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Abstract

This thesis focuses on the synthesis of early transition metal complexes. A unique 

series of chromium complexes in oxidation states 0, +1, +11 and +III containing 

N-heterocyclic carbenes have been prepared, as well as titanium complexes in the +III 

oxidation state. A series of bis(phosphine) complexes of chromium in oxidation states 0 and 

+1 have also been synthesised, and all paramagnetic compounds have been analysed by EPR 

spectroscopic techniques.

Chapter one provides an introduction to the chemistry of N-heterocyclic carbenes, and 

their crucial role in organometallic chemistry. A background to the use of early transition 

metal complexes in the ethylene oligomerisation process is described, along with recent 

advances in selective ethylene trimerisation and tetramerisation catalysis. An overview of 

Electron Paramagnetic Resonance spectroscopy is provided as a brief theoretical background 

to the technique and the applications relevant to the synthetic work presented in this thesis.

Chapter two introduces a novel series of donor-functionalised imidazolium salts and 

their structural characterisation. Synthesis of the corresponding free NHC ligands is 

described, and the synthesis of silver(I) complexes reported. This chapter provides an insight 

into the bonding of these new ligands, allowing comparison to similar compounds.

In chapter three, the synthesis o f a series of bis(phosphine) chromium(O) and 

chromium(I) complexes is described, along with their characterisation and EPR analysis. This 

work was sponsored by Sasol Technology, and was carried out in order to gain vital skills 

and experience in the preparation and handling of these sensitive compounds.

Chapter four describes the synthesis of a series of low oxidation state chromium 

complexes. Chromium(O) and novel chromium(I) complexes were prepared using a similar 

methodology described in chapter three. EPR analysis of the resulting paramagnetic 

complexes is included, and represents the first series of chelating NHC-Cr(I) complexes to be 

studied in this way. An interesting reaction is described, in which a NHC ligand is found to 

decompose in an unexpected manner upon attempted coordination to chromium(O). A novel 

series of chromium(II)-NHC complexes have also been prepared and are thought to be the 

first of their type reported.

Chapter five describes the synthesis of a novel series of NHC containing Cr(III) and 

Ti(III) complexes. Analysis by EPR spectroscopy was carried out and the resulting data is 

reported, confirming the electronic structures of the complexes. The catalytic activity of a



selection of complexes in ethylene oligomerisation reactions were tested and found to give 

mostly polymeric product, with little selectivity toward linear alpha olefins. The variation in 

observed activities is attributed to the different ligands systems involved.
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Chapter 1 Introduction N-Heterocvclic Carbenes

Chapter One 
Introduction

1.1 N-Heterocyclic Carbenes (NHCs)

Despite early reports by Wanzlick and co-workers postulating the presence of NHCs, 

it was not until the isolation o f the first free NHC, reported hy Arduengo and co-workers in 

1991, that these ligands became a real synthetic target and important ligand in organometallic 

chemistry (Scheme 1.1). A large number of NHCs were subsequently isolated and reported, 

along with an even larger number of complexes containing NHC ligands. Reports describing 

the catalytic properties of this new class of complexes established these ligands within the 

area of homogeneous catalysis as potentially very useful and interesting compounds, and 

imidazol-2-ylidene carbenes of the type described by Arduengo are still the most commonly 

studied class of carbene.

cat. DMSO

Scheme 1.1 Synthesis of the first isolated free NHC by Arduengo in 1991.

In this introduction, the chemistry and properties of N-heterocyclic carbenes will be 

discussed, and their use as ancillary ligands in different types of homogeneous catalysis 

reactions is discussed.

2



Chapter 1 Introduction N-Heterocvclic Carbenes

1.1.1 Chemistry of N-Heterocyclic Carbenes

Carbenes are generally defined as neutral compounds of divalent carbon with two 

non-bonding electrons; they display either linear (sp) or bent (sp ) geometries. The carbon 

atom has only six valence electrons and carbenes are therefore electron deficient and usually 

very reactive species.

N-heterocyclic carbenes are carbenes originally based on N-containing heterocycles 

(figure 1.3). They contain an sp hybridized carbon atom, with two non-bonding orbitals, 

where the two non-bonding electrons occupy one orbital with paired spin 

orientations (a2 prc0). This results in a singlet ground state multiplicity (]Ai),3 as opposed to a 

triplet ground state where each electron is in a different orbital (a 1 pji1).

The ground state multiplicity (singlet or triplet) is a consequence of the relative 

energies of the non-bonding a- and pK-orbitals. A singlet ground state is observed if  there is a 

large enough energy gap between them.3,4 The size of this energy gap, and therefore the 

multiplicity, is controlled by the steric and electronic effects of substituents at the carbene 

carbon atom.

The presence of nitrogen atoms adjacent to the carbene centre results in a large energy 

gap between the two non-bonding orbitals (o and p*), by removing the degeneracy through a 

combination of both inductive and mesomeric effects6 (figure 1.1).

o > o p'
/ o C C H )  c j

®/0
N '1
0

Figure 1.1 Stabilisation of free carbene through mesomeric and inductive effects.

The inductive effect caused by the a-electron withdrawing nature of the 

electronegative nitrogen atom lowers the energy of the o-orbital by increasing its s-character. 

Meanwhile, donation of electron density from the nitrogen atom lone pair into the carbene 

empty pn-orbital by mesomeric effect destabilises the carbene p^-orbital.4,6,7 This interaction

3

x  p *

o C O  a

/o
Y



Chapter 1 Introduction N-Heterocvclic Carbenes

of 7i-electrons of the nitrogen atoms with the p^-orbital on the carbene carbon results in a 

delocalised system in which the N-C bonds have partial double bond character (figure 1.2).

r  f ,  r
^-N ^-N© ^-N

C> —  —  O
N N N©
\ \ \
R R R

Figure 1.2 Resonance structures of five-membered N-heterocyclic carbenes.

The first isolated NHC was based on an imidazole ring where the carbene centre is 

adjacent to two nitrogen atoms, and included a 6-7i-electron, 5-membered ring arrangement
o

(figure 1.2). This results in stabilisation of the carbene, and NHCs o f this type with many 

R-group variations have been reported including alkyl, aryl, alkyloxy, alkylamino, and chiral 

N-substituents. Bulky N-substituents have been reported to help kinetically stabilise 

carbenes,53 but are not necessary for isolation. Figure 1.3 displays just some of the variations 

of NHC ligands reported in the literature including the “saturated” 5-membered imidazolin-2- 

ylidenes and expanded 6- and 7-membered ring carbenes9 which have recently become more 

accessible following the report of a new method of synthesis by Bertrand and co-workers.9 

Donor functionalised expanded NHC complexes were reported by Cavell and co-workers to 

show excellent catalytic activity in hydrogenation reactions under very mild conditions.10,11 

Carbenes based on triazoles,12 benzimidazoles13 and oxazoles14 are known, and following the 

report of an NHC ligand bound via the C4 “backbone” position by Crabtree,15 there have been 

several so-called abnormal carbene complexes reported.16,17

The 5-membered imidazole-2-ylidenes of the type first described by Arduengo, along 

with some expanded NHCs will remain the focus of this thesis.

4



Chapter 1 Introduction N-Heterocvclic Carbenes

Figure 1.3 Some common types of N-heterocyclic carbene.

NHCs are frequently compared to phosphines as ligands in transition metal chemistry
1 8and were originally considered to be phosphine mimics. Like phosphine ligands, NHCs are 

neutral 2-electron donor ligands that can be easily sterically and electronically modified, and 

also support catalysis when coordinated to catalytically active metals.

However, the high basicity and different structural features of NHCs sets them apart 

from the more established phosphines. NHCs are now considered to behave more like tertiary
90alkyl phosphines in some respects. They exhibit stronger o-donor properties, and in some

19 10 91instances are thought to surpass phosphines in both catalytic activity and scope, ’ ’ due to 

advantages such as increased thermal and oxidative stability of complexes and the fact that 

they exhibit limited decomposition reactions associated with ligand dissociation as a result of
17tighter ligand binding.

One major difference between phosphines and carbenes is the ability to undergo 

7i-backbonding. Phosphines are known to extensively backbond with certain metals, and 

although there is some debate about the ability of NHCs to undergo backbonding,22 it is 

certainly not necessary for back-bonding to occur to produce stable metal complexes.

5



Chapter 1 Introduction N-Heterocvclic Carbenes

PCy3 M es—N

x
N—Mes

Ru Ru

Cl Cl/
PCy3 PCy3

a b

Figure 1.4 Grubbs’ first (a) and second (b) generation metathesis catalysts.

In the early years of development of NHC complexes, a wide range of palladium and 

ruthenium complexes were isolated and studied as homogeneous catalysts. The substitution

reported in both ring closing metathesis (RCM) and ring opening metathesis polymerisation 

(ROMP) led to increased interest in the use of NHCs as ancillary ligands in transition metal 

catalysis.233,24

1.1.2 NHC Complexes in Homogeneous Catalysis

The application of NHCs in transition metal chemistry, particularly in homogeneous 

catalysis began with the first reports of NHC-Metal complexes independently by Wanzlick25 

and Ofele26 in 1968, long before the isolation of the first free NHC. The mercury (Hg(II)) and 

chromium-NHC complexes were formed by deprotonation of the imidazolium cation by a 

basic ligand of the metal precursor (scheme 1.2), and this method remains a commonly 

utilised route to transition metal complexes of NHCs.3,203,27’31

Prior to the isolation of free NHCs, carbenes were classified as either Fischer or 

Schrock-type carbenes according to the nature of the carbene-metal bond formed.32,33 These 

carbenes form double bonds with metals and require 7i-backbonding to stabilise metal 

complexes, in contrast to NHCs where a strong a-bond is generally sufficient to stabilise a
1 ftvariety of oxidation states.

of tricyclohexylphosphine by an NHC ligand in the so-called 2nd generation Grubbs’ 

catalyst (figure 1.4), and the subsequent improvement in catalytic activity (~100 times) was

6
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c 6h 5 C6H5 C6H5—| 2 CI04

2
N CIO4" - 2 HOAc

Hg(OAc)2

C6H5 C6H5 CgHs

CH3

[HCr(CO)5]

■ h2
A

) — Cr(CO)5 
N
I

N

CH3 c h 3

25 26Scheme 1.2 Synthesis of first NHC-transition metal complexes. ’

The isolation of stable free carbenes has opened up new routes for the synthesis of 

metal-carbene complexes, and while numerous complexes have been prepared via different 

methods, the most common route is via the addition of an external base such as NaH, KOlBu 

or KHMDS (potassium hexamethyldisilazide), to deprotonate the azolium precursor. Very 

often the free carbene is prepared in situ, i.e. it is not isolated as a solid, but prepared in 

solution, and added directly to a metal precursor. This tends to be the preferred route to many 

metal complexes (scheme 1.3), as it allows the use of a greater variety o f metal precursors 

that do not necessarily contain basic ligands required to deprotonate the salt.

X-
/  \  : B‘ /  \  Metal precursor /  \ ►  ►

A wide variety of NHC complexes have been prepared in this way, with most metals 

in the periodic table, including alkali metals, main group and transition metals, and even 

lanthanide and actinide complexes reported. Due to their catalytic importance, the majority of 

reported NHC complexes are based on catalytically active late transition metals such as Pd, 

Ru, Ir and Rh.

-BH

Scheme 1.3 in situ preparation of NHC complexes.

7
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/
O /

Pd
N

\

N.

/
/  Pd
\  y  \N—\  I

.Nk

Figure 1.5 First NHC-Pd complexes employed in the Heck reaction.

90After some early examples of the use of NHCs as ligands in catalysis, the real 

potential of NHC complexes in homogeneous catalysis was realised after the report by 

Herrmann and co-workers in 1995 describing palladium complexes as very active catalysts
9 OKfor the Heck reaction (figure 1.5). NHCs have since been employed in a wide variety of 

catalytic reactions,19 including polymerisation, hydrogenation, hydrosilylation and 

hydroformylation. However, there are problems associated with using NHC complexes in 

catalysis; they are susceptible to loss by reductive elimination leading to decomposition of
99 ^4the catalyst sometimes before effective catalysis can take place. ’ ’

It was not until more recently that NHC complexes of early transition metals have
'Xfx X I  Wbeen used as olefin oligomerisation and polymerisation catalysis. ’ ’ A series of chelating

o
CNC-pincer ligands (figure 1.6), reported by Gibson and co-workers, were the first NHC 

based complexes to display excellent activity for olefin oligomerisation reactions, and 

demonstrates the exciting potential for this ligand class in early transition metal olefin 

polymerisation.

NHC complexes of early transition metals have been less widely reported than other 

transition metals; they represent the main focus of this thesis.

R = 'Pr
2,6-diisopropylphenyl
1-adam antyl

Figure 1.6 First Cr(III)-NHC complexes reported to be excellent olefin oligomerisation catalysts.



Chapter 1 Introduction Ethylene Oligomerisation

1.2 Ethylene Oligomerisation

Linear a-olefins (LAOs) are 1-alkenes that are particularly valuable in the chemical 

industry as intermediates in the manufacture of co-polymers among other products. Metal 

catalysed ethylene oligomerisation is the conventional route to LAOs, a process which 

commonly results in a ‘Schulz-Flory’ distribution of olefins, due to the linear chain growth 

mechanism under which they operate (scheme 1.3). This mixture o f olefins must be then 

separated to give specific carbon number products.40-42 Industrially, olefins containing 6 and 

8 carbon atoms (1-C6 and l-Cg) are in much higher demand than other carbon numbers, due 

to their importance as co-monomers in the polymer industry. This presents a challenge to 

LAO producers, and there is great interest in the development of a series of selective 

processes in order to match production to market demand.

RLnM -R

LnM—H r
LnM-

R

■H

Scheme 1.3 Ethylene insertion/p-elimination mechanism proposed by Cossee and Arlman for the

oligomerisation process.43,44

1.2.1 Selective Ethylene Trimerisation

The first report of ethylene trimerisation was published by Manyik and co-workers at 

Union Carbide Corporation in 1977 where the formation of 1-hexene was observed during 

the chromium catalysed polymerisation of ethylene.45 Since this initial discovery, where only 

1.1% 1-hexene was reported, technology has developed significantly with overall selectivity 

of 1-hexene of more than 99% reported, along with huge improvements in catalyst
• • • 19activities.

9



Chapter 1 Introduction Ethylene Oligomerisation

A major contribution toward this progress in selective ethylene trimerisation was the 

discovery that chromium-pyrrolide compounds were catalytically active towards ethylene 

oligomerisation producing 1-hexene with greater than 90% selectivities.46 Catalyst systems 

were prepared by combining chromium(III)-2-ethylhexanoate, 2,5-dimethylpyrrole, 

diethylaluminium chloride and triethylaluminium. This so called ‘Phillips system’ has since 

been commercialised and remains the only industrial process for selective oligomerisation in 

operation. Following this development, many companies filed patents based on slight 

modifications of the Phillips system,47'51 and investigations into different ligand systems 

began.

A number of different catalyst systems purporting to show selectivity toward 

trimerisation have been developed (figure 1.7), including those containing maleimide,52 

boratabenzenyl,53 aryloxide ligands54 and substituted cyclopentadienyl ligands.39,55 But 

perhaps the most interesting results come from the use of chromium based catalyst systems 

containing multidentate heteroatomic ligands. First developed by Amoco Corporation, 

tridentate phosphine ligands of the type shown in figure 1.7 were found to be active ethylene 

trimerisation catalysts when activated by a co-catalyst,56 and it was proposed that the 

1-hexene produced required no further purification, which is a significant advantage.

lBu

- t o
.Cr 

Cl I Cl 
ClPhPh

R'I
■N

R' R'I I
NL ^N.

RoP PRo R2P ^  v  PR? R S v  v  S R

— p>. i
I Cl

Cl \ ^ - 0  o

Figure 1.7 Some complexes and ligands reported to show catalytic activity.
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Chapter 1 Introduction Ethylene Oligomerisation

BP developed chromium-based trimerisation catalysts with diphosphazane ligands 

containing an ort/zo-methoxy group (figure 1.7), where the high activity was attributed to the
en  to

presence of the ortho-methoxy groups acting as pendant donors. ’

Further studies by Sasol on the ort/zo-subsituted catalyst systems showed that the high 

selectivities previously attributed to the coordination of pendant methoxy groups, were in fact 

due to steric demand rather than pendant coordination. This was concluded after replacement 

of the methoxy substituents with ethyl groups resulted in very active and selective catalysts 

toward ethylene trimerisation.59

Complexes containing mixed phosphorus and nitrogen donor atoms are very active 

and selective trimerisation catalysts, and it has been reported that the inclusion of sterically 

less demanding R groups, such as ethyl rather than phenyl groups results in much higher
-x- 60,61activities. ’

1.2.2 Mechanistic Considerations

The original report by Manyik and co-workers in 1977, suggested that a 

metallacyclic mechanism was responsible for the formation of 1-hexene, rather than the 

linear chain growth mechanism described in scheme 1.3. This was based on the observation 

that the rate of 1-hexene formation was dependent on the square of the ethylene pressure, 

suggesting a second order reaction with respect to ethylene.

The postulated metallacyclic mechanism was further expanded by Briggs63 in 1989, 

and describes the coordination of two ethylene molecules, followed by oxidative coupling to 

form a metallacyclopentane species, insertion of a third ethylene molecule yields a 

metallacycloheptane intermediate, which undergoes (3-elimination to release 1-hexene. The 

crucial aspect of this mechanism is the difference in relative stabilities of the 5- and 

7-membered ring intermediates with regard to elimination, which accounts for the high 

selectivity toward 1-C6 over other olefins64 (scheme 1.4). In 2004, Bercaw and co-workers 

carried out a series of experiments with deuterated ethylene which provided conclusive 

evidence for the metallacyclic mechanism.65,66

11
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H
n (n+2)+

Cr

Crn+

y/

O
Cr

63Scheme 1.4 Ethylene trimerisation mechanism proposed by Briggs.

The metallacyclic mechanism (scheme 1.4) involves a change in the formal oxidation 

state of chromium (Crn+ to Cr(n+2)+) during the addition of the two ethylene molecules and 

during reductive elimination (Cr(n+2)+ to Crn+). This is generally accepted to be the case, but 

the nature of the active species remains unknown, and with different redox pairs proposed in 

the literature, including Cr(I)-Cr(III),62'65'67 Cr(II)-Cr(IV)68'69 and Cr(III)-Cr(V),70 this 

remains an area of ongoing research.

1.2.3 Selective Ethylene Tetramerisation

Sasol Technology recently reported the first catalyst capable of selective ethylene
1 1

tetramerisation, i.e. the selective production of 1-octene (l-Cs). This is particularly exciting, 

as 1-octene is also in high demand commercially as discussed in 1.1. The in situ catalyst 

system, based on a PNP ligand, and source of chromium(III), produces 1-octene in up to 70% 

selectivity.

Given the mechanism described for trimerisation catalysis, ethylene tetramerisation, 

was initially thought to be highly unlikely, as it would involve insertion of a fourth ethylene

12



Chapter 1 Introduction Ethylene Oligomerisation

molecule. The resulting metallacyclononane intermediate (scheme 1.5) was previously 

thought to be extremely unfavoured.71,72 Both trimerisation and tetramerisation mechanisms
'7'3 7A

are thought to share a common metallacycloheptane intermediate, ’ ' but in the case of 

tetramerisation, instead of elimination at this stage, a further ethylene molecule is inserted, 

forming a nine-membered metallacycle from which 1-octene is reductively eliminated. The 

main difference between the two mechanisms being that an enhanced stability of the seven- 

membered intermediate limits 1 -hexene elimination, allowing ring growth. This difference is 

thought to be attributed to subtle steric and electronic effects of the ligand, and a fine balance 

is required between the relative stability of the intermediates to favour 1-hexene or 1-octene 

selectivity.64 The tetramerisation mechanism has been supported by deuterium labelling
73studies carried out by Sasol Technology.

2

1 -o c te n e  x  .
n+

n+
(n+2)+

/ N / V ”
1-h ex en e

(n+2)+'

Scheme 1.5 Extended tetramerisation mechanism involving a metallacyclononane intermediate.

A series of PNP type ligand systems have been studied,77 and it has been reported that 

steric bulk on the nitrogen was the predominant factor responsible for the high selectivity in 

tetramerisation catalysis. It was also found that selectivity, when using ortho-dXkyl 

substituents on the phosphorous aryl groups of the diphosphinoamine ligands could be 

switched from trimerisation toward tetramerisation catalysis by increasing the number of 

ortho-alkyl substituents from 0-4.59

13



Chapter 1 Introduction Ethylene Oligomerisation

Studies into the oxidation state of the catalytic species carried out by Rucklidge and 

co-workers provided evidence for a Cr(I)-Cr(III) redox couple in the ethylene tetramerisation
no

mechanism. Studies into tetramerisation are relatively recent, and further studies will 

undoubtedly follow.

Interestingly, extended metallacyclic mechanisms have been recently reported by both
70 80 81Gibson ’ and McGuinness, resulting in a distribution o f higher olefins. Gibson and 

co-workers demonstrated that a metallacyclic mechanism was responsible for the Schultz 

Flory distribution of a-olefins produced, using deuterium labelling studies. Large ring 

metallacyclic intermediates are reported possible when the energy barrier to further insertion 

and metallacyclic growth is comparable or lower than the barrier for product elimination.81

While the majority of reported catalysts are based on chromium, some other early 

transition metal ethylene oligomerisation catalysts have been reported,82'86 but generally 

show activities that are much lower than the more established chromium catalysts.87 These 

are described further in section 5.1.
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1.3 EPR Spectroscopy

Electron paramagnetic resonance (EPR) is a spectroscopic technique capable of 

detecting species containing unpaired electrons, such as radicals and other paramagnetic 

compounds. Important structural and electronic information can be gained from the 

technique, and it is therefore widely used across the scientific disciplines.

Characterisation of catalytic systems generally involves the use o f magnetic resonance 

techniques, and in the case of the systems we are interested in (i.e. chromium complexes), the 

commonly used NMR spectroscopic methods are rendered much less effective due to 

broadening effects caused by the presence of a paramagnetic metal. EPR spectroscopy allows 

information about the electronic and structural environment of the complex to be collected, 

making the investigation of such systems feasible. Similar to NMR, EPR techniques can be 

used to study the catalyst systems under a variety of conditions, including variable 

temperatures, variable pressures, in solution, etc. Analysis of the spectra provides information 

not only on the oxidation states of the complex, but also a structural description of the 

complex in solution.

In most molecules electrons are paired, with opposite spins, as required by the Pauli 

exclusion principle and EPR experiments cannot be performed on them, as they are EPR
oo t f

silent. Molecules containing one or more unpaired electrons, including transition metal ions 

which contain unpaired d-electrons are particularly suited for EPR studies, and this 

introduction includes a brief overview of the theory and applications of EPR spectroscopy in 

transition metal complexes.

A detailed account of the physics behind EPR can be found in one of the numerous 

textbooks on the subject that go into more detail on the practicalities of the technique, and 

also give a detailed account from different areas of chemistry.89'93 The experiments discussed 

in this thesis have all been performed using continuous wave EPR (cw-EPR) spectroscopy at 

X-band frequency (-9.5 GHz), and the theory discussed in this brief introduction will focus 

only on this methodology.
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1.3.1 Basic Principles

As a negatively charged particle spinning on its axis, an electron will produce a 

magnetic moment, ps, which is co-linear and anti-parallel to its spin angular momentum 

(or ‘spin’) S:

Ms =  -geMBS

The energy of interaction between the magnetic moment and an external magnetic 

field is given by:

E = -jusB

therefore E  = ge ps S B

The magnetic moments align along the direction of the field and assume one of two 

orientations, since S can only take one of two values in a given direction, designated by the 

spin angular momentum quantum number, Ms = ± Vi. In the absence of an external magnetic 

field, these states are degenerate. However, in the presence of a field the states split in energy, 

the high energy position, where the magnetic dipole is orientated anti-parallel to the magnetic 

field, and the low energy, more stable orientation where the dipole is aligned parallel to the 

external magnetic field. The resulting energy levels are called Zeeman energy levels 

(figure 1.8), and are separated by the Zeeman splitting:

AE = (± Vs) ge P b  B

(where ge= free electron g value = 2.0023, B = applied field (or magnetic flux density, 

in units of Telsa (T) or Gauss (G)), ps = Bohr magneton (jib = em/47rmc, where e = electron 

charge, m = electron mass, c = speed of light) = 9.27 x 10‘24 J T '1)

The Zeeman splitting (energy difference between the spin states) is directly 

proportional to the magnitude of the applied magnetic field (B) (figure 1.8), and a transition 

between the two Zeeman levels can be induced by the absorption of a photon of the correct 

frequency, u, given by:

E = hv

(where h = Planck’s constant and v = frequency of electromagnetic radiation)
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Under the influence of an external magnetic field, and at thermal equilibrium, the spin 

population is split between the two energy levels according to the Maxwell-Boltzman 

distribution law:

J ±  = e-(ge»BBAT)
”2

(where, k = Boltzmann constant (1.381 x 10'23 J K '1), T = absolute temperature (K), 

ni, n2 = spin population characterised by the Ms values of + Vi and -  Vi respectively.)

Energy

AE =

B = 0 Applied M agnetic Field B

Absorption 

1st Derivative

Figure 1.8 The electronic Zeeman effect.

(energy level diagram for a system with 1 unpaired electron (S = Vi) and no interacting nuclei)

The transition of an electron from the lower to upper Zeeman level is the basis of the 

EPR technique. The position of a transition is reported in terms of its g-value, the 

proportionality constant described in the Zeeman splitting equation, and can be calculated 

from the combination and re-arrangement of the previous two equations:

g  = h v  /  hb B

The resonance signal is represented by the energy absorption necessary to promote 

electrons from lower to upper energy levels. The overall net absorption results from the fact 

that there are more spins in the lower levels than in the upper.

17
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While electrons are promoted to the higher energy level by absorption of a photon of 

the correct frequency, those in the higher energy state return to the lower level by efficient 

dissipation of the quantum of energy (ho). The dissipation process from the excited electron 

to the ground state is known as relaxation, and is measured in terms of relaxation time.

To maintain a population excess, electrons in the upper level must be able to return to 

their low energy state. Therefore they must be able to transfer their excess spin energy either 

to other species or to the surrounding lattice as thermal energy. The time taken for the spin 

system to lose 1/e of its excess energy is called the relaxation time, and there are two types of 

dissipation mechanisms;

“Spin-Lattice” relaxation: This process is due to the magnetic energy being dissipated 

within the lattice as vibrational, rotational, or translational energy. Characterised by an 

exponential decay of energy as a function of time (Tie).

“Spin-Spin” relaxation: The excess energy is exchanged between the spins without 

transfer of energy to the lattice, which is characterised by a time constant (T2e). This mode of 

relaxation is important when the concentration of the paramagnetic species is high (spins are 

close together). If the relaxation time is too fast, then the electrons will only remain in the 

upper state for a very short period of time and give rise to a broadening o f the spectral line 

width as a consequence of Heisenberg’s uncertainty principle.

Greater sensitivity can be achieved by working at a high resonant frequency (hv) or by 

working at low temperature, since, in the Maxwell Boltzmann expression, T  is then lower, 

which increases the difference between ri2 and ni so that a larger net absorption occurs.

1.3.2 Real Systems

The discussion thus far has considered the case of the free electron. Electrons in 

atoms and molecules however are subject to a variety of magnetic interactions which can split 

the simple Zeeman levels described in figure 1.9.

In any real system, the electron will interact with any associated spin-active nuclei, 

i.e. where the nuclear spin > Vi. An interaction called the nuclear hyperfine interaction (A) 

takes place, giving origin to splitting of the lines in the spectra, resulting in hyperfine 

structure, which is very useful in EPR spectroscopy.

Two types of electron spin/nuclear spin interactions occur; an isotropic interaction 

(Aq) and an anisotropic interaction (Bo).
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The isotropic interaction occurs when the electron is located in a spherical s orbital. 

The spherical nature of the s orbital results in an interaction which is independent of the 

orientation of the orbital in which the electron is situated and isotropic hyperfine couplings 

(aiSo) are observed.

The anisotropic interaction (Bo) occurs when the electron is situated in directional 

orbitals such as p, d, and f-orbitals, and the electron is therefore unable to approach the 

nucleus very closely due to the node of the orbital, and therefore the field it experiences from 

the nucleus appears to arise from a point magnetic dipole. The interaction is referred to as a 

dipole-dipole interaction, which is anisotropic, i.e. the magnitude and sign of the interaction 

is dependent on the orientation of the electrons with respect to the applied magnetic field and 

to the separation between the two dipoles.

In a system which is highly symmetrical, or where rapid tumbling of the paramagnetic 

species averages the molecular anisotropies, only the isotropic term is observed.

In most real systems, the isotropic and anisotropic interactions mix due to hybrid 

orbitals, and therefore the hyperfine interaction contains contributions from both components.

M i =  - 1 / 2a

Ms = + 1/2

M i =  +  1 / 2

EPR 2

EPR 1

M s  =  - 1 / 2

M i  =  +  1 / 2

Electronic
Zeeman
Splitting

Nuclear
Zeeman
Splitting

Hyperfine
Splitting

Figure 1.9 Energy level diagram for the interaction of a proton (I =1A )  with an unpaired electron

(S = Vi) in an applied magnetic field.
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The profile of the spectrum (figure 1.10), is dependent on the symmetry of the system. 

An isotropic profile is observed for systems that have perfect cubic symmetry, such as 

octahedral or tetrahedral symmetry. The g tensor is characterised by a single line where 

gxx = gyy =  gzz- It is also observed in low viscosity solutions, where the observed g value (gjS0) 

is the result of averaging of the three components by rapid tumbling.

A molecule displays axial symmetry if  two of the principle g values are equal. The 

unique value is referred to as gn ( g j  and is referred to as “g parallel” (because it is parallel 

to the direction of the magnetic field) whilst the other value g± (gxx = gyy) is referred to as “g 

perpendicular”.

A system displaying orthorhombic symmetry has three distinct g values, i.e. gi ^  g2 ^ 

g3. The resulting spectral lines (figure 1.10) can be further split by hyperfine interactions with 

spin active nuclei as described above.

The paramagnetic species described in this thesis are studied in frozen solution, so all 

orientations of the molecule with respect to the field are observed in the spectrum.

Absorption profileSymmetry First derivative

►iso

Isotropic

Axial

c— gyy ^ g:

Orthorhombic

Sxx ^  Syy ^  Szz

g3

Figure 1.10 Observed spectra for different symmetries.
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1.3.3 Transition Metal Complexes

A great deal of information may be obtained about the co-ordination features of 

transition metal complexes with EPR spectroscopy. The nature of the central ion, type of 

bonding with the ligands, co-ordination and symmetry of the surroundings, relaxation 

mechanism and the type of the motion of the paramagnetic species can also be inferred from 

the EPR spectra. In particular, the g tensor values are characteristic of a given metal complex 

in a given surrounding (i.e. crystal field symmetry and strength, type of bonding with ligands 

etc.)

Naturally occurring chromium consists of four isotopes; 90.5% 50Cr, 52Cr and 54Cr 

with 1 = 0, and 9.5% Cr with I = 12 . The observed spectrum o f a chromium sample is 

therefore a superposition of the spectra arising from each isotope. The relative intensity of the 

lines is approximately proportional to the relative isotopic abundance, and inversely 

proportional to 21+1. For chromium, for every main spectral line arising from electron 

association with 1=0 Cr, four satellite lines are generated, arising from the interaction
S3between the electron and the C nucleus. However, in practise, due to the low intensity, these 

hyperfine interactions can rarely be observed.

EPR data has been reported for chromium complexes in the literature, focussing on 

Cr(III)94,95 and Cr(V)96 compounds, and to a much lesser extent on low spin Cr(I).97

Whilst EPR offers valuable insights into the electronic properties of the Cr 

complexes, ENDOR (Electron Nuclear DOuble Resonance) provides further complimentary 

information on the structure of the paramagnetic complex. ENDOR is a sophisticated 

technique which allows further details about the complex to be gained via analysis of the 

hyperfine coupling tensor from remote ligand nuclei.89,98

The work reported in this thesis was carried out as part of a synthetic project, where 

EPR spectroscopy has been used as a method for the characterisation of complexes, rather 

than in-depth theoretical analysis. However, where relevant to the synthetic work; 

understanding structure and aspects of reactivity, results obtained using these techniques will 

be discussed as appropriate. More detailed EPR and ENDOR discussions relating to the work 

presented in this thesis are reported elsewhere.99
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Chapter Two 
Functionalised N-Heterocyclic Carbenes and 

Silver(I) Complexes

2.1 Introduction

Functionalised N-heterocyclic carbenes represent an important ligand set in 

organometallic chemistry. The presence of additional functional groups can complement the 

strong carbene donor, resulting in very interesting metal complexes with potential to be 

useful catalytic systems.

A series of imidazolium salts have been prepared as interesting proligands for our 

work focussing on chromium complexes. Donor-functionalised systems specifically have 

been included in order to impart extra stability to the more sensitive oxidation states of 

chromium.

In this chapter we discuss the synthesis, structure and uses of a series o f novel NHCs 

and their silver complexes. Silver(I)-NHC complexes have been fully characterised and are 

reported to demonstrate the potential use of these ligands in other areas, such as late transition 

metal chemistry.

2.1.1 Silver(I) NHC Complexes

The vast majority of reported silver(I)-NHC complexes are prepared via the 

convenient method developed by Lin and co-workers1 involving the use of Ag20 as a base 

(scheme 2.1). The first silver(I)-NHC complex however, was reported by Arduengo2 in 1993 

and involved the addition of a preformed free carbene to a silver salt, a much more intricate 

process that requires careful exclusion of moisture and air.

The reaction of imidazolium salts with silver oxide as shown in scheme 2.1a, is a 

route to NHC complexes with advantageous reaction conditions, i.e. carried out in air, with 

no need to pre-dry solvents. Following the publication by Lin in 1998, many complexes of 

this type were reported, including those that could not be obtained using the conventional
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method of preparing metal-NHC complexes (Arduengo’s method). For example, the presence 

of additional acidic protons in some imidazolium salts can result in deprotonation at these 

sites instead of/as well as at the C2 position. More recently, silver carbonate and silver 

acetate4 have been used as bases in the same way to prepare these NHC complexes.

A g20

CH2CI2

B r -A g -B r  
Et ! Et 
/  ! \  

N ■ N

)>-m :
N
\
Et

N
/

Et

KOlBu
N N N+

S c h e m e  2 .1  Different routes to Ag(I)-NHC complexes.

The product shown in scheme 2.1b is shown as an ionic compound, however reports 

have since shown that silver(I) complexes can take on various ionic and neutral structures in 

the solid state as depicted in figure 2.1. The structure of silver(I)-NHC complexes has been 

extensively studied, and many different structural conformations have been observed. These 

differences in solid state structure have been attributed to various factors, including steric 

effects of the NHC ligand involved, presence of halide or non-halide counterion and the 

reaction conditions (solvent and temperature) used. Figure 2.1 shows some of the most 

common structures observed.5
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This variation in structure is partially due to the ability of Ag(I) to coordinate to either 

one or two NHC moieties, to form complex anions of the type [AgX2] (X=halogen) and to 

engage in Ag(I)...Ag(I) interactions in the solid state, such as in Type 4 (figure 2.1).

X
[NHC— Ag—NHC] [AgX2] N H C -A g -X  NHC— A g^ \ g — NHC

x '

Type 1 Type 2 Type 3

X = halide or non-halide
X X

(NHC)2Ag— Ag^ \ g — Ag(NHC)2 
\  /  \

X X

Type 4

Figure 2.1 Common structures of Ag(I)-NHC complexes.

Generally, the absence of halide ions result in compounds o f Type 1 with a quasi- 

linear geometry.1,6'10 The presence of halide ions seems to result in complexes with Type 1 

and Type 2 structures, although it has been reported that the presence of iodide is more likely 

to produce ionic Type 1 complexes, due to the higher polarisability of iodide than chloride or 

bromide ions.1 Iodide salts are thought to prefer to form ion-pair complexes rather than 

neutral species.11 Fluxional behaviour5 between ionic and neutral complexes has been 

commonly observed for these compounds as shown in scheme 2.2, and can lead to ambiguity 

in structural characterisation.

The presence of additional functional groups on the NHC ligand has been shown to 

have little or no effect on the structure, as they typically remain uncoordinated.3,7,8,12'15 

Silver(I) has little affinity for additional nucleophilic functional groups when ligated by two 

NHC ligands,3,8,12,15'18 and this lack of interaction confirms the compatibility of the Ag20  

route to complexes of functionalised NHC ligands.

The silver-carbene bond is generally very labile in these complexes, demonstrated by 

the common lack o f 13C-107/109Ag couplings observed in the 13C NMR spectra. This explains 

the application of silver(I)-NHC complexes as carbene transfer reagents.
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E t '  Y  Et Br 

Ag Ag

Et^ A  ,E t  Br 
N ^ N

N

Ag Ag-Br 
\  /

.N s -^ N -p , 
Et ^  EtT

Ag
I
Br

Scheme 2.2 Fluxional behaviour in solution.

First demonstrated by Lin and co-workers to prepare palladium and gold complexes1 

(scheme 2.3), transmetallation is now widely used for the preparation of late transition metal 

complexes, most commonly Pd(II), Au(I) and Rh(I)-NHCs.5 The ambient reaction conditions 

are often preferable to those required when forming the free carbene, providing a simple 

route to complexes widely studied in homogeneous catalysis. Until recently, the sole reason 

for preparing silver(I)-NHC complexes was for transmetallation reactions.

2 Au(SMe2)CI

\  /

Pd(MeCN)2CI2

Scheme 2.3 First transmetallation reactions to form gold and palladium complexes.
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The antimicrobial properties of silver compounds have been recognized and exploited
1 7for hundreds of years. Recently, the pharmaceutical application of silver(I)-NHC complexes 

has been reported,9*1’18 describing the antimicrobial activity of these compounds.

One of the main benefits associated with silver(I)-NHC compounds is the ability to 

prepare a wide range of imidazolium salts of biologically relevant molecules, and this has 

been carried out with carbene derivatives of caffeine.19 The application requires the slow 

release of silver ions, and therefore the strength of the silver-carbene bond is important. 

Imidazolium salts can be modified quite easily in order to change the stability of the resulting 

silver complex, and also to ensure that decomposition products are non toxic.

2.1.2 Functionalised N-Heterocyclic Carbenes

The first donor functionalised N-heterocyclic carbenes were described by Herrmann20 

et. al. in 1996, just five years after the first free carbene was isolated by Arduengo, and have 

since become an important feature in organometallic chemistry.21

f = \
R - NX / N

NR,

t = \
r - n ^ n

N
y  Ph

Ph

f = \
r -N  N

t = \
r ^ N ^ N .

PPh,

\  J  
N
/

N /= = \
R ^ M - n / M ^

Figure 2.2 Selection of donor functionalised NHCs.
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The presence of hemilabile donor functional groups in addition to the strongly binding 

carbene, results in complexes with added stability which is particularly important for
91 99intermediates in catalytic reactions. ’ Many novel and varied mono- and di-functionalised

19  91  9 9  9ANHC ligands have been reported with C, N, O, S and P donor atoms ’ ’ a selection of 

which are shown in figure 2.2.

Facile synthetic methods can account for the vast number of reported NHCs; 

nucleophilic attack of 1-alkylimidazole on an alkyl halide to produce an N-fimctionalised 

carbene precursor (imidazolium salt) is the usual method employed (scheme 2.4). This allows 

the ‘fine-tuning’ of ligand systems both electronically and sterically by simple modification 

of ‘R’ groups.

Scheme 2.4 General synthetic mechanism.
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2.2 Results and Discussion

2.2.1 Synthesis of Functionalised Imidazolium Salts

Our interest in functionalised N-heterocyclic carbenes as ligands for chromium 

complexes led to the preparation of imidazolium salts containing carbonyl, imine and 

methoxy functional groups and are displayed in figure 2.3, where previously known 

compounds25 are labelled (*). These heteroditopic carbene precursors have the potential to act 

as hemilabile donor ligands with the ability to stabilise a variety o f metal complexes, making 

them very interesting from the point of view of homogeneous catalysis. The presence of the 

geminal dimethyl group in compounds 1-8 is essential. In related compounds with one or 

more hydrogens on the carbon alpha to the nitrogen, attempts to prepare the free carbene can
9 cresult in deprotonation of the methylene linker rather than at the C2 position. This has been

97reported for several imidazolium salts containing acidic methylene groups.

R = Me 1*
'Pr 2 
*Bu 3
C((CH3)2)COPh 4  
Mes 5 
Dipp 6

R -N '

R  = Me T  
‘Pr 8

;\
N

= previously reported

Figure 2.3 Imidazolium salts 1-9.

Synthesis of imidazolium salts 1-4 was carried out in a step-wise procedure as shown 

in scheme 2.5. It was found that isolation and purification of the literature reported 

substituted imidazole A was essential before the second substituent could be added. In the 

case of the symmetrical salt 4, a one-pot-synthesis reaction with imidazole and 2 equivalents
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of 2-bromoisobutyrophenone was attempted, but even after 10 days, only the mono­

substituted species imidazole A was isolated. The addition of the second substituent 

(Scheme 2.5b) took between 3 and 7 days to produce the salt in reasonable yields (~50%) 

understandably, the methyl and isopropyl salts were formed faster. It should also be noted 

that the methyl substituted salt 1 has an iodide counterion, for no other reason than methyl 

iodide was readily available.

f = \
N ^ N H Br Ph

O

f = \
EtOH N ^ N —

3 d ays n—

A O
Imidazole A

Ph

/ = \  
N ^ N ~v +

/y Ph 
O

R -X
T H F /M eC N  

3 - 7 d ays  

A

R - N ^ h —<r-'
Ph

4 6  - 54  % 

1 -4

Scheme 2.5 Step-wise synthesis of imidazolium salts 1-4.

The tertiary butyl substituted salt 3 was produced only in very poor yields even after 

extended periods of reflux, due to the obvious steric requirements of the bulky tertiary butyl 

bromide. Preparation of 1-tertiary butyl-imidazole (imidazole B) followed by addition of 2- 

bromoisobutyrophenone as shown in scheme 2.6, resulted in a significantly better yield in a 

more modest timeframe.

Imidazole B

Scheme 2.6 Improved synthesis to imidazolium salt 3.
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Single-crystal X-ray diffraction data were collected for new salts 2, 3, 4 and 9 and 

their ORTEP plots are shown in figures 2.4, 2.5, 2.6 and 2.8. Selected bond lengths and 

angles are shown in tables 2.1-2.4. Bond lengths and angles are in the range expected for this 

type of salt. The internal bond lengths and angles of the imidazolium rings are unexceptional 

and lie within the range expected.

As shown in figure 2.4, the isopropyl substituted bromide salt 2 is orientated with the 

phenyl ring out of the plane of the imidazolium ring, and the carbonyl functionality pointed 

away from the C2-proton, suggesting no hydrogen bonding occurs. Comparison of this
9Sstructure with reported data for the precursor imidazole A shows significant narrowing of 

the N-C-N angle in the salt, 109.0(3) ° compared to 113.66(13) °.

>(]C8
Br1

C9
ST-

C1
01 C10

N2 v
C4 /"%C5s=r^i wC12 N1

C11

C3

C6

C16

Figure 2.4 ORTEP plot at 50% probability of the molecular structure of 2.
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Bond length (A) Bond angle (°)

C(l)-N(l) 1.320(5) N(l)-C(l)-N(2) 109.0(3)

C(l)-N(2) 1.330(5) C(l)-N(l)-C(2) 108.6(3)

C(2)-C(3) 1.337(6) C(l)-N(2)-C(3) 107.9(3)

C(2)-N(l) 1.386(5) N(l)-C(2)-C(3) 106.7(4)

C(3)-N(2) 1.380(5) N(2)-C(3)-C(2) 107.8(4)

N(l)-C(4) 1.476(5) C(l)-N(l)-C(4) 124.7(3)

N(2)-C(7) 1.478(5) C(l)-N(2)-C(7) 126.8(3)

C(10)-O(l) 1.222(5) C(7)-C(10)-C(l 1) 122.9(4)

N(2)-C(7)-C(10) 110.6(4)

Table 2.1 Selected bond lengths (A) and angles (°) for 2.

Compound 3, containing the more sterically hindered tertiary butyl group is shown in 

figure 2.5. We see the same orientation with respect to the phenyl ring and the carbonyl 

functional group as in salt 2. The alkyl group is positioned at a slightly larger angle with 

respect to the ring than the isopropyl group in 2, and we see that the N-alkyl bond of the 

tertiary butyl group is slightly longer than that of the isopropyl group in compound 2 

(2 N(l)-C(4) = 1.476(5) A; 3 N(2)-C(4) = 1.501(4) A).

0 9

Br1

01
C1C11

N1

C13 N2

14
C5C2

C16

Figure 2.5 ORTEP plot at 50% probability of the molecular structure of 3.
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Bond length (A) Bond angle (°)

C(l)-N(l) 1.338(4) N(l)-C(l)-N(2) 108.5(3)

C(l)-N(2) 1.328(4) C(l)-N(l)-C(3) 108.5(2)

C(2)-C(3) 1.354(4) C(l)-N(2)-C(2) 108.9(2)

C(2)-N(2) 1.387(4) N(l)-C(3)-C(2) 107.5(3)

C(3)-N(l) 1.377(4) N(2)-C(2)-C(3) 106.6(3)

N(2)-C(4) 1.501(4) C(l)-N(2)-C(4) 126.5(3)

N(l)-C(8) 1.485(4) C(l)-N(l)-C(8) 126.5(3)

C (ll)-0(1) 1.224(4) C(8)-C(l 1)-C(12) 123.5(3)

N(l)-C(8)-C(l 1) 110.5(3)

Table 2.2 Selected bond lengths (A) and angles (°) for 3.

Salt 4, while found to be symmetrical in solution (NMR spectroscopy) the structure 

shown in figure 2.6 and data provided in table 2.3 shows that it is not symmetrical in the solid 

state.

02

M2 fed C18 
C16

C7 01 Br1

Figure 2.6 ORTEP plot at 50% probability of the molecular structure of 4.
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We clearly see each carbonyl group pointing in different directions, and the phenyl 

rings are closer to the plane of the imidazolium salt than seen in 2 and 3. We see a difference 

of 3.2° in the angles of each N-substituent relative to the ring, confirming the unsymmetrical 

nature of 4 in the solid state. One of the carbonyls is close to the correct position for potential 

coordination and the differences in solid state and solution structures suggest that rotation is 

not sterically hindered by the geminal dimethyl group.

Bond length (A) Bond angle (°)

C(l)-N(l) 1.344(5) N(l)-C(l)-N(2) 108.6(4)

C(l)-N(2) 1.334(5) C(l)-N(l)-C(2) 108.2(4)

C(2)-C(3) 1.342(6) C(l)-N(2)-C(3) 108.1(4)

C(2)-N(l) 1.383(5) N(l)-C(2)-C(3) 107.1(4)

C(3)-N(2) 1.379(5) N(2)-C(3)-C(2) 108.0(4)

N(2)-C(14) 1.488(5) C(l)-N(l)-C(4) 123.8(3)

N(l)-C(4) 1.483(5) C(l)-N(2)-C(14) 127.0(3)

C(7)-0(l) 1.211(5) C(4)-C(7)-C(8) 120.5(4)

C(17)-0(2) 1.215(5) C( 14)-C( 17)-C( 18) 121.3(4)

N(l)-C(4)-C(7) 107.8(4)

N(2)-C(14)-C(17) 106.2(4)

Table 2.3 Selected bond lengths (A) and angles (°) for 4.

Preparation of aryl substituted salts 5 and 6 was carried out in the same way as for 3. 

It is known that nucleophilic attack on such aromatic systems is very difficult,29 so aryl- 

imidazole compounds C and D (figure 2.7) were prepared according to literature
■5 A

procedures. These compounds are notoriously difficult to prepare in decent yields, with 

many ‘improved’ syntheses reported.31 The product imidazolium salts were then obtained as 

white solids in poor yield (~20%) even after extended periods of reflux in different solvents.
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f = \

Ar = Mes Imidazole C 
Dipp Imidazole D

Figure 2.7 Aryl imidazoles C and D.

Preparation of 7 and 8 was carried out using a modified literature procedure 

(scheme 2.7) using imidazole A as the starting point to form the ketimine functionalised 

imidazole E, where a longer reaction time than the quoted 3 hours at 80 °C was found to be 

necessary. Addition of methyl iodide or isopropyl bromide, followed by a 3 day reflux in 

dichloromethane resulted in salts 7 and 8. When the reflux was performed in THF, no imine 

was observed, and the carbonyl salts 1 and 2 were recovered. This was attributed to the 

presence of water in the solvent. No evidence of isomerism was observed in the *H NMR 

spectra for these compounds as might be expected, there is a possibility of two isomers (E 

and Z), but it is believed that only one isomer is formed (E) due to the sterics involved in the 

system.32 Attempts to form salts 7 and 8 in a more direct method from 

carbonyl-functionalised imidazolium salts 1 and 2 were unsuccessful.

Imidazole A

T oluene

M e3AI 
80  °C 24  h

r = \
N ^ N

Imidazole E

/ = \
N ^ N ~Vph

Ph

R -X
DCM

3 d ays  
A

R -N N
Ph

58-65% Ph
R = Me 7 

iPr 8

Scheme 2.7 Synthesis of imidazolium salts 7 and 8.
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The triflate salt of compound 7 along with the corresponding tungsten complex has 

been reported previously. It has been included in our work as an interesting system for our 

early transition metal chemistry since only tungsten and no other reported complexes have 

been prepared, we therefore also report the silver(I) complex. It should be noted that a 

selection of transition metal complexes containing imine-functionalised NHCs have been 

disclosed in the patent literature, although these do not contain the steric bulk of the 

geminal dimethyl group present in 7 and 8.

Preparation of compound 9 was carried out as shown in scheme 2.8. Bromination of 

4-methylanisole using NBS is a standard literature procedure,34 this is followed by reaction 

with imidazole in the presence of potassium carbonate and a catalytic amount of palladium35 

allowing the substituted imidazole F to be prepared. Formation of the bromide salt was 

achieved using 2-bromopropane as described for compound 2. Crystals suitable for analysis 

by single crystal X-ray methods were obtained by slow diffusion of diethyl ether into a 

dichloromethane solution of 9, and the structure is shown in figure 2.8. Selected bond lengths 

and angles are shown in table 2.4.

OMe

N
Br

A ceton e

HCI

OMe

Br

OMe

f = \
N ^ N H

Pd(O Ac)2 cat

K2C 0 3

A

^  r  , 
N^ N̂ y  /)

MeO 

Imidazole F

THF \
Br ---------------- ► > -----N x i /N

3 d a y s /  N /
A

59%

9

Scheme 2.8 Synthesis of imidazolium salt 9.
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All internal bond lengths and angles lie within reported ranges for five-membered 

imidazolium salts.36 However, as shown in figure 2.8, we see two molecules in the 

asymmetric unit, with the phenyl ring and methoxy functional group at different positions 

relative to the imidazolium ring. This suggests no hydrogen bonding is taking place between 

the oxygen and the acidic C2-proton, and also demonstrates the free rotation expected.

C 2 8 C 1 3 C 1 4

C 1 2

N2
B r 2 > C 2

' C 1 5N 3

N1Br1
01

C18 C 1 1C 2 3 02
C 5

C 2 5 C 9
C 1 9

C 2 2C 2 4
C 2 0

C 8 0 6

C 2 1 C 1 0
C 7

Figure 2.8 ORTEP plot at 50% probability of the molecular structure of 9.

Bond length (A) Bond angle (°)

C(l)-N(l) 1.339(4) N(l)-C(l)-N(2) 108.5(3)

C(l)-N(2) 1.329(4) C(l)-N(l)-C(2) 108.3(2)

C(2)-C(3) 1.346(4) C(l)-N(2)-C(3) 108.8(2)

C(4)-N(l) 1.444(4) N(2)-C(3)-C(2) 107.2(3)

C(12)-N(2) 1.489(4) N(l)-C(2)-C(3) 107.2(3)

N(2)-C(3) 1.384(4) N(l)-C(4)-C(5) 119.9(3)

N(l)-C(2) 1.389(4) C(l)-N(2)-C(12) 124.9(3)

C(l)-N(l)-C(4) 124.2(2)

Table 2.4 Selected average bond lengths (A) and angles (°) for 9.
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Imidazolium salts 1-9 were characterised by ]H and 13C NMR spectroscopy and mass 

spectrometry and are reported in the experimental section. Simple spectra consistent with the 

proposed structures were observed in all cases, with characteristic low-field resonances 

corresponding to the C2 proton (9-10ppm). The proposed structures were corroborated by 

X-ray data in the cases of 2, 3, 4 and 9.

2.2.2 Preparation of Free Carbenes

Free carbenes 10-18 were prepared by treatment of imidazolium salts 1-9 with

potassium hexamethyldisilylamide [KN(SiMe3)2] in either THF or benzene. Addition of the

base to a suspension of the salt at low temperature resulted in an immediate colour change to

orange-yellow from colourless, accompanied by complete solubilisation of the partially

soluble salt. All free carbenes were found to be relatively stable as solids at low temperature,

but decomposed fairly quickly in solution at room temperature. For this reason, future work

requiring isolation of the free carbene was carried out in-situ.

Reactions were initially carried out on NMR scale in deuterated benzene to identify

the product and confirm deprotonation of the salt. The ]H NMR spectra o f the resulting free

carbenes lacked the resonance for the C2 proton at around 9-10 ppm confirming
12deprotonation of the salt. The C NMR spectra confirmed the presence of the free carbene as 

a large downfield shift of around 80 ppm is observed for the C2 carbon, which is a relatively 

weak resonance in the 13C spectra of the free carbene.

2.2.3 Silver(I) Carbene Complexes

Reaction of imidazolium salts 1-9 (figure 2.3) with a small excess of silver oxide in 

dichloromethane results in formation of the silver(I) complex after stirring at room 

temperature for 16 hours (Scheme 2.9). Reasonable yields were obtained (~70%), comparable 

to those reported for functionalised as well as non-functionalised silver-carbene complexes.8 

The products are stable toward air and moisture, however, decomposition is observed when 

the complexes are left in solution for a prolonged period (e.g. days), particularly when 

exposed to light.
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The reaction mixture, a black suspension, is left to stir and gradually the dark colour 

of the Ag2<3 disappears as the silver is incorporated into the NHC complex. The resulting 

mixture is filtered, and the solvent removed to leave a beige solid, usually a sticky, foamy 

substance that is washed with diethyl ether, followed by recrystallisation from a mixture of 

dichloromethane/diethyl ether. Silver(I)-NHC complexes 19-27 are isolated as white 

microcrystalline solids. Crystals suitable for X-ray were grown by slow diffusion of diethyl 

ether into a chloroform solution of 21. The addition of molecular sieves to the reaction 

mixture has been reported to facilitate the formation of silver-carbene complexes, however 

for those complexes reported here, it was found to be unnecessary, having no effect on 

reaction time or yield. The fact that the presence of the water by-product has no effect on the 

reaction confirms a concerted mechanism as described by Lin.5

2 R - N ^ N - R '  + Ag20

58-73%

1 - 9 1 9 - 2 7

Imidazolium

salt
R R’ X Y

Silver(l)

complex

1 Me C((CH3)2)COPh I NHC 1 19

2 ipr C((CH3)2)COPh Br Br 20

3 'Bu C((CH3)2)COPh Br Br 21

4 C((CH3)2)COPh C((CH3)2)COPh Br Br 22

5 Mes C((CH3)2)COPh Br Br 23

6 Dipp C((CH3)2)COPh Br Br 24

7 Me C((CH3)2)CN(Ph)Ph I NHC 7 25

8 ipr C((CH3)2)CN(Ph)Ph Br Br 26

9 ipr 2-methoxy-5-

methylphenyl

Br Br 27

Scheme 2.9 Synthesis of Silver(I) NHC compounds 19-27.

DCM
16 h

f = \
R - N ^ N - R '

Ag
I

Y
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Characterisation of products was carried out by JH and 13C NMR spectroscopy as well 

as mass spectrometry (provided in the experimental section). The main feature of the !H 

NMR spectra is the absence of a resonance for the C2 proton; usually a distinct singlet around 

9 ppm in the imidazolium salt. This immediately indicates that the proton has been 

abstracted, as described for free carbenes, and slight shifts downfield relative to the free 

carbene are observed for the C4  and C5 protons in the azolium ring as a result of coordination 

taking place.
1 3The signal corresponding to the C2 carbon in the C NMR spectra shifts significantly 

upon removal of the proton (as discussed in 2.2.2). Generally in silver complexes, a 

coordination shift of 30-40 ppm upfield is expected relative to the free carbene. A splitting of 

the signal is also expected as the two main isotopes of silver (107Ag and 109Ag) are NMR 

active with I = Vi, so two doublets are sometimes observed, while the absence of this

resonance is attributed to the lability of the carbene ligand.
  11
The C NMR spectra for complexes 19-27 are as otherwise as expected, but we see 

no C2 resonance. This absence is not uncommon and has been attributed by Lin and
1 37co-workers ’ to fluxional behaviour in solution, who report that other structures are likely to 

be generated in solution due to fluxional changes between the ionic and neutral complexes,1’5 

i.e. interconversion between the mono- and the bis-carbene, as described in 2 .1.1.

2.2.4 Structural Characterisation of Silver(I) Complex 21

As discussed in 2.1.1, silver(I) NHC complexes can adopt a variety of structures 

(figure 2.1). The NMR data described is not sufficient to determine the structure of 

compounds 19-27. High resolution mass spectrometry, in coordination with X-ray 

crystallography has been used in order to elucidate the molecular structures.

Crystals suitable for X-ray diffraction were grown for compound 21, and the ORTEP 

plot is shown in figure 2.9, confirming a neutral compound of Type 2 (NHC-Ag-Br). Selected 

bond lengths and angles are shown in table 2.5.

The complex has a quasi-linear geometry, with an angle at the metal centre of 174.6 °. 

The carbon-silver bond, at 2.098(5) A, is in agreement with the reported average for five- 

membered carbene complexes (2.077(8) A),38 and the silver-bromide bond is 2.427 A which 

is also perfectly in-keeping with the average of 2.46 A.38
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On comparison with salt 3, it can be seen that the NCN angle is much narrower upon 

coordination, while the other internal angles of the imidazole ring increase slightly. This 

reduced angle of 104.9(4) ° is in the range expected for five-membered NHC complexes of 

silver. It is also worth pointing out that the carbonyl group points away from the silver atom, 

confirming the predicted lack of functional group interaction in these complexes, as seen in 

many other reported complexes of this type.

Br1

C1001

Ag1

C11
f>CQ

C13 C12, C9
N2 N1

C1 P 6 t-JC4
C7C17

y £
C1C15 C3

Figure 2.9 ORTEP plot at 50% probability of the molecular structure of 21.
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Bond length (A) Bond angle (°)

C(5)-Ag(l) 2.098(5) N(l)-C(5)-N(2) 104.9(4)

Ag(l)-Br(l) 2.427(7) C(5)-N(2)-C(7) 110.5(4)

N(2)-C(5) 1.363(6) N(2)-C(7)-C(6) 106.5(4)

C(5)-N(l) 1.355(6) C(5)-N(l)-C(6) 110.3(4)

C(7)-C(6) 1.340(7) N(l)-C(6)-C(7) 107.7(4)

N(2)-C(7) 1.387(6) C(5)-N(l)-C(4) 124.6(4)

N(l)-C(6) 1.380(6) C(5)-N(2)-C(8) 123.5(4)

N(l)-C(4) 1.503(6) N(2)-C(8)-C(l 1) 110.4(4)

N(2)-C(8) 1.482(6) C(5)-Ag(l)-Br(l) 174.6(13)

C (ll)-0(1) 1.202(6)

Table 2.5 Selected bond lengths (A) and angles (°) for 21.

Mass spectrometry data for the silver(I)-NHC complexes provides more information 

on the structures of compounds 19-27. CH3CN is used as a carrier solvent, and with the 

exception of compounds 19 and 25, the [NHC-Ag-CHsCN]+ fragment is observed. It is 

common for acetonitrile to displace ligands during analysis, and these results suggest that the 

halide has been displaced, so these compounds are o f Type 2, [NHC-Ag-X]. This is 

supported by the X-ray structure shown in figure 2.9. For compounds 19 and 25 however, we 

see the fragment corresponding to [NHC-Ag-NHC]+ suggesting cationic Type 1 structures. 

Since all compounds were prepared using the same method, i.e. same temperature, solvent 

and timescale, the different structures observed (figure 2 .10) must be a consequence of either 

steric effects of the ligand, or more likely as a result of the different halide present.
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R = Vr 20 
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C((CH3)2)COPh 22 

Mes 23  

Dipp 24

Ph

\
Ph

26

Br

27

Figure 2.10 Structures of complexes 19-27 as determined by 

mass spectrometry and X-ray crystallography.

Compound 19 contains a less bulky ligand than the isopropyl and tertiary butyl 

analogues, and could be reasonably assumed that this reduces the steric interactions enough 

to allow another NHC to comfortably coordinate to the same metal centre. However, while 

compound 25 also contains a ligand with one small methyl group, the other half of the ligand 

is significantly more bulky. This leads to the conclusion that the presence of a different halide 

in these compounds is responsible for the observed structural differences, and in fact, iodide 

imidazolium salts have been shown to form ion pair complexes, rather than form the neutral 

species.11 As described in 2.2.1, imidazolium salts 10 and 16 were prepared using methyl 

iodide, resulting in an iodide counterion whereas all other salts contain bromide counterions.
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2.2.5 Transmetallation

As discussed, one of the main uses of silver(I)-carbene complexes is for 

transmetallation, where they act as a carbene transfer agent when reacted with late transition 

metals.1 This is a well established and convenient method for the preparation of transition 

metal-carbene complexes of Au(I), Pd(II), Rh, Ir, Cu, Ru, Ni(II), and Pt(II).5

The focus of this thesis is early transition metals and as relatively electropositive 

metals, they are less able to compete with the silver cation for the softer carbene. As a result, 

transmetallation is generally restricted to late transition metal complexes of the type 

mentioned. Therefore, the silver(I)-NHC complexes described in this chapter were prepared 

simply to illustrate a new set of functionalised carbene complexes and gain more 

understanding about their reactivity, and coordination. One palladium complex has been 

prepared, to illustrate the transmetallation reaction with these new functionalised carbene 

systems.

+  Pd(MeCN)2CI2 PhDCM

O C l-P d-C I O16 h

Ph

\ = J

6 5 %

20 28

Scheme 2.10 Transmetallation reaction to form palladium(II) complex 28.

Silver complex 20 and trans-bis(acetonitrile) dichloropalladium (II) were heated in 

dichloromethane for 16 hours, after which the dark mixture was filtered to remove silver 

bromide, and the solvent removed. After washing with ethanol and recrystallisation from 

dichloromethane/ethanol a yellow solid was obtained (scheme 2.10). The palladium complex 

28 was isolated and identified by !H and 13C NMR and mass spectrometry. NMR spectra 

were as expected, and mass spectrometry showed the fragments corresponding to [NHC-Pd]+ 

as well as [NHC-Pd-(MeCN)2]+ • Chloride displacement by acetonitrile (the solvent carrier) is 

commonly observed and the presence of only one NHC suggests possible coordination of the
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ketone functional group. Unfortunately, crystals suitable for X-ray analysis were not obtained 

so the absolute structure cannot be confirmed. However, the yield obtained suggests that two 

NHCs are coordinated, and comparison with examples of similar compounds reported 

suggests that coordination of the carbonyl group is generally not observed in palladium 

complexes of this type.24

2.3 Conclusion

A series of new imidazolium salts have been prepared and fully characterised. Free 

carbenes have also been isolated, allowing us to gain valuable information about these 

sensitive compounds. The free carbenes were found to be quite unstable in solution, but 

stable as solids at low temperatures for extended periods.

A series of new silver(I) complexes are also reported, along with structural 

information obtained from X-ray crystallographic data for one complex. This data has been 

used in collaboration with mass spectrometry and NMR spectroscopy in order to determine 

the likely structures of the other silver(I) complexes described.

An example of a palladium(II) complex prepared by transmetallation has been 

described to illustrate the potential use of these versatile N-heterocyclic carbene ligands in 

other metal complexes.
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2.4 Experimental Section

General Remarks. All manipulations were performed in air, unless otherwise stated. 

Solvents THF and hexane were freshly distilled from sodium/potassium alloy, 

dichloromethane was distilled from calcium hydride, and all other solvents were used as 

purchased. Deuterated solvents for NMR measurements were distilled prior to use from the 

appropriate drying agents. Air sensitive compounds were stored and weighed in a nitrogen 

atmosphere MBraun UNILAB glovebox with less than 0.1 ppm water and O2. Compound 7 

and imidazoles A-F were prepared according to literature methods, or modifications of 

literature methods.25,30,34,35, 39 All reagents were used as received. !H and 13C {!H} NMR 

spectra were obtained on Bruker Avance AMX 400 and 500 or Jeol Eclipse 300 

spectrometers. The chemical shifts 8 are given as dimensionless values and are referenced 

relative to TMS, and coupling constants J  are given in Hz. Mass spectra (MS) and high- 

resolution mass spectra (HRMS) were obtained in positive electrospray (ES) mode unless 

otherwise reported, on a Waters Q-TOF micromass spectrometer.

l-Methyl-3-(2-isobutyrophenone)imidazol-2-ium iodide (1)

Methyl iodide (1.05 ml, 0.0168 mol) and imidazole A (3.0 g, 0.014 mol) were combined in a 

Schlenk tube with THF (50 ml) and heated to reflux for 3 days. After cooling to room 

temperature, the mixture was filtered and the precipitate washed with one portion of THF 

(20 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Yield: 2.35 g 

(47%). 'H NMR (d6 DMSO, 400 MHz, 298 K): S (ppm) 9.46 (1H, s, NCffN), 7.84 (2H, d, 

NCHCHN, VHH = 7.52 Hz), 7.69 (2H, d, ortho-CH, VHH = 7.55 Hz), 7.64 (1H, m, para-CH), 

7.49 (2H, t, meta-CH, 3J HH = 7.71 Hz) , 3.90 (3H, s, N-Ci/3), 2.01 (6H, s, NC(C//3)2). 13C 

{‘H} NMR (d6DMSO, 101 MHz, 298 K): S (ppm) 197.9 (C=0), 134.92 (NCN), 133.6 (ipso- 

Q , 131.6 (para-CH), 128.8 (ortho-CH), 128.2 (meta-CH), 118.4, 116.7 (NCCN), 65.4 

(NC(CH3)2), 48.9 (NCH(CH3)2), 27.9 (NC(CH3)2). IR (CH2C12): v = 1685 (s) (CO) cm'1. 

HRMS (ES) (MeCN): found 229.1370 (Ci4HnN20 + requires 229.1361 dev: 3.9 ppm).
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1-Isopropyl-3-(2-isobutyrophenone)imidazol-2-ium bromide (2)

2-bromopropane (1.06 ml, 0.0112 mol) and imidazole A (2.0 g, 0.0093 mol) were combined 

in a Schlenk tube with THF (30 ml) and heated to reflux for 4 days. After cooling to room 

temperature, the mixture was filtered and the precipitate washed with one portion of THF 

(10 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Crystals 

suitable for X-ray crystallography were grown by slow diffusion of diethyl ether into a 

dichloromethane solution. Yield: 1.45 g, (46%). 'H NMR (d6 DMSO, 400 MHz, 298 K): 8 

(ppm) 9.24 (1H, s, NCHN), 7.73 (2H, d, NC/7C//N, V HH = 7.31 Hz), 7.38 (3H, m, meta- and 

para-CH), 7.23 (2H, m, ortho-CH), 4.42, (1H, sept, NC//(CH3)2, Vhh = 6.72 Hz), 1.79 (6H, 

s, NC(C/73)2), 1.23 (6H, d, NCH(C/73)2, 3J Hh  = 6.66 Hz). I3C {*H} NMR (d6 DMSO, 

101 MHz, 298 K): 8 (ppm) 198.6 (C=0), 134.8 (NCN), 134.4 (ipso-C), 132.9 (para-CH),

128.7 (ortho-CH), 128.0 (meta-CH), 121.9, 120.7 (NCCN), 69.2 (NC(CH3)2), 52.7 

(NCH(CH3)2), 25.5 (NC(CH3)2), 22.3 (NCH(CH3)2). IR (CH2C12): v =  1688 (s) (CO) cm'1. 

HRMS (ES) (MeCN): found 257.1650 (Ci6H2iN20 + requires 257.1654 dev: -1.6 ppm).

Tert-butyl-3-(2-isobutyrophenone)imidazol-2-ium bromide (3)

2-bromoisobutyrophenone (1.16 ml, 6.87 mmol) and imidazole B (0.71 g, 5.73 mmol) were 

combined in a Schlenk tube with THF (30 ml) and heated to reflux for 5 days. After cooling 

to room temperature, the mixture was filtered and the precipitate washed with one portion of 

THF (10 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Crystals 

suitable for X-ray crystallography were grown from slow diffusion of pentane into a 

chloroform solution. Yield: 1.18 mg, (58%). *H NMR (d6DMSO, 400 MHz, 298 K): 6 (ppm) 

9.27 (1H, s, NCf/N), 8.07 (2H, d, ’NCHCHN, 3J Hh = 8.31 Hz), 7.62 (3H, m, meta- and para- 

CH), 7.46 (2H, m, ortho-CH), 2.05 (6H, s, NC(C//3)2), 1.58 (9H, s, NC(Ci/3)3). 13C {‘H} 

NMR (d6DMSO, 400 MHz, 298 K): 8 (ppm) 198.7 (C=0), 134.5 (NCN), 134.1, 132.8, 

128.6, 128.0 (C6H5), 121.9, 120.5 (NCCN), 69.5 (NC(CH3)2), 60.1 (NC(CH3)3), 29.0 

(NC(CH3)3), 25.3 (NC(CH3)2). IR (CH2C12): v=  1687 (s) (CO) cm '1. HRMS (ES) (MeCN): 

found 271.1802 (Ci2H23N20 + requires 271.1810 dev: -3.0 ppm).
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l,3-Di-(2-isobutyrophenone)imidazol-2-ium bromide (4)

2-bromoisobutyrophenone (2.83 ml, 0.017 mol) and imidazole A (3.0 g, 0.014 mol) were 

combined in a Schlenk tube with acetonitrile (101 ml) and heated to reflux for 7 days. After 

cooling to room temperature, the solvent was removed in vacuo, and the residue washed with 

THF (3 x 20 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised 

from dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Crystals 

suitable for X-ray crystallography were grown by slow diffusion of diethyl ether into a 

dichloromethane solution. Yield: 3.36 g (54%). 'H  NMR (d6 DMSO, 400 MHz, 298 K): 5 

(ppm) 9.62 (1H, s, NC//N), 8.10 (2H, s, HCHCHN), 7.81 (4H, m, ortho-CH), 7.75 (2H, m, 

para-CH), 7.60 (4H, m, meta-CH) 2.15 (12H, s, NC(Ctf3)2). 13C {‘H} NMR (d6DMSO, 400 

MHz, 298 K): 5 (ppm) 197.7 (C=0), 135.7 (NCN), 134.3, 133.0, 128.7, 128.7 (C6H5), 122.1 

(NCCN), 69.7 (NC(CH3)2), 25.7 (NC(CH3)2). IR (CH2C12): v=  1687 (s) (CO) cm'1. HRMS 

(ES) (MeCN): found 361.1898 (C23H23N20 2+ requires 361.1916 dev: -5.0 ppm).

1-MesityI-3-(2-isobutyrophenone)imidazol-2-ium bromide (5)

2-bromoisobutyrophenone (0.54 ml, 3.23 mmol) and imidazole C (500mg, 2.69 mmol) were 

combined in a Schlenk tube with THF (25 ml) and heated to reflux for 7 days. After cooling 

to room temperature, the mixture was filtered and the precipitate washed with one portion of 

THF (10 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Yield: 

265 mg, (24%). ‘H NMR (d6 DMSO, 400 MHz, 298 K): 5 (ppm) 9.73 (1H, s, NC77N), 8.15 

(2H, m, NC//C//N), 7.72 (2H, m, meta-CH), 7.64 (1H, m, para-CH), 7.47 (2H, m, ortho- 

CH), 7.16 (2H, s, Mes-CH), 2.34 (3H, s, para-CH]), 2.12 (6H, s, ortfo-CHj), 1.89 (6H, s, 

NC(CH3)2). I3C {‘H} NMR (d6 DMSO, 400 MHz, 298 K): 5 (ppm) 198.2 (s, C=0), 137.2 

(NCN), 140.4, 134.3, 134.2, 133.1, 131.1, 129.2, 128.8, 128.2 (C6H5, C6H2), 124.3, 122.5 

(NCCN), 69.9 (NC(CH3)2), 25.6 (NC(CH3)2), 20.6 (para-CH}), 16.8 (ortho-CH]). HRMS 

(ES) (MeCN): found 333.2037 (C22H25N20 + requires 333.2043 dev: -1.8 ppm).

1-(DiisopropyIphenyl)-3-(2-isobutyrophenone)imidazol-2-ium bromide (6)

2-bromoisobutyrophenone (0.44 ml, 2.63 mmol) and imidazole D (500 mg, 2.19 mmol) were 

combined in a Schlenk tube with THF (25 ml) and heated to reflux for 7 days. After cooling 

to room temperature, the mixture was filtered and the precipitate washed with one portion of
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THF (10 ml), diethyl ether ( 2 x 1 0  ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Yield: 

220 mg (22%). 'H NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 9.13 (1H, s, NCHN), 7.96 

(2H, d, NCHCHN, VHH = 7.39 Hz), 7.56 (2H, m, meta-CH), 7.41 (1H, m , para-CH), 7.32 

(2H, m, ortho-CH), 7.27 (1H, m, Mes-CH), 7.19 (2H, m, Mes-CH), 2.13 (2H, sept, 

CH(CH3)2, Vhh = 6.73 Hz), 1.86 (6H, d, CH(CH3)2, VHH = 6.76 Hz), 1.72 (6H, d, CH(CH3)2, 

VHH = 6.74 Hz), 1.63 (6H, s, NC(CH3)2). 13C {‘H} NMR (d6 DMSO, 101 MHz, 298 K): 8 

(ppm) 194.2 (0=0), 143.2 (NCN), 137.5, 135.8, 134.1, 132.3, 131.9, 129.8, 129.1, 128.0 

(C6H5, C6H3), 124.8, 123.1 (s, NCHCHN), 68.3 (s, NC(CH3)2), 31.2 (s, CH(CH3)2), 25.1 (s, 

NC(CH3)2), 23.7 (s, CH(CH3)2). HRMS (ES) (MeCN): found 375.1252 (C25H31N20 + requires 

375.1257 dev: -1.3 ppm).

1-Isopropyl-3-(phenylpropylidenebenzenamine)imidazol-2-ium bromide (8)

2-bromopropane (0.4 ml, 4.15 mmol) and imidazole E (1.0 g, 3.46 mmol) were combined in 

a Schlenk tube with dichloromethane (20 ml) and heated to reflux for 3 days. After cooling to 

room temperature, the solvent was removed, and the residue washed with diethyl ether 

(2x10ml) and dried in vacuo. The salt was recrystallised from dichloromethane/diethyl ether 

to give the product as a hygroscopic yellow solid. Yield: 0.83 g (58%). !H NMR (d6 DMSO, 

400 MHz, 298 K): 8 (ppm) 9.31 (1H, s, NCtfN), 7.12-6.39 (12H, m, C ^ s ,  NCHCHN), 4.51, 

(1H, sept, NCH(CH3)2, Vhh = 6.70 Hz), 1.84 (6H, d, NCH(CH3)2, VHH= 6.69 Hz), 1.51 (6H, 

s, NC(CH3)2). 13C {‘H} NMR (d6DMSO, 101 MHz, 298 K): 8 (ppm) 171.8 (s, C=N), 149.5,

138.5, 133.8, 129.7, 128.9, 127.9, 124.0, 120.4 (C6H5), 119.9, 118.9 (NCHCHN), 68.7 (s, 

NC(CH3)2), 52.3 (s, NCH(CH3)2), 27.6 NCH(CH3)2), 27.1 (s, NC(CH3)2). HRMS (ES) 

(MeCN): found 332.2149 (C22H2$N3+ requires 332.2156 dev: -2.1 ppm).

1-Isopropyl-3-(2-methoxy-5-methyIphenyl)imidazole-2ium bromide (9)

2-bromopropane (0.6 ml, 6.38 mmol) and imidazole F (1.0 g, 5.32 mmol) were combined in a 

Schlenk tube with THF (20 ml) and heated to reflux for 5 days. After cooling to room 

temperature, the mixture was filtered and the precipitate washed with one portion of THF 

(10 ml), diethyl ether (2 x 10 ml) and dried in vacuo. The salt was recrystallised from 

dichloromethane/diethyl ether to give the product as a hygroscopic white solid. Yield: 0.97 g 

(59%). 'H NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 9.59 (1H, s, NCHN), 8.10 (2H, m, 

NCHCHN), 7.48 (1H, s, ortho-CH), 7.41 (1H, d, meta-CH, 3J Hh = 8.49 Hz), 7.27 (1H, d,
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para-CH, VHH= 8-51 Hz), 4.72 (1H, sept, NC7/(CH3)2 1/Hh = 6.62 Hz), 3.85 (3H, s, O-CHj), 

2.33 (3H, s, meta-CH}), 1.54 (6H, d, CH(C//3)2, VHH= 6.66 Hz). ,3C {‘H} NMR (d6DMSO, 

101 MHz, 298 K): 8 (ppm) 151.3 (C-OMe), 136.9 (NCN), 132.4, 132.0, 126.6, 119.2, 113.0 

(C6H3), 123.7, 123.4 (NCCN), 57.2 (0-CH3), 56.7 (NCH(CH3)2), 23.3 (meta-CCH}), 20.4 

(CH(CH3)2). IR (CH2C12): v =  1026 (s) (COC) c m 1; HRMS (ES) (MeCN): found 231.1506 

(Ci4Hj9N20 +requires 231.1512 dev: -2.6 ppm).

General procedure for the formation of free carbenes. All manipulations for the 

preparation of the free carbenes were performed using standard Schlenk techniques under an 

atmosphere of argon. To a suspension of imidazolium salt (1.0 mmol) in THF (10 ml) at - 

10°C, KN(SiMe3)2 (1.2 mmol) was added and the mixture stirred for 30 min. All volatiles 

were then removed in vacuo, the residue extracted with THF ( 2 x 1 0  ml) and the solvent 

removed to leave the product as a solid.

l-Methyl-3-(2-isobutyrophenone)imidazol-2-ylidene (10)

Yield: 166 mg (73%). 'H NMR (THF, 500 MHz, 298 K): S (ppm) 7.65 (2H, d, NCHCHN, 

Vhh = 7.54 Hz), 7.43 (1H, m, para-CH), 7.26 (2H, m, meta-CH), 6.95 (2H, m, ortho-CH), 

3.84 (3H, s, N-Ctf3), 1.86 (6H, s, NC(Ctf3)2). 13C {‘H} NMR (THF, 125 MHz, 298 K): 8 

(ppm) 213.8 (NCN), 197.0 (C=0), 134.6 (ipso-C), 130.4 (para-CH), 128.3 (ortho-CH), 126.6 

(meta-CH), 119.2, 115.8 (NCCN), 36.2 (N-CH3), 26.3 (C(CH3)2), 13.7 (C(CH3)2).

l-Isopropyl-3-(2-isobutyrophenone)imidazol-2-ylidene (11)

Yield: 200 mg (78%). !H NMR (THF, 500 MHz, 298 K): 8 (ppm) 7.64 (2H, d, NCHCHN, 

Vhh = 7.29 Hz), 7.43 (3H, m, meta- and para-CH), 7.28 (2H, m, ortho-CH), 4.54 (1H, sept, 

N-Ctf(CH3)2, Vhh = 6.72 Hz), 1.92 (6H, s, N-C(CH3)2), 1.48 (6H, d, N-CH(Cf73)2, 

3Jhh = 6.73 Hz). 13C {‘H} NMR (THF, 125 MHz, 298 K): 8 (ppm) 210.9 (NCN), 196.5 

(C=0), 133.9 (ipso-C), 129.7 (para-CH), 127.5 (ortho-CH), 125.8 (meta-CH), 115.8, 114.6 

(NCHCHN), 63.5 (NC(CH3)2), 50.2 (NCH(CH3)2), 25.5 (NC(CH3)2), 12.8 (NCH(CH3)2).

1-Tertiarybutyl-3-(2-isobutyrophenone)imidazol-2-ylidene (12)

Yield: 185 mg (67%). ‘H NMR (THF, 500 MHz, 298 K): 8 (ppm) 7.71 (2H, d, NCHCHN, 

37hh = 8.24 Hz), 7.37 (3H, m, meta- and para-CH), 7.16 (2H, m, ortho-CH), 1.96 (6H, s, 

NC(C£f3)2), 1.88 (9H, s, NC(C//3)3). 13C {‘H} NMR (THF, 125 MHz, 298 K): 8 (ppm) 211.7
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(s, NCN), 196.5 (C O ), 134.1, 129.3, 127.3, 125.6 (C6H5), 114.3, 114.2 (NCCN), 53.8 

(NC(CH3)2), 48.8 (NC(CH3)3), 25.3 (NC(CH3)3), 12.8 (NC(CH3)2).

l,3-Di-(2-isobutyrophenone)imidazol-2-ylidene (13)

Yield: 276 mg (76%). ‘H NMR (THF, 400 MHz, 298 K): 8 (ppm) 7.73 (2H, s, 'NCHCHN), 

7.63 (10H, m, CsHj), 1.69 (12H, s, C(Ctf3)2). I3C {‘H} NMR (d6DMSO, 101 MHz, 298 K): 8 

(ppm) 213.1 (NCN), 195.5 (C O ), 132.3, 131.2, 128.4, 128.0 (C6H5), 117.6 (NCCN), 66.2 

(NC(CH3)2), 19.9 (NC(CH3)2).

l-Mesityl-3-(2-isobutyrophenone)imidazoI-2-ylidene (14)

Yield: 218 mg (66%). 'H NMR (THF, 400 MHz, 298 K): 8 (ppm) 8.09 (2H, m, NCHCHN),

7.66 (1H, m, para-CH), 7.65 (2H, m, meta-CH), 7.32 (2H, m, ortho-CH), 7.08 (2H, s, 

Mesityl-C/7), 2.31 (3H, s, para-CRi), 2.10 (6H, s, ortho-CH.^), 1.73 (6H, s, NC(C//3)2). 

I3C {'H} NMR (THF, 101 MHz, 298 K): 8 (ppm) 212.6 (NCN), 196.5 (C O ), 138.2, 132.2,

132.0, 131.5, 129.2, 128.8, 128.0, 127.4 (C6H5, C6H2), 118.7, 115.3 (NCCN), 67.3 

(NC(CH3)2), 23.8 (NC(CH3)2), 18.3 (para-CH,), 14.8 (ortho-CH,).

l-(Diisopropylphenyl)-3-(2-isobutyrophenone)imidazol-2-ylidene (15)

Yield: 235 mg (63%). *H NMR (THF, 400 MHz, 298 K): 8 (ppm) 7.81 (2H, d, NCHCHN, 

Vhh = 7.28 Hz), 7.42-6.91 (8H, m, C6H5, C6H3), 2.01 (2H, sept, CH(CH,)2 V Hh = 6.70 Hz), 

1.59 (6H, d, CH(CH,)2, Vhh = 6.72 Hz), 1.42 (6H, d, CH(C7/3)2, 37Hh = 6.69 Hz), 1.31 (6H, 

s, NC(CJT3)2). 13C {‘H} NMR (THF, 101 MHz, 298 K): 8 (ppm) 215.2 (NCN), 192.9 (C O ),

135.0, 134.4, 133.5, 131.4, 130.1, 128.70, 128.2, 127.4 (C6H5, C6H3), 119.6, 117.5 

(NCHCHN), 65.3 (s, NC(CH3)2), 27.6 (s, CH(CH3)2), 24.3 (s, NC(CH3)2), 19.2 (s, 

CH(CH3)2).

l-Isopropyl-3-(phenylpropylidenebenzenamine)imidazol-2-ylidene (17)

Yield: 215 mg (65%). 'H NMR (THF, 400 MHz, 298 K): 8 (ppm) 7.03-6.31 (12H, m, Cff l 5, 

NCHCHN), 4.12 (1H, sept, NCtf(CH3)2 VHh = 6.71 Hz), 1.62 (6H, d, NCH(Cff3)2, 

37h h = 6.71 Hz), 1.38 (6H, s, NC(CH,)2). 13C f'H} NMR (THF, 101 MHz, 298 K): 8 (ppm)

215.1 (NCN), 173.4 (C=N), 147.6, 136.6, 131.7, 128.3, 127.8, 126.9, 123.1, 121.7 (C6H5),
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117.8, 117.1 (NCHCHN), 67.8 (s, NC(CH3)2), 50.8 (s, NCH(CH3)2), 25.2 NCH(CH3)2), 25.1 

(s, NC(CH3)2).

l-Isopropyl-3-(2-methoxy-5-methylphenyl)imidazole-2-ylidene (18)

Yield: 167 mg (73%). 'H NMR (THF, 500 MHz, 298 K): 8 (ppm) 7.89 (2H, d, NCHCHN, 

37hh = 7.42 Hz), 7.45 (1H, s, ortho-CH), 7.31 (2H, m, meta- and para-CH), 4.65 (1H, sept, 

NC//(CH3)2 Vhh = 6.74 Hz), 3.79 (3H, s, O-CH3), 2.18 (3H, s, meta-CHi), 1.69 (6H, d, 

CH(C/73)2, Vhh= 6.79 Hz). 13C {‘H} NMR (THF, 125 MHz, 298 K): 8 (ppm) 212.8 (NCN),

150.2 (C-OMe), 133.1, 131.7, 128.4, 123.2, 122.0 (C6H3), 120.8, 119.5 (NCCN), 55.7 (s, O- 

CH3), 52.3 (s, NCH(CH3)2), 21.3 (s, meta-CCH}), 15.9 (s, CH(CH3)2).

General procedure for the formation of silver(I) complexes. Dichloromethane (20 ml) was

added to a round bottom flask containing Ag20  (1 mmol) and the imidazolium salt 

(1.5 mmol). The mixture was stirred for 16 hours, followed by filtration (through celite) and 

removal of the solvent. The residue was washed, diethyl ether ( 2 x 1 0  ml), recrystallised from 

a dichloromethane/diethyl ether mixture and dried in vacuo.

[Ag(NHC)2] (NHC=l-Methyl-3-(2-isobutyrophenone)imidazol-2-ylidene) (19)

Yield: 390 mg (69%). 'H NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 7.94 (4H, d, 

NCHCHN, I/hh = 7.48 Hz), 7.67 (2H, m, para-CH), 1.42-1.28 (8H, m, ortho- and meta-CH), 

3.75 (6H, s, N-CH3), 1.89 (12H, s, NC(CH3)2). 13C {‘H} NMR (d6DMSO, 101 MHz, 298 K): 

8 (ppm) 197.9 (C=0), 133.0, 129.2, 128.7, 126.8 (C6/ /5), 122.9, 119.7 (NCCN), 67.1 

(NC(CH3)2), 54.9 (N-CH3), 28.0 (NC(CH3)2). HRMS (ES) (MeCN): found 563.1212 

(C28H34N402Ag+ requires 563.1209 dev: 5.3 ppm).

[Ag(NHC)Br] (NHC=l-Isopropyl-3-(2-isobutyrophenone)imidazol-2-ylidene) (20)

Yield: 300 mg (67%). *H NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 8.15-7.41 (7H, m, 

CfJ-Is, NCHCHN), 4.41 (1H, sept, NC//(CH3)2, 3/ Hh = 6.71 Hz), 1.93 (6H, s, NC(CH3)2), 

1.36 (6H, d, NCH(C7/3)2, 1/Hh = 6.67 Hz). 13C {‘H} NMR (d6 DMSO, 101 MHz, 298 K): 8 

(ppm) 198.5 (C=0), 130.2, 128.6, 128.2, 120.2 (C6H5), 119.4, 118.3 (NCCN), 67.5 

(NC(CH3)2), 54.7 (NCH(CH3)2), 27.9 (NCH(CH3)2), 22.7 (NC(CH3)2). HRMS (ES) (MeCN): 

found 404.0872 (CigH24N3OAg+ requires 404.0870 dev: 4.95 ppm).
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[Ag(NHC)Br] (NHC=l-Tertiarybutyl-3-(2-isobutyrophenone)imidazol-2-ylidene) (21)

Yield: 325 mg (71%). 'H  NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 8.18-8.07 (7H, m, 

CnHs, NCHCHN), 2.00 (6H, s, NC(CH3)2), 1.64 (9H, s, NC(CH3)3). 13C {'H} NMR (d6 

DMSO, 101 MHz, 298 K): 8 (ppm) 198.9 (C=0), 134.9, 132.8, 128.9, 127.9 (C6H5), 119.4,

118.2 (NCCN), 69.4 (NC(CH3)2), 67.8 (NC(CH3)3), 28.2 (NC(CH3)3), 25.6 (NC(CH3)2). 

HRMS (ES) (MeCN): found 418.0825 (Ci9H26N3OAg+ requires 418.0823 dev: 4.78 ppm).

[Ag(NHC)Br] (NHC=l,3-Di-(2-isobutyrophenone)imidazol-2-ylidene) (22)

Yield: 360 mg (66%). ‘H NMR (d6 DMSO, 400 MHz, 298 K): 8 (ppm) 7.92 (2H, s, 

NCHCHN), 7.38 (10H, m, C6H5), 1.86 (12H, s, NC(CH3)2). 13C {'H} NMR (d6 DMSO, 

101 MHz, 298 K): 8 (ppm) 199.2 (C=0), 135.6, 132.2, 129.1, 128.4 (C6H5), 118.9 (NCCN),

64.9 (NC(CH3)2), 26.6 (NC(CH3)2). HRMS (ES) (MeCN): found 508.0621 (C25H28N30 2Ag+ 

requires 508.0624 dev: -5.9 ppm).

[Ag(NHC)Br] (NHC=l-Mesityl-3-(2-isobutyrophenone)imidazol-2-ylidene) (23)

Yield: 300 mg (58%). ‘H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 8.28 (2H, m, 

NCHCHN), 7.73-7.24 (7H, m, Q H 5, C6H2), 2.54 (3H, s, para-CH}), 2.15 (6H, s, ortho-CH,), 

1.94 (6H, s, NC(C773)2). 13C {'H} NMR (CD2C12, 101 MHz, 298 K): 8 (ppm) 198.0 (C=0), 

140.2,135.7, 133.1, 132.8, 130.9, 129.6, 129.3, 128.5 (C6H5, C6H2), 120.4,119.7 (s,NCCN),

69.1 (s, NC(CH3)2), 26.8 (s, NC(CH3)2), 21.4 (s, para-CH,), 19.4 (s, ortho-CH,). HRMS (ES) 

(MeCN): found 480.1279 (C24H28N3OAg+ requires 480.1281 dev: -4.2 ppm).

[Ag(NHC)Br] (NHC=l-(Diisopropylphenyl)-3-(2-isobutyrophenone)imidazol-2-ylidene)
(24)

Yield: 365 mg (65%). ‘H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 7.82 (2H, d, NCHCHN, 

Vhh = 7.31 Hz), 7.73-7.28 (8H, m, C6H5, C6H3), 2.35 (2H, sept, CH(CH,)2 VHn = 6.72 Hz),

1.67 (6H, d, CH(CH,)2, Vhh = 6.73 Hz), 1.50 (6H, d, CH(CH,)2, 3J Hh = 6.75 Hz), 1.42 (6H, 

s, NC(CH3)2). i3C {‘H} NMR (CD2C12, 101 MHz, 298 K): 8 (ppm) 195.4 (C=0), 138.3,

136.6, 134.2, 133.9, 132.1, 130.7, 129.6, 129.1 (C6H5, C6H3), 123.7, 122.1 (NCHCHN), 69.6 

(s, NC(CH3)2), 30.3 (s, CH(CH3)2), 27.7 (s, NC(CH3)2), 24.1 (s, CH(CH3)2). HRMS (ES) 

(MeCN): found 522.1760 (C27H34N3OAg+ requires 522.1758 dev: 3.8 ppm).
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[Ag(NHC>2] (NHC=l-Methyl-3-(phenylpropylidenebenzenamine)imidazol-2-ylidene) (25)

Yield: 520 mg (73%). ‘H NMR (CD2C12, 400 MHz, 298 K): 5 (ppm) 7.08-6.63 (24H, m, 

CJJ5, NCHCHN), 3.84 (6H, s, N-CHi), 1.95 (12H, s, NC(C//3)2). 13C {'H} NMR (CD2C12, 

101 MHz, 298 K): 8 (ppm) 176.2 (C=N), 152.6, 140.50, 139.8, 133.9, 132.4, 131.9, 131.6,

130.3 (C6H5), 121.9, 120.3 (NCHCHN), 67.6 (NC(CH3)2), 41.3 (N-CH3), 29.2 (NC(CH3)2). 

HRMS (ES) (MeCN): found 713.2489 (C44Hs2N6Ag+ requires 713.2522 dev: -4.6 ppm).

[Ag(NHC)Br]

(NHC=l-Isopropyl-3-(phenylpropylidenebenzenamine)imidazole-2-ylidene) (26)

Yield: 360 mg (68%). ’H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 7.56-6.93 (12H, m, 

CsHs, NCHCHN), 4.43 (1H, sept, NCT/(CH3)2 VHH = 6.72 Hz), 1.89 (6H, d, NCH(C//3)2, 

3Jh h =  6.69 Hz), 1.63 (6H, s, NC(C/73)2). 13C {‘h J  NMR (CD2C12, 101 MHz, 298 K): 8 

(ppm) 175.9 (O N ), 149.8, 138.2, 136.5, 133.9, 133.1, 131.7, 130.3, 128.8 (C6H5), 120.9,

120.1 (NCHCHN), 69.2 (s, NC(CH3)2), 53.6 (s, NCH(CH3)2), 29.5 NCH(CH3)2), 27.8 (s, 

NC(CH3)2). HRMS (ES) (MeCN): found 479.1342 (C24H29N4Ag+ requires 479.1343 dev: -2.1 

ppm).

[Ag(NHC)Br] (NHC=l-Isopropyl-3-(2-methoxy-5-methylphenyl)imidazole-2-ylidene) (27)

Yield: 270 mg (64%). ‘H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 7.92 (2H, d, NCHCHN, 

37hh = 7.40 Hz), 7.45 (1H, d, meta-CH, VHH = 8.31 Hz), 7.37 (1H, s, ortho-CH), 7.18 (1H, d, 

para-CH, Vhh = 8.23 Hz), 4.87 (1H, sept, NC77(CH3)2 37Hh = 6.71 Hz), 3.72 (3H, s, 0-CH}), 

2.26 (3H, s, CHi), 1.48 (6H, d, NCH(C//3)2, 3J Hh = 6.70 Hz). 13C {'H} NMR (CD2C12, 

101 MHz, 298 K): 8 (ppm) 151.8 (C-OMe), 131.1, 129.1, 128.9, 128.4, 124.1 (C6H3) 122.9,

122.7 (NCCN), 56.3 (0-CH3), 54.5 (NCH(CH3)2), 24.0 (CCH3), 20.4 (NCH(CH3)2). HRMS 

(ES) (MeCN): found 377.1621 (Ci6H22N3OAg+requires 377.1619 dev: 3.5 ppm)

[Pd(NHC)2Cl2] (NHC=l-Isopropyl-3-(2-isobutyrophenone)imidazol-2-ylidene) (28)

To a suspension of 20 (300 mg, 0.675 mmol) in dichloromethane (10 ml), a solution of 

Pd(MeCN)2Cl2 (90 mg, 0.337 mmol) in dichloromethane (10 ml) was added, and the mixture 

heated to reflux for 16 h. After cooling to room temperature, the mixture was filtered through 

celite and the solvent removed in vacuo. Recrystallisation from dichloromethane/hexane, 

followed by washing with ethanol afforded a yellow solid. Yield (150 mg, 65%). ]H NMR
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(CD2CI2, 500 MHz, 298 K): 8 (ppm) 7.83 (2H, d, NCtfCtfN, 3J HH = 7.23 Hz), 7.38-7.23 (5H, 

m, C6H5), 3.55 (1H, sept, NC//(CH3)2, Vhh = 6.63 Hz), 2.42 (6H, d, NCH(C//3)2, 

Vhh = 6.65 Hz), 1.48 (6H, s, NC(C//3)2). 13C {JH} NMR (d6 DMSO, 101 MHz, 298 K): 8 

(ppm) 153.7 (NCN), 194.9 (C=0), 133.1, 130.3, 128.8, 128.2 (C6H5), 120.7, 119.5 (NCCN),

68.9 (NC(CH3)2), 39.1 (NCH(CH3)2), 29.0 (NCH(CH3)2), 23.5 (NC(CH3)2). HRMS (ES) 

(MeCN): found 361.1764 (Ci6H2iN20Pd+ requires 361.1766 dev: -5.5 ppm) [L-Pd]+.
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Chapter Three 
Preparation and EPR Analysis of Cr(I) bis(phosphine) 

Complexes

3.1 Introduction

Complexes of chromium in oxidation state +1 are relatively rare due to the instability 

of the systems. However, interest in these types of complexes, particularly those containing 

bis(phosphine) ligands, has been sparked due to their postulated role in catalysis, specifically 

the selective oligomerisation of ethylene.

In this chapter the role of chromium(I) compounds in catalysis is discussed. The 

crucial use of EPR spectroscopy in analysing such paramagnetic systems is reported, and the 

preparation and EPR analysis of a series of new Cr(I) complexes will also be described.

The work described in this chapter was carried out in order to gain valuable 

experience in the synthesis, characterisation and EPR analysis of sensitive chromium® 

complexes. The ligands were provided by Sasol Technology, the sponsor of this work.

3.1.1 Role of Chromium(I) in the Ethylene Trimerisation Process

Given the interest in the selective oligomerisation of ethylene to produce 1-hexene 

and 1-octene, many catalyst systems1-4 have been developed and tested over recent years as 

discussed in chapter 1. Much of the catalytic testing is carried out under in situ conditions in 

the presence of a co-catalyst, usually MAO, and therefore the identity of the active species is 

somewhat unclear. A significant proportion of the work carried out in this area has focussed 

on modifying ligand design to obtain catalysts capable of high activities as well as 

selectivities.5
f\ 7 Q OChromium complexes with a variety of ligands, including SNS, ’ PNP, ONN, 

CNC10 and NNN11,12 donors have all been reported to show great potential in the selective 

trimerisation and/or tetramerisation of ethylene. A brief selection of these systems is shown 

in figure 3.1.
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Figure 3.1 Various ligands used in ethylene trimerisation and tetramerisation.

The majority of catalytic systems studied in the literature are based on chelating 

bis(phosphine) ligands of the type shown in figure 3.1. This is due to the many proven 

advantages13 of phosphine ligands in catalysis, such as the ease of preparation and the ability 

to ‘fine-tune’ the ligands in order to modify the properties and produce a wide range of 

catalytic systems fairly quickly. As shown in figure 3.1, there is a large scope for modifying 

these ligands. For example the inclusion of electron withdrawing or donating groups, the 

presence of one or two linking nitrogen atoms in the backbone, as well as the differences 

arising from the use of alkyl, aryl or silyl substituents all result in there being a large number 

of reported systems with very different catalytic activities. It has been shown that subtle 

differences within the ligand system can cause very significant differences in catalytic 

performance, even changing the selectivity from trimerisation toward tetramerisation.4,5 

Variations, such as the inclusion of a nitrogen atom in the backbone, the presence of pendant 

coordinating groups such as an ortho methoxy group acting as a hemi-labile donor, as well as 

increased steric bulk in the immediate vicinity of the metal centre, have all been shown to 

affect catalytic results, particularly selectivity.5

A number of mechanistic investigations have been carried out in order to gain more 

information about the precise nature of the active species responsible for the catalysis, and in 

particular the oxidation state of that species. Work carried out by Bercaw et. al? in 2004
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provides significant evidence for a Cr(I)-Cr(III) metallocyclic mechanism. They carried out 

trimerisation experiments with a mixture of C2H4 and C2D4. Analysis of the products showed 

that no H/D scrambling had taken place, therefore ruling out a Cossee-Arlman type 

mechanism and providing support for the metallocyclic route. Work carried out by Sasol14 in 

2005 provides further support for the metallocyclic mechanism for such PNP type ligand 

systems; the co-catalyst MAO is said to act upon the precursor to generate a cationic species 

as the catalytically active complex. This cationic species is generally believed to be the Cr(I) 

species.15

Cr(III) catalyst systems are generally inexpensive and more convenient in terms of 

preparation, which explains why a significant amount of research has focussed on the 

investigation of these systems and their catalytic activity. There is relatively little information 

available about Cr(I) compounds. This oxidation state is however, likely to be more 

important in terms of identifying and analysing the active species. Hence this chapter focuses 

on the synthesis and analysis of a series of Cr(I) compounds.

3.1.2 Background and Previous Work

As discussed in section 3.1, the number o f existing publications on the synthesis of 

these types of cationic chromium(I) complexes is low, the majority of which contain carbonyl 

ligands for stabilisation. Carbonyl ligands are good 7r-acceptors, containing high energy 

antibonding orbitals which are able to stabilise the d„ orbital set on the metal centre, allowing 

the excess electron density on the metal centre to be distributed among the ligands. The 

incorporation of carbonyl ligands therefore allows low-valent metals to form more stable 

complexes. The extent of backbonding to the metal centre exhibited by carbonyls is lower in 

a 17-electron system when compared to a standard 18-electron complex.

Cr(0)(CO)4(dppe) + [NO][BF4] D° M » [Cr(l)(CO)4(dppe)] [BF4]

Scheme 3.1 Preparation of chromium(I) phosphine system by Connelly.16
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Some early work on the preparation of such cationic chromium(I) complexes was 

carried out by Connelly16 and co-workers in 1982, where an oxidising agent was used to 

prepare the cationic complex from neutral chromium(O) analogues (scheme 3.1). This is the 

standard method used for preparing these complexes, with differences only in the oxidising 

agent used. Common oxidising agents are shown in figure 3.2.
17 1 ̂More recently, Wass et. al. and Sasol have prepared chromium(I) complexes for 

catalytic testing. It was concluded in both cases that the use of weakly coordinating anions is 

crucial for catalysis. Use of acetyl ferrocinium tetrafluoroborate (figure 3.2) as the oxidising 

agent resulted in inactive catalysts, whereas use of silver tetrakis(perfluoro-ter/- 

butoxy)aluminate (Ag[Al(OC(CF3)3)4]) gave the activities and selectivities expected from the 

PNP systems. The reasoning for this was that the tetrafluoroborate anion in the former case
1 7coordinates too strongly to the chromium centre.

Of the oxidising agents described in figure 2, only Ag[Al(OC(CF3)3)4] and 

[NAr3][B(C6F5)4] can be described as yielding very weakly coordinating anions. From a 

synthetic point of view, this is not a great consideration but given the catalytic implications, 

something that should be taken into account.

[Ag][BF4] [NO][PF6] [AcFc][BF4]

AgCI04 Ag[AI(OC(CF3)3)4l [NAr3][B(C6F5)4]

A cF c = acety l ferrocinium  
Ar = 4 -C 6H4Br

Figure 3.2 Oxidising agents.

In the tetramerisation process, a high MAO to chromium ratio is required. This is 

undesirable due to the high cost of MAO, so considerable research has taken place to find 

alternative co-catalysts that display similar catalytic selectivity and productivity. 

Triethylaluminium, AlEt3 has been reported as a cheaper replacement for MAO when 

combined with an alkyl abstracting agent.18 Fluorinated borane co-catalysts such as 

[NAr3][B(C6F5)4] in combination with AlEt3 gives rise to active trimerisation and 

tetramerisation catalysts showing similar selectivities to when MAO is used. However, these 

catalysts have very short lifetimes due to fast exchange reactions between the borate anion 

and excess trialkylaluminium, resulting in rapid anion degradation.18
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For this reason, the aluminate species reported by Krossing19 and used by Sasol15 is 

perhaps the best system for this purpose, as it is thought to be one of the most weakly 

coordinating anions known.20 Much stronger interactions were reported between the 

chromium(I) cationic species with anions BF4- and PF6~ than with Al(OC(CF3)3)4~.15 

Additionally, studies have shown that catalysis with this aluminate along with AlEt3 gives 

productivities and selectivities equivalent to those obtained when MAO is used, with no 

obvious shortening of catalyst lifetime.15

Ph2P ^  
C O O  ^PPh2 

X r 
CO^ I ^ c o  

CO

Ag[AI(OC(CF3)3)4] DCM

Ph2P ^
C O O  ^PPh2 

X r
c o ^  I CO 

CO

[AI(OC(CF3)3)4]

Scheme 3.2 Reported synthesis15 of [Cr(CO)4(Ph2PN(iPr)PPh2)].+

During the oxidation from the Cr(0) precursor, one electron is abstracted by the silver 

resulting in a 17-electron chromium(I) system (scheme 3.2). A shift in the carbonyl stretching 

frequencies in the infra-red spectrum is observed on oxidation, with the cationic compound 

showing CO stretches at a higher wavenumber. The reduction in electron density available at 

the metal centre for backbonding to the carbonyl ligands results in a stronger C-O bond, as 

less electron density is taken into the antibonding CO orbitals. X-ray structures of both the
IS 17chromium(O) and chromium(I) compounds have been reported ’ and are shown in figures

3.3 and 3.4.

The structure reported for the Cr(0) compound (figure 3) shows that, as expected, the 

Cr-CO bonds trans to the phosphine are slightly shorter than when trans to other carbonyl 

ligands, confirming the weaker trans-influence of the P-donor.17
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Figure 3.3 X-ray structure o f [Cr(0)(CO)4(Ph2PN(iPr)PPh2]. 17

iu
Ck )$ C k
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To obtain a crystal structure of a chromium(I) species such as this is very difficult, 

due to the instability of the complex (particularly in solution) and to our knowledge the only 

example of this type is shown in figure 3.4. When both structures are compared, we see that 

upon oxidation, the coordination geometry is retained while a difference in bond lengths is 

observed. The cationic Cr(I) complex shows shorter C-O bonds as expected. This is also 

confirmed in the infra-red spectrum. The Cr-P bonds are no longer equivalent in length in the 

17-electron complex. This is due to an intramolecular interaction between a fluorine atom on 

the counterion and a carbonyl oxygen atom, causing the Cr-P bond trans to lengthen as 

electron density is pulled toward the electronegative fluorine. A difference of 0.4 A between 

both Cr-P bonds is observed,17 which is a relatively large difference.

3.1.3 Use of EPR for d5 Complexes of Chromium

Magnetic resonance techniques, particularly NMR, are the most versatile and 

important analytical tools for the characterisation of metal complexes. However, the systems 

we are interested in, i.e. d5 low-spin, contain one unpaired electron, and such paramagnetic 

species are unsuitable for analysis by NMR. They are however ideal for EPR studies, which 

can readily provide information not only on the principle oxidation states involved, but also 

the electronic properties of the metal centre.

A major contribution of EPR spectroscopy is to our understanding of electronic 

structure. In particular, the components of the g matrix can provide information on the ligand 

field splitting of the d-orbitals and nuclear hyperfine coupling matrices can be deconvoluted 

to provide a map of the Singly Occupied Molecular Orbital (SOMO).

The symmetry of transition metal complexes and therefore electronic structure is 

particularly important in EPR. The splitting of d-orbitals (as a result of the symmetry of the 

system) affects the EPR spectra due to the differences in separation energy, A0, which affect 

spin lattice relaxation mechanisms. If spin-lattice relaxation mechanisms are very efficient, 

spectra can only be recorded at liquid helium temperatures. Such is the case for octahedral 

systems; when A0 is large compared to the pairing energy, the five electrons (in the case of d5 

systems of the type we are interested in) occupy the t2g set, giving a nominal 2T2g ground 

state, the low spin configuration (see figure 3.5). As the symmetry of the system is lowered to 

C4v, in the case of monosubstitution, the t2g orbitals are split into b2g (dxy) and eg (dxz, dyz).
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The ground state is now determined by the n accepting ability of the ligand; for example if 

the ligand is a stronger n acceptor than the metal centre, then the eg orbitals will be more 

bonding than the b2g and therefore lower in energy, resulting in b2g as the SOMO and a 

ground state of 2B2. If the ligand is a weaker 71-acceptor than the metal centre, then the 

opposite case occurs and the ground state of E is expected, (figure 3.5)

>.
E><Dc
LU

Mg

a lg

+
b2g

*OCt

ma5b
C4V
B = strong 71-accepting

l 2g

MA6
Oh

a l<

Mg

- } -  +
H f-

2g

MA5B
C4V
B = weak 71-accepting

Figure 3.5 Schematic representation of the effect o f symmetry distortions on the orbital energies o f an

octahedral complex MA6.

In complexes of symmetry C2V such as the complexes we are interested in 

[Cr(CO)4(PP)], the symmetry is lowered again compared to the system described above, and 

the degeneracy of the t2g orbitals is completely removed. The identity of the SOMO depends 

on the nature of the ligands, but regardless of the ligand system, a non-degenerate ground 

state is expected, and therefore liquid helium temperatures are not required.

To date, most of the available EPR literature on chromium complexes has focussed on 

Cr(III) and Cr(V) compounds,21'23 with very little reported on low-spin Cr(I). Some of the 

earliest reports of Cr(I) EPR spectra were by Bond ' and co workers, who reported 

isotropic EPR spectra for a series of phosphine and phosphite derivatives of [Cr(CO)6]+.
31Lappert and co workers carried out the oxidation of Cr(0) carbene complexes inside the 

EPR cavity due to the thermal instability of these systems. More recently, EPR studies carried 

out by Rieger32 showed the first quantitative photochemical transformation for a Cr(I) 

complex.
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3.2 Results and Discussion

As discussed in 3.1, it is extremely valuable to gain a better insight into this type of 

Cr(I) species as little is known about these air-sensitive, paramagnetic systems.

Ligands 29-35 shown in figure 3.6, were used to prepare a series of chromium(O) and 

chromium(I) compounds in order to gain more information on this family of catalyst systems. 

It is known that PNP-type ligands are prevalent within trimerisation studies due to their high 

selectivity and catalytic ability33,34 PCP-type donor systems have been shown to be quite 

inactive in both trimerisation and tetramerisation, and are included to give a complete picture 

of this family of complexes with a view to provide further information about the catalytic

process.

r \
Ph2P PPh2

Ph2P PPh2

29 30 31

Ph2P^ PPh2 PhoP PPh2 Ph2P^

\ /

PPh2i 2 i

32 33 34

Figure 3.6 Ligands 29-35.
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3.2.1 Synthesis and Characterisation of Chromium(O) Compounds

There have been several reported synthetic procedures for the preparation of 

chromium tetracarbonyl bis(phosphine) systems, however the best method was found to be a 

simple reflux in toluene17 (Scheme 3.3), followed by recrystallisation of the crude product 

from dichloromethane and methanol.

F ^ P

CO p '~ N)
CCL | / C O  T oluene OCX | / P

/ ( X   T-► /Cn
C O ^  | CO 48 h C O ^  I ^ c o  

CO 0 0

29-35 38-57%
36-42

Scheme 3.3 Reaction of ligands 29-35 to produce chromium(O) complexes 36-42.17

Chromium(O) complexes 36-42 were characterised by 31P, !H and 13C NMR 

spectroscopy, and spectra consistent with the proposed structures were obtained. Infra-red 

spectra were recorded for the slightly air sensitive compounds and compared to existing data 

on similar complexes. The spectra were typical for Cr(CO)4(L)2 compounds, with carbonyl 

stretching frequencies differing slightly as expected, due to the differences in 

electronegativity and basicity of the coordinated ligands. Compounds 36-42 all have the same 

symmetry, i.e. C2V, and we therefore expect to see the same number of stretches in each IR 

spectrum. Theoretically we should see four carbonyl stretches, however due to overlap of 

peaks we see three distinct bands in each case. IR provides information about the ligand 

system but perhaps more importantly, will act as a point of comparison to use when the 

spectra of the analogous chromium(I) species are analysed.

As shown in table 3.1, the basicity of the ligand (i.e. the extent to which electron 

density is donated to the metal centre) affects the carbonyl stretching frequency. As the 

electron density available at the metal centre increases, the degree of backbonding to the 

carbonyl groups will increase resulting in a weaker CO bond, displayed by a stretch at lower 

frequency. Differences in the backbones of ligands 29-35 will of course result in different 

chelate ‘bites’. This can also influence the extent of ligand donation; for example complexes

39-42, essentially containing 4-membered rings, will have much smaller bite angles than 

complex 37.
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Cr(CO)4(L) Ligand v (CO)/cm_1
Av 

v (CO)/ 
cm'1

36 Ph2P PPh2 1870 1902 2005 1926

37
Ph2P/ V s / " '"P P h2 1885 1913 2005 1934

38 Q
Ph2P PPh2

1893 1916 2012 1940

39 (

Ph2P PPh2
1891 1915 2007 1938

40 Y
Ph2P PPh2

1887 1923 2006 1939

41
\

Ph2P ^ f

/

J'P P h 2

1890 1919 2006 1938

42 q Y - p , 1864 1895 2006 1922

Table 3.1 Carbonyl Stretches for Cr(CO)4(L) Compounds 36-42

One expects that the carbonyl stretches of compounds 39-42 will be higher than those 

of compounds 36-38, and this is the general trend observed if  the average stretching 

frequencies are compared. This is due to the inclusion of an electronegative nitrogen atom, 

which will reduce the electron donating ability and therefore the overall basicity of the 

ligand. Ligands used in compounds 39-42 are less basic, resulting in less electron density
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being donated to the metal centre. When the metal centre is less electron-rich, there is less 

electron density available for backbonding to the carbonyl ligands. This results in a stronger 

C-O bond and a slight increase in the observed wavenumbers at which we see stretches 

relative to the non-nitrogen containing systems.

An exception to this pattern is observed with compound 38, where the presence of a 

conjugated benzene ring reduces the basicity of the ligand, resulting in higher wavenumbers 

than the other PCP systems. The presence of ethyl groups on the phenyl rings in compound 

42 appears to lower the stretching frequency; the electron donating nature of these ethyl 

groups results in a more basic ligand. Clearly the presence of electron donating groups 

overrides the electronegative effect of the presence of the nitrogen in the bridge 

(i.e. significantly lower stretching frequencies for compound 42).

3.2.2 Synthesis and Characterisation of Chromium(I) Compounds

In order to prepare and isolate a series o f 17-electron chromium(I) species from 

chromium(O) compounds 36-42, a suitable oxidising agent is required to remove one electron 

from the stable 18-electron precursor compounds. For reasons discussed in 3.1.2, the 

aluminate (Ag[Al(OC(CFs)3)4]) was the best candidate for our purposes. Furthermore, since 

these compounds were to be used in ENDOR studies, a further consideration was the fact that 

19F has a spin of V2 so will be visible. This can result in coupling or overlapping of ENDOR 

signals, so from this point of view the most weakly coordinating anion is required to lessen 

the effects described.

The cationic chromium complexes 43-49 were prepared according to scheme 3.4. An 

excess of aluminate was used to ensure full conversion of the chromium(O) starting material. 

With exclusion of light, the mixture was stirred in dichloromethane for 16 hours. An 

immediate colour change from yellow to dark purple/blue was observed upon addition of the 

solvent, and a silver mirror was formed inside the Schlenk tube as the silver counterion is 

reduced.
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C0\  I / P
+ A9c o r  p c o  co

36-42

'  F3Cx \ c f 3‘ f3c ^ o  V
F c O-AI-O CF3
h3 ° V  1 FrA o cf3p3c CR AF3c cf3 -

DCM
16 h

p ^ )

“ M r ' "
c c r ' \ ^co co

F3C CP,
>C f3H cf3 f3c ^ o  V
O-AI-O CF3

;3c><rsO tCF3 A
FftC CFo -J

40-66%
43-49

Scheme 3.4 Synthesis of Chromium(I) Complexes 43-49.

Characterisation of the resulting complexes 43-49 was somewhat limited due to their 

paramagnetic nature. EPR analysis was carried out and is discussed in section 3.2.3. Infra-red 

data and mass spectrometric analysis were also used to confirm the presence of the complex. 

Positive and negative ion mass spectra were obtained, to confirm the presence of the 

aluminate counterion as well as the chromium species. Despite the sensitive nature of these 

compounds, high resolution spectra were obtained when a solution of each complex in dry 

solvent was injected directly into the machine, to limit decomposition of the air/moisture- 

sensitive compounds.

In order to obtain IR data, solutions of each compound were made up in 

dichloromethane inside the glove box and the spectra obtained immediately. As shown in 

table 3.2, significant shifts in the carbonyl stretching frequency were observed for the 

chromium(I) compounds when compared to the analogous neutral systems. This is a result of 

the change in oxidation state of the central chromium atom. The amount of electron density 

available for backbonding to the carbonyl ligands is much less than in the 18-electron 

complexes (36-42). The CO bonds are therefore stronger and shorter as less electron density 

is present in the antibonding orbitals (7r*) of the carbonyl ligands; one therefore observes 

stretches at higher wavenumbers.
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[Cr(CO)4L]+ Ligand
V (CO) /c m 1

Cr(0) Cr(I)

43 r ~ \
Ph2P PPh2

1870 1971

1902 2034

2005 2085

44 Ph2P/ ^ ^ ^ P P h 2

1885 1954

1913 2046

2005 2086

45 P
Ph2P PPh2

1893 1969

1916 2032

2012 2086

46 (
^Ns 

Ph2P PPh2

1891 1968

1915 2036

2007 2089

47 Y
Ph2P PPh2

1887 1964

1923 2032

2006 2086

48
\ | /

Ph2P PPh2

1890 1965

1919 2031

2006 2084

49 O r'-'-tp i
1864 1975

1895 2022

2006 2082

Table 3.2 Comparison of carbonyl stretches in neutral and cationic complexes.
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3.2.3 EPR Studies

The cationic compounds 43-49 are all low spin d5 systems. They were prepared under 

an atmosphere of argon and analysed by cw-EPR (continuous wave-EPR) as frozen solutions.

The cw-EPR spectrum for 43 along with the corresponding EPR simulation are shown 

in figure 3.7, and can be described as possessing an axial g  tensor. A well resolved 

superhyperfine structure in both the perpendicular and parallel components can be easily 

observed and each component of the g  tensor is split into a 1:2:1 triplet pattern due to the 

superhyperfine interaction of the unpaired electron on the chromium centre with two
o i

equivalent P nuclei (/ = Vi). In some cases, broadening of one or both of these components 

is observed. This broadening is a result of fast spin-lattice relaxation mechanisms. The 

resulting spin Hamiltonian parameters (extracted by simulation of the EPR spectra) are listed
Cl

in Table 3. Since the natural abundance of Cr (I = 3/2) is only 9.5%, coupled with the large
1linewidths associated with the P hyperfine pattern, no anisotropic hyperfine interaction

C 'i

associated with Cr was detected in the frozen solution spectrum.

3000 3100 3200 g  i q  3300 3400 3500

Figure 3.7 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 43 recorded in
dichloromethane/toluene.

The EPR spin Hamiltonian parameters (g and A) for any paramagnetic complex will 

depend on the coordination state and symmetry of the metal centre. The gxx and gyy values
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were expected to be significantly higher than ge (ge = 2.023) while g^ was expected to be 

slightly less than ge. These trends are indeed observed experimentally, with g i (g** = gyy) = 

2.063 and gy (gzz) = 1.987 (Table 3.3), confirming a d^, ground state for all complexes.

Cr(D

complex
g i g|| PAj_ / G* PAy / G* 8iso f G % SD

49 2.089 1.983 29.0 24.0 27.3 0.573
45 2.084 1.989 25.5 25.0 25.3 0.532
43 2.083 1.989 24.8 24.5 24.8 0.518
46 2.077 1.985 27.7 25.5 27.0 0.534
47 2.072 1.988 27.0 25.5 26.5 0.556
48 2.068 1.988 27.0 25.5 26.5 0.556
44 2.063 1.987 24.9 24.5 24.7 0.520

* A values ±0.2G

□ Percentage spin density in the P s-orbital (Fermi contact term)

Table 3.3 Spin Hamiltonian parameters obtained by simulation for [Cr(CO)4L]+
compounds 43-49.

The cw-EPR spectra for all the complexes 43-49 are shown in figure 3.8. In all cases, 

axial g  tensors (gi > ge > gy) are observed and the corresponding spin Hamiltonian parameters 

for each complex are listed in Table 3.3 (the individual spectra and simulations are in 

appendix B figures 1-6). Similar to the above discussion for complex 43, it appears that the 

ground state in all the complexes can therefore be described as dxy. It should be noted 

however, that the resolution of the spectra, and indeed the spin Hamiltonian values, are found 

to be highly dependent on the ligand type (Table 3.3). The difference in g values (defined as 

Ag = gi -  gy), for example, is greatest for 49 and smallest for 44 (see figure 3.8 and Table 

3.3). Despite these clear differences in the Ag shift, caused by the extent of tetragonal 

distortion in the complexes, no obvious correlation emerges between the observed spectral 

shifts and the ligand type. Further detailed analysis has been carried out using ENDOR which 

was reported elsewhere.
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Figure 3.8 cw-EPR spectra (130K) of 43-49 recorded in dichloromethane/toluene.

3.3 Conclusion

A series of chromium(O) and chromium(I) complexes containing various 

bis(phosphine) ligands have been prepared and characterised via NMR, infra red and cw-EPR 

spectroscopies.

Subtle differences have been identified between the chromium(I) complexes in terms 

of the g components. The spin Hamiltonian parameters were found to be consistent with low- 

spin d5 systems of C2V symmetry, possessing a SOMO where the metal contribution is 

primarily dxy.

The isotropic Fermi contact term (p □ iso) was found to be largest for complexes 

containing ligands 32 - 35, indicating that the 31P 3s character in the SOMO is higher for the 

P-N-P type ligands than the P-C-P types. Observed changes in the g matrix did not however 

follow the same trends of ligand type, indicating that g is dependent not just on the energy of
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the SOMO but also on the structural differences in ligand which influence the extent of 

tetragonal distortion in the complexes.

Structural differences in the [Cr(CO)4L2]+ complexes were also revealed though ]H, 

14N and 31P ENDOR (data not reported here), where the observed spectral changes were 

attributed to variations in the phenyl ring conformations as a function of ligand type. These 

EPR and ENDOR results reveal that the ligands 29 - 35 impart very subtle electronic and 

structural alterations to this class of complex, but that these parameters do not correlate with 

any trend in catalytic data at least for the parent pre-catalyst prior to activation.

Nevertheless, despite a lack of correlation emerging between the EPR data and the 

known catalytic activities of these systems, it should be stressed that the nature of the 

activated complexes may be very different compared to the pre-catalyst complexes reported 

in this chapter. In any case, the results presented here offer some insight into the electronic 

properties of these air-sensitive Cr(I) complexes where few EPR studies have been reported 

to date.
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3.4 Experimental Section

General Procedures. All manipulations were performed using standard Schlenk 

techniques under an argon atmosphere, or in a nitrogen atmosphere MBraun UNILAB 

glovebox with less than 0.1 ppm water and O2. Solvents were dried using a Braun Solvent 

Purification System, and degassed prior to use. Ligands 29, 30 and 31 were purchased from 

Aldrich, ligands 32, 34, and 35 were prepared and supplied by Sasol Technology. Ligand 

33,36 chromium compounds 36-4915’17 and silver aluminate19 were prepared according to 

literature procedures.

NMR spectra were recorded at 298 K on Bruker Avance AMX 400 or Jeol Eclipse 

300 spectrometers. Chemical shift values are given relative to residual solvent peak. ESI-MS 

were performed on a Waters LCT Premier XE instrument. Infra-red spectra were recorded 

using a JASCO FT/IR-660 Plus spectrometer and analysed in solution (dichloromethane). 

EPR spectra and computer simulations were carried out with Lucia McDyre, a PhD student at 

Cardiff University. EPR spectra were recorded at 13 OK on an X-band Bruker EMX 

spectrometer operating at 100 kHz field modulation, lOmW microwave power and equipped 

with a high sensitivity cavity (ER 4119HS). EPR computer simulations were performed using 

the SimEPR32 program.37 g Values were determined using a DPPH standard. Complexes 

were dissolved in 200pl DCM/toluene and a frozen solution produced by placing the EPR 

tube in liquid nitrogen.

[Cr(CO)4(Ph2PCH2CH2PPh2)] (36)

Toluene (40 ml) was added to a mixture of chromium hexacarbonyl (372 mg, 1.69 mmol) and 

29 (505 mg, 1.27 mmol) and the mixture was heated to reflux for 48 h, ensuring that the 

sublimed hexacarbonyl was periodically washed back into the stirred mixture. The solution 

was then cooled to 0°C and filtered to remove excess chromium hexacarbonyl. Solvent was 

removed in vacuo and the product extracted into dichloromethane (10 ml). Methanol (20 ml) 

was added to precipitate the product which was isolated by filtration and dried in vacuo 

yielding a yellow microcrystalline solid (300 mg, 42%). !H NMR (CD2CI2, 400 MHz, 

298 K): 8 (ppm) 2.00 (t, 4H, CH2CH2 VHH = 4.1 Hz), 7.20-7.35 (m, 16H, ortho- and meta- 

C6H5), 7.50 (m, 4H ,para-C6H5). 31P {‘H} NMR (CD2C12, 121 MHz, 298 K): 8 (ppm) 80.35 

(s). 13C {‘H} NMR (CD2C12, 125 MHz, 298 K): 8 (ppm) 27.3 (CH2CH2), 127.7 (meta-C6H5),
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130.4 (para-C&is), 131.9 (ortho-C^Ks), 137.6 (ipso-C6H5), 219.6 (czs-CO), 228.3 (trans-CO). 

High Resolution ESIpos-MS (MeCN): found 562.0542 (C3oH2404P2Cr+ requires 562.0555 dev: 

-2.3 ppm). IR (CH2CI2): v= 1870 (s) (CO), 1902 (s) (CO), 2005 (s) (CO) cm'1.

[Cr(CO)4(Ph2P(CH2)3PPh2)] (37)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (355 mg,

1.61 mmol) and 30 (502 mg, 1.22 mmol). The product was obtained as a yellow solid 

(400 mg, 57%). 'H NMR (CDCI3, 400 MHz, 298 K): 8 (ppm) 1.88 (m, 2H, CH2), 2.34 (m, 

4H, CH2), 7.32 (m, 20H, C6H5). 31P f ‘H} NMR (CDCI3, 121 MHz, 298 K): 8 (ppm) 42.38 

(s). 13C {'H> NMR (CDCI3, 125 MHz, 298 K): 8 (ppm) 18.6 (CH2), 29.6 (CH2), 127.3 (meta- 

C6H5), 128.4 (para-C6H5), 130.8 (ortho-C6U5), 136.7 (/pjo-C6H5), 220.7 (cis-CO), 225.1 

(trans-CO). High Resolution ESIpos-MS (MeCN): found 576.0717 (C3iH2604P2Cr+ requires 

576.0711 dev: 1.0 ppm). IR (CH2C12): v=  1885 (s) (CO), 1913 (s) (CO), 2005 (s) (CO) cm'1.

[Cr(CO)4(Ph2PBzPPh2)] (38)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (325 mg, 

1.48 mmol) and 31 (498 mg, 1.11 mmol). The product was obtained as a yellow solid 

(320 mg, 47%). 'H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 7.30 (m, 20H, ortho-, 

meta-C6H5, C6H4), 7.45 (m, 4H, para-C6H5). 31P {1H} NMR (CD2C12, 121 MHz, 298 K): 

8 (ppm) 83.33 (s). 13C {'H) NMR (CD2C12, 125 MHz, 298 K): 8 (ppm) 127.4 (meta-C6H5), 

127.6 (para-C6H5), 128.9, 129.7, 131.3 (C6H4), 131.4 (ortho-C6H5), 135.6 (ipso-C6U5). High 

Resolution ESIp<,s-MS (MeCN): found 610.0564 (C34H2404P2Cr+ requires 610.0555 dev: 1.4 

ppm). IR (CH2C12): v= 1893 (s) (CO), 1916 (s) (CO), 2012 (s) (CO) cm'1.

[Cr(CO)4(Ph2PN(Et)PPh2)] (39)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (355 mg,

1.61 mmol) and 32 (500 mg, 1.21 mmol). The product was obtained as a yellow solid 

(350 mg, 50%). 1H NMR (CDC13, 400 MHz, 298 K): 8 (ppm) 0.75 (t, 3H, CH3, 3/ Hh  = 7.3 

Hz), 3.00 (m, 2H, CH2), 7.41 (m, 20H, C6H5). 31P f'H} NMR (CDCI3, 121 MHz, 298 K): 8 

(ppm) 114.36 (s). 13C {1H} NMR (CDCI3, 125 MHz, 298 K): 8 (ppm) 15.1 (CH3), 44.0 

(CH2), 127.5 (meta-C6H5), 129.6 (para-C6H5), 130.9 (ortho-Cf,H5), 135.6 (ipso-C6Hs), 221.2 

(cis-CO), 227.2 (trans-CO). High Resolution ESIpos-MS (MeCN): found 577.0656
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(C30H25O4P2CrN+ requires 577.0664 dev: -1.4 ppm). IR (CH2C12): v =  1891 (s) (CO), 1915 

(s) (CO), 2007 (s) (CO) cm'1.

[Cr(CO)4(Ph2PN(1Pr)PPh2)] (40)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (340 mg,

1.55 mmol) and 33 (494 mg, 1.16 mmol). The product was obtained as a yellow solid (260 

mg, 38%). 'H NMR (CDC13, 400 MHz, 298 K): 8 (ppm) 0.62 (d, 6H, CH3, VHH = 6.8 Hz), 

3.52 (sept, 1H, CH, Vhh = 7.0 Hz), 7.41 (m, 12H, meta-, para-CjHs), 7.69 (m, 8H, ortho- 

C6H5). 31P {1H} NMR (CDC13, 121 MHz, 298 K): 5 (ppm) 112.70 (s). 13C {'H | NMR 

(CDC13, 125 MHz, 298 K): 8 (ppm) 22.5 (CH3), 54.8 (CH), 127.4 (meta-C6H5), 129.5 (para- 

C6H5), 130.9 (ortho-C6H5), 136.1 (ipso-C6U5), 221.9 (cis-CO), 227.4 (trans-CO). High 

Resolution ESI^-MS (MeCN): found 591.0796 (C3iH270 4P2CrN+ requires 591.0820 dev: - 

4.1 ppm). IR (CH2C12): v =  1887 (s) (CO), 1923 (s) (CO), 2006 (s) (CO) cm'1.

(Cr(CO)4(Ph2PN(,Bu)PPh2)] (41)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (340 mg,

1.55 mmol) and 34 (510 mg, 1.16 mmol). The product was obtained as a yellow solid (350 

mg, 50%). 1H NMR (CDC13, 400 MHz, 298 K): 8 (ppm) 0.49 (s, 9H, C(CH3)3), 7.48 (m, 20H, 

CsHj). 31P {’H} NMR (CDC13, 121 MHz, 298 K): 8 (ppm) 115.86 (s). 13C {1H} NMR 

(CDC13, 125 MHz, 298 K): 8 (ppm) 30.6 (CH3), 61.6 (C(CH3)3), 127.3 (mefa-C6H5), 129.5 

(para-C6HS), 130.8 (ortho-C6H5), 135.9 (ipso-C^i5), 222.5 (cis-CO), 227.7 (trans-CO). High 

Resolution ESIpos-MS (MeCN): found 605.0962 (C32H2904P2CrN+ requires 605.0976 dev: -

2.3 ppm). IR (CH2C12): v =  1890 (s) (CO), 1919 (s) (CO), 2006 (s) (CO) cm'1.

[Cr(CO)4(Ar2PN(Me)PAr2)J (Ar=2-C6H4(Et)) (42)

An analogous method to that of 36 was followed, using chromium hexacarbonyl (293 mg, 

1.33 mmol) and 35 (511 mg, 1.0 mmol). The product was obtained as a yellow solid (350 mg, 

53%). 'H NMR (CD2C12, 400 MHz, 298 K): 8 (ppm) 0.85 (br s, 12H, CH3), 2.46 (s, 3H, 

CH3), 2.61 (br s, 8H, CH2), 7.32 (m, 16H, Ar-H). 31P {■H} NMR (CD2C12, 121 MHz, 298 K): 

8 (ppm) 103.4 (br s). 13C ( ‘H} NMR (CD2C12, 125 MHz, 298 K): 8 (ppm) 13.3 (CH3), 26.0 

(CH2), 33.5 (N-CH3), 124.9 (meta-C6Hs), 129.1 (para-C6H5), 134.5 (ortho-C6H5), 144.6 

(ipso-CeH.5), 219.8 (cis-CO), 227.7 (trans-CO). High Resolution ESIpos-MS (MeCN): found
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675.1746 (C37H4304P2CrN+ requires 675.1759 dev: -1.9 ppm). IR (CH2CI2): v =  1864 (s) 

(CO), 1895 (s) (CO), 2006 (s) (CO) cm'1.

[Cr(CO)4(Ph2PCH2CH2PPh2)] [Al(OC(CF3)3)4] (43)

Complex 36 (50 mg, 0.089 mmol) and the silver aluminate (143 mg, 0.13 mmol) were 

combined in a Schlenk tube and dichloromethane (5 ml) added, the mixture, which 

immediately changed colour, was left to stir for 16 h at room temperature under the exclusion 

of light. After filtration, the solvent was removed in vacuo leaving a dark purple residue 

which was washed with hexane (2 x 5 ml) and dried in vacuo to yield the product as a deep 

purple powder (90 mg, 66%). High Resolution ESIpos-MS (MeCN): found 562.0562 

(C3oH2404P2Cr+ requires 562.0555 dev: 1.2 ppm). High Resolution ESIneg-MS (MeCN): 

found 966.9030 (Ci6H360 4A r  requires 966.9037 dev: -0.7 ppm). IR (CH2C12): v=  1971 (s) 

(CO), 2034 (s) (CO), 2085 (s) (CO) cm'1.

[Cr(CO)4(Ph2P(CH2)3PPh2)] [Al(OC(CF3)3)4] (44)

An analogous method to that of 43 was followed, using chromium compound 37 (100 mg, 

0.17 mmol) and silver aluminate (275 mg, 0.255 mmol). The product was obtained as a dark 

blue powder (145 mg, 54%). High Resolution ESIpos-MS (MeCN): found 576.0706 

(C3iH2604P2Cr+ requires 576.0711 dev: -0.8 ppm). High Resolution ESIneg-MS (MeCN): 

found 966.9084 (Ci6H360 4A r  requires 966.9037 dev: 4.8 ppm). IR (CH2C12): v =  1954 (s) 

(CO), 2046 (s) (CO), 2086 (s) (CO) cm'1.

[Cr(CO)4(Ph2PBzPPh2)] [Al(OC(CF3)3)4] (45)

An analogous method to that of 43 was followed, using chromium compound 38 (50 mg, 

0.081 mmol) and silver aluminate (130 mg, 0.121 mmol). The product was obtained as a dark 

blue powder (65 mg, 50%). High Resolution ESIpos-MS (MeCN): found 610.0540 

(C34H2404P2Cr+ requires 610.0555 dev: -2.4 ppm). IR (CH2C12): v=  1969 (s) (CO), 2032 (s) 

(CO), 2086 (s) (CO) cm'1.

[Cr(CO)4(Ph2PN(Et)PPh2)] [Al(OC(CF3)3)4] (46)

An analogous method to that of 43 was followed, using chromium compound 39 (100 mg, 

0.17 mmol) and silver aluminate (278 mg, 0.26 mmol). The product was obtained as a dark
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blue powder (120 mg, 45%). High Resolution ESIpos-MS (MeCN): found 577.0648 

(C3oH2504P2CrN+ requires 577.0664 dev: -2.7 ppm). IR (CH2C12): v=  1968 (s) (CO), 2036 

(s) (CO), 2089 (s) (CO) cm '1.

[Cr(CO)4(Ph2PN(iPr)PPh2)] [Al(OC(CF3)3)4] (47)

An analogous method to that of 43 was followed, using chromium compound 40 (100 mg, 

0.17 mmol) and silver aluminate (271 mg, 0.25 mmol). The product was obtained as a dark 

blue powder (105 mg, 40%). High Resolution ESIpos-MS (MeCN): found 591.0824 

(C3iH270 4P2CrN+ requires 591.0820 dev: 0.6 ppm). IR (CH2C12): v=  1964 (s) (CO), 2032 (s) 

(CO), 2086 (s) (CO) cm'1.

[Cr(CO)4(Ph2PN(tBu)PPh2)] [Al(OC(CF3)3)4] (48)

An analogous method to that of 43 was followed, using chromium compound 41 (50 mg, 

0.083 mmol) and silver aluminate (133 mg, 0.124 mmol). The product was obtained as a dark 

blue powder (62 mg, 48%). High Resolution ESIpos-MS (MeCN): found 605.0993 

(C32H2904P2CrN+ requires 605.0976 dev: 2.8 ppm). IR (CH2C12): v=  1965 (s) (CO), 2031 (s) 

(CO), 2084 (s) (CO) cm'1.

[Cr(CO)4(Ar2PN(Me)PAr2)][Al(OC(CF3)3)4] (Ar=2-C6H4(Et)) (49)

An analogous method to that of 43 was followed, using chromium compound 42 (100 mg, 

0.15 mmol) and silver aluminate (238 mg, 0.22 mmol). The product was obtained as a dark 

blue powder (150 mg, 62%). High Resolution ESIpos-MS (MeCN): found 675.1773 

(C37H430 4P2CrN+ requires 675.1759 dev: 2.0 ppm). IR (CH2C12): v=  1975 (s) (CO), 2022 (s) 

(CO), 2082 (s) (CO) cm'1.
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Chapter Four 
Low Oxidation State Chromium Complexes

4.1 Introduction

Chromium complexes in oxidation states +1 and +11 containing N-heterocyclic 

carbenes are extremely rare despite the relevance of these oxidation states in selective 

oligomerisation.1'4 A series of chromium(0)-NHC complexes has been prepared, including 

several novel compounds containing expanded six- and seven-membered NHC ligands. One 

electron oxidation of these compounds, as described in chapter 3, has been carried out and a 

series of new Cr(I)-NHC complexes have been isolated and analysed by EPR spectroscopy.

The possible role of Cr(II) in the selective oligomerisation of ethylene is discussed, 

and a series of novel fimctionalised and non-functionalised Cr(II)-NHC complexes are 

reported and characterised in this chapter.

4.1.1 Cr(0)-NHC Complexes

In 1968, more than 20 years before the first ffee-NHC was isolated, Ofele5 and co­

workers utilised the acidic nature of imidazolium salts to synthesise the first chromium NHC 

complex (scheme 4.1). The chromium hydride precursor acts as a base in the same way as 

Ag20 in the formation of silver(I)-NHC complexes described by Lin.6 Like Ag(I)-NHC 

complexes, Cr(0)-NHC complexes have also been applied in transmetallation reactions.7

N
^ N V + N ^  + HCr(CO)5 ------------------     (T  V -C r(C O )5

vacuumH In
2 \

Scheme 4.1 Synthesis of first Cr(0)-NHC complex.
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Since the first chromium(0)-NHC complex, different synthetic methods have been 

reported using different sources of chromium; Cr(CO)6, Cr(CO)3(MeCN)3, Cr(CO)sTHF and
R 19Na2Cr2(CO)io, but isolating the complexes in reasonable yields can be difficult. ' 

Chromium(0)-NHC complexes are well known, but not as widely studied as one may think,
1 o

and this has been attributed to the lack of generally applicable synthetic procedures.

More recently a template synthesis developed by Hahn and co-workers has 

successfully produced chromium(0)-benzanulated NHC complexes from isocyanides,123 and a 

series of chromium(0)-NHC complexes have been isolated by Chung and co-workers,13 using 

Fischer carbene complexes as transfer agents (scheme 4.2). Yields of 40-60% were reported, 

which is preferable to the yields of less than 20% generally reported for some of the other 

methods.13

/ = \

/ 0 M e  t r ^  KO-BU R ' V N ' r '
(OC)5C r = (  + r ^ n @ N - r , C O - X -

Pn r n  i v
~ -^CO 

- Crv
A CO I CO

CO

Scheme 4.2 Use of chromium Fischer carbene complex as chromium source.

4.1.2 Cr(I) and Cr(II)-NHC Complexes

N-heterocyclic carbene complexes of chromium(I) are extremely rare. Good donor 

ligands are required to stabilise Cr(I) complexes. NHC ligands are strong donors and in this 

sense should help stabilise Cr(I) d5 complexes.

The first reported examples of NHC-containing Cr(I) complexes were described by 

Lappert and co-workers1 in 1980 (figure 4.1). Interestingly, no Cr(I)-NHC pentacarbonyl 

complexes were reported by Lappert. Only complexes containing both phosphine and carbene 

ligands, or those with two NHCs, were prepared and characterised by EPR spectroscopy. The 

complexes with more donor ligands were reported to be more stable, with bulkier ligands 

imparting a greater stability. More recently Hirao and co-workers2 reported the oxidation of a 

benzanulated NHC-Cr(O) complex and the resulting cationic complex was characterised by
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EPR spectroscopy. They proposed that the delocalisation of the system resulted in the 

presence of the single electron within the benzimidazolylidene ring.

f O  
CO\ l  y P
CO I NHC  

CO

CCU  / P  1
/ C l

P I NHC
■ o p

P (O P h)3 - 
C O ^ / P ( O P h ) 3

COS' | ^ H C  
CO

NHC  
C O \  I / N H C  

Cr
CO | CO  

CO

NHC  
CO. | /NHC 

X r .
CO | P P h 3 

CO
N H C -  E t ^ N \ / N ^ E t

a =
p  p  M e2P PM es

Figure 4.1 Cr(I)-NHC complexes prepared by Lappert et.al.

NHC-Cr bonds are reported to be much stronger than phosphine-Cr bonds in Cr(0) 

complexes.14 This has been attributed to the fact that NHCs are more nucleophilic ligands 

than phosphines. This suggests that Cr(I)-NHC complexes should be stabilised to a greater 

extent than the phosphine-containing complexes. Another major difference is that NHC 

ligands bind to metals via a-bonding while 7i-backbonding is negligible.15 This will result in 

stronger 7i-backdonation to the carbonyl ligands than in phosphine complexes.

The +11 (d4) oxidation state is a strongly reducing one for chromium and complexes 

require careful handling and storage to prevent oxidation. As a result Cr(II) complexes are 

not widely known, and represent a gap in our knowledge of chromium chemistry.
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Mes

Mes'

(̂ N-Dipp

N— (
<( CrCI2(THF)

f ~ <
V N-Dipp

M es = 2,4,6-trim ethylphenyl 
Dipp = 2,6-diisopropylphenyl

Figure 4.2 Examples of Cr(II)-NHC complexes.

The majority of early Cr(II) complexes reported were stabilised by a cyclopentadienyl 

ligand.16*19 More recently mono- and dimeric complexes have been reported with a variety of 

ligands.20,21,22 The complexes shown in figure 4.2 represent some of the only examples of 

Cr(II)-NHC complexes.3’4

4.1.3 Role of Chromium(II) in the Ethylene Trimerisation Process

In terms of catalysis and the trimerisation of ethylene, significant evidence points 

toward a Cr(I)-Cr(III) redox process. * However a Cr(II) catalytic system has been reported
90to show comparable activities and selectivities to the Cr(III) analogue. Very few of the 

reported systems are based on isolated Cr(II) complexes, perhaps because of their sensitive 

nature, but a mechanism involving the initial reduction of trivalent systems to active Cr(II)
94. 9 f% ^ ̂species has been discussed in the literature. ’ ' This active species is then proposed to 

undergo 2-electron oxidation as part of the metallocyclic mechanism, resulting in a Cr(II)- 

Cr(IV) redox couple.20
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4.2 Results and Discussion

4.2.1 Cr(0)-NHC Complexes

Chromium(O) complexes are relatively air stable, and as a result these d6 systems have 

been widely reported. N-heterocyclic carbene complexes of Cr(0) were some of the first 

reported carbene-containing complexes5 and a lot of the early NHC work was carried out on 

group 6 metal complexes. As described in 4.1.1, there are several different synthetic 

procedures to these compounds.

A selection of Cr(0)-NHC complexes (figure 4.3) have been prepared from simple 

imidazolium salt precursors (50-56) in order to form a novel series of Cr(I)-NHC complexes 

via one electron oxidation as described with phosphine complexes in chapter 3. Compounds 

65, 66, 69 and 70 are new, and 64, 67 and 68 have been previously reported.1213’ 13 As 

discussed in 4.1.2, Cr(I)-NHC compounds are extremely rare, with only 2 reported examples
1 9in the literature to date. ’

/ Cr \
1 (C O )4 X

64 65 66

r=\ /=\ n  (~^i
M e s " ^ N ^ ^ " M e s  D ip p " ^ -s /^ " D ip p  D i p p " ^ \ / ^ 'D i p p

co'v'J —co ccnJ  ^x > gckI ^ co co O  co
ccr'|'"'co c c r  I'"CO c c r  | v'cq c c r  |N :o

CO CO CO CO

67 68 69 70

M es = 2,4,6-trim ethylphenyl 

Dipp = 2,6-diisopropylphenyl

Figure 4.3 Cr(0)-NHC complexes prepared in this study (64, 67 and 68 are known compounds1215’13).
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Complexes 64-66 containing bis(carbene) ligands were synthesised according to
1 9literature procedures (scheme 4.3a). The imidazolium salts (50-52) were deprotonated in 

situ using sodium hydride as a base, with a catalytic amount of KOtBu, forming free 

carbenes 57-59. A method analogous to that used to prepare bis(phosphine)-Cr(0) complexes 

in chapter 3 was used for NHC complexes 67-70. The free carbenes (60-63) were formed 

first and then added to chromium hexacarbonyl in toluene, and then the mixture was heated 

for 48 h (scheme 4.3b).

A significant energy barrier needs to be overcome in order to remove a carbonyl 

ligand from the metal centre due to the thermodynamic stability of the complex. Free 

carbenes generally exhibit poor stability to heat, so it was considered that the high 

temperatures required may also result in decomposition of the free carbene. Products were 

however isolated in yields of around 45%. These yields are comparable to some of the better
11

literature results, which often involve more steps.

N
+ Cr(CO)6

N

NaH /  KOtBu

THF
A

(CO)4

10%

n = CH2 50  
(CH2)3 51 
CH2(C6H4)CH2 52

n = CH2 64  
(CH2)3 65  
CH2(C6H4)CH2 66

NHC

N H C = M e s " N v N - M e s  60

r = \
D i p p ^ N ^ N - p j p p  61

n
D i p p '^ N ^ N -Q jp p  62

n
M e s " ^ v N ‘ Mes 63

NHC
Cr(CO)6 C O . I .C O

,CrT olu en e    „
A CO | COr = \ co

40-50%

6 7 -70

Scheme 4.3 Synthesis o f Cr(0)-NHC complexes 64-70.
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While the monodentate NHC complexes were isolated in good yields, the bis(carbene) 

complexes were obtained in poor yields ( - 10%), and attempts to prepare these complexes in 

higher yield via different methods were unsuccessful. The consistently low yields obtained 

could be attributed to the presence of acidic protons a- to the nitrogen atoms, as discussed in 

chapter 2 .

All chromium (0) complexes (figure 4.3) were characterised by *H and 13C NMR 

spectroscopy. The characteristic absence of the imidazolium proton resonance at around 

9 ppm in the *H NMR spectra was noted, as well as the large downfield shift in the position 

of the NCN signal in the 13C NMR spectra. Two resonances between 200 and 220 ppm 

corresponding to the cis- and trans- carbonyl ligands were also observed, confirming the 

proposed structures.

Infra-red spectra were recorded for the bright yellow compounds 64-70 and were 

typical for complexes of the type Cr(CO)4(L)2 and Cr(CO)sL with Civ and C4V symmetry 

respectively. As described in chapter 3, infra-red spectroscopy is a very important analytical 

tool for the purpose of confirming oxidation to Cr(I).

The carbonyl stretching frequencies for complexes 64-70 are shown in table 4.1. The 

significant increase in basicity o f expanded NHCs, i.e. six- and seven-membered, has been 

previously noted, and this is observed in the infra red spectra where we see lower 

wavenumbers, particularly for the seven-membered NHC complex 70, than for the analogous 

five-membered pentacarbonyl systems. Lower wavenumbers are also observed for the 

chelating NHC complexes 64-66, as a result o f the extra electron density being donated to the 

metal centre by a second strongly electron donating carbene ligand.
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Cr(0) complex Ligand v  (CO)/cm_1
Av

i) (CO)/cm_1

64 N— N
/  \

1870 1920 1951 1913

65
N N

/  \

1861 1874 1980 1905

66 IAO 13
N N 
/  \

1823 1922 1976 1907

67 r=\
M es" ̂  ^  ~ Mes 1922 2059 1990

68
r=\

Dipp"N\ / N'D ipp 1923 2053 1988

69 n
D ipp^^N /^^D ipp

1927 2044 1985

70 n
M es'' ̂  ^ "  Mes

1925 2043 1984

Table 4.1 Carbonyl stretching frequencies for Cr(0) complexes 64-70.
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Interestingly, upon comparison of the tetracarbonyl complexes (64-66) with the 

bis(phosphine) complexes discussed in the previous chapter, we see much lower 

wavenumbers for the NHC complexes. From what we know about phosphines and carbenes 

as ligands, we would expect that phosphines, as weaker donors and with their ability to 

backbond to the metal centre, will lead to less electron density at the chromium resulting in 

lower M-CO backdonation, stronger C-O bonds and therefore higher wavenumbers. Carbenes 

on the other hand are strong a-donors that do not generally undergo 7i-backbonding, so the 

extra electron density at the metal centre is donated to the carbonyl ligands, resulting in 

weaker C-O bonds and stretches at lower wavenumbers in the infra-red spectra.

Complex 64 and the propylene bridged bis(phosphine) complex 36 in the previous 

chapter are analogous, i.e. CNCNC and PCCCP. They both form six-membered 

metallacycles with chromium and when directly compared, one observes lower wavenumbers 

for the NHC containing complex 64.

Crystals suitable for structure determination by single crystal X-ray methods were 

grown from a dichloromethane/methanol solution of 69. The structure is shown in figure 4.4 

and is, the first reported example of an expanded NHC-Cr(O) complex.

One can see from the structure shown in figure 4.4 that two of the equatorial carbonyl

ligands are bent away from the NHC ligand. The average Cr-C-O angle reported13 for this

type of complex is 176.4 ° and in complex 69 this angle is much smaller (166.3 °) i.e. the

bend is much greater, presumably due to the steric repulsions from such a sterically

demanding ligand. A similar bend is observed, but to a lesser extent with the equivalent
1 ̂five-membered NHC-Cr(0) complex where an angle of 169.4 ° is reported. The difference 

between the five- and six-membered NHC complexes can be attributed to the larger NCN 

angle in expanded carbenes, which have been reported to force the N-substituents closer to 

the metal centre,46 therefore having more impact on the carbonyl ligands. This impact of the 

N-substituents can be clearly seen in figure 4.4. The other two carbonyl ligands lie very close 

to the reported average, and appear to be unaffected by the extra bulk of the expanded 

carbene.
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C 3

C 2 C 4

C 1

01

C 1 8

C 2 0
0 5

0 3

C 1 9

)04

Figure 4.4 ORTEP plot at 50% probability of the molecular structure of 69.

Lengths (A) Angles (°)

C(l)-Cr(l) 2.210(2) N(l)-C(l)-N(l) 114.24(19)

Cr(l)-C(16) 1.887(3) C(l)-Cr(l)-C(16) 93.24(9)

Cr(l)-C(17) 1.905(3) C(l)-Cr(l)-C(17) 85.71(9)

Cr(l)-C(18) 1.9056(18) C(l)-Cr(l)-C(18) 99.41(5)

Cr(l)-C(19) 1.850(3) C(l)-Cr(l)-C(19) 178.59(10)

Cr(l)-C(20) 1.9056(18) C(l)-Cr(l)-C(20) 99.41(5)

C(16)-0(l) 1.150(3) Cr(l)-C(16)-0(1) 174.3(2)

C(17)-0(2) 1.145(3) Cr(l)-C(17)-0(2) 177.4(2)

C(18)-0(3) 1.149(2) Cr(l)-C(18)-0(3) 166.38(15)

C(19)-0(4) 1.153(3) Cr(l)-C(19)-0(4) 177.7(2)

C(20)-O(5) 1.149(2) Cr( 1 )-C(20)-O(5) 166.38(15)

C(18)-Cr(l)-C(19) 80.59(5)

C(17)-Cr(l)-C(19) 92.89(11)

Table 4.2 Selected bond lengths (A) and angles (°) for compound 69.
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4.2.2 Functionalised NHC-Cr(O) Complexes

Synthesis o f Cr(0) complexes containing the functionalised NHC ligands shown in 

figure 4.5 was found to be much more problematic than the systems described above. 

Different procedures were attempted to obtain the complexes, but no functionalised NHC- 

Cr(0) complexes were isolated. However, a very interesting side reaction was observed 

(vide infra).

One standard method involves the use of Cr(CO)sTHF as a chromium source, 

prepared by photolysis of chromium hexacarbonyl in THF. This was carried out, as shown in 

scheme 4.4, followed by addition of the pre-formed free carbene. THF is much more labile 

than a carbonyl ligand, so should be easily displaced by the free carbene. After removal of the 

solvent, analysis of the crude product by NMR spectroscopy showed no resonances 

corresponding to the NHC. After repeating the reaction unsuccessfully with a non- 

functionalised NHC, it was concluded that this is not a particularly suitable method, as the 

monodentate non-functionalised NHC-Cr(O) is a known complex.

Ph
R =  Me 10 R = Me 16

‘Pr 11 
lBu 12
C(CH3)2COPh 13

Figure 4.5 Functionalised free carbenes 10-13, and 16.

C O ^ I /C O
CO

C O |  /C O

ccr" l ^ c o

THF t = \

hu

CO' CO THF THF
CO CO CCf" I "'CO

CO

Scheme 4.4 Preparation of Cr(0)-NHC complex using photolysis.
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While the stability of the free carbenes were found to be relatively good (as discussed 

in chapter 2), a more recent report by Chauvin et. a /.38 describes a new route to a source of 

chromium complex suitable for reaction with imidazolium salts, similar to Ofele’s original 

method.5 Unfortunately, no isolable product containing the functionalised NHC was obtained 

using this method (Scheme 4.5).

^ x f \r^ nL / n^ r , r ^ n v / n ^R'
D C M /E tO H  R ^  R

Cr(CO)6 + 2 KOH -------------------► KHCr(CO)5  ► C C K ^ /C O

co ' I ^co
CO

Scheme 4.5 Use of imidazolium salt to prepare Cr(0)-NHC complex.

The use of other chromium sources, including a Fisher carbene chromium(O) 

complex, Cr(CO)3(MeCN)3, as well as the in situ method successfully used for the bis- 

carbenes all proved unsuccessful, with no identifiable product being recovered. While many 

Cr(0)-NHC complexes have been reported in good yields using the chromium Fischer 

carbene complex as a transfer agent, none contained functionalised NHCs.

However, a very interesting result was observed when the free carbene 11 was heated 

with chromium hexacarbonyl in toluene (scheme 4.6) using the method described for the 

monodentate, non-functionalised complexes 67-70. Analysis by NMR spectroscopy of the 

yellow crystalline solid showed that the ligand had decomposed to give the 1,3-diisopropyl 

NHC complex 71 shown in scheme 4.6.

Cr(CO)6KN(SiMe3)2

T oluene

Scheme 4.6 Unexpected reaction of functionalised NHC with Cr(CO)6.
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Crystals suitable for X-ray were grown from a dichloromethane/methanol solution 

and the structure confirms the product as 71. Selected bond lengths and angles are shown in 

Table 4.3, and lie within the range reported for Cr(0)-NHC complexes.8

C8, C3

C9C2 C7
N2

C5 N1/
C1

0 3

C4
C12

C6

Cr1
C13C11 0 4

02

C14
or

0 5

Figure 4.6 ORTEP plot at 50% probability of the molecular structure of 71.

Lengths (A) Angles (°)

C(l)-Cr(l) 2.154(7) C(l)-Cr(l)-C(14) 176.2(3)

Cr(l)-C(14) 1.852(8) C(l)-Cr(l)-C(10) 91.7(3)

C(14)-0(5) 1.152(7) C(10)-Cr(l)-C(14) 91.3(3)

Cr(l)-C(10) 1.903(7) N (l)-C (l)-N (2) 103.6(5)

C(10)-O(l) 1.138(7)

Table 4.3 Selected bond lengths (A) and angles (°) for compound 71.
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This reaction was repeated with the symmetrical di-ketone free carbene 13, and the 

same product (71) was confirmed by NMR spectroscopy as well as mass spectrometry. When 

the reaction was carried out with the N-methyl free carbene 10 the resulting 

1-methyl-3-isopropyl NHC complex 72 shown in figure 4.7 is isolated. The reaction was also 

repeated with the N-methyl imine-functionalised free carbene 16 and the same result was 

again observed. It is known that imines are readily hydrolysed back to ketones, even in the 

presence of traces of moisture, as discussed in chapter 2 , so it is perhaps unsurprising that 

under these forcing conditions one observes the same result.

r = \
n y

/C O \  I X r 
CO I CO 

CO

71 72

Figure 4.7 Structures of dialkyl NHC-Cr(O) complexes.

In order to obtain information about the mechanism of this unexpected reaction, 

experiments were repeated using deuterated solvents (toluene and methanol) to see if and 

where deuterium uptake was taking place. At least one proton was required in the case of 11, 

whereas two were required when the symmetrical NHC 13 was used. No deuterium uptake 

was observed, suggesting that the source of the hydrogen(s) was the ligand itself and not the 

solvent.

The salt was heated in toluene with no chromium source and was found to remain 

intact. Heating the free carbene in toluene caused decomposition, but not to the di-isopropyl 

NHC, as might be expected, just to an unidentifiable residue.

Benzaldehyde was assumed to be lost during the reaction, but is generally not classed 

as a good leaving group, and analysis of all reaction components did not reveal the presence 

of PhC(H)0. A mass spectrum of the methanol washings did however, show a small amount 

of the functionalised NHC-Cr(O) pentacarbonyl complex, which could not be isolated, 

leading us to believe that it was present only in very small quantities. This suggests that
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coordination of the intact ligand initially takes place, but does not chelate. NHCs are noted 

for the robustness of the complexes they form, with excellent thermal stabilities at 

temperatures up to 290 °C reported. ’ It is therefore surprising that the complex seems to 

form and then break down, as suggested by these results.

Based on the assumption that coordination of the NHC takes place before degradation 

of the ligand, reactions were carried out at different temperatures and reaction times in an 

attempt to find the point at which this degradation occurs. When lower temperatures and 

shorter timeframes were used, chromium hexacarbonyl was recovered and decomposition of 

the free carbene is observed to material that could not be identified.

Consistent isolated yields of around 35% of complex 71 led us to believe that since 

the reactions were carried out under anhydrous conditions, the extra protons were being 

abstracted from the ligand itself, suggesting an intermolecular mechanism is taking place. As 

far as we are aware, no reports o f this type of metal-mediated ligand degradation are present 

in the literature.

Since this ligand degradation only occurred in the presence of the metal source, the 

reaction was repeated with the other group 6 metals, molybdenum and tungsten 

hexacarbonyl, under the same reaction conditions. Interestingly, the isolated products, which 

are shown in figure 4.8, show that this unusual reaction is not exclusive to chromium.

f = \

^ c o \

c c r T ^ C 0
CO

M = Mo 73 
W 74

Figure 4.8 Molybdenum and Tungsten complexes isolated.
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4.2.3 Synthesis and Characterisation of Chromium(I)-NHC Complexes

Synthesis of cationic chromium(I)-NHC complexes 75-82 was carried out by 

one-electron oxidation (scheme 4.8) using Ag[Al(OC(CF3)s)4] as described in chapter 3. 

However the resulting complexes are significantly less stable than those of the phosphines, so 

the reaction time was reduced to just 30 minutes.

An immediate colour change was observed upon addition of the solvent, from bright 

yellow to red-purple, but if  the reaction mixture was left to stir for 16 hours, a further colour 

change to pale yellow was observed, and infra-red analysis of this product suggested 

decomposition of the complex to the chromium(O) precursor. This has been reported by 

Wass and co-workers with similar diphosphine Cr(I) systems, with half-lives between 4 and 

24 h at room temperature. Complexes 81 and 82 were found to be particularly sensitive, and 

began to lose their intense colour during removal of the solvent after 30 min. Infra red data 

were collected, but EPR data could not be obtained for 81 and only a very poor EPR 

spectrum was obtained in the case of 82.
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Scheme 4.7 Synthesis of Cr(I) complexes 75-82.

The fact that the Cr(I)-NHC complexes 75-82 were found to be even more unstable 

than the Cr(I)-phosphine systems described in the previous chapter was expected for the 

monodentate NHC complexes, due to the lack of additional stability as a result of the chelate 

effect. The lack of large substituent groups on the chelating bis(carbene) complexes 75-77 

could result in lower steric protection than the analogous bis(phosphines), which contain 

large phenyl group substituents, this has been shown to affect metal-donor bond strength,14 

and therefore could partially contribute to the lower stability.
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Unfortunately, attempts to obtain mass spectra failed for all of these complexes. This 

was attributed to their extremely sensitive nature, and crystals suitable for X-ray analysis 

could not be grown due to the instability of these complexes in solution.

Analysis by infra-red and EPR spectroscopies confirms the formation of chromium® 

complexes 75-82. Carbonyl stretching frequencies are displayed in table 4.4, and it can be 

seen that significant shifts in the carbonyl stretching frequencies are observed upon oxidation. 

One sees these higher wavenumbers due to the reduced electron density available at the metal 

centre in the 17-electron complex. Upon comparison with the chelating phosphine complexes 

43-49 in the previous chapter, it is clear that there is more electron density available at the 

metal centre in the chelating NHC complexes, possibly due to the lack of backbonding 

occurring in the carbene systems.
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Cr(I) complex Ligand
v  (CO)/cm_1

Cr(0) Cr(I)

0^0N N
/  \

1870 1986

75 1920 2015

1951 2047

N N
/  \

1861 1982

76 1874 2019

1980 2043

77 f t

1823 1980

On 13
N N

1922 2021

/  \ 1976 2054

78
/ = \

1922 2011

2059 2129

79
f=\

D ip p '^ V /^ 'D ip p

1923 2013

2053 2119

80 n
D ip p ^ ^ \/^ ^ D ip p

1927 2056

2044 2143

81 n 1925 2044

Mes^ ̂  ~̂~ Mes 2043 2128

82
r=\ 1921 2030

2054 2132

Table 4.4 Carbonyl stretching frequencies for Cr(I) complexes 75-82.
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4.2.4 EPR Studies

The X-band cw-EPR spectra were recorded for complexes 75 -  80, and the resulting 

spectra are shown below in figures 4.9 - 4.14. The EPR spectra of 81 and 82 were also 

recorded, but their quality was very poor, suggesting the cell may have leaked (leading to 

sample decomposition).

E x p erim en ta l

S im ula tion

V /

B0/G

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 75.

E xperim ental

Sim ulation

T T

B0/G

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 76.
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Experimental

Simulation

TT
3200 3300 3400

B0/G

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 77.

E x p e r im e n ta l

S im u la tio n

—,--------------- , 1 , 1 1--------------1—
3000 3200 3400 3600

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 78.
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Experimental

Simulation

Bq/G

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 79.

3200

E xp erim en ta l

S im ulation

“ITT

3300 3400 3500

b 0/ g

Figure 4.9 Experimental and simulated cw-EPR spectra (130K) of complex 80.
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Complex g  and A values

76 g i  = 2.045, g ,|=  1.988 
53Cr: A_l = 15G, A,| = 23G

77 g i  = 2.047, g„=  1.988. 
53Cr: Ajl = 15G, Ay = 23G

78
gzZ= 1.979, gyy = 2.045, gxx = 2.11

79
gzz= 1.982, gyy = 2.045, gzz = 2.1

Table 4.5 g and A values for complexes 76-79.

Monosubstitution or disubstitution is equivalent to a tetragonal distortion from 

octahedral symmetry. In the case of MA5B (C^v symmetry), trans-MA4B2 (D4h symmetry) or 

C/5-MA4B2 (C2v symmetry) complexes, the t2g orbitals split into b2 or b2g(dxy) and e or 

eg(dxz,dyz) (figure 4.15). As was already described in the chapter three, the g  tensor for the 

[Cr(CO)4PNP]+ complexes was consistent with a SOMO based primarily on a d^ ground 

state. In that case, the z-axis o f the ‘disubstituted’ (bidentate) complex (defined as the 

CO-Cr-CO direction) was unique. In the current situation, the monodentate and bidentate 

carbenes complexes o f Cr(I) will lead to different extents of tetragonal distortion away from 

octahedral symmetry. According to the EPR spectra of the bidentate complexes 75, 76 and 77 

shown above, they all had a pronounced axial symmetry with g i > ge > g|| and the resulting g  

tensor was in fact very similar to that observed in chapter three for the [Cr(CO)4PNP]+ 

complexes. This indicates that the Cr carbene complexes 75, 76 and 77 must possess a 

SOMO where the metal contribution is primarily dxy.
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Figure 4.15 Effects of symmetry on electronic structure.

However, in the case o f the monodentate complexes 78 and 79, the profile of the EPR 

spectra changes to rhombic symmetry. The g values extracted by simulation were 

approximately 2.11, 2.045 and 1.979 for both complexes (Table 4.5). These EPR spectra 

indicate that a further rhombic distortion must be occurring to the t2g set. Two situations can 

account for this, as illustrated in figure 4.15. The left hand side of the figure represents the 

common (dxy)2(dxz,dyzf  electronic ground state whereas the right hand side corresponds to the 

less common (dX2,d>,z)4(d^ ) 1 ground state. The unique x-axis in the monodentate complex lifts 

the degeneracy of the dxz, dyz orbitals, so the resulting EPR spectrum would be expected to 

possess a rhombic profile. In this case two components o f the tensor (g** and g^) would be 

expected to be greater than ge, whilst one component (gzZ) should be lower than ge. This is 

indeed observed experimentally (2.11, 2.045 > ge; 1.979 < ge) and suggests that the Cr(I) 

monodentate carbene complex also possess the d^ ground state.

It should be mentioned that one cannot rule out the possibility of a complex 

possessing a dyZ ground state, with the (dxy)2(dxz,dyz)3 electronic ground. In that case, two EPR 

situations can arise; one is characterised by a single feature EPR signal with gmax > 3, while 

the other has a rhombic profile with gmax < 3. Nevertheless, owing to the similarity in the
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bonding features o f the mondentate pentacarbonyl and bindentate tetracarbonyl Cr(I) 

complexes, it is most likely that this SOMO based on dyz does not occur.

A final peculiarity arises with the complex 80, that appears to produce an isotropic 

signal = 2.004. There is no obvious explanation why this occurs, and indeed what symmetry 

of complex would give rise to non-degenerate states. For the moment, one must assume this 

result is anomalous, and further experiments are required to better understand the EPR 

features of this complex (80) along with complexes 81 and 82 (which, as stated earlier, did 

not produce resolved spectra).

4.2.5 Cr(II)-NHC Complexes

Most reported Cr(II) complexes rely on carbonyl, or other strongly 7t-accepting 

ligands to impart stability to the low oxidation state, such as cyclopentadienyl,40 complexes 

containing NHCs are extremely rare. We have prepared a series o f Cr(II)-NHC complexes in 

good yield as shown in scheme 4.8, using tetrakis(acetonitrile)Cr(II)bis(tetrafluoroborate), 

which was prepared according to a literature procedure.41 Complexes containing 

functionalised and non-functionalised carbenes have been included.

b f 4 b f 4
! .MeCN I SNHC~>|
i C i  T H F  1 ' ' N JMeCN—Cr— MeCN + 2 NHC L   » ,  NHC— Cr—NHCv  i ■- r  y  !

MeCN 1 NHC I a
b f 4 16>57"59 BF4

60-75%
83-90

b f 4 b f ,
I sMeCN I s,NHC

MeCN—Cr— MeCN + 4 NHC  THF~ ^ NHC— Cr— NHC

MeCN^ i NHC |
BF4 6°-63 BF4

60-70%
91-94

Scheme 4.8 Preparation of Cr(II)-NHC complexes containing chelating and monodentate ligands.

122



Chapter 4 Low Oxidation State Chromium Complexes_________Results and Discussion

The substitution reaction is much easier than in the case of chromium hexacarbonyl; 

forcing conditions were not required, and functionalised carbene ligands remain unchanged. 

The pre-formed free carbene is added to a blue suspension of Cr(MeCN)4(BF4)2 in THF. An 

immediate colour change was observed, and the mixture stirred at room temperature for 16 h, 

after which the THF solution was concentrated and diethyl ether added to precipitate the 

complexes shown in figure 4.16.

BF,

r \
NHC l

jslHC

N H C  Cr  NHC

r  / \
NHC I

BF,

83-90

• v X -  10 f  ’’ "  N\ 57
0^ P h  P h A 0  0^ P h  13

f =\ /  f j  O  soN I _  f = . N-—• *•— N 58

/ o^ p h

/ = \  / „  N ^ Ph

16 I \

N̂  „N -X _  12 \
Ph

Ph .__N N-
X  cX , — IN IN ------ .

C> < 1
N N
\ /

59

Figure 4.16 Cr(II) complexes with chelating NHC ligands.

Complexes 83-94 were isolated as brightly coloured solids for which characterisation 

techniques were limited due to the very sensitive nature toward air and moisture. Cr(II) 

complexes are paramagnetic and therefore broad, uninformative NMR spectra were obtained,
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however, NMR data was used to determine magnetic susceptibilities {vide infra). The 

complexes are also EPR silent. This observation is consistent with those reported for other

Complexes 83-90 were characterised by elemental analysis which suggests the

a potentially tridentate NHC, but the elemental analysis data shows the presence of two 

NHCs and two BF4 ligands. Compounds 91-94, however, showed ambiguous results, this 

could be due to the fact that these monodentate species are significantly less stable than 

complexes 83-90, which have added stability due to the chelate effect. The proposed 

structures in figure 4.17 seem likely given the lability of the acetonitrile ligands, and the 

presence of four equivalents of free carbene in the reaction mixture. Analysis by mass 

spectroscopy provided no meaningful information about the structure of the complexes, this 

was also reported in the literature for one of the first Cr(II)-NHC complexes.42

paramagnetic Cr(II) complexes,19 and is due to the very short spin-lattice relaxation times 

associated with these high spin d4 systems.

equatorial arrangement o f the chelating NHCs as shown in figure 4.16. Complex 86 contains

BF41 ^

NHC

NHC Cr NHC

NHC

BF4

9 1 -9 4

NHC =

D ip p " 'N \/b * ~ ~ D ip p  62

61 63
Dipp~"IN n / IN Dipp M e s "  n /  M es

Figure 4.17 Cr(II) complexes with monodentate NHC ligands.
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Magnetic susceptibilities were measured for Cr(II) complexes 83-94, following 

Evans’ method,43 the most convenient method given the sensitive nature of the compounds. A 

sealed capillary tube containing 2% TMS in CDCI3 was placed in a known concentration of 

the complex in CDCI3 and the NMR spectra obtained, the paramagnetic solution was then 

spiked with the same concentration of TMS and a second NMR acquired. The resulting shift 

in the TMS resonance (figure 4.17) as a result of the paramagnetic complex in solution can be 

used to determine the magnetic susceptibility, and therefore the effective magnetic moment 

of the complex. The solution magnetic susceptibilities of these complexes was found to be 

between 4.66 and 5.14 jxb , indicating high-spin d4 ions, as reported for similar systems 41

a) b)

Figure 4.18 a) TMS in sealed capillary b) TMS in paramagnetic solution of 83.

Electronic spectra were obtained by sealing a known concentration of the complex in 

dichloromethane in a glass cuvette inside the glovebox. There is very little data in the 

literature with which to compare these spectra, as electronic spectra of chromium(II) 

complexes are notoriously difficult to obtain44 presumably due to their ease of oxidation to 

Cr(III). Theoretically, high-spin d4 systems in pure octahedral complexes should show two 

absorptions, corresponding to two transitions. The effect of Jahn-Teller distortions, however, 

causes one of the transitions to split, resulting in three absorptions.

Complexes of the type we are interested in have D4h symmetry, and are expected to 

result in the same splitting as observed in the Jahn-Teller distorted octahedral complexes. In 

practice, unless low temperatures are used this splitting is not observed, and two absorptions 

broaden into one. The spectra obtained for complexes 83-94 show one clear absorption at
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around 500-600 nm, which is comparable to reported data44 and corresponds to the 

5Aig <—5B]g transition, the lower energy transitions were not observed (figure 4.19).

A b sorb an ce

1.8
1.6
1 . 4

1.2

0.8
0.6
0 . 4

0.2

0 200 4 0 0 6 0 0

Figure 4.19 UV spectrum of 83.

For monodentate complexes 91-94, UV data and magnetic susceptibilities seem to be 

in line with the other complexes of this type, however the lack of any further data means that 

they cannot be unambiguously characterised.

4.3 Conclusion

A series of chromium(0)-NHC complexes has been prepared, and the first example of 

an expanded NHC-Cr(O) complex structurally characterised. Oxidation of these compounds 

led to the characterisation of Cr(I)-NHC complexes of the type not previously reported. These 

complexes have been analysed by EPR spectroscopy, where they compare to the analogous 

Cr(I)-bis(phosphine) complexes previously reported. In particular, they appear to possess 

similar electronic properties with a SOMO based on a metal contribution of dxy.

An unusual reaction has been described when attempting to prepare chromium(O) 

complexes containing functionalised NHC ligands, in which the ligand appears to break 

down under the reaction conditions employed. We have also reported a series of characterised 

Cr(II) complexes containing chelating NHC ligands in a square planar geometry, which are 

the first of their type to be reported as far as we are aware.
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4.4 Experimental Section

General Procedures. All manipulations were performed using standard Schlenk 

techniques under an argon atmosphere, or in a nitrogen atmosphere MBraun UNILAB 

glovebox with less than 0.1 ppm water and O2. Solvents were dried using a Braun Solvent 

Purification System, and degassed prior to use. Free carbenes 10-13, 16, 57-63 were prepared 

according to literature procedures46 or as described in 2.4, Cr(0) complexes 64-70,12,36,45,46 

silver aluminate [Ag[Al(OC(CFs)3)4]] 47 and chromium(II) precursor [Cr(MeCN)4(BF4)2] 41 

were prepared according to literature procedures.

NMR spectra were recorded at 298 K on Bruker Avance AMX 400 or Bruker-ACS 60 

spectrometers. Chemical shift values are given relative to residual solvent peak. ESI-MS were 

performed on a Waters LCT Premier XE instrument. Infra-red spectra were recorded using a 

JASCO FT/IR-660 Plus spectrometer and analysed in solution (dichloromethane). Electronic 

spectra were recorded in dichloromethane on a Perkin Elmer Lambda 900 UV/VIS/NIR 

spectrometer. EPR spectra and computer simulations were carried out with the assistance of 

Lucia McDyre, a PhD student at Cardiff University. EPR spectra were recorded at 13 OK on 

an X-band Bruker EMX spectrometer operating at 100 kHz field modulation, lOmW 

microwave power and equipped with a high sensitivity cavity (ER 4119HS). EPR computer
A O

simulations were performed using the SimEPR32 program, g Values were determined using 

a DPPH standard. Complexes were dissolved in 200pl DCM/toluene and a frozen solution 

produced by placing the EPR tube in liquid nitrogen.

cis-Tetracarbonyl-[ 1,1’-methylene-3,3’-dimethylimidazoIe-2,2’-diylidene] chromium (64)

Di-imidazolium salt 50 (1.5 g, 4.44 mmol) and chromium hexacarbonyl (980 mg, 4.44 mmol) 

were suspended in THF (30 ml). NaH (213 mg, 8.88 mmol) and KOlBu (50 mg, 0.44 mmol) 

were added, and the yellow mixture heated to reflux for 6 h. After cooling to room 

temperature, the solvent was removed in vacuo and the residue washed with methanol 

(2 x 20 ml). Extraction with THF (3 x 20 ml) and filtration through silica, followed by 

removal of the solvent in vacuo resulted in isolation of a yellow microcrystalline solid 

(150 mg, 9.9 %). 'H  NMR (acetone-d6, 400 MHz, 298 K): 8 (ppm) 7.29 (d, 2H, NCHCHN, 

3J hh = 1.6 Hz ), 7.07 (d, 2H, NCHCHN, Vhh = 2.0 Hz), 5.98 (s, 2H, NCH2N), 3.80 (s, 6H, 

NCH3). l3C |'H } NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 221.5 (CO), 211.3 (CO),

201.5 (NCN), 121.9 (NCHCHN), 120.2 (NCHCHN), 61.8 (NCH2), 36.7 (NCH3). High
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Resolution ESIpos-MS (MeCN): found 340.0430 (Ci3Hi2N4C>4Cr+ requires 340.0421 dev: 2.6 

ppm). IR (CH2C12): v =  1951 (s) (CO), 1920 (s), 1870 (s) (CO) cm'1.

cis-Tetracarbonyl-[ 1,1 '-propyIene-3,3,-dimethyIimidazole-2,2’-diylidenc]chromium (65)

An analogous method to that o f 64 was followed, using salt 51 (2.0 g, 5.47 mmol), chromium 

hexacarbonyl (1.2 g, 5.47 mmol), NaH (262 mg, 10.9 mmol) and KO*Bu (60 mg, 0.54 mmol). 

The product was obtained as a yellow microcrystalline solid (200 mg, 9.95 %). 'H NMR 

(acetone-cU, 400 MHz, 298 K): 6 (ppm) 7.19 (d, 2H, NC//CHN, VHH = 1.7 Hz), 7.05 (d, 2H, 

NCHCHN, 37hh = 1.8 Hz), 3.97 (s, 6H, NCH3), 3.78 (m, 2H, NCH2), 3.66 (m, 2H, NCH2), 

1.62 (m, 2H, NCH2CH2). 13C {]H} NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 225.9 

(CO), 211.5 (CO), 202.5 (NCN), 124.6 (NCHCHN), 120.2 (NCHCHN), 45.6 (NCH2), 40.1 

(NCH3), 34.5 (CH2). High Resolution ESI^-M S (MeCN): found 368.0593 (Ci5Hi6N404Cr+ 

requires 368.0577 dev: 4.3 ppm). IR (CH2C12): v=  1861 (s) (CO), 1874 (s) (CO), 1980 (s) 

(CO) cm'1.

cis-T etracarbonyl- [1,1 ’-xylylene-3,3 ’-dimethylimidazole-2,2 ’-diylidene] chromium 66

An analogous method to that o f 64 was followed, using salt 52 (1.5 g, 3.5 mmol), chromium 

hexacarbonyl (771 mg, 3.5 mmol), NaH (168 mg, 7.0 mmol) and KO'Bu (40 mg, 0.35 mmol). 

The product was obtained as a yellow microcrystalline solid (130 mg, 8.6 %). H NMR 

(acetone-d6, 400 MHz, 298 K): 5 (ppm) 7.37 (m, 2H, NCHCHN), 7.24 (m, 2H, NCHCHN), 

7.10 (d, 2H, C6H4 Vhh = 1.6 Hz), 6.75 (m, 2H, CHH), 5.31 (d, 2H, NCH2, VHH = 14 Hz), 

4.58 (d, 2H, NCH2, V Hh = 14 Hz), 3.99 (s, 6H, NCH3). 13C {’H} NMR (acetone-d6, 125 

MHz, 298 K): 8 (ppm) 226.9 (CO), 217.5 (CO), 201.3 (NCN), 129.0 (C6H4), 134.1 (C6H4),

126.7 (C6H4), 121.7 (NCHCHN), 53.1 (N-CH2), 41.2 (N-CH3). High Resolution ESIpos-MS 

(MeCN): found 431.0816 (C2oHi8N404Cr+ requires 431.0811 dev: 1.2 ppm); IR (CH2C12): v 

= 1823 (s) (CO), 1922 (s) (CO), 1976 (s) (CO) cm '1.

Pentacarbonyl-[1,3-bis-(2,4,6-trimethylphenyl)imidazole-2-ylidene] chromium (67)

A solution of free carbene 60 (500 mg, 1.65 mmol) in toluene (40 ml) was added to a Schlenk 

containing chromium hexacarbonyl (480 mg, 2.18 mmol), and the mixture heated to reflux 

for 48 h. The sublimed hexacarbonyl was periodically washed back into the stirred mixture. 

The solution was cooled to 0°C and filtered to remove excess chromium hexacarbonyl.

128



Chapter 4 Low Oxidation State Chromium Complexes Experimental

Solvent was removed in vacuo and the product extracted into dichloromethane (10 ml). 

Methanol (20 ml) was added to precipitate the product which was isolated by filtration and 

dried in vacuo yielding a yellow microcrystalline solid (350 mg, 43 %). !H NMR (acetone-d6, 

400 MHz, 298 K): 5 (ppm) 6.99 (s, 2H, 'NCHCHN), 6.95 (s, 4H, C6H2), 2.29 (s, 6H, para- 

CHi), 2.02 (s, 12H, ortho-CHj). 13C {‘H} NMR (acetone-d6, 125 MHz, 298 K): 5 (ppm) 

220.9 (CO), 215.4 (CO), 197.3 (NCN), 138.7,136.6, 134.8,128.4 (C6H2), 123.3 (NCHCHN),

20.1 (para-CH )̂, 16.6 (ortho-CHi). High Resolution ESIpos-MS (MeCN): found 496.1073 

(C26H24N2O5C /  requires 496.1078 dev: -1.0 ppm). IR (CH2C12): v=  1922 (s) (CO), 2059 (s) 

(CO) cm'1.

Pentacarbonyl-[l,3-bis-(2,6-diisopropylphenyl)[midazole-2-ylidene]chromium (68)

An analogous method to that o f 67 was followed, using free carbene 61 (500 mg, 1.28 mmol) 

and chromium hexacarbonyl (370 mg, 1.68 mmol). The product was obtained as a yellow 

microcrystalline solid (300 mg, 40 %). *H NMR (acetone-d6, 400 MHz, 298 K): 5 (ppm) 7.44 

(m, 2H, C6H3), 7.25 (m, 4H, C ^ ) ,  7.00 (s, 2H, NC//C//N), 2.62 (sept, 4H, C//(CH3)2, 

3J hh = 6.80 Hz), 1.30 (d, 12H, CH(C//3)2, Vhh = 6.81 Hz), 1.05 (d, 12H, CH(CH,)2, Vhh = 

6.82 Hz). 13C {‘H} NMR (acetone-d6, 125 MHz, 298 K): 5 (ppm) 219.9 (CO), 214.9 (CO),

198.6 (NCN), 145.3, 136.5, 129.6, 124.4 (C6H3), 123.2 (NCHCHN), 28.0 (CH(CH3)2), 24.9 

(CH(CH3)2), 22.8 (CH(CH3)2). High Resolution ESIp„s-MS (MeCN): found 580.1125 

(C32H36N20 5Cr+ requires 580.1114 dev: 1.9 ppm). IR (CH2C12): v =  1923 (s) (CO), 2053 (s) 

(CO) cm'1.

Pentacarbonyl- [l,3-bis(2,6-diisopropylphenyl)-4,5,6-trihydropyrimidin-2- 

ylid] chromium (69)

An analogous method to that of 67 was followed, using free carbene 62 (500 mg, 1.23 mmol) 

and chromium hexacarbonyl (363 mg, 1.61 mmol). The product was obtained as a yellow 

microcrystalline solid (280 mg, 46%). *H NMR (acetone-d6, 400 MHz, 298 K): 6 (ppm) 7.28 

(m, 2H, Q ^ ) ,  7.17 (m, 4H, Qj/fc), 3.45 (m, 4H, NC//(CH3)2), 3.07 (m, 4H, NC/72), 1.48 (m, 

2H, NCH2C/72), 1.19 (d, 12H, CH(CH3)2, V Hh = 6.7 Hz), 1.07 (d, 12H, CH(C773)2, Vhh =

6.7 Hz). 13C {‘H} NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 219.8 (CO), 214.5 (CO), 

201.2 (NCN), 144.6 (C6H3), 128.3 (C6H3), 124.5 (C6H3), 123.3 (C6H3), 27.7 (NCH2), 26.8, 

25.3 (NCH(CH3)2), 22.9 (NCH2CH2). High Resolution ESIpos-MS (MeCN): found 596.1435

129



Chapter 4 Low Oxidation State Chromium Complexes Experimental

(C28H4oN205Cr+ requires 596.1425 dev: 1.7 ppm). IR (CH2C12): v = 1927 (s) (CO), 2044 (s) 

(CO) cm'1.

Pentacarbonyl-[l,3-bis-(2,4,6-trimethylphenyl)-4,5,6,7-tetrahydro-[l,3]-diazepin-2- 

ylid] chromium (70)

An analogous method to that o f 67 was followed, using free carbene 63 (500 mg, 1.5 mmol) 

and chromium hexacarbonyl (428 mg, 1.95 mmol). The product was obtained as a yellow 

microcrystalline solid (290 mg, 37 %). *H NMR (acetone-d6, 400 MHz, 298 K): 8 (ppm) 6.72 

(m, 4H, C6H2), 3.17 (m, 4H, NCH2), 2.51 (s, 6H, para-CH3), 2.38 (m, 4H, NCH2C//2), 2.12 

(s, 12H, ortho-CHi). 13C {'H} NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 223.9 (CO),

218.1 (CO), 220.9 (NCN), 139.5 (C6H2), 136.4 (C6H2), 133.7 (CsH;.), 129.8 (C6H2), 53.7 

(NCH2), 27.6 (NCH2CH2), 20.6 (para-CRj,), 17.5 (ortho-CHi). High Resolution ESIpos-MS 

(MeCN): found 526.1519 (C28H3oN2OsCr+ requires 526.1504 dev: 2.8 ppm). IR (CH2C12): 

v=  1925 (s) (CO), 2043 (s) (CO) cm"1.

Pentacarbonyl- [ 1,3-bis-(diis opr opyl)imidazole-2-ylidene] chromium (71)

An analogous method to that o f 67 was followed, using free carbene 11 (500 mg, 1.95 mmol) 

and chromium hexacarbonyl (559 mg, 2.54 mmol). The product was obtained as a yellow 

microcrystalline solid (250 mg, 37 %). lH NMR (CDCI3, 400 MHz, 298 K): 5 (ppm) 6.99 (s, 

2H, NCHCHN), 5.13 (sept, 2H, NC//(CH3)2, Vhh = 6.67 Hz), 1.38 (d, 12H, NCH(C7/3)2, 

Vhh = 6.67 Hz). I3C {'H} NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 223.1 (CO), 218.6 

(CO), 193.1 (NCN), 120.7 (NCHCHN), 53.3 (NCH(CH3)2), 23.7 (NCH(CH3)2). High 

Resolution ESIp„s-MS (MeCN): found 344.0521 (Ci4Hi6N20 4Cr+ requires 344.0534 dev: -3.8 

ppm). IR (CH2C12): v =  1921 (s) (CO), 2054 (s) (CO) c m 1.

Pentacarbonyl-[l,3”bis-(diisopropyl)imidazole-2-ylidene]molybdenum (73)

An analogous method to that o f 67 was followed, using free carbene 11 (500 mg, 1.95 mmol) 

and molybdenum hexacarbonyl (670 mg, 2.54 mmol). The product was obtained as a yellow 

microcrystalline solid (300 mg, 39 %). JH NMR (acetone-d6, 400 MHz, 298 K): 8 (ppm) 7.42 

(s, 2H, NCHCHN), 5.06 (sept, 2H, NC//(CH3)2, 3./Hh = 6.7 Hz), 1.35 (d, 12H, NCH(Ci/3)2, 

Vhh = 6.7 Hz). 13C {1H} NMR (acetone-d6, 125 MHz, 298 K): 8 (ppm) 211.9 (CO), 205.7
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(CO), 192.6 (NCN), 118.5 (NCHCHN), 52.7 (CH(CH3)2), 22.3 (CH(CH3)2). High Resolution 

ESIpos-MS (MeCN): found 390.0114 (Ci4Hi6N204Mo+ requires 390.0092 dev: 5.6 ppm).

Pentacarbonyl-[l,3-bis-(diisopropyl)imidazole-2-ylidene]tungsten (74)

An analogous method to that of 67 was followed, using free carbene 11 (500 mg, 1.95 mmol) 

and tungsten hexacarbonyl (894 mg, 2.54 mmol). The product was obtained as a yellow 

microcrystalline solid (350 mg, 37 %). !H NMR (acetone-d6, 400 MHz, 298 K): 8 (ppm) 7.45 

(s, 2H, 'NCHCHN), 5.07 (sept, 2H, NC//(CH3)2 VHH = 6.71 Hz), 1.37 (d, 12H, NCH(CH3)2 

Vhh = 6.71 H z ) .  13C {lH} NMR (acetone-d6, 125 MHz, 298 K): 5 (ppm) 203.5 (CO), 198.4 

(CO), 185.3 (NCN), 119.8 (NCHCHN), 53.4 (CH(CH3)2), 21.9 (CH(CH3)2). High Resolution 

ESIpos-MS (MeCN): found 476.0573 (Ci4Hi6N204W+ requires 476.0561 dev: 2.5 ppm).

[cis-T etracarbonyl- [1,1 ’-methylene-3,3 ’-dimethylimidazole-2,2 ’- 

diylidene]chromium] [aluminate] (75)

Complex 64 (50 mg, 0.14 mmol) and the silver aluminate (317 mg, 0.29 mmol) were 

combined in a Schlenk tube and dichloromethane (10 ml) added. The mixture, which 

immediately changed colour, was left to stir for 30 min at room temperature with the 

exclusion of light. After filtration, the solvent was removed in vacuo leaving a red-purple 

residue which was washed with hexane (2 x 5 ml) and dried in vacuo to yield the product as a 

red-purple solid (80 mg, 41 %). IR (CH2C12): v=  1986 (s) (CO), 2015 (s) (CO), 2047 (s) 

(CO) cm'1.

[cis-Tetracarbonyl-[1,1’-propylene-3,3’-dimethylimidazole-2,2’- 

diylidene]chromium] [aluminate] (76)

An analogous method to that of 75 was followed, using chromium compound 65 (50 mg, 

0.14 mmol) and silver aluminate (290 mg, 0.27 mmol). The product was obtained as a dark 

red solid (75 mg, 40 %). IR (CH2C12): v= 1982 (s) (CO), 2019 (s) (CO), 2043 (s) (CO) cm'1.
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[cis-T etracarbonyl-[1,1 ’-xylylene-S^’-dimethylimidazole^^’- 

diylidene] chromium] [aluminate] (77)

An analogous method to that of 75 was followed, using chromium compound 66 (50 mg, 

0.12 mmol) and silver aluminate (250 mg, 0.23 mmol). The product was obtained as a dark 

purple solid (70 mg, 43 %). IR (CH2C12): v=  1980 (s) (CO), 2021 (s), 2054 (CO) cm'1.

[Pentacarbonyl-[l,3-bis-(2,4,6-trimethylphenyl)imidazole-2- 

ylidene] chromium] [aluminate] (78)

An analogous method to that o f 75 was followed, using chromium compound 67 (50 mg, 

0.10 mmol) and silver aluminate (210 mg, 0.20 mmol). The product was obtained as a dark 

red solid (60 mg, 40 %). IR (CH2C12): v=  2011 (s) (CO), 2129 (s) (CO) cm'1.

[Pentacarbonyl-[l,3-bis-(2,6-diisopropylphenyl)imidazole-2- 

ylidene] chromium] [aluminate] (79)

An analogous method to that of 75 was followed, using chromium compound 68 (50 mg, 

0.08 mmol) and silver aluminate (184 mg, 0.17 mmol). The product was obtained as a dark 

red solid (60 mg, 45 %). IR (CH2C12): v=  2012 (s) (CO), 2119 (s) (CO) cm'1.

[Pentacarbonyl-[l,3-bis(2,6-diisopropylphenyl)-4,5,6-trihydropyridin-2- 

ylid] chromium] [aluminate] (80)

An analogous method to that of 75 was followed, using chromium compound 69 (50 mg, 

0.08 mmol) and silver aluminate (181 mg, 0.17 mmol). The product was obtained as a red 

solid (65 mg, 49 %). IR (CH2C12): v=  2056 (s) (CO), 2143 (s) (CO) cm '1.

[Pentacarbonyl-[l,3-bis-(2,4,6-trimethylphenyl)-4,5,6,7-tetrahydro-[l,3]-diazepin-2- 

ylid] chromium] [aluminate] (81)

An analogous method to that of 75 was followed, using chromium compound 70 (50 mg, 

0.09 mmol) and silver aluminate (200 mg, 0.19 mmol). The product was obtained as a dark 

red solid (60 mg, 42 %). IR (CH2C12): v= 2044 (s) (CO), 2127 (s) (CO) cm'1.
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[Pentacarbonyl-[l,3-bis-(diisopropyl)imidazole-2-ylidene]chromium] [aluminate] (82)

An analogous method to that of 75 was followed, using chromium compound 71 (50 mg, 

0.15 mmol) and silver aluminate (313 mg, 0.29 mmol). The product was obtained as a red- 

purple solid (90 mg, 47 %). IR (CH2CI2): v=  2030 (s), 2132 (CO) cm'1.

[l-methyl-3-isobutyrophenoneimidazole-2-ylidene]chromium(II) tetrafluoroborate (83)

A solution of free carbene 10 (291 mg, 1.28 mmol) in THF (10 ml) was added dropwise to a 

slurry of Cr(MeCN)4(BF4)2 (250 mg, 0.64 mmol) in THF (10 ml), and the mixture stirred for 

16 h at room temperature. Concentration of the THF solution, followed by addition of diethyl 

ether resulted in precipitation o f the product. The resulting solid was washed with diethyl 

ether (3><5 ml) and dried in vacuo to yield a dark pink solid (300 mg, 69 %). Anal. Calcd for 

C28H3202N4CrB2F8 (found): C, 49.30 (49.54); H, 4.73 (5.28); N, 8.21 (8.56). 

A™ax(dcm)/nm 530. Magnetic moment pefr = 4.66 pe-

[l-isopropyl-3-isobutyrophenoneimidazole-2-ylidene]chromium(II) tetrafluoroborate 
(84)

An analogous method to that of 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 11 (330 mg, 1.28 mmol). The product was isolated as a 

red-brown solid (320 mg, 67 %). Anal. Calcd for C32H40O2N4Q B 2F8 (found): C, 52.06 

(51.30); H, 5.46 (4.91); N, 7.59 (7.53). ^^ (d cm y n m  510. Magnetic moment peff = 4.81 ps.

[l-tButyl-3-isobutyrophenoneimidazole-2-ylidene]chromium(II) tetrafluoroborate (85)

An analogous method to that of 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 12 (345 mg, 1.28 mmol). The product was isolated as a pale 

green solid (320 mg, 65 %). Anal. Calcd for C34H4402N4CrB2F8 (found): C, 53.29 (51.51); H,

5.79 (5.33); N, 7.31 (7.63). ^^ (d cm y n m  630. Magnetic moment pefr = 4.66 pb.

[ 1,3-diisobutyrophenoneimidazole-2-ylidene] chromium(II) tetrafluoroborate (86)

An analogous method to that of 83 was followed, using Cr(MeCNy(BF4)2 (250 mg, 

0.64 mmol) and free carbene 13 (460 mg, 1.28 mmol). The product was isolated as a pale 

green solid (440 mg, 70 %). Anal. Calcd for C46H48O4N4Q B 2F8 (found): C, 58.35 (60.08); H, 

5.07 (4.95); N, 5.92 (6.22). ATOax(dcm)/nm 620. Magnetic moment pefr= 5.08 ps.
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[l-methyl-3-phenylpropylidenebenzenamineimidazoIe-2-ylidene]chromium(II) 

tetrafluoroborate (87)

An analogous method to that of 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 16 (390 mg, 1.28 mmol). The product was isolated as a green 

solid (320 mg, 60 %). Anal. Calcd for C4oH42N6CrB2F8 (found): C, 57.69 (59.08); H, 5.05 

(5.15); N, 10.10 (9.22). Xmax(dcm)/nm 590. Magnetic moment peff = 5.14 pB.

bis-[ 1,1’-methylene-3,3’-dimethylimidazole-2,2’-diylidene]-chromium(II) 

tetrafluoroborate (88)

An analogous method to that o f 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 57 (225 mg, 1.28 mmol). The product was isolated as a red solid 

(280 mg, 75 %). Anal. Calcd for C ig l^ N g C ^ F g  (found): C, 37.40 (38.58); H, 4.18 (3.94); 

N, 19.38 (19.09). Aanax(dcm)/nm 530. Magnetic moment peff= 4.76 pB.

bis-[ 1,1’-propylene-3,3’-dimethylimidazole-2,2’-diylidene] chromium(II) 

tetrafluoroborate (89)

An analogous method to that o f 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 58 (260 mg, 1.28 mmol). The product was isolated as a red- 

brown solid (300 mg, 74 %). Anal. Calcd for C22H32NgCrB2Fg (found): C, 41.67 (38.32); H, 

5.09 (5.14); N, 17.66 (16.83). ^^ (d cm y n m  510. Magnetic moment peff = 5.02 pB.

bis- [1,1 ’-xylylene-3,3 ’-dimethylimidazole-2,2 ’-diylidene] chromium(II) tetrafluoroborate 

(90)

An analogous method to that o f 83 was followed, using Cr(MeCN)4(BF4)2 (250 mg, 

0.64 mmol) and free carbene 59 (340 mg, 1.28 mmol). The product was isolated as a dark 

pink solid (340 mg, 70 %). Anal. Calcd for C32H36NgCrB2Fg (found): C, 50.69 (49.48); H,

4.79 (4.32); N, 14.77 (14.02). A™ax(dcm)/nm 520. Magnetic moment peff = 4.87 pB.
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Chapter Five 
Synthesis, Characterisation and Catalytic Testing of Some 

Novel Chromium(III) and Titanium(III)-NHC Complexes

5.1 Introduction

Cr(III) complexes are much more widely reported than other oxidation states of 

chromium, and represent a series of complexes of significant interest in terms of catalytic 

activity, particularly in ethylene oligomerisation and polymerisation.

While well established in the field of late-transition metals,1 the use of NHCs in early
9 'Xtransition metal chemistry is much less common ’ and this has been attributed to the ease of 

dissociation of the metal-carbene bond in such complexes.4 Cr(III) however represents one of 

the more stable (kinetically inert) oxidation states, and a number of complexes containing 

NHC ligands have been reported.5' 16 Ti(III)-NHC complexes are less well known than their 

chromium analogues, with only a few being recently reported.17' 19

In this chapter we discuss the role of Cr(III) as well as other metal complexes in 

selective ethylene oligomerisation catalysis, and report the synthesis and EPR analysis of a 

series of novel chromium(III) and titanium(III)-NHC complexes. The catalytic behaviour of a 

selection of these complexes is also reported.

5.1.1 Role of Cr(III) in Ethylene Oligomerisation

The use o f chromium in ethylene oligomerisation is well established in both 

homogeneous and heterogeneous catalytic systems. As described in 1.1, conventional 

ethylene oligomerisation processes generally produce a statistical (Schultz-Flory) distribution
9fi 91of linear alpha olefins (LAOs), which is undesirable from an industrial point of view.

In 1977 Manyik and co-workers reported the selective trimerisation of ethylene to 

produce 1-hexene,22 a reaction which has since received much attention with a significant 

amount of research focussing on the development of catalysts capable of high selectivity.
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Other metal complexes have been investigated in this process, and are discussed in 

section 5.1.2, but chromium remains the preferred metal to catalyse this reaction, since it 

appears to result in the best activity as well as selectivity.23 As described in 1.2.2, a 

metallacyclic mechanism involving a 2-electron redox couple is generally thought to be in 

place; the formal oxidation state(s) of the active species is yet to be confirmed. The active 

catalyst is usually generated in-situ from a Cr(III) compound, added ligand, and a co-catalyst 

(commonly MAO). Cr(I)-Cr(III),24 Cr(II)-Cr(IV)25 and Cr(III)-Cr(V)26 couples have been 

suggested as the principle oxidation states involved. Cr(V) and Cr(I) complexes are rare and 

generally unstable; Cr(V) complexes typically have oxygen or halide ligands, whereas Cr(I) 

complexes with isocyanides and bipy ligands are known.26 Cr(III) complexes are the most 

widely studied, possibly due to their increased stability relative to the other oxidation states 

of chromium postulated to be involved in the mechanism, and at present, a Cr(I)-Cr(III) 

couple is favoured. However, this is by no means certain, and it may be that different couples 

operate within different catalyst systems or operating conditions.

There are a large number of Cr(III) complexes which, when activated with MAO or 

similar co-catalyst, are reported to display excellent activities and selectivities for ethylene
9 i  98  i ntrimerisation. ’ ' More recently, similar complexes have been reported as effective

10tetramerisation catalysts producing 1-octene, another valuable industrial reagent, with high 

selectivity. This is extremely new, however, and a creditable mechanism has only recently 

been published, and is able to explain the observed side-products.27

Some of the most active catalysts reported generally include bidentate heteroatomic 

ligands containing mixed phosphorus and nitrogen atoms (PNP type ligands), as described in 

3.1.1. Catalytic conditions can involve activation of the preformed Cr(III) complex with a 

co-catalyst, or in the case o f in situ systems; addition of the co-catalyst to a mixture of ligand
<5 1

and Cr(III) source. The co-catalyst MAO, is generally thought to facilitate alkyl abstraction
31 33from the catalyst precursor to yield a cationic metal fragment. ' Since MAO is relatively 

poorly defined and used in large excess, the identity of the active metal species generally 

remains unknown.31

The PNP type ligand systems generally show good catalytic activity and selectivity, 

and as a result a number have been studied, allowing detailed comparisons to be made and 

conclusions drawn about the effect of ligand properties on catalyst capability. Distinct ligand 

effects on activity have been observed, where increased steric bulk on the nitrogen atom has 

been demonstrated to result in the switch from predominantly 1-octene to 1-hexene 

production.30
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Additionally, studies by Sasol Technology have shown that selectivity can be shifted 

from trimerisation to tetramerisation by the reducing the number of ortho-alkyl substituents 

from four to zero as shown in figure 5.1,30a providing further evidence that the steric effects 

of the ligand clearly influences the selectivity.

a b

Figure 5.1 (a) Selective toward 1-hexene (b) Selective toward 1-octene.

5.1.2 Role of Other Metals in Ethylene Oligomerisation

Although most reported trimerisation catalysts are based on chromium, some systems 

based on other early transition metals have also been described.34'38

Figure 5.2 Titanium catalyst reported by Hessen.35

The first titanium complex capable o f high selectivity in ethylene trimerisation was 

reported by Hessen and co-workers35 in 2001 (figure 5.2) where, upon activation with MAO, 

the pendant aromatic group is reported to coordinate to the metal centre. This hemilabile 

coordination was reported to be responsible for the observed high selectivity toward 

1-hexene. Similar to the postulated chromium-based trimerisation mechanism,27’ 29 the

144



Chapter 5 Cr(III) and Ti(lII)-NHC Complexes Introduction

titanium catalysed systems are thought to be based on a metallacyclic mechanism, where 

chain growth terminates at the metallacycloheptane intermediate, resulting in good selectivity 

toward 1-hexene.34,35 Despite good selectivity and activity reported for titanium-based 

trimerisation systems, the major disadvantage is the large excess of MAO required.21

Zirconium complexes have been reported as good dimerisation catalysts, but with 

respect to 1 -hexene; activity and selectivity is low and the production of large quantities of 

polyethylene means that zirconium complexes are not considered viable alternatives to 

chromium catalysts.

Vanadium catalytic systems have proven to be active catalysts21 in the ethylene

trimerisation process, and interestingly, the addition of a co-catalyst was reported as not

essential, which is an attractive attribute. Nevertheless, overall catalyst performance does not
01compare to chromium systems.

More recently, tantalum compounds have also been reported to efficiently trimerise
- i z  -2 0

ethylene, producing 1-hexene in excellent selectivities. ’ Interestingly, no ligand is

involved; TaCls is treated with an alkylating agent to form an intermediate precursor to the
01active catalyst, which is proposed to be ‘naked’. These catalysts are again reported to carry 

out the trimerisation via a metallacyclic mechanism, but crucially do not require the use of an 

expensive co-catalyst necessary in other chromium systems.

Most known ethylene trimerisation catalysts are based on early transition metals, but 

some nickel based systems and uranium based systems have also been evaluated in the patent 

literature.21 Very few other systems compare to the more established chromium catalysts, and 

the fact that investigation continues can be partially attributed to intellectual property 

considerations, as well as potential catalyst improvements, and the environmental concerns 

associated with chromium. Also, from a mechanistic point of view, it is interesting to see how 

the catalyst capabilities are affected with different systems.

The development o f catalyst systems based on other transition metals rather than 

chromium has resulted in more information being gained about the general mechanism, 

suggesting that similar processes are occurring in each case. Although activities reported thus 

far are generally much lower than with the more established chromium catalysts, the 

potential to provide valuable mechanistic insight means that the continuing study o f other 

early transition metal complexes remains an exciting area o f research.
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5.1.3 Cr(III)-NHC Complexes

As described in 1.1.2, NHC complexes have shown excellent results in many different 

types of catalysis with late transition metals,15’16 including Heck coupling reactions, 

hydroformylation, hydrogenation and olefin metathesis.1 As a result, NHC ligands have 

become popular alternatives to the much used phosphines, partially due to their lower 

toxicity.5'14,16 NHCs benefit from strong o-donating but poor 7t-accepting character, and allow 

steric and electronic properties to be easily altered; they therefore have the potential to be 

excellent ancillary ligands in many different types of catalysis, including the ethylene 

oligomerisation reactions we are interested in.

By comparison to the large amount of work carried out in the area, relatively few 

ethylene oligomerisation catalysts containing NHC ligands have been reported.15,16,40-43 This 

has been partially attributed to the decomposition of alkyl-metal carbene complexes via alkyl 

imidazolium reductive elimination. This can result in decomposition of the complex before 

effective catalysis can take place, and has been observed for several late transition metal 

complexes.44 Chelating carbene ligands impart extra stability due to the chelate effect, and 

therefore represent a ligand set that can stabilise the alkyl-metal intermediates thought to be 

part of the oligomerisation mechanism, thus limiting the decomposition pathway.44
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Figure 5.3 Selection of reported Cr(III)-NHC and related complexes.
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Gibson and co-workers42 reported a tridentate bis(carbene) complex of chromium (III) 

containing a pyridine donor group (I, figure 5.3) which was the first Cr(III)-NHC complex to 

be structurally characterised. This was also the first Cr(III)-NHC complex to show excellent 

catalytic results in ethylene oligomerisation in the presence of MAO.

McGuinness and co-workers43 went on to report NHC complexes incorporating a 

thiophene donor group (V, figure 5.3), which were found to be significantly less active than 

the pyridine analogues. A series o f related complexes bearing imidazole-based chelate 

ligands (II, III, figure 5.3) were first reported by Cavell and co-workers40 and were found to 

be active catalysts upon activation with MAO, and Theopold reported a bidentate 

bis(carbene) complex (VI, figure 5.3) which displayed only low ethylene polymerisation 

activity.16 This variation in catalytic activity demonstrates that while NHC ligands have the 

potential to produce catalysts with excellent oligomerisation capabilities, further work in this 

relatively poorly explored area of chemistry is required to develop the knowledge of ligand 

influence, and ‘fine-tune’ NHC ligands accordingly.

5.1.4 Ti(III)-NHC Complexes

Of the titanium complexes reported to contain NHC ligands,18’ 44, 45 only a small 

number are complexes in the +III oxidation state,4’18’19’46 with EPR data reported only for a 

few.18’46
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Figure 5.4 Examples of Ti(III)-NHC complexes.
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Some examples are shown in figure 5.4, and show that generally an ancillary donor 

group is required to help stabilise the highly reducing Ti(III) oxidation state.

These Ti(III) complexes are particularly suited to analysis by EPR spectroscopy as 

they are d1 paramagnetic ions, and the presence of only one unpaired electron should result in 

relatively simple interpretable spectra.

The homoleptic alkoxy-N-heterocyclic carbene complex (figure 5.4) reported by
1 £Arnold and co-workers was the first titanium(III)-NHC complex synthesised from a Ti(III) 

metal precursor. Arnold reported an efficient synthetic procedure to the metal precursor 

TiCl3(THF)3, previously deemed a very useful but expensive starting material. The method 

allows high purity and yields o f TiCl3(THF)3 to be isolated from commercially available, 

inexpensive starting materials and provides a more accessible route to Ti(III) complexes.

The first highly active Ti(III) ethylene polymerisation catalyst to contain an NHC 

ligand was reported by Kawaguchi and co-workers, and a number of ethylene polymerisation 

catalysts based on functionalised carbene ligands with Ti(III) have since been reported.

Given the increasing application of NHCs in early transition metal chemistry, and in 

particular, the increased momentum in the use of the complexes as catalysts for alkene 

oligomerisation and polymerisation, we were interested in developing the fundamental 

understanding of these compounds by preparing a series of Cr(III) and Ti(III)-NHC 

complexes for catalytic testing as well as EPR analysis.
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5.2 Results and Discussion

A series of N-heterocyclic carbene ligands shown in figure 5.5 were used to prepare 

chromium(III) and titanium(III) complexes. A variety of ligands, including chelating 

bis(carbenes), functionalised carbenes, and simple monodentate carbenes were chosen in 

order to obtain a wide selection of complexes for EPR analysis and catalytic testing. Free 

carbenes 10-13,16, 18, 57-60, 62, 63 and 96 were prepared in situ by reaction of the 

corresponding imidazolium salts (1-4, 7, 9, 50-56 and 95) with potassium 

bis(trimethylsilyl)amide (KHMDS) as described in 2.2.2.
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^ ' \  O ,  7 V C N~
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Figure 5.5 ligands used to prepare M(III) complexes (M = Cr, Ti).
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5.2.1 Synthesis of Cr(III)-NHC Complexes

A solution o f free carbene in THF at -10°C was added dropwise to a solution of the 

chromium precursor in THF at -10°C (scheme 5.1). Low temperatures were used in order to 

prevent the formation o f polymeric material, which is not uncommon for this type of reaction.
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,Ci\

cr | ci
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16 h
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57- 60 
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r p
L\  I

.Cr.
cr | ci 
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51% 
100

THF

Cl

L

Cr!

Cl

L

Cl

45-53 % 
97-99, 101-106

THF

Cl

THF

Cr\
Cl 

Cl

51-55%
107-109

Scheme 5.1 Synthesis of Cr(III)-NHC complexes 97-109.

McGuinness43 has reported that if  addition of the free carbene is carried out too fast, a 

disproportionation reaction can occur, forming the dichloride complex (Figure 5.6a) with a 

chromium counterion rather than the expected trichloride complex (Figure 5.6b).

150



Chapter 5 Cr(III) and Ti(III)-NHC Complexes Results and Discussion

[CrCI4(THF)2 ]

a b
Figure 5.6 Complexes formed when NHC is added (a) quickly and (b) slowly.

A colour change was usually observed during the addition of the free carbene, along 

with the disappearance of the insoluble purple chromium precursor. The mixture was left to 

stir for 16 h (after slowly allowing to reach room temperature) and the resulting precipitate 

collected by filtration. Complexes 97-109 were isolated as brightly coloured free flowing 

solids which quickly change colour upon exposure to air and/or moisture. Based on the 

stoichiometry of reagents, the structures of the complexes were expected to be as displayed in 

figure 5.7. Similar octahedral structures are reported for related complexes in the 

literature.16,40'42’47

Free carbenes are very strong sigma donor ligands, which easily displace labile THF 

ligands in the CrCl3(THF)3 metal precursor. Carbenes 10-12, 16, 18, and 57-59 

(i.e. donor-functionalised NHC ligands) were expected to form chelate complexes of the type 

Cr(NHC)(THF)Cl3 (Type 2, figure 5.7), whereas the monodentate carbenes 60, 62 and 63 

were expected to result in complexes containing one NHC and two THF ligands. The 

potentially tridentate NHC ligands 13 and 96 were expected to form complexes of the type 

Cr(NHC)Cl3 (Type 3, figure 5.7). Cr(III) complexes have been known to form dinuclear 

(bridging) complexes, particularly with chloride ligands present,16,48 and is reported to be due 

to the desire to form octahedral complexes in the absence of sufficient ligands.16 This is 

relatively rare however, so complexes 97-109 were expected to be mononuclear, as shown in 

figure 5.7.
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Figure 5.7 Probable structures of Cr(III) complexes 97-109.

Crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether 

into a dichloromethane solution of complex 100. The structure is shown in figure 5.8 and 

selected bond lengths and angles are displayed in table 5.1. An octahedral geometry in which

152



Chapter 5 Cr(III) and TifIII)-NHC Complexes Results and Discussion

the tridentate ligand is arranged equatorially is observed, confirming the coordination of the 

ketone functional groups o f the ligand. The geometry around the Cr is distorted from 

perfectly octahedral, with the 0 (2)-C r(l)-0 (l) angle forced from the expected linear 

geometry to 172.4(3) ° by the constraints of the ligand. The Cl(l)-Cr(l)-Cl(2) angle is also 

significantly removed from linearity at 172.9(11)°; interestingly the apical chlorides are 

slightly bent toward the more sterically hindered NHC rather than toward the chloride trans 

to the carbene.

C5CM C10C9

C2
C6C3 N2

C15

C8C19 C14C20 C7'C1
C11

C1C18 0 2
Cr1

01 C12

C1 CI3
IC23

CI2

Figure 5.8 ORTEP plot at 50% probability o f the molecular structure o f 100.

Bond length (A) Bond angle (°)

Cr(l)-C(l) 1.997(9) N(l)-C(l)-N(2) 106.0(7)

Cr(l)-Cl(3) 2.369(3) C(l)-Cr(l)-Cl(3) 177.9(3)

Cr(l)-0(1) 1.987(6) 0(2 )-C r(l)-0 (l) 172.4(3)

Cr(l)-0(2) 1.958(6) C(l)-Cr(l)-0(2) 86.3(3)

C(7)-0(2) 1.236(10) C(l)-Cr(l)-0(1) 86.1(3)

C(17)-0(l) 1.233(11) Cl(l)-Cr(l)-Cl(2) 172.9(11)

Cr(l)-Cl(l) 2.327(3)

Cr(l)-Cl(2) 2.317(3)

Table 5.1 Selected bond lengths and angles for 100.
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The C (l)-C r(l) bond length (1.997(9) A) is on the shorter end of reported Cr-NHC 

complexes (average 2.158 A).16,42 However, the chloride ligand trans to the NHC shows no 

significant trans influence exerted by the strongly a-donating carbene ligand, and all three 

Cr-Cl bonds lie in the range expected for these complexes.11,42,49

The chelate bite angles (86.3(3) °, 86.1(3) °) are significantly larger than for the 

similar tridentate NHC-Pyridine-NHC-Cr(III) complex reported by Gibson and co-workers42 

(76.3(2) °, 75.68(9) °) and demonstrate the symmetry o f the coordinated ligand.

Comparison with the imidazolium salt precursor 4 shows there is no significant 

change in bond lengths in the imidazole ring upon coordination, as might be expected due to 

loss of 7t-electron delocalisation, we do however see a slight elongation of the carbonyl bonds 

C(17)-0(l) and C(7)-0(2) (1.233(11) A, 1.236(10) A) relative to the salt (1.211(5) A, 
1.215(5) A) as coordination to the chromium centre takes place.

Full characterisation of complexes 97-109 proved difficult due to their sensitive and 

paramagnetic nature. Attempts at elemental analysis often resulted in diminished carbon and 

nitrogen values. A recent study on similar complexes showed that although the complexes did 

not appear to change, microanalytical data showed up to six molecules of water absorbed 

after only a short time exposed to air.47 Our complexes showed low values for carbon and 

nitrogen, even with crystalline samples of 100 that were found suitable for X-ray analysis, so 

it was concluded that absorption of water was taking place.

Complexes 97-102 and 106 were analysed by infra-red spectroscopy, where a low 

frequency shift of -130 cm ' 1 upon coordination, relative to the free ligand is generally 

observed for the donor-functional groups, and has been reported for similar complexes.47 This 

shift in observed frequency is due to coordination; in the case of the ketone-functionalised 

NHC ligands, the coordination of the oxygen to the chromium centre will result in a slightly 

longer and weaker C =0 bond (as observed in the X-ray data for 100). This bond will 

therefore absorb at a lower frequency than in the uncoordinated salts previously reported. The 

IR data thus confirms the bidentate coordination structure described in figure 5.7. Complex 

106 was expected to coordinate to the metal centre through the linking oxygen atom as well 

as the two NHC moieties, forming a Cr(NHC)Cl3 complex similar to 100, however analysis 

of the IR spectra suggests that the oxygen does not coordinate. We would expect a shift 

relative to the free ligand upon coordination as described above, however we do not see any 

significant change in the stretching frequency, suggesting that no (or very weak) coordination 

takes place, and complex 106 therefore contains a bidentate ligand and has a structure of 

Type 2 (figure 5.7).
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Electronic spectra for octahedral complexes of chromium(III) are expected to display 

three absorptions. The spectra for complexes 97-109 were recorded, and we generally see two 

of these absorptions, corresponding to the transition 4T2g «— 4A2g at around 600 nm and the 

transition 4Tig <— 4A2g at around 450 nm, which is comparable to reported data for similar 

complexes.47 The third expected transition 4Tig <— 4A2g was not observed, and is generally 

reported to be obscured by charge transfer bands.44 The magnetic moments of complexes 

97-109 were determined using the method of Evans, as described in 4.2.5, and lie in the range 

3.63 pb - 3.92 pb confirming three unpaired electrons, and providing further evidence that 

these complexes are mononuclear as described in figure 5.6; dinuclear structures are reported 

to have lower magnetic moments (-3.0 P b )-40, 50

Characterisation of these complexes by mass spectrometry proved consistently 

unsuccessful, despite several attempts to limit exposure to moisture by direct injection. 

Characterisation difficulties due to high sensitivity has been reported many times in the 

literature for this type of complex.47,51-54 However, in light of the evidence provided, and the 

data obtained from the EPR studies (see EPR analyses below; section 5.2.2), complexes 

97-109 are confidently assigned as mononuclear octahedral chromium complexes of the type 

proposed in figure 5.7. These complexes were also tested as pre-catalysts for chain-growth 

reactions (ethylene oligomerisation/polymerisation). Reaction conditions and catalytic results 

are described below (section 5.2.3).
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5.2.2 EPR Studies

The cw-EPR spectra for the Cr(III)-NHC complexes are shown below in figures 5.9 

and 5.10. At this frequency (9 GHz) the spectra are broad and poorly resolved owing to the 

S = /2 spin state o f the system.
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Figure 5.9 Experimental spectra of Cr(III) complexes.
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Figure 5.10 Experimental spectra of Cr(III) complexes.
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Cr(III) has the electronic configuration s°d3 and ground state 4F as a free ion. 

Numerous studies have been conducted on Cr(III), as it has been demonstrated to yield room 

temperature EPR spectra with well defined lines. The energy gain from a low spin 

configuration is usually offset by the electron pairing energy, and complexes are usually 

encountered with high spin S = 3/2. As such Cr(III) spectra are significantly influenced by the 

values for zero field splitting (zfs), and the spectra must be considered in terms of the two 

Kramer’s doublets p/2, ± 1 /1> and p/2, ± 3/2>, separated by |2D|.

Zero field splitting is frequently large in the case o f transition metal species, with the 

result that the spin states are so widely separated that the microwave energy in conventional 

EPR spectrometers (X-band ~9 GHz (0.3cm'1), Q-band ~35 GHz (1.2 cm '1)) is insufficient to 

cause a transition. Consequently integer spin transitional metal species appear to be 

“EPR- silent” -  no signal can be observed with these instruments. High frequency EPR is 

then required.

Three distinct cases can be considered for Cr(III) species in both rhombic and axial 

environments; these are i) |D| «  hv , ii) |D| »  hv and iii) |D| ~ h v :

0  |D| «  /iv; All three spin allowed transitions are observed around g ~ 2, in both

rhombic and axial environments; however the superposition generating the glass 

spectrum together with line broadening effects will commonly result in an 

unresolved broad feature around free spin,

ii) |D| »  hv; Within an axial environment the | /2, ± I2 > Kramers doublet is

essentially EPR silent resulting in only the transitions within the |3/2,±l/2> 

manifold being observed. The applied field strengths for these resonances is given 

by:

g 2(0 ) = g \  COS2 0  A- 4 g 2± sin2 0

Turning points in the absorption spectrum (i.e., features in the EPR spectrum) are 

therefore observed at 0 = 0° and 90° to the z axis -  corresponding to gy at geff ~ 2 

and 2gi at geff ~ 4.

For a rhombic environment, the E term must also be considered, which has the 

effect of intermixing the |3/2, ± V2 > and |3/2, ± 3/i > states. The structure of a 

spectrum arising from such a system is best considered in terms of rotation of a 

crystalline sample in the cases X ~ V3 and X —> 0 (where X = E/D).

With the external field parallel to z, two equally intense transitions occur 

asymmetrically about free spin, with the high field resonance originating from the
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lower Kramers doublet, and the lower resonance from the higher energy doublet. 

Glass spectra from the systems are, as discussed superpositions of all these 

orientations, potentially with quite broad lines. Such spectra can therefore appear 

complex and highly variable.

iii) |D| ~ hv; Transitions between doublets are possible in this scenario in both 

symmetry environments. Furthermore, off-axis turning points - “looping” 

transitions - become significant, and in cases of high X the E term intermixes the 

Kramers doublets to the extent that a fourth transition maybe observed. Powder 

spectra in the case |D| ~ hv rhombic symmetry can therefore be more complicated 

than either of the other |D| regimes considered.

As a result the detailed interpretation o f the EPR spin Hamiltonian parameters can only be 

extracted by performing measurements at multiple frequencies (which we did not have access 

to in this project), particularly higher frequencies. Therefore the current spectra shown in 

Figure 5.9 and 5.10 at this stage can only be used to confirm the high spin nature o f the S = 

/2 spin system with significant ZFS and to confirm that the coordination mode is a distorted 

octahedral system.

5.2.3 Catalysis

Catalytic testing was largely carried out by Dr David McGuinness and James Suttil at 

the University of Tasmania. This was done to provide consistency and to allow comparisons 

with other Sasol catalyst systems.

The complexes were activated with 300 equivalents of co-catalyst MAO, and reacted 

under 10 bar ethylene in toluene.

The catalysis results are displayed in table 5.2, and show that the complexes tested 

give mostly polymer (69.35%-98.87%), with small amounts of linear alpha olefins (LAOs), 

and generally show no pattern in selectivity toward the LAOs. The activities of the 

complexes vary significantly, and if  comparisons are made between the turnover numbers 

(TON), it can be seen that particularly low activities are observed for complexes containing 

chelating bis(carbene) ligands (104 and 106), while complex 105 shows one of the highest 

TONs, suggesting that the added steric bulk present due to the bridging xylyl group is a factor 

in catalyst activity.
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Catalyst % C-4 % C-6 % C-8 % C-10

% > C-10 

and 

Branched 

CIO*

% PE
Total

TON

97 0.02 0.05 0.23 0.03 0.58 98.36 5017

98 0.48 0.16 0.43 0.05 0.88 97.52 2442

99 0.29 0.15 0.19 0.04 0.21 98.87 3697

100 1.65 3.06 2.38 1.16 1.71 87.57 2647

102 8.41 8.27 4.65 2.22 2.50 69.35 1447

104 5.87 0.68 0.96 0.12 0.40 90.16 499

105 0.38 0.99 0.94 0.50 2.28 92.85 3623

106 6.78 3.49 2.39 0.87 1.10 80.48 758

108 1.95 3.77 2.51 1.24 2.02 86.83 3030

109 6.58 4.17 2.76 1.09 1.26 79.26 933

* Describes LAOs

Table 5.2 Catalysis results for a selection of Cr(III)-NHC complexes.

Interestingly, the two monodentate, expanded NHC complexes 108 and 109 show 

very different activities; the complex containing the 6-membered NHC has a TON more than 

three times that of the 7-membered NHC complex. This could be due to the different ring 

size, which has been previously reported to affect catalytic capability, but the difference in 

steric bulk of the N-substituents (Dipp and Mes respectively) could also be partially 

responsible for the different observed TON.

Compound 103 was previously studied by Theopold and co-workers,16 and showed 

production of polymer with little branching. Our results obtained for the related bis(carbene) 

compounds 104 and 105 showed similar selectivities.

The results reported in table 5.2 show lower selectivity toward LAOs than similar 

reported systems,41 however, given the interest in carbene-based polymerisation catalysis, 

this work represents an interesting survey of chromium(III)-NHC complexes, contributing to 

this growing area o f homogeneous catalysis as well as the development of NHC-containing 

catalysts.
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5.2.4 Synthesis of Ti(III)-NHC Complexes

Given the suitability of Ti(III) complexes for EPR studies and their potential catalytic 

application, we were interested in preparing a series of Ti(III)-NHC model compounds 

analogous to the chromium complexes 97-109 described in 5.2.1.

NHC ligands 10-13, 16, 18, 57-60, 62, 63 and 96 were prepared as previously 

described, and slowly added to a solution of TiCl3(THF)3 in THF at -10 °C. Again, a colour 

change was generally observed, along with the formation of a precipitate, which was isolated 

by filtration after stirring for 16 h at room temperature (scheme 5.2).
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Scheme 5.2 Synthesis of Ti(III)-NHC complexes 110-122.
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The use of TiCl3(THF)318 as a metal precursor, the same ligands, and similar reaction 

conditions to those already described meant that the resulting complexes (110-122) could be 

expected to be isostructural to the chromium complexes 97-109 (Figure 5.11).

Type 1

/ = \
R - N  N - R  R ' I' V  K -IN

CkT,JHF c, V
/ IT

cr I ci c f  \ 'ci
THF U  1 01

Ti;
I

THF

n\THF

R = Mes 120 R = Dipp, n = 1 121

R = Mes, n = 2 122

Type 2

r = \
R - N

cO U D
Cl I Cl 

THF

R = Me, D = O

R = ‘Pr, D = O

R = feu, D = O

R = Me, D = N-Ph

R = ‘Pr, D = O-Me

110

111

112

114

115

f= \  
- N .

c, n

cr Cl I
THF

n = 1 116

n = 2 117

n = CH2(C6H4)CH2 118

Type 3

Ph

Ph

113 119

Figure 5.11 Probable structures of Ti(III) complexes 110-122.
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As discussed in 5.1, the use of NHC ligands for coordination to early transition metals 

is much less common than for late transition metals, and this has been attributed to the ease of 

dissociation of the metal-carbene bond.19,46,55'58 A Ti(III)-NHC complex recently reported by 

Lorber46 and co-worker was found to be extremely air and moisture sensitive, decomposing 

within minutes of exposure, making characterisation difficult.

Unfortunately, no crystals suitable for X-ray analysis were obtained for these brightly 

coloured complexes 110-122. Elemental analysis gave poor results, consistently low in 

carbon and nitrogen, suggesting that similar to chromium complexes 97-109, moisture 

absorption and/or decomposition was taking place, a reasonable assumption based on 

previously reported complexes described in the literature.4,46

Infra-red analysis of complexes 110-115 confirmed coordination of the functional 

groups, characterised by a shift in the stretching frequency relative to the free ligands as 

described for chromium complexes 97-102. This evidence supports the proposed structures 

described in figure 5.8. Again we see no evidence o f coordination of the bridging oxygen in 

119, suggesting a similar structure to 106, i.e. bidentate ligand coordination.

Electronic spectra were recorded for titanium complexes 110-122, and show a single
9 9absorption around 500-600 nm, corresponding to the transition Eg <— T2g. This single 

transition is reported for such octahedral Ti(III) complexes59 and confirms the d1 electronic 

configuration. This was corroborated by the determination of magnetic moments, which lie in 

the range 1.65 jxb - 1-98 ps, consistent with a d 1 ion containing one unpaired electron. 

Bridging dinuclear structures are generally not observed with titanium complexes of this 

type, so the confirmation of a mononuclear structure was expected.

Again, analysis by mass spectroscopy proved unsuccessful due to the sensitive nature 

of the complexes. Given the lack o f X-ray and elemental analysis data, the complexes 

110-122 cannot be unambiguously characterised. However, analysis by EPR spectroscopy in 

collaboration with infra-red and electronic spectroscopy provides strong evidence for the 

proposed structures, and comparison with reported data also provides significant support for 

the proposed complexes described in figure 5.8.18,19,46,60
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5.2.5 EPR Studies

The low temperature EPR spectra (X-band) for the mono- and bi-dentate Ti(III)-NHC 

complexes are shown below in figures 5.12 and 5.13 respectively:
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Figure 5.12 Experimental spectra of Ti(III) complexes.

119

117

116

118

— I—
3600

— i—
3700

—I—
3500

—I—
3400

—I—
3300

B q/ G

Figure 5.13 Experimental spectra of Ti(III) complexes.
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The mono-dentate complexes possess a pronounced rhombic EPR symmetry (Figure A). 

The g values were all less than free spin (as expected for a dl transition metal ion) with 

approximate values of gi » 1.978, g2 « 1.985, and g3 » 1.775. For paramagnetic metal 

complexes of the type [MA^BJ the relationship between the point symmetry and the EPR 

parameters is straightforward. For example, in [MAsBj-type complexes possessing C4v 

symmetry, then gx = gy *  gz while in [MA4B2], the trans complex possesses D4h symmetry 

with gx = gy * gz whilst the cis complex of C2V symmetry produces gx * gy * gz (in theory, 

although in practice it often appears as axial since gx » gy). Hence a simple analysis of the 

EPR data was possible for the [Cr(I)(CO)4-bis(phosphine)] complexes discussed in Chapter 3 

and the [Cr(I)(CO)4-NHC] complexes discussed in Chapter 4. In the present case, the mono- 

dentate [Ti(III)(Cl)3(THF)2-carbene] complexes and the bi-dentate [Ti(III)(Cl)3(THF)- 

carbene] complexes are less straightforward to analyse simply.

The orbital splitting pattern for an octahedral complex with tetragonal distortion (either 

elongation or compression) was shown previously in figure 4.15 in chapter 4. As shown in 

this diagram, compression of the M-L bonds along the z-axis produces the expected terms
9 9 9 9 9 9Aig and Big (in the upper Eg state) and Eg and B2g (in the lower T2g state). Such a 

splitting pattern produces a paramagnetic state for a low spin d5 system (such as Cr(I)) but 

would lead to an EPR silent ground state for a d1 system in the absence o f additional rhombic 

distortion. In other words, the single unpaired electron in the degenerate dxz and dyz orbitals 

would be EPR silent. If this degeneracy was lifted by rhombic distortion (eg., dxz lowest level 

as shown in figure 4.15 in chapter 4) then an EPR spectrum would be seen. Alternatively, 

with compression of the M-L bonds along the z-axis, the single dxy orbital now has lowest 

energy and this will lead to an EPR signal both in a tetragonal distortion and subsequent 

rhombic distortion. The observation of the EPR spectra from the mono- and bi-dentate 

carbene complexes suggests that this situation must be occurring. The axial g values for 

complex 119 (gj. = 1.895, g\\ = 1.965) and the rhombic g values for complexes 111 - 115 and 

120 (gi » 1.978, g2 « 1.985, and g3 « 1.775) are both consistent with this view and the 

predicted structures given in figure 5.11 above.
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5.2.6 Catalysis

Catalytic testing was carried out for titanium complexes 110-113, 115 and 117-122 in 

the same way as the analogous chromium complexes discussed in section 5.2.3. The results 

are displayed in table 5.3 and generally show lower TONs than the analogous chromium 

catalysts, an observation that has been previously demonstrated in the literature.443

One notable exception observed in our systems is complex 122 which shows a 

significantly higher TON and lower selectivity towards the linear alpha olefins than the 

chromium analogue 109. The result o f this is that the two monodentate, expanded NHC 

complexes 121 and 122 show more similar results in the titanium catalysts than in the 

previously discussed chromium systems

Catalyst % C-4 % C-6 % C-8 % C-10

% > C-10 

and 

Branched 

CIO*

% PE
Total

TON

110 1.89 1.72 0.44 0.11 1.61 92.95 2556

111 1.26 1.30 0.34 0.09 1.28 94.73 2657

112 2.10 1.09 0.49 0.42 2.27 92.87 1734

113 1.50 0.96 0.46 0.21 2.35 93.87 1717

115 1.09 0.88 0.53 0.38 3.96 92.52 3397

117 3.80 0.69 0.35 0.09 1.17 92.53 389

118 3.42 1.07 0.48 0.19 2.29 91.40 1804

119 1.74 1.69 1.15 0.88 10.09 83.29 1659

121 1.03 0.74 0.46 0.32 2.94 93.95 2735

122 0.99 0.97 0.31 0.14 1.41 95.30 3230

* Describes LAOs

Table 5.3 Catalysis results for a selection o f Ti(III)-NHC complexes.

Again, we see no pattern in selectivity toward the LAOs in respect of the nature of the 

ligand present, but interestingly, while the titanium catalysts also gave mostly polymer we 

observe a narrower range than the chromium systems (83.29% - 95.30%) compared to 

(69.35% - 98.87%).
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5.3 Conclusion

A series of new NHC containing chromium(III) and titanium(III) complexes have 

been prepared. Characterisation using EPR spectroscopy confirms the oxidation state and 

symmetry described for the complexes, and an X-ray structure in addition to other analytical 

data provides significant evidence for the proposed chromium structures. The paramagnetic 

character, and extreme sensitivity o f many o f the complexes made the common methods of 

complex characterisation (NMR, mass spectrometry, elemental analysis) unsuitable or 

unreliable. However, based on the data provided above, the structures of the complexes can 

be assigned with some confidence.

Given the application o f these types o f complexes, a number have been tested as 

catalysts. The results show very little selectivity toward LAOs, with no apparent correlation 

between structure and selectivity.
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5.4 Experimental Section

General Rem arks. All manipulations were performed using standard Schlenk 

techniques under an argon atmosphere, or in a nitrogen atmosphere MBraun UNILAB 

glovebox with less than 0.1 ppm water and O2. Solvents were dried using a Braun Solvent 

Purification System, and degassed prior to use. CrCl3(thf)3 was purchased from Aldrich, 

Carbenes 10-13, 16, 18, 57-60, 62, 63 and 96 were prepared as previously described (2.4) or 

according to literature procedures61, 62 and TiCl3(THF)318 was prepared according to a 

literature procedure.

NMR spectra were recorded at 298 K on Bruker Avance AMX 400 or Bruker-ACS 60 

spectrometers. Chemical shift values are given relative to residual solvent peak. ESI-MS were 

performed on a Waters LCT Premier XE instrument. Electronic spectra were recorded in 

dichloromethane on a Perkin Elmer Lambda 900 UV/VIS/NIR spectrometer. EPR spectra and 

computer simulations were carried out with the assistance of Lucia McDyre, a PhD student at 

Cardiff University. EPR spectra were recorded at 13OK on an X-band Bruker EMX 

spectrometer operating at 100 kHz field modulation, lOmW microwave power and equipped 

with a high sensitivity cavity (ER 4119HS). EPR computer simulations were performed using 

the SimEPR32 program, g Values were determined using a DPPH standard. Complexes 

were dissolved in 200pl DCM/toluene and a frozen solution produced by placing the EPR 

tube in liquid nitrogen.

CrCl3(NHC)(THF) (NHC  = l-methyl-3-isobutyrophenoneimidazole-2-ylidene) (97)

To a slurry of CrCl3(THF)3 (535 mg, 1.43 mmol) in THF (10 ml) at -10 °C a solution of free 

carbene 10 (1.49 mmol) in THF (10 ml) was added dropwise over 30 min. The resulting 

mixture was allowed to slowly warm to room temperature, and left to stir for 16 h. The 

solution was concentrated and diethyl ether (10 ml) added to precipitate the complex. The 

product was isolated by filtration, washed with diethyl ether ( 3 x 1 0  ml) and dried in vacuo to 

give the product as a green solid (350 mg, 53%). IR (CH2CI2): v = 1551 (s) (CO) cm'1. 

W C H 2Cl2)/nm 620, 450. Magnetic moment peff= 3.87 pe-
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CrCl3(NHC)(THF) (NHC  — l-isopropyl-3-isobutyrophenoneimidazole-2-ylidene) (98)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (530 mg, 1.41 mmol) 

and free carbene 11 (1.47 mmol). The product was obtained as a green powder (360 mg, 

52%). IR (CH2C12): v =  1551 (s) (CO) cm '1. ?w (C H 2Cl2)/nm 620, 440. Magnetic moment 

P e f f =  3.85 p b -

CrCl3(NHC)(THF) (NHC  = l-Butyl-3-isobutyrophenoneimidazole-2-ylidene) (99)

An analogous method to that of 97 was followed, using CrCl3(THF)3 (515 mg, 1.37 mmol) 

and free carbene 12 (1.43 mmol). The product was obtained as a purple powder (340 mg, 

49%). IR (CH2C12): v = 1550 (s) (CO) cm '1. ^max(CH2Cl2)/nm 570, 470. Magnetic moment 

g e f f  = 3.88 g B -

CrCl3(NHC) (NHC = l,3-diisobutyrophenoneimidazole-2-ylidene) (100)

An analogous method to that of 97 was followed, using CrCl3(THF)3 (530 mg, 1.42 mmol) 

and free carbene 13 (1.48 mmol). The product was obtained as a pale blue powder (370 mg, 

51%). IR (CH2CI2): v=  1549 (s) (CO) cm '1. >™ax(CH2Cl2)/nm 590, 460. Magnetic moment 

Peff ~ 3.79 Pb-

CrCI3(NHC)(THF)

(NHC  = l-methyl-3-phenylpropylidenebenzenamineimidazole-2-ylidene) (101)

An analogous method to that of 97 was followed, using CrCls(THF)3 (535 mg, 1.43 mmol) 

and free carbene 16 (1.49 mmol). The product was obtained as a red powder (370 mg, 48%). 

IR (CH2CI2): v = 1484 (s) (CO) c m 1. ^ tlax(CH2Cl2)/nm 560, 420. Magnetic moment 

peff=3.81 pB.

CrCl3(NHC)(THF)

(NHC  = l-Isopropyl-3-(2-methoxy-5-methylphenyl)imidazole-2-ylidene) (102)

An analogous method to that of 97 was followed, using CrCl3(THF)3 (540 mg, 1.44 mmol) 

and free carbene 18 (1.50 mmol). The product was obtained as a green powder (300 mg, 

45%). IR (CH2CI2): v=  1156 (s) (COC) cm '1; ^ ( C ^ C W /n m  640, 410. Magnetic moment 

P e f f  = 3.80 pB.

168



Chapter 5 C rail) and Ti(lII)-NHC Complexes Experimental

CrCl3(NHC)(THF) (NHC=1,1 ’-methylene-3,3 ’-dimethylimidazole-2,2 ’-diylidene) (103)

An analogous method to that of 97 was followed, using CrCl3(THF)3 (530 mg, 1.42 mmol) 

and free carbene 57 (1.48 mmol). The product was obtained as a yellow powder (300 mg, 

52%). ?w (C H 2Cl2)/nm 610, 430; Magnetic moment jj.eff= 3.67 pB.

CrCl3(NHC)(THF) (NHC  = 1,1 ’-propylene-3,3 ’-dimethylimidazole-2,2’-diylidene) (104)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (540 mg, 1.44 mmol) 

and free carbene 58 (1.50 mmol). The product was obtained as a lilac powder (310 mg, 49%). 

Xmax(CH2Cl2)/nm 590, 420. Magnetic moment peff =  3.82 pB.

CrCl3(NHC)(THF) (NHC = l , l ’-xylylene-3,3 ’-dimethylimidazole-2,2’-diylidene) (105)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (520 mg, 1.40 mmol) 

and free carbene 59 (1.45 mmol). The product was obtained as a green powder (350 mg, 

50%). ?w (C H 2Cl2)/nm 630, 450. Magnetic moment peff = 3.74 pB.

CrCl3(NHC)(THF) (NHC = l , l ’-bis(2-(3-methylimidazolin-2-yliden-l-yl)ethyl)ether) (106)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (525 mg, 1.40 mmol) 

and free carbene 96 (1.45 mmol). The product was obtained as a lilac powder (260 mg, 47%). 

IR (CH2C12): v = 1259 (s) (COC) cm '1. A*„ax(CH2Cl2)/nm 570, 450. Magnetic moment 

|leff = 3.72 pB.

CrCl3(NHC)(THF)2 (NHC = l,3-bis-(2,4,6-trimethylphenyl)imidazole-2-ylidene) (107)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (530 mg, 1.42 mmol) 

and free carbene 60 (1.48 mmol). The product was obtained as a green powder (470 mg, 

55%). Amax(CH2Cl2)/nm 640, 470. Magnetic moment peff = 3.92 pB.

CrCl3(NHC)(THF)2

(NHC  = l,3-bis(2,6-diisopropylphenyl)-4,5,6-trihydropyridin-2-ylid) (108)

An analogous method to that of 97 was followed, using CrCl3(THF)3 (520 mg, 1.40 mmol) 

and free carbene 62 (1.45 mmol). The product was obtained as a lilac powder (500 mg, 51%). 

Amax(CH2Cl2)/nm 590, 440. Magnetic moment peff= 3.63 pB.

169



Chapter 5 C ra il) and TidlD-NHC Complexes Experimental

CrCl3(NHC)(THF)2

(NHC = l,3-bis-(2,4,6-trimethylphenyl)-4,5,6,7-tetrahydro-[l,3]-diazepin-2-ylid) (109)

An analogous method to that o f 97 was followed, using CrCl3(THF)3 (500 mg, 1.34 mmol) 

and free carbene 63 (1.40 mmol). The product was obtained as a lilac powder (450 mg, 53%). 

W C H 2Cl2)/nm 580, 450. Magnetic moment peff = 3.70 jlib-

TiCl3(NHC)(THF) (NHC = 1-methyl-3-isobutyrophenoneimidazole-2-ylidene) (110)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (495 mg, 1.33 mmol) 

and free carbene 10 (1.39 mmol). The product was obtained as a yellow powder (290 mg, 

48%). IR (CH2C12): v = 1552 (s) (CO) cm '1. ^ ( C l ^ C y / n m  480. Magnetic moment 

Heff= 1.87 |Xb-

TiCl3(NHC)(THF) (NHC  = l-isopropyl-3-isobutyrophenoneimidazole-2-ylidene) (111)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (525 mg, 1.42 mmol) 

and free carbene 11 (1.48 mmol). The product was obtained as a green powder (350 mg, 

51%). IR (CH2C12): v  = 1551 (s) (CO) cm '1. >™ax(CFI2Cl2)/nm 630. Magnetic moment 

Peff = 1 -65 pe-

TiCl3(NHC)(THF) (NHC = l-Butyl-3-isobutyrophenoneimidazole-2-ylidene) (112)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (545 mg, 1.46 mmol) 

and free carbene 12 (1.53 mmol). The product was obtained as a green powder (360 mg, 

50%). IR (CH2C12): v  = 1548 (s) (CO) cm '1. ^ ax(CH2Cl2)/nm 630. Magnetic moment 

peff= 1.86 pB-

TiCI3(NHC) (NHC = l,3-diisobutyrophenoneimidazole-2-ylidene) (113)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (515 mg, 1.39 mmol) 

and free carbene 13 (1.45 mmol). The product was obtained as a brown powder (380 mg, 

53%). IR (CH2C12): v  = 1546 (s) (CO) cm '1. Xmax(CH2Cl2)/nm 580. Magnetic moment 

peff= 1.98 pB.
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TiCl3(NHC)(THF)

(NHC = l-methyl-3-phenylpropylidenebenzenamineimidazole-2-ylidene) (114)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (500 mg, 1.36 mmol) 

and free carbene 16 (1.42 mmol). The product was obtained as a green powder (380 mg, 

52%). IR (CH2CI2): v  = 1463 (s) (CO) cm '1. ^ n ^ C t^ C y /n m  600. Magnetic moment 

p ef f =  1 . 7 7  p e .

TiCl3(NHC)(THF)

(NHC  = l-Isopropyl-3-(2-methoxy-5-methylphenyl)imidazole-2-ylidene) (115)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (530 mg, 1.43 mmol) 

and free carbene 18 (1.49 mmol). The product was obtained as a green powder (350 mg, 

54%). IR (CH2CI2): v =  1159 (s) (COC) cm '1. ^ ^ (C F ^ C y /n m  610. Magnetic moment 

Peff = 1-80 Pb-

TiCl3(NHC)(THF) (NHC-1,1 ’-methylene-3,3 ’-dimethylimidazole-2,2 ’-diylidene) (116)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (530 mg, 1.44 mmol) 

and free carbene 57 (1.50 mmol). The product was obtained as a purple powder (290 mg, 

50%). ^max(CH2Cl2)/nrn 590. Magnetic moment peff = 1.83 pb.

TiCI3(NHC)(THF) (NHC = 1,1 ’-propylene-3,3’-dimethylimidazole-2,2’-diylidene) (117)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (508 mg, 1.37 mmol) 

and free carbene 58 (1.43 mmol). The product was obtained as a brown powder (300 mg, 

51%). Xmax(CH2Cl2)/nm 560. Magnetic moment peff = 1.92 pb.

TiCl3(NHC)(THF) (NHC  = 1,1’-xylylene-3,.3 ’-dimethylimidazole-2,2 ’-diylidene) (118)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (500 mg, 1.34 mmol) 

and free carbene 59 (1.40 mmol). The product was obtained as a green powder (350 mg, 

53%). ^maxtCFhCy/nm 610. Magnetic moment peff = 1.84 pB.
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TiCl3(NHC)(THF) (NHC  = 1,1 ’-bis(2-(3-methylimidazolin-2-yliden-l-yl)ethyl)ether) (119)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (520 mg, 1.40 mmol) 

and free carbene 96 (1.46 mmol). The product was obtained as a lilac powder (250 mg, 46%). 

IR (CH2CI2): v -  1258 (s) (CO C)cm '1. ^ ^ C F ^ C y /n m  590. Magnetic moment 

Peff = 1-90 pb-

TiCl3(NHC)(THF)2  (NHC  = l,3-bis-(2,4,6-trimethylphenyl)imidazole-2-ylidene) (120)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (500 mg, 1.34 mmol) 

and free carbene 60 (1.40 mmol). The product was obtained as a brown powder (450 mg, 

56%). XTOax(CH2Cl2)/nm 510. Magnetic moment peff = 1.83 pb.

TiCl3(NHC)(THF)2

(NHC = l,3-bis(2,6-diisopropylphenyl)-4,5,6-trihydropyridin-2-ylid) (121)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (545 mg, 1.47 mmol) 

and free carbene 62 (1.53 mmol). The product was obtained as a yellow powder (570 mg, 

55%). Aanax(CH2Cl2)/nm 450. Magnetic moment peff = 1.98 pB.

TiCl3(NHC)(THF)2

(NHC = l,3-bis-(2,4,6-trimethylphenyl)-4,5,6, 7-tetrahydro-[l,3]-diazepin-2-ylid) (122)

An analogous method to that o f 97 was followed, using TiCl3(THF)3 (510 mg, 1.37 mmol) 

and free carbene 63 (1.43 mmol). The product was obtained as a red-brown powder (450 mg, 

52%). >umax(CH2Cl2)/nm 490. Magnetic moment pefr= 1.63 pB.
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T T

3000 3100 3200 B /Q  3300 3400 3500

Figure 1 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 44

3000 3100 3200 B /G 3300 3400 3500

Figure 2 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 45
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(a)

(b)

3000 3100 3200 B /G 3300 3400 35000
Figure 3 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 46

3400 35003200 g / q  33003000 3100

Figure 4 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 47
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3000 3100 3200 g j q  3300 3400 3500

Figure 5 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 48

3200 g i q  3300 3400 35003000 3100

Figure 6 Experimental (a) and simulated (b) cw-EPR spectra (130K) of 49
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Appendix B X-Rav Crystallography data

B r1

C13
J C 6

Table 1. Crystal data and structure refinement for 2

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.47° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter 

Largest diff. peak and hole

kjc0837

C16H21 Br N2 O 

337.26 

150(2) K 

0.71073 A 

Orthorombic 

Pna21

a = 7.6170(2) A cc= 90°.

b = 21.6820(3) A P= 90°.

c =  10.3540(7) A y = 90°.

1709.98(13) A3 

4

1.310 Mg/m3

2.402 mm-1 

696

0.30 x 0.22 x 0.15 mm3 

2.83 to 27.47°.

-9<=h<=9, -28<=k<=27, -13<=1<=13 

3633

3633 [R(int) = 0.0000]

99.8 %

0.7146 and 0.5327 

Full-matrix least-squares on F2 

3633 / 1 / 186 

1.040

R1 = 0.0458, wR2 = 0.0856 

R1 = 0.0643, wR2 = 0.0935 

0.515(14)

0.296 and -0.515 e.A'3

184



Appendix B X-Rav Crystallography data

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for kjc0837. U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor.

X y z U(eq)

C(l) 7834(5) 467(2) 7592(4) 30(1)

C(2) 5114(5) 524(2) 8288(5) 36(1)

C( 3) 5667(5) 1097(2) 8034(4) 34(1)

C(4) 6523(6) -545(2) 8148(6) 46(1)

C(5) 5342(9) -824(2) 7118(8) 80(2)

C(6) 6045(6) -722(2) 9526(9) 64(2)

C(7) 8459(6) 1587(2) 7173(5) 33(1)

C(8) 10355(6) 1375(2) 6898(5) 42(1)

0(9) 7614(7) 1840(2) 5938(5) 44(1)

C(10) 8511(5) 2090(2) 8216(5) 35(1)

C (ll) 8589(5) 1950(2) 9626(5) 33(1)

C(12) 9140(6) 1384(2) 10124(5) 40(1)

C(13) 9229(7) 1296(3) 11442(5) 53(1)

C(14) 8737(8) 1750(3) 12270(6) 63(2)

C(15) 8169(8) 2321(3) 11781(6) 66(2)

C(16) 8102(7) 2417(2) 10479(6) 45(1)

0(1) 8548(4) 2626(1) 7847(4) 46(1)

N(l) 6502(4) 133(1) 8011(4) 31(1)

N(2) 7381(4) 1059(1) 7606(3) 27(1)

Br(l) 11066(1) -177(1) 9413(1) 37(1)
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,_C 9

Table 1. Crystal data and structure refinement for 3

Identification code kjc0835t

Empirical formula C17H23 Br N2 O

Formula weight 351.28

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Orthorhombic

Space group Pna21

Unit cell dimensions a = 8.0820(2) A a= 90° 

b = 21.1830(3) A (3=90°. 

c =  10.3590(5) A y = 90°

Volume 1773.47(10) A3

Z 4

Density (calculated) 1.316 Mg/m3

Absorption coefficient 2.319 mm-1

F(000) 728

Crystal size 0.35 x 0.25 x 0.20 mm3

Theta range for data collection 2.70 to 27.43°.

Index ranges -10<=h<=9, -21<=k<=27, -13<=1<=8

Reflections collected 8748

Independent reflections 3329 [R(int) = 0.0386]

Completeness to theta = 27.43° 99.5 %

Max. and min. transmission 0.6541 and 0.4974

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3329/ 1 / 195

Goodness-of-fit on F2 1.027

Final R indices [I>2sigma(I)] R1 =0.0331, wR2 = 0.0679

R indices (all data) R1 =0.0422, wR2 = 0.0717

Absolute structure parameter 0.004(10)

Largest diff. peak and hole 0.248 and -0.522 e.A'3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for kjc0835t. U(eq) is defined as one third of the trace of the orthogonalized U'j tensor.

X y z U(eq)

C(l) 2124(4) -4574(1) 6640(3) 18(1)

C(2) 4704(4) -4401(1) 7252(3) 2 2 (1)

C(3) 4085(4) -3854(1) 6781(3) 23(1)

C(4) 3621(4) -5527(1) 7529(3) 2 1 (1)

C(5) 4034(4) -5543(1) 8966(3) 29(1)

C(6 ) 5024(4) -5808(2) 6716(4) 34(1)

C(7) 1993(4) -5864(1) 7262(3) 25(1)

C(8 ) 1370(4) -3495(1) 5793(3) 19(1)

C(9) -403(4) -3747(1) 5739(3) 24(1)

C(10) 2039(5) -3372(2) 4438(3) 30(1)

C (ll) 1348(4) -2876(2) 6580(4) 25(1)

C(12) 1587(4) -2851(1) 8002(3) 25(1)

C(13) 1314(3) -3358(1) 8836(5) 27(1)

C(14) 1544(4) -3288(2) 10146(4) 37(1)

C(15) 2061(5) -2711(2) 10645(4) 46(1)

C(16) 2343(5) -2209(2) 9839(4) 46(1)

C(17) 2095(4) -2271(2) 8511(4) 31(1)

N(l) 2475(3) -3966(1) 6412(2) 18(1)

N(2) 3454(3) -4847(1) 7146(3) 18(1)

0 ( 1) 1081(3) -2393(1) 5965(3) 39(1)

Br(l) -1351(1) -4784(1) 8728(1) 27(1)
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02
C17,

C2 C18̂
C16C5 C1C4

C15C6

C7 01 Br1
C8

refinement for 4Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(OOO)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.51° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

kjc0834

C23 H25 BrN2 02

441.36

150(2) K

0.71073 A

Triclinic

P-l

a = 5.94800(10) A c

b = 12.9300(2) A f

c = 27.7910(7) A y

2091.38(7) A3 

4

1.402 Mg/m3 

1.986 mm- 1 

912

0.20 x 0.05 x 0.05 mm3 

3.11 to 27.51°.

-6<=h<=7, -16<=k<=16, -36<=1< 

14699

9453 [R(int) = 0.0453]

98.4 %

0.9072 and 0.6921 

Full-matrix least-squares on F2 

9453 / 0 / 526 

1.043

R1 =0.0661, wR2 = 0.1643 

R1 =0.1142, wR2 = 0.1902 

1.224 and -0.892 e.A'3

1= 101.1190(10)°. 

t= 90.0260(10)°.

= 94.1910(10)°.

:=36
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Table 2. Atomic coordinates ( x 1 0 4) and equivalent isotropic displacement parameters (A2x 1 0 3) 

for kjc0834. U(eq) is defined as one third of the trace of the orthogonalized U'J tensor.

x y z U(eq)

C(1) 7734(8) 3413(3) 3456(2) 23(1)

C(2) 6594(9) 2690(4) 3086(2) 32(1)

C(3) 7463(10) 1743(4) 2890(2) 40(1)

C(4) 9488(10) 1498(4) 3075(2) 39(1)

C(5) 10567(9) 2186(4) 3463(2) 34(1)

C(6 ) 9723(8) 3156(4) 3649(2) 30(1)

C(7) 6641(8) 4415(3) 3654(2) 2 0 (1)

C(8 ) 7781(7) 5470(3) 3559(2) 2 2 (1)

C(9) 7318(9) 5470(4) 3016(2) 31(1)

C(10) 10310(8) 5638(4) 3673(2) 29(1)

C (ll) 6470(7) 6475(3) 4355(2) 18(1)

C(12) 5538(8) 7131(3) 3711(2) 23(1)

C(13) 4747(8) 7736(3) 4113(2) 24(1)

C(14) 4794(7) 7776(3) 5031(2) 19(1)

C(15) 5369(8) 7005(3) 5360(2) 23(1)

C(16) 2246(7) 7940(4) 5048(2) 26(1)

C(17) 6250(7) 8838(3) 5164(2) 2 0 ( 1)

C(18) 6574(7) 9405(3) 5687(2) 2 0 (1)

C(19) 4965(8) 9452(3) 6051(2) 2 2 (1)

C(20) 5416(9) 10084(4) 6511(2) 29(1)

C(21) 7506(8) 10629(3) 6617(2) 29(1)

C(22) 9142(8) 10568(3) 6261(2) 26(1)

C(23) 8665(8) 9976(3) 5796(2) 23(1)

C(24) 3426(7) 5593(3) -691(2) 18(1)

C(25) 5070(8) 5559(3) -1051(2) 23(1)

C(26) 4663(8) 4932(3) -1512(2) 27(1)

C(27) 2586(8) 4372(3) -1629(2) 28(1)

C(28) 921(8) 4429(3) -1279(2) 26(1)

C(29) 1362(7) 5017(3) -807(2) 2 0 (1)

C(30) 3724(7) 6156(3) -167(2) 19(1)

C(31) 5198(7) 7219(3) -27(2) 18(1)

C(32) 4646(8) 7990(3) -359(2) 23(1)

C(33) 7732(7) 7052(4) -34(2) 25(1)
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C(34) 3490(7) 8522(3) 648(2) 2 0 (1)

C(35) 5101(8) 7227(3) 8 8 8 (2 ) 23(1)

C(36) 4261(8) 7828(3) 1290(2) 2 1 (1)

C(37) 2095(7) 9510(3) 1439(2) 2 0 (1)

C(38) -421(8) 9339(4) 1322(2) 31(1)

C(39) 2576(9) 9518(4) 1980(2) 32(1)

C(40) 3238(8) 10566(3) 1339(2) 2 0 (1)

C(41) 2160(7) 11574(3) 1540(2) 2 1 (1)

C(42) 170(8) 11836(4) 1354(2) 29(1)

C(43) -665(9) 12802(4) 1541(2) 35(1)

C(44) 460(10) 13497(4) 1921(2) 37(1)

C(45) 2449(10) 13247(4) 2107(2) 38(1)

C(46) 3311(9) 12294(4) 1910(2) 32(1)

0 (1) 4807(5) 4389(2) 3843(1) 28(1)

0 (2 ) 7212(6) 9195(3) 4840(1) 31(1)

0(3) 2734(6) 5798(3) 152(1) 29(1)

0(4) 5078(6) 10593(2) 1154(1) 30(1)

N(l) 6640(6) 6343(3) 3864(1) 19(1)

N(2) 5318(6) 7319(3) 4513(1) 19(1)

N(3) 4619(6) 7667(3) 489(1) 17(1)

N(4) 3240(6) 8637(3) 1131(1) 2 0 (1)

Br(l) 0 0 0 28(1)

Br(2) 0 5000 5000 27(1)

Br(3) 2441(1) 6880(1) 2465(1) 19(1)

Br(4) 7537(3) 8187(2) 2545(1) 34(1)
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C27qnC|28
►'JC2B

/  T

I 0 2

/  k I y
 ciC2°

C25

Br2

CV
BrJ

01

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(OOO)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.50° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

kjc0830

C14 H19 Br N2 O

311.22

150(2) K

0.71073 A

Triclinic

P-l

a = 10.3150(2) A a :

b =  12.1050(3) A 

c =  13.6140(3) A y  -

1437.98(6) A3 

4

1.438 Mg/m3 

2.850 mm' 1 

640

0.41 x 0.22 x 0.15 mm3

2.67 to 27.50°.

-13<=h<=12, -15<=k<=13, -17<= 

9732

6550 [R(int) = 0.0281]

99.1 %

0.6745 and 0.3879 

Full-matrix least-squares on F2 

65 50 /0 /333  

1.014

R1 = 0.0425, wR2 = 0.0820 

R1 =0.0641, wR2 = 0.0908 

0.420 and -0.524 e.A'3

64.4450(10)°.

70.5430(10)°.

76.5140(10)°.

1<=17
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 1 0 3) 

for kjc0830. U(eq) is defined as one third of the trace of the orthogonalized U*j tensor.

x y z U(eq)

C(1) 8586(3) 2683(3) 7757(2) 2 1 (1)

C(2) 10737(3) 2999(3) 6763(2) 23(1)

C(3) 9988(3) 4106(3) 6586(2) 23(1)

C(4) 10210(3) 803(3) 7940(2) 2 0 (1)

C(5) 11158(3) 321(3) 8600(2) 2 0 (1)

C(6 ) 11422(3) -951(3) 9086(2) 23(1)

C(7) 10765(3) -1695(3) 8895(2) 24(1)

C(8 ) 9865(3) -1219(3) 8210(2) 24(1)

C(9) 9600(3) 58(3) 7731(2) 23(1)

C(10) 9205(4) -2041(3) 7984(3) 35(1)

C(11) 12663(3) 669(3) 9416(3) 27(1)

C(12) 7460(3) 4838(3) 7337(3) 26(1)

C(13) 7185(4) 5608(3) 6189(3) 43(1)

C(14) 7781(4) 5591(4) 7855(4) 54(1)

C(15) 6911(3) 2945(3) 3071(2) 24(1)

C(16) 5990(3) 3210(3) 1716(2) 24(1)

C(17) 6350(3) 4301(3) 1518(3) 26(1)

C(18) 6113(3) 1072(3) 3188(2) 2 0 ( 1)

C(19) 6752(3) 200(3) 4011(2) 2 1 (1)

C(20) 6501(3) -1029(3) 4426(3) 25(1)

C(21) 5664(3) -1371(3) 4025(3) 26(1)

C(22) 5035(3) -515(3) 3190(2) 25(1)

C(23) 5267(3) 710(3) 2790(2) 24(1)

C(24) 4121(4) -886(3) 2743(3) 34(1)

C(25) 8245(3) -284(3) 5192(3) 30(1)

C(26) 7489(4) 5080(3) 2476(3) 30(1)

C(27) 6296(4) 5871(3) 2941(3) 40(1)

C(28) 8407(4) 5818(3) 1340(3) 38(1)

N(l) 9847(2) 2118(2) 7496(2) 2 0 (1)

N(2) 8644(3) 3891(2) 7224(2) 2 1 (1)

N(3) 6343(2) 2355(2) 2700(2) 19(1)

N(4) 6930(3) 4120(2) 2365(2) 25(1)

0 ( 1) 11736(2) 1153(2) 8704(2) 25(1)
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0(2) 7559(2) 607(2) 4369(2) 26(1)

Br(l) 5104(1) 2491(1) 9749(1) 29(1)

Br(2) 8789(1) 2862(1) 4954(1) 30(1)
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Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.46° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

X-Rav Crystallography data

Ag1

. >C5 ( v  '

V V /
07 v \

refinement for 2 0

kjc0822

C17H22 AgBrN2 0

458.15

150(2) K

0.71073 A

Monoclinic

P21/n

a = 7.3336(2) A <x= 90°.

b = 15.5160(4) A p= 98.7770(10)°

c =  15.4923(6) A y = 90°.

1742.20(9) A3 

4

1.747 Mg/m3 

3.453 mm' 1 

912

0.35 x 0.35 x 0.2 mm3 

2.92 to 27.46°.

-9<=h<=9, -20<=k<=20, -13<=1<=20 

11008

3961 [R(int) = 0.0783]

99.3 %

Semi-empirical from equivalents

0.503 and 0.310

Full-matrix least-squares on F2

3961 /0 /2 0 4

1.052

R1 = 0.0500, wR2 = 0.1248 

R1 =0.0720, wR2 = 0.1366 

0.596 and -1.675 e.A"3
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Table 2 . Atomic coordinates ( x 1 0 4) and equivalent isotropic displacement parameters (A2x 1 0 3) 

for kjc0822. U(eq) is defined as one third of the trace of the orthogonalized U'j tensor.

X y z U(eq)

C(1) 3430(7) -1231(3) 1018(4) 2 2 (1)

C(2) 5225(8) -2580(3) 825(4) 28(1)

C(3) 5060(8) -1397(4) -265(3) 26(1)

C(4) 5123(7) -1606(3) 698(3) 18(1)

C(5) 7245(7) -1239(3) 2096(3) 16(1)

C(6 ) 8054(7) -689(3) 868(3) 19(1)

C(7) 9274(7) -389(3) 1533(3) 18(1)

C(8 ) 9698(7) -565(3) 3193(3) 18(1)

C(9) 11035(7) 199(3) 3216(4) 24(1)

C(10) 10781(8) -1372(3) 3533(4) 25(1)

C (ll) 8263(7) -345(3) 3792(3) 2 0 (1)

C(12) 6931(7) 398(3) 3590(3) 18(1)

C(13) 6095(7) 697(3) 4283(3) 2 0 (1)

C(14) 4911(7) 1407(4) 4181(4) 26(1)

C(15) 4516(8) 1791(4) 3366(4) 29(1)

C(16) 5297(8) 1485(3) 2668(4) 27(1)

C(17) 6522(8) 807(3) 2778(4) 24(1)

N(l) 6806(6) -1 2 0 0 (2 ) 1215(3) 15(1)

N(2) 8770(6) -731(2) 2290(3) 15(1)

0 (1) 8313(6) -729(2) 4469(3) 33(1)

Br(l) 4725(1) -3047(1) 3874(1) 32(1)

Ag(l) 6068(1) -2026(1) 2964(1) 19(1)
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refinement for 69Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.48° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient 

Largest diff. peak and hole

kjc0927t

C33 H40 Cr N2 05

596.67

150(2) K

0.71073 A
Orthorhombic

Pnma

a = 18.2203(4) A a=  90°.

b =  19.3328(5) A 0=90°.

c = 8.7582(2) A y = 90°.

3085.07(13) A3 
4

1.285 Mg/m3 

0.413 mm' 1 

1264

0.40 x 0.30 x 0.30 mm3 

3.33 to 27.48°.

-23<=h<=23, -25<=k<=24, -11<=1<=11 

6660

3623 [R(int) = 0.0327]

99.3 %

Empirical 

0.8861 and 0.8522 

Full-matrix least-squares on F2 

3623/0  / 204 

1.022

R1 = 0.0412, wR2 = 0.0970 

R1 = 0.0550, wR2 = 0.1042 

0.0141(14)

0.342 and -0.408 e.A'3
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Appendix B X-Rav Crystallography data

Table 2 . Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for kjc0927t. U(eq) is defined as one third of the trace of the orthogonalized U‘j tensor.

X y z U(eq)

C(1) 5980(1) 2500 5993(2) 16(1)

C(2) 5281(1) 1875(1) 3911(2) 23(1)

C(3) 4791(1) 2500 3781(3) 25(1)

C(4) 5869(1) 1217(1) 5888(2) 2 0 (1)

C(5) 5395(1) 948(1) 7009(2) 2 2 (1)

C(6 ) 5461(1) 248(1) 7370(2) 30(1)

C(7) 5973(1) -168(1) 6651(2) 33(1)

C(8 ) 6436(1) 107(1) 5565(2) 29(1)

C(9) 6393(1) 803(1) 5148(2) 24(1)

C(10) 4813(1) 1387(1) 7798(2) 26(1)

C (ll) 4071(1) 1327(1) 6995(2) 33(1)

C(12) 4716(1) 1203(1) 9492(2) 38(1)

C(13) 6910(1) 1084(1) 3941(2) 28(1)

C(14) 7714(1) 932(1) 4347(3) 37(1)

C(15) 6742(1) 784(1) 2353(2) 41(1)

C(16) 6097(1) 2500 9393(3) 24(1)

C(17) 7517(1) 2500 6228(3) 23(1)

C(18) 6930(1) 3472(1) 8086(2) 24(1)

C(19) 7523(1) 2500 9336(3) 27(1)

N(l) 5736(1) 1911(1) 5323(2) 18(1)

0 (1) 5709(1) 2500 10431(2) 39(1)

0 (2 ) 7962(1) 2500 5305(2) 35(1)

0(3) 7100(1) 4020(1) 8459(2) 33(1)

0(4) 7949(1) 2500 10310(2) 42(1)

Cr(l) 6810(1) 2500 7832(1) 18(1)
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C5 N1

3 ^ '

\ - N2

■■ V/'Cl-—

Table l. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 20.72° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

A
71

kjc0919

C14 H16 Cr N2 05

344.29

150(2) K

0.71073 A
Orthorhombic

Pbca

a = 12.7330(9) A 
b =  18.3060(14) A 
c =  13.6620(12) A 
3184.5(4) A3

a= 90°. 

(3= 90°. 

y = 90°.

1.436 Mg/m3 

0.742 mm"1 

1424

0.40 x 0.30 x 0.02 mm3 

2.45 to 20.72°.

- 1 2 <=h<=1 2 , -18<=k<=18, -13<=1<=13 

3012

1633 [R(int) = 0.0489]

99.0 %

Empirical

0.9853 and 0.7557

Full-matrix least-squares on F2

1633/0 /203

1.197

R1 =0.0643, wR2 = 0.1271 

R1 =0.0873, wR2 = 0.1358 

0.238 and -0.303 e.A-3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for kjc0919. U(eq) is defined as one third of the trace of the orthogonalized U‘j tensor.

X y z U(eq)

C(1) 710(5) 7137(4) 885(4) 29(2)

C(2) -148(6) 8020(4) 1738(4) 33(2)

C(3) -614(5) 7387(4) 1935(5) 33(2)

C(4) 1390(5) 8442(3) 741(4) 33(2)

C(5) 2085(6) 8710(4) 1585(5) 41(2)

C(6 ) 796(6) 9054(4) 246(5) 46(2)

C(7) -394(6) 6073(3) 1505(4) 37(2)

C(8 ) -229(6) 5809(4) 2555(5) 48(2)

C(9) -1522(5) 5976(4) 1151(5) 46(2)

C(10) 1598(5) 7283(4) -1072(5) 34(2)

C(ll) 2971(6) 7072(4) 365(5) 33(2)

C(12) 1999(6) 5882(4) 944(5) 38(2)

C(13) 615(6) 6063(4) -632(5) 38(2)

C(14) 2645(6) 6019(4) -872(5) 33(2)

N(l) 665(4) 7876(3) 1090(4) 29(1)

N(2) -92(4) 6849(3) 1431(4) 28(1)

Cr(l) 1771(1) 6567(1) -76(1) 33(1)

0 (1) 1514(4) 7703(3) -1681(3) 46(1)

0 (2 ) 3743(4) 7357(3) 602(3) 46(1)

0(3) 2208(4) 5470(3) 1545(4) 54(2)

0(4) -43(4) 5745(3) -1024(4) 52(2)

0(5) 3175(4) 5653(2) -1349(3) 43(1)
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Table 1. Crystal data and structure refinement for 100

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 21.74° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

kjc0913

C24 H26 C15 CrN2 02

603.72

150(2) K

0.71073 A
Monoclinic

P21/n

a = 8.4910(3) A 
b = 24.2220(8) A 
c = 13.5340(5) A 
2741.33(17) A3 
4

1.463 Mg/m3 

0.929 mm-1 

1236

0.30 x 0.20 x 0.10 mm3 

2.77 to 21.74°.

-8 <=h<=8 , -23<=k<=25, -14<=] 

5895

3181 [R(int) = 0.0541]

98.1 %

0.9128 and 0.7680 

Full-matrix least-squares on F2 

3181 /66 /339  

1.121

R1 =0.0898, wR2 = 0.1848 

R1 =0.1132, wR2 = 0.1958 

1.018 and- 1 .0 0 1  e.A'3

c= 90°.

i= 99.989(2)°. 

= 90°.
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Table 2 . Atomic coordinates ( x 1 0 4) and equivalent isotropic displacement parameters (A2x 103) 

for kjc0913. U(eq) is defined as one third of the trace of the orthogonalized U'J tensor.

X y z U(eq)

C(l) 4060(10) 1972(4) 6759(7) 28(2)

C(2) 3684(14) 1826(5) 5767(9) 57(3)

C(3) 2365(17) 1485(6) 5437(10) 74(4)

C(4) 1418(17) 1314(6) 6096(12) 79(5)

C(5) 1751(13) 1475(5) 7059(10) 58(4)

C(6 ) 3041(12) 1800(4) 7413(9) 43(3)

C(7) 5445(11) 2352(4) 7038(7) 27(2)

C(8 ) 6811(11) 2197(4) 7885(7) 30(2)

C(9) 6244(13) 2225(6) 8884(8) 59(4)

C(1 0 ) 7345(13) 1605(4) 7658(9) 50(3)

C (ll) 9643(11) 2429(4) 8602(7) 28(2)

C(1 2 ) 10695(11) 2824(4) 8523(7) 27(2)

C(13) 8419(10) 3030(4) 7449(6) 24(2)

C(14) 10876(10) 3661(4) 7451(7) 25(2)

C(15) 11912(11) 3377(4) 6767(7) 32(2)

C(16) 11859(12) 3933(4) 8381(7) 39(3)

C(17) 9831(11) 4085(4) 6825(7) 26(2)

C(18) 10487(11) 4631(4) 6568(7) 28(2)

C(19) 12116(13) 4734(4) 6560(7) 39(3)

C(2 0 ) 12575(15) 5244(5) 6224(8) 48(3)

C(2 1 ) 11437(16) 5644(4) 5930(7) 46(3)

C(2 2 ) 9846(14) 5554(4) 5928(7) 40(3)

C(23) 9370(12) 5043(4) 6235(7) 34(3)

0 ( 1) 5435(7) 2758(3) 6487(5) 27(2)

0 (2 ) 8409(7) 4004(3) 6468(4) 28(2)

Cr(l) 6828(2) 3411(1) 6410(1) 23(1)

Cl(l) 8037(3) 2934(1) 5249(2) 31(1)

0 1 (2 ) 5834(3) 3826(1) 7716(2) 36(1)

Cl(3) 4921(3) 3830(1) 5148(2) 30(1)

N(l) 8223(8) 2553(3) 7937(5) 24(2)

N(2) 9938(8) 3207(3) 7819(5) 24(2)

0(24) 7814(19) 4990(9) 8647(15) 142(2)

01(4) 9474(9) 5439(3) 8929(6) 136(2)
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Cl(5) 6449(9) 5115(4) 9473(7) 153(3)

C(24A) 8260(30) 5433(15) 8870(40) 140(2)

C1(4A) 8970(40) 4890(30) 9710(40) 430(40)

C1(5A) 6280(30) 5290(9) 8265(16) 148(2)



Appendix C

Publication



View Online

PAPER www.rsc.org/dalton I Dalton Transactions

A cw EPR and ENDOR investigation on a series of Cr(i) carbonyl complexes 
with relevance to alkene oligomerization catalysis: [Cr(CO)4L]+ (L =  
Ph2PN(R)PPh2, Ph2P(R)PPh2)f
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The preparation and characterisation of the Cr(i) complexes [Cr(CO)4L]+ (L = Ph2PN(R)PPh2,
Ph2P(R)PPh2), which are used as pre-catalysts for the selective oligomerization of ethylene, are 
reported. The electronic properties and structural features of these complexes in frozen solution have 
been established via continuous wave X-band Electron Paramagnetic Resonance (cw-EPR) and 
continuous wave 1H, 14N and 31P Electron Nuclear Double Resonance (cw-ENDOR) spectroscopy. The 
EPR spectra are dominated by the g anisotropy, with notably large PA couplings from the two 
equivalent31P nuclei. The spin Hamiltonian parameters (g± (gxx =  gyy) > ge > g t, (gzz)) are consistent 
with a low-spin d5 system possessing C2v symmetry, with a SOMO where the metal contribution is 
primarily dxy for all complexes. The isotropic Fermi contact term (paiso, determined by EPR and 
ENDOR) was found to be largest for complexes containing ligands e, d, f and g, indicating that the 31P 
3 s character in the SOMO is higher for the PNP type ligands than the PCP type. Subtle structural 
differences in the complexes were also identified through variations in the Ag  shifts (identified by EPR), 
and through differences in the phenyl ring conformations (identified by 'H ENDOR). Attempts to 
correlate trends in EPR-derived parameters with data measured for catalysis using these pre-catalysts 
are also made, but no clear connections were found.

Introduction

A  current focus in olefin oligomerization is the design of highly 
selective catalysts for the formation of single chain length cx- 
olefins such as the Phillips Cr based catalyst system, for the highly 
selective trimerization of ethylene into 1-hexene. 1 Recently, new Cr 
complexes containing P-N-P, P-S-P and S-N-S bidentate and 
tridentate ligands have been developed as catalysts for 1-hexene 
formation,2 and even more excitingly, 1-octene formation (i.e. 
selective tetramerization of ethylene) .3 Chromium based catalysts 
dominate the field, although active Ti and Ta trimerization cata­
lysts have also been reported.4,5 In notable recent studies, Wass and 
coworkers have furthermore demonstrated the trimerization and 
co-trimerization of substrates other than ethylene.6,7 For example, 
ethylene/styrene cotrimerization and isoprene trimerization have 
been reported.6,7

It is clear that an entirely different mechanism, to the traditional 
Cossee-Arlman mechanism, must be operating and a mechanism 
involving Cr-metallocycles is favoured.1,8,10 Evidence to support 
this mechanism is growing, with the isolation of Cr 5- and 7-

aSchool o f Chemistry, Cardiff University, Main Building, Park Place, Cardiff, 
UK CF10 3AT. E-mail: murphydm@cardiff.ac.uk
hSasol Technology (Pty) Ltd, R&D Division, 1 Klasie Havenga Road, 
Sasolburg, 1947, South Africa
‘Sasol Technology (UK) Ltd, Purdie Building, North Haugh, S t Andrews, 
UK K Y I6 9ST
t  Electronic supplementary information (ESI) available: Figure S I : FSED  
EPR spectra; Figure S2a-S2g: Experimental and simulated cw EPR spec­
tra; Figure S3a-S3g: Additional ‘H END O R data; Figure S4: Additional 
l4N ENDOR data; Figure S5: Additional 31P END O R data; Table SI: 
Catalysis data. See DOI: 10.1039/c0dt00127a

membered metallocycles; the 7-membered metallocycle decom­
poses to give 1-hexene.8,9 Chromium catalysed trimerization with 
1:1 C2D4 and C2H4 gave only the even numbered isotomers 
C6D12, C6D8H4, C6D4H8 and C6Hn in the ratio 1; 3 :3:1, in 
total agreement with the metallocycle mechanism. 10 However, an 
important unknown in this mechanism is the oxidation state of 
Cr during the catalytic cycle. The active catalyst is generated 
in situ from a Cr(m) compound, added ligand, and cocatalyst 
(commonly, MAO - methylaluminoxane). Cr(m)-Cr(v) ,9 Cr(i)- 
Cr(in) 11,12 and Cr(n)-Cr(iv) 13,14 couples have been suggested as the 
principle oxidation states involved. Cr(v) and Cr(i) complexes are 
rare and generally unstable; Cr(v) complexes typically have oxygen 
or halide ligands, whereas Cr(i) complexes with isocyanides and 
bipy ligands are known.15

At present, a Cr(i)-Cr(m) couple is favoured. However, this 
is by no means certain, and it may be that different couples 
operate with different catalyst systems or operating conditions. 
X-ray photoelectron spectroscopy studies on the Phillips catalyst 
support a Cr(i)-Cr(m) couple16 and elegant studies by Kohn and 
coworkers lend further weight to a Cr(i)-Cr(m) mechanism.17 
Several molecular modelling studies have been undertaken;14,18-21 

in one study the Cr(n)-Cr(iv) system was assumed,14 while in others 
Ta18 and Ti19'21 systems were considered. The main aim of the 
latter study was to understand why insertion of a third ethylene 
occurs in preference to liberation of 1-butene, and then why 
additional insertions did not occur. Catalytic 1-octene formation 
is extremely new, however, and a creditable mechanism has only 
recently been published.22 The proposed mechanism is able to 
explain the observed by-products, and there is a self-consistency 
in the explanations.
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Undoubtedly, one of the most versatile and important analytical 
tools for characterising the above catalytic systems remains mag­
netic resonance techniques. In the case where paramagnetic oxi­
dation states are involved, the commonly used NMR methods are 
rendered less effective or difficult to apply. Determination of ligand 
structure near a paramagnetic centre has historically been difficult 
because the standard techniques of spectral assignment and NOE- 
based distance constraints used for diamagnetic compounds are 
not readily applied to paramagnetically perturbed resonances. 
However, this type of information can be readily obtained by EPR 
and the related hyperfine techniques of ENDOR, HYSCORE, 
ESEEM and ELDOR detected NMR. Similar to NMR, these 
EPR techniques can be used to study the Cr based catalyst systems 
under a variety of conditions (variable temperatures, variable 
pressures, in solution, etc), providing information not only on the 
principle oxidation states involved but also a structural description 
on the complexes in solution. To date most of the available EPR 
literature pertaining to Cr complexes has focussed on Cr(m)23,24 

and Cr(v)25 compounds, and to a much lesser extent on low spin 
Cr(i) .26 Bruckner et al.,24 have recently monitored the structure 
and valence state of a Cr(m) oligomerization system via in situ 
EPR. They found that upon addition of MMAO acting as a 
co-catalyst to activate Cr(acac)3/PNP, the Cr(m) EPR intensity 
decreased, with a cocomittant increase of new signals between 
3200-3600 G. This axial signal with gu = 2.0127 and g± =  1.9868 
was similar to that observed from low spin Cr(i) complexes.26,27 

Thus it was shown that Cr(III) is reduced to Cr(i) in the presence 
of MMAO. As the reduction of Cr(m) is much faster than Cr(i) 
formation, it was postulated that the major species formed may be 
an antiferromagnetic Cr(i) dimer or a Cr(ii) species.24

Whilst EPR offers valuable insights into the redox and elec­
tronic properties of the Cr complexes in the catalytic reaction, 
ENDOR (Electron Nuclear DOuble Resonance) provides further 
complementary information on the structure of the paramagnetic 
complex. This information can be accessed via analysis of the 
hyperfine coupling tensor from remote ligand nuclei.28,29 The 
paucity of literature pertaining to ENDOR studies of Cr(i) 
compounds is remarkable (and there are none using the pulsed 
hyperfine methods). In this study we will therefore use cw-EPR and 
ENDOR to study the electronic properties and ligand structure on 
the series of paramagnetic Cr(i) carbonyl complexes [Cr(CO)4L]+ 
(L = Ph2PN(R)PPh2, Ph2P(R)PPh2, abbreviated hereafter as P- 
N-P and P-C-P ligands respectively) which can be used as model 
catalytic systems for the selective oligomerization of ethylene.

Results and discussion 

EPR Spectroscopy: the g  matrix

The ligands L used for the synthesis of the [Cr(CO)4L]+ complexes 
are shown in Scheme 1, labelled a-g. Syntheses of chromium (0) 
and chromium(i) complexes of these ligands (la-g and 2 a-g for 
Cr(0) and Cr(i) respectively) followed published procedures30-32 

and are described in the experimental section. Cr(0) complexes are 
quite stable and can be freely handled under an inert atmosphere; 
however, care must be taken in the manipulation of the Cr(i) 
complexes, which are air and thermally sensitive. For EPR analysis, 
each complex 2 a-g was dissolved in dry dichloromethane-toluene

PM* PPh2

Scheme 1

in the EPR tube under an argon atmosphere. The resulting 
solutions were deep blue in colour for all [Cr(CO)4a-g]+ complexes.

The cw-EPR spectrum for [Cr(CO)4b]+ is shown in Fig. 1. The 
low temperature FSED pulsed EPR and room temperature cw 
EPR spectra were also recorded, but no improved resolution was 
observed compared to the low temperature cw-measurement (see 
Electronic Supplementary Information; ESI, Figure SI & S2h|). 
The spectrum shown in Fig. 1 can be approximately described 
as possessing an axial g  matrix with well resolved superhyperfine 
structure in both the perpendicular and parallel components. The 
corresponding EPR simulation is also displayed in Fig. 1 and the 
resulting spin Hamiltonian parameters are listed in Table 1.

80-

60 -

40 -

2 0 -

3400 35003200 3300 
Field /  Gauss

3100

Fig. 1 Experimental and simulated cw-EPR spectra (140 K) o f  
[Cr(CO)4b]+ recorded in dichloromethane-toluene at a microwave fre­
quency o f  9.371 GHz. The angular dependency curves calculated for the 
Cr(i) g  matrix and the 31P A matrix are shown in the lower trace.

Each component of the g  matrix is split into an unmistakable 
1 :2 : 1  triplet pattern arising from the superhyperfine interaction 
with two equivalent 31P nuclei (7 = j) in the P-C-P based ligand 
b. Since the natural abundance of 53Cr (I  =  3/2) is only ca. 9.5%, 
coupled with the large linewidths associated with the31P hyperfine 
pattern, no anisotropic hyperfine interaction associated with 53Cr 
was detected in the frozen solution spectrum.

The EPR spin Hamiltonian parameters (g and A) for any 
paramagnetic complex will depend on the coordination state and
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Table 1 Spin Hamiltonian parameters obtained by simulation for the compounds [Cr(CO)4a-g]+

Complex Ligand g± gii FA±/G a pA±/M H z PA II/G* pA tl/M H z aiso/G ais0/M H z % s character

2e PNP 2.089 1.983 29.0 84.8 24.0 66.6 27.3 78.7 0.573
2c PCCP 2.084 1.989 25.5 74.4 25.0 69.6 25.3 72.8 0.532
2a PCCP 2.083 1.989 24.8 72.3 24.5 68.2 24.8 70.9 0.518
2d PNP 2.077 1.985 27.7 80.5 25.5 70.8 27.0 77.3 0.534
2g PNP 2.072 1.988 27.0 78.3 25.5 71.0 26.5 75.9 0.556
2f PNP 2.068 1.988 27.0 78.1 25.5 71.0 26.5 75.8 0.556
2b PCCCP 

" A values ±0.2 G.

2.063 1.987 24.9 72.0 24.5 68.1 24.7 70.7 0.520

symmetry of the metal centre. For the six coordinate [Cr(CO)4b]+ 
complex, the strong ligand fields are expected to cause a large 
splitting between the t,g orbitals and the eg orbitals resulting 
in a low spin (LS) d 5 state (S  = 5). High spin (HS) or 
intermediate spin d s states (S  = 5/2 or 3/2) could only occur 
in the presence of a weak ligand field, which is not expected in 
the [Cr(CO)4b]+ case. Furthermore, the LS Cr(i) complex could 
exist in two possible electronic ground states: a (dx:,dy:)A(d xy)x or 
(dxv)2(dx:,d v,)3 configuration. Simple crystal field arguments would 
suggest that the expected ground state for the [Cr(CO)4b]+ complex 
is (dx:,d v:f ( d xvy  26 It is proposed that Jt-back donation to CO helps 
to stabilize dx: and dy. relative to the dxy based HOMO. This is 
borne out by the observed g  matrix. For a SOMO where the metal 
contribution is primarily dxy, the components of the g  matrix are 
given by the following equations:26,27

example, is greatest for [Cr(CO)4e]+ and smallest for [Cr(CO)4b]+ 
(see Fig. 2 and Table 1).

8 x x  &e

S y y  S t

=2x^2(c„nczr
. E0 —Em* 0 0 m

= u y K l K l
^  En -E _ .

g = - g e =

(la)

(lb)

(lc)

In these equations ge is the free electron g  value, A is the spin-orbit 
coupling constant for the free Cr(i) ion (-185 cm-1), cxym is the 
LCAO coefficient, E 0 is the energy of the SOMO and m  sums over 
the other MOs with energies E m. Spin-orbit coupling mixes in d x:, 
d vz and d x2_ /  character, but for a low spin d 5 system, d x. and dy: 
will lie just below the SOMO, while d x2.y2 will be empty and much 
higher in energy. As a result the above equations predict that the 
g xx and gyy values should be significantly higher than g e while g:: 
should be slightly less than ge. These trends are indeed observed 
experimentally, with gL (gxx =  gyy) = 2.063 and ge > g t (g.-;) = 1.987 
(Table 1), agreeing with a dxy ground state of [Cr(CO)4b]+.

The cw-EPR spectra for all the remaining complexes, 2a-g, 
are shown in Fig. 2. In all cases, axial g  matrices (gi > ge > g n) 
are observed and the corresponding spin Hamiltonian parameters 
for each complex are listed in Table 1 (the individual simulated 
spectra are given in the ESI|). Similar to the above discussion on 
[Cr(CO)4b]+, it appears that the ground state in all the complexes 
can therefore be described as d xy. It should be noted however, that 
the resolution of the spectra, and indeed the spin Hamiltonian 
values, are found to be highly dependent on the ligand type 
(Table 1). The difference in g  values (defined as Ag  — g ± ~  g|), for

3000 3100 3200 3300 3400 3500
Field / Gauss

Fig. 2 cw-EPR spectra (140 K) o f  [Cr(CO)4a-g]+ recorded in 
dichloromethane-toluene. The spin Hamiltonian parameters obtained by 
simulation are shown in Table 1.

Despite these clear differences in the Ag  shift, caused by the 
extent of tetragonal distortion in the complexes, no obvious 
correlation emerges between the observed spectral shifts and 
the ligand type (i.e., P-N-P or P-C-P based ligands). Some 
correlations were identified with respect to the pA  hyperfine values, 
and these will be discussed later.

ENDOR Spectroscopy

The 'H, 14N and 31P cw-ENDOR spectra were also recorded for 
all complexes in frozen (deuterated) dichloromethane-toluene at 
10 K. Analysis of these ENDOR spectra was based on the observed 
orientational selection in the EPR spectra. It should be recalled 
that the powder EPR spectra (shown in Fig. 1 and 2 above) 
reflect an average of all molecular orientations of the complex 
with respect to the external field (B ). If the g  (and A) matrix is 
known, one can then easily associate distinct sets of molecular 
orientations with a given resonant field value. For example when 
the applied field (B) = B± the specific orientations corresponding 
to the x y  molecular direction (g = g±) are chosen. Similarly when 
B  =  2?,, specific orientations corresponding to the z  molecular 
direction (g =  gB) are selected. These two resonant field positions 
(sometimes referred to as ‘single-crystal like’ positions in the 
powder pattern29,33,34) are indicated in Fig. 1. This set of molecular
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orientations can then be selected at fixed magnetic field settings 
for nuclear resonance (in the ENDOR experiment). The result is 
a hyperfine spectrum that contains only one part of the powder 
pattern, or at least very few molecular orientations.

Whilst the current [Cr(CO)4a-g]+ complexes are dominated by 
the g anisotropy at X-band, the PA  coupling is appreciable at 
this frequency (Table 1) and this complicates the choice of field 
position for the ENDOR measurements. In this case, when the 
applied field (B ) = B± at least two sets of specific orientations 
are selected (as seen in the angular dependency plot for the Cr 
g  matrix combined with the PA superhyperfine lines in the lower 
trace of Fig. 1). However, when the ENDOR spectra are recorded 
at the field position labeled a in Fig. 1, only a single orientation 
(corresponding to 9H = 90°) is selected: effectively a field position 
analogous to g = g±. Similarly when the ENDOR spectra are 
recorded at the field position labeled b in Fig. 1, only a single 
orientation (corresponding to 0H = 0°) is selected: effectively 
a field position analogous to g = gt. Although the ENDOR 
spectra were measured at several (mixed) field positions, these 
latter two unique field positions greatly simplify the analysis of 
the subsequent ENDOR data.

'H ENDOR. The 'H ENDOR spectra of each complex 
recorded at the field position a (effective g = g± position) are 
shown in Fig. 3 for comparison. The spectra contain a matrix 
19F peak (labeled * in Fig. 3; vN = 14.0272 MHz for I9F at 
3500 G) which arises from the [Al(OC(CF3)3)4]“ counter ion 
used in the preparation of the Cr(i) complex (see experimental 
section). All of the spectra appear to be qualitatively similar, 
containing couplings from weakly interacting protons. The outer 
ENDOR peaks are quite broad, and this is usually indicative of 
a distribution of proton environments, producing a minor strain 
on the HA values. The weakly coupled protons, responsible for the 
outer lines in the ENDOR spectra, most likely originate from the 
phenyl substituents on ligand a-g, since they are common to all 
complexes and closest to the Cr centre (see Scheme 2). The methyl 
and methine protons in the P-N-P ligand backbone (d-g) are, 
for example, more than 5 A away from the Cr centre (too remote 
to account for the observed hyperfine couplings). Although the 
methine protons in the P-C-P ligand backbone (a and b) are

closer to Cr (ca. 4.5 A), their interaction would be expected to 
be predominantly dipolar in character and once again unlikely to 
account for the observed couplings.

Fig. 3 cw 'H ENDOR spectra (10 K) o f [Cr(CO)4a-g]+ recorded in 
deuterated dichloromethane-toluene. The spectra were obtained at the 
effective field position corresponding to g =  g± for each system. * =  19F  
matrix peak from the [Al(OC(CF3)3)4]~ counter ion.

H atomatom

y

co
o a

OC’
CO

Scheme 2

According to the published crystal structure of [Cr(CO)4g]+,31 
the two sets of phenyl groups in the complex are twisted with 
respect to each other. As a result, the two protons in the ortho- 
position of each phenyl ring are structurally inequivalent. This 
results in substantially different Cr-• • 'H^he  ̂ distances; i.e., 
for each phenyl ring one of the ortho-protons has a shorter 
Cr•••1H0.p h e n y i distance compared to the other. The four shortest 
Cr• • •‘Ho.phenyi distances from the crystal structure are reported 
to be 3.30, 3.54, 3.71 and 4.18 A,31 and these distances are all 
easily within range of weakly coupled nuclei detectable by cw- 
ENDOR. Since the experimental 'H hyperfine tensor will contain 
both isotropic (arising from spin polarisation) and anisotropic 
(arising from dipole-dipole interactions) terms, the observed 
differences in Fig. 3, must therefore arise either from changes to 
the relative conformation of the phenyl groups or due to changes 
in the electronic spin delocalisation in the complexes. In order to 
examine these changes in more depth, detailed simulations of the 
ENDOR data were performed.

The ’H ENDOR spectra recorded at several field positions for 
[Cr(CO)4g]+ , as a representative example, are shown in Fig. 4 along 
with the associated simulations. Two distinct proton environments 
account for the spectra.

v - v  /M H z

Fig. 4 Experimental and simulated cw 'H  ENDOR spectra (10 K) 
o f  [Cr(CO)4g]+ recorded in deuterated dichloromethane-toluene. The 
angular selective spectra were obtained at the magnetic field positions 
(B in Gauss) and corresponding g  values shown in the Figure.

However, owing to the broad linewidths observed, only the 
nuclei with the largest couplings can be simulated with any
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accuracy {i.e., the error associated with the simulated hyperfine 
couplings for the second set of protons, responsible for the inner 
peaks, is too large and suggests a Cr - • • 'H distance of >4 A). 
The nucleus responsible for the largest couplings contains a small 
aK0 contribution (-0.05 MHz), and the resulting A„ term (3.4 
MHz) gives an estimated Cr • ■ • 'H distance of 3.58 A (calculated 
using a simple point-dipole approximation based on the principal 
hyperfine components of A, =  -1.5, A 2 =  -2.0, A 3 =  3.35 MHz). 
Analysis of the ENDOR spectra for the remaining complexes 
reveals small also values in all cases and this suggests that the 
variations observed in Fig. 3 for the different ligands must origi­
nate from slight differences in the phenyl group conformations. As 
mentioned earlier, distinctive Cr • • • 'H distances of 3.30,3.54,3.71 
and 4.18 A, were identified in the single crystal of [Cr(CO)4g]+. 
It is highly likely that the main proton observed in the frozen 
solution ENDOR spectra, with the Cr • • • 'H distance of 3.58 A, 
represents an averaged distribution of the single crystal distances. 
This would certainly account for the unusually broad linewidths 
of the ENDOR spectra.

,4N couplings. The 14N ENDOR spectra were also recorded for 
the P-N-P containing ligands ([Cr(CO)4d-g]+). As the 14N nuclei 
are not directly coordinated to Cr, their couplings are expected to 
be weak. In such weak coupling cases, pulsed hyperfine techniques 
such as ESEEM and HYSCORE are ideally suited to extract the 
full hyperfine (A) and quadrupolar (Q) matrices. Nevertheless, a 
good estimate can also be extracted from the more poorly resolved 
cw ENDOR spectra. The 14N ENDOR spectra for [Cr(CO)4f]+, 
recorded at four different field positions are shown in Fig. 5.

 “V—r.rt.nr ", i* > — (c)

Frequency / MHz

Fig. 5 Experimental cw ,4N ENDOR spectra (10 K) o f  [Cr(CO)4f]+ 
recorded in deuterated dichloromethane-toluene. The angular selective 
spectra were obtained at the magnetic field positions and corresponding g 
values of (a) 3220 G, g = 2.10 (b) 3260 G, g  =  2.08 (c) 3370 G, g =  2.01 
and (d) 3394 G, g = 1.99. * =  2H matrix peak.

As deuterated solvents were used, a deuterium matrix peak is 
clearly visible in the spectra (labeled * in Fig. 5; vN = 2.2876 MHz 
for 2H at 3500 G). The remaining features in the spectra are 
attributed to the superimposed A and Q terms. To a first and very 
crude approximation, the values obtained were A, =  +4.38 MHz, 
A 2 = ±4.41 MHz, A 3 =  ±6.65 MHz and <2, =  ±0.13 MHz, Q2 =  
±0.19 MHz, Q3 =  ±0.32 MHz.

However, since the quadrupole value contains important in­
formation on the electronic structure of the complex, these 14N 
spectra will become more important and meaningful in later

studies devoted to the activation of the complex. In that case, 
the structural and electronic changes in the complex may be better 
monitored via the changes to the 14N A  and Q values via pulsed 
hyperfine methods.

31P couplings. The31P couplings are sufficiently large, that they 
are clearly visible in the EPR spectra (Fig. 1 and 2). However, 
they are also present in the ENDOR spectra, as shown in 
Fig. 6  for [Cr(CO)4f]+. Owing to the higher resolving powers of 
ENDOR, in principle their couplings, and possibly orientations, 
can be determined with more accuracy. The isotropic31P hyperfine 
couplings should arise from 31P 3 s character in the SOMO, from 
polarisation of inner shell P s orbitals by spin density on the 
metal or in P 3p orbitals. These summed contributions can then 
be analysed by EPR to account for the observed spin densities. 
However, as discussed by Rieger et al.,26 reliable interpretation 
of the 31P hyperfine matrix should be treated carefully as the 
anisotropies are often small and the g  matrix anisotropy is much 
greater than the A p matrix (hence observed spectral features 
correspond to orientations of the magnetic field along one of 
the g matrix principal axes). This will depend on the symmetry 
of the complex. Assuming an approximate C2v symmetry for the 
[Cr(CO)4L]+ complexes (since the C2 axis runs from Cr through 
the N atom bridging the two P atoms, with one vertical mirror 
plane containing the two P atoms and another containing the two 
CO molecules) the g  matrix axes are necessarily along the x, y  
and z  molecular axes, with the Cr-P vectors lying approximately 
midway between the x and y  axes (Scheme 2). However, at the low 
X-band frequency used in this work, the symmetry of the complex 
can be treated as axial for analysis purposes.

Fig. 6 Experimental and simulated cw 31P ENDOR spectra (10 K) of 
[Cr(CO)4c]+ recorded in deuterated dichloromethane-toluene. The angular 
selective spectra were obtained at the magnetic field positions (B in Gauss) 
and corresponding g values shown in the Figure.

The cw 31P ENDOR spectra were simulated at a number of 
field positions for [Cr(CO)4f]+ (Fig. 6 ). Although the observed 
linewidths were broad, the matrix is largely axially symmetric with 
A\ = 70 ± 1, A 2 — 72 ± 1 and A 3 — 83 ± 1 MHz (aiso = 75 MHz = 
26.75 G). This isotropic value is similar to that observed by EPR 
(see Table 1, aiso = 26.5 G, allowing for the larger error in the EPR 
spectra). Interestingly the PA „ value is calculated as 8 MHz, giving 
an estimated Cr - P bond length of 2.02 A. Clearly this is an 
under estimation of the distance compared to the known crystal 
structures of [Cr(CO)4g]+ 31 (Cr • • • P bond lengths of 2.26 and 
2 .6 6  A) and [Cr(CO)4(diphos) ] ° 36 (Cr • • • P distance of 2.36 A). This
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discrepancy arises primarily from the dominant aiso contribution to 
the hyperfine tensor, resulting in a higher degree of error associated 
with the dipolar term, and due to the limitations in the point- 
dipole approximation at such short electron-nuclear distances. For 
example, with a hyperfine tensor of A x = 70, A 2 =  72 and A 3 =  
81 MHz, then A, =  6.0 MHz giving a Cr • • • P distance of 2.2 A. 
For these reasons, it is qualitatively more meaningful to compare 
in detail the aiso values rather than the anisotropic PA  terms.

It should be noted that the small degree of anisotropy observed 
in the PA matrix is analogous to the experimental and calculated 
values for a series of Cr(i) carbonyl phosphine and phosphonite 
complexes as reported by Cummings et al.26b The [Cr(CO)4(dppe)]+ 
complex had reported g values of 2.09, 2.08 and 1.988 and 
PA values of 6 6 , 66  and 68 MHz. In all cases, the calculated 
anisotropies were small while the predicted aiso values were 
analogous to those experimentally observed in this work.

As seen in Table 1, the aiso values appear to be larger for the 
P-N-P type ligands compared to the P-C-P ligands. These results 
indicate that the electronic31P 3 s character in the SOMO is higher 
for the P-N-P type ligands (2e > 2g ~ 2f >  2d) compared to the 
P-C-P type ligands (2b ~ 2a); although 2c has a slightly higher aiso 
values in this expected trend. A similar correlation does not exist 
with respect to the g values (Table 1). Since the g matrix depends 
on the energy of the SOMO, which in turn is affected by the extent 
of tetragonal distortion in the complex, then any perturbation or 
changes in the coordination and symmetry of the system will be 
manifested in the g± components. Therefore ligands a-g, appear 
to alter the electronic properties of the complexes [Cr(CO)4L]+ in 
a very subtle and delicate manner.

Structure function relations

The ligands chosen for study were done so on the basis 
that catalytic ethylene tetramerization data has been previously 
reported,31,37,38 and furthermore that they represent significantly 
different variations of the diphosphine scaffold capable of enabling 
this reaction. Pertinent catalytic data was tabulated38 and a 
correlation searched for between the measured EPR-derived 
parameters (specifically the g values, phosphorus spin densities 
and % s orbital character (Fermi contact term), see Table 1) and 
various parameters of significance to the tetramerization reactions 
(activity, % C6, % C8, % 1-C6, % 1-Cg, % C6-cyclics, 1-C8:1-C6 
ratio and PE formation). However, no meaningful correlation in 
trends could be identified between any combination of parameters. 
Given the significant pertubation to the chromium environment 
when [Cr(CO)4L]-[Al(OC(CF3)3)4] is activated for catalysis using 
excess trialkylaluminium and then placed under elevated pressure 
of ethylene, this lack of correlation is perhaps not surprising, and 
suggests that more meaningful analysis can only be achieved by 
studying species that have been activated in the first instance, and 
secondarily under pressure of ethylene. For this reason ongoing 
work will extend this initial study of the precatalyst to monitor the 
changes to electronic and structure properties after activation of 
the catalysts.

Conclusions

Reactive Cr(i) bis(diphenylphosphine) species, labelled 
[Cr(CO)4a-g]+, were prepared and the paramagnetic complexes

characterised via cw-EPR and ENDOR spectroscopies. Subtle 
differences were identified between the complexes, most notably 
in the shifts to the g  components and the changes to the 31P 3 s 
character. The spin Hamiltonian parameters were found to be 
consistent with a low-spin d5 system of C2v symmetry, possessing 
a SOMO where the metal contribution is primarily d xy. The 
isotropic Fermi contact term (palso) was found to be largest for 
complexes containing ligands d, f, e and g, indicating that the 31P 
3 s character in the SOMO is higher for the P-N-P type ligands 
than the P-C-P types. Observed changes in the g  matrix did not 
however follow the same trends of ligand type, indicating that g  
is dependent not just on the energy of the SOMO but also on 
the structural differences in ligand which influence the extent 
of tetragonal distortion in the complexes. Structural differences 
in the [Cr(CO)4a-g]+ complexes were also revealed though ’H 
ENDOR, where the observed spectral changes were attributed to 
variations in the phenyl ring conformations as a function of ligand 
type. These EPR and ENDOR results reveal that the ligands a-g 
impart very subtle electronic and structural alterations to this 
class of complex, but that these parameters do not correlate with 
any trend in catalytic data at least for the parent pre-catalyst prior 
to activation.

Experimental section 

General procedures

All manipulations were performed using standard Schlenk tech­
niques under an argon atmosphere, or under a nitrogen atmo­
sphere in a MBraun UNILAB glovebox with less than 0.1 ppm 
water and 0 2. Solvents were dried using a Braun Solvent Pu­
rification System, and degassed prior to use. Ligands a, b and c 
were purchased from Aldrich and used as received; d and f were 
prepared according to a literature procedure;35 e was prepared 
according to a literature procedure;37 g was prepared according 
to a literature procedure.39 The corresponding chromium(O) 
la -lg  and chromium(i) compounds 2 a-2 g were prepared accord­
ing to literature procedures.30,31 Ag[Al(OC(CF3)3)4] was prepared 
according to a literature procedure.32

Instruments

NMR spectra were recorded at 298 K on Bruker Avance AMX 
400 or Jeol Eclipse 300 spectrometers. Chemical shift values are 
given relative to residual solvent peak. ESI-MS were performed 
on a Waters LCT Premier XE instrument. Infra-red spectra 
were recorded using a JASCO FT/IR-660 Plus spectrometer and 
analysed in solution (dichloromethane).

EPR/ENDOR measurements

Each complex 2a-g was dissolved in 200 pi DCM-toluene in the 
EPR tube and a frozen solution produced by placing the tube in 
liquid nitrogen. Each spectrum was recorded at 140 K (EPR) or 
10 K (ENDOR).

Instruments. All continuous-wave (cw) EPR spectra were 
recorded on an X-band Bruker EMX spectrometer operating at 
100 kHz field modulation, 10 mW microwave power and equipped 
with a high sensitivity cavity (ER 4119HS). EPR computer
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simulations were performed using the SimEPR32 program.40 g  
values were determined using a DPPH standard. All cw ENDOR 
measurements were performed on a Bruker ESP300E series 
spectrometer operating at 12.5 kHz field modulation and equipped 
with an ESP360 DICE ENDOR unit in an EN-801 ENDOR 
cavity. The spectra were recorded at 10 K, using 8 dB RF power 
from an ENI A-300 RF amplifier, 251 kHz modulation depth 
and 4mW microwave power. The ENDOR spectra were simulated 
using an in-house programme based on the resonance expressions 
given in.34 The EPR linewidths used in the ENDOR simulations 
were 5 G.

Representative synthesis of chromium(O) tetracarbonyl species

[Cr(CO)4(Ph2PN(/Pr)PPh2)| (lg). Toluene (20 ml) was added 
to chromium hexacarbonyl [Cr(CO)6], (350 mg, 1 .59 mmol) and g 
(500 mg, 1.17 mmol) and the stirred mixture was heated under 
reflux for 48 h. The solution was cooled to 0 °C and filtered 
to remove excess [Cr(CO)6]. Solvent was removed under reduced 
pressure and the product extracted into dichloromethane (5 ml). 
Methanol (10 ml) was added to precipitate the product, which was 
isolated by filtration and dried in vacuo to yield the yellow solid 
[Cr(CO)4(Ph2PN(zPr)PPh2)] (1 g):

Yellow solid (260 mg, 38%); ’H NMR (CDC13, 400.8 MHz, 
298 K): 8  (ppm) 0.62 (d, 6H, CH3, J HH = 6 .8  Hz), 3.52 (sept, 1H, 
CH, J hh = 7.0 Hz), 7.41 (m, 12H, meta-, para-C6H 5), 7.69 (m, 
8H, ortho-CiH5); 31P {1H} NMR (CDC13, 121.7 MHz, 298 K): 5  
(ppm) 112.70 (s); 13C NMR (CDC13, 125.8 MHz, 298 K): 8 (ppm) 
22.54 (CH3), 54.79 (CH), 127.39 (meta-C6H 5), 129.52 (para-C6U 5), 
130.86 (ortho-C6H5), 136.09 (ipso-C6H5), 221.89 (cis-CO), 227.40 
(trans-CO)\ High Resolution ESI^-MS (MeCN): found 591.0796 
(calc 591.0820 dev: -4.1 ppm); IR (CH2C12): v = 1887 (s) (CO), 
1923 (s) (CO), 2006 (s) (CO) cm-1.

All other Cr(0) complexes were synthesised using an analogous 
method to give la-f. Analytical data are provided below.

[Cr(CO)4(Ph2PCH2CH2PPh2)I (la). Yellow solid (300 mg, 
42%); ]H NMR (CD2C12, 400.8 MHz, 298 K): 8 (ppm) 2.00 (t, 4H, 
CH2CH2 J  =  4.1 Hz), 7.20-7.35 (m, 16H, ortho- and meta-C6H5), 
7.50 (m, 4H, para-C6Hs); 3IP {1H} NMR (CD2C12, 121.7 MHz, 
298 K): 8 (ppm) 80.35 (s); 13C NMR (CD2C12, 125.8 MHz, 298 K): 
8 (ppm) 27.30 (CH2CH2), 127.76 (meta-C6H5), 130.36 (para- 
C6H5), 131.88 (ortho-C6H5), 137.63 (z>50-C6H5), 219.61 (cis-CO),
228.30 (trans-CO); High Resolution ESIpos-MS (MeCN): found 
562.0542 (calc 562.0555 dev: -2.3 ppm); IR (CH2C12): v = 1870 
(s) (CO), 1902 (s) (CO), 2005 (s) (CO) cm-1.

JCr(CO)4(Ph2PCH2CH2CH2PPh2)l (lb). Yellow solid 
(400 mg, 57%); 'H NMR (CDC13, 400.8 MHz, 298 K): 8 (ppm) 
1.88 (m, 2H, CH2), 2.34 (m, 4H, CH2), 7.32 (m, 20H, C6H5); 
31P {’H} NMR (CDC13, 121.7 MHz, 298 K): 8 (ppm) 42.38 
(s); 13C NMR (CDC13, 125.8 MHz, 298 K): 8  (ppm) 18.57 
(CH2), 29.64 (CH2), 127.31 (meta-C6H5), 128.42 (para-C6H5), 
130.78 (ortho-C6H5), 136.72 (z/wo-QHj), 220.70 (cis-CO), 225.07 
(trans-CO); High Resolution ESI^-MS (MeCN): found 576.0717 
(calc 576.0711 dev: 1.0 ppm); IR (CH2C12): v =  1885 (s) (CO), 
1913 (s) (CO), 2005 (s) (CO) cm-1.

ICr(CO)4(Ph2PBzPPh2)) (lc). Yellow solid (320 mg, 47%);1H 
NMR (CD2C12, 400.8 MHz, 298 K): 8  (ppm) 7.30 (m, 20H, 
ortho-, meta-C6H5, C6H4), 7.45 (m, 4H, para-C6H5); 31P {!H}

NMR (CD2C12, 121.7 MHz, 298 K): 8 (ppm) 83.33 (s); 13C NMR 
(CD2C12, 125.8 MHz, 298 K): 8 (ppm) 127.39 (meta-C6Hs), 127.60 
(para-C6H5), 128.93, 129.65, 131.33 (C6H4), 131.37 (ortho-C6H5), 
135.60 (z>jo-C6H5); High Resolution ESI^-MS (MeCN): found 
610.0564 (calc 610.0555 dev: 1.4 ppm); IR (CH2C12): v = 1893 (s) 
(CO), 1916 (s) (CO), 2012 (s) (CO) cm-1.

[Cr(CO)4(Ph2PN(Et)PPh2)] (Id). Yellow solid (350 mg, 50%); 
•H NMR (CDC13, 400.8 MHz, 298 K): 8 (ppm) 0.75 (t, 3H, 
CH3, J hh =  7.3 Hz), 3.00 (m, 2H, CH2), 7.41 (m, 20H, C6H5); 
31P {'H} NMR (CDC13, 121.7 MHz, 298 K): 8 (ppm) 114.36 (s); 
13C NMR (CDC13, 125.8 MHz, 298 K): 8  (ppm) 15.12 (CH3), 
43.99 (CH2), 127.52 (meta-C6H5), 129.65 (para-C6H5), 130.86 
(ortho-C6H5), 135.55 (ipso-C6H5), 221.24 (cis-CO), 227.22 (trans- 
CO); High Resolution ESI^-MS (MeCN): found 577.0656 (calc 
577.0664 dev: -1.4 ppm); IR (CH2C12): v = 1891 (s) (CO), 1915 
(s) (CO), 2007 (s) (CO) cm-1.

[Cr(CO)4(Ar2PN(Me)PAr2)] Ar = 2-C6H,(Et) (le). Yellow 
solid (350 mg, 53%); 'H NMR (CD2C12, 400.8 MHz, 298 K): 
8  (ppm) 0.85 (br s, 12H, CH3), 2.46 (s, 3H, CH3), 2.61 (br s, 8H, 
CH2), 7.32 (m, 16H, A r-H); 31P {■H} NMR (CD2C12, 121.7 MHz, 
298 K): 8  (ppm) 103.4 (br s); 13C NMR (CD2C12, 125.8 MHz, 
298 K): 8  (ppm) 13.27 (CH3), 26.03 (CH2), 33.55 (CN), 124.89 
(meta-C6H5), 129.05 (para-C6H5), 134.47 (ortho-C6H5), 144.59 
(ipso-C6H 5), 219.76 (cis-CO), 227.72 (trans-CO); IR (CH2C12): 
v = 1864 (s) (CO), 1895 (s) (CO), 2006 (s) (CO) cm*1; High 
Resolution ESI^-MS (MeCN): found 675.1746 (calc 675.1759 
dev: -1.9 ppm).

[Cr(CO)4(Ph2PN(/Bu)PPh2)J (10- 31P {'H} NMR (CD2C12, 
121.7 MHz, 298 K): 8  (ppm) 115.86 (s). The supply of ligand was 
limited, therefore the entire complex If was converted to the Cr(i) 
complex as priority was given to EPR/ENDOR measurements.

Synthesis of Ag[Al(OC(CF3)3)432. LiAlH4 (1.0 g, 0.026 mol) 
was suspended in hexane (60 ml), cooled to 253 K and HOC(CF3)3 

(15 ml, 0.11 mol) added slowly. The mixture was stirred for 
45 min then heated under reflux overnight using a condenser set 
at 253 K. The solution was filtered, the product washed with 
hexane and solvent removed in vacuo to yield the white solid 
Li[Al(OC(CF3)3)4] (20.0 g, 80%); 19F NMR ((CD3)2SO, 250 MHz, 
298 K); 8 (ppm) -75.06.

Li[Al(OC(CF3)3)4] (10.0 g, 0.01 mol) and AgF (1.7 g, 0.013mol) 
were suspended in CH2C12 (50 ml) in the dark and mixed in an 
ultrasonic bath overnight. The solution was filtered and the solvent 
removed in vacuo to yield the white solid Ag[Al(OC(CF3)3)4] (8.3 g, 
77%).

Representative synthesis of chromium(i) tetracarbonyl species

Cr(CO)4(Ph2PN(iPr)PPh2][Al(OC(CF3)3)4] (2g). Complex lg 
(100 mg, 0.17 mmol) and Ag[Al(OC(CF3)3)4] (220 mg, 0.23 mmol) 
were dissolved in dichloromethane (5 ml) to give a dark blue solu­
tion. The Schlenk tube was covered with foil to reduce exposure of 
the reaction mixture to light. The solution was stirred at room tem­
perature overnight, then filtered and the solvent removed in vacuo 
to yield the blue solid [Cr(CO)4(Ph2PN(/Pr)PPh2)][Al(OC(CF3)3)4] 
(2g): Dark blue powder (105 mg, 40%); High Resolution ESIpos- 
MS (MeCN): found 591.0824 (calc 591.0820 dev: 0.6 ppm); IR 
(CH2C12): v = 1964 (s) (CO), 2032 (s) (CO), 2086 (s) (CO)cnr1.
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All other Cr(i) complexes were synthesised via an analogous 
method (using either 100 mg or 50 mg Cr(0) complex) to give 
2a-f: Analytical data is provided below.

[Cr(CO)4(Ph2PCH2CH2PPh2)][Al(OC(CF3)3)4] (2a). Dark 
purple powder (90 mg, 6 6%); High Resolution ESI^-MS 
(MeCN): found 562.0562 (calc 562.0555 dev: 1.2 ppm); High 
Resolution ESIDeg-MS (MeCN): found 966.9030 (calc 966.9037 
dev: -0.7 ppm); IR (CH2C12): v = 1971 (s) (CO), 2034 (s) (CO),
2085 (s) (CO) cm-1.

|Cr(CO)4(Ph2PCH2CH2CH2PPh2)][Al(OC(CF3)3)4] (2b).
Dark blue powder (145 mg, 54%); High Resolution ESI^-MS 
(MeCN): found 576.0706 (calc 576.0711 dev: -0.8 ppm); High 
Resolution ESIneg-MS (MeCN): found 966.9084 (calc 966.9037 
dev: 4.8 ppm); IR (CH2C12): v = 1954 (s) (CO), 2046 (s) (CO),
2086 (s) (CO) cm'1.

[Cr(CO)4(Ph2PBzPPh2)][Al(OC(CF3)3)4] (2c). Dark blue 
powder (65 mg, 50%); High Resolution ESI^-MS (MeCN): 
found 610.0540 (calc 610.0555 dev: -2.4 ppm); IR (CH2C12): v =  
1969 (s) (CO), 2032 (s) (CO), 2086 (s) (CO) cm-1.

[Cr(CO)4(Ph2PN(Et)PPh2)][Al(OC(CF3)3)4] (2d). Dark blue 
powder (120 mg, 45%); High Resolution ESIpos-MS (MeCN): 
found 577.0648 (calc 577.0664 dev: -2.7 ppm); IR (CH2C12): v =  
1968 (s) (CO), 2036 (s) (CO), 2089 (s) (CO) cm-1.

lCr(CO)4(Ar2PN(Me)PAr2)][Al(OC(CF3)3)4] Ar =  2-C6H4(Et) 
(2e). Dark blue powder (150 mg, 62%); High Resolution ESIp̂ - 
MS (MeCN): found 675.1773 (calc 675.1759 dev: 2.0 ppm); IR 
(CH2C12): v = 1975 (s) (CO), 2022 (s) (CO), 2052 (s) (CO), 2082 
(s) (CO) cm-1.

[Cr(CO)4(Ph2PN(iBu)PPh2)] AI(OC(CF3)3)4 (20- The supply 
of complex was limited, therefore priority of use of 2f was given 
to EPR/ENDOR measurements.
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