds of clustering that can be considered as hybrids of ideas of
supervised and unsupervised learning. In particular, conceptual clustering algorithms,
semi-supervised learning algorithms like ISODATA, and analysis of effectiveness of

clustering algorithms using labelled data sets.

Conceptual clustering algorithms consist of two tasks: (i) to find clusters in a given data
set, and (ii) to produce a conceptual description for each found cluster (Cios et al., 2007).
The former task is an unsupervised machine learning task, while the latter task is a

characterisation problem that belongs to supervised machine learning tasks. The
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conceptual clustering algorithms may cluster data with categorical values (Fisher, 1987,
Lebowitz, 1987, Michalski and Stepp, 1983). The ability to produce conceptual
descriptions of clusters is important to data mining because the conceptual descriptions
provide assistance in interpreting clustering results. The conceptual clustering algorithms
are based on a search for objects which carry the same or similar concepts. Therefore,
their efficiency relies on good search strategies. For problems in data mining, which
often involve many concepts and very large object spaces, the concept-based search
methods can become a potential handicap for these algorithms to deal with extremely

large data sets.

Quite often the advantage of labelled data, whose labels are extracted by the use of
association rules as the supervised information, is combined with the use of
unsupervised learning methods, like in the algorithm ISODATA to establish semi-
supervised learning algorithms. ISODATA: Iterative Self-Organizing Data Analysis
Techniques Algorithm may be considered as a variation of the k -means clustering
algorithm. It allows the number of clusters to be automatically adjusted by splitting
clusters with large standard deviations or merging similar clusters. Since it uses the

training set of the data it is a hybrid of supervised and unsupervised methods.

We need to note that a hybrid of ideas of supervised and unsupervised learning is also

used to check the effectiveness of clustering algorithms. For example, Liu and Huang

(2003) considered a variant of a genetic algorithm and evaluated the fitness of each
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chromosome with a combination of fuzzy within cluster variance of unlabelled data and

misclassification error of labelled data.

It is known that optimisation techniques use various methods, strategies and algorithms.
Evolutionary approaches belong to these techniques. In particular, they include genetic
algorithms (GA) and Swarm intelligence (SI) that mimic heuristically biological

evolution.

2.6.4.1 Genetic algorithms (Evolutionary approaches for clustering)

Genetic algorithms mimic the principle of the survival of the fittest individual in the
process of selection. GAs deal with a population of abstract representations (called
chromosomes or the genotype) of candidate solutions (called individuals, creatures, or
phenotypes). The space of all candidate solutions is called the search space. GAs make
use of evolutionary operators and a population of solutions to obtain the globally optimal
partition of the data. Traditionally, solutions are represented in binary as strings of Os
and l1s, but other encodings are also possible. The evolution usually starts from a
population of randomly generated individuals and happens in generations. In each
generation, the fitness of every individual in the population is evaluated, multiple
individuals are stochastically selected from the current population based on their fitness
(traditionally the objective function in GA applications is called the fitness function),
and modified (recombined and possibly randomly mutated) to form a new population.
The new population is then used in the next iteration of the algorithm. Commonly, the

algorithm terminates when either a maximum number of generations has been produced,
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or a satisfactory fitness level has been reached for the population (see e.g. Michalewicz

1996).

Pseudo-code of a genetic algorithm
1. Choose initial population
2. Evaluate the fitness of each individual in the population
3. Repeat:
(i)  Select best-ranking individuals to reproduce
(ii)  Apply genetic operations (crossover and mutation) and give birth to offspring
(iii) Evaluate the individual fitnesses of the offspring
(iv) Replace worst ranked part of population with offspring

4. Until terminating condition is met.

In many problems, GAs may have a tendency to converge towards local optima or even
arbitrary points rather than the global optimum of the problem. This means that it does
not "know how" to sacrifice short-term fitness to gain longer-term fitness. The GA
search tries to balance two objectives: utilising the best solutions and exploring the
search space. GAs are discussed in details by many authors (see, e.g. Michalewicz, 1996,
and Mitchell, 1996). Some specific features of GA based clustering are discussed in

Chapter 5.
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2.6.4.2 Swarm intelligence (Evolutionary approaches for clustering)

Similarly to GA, Swarm intelligence (SI) is a type of artificial intelligence that mimics
the collective behaviour of animals. For example, SI includes the Ant Colony
Optimization (Dorigo et al., 1996) and Bees Algorithm (Pham et al. 2006b). The latter is
a new technique that was introduced to mimics nature’s evolutionary principles that
drive the search of bees towards an optimal solution. In application to problems of
optimisation, a bee means a point of the domain (the search space) of the objective
function, while the fitness of the bee means the value of the objective function at this
point. It was shown (Pham et al. 2006b) that using the BA for some optimisation
problems is more effective than using the GA based techniques (Goldberg, 1989). The

main ideas of the Bees algorithm (Pham et al. 2006b) are discussed in detail in Chapter 5.

2.7 Objective - function based clustering algorithms

and its applications

2.7.1 Objective - function based clustering for mixed data sets.

Data analysis with mixed data may follow three main strategies: Variables partitioning;
Variables converting, and Compatibility measures (Anderberg, 1973, Gibert and Cortes,

1997). Variables partitioning consists on partitioning the variables upon their type, then
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reducing the analysis to the dominant type (determined owing to the group with a greater
number of variables, or the group containing the more relevant variables, or the
background knowledge on the domain and so on). Variables converting method converts
all the variables to a unique type, trying to conserve as much original information as
possible. It does not necessarily produce meaningful results in the case of categorical
domains beign not ordered. This method is traditionally used in mathematical statistics
(Neal and Hinton 1999, Pregibon and Elder, 1996). Finally, compatibility measures
method consists on the use of compatible measures which cover any combination of
variable types, making a homogeneous treatment of all the variables. Its idea is to allow
clustering on a domain simultaneously described by numerical and categorical variables
without transforming the variables themselves. The last method was used by many
authors, e.g. Ralambondrainy (1995), Gupta et al. (1999) and Huang (1998), for
clustering records of mixed data. In fact, they extended the distance-based k -means

algorithm to handle categorical data in addition to numerical data.

2.7.2 The k-means, k-modes and & -prototypes algorithms

The k-means, k -modes and k -prototypes algorithms are based on the most intuitive
and frequently used objective function - the squared error criterion. The function tends to
work well with isolated and compact clusters. The induction principle of the & -means
based approaches says “pick the model (set of k centres) that minimizes the total

squared error”.
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Stepl. (Initialization). Having determined the number of groups, k prototypes
(sometimes called seeds), are defined. The seeds constitute the centres (measures of

position, usually means) of the clusters in the initial partition.

Step2. (Assignment of points to clusters) Each data point is assigned to the cluster with
the closest centre. For each element of the data set, the distances are calculated between

the element and the prototype of the cluster to which it has been assigned.

Step 3. (Update of all cluster centres). Recalculate the centres of the clusters. The
objective function is calculated using these distances and it has to have a minimum value,

otherwise the elements will be moved to other clusters.

Step 4. (Stopping criterion). If a convergence criterion is not met, go to step 2. Typical
convergence criteria are: no (or minimal) reassignment of records to new cluster centres,

or minimal decrease in squared error.

The k-means clustering method (Anderberg, 1973, MacQueen, 1967) is efficient for
processing large data sets. Therefore, it is best suited for data mining. However, the -
means algorithm only works on numeric data, because it minimises a cost function by
changing the means of clusters. Hence, one cannot use it in applications to categorical

data or mixed data.
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To deal with mixed data, the distance metric may be redefined as a sum of two measures,
one for the categorical attributes and one for the numerical attributes. The hard part of
combining metrics like this is that an appropriate weighting of the measures needs to be
derived for the overall measure to be useful. Huang (1997, 1998) introduced two
extensions of the k-means algorithm, namely the algorithms, called k -modes and & -
prototypes, respectively. The former algorithm was targeted to deal with categorical
attributes, while the latter was introduced to cluster large data sets with mixed numerical
and categorical values. To deal with categorical data Huang replaced means of clusters
used in the k-means algorithm by modes, and used a frequency-based method to update
modes in the clustering process to minimise the clustering objective function (cost
function) (Huang 1998). In the k -prototypes algorithm he defined a “dissimilarity
measure” that takes into account both numerical and categorical attributes. In fact, he

considered a metric p,, , where p}, is the sum of the square of the Euclidean numerical

metric and a weighted categorical metric (the matching dissimilarity measure).

The advantages and drawbacks of these algorithms may be described as follows. The £ -
means algorithm has been widely adopted as a general purpose algorithm because it is
easy to implement. It also has practically no limitation on the size of data sets because its

time complexity (the time complexity of an algorithm refers to the time it takes to run)

is O(n), where n is the number of data points. It also does not explicitly restrict the

dimensionality of the data. Disadvantages of the algorithms are that the algorithms

require the clusters to be spherical, that the data be free of noise (those conditions hardly
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occur in practical situations) and that the algorithms are sensitive to the selection of the

initial partition.

2.7.3 Most recent applications of clustering for categorical and mixed

data sets

It is accepted in the overwhelming majority of papers devoted to OF-based clustering
that the k -means algorithm performs very well in application to numerical data.
Currently many authors see the main problem in OF-based cluster analysis in

development of new algorithms for clustering categorical and mixed data.

Peters and Zaki (2004) introduced the Click algorithm, which searches clusters in
categorical data sets. They treat informally clusters as especially dense interval regions
within a data set. A region can be considered dense if the actual support is higher than
the expectéd support of a given interval region. It was claimed that the Click algorithm
outperforms previous approaches by a factor of two to three. However, Andreopoulos et
al. (2009) have noted that there is a problem related to applying density-based clustering
to categorical biomedical data. In their treatment a categorical dataset with / attributes is
viewed as an /-dimensional “cube”, offering a spatial density basis for clustering. Since
the “cube” of attribute values has no ordering defined, the search for dense subspaces is
rather slow. So they employed the Hamming distance and introduced the HIERDENC

algorithm for “hierarchical density based clustering of categorical data”. Applications of
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the algorithm results in layered clusters where a central subspace often has a higher

density.

As it has been mentioned above, Huang (1997, 1998) introduced the k -modes and k-
prototypes algorithms as extensions of the k -means algorithm. These algorithms are
very popular. Zhang et al. (2006) claimed that their statistical procedure for clustering
categorical data based on Hamming distance vectors outperforms the k -modes

algorithm. However, the method was not applied to mixed data sets.

Ahmad and Dey (2007) presented the “k-mean clustering algorithm for mixed numeric

and categorical data”. As an example, they considered a categorical attribute 4, that

may have two values aand 4. In order to find the distance between aand b, they
considered the overall distribution of @ and b in the data set along with their co-
occurrence with values of other attributes. For the given data set, they considered

another categorical attribute 4, and denote by w a subset of values of 4, and by z the

complementary set of values occurring for this attribute. Then they denoted by

P (w/ a) the conditional probability that an element having value a for 4, has a value
belonging to w for A, and F,(z/b) denotes the conditional probability that an element
having value b for 4,, has a value belonging to z for 4;. According to their definition,
distance between the pair of values a and b of A4, with respect to attribute 4, and a

particular subset w is defined as follows &, (a,b) = P,(w/a)+ P,(z/b). This definition is
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not symmetric with respect to a and b . Hence it is not a metric. Besides, one has to note
that the paper contains some undefined items and this makes it practically impossible to

use the model for practical realisation.

A number of very interesting approaches were derived from ideas introduced by Bezdek
and his co-workers (see, e.g. Bobrowski and Bezdek, 1991; Hathaway and Bezdek,
1995). Bobrowski and Bezdek (1991) introduced an extension of the hard and fuzzy c-
means clustering algorithms to the cases of / and / norms. Their approach was
developed further by Miyamoto and Agusta (1995, 1998), Hathaway et al. (2000),

Takata et al. (2001), Koga et al. (2001), Endo et al. (2006) and others. In these papers it

was introduced a very promising idea to generalise the standard Z ps objective

function to the functions )" p? , where p, is the Mikowski distance and p,, is the

power of the Minkowski norm. However, these generalisations were applied only to
fuzzy clustering algorithms. In Chapter 4 this idea is extended to the case of hard

clustering and applied to mixed data sets.

Chan et al (2004) and Huang et al. (2005) introduced a weighting k -means type
clustering algorithm that can calculate attribute weights automatically. The algorithm
calculates a new weight for each attribute based on the variance of the within cluster
distances. The algorithm was applied to both synthetic and real data. It was claimed that
the algorithm outperformed the standard k -means type algorithms in recovering clusters

in data. To estimate the accuracy of clustering both the clustering accuracy and the Rand
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index were employed. One has to note that clustering was performed without
normalisation of variables, while it is known that the raw data need to be normalised
(Aksoy and Haralick, 2001; Larose, 2005).

Normalisation of attributes was discussed in a number of papers (see, e.g., Aksoy and
Haralick, 2001; Hastie et al., 2001; Larose, 2005; Pham et al., 2006a). It was realised
that normalisation should give all attributes equal influence on characterising overall
dissimilarity between pairs of objects (Hastie et al., 2001; Pham et al., 2006a). However,
Hastie et al. (2001) after introducing a correct interpretation of the normalisation
procedure, gave an example where standardisation obscured the two well-separated
groups. They argued that variables that are more relevant in separating the groups
should be assigned a higher influence in defining object dissimilarity. Giving all
attributes equal influence in this case will tend to obscure the groups to the point where
a clustering algorithm cannot uncover them. In fact, this argument is very similar to the
above arguments of Chan et al (2004) and Huang et al. (2005) who applied weighting of
attributes without normalisation. We agree that in particular examples clustering without
normalisation may give good results. However, this is the case of luck because this
means that by chance the attributes have proper weights. We believe that it is too naive
to relay on luck in unsupervised learning when there is no a priory information about
importance of attributes for clustering. We agree that if one knows a priory that some
attributes have bigger contributions to similarity measures than the rest of the attributes
then this can be taken into account by appropriate weighting of the attributes. However,

it looks quite natural to apply the normalisation procedure first and only after the means
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of contributions of all attributes have been equalised, then to apply the weighting

procedure to more important attributes.

2.8 Summary

The Chapter has recalled a number of notations and definitions of concepts related to
clustering, similarity measures for numerical, categorical and mixed data sets, objective
functions, and statistical estimators. The Chapter ends with a literature review of the

most recent applications of objective - function based clustering for mixed data sets.

Further we deal only with objective function-based clustering of flat file data sets where

a data set can be represented as a matrix of size Nx(p+/). Here N is the number of
records, p is the number of numerical attributes and / is the number of categorical

attributes.
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Chapter 3

Clustering mixed data sets (Euclidean metric)

by using the k-prototypes algorithm

In this Chapter a unified statistical approach to both numerical and categorical
attributes is applied in order to normalise the feature vectors for mixed data sets. The
proposed approach is extended to the case of mixed metrics, i.e. when different
metrics are used for numerical and categorical data. The most common case of
metrics, namely the Euclidean metric is used as a measure for continuous numerical
features, while the matching dissimilarity measure is used to deal with categorical
attributes. Normalised metrics are introduced such that the average contributions of
all attributes to the measures are equal to each other from statistical point of view.
Advantages of the introduced normalised metrics are demonstrated on examples of
their applications to various data sets. Methods for comparing the accuracy of the
clustering algorithms are discussed in detail and explained on examples. Results on

benchmark data sets are presented together with a comparison with other approaches.
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3.1 Background

It has been defined in Chapter 2 that Data Mining (DM) is a process of extracting
relations and patterns from data and hence DM is a tool for transforming raw
collections of data into information. As it was noted by Larose (2005), “In the real
world, dirty data sets need cleaning; raw data need to be normalized; outliers need
to be checked”’. The normalisation procedure relies on the use of various
mathematical concepts, and hence, it is important to develop appropriate

mathematical tools for this procedure.

We call data set a collection of objects described by the same features. As we have

seen in Chapter 2, a data set can be represented as a matrix of size N x (p +/) where
N is the number of records, p is the number of numerical attributes and / is the
number of categorical attributes. The i -th row of the matrix represents the i -th

record of the data set and it is a vector (x;,,..., X, Vijs---» ;) - The values x,,...,x,
are numerical while the values y,,...,y, are categorical. In clustering analysis of
numerical data sets, it is very common to calculate the similarity or dissimilarity
between two feature vectors X, = (x;,...,%;,) and X, =(xy,...,X,,) using a square

distance measure. Indeed, it is very natural to use the Euclidean metric p, (or

L, metric)

12
p

Pe (X, X,) =l X, — X, ”2=(Z(‘xlj—x2j)2) (G.D
=1
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as a measure for continuous numerical features because this metric is in everyday use.
In addition, the k-means algorithm uses the Euclidean metric (3.1) to measure
distances between records and combines the use of the metric with employment of

the objective function that is defined as the sum of squares of p,(x;,x,). This

combination has some specific mathematical features that will be discussed in

Section 3.2, and it gives some advantages to the k-means algorithm.

For categorical data and for mixed (numeric and categorical) data, there is no such a
natural similarity measure as the Euclidean metric. Therefore, two different similarity
measures are often combined for clustering of mixed data (see, e.g. Gibert and Cortes,
1997, Huang 1997). One of possible combinations is the combination of the most
common cases of metrics, namely the Euclidean metric that is used to measure
distances between continuous numerical attributes, and the matching dissimilarity
measure that is used to measure distances between categorical attributes. This
combination is used in the k-prototypes algorithm that is the most popular algorithm
for clustering mixed data sets (Huang 1998). The same combination of metrics is

considered in this Chapter. The application of the proposed procedure to the general

case of Minkowski metrics is discussed in Chapter 4.

In spite of the importance of data normalisation, there are only few papers especially
devoted to normalisation methods for data sets. Milligan and Cooper (1988)
discussed various normalisation methods that have to be applied to numerical data

before conducting a cluster analysis. Aksoy and Haralick (2001) gave a review of
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normalisation techniques that may be applied to numerical data sets. The goal of the
normalisation procedures reviewed was the normalisation of each feature component
to the [0, 1] range. However, after this kind of data set normalisation, the average

contributions of all features to the similarity measure may be not equal to each other.

The idea to use a weighted Euclidean distance that may take into account the scatter
of samples within a cluster (see e.g. Chen, 1973), was recently generalised to
Minkowski distance by Pham et al. (2006b). Mirkin (1996, 1997, 1998) discussed
normalisation of mixed features based on their contributions to the quadratic data
scatter. Mirkin (1998) stated that methods for analysis of data in mixed feature space

are still an issue.

In this thesis we argue that the average contribution of the j -th feature component to

the total measure has to be equal to its mean and therefore, the goal of a
normalisation procedure is the equalisation of the attribute contributions. In this
chapter a unified statistical approach is applied to both numerical and categorical
attributes in order to normalise the feature vectors for mixed data sets. After the
proposed normalisation, the means of all dimensionless attributes will be the same
and hence, contributions of the features to similarity measures are approximately

equalised.

This chapter is organised as follows: Section 3.2 discusses some specific features of

k —means. Section 3.3 presents a description of commonly used normalisation

techniques. In Section 3.4, the proposed statistical approach to normalisation of
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feature vectors is presented. Methods of estimation of accuracy of the clustering

algorithms are discussed in detail in Section 3.5. Numerical results on benchmark

data sets are presented in Section 3.6 and the conclusion of this Chapter is given in

Section 3.7.

3.2 Some specific features of the k-means algorithm

Sometimes it is argued that the k -means algorithm (MacQueen 1967) is so

successful in application to numerical data just because it involves Euclidean

distances and the corresponding spherical geometry (see e.g., Cios et al., 2007).

Whilst those are good reasons, there is another more important argument to explain

the popularity of the k -means algorithm. Let us discuss some known special

properties of the & -means algorithm for partition of data set into &k clusters. It uses

as the objective function J not the sum of Euclidean distances but the sum of squares

of the metric. If the above explanation reflected all specific properties of the

algorithm then one were able to use as the objective function the sum of Euclidean

distances with the same success. Thus, the k-means algorithm minimises the

objective function J

N
J= Zuimpé(xi’Qm)’

k
m=1 i=1

-.

U, €{0,1}, 1Si<SN, 1<m<k,

k N

Zu,.,,,zl,Vi, and Zu,m >0 Vm.

m=1 i=1

(3.2)

(3.3)
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where u,, is an element of the partition matrix. The condition #,, =1 means that the

record X, is assigned to cluster m with prototype (centre)Q,, .

Let us write (3.2) as

J=

Zu.-mi(x,-, -Q,) (3.4)

k
m=1 i=1 Jj=1

Using (3.3), one can rewrite (3.4) in the following form

J=Y > pi(X,Q,) (3.5)

m=1ieC,,
The second sum is taken by elements that belong to the clusterC, . The objective

function that is calculated using these distances has to have a minimum value. Hence,

the problem is

k I 2 .
J=) > >(X,-Q,) —min (3.6)
However, (3.6) has the minimum value if for any m we have

> Zp:(xy—Qmj)2 — min

ieC,, j=1

or changing the order of summation, we can write
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i (X Qm,) — min

=1 ieC,
Let us write the condition of an extremum for a smooth function for any fixed

attribute j . Hence, we obtain

0 Z(Xu —Q,,.,-)2 ='22(X"1 _Q'"f)z

anj ieC,, ieC,,

Since the attribute number j is fixed, all Q,, in the above expression are the same

because we take the sum within the cluster C,, . Hence, we can represent it as

Z X —|C,,,|Q,,,j =0

ieC,,

where |Cm| denotes the number of elements in the cluster C,, .

Eventually, we obtain the expression for recalculating new centres of the clusters

X 3.7
%W 2% G

Note that if one writes the condition of an extremum for another objective function,
e.g. the sum of the Minkowski distances including the sum of Euclidean distances

then after taking the derivative, one does not obtain as simple expression as (3.7).
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The possibility to derive the very simple expression for recalculating new cluster

centres is the main reason of the popularity of the & -means algorithm.

As it has been mentioned in Chapter 2, Huang (1997, 1998) introduced two
extensions of the k -means algorithm, namely the algorithms, called k -modes and
k -prototypes, respectively. The former algorithm was targeted to deal with
categorical attributes, while the latter was introduced to cluster large data sets with
mixed numerical and categorical values. In this Chapter 3 the k -prototypes is used to

cluster data sets with mixed numerical and categorical values.

3.3 Normalisation of feature vectors

As it has been mentioned in Chapter 2, normalisation is a particular kind of feature
extraction method. Normalisation of data sets is widely used in a number of fields of
machine intelligence. Sometimes the term standardisation is used as a synonym to
normalisation. This kind of feature extraction is important because if the data is not
normalised then the contribution of each feature to the similarity measure depends on
the units of measurements and, therefore, the contribution of the features to the

measure are scale dependent.
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3.3.1 Normalisation of numerical data sets

A direct application of geometric measures (e.g. city block or Euclidean distances) to
attributes with large ranges will implicitly assign larger contributions to the metrics
than the application to attributes with small ranges. In addition, the attributes should
be dimensionless; for example, we can not compare attributes in metres (m) with
attributes in Newtons (N). Indeed, the numerical values of the ranges of dimensional
attributes depend on the units of measurements and therefore, the choice of the units
of measurements may greatly affect the results of clustering. If it is known a priory
that some attributes are irrelevant to the problem under consideration then they can

be removed from the feature vector.

In the general case of normalisation of data sets, when there is no a priory
information about preferences of some attributes, one has to assume that all attributes
are equally important. In this case, the distance or dissimilarity functions of
clustering algorithms involve all attributes of the data set. As Chan et al. (2004)
noted, this is applicable if all or most attributes are important to every cluster.
However, clustering results become less accurate if a significant number of attributes
are not important to some clusters. Hence, if all attributes are equally important to
measure similarity between feature vectors then one should not use distance
measures like the Euclidean distance (3.1) without normalisation of data (see, e.g.
(Gibert and Cortes, 1997; Aksoy and Haralick, 2001). Further one need to apply

normalisation not only to numerical attributes but also to categorical attributes.
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New normalised metrics are introduced such that the average contributions of all
attributes to the measures are equal to each other from statistical point of view.
Although this idea has been recently discussed in the literature (Hastie et al., 2001),
they said nothing about statistical consistency of the proposed estimators. In addition,

they used biased estimators.

Min—-Max Normalisation.

This approach normalises the data by dividing the attribute value x, by its range

using scaling with a shift
. Xij = Xomin, j
Xy =————— (3.8)
xmax, J - xmin, J

Here xy is the normalised attribute value in the data set, x,,  and x,, . are the

min, j
maximum and the minimum values of attribute 4,, respectively. This is the most
cited method of normalising data sets. Sometimes it is referred to as Min—-Max

normalisation (Larose, 2005). Doherty et al. (2004) applied this kind of normalisation

to the Minkowski metric.

Evidently, the results scaled by (3.8) do not depend on the original units of data
measurements, and this linear scaling will transform the data to the range[0,1].
However, this normalisation procedure does not achieve equalisation of the attribute
means. Hence, the application of the transformation (3.8) for normalisation of real

world data sets and consequent clustering using either Euclidean or Minkowski norm,
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do not give equal contributions of variables to the similarity measures because the

means of the different normalised attributes are not necessary equal to each other.

Z -Score Standardisation.
This is a very popular normalisation technique that normalises the variables by taking
the difference between its value and its mean value and scaling this difference by the

standard deviation of the variable (Jain and Dubes, 1988; Larose, 2005)

. X -X
X, _—__m— 3.9
J

It will be shown below that this approach is consistent with our approach when the

Euclidean metric is used.

For numerical datasets when the Euclidean metric is used, the most common

normalisation procedure is the Z -score standardisation, i.e. to transform the attribute

A7 to arandom variable with zero mean and unit variance by

X, =(x;,— 1)/ o (3.10)

where 4;and o; are the mean and standard deviation for values of the j -th attribute

A} respectively. As it will be shown, this scaling provides equal contributions of

variables to the Euclidean similarity measure.
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It was also suggested often to truncate the out-of-range components assuming that it
is just eliminating the outliers (Aksoy and Haralick, 2001). However, truncating the

out-of-range components could lead to loss of information from the dataset.

It was noted that providing all attributes are normally distributed, the probability of

the attribute value normalised by (3.10) is in the [-1,1] range equals to 68%. If one

applies an additional shift and rescaling as

x; = 0.5[(x, — )/ (30,) +1] (3.11)

then this guarantees 99% of the values to be in the [0,1] range (Aksoy and Haralick,
2001). However, any shifting of the whole attribute column does not affect the
distance metric (3.1). Hence, such an additional shifting has no practical applications

to clustering of data sets.

3.3.2 Normalisation of categorical data sets

Normalisation of categorical and mixed datasets was practically not discussed in the
literature. For example, the k -prototypes algorithm was applied to a non-normalised
metric by Huang (1998). Larose (2005) suggested to apply either the min—-max
normalisation or Z -score standardisation techniques to numerical attributes and the
matching dissimilarity measure without normalisation when mixed categorical and
continuous variables are studied. He noted that perhaps, the min—max normalisation

may be preferred in this case.
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As it has been mentioned above, normalised metrics are introduced in this thesis such
that regardless of the type of attributes their average contributions to the measures are
equal to each other from statistical point of view. Although this idea has been
recently discussed in the literature (Hastie et al., 2001), nothing was said about
statistical consistency of the 'proposed estimators. In addition, they used biased

estimators.

3.4 Statistical approach to normalisation of feature

vectors

With geometric similarity measures, usually no assumption is made about the
probability distribution of the attributes and similarity (dissimilarity) is based on the
distances between feature vectors in the feature space (Aksoy and Haralick, 2001).
Each record (row) of a dataset may be regarded as a random sample of a population
under consideration, i.e. one has a dataset of N observations (samples) and each

sample (record) is a realisation of possible values of the feature vector A .

3.4.1 Estimators

For statistical treatment of feature vectors, one needs to know the probability

distributions of their attributes. For a numerical attribute 47 , the probability
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distribution identifies the probability of the attribute value falling within a particular

interval within the range of possible values. For a categorical attribute 47, the

probability distribution identifies the probability of certain states occurring.

Suppose that (X,,X,,...,X) is a random sample of size N from a distribution of a

real-valued random variable X with mean x and standard deviationo . As it has
been mentioned in Chapter 2, an estimator is a function of the observable sample data
(statistic) that is used to estimate an unknown population parameter (which is called
the estimand). It is known (Spigel 1975, Giudici 2003) that a sample of N
observations of a random variable X is a sequence of random variables
(X, X,,..., X}, ) that are distributed identically as X . One can assume that the sample

is a simple random sample when the random variables (X,,X,,...,X,) are

independent and therefore they constitute a sequence of independent and identically

distributed random variables. Then X denotes the random vector formed by a
sequence of random variables X = (X, X,,...,X,) and x=(x,,x,,...,x,) indicates

the actually observed sample value.

Practically in all books on statistics one can find that the sample mean for the j-th

feature

N
X, =%ZX9. (3.12)

i=l

is an unbiased estimator of the unknown population mean x4, while the sample

variance
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== (x,-X) (3.13)

is a biased estimator of the population variance. The unbiased estimator of the

population variance 0'12. for the j -th feature is

S =——3 (%, -X,) (3.14)

It is known that the above estimators (3.12) and (3.14) of the sample mean and the
sample variance are consistent (Giudici 2003). One can use the above basic definition

to estimate the average and variance for the j -th attribute of the data set. Sometimes

it has been suggested to use the biased estimator (3.13) instead of the unbiased

estimator (3.14) for the variance for the j -th attribute (Jain and Dubes, 1988).

It is assumed usually in the literature that each numerical feature has a normal

(Gaussian) distribution with mean x; and standard deviationo;. However, in the

general case, distribution functions are not known in advance and another function

may be a better model for the attributes than the Gaussian distribution.

3.4.2 Earlier attempts of normalisation

The normalisation procedure can be implemented in different ways. For example,

Aksoy and Haralick (2001) reviewed five normalisation methods for numericai data,
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namely linear scaling to unit range, linear scaling to unit variance, transformation to a
uniform [0,1] random variable, rank normalisation, and normalisation by fitting
distributions. All these approaches intended to normalise each feature component to
the [0,1] range. However, mainly these methods were equivalent to the above
described Min—max normalisation and Z -score standardisation techniques. Note that

in the textbooks by Jain and Dubes (1988) and by Larose (2005) only these two

techniques were mentioned.

Hastie et al. (2001) described the following procedure for combining the

p-individual attribute dissimilarities d,(x,,x,),/=12,...,p into a single overall

q’
measure of dissimilarity D(x;,x,) by means of a weighted average (convex

combination)

X;, %) = de(,,, 55 }I:w,:l (3.15)

where w; is a weight assigned to the j-th attribute regulating the relative influence

of the variable on the dissimilarity. The weight depends upon its relative contribution

to the average object dissimilarity measure D over all pairs of records

N

b=-L fZD(x,,x) Zw d, (3.16)

i=l i'=1

with the average dissimilarity of the j -th attribute

Mz

_ 1 N
djzﬁz

i=1 i

d,(x,,x (3.17)

]
—
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Hence, the relative influence of the j -th attribute is w, d—J .

There are several questions and issues related to the above description of the
normalisation procedure. Hastie et al. (2001) noted that setting w; ~ l/d—j for all

attributes, irrespective of type, would give all attributes equal influence on
characterising overall dissimilarity between pairs of objects. However, one has to
realise that the above estimator is biased. Further, the question concerning the
consistency of the proposed estimators was not discussed. They consider as example
only the same case as in (Chen, 1973), namely the weighted Euclidean distance. On
the other hand, there are metrics where the above approach is not valid. For example,
it will be discussed in the next Chapter that if one considers the Tchebysheff metric
for numerical attributes then (3.15)-(3.17) are not applicable. How can one normalise

this metric?

Finally, if one studies a mixed metric that is a sum of two different metrics (for
example, one metric is used for numerical data, while another metric is used for
categorical data) then the above approach, i.e. formulae (3.15)-(3.17), is not
applicable. Definitely, there is a need to discuss the application of the above idea in

detail.

3.4.3 A new statistical approach to normalisation of attributes

To obtain a new normalised Euclidean metric, one should calculate the mean

contribution of each j-th attribute to the metric E| X, - X, [* (here E means the
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expectation of a variable) and to divide the attribute in all records by this mean (if the
mean is equal to zero then this attribute should be removed from the feature vector).

Hence, the normalised Euclidean metric can be introduced in the following way

12
P
PE(xl,x2)=[Zaj'x|j—xzj lzJ > (3.18)

J=1

where a, =1/ E| X, - X,, P, X, ; and X, are independent random variables whose

values are distributed in accordance with the distribution of the j -th attribute.

Since X,; and X,; are independent random variables having the same distribution,

we obtain for the Euclidean metric,

E| X, - X,, = EX],-2EX, EX, + EX] = 2(EX], -(EX,;)*) =202,
where o, is the standard deviation of the j -th attribute. Thus, the normalised

Euclidean metric has the following form

172
: e, (x, - x,)’
pE(Xlax2)=[Z 112 221 J H (319)
J= ;

According to (3.14), it is possible to use the following unbiased estimator of the

sample variance to estimate o in (3.19),
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N
where X, = in,j is the sample mean for the j -th attribute (see (3.12)).

r=1

From (3.19) we obtain the known form of normalisation of features:

where 4, is the mean of the j -th attribute.

3.4.4 Data sets with mixed attributes

For data sets with categorical attributes, it is possible to introduce different metrics
(see, e.g. Gibert and Cortes, 1997; Huang, 1998; Ralambondrainy, 1995). One of the
most cited variants of metrics (see, e.g. Huang, 1998) is studied here, namely the

distance between two categorical feature vectors y,=(y,,...,y,) and

y2 =(y2]3""y2/) iS deﬁned as

Pea(¥1:Y2) = 0, Vo) +.. o+ 0(yy, vy)) (3.20)

were
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0 for y,=,

a)(ylj’ij)={

Evidently, the square of the metric (3.20) is

Pczat(Yp)'z) = a’z(.)’n»)’zl)"'"-+a’2(y”’.V21) (3.21)

Combining p;and p,, for mixed data, one obtains that the square distance between

two mixed feature vectors (x,,y,)and (x,,y,) is
P (X, Y1) (X,,¥,)) = 5 (X0 X,) + Pl (¥1,Y2) (3:22)
where p2(x,,x,) is defined by (3.1) and pZ (y,,y,) is defined by (3.21).

The same idea as it has been applied to numerical features, will be applied here to
categorical ones, namely we will divide the contribution of each attribute to the
distance measure by the contribution mean. Hence, the normalised mixed metric is

defined similarly to (3.22)

) . 12
p‘((xlayos(xz’)'z)) =(Zaj(x]j _x2j)2 + Zﬂja)z(ylj’y2j)) (3.23)
= =
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where 011.=1/E(XU—X,U)2 , ﬂj=1/Ea)2(Ylj,Y2j) and ¥, Y, are independent

random variables whose values are distributed in accordance with the distribution of

the 47 -th attribute. If the attribute A7 can take q; values {yj,,yﬂ,...,yjqj} and the

probabilities {p;;, p5,..., P, } of these values are known then

Emz(Ylj’YZj) = Ew(Y;jaYZj):

q; 9;
Zl'pjrpjs = Z PrPjs —(pjz'l +'”+p12'q/)
ra=l r,s=1

r#s ’

or

Ecoz(Y,j,Yzj):(pjl +°"+qu,)2 —(pjz.1 +...+pfq/) =1—(pj', +...+p12.ql_).

Thus, it follows from (3.19) that a; = 1/20'f and from the above equality that

B, =1/(1-(pj +...+pfql)). (3.24)

If the distribution of the attributes is unknown then to calculate « , one can use the

estimation (3.19), and to estimate Ew(Y;;,Y,;) one can use the sampling mean

Jj?

> o(y,,yy) (3.25)

~ 1
Eod* (Y .Y, )=—
12°2j Nz e
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The estimation (3.25) is a biased estimator of E&’(Y,,,Y, ;) > hence for small data sets

j’

it is better to use the following estimation

2 S a,.,) (3.26)

Eo*(X .Y, )=—"
( Y 21) N(N_l) 1Sr<s<N

that is an unbiased estimator.

3.5 Comparing the accuracy of the clustering

algorithms

Comparison of accuracy of clustering algorithms is not an easy task. In the case of
datasets having labels (class labels), there are two methods commonly used for
comparison: (i) calculating of accuracy, and (ii) calculation of Rand index (Rand,

1971) or its modifications (Hubert and Arabie, 1985).

3.5.1 Accuracy of clustering and Rand index

Using the former approach, Ng and Wong (2002) measured the results of application

of their clustering algorithm by the clustering accuracy defined as

Accy,, = %"— (3.27)

71



where r, is the number of objects partitioned into the correct cluster mand N is the

total number of records in the data set. The formula (3.27) was also used by Chan et
al. (2004) to calculate the accuracy of their attributes-weighting algorithm that was
tested by clustering an artificial data set. We need to note that to use the

accuracy Acc,,, , one has to explain in the algorithm what ‘correct’ cluster is. Indeed,
even if partitioning of the data set was absolutely correct Acc,, can be very low or

even be equal to zero just because two labels are replaced one by another. To avoid
this problem, we have introduced the ideas of the assignment problem (see paragraph

3.5.2 below).

The Rand index or Rand measure is a measure of the similarity between two data

clusterings. The classical definition is the following (Rand, 1971):

Let us consider a set S of N elements, and two partitions C={C,,...,C,} and
D={D,,...,D,} of the data set. To calculate the Rand index, one needs first to

calculate the following numbers: a is the number of pairs of elements in S that are
in the same set in C and in the same set in D; & is the number of pairs of elements
in S that are in different sets in C and in different sets in D; ¢ is the number of
pairs of elements in S that are in the same set in C and in different sets in D; and d
is the number of pairs of elements in S that are in different sets in C and in the same

setin D. Then the Rand index, (R ), is calculated as

a+b

=277 (3 28)
a+b+c+d
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Intuitively, one can think of a+5b as the number of agreements between C and
Dand c + d as the number of disagreements between CandD.

The formula (3.28) was used by many researchers. In particular, it was used by
Huang et al. (2005) to evaluate the performance of their attributes-weighting
clustering algorithm in application to an artificial data set. It was possible to use
(3.28) because the cluster labels of the data points in the synthetic data set were
known. The Rand index has a value between 0 and 1 and the larger the Rand index,

the higher the accuracy of the clustering.

3.5.2 Assignment problem and calculating the accuracy of clustering

Our calculation of the accuracy function has involved the ideas of a particular case of
the assignment problem. In the classic formulation of the problem, there are a
number of agents and a number of tasks. Any agent can be assigned to perform any
task, incurring some cost that may vary depending on the agent-task assignment. It is
required to perform all tasks by assigning exactly one agent to each task in such a
way that the total cost of the assignment is minimised.

This problem is one of the fundamental combinatorial optimization problems. The
latter is a branch of optimisation whose domain is optimisation problems where the
set of candidate solutions is discrete or can be reduced to a discrete one, and the goal
is to find the best possible solution. The space of all candidate solutions is called the

search space.
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Let us give a formal description of calculation of the accuracy of a clustering
algorithm. For this purpose, consider data sets whose inherent structures are known

in advance. Let us consider a data set having a categorical attribute A that may have

k different states {al,az,...,ak} that may be associated with labels of the clusters, i.e.

the inherent structure (labels) of the data set is associated with the states of this

attribute.

Our clustering algorithm will map the records to a discrete set of labels (classes). It is
proposed to perform the normalisation procedure of the data set as it is described
above and then to apply the clustering algorithm. After clustering, each record will

belong to a cluster with a corresponding number m . For each m , let us assign a state

a,my Oof the attribute A ={al,a2,...,ak} to the m -th cluster. Evidently, different
clusters should have different states of the attribute A . Let us denote by n, , the

number of records with the attribute 4=aq, that belong to the m -th cluster.

For a given assignment ¢ , one can estimate the accuracy Acc(g) of the clustering as

k
Z P pm)

— m=]
Acc(p) = = (3.29)

where n,, . is the number of records of the m -th cluster whose state of the attribute
A is the same as the assigned a,,,,,. The clustering accuracy is defined as maximum

of Acc(p) for all possible assignments ¢
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Acc =max Acc(p). (3.30)
[4

Evidently, the closer is Acc to 1 the less is the difference between the partitioning of
the data after clustering and the partitioning of the data associated with the attribute 4.

If Acc =1 then both partitioning into classes are the same.

Thus, one needs to solve the assignment problem with an efficiency matrix n, ;,

(m, j =1,...,k) in order to find the clustering accuracy Acc.

We can rewrite the formula (3.29) for calculating the accuracy of clustering results

measured by the clustering accuracy Acc, as

Acc=ml 331
v (3.31)

where n, ; is the number of records within the cluster m having the same label as

the generated cluster label a;, and N is the total number of records in the data set.

To explain the way we calculated the accuracy of clustering, let us consider an
example of k =3 clusters having 10, 9, and 8 records respectively (Figure 3.1). We

can have in total 3!=6 different assignments.
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Cluster 3
Cluster 1

Cluster 2

Figure 3.1: An example of a data set with 3 clusters having 10, 9, and 8 records

respectively.

Assume there is an attribute that may take 3 different values (class labels): blue,
azure and yellow. Let us consider further the following distribution of total N =21
records by the labels. The cluster 1 has 10 records having the following labels: 3 blue,
3 azure and 4 yellow; the cluster 2 has 9 records having the following labels: 5 blue,
2 azure and 2 yellow; and the cluster 3 has 8 records having the following labels: 3

blue, 3 azure and 2 yellow (Figure 3.2).
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Cluster 3
Cluster 1

Cluster 2

Figure 3.2: An example of a data set having N = 27 records, 3 clusters, and the class

labels of the records: blue, azure and yellow. The cluster labels are not yet assigned.

Then each cluster may be labelled (assigned) by one of these colours, i.e. there is an
attribute A whose states are blue (a,), azure (a2), and yellow (a3). The goal is to
find an optimal assignment of labels to clusters such that there is a maximum total
matching between the cluster labels and the labels of records belonging to each
cluster. The assignments corresponding to the example under consideration are

presented in Figures 3.3-3.8.
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Cluster 3
Cluster 1

Cluster 2

Figure 3.3: The first caseof possible assignments of labels to clusters: the label of
cluster 1 is blue, the label of cluster 2 is azure, and the label of cluster3 is yellow.

For each cluster, the number of matching labels is in a red circle: WWMe = =3,

'h.azure= «2,2 = 23ndfellow= «3,3 =2+

If one calculates Acc in accordance with(3.31) in the first case of assignments then

the result is



Cluster 3

Cluster 1

Cluster 2

Figure 3.4: The second case of possible assignments of labels to clusters: the label of
cluster 1 is blue, the label of cluster 2 is yellow, and the label of cluster 3 is azure.

For each cluster, the number of matching labels is in a red circle: Hwe= x=3,

HyelUw = n23

N2,azure= «3,2 = 3
If one calculates Acc in accordance with (3.31) in the second case of assignments

then the result is

3+3+2 8
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Cluster 3
Cluster 1

Cluster 2

Figure 3.5: The third case of possible assignments of labels to clusters: the label of
cluster 1 is azure, the label of cluster 2 is blue, and the label of cluster 3 is yellow.

For each cluster, the number of matching labels is in a red circle: | ae=1 2=3,
”

z Me="2'=5, and* = n,=2.

If one calculates Acc in accordance with (3.31) in the third case of assignments then
the result is

3+5+2 10
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Cluster 3
Cluster 1

Cluster 2

Figure 3.6: The fourth case of possible assignments of labels to clusters: the label of
cluster 1 1is azure, the label of cluster 2 is yellow, and the label of cluster 3 is blue.

For each cluster, the number of matching labels is in a red circle: i\l are= 2=3,

n 2,yellow = W23 = an(® W3,blue = W31 = ~ *

If one calculates Acc in accordance with (3.31) in the fourth case of assignments

then the result is

3+2+3 8
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Cluster 3
Cluster 1

Cluster 2

Figure 3.7: The fifth case of possible assignments of labels to clusters: the label of
cluster 1 is yellow, the label of cluster 2 is blue, and the label of cluster 3 is azure.

For each cluster, the number of matching labels is in a red circle: nlydlow= =4,

If one calculates Acc in accordance with (3.31) in the fifth case of assignments then
the result is

4+5+ 12
Ace<= —-- _5___2_: g
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Cluster 3
Cluster 1

Cluster 2

Figure 3.8: The sixth case of possible assignments of labels to clusters: the label of

cluster 1 is yellow, the label of cluster 2 is azure, and the label of cluster 3 is blue.

For each cluster, the number of matching labels is in a red circle: nx low= 3=4,

n 2gazure ~ W2,2 ~ an” \?\/Sbiue:<<3J:3.

If one calculates Acc in accordance with (3.31) in the sixth case of assignments then
the result is

4+2+3 9
Acc6b =
21 27
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One can see that the maximum of Acc, for j=1,...,6 is Acc =£. This value is

taken as the accuracy of the above clustering.

If the total number of records in the data set N is large then calculations of the Rand
index R is a rather time consuming procedure. Indeed, one has to consider all

possible pairs of records (exhaustive search), i.e. the number of operations is

proportional to N2. In this case, calculation of the assignment based accuracy Acc
of clustering is simpler. However, even this procedure is fast only when the total
number of records in the data set N is small because in this case one can consider all
possible cases as we have considered above. If k is large then to calculate the
assignment based accuracy Acc one has to use one of existing algorithms to solve
the corresponding assignment problem. In all data sets considered in this thesis we
have k£ <8 and therefore we have not employed any of the special algorithms for

solving the assignment problem.
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3.6 Applications to data sets

The above methods will be applied to several data sets from the UC Irvine repository.
All records in those data sets have the class labels and, hence, “true clustering” can

be checked.

3.6.1 Soybean Disease Data Set

The soybean data set has 47 records (N = 47) with 35 attributes. Each record is
attributed to one of the 4 following diseases: Diaporthe Stem Canker, Charcoal Rot,
Rhizoctonia Root Rot, and Phytophthora Rot. The Phytophthora Rot has 17
observations, while other diseases were observed 10 times each. This is a standard
categorical data set that was studied a number of times to test clustering algorithms
(see, e.g. Huang, 1998; Michalski and Stepp, 1983; Huang, 1997). First the clustering
procedure has been applied to the data set without normalisation of the data. Then the
clustering procedure with normalisation of all attributes has been applied to the data
set. Both procedures with and without normalisation have been applied 100 times to
the data set. Table 3.1 presents the results of application of the k -prototypes
algorithm without normalisation of the attributes to the soybean data set: the values
of the clustering accuracy (Acc), the objective function (J), the Rand index (R),
and the number of iterations the algorithm needed to converge, and the attempts

showing the best value of the objective function (BF).
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Here and henceforth the plus sign in the Tables means that the best value of the

objective function has been obtained in the simulations.

Table 3.1: Clustering of the Soybean data set without normalisation of the attributes.

Objective .
N Accuracy Rand Index function J Iterations BF
1 1 1 199 3 +
2 1 1 199 4 +
3 1 1 199 2 +
4 1 1 199 4 +
5 1 1 199 6 +
6 1 1 199 3 +
7 1 1 199 2 +
8 1 1 199 5 +
9 1 1 199 3 +
10 1 1 199 4 +
11 1 1 199 3 +
12 1 1 199 3 +
13 1 1 199 2 +
14 1 1 199 1 +
15 0.9787 0.9759 199 4 +
16 0.9787 0.9759 201 5
17 0.9787 0.9759 199 4 +
18 0.9787 0.9759 199 4 +
19 0.9787 0.9759 199 2 +
20 0.9787 0.9759 199 2 +
21 0.9787 0.9759 199 2 +
22 0.9787 0.9759 199 3 +
23 0.9787 0.9759 199 3 +
24 0.9787 0.9759 199 4 +
25 0.9787 0.9759 199 2 +
26 0.9787 0.9759 199 3 +
27 0.9787 0.9759 199 6 +
28 0.9787 0.9759 199 1 +
29 0.9787 0.9759 199 1 +
30 0.9787 0.9759 202 3
31 0.9787 0.9759 199 3 +
32 0.9574 0.9537 199 1 +
33 0.9574 0.9537 199 4 +
34 0.9574 0.9537 199 5 +
35 0.9574 0.9537 199 2 +
36 0.9574 0.9537 199 6 +
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Objective

N Accuracy Rand Index function J Iterations BF
37 0.9574 0.9537 199 2 +
38 0.9574 0.9537 199 2 +
39 0.8936 0.8982 202 8
40 0.8298 0.8594 211 3
41 0.766 0.8372 213 3
42 0.7447 0.8335 215 4
43 0.7447 0.8335 216 7
44 0.7234 0.8233 228 1
45 0.7234 0.8316 216 2
46 0.7234 0.8316 218 1
47 0.7234 0.8233 228 3
48 0.7234 0.8659 246 3
49 0.7234 0.8316 217 2
50 0.7234 0.8233 239 2
51 0.7234 0.8316 217 2
52 0.7021 0.8261 261 4
53 0.7021 0.8205 227 2
54 0.7021 0.8205 227 3
55 0.7021 0.8205 224 3
56 0.7021 0.8205 224 3
57 0.7021 0.8205 238 2
58 0.6809 0.8196 220 2
59 0.6809 0.8196 220 5
60 0.6809 0.8196 220 2
61 0.6809 0.8196 220 2
62 0.6809 0.8094 225 2
63 0.6809 0.8094 225 4
64 0.6809 0.8196 220 4
65 0.6809 0.8196 220 3
66 0.6809 0.8196 220 3
67 0.6809 0.8094 225 4
68 0.6809 0.8094 225 4
69 0.6596 0.8649 260 5
70 0.6596 0.8187 237 3
71 0.6596 0.8298 239 4
72 0.6596 0.8649 260 2
73 0.6383 0.8464 260 5
74 0.6383 0.8464 260 3
75 0.6383 0.8427 252 3
76 0.6383 0.8187 239 4
77 0.6383 0.8279 238 5
78 0.6383 0.8344 238 2
79 0.6383 0.7993 245 2
80 0.617 0.8409 252 5
81 0.617 0.8409 252 3
82 0.617 0.8335 253 5
83 0.617 0.8409 253 4
84 0.617 0.79 244 4
85 0.617 0.8409 253 3
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N Accuracy Rand Index Objective Iterations BF
function J
86 0.617 0.8409 252 4
87 0.617 0.8409 253 4
88 0.617 0.8335 238 3
89 0.617 0.8252 258 6
90 0.617 0.8409 252 3
91 0.617 0.7484 247 2
92 0.617 0.8409 254 3
93 0.5957 0.7493 244 2
94 0.5957 0.7299 246 2
95 0.5745 0.7364 241 7
96 0.5532 0.7086 241 4
97 0.5532 0.7475 277 2
98 0.5532 0.7068 245 2
99 0.4894 0.7484 277 3
100 0.4468 0.5624 290 2

Table 3.2 presents the results of application of the k -prototypes algorithm with
normalisation of the attributes to the soybean data set. The meanings of the columns
presenting the results in Tables 3.2 -3.8 are the same as the meanings described for

the Table 3.1.

Table 3.2: Clustering of the Soybean data set with normalisation of the attributes.

N Accuracy Rand Index Oby':ctwe Iterations BF
function J

1 1 1 359.8666 5 +
2 1 1 359.8666 1 +
3 1 1 359.8666 1 +
4 1 1 359.8666 4 +
5 1 1 359.8666 5 +
6 1 1 359.8666 3 +
7 1 1 359.8666 3 +
8 1 1 359.8666 2 +
9 1 1 359.8666 4 +
10 1 1 359.8666 3 +
11 1 1 359.8666 3 +
12 1 1 359.8666 6 +
13 1 1 359.8666 2 +
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Objective

N Accuracy Rand Index function J Iterations BF
14 1 1 359.8666 3 +
15 1 1 359.8666 1 +
16 1 1 359.8666 2 +
17 1 1 359.8666 5 +
18 1 1 359.8666 4 +
19 1 1 359.8666 4 +
20 1 1 359.8666 3 +
21 1 1 359.8666 6 +
22 1 1 359.8666 5 +
23 1 1 359.8666 4 +
24 1 1 359.8666 5 +
25 1 | 359.8666 3 +
26 1 1 359.8666 1 +
27 1 1 359.8666 4 +
28 1 1 359.8666 3 +
29 1 1 359.8666 3 +
30 0.9787 0.9759 361.1875 3

31 0.9787 0.9759 362.3914 3

32 0.9787 0.9759 361.1875 3

33 0.9787 0.9759 361.1875 1

34 0.9787 0.9759 361.1875 3

35 0.9787 0.9759 361.1875 3

36 0.9787 0.9759 361.1875 7

37 0.9787 0.9759 361.1875 3

38 0.9787 0.9759 362.3914 3

39 0.9787 0.9759 361.1875 3

40 0.9787 0.9759 361.1875 5

41 0.9787 0.9759 361.1875 4

42 0.9787 0.9759 361.1875 3

43 0.9787 0.9759 361.1875 3

44 0.9787 0.9759 362.3914 3

45 0.9787 0.9759 362.3914 2

46 0.9787 0.9759 361.1875 3

47 0.9787 0.9759 361.1875 3

48 0.9787 0.9759 361.1875 2

49 0.9787 0.9759 361.1875 5

50 0.7872 0.8427 399.8791 4

51 0.7872 0.8427 399.8791 2

52 0.766 0.8511 462.1653 4

53 0.766 0.8344 445.4421 3

54 0.7447 0.8298 422.7914 1

55 0.7447 0.8298 422.7914 1

56 0.7447 0.8335 404.7635 1

57 0.7234 0.8316 402.3598 3

58 0.7234 0.8233 419.9152 3

59 0.7234 0.8316 397.2588 2

60 0.7234 0.8881 497.091 4

61 0.7234 0.8705 502.1693 2

62 0.7234 0.8881 497.091 4
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N Accuracy Rand Index Objective Iterations BF
function J
63 0.7234 0.8316 397.2588 3
64 0.7021 0.8205 413.3237 4
65 0.7021 0.8205 418.2429 1
66 0.7021 0.8205 419.5059 3
67 0.7021 0.8205 413.3237 3
68 0.7021 0.8205 414.5062 2
69 0.7021 0.8853 496.3033 2
70 0.7021 0.8261 463.5563 3
71 0.7021 0.8205 422.24 3
72 0.7021 0.8853 496.3033 3
73 0.7021 0.8205 414.5062 3
74 0.7021 0.8205 413.3237 3
75 0.6809 0.8196 410.2062 2
76 0.6809 0.8196 418.711 2
77 0.6809 0.7743 447.8564 4
78 0.6809 0.8196 410.2062 2
79 0.6809 0.8196 422.9991 2
80 0.6809 0.827 499.2963 5
81 0.6809 0.7909 474.2939 2
82 0.6809 0.8057 458.2709 2
83 0.6596 0.802 450.3792 3
84 0.6596 0.7919 472.0441 2
85 0.6596 0.8002 510.3877 6
86 0.6596 0.8501 513.679 1
87 0.6383 0.7817 467.9814 4
88 0.6383 0.7983 509.8043 2
89 0.6383 0.79 455.1688 4
90 0.6383 0.8427 501.1875 4
91 0.6383 0.8427 495.3664 4
92 0.617 0.7558 474.2798 3
93 0.5957 0.7234 494.6445 2
94 0.5957 0.6873 495.5843 4
95 0.5957 0.79 504.0347 3
96 0.5957 0.8242 493.1026 3
97 0.5957 0.8252 493.0092 3
98 0.4681 0.5643 547.0896 2
99 0.4681 0.5643 548.6295 3
100 0.4468 0.5624 548.6995 2

Since the data set is quite small, the “true clustering” (Acc =1) has been obtained
quite often in both cases. Acc =1 has been obtained in 14% after clustering without

normalisation and in 29% after clustering with normalisation. The average accuracy
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in both cases has been 0.782979 and 0.829574 respectively for the former and the

latter cases.

3.6.2 Wine Data Set

The wine data set has 178 records (N = 178) with 14 attributes. The first attribute
indicates the class (cultivar) and it takes three categorical values, while the rest of the
attributes are numerical. Clustering has been performed using the first categorical
attribute. First the clustering procedure has been applied to the data set without

normalisation of the data (see Table 3.3).

Table 3.3: Clustering of the Wine data set without normalisation of the attributes.

Objective .
N Accuracy Rand Index . Iterations BF
function J

1 0.7022 0.7187 2370689.7 11 +
2 0.7022 0.7187 2370689.7 7 +
3 0.7022 0.7187 2370689.7 4 +
4 0.7022 0.7187 2370689.7 8 +
5 0.7022 0.7187 2370689.7 6 +
6 0.7022 0.7187 2370689.7 5 +
7 0.7022 0.7187 2370689.7 6 +
8 0.7022 0.7187 2370689.7 6 +
9 0.7022 0.7187 2370689.7 4 +
10 0.7022 0.7187 2370689.7 11 +
11 0.7022 0.7187 2370689.7 4 +
12 0.7022 0.7187 2370689.7 5 +
13 0.7022 0.7187 2370689.7 7 +
14 0.7022 0.7187 2370689.7 3 +
15 0.7022 0.7187 2370689.7 5 +
16 0.7022 0.7187 2370689.7 3 +
17 0.7022 0.7187 2370689.7 3 +
18 0.7022 0.7187 2370689.7 5 +
19 0.7022 0.7187 2370689.7 6 +
20 0.7022 0.7187 2370689.7 4 +
21 0.7022 0.7187 2370689.7 8 +
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Objective

N Accuracy Rand Index function J Iterations BF
22 0.7022 0.7187 2370689.7 7 +
23 0.7022 0.7187 2370689.7 14 +
24 0.7022 0.7187 2370689.7 9 +
25 0.7022 0.7187 2370689.7 3 +
26 0.7022 0.7187 2370689.7 12 +
27 0.7022 0.7187 2370689.7 5 +
28 0.7022 0.7187 2370689.7 7 +
29 0.7022 0.7187 2370689.7 4 +
30 0.7022 0.7187 2370689.7 4 +
31 0.7022 0.7187 2370689.7 9 +
32 0.7022 0.7187 2370689.7 9 +
33 0.7022 0.7187 2370689.7 7 +
34 0.7022 0.7187 2370689.7 10 +
35 0.7022 0.7187 2370689.7 7 +
36 0.7022 0.7187 2370689.7 9 +
37 0.7022 0.7187 2370689.7 3 +
38 0.7022 0.7187 2370689.7 3 +
39 0.7022 0.7187 2370689.7 2 +
40 0.7022 0.7187 2370689.7 5 +
41 0.7022 0.7187 2370689.7 8 +
42 0.7022 0.7187 2370689.7 5 +
43 0.7022 0.7187 2370689.7 7 +
44 0.7022 0.7187 2370689.7 7 +
45 0.7022 0.7187 2370689.7 10 +
46 0.7022 0.7187 2370689.7 5 +
47 0.7022 0.7187 2370689.7 10 +
48 0.7022 0.7187 2370689.7 3 +
49 0.7022 0.7187 2370689.7 5 +
50 0.7022 0.7187 2370689.7 4 +
51 0.7022 0.7187 2370689.7 6 +
52 0.7022 0.7187 2370689.7 8 +
53 0.7022 0.7187 2370689.7 4 +
54 0.7022 0.7187 2370689.7 9 +
55 0.7022 0.7187 2370689.7 4 +
56 0.7022 0.7187 2370689.7 5 +
57 0.7022 0.7187 2370689.7 3 +
58 0.7022 0.7187 2370689.7 5 +
59 0.7022 0.7187 2370689.7 7 +
60 0.7022 0.7187 2370689.7 7 +
61 0.7022 0.7187 2370689.7 5 +
62 0.7022 0.7187 2370689.7 5 +
63 0.7022 0.7187 2370689.7 7 +
64 0.7022 0.7187 2370689.7 7 +
65 0.7022 0.7187 2370689.7 6 +
66 0.7022 0.7187 2370689.7 5 +
67 0.7022 0.7187 2370689.7 6 +
68 0.7022 0.7187 2370689.7 5 +
69 0.7022 0.7187 2370689.7 5 +
70 0.7022 0.7187 2370689.7 4 +
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N Accuracy Rand Index Objective Iterations BF
function J

71 0.7022 0.7187 2370689.7 4 +
72 0.7022 0.7187 2370689.7 9 +
73 0.7022 0.7187 2370689.7 9 +
74 0.7022 0.7187 2370689.7 7 +
75 0.7022 0.7187 2370689.7 5 +
76 0.7022 0.7187 2370689.7 4 +
77 0.7022 0.7187 2370689.7 7 +
78 0.7022 0.7187 2370689.7 11 +
79 0.7022 0.7187 2370689.7 4 +
80 0.7022 0.7187 2370689.7 9 +
81 0.7022 0.7187 2370689.7 6 +
82 0.7022 0.7187 2370689.7 5 +
83 0.7022 0.7187 2370689.7 4 +
84 0.7022 0.7187 2370689.7 7 +
85 0.7022 0.7187 2370689.7 10 +
86 0.7022 0.7187 2370689.7 10 +
87 0.7022 0.7187 2370689.7 6 +
88 0.7022 0.7187 2370689.7 2 +
89 0.5955 0.6898 2631657.1 2

90 0.5787 0.688 2625223.2 2

91 0.573 0.6919 2633555.3 11

92 0.573 0.6919 2633555.3 15

93 0.573 0.6919 2633555.3 10

94 0.573 0.6919 2633555.3 13

95 0.573 0.6919 2633555.3 7

96 0.573 0.6919 2633555.3 11

97 0.573 0.6919 2633555.3 13

98 0.573 0.6919 2633555.3 11

99 0.573 0.6919 2633555.3 11

100 0.573 0.6919 2633555.3 11

Then the clustering procedure with normalisation of all attributes has been applied to
the data set. Both procedures with and without normalisation have been applied 100
times to the data set (see Tables 3.3 and 3.4). Although the data set is quite small, the

“true clustering” ( Acc =1) has not been obtained.
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Table 3.4: Clustering of the Wine data set with normalisation of the attributes.

Objective .
N Accuracy | Rand Index . Iterations BF

function J
1 0.9719 0.962 635.7884 7
2 0.9719 0.962 635.7884 10
3 0.9719 0.962 635.7884 9
4 0.9719 0.962 635.7884 6
5 0.9719 0.962 635.7884 5
6 0.9719 0.962 635.7884 8
7 0.9719 0.962 635.7884 5
8 0.9719 0.962 635.7884 7
9 0.9719 0.962 635.7884 5
10 0.9719 0.962 635.7884 10
11 0.9719 0.962 635.7884 4
12 0.9719 0.962 635.7884 10
13 0.9719 0.962 635.7884 4
14 0.9719 0.962 635.7884 5
15 0.9719 0.962 635.7884 6
16 0.9719 0.962 635.7884 9
17 0.9663 0.9543 635.3746 3 +
18 0.9663 0.9543 635.3746 4 +
19 0.9663 0.9543 635.3746 4 +
20 0.9663 0.9543 635.3746 4 +
21 0.9663 0.9543 635.3746 7 +
22 0.9663 0.9543 635.3746 9 +
23 0.9663 0.9543 635.3746 8 +
24 0.9663 0.9543 635.3746 6 +
25 0.9663 0.9543 635.3746 5 +
26 0.9663 0.9543 635.3746 8 +
27 0.9663 0.9543 635.3746 6 +
28 0.9663 0.9543 635.3746 6 +
29 0.9663 0.9543 635.3746 3 +
30 0.9663 0.9543 635.3746 4 +
31 0.9663 0.9543 635.3746 7 +
32 0.9663 0.9543 635.3746 13 +
33 0.9663 0.9543 635.3746 10 +
34 0.9663 0.9543 635.3746 4 +
35 0.9663 0.9543 635.3746 12 +
36 0.9663 0.9543 635.3746 5 +
37 0.9663 0.9543 635.3746 7 +
38 0.9663 0.9543 635.3746 9 +
39 0.9663 0.9543 635.3746 3 +
40 0.9663 0.9543 635.3746 7 +
41 0.9607 0.9467 636.3877 6
42 0.9607 0.9467 636.3877 4
43 0.9607 0.9467 636.3877 5
44 0.9607 0.9467 636.3877 3
45 0.9607 0.9467 636.3877 5
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Objective

N Accuracy Rand Index function J Iterations BF
46 0.9607 0.9467 636.3877 6
47 0.9607 0.9467 636.3877 4
48 0.9607 0.9467 636.3877 5
49 0.9607 0.9467 636.3877 5
50 0.9607 0.9467 636.3877 6
51 0.9607 0.9467 636.3877 8
52 0.9607 0.9467 636.3877 5
53 0.9607 0.9467 636.3877 8
54 0.9607 0.9467 636.3877 5
55 0.9607 0.9467 636.3877 8
56 0.9607 0.9467 636.3877 5
57 0.9607 0.9467 636.3877 4
58 0.9607 0.9467 636.3877 6
59 0.9607 0.9467 636.3877 9
60 0.9607 0.9467 636.3877 5
61 0.9551 0.9392 636.2708 6
62 0.9551 0.9392 636.2708 3
63 0.9551 0.9392 636.2708 5
64 0.9551 0.9392 636.2708 5
65 0.9551 0.9392 636.2708 5
66 0.9551 0.9392 636.2708 4
67 0.9551 0.9392 636.2708 4
68 0.9551 0.9392 636.2708 4
69 0.9551 0.9392 636.2708 3
70 0.9551 0.9392 636.2708 5
71 0.9551 0.9392 636.2708 5
72 0.9551 0.9392 636.2708 4
73 0.9551 0.9392 636.2708 5
74 0.9551 0.9392 636.2708 4
75 0.9494 0.9311 637.6293 5
76 0.9494 09311 637.6293 8
77 0.9494 0.9311 637.6293 6
78 0.9494 0.9311 637.6293 7
79 0.9494 0.9311 637.6293 7
80 0.9494 0.9311 637.6293 8
81 0.9494 0.9311 637.6293 6
82 0.9494 0.9311 637.6293 10
83 0.9494 0.9311 637.6293 6
84 0.9494 0.9311 637.6293 12
85 0.9494 0.9311 637.6293 5
86 0.9494 0.9311 637.6293 6
87 0.9494 0.9311 637.6293 7
88 0.9494 0.9311 637.6293 5
89 0.9494 0.9311 637.6293 15
90 0.9494 0.9311 637.6293 7
91 0.9494 0.9311 637.6293 9
92 0.9494 0.9311 637.6293 5
93 0.9494 0.9311 637.6293 5
94 0.9494 0.9311 637.6293 7




Objective
N Accuracy | Rand Index . Iterations BF
function J
95 0.9494 0.9311 637.6293 3
96 0.9494 0.9311 637.6293 7
97 0.9494 0.9311 637.6293 6
98 0.6236 0.7029 789.6402 8
99 0.5899 0.684 804.1441 7
100 0.5281 0.6709 793.4206 4

The obtained average accuracy value 0.687022 in the case without normalisation of
the data has been considerably smaller than the obtained average accuracy value
0.949045 in the case with normalisation of the data. After application of the
normalisation procedure to the data set the Rand index has increased from 0.7187 to

0.9543.

3.6.3 Statlog (Heart Diseases) Data Set

The Heart Diseases data set has 270 records ( N = 270) with 13 attributes (they have
been extracted from a larger set of 75). There are no missing values. The last attribute
indicates the class (absence (1) or presence (2) of heart disease) and it takes two
categorical values. There are 7 categorical attributes and 6 numerical. Clustering has
been performed using the last class attribute. First the clustering procedure has been

applied to the data set without normalisation of the data (see Table 3.5).
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Table 3.5: Clustering of the Heart Diseases data set without normalisation of the

attributes
N Accuracy | Rand Index Objective Iterations BF
function J
1 0.5926 0.5154 548278.3735 7 +
2 0.5926 0.5154 548278.3735 8 +
3 0.5926 0.5154 548278.3735 10 +
4 0.5926 0.5154 548278.3735 5 +
5 0.5926 0.5154 548278.3735 10 +
6 0.5926 0.5154 548280.3531 5
7 0.5926 0.5154 548278.3735 12 +
8 0.5926 0.5154 548278.3735 6 +
9 0.5926 0.5154 548278.3735 5 +
10 0.5926 0.5154 548278.3735 12 +
11 0.5926 0.5154 548278.3735 9 +
12 0.5926 0.5154 548278.3735 8 +
13 0.5926 0.5154 548278.3735 13 +
14 0.5926 0.5154 548278.3735 3 +
15 0.5926 0.5154 548278.3735 14 +
16 0.5926 0.5154 548278.3735 10 +
17 0.5926 0.5154 548278.3735 9 +
18 0.5926 0.5154 548278.3735 7 +
19 0.5926 0.5154 548278.3735 11 +
20 0.5926 0.5154 548278.3735 10 +
21 0.5926 0.5154 548278.3735 12 +
22 0.5926 0.5154 548280.3531 6
23 0.5926 0.5154 548278.3735 7 +
24 0.5926 0.5154 548278.3735 9 +
25 0.5926 0.5154 548278.3735 9 +
26 0.5926 0.5154 548278.3735 11 +
27 0.5926 0.5154 548278.3735 10 +
28 0.5926 0.5154 548278.3735 8 +
29 0.5926 0.5154 548278.3735 8 +
30 0.5926 0.5154 548278.3735 8 +
31 0.5926 0.5154 548278.3735 7 +
32 0.5926 0.5154 548278.3735 11 +
33 0.5889 0.514 548305.2053 8
34 0.5889 0.514 548305.2053 10
35 0.5889 0.514 548305.2053 12
36 0.5889 0.514 548305.2053 8
37 0.5889 0.514 548305.2053 6
38 0.5889 0.514 548305.2053 11
39 0.5889 0.514 548305.2053 8
40 0.5889 0.514 548305.2053 12
41 0.5889 0.514 548305.2053 12
42 0.5889 0.514 548305.2053 9
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Objective

N Accuracy | Rand Index function J Iterations BF
43 0.5889 0.514 548305.2053 10
44 0.5889 0.514 548305.2053 10
45 0.5889 0.514 548305.2053 10
46 0.5889 0.514 548305.2053 11
47 0.5889 0.514 548305.2053 10
48 0.5889 0.514 548305.2053 10
49 0.5889 0.514 548305.2053 11
50 0.5889 0.514 548305.2053 10
51 0.5889 0.514 548305.2053 7
52 0.5889 0.514 548305.2053 12
53 0.5889 0.514 548305.2053 10
54 0.5889 0.514 548305.2053 11
55 0.5889 0.514 548305.2053 12
56 0.5889 0.514 548305.2053 11
57 0.5889 0.514 548305.2053 10
58 0.5889 0.514 548305.2053 10
59 0.5889 0.514 548305.2053 12
60 0.5889 0.514 548305.2053 9
61 0.5889 0.514 548305.2053 8
62 0.5889 0.514 548305.2053 i1
63 0.5889 0.514 548305.2053 7
64 0.5889 0.514 548305.2053 3
65 0.5889 0.514 548305.2053 10
66 0.5889 0.514 548305.2053 6
67 0.5889 0.514 548305.2053 8
68 0.5889 0.514 548305.2053 9
69 0.5889 0.514 548305.2053 8
70 0.5889 0.514 548305.2053 12
71 0.5889 0.514 548305.2053 10
72 0.5889 0.514 548305.2053 8
73 0.5889 0.514 548305.2053 8
74 0.5889 0.514 548305.2053 11
75 0.5889 0.514 548305.2053 4
76 0.5889 0.514 548305.2053 9
77 0.5889 0.514 548305.2053 12
78 0.5889 0.514 548305.2053 7
79 0.5889 0.514 548305.2053 9
80 0.5889 0.514 548305.2053 8
81 0.5889 0.514 548305.2053 11
82 0.5889 0.514 548305.2053 10
83 0.5889 0.514 548305.2053 11
84 0.5889 0.514 548305.2053 11
85 0.5889 0.514 548305.2053 11
86 0.5889 0.514 548305.2053 8
87 0.5889 0.514 548305.2053 11
88 0.5889 0.514 548305.2053 4
89 0.5889 0.514 548305.2053 11
90 0.5889 0.514 548305.2053 10
91 0.5889 0.514 548305.2053 12
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N Accuracy | Rand Index Objective Iterations BF
function J
92 0.5889 0.514 548305.2053 12
93 0.5889 0.514 548305.2053 11
94 0.5889 0.514 548305.2053 9
95 0.5889 0.514 548305.2053 10
96 0.5889 0.514 548305.2053 12
97 0.5889 0.514 548305.2053 10
98 0.5889 0.514 548305.2053 9
99 0.5889 0.514 548305.2053 11
100 0.5889 0.514 548305.2053 7

Then the clustering procedure with normalisation of all attributes has been applied to
the data set. Both procedures with and without normalisation have been applied 100

times to the data set (see Tables 3.5 and 3.6).

Table 3.6: Clustering of the Heart Diseases data set with normalisation of the

attributes.
N Accuracy Rand Index Objective Iterations BF
function J

1 0.8259 0.7114 1868.3564 4
2 0.8259 0.7114 1868.3564 7
3 0.8259 0.7114 1868.3564 6
4 0.8259 0.7114 1868.3564 5
5 0.8259 0.7114 1868.3564 5
6 0.8259 0.7114 1868.3564 5
7 0.8259 0.7114 1868.3564 6
8 0.8222 0.7066 1868.3293 6
9 0.8185 0.7018 1868.3446 4
10 0.8185 0.7018 1868.3446 5
11 0.8185 0.7018 1868.3446 5
12 0.8148 0.6971 1836.1406 3
13 0.8074 0.6878 1794.5934 4
14 0.8074 0.6878 1794.5934 7
15 0.8074 0.6878 1794.5934 6
16 0.8074 0.6878 1794.5934 6
17 0.8074 0.6878 1794.5934 3
18 0.8074 0.6878 1794.5934 4
19 0.8074 0.6878 1794.5934 6
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Objective

N Accuracy Rand Index function J Iterations BF
20 0.8074 0.6878 1794.5934 2
21 0.8074 0.6878 1794.5934 7
22 0.8074 0.6878 1794.5934 5
23 0.8074 0.6878 1794.5934 4
24 0.8074 0.6878 1794.5934 4
25 0.8074 0.6878 1794.5934 6
26 0.8074 0.6878 1794.5934 5
27 0.8074 0.6878 1794.5934 4
28 0.8074 0.6878 1794.5934 5
29 0.8074 0.6878 1794.5934 9
30 0.8074 0.6878 1794.5934 4
31 0.8074 0.6878 1794.5934 7
32 0.8074 0.6878 1794.5934 8
33 0.8074 0.6878 1794.5934 7
34 0.8074 0.6878 1794.5934 5
35 0.8074 0.6878 1794.5934 6
36 0.8074 0.6878 1794.5934 5
37 0.8074 0.6878 1794.5934 5
38 0.8074 0.6878 1794.5934 6
39 0.8074 0.6878 1794.5934 7
40 0.8074 0.6878 1794.5934 4
41 0.8074 0.6878 1794.5934 4
42 0.8074 0.6878 1794.5934 4
43 0.8074 0.6878 1794.5934 6
44 0.8074 0.6878 1794.5934 5
45 0.8074 0.6878 1794.5934 7
46 0.8074 0.6878 1794.5934 3
47 0.8074 0.6878 1794.5934 6
48 0.8074 0.6878 1794.5934 6
49 0.8074 0.6878 1794.5934 6
50 0.8074 0.6878 1794.5934 5
51 0.8074 0.6878 1794.5934 4
52 0.8074 0.6878 1794.5934 4
53 0.8074 0.6878 1794.5934 3
54 0.8074 0.6878 1794.5934 7
55 0.8074 0.6878 1794.5934 6
56 0.8037 0.6833 1794.5534 13 +
57 0.8037 0.6833 1794.5534 4 +
58 0.8037 0.6833 1794.5534 8 +
59 0.8037 0.6833 1794.5534 3 +
60 0.8037 0.6833 1794.5534 6 +
61 0.8037 0.6833 1794.5534 13 +
62 0.8037 0.6833 1794.5534 4 +
63 0.8037 0.6833 1794.5534 5 +
64 0.8037 0.6833 1794.5534 8 +
65 0.8037 0.6833 1794.5534 4 +
66 0.8037 0.6833 1794.5534 8 +
67 0.8037 0.6833 1794.5534 7 +
68 0.8037 0.6833 1794.5534 4 +
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Objective .

N Accuracy Rand Index . Iterations BF
function J

69 0.8037 0.6833 1794.5534 14 +
70 0.8037 0.6833 1794.5534 4 +
71 0.8037 0.6833 1794.5534 4 +
72 0.8037 0.6833 1794.5534 9 +
73 0.8037 0.6833 1794.5534 8 +
74 0.8037 0.6833 1794.5534 13 +
75 0.8037 0.6833 1794.5534 3 +
76 0.8037 0.6833 1794.5534 5 +
77 0.8037 0.6833 1794.5534 4 +
78 0.8037 0.6833 1794.5534 4 +
79 0.8037 0.6833 1794.5534 5 +
80 0.8037 0.6833 1794.5534 4 +
81 0.7963 0.6744 1859.3437 4
82 0.7963 0.6744 1859.3437 6
83 0.7963 0.6744 1859.3437 12
84 0.7963 0.6744 1859.3437 6
85 0.7963 0.6744 1859.3437 4
86 0.7963 0.6744 1859.3437 4
87 0.7963 0.6744 1859.3437 2
88 0.7963 0.6744 1859.3437 6
89 0.7963 0.6744 1859.3437 12
90 0.7963 0.6744 1859.3437 4
91 0.7963 0.6744 1859.3437 12
92 0.7963 0.6744 1859.3437 3
93 0.5593 0.5052 2056.4629 7
94 0.5556 0.5043 2056.6104 4
95 0.5259 0.4995 2020.4735 6
96 0.5222 0.4991 2142.8896 3
97 0.5222 0.4991 2020.4696 5
98 0.5222 0.4991 2020.4696 8
99 0.5185 0.4988 2144.1491 6
100 0.5074 0.4983 2153.6535 5

The “true clustering” ( Acc=1) has not been obtained. The obtained average
accuracy value 0.590074 in the case without normalisation of the data has been
considerably smaller than the obtained average accuracy value 0.784741 in the case
with normalisation of the data. After application of the normalisation procedure to
the data set the Rand index has increased from 0.5154 to 0.6833. The latter value has

been taken not as the best value of the Rand index but in accordance with the
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obtained best objective function value (because this is the criterion of the

unsupervised objective function-based clustering).

3.6.4 Credit Approval Data Set

The credit approval data set has 690 records (N = 690) with 16 attributes. There are 6
numerical attributes, while the rest of the attributes are categorical. Clustering has
been performed using the last categorical attribute that takes two values: + and,-, i.e.
approval of the credit and rejection of the application. First the clustering procedure

has been applied to the data set without normalisation of the data (Table 3.7).

Table 3.7: Clustering of the Credit Approval data set without normalisation.

Objective .
N Accuracy Rand Index . Iterations BF
function J
1 0.5528 0.5048 4897673526 7 +
2 0.5528 0.5048 4897673526 5 +
3 0.5528 0.5048 4897673526 7 +
4 0.5528 0.5048 4897673526 5 +
5 0.5528 0.5048 4897673526 5 +
6 0.5528 0.5048 4897673526 7 +
7 0.5528 0.5048 4897673526 5 +
8 0.5528 0.5048 4897673526 7 +
9 0.5528 0.5048 4897673526 6 +
10 0.5528 0.5048 4897673526 7 +
11 0.5528 0.5048 4897673526 6 +
12 0.5528 0.5048 4897673526 4 +
13 0.5528 0.5048 4897673526 2 +
14 0.5528 0.5048 4897673526 7 +
15 0.5528 0.5048 4897673526 6 +
16 0.5528 0.5048 4897673526 6 +
17 0.5528 0.5048 4897673526 7 +
18 0.5528 0.5048 4897673526 6 +
19 0.5528 0.5048 4897673526 7 +
20 0.5528 0.5048 4897673526 6 +
21 0.5528 0.5048 4897673526 7 +
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Objective

N Accuracy Rand Index function J Iterations BF
22 0.5528 0.5048 4897673526 7 +
23 0.5528 0.5048 4897673526 6 +
24 0.5528 0.5048 4897673526 6 +
25 0.5528 0.5048 4897673526 7 +
26 0.5528 0.5048 4897673526 7 +
27 0.5528 0.5048 4897673526 7 +
28 0.5528 0.5048 4897673526 7 +
29 0.5528 0.5048 4897673526 6 +
30 0.5528 0.5048 4897673526 7 +
31 0.5528 0.5048 4897673526 7 +
32 0.5528 0.5048 4897673526 7 +
33 0.5528 0.5048 4897673526 7 +
34 0.5528 0.5048 4897673526 6 +
35 0.5528 0.5048 4897673526 6 +
36 0.5528 0.5048 4897673526 3 +
37 0.5528 0.5048 4897673526 6 +
38 0.5528 0.5048 4897673526 7 +
39 0.5528 0.5048 4897673526 6 +
40 0.5528 0.5048 4897673526 7 +
41 0.5528 0.5048 4897673526 5 +
42 0.5528 0.5048 4897673526 7 +
43 0.5528 0.5048 4897673526 7 +
44 0.5528 0.5048 4897673526 7 +
45 0.5528 0.5048 4897673526 5 +
46 0.5528 0.5048 4897673526 6 +
47 0.5528 0.5048 4897673526 6 +
48 0.5528 0.5048 4897673526 6 +
49 0.5528 0.5048 4897673526 6 +
50 0.5528 0.5048 4897673526 7 +
51 0.5528 0.5048 4897673526 7 +
52 0.5528 0.5048 4897673526 7 +
53 0.5528 0.5048 4897673526 6 +
54 0.5528 0.5048 4897673526 6 +
55 0.5528 0.5048 4897673526 3 +
56 0.5528 0.5048 4897673526 7 +
57 0.5528 0.5048 4897673526 5 +
58 0.5528 0.5048 4897673526 7 +
59 0.5528 0.5048 4897673526 7 +
60 0.5528 0.5048 4897673526 7 +
61 0.5528 0.5048 4897673526 6 +
62 0.5528 0.5048 4897673526 7 +
63 0.5528 0.5048 4897673526 6 +
64 0.5528 0.5048 4897673526 6 +
65 0.5528 0.5048 4897673526 6 +
66 0.5528 0.5048 4897673526 6 +
67 0.5528 0.5048 4897673526 6 +
68 0.5528 0.5048 4897673526 6 +
69 0.5528 0.5048 4897673526 6 +
70 0.5528 0.5048 4897673526 6 +
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Objective .

N Accuracy Rand Index function J Iterations BF
71 0.5528 0.5048 4897673526 7 +
72 0.5528 0.5048 4897673526 7 +
73 0.5528 0.5048 4897673526 6 +
74 0.5528 0.5048 4897673526 7 +
75 0.5528 0.5048 4897673526 6 +
76 -0.5528 0.5048 4897673526 7 +
77 0.5528 0.5048 4897673526 6 +
78 0.5528 0.5048 4897673526 6 +
79 0.5528 0.5048 4897673526 6 +
80 0.5528 0.5048 4897673526 6 +
81 0.5528 0.5048 4897673526 7 +
82 0.5528 0.5048 4897673526 1 +
83 0.5528 0.5048 4897673526 6 +
84 0.5528 0.5048 4897673526 6 +
85 0.5528 0.5048 4897673526 6 +
86 0.5528 0.5048 4897673526 4 +
87 0.5528 0.5048 4897673526 6 +
88 0.5528 0.5048 4897673526 7 +
89 0.5528 0.5048 4897673526 7 +
90 0.5528 0.5048 4897673526 7 +
91 0.5528 0.5048 4897673526 7 +
92 0.5528 0.5048 4897673526 7 +
93 0.5528 0.5048 4897673526 6 +
94 0.5528 0.5048 4897673526 6 +
95 0.5528 0.5048 4897673526 6 +
96 0.5528 0.5048 4897673526 6 +
97 0.5528 0.5048 4897673526 6 +
98 0.5528 0.5048 4897673526 7 +
99 0.5528 0.5048 4897673526 7 +
100 0.5528 0.5048 4897673526 7 +

Then the clustering procedure with normalisation of all attributes has been applied to
the data set (Table 3.8). Both procedures with and without normalisation have been

applied 100 times to the data set.
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Table 3.8: Clustering of the Credit Approval data set with normalisation.

Objective .

N Accuracy Rand Index function J Iterations BF
1 0.8239 0.7094 5429.256 3
2 0.8239 0.7094 5429.256 5
3 0.8239 0.7094 5429.256 4
4 0.8239 0.7094 5430.4593 5
5 0.8239 0.7094 5430.4593 4
6 0.807 0.6881 5346.6759 6
7 0.807 0.6881 5346.6759 7
8 0.807 0.6881 5346.6759 3
9 0.807 0.6881 5346.6759 4
10 0.807 0.6881 5346.6759 7
11 0.807 0.6881 5346.6759 9
12 0.807 0.6881 5346.6759 6
13 0.807 0.6881 5346.6759 7
14 0.807 0.6881 5346.6759 7
15 0.807 0.6881 5346.6759 6
16 0.807 0.6881 5346.6759 7
17 0.807 0.6881 5346.6759 4
18 0.807 0.6881 5346.6759 6
19 0.807 0.6881 5346.6759 6
20 0.807 0.6881 5346.6759 4
21 0.807 0.6881 5346.6759 4
22 0.807 0.6881 5346.6759 7
23 0.8025 0.6825 5342.78%94 4
24 0.8025 0.6825 5342.7894 6
25 0.8025 0.6825 5342.7894 6
26 0.8025 0.6825 5342.7894 3
27 0.8025 0.6825 5342.7894 S
28 0.8025 0.6825 5342.7894 4
29 0.8025 0.6825 5342.7894 7
30 0.8025 0.6825 5342.7894 4
31 0.8025 0.6825 5342.7894 4
32 0.8025 0.6825 5342.7894 5
33 0.8025 0.6825 5342.7894 7
34 0.8025 0.6825 5342.7894 6
35 0.8025 0.6825 5342.7894 9
36 0.8025 0.6825 5342.7894 6
37 0.8025 0.6825 5342.7894 6
38 0.8025 0.6825 5342.7894 S
39 0.8025 0.6825 5342.7894 6
40 0.8025 0.6825 5342.7894 6
41 0.8025 0.6825 5342.7894 6
42 0.8025 0.6825 5342.7894 4
43 0.8025 0.6825 5342.7894 3
44 0.8025 0.6825 5342.7894 5
45 0.8025 0.6825 5342.7894 3
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Objective

N Accuracy Rand Index function J Iterations BF
46 0.8025 0.6825 5342.7894 6

47 0.8025 0.6825 5342.7894 5

48 0.8009 0.6806 5342.7538 4 +
49 0.8009 0.6806 5342.7538 4 +
50 0.8009 0.6806 5342.7538 3 +
51 0.8009 0.6806 5342.7538 3 +
52 0.8009 0.6806 5342.7538 5 +
53 0.8009 0.6806 5342.7538 3 +
54 0.7948 0.6733 5438.2405 5

55 0.7933 0.6715 5438.236 16

56 0.7933 0.6715 5438.236 7

57 0.7933 0.6715 5438.236 5

58 0.7933 0.6715 5438.236 8

59 0.7933 0.6715 5438.236 9

60 0.7933 0.6715 5438.236 8

61 0.7933 0.6715 5438.236 7

62 0.6861 0.5686 5563.2453 3

63 0.6784 0.563 5563.2019 4

64 0.6784 0.563 5564.1337 4

65 0.6432 0.5403 5536.5778 4

66 0.6432 0.5403 5536.5778 4

67 0.6432 0.5403 5536.5778 3

68 0.5482 0.5039 5901.8234 4

69 0.5482 0.5039 5562.1779 3

70 0.5482 0.5039 5562.1779 4

71 0.5482 0.5039 5562.1779 2

72 0.5482 0.5039 5562.1779 3

73 0.5482 0.5039 5562.1779 2

74 0.5482 0.5039 5562.1779 3

75 0.5482 0.5039 5562.1779 3

76 0.5482 0.5039 5562.1779 3

77 0.5482 0.5039 5562.1779 3

78 0.5467 0.5036 5561.1694 3

79 0.5467 0.5036 5561.1694 3

80 0.5467 0.5036 5561.1694 3

81 0.5467 0.5036 5561.1694 2

82 0.5467 0.5036 5561.1694 2

83 0.5467 0.5036 5561.1694 3

84 0.5467 0.5036 5561.1694 3

85 0.5467 0.5036 5561.1694 2

86 0.5467 0.5036 5561.1694 2

87 0.5467 0.5036 5561.1694 4

88 0.5467 0.5036 5561.1694 4

89 0.5283 0.5008 5973.6835 4

90 0.5283 0.5008 5973.6835 4

91 0.5115 0.4995 6077.557 1

92 0.5115 0.4995 6077.557 3

93 0.5115 0.4995 6077.557 3

94 0.5115 0.4995 6077.557 5
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Objective .
N Accuracy Rand Index . Iterations BF
function J
95 0.5115 0.4995 6077.557 3
96 0.51 0.4994 6078.3273 3
97 0.51 0.4994 6078.3273 2
98 0.51 0.4994 6078.3273 4
99 0.51 0.4994 6078.3273 1
100 0.51 0.4994 6078.3273 3

The results of all 100 runs of the procedure without normalisation were the same and
therefore equal to the average accuracy 0.552833 and the value of the cost function is
4897673525.5238. After the runs of the procedure with normalisation, the average
accuracy increased to 0.706861 (see Table 3.8). After normalisation, the Rand index
increased from 0.5048 to 0.6806. Again the latter value has been taken not as the best
value of the Rand index but in accordance with the obtained best objective function
value (because this is the criterion of the unsupervised objective function-based

clustering).

3.7 Summary

In the overwhelming majority of the earlier approaches to normalisation, scaling was
used for numerical attributes when the Euclidean metric was used for measuring
dissimilarity between attributes. It was also often assumed that the variables have the
normal distribution. These normalisation approaches were applied mainly to assure
the values being in the [0, 1] range. However, it has been shown that in general this

does not provide equal contributions of the features to the metrics. It was also
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suggested often to truncate the out-of-range components and this could lead to loss of

information from the data set.

In the general case of feature extraction, when there is no a priory information about
preferences of some attributes, one has to assume that all attributes are equally
important. A direct application of geometric measures to attributes with large ranges
will implicitly assign bigger contributions to the metrics than those of attributes with
small ranges. If all attributes are equally important to measure similarity between
feature vectors then one should not use distance measures like the Euclidean distance
(3.1), the matching dissimilarity measure (3.20) and their combination without

normalisation of data.

These arguments have been used to support the proposed unified statistical approach
that has to be applied to normalise all attributes of the feature vectors of mixed data
sets. To obtain a new normalised metric, one should calculate the mean contribution
of each attribute to the metric and to divide the attribute in all records by this mean.

Estimators are used to calculate the mean contributions.

Evidently, if the mean is equal to zero then this attribute should be removed from the
feature vector. The means of contributions of all attributes in all considered cases are
the same and hence, contributions of the features to similarity measures are
approximately equalized. Such a normalisation is achieved by scaling the numerical
attributes, while the categorical attributes are normalised by appropriate choice of

their weights.
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If one knows a priory that some attributes have bigger contributions to similarity
measures than the rest of the attributes then this can be taken into account by
appropriate weighting of attributes. It looks quite natural to apply the weighting
procedure to metrics that have already been normalised by the above described

procedure.

The new normalised metrics has been used for clustering numerical, categorical and
mixed data. The k -prototypes algorithm that earlier was applied for a non-
normalised metric (Huang, 1998), has been employed. It has been shown that
normally the accuracy increased when clustering is performed using normalised
metrics. These examples have demonstrated the advantages of the introduced

normalised metrics.
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Chapter 4

Clustering mixed data sets (Minkowski metric)

In this chapter, a new statistical approach introduced in Chapter 3 is developed
further. The new approach is applied to the case of the Minkowski metrics being used
as a measure for continuous numerical features, while to deal with categorical
attributes again the matching dissimilarity measure is used. Various mathematical
problems related to the normalisation of mixed metrics are resolved. The introduced
metrics are applied to some data sets where it is more advantageous to apply the
general Minkowski metrics (including the Tchebysheff and city-block metrics)

instead of a particular case p,, =2 (the Euclidean metric).

4.1. Background

In clustering analysis of numerical data sets, often not only the Euclidean metric

(distance) p, (or L,) but other similarity measures are also used. For example, city

block distance (or L, metric)

Ax) A =%, = S, x| @)

the Minkowski distance p, (or L, metric)
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p 1 py

Poy (x,%,) =[x, —x, ||pM=(Z!xlj — Xy, IPMJ 4.2)
Jj=1

where p,, is a positive number, 1< p,, <+c0; and the Tchebysheff (Chebyshev) or

maximum norm metric
P X5 X5) = X, = X, [ = mj’:‘x X =%y, | 4.3)

The Euclidean metric (3.1) and city block distance (4.1) are particular cases of the

Minkowski metric for p,, =2 and p,, =1 respectively. The Tchebysheff metric can
be obtained from the Minkowski metric as the following limit p,, — o . Other

metrics are also applied to numerical data sets.

As it has been argued in the previous chapter, if there is no a priory information
about preferences of some attributes, one has to assume that all attributes are equally
important, and hence to assume that the average contribution of the j-th feature
component to the total measure is equal to its mean. Therefore, the goal of a
normalisation procedure is the equalisation of the attribute contributions. Applying
the same unified statistical treatment to both numerical and categorical features of
mixed data sets, as it has been used in the previous chapter, new normalised metrics

are introduced.

In this Chapter a rigorous statistical approach to data sets is used and various

mathematical problems related to the normalisation of mixed metrics are resolved.
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Mathematically rigorous treatment of the normalisation procedure is presented and
examples of normalised metrics are given in an explicit way. In addition, the
proposed approach is extended to the case of mixed metrics, i.e. when different

metrics are used for numerical and categorical data respectively.

4.2 Statistical approach to normalisation of the

Minkowski metric (numerical attributes)

To obtain a new normalised metric in the general case of the Minkowski metric (4.2),

one should calculate the mean contribution of each j -th attribute to the metric
E|X,;—X,;|™ (here E means the expectation of a variable) and to divide the

attribute in all records by this mean (if the mean is equal to zero then this attribute
should be removed from the feature vector). Hence, the normalised Minkowski

metric can be introduced in the following way

Vpy
r
Py, (xl’x2)=(za}' | X, — Xy, |pu] (4.4)
j=1

where a,=1/E|X,,-X,,|™ , X,; and X, are independent random variables

whose values are distributed in accordance with the distribution of the j -th attribute.
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In the general case, the distribution of the j-th attribute is not known in advance,

therefore, to estimate the expectation E|X,; — X, |™ we can use the sample mean

A 1 N
E1 Xy =Xy, M= 2 by =2y 1™ (4.5)
r,s=1

The estimation (4.5) is a biased estimator of E| X, — X, |, hence for small data

sets it is better to use the following estimation

. 2
ElX, -X, |“=—— —x_ |P™ 4.6
I 1 2]' N(N—'l)ls’;ss”lx’] x_gl ( )

that is an unbiased estimator.

It follows from Proposition B1 (Appendix B) that (4.5) and (4.6) are consistent

estimators.

Comment. For p, =2 the above results agree with the results obtained for the

Euclidean metric (see Chapter 3).

If the data set is large, i.e. the record number N is large, then it is rather difficult to

use the formula (4.5) or it cannot be used at all because the sum has N> components

and, hence, its calculation is rather time consuming. For example, an average size

data set may have N =10°. In this case, the number of operations for calculating just
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one sum is N>=10". To calculate EIXl =X, jlp" one can use the following

approach.

Often some of the real numerical features are normally distributed. Let us consider

now the case when one knows in advance that the values of the j-th attribute are

distributed normally. In this case, there is a quite attractive property of p, . Let
S (x) be a normal distribution with mean u; and variance o-f. . The probability
/

distribution or density function for a normal distribution has the following formula:

1o e )

J

One can assume that X,; and X, are independent random variables having the same
normal distribution with mean y; and variance 0'12. . Then the random variable
X,; —X,, has also a normal distribution with mean O and dispersion 207 . For this

random variable, one can estimate E|X,, — X,; |* using the following formula

1 ¢ 1 ” o
By~ P= - L ""p(uaz.)"’:ﬁa by e"p('w?]‘”'
J J / ’

Denoting
u= e

=,

oy
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and substituting this expression into the above formula for mathematical expectation

E|X,; - X,,|™ , one obtains

20, )Pm Pyl 20 )P
EIle"ijlp"=£—J—)—fu 2 le_“du=( o) F(pM+1).

I 7r 2

where

I'(x)= ft’“‘e” dt

is the Euler gamma function. Thus, one has

20-_ Pu
Elej_X2j|pM='__—( ) r(———pM+1).

N 2

The gamma function can be calculated using the standard algorithms.

4.3 Normalisation of metrics for data sets with mixed

attributes

For data sets with categorical attributes, it is possible to introduce different metrics
(see, e.g. Gibert and Cortes, 1997; Huang, 1998; Ralambondrainy, 1995). One of the

most cited variants of metrics is studied here (see, e.g. Huang, 1998), namely the

distance between two categorical feature vectors y,=(y,...,y,;) and

Y, =(Vy15---»¥y) is defined as:
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Poat(Y15¥2) = @Y1y Y3) +. o+ @(Vyy5 ¥y,) @7

weEre

0 for y,;=y,,

w(ylj’yzf)={l for y,#¥y,;

Evidently, the metric (4.7) in degree p,, is

Pk (¥1,Y2) = @™ (P11, Y1) +... + @™ OusYar) 4.8)

Let us extend the results obtained for the Euclidean metric to the general case of the
Minkowski metric. It follows from the Minkowski inequality that the following

function is a metric:

P(x,Y,):(X,,Y,)) =

Pu P Py Prs 1/ pp, (49)
(I Xy =Xy [ At | X, =X, [ 0™ (M, V) ot @ (J’uaJ’zl))
It will be called the Minkowski mixed p,, -metric.

In fact, we have to prove that the sum of the Minkowski metric for numerical
attributes and the matching dissimilarity measure for categorical attributes is a
metric. One can see from direct checking that since both metrics are non-negative
and symmetric their sum is also non-negative and symmetric. Hence, we need to

prove only the triangle inequality for the sum. As it has been mentioned in Chapter 2,

the Minkowski inequality is the triangle inequality in L’ spaces:
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gl <lF I +lg I,

The normalisation of the p,, -metric (4.9) is fulfilled in the same way as the

normalisation of the Euclidean mixed metric (see Chapter 3)

P ! 1/ py
P (X,¥)):(X,,¥,)) =[Zaj | x; —x,; [P +Zﬂjpr (ylj’ij)] (4.10)
= =

where «o;=1/E|X,;-X,;| and B, =1/Ew™(Y,,Y,,). Note that B are

J?

calculated in the same way as in (3.24) because Eo™ (Y,,Y,,) = Eo(Y],,Y,,).

J?

If the distribution of the attributes is unknown then to calculate o , one can use the

estimation (4.6), and to estimate Ew(Y;;,Y,;)one can use the sampling mean

j’

A 1 &
Epr(YIjaYy):FZm(yrjaysj) (411)

r,s=1

The estimation (4.11) is a biased estimator of Eo™ (Y],,Y,,), hence for small data

j,

sets it is better to use the following estimation

2
> @y Yy (412)

Eo™ (Y, ,Y,,) = ——
VHTN(N 1) 1S

117



which is an unbiased estimator. It will follow from Proposition B1 (see Appendix B)

that (4.11) and (4.12) are consistent estimators.

4.4 A general algorithm for normalisation of mixed

metrics

Let a mixed metric p be a sum of two metrics p, and p, :

PU(X1,¥1):(X55Y2)) = o (X, X,) + 0, (Y45 Y2)

‘The former metric is for numerical attributes and the latter metric is for categorical

attributes.

To normalise the mixed metric in this general case, one needs first to normalise
metrics p, and p,, i.e. one needs to find p, and p,, and then the normalised general
mixed metric is:

p.((xpyl)’(xz,y2)) = alpl.(xpxz) +a2p; (yl 9y2)'
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4.5 Clustering algorithms based on Minkowski

metrics

4.5.1. Algorithm

As it has been noted, the use of the sum of squares of the Euclidean distances as the
objective function has the advantage of having a simple formula for recalculating
new values of cluster prototypes (see Section 3.2). This advantage was implemented
in the k -means and % -prototypes algorithms. Evidently, these algorithms cannot be
used in the case of a general Minkowski metric. Therefore, it was suggested by
Miyamoto and Augusta (1996) and Hathaway et. al. (2000) to use instead of (3.2) the

following objective function J; , for a generalisation of the fuzzy clustering

objective function

k N ) .
=22 X - Q.| (4.13)

m=l =]

—

where j >1 is the exponent of the fuzzy algorithm. We employ a similar to (4.13)

objective function in order to use it with the Minkowski distances.

4.5.2. Clustering using Minkowski metrics

Let us define an objective function

k N
=Zzu4m(ppu)pu lan) (4!4)

m=1 i=1
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where u,, €{0,1}, 1<i<N, 1<m<k,

k N
Du, =1, Du,>0. (4.15)

m= i=]

—

and p,, 1.

For p,, =2, the k -means algorithm can be employed for clustering. At each iteration,

this algorithm recalculates the prototypes for each of the clusters obtained at the
previous iteration, and then the vectors of records are split again in the new clusters
depending on what of new prototypes is the closest to a particular record in
accordance with the metric. The same approach can be used for clustering using an

objective function for an arbitrary p,, >1.

Indeed, let us write the objective function (4.14) as

k
= Z (P, ) (X1, 0,) (4.16)
m=lieC,

where C,, is the set of all indexes i, (1<i< N) such that the i -th record belongs to

the m -th cluster. Now denote @, as

@, = (p, ) (X,,0,) (4.17)

ieC,,

For every m, let us find a new prototype O, such that the sum @, is minimum.

Then let us split all record vectors into clusters C, (1<m<k) in accordance with
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the proximity of a prototype Q,,, € (Ql,...,Qk) to the record under consideration.

Since

k

2. 2 (P ) (X,,0) < 2. 3 (P, )™ (X,,0,)

m=l1 ieC,,

and for every m, we have

22 (0, Y (X,,0,) <D (0, ) (X1, 0,

ieC,, ieC,,

then we obtain

k

2. 2. (P, ) (X, ~,,.)SZ_Z(P,,M)””(X.~,Q,,,)- (4.18)

m=l ieC,,

It follows from the inequality (4.18) that the value of the objective function at each
iteration would not increase and the iterative process converges to a local minimum

of the objective function.

Thus, for a successful use of the algorithm, one needs to find effectively new
prototypes Qm such that the sum (4.17) is minimum. As it has been mentioned in
Section 3.2, this problem is very simple for p,, =2 in the case of numerical data

because
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o, = (0 X0 =T 3 (X,-0,)

ieC,, ieC,, j=1
and therefore, the minimum is at

B 23 (X,-0,)=0, (i=L.... ). (4.19)
0, i,

Solving the system (4.19), we obtain

Q L > X, (4.20)

mj =
|Cm ieCpy

where |C,,| is the number of records in the m -th cluster. The formula (4.20) is well

known for recalculating the prototypes in the classic k -means algorithm.

Now we need to consider the cases p,, #2. As it has been mentioned, a similar
objective function for fuzzy clustering was considered by Hathaway et .al.(2000).
They suggested also an approach for recalculating the prototypes for these cases.
However, some very important details of the algorithm were not described. Hence,
we need to discuss the algorithm for recalculating the prototypes in detail and apply it

for hard clustering.

In the case under consideration, we have

®, = (p, ) (X, 0= T W, -0, =Y T IX, -0, I"

ieC,, ieC,, j=1 Jj=1ieC,,

If we denote
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@, (=) X, ~t*, (j=1...,p)

ieC,,
then we obtain
) 4
D, =)@, (0,)- 4.21)
Jj=1

It follows from (4.21) that to find the minimum of the function ®,, that depends on
the variables Q,,,...,0,,, one needs to find the minimum of each of the functions
®,, (j=1,...,p) depending only on one variable. Now we present the algorithm of

finding the minimum of the functions @, (¢).

Since a function ®,,(#) may be non-differentiable, however it is definitely a convex

function (by the definition of Minkowski norm), to find the minimum of the function,

let us employ the technique based on finding the subgradient of a convex function.

Calculating the subgradient of ®,,(r), we obtain

00, (=2, Py | X~ 81 X, ~t])

ieC,,
where
-1 if X,.j >t
6(|X,.j—t|)= [-1,1] if X,.j=t.
1 if X,.j <t
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Therefore, for any ¢, 0®,,(¢) is either a number or an interval [u(¢),v(¢)]. To find

the minimum of a function ®,,(¢), we calculate first @, = min X, and b, = max X, .

ieC,, ieC,,

It is evident that the point of the minimum émj ela,.b,].

Next we find the point ¢, that is the middle point of the interval [a,,5,] and calculate
0D, (cy) = [(cy), ¥(e,)].-
There are three possible cases:
@) if u(c,)>0,v(c,)>0 then the point of the minimum is on the interval
(4,615
(ii) if u(c,) <0,v(c,) <0 then the point of the minimum is on the interval
CYYE
(iii) if values of u(c,) and v(c,) have different signs or at least one of the
values is equal to zero then the point ¢, is the point of the minimum

because 0 e[u(c,),v(c,)] (Polyak, 1987).

If the point of minimum has not been found yet then for further consideration, we

chose that of intervals [a,,c,] and [c,,b,] to what the point of minimum belongs to.

Since the interval under consideration reduces twice at each iteration, the process

converges very fast to the point of the minimum of the function @, (7).
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If the data set is mixed then recalculating the numerical parts of the prototypes is
fulfilled by the above described algorithm and recalculating the categorical part

follows the recalculating of the common k -prototypes algorithm.

4.6 Applications of the algorithms based on

Minkowski metrics to data sets

The above normalisation procedure was applied to attributes of two data sets from
the UC Irvine repository (Asuncion and Newman 2007). All records in this data set

have the class labels and, hence, “true clustering” can be checked.

First the clustering procedure has been applied to the data set without normalisation
of the data. Then the clustering procedure with normalisation of all attributes has
been applied to the data set. Both procedures with and without normalisation have
been applied 100 times to the data sets for various values of the Minkowski power

D, - Inthe case p,, =2, the k -prototype algorithm was employed.

4.6.1. Adult data set

The Adult data set, also known as Census Income dataset, has 48842 records and
30162 records without missing values (N = 30162) with 14 attributes and one class
attribute. Each record has eight categorical attributes plus a class attribute, while the

rest of the attributes are numerical.
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Table 4.1 presents the results of application of the algorithm described in Section 4.8

to the Adult data set without normalisation of attributes for various values of the
Minkowski power p,, . The accuracy function has been calculated involving the
ideas of the assignment problem as it has been described in Section 3.5.2. Tables

present the values of the clustering accuracy corresponding to the best value of the

objective function, because this is the condition to achieve clustering.

Table 4.1: Clustering of the Adult data set without normalisation of attributes for

various values of the Minkowski power p,,

Minkowski Accuracy corresponding to the
power p,, best value of objective function

1.0 0.5253

1.5 0.5960

2.0 0.6131

25 0.6364

3.0 0.6587

3.5 0.6876

4.0 0.7192

4.5 0.7381

5.0 0.7439
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Clustering of the Adult data set without normalisation of attributes shows that the
values of the clustering accuracy corresponding to the best value of the objective
function (this value should be used for unsupervised clustering based on objective
function) vary considerably with the variation of the values of the Minkowski power
Dy - The best value has been obtained for p,, =5 and itis Acc=0.7439.

Table 4.2 presents the results of application of the algorithm described in Section 4.8
to the Adult data set with normalisation of attributes for various values of the

Minkowski power p,, . The presented values are the same as in Table 4.1.

Table 4.2: Clustering of the Adult data set with normalisation of attributes for

various values of the Minkowski power p,,

Minkowski Accuracy corresponding to the
power p,, best value of objective function

1.0 0.5769

1.5 0.7560

2.0 0.7536

2.5 0.6198

3.0 0.7560

3.5 0.7560

4.0 0.7560

4.5 0.7560

5.0 0.7560
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Clustering of the Adult data set with normalisation of attributes shows that the values
of the clustering accuracy corresponding to the best value of the objective function

are much less sensible to the particular value of the Minkowski power p,, . The best
value has been obtained for p,, =1.5;3+5 and it is Acc =0.7560. This accuracy is

better than the accuracy obtained for the clustering without normalisation of

attributes.

One can see that it is more advantageous to apply the general Minkowski metrics to
the Adult data set (the clustering accuracy without normalisation is Acc =0.7439 for
Dy =5 and it is Acc=0.7560 for p,, =1.5;3+5 in the case with normalisation)

than a particular case p, =2 (the clustering accuracy without normalisation is

Acc=0.6131 and it is Acc =0.7536 with normalisation).

4.6.2 Shuttle data set

The full Shuttle data set, also known as Statlog (Shuttle) Data Set, has N = 14500

records with 9 numeric attributes and one class attribute.

Table 4.3 presents the results of application of the algorithm described in Section 4.5
to the Shuttle data set without normalisation of attributes for various values of the

Minkowski power p, . As above, the accuracy function has been calculated

involving the ideas of the assignment problem (see Section 3.5.2). The presented

values are the same as in Tables 4.1 and 4.2.
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Table 4.3: Clustering of the Shuttle data set without normalisation of attributes for

various values of the Minkowski power p,,

Minkowski Accuracy corresponding to the
power p,, best value of objective function

1.0 0.4454

1.5 0.4541

2.0 0.6971

2.5 0.8294

3.0 0.7916

3.5 0.7915

4.0 0.7915

Clustering of the Shuttle data set without normalisation of attributes shows that the
values of the clustering accuracy corresponding to the best value of the objective
function vary considerably with the variation of the values of the Minkowski

power p,, . The best value has been obtained for p,, =2.5 and it is Acc = 0.8294 .

Table 4.4 presents the results of application of clustering procedure to the Shuttle

data set with normalisation of attributes for various values of the Minkowski

power p,, . The presented values are the same as in above Tables.
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Table 4.4: Clustering of the Shuttle data set with normalisation of attributes for

various values of the Minkowski power p,,

Minkowski Accuracy corresponding to the
power p,, best value of objective function

1.0 0.4621

1.5 0.4715

2.0 0.4548

25 0.6849

3.0 0.8581

3.5 0.8463

4.0 0.7912

Clustering of the Shuttle data set with normalisation of attributes shows that the

values of the clustering accuracy corresponding to the best value of the objective

function also vary considerably with variation of the values of the Minkowski power

D, - The best value has been obtained for p,, =3 and it is 4cc=0.8581. Again this

accuracy is better than the accuracy obtained for the clustering without normalisation

of attributes. One can see that it is more advantageous to apply the general

Minkowski metrics to the Shuttle data set than a particular case p,, =2 (the

Euclidean metrics).
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4.7 Summary

Our statistical approach introduced in Chapter 3 has been developed further and
applied to the case of the Minkowski metrics beign used as a measure for continuous
numerical features, while the matching dissimilarity measure is applied to categorical

attributes.

To obtain a new normalised metric, one should calculate the mean contribution of
each attribute to the metric and to divide the attribute in all records by this mean.
Estimators are used to calculate the mean contributions. Rigorous mathematical
proofs of unbiasedness and consistency of estimators used are presented (see
Appendix B). Although this last property is very important in Statistics, in the papers
revised, nobody spoke about the consistency of their estimators to the best of the
author’s knowledge. Various other mathematical problems related to the

normalisation of mixed metrics are resolved.

The clustering algorithm applied in the case of the general Minkowski metrics is
discussed in detail. The algorithm is based on ideas that were suggested before by
Miyamoto and Augusta (1996) and Hathaway, Bezdek and Hu. (2000) as a

generalisation of the fuzzy clustering strategies using L, norm distances. The novelty

of our approach is that we employ the algorithm for hard clustering using Minkowski

norm distances. This algorithm has been used instead of the k -prototypes algorithm

for the cases where p,, #2.

131



The described algorithm and the introduced normalised metrics are applied to the
Adult and Shuttle data sets. These examples have demonstrated the advantages of the
introduced normalised metrics. It is also shown that it is more advantageous to apply
for these data sets the general Minkowski metrics and the corresponding algorithm
instead of a particular case p,, =2 (the Euclidean metrics) and the k -prototypes

algorithm.
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Chapter 5
Improving the k-Prototypes algorithm by

Random Search

In this Chapter a new algorithm to cluster data sets with mixed numerical and
categorical values is presented. The algorithm is called RANKPRO: the Random
Search with k -Prototypes Algorithm. It combines the advantages of a recently
introduced population-based optimisation algorithm called the Bees Algorithm (BA),
and the & -prototypes algorithm. The BA works with elite and good solutions, and
continues to look for other possible extremal solutions keeping the number of testing
points constant. However, the improvement of promising solutions by the BA
algorithm may be time consuming because this process is based on the random
neighbourhood search. On the other hand, an application of the % -prototypes
algorithm to a promising solution may be very effective because it improves the
solution at each iteration. The RANKPRO algorithm balances two objectives: it
explores the search space effectively due to random selection of new solutions, and
improves promising solutions fast due to employment of the & -prototypes algorithm.
The efficiency of the new algorithm is demonstrated by clustering several numerical,
categorical and mixed data sets. It is shown that in the majority of the considered data

sets when the average number of iterations that the & -prototypes algorithm needs to
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converge is over 10, the RANKPRO algorithm is more efficient than the k-prototypes

algorithm.

5.1. Background

As we have seen before, in clustering analysis of numerical data sets it is very

common to calculate the similarity or dissimilarity between two feature

vectors X = (X;5...,%,) and X, =(x,,...,x,,) using the Euclidean metric p, (or

L, metric)

12
?
pE(xl’xz)zllxl_lelz =(Z(xlj—x2j)2} ¢.D
=1

For example, the most popular algorithm for clustering numerical data sets is the

k -means algorithm that uses the Euclidean distance.

The generalisation of the k -means algorithm by Huang (1997) that is called the
k-prototypes algorithm is also based on the Euclidean distance. The k -prototypes
algorithm was introduced to cluster large data sets with mixed numerical and
categorical values. It should be noted that both the & -means and k -prototypes
algorithms have a disadvantage, namely the process converges often not to a global
minimum but to a local minimum. Hence, to avoid this premature convergence one
has to modify these algorithms. Recently, Pham et al. (2006b) have presented an

approach to optimisation problems that is called the Bees Algorithm (BA).
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The BA combines neighbourhood search with random search. The randomness of the
search provides flexibility in the search and hence, the BA gives often results that are
quite close to global minimum. In this Chapter a new tool for clustering mixed data
sets is introduced that combines the advantages of both the & -prototypes and the BA
algorithms. The Chapter is organised as follows:
5.2 presents a formal description of both the &-prototypes and BA algorithms.
53 presents a description of the random search with k-prototypes
algorithm(RANKPRO).
5.4 RANKPRO is applied to several data sets. The effectiveness of the
RANKPRO and the k -prototypes clustering algorithms are compared and the

advantages of the former algorithm are shown.

5.2. Preliminaries

5.2.1. The k-means and k -prototypes algorithms

The k -means algorithm (MacQueen 1967) was introduced to cluster numerical data
sets. The specific properties of the algorithm have been discussed in previous
Chapters in detail. Here we present briefly the formal formulation of the algorithm

along with the presentation of the known BA algorithm (Pham et al. 2006b).
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The k -means algorithm minimises the cost function (objective function) J for

“hard” k -partitions of data set into k clusters (Bezdek 1980, Huang 1997b)

k N

J= Zzuimpzzi(xi’Qm)’

m=1 i=1

U, €{0,1}, 1<i<N, 1Sm<k,

k N

>u, =1 Vi, and ) u, >0 Vm. (5.2)
m=1 i=1
Here u,,is an element of the partition matrix. The condition #,, =1 means that the

record X is assigned to cluster m with prototype (centre)Q,, . Since p, defined by

(5.1) is employed in this Thesis for clustering of numerical data, J is the within-group

sum of squared errors objective function.

The implementation of & -means may have various forms, in particular its pseudo

code can be written as:

Step 1.  Select randomly £ initial prototypesQ;,...,Q, , one for each cluster.

Step2.  For each record X, calculate the distances from the record to the
prototypes of clusters; find the nearest prototype Q,, to the record according to
the metric p, defined by (5.1), and allocate the record X, to the cluster C, with

this prototype.
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Step3.  For each cluster C, find a new prototype Q,’ so that the sum of
square distances »_ . p3(X,,Q,) is minimum.

Step4.  If prototypes Q,,...,Q, and Q,...,Q;} are not the same then take the

latest as new prototypes and go to step 2, otherwise stop the procedure.

It is known (see e.g. Stevens, 1946) that to deal statistically with categorical data, one
needs to deal with modes of the data instead of means or medians that are used to
deal with numerical variables. In statistics the mode is that value which occurs most
often or, in other words, has the greatest probability of occurring (see, e.g. (Spiegel
1975)). As it has been mentioned in Chapter 2, Huang (1997, 1998) introduced two

extensions of the k£ -means algorithm, namely the algorithms called k -modes and
k -prototypes. In the k -prototypes algorithm he considered a metric p,, , where p},
is the sum of the square of the numerical metric (5.1) and a weighted categorical

metric p,,

2 =pl+ (5.3)
Pu = Pg ¥ YPeu .
The categorical metric p,, is defined as the number of mismatches of categories

between two objects and the weight y is introduced for the categorical metric to

balance the two parts of the sum and to avoid favouring either type of attribute.

The pseudo codes of the k-modes and k -prototypes algorithms are very similar to
the pseudo code of the k -means algorithm. The difference between the algorithms is
mainly that different dissimilarity measures have to be used. The k -means algorithm

has a great advantage that it converges very fast to a local minimum and at each
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iteration it improves the solution. Consequently the k -prototypes algorithm has the
same advantage. However, application of both k -means and k -prototypes
algorithms to data sets have also a disadvantage, namely the process demonstrates
normally a premature convergence, i.e. it converges not to a global minimum but to a
local minimum. Hence, one needs to run the procedure many times to reach the
global minimum. To increase the effectiveness of the procedure, one has to modify

these algorithms.

5.2.2. The Bees Algorithm

As we have seen in Chapter 2, SI is a type of optimisation technique that mimics the
collective behaviour of animals. There are several methods that can be considered as
SI; the Bees Algorithm is one of them. It is a new technique that was introduced to
mimics nature’s evolutionary principles that drive the search of bees towards an
optimal solution. In application to problems of optimisation, a bee means a point of
the domain (the search space) of the objective function, while the fitness of the bee
means the value of the objective function at this point. It was shown (Pham et al.
2006b) that using the BA for some optimisation problems is more effective than

using the GA based techniques (Goldberg, 1989).

The BA starts by initialising a set of the following parameters: the number of scout
bees (n) that define the total number of sites; the number of best sites () out of the

total number of # sites; the number of elite sites (e); the size of each patch (a patch is
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a region in the search space that includes the visited site and its neighbourhood)

(d,g) around any of the best sites; the number of recruited bees (r,) within the
neighbourhood of the elite sites; the number of recruited bees (r,) around other

selected (g =m —e) sites, and stopping criteria. According to the pseudo code for the
BA (Pham et al. 2006b), n bees are placed on the search space randomly, similar to
scout bees. Every bee on the problem space evaluates the fitness of its field in step 2.
Subsequently, in step 4, elite bees that have better fitness are selected and saved for
the next population. In step 5, good sites for neighbourhood search are selected. In
step 7, the bees search around these points within the neighbourhood boundaries and
their individual fitness is evaluated. More bees will be recruited around elite points

and fewer bees will be recruited around the remaining selected points.

The pseudo code for the Bee Algorithm can be written as (Pham et al. 2005)
Step 1.  Initialise population with random solutions (#sites discovered by n
scout bees).
Step2.  Evaluate fitness of the population (for n sites).
Step3.  While (stopping criterion not met)
Step4.  Select e elite sites.
Step 5.  Select g good sites for neighbourhood search (e + g =m).
Step 6.  Determine the patch size.

Step7.  Recruit r, bees around each of selected elite sites and 7, bees around

each of selected good sites.
Step 8.  Evaluate fitness of solutions for all of these recruited bees and select

the best bee for each neighbourhood.
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Step9.  Assign remaining (n—m) bees to search randomly and evaluate the
fitness of each of the discovered sites.
Step 10. Forming new population.

Step 11. End While.

Some features of the BA algorithm are very similar to some features of Hill climbing
(HC), Local beam search (LBS) and Stochastic beam search (SBS) strategies that are
used to solve optimisation problems. The description of these techniques can be
found elsewhere (see, e.g. Russell and Norvig 2003). Indeed, similarly to these
methods, the BA starts with a random selection of solutions and then improves the
solutions iteratively. However, contrary to the HC and LBS algorithms, it has
probability to converge to the global extremum in a multiextremum problem due to
random exploring of the search space at each iteration. The BA and SBS algorithms

use different procedures of selection of the fittest solutions.

The GA search balances two objectives: utilising the best solutions and exploring the
search space (see e.g. Michalewicz 1996). The BA tries also to balance these
objectives. However, to explore the search space the BA uses random search instead
of crossover and mutation operations used by GA. The BA works with the most
promising and elite solutions. In application to genetic algorithms, the term elitism
was first introduced by De Jong (1975) (see also Mitchell, 1996) in order to force a
GA to retain some number of the best individuals at each generation. The
introduction of elite individuals enables the algorithm under consideration to preserve
the best solutions. Otherwise they could be lost or destroyed by crossover or
mutation. This term has been employed by the BA that works with elite and good

140



points, and continues to look for other possible extreme points keeping the number of

testing points constant.

The BA has also some common features with Controlled Random Search (CRS)
algorithms introduced by Price (1978) (see also (Kaelo and Ali, 2006) for a review of
recent modifications on CRS). Indeed, both CRS and BA algorithms employ initial
points that are uniformly distributed over the search space and unlike gradient based
methods, they calculate only the value of the function itself and they do not use any
property of the function. However, CRS and BA algorithms have also a considerable
difference. In the CRS the region of testing points is gradually contracted by
replacing the current worst point with a better point (the trial point) that is chosen by

a kind of interpolation, while the BA explores always the whole search space.

It was suggested to use the BA not only for optimisation problems but also for
clustering (Pham et al., 2007) where a bee represents a potential clustering solution
as a set of k cluster centres. However, again the BA suggests to use a random search
in the neighbourhoods of selected solutions (partitions) and hence, the local

improvement of promising solutions by the BA algorithm may be time consuming.

On the other hand, there is a faster way to improve the solutions, namely the
employment of the k -prototypes algorithm that converges very fast to a local optimal
solution. In this the algorithm is similar to gradient-like methods of search of local
extrema (see e.g. Pham and Jin, 1995; Wen et al., 2003). Therefore, it is proposed to
use the k -prototypes algorithm to improve the promising solutions. Thus, the new
RANKPRO algorithm that includes the preservation of elite solutions and random
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exploring the search space along with employment of k -prototypes algorithm for

improvement of solutions is proposed.

5.3 Description of RANKPRO

To deal with mixed data sets one needs to use proper metrics. Hence, the
normalisation of metrics for mixed data sets is discussed first and then the

RANKPRO algorithm is described in detail.

5.3.1. Normalisation of metrics for mixed data sets

It has been mentioned above that in clustering analysis of numerical data sets the
Euclidean metric (5.1) is commonly used. For data sets with categorical attributes, it
is possible to introduce different metrics (see, e.g. Gibert and Cortes, 1997; Huang,
1998; Ralambondrainy, 1995). One of the most used variants of metrics is the

matching dissimilarity measure between two categorical feature vectors

Y, =5 yy) and y, =(yp5-Yy) (see, e.g. Huang, 1998). It is defined as

pca:(ylaY2)=w(yn,}’21)+---+a)(yll’y21) (5.4
WEre

0 for y,; =y,

(Y, Y,;) =
(ylj y2;) {1 for y|j¢y2j

Evidently, the square of the metric (5.4) is (see (3.23))

Pzan()'UYZ) = a’z(.}’n’J’zl)+"-+a’2(wa2l)
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Combining p, and p,, for mixed data, one obtains that the square distance between

two mixed feature vectors (x,y,) and (x,,y,) is

p2 ((x;,Y1),(%5,Y,)) = p}f‘ (x;,X,) + ,0;, 2] where p§ (x,,X,) is defined

by (5.1) and pZ,(y,,y,) is defined by (3.23).

As it has been mentioned above, the use of metric (5.3) may encounter some
obstacles in practical realisation because it is not very clear how to find a proper
weight y for the metric to balance the two parts of the sum and to avoid favouring
either type of attribute. A direct application of geometric measures (e.g. city block or
Euclidean distances) for attributes with large ranges will implicitly assign bigger
contributions to the metrics than those for attributes with small ranges. In addition,
the attributes should be dimensionless. Indeed, the numerical values of the ranges of
dimensional attributes depend on the units of measurements and therefore, the choice
of the units of measurements may greatly affect the results of clustering. Hence, if all
attributes are equally important to measure similarity between feature vectors then
one should use a normalisation procedure. Here a normalisation procedure as was
described in detail in Chapter 3 will be employed. To obtain a new normalised metric

for the Euclidean metric, one should calculate the mean contribution of each j-th

2 . . . .
attribute to the metric E |X y— X fl and to divide the attribute in all records by this

mean. Hence, the normalised Euclidean mixed metric is (see (3.25))
. L 2 ¢ 2 %
P ((xpyl):(xzsyz))= Zajlxlj_xljl +Zﬂja) (ylf’yzf) 4
Jj=1 Jj=1
where @, =1/ E|X,, - X, [ and g, =1/Ee*(¥,,,1,,).
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5.3.2 Pseudo code of RANKPRO

If there are a data set and a set of k prototypes S = {Ql,...,Qk} then a record A, may

be allocated to cluster C,, whose prototype Q,, is the nearest to the record according
to the normalised mixed metric (3.25). Hence, a set of prototypes S gives a partition

of the data set to k& clusters {Cl,...,Ck} . In this Thesis a set of prototypes

S= {Q,,...,Q,,} will be called an approximate solution to the clustering problem if it

gives a partition to k non-empty clusters.

The clustering algorithm has to minimise the objective function

1(8)=3 S un[ 7" (4,0,

m=] i=1
u, €{0,1}, 1<i<N, 1<m<k,

k N
> u, =LVi, and D u, >0 Vm. (5.5)
m=1

i=1

The condition u,, =1 for an element of the partition matrix means as above in (5.2)

that the record A, is assigned to cluster C, with prototypeQ,, . Evidently, (5.5) can

be written as

J(5)=3 3 [0 (a-0.)]" 56)

m=1 A;eC,,
To start the RANKPRO one has to give a set of parameters, namely the number (#)

of the approximate solutions to the clustering problem that are considered at each
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step, the number (e, 1<e <n) of elite solutions that are kept to the next step of the
algorithm, the number (r =nn—e) of solutions that are used for random search, and

the number (n,,, ) of iterations of the k -prototypes algorithm that is applied to each

solution to improve the solution. As stopping criterion, one can take either the

approach of the process time to the given maximum time ¢___ or the approach of the

number of process iterations to the given maximum number of iterations.

The pseudo code for RANKPRO can be described as following:

Step1.  Initialization. Select randomly »n solutionsS ,, 1< p<n.

Step2.  While (the stopping criterion is not met yet) consider the selected
solutions.

Step3.  Apply n,,, of iterations of the k -prototypes algorithm to each solution

iter
to improve the solution. The application of the algorithm to the solution has to be

stopped if it becomes stable; this means that it has reached the local minimum.

Step4.  ForeachS§ , calculate the objective functionJ (S p) .

Step5.  Select e solutions with the best values of the objective function for
further study at the next step, the rest » =n—e solutions are removed and
replaced by randomly selected ones.

Step 6.  End While.

The solution of the clustering problem is the best solution S obtained at the last step.

It is important to note that in order to save time in the process of improvement of

solutions, the k-prototypes algorithm is applied to the solutions not until its
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convergence but only #,,, times. This number can be estimated by a prior study of a

specific data set.

Like the BA, the RANKPRO algorithm uses a population of solutions for each
iteration instead of a single solution. The BA suggests using a random search in the
neighbourhoods of selected solutions and hence, the local improvement of promising
solutions by the BA algorithm may be time consuming. The employment of the

k -prototypes algorithm that converges very fast to a local optimal solution is a faster
way to improve the solutions. In this the algorithm is similar to gradient-like methods

of search of local extreme (like Pham and Jin 1995).

5.4 Applications to data sets

5.4.1. Comparing the effectiveness of the clustering algorithms

The comparison of the effectiveness of the clustering algorithms is not an easy task.
Goldberg and Deb (1991) reviewed and compared several selection schemes used in
genetic algorithms. They noted that many claims and counterclaims were presented
regarding the superiority of a selection scheme over another one in genetic
algorithms. However, most of these claims are based on limited (and uncontrolled)
simulation experience; while surprisingly little analysis was performed to understand
relative expected fitness ratios, convergence times, or the functional forms of

selective convergence. A similar situation may be encountered in the area of
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comparison of clustering algorithms. Hence, the following procedure for comparing

the effectiveness of the clustering algorithms has been suggested.

The above methods (the RANKPRO and the % -prototypes algorithms) are applied to
several data sets from the UC Irvine repository (Asuncion and Newman 2007) after
normalisation of the data in accordance with the above described method. The
effectiveness of the clustering algorithms is compared with one another for different
initial parameters and data sets. The scheme described below compares the average
minimum values of the objective function obtained during the runs of the algorithms

that are applied to the same data set during the same time.

Let the RANKPRO algorithm with a specified set of initial parameters be applied to a

specified data set during the given time ¢, and J(f,.,) be the minimum value of

exec

the objective function (5.6) obtained by the execution of the algorithm during this

time. If the algorithm is run a given number #, of simulations then one obtains a set

of J™(t,..) values of the objective function (m=1,..,n,) . The average value
o (teee) = 2o T (teree) /n, is a characteristic of the effectiveness of the algorithm

during?

exec *

The less is J, (1.,

ec

)for the algorithm the greater is the effectiveness of

the algorithm. However, if one takes the valuet, . rather large then all algorithms
may give the same value of the objective function, namely its global minimum value.

Hence, it is pointless to compare the algorithms for large values of?,,. . Evidently,

J

av

(....) depends also on the values ofn, . However, if n, is large enough then the
variations of the J,, (7, ) values will be rather small.
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To compare the effectiveness of the RANKPRO and the k -prototypes algorithms,
the latter is also applied to the same data set. If the & -prototypes algorithm converges

before the process time will reach the value ¢, then the algorithm is run again and

again until the allowed process time is not expired. Each time after convergence of
the k -prototypes process, the minimum value of the objective function is recorded.

The average of the minimum values of the objective function obtained during these

runs is taken asJ,, (7,,,. ) -

5.4.2. Adult data set

The Adult data set, also known as Census Income dataset, has 48842 records and
30162 records without missing values (N = 30162) with 14 attributes and one class
attribute. Each record has eight categorical attributes plus a class attribute, while the
rest of the attributes are numerical. This is a standard data set that was studied a

number of times to test clustering algorithms (see, e.g. (Huang 1998)). For ADULT

data set, the Figures 1-4 show the graphs of the average values of J,, (S) versus ¢,

in seconds. The number of simulations is #, = 100 in all cases.

One can see in Figure 5.1 that if the parameters n , e and r are fixed

(n=8,e=1and r =7) and the parameter n,, is varied then the best performance is

for n

iter

=5. In all cases the RANKPRO algorithm gave smaller values for the
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average of the objective functionJ,, (Z,,..), i.e. the RANKPRO algorithm is more

efficient than the & -prototypes algorithm.

Figure 5.2 shows that it is more efficient to keep only one elite solution e=1 than

two elite solutions e=2 irrespectively on the number of iterations

(n,.,e, =3orn,, = 5) of the k -prototypes algorithm applied to improve the solutions.

Figure 5.3 confirms the above conclusions. If the parameters »n, eand r are fixed

(n=8,e=2,and r =6) and the parameter n,,, is varied then the best performance is

iter

for »,

.e» =2 . The RANKPRO algorithm is more efficient than the k -prototypes
algorithm. However, the performance of the former algorithm is worse than its
performance in the case e =1, i.e. it is more efficient to keep only one elite solution

than two elite solutions.

One can see in Figure 5.4 that if the number of randomly chosen solutions # is

varied, while other parameters e and #,

iter

are fixed (n,

iter

= 5ande= 1), the best
performance is for n=8(r=7). In all cases the RANKPRO algorithm is more

efficient than the k -prototypes algorithm.
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Figure 5.1: The average values of Jaw(S) vs. * for ADULT data set.

Comparison of the & -prototypes algorithm and the RANKPRO algorithm with

different values of niter, niter= 3, 5, 7 and 9, while other parameters are constant:

n=8 e=1l,andr =17.
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Figure 5.2: The average values of Jav(S) vs. for ADULT data set. Comparison

of the “-prototypes algorithm and the RANKPRO algorithm with the following

parameters: (i) niter =3, e = r =1 and n = 8, (ii) niter = 5, e = 1, r = [ and n = 8, (iii)

nitr =3,¢=2,r =6 and n = 8, and (iv) niter = 5,¢e =2,r = 6 and n = 8.
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Figure 5.3: The average values of Jaw(S) vs. for ADULT data set. Comparison

of the *-prototypes algorithm and the RANKPRO algorithm with different values of

nUer, nifr = 3, 5, 7 and 9, while other parameters are constant: n= 8, e =2, and r = 6.
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Figure 5.4: The average values of Jav(S)vs. tee for ADULT data set. Comparison

of'the M-prototypes algorithm and the RANKPRO algorithm with different values of
n = 6-UO and correspondingly with different values of r = 5% 9, (r-n-e), and

fixed parameters nifar = 5 and e = 1.
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5.4.3. Shuttle data set

The full Shuttle data set, also known as Statlog (Shuttle) Data Set, has N = 14500
records with 9 numeric attributes and one class attribute. This is a standard data set
that has been used a number of times to test clustering and classification algorithms

(see, e.g. Garcke et al. 2001)). For this data set, the Figures 5.5-5.8 show the graphs

of the average values of J,, (S) versus t,,,. in seconds. The number of simulations is

n_ =100 in all cases.

One can see in Figure 5.5 that if the parameters n , e and r are fixed

(n=8,e=1,and r =7) and the parameter n,

iter

is varied then the best performance is

for n, =5. In all cases the RANKPRO algorithm gave smaller values for the

iter

average of the objective functionJ,, (Z,.. ), i.c. the RANKPRO algorithm is more

efficient than the k -prototypes algorithm.

Figure 5.6 shows that for the Shuttle data set contrary to the ADULT data set, there is

no evident advantage of keeping just one elite solution (e=1) or two elite
solutions (e = 2) . In all cases the RANKPRO algorithm is more efficient than the

k -prototypes algorithm.
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Figure 5.7 shows that if the parameters n, eand r are fixed (n =8, e=2,and r = 6)

and the parameter n, is varied then the best performance is for n, =3 The

iter iter

RANKPRO algorithm is more efficient than the k -prototypes algorithm.

One can see in Figure 5.8 that if the number of randomly chosen solutions # is

varied, while other parameters e and n,,, are fixed(n,, = 5ande= 1), there is no

iter
evident advantage for a specific number#. In all cases the RANKPRO algorithm is

more efficient than the k -prototypes algorithm.
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Figure 5.5: The average values of Jav(S) vs. for Shuttle data set. Comparison

of the *-prototypes algorithm and the RANKPRO algorithm with different values of

niter, niter = 3, 5, 7 and 9, while other parameters are constant: « = 8, e= l,andr = 7.
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Figure 5.6: The average values of Ja(S) vs. for Shuttle data set. Comparison

of the “-prototypes algorithm and the RANKPRO algorithm with the following
parameters: (i) nitar =3, ¢ — 1, r= 7 and n = 8, (ii) niter =5, e= 1,r =7 and n = §,

(iii) wer =3, e=2,r=6 and « = 8, and (iv) «<@r =5,{=2, r=6 and n = 8.
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Figure 5.7: The average values of 7av(S)vs. for Shuttle data set. Comparison

of the *-prototypes algorithm and the RANKPRO algorithm with different values of

nur>niter = 3, 5, 7 and 9, while other parameters are constant: n =8, ¢ - 2, andr =6
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Figure 5.8: The average values of Jav(S)vs. /wec for Shuttle data set. Comparison

of the *-prototypes algorithm and the RANKPRO algorithm with different values of
n = 4-M0 and correspondingly with different values of r —3*-9, (r =n-¢), and fixed

parameters nitz - S and e = 1.
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5.4.4. Covertype data set

The full Covertype data set has 581012 records with 54 categorical attributes.
However, only the first N =100000 records have been used. This is a data set that
predicts forest cover type from cartographic variables. It has been used several times

to test classification algorithms (see, e.g. Blackard and Dean 1999)). For this data set,

the Figures 5.9-5.11 show the graphs of the average values of J,, (S) versus 7, in

seconds. Since this data set is rather large, the values of ¢, should be greater than

the values for other data sets, consequently we have chosen number of simulations

n, =10 instead of n, =100 in this case.

One can see in Figure 5.9 that if the parameters n , e and r are fixed

(n=9,e=1,and r =8) and the parameter n,,, is varied then it is difficult to give any

iter

preference to a specific value of n,, . However, the RANKPRO algorithm gave

iter *

smaller values for the average of the objective function J,, (... ) in all cases.

Figure 5.10 shows that for the Covertype data set, there is an advantage of keeping

just one elite solution (e =1) rather than two elite solutions(e =2). In all cases the

RANKPRO algorithm is more efficient than the & -prototypes algorithm.

Figure 5.11 shows that in the case of two elite solutions, there is an advantage of

keepingn,, = 6. Again the RANKPRO algorithm is more efficient than the

iter

k -prototypes algorithm.
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Figure 5.9: The average values of Jaw(S) vs. for Covertype data set.

Comparison of the ”-prototypes algorithm and the RANKPRO algorithm with

different values of nlter, niter = 6, 8, 10 and 12, while other parameters are constant:

n=9,e=1,andr = 8.
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Figure 5.10: The average values of Ja(S) vs. for Covertype data set.

Comparison of the “-prototypes algorithm and the RANKPRO algorithm with the

following parameters: (i) niter = 6, e = 1, y=8 and n = 9, (ii) niter - 8, ¢ = 1,r= 8 and

n=29, (iii) «itr =6, e=2, r=7and r = 9, and (iv) =8 e=2,r=7and
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Figure 5.11: The average values of JAMS) vs. for Covertype data set.

Comparison of the ~-prototypes algorithm and the RANKPRO algorithm with

different values of niter, nlé = 6, 8, 10 and 12, while other parameters are constant: n

=9, e=2 and r —7.
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5.4.5. Connect -4 data set

The full Connect -4 data set contains all positions in the game of connect-4. It has
N = 67557 records with 42 categorical attributes, each attribute corresponds to one

connect-4 square. All N =67557 records have been used.

For this data set, Figures 5.12 shows the graphs of the average values of J,, (S)

versus f,,,. in seconds. The number of simulations is #, =100.

One can see in Figure 5.12 that if the parameters n , e and r are fixed

(n=8,e=1,andr =7) and the parameter n,, is varied then there is no evident

iter

advantage for a specific numbern,

iter *

For ¢, 22.5 sec, the RANKPRO algorithm is less or equally efficient than the

k‘-prototypes algorithm. The explanation could be the following. For a specified data

set, it is assumed that n,  prescribed for the RANKPRO algorithm, is less than the

iter
average number of iterations that the k -prototypes algorithm needs to converge.
Hence, it is assumed that the RANKPRO algorithm does not spend much time to
explore current solutions. For the Connect-4 data set, the k -prototypes algorithm
converges very fast contrary to other data sets under consideration. Indeed, the
average number of iterations that the k -prototypes algorithm needs to converge is
equal to 10.07, 26.29, 24.88 and 1.53 for the Adult, Shuttle, Covertype and Connect-

4 data sets respectively. One can see that in the case of Connect-4 data set, the

164



k -prototypes algorithm converges to a local minimum very fast and it can be applied
to the data many times during a prescribed ¢, . Hence, the above assumption that the

RANKPRO algorithm spends less time than the k -prototypes algorithm to explore
local minima is not satisfied and the RANKPRO algorithm loses its advantage. In

this case the algorithms have approximately equal effectiveness.
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Figure 5.12: The average values of Jav(S) vs. for Connect-4 data set.

Comparison of the “-prototypes algorithm and the RANKPRO algorithm with

different values of niter, niter = 3, 5, 7 and 9, while other parameters are constant:

n- 8 e=1landr=717.

166



5.5 Summary

A new clustering algorithm called RANKPRO: the Random Search with k-prototypes
algorithm has been presented. The algorithm combines the advantages of the Bees
and k-prototypes algorithms. The RANKPRO algorithm has been applied to various
data sets, including data sets with mixed numeric and categorical values. RANKPRO
balances two objectives: it explores the search space effectively due to random
selection of new solutions, and improves promising solutions fast due to employment

of the k-prototypes algorithm.

To estimate the distances between records of the data, normalised metrics are used.
Since, a mixed database is treated as a random sample of an object under
consideration, the normalised metrics have been obtained using statistical approach.
These normalised metrics are more general than the metric introduced by Huang

(1997b) for mixed data sets.

It can be expected that the new RANKPRO algorithm will have less probability for
premature convergence than k-prototypes algorithm due to the employment of
random search. On the other hand, the application of several iterations of the k-
prototypes algorithm for very fast improvement of thé promising (elite) solutions
resembles gradient-like methods. Hence, this is a more effective procedure than the

attempts to improve the promising solutions by random neighbourhood search as it is

used in the BA algorithm.
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The obtained results demonstrate the efficiency of the new algorithm. It is shown that
in the majority of the considered data sets when the k-prototypes algorithm needs
many iterations for convergence, the RANKPRO algorithm is more efficient than the
k-prototypes algorithm. However, if for a specific data set, the Kk-prototypes
algorithm converges to a local minimum very fast (just in few iterations) then the

algorithms have approximately equal effectiveness.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis. In this chapter the contributions and conclusions of

this thesis are listed and suggestions for future work provided.

6.1. Contributions

The main contributions of this thesis are:

1.

A formal and rigorous formulation of accuracy of clustering is introduced.
The new approach may be used for an arbitrary number of clusters.

The introduction of new normalisation techniques for the Euclidean metric for
numerical data. The proposed normalisation procedure secures that the
average contributions of all attributes to the measures are equal to each other
from statistical point of view and therefore, these variables give equal
contributions to the similarity measures.

The proposed approach is extended to the case of mixed metrics, i.e. when the
metric is a combination of an arbitrary Minkowski metric and the matching
dissimilarity measure that are used for numerical and categorical data

respectively. Rigorous mathematical proofs of unbiasedness and consistency
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of estimators used for normalisation of the Minkowski mixed metrics are

presented.

4. Since the k -prototypes algorithm cannot be used in the cases where p,, #2,
a clustering algorithm with the objective functions Z P,y that was earlier

suggested only for fuzzy clustering, has been developed and applied for hard
clustering.

5. A new algorithm RANKPRO that combines the advantages of the Bees and k-
prototypes algorithms and outperforms the latter algorithm has been
introduced.

Various developed and implemented algorithms have been applied to data sets from

the UCI repository.

6.2. Conclusions

The first main result of the thesis (Chapter 3) is the development of a mathematically
rigorous approach to normalisation of the feature vectors for mixed data sets based
on a unified statistical approach. The most common cases of metrics, namely the
Euclidean metrics are used as a measure for continuous numerical features, while the
matching dissimilarity measure is used to deal with categorical attributes. The
introduced normalised metrics secure that the average contributions of all attributes

to the measures are equal to each other from statistical point of view.
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The second main result of the thesis (Chapter 4) is application of the unified
statistical approach to general cases of the Minkowski distances and the development
of a novel algorithm for hard clustering using the mixed Minkowski metrics with an
appropriate objective function. The algorithm may be used in these cases, while the

k -prototypes is not applicable.

The third main result of the thesis (Chapter 5) is the introduction of the RANKPRO
(the Random Search with k-prototypes algorithm). The algorithm combines the
advantages of the Bees and k-prototypes algorithms, and outperforms the latter
algorithm. The RANKPRO balances two objectives: first it explores the search space
effectively due to random selection of new solutions, and on the other hand it
improves promising solutions fast due to employment of several steps of the -

prototypes algorithm.

6.3. Future Research Directions

A number of aspects of the algorithms introduced in this thesis could be developed

further. Possible extensions include:

Comparison of the effectiveness of the RANKPRO algorithm with several variants of
Genetic Algorithms, e.g. Maulik and Bandyopadhyay (2000), in application to
clustering of mixed data sets. It is expected that our algorithm will be more effective;

however, this has to be confirmed by practical applications.
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Comparison of the effectiveness of the RANKPRO algorithm with the Bees
Algorithm (Pham et al., 2007), in application to clustering of mixed data sets.
According to theoretical arguments, our algorithm will be more effective; however,

this has to be confirmed by practical applications.

Estimation of effectiveness of the developed algorithms using the Mann—Whitney—

Wilcoxon statistical criterion.

Generalisation of the types of objective functions. If in Chapter 3 and Chapter 5 the

standard Z p; objective function has been employed in application to numerical
attributes and the function has been extended to the functions Z Py in Chapter 4, it

is of interest to consider the case Z pfu for arbitrary #, =1 in application to

numerical attributes. Evidently there will be a problem of recalculating the new

prototypes. However, we can expect that the techniques of optimisation of convex

functions may be applied in this case because the function Z pfu is still convex.

Application of the Bees algorithm to clustering of mixed data sets employing the

Minkowski distances and the general )" p? objective function.
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Appendix A

Data Sets

All data sets used in this thesis are from the UCI repository of machine learning
databases [Blake and Merz, 1998]. These databases were contributed by many
researchers, mostly from the field of machine learning, and collected by the machine
learning group at the University of California, Irvin. These data sets are described

briefly below.

Vote data set. The database includes votes for each of the U.S. House of
Representatives Congressmen on 16 key votes, such as water project cost sharing,
crime and duty-free exports. The problem is to identify whether a person is a

republican or a democrat based on these votes.

Chess data set. This database has 36 features to describe chess board positions and

the task is to determine which position will lead to a win.

Crx data set. This data set was originally used by Quinlan on the C4.5 induction
learning algorithm. The data is used to determine whether or not to give a credit card
to an applicant. All the feature names and values have been changed to meaningless

symbols to protect the confidentiality of the data.

Horse Colic data set. There are 368 instances in this data set. 22 features are used to
describe information about the horses, including their age, pulse, rectal temperature

etc, and the task is to classify whether a lesion is surgical or not.
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Hypothyroid data set. The data comes from an assay screening service related to
thyroid functions, and concerns one aspect of thyroid diagnosis. The 25 features are a
mixture of measured values and information obtained from the referring physician.

There are four classes.

Annealing data set. The application concerns appropriate actions to take during the
coating of steel products. The data set contains 898 cases described in terms of 38
features that cover aspects such as the width of the steel slab, its type, hardness,
composition, surface quality etc. There are five classes corresponding to alternative

coating sub-procedures.

Hepatitis data set. The data contains 155 instances; each instance is represented by 19
features, describing the age, sex and other 17 attributes of a patient. The task is to

determine whether the patient has a risk of death.

Mushroom data set. This data base consists of descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota family.
Each species is identified as definitely edible or definitely poisonous. There are 8124

records, and each record is described by 22 nominally valued features.

Soybean-large data set. The data set consists of 683 records with 35 features,

describing leaf properties and various abnormalities. The task is to diagnose soybean

disease based on the measures and observations.
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Vehicle data set. The data set is used to classify a given silhouette as one of four
types vehicle using a set of features extracted from the silhouette. Each vehicle is

described by 18 continuous valued features.

Diabetes data set. There are 768 instances in the data set; each is described by 8
continuous valued attributes, such as the number of times pregnancies, diastolic blood
pressure, body mass index, etc. The data is used to classify whether the patient tested

is positive or negative for diabetes.

Breast Cancer data set. The breast cancer data contains 699 cases. Each case is
described by 10 continuous attributes that cover aspects such as the age of the patient,
tumour size, menopause etc. There are two classes which identify whether the tumour

is benign or malignant.

Iris data set. This is the most widely used data set in the literature. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris plant.
Each instance is described by four continuous attributes, namely, sepal length, sepal

width, petal length and petal width.

Abalone data set. The abalone data is used to predict the age of abalone from
physical measurements. There are a total of 4177 instances in the data, and each is

described by 8 attributes.
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Adult data set. There are 48842 instances in the data. Each instance is described by
14 attributes, such as age, work class, native country, education, marital status and so
on. These attributes are used to predict whether such a person can earn a salary

greater or less than $50,000 in the USA.

Australian data set. The Australian data is almost the same as the original Crx data,

but all the missing values have been replaced with their medians.

Car data set. The car evaluation data set is used to evaluate cars according to the
features that describe their price, technical characteristics, and safety. There are a total

of 1728 instances, each described by 6 attributes and categorised into one of 4 classes.
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Appendix B

Proof of unbiasedness and consistency of estimators
used for normalisation of the Minkowski mixed

metrics

Here a rigorous proof is given for the above statements that the estimators (4.6) and

(4.13) for the mean contribution of each j-th attribute (in numerical and categorical

cases respectively) to the Minkowski mixed metric are unbiased and consistent. More

precisely, these statements are corollaries of the following general Proposition.

Proposition B1. Let a random variable X have a distribution law L(X) and

{x,...,x,} be a sample of its values. Let Z, and Z, be independent random variables
having the same distribution law L(X). Let ¢(z,,z,) be a function of two real valued

arguments such that the random variable Z = ¢(Z,,Z,) has finite mean and variance.

Then the estimator EZ of the mean of the random variable Z given by

B.1
NN - 1)15,;5”"’( » %)) ®D

is unbiased and consistent.
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To proof Proposition B1 one needs to use two Lemmas. The first lemma is often used

in mathematical statistics.

Lemma 1. If §, is an unbiased estimator of a parameter 6 and the variance of 6,

goes to 0 for n — . Then é,, is also a consistent estimator.

Proof. The estimator 9; is consistent if for any £ >0

lim P{| 6. -0)> g} =0. (B.2)
n—»w

Due to the Tchebysheff inequality and since the estimator é,, is unbiased, we obtain

3

P{[én—0|>g}=P{|én—E0|> g} < Do,

82

Since it follows from the formulation that lim Dén =0, (4.15) follows from the above

n—>wo

inequality and this proves Lemma 1.

Let us denote by T,, the set of all pairs of indices (7, /) suchthat 1<i<j<N.

Let us call a subset U c T,, admissible if for any arbitrary two distinct pairs (i, j;)

and iy, /)i (i ) (s J) € U all indices {i,, i, j,} are distinct.
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The following Lemma was obtained by M.I. Prostov and with his permission the

proof is given here for the sake of completeness.

Lemma 2. The set T, can be divided into A(N) non-overlapping admissible subset
U,,...,U;wy» Such that there are z(N) elements in each subset of the partition. The
numbers A(N) and u(N) are defined as A(N)=N, and u(N)=(N ~1)/2for odd

N;and A(N)=N-1,and u(N)=N/2 foreven N .

Let us give examples of such partitions:

a)T, = CJU,.,where U,={(1,2),(3.4)}, U,={(1,3),(2,4)} and U,={(1,4),(2,3)}.

i=1

b T, = OUnWhefe U,={(1,2),3,4)}, U,={(1,3),(4.5)}, U;={(1,4),(2,5)},

i=1

U4={(1’5):(233)} and U5={(1 94)9 (395)} .

Proof of Lemma 2.

Let us consider a circle on a plane with a unit radius and with centre (0,0). Let the
circle have N points 4,,...,4,. These points are the corners of a regular polygon.
Let us denote by G, the set of all chords connecting the points 4;,...,4y. Let each
pair (i, /) € T, correspond to the chord y (i, j) = 4,4, of the circle. One can see that

there is a one-to-one correspondence y between the sets T, and G, .
Let us consider the case of odd N ,i.e. N=2K+1. Let
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U ={(,2K+1-(-2)):i=2,...,K} and V;=y(U,) be the set of chords
corresponding to pairs of indices U, (see Fig. 4.1a). Further, we denote by V.,
(m=2,...,K)the set of chords, that can be obtained from chords of the set V, by

counter clockwise rotation with an angle 2z(m—1)/(2K +1), and put U, = .//"'(Vm)

(see Fig. 4.1b).

A3 A3
N A2 Az
As Ag
Aq A
As As
e A7 A7
6

Figure B.1: Sets V| and V, for N =7 : a) the set V| and b) the setV,.

Since the chords of the set V] are parallel to each other, the chords of each of the sets
V. (m=2,...,K) are also parallel to each other. Hence, all sets V},...,V, are pair wise
non- overlapping, and consequently U,,...,U, are also pair wise non-overlapping. In

addition, since the cords of each of the sets ¥, do not have the mutual end points, all

sets U,,...,U, are admissible.

199



Further, each of the sets U, has 2K +1 elements, therefore, their union has

K
KQK+1)=N(N-1)/2 elements. Thus, we obtain UU,,, =Ty and Lemma 2 has

m=1

been proved for odd N .

Let us consider now the case of even N, i.e. N =2K . It has been shown above that

the set T,,, can be divided into 2K —1 admissible subsets Uj,...,U,,_, such that

each of these subsets has K —1 pairs of indices whose values are less or equal to N —1.

Consider the set U, , (m=1,...,2K —1) and the corresponding set of chordsV,, . There
exists exactly one point 4, with 1<v(m)<2K -1 that is not the end point of any
of the chords of the setV, . Hence, the chord 4,4, does not belong to V, and
therefore the set V,, = V,,’,U{AV(,”)AN}consists of chords that do not have mutual end
points. Consequently, the set U, =y (V,,) is admissible. Further, since all points
A,y5--0> Aok are distinet, the chords 4, 4, ..., 4, x-1y4yx are also distinct. This
leads to the conclusion that the sets V;,...,V,,_, are pair wise non-overlapping, and
consequently U,,...,U,,_, are also pair wise non-overlapping. Each of the sets U,

has K pairs of indices, and the union of these sets has K(2K —1) = N(N -1)/2 pairs.

Thus, we obtain

K
UU,,, =T, and this proves Lemma 2.

m=1

200



Proof of Proposition B1. Let X|,..., X, be independent random variables having a
distribution law L(X) . Since E[p(X,,X,)]= E[p(Z,,Z,)] for anyi= j, it follows

from the equality

2 2
E[N(N—D ,Skzjsf(X«"Xf)J “NO-D ISKZ;;N Elp(X,, X D)1= Elp(Z,,Z,)],

that the estimator (B.1) is unbiased.

Further, let us estimate the variance (dispersion)

D [ 2 (/)(X,.,X,)] (B.3)

ISi<j<N

where D denoted the dispersion.

It follows from Lemma 2 that

D X, X)= Y D eX,.X), (B.4)
ISi<jsN 1sm<A(N) (i,))eU,,
where each of sets U,, is admissible and consists of x(N) pairs of indices. For each

m , the above sum Z @(X,, X ;) consists of x(N) independent random variables
(i,))eU,,

having the same law of distribution and therefore, we have for (B.3)

D[ Y. o(X,,X )= u(N)Dlp(Z,,Z,)] (B.5)

(i,.))el,,
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For independent random variables &,...,&, having the same law of distribution

L(£)), we have

DIg+...+& =Y, Cov&,E)< Y. D& [DE = N*DE.

Isi, jSN 1<i, jSN

From the above inequality along with (B.4) and (B.5), we obtain

D[ 2, X, X ,)]Sﬂ(N)zu(N)D[¢(ZpZz)]S(N3 I 2)Dlp(Z,,2,)),

1Si<j<N

From (B.6), we obtain

2 4
D[N(N_l)lsz (/)(X,-,X,)]—mD[ > qo(X,.,Xj)jl

i<j<N 1si<j<N
2N

(N-1)?

<

Dlp(Z,,Z,)].

It follows from (B.7) that

2
lim D| ————— X;,X;)|=0.
Nl_l;l}o [N(N—l) lsz ¢( i 1)]

i<j<N

Using Lemma 1 and (B.8), we obtain Proposition B1.

(B.6)

(B.7)

(B.8)
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