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ABSTRACT

In recent times, several machine learning techniques have been applied successfully to 

discover useful knowledge from data. Cluster analysis that aims at finding similar 

subgroups from a large heterogeneous collection o f records, is one o f  the most useful 

and popular o f the available techniques o f data mining.

The purpose o f this research is to design and analyse clustering algorithms for numerical, 

categorical and mixed data sets. Most clustering algorithms are limited to either 

numerical or categorical attributes. Datasets with mixed types o f  attributes are common 

in real life and so to design and analyse clustering algorithms for mixed data sets is quite 

timely. Determining the optimal solution to the clustering problem is NP-hard. Therefore, 

it is necessary to find solutions that are regarded as “good enough” quickly.

Similarity is a fundamental concept for the definition o f a cluster. It is very common to 

calculate the similarity or dissimilarity between two features using a distance measure. 

Attributes with large ranges will implicitly assign larger contributions to the metrics than 

the application to attributes with small ranges. There are only a few papers especially 

devoted to normalisation methods. Usually data is scaled to unit range. This does not 

secure equal average contributions o f all features to the similarity measure. For that 

reason, a main part o f  this thesis is devoted to normalisation.



The first part o f  the thesis concentrates on the development o f a mathematically rigorous 

approach to normalisation of the feature vectors for mixed data sets based on a unified 

statistical approach. The most common cases o f metrics, namely the Euclidean metrics 

are used as a measure for continuous numerical features, while the matching 

dissimilarity measure is used to deal with categorical attributes. The introduced 

normalised metrics secure that the average contributions o f all attributes to the measures 

are equal to each other from statistical point o f view.

The second part o f  the thesis concentrates on the application o f the unified statistical 

approach to the general case o f the Minkowski metrics and the development o f a novel 

algorithm for hard clustering using the Minkowski distances with an appropriate 

objective function. The algorithm may be used in these cases, while the k  -prototypes is 

not applicable.

The third part o f the thesis introduces the RANKPRO (the Random Search with k- 

prototypes algorithm). It combines the advantages o f the Bees and ^-prototypes 

algorithms and outperforms the latter algorithm. The RANKPRO balances two 

objectives: first it explores the search space effectively due to random selection o f new 

solutions, and on the other hand it improves promising solutions fast due to employment 

o f several steps o f the ^-prototypes algorithm.
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Chapter 1

Introduction

This chapter introduces the motivation and objectives o f the research, and a general 

description o f adopted methods and approaches. The chapter also outlines the general 

structure o f the thesis.

1.1 Motivation

There is an increasing amount o f data being collected everyday but only the part that can 

be used for extracting knowledge becomes valuable. Data Mining (DM) may be defined 

as a process o f  extracting useful knowledge in the form o f relations and structure from 

large amount o f  data. The derived knowledge can then be applied to achieve economic, 

operational or other benefits.

In this thesis DM is considered as a synonym to the knowledge discovery process or 

knowledge discovery in databases. This process consists o f a set o f processing steps that 

should be followed to discover relations and structure in data. DM needs to develop 

appropriate tools to efficiently and effectively extract previously unknown information
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from raw collections o f data. In this thesis we deal with objective function-based 

clustering that is also called partition based clustering.

Partitioning is a natural way o f studying complex problems in a number o f areas like 

pattern recognition, classification and clustering. In a number o f  fields o f machine 

intelligence, an object is represented by a vector variable (the feature vector). In 

application to data sets organised as flat files, the rows represent records, the columns 

represent features that are called attributes, and hence the feature vector can be defined 

as a set o f attributes. Each attribute can take on a finite or infinite (continuous) number 

o f possible values. In many traditional applications, it is assumed usually that all the 

features are the same type. Clustering o f numerical data sets are the most studied 

problem. However, real-life data sets are often mixed, i.e. they consist o f  both numerical 

and categorical types. Currently methods for analysis o f data in mixed feature space are 

still an issue. Hence, design and analysis o f clustering algorithms for numerical, 

categorical and mixed data sets are very timely.

In this thesis we will deal with normalisation. Strictly speaking normalisation has to be 

applied to all records o f  data sets before clustering. Indeed, if  the data is not normalised 

then the average contribution o f each feature to the similarity measure depends on the 

units o f measurements o f the feature and, therefore, the contribution o f the features are 

scale dependent. If the units o f a measurement are changed then the contribution of a 

feature to the similarity measure can change dramatically. This is why normalisation of 

data sets is widely used in a number o f fields o f machine intelligence.
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In the overwhelming majority o f published normalisation procedures, data have been 

scaled to unit range. However, after this kind o f data set normalisation, the average 

contributions o f all features to the similarity measure may be not equal to each other.

It has been often suggested also to truncate the out-of-range components assuming that it 

is just eliminating the outliers. However, truncating the out-of-range components could 

lead to loss o f information from the data set.

In spite o f the importance o f data normalisation, there have been only few papers 

specifically devoted to normalisation methods for data sets. It has been correctly realised 

that a normalisation procedure for numerical data sets, has to be a transformation o f the 

attribute to a random variable with zero mean and unit variance. Indeed, this scaling 

provides equal contributions o f variables to the Euclidean similarity measure. However, 

one needs to apply normalisation not only to numerical attributes but also to categorical 

attributes.

A natural way for normalisation o f all numerical, categorical and mixed data sets is to 

employ a statistical approach. However, early papers on statistical approaches were not 

targeted to clustering o f mixed data sets and normalisation o f metrics. It was stated that 

methods for analysis o f data in mixed feature space are still an issue. For example, one 

can expect that the mean o f the distance between two categorical attributes that may 

have only two states (e.g. male - female or white - black) is not the same as the mean of 

the distance between two categorical attributes that may have twenty different states. 

Some authors have used the averages o f distance measures for normalisation. However,

3



nothing was known about statistical consistency o f the proposed estimators. In addition, 

the estimators were biased and these approaches were not applicable to some metrics. 

Hence, mathematically rigorous treatment o f the normalisation procedure is needed and 

explicit presentation o f normalised mixed metrics has to be provided.

After normalisation o f  data, appropriate algorithms for efficient and effective clustering 

o f data sets with mixed numerical and categorical values have to be developed. Currently 

the most popular is the ^-prototypes algorithm for clustering o f mixed data sets. This 

algorithm is a generalisation o f the A:-means algorithm. The latter is applicable only to 

numerical data sets. These algorithms have the same common drawback, namely the 

search process o f new solutions converges often not to a global minimum but to a local 

minimum. Hence, new algorithms have to balance two objectives: to explore the search 

space effectively and to utilise the most promising solutions during the work o f the 

algorithm.

1.2 Research Objectives

The aim of this research is to design and analyse new clustering algorithms for numerical, 

categorical and mixed data sets. Most clustering algorithms are limited to either 

numerical or categorical attributes. Datasets with mixed types o f attributes are common 

in real life and so to design and analyse clustering algorithms for mixed data sets is quite 

timely.
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The specific objectives are:

1. To develop a mathematically rigorous approach to normalisation of feature 

vectors for mixed data sets based on a unified statistical approach.

2. To analyse the clustering algorithms with proposed new normalised metrics in 

the case o f  the matching dissimilarity measure being used to deal with categorical 

attributes, and the general Minkowski metrics being used as a measure for 

continuous numerical features, including the particular cases p M = 2 (the 

Euclidean metric).

3. To develop a new algorithm to be used in the cases where p M *  2 ,  since the k  -

prototypes cannot be used in those cases. This clustering algorithm was earlier 

suggested only for fuzzy clustering. It will be developed and applied for hard 

clustering using Minkowski norm distances.

4. To develop a new unsupervised clustering algorithm for numerical, categorical 

and mixed data sets that will have less probability for premature convergence 

than the ^-prototypes algorithm. The algorithm has to balance two objectives: to 

explore the whole search space effectively, and to improve promising solutions 

fast. The new algorithm has to combine the advantages o f  both the Bees and the 

^-prototypes algorithms and to outperform the algorithms.

5



1.3 Methods and approaches

For the four objectives targeted in this thesis, several methods and approaches will be 

employed. They are summarised as follows:

1. A unified statistical approach to both numerical and categorical attributes is 

applied for normalisation o f the feature vectors for mixed data sets in both 

cases; the Euclidean and the general Minkowski metrics. Normalised 

Minkowski and Euclidean metrics and metrics for mixed data sets are 

introduced in an explicit way. The introduced generalised statistical 

procedure assures that the means o f the different normalised attributes are 

equal to each other and therefore, these variables give equal contributions to 

the similarity measures.

2. In the case where p M = 2 , the ^-prototypes clustering algorithm will be

implemented and applied to data sets from the UCI repository with and 

without normalisation of attributes and the accuracy o f clustering results will 

be compared by both a new approach for calculating the accuracy and the 

traditional Rand index.

3. A unified statistical approach to general cases o f  the Minkowski distances 

and the development o f a novel algorithm for hard clustering using the 

Minkowski distances with an appropriate objective function. Implemented
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codes are applied to two data sets from the UCI repository with and without 

normalisation o f attributes for various values o f  the Minkowski power p M .

4. A new clustering algorithm called RANKPRO: the Random Search with k- 

prototypes algorithm will be presented. The algorithm combines the 

advantages o f the Bees and ^-prototypes algorithms. The algorithm balances 

two objectives: it explores the search space effectively due to random 

selection o f new solutions, and improves promising solutions fast due to 

employment o f the ^-prototypes algorithm. The RANKPRO algorithm will be 

applied to various data sets, including data sets with mixed numerical and 

categorical values and its performance will be compared with the 

performance o f the ^-prototypes algorithm.

1.4 Outline of the thesis

The thesis is organised in six chapters. The topics addressed in each chapter are as 

follows:

Chapter 2: In this Chapter notations and definitions o f some concepts related to 

clustering, similarity measures for numerical, categorical and mixed data sets, objective 

functions, and statistical estimators, are recalled. The chapter ends with a literature 

review o f the most recent applications o f object-function based clustering for mixed data 

sets.

7



Chapter 3: In this Chapter a unified statistical approach to both numerical and 

categorical attributes is applied in order to normalise the feature vectors for mixed data 

sets. The most common cases o f metrics, namely the Euclidean metrics are used as a 

measure for continuous numerical features, while the matching dissimilarity measure is 

used to deal with categorical attributes. New normalised metrics are introduced such that 

the average contributions o f all attributes to the measures are equal to each other from 

statistical point o f view. Advantages o f the introduced normalised metrics are 

demonstrated on examples o f their applications to various data sets.

Chapter 4: In this chapter, a new statistical approach introduced in Chapter 3 is 

developed further and applied in the case o f the Minkowski metrics being used as a 

measure for continuous numerical features, while to deal with categorical attributes 

again the matching dissimilarity measure is used. Various mathematical problems related 

to the normalisation o f mixed metrics are resolved. The introduced metrics are applied to 

some data sets when it is more advantageous to apply the general Minkowski metrics 

(including the Tchebysheff and city-block metrics) instead o f a particular case p M = 2 

(the Euclidean metrics). Since the k -prototypes cannot be used in the cases 

where p M *  2 , a new algorithm to be used in those cases will be developed. This

clustering algorithm was earlier suggested only for fuzzy clustering. It will be developed 

and applied for hard clustering using Minkowski norm distances.

Chapter 5: In this Chapter a new clustering algorithm called RANKPRO: the Random 

Search with ^-Prototypes Algorithm is presented. The algorithm combines the

8



advantages o f a recently introduced by Pham et al. (2006b) population-based search 

algorithm called the Bees Algorithm (BA), and ^-prototypes algorithm proposed by 

Huang (1997b) as an extension o f the &-means algorithms to cluster large data sets with 

mixed numerical and categorical values. The RANKPRO algorithm balances two 

objectives: it explores the search space effectively due to random selection of new 

solutions, and improves promising solutions fast due to employment o f  the ^-prototypes 

algorithm. The efficiency o f the new algorithm is demonstrated by clustering several 

numerical, categorical and mixed data sets.

Chapter 6: In this Chapter conclusions and the main contributions o f this thesis are 

presented. Finally, suggestions for future research in this field are provided.
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Chapter 2

Preliminaries and Literature Review

In this Chapter notations and definitions o f some concepts related to data models, 

clustering, similarity measures for numerical, categorical and mixed data sets, and 

objective functions, are recalled. Some mathematical and statistical notions used in 

clustering analysis are also reminded. The chapter ends with a literature review o f the 

most recent applications o f objective - function based clustering for mixed data sets.

2.1 Data and data types

It is well known (see e.g. Jain and Dubes, 1988, Cios et al., 2007) that data can have 

diverse formats and can be stored trough a variety o f  different storage models. In a 

number o f fields o f data mining an object is represented by a vector variable, namely the 

feature vector A (Jain et al. 1999). In application to databases, the features are called

attributes, and hence A can be defined as a set o f attributes A = [Av A2,...,Ap+l} . The

collection o f objects described by the same features is called a data set. Data sets may be 

stored as flat files and in other formats using databases and data warehouses. Flat 

(rectangular) files are the most common way to store the data sets and further we will 

deal only with flat files. The rows represent objects (also known as records, individuals, 

patterns, data points) and the columns represent features.
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Each attribute can take on a finite or infinite (continuous) number o f possible values. In 

many traditional applications, it is assumed usually that all the features are the same type. 

However, real-life data sets are often mixed, i.e. they consist o f  both numerical and 

categorical types. It is known that the measurement scale o f  a categorical variable 

consists o f a set o f categories. Only two data types o f  attributes are considered here, 

namely numerical and categorical because other types o f  attributes can be transformed to

these two types. For mixed data, the vector o f features A can be split into A = (A ”, Ac ) ,  

namely the vector o f  numerical features A" = ( A " , . . . , A and the vector o f categorical 

features A c = (Atc,..., A f  ) .

2.1.1 Original Stevens’ classification of variables.

It is generally accepted that the "levels o f measurement", or scales o f measure are 

expressions that typically refer to the classification o f scale types developed by the 

psychologist S.S. Stevens. Stevens (1946) argued that measurements can be classified 

into four different types o f scales: nominal, ordinal, interval and ratio.

Stevens’s classification said that nominal is synonym o f categorical. There has been, and 

continues to be, debate about the merits o f Stevens’s classification, particularly in the 

cases o f the nominal and ordinal classifications (Michell, 1986).
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The Table 2.1 presents a slightly modified classification o f variables and appropriate 

statistical notions and mathematical operations that should be used for analysis of each 

scale type o f variables

Scale Type Permissible Statistics Adm issible Scale 
Transformation

Mathematical
structure

nominal (also 
denoted as 

categorical or 
discrete)

mode, chi square Equality (=)
standard set
structure
(unordered)

ordinal median, percentile Order (<) totally ordered 
set

interval
mean, standard deviation, 
correlation, regression, analysis o f  
variance

Subtraction ( - )  and 
weighted average affine line

ratio

All statistics permitted for interval 
scales plus the following: 
geometric mean, harmonic mean, 
coefficient o f  variation, 
logarithms

Addition (+) and 
multiplication (x) field

Table 2.1: A modified Stevens’ classification o f variables (scale types), and appropriate 

statistical notions, mathematical operations and structure.
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2.1.2 Accepted classification of variables.

In this thesis we accept the term categorical as a general term that can be split into 

levels: nominal and ordinal. If categorical variables have ordered scales they are called 

ordinal variables, while the variables having no ordered scales are called nominal 

variables. Hence, for nominal variables, the order o f listing the categories is irrelevant, 

and the statistical analysis should not depend on that ordering (Agresti 1996). We 

consider also binary variables as categorical.

Further, in this thesis we accept the scale types: interval and ratio are numerical variables. 

For numerical or quantitative features, the feature domain Dom (A y) can be represented

on the real line, i.e. they are continuous variables. For categorical features (sometimes 

these features are also called qualitative), the domain is a finite set o f different states. 

Evidently, categorical features may be represented by numerical codes o f possible 

different states o f  the feature. A data set can be represented as a matrix of size 

N x ( p  + l) where N  is the number of records, and (p  + l) is the total number of  

attributes, i.e. the i -th row o f the matrix represents the i -th record of the data 

set ( \ < i < N ) . This row is a vector (xn, . .., xip, y n , . . . ,  y a ) , whose values xip are

numerical, while the values y n ,^>,ya are categorical.

One can see from the above Table that the central tendency o f a categorical attribute can 

be represented by its mode, but the mean cannot be defined. This observation was used
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by Huang (1997, 1998) in his generalisation o f  a very popular clustering algorithm, the 

&-means algorithm. If the k  -means algorithm can be applied only to numerical data sets, 

the k  -modes algorithm can be applied to categorical data sets. These algorithms will be 

discussed later.

2.2 Constructing data models

As it has been noted in Chapter 1, the aim o f Data Mining is to extract knowledge from 

data. Methods o f machine analysis o f data can be roughly divided into two fundamental 

groups: supervised and unsupervised learning.

In supervised learning, characteristics to records o f data sets are given. The 

characteristics can be expressed either in the form o f some discrete labels or as some 

values o f auxiliary continuous variables. In the former case, we deal with a classification 

problem; while in the later case we deal with a regression, or an approximation, or 

continuous prediction problem (see e.g. Cios et al., 2007). Supervised learning includes 

various approaches such as statistical methods, including Bayesian methods (Pham and 

Ruz, 2009); neural networks; decision trees, rule algorithms, and their hybrids. Any 

supervised learning method has to be provided with a training data set that represents 

information about some domain o f the data set. In classification problems, the objective 

of supervised learning is to construct a function (classifier) that generates for each record 

(individual) a class label as its output. Using a training data set rules are produced; these
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rules are used to predict the labels o f new unseen examples (i.e., examples not in the 

training set).

Unsupervised learning assumes that the data knowledge process does not involve any 

supervision and it discovers a structure in data automatically. Unsupervised learning 

includes various approaches such as association rules and clustering. Clustering aims at 

finding smaller, more homogeneous groups from a large heterogeneous collection of 

items (Anderberg, 1973, Berry and Linoff, 1997). Computer-assisted analysis must 

partition objects into groups, and must provide an interpretation o f this partition (Berry 

and Linoff, 1997).

As it is well known, clustering is an inductive process (Bezdek and Pal, 1992, Estivill- 

Castro, 2002). This means that using particular observations o f  data, isolated facts are 

explained first by some empirical generalisations (working hypotheses) and then by a 

general theory. In application to clustering o f data sets, this means that any partition 

produced by an algorithm or a human is a hypothesis to suggest (or explain) groupings in 

the data. The mathematical formulation o f the inductive principle is called clustering 

criterion (see e.g. Kim et al., 1988; Doherty et al., 1988, Estivill-Castro and Murray, 

1998, Halkidi et al., 2000; 2001). It discriminates one grouping hypothesis over another 

one for the same data set. The models are the structures used to represent clusters, while 

the induction principle selects a “best fit” model for a given data set. Several induction 

principles corresponding to specific clustering algorithms will be discussed later.
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By breaking the object into smaller homogeneous parts that can be each analysed and 

explained separately, one can understand very sophisticated phenomena. The selected 

hypothesis becomes a model for the data, and can potentially constitute a mechanism to 

classify unseen instances o f the data. This is the reason why clustering algorithms have 

been studied so extensively. In particular, efficient clustering is a fundamental task in 

data science, where the goal is to discover similarities within a large data set.

2.3 Some mathematical notions used in clustering 

analysis

The cluster analysis in general and the objective function-based cluster analysis in 

particular are mathematically based disciplines where one needs to work with various 

mathematical notions like norm, metric, distance, and others. Hence the definitions of 

these mathematical concepts and the proper use o f  the concepts are crucial for cluster 

analysis. Indeed, the aim o f clustering is to group the closest data points together. Hence, 

clustering relays on calculating distances between records. Thus, to measure 

quantitatively the distinction between elements o f  the data sets, i.e. to formulate 

similarity or dissimilarity criteria, one needs to use the concept o f the distance and other 

above mentioned concepts.
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2.3.1 Concepts of metric and distance.

Let us consider a set M . A metric on a set M  is a function which defines a positive real 

number (distance) between any two elements x and y  o f  the set. For all x , y , z in M , a 

metric should satisfy the following conditions:

Identity o f indiscemibles: p( x , y )  -  0 if  and only if  x = y .

Non-negativity: p (x , y )  > 0 .

Symmetry: p( x , y )  = p ( y ,  x ) .

The triangle inequality: p(x , z )  < p ( x , y )  + p ( y , z ) .

An example o f  a trivial metric is the discrete metric, i.e. if  x = y  then p(x , y )  = 0.  

Otherwise, p ( x , y )  = l .  However, the most popular example is the Euclidean distance; 

the distance between distinct points is positive and the distance from x to y  is the same 

as the distance from y  to x . The latter metric is translation and rotation invariant.

Other examples o f metrics will be given later. We will consider mainly Minkowski 

metrics o f degree p M that include the Euclidean metric as a particular case ( p M =2) .

17



2.3.2 Concept of norm.

Let us consider a real vector space/?”, i.e. its elements x  e  R nare vectors with real­

valued entries. A norm o f  a vector x  is denoted by||jc||. This is a function that assigns a

strictly positive real number to all vectors in the vector space, other than the zero vector. 

A norm should satisfy the following conditions:

1. ||a'|| > 0  if x  *  0 ,and ||x|| = 0 if  and only if x  = 0.

2. A norm is a linear function, i.e. multiplying a vector by a real number a  changes its 

norm linearly

IMbM-M-

3. A norm satisfies the triangle inequality for any two elements x  and y .

In the case o f norm beign a distance, this inequality means that the distance from point A 

through B to C is never shorter than going directly from A to C.

The above mentioned definitions allow the researcher to dismiss some models suggested 

for clustering. For example, Wu and Yang (2002) introduced an alternative to c-means 

clustering algorithm and they employed the following function:

d (x ,y )  = 1 -  exp(-/?||x -  y f  ) .
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They called this function “distance” and claimed that it is a metric. However, one can 

see that d  does not satisfy the triangle inequality and therefore this function is not a 

metric.

There is the following relation between norms and metrics:

Every norm determines a metric and some metrics determine a norm.

Norms are used in Chapters 3 and 4.

2.3.3 Concepts of random variables, mathematical expectation, mean, 

mode and median.

Throughout this thesis we will employ statistical treatment o f  data sets. In the framework 

of our approach each record (the row) o f a data set will be regarded as a random sample 

o f a population under consideration, i.e. a data set is treated as a set o f N  observations 

(samples), while each sample (record) is considered as a realisation o f possible values of 

the feature vector A . Of course, the basic concepts can be found elsewhere (see, e.g. 

Spiegel, 1975). Hence, only some concepts o f probability theory and statistics that will 

be actively used in the thesis will be recalled. As usual, capital letters X  and Y  will be 

used to denote random variables and lower-case letters, x  and y  to denote the specific 

values that those variables may take.
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For a continuous random variable X  that has a density function / ( x ) ,  the mathematical 

expectation o f  E ( X ) is defined as

oo

E ( X )  = J x f ( x ) d x .
—oo

Another term for the mathematical expectation is the mean that is denoted by jux or by

H . It represents the average o f the values o f the random variable.

The median o f the random variable X  corresponds to an ordinate which separates the 

area under the density function graph into two parts having equal areas, i.e. the median is 

that value x  for which

P ( X < x )  = J>(X>x) =

The mode is that value x  which occurs most often or, in other words, has the greatest 

probability o f occurring. At this value / (jc) has its maximum.

2.3.4 Concepts of statistic and estimators.

For statistical treatment o f  feature vectors, one needs to know the probability 

distributions o f their attributes. Probability distributions are normally unknown because 

one has only a random sample. It is known that estimation is a way o f extracting 

valuable information about the distribution o f probability that generated it from a sample.
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An observable function o f the random data variable is called a statistic. If there is an 

unknown real parameter 6  taking values in a real parameter space then a real-valued 

statistic that is used to estimate the parameter is called an estimator o f this parameter. An 

estimator can be treated as a guess o f the true value Qtr o f  the parameter 6 . It is expected

that estimates are close to the true value 0tr. However, since an estimator is a random

variable and it is characterised itself by its probability distribution, one cannot say with 

certainty that an estimate is close to the true value o f a parameter o f the distribution. It is 

only possible to hope that the central region o f the distribution o f  the estimator is close to 

the true value o f the parameter. To express this hope in a mathematical way, the concept 

of unbiased estimators is introduced. The properties o f  estimators will be considered 

below.

2.3.5 Desirable properties of estimators.

For any given parameter, different estimators are possible. Hence, it is generally 

accepted that estimators have to satisfy the following main desirable properties: an 

estimator has to be unbiased, consistent and efficient.

Let us consider a statistic o f size N  . An estimator is said to be unbiased if  

E[0]n = 0tr for any size N .
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Here E  means the expectation o f a variable. Roughly speaking, the above definition 

means that the distribution mean o f the estimator is equal to the true value of the 

parameter for any size o f the statistic. An estimator whose expectation is not equal to the 

true value is said to be biased.

An estimator is a consistent estimator o f the parameter, if  as sample size increases, the 

estimator gets closer and closer to the value o f  the parameter being estimated. In other 

words, if one has a sequence o f values o f the estimator as a function o f the sample size, 

then as the size expands ad infinitum, this sequence converges in probability to the true 

value o f the parameter being estimated. Otherwise the estimator is said to be inconsistent.

The term o f efficient estimator is used when there exist two or more unbiased estimators 

of the parameter. For example, the sample mean and the sample median are both 

unbiased estimators o f the distribution mean. For a given sample size N , it is possible to 

define the relative efficiency o f one estimator with respect to another one as the ratio of 

their variances. Only in some cases an unbiased efficient estimator exists, that has the 

lowest variance among unbiased estimators. Since we will not consider more than one 

unbiased estimator for a parameter, the property o f efficiency o f estimators will not be 

discussed further.

Estimators are used in Chapters 3 and 4; see for example 3.4.1, 3.4.3, 3.4.4, 4.2 and 4.3.
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2.3.6 Similarity measures.

It is known that clustering analysis is the organisation o f a collection o f records into

clusters where the elements within a cluster have a certain degree o f similarity, and

hence the similarity is a fundamental concept for definition o f a cluster (see, e.g. Jain et 

al., 1999). Any measure o f the degree o f closeness (likeness) is called similarity measure 

(Looney 1997). It is very common to calculate the similarity or dissimilarity between 

two features using a distance measure. In clustering analysis o f numerical data sets, the 

similarity or dissimilarity between two feature vectors Xj = (jĉ ,...,^  ) and

X 2 =( x2 is often calculated using a square distance measure. Indeed, it is very

natural to use the Euclidean metric (distance) p E (or L2 metric)

For example, the most popular clustering algorithm for numerical data sets is the k- 

means algorithm that uses the Euclidean distance.

It is evident that the Euclidean distance is a particular case ( p M = 2 )  o f the following 

Minkowski distance p PM (or Lp metric)

as a measure for continuous numerical features because this metric is in everyday use.

\ 17 P m

Ppu ( x , , x 2) HI X, -  x 2 = 5 X  -  I"*

where p M is a positive number, 1 < p M < +oo.
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Another particular case o f the Minkowski distance is the city block (Manhattan) distance 

(or Z>j metric)

A(Xp X2H | X 1- X 1 H = £ | * iy- * y |
7=1

The Tchebysheff (Chebyshev) or maximum norm metric. It gives the maximum of  

absolute difference between the feature vectors.

Pm ax  ( ^ 1 »  ^ 2  )  —II ^ 1  _  ^ 2  lima* — ^ ^ X  I JCj . — X 2 j  I •
7 1

This metric can be also obtained from the Minkowski distance if  the following limit is 

taken pM —» oo.

One can see that other distances like the Hamming, Mahalanobis, Hausdorff and so on, 

are also used in clustering analysis. The Hamming distance between two strings o f equal 

length is the number o f positions at which the corresponding symbols are different. This 

distance can be treated as a particular case o f  the city block (Manhattan) distance when 

all features are binary (Jain and Dubes, 1988). The Mahalanobis distance is based on 

correlations between variables and it is used mainly for solving supervised learning 

problems. A non-formal explanation o f the Hausdorff distance is the following: 

according to this distance two sets are close to each other if  every point o f either set is 

close to some point o f  another set.
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Each metric imposes its own geometry. The Euclidean distance leads to spherical shapes 

of equidistant regions. Points with a constant Mahalanobis distance to the centre are 

located on a hyperellipsoid that envelops the centre o f the object points (Varmuza and 

Filzmoser, 2009). The Hamming distance imposes diamond-like geometry, while the 

Tchebysheff distance forms hyper squares (Cios et al., 2007).

It is claimed (Berkhin, 2002) that lower values o f the power p M o f  the usual Minkowski

distance correspond to more robust estimations in applications to numerical data 

(therefore, less affected by outliers).

It is more difficult to introduce similarity measures for categorical data. Clustering 

mixed (numeric and categorical) data is a rather difficult problem. Indeed, when all 

attributes are o f the same kind then the inter- and intra-cluster similarity can be defined 

according to one similarity measure between records, while for mixed data usually one 

needs to employ two different similarity measures.

2.3.7 Proximity and similarity indices.

Let us consider a finite set o f observations ui e U . The index o f similarity S{un u}) is a 

real valued function defined o n U x U  that satisfies the following conditions:

Non-negativity:
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S(un Uj) > 0 for any un u} e U  .

Normalisation (Identity o f indiscemibles):

S(u , , w,) = 1 for any w, e  t / .

Symmetry:

S(un Uj) = S(ujyut) for any un Uj e U .

Contrary to distances that are normally used in application to numerical data , the indices 

of similarity are often applied to all kinds o f variables, including categorical variables 

(Duran and Odell, 1974, Giudici, 2003).

Goodall (1966) (see also Jain and Dubes, 1988) proposed an index o f similarity using 

probabilistic approach. It was suggested that the index has a uniform distribution when 

the data are random. Gower’s similarity coefficient (Gower, 1971) is another popular 

measure o f proximity for mixed data types.

Using the above mentioned similarity coefficients and indices, and other dissimilarity 

measures (Gowda and Diday, 1991), the standard hierarchical clustering methods can 

handle data with numerical and categorical values. However, the quadratic 

computational cost makes them unacceptable for clustering large data sets (Anderberg, 

1973, Jain and Dubes, 1988).
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The proximity index d(uiiuj ) between two observations is a real valued

function defined on U  x U  that satisfies the following conditions:

The inequality that is used to measure similarity:

diu^u^) > m a xd (u f,u  ) for any un u, e U .
j

Non-negativity:

d(un Uj) > 0 for any un U j .eU .

Symmetry:

d(un Uj) = d{Uj,u^) for any un Uj e U  .

If identity o f indiscemibles is used to measure proximity between identical observations: 

diu^Ui)  = 1 for any u, e  U  then 0 < d(un Uj) < 1 for any observations u„ Uj.eU . Note

that this definition o f the proximity index is slightly different from the definition given 

by Jain and Dubes (1988).

The proximity index d(ui,u j ) between two categorical variables un Uj e U  can be used

as indicator o f  mismatch or as a distance function in the categorical space. In this case 

the index takes just two values
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for any ut, U j S U  . Huang (1998) used the notation S(ui9Uj) as the indicator of  

mismatch (simple matching measure)

However, the above notation can be confused with the common notation of the 

Kronecker delta StJ, while the latter delta 8ij =1 if  i = j  and 8tJ = 0  if  i *  j . Therefore,

we will use the notation co for matching measure. Hence, the distance between two 

categorical feature vectors Yj = (yu , - " , y u) and Y2 = ( <y2i>--->3;2/) is defined as:

Peat (Y,, Y2) = G)(yx l, y 2l) + ... + o)(yu, y 2l)

where

f°r y,j = yi ,  

for y > j* y 2 j '

2.4 Minkowski distance or I f  space

The Minkowski distance o f  order p , based on the Minkowski norm ( I? ) is defined as:



P„ 0 „ x 2) = | | x , - x 2 IIp
n Y '"

YyM~xiAp 
\ 1 - '  J

where x, and x2 =(x2l, . . . , x2„ ) .

p  does not need to be an integer, but it cannot be less than 1, because otherwise the 

triangle inequality does not hold.

Further we will consider a data set represented as a matrix o f size N x  (/? + / ) .  Here N  is 

the number o f records, p  is the number o f numerical attributes and I is the number of 

categorical attributes. Because we consider p  as the number o f numerical attributes, we 

have to change n in the above mentioned definition o f  the Minkowski norm for p  , and

also we will use p M instead o f p  as the Minkowski power and the formula will be:

r p \ ypp

2 Pa/ zX ~ x
\ j~ i

2 j
\P m

As we mentioned before, a norm satisfies the triangle inequality for any two elements x 

and y .

+

The triangle inequality in Lp spaces is:

where/ and g  are elements o f I f  (»S)
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2.5 Typical steps in clustering activity

Cluster analysis is the organisation o f a collection o f records into clusters based on 

similarity (Jain and Dubes, 1988). Typical clustering activity involves the following 

steps (Jain and Dubes, 1988):

(a) Representation o f records (optionally including feature extraction and/or 

selection): record representation refers to the number o f classes, the number o f records, 

and the number, type, and scale o f the features available to the clustering algorithm. 

Some of this information may not be controllable by the researcher. We should also try 

to avoid correlated variables that could lower the performance o f  some methods. Feature 

selection is the process o f identifying the most effective subset o f  the original features to 

use in clustering. Feature extraction is the use o f one or more transformations of the 

input features to produce new salient features. Either or both o f  these techniques can be 

used to obtain an appropriate set o f features to use in clustering.

(b) Definition o f a record proximity measure appropriate to the data domain.

Record proximity is usually measured by a distance function defined on pairs o f data 

points.

(c) Clustering or grouping. Clustering as we will see later can be divided in three 

main categories: objective function-based (partition-based), hierarchical clustering and 

model-based clustering.
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(d) Data abstraction (if needed). This is the process o f extracting a simple and 

compact representation o f a data set.

(e) Assessment o f output (if needed). Cluster validity analysis is the assessment of a 

clustering procedure’s output.

Feature selection is very important in a number o f new applications with very large input 

spaces. This is because these applications critically need space dimensionality reduction 

for efficiency and efficacy o f the predictors. In particular, these applications include 

bioinformatics (DNA microarrays, mass-spectrometric data, etc.), combinatorial 

chemistry (e.g. high throughput screening o f drug candidates), text processing (e.g. spam 

filtering), decision making (e.g. oil drilling), pattern recognition (e.g. handwriting 

recognition), speech processing, and vision.

There are various methods for supervised feature selections (see, e.g. Cios et al. (2007)). 

For example, minimum redundancy feature selection, filtering approach o f feature 

selection, wrapper approach o f feature selection. The supervised methods assume that 

class label information for each data record is given. For unsupervised feature selection 

several methods have been developed.

There are many transformations for feature extraction; some o f these methods do not 

alter the space dimensionality (e.g. normalisation), while others enlarge it (non-linear
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expansions, feature discretisation), reduce it (space embedding methods) or can act in 

either direction (extraction o f local features). In this thesis we will study normalisation 

methods.

2.6 Main types of clustering

Cluster analysis or clustering can be divided in three main types: objective function- 

based clustering (partition-based), hierarchical clustering and model-based clustering 

(Estivill-Castro, 2002, Cios et al., 2007).

2.6.1 Hierarchical clustering.

This kind o f clustering is based on creating a hierarchical decomposition o f the set of  

data points using some criterion or models. However, it is based not on continuous 

mathematical models like probability distributions, but on discrete, structural models. As 

a result, hierarchical clustering produces a representation o f  data in a form of a graph 

(dendrogram). There are two different approaches: the bottom-up, also known as 

agglomerative approach, and top-down also known as divisive approach (Cios et al., 

2007). The former approach treats each record as a single-element cluster and then 

successively merges the closest clusters. At each pass, the two closest clusters are 

merged. The process repeats until the current number o f  clusters is equal to&, or a 

predefined threshold value is reached. The later approach works in the opposite direction.
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The entire set is initially treated as a single cluster, and it is kept splitting into smaller 

clusters. Almost all hierarchical clustering algorithms are agglomerative, as divisive 

methods present a huge computational task. This kind o f clustering will not be used in 

the thesis.

2.6.2 Model-based clustering.

Let us describe the model-based clustering following Cios et al. (2007). In model-based 

clustering methods, each observation is obtained from a mixture o f c sources o f data 

with given prior probabilitiesp l, p 2, . . . , p c , component-specific conditional probability

density function and its parameters. It is assumed in this kind o f  clustering that there is a 

certain probability model o f the data, i.e. there is a set o f  equations which describes the 

behaviour o f the data under consideration in terms o f  random variables and the 

associated probability distributions o f the variables. These probability distributions 

define the clusters. Each object is generated by one and only one o f  these distributions; 

hence belongs to one and only one cluster.

The parameters o f the model have to be estimated. A popular method used for fitting a 

statistical model to data is the maximum likelihood estimation. This method picks the 

values o f the model parameters that maximize the probability (likelihood) o f the sample 

data, i.e. these values make the data “more likely" than any other values would make 

them. The maximum likelihood approach is used under assumption that each data item
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was independently drawn form the statistically distributed data mixture. The principle is 

used to find the distribution parameters and, hence, one may obtain the proportions in the 

clusters, their location and scatter, and for each individual item, the probability that it 

belongs to the / -th cluster.

Since it is assumed that the data are a result o f a mixture o f c sources o f data, the above 

structure is called mixture density model. These sources might be considered as clusters 

with given prior probabilities p x->p2^--->Pc that are also called the mixing parameters. 

Each component o f this mixture is described by some conditional probability density 

function, p ( \ \ 6 ^  characterised by a vector o f parameters 6{ . Under these assumptions, 

the model is additive and comes in the form o f mixture densities:

p(x\9v e1,...,ec) = Y ip (x \e )Pl.
/=1

To build the model, one has to estimate the parameters o f the contributing probability 

density functions. To do so we have to assume that p (x ,# ) is  identifiable which means

that if  0  *  0'then there exists a x such thatp { * \0 )  p ( x |# ' ) . As it has been mentioned

above, the standard approach used to discover the clusters is to carry out maximum 

likelihood estimation. Most o f the work in this area has assumed that the individual 

components o f the mixture density are Gaussian.
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The induction principle o f the Maximum Likelihood approach says “choose the model 

that maximizes the probability o f the data being generated by such model” (Kalbfleisch, 

1985). This iterative algorithm converges to local optima and is the well-known 

expectation maximisation (EM) method (Dempster et al., 1977). EM algorithms do not 

require the specification of distance measures and therefore, it admits both categorical 

and continuous attributes.

Although the statistical approaches will be intensively used in the thesis, these 

approaches will be applied to objective function-based clustering. Thus, the above 

described model-based clustering will not be used in the thesis.

2.6.3 Objective function-based clustering.

A very general category o f clustering is concerned with building partitions (clusters) o f  

data sets on the basis o f some performance index known also as an objective function.

Here we need to distinguish hard and fuzzy cluster methods. It is known that a 

partitioning method constructs k  groups. If these groups together satisfy the following 

requirements o f a partition (Kaufman and. Rousseeuw, 1990):

1. each group must contain at least one object, and

2. each object must belong to exactly one group,
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then this is hard clustering. Thus, in hard clustering, data is divided into distinct clusters, 

where each data element belongs to exactly one cluster. In fuzzy clustering, data 

elements can belong to more than one cluster, and associated with each element is a set 

of membership levels (Jain et al., 1999).

It is known that an objective function, known also as cost function, is a function 

associated with an optimisation problem where the best element from some set of 

available alternatives is chosen to minimize or maximize the function. The value o f this 

function determines how good the chosen solution is. There are various clustering 

algorithms for objective function-based clustering because it is practically unfeasible to 

find a global optimum for the objective function by considering all possible 

combinations o f elements (exhaustive search). Indeed, to present k  clusters o f the total n 

elements, we need to consider all N (n ,k )  (Stirling’s number) possible partitions:

*(«»*> = T ? s ( - i rX! <=1 \ l J

where the notation

J j

denotes the binomimal coefficient



N (n ,k )  is one o f Stirling’s numbers (see, e.g. Jensen, 1969). With increasing n this 

soon becomes intractable, so that inevitably, partitioning algorithms do not consider all 

partitions and can normally find only local optima.

Objective function-based clustering means: there is an objective function whose value 

depends on the chosen partition and how small this value is determines how good the 

particular clustering is. The main design challenge o f  clustering lies in formulating an 

objective function that is capable o f reflecting the nature o f the problem so that its 

minimisation reveals a meaningful structure in the data set (Pedrycz, 2005).

2.6.4 Hybrids of supervised and unsupervised learning.

There are also other kinds o f clustering that can be considered as hybrids o f ideas of 

supervised and unsupervised learning. In particular, conceptual clustering algorithms, 

semi-supervised learning algorithms like ISODATA, and analysis o f effectiveness of 

clustering algorithms using labelled data sets.

Conceptual clustering algorithms consist o f two tasks: (i) to find clusters in a given data 

set, and (ii) to produce a conceptual description for each found cluster (Cios et al., 2007). 

The former task is an unsupervised machine learning task, while the latter task is a 

characterisation problem that belongs to supervised machine learning tasks. The
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conceptual clustering algorithms may cluster data with categorical values (Fisher, 1987, 

Lebowitz, 1987, Michalski and Stepp, 1983). The ability to produce conceptual 

descriptions o f clusters is important to data mining because the conceptual descriptions 

provide assistance in interpreting clustering results. The conceptual clustering algorithms 

are based on a search for objects which carry the same or similar concepts. Therefore, 

their efficiency relies on good search strategies. For problems in data mining, which 

often involve many concepts and very large object spaces, the concept-based search 

methods can become a potential handicap for these algorithms to deal with extremely 

large data sets.

Quite often the advantage of labelled data, whose labels are extracted by the use of 

association rules as the supervised information, is combined with the use of 

unsupervised learning methods, like in the algorithm ISODATA to establish semi­

supervised learning algorithms. ISODATA: Iterative Self-Organizing Data Analysis 

Techniques Algorithm may be considered as a variation o f  the k  -means clustering 

algorithm. It allows the number o f clusters to be automatically adjusted by splitting 

clusters with large standard deviations or merging similar clusters. Since it uses the 

training set o f the data it is a hybrid o f supervised and unsupervised methods.

We need to note that a hybrid o f  ideas o f  supervised and unsupervised learning is also 

used to check the effectiveness o f  clustering algorithms. For example, Liu and Huang 

(2003) considered a variant o f  a genetic algorithm and evaluated the fitness o f each
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chromosome with a combination o f fuzzy within cluster variance of unlabelled data and 

misclassification error o f labelled data.

It is known that optimisation techniques use various methods, strategies and algorithms. 

Evolutionary approaches belong to these techniques. In particular, they include genetic 

algorithms (GA) and Swarm intelligence (SI) that mimic heuristically biological 

evolution.

2.6.4.1 Genetic algorithms (Evolutionary approaches for clustering)

Genetic algorithms mimic the principle o f the survival o f  the fittest individual in the 

process o f selection. GAs deal with a population o f abstract representations (called 

chromosomes or the genotype) o f candidate solutions (called individuals, creatures, or 

phenotypes). The space o f all candidate solutions is called the search space. GAs make 

use o f evolutionary operators and a population o f  solutions to obtain the globally optimal 

partition o f the data. Traditionally, solutions are represented in binary as strings o f Os 

and Is, but other encodings are also possible. The evolution usually starts from a 

population o f randomly generated individuals and happens in generations. In each 

generation, the fitness o f every individual in the population is evaluated, multiple 

individuals are stochastically selected from the current population based on their fitness 

(traditionally the objective function in GA applications is called the fitness function), 

and modified (recombined and possibly randomly mutated) to form a new population. 

The new population is then used in the next iteration o f the algorithm. Commonly, the 

algorithm terminates when either a maximum number o f generations has been produced,
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or a satisfactory fitness level has been reached for the population (see e.g. Michalewicz

1996).

Pseudo-code of a genetic algorithm

1. Choose initial population

2. Evaluate the fitness o f each individual in the population

3. Repeat:

(i) Select best-ranking individuals to reproduce

(ii) Apply genetic operations (crossover and mutation) and give birth to offspring

(iii) Evaluate the individual fitnesses o f the offspring

(iv) Replace worst ranked part of population with offspring

4. Until terminating condition is met.

In many problems, GAs may have a tendency to converge towards local optima or even 

arbitrary points rather than the global optimum o f the problem. This means that it does 

not "know how" to sacrifice short-term fitness to gain longer-term fitness. The GA 

search tries to balance two objectives: utilising the best solutions and exploring the 

search space. GAs are discussed in details by many authors (see, e.g. Michalewicz, 1996, 

and Mitchell, 1996). Some specific features o f GA based clustering are discussed in 

Chapter 5.
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2.6A.2 Swarm intelligence (Evolutionary approaches for clustering)

Similarly to GA, Swarm intelligence (SI) is a type o f artificial intelligence that mimics 

the collective behaviour o f animals. For example, SI includes the Ant Colony 

Optimization (Dorigo et al., 1996) and Bees Algorithm (Pham et al. 2006b). The latter is 

a new technique that was introduced to mimics nature’s evolutionary principles that 

drive the search o f bees towards an optimal solution. In application to problems of 

optimisation, a bee means a point of the domain (the search space) o f the objective 

function, while the fitness o f the bee means the value o f the objective function at this 

point. It was shown (Pham et al. 2006b) that using the BA for some optimisation 

problems is more effective than using the GA based techniques (Goldberg, 1989). The 

main ideas o f the Bees algorithm (Pham et al. 2006b) are discussed in detail in Chapter 5.

2.7 Objective - function based clustering algorithms 

and its applications

2.7.1 Objective - function based clustering for mixed data sets.

Data analysis with mixed data may follow three main strategies: Variables partitioning; 

Variables converting, and Compatibility measures (Anderberg, 1973, Gibert and Cortes,

1997). Variables partitioning consists on partitioning the variables upon their type, then
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reducing the analysis to the dominant type (determined owing to the group with a greater 

number o f variables, or the group containing the more relevant variables, or the 

background knowledge on the domain and so on). Variables converting method converts 

all the variables to a unique type, trying to conserve as much original information as 

possible. It does not necessarily produce meaningful results in the case o f categorical 

domains beign not ordered. This method is traditionally used in mathematical statistics 

(Neal and Hinton 1999, Pregibon and Elder, 1996). Finally, compatibility measures 

method consists on the use o f compatible measures which cover any combination of 

variable types, making a homogeneous treatment o f  all the variables. Its idea is to allow 

clustering on a domain simultaneously described by numerical and categorical variables 

without transforming the variables themselves. The last method was used by many 

authors, e.g. Ralambondrainy (1995), Gupta et al. (1999) and Huang (1998), for 

clustering records o f mixed data. In fact, they extended the distance-based A:-means 

algorithm to handle categorical data in addition to numerical data.

2.7.2 The A:-means, A:-modes and A:-prototypes algorithms

The A:-means, A:-modes and A:-prototypes algorithms are based on the most intuitive 

and frequently used objective function - the squared error criterion. The function tends to 

work well with isolated and compact clusters. The induction principle o f the k  -means 

based approaches says “pick the model (set o f k  centres) that minimizes the total 

squared error”.
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Stepl. (Initialization). Having determined the number o f groups, k  prototypes 

(sometimes called seeds), are defined. The seeds constitute the centres (measures of 

position, usually means) o f the clusters in the initial partition.

Step2. (Assignment o f points to clusters) Each data point is assigned to the cluster with 

the closest centre. For each element o f the data set, the distances are calculated between 

the element and the prototype o f the cluster to which it has been assigned.

Step 3. (Update o f  all cluster centres). Recalculate the centres o f  the clusters. The 

objective function is calculated using these distances and it has to have a minimum value, 

otherwise the elements will be moved to other clusters.

Step 4. (Stopping criterion). If a convergence criterion is not met, go to step 2. Typical 

convergence criteria are: no (or minimal) reassignment o f  records to new cluster centres, 

or minimal decrease in squared error.

The &-means clustering method (Anderberg, 1973, MacQueen, 1967) is efficient for 

processing large data sets. Therefore, it is best suited for data mining. However, the k- 

means algorithm only works on numeric data, because it minimises a cost function by 

changing the means o f clusters. Hence, one cannot use it in applications to categorical 

data or mixed data.
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To deal with mixed data, the distance metric may be redefined as a sum of two measures, 

one for the categorical attributes and one for the numerical attributes. The hard part of 

combining metrics like this is that an appropriate weighting o f the measures needs to be 

derived for the overall measure to be useful. Huang (1997, 1998) introduced two 

extensions o f the k  -means algorithm, namely the algorithms, called k  -modes and k -  

prototypes, respectively. The former algorithm was targeted to deal with categorical 

attributes, while the latter was introduced to cluster large data sets with mixed numerical 

and categorical values. To deal with categorical data Huang replaced means o f clusters 

used in the ^-means algorithm by modes, and used a frequency-based method to update 

modes in the clustering process to minimise the clustering objective function (cost 

function) (Huang 1998). In the k  -prototypes algorithm he defined a “dissimilarity 

measure” that takes into account both numerical and categorical attributes. In fact, he 

considered a metric p H, where p 2H is the sum o f the square o f  the Euclidean numerical 

metric and a weighted categorical metric (the matching dissimilarity measure).

The advantages and drawbacks o f these algorithms may be described as follows. The k - 

means algorithm has been widely adopted as a general purpose algorithm because it is 

easy to implement. It also has practically no limitation on the size o f data sets because its 

time complexity (the time complexity o f an algorithm refers to the time it takes to run) 

is 0(h ), where n is the number o f data points. It also does not explicitly restrict the

dimensionality o f the data. Disadvantages o f the algorithms are that the algorithms 

require the clusters to be spherical, that the data be free o f  noise (those conditions hardly
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occur in practical situations) and that the algorithms are sensitive to the selection of the 

initial partition.

2.7.3 Most recent applications of clustering for categorical and mixed 

data sets

It is accepted in the overwhelming majority o f  papers devoted to OF-based clustering 

that the k  -means algorithm performs very well in application to numerical data. 

Currently many authors see the main problem in OF-based cluster analysis in 

development o f new algorithms for clustering categorical and mixed data.

Peters and Zaki (2004) introduced the Click algorithm, which searches clusters in 

categorical data sets. They treat informally clusters as especially dense interval regions 

within a data set. A region can be considered dense if  the actual support is higher than 

the expected support o f a given interval region. It was claimed that the Click algorithm 

outperforms previous approaches by a factor o f two to three. However, Andreopoulos et 

al. (2009) have noted that there is a problem related to applying density-based clustering 

to categorical biomedical data. In their treatment a categorical dataset with / attributes is 

viewed as an / -dimensional “cube”, offering a spatial density basis for clustering. Since 

the “cube” of attribute values has no ordering defined, the search for dense subspaces is 

rather slow. So they employed the Hamming distance and introduced the HIERDENC 

algorithm for “hierarchical density based clustering of categorical data”. Applications of
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the algorithm results in layered clusters where a central subspace often has a higher 

density.

As it has been mentioned above, Huang (1997, 1998) introduced the k  -modes and k -  

prototypes algorithms as extensions o f the k  -means algorithm. These algorithms are 

very popular. Zhang et al. (2006) claimed that their statistical procedure for clustering 

categorical data based on Hamming distance vectors outperforms the k  -modes 

algorithm. However, the method was not applied to mixed data sets.

Ahmad and Dey (2007) presented the “k-mean clustering algorithm for mixed numeric 

and categorical data”. As an example, they considered a categorical attribute A, that

may have two values a  and b . In order to find the distance between a and b , they 

considered the overall distribution o f a  and b in the data set along with their co­

occurrence with values o f other attributes. For the given data set, they considered 

another categorical attribute Aj and denote by w a subset o f values o f Aj  and by z  the

complementary set o f values occurring for this attribute. Then they denoted by 

Pf(w /a )  the conditional probability that an element having value a  for An  has a value

belonging to w for Aj  and P ^ z / b )  denotes the conditional probability that an element

having value b for At , has a value belonging to z  for A j . According to their definition,

distance between the pair o f values a and b o f At with respect to attribute Aj and a

particular subset w is defined as follows S'w(a,b) = i* (w /a) + Pt{ z / b ). This definition is
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not symmetric with respect to a  and b . Hence it is not a metric. Besides, one has to note 

that the paper contains some undefined items and this makes it practically impossible to 

use the model for practical realisation.

A number o f  very interesting approaches were derived from ideas introduced by Bezdek 

and his co-workers (see, e.g. Bobrowski and Bezdek, 1991; Hathaway and Bezdek, 

1995). Bobrowski and Bezdek (1991) introduced an extension o f the hard and fuzzy c-  

means clustering algorithms to the cases o f  /, and norms. Their approach was

developed further by Miyamoto and Agusta (1995, 1998), Hathaway et al. (2000), 

Takata et al. (2001), Koga et al. (2001), Endo et al. (2006) and others. In these papers it 

was introduced a very promising idea to generalise the standard ^ p \  objective

function to the functions , where p ?M is the Mikowski distance and p M is the

power o f the Minkowski norm. However, these generalisations were applied only to 

fuzzy clustering algorithms. In Chapter 4 this idea is extended to the case o f hard 

clustering and applied to mixed data sets.

Chan et al (2004) and Huang et al. (2005) introduced a weighting k  -means type 

clustering algorithm that can calculate attribute weights automatically. The algorithm 

calculates a new weight for each attribute based on the variance o f the within cluster 

distances. The algorithm was applied to both synthetic and real data. It was claimed that 

the algorithm outperformed the standard k  -means type algorithms in recovering clusters 

in data. To estimate the accuracy o f clustering both the clustering accuracy and the Rand
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index were employed. One has to note that clustering was performed without 

normalisation o f variables, while it is known that the raw data need to be normalised 

(Aksoy and Haralick, 2001; Larose, 2005).

Normalisation o f attributes was discussed in a number o f papers (see, e.g., Aksoy and 

Haralick, 2001; Hastie et al., 2001; Larose, 2005; Pham et al., 2006a). It was realised 

that normalisation should give all attributes equal influence on characterising overall 

dissimilarity between pairs o f objects (Hastie et al., 2001; Pham et al., 2006a). However, 

Hastie et al. (2001) after introducing a correct interpretation o f  the normalisation 

procedure, gave an example where standardisation obscured the two well-separated 

groups. They argued that variables that are more relevant in separating the groups 

should be assigned a higher influence in defining object dissimilarity. Giving all 

attributes equal influence in this case will tend to obscure the groups to the point where 

a clustering algorithm cannot uncover them. In fact, this argument is very similar to the 

above arguments o f Chan et al (2004) and Huang et al. (2005) who applied weighting o f  

attributes without normalisation. We agree that in particular examples clustering without 

normalisation may give good results. However, this is the case o f luck because this 

means that by chance the attributes have proper weights. We believe that it is too naive 

to relay on luck in unsupervised learning when there is no a priory information about 

importance o f attributes for clustering. We agree that if  one knows a priory that some 

attributes have bigger contributions to similarity measures than the rest o f the attributes 

then this can be taken into account by appropriate weighting o f the attributes. However, 

it looks quite natural to apply the normalisation procedure first and only after the means
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of contributions o f all attributes have been equalised, then to apply the weighting 

procedure to more important attributes.

2.8 Summary

The Chapter has recalled a number of notations and definitions o f concepts related to 

clustering, similarity measures for numerical, categorical and mixed data sets, objective 

functions, and statistical estimators. The Chapter ends with a literature review o f the 

most recent applications o f objective - function based clustering for mixed data sets.

Further we deal only with objective function-based clustering o f flat file data sets where 

a data set can be represented as a matrix o f size N x  (p  + l ) . Here N  is the number of  

records, p  is the number of numerical attributes and / is the number o f categorical 

attributes.
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Chapter 3 

Clustering mixed data sets (Euclidean metric) 

by using the ^-prototypes algorithm

In this Chapter a unified statistical approach to both numerical and categorical 

attributes is applied in order to normalise the feature vectors for mixed data sets. The 

proposed approach is extended to the case o f  mixed metrics, i.e. when different 

metrics are used for numerical and categorical data. The most common case o f 

metrics, namely the Euclidean metric is used as a measure for continuous numerical 

features, while the matching dissimilarity measure is used to deal with categorical 

attributes. Normalised metrics are introduced such that the average contributions o f  

all attributes to the measures are equal to each other from statistical point o f view. 

Advantages o f  the introduced normalised metrics are demonstrated on examples o f 

their applications to various data sets. Methods for comparing the accuracy o f the 

clustering algorithms are discussed in detail and explained on examples. Results on 

benchmark data sets are presented together with a comparison with other approaches.
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3.1 Background

It has been defined in Chapter 2 that Data Mining (DM) is a process o f extracting 

relations and patterns from data and hence DM is a tool for transforming raw 

collections o f  data into information. As it was noted by Larose (2005), “/«  the real 

world, dirty data sets need cleaning; raw data need  to be normalized; outliers need 

to be checked ’. The normalisation procedure relies on the use o f  various 

mathematical concepts, and hence, it is important to develop appropriate 

mathematical tools for this procedure.

We call data set a collection o f objects described by the same features. As we have 

seen in Chapter 2, a data set can be represented as a matrix o f  size N x ( p  + l) where 

N  is the number o f  records, p  is the number o f  numerical attributes and I is the 

number o f categorical attributes. The i -th row o f  the matrix represents the i -th 

record o f the data set and it is a vector(xn , . . . , x l 9y n , . . . 9y it) . The values x,,, . . . ,xip

are numerical while the values y n, . . . , y u are categorical. In clustering analysis o f  

numerical data sets, it is very common to calculate the similarity or dissimilarity 

between two feature v e c t o r s = (xu , . . . ,x lA,) and x 2 = (x2l, . . . , x 2p) using a square

distance measure. Indeed, it is very natural to use the Euclidean metric p E (or 

L2 metric)

1/2

P s(x i>x2)=ll x , - x 2 ||2= 2 > i y - XzjY (3.1)
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as a measure for continuous numerical features because this metric is in everyday use. 

In addition, the A>means algorithm uses the Euclidean metric (3.1) to measure 

distances between records and combines the use o f  the metric with employment of 

the objective function that is defined as the sum o f  squares o f  p £ ( x , ,x .) .  This

combination has some specific mathematical features that w ill be discussed in 

Section 3.2, and it gives some advantages to the A>means algorithm.

For categorical data and for mixed (numeric and categorical) data, there is no such a 

natural similarity measure as the Euclidean metric. Therefore, two different similarity 

measures are often combined for clustering o f  mixed data (see, e.g. Gibert and Cortes, 

1997, Huang 1997). One o f  possible combinations is the combination o f  the most 

common cases o f  metrics, namely the Euclidean metric that is used to measure 

distances between continuous numerical attributes, and the matching dissimilarity 

measure that is used to measure distances between categorical attributes. This 

combination is used in the ^-prototypes algorithm that is the most popular algorithm 

for clustering mixed data sets (Huang 1998). The same combination o f  metrics is 

considered in this Chapter, The application o f  the proposed procedure to the general 

case o f Minkowski metrics is discussed in Chapter 4.

In spite o f the importance o f  data normalisation, there are only few papers especially 

devoted to normalisation methods for data sets. Milligan and Cooper (1988) 

discussed various normalisation methods that have to be applied to numerical data 

before conducting a cluster analysis. Aksoy and Haralick (2001) gave a review o f
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normalisation techniques that may be applied to numerical data sets. The goal o f the 

normalisation procedures reviewed was the normalisation o f  each feature component 

to the [0, 1] range. However, after this kind o f  data set normalisation, the average 

contributions o f  all features to the similarity measure may be not equal to each other.

The idea to use a weighted Euclidean distance that may take into account the scatter 

o f samples within a cluster (see e.g. Chen, 1973), was recently generalised to 

Minkowski distance by Pham et al. (2006b). Mirkin (1996, 1997, 1998) discussed 

normalisation o f  mixed features based on their contributions to the quadratic data 

scatter. Mirkin (1998) stated that methods for analysis o f  data in mixed feature space 

are still an issue.

In this thesis we argue that the average contribution o f  the j  -th feature component to 

the total measure has to be equal to its mean and therefore, the goal o f a 

normalisation procedure is the equalisation o f  the attribute contributions. In this 

chapter a unified statistical approach is applied to both numerical and categorical 

attributes in order to normalise the feature vectors for mixed data sets. After the 

proposed normalisation, the means o f  all dimensionless attributes will be the same 

and hence, contributions o f  the features to similarity measures are approximately 

equalised.

This chapter is organised as follows: Section 3.2 discusses some specific features o f  

k  -means. Section 3.3 presents a description o f  commonly used normalisation 

techniques. In Section 3.4, the proposed statistical approach to normalisation of
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feature vectors is presented. Methods o f  estimation o f  accuracy o f  the clustering 

algorithms are discussed in detail in Section 3.5. Numerical results on benchmark

Section 3.7.

3.2 Some specific features of the k-means algorithm

Sometimes it is argued that the k  -means algorithm (MacQueen 1967) is so 

successful in application to numerical data just because it involves Euclidean 

distances and the corresponding spherical geometry (see e.g., Cios et al., 2007). 

Whilst those are good reasons, there is another more important argument to explain 

the popularity o f  the k  -means algorithm. Let us discuss some known special 

properties o f the k  -means algorithm for partition o f  data set into k  clusters. It uses 

as the objective function J n ot the sum o f Euclidean distances but the sum o f squares 

o f the metric. If the above explanation reflected all specific properties o f  the 

algorithm then one were able to use as the objective function the sum o f  Euclidean 

distances with the same success. Thus, the A:-means algorithm minimises the 

objective function J

data sets are presented in Section 3.6 and the conclusion o f  this Chapter is given in

k  N

(3.2)
m=1 /=!

{0,1}, \ < i <  N ,  1 < m < k ,

k N

(3.3)
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where uim is an element o f  the partition matrix. The condition uim = 1 means that the 

record X, is assigned to cluster m with prototype (centre) Q m .

Let us write (3.2) as

^ = (3.4)
m =1 (=1 j =1

Using (3.3), one can rewrite (3.4) in the following form

•̂  = Z Z P ? ( X (, Q J  (3.5)
m=1 ieCm

The second sum is taken by elements that belong to the cluster Cm. The objective

function that is calculated using these distances has to have a minimum value. Hence,

the problem is

0 .6)
m=1 ieCm j =1

However, (3.6) has the minimum value if  for any m  we have

ieCm j =I

or changing the order o f  summation, we can write
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E E (x»_Q»y)2 ^ min
7=1 'e C m

Let us write the condition o f  an extremum for a smooth function for any fixed 

attribute j . Hence, we obtain

4r I  (x » -  Q* f = - 2 Z  (x , -  Q * ) = 0
L-my /e C „  ieCg,

Since the attribute number j  is fixed, all Q mj in the above expression are the same 

because we take the sum within the cluster Cm . Hence, we can represent it as

Z X H CJ Q » ,,= °

where \Cm | denotes the number o f  elements in the cluster Cm .

Eventually, we obtain the expression for recalculating new centres o f  the clusters

q,= h ^ x* (3-7)| m I ieC m

Note that if  one writes the condition o f  an extremum for another objective function, 

e.g. the sum o f  the Minkowski distances including the sum o f  Euclidean distances 

then after taking the derivative, one does not obtain as simple expression as (3.7).
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The possibility to derive the very simple expression for recalculating new cluster 

centres is the main reason o f  the popularity o f  the k  -means algorithm.

As it has been mentioned in Chapter 2, Huang (1997, 1998) introduced two 

extensions o f  the A:-means algorithm, namely the algorithms, called A:-modes and 

k  -prototypes, respectively. The former algorithm was targeted to deal with 

categorical attributes, while the latter was introduced to cluster large data sets with 

mixed numerical and categorical values. In this Chapter 3 the k  -prototypes is used to 

cluster data sets with mixed numerical and categorical values.

3.3 Normalisation of feature vectors

As it has been mentioned in Chapter 2, normalisation is a particular kind o f feature 

extraction method. Normalisation o f  data sets is widely used in a number o f  fields o f  

machine intelligence. Sometimes the term standardisation is used as a synonym to 

normalisation. This kind o f  feature extraction is important because if  the data is not 

normalised then the contribution o f  each feature to the similarity measure depends on 

the units o f  measurements and, therefore, the contribution o f  the features to the 

measure are scale dependent.
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3.3.1 Normalisation of numerical data sets

A direct application o f  geometric measures (e.g. city block or Euclidean distances) to 

attributes with large ranges will implicitly assign larger contributions to the metrics 

than the application to attributes with small ranges. In addition, the attributes should 

be dimensionless; for example, we can not compare attributes in metres (m) with 

attributes in Newtons (N). Indeed, the numerical values o f  the ranges o f  dimensional 

attributes depend on the units o f  measurements and therefore, the choice o f  the units 

o f  measurements may greatly affect the results o f  clustering. If it is known a priory 

that some attributes are irrelevant to the problem under consideration then they can 

be removed from the feature vector.

In the general case o f  normalisation o f  data sets, when there is no a priory 

information about preferences o f  some attributes, one has to assume that all attributes 

are equally important. In this case, the distance or dissimilarity functions o f  

clustering algorithms involve all attributes o f  the data set. A s Chan et al. (2004) 

noted, this is applicable i f  all or most attributes are important to every cluster. 

However, clustering results become less accurate i f  a significant number o f  attributes 

are not important to some clusters. Hence, i f  all attributes are equally important to 

measure similarity between feature vectors then one should not use distance 

measures like the Euclidean distance (3.1) without normalisation o f  data (see, e.g. 

(Gibert and Cortes, 1997; Aksoy and Haralick, 2001). Further one need to apply 

normalisation not only to numerical attributes but also to categorical attributes.
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New normalised metrics are introduced such that the average contributions o f all 

attributes to the measures are equal to each other from statistical point o f view. 

Although this idea has been recently discussed in the literature (Hastie et al., 2001), 

they said nothing about statistical consistency o f  the proposed estimators. In addition, 

they used biased estimators.

M in-M ax N orm alisation.

This approach normalises the data by dividing the attribute value xtJ by its range 

using scaling with a shift

m a x j ^ m i n j

Here x*. is the normalised attribute value in the data set, xmaxj and xminJ are the 

maximum and the minimum values o f  attribute A j , respectively. This is the most

cited method o f  normalising data sets. Sometimes it is referred to as Min-Max 

normalisation (Larose, 2005). Doherty et al. (2004) applied this kind o f  normalisation 

to the Minkowski metric.

Evidently, the results scaled by (3.8) do not depend on the original units o f  data 

measurements, and this linear scaling w ill transform the data to the range [0,1]. 

However, this normalisation procedure does not achieve equalisation o f  the attribute 

means. Hence, the application o f  the transformation (3.8) for normalisation o f real 

world data sets and consequent clustering using either Euclidean or Minkowski norm,
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do not give equal contributions o f  variables to the similarity measures because the 

means o f the different normalised attributes are not necessary equal to each other.

Z -Score Standardisation.

This is a very popular normalisation technique that normalises the variables by taking 

the difference between its value and its mean value and scaling this difference by the 

standard deviation o f  the variable (Jain and Dubes, 1988; Larose, 2005)

, X-- X  ■
xu = ~  -  (3.9)

9 Sj.(X)  v '

It will be shown below that this approach is consistent with our approach when the 

Euclidean metric is used.

For numerical datasets when the Euclidean metric is used, the most common 

normalisation procedure is the Z -score standardisation, i.e. to transform the attribute 

A" to a random variable with zero mean and unit variance by

(3-10)

where //. and <7 . are the mean and standard deviation for values o f  the j  -th attribute 

A" respectively. As it w ill be shown, this scaling provides equal contributions o f  

variables to the Euclidean similarity measure.
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It was also suggested often to truncate the out-of-range components assuming that it 

is just eliminating the outliers (Aksoy and Haralick, 2001). However, truncating the 

out-of-range components could lead to loss o f  information from the dataset.

It was noted that providing all attributes are normally distributed, the probability o f  

the attribute value normalised by (3.10) is in the [-1,1] range equals to 68%. If one 

applies an additional shift and rescaling as

* ;= 0 .5 [(* ,- / i ,) / (3 < ry) + l] (3.11)

then this guarantees 99% o f  the values to be in the [0,1] range (Aksoy and Haralick, 

2001). However, any shifting o f  the whole attribute column does not affect the 

distance metric (3.1). Hence, such an additional shifting has no practical applications 

to clustering o f  data sets.

3.3.2 Normalisation of categorical data sets

Normalisation o f  categorical and mixed datasets was practically not discussed in the 

literature. For example, the k  -prototypes algorithm was applied to a non-normalised 

metric by Huang (1998). Larose (2005) suggested to apply either the min-max 

normalisation or Z -score standardisation techniques to numerical attributes and the 

matching dissimilarity measure without normalisation when mixed categorical and 

continuous variables are studied. He noted that perhaps, the min—m ax normalisation 

may be preferred  in this case.
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As it has been mentioned above, normalised metrics are introduced in this thesis such 

that regardless o f  the type o f  attributes their average contributions to the measures are 

equal to each other from statistical point o f  view. Although this idea has been 

recently discussed in the literature (Hastie et al., 2001), nothing was said about 

statistical consistency o f  the proposed estimators. In addition, they used biased 

estimators.

3.4 Statistical approach to normalisation of feature 

vectors

With geometric similarity measures, usually no assumption is made about the 

probability distribution o f  the attributes and similarity (dissimilarity) is based on the 

distances between feature vectors in the feature space (Aksoy and Haralick, 2001). 

Each record (row) o f  a dataset may be regarded as a random sample o f  a population 

under consideration, i.e. one has a dataset o f  N  observations (samples) and each 

sample (record) is a realisation o f  possible values o f  the feature vector A .

3.4.1 Estimators

For statistical treatment o f  feature vectors, one needs to know the probability 

distributions o f  their attributes. For a numerical attribute A" , the probability
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distribution identifies the probability o f  the attribute value falling within a particular 

interval within the range o f  possible values. For a categorical attribute A* , the 

probability distribution identifies the probability o f  certain states occurring.

Suppose that ( X x, X 2, . . . , X N) is a random sample o f  size N  from a distribution o f a 

real-valued random variable X  with mean ju and standard deviation a . As it has 

been mentioned in Chapter 2, an estimator is a function o f  the observable sample data 

(statistic) that is used to estimate an unknown population parameter (which is called 

the estimand). It is known (Spigel 1975, Giudici 2003) that a sample o f N  

observations o f a random variable X  is a sequence o f  random variables 

( Xl X N) that are distributed identically a sX . One can assume that the sample

is a simple random sample when the random variables ( X x, X 2, . . . , X N) are

independent and therefore they constitute a sequence o f  independent and identically 

distributed random variables. Then X denotes the random vector formed by a 

sequence o f random variables X = ( X x, X 2, . . . , X N) and x  = (xx, x 2, . . . , xN) indicates 

the actually observed sample value.

Practically in all books on statistics one can find that the sample mean for the j  -th 

feature

-  1 N

X i = — Y . x u (3.12)

is an unbiased estimator o f  the unknown population mean j u , while the sample 

variance

63



(3.13)

is a biased estimator o f  the population variance. The unbiased estimator o f the 

population variance cry2 for the j  -th feature is

It is known that the above estimators (3.12) and (3.14) o f  the sample mean and the 

sample variance are consistent (Giudici 2003). One can use the above basic definition 

to estimate the average and variance for the j  -th attribute o f  the data set. Sometimes 

it has been suggested to use the biased estimator (3.13) instead o f  the unbiased 

estimator (3.14) for the variance for the j  -th attribute (Jain and Dubes, 1988).

It is assumed usually in the literature that each numerical feature has a normal 

(Gaussian) distribution with mean and standard deviation cry . However, in the

general case, distribution functions are not known in advance and another function 

may be a better model for the attributes than the Gaussian distribution.

3.4.2 Earlier attempts of normalisation

The normalisation procedure can be implemented in different ways. For example, 

Aksoy and Haralick (2001) reviewed five normalisation methods for numericai data,

(3.14)
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namely linear scaling to unit range, linear scaling to unit variance, transformation to a 

uniform [0,1] random variable, rank normalisation, and normalisation by fitting 

distributions. All these approaches intended to normalise each feature component to 

the [0,1] range. However, mainly these methods were equivalent to the above 

described Min-max normalisation and Z -score standardisation techniques. Note that 

in the textbooks by Jain and Dubes (1988) and by Larose (2005) only these two 

techniques were mentioned.

Hastie et al. (2001) described the following procedure for combining the 

/?-individual attribute dissimilarities d j ( x y , x rj)9j  = 1 ,2 ,...,/?  into a single overall

measure o f  dissimilarity D(xi, x i.) by means o f  a weighted average (convex 

combination)

where vvy is a weight assigned to the j  -th attribute regulating the relative influence 

o f the variable on the dissimilarity. The weight depends upon its relative contribution 

to the average object dissimilarity measure D  over all pairs o f  records

p p

(3.15)

D  =  ~ j l i Y L D ^ x t )  =  L w / d J
1=1 /'=1 j =1

j  N  N  p

(3.16)

with the average dissimilarity o f  the j  -th attribute

j  N  N

(3.17)
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Hence, the relative influence o f  the j  -th attribute is w / d j  .

There are several questions and issues related to the above description o f  the

normalisation procedure. Hastie et al. (2001) noted that setting W j - l / d j  for all

attributes, irrespective o f  type, would give all attributes equal influence on 

characterising overall dissimilarity between pairs o f  objects. However, one has to 

realise that the above estimator is biased. Further, the question concerning the 

consistency o f  the proposed estimators was not discussed. They consider as example 

only the same case as in (Chen, 1973), namely the weighted Euclidean distance. On 

the other hand, there are metrics where the above approach is not valid. For example, 

it will be discussed in the next Chapter that if  one considers the Tchebysheff metric 

for numerical attributes then (3.15)-(3.17) are not applicable. H ow can one normalise 

this metric?

Finally, if  one studies a mixed metric that is a sum o f  two different metrics (for 

example, one metric is used for numerical data, while another metric is used for 

categorical data) then the above approach, i.e. formulae (3.15)-(3.17), is not 

applicable. Definitely, there is a need to discuss the application o f  the above idea in 

detail.

3.4.3 A new statistical approach to normalisation of attributes

To obtain a new normalised Euclidean metric, one should calculate the mean 

contribution o f  each j  -th attribute to the metric E  | X Xj -  X 2j |2 (here E  means the
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expectation o f  a variable) and to divide the attribute in all records by this mean (if the 

mean is equal to zero then this attribute should be removed from the feature vector). 

Hence, the normalised Euclidean metric can be introduced in the following way

M 2

p*(x i ,x 2) = £ da J \ x l t - x ,
W=i

(3.18)

where = \ /  E \  X Xj - X 2J f , X Xj and X 2J are independent random variables whose 

values are distributed in accordance with the distribution o f  the j  -th attribute.

Since X Xj and X 2J are independent random variables having the same distribution, 

we obtain for the Euclidean metric,

E  | X xj - X 2J |2= E X I - 2 E X XjE X 2j + E X 22j = 2{EX)} ~ { E X Xjf )  = 2 a ) , 

where cry is the standard deviation o f  the j  -th attribute. Thus, the normalised 

Euclidean metric has the following form

2) =

1/2

la
KJ-l 2 a

(3.19)

According to (3.14), it is possible to use the following unbiased estimator o f the 

sample variance to estimate a )  in (3.19),
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_ I N
where xv = — ^ x rJ is the sample mean for the j  -th attribute (see (3.12)). 

N  r=1

From (3.19) we obtain the known form o f  normalisation o f  features:

* _  X i\  A  * - X V
x i\ ~  > • • ■ > x ip

< * \ ° P

where //y is the mean o f  the j  -th attribute.

3.4.4 Data sets with mixed attributes

For data sets with categorical attributes, it is possible to introduce different metrics 

(see, e.g. Gibert and Cortes, 1997; Huang, 1998; Ralambondrainy, 1995). One o f the 

most cited variants o f  metrics (see, e.g. Huang, 1998) is studied here, namely the 

distance between two categorical feature vectors y, = 0 '1i , . . . , j ;i/) and

y 2 = 0 '2i . - , ^ 2,) is defined as

pea, (y i .y 2)=®( î i»y2i)+• • ■+"Ov > yv ) (3-2°)

were
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Jo for y t j = y 2j 
1 r„,

Evidently, the square o f the metric (3.20) is

(yi. y 2 ) = ( î i. ̂ 21 ) + • • • + ®2 Ov > j^/) (3.21)

Combining p E and p cat for mixed data, one obtains that the square distance between 

two mixed feature vectors (x ,,y j) and (x2,y 2) is

p 2((x p y i).(x 2 .y 2 ))= P s(x i .x2 )+ p L (y i.y 2 ) (3.22)

where /^ (x , ,x 2) is defined by (3.1) and p 2cati y ^ y 2  ̂ is defined by (3.21).

The same idea as it has been applied to numerical features, w ill be applied here to 

categorical ones, namely we will divide the contribution o f  each attribute to the 

distance measure by the contribution mean. Hence, the normalised mixed metric is 

defined similarly to (3.22)

P ((*1, y 1), (x2, y 2 )) = Yu CCj (xly -  X2J f  + Y j PjG>2 CViy»y i j  )
\ j =1 7=1

(3.23)
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where a y = \ I E ( X lj - X 2j)2 , Pj  = 1 / Eco2(Ylj ,Y2J) and , Y2j are independent 

random variables whose values are distributed in accordance with the distribution o f  

the Aj -th attribute. If the attribute A '  can take values {yJX, y j2, . . . , y jqj} and the

probabilities {pjX ,p j2,..., p Jqj} o f  these values are known then

E co\Y lJ,Y2J) = Ea>(Ylj ,Y2J) =
gj qj
Z l'PjrPj. = Z PjrPj, ~ (Pfl + -  + P ) P
r^ '  r ,s=1r*s

or

E<o2(r,j , r 2J) = ( Pl , + . . . + p Mi)2 - ( p 1Jl+ . . . + p 2Jqi) = i -  (P 2n  + . . .+ p ; , j ) .

Thus, it follows from (3.19) that a q = 1 /  2<t2 and from the above equality that

If the distribution o f  the attributes is unknown then to calculate a } one can use the 

estimation (3.19), and to estimate Eco{YXj,Y2j) one can use the sampling mean

E<02(YltJ .y )  =  - L  £  (3.25)
™ r,5=l
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The estimation (3.25) is a biased estimator ofEo)2(Yl j ,Y2j) , hence for small data sets 

it is better to use the following estimation

Ea>\Yi p Yv ) = — —  £  a * y , , y ^  (3.26)
—  I)  1 z r<S£N

that is an unbiased estimator.

3.5 Comparing the accuracy of the clustering 

algorithms

Comparison o f accuracy o f  clustering algorithms is not an easy task. In the case o f  

datasets having labels (class labels), there are two methods commonly used for 

comparison: (i) calculating o f  accuracy, and (ii) calculation o f  Rand index (Rand, 

1971) or its modifications (Hubert and Arabie, 1985).

3.5.1 Accuracy of clustering and Rand index

Using the former approach, N g and Wong (2002) measured the results o f application 

of their clustering algorithm by the clustering accuracy defined as

T  ,rmA c c „ = (3.27) 
N
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where rm is the number o f objects partitioned into the correct cluster m and N  is the

total number o f records in the data set. The formula (3.27) was also used by Chan et 

al. (2004) to calculate the accuracy o f  their attributes-weighting algorithm that was 

tested by clustering an artificial data set. We need to note that to use the 

accuracy AccNW, one has to explain in the algorithm what ‘correct’ cluster is. Indeed,

even if  partitioning o f the data set was absolutely correct A ccNW can be very low or

even be equal to zero just because two labels are replaced one by another. To avoid 

this problem, we have introduced the ideas o f  the assignment problem (see paragraph 

3.5.2 below).

The Rand index or Rand measure is a measure o f  the similarity between two data 

clusterings. The classical definition is the following (Rand, 1971):

Let us consider a set S  o f  N  elements, and two partitions C = {C ,,. .. ,Q }  and 

,Dk) o f  the data set. To calculate the Rand index, one needs first to 

calculate the following numbers: a  is the number o f  pairs o f  elements in S  that are 

in the same set in C and in the same set in D ; b is the number o f  pairs o f elements 

in S  that are in different sets in C and in different sets in D ; c is the number o f  

pairs o f elements in S  that are in the same set in C and in different sets in D ; and d  

is the number o f pairs o f  elements in S  that are in different sets in C and in the same 

set in D . Then the Rand index, ( R  ), is calculated as

R = — — -----  (3 28)
a + b + c + d
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Intuitively, one can think o f  a + b as the number o f  agreements between C and 

D and c + d  as the number o f disagreements between C and D .

The formula (3.28) was used by many researchers. In particular, it was used by 

Huang et al. (2005) to evaluate the performance o f  their attributes-weighting 

clustering algorithm in application to an artificial data set. It was possible to use 

(3.28) because the cluster labels o f  the data points in the synthetic data set were 

known. The Rand index has a value between 0 and 1 and the larger the Rand index, 

the higher the accuracy o f  the clustering.

3.5.2 Assignment problem and calculating the accuracy of clustering

Our calculation o f the accuracy function has involved the ideas o f  a particular case o f 

the assignment problem. In the classic formulation o f  the problem, there are a 

number o f agents and a number o f  tasks. Any agent can be assigned to perform any 

task, incurring some cost that may vary depending on the agent-task assignment. It is 

required to perform all tasks by assigning exactly one agent to each task in such a 

way that the total cost o f the assignment is minimised.

This problem is one o f  the fundamental combinatorial optimization problems. The 

latter is a branch o f optimisation whose domain is optimisation problems where the 

set o f candidate solutions is discrete or can be reduced to a discrete one, and the goal 

is to find the best possible solution. The space o f all candidate solutions is called the 

search space.
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Let us give a formal description o f  calculation o f  the accuracy o f  a clustering 

algorithm. For this purpose, consider data sets whose inherent structures are known 

in advance. Let us consider a data set having a categorical attribute A that may have 

k  different states that may be associated with labels o f  the clusters, i.e.

the inherent structure (labels) o f  the data set is associated with the states o f this 

attribute.

Our clustering algorithm will map the records to a discrete set o f  labels (classes). It is 

proposed to perform the normalisation procedure o f  the data set as it is described 

above and then to apply the clustering algorithm. After clustering, each record will 

belong to a cluster with a corresponding number m  . For each m , let us assign a state 

a9{m) o f  the attribute A = {ax,a2, . . . ,ak} to the m  -th cluster. Evidently, different

clusters should have different states o f  the attribute A . Let us denote by n , the•' m>j

number o f records with the attribute A = cij that belong to the m -th cluster.

For a given assignment^?, one can estimate the accuracy Acc(<p) o f  the clustering as

k

^  1 ̂ m,q>(m)
Acc(<p) = ^ L _   (329)

where nmip(m) is the number o f  records o f  the m -th cluster whose state o f  the attribute 

A is the same as the assigned a (m). The clustering accuracy is defined as maximum 

of Acc(<p) for all possible assignments (p
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Acc  = max Acc(<p) . (3.30)

Evidently, the closer is Acc  to 1 the less is the difference between the partitioning o f  

the data after clustering and the partitioning o f  the data associated with the attribute A. 

If Acc = 1 then both partitioning into classes are the same.

Thus, one needs to solve the assignment problem with an efficiency matrix nm ., 

(m, j  = 1,..., k) in order to find the clustering accuracy A c c .

We can rewrite the formula (3.29) for calculating the accuracy o f  clustering results 

measured by the clustering accuracy A c c , as

i x ,
Acc = m   (3.31)

N

where nm j is the number o f  records within the cluster m  having the same label as 

the generated cluster label a} , and N  is the total number o f  records in the data set.

To explain the way we calculated the accuracy o f  clustering, let us consider an 

example o f & = 3 clusters having 10, 9, and 8 records respectively (Figure 3.1). We 

can have in total 3! = 6 different assignments.
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Cluster 3

Cluster 1

Cluster 2

Figure 3.1: An example of a data set with 3 clusters having 10, 9, and 8 records 

respectively.

Assume there is an attribute that may take 3 different values (class labels): blue, 

azure and yellow. Let us consider further the following distribution of total N = 21 

records by the labels. The cluster 1 has 10 records having the following labels: 3 blue, 

3 azure and 4 yellow; the cluster 2 has 9 records having the following labels: 5 blue, 

2 azure and 2 yellow; and the cluster 3 has 8 records having the following labels: 3 

blue, 3 azure and 2 yellow (Figure 3.2).
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Cluster 3

C lu ster  1

C lu ster  2

Figure 3.2: An example of a data set having N  = 27 records, 3 clusters, and the class 

labels of the records: blue, azure and yellow. The cluster labels are not yet assigned.

Then each cluster may be labelled (assigned) by one of these colours, i.e. there is an 

attribute A whose states are blue ( a , ) ,  azure ( a2), and yellow (a3). The goal is to

find an optimal assignment of labels to clusters such that there is a maximum total 

matching between the cluster labels and the labels of records belonging to each 

cluster. The assignments corresponding to the example under consideration are 

presented in Figures 3.3-3.8.
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Cluster 3

Cluster 1

Cluster 2

Figure 3.3: The first case of possible assignments of labels to clusters: the label of

cluster 1 is blue, the label of cluster 2 is azure, and the label o f cluster 3 is yellow.

For each cluster, the number of matching labels is in a red circle: n̂ Mue = = 3,

'h .azure  =  «2 ,2  =  2 ’3 n d  f e l l o w  =  «3,3 =  2  •

If one calculates Acc in accordance with (3.31) in the first case of assignments then

the result is



Cluster 2

Cluster 3

Cluster 1

Figure 3.4: The second case of possible assignments of labels to clusters: the label of 

cluster 1 is blue, the label of cluster 2 is yellow, and the label of cluster 3 is azure. 

For each cluster, the number of matching labels is in a red circle: blue = x = 3,

H y e lU w  =  n 2 3  =  2 - a n d  ^ 2 ,azure =  « 3 ,2  = 3  •

If one calculates Acc in accordance with (3.31) in the second case of assignments 

then the result is

3 + 3 + 2  8
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Cluster 3

Cluster 1

Cluster 2

Figure 3.5: The third case of possible assignments of labels to clusters: the label of 

cluster 1 is azure, the label of cluster 2 is blue, and the label of cluster 3 is yellow. 

For each cluster, the number of matching labels is in a red circle: \ azure = \ 2 = 3,

"z Mue = "2,! = 5. and ̂  = n,, = 2 .

If one calculates Acc in accordance with (3.31) in the third case of assignments then 

the result is

3 + 5 + 2  10
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Cluster 3

Cluster 1

Cluster 2

Figure 3.6: The fourth case of possible assignments of labels to clusters: the label of 

cluster 1 is azure, the label of cluster 2 is yellow, and the label of cluster 3 is blue. 

For each cluster, the number of matching labels is in a red circle: i\ azure = 2 = 3,

n 2 ,yellow  =  W2,3 =  a n (  ̂ W3 ,blue =  W3,l =  ^  *

If one calculates Acc in accordance with (3.31) in the fourth case of assignments 

then the result is

3 + 2 + 3  8
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Cluster 2

Cluster 3

Cluster 1

Figure 3.7: The fifth case of possible assignments of labels to clusters: the label of 

cluster 1 is yellow, the label of cluster 2 is blue, and the label of cluster 3 is azure. 

For each cluster, the number of matching labels is in a red circle: nl yellow = = 4,

If one calculates Acc in accordance with (3.31) in the fifth case of assignments then 

the result is

4 + 5 + 3 12Acc< = ------------= — .
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Cluster 3

Cluster 1

Cluster 2

Figure 3.8: The sixth case of possible assignments of labels to clusters: the label of 

cluster 1 is yellow, the label of cluster 2 is azure, and the label of cluster 3 is blue. 

For each cluster, the number of matching labels is in a red circle: nx llow = 3 = 4,

n 2,azure ~ W2,2  ~  a n ^  W3 biue =  « 3 j = 3 .

If one calculates Acc in accordance with (3.31) in the sixth case of assignments then 

the result is

4 + 2 + 3  9
A c c 6 =

21 27
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One can see that the maximum o f Acc, for /  = 1,..., 6 is Acc, = — . This value is
y 5 2 7

taken as the accuracy o f the above clustering.

If the total number o f records in the data set N  is large then calculations o f the Rand 

index R is a rather time consuming procedure. Indeed, one has to consider all 

possible pairs o f records (exhaustive search), i.e. the number o f  operations is 

proportional to N 2. In this case, calculation o f  the assignment based accuracy Acc 

of clustering is simpler. However, even this procedure is fast only when the total 

number o f  records in the data set N  is small because in this case one can consider all 

possible cases as we have considered above. If k  is large then to calculate the 

assignment based accuracy Acc  one has to use one o f  existing algorithms to solve 

the corresponding assignment problem. In all data sets considered in this thesis we 

have k < 8 and therefore we have not employed any o f  the special algorithms for 

solving the assignment problem.
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3.6 Applications to data sets

The above methods will be applied to several data sets from the UC Irvine repository. 

All records in those data sets have the class labels and, hence, “true clustering” can 

be checked.

3.6.1 Soybean Disease Data Set

The soybean data set has 47 records ( N  = 47) with 35 attributes. Each record is 

attributed to one o f  the 4 following diseases: Diaporthe Stem Canker, Charcoal Rot, 

Rhizoctonia Root Rot, and Phytophthora Rot. The Phytophthora Rot has 17 

observations, while other diseases were observed 10 times each. This is a standard 

categorical data set that was studied a number o f  times to test clustering algorithms 

(see, e.g. Huang, 1998; Michalski and Stepp, 1983; Huang, 1997). First the clustering 

procedure has been applied to the data set without normalisation o f  the data. Then the 

clustering procedure with normalisation o f all attributes has been applied to the data 

set. Both procedures with and without normalisation have been applied 100 times to 

the data set. Table 3.1 presents the results o f  application o f  the k  -prototypes 

algorithm without normalisation o f the attributes to the soybean data set: the values 

of the clustering accuracy ( Ac c ) ,  the objective function ( J ), the Rand index ( R ), 

and the number o f iterations the algorithm needed to converge, and the attempts 

showing the best value o f  the objective function (BF).
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Here and henceforth the plus sign in the Tables means that the best value o f the 

objective function has been obtained in the simulations.

Table 3.1: Clustering o f the Soybean data set without normalisation o f  the attributes.

N Accuracy Rand Index
Objective 

function . /
Iterations BF

1 1 1 199 3 +
2 1 1 199 4 +
3 1 1 199 2 +
4 1 1 199 4 +
5 1 1 199 6 +
6 1 1 199 3 +
7 1 1 199 2 +
8 1 1 199 5 +
9 1 1 199 3 +
10 1 1 199 4 +
11 1 1 199 3 +
12 1 1 199 3 +
13 1 1 199 2 +
14 1 1 199 1 +
15 0.9787 0.9759 199 4 +
16 0.9787 0.9759 201 5
17 0.9787 0.9759 199 4 +
18 0.9787 0.9759 199 4 +

19 0.9787 0.9759 199 2 +
20 0.9787 0.9759 199 2 +
21 0.9787 0.9759 199 2 +
22 0.9787 0.9759 199 3 +
23 0.9787 0.9759 199 3 +
24 0.9787 0.9759 199 4 +
25 0.9787 0.9759 199 2 +

26 0.9787 0.9759 199 3 +

27 0.9787 0.9759 199 6 +

28 0.9787 0.9759 199 1 +

29 0.9787 0.9759 199 1 +

30 0.9787 0.9759 202 3
31 0.9787 0.9759 199 3 +

32 0.9574 0.9537 199 1 +

33 0.9574 0.9537 199 4 +

34 0.9574 0.9537 199 5 +

35 0.9574 0.9537 199 2 +

36 0.9574 0.9537 199 6 +
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N Accuracy Rand Index
Objective 

function J Iterations BF

37 0.9574 0.9537 199 2 +
38 0.9574 0.9537 199 2 +
39 0.8936 0.8982 202 8
40 0.8298 0.8594 211 3
41 0.766 0.8372 213 3
42 0.7447 0.8335 215 4
43 0.7447 0.8335 216 7
44 0.7234 0.8233 228 1
45 0.7234 0.8316 216 2
46 0.7234 0.8316 218 1
47 0.7234 0.8233 228 3
48 0.7234 0.8659 246 3
49 0.7234 0.8316 217 2
50 0.7234 0.8233 239 2
51 0.7234 0.8316 217 2
52 0.7021 0.8261 261 4
53 0.7021 0.8205 227 2
54 0.7021 0.8205 227 3
55 0.7021 0.8205 224 3
56 0.7021 0.8205 224 3
57 0.7021 0.8205 238 2
58 0.6809 0.8196 220 2
59 0.6809 0.8196 220 5
60 0.6809 0.8196 220 2
61 0.6809 0.8196 220 2
62 0.6809 0.8094 225 2
63 0.6809 0.8094 225 4
64 0.6809 0.8196 220 4
65 0.6809 0.8196 220 3
66 0.6809 0.8196 220 3
67 0.6809 0.8094 225 4
68 0.6809 0.8094 225 4
69 0.6596 0.8649 260 5
70 0.6596 0.8187 237 3
71 0.6596 0.8298 239 4
72 0.6596 0.8649 260 2
73 0.6383 0.8464 260 5
74 0.6383 0.8464 260 3
75 0.6383 0.8427 252 3
76 0.6383 0.8187 239 4
77 0.6383 0.8279 238 5
78 0.6383 0.8344 238 2
79 0.6383 0.7993 245 2
80 0.617 0.8409 252 5
81 0.617 0.8409 252 3
82 0.617 0.8335 253 5
83 0.617 0.8409 253 4
84 0.617 0.79 244 4
85 0.617 0.8409 253 3
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N Accuracy Rand Index
Objective 

function J Iterations BF

86 0.617 0.8409 252 4
87 0.617 0.8409 253 4
88 0.617 0.8335 238 3
89 0.617 0.8252 258 6
90 0.617 0.8409 252 3
91 0.617 0.7484 247 2
92 0.617 0.8409 254 3
93 0.5957 0.7493 244 2
94 0.5957 0.7299 246 2
95 0.5745 0.7364 241 7
96 0.5532 0.7086 241 4
97 0.5532 0.7475 277 2
98 0.5532 0.7068 245 2
99 0.4894 0.7484 277 3
100 0.4468 0.5624 290 2

Table 3.2 presents the results o f application o f  the k  -prototypes algorithm with 

normalisation o f  the attributes to the soybean data set. The meanings o f  the columns 

presenting the results in Tables 3.2 -3.8 are the same as the meanings described for 

the Table 3.1.

Table 3.2: Clustering o f  the Soybean data set with normalisation o f  the attributes.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 1 1 359.8666 5 +

2 1 1 359.8666 1 +

3 1 1 359.8666 1 +

4 1 1 359.8666 4 +

5 1 1 359.8666 5 +

6 1 1 359.8666 3 +

7 1 1 359.8666 3 +

8 1 1 359.8666 2 +

9 1 1 359.8666 4 +

10 1 1 359.8666 3 +

11 1 1 359.8666 3 +

12 1 1 359.8666 6 +

13 1 1 359.8666 2 +



N

i i
j 2
i i
i i
20
I I
22
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24
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27
28
29
i i
1L
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i i
i i
i i
i i
_37

i i
i i
40

i i
i i
i i
i i
i i
i i
i i
i i
49
50

i i
52

i i
i i
i i
56

i i
i i
i i
60

i i
62

Accuracy Rand Index

0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.9787
0.7872
0.7872
0.766
0.766

0.7447
0.7447
0.7447
0.7234
0.7234
0.7234
0.7234
0.7234
0.7234

0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.9759
0.8427
0.8427
0.8511
0.8344
0.8298
0.8298
0.8335
0.8316
0.8233
0.8316
0.8881
0.8705
0.8881

Objective 
function J

359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
359.8666
361.1875
362.3914
361.1875
361.1875
361.1875
361.1875
361.1875
361.1875
362.3914
361.1875
361.1875
361.1875
361.1875
361.1875
362.3914
362.3914
361.1875
361.1875
361.1875
361.1875
399.8791
399.8791 
462.1653 
445.4421
422.7914
422.7914 
404.7635 
402.3598 
419.9152 
397.2588
497.091 
502.1693
497.091

Iterations BF
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N Accuracy Rand Index
Objective 

function J Iterations BF

63 0.7234 0.8316 397.2588 3
64 0.7021 0.8205 413.3237 4
65 0.7021 0.8205 418.2429 1
66 0.7021 0.8205 419.5059 3
67 0.7021 0.8205 413.3237 3
68 0.7021 0.8205 414.5062 2
69 0.7021 0.8853 496.3033 2
70 0.7021 0.8261 463.5563 3
71 0.7021 0.8205 422.24 3
72 0.7021 0.8853 496.3033 3
73 0.7021 0.8205 414.5062 3
74 0.7021 0.8205 413.3237 3
75 0.6809 0.8196 410.2062 2
76 0.6809 0.8196 418.711 2
77 0.6809 0.7743 447.8564 4
78 0.6809 0.8196 410.2062 2
79 0.6809 0.8196 422.9991 2
80 0.6809 0.827 499.2963 5
81 0.6809 0.7909 474.2939 2
82 0.6809 0.8057 458.2709 2
83 0.6596 0.802 450.3792 3
84 0.6596 0.7919 472.0441 2
85 0.6596 0.8002 510.3877 6
86 0.6596 0.8501 513.679 1
87 0.6383 0.7817 467.9814 4
88 0.6383 0.7983 509.8043 2
89 0.6383 0.79 455.1688 4
90 0.6383 0.8427 501.1875 4
91 0.6383 0.8427 495.3664 4
92 0.617 0.7558 474.2798 3
93 0.5957 0.7234 494.6445 2
94 0.5957 0.6873 495.5843 4
95 0.5957 0.79 504.0347 3
96 0.5957 0.8242 493.1026 3
97 0.5957 0.8252 493.0092 3
98 0.4681 0.5643 547.0896 2
99 0.4681 0.5643 548.6295 3
100 0.4468 0.5624 548.6995 2

Since the data set is quite small, the “true clustering” ( Acc  = 1) has been obtained 

quite often in both cases. Acc = 1 has been obtained in 14% after clustering without 

normalisation and in 29% after clustering with normalisation. The average accuracy
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in both cases has been 0.782979 and 0.829574 respectively for the former and the 

latter cases.

3.6.2 Wine Data Set

The wine data set has 178 records ( N  =  178) with 14 attributes. The first attribute 

indicates the class (cultivar) and it takes three categorical values, while the rest o f the 

attributes are numerical. Clustering has been performed using the first categorical 

attribute. First the clustering procedure has been applied to the data set without 

normalisation o f the data (see Table 3.3).

Table 3.3: Clustering o f the Wine data set without normalisation o f  the attributes.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.7022 0.7187 2370689.7 11 +
2 0.7022 0.7187 2370689.7 7 +
3 0.7022 0.7187 2370689.7 4 +
4 0.7022 0.7187 2370689.7 8 +
5 0.7022 0.7187 2370689.7 6 +
6 0.7022 0.7187 2370689.7 5 +
7 0.7022 0.7187 2370689.7 6 +
8 0.7022 0.7187 2370689.7 6 +
9 0.7022 0.7187 2370689.7 4 +
10 0.7022 0.7187 2370689.7 11 +
11 0.7022 0.7187 2370689.7 4 +
12 0.7022 0.7187 2370689.7 5 +
13 0.7022 0.7187 2370689.7 7 +
14 0.7022 0.7187 2370689.7 3 +
15 0.7022 0.7187 2370689.7 5 +
16 0.7022 0.7187 2370689.7 3 +
17 0.7022 0.7187 2370689.7 3 +
18 0.7022 0.7187 2370689.7 5 +
19 0.7022 0.7187 2370689.7 6 +
20 0.7022 0.7187 2370689.7 4 +
21 0.7022 0.7187 2370689.7 8 +
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N Accuracy Rand Index
Objective 

function «/
Iterations BF

22 0.7022 0.7187 2370689.7 7 +
23 0.7022 0.7187 2370689.7 14 +
24 0.7022 0.7187 2370689.7 9 +
25 0.7022 0.7187 2370689.7 3 +
26 0.7022 0.7187 2370689.7 12 +
27 0.7022 0.7187 2370689.7 5 +
28 0.7022 0.7187 2370689.7 7 +
29 0.7022 0.7187 2370689.7 4 +
30 0.7022 0.7187 2370689.7 4 +
31 0.7022 0.7187 2370689.7 9 +
32 0.7022 0.7187 2370689.7 9 +
33 0.7022 0.7187 2370689.7 7 +
34 0.7022 0.7187 2370689.7 10 +
35 0.7022 0.7187 2370689.7 7 +
36 0.7022 0.7187 2370689.7 9 +
37 0.7022 0.7187 2370689.7 3 +
38 0.7022 0.7187 2370689.7 3 +
39 0.7022 0.7187 2370689.7 2 +
40 0.7022 0.7187 2370689.7 5 +
41 0.7022 0.7187 2370689.7 8 +
42 0.7022 0.7187 2370689.7 5 +
43 0.7022 0.7187 2370689.7 7 +
44 0.7022 0.7187 2370689.7 7 +
45 0.7022 0.7187 2370689.7 10 +
46 0.7022 0.7187 2370689.7 5 +
47 0.7022 0.7187 2370689.7 10 +

48 0.7022 0.7187 2370689.7 3 +

49 0.7022 0.7187 2370689.7 5 +

50 0.7022 0.7187 2370689.7 4 +
51 0.7022 0.7187 2370689.7 6 +

52 0.7022 0.7187 2370689.7 8 +

53 0.7022 0.7187 2370689.7 4 +
54 0.7022 0.7187 2370689.7 9 +

55 0.7022 0.7187 2370689.7 4 +

56 0.7022 0.7187 2370689.7 5 +

57 0.7022 0.7187 2370689.7 3 +

58 0.7022 0.7187 2370689.7 5 +

59 0.7022 0.7187 2370689.7 7 +

60 0.7022 0.7187 2370689.7 7 +

61 0.7022 0.7187 2370689.7 5 +

62 0.7022 0.7187 2370689.7 5 +

63 0.7022 0.7187 2370689.7 7 +

64 0.7022 0.7187 2370689.7 7 +

65 0.7022 0.7187 2370689.7 6 +

66 0.7022 0.7187 2370689.7 5 +

67 0.7022 0.7187 2370689.7 6 +

68 0.7022 0.7187 2370689.7 5 +

69 0.7022 0.7187 2370689.7 5 +

70 0.7022 0.7187 2370689.7 4 +



N Accuracy Rand Index
Objective 

function , / Iterations BF

71 0.7022 0.7187 2370689.7 4 +
72 0.7022 0.7187 2370689.7 9 +
73 0.7022 0.7187 2370689.7 9 +
74 0.7022 0.7187 2370689.7 7 +
75 0.7022 0.7187 2370689.7 5 +
76 0.7022 0.7187 2370689.7 4 +
77 0.7022 0.7187 2370689.7 7 +
78 0.7022 0.7187 2370689.7 11 +
79 0.7022 0.7187 2370689.7 4 +
80 0.7022 0.7187 2370689.7 9 +
81 0.7022 0.7187 2370689.7 6 +
82 0.7022 0.7187 2370689.7 5 +
83 0.7022 0.7187 2370689.7 4 +
84 0.7022 0.7187 2370689.7 7 +
85 0.7022 0.7187 2370689.7 10 +
86 0.7022 0.7187 2370689.7 10 +

87 0.7022 0.7187 2370689.7 6 +
88 0.7022 0.7187 2370689.7 2 +
89 0.5955 0.6898 2631657.1 2
90 0.5787 0.688 2625223.2 2
91 0.573 0.6919 2633555.3 11
92 0.573 0.6919 2633555.3 15
93 0.573 0.6919 2633555.3 10
94 0.573 0.6919 2633555.3 13
95 0.573 0.6919 2633555.3 7
96 0.573 0.6919 2633555.3 11
97 0.573 0.6919 2633555.3 13
98 0.573 0.6919 2633555.3 11
99 0.573 0.6919 2633555.3 11
100 0.573 0.6919 2633555.3 11

Then the clustering procedure with normalisation o f  all attributes has been applied to 

the data set. Both procedures with and without normalisation have been applied 100 

times to the data set (see Tables 3.3 and 3.4). Although the data set is quite small, the 

“true clustering” (A cc  = 1) has not been obtained.
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Table 3.4: Clustering o f the Wine data set with normalisation o f the attributes.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.9719 0.962 635.7884 7
2 0.9719 0.962 635.7884 10
3 0.9719 0.962 635.7884 9
4 0.9719 0.962 635.7884 6
5 0.9719 0.962 635.7884 5
6 0.9719 0.962 635.7884 8
7 0.9719 0.962 635.7884 5
8 0.9719 0.962 635.7884 7
9 0.9719 0.962 635.7884 5
10 0.9719 0.962 635.7884 10
11 0.9719 0.962 635.7884 4
12 0.9719 0.962 635.7884 10
13 0.9719 0.962 635.7884 4
14 0.9719 0.962 635.7884 5
15 0.9719 0.962 635.7884 6
16 0.9719 0.962 635.7884 9
17 0.9663 0.9543 635.3746 3 +
18 0.9663 0.9543 635.3746 4 +
19 0.9663 0.9543 635.3746 4 +
20 0.9663 0.9543 635.3746 4 +
21 0.9663 0.9543 635.3746 7 +
22 0.9663 0.9543 635.3746 9 +
23 0.9663 0.9543 635.3746 8 +
24 0.9663 0.9543 635.3746 6 +
25 0.9663 0.9543 635.3746 5 +
26 0.9663 0.9543 635.3746 8 +
27 0.9663 0.9543 635.3746 6 +
28 0.9663 0.9543 635.3746 6 +
29 0.9663 0.9543 635.3746 3 +
30 0.9663 0.9543 635.3746 4 +
31 0.9663 0.9543 635.3746 7 +
32 0.9663 0.9543 635.3746 13 +
33 0.9663 0.9543 635.3746 10 +
34 0.9663 0.9543 635.3746 4 +
35 0.9663 0.9543 635.3746 12 +
36 0.9663 0.9543 635.3746 5 +
37 0.9663 0.9543 635.3746 7 +
38 0.9663 0.9543 635.3746 9 +
39 0.9663 0.9543 635.3746 3 +
40 0.9663 0.9543 635.3746 7 +
41 0.9607 0.9467 636.3877 6
42 0.9607 0.9467 636.3877 4

43 0.9607 0.9467 636.3877 5
44 0.9607 0.9467 636.3877 3
45 0.9607 0.9467 636.3877 5
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N Accuracy Rand Index
Objective 

function */ Iterations BF

46 0.9607 0.9467 636.3877 6
47 0.9607 0.9467 636.3877 4
48 0.9607 0.9467 636.3877 5
49 0.9607 0.9467 636.3877 5
50 0.9607 0.9467 636.3877 6
51 0.9607 0.9467 636.3877 8
52 0.9607 0.9467 636.3877 5
53 0.9607 0.9467 636.3877 8
54 0.9607 0.9467 636.3877 5
55 0.9607 0.9467 636.3877 8
56 0.9607 0.9467 636.3877 5
57 0.9607 0.9467 636.3877 4
58 0.9607 0.9467 636.3877 6
59 0.9607 0.9467 636.3877 9
60 0.9607 0.9467 636.3877 5
61 0.9551 0.9392 636.2708 6
62 0.9551 0.9392 636.2708 3
63 0.9551 0.9392 636.2708 5
64 0.9551 0.9392 636.2708 5
65 0.9551 0.9392 636.2708 5
66 0.9551 0.9392 636.2708 4
67 0.9551 0.9392 636.2708 4
68 0.9551 0.9392 636.2708 4
69 0.9551 0.9392 636.2708 3
70 0.9551 0.9392 636.2708 5
71 0.9551 0.9392 636.2708 5
72 0.9551 0.9392 636.2708 4
73 0.9551 0.9392 636.2708 5
74 0.9551 0.9392 636.2708 4
75 0.9494 0.9311 637.6293 5
76 0.9494 0.9311 637.6293 8
77 0.9494 0.9311 637.6293 6
78 0.9494 0.9311 637.6293 7
79 0.9494 0.9311 637.6293 7
80 0.9494 0.9311 637.6293 8
81 0.9494 0.9311 637.6293 6
82 0.9494 0.9311 637.6293 10
83 0.9494 0.9311 637.6293 6
84 0.9494 0.9311 637.6293 12
85 0.9494 0.9311 637.6293 5
86 0.9494 0.9311 637.6293 6
87 0.9494 0.9311 637.6293 7
88 0.9494 0.9311 637.6293 5
89 0.9494 0.9311 637.6293 15
90 0.9494 0.9311 637.6293 7

91 0.9494 0.9311 637.6293 9
92 0.9494 0.9311 637.6293 5

93 0.9494 0.9311 637.6293 5
94 0.9494 0.9311 637.6293 7



N Accuracy Rand Index
Objective 

function J Iterations BF

95 0.9494 0.9311 637.6293 3
96 0.9494 0.9311 637.6293 7
97 0.9494 0.9311 637.6293 6
98 0.6236 0.7029 789.6402 8
99 0.5899 0.684 804.1441 7
100 0.5281 0.6709 793.4206 4

The obtained average accuracy value 0.687022 in the case without normalisation o f  

the data has been considerably smaller than the obtained average accuracy value 

0.949045 in the case with normalisation o f  the data. After application o f the 

normalisation procedure to the data set the Rand index has increased from 0.7187 to 

0.9543.

3.6.3 Statlog (Heart Diseases) Data Set

The Heart Diseases data set has 270 records ( N  = 270) with 13 attributes (they have 

been extracted from a larger set o f  75). There are no missing values. The last attribute 

indicates the class (absence (1) or presence (2) o f  heart disease) and it takes two 

categorical values. There are 7 categorical attributes and 6 numerical. Clustering has 

been performed using the last class attribute. First the clustering procedure has been 

applied to the data set without normalisation o f  the data (see Table 3.5).
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Table 3.5: Clustering o f  the Heart Diseases data set without normalisation o f the 

attributes

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.5926 0.5154 548278.3735 7 +
2 0.5926 0.5154 548278.3735 8 +
3 0.5926 0.5154 548278.3735 10 +
4 0.5926 0.5154 548278.3735 5 +
5 0.5926 0.5154 548278.3735 10 +
6 0.5926 0.5154 548280.3531 5
7 0.5926 0.5154 548278.3735 12 +
8 0.5926 0.5154 548278.3735 6 +
9 0.5926 0.5154 548278.3735 5 +
10 0.5926 0.5154 548278.3735 12 +
11 0.5926 0.5154 548278.3735 9 +
12 0.5926 0.5154 548278.3735 8 +
13 0.5926 0.5154 548278.3735 13 +
14 0.5926 0.5154 548278.3735 3 +
15 0.5926 0.5154 548278.3735 14 +
16 0.5926 0.5154 548278.3735 10 +
17 0.5926 0.5154 548278.3735 9 +
18 0.5926 0.5154 548278.3735 7 +
19 0.5926 0.5154 548278.3735 11 +
20 0.5926 0.5154 548278.3735 10 +
21 0.5926 0.5154 548278.3735 12 +
22 0.5926 0.5154 548280.3531 6
23 0.5926 0.5154 548278.3735 7 +
24 0.5926 0.5154 548278.3735 9 +
25 0.5926 0.5154 548278.3735 9 +
26 0.5926 0.5154 548278.3735 11 +
27 0.5926 0.5154 548278.3735 10 +
28 0.5926 0.5154 548278.3735 8 +
29 0.5926 0.5154 548278.3735 8 +
30 0.5926 0.5154 548278.3735 8 +
31 0.5926 0.5154 548278.3735 7 +
32 0.5926 0.5154 548278.3735 11 +
33 0.5889 0.514 548305.2053 8
34 0.5889 0.514 548305.2053 10
35 0.5889 0.514 548305.2053 12
36 0.5889 0.514 548305.2053 8
37 0.5889 0.514 548305.2053 6
38 0.5889 0.514 548305.2053 11
39 0.5889 0.514 548305.2053 8
40 0.5889 0.514 548305.2053 12
41 0.5889 0.514 548305.2053 12
42 0.5889 0.514 548305.2053 9
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N Accuracy Rand Index
Objective 

function J Iterations BF

43 0.5889 0.514 548305.2053 10
44 0.5889 0.514 548305.2053 10
45 0.5889 0.514 548305.2053 10
46 0.5889 0.514 548305.2053 11
47 0.5889 0.514 548305.2053 10
48 0.5889 0.514 548305.2053 10
49 0.5889 0.514 548305.2053 11
50 0.5889 0.514 548305.2053 10
51 0.5889 0.514 548305.2053 7
52 0.5889 0.514 548305.2053 12
53 0.5889 0.514 548305.2053 10
54 0.5889 0.514 548305.2053 11
55 0.5889 0.514 548305.2053 12
56 0.5889 0.514 548305.2053 11
57 0.5889 0.514 548305.2053 10
58 0.5889 0.514 548305.2053 10
59 0.5889 0.514 548305.2053 12
60 0.5889 0.514 548305.2053 9
61 0.5889 0.514 548305.2053 8
62 0.5889 0.514 548305.2053 11
63 0.5889 0.514 548305.2053 7
64 0.5889 0.514 548305.2053 3
65 0.5889 0.514 548305.2053 10
66 0.5889 0.514 548305.2053 6
67 0.5889 0.514 548305.2053 8
68 0.5889 0.514 548305.2053 9
69 0.5889 0.514 548305.2053 8
70 0.5889 0.514 548305.2053 12
71 0.5889 0.514 548305.2053 10
72 0.5889 0.514 548305.2053 8
73 0.5889 0.514 548305.2053 8
74 0.5889 0.514 548305.2053 11
75 0.5889 0.514 548305.2053 4
76 0.5889 0.514 548305.2053 9
77 0.5889 0.514 548305.2053 12
78 0.5889 0.514 548305.2053 7
79 0.5889 0.514 548305.2053 9
80 0.5889 0.514 548305.2053 8
81 0.5889 0.514 548305.2053 11
82 0.5889 0.514 548305.2053 10
83 0.5889 0.514 548305.2053 11
84 0.5889 0.514 548305.2053 11
85 0.5889 0.514 548305.2053 11
86 0.5889 0.514 548305.2053 8
87 0.5889 0.514 548305.2053 11
88 0.5889 0.514 548305.2053 4
89 0.5889 0.514 548305.2053 11
90 0.5889 0.514 548305.2053 10
91 0.5889 0.514 548305.2053 12



N Accuracy Rand Index
Objective 

function J Iterations BF

92 0.5889 0.514 548305.2053 12
93 0.5889 0.514 548305.2053 11
94 0.5889 0.514 548305.2053 9
95 0.5889 0.514 548305.2053 10
96 0.5889 0.514 548305.2053 12
97 0.5889 0.514 548305.2053 10
98 0.5889 0.514 548305.2053 9
99 0.5889 0.514 548305.2053 11
100 0.5889 0.514 548305.2053 7

Then the clustering procedure with normalisation o f  all attributes has been applied to 

the data set. Both procedures with and without normalisation have been applied 100 

times to the data set (see Tables 3.5 and 3.6).

Table 3.6: Clustering o f  the Heart Diseases data set with normalisation o f the 

attributes.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.8259 0.7114 1868.3564 4
2 0.8259 0.7114 1868.3564 7
3 0.8259 0.7114 1868.3564 6
4 0.8259 0.7114 1868.3564 5
5 0.8259 0.7114 1868.3564 5
6 0.8259 0.7114 1868.3564 5
7 0.8259 0.7114 1868.3564 6
8 0.8222 0.7066 1868.3293 6
9 0.8185 0.7018 1868.3446 4
10 0.8185 0.7018 1868.3446 5
11 0.8185 0.7018 1868.3446 5
12 0.8148 0.6971 1836.1406 3
13 0.8074 0.6878 1794.5934 4
14 0.8074 0.6878 1794.5934 7
15 0.8074 0.6878 1794.5934 6
16 0.8074 0.6878 1794.5934 6
17 0.8074 0.6878 1794.5934 3

18 0.8074 0.6878 1794.5934 4

19 0.8074 0.6878 1794.5934 6
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N Accuracy Rand Index
Objective 

function J Iterations BF

20 0.8074 0.6878 1794.5934 2
21 0.8074 0.6878 1794.5934 7
22 0.8074 0.6878 1794.5934 5
23 0.8074 0.6878 1794.5934 4
24 0.8074 0.6878 1794.5934 4
25 0.8074 0.6878 1794.5934 6
26 0.8074 0.6878 1794.5934 5
27 0.8074 0.6878 1794.5934 4
28 0.8074 0.6878 1794.5934 5
29 0.8074 0.6878 1794.5934 9
30 0.8074 0.6878 1794.5934 4
31 0.8074 0.6878 1794.5934 7
32 0.8074 0.6878 1794.5934 8
33 0.8074 0.6878 1794.5934 7
34 0.8074 0.6878 1794.5934 5
35 0.8074 0.6878 1794.5934 6
36 0.8074 0.6878 1794.5934 5
37 0.8074 0.6878 1794.5934 5
38 0.8074 0.6878 1794.5934 6
39 0.8074 0.6878 1794.5934 7
40 0.8074 0.6878 1794.5934 4
41 0.8074 0.6878 1794.5934 4
42 0.8074 0.6878 1794.5934 4
43 0.8074 0.6878 1794.5934 6
44 0.8074 0.6878 1794.5934 5
45 0.8074 0.6878 1794.5934 7
46 0.8074 0.6878 1794.5934 3
47 0.8074 0.6878 1794.5934 6
48 0.8074 0.6878 1794.5934 6
49 0.8074 0.6878 1794.5934 6
50 0.8074 0.6878 1794.5934 5
51 0.8074 0.6878 1794.5934 4
52 0.8074 0.6878 1794.5934 4
53 0.8074 0.6878 1794.5934 3
54 0.8074 0.6878 1794.5934 7
55 0.8074 0.6878 1794.5934 6
56 0.8037 0.6833 1794.5534 13 +
57 0.8037 0.6833 1794.5534 4 +
58 0.8037 0.6833 1794.5534 8 +

59 0.8037 0.6833 1794.5534 3 +

60 0.8037 0.6833 1794.5534 6 +
61 0.8037 0.6833 1794.5534 13 +

62 0.8037 0.6833 1794.5534 4 +

63 0.8037 0.6833 1794.5534 5 +

64 0.8037 0.6833 1794.5534 8 +

65 0.8037 0.6833 1794.5534 4 +

66 0.8037 0.6833 1794.5534 8 +

67 0.8037 0.6833 1794.5534 7 +

68 0.8037 0.6833 1794.5534 4 +



N Accuracy Rand Index
Objective 

function J Iterations BF

69 0.8037 0.6833 1794.5534 14 +
70 0.8037 0.6833 1794.5534 4 +
71 0.8037 0.6833 1794.5534 4 +
72 0.8037 0.6833 1794.5534 9 +
73 0.8037 0.6833 1794.5534 8 +
74 0.8037 0.6833 1794.5534 13 +
75 0.8037 0.6833 1794.5534 3 +
76 0.8037 0.6833 1794.5534 5 +
77 0.8037 0.6833 1794.5534 4 +
78 0.8037 0.6833 1794.5534 4 +
79 0.8037 0.6833 1794.5534 5 +
80 0.8037 0.6833 1794.5534 4 +
81 0.7963 0.6744 1859.3437 4
82 0.7963 0.6744 1859.3437 6
83 0.7963 0.6744 1859.3437 12
84 0.7963 0.6744 1859.3437 6
85 0.7963 0.6744 1859.3437 4
86 0.7963 0.6744 1859.3437 4
87 0.7963 0.6744 1859.3437 2
88 0.7963 0.6744 1859.3437 6
89 0.7963 0.6744 1859.3437 12
90 0.7963 0.6744 1859.3437 4
91 0.7963 0.6744 1859.3437 12
92 0.7963 0.6744 1859.3437 3
93 0.5593 0.5052 2056.4629 7
94 0.5556 0.5043 2056.6104 4
95 0.5259 0.4995 2020.4735 6
96 0.5222 0.4991 2142.8896 3
97 0.5222 0.4991 2020.4696 5
98 0.5222 0.4991 2020.4696 8
99 0.5185 0.4988 2144.1491 6
100 0.5074 0.4983 2153.6535 5

The “true clustering” ( Acc - 1  ) has not been obtained. The obtained average 

accuracy value 0.590074 in the case without normalisation o f  the data has been 

considerably smaller than the obtained average accuracy value 0.784741 in the case 

with normalisation o f  the data. After application o f  the normalisation procedure to 

the data set the Rand index has increased from 0.5154 to 0.6833. The latter value has 

been taken not as the best value o f  the Rand index but in accordance with the
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obtained best objective function value (because this is the criterion o f the 

unsupervised objective function-based clustering).

3.6.4 Credit Approval Data Set

The credit approval data set has 690 records (N  = 690) with 16 attributes. There are 6 

numerical attributes, while the rest o f  the attributes are categorical. Clustering has 

been performed using the last categorical attribute that takes two values: + and,-, i.e. 

approval o f the credit and rejection o f  the application. First the clustering procedure 

has been applied to the data set without normalisation o f  the data (Table 3.7).

Table 3.7: Clustering o f the Credit Approval data set without normalisation.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.5528 0.5048 4897673526 7 +
2 0.5528 0.5048 4897673526 5 +
3 0.5528 0.5048 4897673526 7 +
4 0.5528 0.5048 4897673526 5 +
5 0.5528 0.5048 4897673526 5 +
6 0.5528 0.5048 4897673526 7 +
7 0.5528 0.5048 4897673526 5 +
8 0.5528 0.5048 4897673526 7 +
9 0.5528 0.5048 4897673526 6 +
10 0.5528 0.5048 4897673526 7 +
11 0.5528 0.5048 4897673526 6 +
12 0.5528 0.5048 4897673526 4 +
13 0.5528 0.5048 4897673526 2 +
14 0.5528 0.5048 4897673526 7 +
15 0.5528 0.5048 4897673526 6 +
16 0.5528 0.5048 4897673526 6 +
17 0.5528 0.5048 4897673526 7 +
18 0.5528 0.5048 4897673526 6 +
19 0.5528 0.5048 4897673526 7 +
20 0.5528 0.5048 4897673526 6 +
21 0.5528 0.5048 4897673526 7 +
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N Accuracy Rand Index
Objective 

function J Iterations BF

22 0.5528 0.5048 4897673526 7 +
23 0.5528 0.5048 4897673526 6 +
24 0.5528 0.5048 4897673526 6 +
25 0.5528 0.5048 4897673526 7 +
26 0.5528 0.5048 4897673526 7 +
27 0.5528 0.5048 4897673526 7 +
28 0.5528 0.5048 4897673526 7 +
29 0.5528 0.5048 4897673526 6 +
30 0.5528 0.5048 4897673526 7 +
31 0.5528 0.5048 4897673526 7 +
32 0.5528 0.5048 4897673526 7 +
33 0.5528 0.5048 4897673526 7 +
34 0.5528 0.5048 4897673526 6 +
35 0.5528 0.5048 4897673526 6 +
36 0.5528 0.5048 4897673526 3 +
37 0.5528 0.5048 4897673526 6 +
38 0.5528 0.5048 4897673526 7 +
39 0.5528 0.5048 4897673526 6 +
40 0.5528 0.5048 4897673526 7 +
41 0.5528 0.5048 4897673526 5 +
42 0.5528 0.5048 4897673526 7 +
43 0.5528 0.5048 4897673526 7 +
44 0.5528 0.5048 4897673526 7 +
45 0.5528 0.5048 4897673526 5 +
46 0.5528 0.5048 4897673526 6 +
47 0.5528 0.5048 4897673526 6 +
48 0.5528 0.5048 4897673526 6 +
49 0.5528 0.5048 4897673526 6 +
50 0.5528 0.5048 4897673526 7 +
51 0.5528 0.5048 4897673526 7 +
52 0.5528 0.5048 4897673526 7 +
53 0.5528 0.5048 4897673526 6 +
54 0.5528 0.5048 4897673526 6 +
55 0.5528 0.5048 4897673526 3 +
56 0.5528 0.5048 4897673526 7 +
57 0.5528 0.5048 4897673526 5 +
58 0.5528 0.5048 4897673526 7 +
59 0.5528 0.5048 4897673526 7 +
60 0.5528 0.5048 4897673526 7 +
61 0.5528 0.5048 4897673526 6 +
62 0.5528 0.5048 4897673526 7 +
63 0.5528 0.5048 4897673526 6 +
64 0.5528 0.5048 4897673526 6 +
65 0.5528 0.5048 4897673526 6 +
66 0.5528 0.5048 4897673526 6 +
67 0.5528 0.5048 4897673526 6 +
68 0.5528 0.5048 4897673526 6 +
69 0.5528 0.5048 4897673526 6 +
70 0.5528 0.5048 4897673526 6 +



N Accuracy Rand Index
Objective 

function J Iterations BF

71 0.5528 0.5048 4897673526 7 +
72 0.5528 0.5048 4897673526 7 +
73 0.5528 0.5048 4897673526 6 +
74 0.5528 0.5048 4897673526 7 +
75 0.5528 0.5048 4897673526 6 +
76 0.5528 0.5048 4897673526 7 +
77 0.5528 0.5048 4897673526 6 +
78 0.5528 0.5048 4897673526 6 +
79 0.5528 0.5048 4897673526 6 +
80 0.5528 0.5048 4897673526 6 +
81 0.5528 0.5048 4897673526 7 +
82 0.5528 0.5048 4897673526 1 +
83 0.5528 0.5048 4897673526 6 +
84 0.5528 0.5048 4897673526 6 +
85 0.5528 0.5048 4897673526 6 +
86 0.5528 0.5048 4897673526 4 +
87 0.5528 0.5048 4897673526 6 +
88 0.5528 0.5048 4897673526 7 +
89 0.5528 0.5048 4897673526 7 +
90 0.5528 0.5048 4897673526 7 +
91 0.5528 0.5048 4897673526 7 +
92 0.5528 0.5048 4897673526 7 +
93 0.5528 0.5048 4897673526 6 +
94 0.5528 0.5048 4897673526 6 +
95 0.5528 0.5048 4897673526 6 +
96 0.5528 0.5048 4897673526 6 +
97 0.5528 0.5048 4897673526 6 +
98 0.5528 0.5048 4897673526 7 +
99 0.5528 0.5048 4897673526 7 +
100 0.5528 0.5048 4897673526 7 +

Then the clustering procedure with normalisation o f  all attributes has been applied to 

the data set (Table 3.8). Both procedures with and without normalisation have been 

applied 100 times to the data set.
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Table 3.8: Clustering of the Credit Approval data set with normalisation.

N Accuracy Rand Index
Objective 

function J Iterations BF

1 0.8239 0.7094 5429.256 3
2 0.8239 0.7094 5429.256 5
3 0.8239 0.7094 5429.256 4
4 0.8239 0.7094 5430.4593 5
5 0.8239 0.7094 5430.4593 4
6 0.807 0.6881 5346.6759 6
7 0.807 0.6881 5346.6759 7
8 0.807 0.6881 5346.6759 3
9 0.807 0.6881 5346.6759 4
10 0.807 0.6881 5346.6759 7
11 0.807 0.6881 5346.6759 9
12 0.807 0.6881 5346.6759 6
13 0.807 0.6881 5346.6759 7
14 0.807 0.6881 5346.6759 7
15 0.807 0.6881 5346.6759 6
16 0.807 0.6881 5346.6759 7
17 0.807 0.6881 5346.6759 4
18 0.807 0.6881 5346.6759 6
19 0.807 0.6881 5346.6759 6
20 0.807 0.6881 5346.6759 4
21 0.807 0.6881 5346.6759 4
22 0.807 0.6881 5346.6759 7
23 0.8025 0.6825 5342.7894 4
24 0.8025 0.6825 5342.7894 6
25 0.8025 0.6825 5342.7894 6
26 0.8025 0.6825 5342.7894 3
27 0.8025 0.6825 5342.7894 5
28 0.8025 0.6825 5342.7894 4
29 0.8025 0.6825 5342.7894 7
30 0.8025 0.6825 5342.7894 4
31 0.8025 0.6825 5342.7894 4
32 0.8025 0.6825 5342.7894 5
33 0.8025 0.6825 5342.7894 7
34 0.8025 0.6825 5342.7894 6
35 0.8025 0.6825 5342.7894 9
36 0.8025 0.6825 5342.7894 6
37 0.8025 0.6825 5342.7894 6
38 0.8025 0.6825 5342.7894 5
39 0.8025 0.6825 5342.7894 6
40 0.8025 0.6825 5342.7894 6
41 0.8025 0.6825 5342.7894 6
42 0.8025 0.6825 5342.7894 4
43 0.8025 0.6825 5342.7894 3
44 0.8025 0.6825 5342.7894 5
45 0.8025 0.6825 5342.7894 3
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N Accuracy Rand Index
Objective 

function J Iterations BF

46 0.8025 0.6825 5342.7894 6
47 0.8025 0.6825 5342.7894 5
48 0.8009 0.6806 5342.7538 4 +
49 0.8009 0.6806 5342.7538 4 +
50 0.8009 0.6806 5342.7538 3 +
51 0.8009 0.6806 5342.7538 3 +
52 0.8009 0.6806 5342.7538 5 +
53 0.8009 0.6806 5342.7538 3 +
54 0.7948 0.6733 5438.2405 5
55 0.7933 0.6715 5438.236 16
56 0.7933 0.6715 5438.236 7
57 0.7933 0.6715 5438.236 5
58 0.7933 0.6715 5438.236 8
59 0.7933 0.6715 5438.236 9
60 0.7933 0.6715 5438.236 8
61 0.7933 0.6715 5438.236 7
62 0.6861 0.5686 5563.2453 3
63 0.6784 0.563 5563.2019 4
64 0.6784 0.563 5564.1337 4
65 0.6432 0.5403 5536.5778 4
66 0.6432 0.5403 5536.5778 4
67 0.6432 0.5403 5536.5778 3
68 0.5482 0.5039 5901.8234 4
69 0.5482 0.5039 5562.1779 3
70 0.5482 0.5039 5562.1779 4
71 0.5482 0.5039 5562.1779 2
72 0.5482 0.5039 5562.1779 3
73 0.5482 0.5039 5562.1779 2
74 0.5482 0.5039 5562.1779 3
75 0.5482 0.5039 5562.1779 3
76 0.5482 0.5039 5562.1779 3
77 0.5482 0.5039 5562.1779 3
78 0.5467 0.5036 5561.1694 3
79 0.5467 0.5036 5561.1694 3
80 0.5467 0.5036 5561.1694 3
81 0.5467 0.5036 5561.1694 2
82 0.5467 0.5036 5561.1694 2
83 0.5467 0.5036 5561.1694 3
84 0.5467 0.5036 5561.1694 3
85 0.5467 0.5036 5561.1694 2
86 0.5467 0.5036 5561.1694 2
87 0.5467 0.5036 5561.1694 4
88 0.5467 0.5036 5561.1694 4
89 0.5283 0.5008 5973.6835 4
90 0.5283 0.5008 5973.6835 4
91 0.5115 0.4995 6077.557 1
92 0.5115 0.4995 6077.557 3
93 0.5115 0.4995 6077.557 3
94 0.5115 0.4995 6077.557 5



N Accuracy Rand Index
Objective 

function J Iterations BF

95 0.5115 0.4995 6077.557 3
96 0.51 0.4994 6078.3273 3
97 0.51 0.4994 6078.3273 2
98 0.51 0.4994 6078.3273 4
99 0.51 0.4994 6078.3273 1
100 0.51 0.4994 6078.3273 3

The results o f all 100 runs o f the procedure without normalisation were the same and 

therefore equal to the average accuracy 0.552833 and the value o f  the cost function is 

4897673525.5238. After the runs o f the procedure with normalisation, the average 

accuracy increased to 0.706861 (see Table 3.8). After normalisation, the Rand index 

increased from 0.5048 to 0.6806. Again the latter value has been taken not as the best 

value o f the Rand index but in accordance with the obtained best objective function 

value (because this is the criterion o f  the unsupervised objective function-based 

clustering).

3.7 Summary

In the overwhelming majority o f  the earlier approaches to normalisation, scaling was 

used for numerical attributes when the Euclidean metric was used for measuring 

dissimilarity between attributes. It was also often assumed that the variables have the 

normal distribution. These normalisation approaches were applied mainly to assure 

the values being in the [0, 1] range. However, it has been shown that in general this 

does not provide equal contributions o f  the features to the metrics. It was also
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suggested often to truncate the out-of-range components and this could lead to loss o f  

information from the data set.

In the general case o f  feature extraction, when there is no a priory  information about 

preferences o f some attributes, one has to assume that all attributes are equally 

important. A direct application o f geometric measures to attributes with large ranges 

will implicitly assign bigger contributions to the metrics than those o f  attributes with 

small ranges. If all attributes are equally important to measure similarity between 

feature vectors then one should not use distance measures like the Euclidean distance 

(3.1), the matching dissimilarity measure (3.20) and their combination without 

normalisation o f  data.

These arguments have been used to support the proposed unified statistical approach 

that has to be applied to normalise all attributes o f  the feature vectors o f  mixed data 

sets. To obtain a new normalised metric, one should calculate the mean contribution 

o f each attribute to the metric and to divide the attribute in all records by this mean. 

Estimators are used to calculate the mean contributions.

Evidently, if  the mean is equal to zero then this attribute should be removed from the 

feature vector. The means o f  contributions o f  all attributes in all considered cases are 

the same and hence, contributions o f  the features to similarity measures are 

approximately equalized. Such a normalisation is achieved by scaling the numerical 

attributes, while the categorical attributes are normalised by appropriate choice o f  

their weights.
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If one knows a priory that some attributes have bigger contributions to similarity 

measures than the rest o f the attributes then this can be taken into account by 

appropriate weighting o f attributes. It looks quite natural to apply the weighting 

procedure to metrics that have already been normalised by the above described 

procedure.

The new normalised metrics has been used for clustering numerical, categorical and 

mixed data. The k  -prototypes algorithm that earlier was applied for a non­

normalised metric (Huang, 1998), has been employed. It has been shown that 

normally the accuracy increased when clustering is performed using normalised 

metrics. These examples have demonstrated the advantages o f  the introduced 

normalised metrics.
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Chapter 4

Clustering mixed data sets (Minkowski metric)

In this chapter, a new statistical approach introduced in Chapter 3 is developed 

further. The new approach is applied to the case o f  the Minkowski metrics being used 

as a measure for continuous numerical features, while to deal with categorical 

attributes again the matching dissimilarity measure is used. Various mathematical 

problems related to the normalisation o f  mixed metrics are resolved. The introduced 

metrics are applied to some data sets where it is more advantageous to apply the 

general Minkowski metrics (including the Tchebysheff and city-block metrics) 

instead o f a particular case p M = 2 (the Euclidean metric).

4.1. Background

In clustering analysis o f  numerical data sets, often not only the Euclidean metric 

(distance) p E (or Lj)  but other similarity measures are also used. For example, city

block distance (or Z, metric)

p

P ,(x ,,x 2)= ||x , - x 2 1|,= 2 X  ~ XV  I (4 ->)
j =1

the Minkowski distance p Pu (or Lp metric)
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(  p
Ppu (*|.*2> =11 *1 -* 2  IU, = X X  ~ XV  ip"

\VPm

(4.2)

where p M is a positive number, 1 < p M < +co; and the Tchebysheff (Chebyshev) or 

maximum norm metric

The Euclidean metric (3.1) and city block distance (4.1) are particular cases o f  the 

Minkowski metric for p M = 2 and p M = 1 respectively. The Tchebysheff metric can

be obtained from the Minkowski metric as the following limit p M —> oo . Other 

metrics are also applied to numerical data sets.

As it has been argued in the previous chapter, i f  there is no a priory  information 

about preferences o f some attributes, one has to assume that all attributes are equally 

important, and hence to assume that the average contribution o f  the j  -th feature 

component to the total measure is equal to its mean. Therefore, the goal o f a 

normalisation procedure is the equalisation o f  the attribute contributions. Applying 

the same unified statistical treatment to both numerical and categorical features o f  

mixed data sets, as it has been used in the previous chapter, new normalised metrics 

are introduced.

In this Chapter a rigorous statistical approach to data sets is used and various 

mathematical problems related to the normalisation o f mixed metrics are resolved.

/>««(* 1>*2) HI IL*=  m ax I X , J  ~ X 2 J  I (4.3)
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Mathematically rigorous treatment o f  the normalisation procedure is presented and 

examples o f normalised metrics are given in an explicit way. In addition, the 

proposed approach is extended to the case o f  mixed metrics, i.e. when different 

metrics are used for numerical and categorical data respectively.

4.2 Statistical approach to normalisation of the 

Minkowski metric (numerical attributes)

To obtain a new normalised metric in the general case o f  the Minkowski metric (4.2), 

one should calculate the mean contribution o f  each j  -th attribute to the metric

E  | X Xj -  X 2J \Pu (here E  means the expectation o f  a variable) and to divide the

attribute in all records by this mean (if  the mean is equal to zero then this attribute 

should be removed from the feature vector). Hence, the normalised Minkowski 

metric can be introduced in the following way

(  p
P p M  1 > X2 ) =  Z a i  I *iy -  *2, T"

\ 1/Pm

(4.4)

where = 1 / E  \ X X j X 2j,\Pm , X xj and X 2j are independent random variables 

whose values are distributed in accordance with the distribution o f the j  -th attribute.



In the general case, the distribution o f the j  -th attribute is not known in advance, 

therefore, to estimate the expectation E  \ X Xj -  X 2j \Pu we can use the sample mean

(4.5)

The estimation (4.5) is a biased estimator o f E  \ X xj -  X 2J \Pu , hence for small data 

sets it is better to use the following estimation

that is an unbiased estimator.

It follows from Proposition B1 (Appendix B) that (4.5) and (4.6) are consistent 

estimators.

Comment. For p M = 2 the above results agree with the results obtained for the 

Euclidean metric (see Chapter 3).

If the data set is large, i.e. the record number N  is large, then it is rather difficult to 

use the formula (4.5) or it cannot be used at all because the sum has N 2 components 

and, hence, its calculation is rather time consuming. For example, an average size 

data set may have N  = 106. In this case, the number o f  operations for calculating just

E \ X xj- X 2 j \p" = Z  K ~ x<j\Pu (4.6)
N ( N -  \ ) J ^ ,
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one sum is N 2 = 1012 . To calculate e \x xj- X 2j Pm one can use the following

approach.

Often some o f the real numerical features are normally distributed. Let us consider 

now the case when one knows in advance that the values o f  the j  -th attribute are

distributed normally. In this case, there is a quite attractive property o f  p  . Let 

f A„ (x)  be a normal distribution with mean p j  and variance a 2 . The probability 

distribution or density function for a normal distribution has the following formula:

/ i f W =  J = — exp  
Aj V  2 j z  o 'j

f t  \2 A

v" y

One can assume that X Xj and X 2j are independent random variables having the same 

normal distribution with mean and variance a 2 . Then the random variable 

X xj- X 2j has also a normal distribution with mean Oand dispersion 2cr2. For this 

random variable, one can estimate E  \ X Xj -  X 2j \Pm using the following formula

e \xXJ- x 2Jr =
JljVyflCTj D ■PH exp

4 a
dt  =

j  J 4n<Jj
P m exp

4 a
dt

j y

Denoting

u =
4a]
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and substituting this expression into the above formula for mathematical expectation 

E  | X xj - X 2j \Pu , one obtains

_ (2

where

T ( x ) = ^ t x~xe ' tdt

is the Euler gamma function. Thus, one has

(2(7 )^w (  n 4-1^
e \x , 1- x , a Pm= i l  p  PmV yfn

The gamma function can be calculated using the standard algorithms.

4.3 Normalisation of metrics for data sets with mixed 

attributes

For data sets with categorical attributes, it is possible to introduce different metrics 

(see, e.g. Gibert and Cortes, 1997; Huang, 1998; Ralambondrainy, 1995). One o f the 

most cited variants o f  metrics is studied here (see, e.g. Huang, 1998), namely the 

distance between two categorical feature vectors y x = (yn ,--- ,yu) and

y 2 = (T21> • • • > T2/) is defined as:
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(yi > y 2 ) = < ^ 1 1 > ̂ 2i )+ •••+ ®<>i;, .V2/) (4.7)

were

Jo  for y lJ= y 1J 
G*y>j ,yv ) = \ ,  f  ,II for y l, * y 1J

Evidently, the metric (4.7) in degree p M is

p »  (y i. y 2 ) = U  i > y i \)+• • • + <*>p“ ( y »> y u ) (4.8)

Let us extend the results obtained for the Euclidean metric to the general case o f  the 

Minkowski metric. It follows from the Minkowski inequality that the following 

function is a metric:

p ((x ,,y ,) ,(x 2,y 2)) =

(l *11 -  *21 T" +• • •+ 1 *1,  ~ *2 p\Pu +a>Pu Oi 1, y n ) + ... + 0)Pu (yu, y 2,))'/p“
(4.9)

It will be called the Minkowski mixed p M -metric.

In fact, we have to prove that the sum o f  the Minkowski metric for numerical 

attributes and the matching dissimilarity measure for categorical attributes is a 

metric. One can see from direct checking that since both metrics are non-negative 

and symmetric their sum is also non-negative and symmetric. Hence, we need to 

prove only the triangle inequality for the sum. As it has been mentioned in Chapter 2,

the Minkowski inequality is the triangle inequality inZp spaces:
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The normalisation o f  the p M -metric (4.9) is fulfilled in the same way as the 

normalisation o f the Euclidean mixed metric (see Chapter 3)

p '((xi.yi)>(*2.y2» I *17 ~xv ^  +ilPj°>p‘,<.yij>yij)
.7=1 7=1

VPm

(4.10)

where ctj, = 1 / E  | X ly - X 2J \Pm and p j - 1 /  (YlJ9Y2J). Note that Pj  are 

calculated in the same way as in (3.24) because E ooPm (Yi j ,Y2j) = Eco(YlJ,Y2J) .

If the distribution o f  the attributes is unknown then to calculate one can use the 

estimation (4.6), and to estimate E cd(Y]j ,Y 2 j)  one can use the sampling mean

£ « *  (YtJ,Y2J) = « 0 V  * >  (4-U )
■*’ r,s=l

The estimation (4.11) is a biased estimator o f E cqPm (YXj,Y2j) , hence for small data 

sets it is better to use the following estimation

Ea, '»(Ylj ,Y2J) = — £  ® ( W , ) .  f 4 , 2 >
7V ^7V — l ;
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which is an unbiased estimator. It will follow from Proposition B1 (see Appendix B) 

that (4.11) and (4.12) are consistent estimators.

4.4 A general algorithm for normalisation of mixed 

metrics

Let a mixed metric p  be a sum o f  two metrics p x and p 2 :

P((x1,y 1),(x2,y 2)) = p l(xl,x 2) + p 2(y ,,y 2)

The former metric is for numerical attributes and the latter metric is for categorical 

attributes.

To normalise the mixed metric in this general case, one needs first to normalise 

metrics p x and p 2 , i.e. one needs to find p \  and p \ , and then the normalised general 

mixed metric is:

P  «X |.y ,),(x 2,y 2)) = a ,A  (x ,, x2) + a 2p \ (y , ,y 2).
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4.5 Clustering algorithms based on Minkowski 

metrics

4.5.1. Algorithm

As it has been noted, the use o f  the sum o f  squares o f  the Euclidean distances as the 

objective function has the advantage o f  having a simple formula for recalculating 

new values o f cluster prototypes (see Section 3.2). This advantage was implemented 

in the k  -means and k  -prototypes algorithms. Evidently, these algorithms cannot be 

used in the case o f  a general Minkowski metric. Therefore, it was suggested by 

Miyamoto and Augusta (1996) and Hathaway et. al. (2000) to use instead o f  (3.2) the 

following objective function J j  for a generalisation o f  the fuzzy clustering

objective function

(4 .i3)
m=l /=1

where j >  1 is the exponent o f  the fuzzy algorithm. We employ a similar to (4.13) 

objective function in order to use it with the Minkowski distances.

4.5.2. Clustering using Minkowski metrics

Let us define an objective function

J P u = i t ^ P PJ U^ m) (4-14)
ffl=l 1=1

119



where uim e  {0,1}, 1 < i < N ,  1 < m < k ,

k N
Z “» =1> Z “to > 0 - (4.15)
m=1 i=l

and p u  >1.

For p M = 2 ,  the k  -means algorithm can be employed for clustering. At each iteration,

this algorithm recalculates the prototypes for each o f  the clusters obtained at the 

previous iteration, and then the vectors o f  records are split again in the new clusters 

depending on what o f  new prototypes is the closest to a particular record in 

accordance with the metric. The same approach can be used for clustering using an 

objective function for an arbitrary p M > 1.

Indeed, let us write the objective function (4.14) as

where Cm is the set o f  all indexes /, (1 < / < A  ) such that the i -th record belongs to 

the m -th cluster. N ow  denote O m astn

k

(4.16)

(4.17)

For every m , let us find a new prototype Qm such that the sum O m is minimum.

Then let us split all record vectors into clusters Cm (1 < m < k )  in accordance with
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the proximity o f  a prototype Qm e (Ql9. . . ,Q k) to the record under consideration. 

Since

Z Z  (p p„ Y “ (x , , Q J
m=l ieCm /w=l ieCm

and for every m , we have 

2  ( p Pu Yu (X , , QJ  < X  )'■" (X ,  , Q J ,
ieCm ieCm

then we obtain

t  Z  <P» Y "  (PPU Y “ ( X „ Q J .  (4.18)
m=1 ieCm m=l ieCm

It follows from the inequality (4.18) that the value o f  the objective function at each 

iteration would not increase and the iterative process converges to a local minimum 

o f the objective function.

Thus, for a successful use o f  the algorithm, one needs to find effectively new 

prototypes Qm such that the sum (4.17) is minimum. As it has been mentioned in 

Section 3.2, this problem is very simple for p M -  2 in the case o f  numerical data 

because
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7=1

and therefore, the minimum is at

(4.19)

Solving the system (4.19), we obtain

(4.20)

where \Cm\ is the number o f  records in the m  -th cluster. The formula (4.20) is well 

known for recalculating the prototypes in the classic k  -means algorithm.

Now we need to consider the cases p M *  2 .  As it has been mentioned, a similar

objective function for fuzzy clustering was considered by Hathaway et .al.(2000). 

They suggested also an approach for recalculating the prototypes for these cases. 

However, some very important details o f  the algorithm were not described. Hence, 

we need to discuss the algorithm for recalculating the prototypes in detail and apply it 

for hard clustering.

In the case under consideration, we have

ieCm 7=1 7=1 ieCm

If we denote
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< M 0 = 2 X - ' r ' ,  u = i - , p )
i*Cm

then we obtain

® „ = T ® r ,J(QV )-  (4.21)
y=i

It follows from (4.21) that to find the minimum o f  the function that depends on 

the variables Qm l Qmp, one needs to find the minimum o f  each o f  the functions 

O . = depending only on one variable. N ow  w e present the algorithm o f

finding the minimum o f  the functions O .(/) .

Since a function O .(/) may be non-differentiable, however it is definitely a convex

function (by the definition o f  Minkowski norm), to find the minimum o f  the function, 

let us employ the technique based on finding the subgradient o f  a convex function. 

Calculating the subgradient o f  O . (t) , we obtain

a M ' ) =  ! > «  s o  * , - / | )
ieC .

where

-1  i f  X y > t  

[-1,1] if  

1 i f  X y < t
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Therefore, for any t , dO mj(t) is either a number or an interval [w(7),v(7)]. To find 

the minimum o f  a function <& ,( / ) ,  we calculate first a0 = m m X ,  and bn = m axX  .
J ieCm 1 U ieCm V

It is evident that the point o f  the minimum Qmj e  [<30 ,fr0].

Next we find the point c0 that is the middle point o f  the interval [<z0 A 1 anc* calculate 

^ >̂ (c0) = [«(c0),v(c0)].

There are three possible cases:

(i) if m(c0) > 0 ,v(c0)> 0  then the point of the minimum is on the interval

(ii) if u(c0) <0, v(c0) <0 then the point of the minimum is on the interval 

[co > 1 >

(iii) if  values o f  w(c0) and v(c0) have different signs or at least one o f the 

values is equal to zero then the point c0 is the point o f  the minimum 

because Og[m(c0),v(c0)] (Polyak, 1987).

If the point o f  minimum has not been found yet then for further consideration, we 

chose that o f intervals [<z0,c0] and [c0,bQ] to what the point o f  minimum belongs to. 

Since the interval under consideration reduces twice at each iteration, the process 

converges very fast to the point o f  the minimum o f  the function .
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If the data set is mixed then recalculating the numerical parts o f  the prototypes is 

fulfilled by the above described algorithm and recalculating the categorical part 

follows the recalculating o f  the common k  -prototypes algorithm.

4.6 Applications of the algorithms based on 

Minkowski metrics to data sets

The above normalisation procedure was applied to attributes o f  two data sets from 

the UC Irvine repository (Asuncion and Newman 2007). All records in this data set 

have the class labels and, hence, “true clustering” can be checked.

First the clustering procedure has been applied to the data set without normalisation 

o f the data. Then the clustering procedure with normalisation o f  all attributes has 

been applied to the data set. Both procedures with and without normalisation have 

been applied 100 times to the data sets for various values o f  the Minkowski power 

p M . In the case p M = 2 ,  the k  -prototype algorithm was employed.

4.6.1. Adult data set

The Adult data set, also known as Census Income dataset, has 48842 records and 

30162 records without missing values (N  = 30162) with 14 attributes and one class 

attribute. Each record has eight categorical attributes plus a class attribute, while the 

rest o f  the attributes are numerical.
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Table 4.1 presents the results o f  application o f  the algorithm described in Section 4.8 

to the Adult data set without normalisation o f  attributes for various values o f the 

Minkowski power p M . The accuracy function has been calculated involving the

ideas o f the assignment problem as it has been described in Section 3.5.2. Tables 

present the values o f the clustering accuracy corresponding to the best value o f the 

objective function, because this is the condition to achieve clustering.

Table 4.1: Clustering o f  the Adult data set without normalisation o f  attributes for 

various values o f  the Minkowski power p M

Minkowski 
power p M

Accuracy corresponding to the 
best value o f  objective function

1.0 0.5253

1.5 0.5960

2.0 0.6131

2.5 0.6364

3.0 0.6587

3.5 0.6876

4.0 0.7192

4.5 0.7381

5.0 0.7439
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Clustering o f the Adult data set without normalisation o f  attributes shows that the 

values o f  the clustering accuracy corresponding to the best value o f  the objective 

function (this value should be used for unsupervised clustering based on objective 

function) vary considerably with the variation o f  the values o f  the Minkowski power 

p M . The best value has been obtained for p M = 5 and it is Acc  = 0.7439 .

Table 4.2 presents the results o f  application o f  the algorithm described in Section 4.8 

to the Adult data set with normalisation o f  attributes for various values o f  the 

Minkowski power p M . The presented values are the same as in Table 4.1.

Table 4.2: Clustering o f  the Adult data set with normalisation o f  attributes for 

various values o f  the Minkowski power p M

Minkowski 
power p M

Accuracy corresponding to the 
best value o f  objective function

1.0 0.5769

1.5 0.7560

2.0 0.7536

2.5 0.6198

3.0 0.7560

3.5 0.7560

4.0 0.7560

4.5 0.7560

5.0 0.7560
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Clustering o f  the Adult data set with normalisation o f  attributes shows that the values 

o f the clustering accuracy corresponding to the best value o f  the objective function 

are much less sensible to the particular value o f  the Minkowski power p M . The best

value has been obtained for p M = 1.5; 3 +5 and it is Acc  = 0 .7560 . This accuracy is

better than the accuracy obtained for the clustering without normalisation o f  

attributes.

One can see that it is more advantageous to apply the general Minkowski metrics to 

the Adult data set (the clustering accuracy without normalisation is A cc  = 0.7439 for 

p M =S  and it is Acc  = 0.7560 for p M =1.5; 3 -s-5 in the case with normalisation)

than a particular case p M = 2 (the clustering accuracy without normalisation is

Acc  = 0.6131 and it is A c c -  0.7536 with normalisation).

4.6.2 Shuttle data set

The full Shuttle data set, also known as Statlog (Shuttle) Data Set, has N  = 14500 

records with 9 numeric attributes and one class attribute.

Table 4.3 presents the results o f  application o f  the algorithm described in Section 4.5 

to the Shuttle data set without normalisation o f  attributes for various values o f  the 

Minkowski power p M . As above, the accuracy function has been calculated

involving the ideas o f  the assignment problem (see Section 3.5.2). The presented 

values are the same as in Tables 4.1 and 4.2.

128



Table 4.3: Clustering o f the Shuttle data set without normalisation o f  attributes for

various values of the Minkowski power pM

Minkowski 
power p M

Accuracy corresponding to the 
best value o f  objective function

1.0 0.4454

1.5 0.4541

2.0 0.6971

2.5 0.8294

3.0 0.7916

3.5 0.7915

4.0 0.7915

Clustering o f the Shuttle data set without normalisation o f  attributes shows that the 

values o f  the clustering accuracy corresponding to the best value o f  the objective 

function vary considerably with the variation o f  the values o f  the Minkowski 

power p M . The best value has been obtained for p M = 2.5 and it is Acc  = 0.8294.

Table 4.4 presents the results o f application o f  clustering procedure to the Shuttle 

data set with normalisation o f  attributes for various values o f  the Minkowski 

power p M . The presented values are the same as in above Tables.
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Table 4.4: Clustering o f the Shuttle data set with normalisation o f attributes for

various values o f the Minkowski power pM

Minkowski 
power p M

Accuracy corresponding to the 
best value o f  objective function

1.0 0.4621

1.5 0.4715

2.0 0.4548

2.5 0.6849

3.0 0.8581

3.5 0.8463

4.0 0.7912

Clustering o f  the Shuttle data set with normalisation o f  attributes shows that the 

values o f the clustering accuracy corresponding to the best value o f  the objective 

function also vary considerably with variation o f  the values o f  the Minkowski power 

p M . The best value has been obtained for p M = 3 and it is A cc  = 0.8581. Again this

accuracy is better than the accuracy obtained for the clustering without normalisation 

o f attributes. One can see that it is more advantageous to apply the general 

Minkowski metrics to the Shuttle data set than a particular case p M -  2 (the 

Euclidean metrics).
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4.7 Summary

Our statistical approach introduced in Chapter 3 has been developed further and 

applied to the case o f  the Minkowski metrics beign used as a measure for continuous 

numerical features, while the matching dissimilarity measure is applied to categorical 

attributes.

To obtain a new normalised metric, one should calculate the mean contribution o f  

each attribute to the metric and to divide the attribute in all records by this mean. 

Estimators are used to calculate the mean contributions. Rigorous mathematical 

proofs o f unbiasedness and consistency o f  estimators used are presented (see 

Appendix B). Although this last property is very important in Statistics, in the papers 

revised, nobody spoke about the consistency o f  their estimators to the best o f  the 

author’s knowledge. Various other mathematical problems related to the 

normalisation o f  mixed metrics are resolved.

The clustering algorithm applied in the case o f  the general Minkowski metrics is 

discussed in detail. The algorithm is based on ideas that were suggested before by 

Miyamoto and Augusta (1996) and Hathaway, Bezdek and Hu. (2000) as a 

generalisation o f  the fuzzy clustering strategies using Lp norm distances. The novelty

o f  our approach is that we employ the algorithm for hard clustering using Minkowski 

norm distances. This algorithm has been used instead o f  the k  -prototypes algorithm 

for the cases where p M *  2 .
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The described algorithm and the introduced normalised metrics are applied to the 

Adult and Shuttle data sets. These examples have demonstrated the advantages o f the 

introduced normalised metrics. It is also shown that it is more advantageous to apply 

for these data sets the general Minkowski metrics and the corresponding algorithm 

instead o f a particular case p M = 2 (the Euclidean metrics) and the k  -prototypes 

algorithm.
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Chapter 5 

Improving the k-Prototypes algorithm by 

Random Search

In this Chapter a new algorithm to cluster data sets with mixed numerical and 

categorical values is presented. The algorithm is called RANKPRO: the Random 

Search with k  -Prototypes Algorithm. It combines the advantages o f  a recently 

introduced population-based optimisation algorithm called the Bees Algorithm (BA), 

and the &-prototypes algorithm. The BA works with elite and good solutions, and 

continues to look for other possible extremal solutions keeping the number o f  testing 

points constant. However, the improvement o f  promising solutions by the BA  

algorithm may be time consuming because this process is based on the random 

neighbourhood search. On the other hand, an application o f  the k  -prototypes 

algorithm to a promising solution may be very effective because it improves the 

solution at each iteration. The RANKPRO algorithm balances two objectives: it 

explores the search space effectively due to random selection o f  new solutions, and 

improves promising solutions fast due to employment o f  the k  -prototypes algorithm. 

The efficiency o f  the new algorithm is demonstrated by clustering several numerical, 

categorical and mixed data sets. It is shown that in the majority o f  the considered data 

sets when the average number o f  iterations that the k  -prototypes algorithm needs to
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converge is over 10, the RANKPRO algorithm is more efficient than the k-prototypes 

algorithm.

5.1. Background

As we have seen before, in clustering analysis o f  numerical data sets it is very 

common to calculate the similarity or dissimilarity between two feature 

vectors Xj = ( x , x lp) and x2 = (x 2x, . . . , x 2p) using the Euclidean metric p E (or

L7 metric)

x, - x j i  =
/  \ 1/2 

Z O iy  ~ x2j)2 (5.1)

For example, the most popular algorithm for clustering numerical data sets is the 

k  -means algorithm that uses the Euclidean distance.

The generalisation o f  the k  -means algorithm by Huang (1997) that is called the 

^-prototypes algorithm is also based on the Euclidean distance. The &-prototypes 

algorithm was introduced to cluster large data sets with mixed numerical and 

categorical values. It should be noted that both the k  -means and k  -prototypes 

algorithms have a disadvantage, namely the process converges often not to a global 

minimum but to a local minimum. Hence, to avoid this premature convergence one 

has to modify these algorithms. Recently, Pham et al. (2006b) have presented an 

approach to optimisation problems that is called the Bees Algorithm (BA).
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The BA combines neighbourhood search with random search. The randomness o f the 

search provides flexibility in the search and hence, the BA gives often results that are 

quite close to global minimum. In this Chapter a new tool for clustering mixed data 

sets is introduced that combines the advantages o f  both the k  -prototypes and the BA  

algorithms. The Chapter is organised as follows:

5.2 presents a formal description o f  both the ^-prototypes and BA  algorithms.

5.3 presents a description o f  the random search with ^-prototypes 

algorithm(RANKPRO).

5.4 RANKPRO is applied to several data sets. The effectiveness o f the 

RANKPRO and the k  -prototypes clustering algorithms are compared and the 

advantages o f  the former algorithm are shown.

5.2. Preliminaries

5.2.1. The k -means and k -prototypes algorithms

The k  -means algorithm (MacQueen 1967) was introduced to cluster numerical data 

sets. The specific properties o f  the algorithm have been discussed in previous 

Chapters in detail. Here w e present briefly the formal formulation o f  the algorithm 

along with the presentation o f  the known BA algorithm (Pham et al. 2006b).
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The k  -means algorithm minimises the cost function (objective function) J  for 

“hard” k  -partitions o f  data set into k  clusters (Bezdek 1980, Huang 1997b)

^ = Q J ,
m=1 /=1

uim e  {0»l}> \ < m < k ,

k N

X X  = 1’ v '> 311(1 I X  > 0  Vm- (5-2)
m =1 »=1

Here uim is an element o f  the partition matrix. The condition uim = 1 means that the

record X, is assigned to cluster m  with prototype (centre) Q m. Since p E defined by

(5.1) is employed in this Thesis for clustering o f  numerical data, J is  the within-group 

sum o f squared errors objective function.

The implementation o f  k  -means may have various forms, in particular its pseudo 

code can be written as:

Step 1. Select randomly k  initial prototypesQp-.-jQ*, one for each cluster. 

Step 2. For each record X, calculate the distances from the record to the 

prototypes o f  clusters; find the nearest prototype Q m to the record according to 

the metric p E defined by (5.1), and allocate the record X i to the cluster Cm with 

this prototype.
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Step 3. For each cluster Cm find a new prototype Q m' so that the sum of 

square distances ^ XeC p l ( X n Q m')  is minimum.

Step 4. If prototypes Q P ...,Q* and Q[,...,Q* are not the same then take the 

latest as new prototypes and go to step 2, otherwise stop the procedure.

It is known (see e.g. Stevens, 1946) that to deal statistically with categorical data, one 

needs to deal with modes o f  the data instead o f  means or medians that are used to 

deal with numerical variables. In statistics the mode is that value which occurs most 

often or, in other words, has the greatest probability o f  occurring (see, e.g. (Spiegel 

1975)). As it has been mentioned in Chapter 2, Huang (1997, 1998) introduced two 

extensions o f  the k  -means algorithm, namely the algorithms called k  -modes and 

k -prototypes. In the k  -prototypes algorithm he considered a metric p H , where p 2H 

is the sum o f the square o f  the numerical metric (5.1) and a weighted categorical 

metric p cal

P l = p \ + Y P m  (5-3)

The categorical metric p cat is defined as the number o f  mismatches o f  categories 

between two objects and the weight y  is introduced for the categorical metric to 

balance the two parts o f  the sum and to avoid favouring either type o f  attribute.

The pseudo codes o f  the k  -modes and k  -prototypes algorithms are very similar to 

the pseudo code o f  the A:-means algorithm. The difference between the algorithms is 

mainly that different dissimilarity measures have to be used. The k  -means algorithm 

has a great advantage that it converges very fast to a local minimum and at each
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iteration it improves the solution. Consequently the k  -prototypes algorithm has the 

same advantage. However, application o f  both k  -means and k  -prototypes 

algorithms to data sets have also a disadvantage, namely the process demonstrates 

normally a premature convergence, i.e. it converges not to a global minimum but to a 

local minimum. Hence, one needs to run the procedure many times to reach the 

global minimum. To increase the effectiveness o f  the procedure, one has to modify 

these algorithms.

5.2.2. The Bees Algorithm

As we have seen in Chapter 2, SI is a type o f  optimisation technique that mimics the 

collective behaviour o f  animals. There are several methods that can be considered as 

SI; the Bees Algorithm is one o f  them. It is a new technique that was introduced to 

mimics nature’s evolutionary principles that drive the search o f  bees towards an 

optimal solution. In application to problems o f  optimisation, a bee means a point o f  

the domain (the search space) o f  the objective function, while the fitness o f  the bee 

means the value o f  the objective function at this point. It was shown (Pham et al. 

2006b) that using the BA  for some optimisation problems is more effective than 

using the GA based techniques (Goldberg, 1989).

The BA starts by initialising a set o f  the following parameters: the number o f scout 

bees ( n )  that define the total number o f  sites; the number o f  best sites ( m )  out o f  the 

total number o f  n  sites; the number o f  elite sites ( e ); the size o f  each patch (a patch is
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a region in the search space that includes the visited site and its neighbourhood) 

( dngh) around any o f  the best sites; the number o f  recruited bees (re ) within the

neighbourhood o f  the elite sites; the number o f  recruited bees ( rg ) around other 

selected ( g  = m -  e ) sites, and stopping criteria. According to the pseudo code for the 

BA (Pham et al. 2006b), n bees are placed on the search space randomly, similar to 

scout bees. Every bee on the problem space evaluates the fitness o f  its field in step 2. 

Subsequently, in step 4, elite bees that have better fitness are selected and saved for 

the next population. In step 5, good sites for neighbourhood search are selected. In 

step 7, the bees search around these points within the neighbourhood boundaries and 

their individual fitness is evaluated. More bees w ill be recruited around elite points 

and fewer bees will be recruited around the remaining selected points.

The pseudo code for the Bee Algorithm can be written as (Pham et al. 2005)

Step 1. Initialise population with random solutions ( n  sites discovered by n

scout bees).

Step 2. Evaluate fitness o f  the population (for n sites).

Step 3. While (stopping criterion not met)

Step 4. Select e elite sites.

Step 5. Select g  good sites for neighbourhood search ( e + g  = m ).

Step 6. Determine the patch size.

Step 7. Recruit re bees around each o f  selected elite sites and rg bees around

each o f  selected good sites.

Step 8. Evaluate fitness o f  solutions for all o f  these recruited bees and select

the best bee for each neighbourhood.
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Step 9. Assign remaining ( n - m ) bees to search randomly and evaluate the 

fitness o f  each o f  the discovered sites.

Step 10. Forming new population.

Step 11. End While.

Some features o f  the BA  algorithm are very similar to some features o f  Hill climbing 

(HC), Local beam search (LBS) and Stochastic beam search (SBS) strategies that are 

used to solve optimisation problems. The description o f  these techniques can be 

found elsewhere (see, e.g. Russell and Norvig 2003). Indeed, similarly to these 

methods, the BA starts with a random selection o f  solutions and then improves the 

solutions iteratively. However, contrary to the HC and LBS algorithms, it has 

probability to converge to the global extremum in a multiextremum problem due to 

random exploring o f  the search space at each iteration. The BA and SBS algorithms 

use different procedures o f  selection o f  the fittest solutions.

The GA search balances two objectives: utilising the best solutions and exploring the 

search space (see e.g. M ichalewicz 1996). The BA tries also to balance these 

objectives. However, to explore the search space the BA  uses random search instead 

of crossover and mutation operations used by GA. The BA  works with the most 

promising and elite solutions. In application to genetic algorithms, the term elitism  

was first introduced by De Jong (1975) (see also Mitchell, 1996) in order to force a 

GA to retain some number o f  the best individuals at each generation. The 

introduction o f  elite individuals enables the algorithm under consideration to preserve 

the best solutions. Otherwise they could be lost or destroyed by crossover or 

mutation. This term has been employed by the BA that works with elite and good
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points, and continues to look for other possible extreme points keeping the number o f 

testing points constant.

The BA has also some common features with Controlled Random Search (CRS) 

algorithms introduced by Price (1978) (see also (Kaelo and Ali, 2006) for a review o f 

recent modifications on CRS). Indeed, both CRS and BA algorithms employ initial 

points that are uniformly distributed over the search space and unlike gradient based 

methods, they calculate only the value o f  the function itself and they do not use any 

property o f the function. However, CRS and BA  algorithms have also a considerable 

difference. In the CRS the region o f  testing points is gradually contracted by 

replacing the current worst point with a better point (the trial point) that is chosen by 

a kind o f interpolation, while the BA  explores always the whole search space.

It was suggested to use the B A  not only for optimisation problems but also for 

clustering (Pham et al., 2007) where a bee represents a potential clustering solution 

as a set o f  k  cluster centres. However, again the BA  suggests to use a random search 

in the neighbourhoods o f  selected solutions (partitions) and hence, the local 

improvement o f  promising solutions by the BA algorithm may be time consuming.

On the other hand, there is a faster way to improve the solutions, namely the 

employment o f  the k  -prototypes algorithm that converges very fast to a local optimal 

solution. In this the algorithm is similar to gradient-like methods o f  search o f local 

extrema (see e.g. Pham and Jin, 1995; Wen et al., 2003). Therefore, it is proposed to 

use the k  -prototypes algorithm to improve the promising solutions. Thus, the new 

RANKPRO algorithm that includes the preservation o f  elite solutions and random
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exploring the search space along with employment o f  &-prototypes algorithm for 

improvement o f  solutions is proposed.

5.3 Description of RANKPRO

To deal with mixed data sets one needs to use proper metrics. Hence, the 

normalisation o f  metrics for mixed data sets is discussed first and then the 

RANKPRO algorithm is described in detail.

5.3.1. Normalisation of metrics for mixed data sets

It has been mentioned above that in clustering analysis o f  numerical data sets the 

Euclidean metric (5.1) is commonly used. For data sets with categorical attributes, it 

is possible to introduce different metrics (see, e.g. Gibert and Cortes, 1997; Huang, 

1998; Ralambondrainy, 1995). One o f  the most used variants o f  metrics is the 

matching dissimilarity measure between two categorical feature vectors 

yi = 0 'ip -» P i/) and y 2 =0'21»->P2/) (see> e-g- Huang, 1998). It is defined as

Peat (y> >y 2) = P21)+ - + ®Cvi/ > p2/) (5.4)

were

Evidently, the square o f  the metric (5.4) is (see (3.23))

p 2a , (y 1. y 2 ) = ®2 1. y n ) + + 0)2 Oh > y-u)
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Combining p E and p cat for mixed data, one obtains that the square distance between 

two mixed feature vectors (Xj,yj) and (x2,y 2) is

P 2((X|>yi).(x2>y2)) = P t ( * i .x2) + pL(y,.y2) where p j (x „ x 2) is defined

by (5.1) and p ^ ,(y ,,y 2) is defined by (3.23).

As it has been mentioned above, the use o f  metric (5.3) may encounter some 

obstacles in practical realisation because it is not very clear how to find a proper 

weight y  for the metric to balance the two parts o f  the sum and to avoid favouring 

either type o f  attribute. A  direct application o f  geometric measures (e.g. city block or 

Euclidean distances) for attributes with large ranges w ill implicitly assign bigger 

contributions to the metrics than those for attributes with small ranges. In addition, 

the attributes should be dimensionless. Indeed, the numerical values o f  the ranges o f 

dimensional attributes depend on the units o f  measurements and therefore, the choice 

o f the units o f measurements may greatly affect the results o f  clustering. Hence, if  all 

attributes are equally important to measure similarity between feature vectors then 

one should use a normalisation procedure. Here a normalisation procedure as was 

described in detail in Chapter 3 will be employed. To obtain a new normalised metric 

for the Euclidean metric, one should calculate the mean contribution o f each j  -th

i i2attribute to the metric E \ X xj- X 2j\ and to divide the attribute in all records by this 

mean. Hence, the normalised Euclidean mixed metric is (see (3.25)) 

r n i
2>, |*i, -*2J| +Z ŷfi,2(Xi’>'2,)

U =1 J=l

P  ((x „ y 1),(x 2,y 2)) = 

where a j = \ j E  \ x xj -  X 2J | and p j  = 1/ Eco2 ( YXJ, Y2j ) .
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5.3.2 Pseudo code of RANKPRO

If there are a data set and a set o f  k  prototypes S = {Q 1S...,Q *} then a record A f may 

be allocated to cluster C m whose prototype Q m is the nearest to the record according 

to the normalised mixed metric (3.25). Hence, a set o f  prototypes S gives a partition 

o f the data set to k  clusters . In this Thesis a set o f  prototypes

S = {Q15...,Q*} will be called an approximate solution to the clustering problem if  it

gives a partition to k  non-empty clusters.

The clustering algorithm has to minimise the objective function

m= 1 /=1

utm e  {0,1}, l < i < N ,  l < m < k ,

Z « * = w . 311(1 2 > * > o  V m - (5 -5)
m =1 i= 1

The condition uim =1 for an element o f  the partition matrix means as above in (5.2) 

that the record A / is assigned to cluster Cm with prototypeQ m . Evidently, (5.5) can 

be written as

j (s)=i z  [/»*(ai.q.)T- (5-6>
m=l A, eCm

To start the RANKPRO one has to give a set o f  parameters, namely the number ( n ) 

of the approximate solutions to the clustering problem that are considered at each
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step, the number (e, 1 < e < n)  o f  elite solutions that are kept to the next step o f the 

algorithm, the number (r  = n - e )  o f  solutions that are used for random search, and 

the number (niter) o f  iterations o f  the k  -prototypes algorithm that is applied to each

solution to improve the solution. A s stopping criterion, one can take either the 

approach o f  the process time to the given maximum time tmax or the approach o f  the 

number o f  process iterations to the given maximum number o f  iterations.

The pseudo code for RANKPRO can be described as following:

Step 1. Initialization. Select randomly n  solutions S p, 1 < p  < n .

Step 2. While (the stopping criterion is not met yet) consider the selected

solutions.

Step 3. Apply niter o f  iterations o f  the k  -prototypes algorithm to each solution

to improve the solution. The application o f  the algorithm to the solution has to be 

stopped if  it becomes stable; this means that it has reached the local minimum.

Step 4. For each S p , calculate the objective function J (S p ) .

Step 5. Select e solutions with the best values o f  the objective function for

further study at the next step, the rest r = n - e  solutions are removed and 

replaced by randomly selected ones.

Step 6. End While.

The solution o f  the clustering problem is the best solution S obtained at the last step.

It is important to note that in order to save time in the process o f  improvement o f  

solutions, the k-prototypes algorithm is applied to the solutions not until its
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convergence but only niter times. This number can be estimated by a prior study o f a 

specific data set.

Like the BA, the RANKPRO algorithm uses a population o f  solutions for each 

iteration instead o f  a single solution. The BA  suggests using a random search in the 

neighbourhoods o f  selected solutions and hence, the local improvement o f  promising 

solutions by the BA algorithm may be time consuming. The employment o f  the 

k  -prototypes algorithm that converges very fast to a local optimal solution is a faster 

way to improve the solutions. In this the algorithm is similar to gradient-like methods 

o f search o f local extreme (like Pham and Jin 1995).

5.4 Applications to data sets

5.4.1. Comparing the effectiveness of the clustering algorithms

The comparison o f  the effectiveness o f  the clustering algorithms is not an easy task. 

Goldberg and Deb (1991) reviewed and compared several selection schemes used in 

genetic algorithms. They noted that many claims and counterclaims were presented 

regarding the superiority o f  a selection scheme over another one in genetic 

algorithms. However, most o f  these claims are based on limited (and uncontrolled) 

simulation experience; while surprisingly little analysis was performed to understand 

relative expected fitness ratios, convergence times, or the functional forms o f  

selective convergence. A  similar situation may be encountered in the area o f
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comparison o f  clustering algorithms. Hence, the following procedure for comparing 

the effectiveness o f  the clustering algorithms has been suggested.

The above methods (the RANKPRO and the k  -prototypes algorithms) are applied to 

several data sets from the UC Irvine repository (Asuncion and Newman 2007) after 

normalisation o f  the data in accordance with the above described method. The 

effectiveness o f  the clustering algorithms is compared with one another for different 

initial parameters and data sets. The scheme described below compares the average 

minimum values o f the objective function obtained during the runs o f  the algorithms 

that are applied to the same data set during the same time.

Let the RANKPRO algorithm with a specified set o f  initial parameters be applied to a 

specified data set during the given time and J [ t exec') be the minimum value o f

the objective function (5.6) obtained by the execution o f  the algorithm during this 

time. If the algorithm is run a given number nr o f  simulations then one obtains a set

o f ^^(tgxec) values o f  the objective function (m  = l,.. .,« r) . The average value 

- E L / * 0 ( ' - . ) / » ,  is a characteristic o f  the effectiveness o f  the algorithm 

d uring/^ . The less is J av ( t ^ ) for the algorithm the greater is the effectiveness o f  

the algorithm. However, if  one takes the v a lu er ^  rather large then all algorithms 

may give the same value o f  the objective function, namely its global minimum value. 

Hence, it is pointless to compare the algorithms for large values o f t ^ .  Evidently,

J av(texec) depends also on the values o fn r . However, i f  nr is large enough then the 

variations o f  the J av ( t ^ )  values w ill be rather small.



To compare the effectiveness o f  the RANKPRO and the k  -prototypes algorithms, 

the latter is also applied to the same data set. I f the k  -prototypes algorithm converges 

before the process time w ill reach the value /exec then the algorithm is run again and 

again until the allowed process time is not expired. Each time after convergence o f  

the k  -prototypes process, the minimum value o f  the objective function is recorded. 

The average o f  the minimum values o f  the objective function obtained during these 

runs is taken as J av ( t ^  ) .

5.4.2. Adult data set

The Adult data set, also known as Census Income dataset, has 48842 records and 

30162 records without missing values (N  = 30162) with 14 attributes and one class 

attribute. Each record has eight categorical attributes plus a class attribute, while the 

rest o f  the attributes are numerical. This is a standard data set that was studied a 

number o f  times to test clustering algorithms (see, e.g. (Huang 1998)). For ADULT 

data set, the Figures 1-4 show the graphs o f  the average values o f  J av (S ) versus

in seconds. The number o f  simulations is nr = 1 0 0  in all cases.

One can see in Figure 5.1 that if  the parameters n , e and r  are fixed 

(n  = 8, e = l,and r  = 7) and the parameter niter is varied then the best performance is

for niter = 5 . In all cases the RANKPRO algorithm gave smaller values for the
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average o f the objective function J av ( t ^ ) ,  i.e. the RANKPRO algorithm is more 

efficient than the k  -prototypes algorithm.

Figure 5.2 shows that it is more efficient to keep only one elite solution e = 1 than 

two elite solutions e = 2 irrespectively on the number o f  iterations 

(niter -  3 or niter = 5) o f  the k  -prototypes algorithm applied to improve the solutions.

Figure 5.3 confirms the above conclusions. If the parameters n , e and r are fixed 

{n -  8, e = 2 ,and r  = 6) and the parameter nUer is varied then the best performance is 

for niter = 5 . The RANKPRO algorithm is more efficient than the k  -prototypes 

algorithm. However, the performance o f  the former algorithm is worse than its 

performance in the case e = 1, i.e. it is more efficient to keep only one elite solution 

than two elite solutions.

One can see in Figure 5.4 that i f  the number o f  randomly chosen solutions n is 

varied, while other parameters e and niter are fixed (n iter = 5 and e = l)  , the best

performance is for n = 8 (r  =  7 ) . In all cases the RANKPRO algorithm is more 

efficient than the k  -prototypes algorithm.

149



248850
-  ■ -  K-prototypes
—— i RANKPRO n =3 

iter
-  #  RANKPRO n =5

iter

. - A -  . RANKPRO rL =7
^  iter

-  ▲ -  RANKPRO n, =9
▼  rter248801

2487!

248700 L  
1.0 2.51.5 2.0 3.0

* ex ec

Figure 5.1: The average values o f  J av(S ) vs. ^  for ADULT data set.

Comparison o f the k  -prototypes algorithm and the RANKPRO algorithm with 

different values o f  niter, niter =  3, 5, 7 and 9, while other parameters are constant: 

n = 8, e = 1, and r  = 7.
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Figure 5.2: The average values o f  J av (S ) vs. for ADULT data set. Comparison

o f the ^-prototypes algorithm and the RANKPRO algorithm with the following 

parameters: (i) niter = 3 ,  e  = r  = 1 and n  = 8, (ii) niter =  5, e  = 1, r  = 1 and n = 8, (iii)

niter = 3, e  = 2, r  = 6 and n  = 8, and (iv) niter =  5 , e  = 2 , r  =  6  and n  = 8.
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Figure 5.3: The average values o f  Jav (S ) vs. for ADULT data set. Comparison

of the ^-prototypes algorithm and the RANKPRO algorithm with different values of 

nUer, niter = 3, 5, 7 and 9, w hile other parameters are constant: n = 8, e = 2, and r = 6.
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Figure 5.4: The average values o f  J av(S )v s. texec for ADULT data set. Comparison

of the ^-prototypes algorithm  and the RANKPRO algorithm  w ith different values of 

n = 6-UO and correspondingly with different values o f  r = 5-*- 9, ( r - n - e ), and 

fixed parameters niter = 5 and e =  1.
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5.4.3. Shuttle data set

The full Shuttle data set, also known as Statlog (Shuttle) Data Set, has N  = 14500 

records with 9 numeric attributes and one class attribute. This is a standard data set 

that has been used a number o f  times to test clustering and classification algorithms 

(see, e.g. Garcke et al. 2001)). For this data set, the Figures 5.5-5.8 show the graphs 

of the average values o f  J av (S ) versus in seconds. The number o f  simulations is

nr = 100 in all cases.

One can see in Figure 5.5 that i f  the parameters n  , e and r are fixed 

(n = 8, e = l,and r  = 7) and the parameter niter is varied then the best performance is

for niter = 5 . In all cases the RANKPRO algorithm gave smaller values for the

average o f the objective function J av ( /erec) ,  i.e. the RANKPRO algorithm is more

efficient than the k  -prototypes algorithm.

Figure 5.6 shows that for the Shuttle data set contrary to the ADULT data set, there is 

no evident advantage o f  keeping just one elite solution (e = l)  or two elite

solutions (e = 2 ) . In all cases the RANKPRO algorithm is more efficient than the

k  -prototypes algorithm.
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Figure 5.7 shows that if  the parameters n , e and r  are fixed (n  = 8, e = 2 ,and r = 6) 

and the parameter nUer is varied then the best performance is for niter -  3 The 

RANKPRO algorithm is more efficient than the k  -prototypes algorithm.

One can see in Figure 5.8 that i f  the number o f  randomly chosen solutions n is 

varied, while other parameters e and niter are fixed (n iter = 5 and e -  l ) ,  there is no

evident advantage for a specific n u m b ers. In all cases the RANKPRO algorithm is 

more efficient than the k  -prototypes algorithm.
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Figure 5.5: The average values o f J av(S )  vs. for Shuttle data set. Comparison

of the ^-prototypes algorithm and the RANKPRO algorithm with different values of 

niter, niter = 3, 5, 7 and 9, while other parameters are constant: « = 8, e = 1, and r  = 7.
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Figure 5.6: The average values o f Jav (S ) vs. for Shuttle data set. Comparison

of the ^-prototypes algorithm and the RANKPRO algorithm with the following 

parameters: (i) niter = 3 ,  e — 1, r = 7 and n = 8, (ii) niter = 5 ,  e =  1, r  =  7 and n = 8, 

(iii) w//er = 3, e = 2, r = 6 and « = 8, and (iv) «/<er = 5, <? = 2, r = 6 and n = 8.
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of the ^-prototypes algorithm and the RANKPRO algorithm with different values of 

n = 4-M0 and correspondingly with different values o f  r — 3-*- 9, (r  = n - e ) ,  and fixed 

parameters niter -  5 and e =  1.
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5.4.4. Covertype data set

The full Covertype data set has 581012 records with 54 categorical attributes. 

However, only the first N  = 100000 records have been used. This is a data set that 

predicts forest cover type from cartographic variables. It has been used several times 

to test classification algorithms (see, e.g. Blackard and Dean 1999)). For this data set, 

the Figures 5.9-5.11 show the graphs o f  the average values o f  J av (S ) versus in 

seconds. Since this data set is rather large, the values o f  should be greater than 

the values for other data sets, consequently w e have chosen number o f  simulations 

nr = 10 instead o f  nr = 100 in this case.

One can see in Figure 5.9 that i f  the parameters n , e and r are fixed 

(n = 9 ,e  = l,and r -  8) and the parameter niter is varied then it is difficult to give any

preference to a specific value o f  niter. However, the RANKPRO algorithm gave

smaller values for the average o f  the objective function J m ( t ^  ) in all cases.

Figure 5.10 shows that for the Covertype data set, there is an advantage o f keeping 

just one elite solution (e = l )  rather than two elite solutions (e  = 2 ) . In all cases the 

RANKPRO algorithm is more efficient than the k  -prototypes algorithm.

Figure 5.11 shows that in the case o f  two elite solutions, there is an advantage o f  

keeping niter = 6 . Again the RANKPRO algorithm is more efficient than the

k  -prototypes algorithm.
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Figure 5.9: The average values o f Jav (S) vs. for Covertype data set.

Comparison of the ^-prototypes algorithm and the RANKPRO algorithm with 

different values of nlter, niter = 6, 8, 10 and 12, while other parameters are constant:

n = 9, e = 1, and r = 8.
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Figure 5.10: The average values o f J av (S ) vs. for Covertype data set.

Comparison of the ^-prototypes algorithm and the RANKPRO algorithm with the 

following parameters: (i) niter =  6 ,  e  =  1, r = 8 and n = 9, (ii) niter -  8, e  = 1, r = 8 and

n = 9, (iii) «iter = 6, e = 2, r = 7 and n = 9, and (iv) = 8, e = 2, r  = 7 and

n =  9.
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Figure 5.11: The average values of JflV(S) vs. for Covertype data set.

Comparison o f the ^-prototypes algorithm and the RANKPRO algorithm with 

different values o f  niter, nUer =  6, 8, 10 and 12, while other param eters are constant: n

= 9, e = 2, and r — 7.
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5.4.5. Connect -4 data set

The full Connect -4 data set contains all positions in the game o f  connect-4. It has 

N  = 67557 records with 42 categorical attributes, each attribute corresponds to one 

connect-4 square. All N  = 67557  records have been used.

For this data set, Figures 5.12 shows the graphs o f  the average values o f  J av (S ) 

versus in seconds. The number o f  simulations is nr = 100.

One can see in Figure 5.12 that if  the parameters n , e and r  are fixed 

(« = 8, e = l,andr = 7) and the parameter niter is varied then there is no evident 

advantage for a specific number niter.

For >2.5 s e c , the RANKPRO algorithm is less or equally efficient than the 

k  -prototypes algorithm. The explanation could be the following. For a specified data 

set, it is assumed that njter prescribed for the RANKPRO algorithm, is less than the

average number o f  iterations that the k  -prototypes algorithm needs to converge. 

Hence, it is assumed that the RANKPRO algorithm does not spend much time to 

explore current solutions. For the Connect-4 data set, the k  -prototypes algorithm 

converges very fast contrary to other data sets under consideration. Indeed, the 

average number o f  iterations that the k  -prototypes algorithm needs to converge is 

equal to 10.07, 26.29, 24.88 and 1.53 for the Adult, Shuttle, Covertype and Connect- 

4 data sets respectively. One can see that in the case o f  Connect-4 data set, the
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k  -prototypes algorithm converges to a local minimum very fast and it can be applied 

to the data many times during a prescribed . Hence, the above assumption that the

RANKPRO algorithm spends less time than the k  -prototypes algorithm to explore 

local minima is not satisfied and the RANKPRO algorithm loses its advantage. In 

this case the algorithms have approximately equal effectiveness.

165



x 10

-  ■  -  K-prototypes
«  RANKPRO n.. =3 iter

, +  ■ RANKPRO n, =5 w  iter
. , RANKPRO n.. =7

i te r

-  4  -  RANKPRO njte=9

1.6595

1.659

1.6585

1.658

« 1.6575

1.6566

1.656

1.6555

exec

Figure 5 .12: The average values o f  J av(S ) vs. for Connect-4 data set.

Comparison o f  the ^-prototypes algorithm and the RANKPRO algorithm with 

different values o f niter, niter =  3, 5, 7 and 9, while other parameters are constant:

n -  8, e = 1, and r  = 7.
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5.5 Summary

A new clustering algorithm called RANKPRO: the Random Search with ^-prototypes 

algorithm has been presented. The algorithm combines the advantages o f the Bees 

and ^-prototypes algorithms. The RANKPRO algorithm has been applied to various 

data sets, including data sets with mixed numeric and categorical values. RANKPRO 

balances two objectives: it explores the search space effectively due to random 

selection o f new solutions, and improves promising solutions fast due to employment 

o f the ^-prototypes algorithm.

To estimate the distances between records o f  the data, normalised metrics are used. 

Since, a mixed database is treated as a random sample o f  an object under 

consideration, the normalised metrics have been obtained using statistical approach. 

These normalised metrics are more general than the metric introduced by Huang 

(1997b) for mixed data sets.

It can be expected that the new RANKPRO algorithm will have less probability for 

premature convergence than ^-prototypes algorithm due to the employment o f  

random search. On the other hand, the application o f  several iterations o f  the k- 

prototypes algorithm for very fast improvement o f  the promising (elite) solutions 

resembles gradient-like methods. Hence, this is a more effective procedure than the 

attempts to improve the promising solutions by random neighbourhood search as it is 

used in the BA algorithm.
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The obtained results demonstrate the efficiency o f  the new algorithm. It is shown that 

in the majority o f  the considered data sets when the /c-prototypes algorithm needs 

many iterations for convergence, the RANKPRO algorithm is more efficient than the 

/c-prototypes algorithm. However, if  for a specific data set, the /c-prototypes 

algorithm converges to a local minimum very fast (just in few  iterations) then the 

algorithms have approximately equal effectiveness.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis. In this chapter the contributions and conclusions o f

this thesis are listed and suggestions for future work provided.

6.1. Contributions

The main contributions o f  this thesis are:

1. A formal and rigorous formulation o f  accuracy o f  clustering is introduced. 

The new approach may be used for an arbitrary number o f  clusters.

2. The introduction o f  new  normalisation techniques for the Euclidean metric for 

numerical data. The proposed normalisation procedure secures that the 

average contributions o f  all attributes to the measures are equal to each other 

from statistical point o f  view  and therefore, these variables give equal 

contributions to the similarity measures.

3. The proposed approach is extended to the case o f  mixed metrics, i.e. when the 

metric is a combination o f  an arbitrary Minkowski metric and the matching 

dissimilarity measure that are used for numerical and categorical data 

respectively. Rigorous mathematical proofs o f  unbiasedness and consistency
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o f  estimators used for normalisation o f  the Minkowski mixed metrics are 

presented.

4. Since the k  -prototypes algorithm cannot be used in the cases where p M *  2 ,

a clustering algorithm with the objective functions that was earlier

suggested only for fuzzy clustering, has been developed and applied for hard 

clustering.

5. A new algorithm RANKPRO that combines the advantages o f  the Bees and k- 

prototypes algorithms and outperforms the latter algorithm has been 

introduced.

Various developed and implemented algorithms have been applied to data sets from 

the UCI repository.

6.2. Conclusions

The first main result o f  the thesis (Chapter 3) is the development o f  a mathematically 

rigorous approach to normalisation o f  the feature vectors for mixed data sets based 

on a unified statistical approach. The most common cases o f  metrics, namely the 

Euclidean metrics are used as a measure for continuous numerical features, while the 

matching dissimilarity measure is used to deal with categorical attributes. The 

introduced normalised metrics secure that the average contributions o f  all attributes 

to the measures are equal to each other from statistical point o f  view.
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The second main result o f  the thesis (Chapter 4) is application o f  the unified 

statistical approach to general cases o f  the Minkowski distances and the development 

o f a novel algorithm for hard clustering using the mixed Minkowski metrics with an 

appropriate objective function. The algorithm may be used in these cases, while the 

k  -prototypes is not applicable.

The third main result o f  the thesis (Chapter 5) is the introduction o f  the RANKPRO 

(the Random Search with ^-prototypes algorithm). The algorithm combines the 

advantages o f  the Bees and ^-prototypes algorithms, and outperforms the latter 

algorithm. The RANKPRO balances two objectives: first it explores the search space 

effectively due to random selection o f  new solutions, and on the other hand it 

improves promising solutions fast due to employment o f  several steps o f  the k- 

prototypes algorithm.

6.3. Future Research Directions

A number o f  aspects o f  the algorithms introduced in this thesis could be developed 

further. Possible extensions include:

Comparison o f  the effectiveness o f  the RANKPRO algorithm with several variants o f  

Genetic Algorithms, e.g. Maulik and Bandyopadhyay (2000), in application to 

clustering o f  mixed data sets. It is expected that our algorithm will be more effective; 

however, this has to be confirmed by practical applications.
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Comparison o f  the effectiveness o f  the RANKPRO algorithm with the Bees 

Algorithm (Pham et al., 2007), in application to clustering o f  mixed data sets. 

According to theoretical arguments, our algorithm will be more effective; however, 

this has to be confirmed by practical applications.

Estimation o f  effectiveness o f  the developed algorithms using the Mann-W hitney- 

Wilcoxon statistical criterion.

Generalisation o f the types o f  objective functions. If in Chapter 3 and Chapter 5 the 

standard ^ p \  objective function has been employed in application to numerical

attributes and the function has been extended to the functions ^  Pp“ *n Chapter 4, it

is o f interest to consider the case ^  p ?  for arbitrary p  , p  > 1 in application to

numerical attributes. Evidently there w ill be a problem o f  recalculating the new 

prototypes. However, w e can expect that the techniques o f  optimisation o f convex 

functions may be applied in this case because the function ^  PpM ls convex.

Application o f  the Bees algorithm to clustering o f  mixed data sets employing the 

Minkowski distances and the general ^  p Pu objective function.
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Appendix A

Data Sets

All data sets used in this thesis are from the UCI repository o f  machine learning 

databases [Blake and Merz, 1998]. These databases were contributed by many 

researchers, mostly from the field o f  machine learning, and collected by the machine 

learning group at the University o f  California, Irvin. These data sets are described 

briefly below.

Vote data set. The database includes votes for each o f  the U.S. House o f  

Representatives Congressmen on 16 key votes, such as water project cost sharing, 

crime and duty-free exports. The problem is to identify whether a person is a 

republican or a democrat based on these votes.

Chess data set. This database has 36 features to describe chess board positions and 

the task is to determine which position w ill lead to a win.

Crx data set. This data set was originally used by Quinlan on the C4.5 induction 

learning algorithm. The data is used to determine whether or not to give a credit card 

to an applicant. A ll the feature names and values have been changed to meaningless 

symbols to protect the confidentiality o f  the data.

H orse Colic data set. There are 368 instances in this data set. 22 features are used to 

describe information about the horses, including their age, pulse, rectal temperature 

etc, and the task is to classify whether a lesion is surgical or not.

192



H ypothyroid  data set. The data comes from an assay screening service related to 

thyroid functions, and concerns one aspect o f  thyroid diagnosis. The 25 features are a 

mixture o f  measured values and information obtained from the referring physician. 

There are four classes.

A nnea ling  data set. The application concerns appropriate actions to take during the 

coating o f  steel products. The data set contains 898 cases described in terms o f  38 

features that cover aspects such as the width o f  the steel slab, its type, hardness, 

composition, surface quality etc. There are five classes corresponding to alternative 

coating sub-procedures.

H epatitis data set. The data contains 155 instances; each instance is represented by 19 

features, describing the age, sex and other 17 attributes o f  a patient. The task is to 

determine whether the patient has a risk o f  death.

M ushroom  data set. This data base consists o f  descriptions o f  hypothetical samples 

corresponding to 23 species o f  gilled mushrooms in the Agaricus and Lepiota family. 

Each species is identified as definitely edible or definitely poisonous. There are 8124 

records, and each record is described by 22 nominally valued features.

Soybean-large  data set. The data set consists o f  683 records with 35 features, 

describing leaf properties and various abnormalities. The task is to diagnose soybean 

disease based on the measures and observations.
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Vehicle data set. The data set is used to classify a given silhouette as one o f four 

types vehicle using a set o f  features extracted from the silhouette. Each vehicle is 

described by 18 continuous valued features.

Diabetes data set. There are 768 instances in the data set; each is described by 8 

continuous valued attributes, such as the number o f  times pregnancies, diastolic blood 

pressure, body mass index, etc. The data is used to classify whether the patient tested 

is positive or negative for diabetes.

Breast Cancer data set. The breast cancer data contains 699 cases. Each case is 

described by 10 continuous attributes that cover aspects such as the age o f  the patient, 

tumour size, menopause etc. There are two classes which identify whether the tumour 

is benign or malignant.

Iris data set. This is the most w idely used data set in the literature. The data set 

contains 3 classes o f  50 instances each, where each class refers to a type o f  iris plant. 

Each instance is described by four continuous attributes, namely, sepal length, sepal 

width, petal length and petal width.

Abalone data set. The abalone  data is used to predict the age o f  abalone from 

physical measurements. There are a total o f  4177 instances in the data, and each is 

described by 8 attributes.
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Adult data set. There are 48842 instances in the data. Each instance is described by 

14 attributes, such as age, work class, native country, education, marital status and so 

on. These attributes are used to predict whether such a person can earn a salary 

greater or less than $50,000 in the USA.

Australian data set. The Australian data is almost the same as the original Crx data, 

but all the missing values have been replaced with their medians.

Car data set. The car evaluation data set is used to evaluate cars according to the 

features that describe their price, technical characteristics, and safety. There are a total 

o f 1728 instances, each described by 6 attributes and categorised into one o f  4 classes.
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Appendix B

Proof of unbiasedness and consistency of estimators 

used for normalisation of the Minkowski mixed 

metrics

Here a rigorous proof is given for the above statements that the estimators (4.6) and 

(4.13) for the mean contribution o f  each j  -th attribute (in numerical and categorical 

cases respectively) to the Minkowski mixed metric are unbiased and consistent. More 

precisely, these statements are corollaries o f  the follow ing general Proposition.

Proposition B l. Let a random variable X  have a distribution law L (X ) and 

{ X p . . . , b e  a sample o f  its values. Let Z x andZ2be independent random variables 

having the same distribution law L ( X )  . Let <p(zx, z 2) be a function o f  two real valued 

arguments such that the random variable Z = (p{Zx, Z2) has finite mean and variance. 

Then the estimator E Z  o f  the mean o f  the random variable Z given by

E Z = ----- ------  V  <p(xn x  ), (B .l)

is unbiased and consistent.
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To proof Proposition B1 one needs to use two Lemmas. The first lemma is often used 

in mathematical statistics.

a A
Lemma 1. If 6n is an unbiased estimator o f  a parameter 0  and the variance o f  0n

  A

goes to 0 for « —» co. Then 0n is also a consistent estimator.

A

Proof. The estimator 0n is consistent i f  for any s > 0

XimP\\9 ~ 0 \>  e) = 0. (B.2)
/ I - > 0 0  V  /

A

Due to the Tchebysheff inequality and since the estimator 6n is unbiased, we obtain 

p { \ d ' - g \ > e )  = p { \ 9 „ -  E 0  \ > e } < ^

Since it follows from the formulation that lim DQn — 0, (4.15) follow s from the above
n—>oo

inequality and this proves Lemma 1.

Let us denote by T^ the set o f  all pairs o f  indices (i, j ) such that \ < i  < j  < N .

Let us call a subset U  a  T N admissible i f  for any arbitrary two distinct pairs (z,,y,) 

and (/2,y2);(<1J 1) ,( /2J 2) e t f  all indices { w „ W 2} are distinct.
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The following Lemma was obtained by M.I. Prostov and with his permission the 

proof is given here for the sake o f  completeness.

Lemma 2. The set T^ can be divided into X( N)  non-overlapping admissible subset 

UX, . . . ,U HN), such that there are /j ( N )  elements in each subset o f  the partition. The 

numbers X( N)  and ju(N)  are defined as X( N)  = N , and /u(N) = ( N  - 1 )  /  2 for odd 

N ; and X( N)  = N  - 1, and //(AO - N 12  for even N .

Let us give examples o f  such partitions:

a)T4 = [ } U „  where U ,= {(1 ,2 ),(3 ,4 )} , U 2= {(1 ,3 ),(2 ,4 )}  and U 3= {(1 ,4),(2 ,3)}.
/=1

b) Ts = [ }U,  .w here U ,= {(1 ,2 ),(3 ,4 )} , U 2= {(1 ,3 ),(4 ,5 )}, U 3= {(1 >4),(2 ,5)},
1=1

U 4= {(1,5),(2,3)} and U 5= {(1 ,4 ),(3 ,5 )}.

Proof o f Lemma 2.

Let us consider a circle on a plane with a unit radius and with centre (0,0). Let the 

circle have N  points AX, . . . , A N. These points are the comers o f  a regular polygon. 

Let us denote by the set o f  all chords connecting the points AX, . . . , A N. Let each 

pair (/, j )  e  T N correspond to the chord = AtAj  o f  the circle. One can see that

there is a one-to-one correspondence y/ between the sets T^ an d Q  .

Let us consider the case o f  odd N , i.e. N  = 2 K  + 1. Let
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U\ = { ( i , 2 K  + l - ( i - 2 ) ) : i  = 2 , . . . , K }  and Vx -y /{JJx) be the set o f chords 

corresponding to pairs o f  indices Ux (see Fig. 4.1a). Further, w e denote by Vm , 

(m = 2 , . . . , K )the set o f  chords, that can be obtained from chords o f  the set Vx by 

counter clockwise rotation with an angle 2zr(/w -1 )  /  ( I K  +1), and put Um = ^ _,(Fin) 

(see Fig. 4.1b).

,A i A i

Figure B .l: Sets Vx and V2 for N  = 7 : a) the set Vx and b) the setF2.

Since the chords o f  the set Vx are parallel to each other, the chords o f  each o f  the sets 

Vm(m = 2 , . . . , K )  are also parallel to each other. Hence, all sets VX, . . . ,VK are pair wise 

non- overlapping, and consequently UX, . . . , U N are also pair w ise non-overlapping. In 

addition, since the cords o f  each o f  the sets Vm do not have the mutual end points, all 

sets UX, . . . ,U N are admissible.
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Further, each o f  the sets Um has 2 K  + 1 elements, therefore, their union has

K

K {2K  +1) = N ( N  - 1 )  /  2 elements. Thus, w e obtain ( J f / w = T ^ an d  Lemma 2 has
m=\

been proved for odd N .

Let us consider now the case o f  even N , i.e. N  = 2 K  . It has been shown above that 

the set T2AM can be divided into 2 K - \  admissible subsets U[,.. . ,U'2K_X such that 

each o f  these subsets has K - 1 pairs o f  indices whose values are less or equal to N  - 1 .

Consider the set U'm, (m  = 1 ,..., 2 K  - 1) and the corresponding set o f  chords V'm. There 

exists exactly one point Av{m) with 1 < v (m )  < 2 K  - 1  that is not the end point o f  any 

o f the chords o f  the set . Hence, the chord does not belong to V'm and

therefore the set Vm = F ^ (J {4 ,(ffl)̂ } consists ° f  chords that do not have mutual end 

points. Consequently, the set Um =y/(Vm) is admissible. Further, since all points 

Av(l), . . . ,Av(2Ar_j) are distinct, the chords a ŝo distinct. This

leads to the conclusion that the sets VX, . . . ,V 2K_X are pair w ise non-overlapping, and 

consequently UX, . . . , U 2K_X are also pair w ise non-overlapping. Each o f  the sets Um 

has K  pairs o f  indices, and the union o f  these sets has K ( 2 K  — 1) = N ( N  - 1) /  2 pairs. 

Thus, we obtain

K

(J  Um = T n and this proves Lemma 2.
m=1
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Proof o f Proposition B l. Let X N be independent random variables having a

distribution la w L (J f) . Since E[(p{Xn X j ) ]  = £[<p(Zp Z2)] for any z *  j  , it follows 

from the equality

£ v C x „ X j )
N ( N - 1 ) , ^

that the estimator (B .l)  is unbiased.

Further, let us estimate the variance (dispersion)

D (B.3)

where D  denoted the dispersion.

It follows from Lemma 2 that

£  <p(x„xJ)= £  £
1 <j<j<,N \<,m<,X(N){i,j)eUm

(B.4)

where each o f  sets Um is admissible and consists o f  ju(N)  pairs o f  indices. For each 

m , the above sum ^  , X j  ) consists o f  ju(N)  independent random variables

having the same law o f  distribution and therefore, w e have for (B.3)

D[ £ v ( X „ X ] )} = n(N)D[<p{Zx,Z1)] (B.5)
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For independent random variables having the same law o:

L ( £ ) ) , we have

D t e + . . . + & ] «  £  C o v (£ ,<*,)<; £  =
1 £i,j£N  1 £i,j£N

From the above inequality along with (B .4) and (B.5), w e obtain

D £ vix„Xj)
1 £i<j£N

< Z ( N ) 2/i(N)D{<p(Zx, Z2)] <  ( N 2 /  2)D[<p(Z], Z2)],

From (B.6), we obtain

D
N ( N -  l ) ls~ *  

I N

N 2( N - 1 ) 2
D

l ^ K  j<.N

( N - l )
£>[<p(Z„Z2)].

It follows from (B.7) that

lim D
N -tco N i N - X ) ^

=  0 .

Using Lemma 1 and (B .8), w e obtain Proposition B l.

distribution

(B.6)

(B.7)

(B.8)


