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Abstract

This thesis investigates whether genes that have been associated with schizophrenia have a 

role in hippocampal-dependent long-term memory. Schizophrenia is psychiatric disorder in 

which individuals experience, amongst other symptoms, cognitive difficulties including long­

term memory (LTM) impairments. The functional roles of many schizophrenia susceptibility 

genes remain unknown. In this study, a selection of schizophrenia susceptibility genes and 

their splice variants, in particular Neuregulin 1 (Nrg1), Dysbindin 1 (Dtnbpl), Disrupted-in- 

schizophrenia 1 (Disci) and Early growth response factor 3 (Egr3), were hypothesized to be 

regulated in association with the processes of LTM. The contextual fear conditioning 

behavioural paradigm in which a rat associates an electric footshock with a distinct context was 

used to investigate hippocampal-dependent LTM.

Firstly the exonic structure of all known splice variants of Nrg1, Dtnbpl and Disci were 

determined using NCBI SPIDEY mRNA to genomic alignment software and oligonucleotide 

probes were designed to detect Nrg1 type I, II, III and IV splice variants, Disci I and Disci Lv 

splice variants, and Dtnbpl exons 1,5,8 and 9 in an attempt to identify Dtnbpl splice variants. 

Pan probes were also designed to detect all splice variants of Nrg1, Dtnbpl and Disci, and the 

only identified transcripts of Egr3, and its repressors Nab1 and Nab2. Whole brain expression 

patterns were characterized by in situ hybridization for all probes except for the Nrg1 type IV 

probe and all of the Disci probes as no specific labeling could be observed despite trying two 

or three different probes and probing in amphetamine-activated brain tissue.

The level of expression of the genes and splice variants to which specific labeling had been 

achieved, were assayed in regions of the adult rat brain known to be involved LTM processes, 

including the hippocampus, amygdala and medial prefrontal cortex, during the consolidation of 

contextual fear memory (CFM). Egr3 expression in the CA1 region of the hippocampus and in 

the dorsolateral nucleus of the amygdala, and Nrg1 type I expression in the CA3 region of the 

hippocampus was upregulated in association with the consolidation of CFM. Infusion of 

antisense into the dorsal hippocampus to knockdown EGR3 expression during the 

consolidation of CFM was performed and it was determined that EGR3 expression in the dorsal 

hippocampus was not necessary for the consolidation of CFM. Further investigation of the 

expression levels of Egr3 and Nab2 as well as Egrl during reconsolidation and extinction of 

CFM in the same brain regions, identified that Egr3, Egr1 and Nab2 expression was
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upregulated in the hippocampus, Egr3 and Egr1 expression were upregulated in the amygdala, 

and Egr1 was upregulated in the medial prefrontal cortex in association with reconsolidation 

and extinction of CFM. Finally, infusion of antisense into the dorsal hippocampus to knockdown 

EGR3 expression during the reconsolidation of CFM was performed and it was determined that 

EGR3 expression in this region was not necessary for the reconsolidation of CFM.

It was concluded that some of the schizophrenia susceptibility genes were regulated in 

association with hippocampal-dependent LTM processes but no schizophrenia susceptibility 

genes were identified to be causally involved in hippocampal-dependent LTM processes. It was 

discussed that considering the large number of schizophrenia susceptibility genes and range of 

cognitive impairments in schizophrenia, this approach of investigating the functional roles of 

schizophrenia susceptibility genes would benefit from many more schizophrenia susceptibility 

genes in a range of behavioural paradigms, analogous to the range of schizophrenia 

endophenotypes, would expedite the rate at which functional roles for these genes would be 

discovered.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Schizophrenia

Schizophrenia affects approximately one in every 150 individuals worldwide (Flint et al., 2010). 

Schizophrenia is a heterogeneous syndrome that has been characterised by three main groups 

of symptoms known as positive, negative and cognitive symptoms (Barch, 2005). Positive 

symptoms include delusions (defined as fixed, unshakeable false beliefs not shared by people 

from the same cultural background) and hallucinations (defined as involuntary false 

perceptions occurring concurrently with real perceptions and having qualities of real 

perceptions) (Chiu, 1989). Most hallucinations are auditory perceptions in the absence of 

stimuli, but in approximately one sixth of cases visual perceptions in the absence of stimuli are 

experienced. Negative symptoms include emotional and social withdrawal and lack of 

motivation. Cognitive symptoms are wide ranging and include impairments in learning and 

memory, central executive function and attention (Barch, 2005). Recent studies suggest that 

the cognitive deficits are present early in the course of schizophrenia and are comparable to 

those detected in the chronic phase of the disorder (Sponheim et al., 2009; Reichenberg et al., 

2010). Schizophrenic patients differ in the combination of these symptoms from which they 

suffer. The severity of some of the cognitive symptoms have been associated with the severity 

of disorganised thought (a positive symptom) and negative symptoms (Aleman et al., 1999; 

Barch, 2005). Cognitive impairment in young individuals is thought to be a marker of biological 

vulnerability to schizophrenia (Jones et al., 1994; Comblatt et al., 1999; Niendam et al., 2003; 

Delawalla et al , 2006).

Schizophrenia lacks any consistent physiological identifiable marker, therefore it is diagnosed 

in the process of consultation through identification of the clinical symptoms described in the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) of which the most recent version
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is DSM-IV. An updated DSM-V is being developed at present. Currently there is discussion 

over the usefulness of the term schizophrenia covering such a varied combination of 

symptoms. In order to ease treatment of different symptoms and to help research into the 

different phenotypes, the possibility of new nosology has been suggested (Owen et al., 2007). 

The onset of schizophrenia seems to occur in two stages. Behavioural changes, including 

some cognitive and negative symptoms, can be present in childhood, while the positive 

symptoms are rarely observed before puberty. This is in agreement with schizophrenia being a 

neurodevelopmental disorder (Weinberger, 1987; Murray & Lewis 1987).

While no biomarkers for schizophrenia have been identified, there have been 

neuropathological observations that are associated with schizophrenia. These findings have 

been frequently inconsistent and incomplete. Nevertheless, some of the most consistent 

findings include ventricular enlargement volume reduction in some brain regions, and the 

presence of smaller pyramidal cell bodies with reduced dendritic spines and arborizations in 

both the hippocampus and neocortex (Harrison & Weinberger, 2005). Evidence of hippocampal 

abnormalities in schizophrenia include findings of altered hippocampal shape in schizophrenic 

patients, including bilateral deformity of the head of the hippocampus and the loss of normal 

hippocampal asymmetry (Csemansky et al., 2002). Meta-analysis of structural magnetic 

resonance imaging (MRI) studies investigating regional brain volumes in schizophrenia have 

commonly found reductions in hippocampal volume in individuals with schizophrenia compared 

to control individuals (Nelson et al., 1998; Wright et al., 2000; Honea et al., 2005). Functional 

neuroimaging studies have also detected abnormal activity in the hippocampus in 

schizophrenic individuals when they are at rest, experiencing auditory hallucinations, and 

performing memory retrieval tasks (Heckers, 2001). Meta-analysis of structural MRI studies 

investigating regional brain volumes in individuals with schizophrenia have also found 

reductions in volume of the prefrontal cortex (PFC) in general, and more particularly in the 

dorsolateral PFC (DLPFC) and medial PFC compared to control individuals (Shenton et al., 

2001; Wright et al., 2000; Honea et al., 2005; Glahn et al., 2008). Other cortical differences 

found in individuals with schizophrenia include cortical thinning in the orbitofrontal cortices 

bilaterally, the inferior frontal cortex on the left, and the medial frontal cortices on the right 

(Kuperberg et al., 2003) and reduced cortical gyrification (Kulynych et al., 1997; Harris et al., 

2004; Harris et al., 2007). Furthermore thalamic volume was shown to be reduced in 

schizophrenic individuals compared to control subjects (Konick & Friedman, 2001). Finally, 

white matter abnormalities have been detected in many diverse regions of the brain in
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schizophrenia patient, but frontal and temporal white matter regions have been most 

consistently implicated (Kyriakopoulos et al., 2008). White matter abnormalities detected 

between the hippocampus and cortex in schizophrenic patients has been suggested to 

contribute to evidence of aberrant structural hippocampal-cortical connectivity in schizophrenia 

(Qiu et al., 2010).

As schizophrenia lacks any consistent physiologically identifiable biomarker an alternative 

approach used to understand the pathophysiology of schizophrenia has included the 

identification of intermediate phenotypes or endophenotypes. Endophenotypes are defined as 

measurable components unseen by the unaided eye along the pathway between disease and 

distal genotype (Gottesman & Gould, 2003). An endophenotype can be distinguished from 

biomarkers in general by the following criteria (Gould & Gottesman, 2006):

1. The endophenotype must be associated with the illness.

2. The endophenotype must be heritable.

3. The endophenotype must be state-independent (but may require challenge/provocation).

4. Within families, endophenotype and illness cosegregate.

5. The endophenotype identified in patients can also be found in their unaffected relatives at a 

higher rate than in the general population.

As both the behavioural phenotypes and genetic basis of schizophrenia are complex, the 

identification of endophenotypes of schizophrenia is thought to constrain the heterogeneity of 

the behavioral phenotype and therefore increase the chances of efficiently identifying the 

genetic and neurobiological underpinnings of that endophenotype. This reductionist approach 

enables the identification of some of the pathways to which therapeutic drugs could be 

developed for treatment of that component of the disorder. The more endophenotypes of 

schizophrenia that are studied the more the neurobiological underpinnings of schizophrenia will 

be understood. The complex behavioural phenotypes observed in psychiatry have been 

reduced into components at the neurophysiological, biochemical, endocrine, neuroanatomical, 

cognitive or neuropsychological levels (Gould & Gottesman, 2006). In schizophrenia poor 

attention and other cognitive deficits (Niendam et al., 2003) and decreased social drive 

(Laurent et al., 2000) are examples of endophenotypes that have been identified.
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The cause of schizophrenia is not understood but both genetic and environmental components 

contribute to its development. Environmental factors associated with the disorder include 

maternal infection and maternal starvation during pregnancy, hypoxia during birth, acute stress 

during childhood and drug abuse during puberty (Susser et al., 1996; St Clair et al., 2005; Hoek 

et al., 1998; Gearon et al., 2003). Substantial evidence for schizophrenia having a genetic 

component that predisposes an individual to the disorder has been accrued through the study 

of twins since as long ago as 1966 (Gottesman & Shields, 1966; McGuffin et al., 1994). 

Different studies have estimated the percentage of the genetic contribution to developing 

schizophrenia to different degrees, this is likely due to variation in the definition of the disorder 

(Portin & Alanen, 1997). However the highest heritability has been estimated at approximately 

80% between monozygotic twins (McGuffin et al., 2004). The unusual pattern of heritability of 

schizophrenia reflects the heterogeneous and complex genetic architecture of schizophrenia 

combined with environmental factors (Owen et al., 2010).

1.1.1 Molecular Mechanisms of Schizophrenia

At the systems level, glutamatergic, dopaminergic, y-aminobutyric add related (GABAergic) 

and cholinergic neurotransmission have all been identified as being disrupted in schizophrenia 

(Lisman et al., 2008).

1.1.1.1 Glutamate Hypothesis of Schizophrenia

The glutamate hypothesis of schizophrenia was first put forward in 1980 and has received 

much greater support more recently (Kim et al., 1980; Moghaddam, 2003). Glutamate is a 

major excitatory neurotransmitter used by 40% of all synapses in the brain. It is released from 

pyramidal cells in the cerebral cortex and limbic system regions of the brain that have been 

implicated in schizophrenia (Tsai and Coyle, 2002). Glutamate neurotransmission was initially 

identified as being disrupted in schizophrenic patients through a study that detected low 

glutamate levels in the cerebrospinal fluid (Kim et al., 1980; but see Moghaddam, 2003). 

Glutamate binds to four groups of receptors; metabotrophic glutamate receptors, and the 

ionotropic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N- 

methyt-D-aspartic add (NMDA) receptors (Coyle et al., 2001). Particular evidence for a role of 

NMDA receptor (NMDAR) hypofunction in schizophrenia has accumulated over the last three
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decades. Antagonism of the NMDAR by phencyclidine (PCP) or ketamine in healthy individuals 

produces “schizophrenia-like" symptoms (Javitt et al., 1991; Krystal et al., 1994), and worsens 

symptoms in schizophrenia patients (Lahti et al., 1995). In addition, reduced NMDAR binding 

in the hippocampus of schizophrenic patients has been identified using single photon emission 

computed tomography (SPECT) imaging (Pilowsky et al., 2005). Furthermore, many of the 

genes that have been associated with susceptibility to developing schizophrenia have been 

shown to interact with NMDAR signalling or modulation of NMDAR activity, such as Neuregulin 

1 (NRG1), Dysbindin (DTNBP1), D-Amino Acid Oxidase Activator (DAOA), Metabotropic 

Glutamate Receptor 3 (GRM3) and Disrupted-ln-Schizophrenia 1 (DISC1). This has been 

suggested to be evidence supporting the glutamatergic hypothesis of schizophrenia as these 

genes show a degree of convergence on the glutamate system (Hall et al., 2009). Disruption in 

the expression of these genes has been proposed as a mechanism by which glutamatergic 

activity in schizophrenic patients could be altered without causing complete disruption to 

glutamate neurotransmitter activity across the whole brain (Moghaddam, 2003). Other studies 

supporting disruption to glutamate neurotransmission in schizophrenia include studies that 

show the levels of substrates, enzymes and products involved in glutamate synthesis were 

altered in schizophrenic patients (Tsai et al., 1995), and postmortem studies have identified 

alterations in glutamate receptor binding and decreases in expression of glutamate receptor 

subunits in the hippocampus and frontal cortical areas in schizophrenia patients (Harrison et 

al., 2003; Clinton & Meador-Woodruff, 2004). As a result of the glutamate hypothesis 

therapeutic drugs have been designed to address NMDAR dysfunction and reports from initial 

clinical trials are promising (Lindsley et al., 2006).

1.1.1.2 Dopamine Hypothesis of Schizophrenia

The dopamine hypothesis was initially proposed in 1966 (Rossum, 1966). Evidence supporting 

the dopamine hypothesis of schizophrenia has been drawn from pharmacological, postmortem 

and imaging studies (Toda & Abi-Dargham, 2007). Pharmacological studies have repeatedly 

shown that drugs that modulate dopamine release, such as amphetamines, produce paranoid 

psychotic symptoms in healthy individuals (Griffith et al., 1968; Angrist & Gershon, 1970; Bell, 

1973). In addition, the vast majority of antipsychotic treatments for schizophrenia, with the 

exception of the most recently developed, have been shown to be dopamine D2 receptor 

antagonists (Talbot & Laruelle, 2002). Postmortem studies have assayed the presence of 

dopamine and its metabolites, tyrosine hydroxylase, D1, D2, D3 and D4 receptors and
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dopamine transporters in schizophrenia with mixed results (Toda & Abi-Dargham, 2007). 

However an increase in D2 receptors in the striatum in schizophrenia has been consistently 

observed in 17 separate studies (Owen et al., 1978; Dean et al., 1997; see Toda & Abi- 

Dargham, 2007). Eighteen imaging studies revealed a small elevation of striatal D2 receptors 

in schizophrenic patients indicating that a hyperdopaminergic state is present in the striatum in 

schizophrenia (Weinberger & Laruelle, 2001; Yang et al., 2004). Also in the striatum, three 

studies have suggested that there is an increase in synaptic dopamine or an increase in affinity 

of D2 receptors for dopamine, following amphetamine challenge in schizophrenic patients 

compared to healthy individuals (Laruelle et al., 1996; Breier et al., 1997; Abi-Dargham et al., 

1998). Additionally, abnormal activity in the mesolimbic and mesostriatal systems, thought to 

represent a hyperdopaminergic state, has been shown to correlate with reward learning and 

psychosis (Murray et al., 2008). In contrast indirect evidence from multiple studies suggest that 

a hypodopaminergic state may be present in the DLPFC in schizophrenia and could contribute 

to the manifestation of the cognitive symptoms (Toda & Abi-Dargham, 2007). Finally a 

selection of known schizophrenia susceptibility genes are involved in dopamine signalling, such 

as Catechol-O-Methyltransferase (COMT), Dopamine Receptor D2 (DRD2) and Protein 

Phosphatase 1 Regulatory Subunit 1B (PPP1R1B), thereby implicating altered dopamineric 

neurotransmission in schizophrenia pathophysiology (Hall et al., 2009).

1.1.1.3 GABA Hypothesis of Schizophrenia

The GABA hypothesis of schizophrenia posits that GABA release is reduced in regions of the 

brain in schizophrenia. Postmortem investigations have consistently found that GABA 

concentrations are lower in the amygdala in schizophrenia (Spokes et al., 1980; Korpi et al., 

1987; Kutay et al., 1989). A decrease in induced GABA release from the temporal and frontal 

cortex regions has also been observed in schizophrenia (Sherman et al., 1991). Additionally, 

two isoenzymes of glutamate decarboxylase (GAD), a biosynthetic enzyme that converts 

glutamic acid to GABA, have been shown to be differentially expressed in schizophrenia (Blum 

& Mann, 2002). In the PFC, lower GAD67 mRNA expression (Akbarian et al., 1995; Volk et al., 

2000; Guidotti et al., 2000) and lower GAD67 protein expression (Impagnatiello et al., 1998; 

Todtenkopf & Benes, 1998) have been associated with schizophrenia, while GAD65 protein 

levels do not appear to be altered in schizophrenia (Todtenkopf & Benes 1998; Benes et al.,

2000). Thus less GABA may be synthesized in a subpopulation of cells in the PFC. Further 

postmortem investigations have shown that GABA-A receptor binding was increased in
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schizophrenia in cortical and hippocampal regions in schizophreni patients (Hanada et al., 

1987; Benes et al., 1992; Benes et al., 1996a; Benes et al., 1996b; Dean et al., 1999), with the 

exception of one study where no change in frontal cortex was found (Bennett et al., 1979). 

Increased binding at GABA-A receptors could be a compensatory response to reduced GABA 

release (Blum & Mann, 2002). There are different subpopulations of GABAergic intemeurons in 

the prefrontal cortex. These include chandelier and wide-basket GABA neurons, identifiable by 

positive labelling for parvalbumin, that synapse onto the initial axon segments of pyramidal 

cells and on the cell bodies and dendrites of pyramidal cells respectively. The GABA 

transporter GAT-1 can be detected in distinctive vertical arrays of chandelier axons known as 

cartridges (Blum & Mann, 2002). Fewer GAT-1 axon cartridges are present in schizophrenia 

(Woo et al., 1998; Pierri et al., 1999; Volk et al., 2001; Ohnuma et al., 1999). The reduction in 

the number of GABA transporters in chandelier neurons supports the hypothesis of less 

GABAergic inhibition of pyramidal cells. Disruption to the GABAergic activity in the prefrontal 

cortex could contribute to the cognitive impairments in schizophrenia (Goldman-Rakic, 1996), 

the positive symptoms in schizophrenia (Grace, 1991) and the inability of schizophrenics to 

appropriately filter excessive or irrelevant stimuli (Carlsson et al., 2001).

1.1.1.4 Acetylcholine Hypothesis of Schizophrenia

The cholinergic hypothesis of schizophrenia suggests that alteration of the cholinergic system, 

and particularly signalling via the G protein coupled muscarinic receptors, is associated with 

schizophrenia pathogenesis (Raedler et al., 2007). Pharmacological evidence suggests that 

cholinergic neurotransmission is disrupted in schizophrenia because anticholinergic treatment 

in healthy individuals causes cognitive dysfunction (Ellis et al., 2006), and at higher doses can 

induce delirium and vivid hallucinations (Perry & Perry, 1995). In schizophrenia patients, 

anticholinergics have been used in conjunction with first-generation antipsychotics to alleviate 

motor side effects. This adjunct treatment worsened psychosis and cognitive impairments and 

had only a modest improvement of negative symptoms (Johnstone et al., 1983; Singh et al., 

1987; Chouinard et al., 1987, Tandon et al., 1991; Tandon et al., 1992; Minzenberg et al., 

2004). Additionally adjunct treatment with cholinesterase inhibitors have had mixed results 

(Raedler et al., 2007). However initial studies on the use of muscarinic agonists for treating 

schizophrenia are promising (Sullivan et al., 2000; Shekhar et al., 2008). Postmortem studies 

have shown region-specific decreases in specific types of muscarinic receptors in 

schizophrenic brains; in regions of the cortex (Dean et al., 2000; Crook et al., 2001; Dean et al.,
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2002; Zavitsanou et al., 2004; Deng & Huang, 2005; Mancama et al., 2003), in the 

hippocampus (Crook et al., 2000; Scarr et al., 2007) and in the caudate and putamen (Dean et 

al., 1996; Crook et al., 1999). Complimenting the decrease in muscarinic receptor activity 

suggested by the postmortem studies, a single photon emission computed tomography 

(SPECT) imaging study in schizophrenic patients has shown that muscarinic receptor 

availability was reduced in the cortex and basal ganglia (Raedler et al., 2003). The 

pharmacological, postmortem and imaging studies combined support the hypothesis that 

cholinergic neurotransmission is involved in schizophrenia pathogenesis.

1.1.1.5 Synthesis of Current Hypotheses of Schizophrenia

As these systems all interact in different ways in different regions of the brain it is possible that 

disruption to one system could lead to disruption of the other three neurotransmitter systems. 

Lisman and colleagues (2008) have proposed a circuit-based framework for understanding the 

role and interaction of four neurotransmitter systems in Schizophrenia (Fig. 1.1) (Lisman et al.,

2008). Central to this framework is NMDAR hypofunction that reduces glutamatergic 

neurotransmission through disinhibition of GABAergic activity leading to a hyperdopaminergic 

state. Cholinergic activity in intemeurons can enhance GABA release and thereby modulate 

glutamatergic and consequently dopaminergic activity (Lisman et al., 2008).

1.1.2 Schizophrenia Susceptibility Genes

Schizophrenia is a highly heritable disorder (Flint et al., 2010). Therefore researchers have 

tried to identify the allelic variants in the DNA of individuals with schizophrenia that makes them 

more susceptible to developing the disorder. The allelic variants have become known as the 

schizophrenia susceptibility genes. In the past schizophrenia susceptibility genes have been 

identified using: (1) microscopic chromosomal abnormalities, (2) linkage studies, and (3) gene 

association studies (Harrison & Weinberger, 2005; MacIntyre et al., 2003).
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Figure 1.1. Schematic of the circuit based framework proposed by Lisman and 
colleagues (2008) for understanding the interaction between the glutamate, 
dopamine, GABA and acetylcholine neurotransmitter systems in schizophrenia
(adapted from Lisman et al., 2008). NMDA receptor hypofunction in GABA FS 
intemeurons could lead to less inhibition of glutamate pyramidal cells in the hippocampus 
that could lead to overstimulation of dopamine VTA neurons and a hyperdopaminergic 
state within the brain. Reduced excitatory output from cholinergic MS cells to GABA FS 
intemeurons could lead to further reductions in the level of inhibition of glutamate activity 
in the hippocampal pyramidal cells. +, excitatory neurotransmitter release; inhibitory 
neurotransmitter release; Ach, acetylcholine; FS, fast-spiking; MS, medial septal region; 
VTA, ventral tegmental area.



1.1.2.1 Microscopic Chromosomal Abnormalities

Many microscopic chromosomal abnormalities have been associated with schizophrenia. The 

genes disrupted by these chromosomal abnormalities are genes that may be schizophrenia 

susceptibility genes (MacIntyre et al., 2003). An example of a schizophrenia susceptibility gene 

that has been identified through observation of a microscopic chromosomal abnormality is 

DISC1. In a large Scottish family, DISC1 located to chromosome 1 is disrupted by a balanced 

reciprocal translocation with chromosome 11 in association with schizophrenia, bipolar disorder 

and major depressive disorder (Millar et al., 2000). More recently submicroscopic deletions and 

duplications of segments of DNA known as copy number variants (CNVs) have been identified 

as important sources of genomic variation in all individuals through genome-wide CNVs studies 

(Sebat et al., 2009). CNVs can result in disruption to gene function including altered levels of 

gene dosage and disruption of normal regulation of gene expression. Some CNVs have been 

found to be associated with schizophrenia (Owen et al., 2010). A chromosomal deletion at 

22q11.2 has been associated with an approximately 20-fold increase in risk of schizophrenia 

(Murphy et al., 1999). Two other loci, deletions of chromosomes 1q21.1 and 15q13.3, have 

been associated with schizophrenia in two different studies (International Schizophrenia 

Consortium, 2008; Stefansson et al., 2008). At present there is evidence for an increase of 

large (>100 kb), rare (frequency <1%) CNVs in schizophrenia. However as to which of the 

multiple genes present within these CNVs are relevant to schizophenia pathophysiology 

remains unknown with one exception (Owen et al., 2010). The gene Neurexinl (NRXN1) at 

chromosome 2p16.3 has been disrupted by deletion CNVs in multiple studies (Kirov et al.,

2009).

1.1.2.2 Linkage Studies

Genetic linkage analysis is a tool that can detect chromosomal locations contributing to the 

physiology of a disease through genotyping marker DNA sequences. Within these 

chromosomal regions is located the gene or genes that are irregularly expressed or abnormally 

functioning in the disease (Pulst, 1999). Linkage studies have identified at least 18 

chromosomal regions that differ between schizophrenic and control populations (Kohn & Lerer, 

2002). Two examples of schizophrenia linkage regions include 6p23 (Wang et al., 1995) and 

8p21 (Blouin et al., 1998). Investigation of the genes that are located in these regions and gene
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association studies on allelic variants that are present within these regions lead to the 

identification of two schizophrenia susceptibility genes, DTNBP1 at 6p22.3 (Straub et al., 2002) 

and NRG1 at 8p22-p11 (Stefansson et al., 2002). However the findings from linkage analysis 

studies have not been consistent and a recent meta-analysis on 32 independent genome-wide 

linkage scans suggested that fewer linkage regions were significantly different between 

individuals with schizophrenia and the control population (Ng et al., 2009).

1.1.2.3 Gene Association Studies

Gene association studies initially genotyped a number of single nucleotide polymorphisms 

(SNPs) within a length of DNA, usually across a gene of interest, in order to try and identify 

allelic variants that associated with schizophrenia. Due to low sample sizes, many gene 

association studies have only had the power to identify relatively common and highly penetrant 

allelic variants (Risch & Merikangas, 1996). At odds with the power of these initial gene 

association studies recent allelic variant architecture hypotheses of schizophrenia suggest that 

there are common variants of small effect and rare variants of large effect that contribute to 

schizophrenia (Craddock et al., 2007). This helps to explain the many inconsistent findings 

from the schizophrenia gene association studies. There have been thousands of gene 

association studies published, many of which are replication studies. More than 900 genes 

have been investigated through association studies across a range of populations with 

commonly negative, or both positive and negative, findings for each gene (Allen et al., 2008). 

However the veracity of the positive findings are not necessarily tempered by the negative 

findings as the studies vary in the genetic heterogeneity and size of the sample population and 

in the genetic variation coverage investigated (Alaerts et al., 2009; Owen et al., 2010). Harrison 

and Weinberger suggested that candidate schizophrenia susceptibility genes worthy of further 

focused investigations should have greater than three separate positive gene association 

studies, should be present in a schizophrenia linkage region, should have evidence for altered 

expression in the schizophrenic postmortem brain, and finally they should have biological 

plausibility in relation to current hypotheses of schizophrenia pathogenesis. In 2005 NRG1, 

DTNBP1 and DISC1 were three of the most well supported schizophrenia susceptibility genes 

using this criteria (Harrison & Weinberger, 2005). Two other genes that have a moderate level 

of evidence suggesting that they contribute to schizophrenia pathophysiology and that have 

also been shown to be involved in long-term memory are Early Growth Response factor 3 

(EGR3) and Brain Derived Neurotrophic Factor (BDNF). The aim of this thesis is to identify if
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these genes have a role in hippocampal-dependent long-term memory. The evidence for these 

genes as schizophrenia susceptibility genes is discussed below.

1.1.2.3.1 NRG1

NRG1 was first identified as a schizophrenia susceptibility gene in 2002 through a gene 

association study (Stefansson et al., 2002). Since then there have been 21 positive case- 

control studies and 17 negative case-control studies, 10 positive family-based studies and 10 

negative family-based studies. These studies were performed in a range of ethnic groups 

including Caucasian, Asian, Hispanic, and African descent, using different selections of single 

nucleotide polymorphisms (SNPs) within the gene, and varying numbers of schizophrenic 

patients and controls (SchizophreniaGene Database on Schizophrenia Research Forum 

website as of July 2010, see Allen et al., 2008). Therefore the inconsistent findings may be due 

to genetic heterogeneity, low genetic variation coverage with a lack of linkage disequilibrium 

between the SNPs used in the studies and the actual susceptibility allele, and/or insufficient 

power in the studies to detect risk variants with small effects. It is also possible that NRG1 is a 

susceptibility gene in some populations but not in others (Alaerts et al., 2009). Three meta­

analyses of the association of NRG1 with schizophrenia found that NRG1 was positively 

associated with schizophrenia (Li et al., 2006; Munafo et al., 2006; Munafo et al., 2008). In 

addition NRG1 is positioned on chromosomal region 8p22-p11 which is a replicated linkage loci 

for schizophrenia (Kendler et al., 1996; Pulver et al., 2000; Ng et al., 2009). NRG1 has also 

been implicated in schizophrenia through two postmortem studies on schizophrenic individuals 

in which an increase in NRG1 expression was detected in the PFC and hippocampus in 

individuals with schizophrenia (Hashimoto et al., 2004; Law et al., 2006). Finally, in addition to 

the evidence from genetic association, linkage analysis and postmortem studies, NRG1 also 

has a functional role in processes hypothesized to be involved in schizophrenia 

pathophysiology including neurodevelopment, myelination, regulation of neurotransmitter 

receptor expression and synaptic plasticity (Corfas et al., 2004).

1.1.2.3.2 DTNBP1

DTNBP1 was first identified as a schizophrenia susceptibility gene in 2002 by a gene 

association study (Straub et al., 2002). Since then there have been 14 positive and 21 negative 

case-control studies, and 8 positive and 8 negative family-based studies (SchizophreniaGene
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Database on Schizophrenia Research Forum website as of July 2010, see Allen et al., 2008). 

The inconsistent findings are likely due to genetic heterogeneity, low genetic variation 

coverage, and/or insufficient power in the studies as discussed for NRG1 (see 1.1.2.3.1). A 

meta-analysis of DTNBP1 association studies published before May 2006 concluded that one 

SNP in DTNBP1 was weakly associated with schizophrenia but it was no longer significant 

after multiple testing (Li & He, 2007). In contrast, another meta-analysis using a novel 

approach to take into account the allelic heterogeneity in the DTNBP1 association studies 

found significant evidence for a mixture of association distributions in multiple loci (Maher et al.,

2010). DTNBP1 is located in the region 6p24-22, a region that has been linked to 

schizophrenia in multiple studies (Straub et al., 1995; Moises et al., 1995; Schwab et al., 2000; 

Maziade et al., 2001). Postmortem studies in schizophrenic individuals have found DTNBP1 

mRNA expression to be reduced in the dorsolateral prefrontal cortex (DLPFC) (Weickert et al.,

2004) and in the hippocampus (Weickert et al., 2007). In addition, DTNBP1 protein expression 

was reduced in the DLPFC (Straub et al., 2004) and in the hippocampus (Talbot et al., 2004) in 

postmortem studies of schizophrenic cases. A recent study that investigated different 

transcripts and isoforms of DTNBP1 in the DLPFC found that of the three isoforms investigated 

only dysbindin-1 C protein expression was reduced in schizophrenic cases, while in contrast 

dysbindin-1 A and dysbindin-1 B mRNA expression was upregulated in schizophrenic cases 

(Tang et al., 2009a). Finally, DTNBP1 has a role in neurotransmitter release and synaptic 

plasticity (Numakawa et al., 2004; Davis & Dickman, 2009; Tang et al., 2009b); both processes 

involved in current hypotheses of schizophrenia.

1.1.2.3.3 DISC1

DISC1 was first identified in 2000 as a schizophrenia susceptibility gene as it was a gene 

disrupted by a genomic translocation that co-segregated with schizophrenia (Millar et al.,

2001). The first genetic association study correlating DISC1 with schizophrenia was in 2001 

(Devon et al., 2001), and since then there have been 20 positive and 8 negative case-control 

studies, and 8 positive and 1 negative family-based studies (SchizophreniaGene Database on 

Schizophrenia Research Forum website as of July 2010, see Allen et al., 2008). Meta-analysis 

of 9 different schizophrenia samples of European ancestry has identified a common risk 

interval within DISC1 positively associating DISC1 with schizophrenia (Schumacher et al.,

2009). Supporting the gene association findings, multiple linkage studies have found that 1q42, 

the region within which DISC1 is located, has been associated with schizophrenia (Hovatta et
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al., 1999; Ekelund et al., 2001; Ekelund et al., 2004; Hwu et al., 2003; Hamshere et al., 2005). 

One postmortem study assaying DISC1 mRNA expression has been performed, but no 

differences in the levels of DISC1 expression was found between schizophrenic cases and 

controls (Rastogi et al., 2009). Further postmortem studies are required before any conclusions 

can be drawn as to whether DISC1 expression levels are abnormal in schizophrenia. Using 

inducible transgenic mice it was shown that Disci expression on postnatal day 7 was 

necessary for normal basal neurotransmission in the same mice when they were adults (Li et 

al., 2007). This shows that Disci is necessary for neurodevelopmental processes. Disci is a 

multifunctional scaffold protein that has also been shown to be involved in neuronal migration, 

cortical layering and hippocampal formation (Hennah et al., 2006). The Disci cellular function 

findings support a functional role for Disci in neurodevelopmental processes hypothesized to 

underlie schizophrenia pathophysiology.

1.1.2.3.4 EGR3

EGR3 was first identified as a schizophrenia susceptibility gene in 2007 through a family-based 

and a case-control gene association study (Yamada et al., 2007). Subsequently, there have 

been 1 positive and 3 negative case-control studies, and 1 positive family-based study 

(SchizophreniaGene Database on Schizophrenia Research Forum website as of July 2010, 

see Allen et al., 2008). In support of the positive genetic association findings, EGR3 is found in 

genomic region 8p23-21 which is a region that has been linked to schizophrenia in multiple 

studies (Takahashi et al., 2005; Suarez et al., 2006; Walss-Bass et al., 2006; Holliday et al., 

2008; Wiener et al., 2009). In addition, EGR3 was expressed at reduced levels in the DLPFC in 

a postmortem study of schizophrenic individuals (Yamada et al., 2007). Finally, EGR3 is a 

transcription factor that has a functional role in neuronal development and synaptic plasticity, 

both processes hypothesized to be abnormal in schizophrenia (O’Donovan et al., 1999; Li et al 

2007).

1.1.2.3.5 BDNF

BDNF was first identified as a schizophrenia susceptibility gene in 2000 through a gene 

association study (Krebs et al., 2000). There have been 8 positive and 30 negative case- 

control studies, and 2 positive and 2 negative family-based studies (SchizophreniaGene 

Database on Schizophrenia Research Forum website as of July 2010, see Allen et al., 2008).
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BDNF located at chromosomal position 11p13 is in a region that has been associated with 

schizophrenia in one linkage study (Suarez et al., 2006). There have been 4 postmortem 

studies of BDNF expression in schizophrenia. One postmortem study in schizophrenic patients 

showed that BDNF protein expression was upregulated in the anterior cingulate cortex and 

hippocampus of schizophrenic patients (Takahashi et al., 2000). In contrast, two other 

postmortem studies showed that BDNF mRNA and protein expression was downregulated in 

the prefrontal cortex of schizophrenic patients (Weickert et al., 2003; Issa et al., 2010). While 

another postmortem study found upregulation of BDNF protein expression in cortical areas and 

a decrease in BDNF protein expression in the hippocampus (Durany et al., 2001). Therefore it 

could be concluded that abnormal BDNF expression is present in individuals with 

schizophrenia. Finally, BDNF has an important functional role in neurodevelopment and 

synaptic plasticity, both processes hypothesized to be involved in schizophrenia 

pathophysiology (Shoval & Weizman, 2005).

1.1.2.4 Genome Wide Association Studies (GWAS)

Due to the development of array platforms, hundreds of thousands of SNPs from the human 

genome can now be assayed in parallel for association with schizophrenia enabling the 

identification of schizophrenia susceptibility genes in larger samples. These studies are known 

as genome-wide association studies (GWAS) (O’Donovan et al., 2008; Psychiatric GWAS 

Consortium Coordinating Committee, 2009). GWAS are advantageous in comparison to the 

original gene association studies as the larger case and control sample numbers allows for the 

many genes of small effect and rarer genes of larger effect to be detected. The recent GWAS 

studies have identified four schizophrenia susceptibility genes that are robustly supported by 

rigorous statistical analysis and these are ZNF804A, MHC, NRGN and TCF4 (O’Donovan et 

al., 2008; Stefansson et al., 2009). While these approaches have identified susceptibility 

genes, comprehensive whole exome sequencing and whole genome sequencing is expected 

to start being applied to this field of research in the near future. This holds great promise for 

identifying further susceptibility genes that are not included in the array of genes that are 

probed for in the GWAS microarray studies (Psychiatric GWAS Consortium Coordinating 

Committee, 2009).
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1.1.2.5 Contributions of Schizophrenia Susceptibility Genes to Schizophrenia 

Pathophysiology

How these susceptibility genes contribute to the disorder is under intense investigation, but it is 

thought that no particular constellation of genes will be characteristic of most ill individuals. 

Even when the same causative allele is present, the resulting phenotype may vary depending 

on the genetic background. It is thought that there are particular key pathways that these 

susceptibility genes contribute to, that when disrupted lead to pathogenesis of the disorder. 

The schizophrenia susceptibility gene NRG1 that indirectly affects localisation of NMDA 

receptors at the postsynaptic membrane is an example of a schizophrenia susceptibility gene 

that regulates glutamate neurotransmission, a pathway that is hypothesised to be disrupted in 

individuals with schizophrenia. Disruption of glutamate neurotransmission activity via aberrant 

NRG1 expression supports the glutamate hypothesis of schizophrenia pathogenesis. However 

the molecular roles of many of the identified candidate susceptibility gene products were 

unknown upon first identification and are still being investigated now. This combined with the 

prevailing hypothesis that there are common alleles of small effect and rare alleles of a larger 

effect that contribute to the genetic component of schizophrenia (Craddock et al., 2007), has 

lead to an emphasis on research into the functional roles of the genes in order to identify 

converging functional pathways. Determining a functional role for these schizophrenia 

susceptibility genes to schizophrenia pathogenesis will lead to improved prospects in treatment 

of the disorder (Harrison & Weinberger, 2005). Along the same line of reasoning some genes 

such as NRG1 (Hall et al., 2006), DISC1 (Burdick et al., 2005) and DTNBP1 (Burdick et al., 

2006; DeRosse et al., 2006) are now being associated with particular intermediate phenotypes 

of schizophrenia in an attempt to understand part of what is a very complex pathophysiology.

Hall and colleagues (2009) have proposed a hypothesis that risk for psychosis in schizophrenia 

could be explained by combining the schizophrenia susceptibility gene findings with the current 

knowledge on associative learning theory. It was suggested that the schizophrenia 

susceptibility genes discovered so far could be divided into two broad classes. Those that have 

direct effects on synaptic plasticity mediated through glutamatergic synapses and those that 

impact on meso-limbic dopamine signalling. It is suggested that genes affecting NMDA- 

receptor-mediated plasticity and dopamine signalling might interact to produce alterations in 

meso-limbic dopamine signalling resulting in inappropriate stimuli gaining motivational 

importance (Hall et al., 2009).
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1.1.3 Cognitive Function in Schizophrenia

A wide range of impairments in cognitive function have been identified in individuals with 

schizophrenia. This has been achieved through performing batteries of neuropsychological 

tests on individuals with schizophrenia and matched control individuals (Heinrichs & Zakzanis, 

1998). The cognitive impairments in schizophrenia include deficits in learning and memory, 

executive functions, attention, and processing speed (Saykin et al., 1991; Palmer et al., 1997). 

Some findings suggest that impairment in different cognitive functions might be due to 

generalized cognitive dysfunction as opposed to deficits in specific cognitive functions 

(Blanchard & Neale, 1994; Mohamed et al., 1999). Other studies concur with the findings of 

generalized cognitive impairments but also suggest that there are more subtle differential 

deficits that are present amongst a background of generalized cognitive deficit (Saykin et al., 

1991; Bilder et al., 2000; Dickinson et al., 2007; Titone et al., 2004). The cognitive deficits are 

thought to be the product of either widespread disturbances in intrinsic cortical circuitry or 

disturbances in frontolimbic systems and possibly brainstem systems (Bilder et al., 2000). It 

has been hypothesised that the cognitive deficits observed in schizophrenic individuals may be 

a consequence of more fundamental “core” impairments, such as working memory and verbal 

learning and memory (Reichenberg & Harvey, 2007; Zanelli et al., 2010). However, it has been 

argued that memory impairments are not secondary to attentional dysfunction in schizophrenic 

individuals as their ability to perform the backward digit span test is the same as in the forward 

digit span test (Aleman et al., 1999). Nevertheless, meta-analysis of neuropsychological 

studies performed on individuals with schizophrenia between 1980 and 1997 found that out of 

the nine categories of cognitive impairments in schizophrenia, verbal learning and memory was 

most impaired (Heinrichs & Zakzanis, 1998).

1.1.3.1 Memory Function in Schizophrenia

Substantial memory impairment has been identified in individuals with schizophrenia. A meta­

analysis of studies published between 1975 and 1998 investigated memory function in 

schizophrenia (Aleman et al., 1999). It concluded that individuals with schizophrenia performed 

worse than healthy controls in both delayed and immediate verbal and nonverbal recall 

memory, verbal and nonverbal recognition memory and short-term memory. The most impaired 

form of memory was long-term recall memory. As deficits in verbal and nonverbal memory
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were of similar magnitudes, it has been suggested that the memory impairments in 

schizophrenia are not modality specific (Aleman et al., 1999). Additionally, a more recent study 

has found long-term associative/relational memory impairments in schizophrenic patients 

(Titone et al., 2004). There are memory impairments in both medicated and medication-naive 

schizophrenia patients in comparison to healthy controls (Goldberg & Weinberger, 1996; 

Saykin et al., 1994) showing that medication is not causally related to memory dysfunction. 

While there is evidence that anticholinergic medication given to treat side effects of 

antipsychotic medication may cause memory impairments (Frith, 1984), there is other evidence 

that the antipsychotic treatments may ameliorate memory impairments (Green et al., 1997; 

Mortimer, 1997). Other potential confounds such as age, duration of illness, severity of 

psychopathology and positive symptoms do not appear to be associated with the memory 

impairments in individuals with schizophrenia (Aleman et al., 1999). In addition, symptom 

severity has been shown to correlate with level of neuropsychological impairment in 

schizophrenia (Bomstein et al., 1990). In general the extent and stability of the association 

between schizophrenia and memory impairment suggests that memory dysfunction is a trait 

rather than a state-dependent characteristic (Aleman et al., 1999).

1.1.3.2 Hippocampal-Dependent Memory in Schizophrenia

Of all of the memory tests used, a large number of studies have focused on investigating 

whether episodic memory is disturbed in schizophrenia, in particular in relation to dysfunction in 

the hippocampus (Barch, 2005). Episodic memory is a type of associative long-term memory. It 

is the memory of an event, combining information on where and when it took place. A meta­

analysis comparing performance on associative and item memory tests concluded that 

individuals with schizophrenia had a 20% greater impairment in associative memory than in 

item memory (Achim & Lapage, 2003). A meta-analysis from imaging studies that investigated 

regions of the brain that consistently showed abnormal activity during memory tasks in people 

with schizophrenia, found that differential activation was consistently found in the medial 

temporal cortex bilaterally, left inferior prefrontal cortex, left cerebellum and in other prefrontal 

and temporal lobe regions (Achim & Lepage, 2005). These regions have also been shown to 

be involved in episodic memory. Episodic memory is a hippocampal-dependent process so 

some studies have investigated whether there is an association between hippocampal 

processes and schizophrenia (Achim & Lepage, 2005; Boyer et al., 2007). Deficits in contextual 

binding and hippocampal abnormalities are both associated with schizophrenia suggesting that
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long-term contextual association memory could be disrupted in schizophrenia (Boyer et al., 

2007). Relational memory, as tested using the transitive inference test, showed schizophrenic 

individuals to be impaired in high level memory processes. Relational memory networks are 

supported by activity in the hippocampus (Titone et al., 2004). Schizophrenic patients typically 

perform worse on recall tasks, which rely on the hippocampus, compared to recognition tasks, 

which are hippocampal independent (Aleman et al., 1999). Individuals with schizophrenia have 

also been found to have deficits in recall memory with a significant loss of the emotional 

enhancement of recognition memory. The hippocampus and amygdala are both engaged in the 

emotional processes supporting the enhancement of recognition memory. This evidence 

contributes to the view that medial temporal lobe function is abnormal in schizophrenia (Hall et 

al., 2007; Hall et al.,2010).

1.1.3.3 Pavlovian Conditioning and Associative Long-Term Memory in

Schizophrenia

Another test that has been used to investigate long-term associative memory in individuals with 

schizophrenia is Pavlovian conditioning. The galvanic skin responses (GSR) measured during 

Pavlovian conditioning to electric shock indicated that there was less conditioning in individuals 

with schizophrenia than in healthy individuals (Peters & Murphee, 1954). Another two studies 

also found impaired conditioning in schizophrenic individuals compared to healthy individuals 

through measuring finger-sweating responses and vascular responses, in addition to the GSR 

(Ax et al., 1970; Gorham et al., 1978). Non-aversive avoidance learning (avoiding a particular 

shape in a succession of shapes on a computer screen by clicking a button), and aversive 

avoidance learning (a loud buzzer sound, the aversive stimulus, was avoided by clicking a 

button upon observing a shape, amidst a succession of shapes, on a computer screen) were 

compared in both schizophrenic and healthy control individuals. It was found that schizophrenic 

individuals demonstrated relatively intact non-aversive avoidance learning. However in the 

aversive avoidance learning test, half of the schizophrenic individuals failed to learn how to 

avoid the aversive stimulus, while the other half learned to avoid the aversive stimulus more 

quickly than in the non-aversive avoidance learning tests. Poor performance on the aversive 

avoidance learning test was more likely in individuals with an earlier age of illness onset. It was 

suggested that increased arousal associated with the buzzer may have interfered with the 

ability to use feedback constructively, and therefore disrupted appropriate modification of 

behaviour from taking place (Kosmidis et al., 1999). Finally, an aversive avoidance learning
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test was combined with functional magnetic resonance imaging (fMRI) and it was found that 

individuals with schizophrenia could not distinguish between a conditioned stimulus and similar 

neutral stimuli, but showed a high GSR to both conditioned and neutral stimuli indicative of 

abnormal associative learning. This abnormal associative learning in schizophrenic individuals 

was correlated with activation in the ventral striatum, upon presentation of the neutral stimuli, 

that was not present in healthy controls (Jensen et al., 2007). These findings of abnormal 

associative learning in schizophrenic individuals suggests that investigation of the 

schizophrenia susceptibility genes of interest in hippocampal-dependent aversive Pavlovian 

conditioning in rats will be an appropriate model for investigating the role of schizophrenia 

susceptibility genes in hippocampal-dependent long-term memory.

1.1.3.4 Cognitive Endophenotypes in Schizophrenia

Many cognitive impairments in schizophrenia have been identified (see 1.1.3) and specific 

neuropsychological tests have been tested on schizophrenic patients, unaffected relatives of 

schizophrenic patients and on the general population in order to identify cognitive 

endophenotypes (Gur et al., 2007). Long-term memory impairments are among the range of 

cognitive endophenotypes identified in schizophrenic patients. More specifically verbal, face 

and spatial memory impairments have been observed in schizophrenic patients and to a lesser 

degree in their unaffected relatives (Cannon et al., 1994; Faraone et al., 1995; Egan et al., 

2001; Gur et al., 2007). Other identified cognitive endophenotypes include working memory, 

attention, emotion identification, flexibility and prepulse inhibition (Gur et al., 2007; Amann et 

al., 2010).

Investigation of all these cognitive endophenotypes will contribute to the elucidation of the 

neurobiological underpinnings of the cognitive impairments in schizophrenia. This study 

focuses on the investigation of the neurobiological underpinnings of LTM. Support for 

investigating LTM includes that in addition to being identified as one of the schizophrenia 

cognitive endophenotypes, LTM has also been shown to be impaired in individuals with 

schizophrenia compared to controls in many more studies (see 1.1.3.1, 1.1.3.2 and 1.1.3.3). 

Furthermore the hippocampus and prefrontal cortex regions of the brain that are involved in 

LTM function have been shown by histological and structural neuroimaging methods to have 

reduced volume and altered shape in schizophrenic patients (see 1.1). Functional 

neuroimaging studies have also identified abnormal activity in the hippocampus in patients 

performing a memory retrieval task (Heckers, 2001). Finally many of the genes associated with
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schizophrenia appear to be involved in synaptic plasticity and neurotransmission at 

glutamatergic synapses (Hall et al., 2009). Glutamate is released from the pyramidal cells in 

the hippocampus and prefrontal cortex and glutamate neurotransmission in these regions is 

important for LTM function (Hall et al., 2009). Thus there is converging evidence from 

behavioural, histological, neuroimaging and biochemical studies supporting investigation of 

schizophrenia susceptibility genes in LTM.

1.2 Long-term Memory (LTM)

Memory is represented by a collection of neural changes known as an engram. An engram is 

distributed across many neural systems that when combined represent the event being 

committed to memory. Specific aspects of the memory are localized in different brain systems. 

The study of humans with memory pathology has lead to the identification of different brain 

systems in different types of memory. Short-term memory (STM) is a capacity-limited 

immediate memory that is intact in amnesic patients and is thought to be distributed in regions 

within the cerebral cortex. Long-term memory is a more long-lasting type of memory that is 

impaired in amnesic patients and is thought to be distributed across a greater number of brain 

regions including the medial temporal lobe and the cerebral cortex (Squire, 1986). A frequently 

cited example of an individual suffering from a long-term memory deficit is the patient H.M. who 

sustained a bilateral resection of the medial temporal lobes which resulted in profound difficulty 

in establishing new memories (Scoville & Milner, 1953; Corkin, 2002). STM is typically 

described as having a duration that ranges from the immediate to a number of hours, and does 

not depend on RNA or protein synthesis that can be expressed immediately. While LTM may 

persist for the duration of an individual’s lifetime, is thought to be dependent on new RNA and 

protein synthesis and is assumed to be mediated by changes in synaptic efficacy (McGaugh, 

2000). There are distinct types of LTM that involve the processing of different kinds of 

information called declarative and nondeclarative memory (Fig. 1.2). Declarative memory, also 

known as explicit memory, is accessible to conscious awareness. There are two types of 

declarative memory; episodic memory (specific time-and-place events) and semantic memory
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LONG-TERM MEMORY

DECLARATIVE I EXPLICIT NONDECLARATIVE I IMPLICIT

SEMANTIC EPISODIC PROCEDURAL PRIMING SIMPLE NONASSOCIATIVE
(FACTS) (EVENTS) (SKILLS & CLASSICAL LEARNING

HABITS) CONDITIONING

Figure 1.2. A taxonomy of LTM systems (adapted from Squire & Zola, 1996).
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(facts and general information gathered in the course of specific experiences). Nondeclarative 

memory, also known as implicit memory, is only accessible through performance that engages 

the skills or operations in which the memory is embedded. There are four types of 

nondedarative memory:- procedural memory, priming, simple classical conditioning and 

nonassodative learning. Nondeclarative memory is considered phylogenetically older than 

dedarative memory (Squire, 1986). LTM is suggested by some to be an independent process 

from STM such that they run in parallel (McGaugh, 1966; Agranoff et al., 1965), while other 

evidence suggests that they are not independent but that they are serially linked (Alloway & 

Routtenberg, 1967).

In 1900 Muller and Pilzecker proposed the memory consolidation hypothesis that new 

memories consolidate slowly over time. This hypothesis was based on the findings that in 

humans the memory of newly learned information was disrupted by the learning of other 

information shortly after the original learning (Muller & Pilzecker, 1900; McGaugh, 2000). The 

consolidation theory was further developed during the 1960s when it was hypothesized that 

electroconvulsive shocks (ECS) given prior to or following learning training lead to conditioned 

inhibition of the training through competition between learning training and associative learning 

with the ECS. While this hypothesis did not directly explain engram disruption or consolidation, 

it did change future approaches to investigating engram consolidation and suggested that 

consolidation was vulnerable to disruption by interference with the acquisition of another 

association (Lewis & Adams, 1963; Lewis & Mahers, 1965). The first evidence suggesting that 

consolidation of LTM was protein synthesis dependent came from studies of mice and fish 

(Flexner et al., 1963; Agranoff et al., 1965). Many studies since have produced data consistent 

with this idea and consequently de novo protein synthesis dependent consolidation is now the 

most common model used for studies investigating the consolidation of LTM memories 

(McGaugh, 2000). However, very recently the necessity of protein synthesis to LTM has been 

challenged and post-translational modification of proteins has been proposed to be the critical 

substrate for long-lasting memory (Routtenberg & Rekart, 2005). Exactly how long is required 

for a memory to consolidate is not clear but a positron emission tomography (PET) imaging 

study indicated that brain activity following motor skill learning persisted for six hours; initially in 

the prefrontal regions of the cortex and then in the premotor, posterior parietal and cerebellar 

cortex structures (Shadmehr & Holcomb, 1997). In addition most studies investigating memory 

consolidation have investigated the effects of treatments administered within several hours 

after training (McGaugh, 2000). However recently the window of change theories have been
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challenged as infusion of a PKMz inhibitor into the cortex 3 days following conditioned taste 

aversion training resulted in associative LTM vanishing for at least several weeks. Therefore it 

is proposed that persistence of memory is dependent on ongoing activity of a protein kinase 

long after the memory has been considered consolidated into a stable form (Shema et al., 

2007) (Fig. 1.3). This concurs with the hypothesis put forward by Routtenberg and Rekart in 

2005 (Routtenberg & Rekart, 2005).

The reconsolidation or the extinction of associative memories can occur following retrieval of 

the memory depending on the conditions under which the memory is recalled. The concept of 

reconsolidation of LTM was first introduced in 1968 following experiments that involved 

disrupting a memory by first reactivating it and then immediately administering an electric 

shock. This resulted in retrograde amnesia for the reactivated memory suggesting that the 

memory became vulnerable to change after reactivation (Misanin et al., 1968). Reconsolidation 

of LTM was first shown to be dependent on de novo protein synthesis in 2000 (Nader et al., 

2000). A previously consolidated fear memory is thought to return to a labile state after 

reactivation and then become reconsolidated over the next 6 hours via de novo protein 

synthesis (Nader et al., 2000). Most studies agree that protein synthesis is necessary for 

memory reconsolidation (Debiec et al., 2002; Pedreira et al., 2002; Lee et al., 2004; Inda et al.,

2005), but at least one study did not find any loss of memory when protein synthesis inhibitors 

were used during reactivation (Biedenkapp & Rudy, 2004; Lattal & Abel, 2004). In some cases 

the proteins implicated in reconsolidation differ to those implicated in consolidation (Taubenfeld 

et al., 2001), while in other cases the activity of the same proteins have been shown to be 

involved in both processes (Kida et al., 2002; Kelly et al., 2003; Lee et al., 2006). Also there are 

some different cellular processes and signalling mechanisms that appear to be used in 

reconsolidation in comparison to consolidation (Lee et al., 2004; Barnes et al., in press). 

Therefore the molecular mechanisms underlying consolidation and reconsolidation are 

dissociable but not mutually exclusive.

Extinction is the apparent loss of a consolidated memory that occurs following reactivation of a 

memory but in the absence of the reinforcer. For example, the predictive value of a context with 

respect to the occurrence of an aversive event that had occurred in that context will be 

compromised following exposure to the context in the absence of the event (Myers & Davis,

2007). In 1927 extinction was first studied experimentally in Pavlov’s study of appetitive 

conditioned responses in dogs (Pavlov, 1927; Quirk & Mueller, 2008). The process of extinction
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LTM can last hours to a lifetime. STM, short-term memory (represented by the dotted 
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the time period in which STM and LTM may be running serially or in parallel.
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does not result in permanent loss of the memory as an extinguished memory can be retrieved 

under certain conditions including reinstatement, renewal and spontaneous recovery. 

Furthermore, extinction is now generally considered a form of new learning (Myers & Davis,

2007). The molecular basis of extinction has only been studied in the last 10 years and mainly 

in the well established fear conditioning paradigm (Quirk & Mueller, 2008). Most studies have 

shown that extinction is protein synthesis dependent (Vianna et al., 2001; Lin et al., 2003; 

Bahar et al., 2003; Pedreira & Maldonado, 2003; Inda et al., 2005; Bames & Thomas, 2008), 

however other studies have found that extinction can occur in the absence of protein synthesis 

(Lattal & Abel, 2001), or indeed that extinction is actually enhanced by the inhibition of protein 

synthesis (Fischer et al., 2004).

Research in different animals using multiple behavioural paradigms, in addition to research in 

human subjects, have been used to investigate long-term memory (Goldman-Rakic, 1996). 

Behavioural paradigms commonly used include cued-fear conditioning, contextual fear 

conditioning (CFC), conditioned taste aversion (CTA), inhibitory avoidance (IA) and appetitive 

learning (for examples see Nader & Hardt, 2009). The range of animals used in the study of 

LTM covers animals from throughout the phyla including rodents, monkeys, flies, bees, fish, 

worms, snails, rabbits, cats, dogs, pigeons and crabs (LeDoux, 2000; Bitterman et al., 1983; 

Pedreira et al., 1996).

1.2.1 Contextual-Fear Conditioning (CFC)

Explicit LTM, as described previously, requires conscious recollection and therefore cannot be 

modeled in animals as we are unable to know if they have a conscious experience. Implicit 

memory however can be modeled in animals for the purposes of research (Squire et al., 1993). 

People with schizophrenia have impairments in their hippocampal-dependent emotional 

associative LTM (see 1.1.6). Therefore an appropriate behavioural paradigm in which to study 

these memory processes in healthy rats is the hippocampal-dependent contextual-fear 

conditioning (CFC) paradigm. Out of the behavioural tasks testing LTM that can be performed 

by a rat, such as fear-conditioning, Morris water maze, novel object recognition and 

conditioned taste aversion, the contextual fear conditioning paradigm was chosen because 

very similar versions of this task have been investigated in schizophrenic patients revealing 

impaired associative LTM (see 1.1.3.3). Aside from the translatable aspect of this paradigm, 

the brain regions, neurocircuitry and molecules involved in contextual fear conditioning in rats
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is highly studied and well characterized which is helpful when deciding which brain regions and 

time points to investigate in the rat following behavioural conditioning. Also this characterization 

shows that the brain regions important for CFM in the rat are similar to those that are relevant 

to schizophrenia pathophysiology. Finally a major advantage of using the CFC paradigm is that 

the rat only requires one-trial of conditioning to form the associative memory which enables 

gene expression to be investigated at accurate timepoints post-acquisition of the associative 

memory.

The CFC paradigm consists of an electric footshock (an unconditioned stimulus (US)) being 

given in a novel, distinct environment which acts as a conditioned stimulus (CS). An 

associative LTM is formed between the CS and the US. Whether the rats have formed a CS- 

US memory, known as a contextual fear memory (CFM) memory, following conditioning, can 

be tested by measuring the level of freezing behaviour displayed by the rats upon re-exposure 

to the CS in the absence of the US. Freezing behaviour is a conditioned response (CR) that 

involves complete cessation of movement in the rat with exception of breathing (Blanchard & 

Blanchard, 1969). The presence of freezing behaviour is an index that the CFM memory has 

been recalled (Fanselow, 1980). Consolidation of a CFM memory takes place in the hours 

immediately following the conditioning procedure (McGaugh, 2000). Reconsolidation of a CFM 

takes place in the hours immediately following a short retrieval session (eg. 2 min), while 

extinction of a CFM takes place in the hours immediately following a long retrieval session (eg. 

10 min) (Barnes & Thomas, 2008).

1.2.2 Consolidation of CFC

1.2.2.1 Brain Regions Involved in Consolidation of CFM

The hippocampus has been shown to be necessary for contextual fear conditioned responses 

but not for cued fear conditioned responses, therefore the hippocampus is thought to have a 

sensory relay role in CFC (Phillips & LeDoux, 1992). It also is involved in forming a configural 

representation of the stimuli in the environment (Rudy & O’Reilly, 2001). Electrolytic lesions in 

the dorsal hippocampus of rats both pre-acquisition and shortly after acquisition of the CFM 

lead to deficits in freezing behaviour during CS re-exposure 24 hours post-acquisition of the 

CFM, despite the presence of freezing behaviour immediately after acquisition of the memory 

(Kim et al., 1993; Kim & Fanselow, 1992). Pharmacological lesion of the hippocampus before
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CFM acquisition indicated that the hippocampus was not required for CFM acquisition but 

pharmacological lesion post-acquisition indicated that the hippocampus did have a role in CFM 

consolidation. Therefore it was concluded that CFC could occur in the absence of the dorsal 

hippocampus. The authors proposed a conceptual model suggesting that in the absence of the 

dorsal hippocampus the rat may associate the US with one cue from the context, and fear 

learning could be completed using a hippocampal-independent pathway (Maren et al., 1997). 

In this case the associative memory formed would not be a contextual fear memory but would 

be a cued fear memory. Additional studies have also concluded that systems other than the 

hippocampus can acquire context fear, but do so less efficiently than the hippocampus, as the 

hippocampus has been determined to be important in integrating multiple stimuli in a memory 

trace (Matus-Amat et al., 2004; Wiltgen et al., 2006; Moses et al., 2007). More recently gene 

expression studies are being used to try to identify roles of the different hippocampal 

subregions in consolidation of CFM (Kubik et al., 2008). The three main regions of interest 

within the hippocampus are the Cornu Ammonis area 1 (CA1), Cornu Ammonis area 3 (CA3) 

and dentate gyrus (DG). The CA1 and CA3 regions are mainly populated by large densely 

packed glutamatergic pyramidal neurons in addition to some smaller GABAergic intemeurons 

(Klausberger & Somogyi, 2008). The DG region is mainly populated by small and densely 

packed glutamatergic granule cells in addition to some GABAergic basket cell intemeurons, 

and at most 6% of the cells in the DG are neural progenitor cells (Treves et al., 2008; Cameron 

& McKay, 2001).

There have been many lesion studies providing evidence for the importance of the amygdala to 

the consolidation of CFC (LaLumiere et al., 2003; Sacchetti et al., 1999; Vazdarjanova & 

McGaugh, 1999). Studies have shown that the role of the lateral (LA) and basolateral (BLA) 

nuclei is distinct from the role of the central nucleus (CeN). Lesion studies in cued-fear 

conditioning studies have shown that the CeN is necessary for the expression of fear (Kim et 

al., 1993). In contrast, lesion of the BLA nucleus did not prevent CFM consolidation (Berlau & 

McGaugh, 2003) and rats could acquire a CFM with an inactivated BLA nucleus if intensive 

overtraining was used (Ponnusamy et al., 2007). These findings were used to suggest that 

there is a primary more efficient BLA-dependent pathway and alternate compensatory 

pathways capable of mediating fear (Ponnusamy et al., 2007). There is evidence that both the 

BLA and LA nucleus of the amygdala are sites where synaptic plasticity underlying the 

association of the CS and US take place (Fanselow & LeDoux, 1999; Kwon & Choi, 2009).
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Furthermore, the amygdala has been shown to have a memory-modulating role in 

consolidation (McGaugh, 2004).

The regions of interest within the prefrontal cortex are the cingulate cortex, prelimbic cortex and 

infralimbic cortex; these are collectively known as the medial prefrontal cortex (mPFC). The 

differential contribution of the different regions was elucidated through the comparison of two 

separate cued-fear conditioning studies. Lesions of the ventral mPFC (ventral prelimbic and 

infralimbic regions) resulted in a prolonged fear response upon reintroduction to the CS 

(Morgan et al., 1993), whereas lesions of the dorsal mPFC (cingulate and dorsal prelimbic 

regions) resulted in increased freezing behaviour, thus indicating an increased fear response to 

the CS (Morgan & LeDoux, 1995). It has been suggested that the ventral mPFC is responsible 

for the updating of behavioural responses to changing stimuli, and that the dorsal mPFC could 

be responsible for the regulation or suppression of fear reactivity, for blocking out irrelevant 

stimuli or for discriminating whether a CS is present, thus making the whole episode more fear 

provoking (Morgan & LeDoux, 1995).

1.2.2.2 Neurocircuitry Supporting Consolidation of CFM

Memories are thought to be stored in the brain in neural networks. The neurocircuitry 

supporting consolidation of CFM has been moderately well characterized. Generally, 

information about the CS and US is projected to the BLA nucleus of the amygdala. Information 

associating the CS and US is then passed onto the central nucleus of the amygdala from which 

fear expression responses are controlled (LeDoux, 2000). In CFC the context information of the 

novel environment passes from the sensory regions of the cortex via the entorhinal cortex to 

the hippocampus. Here the different sensory inputs describing the context are processed and a 

representation of the spatial component of the CFC experience is encoded. Axons project from 

neurons of the entorhinal cortex to neurons in the DG, CA3 and CA1 regions of the 

hippocampus separately (perforant pathways). Within the hippocampus DG axons project to 

the CA3 (Mossy fibres) and then, in turn, CA3 axons project to the CA1 (Schaffer collaterals). 

Recurrent networks are present in the DG and the CA3 regions. The DG recurrent network is 

more complicated than that in the CA3 as the DG granule cells excite mossy cells, also in the 

DG, that then make modifiable excitatory connections back onto the granule cells. The 

recurrent network in the CA3 results from axons of CA3 pyramidal neurons exciting other CA3 

pyramidal cells. The recurrent networks in the DG and CA3 are reciprocally connected as the
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CA3 pyramidal cells have axon branches that produce excitatory feedback to the DG (see 

Lisman, 1999). Assignment of specific functions to the synaptic modifications occurring at all of 

the hippocampal synapses is not yet fully understood. However the monosynaptic pathway 

(entorhinal cortex to CA1) has been shown to be sufficient for incremental spatial learning but 

the full trisynaptic pathway (entorhinal cortex to DG to CA3 to CA1) is required for rapid one- 

trial contextual fear learning (Nakashiba et al., 2008). Lisman (1999) has proposed a model of 

hippocampal neural activity in LTM function. The CA1 has been proposed to have two 

functions. The CA1 compares the sensory reality arriving through the perforant pathway to the 

processed sensory input arriving through the Schaffer collateral from the CA3 region to identify 

match/mismatch of information. The CA1 also converts the hippocampal representation to a 

cortical one to enable cortical interpretation. A proposed function of the CA3 is to link different 

memories that occur at different times via a heteroassociative network. The autoassociative 

network in the DG has been proposed to enable accurate sequence recall (Lisman, 1999).

The CA1 and subiculum regions of the hippocampus project to the BLA nucleus of the 

amygdala (Canteras & Swanson, 1992). The BLA is thought to be a location of sensory 

convergence, between spatial information (CS) processed in the hippocampus and footshock 

(US) related information (LeDoux, 2000). Footshock information reaches the BLA through 

inputs from the posterior thalamus which is the terminal region of the spinothalamic tract 

(LeDoux, 1990a; LeDoux 1987). BLA neurons project via the central nucleus to brainstem 

regions that control the expression of fear (LeDoux, 2000) such as the ventral periaqueductal 

gray that triggers the expression of fear as indexed by freezing behaviour (LeDoux, 1988). 

Information representing the association between the spatial representation and the fear 

representation is also passed back to the hippocampus from the BLA for further processing 

that, in turn, leads to the storage of the CFM (Ponnusamy et al., 2007; McGaugh, 2004; 

Simons & Spiers, 2003).

The CA1 and subiculum are the only regions of the hippocampus to project to the mPFC, 

specifically the prelimbic, infralimbic and medial orbital cortex regions. The entire rostrocaudal 

extent of the prelimbic and infralimbic cortex receives projections from the CA1 and subiculum, 

while the medial orbital cortex only receives projections to its caudal region (Jay et al., 1989; 

Jay & Witter, 1991). Hippocampal projections to regions of the mPFC innervate all cortical cell 

layers, but are more densely distributed in layers V and VI of the dorsal region of the prelimbic 

cortex (Jay & Witter, 1991), where approximately 40% of the neurons can be activated by
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hippocampal stimulation. In comparison, only 6% of the neurons in the cingulate cortex 

respond to hippocampal stimulation. The single-cell recordings in the cingulate cortex have 

longer latencies than observed in the prelimbic cortex, suggesting indirect polysynaptic 

activation is required for hippocampal stimulation of the neurons in the cingulate cortex 

(Laroche et al., 1990). The hippocampal excitatory inputs to the PFC have been shown to be 

glutamatergic (Jay et al., 1992; Carr & Sesack, 1996). During associative learning training a 

delayed increase in synaptic transmission has been detected in the hippocampo-prefrontal 

cortex pathway (Doyere et al., 1993). It has been suggested that the delayed changes at the 

hippocampal to prefrontal cortex synapses may correlate to a late consolidation process in 

which the hippocampus stabilizes a cortical representation of the learned event (Laroche et al., 

1995). Indeed, imaging of activity-dependent genes have shown that the anterior cingulate 

cortex is activated by remote memory (Frankland et al., 2004). The hippocampo-prefrontal 

cortex circuits are active during a critical phase of spatial learning (Davis et al., 1998) and are 

therefore likely to be important for the executive processing and possibly modulation of the 

spatial representation propagated from the hippocampus during consolidation. Bidirectional 

regulation of synaptic strength in the CA1 and subiculum projections to the mPFC increases 

the range of processing of the hippocampal spatial representation (Laroche et al., 2000).

All of the neurodrcuitry outlined within and between the hippocampus, amygdala and mPFC is 

thought to make up part of the neural network activated during the acquisition and/or 

consolidation of the CFM (Figure 1.4).

1.2.2.3 Molecular Mechanisms of the Consolidation of CFM

Molecular mechanisms involved in associative LTM have been determined by studying animals 

undergoing behavioural paradigms including CFC, cued-fear conditioning (Cued-FC), inhibitory 

avoidance (IA), conditioned taste aversion (CTA), appetitive (drug) conditioning, spatial 

memory, olfactory memory, object recognition memory and startle response (see 1.2). 

However while some of the brain regions involved in the process of LTM formation in the 

different behavioural paradigms are the same, the complete set of brain regions over which the 

LTM is distributed differs between the paradigms. The molecular mechanisms of LTM 

discussed here will focus on those determined from CFC studies, but will also include 

molecular findings from studies using other behavioural paradigms when the molecular activity 

identified was in the hippocampus, amygdala or prefrontal cortex. There are three main groups
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Figure 1.4. Neurocircuitry supporting consolidation of CFM. The entorhinal cortex receives 
environmental CS information from sensory cortex projections. The entorhinal cortex then projects 
to the DG, CA3 and CA1, known as the perforant pathways. The DG projects projects to the CA3 
via the mossy fibres and the CA3 projects to the CA1 via the Schaffer collaterals. Recurrent 
networks are present in both the DG and CA3, and branches of CA3 axons also project back to 
the DG. The CA1 projects the processed CS information to the BLA nucleus of the amygdala, 
which also receives thalamic projections relaying aversive sensory US information. The integrated 
CS-US information is then passed along projections to the central nucleus and to the 
periaquaductal gray that initiates freezing behaviour, and other regions of the hypothalamus and 
brainstem to orchestrate other behavioural and autonomic changes. Integrated CS-US information 
is also projected back to the CA1 and then medial PFC for comparison to previously stored 
memories and storage of the CS-US memory.
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of molecules that are involved in consolidation; receptor related activity, second messenger 

molecular activity, and cfe novo gene and protein expression. Activation of the neurotransmitter 

receptors leads to activity in an array of second messenger proteins, which in turn, activate 

downstream nuclear substrates that lead to de novo gene and protein expression (Rodrigues et 

al., 2004). Table 1.1 lists molecular activity required for or correlating with consolidation of LTM 

in the hippocampus, amygdala and prefrontal cortex.

1.2.3 Reconsolidation of CFC

1.2.3.1 Brain Regions Involved in Reconsolidation of CFM

The hippocampus has been shown to be involved in reconsolidation of CFM as knockdown of 

Zif268 expression, protein synthesis and transcription in the hippocampus during reactivation of 

a consolidated CFM resulted in reduced freezing behaviour in the following retrieval tests 

indicating that the CFM had been disrupted (Lee et al., 2004). In addition, the presence of 

phosphorylated CREB expression and ARC expression has been shown to be upregulated in 

the hippocampus during reconsolidation and CREB-mediated transcription has been shown to 

be necessary for reconsolidation in general (Mamiya et al., 2009). Protein synthesis inhibition 

in the hippocampus immediately following a short reactivation trial resulted in reduced freezing 

behaviour thereby implicating activity in the hippocampus as necessary for reconsolidation of 

CFM. In the same study it was also shown that electrolytic lesion to the hippocampus 

immediately following a reactivation session lead to disruption of the reconsolidation process 

(Debiec et al., 2002).

The amygdala was first found to be necessary for reconsolidation using a cued-fear 

conditioning paradigm (Nader et al., 2000). Since then the amygdala has been implicated as 

having a role in reconsolidation of CFM as phosphorylated CREB expression has been shown 

to be upregulated in the amygdala during reconsolidation and CREB-mediated transcription 

has been shown to be necessary for reconsolidation in general (Mamiya et al., 2009). A cued- 

fear conditioning study also supports the involvement of the amygdala in the reconsolidation, 

as infusions of a partial agonist of NMDA receptors into the amygdala resulted in potentiation of 

reconsolidation (Lee et al., 2006).
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Table 1.1. Molecules involved in the consolidation of LTM in the hippocampus, amygdala 
and prefrontal cortex.

MOLECULAR ACTIVITY TASK :a u sa i

ROLE?
REFERENCE

HIPPOCAMPUS
Receptor Related Activity
NMDAR activity Spatial M / Bannerman et al., 1995
Increased proteolysis of proBDNF CFM / Barnes & Thomas, 2008

Second Messenger Molecular Activity
Anchoring of PKA to AKAPs CFM / Nijholt et al., 2008
Glucocorticoid activation of MAPK cascade Cued-FC / Revest et al., 2005
Increased cAMP levels IA / Bernabeu et al., 1997
Increased PKA levels IA / Bernabeu et al., 1997
P38 MAPK activity IA / Rossato et al., 2006
Increase in C/EBP beta & delta activity IA / Taubenfeld et al., 2001
PKC activity Spatial M ✓ Bonini et al., 2007
alpha CaMKII Spatial M / Mayford et al., 1996

De Novo Gene & Protein Expression
CREB Spatial M / Guzowski & McGaugh, 1997
Increased CRE-mediated gene expression CFM / Impey et al., 1998
BDNF expression CFM / Lee et al., 2004
Increased NGFI-B expression CFM / Von Hertzen & Giese, 2005
Increased Arc expression Spatial M / Guzowski et al., 2001
Increased c-Fos expression Spatial M - Guzowski et al., 2001
Increased Egr1 expression Spatial M - Guzowski et al., 2001
EGR1 expression CFM X Lee et al., 2004
AMYGDALA
Receptor Related Activity
NMDAR activity Cued-FC ✓ Rodrigues et al., 2001
Movement of AMPARs to post-synaptic spines Cued-FC ? Rumpel et al., 2005

Second Messenger Molecular Activity
Persistant PKM zeta actitivity Cued-FC / Serrano et al., 2008
PI-3K activity Startle R / Lin et al., 2003
MAPK activity Startle R / Lin et al., 2003

De Novo Gene & Protein Expression
Increased CRE-mediated gene expression CFM / Impey et al., 1998
Increased Egr1 expression CFM - Malkani & Rosen, 2000
Increased Bdnf transcripts with exons I & III Cued-FC - Rattiner etal., 2004
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Table 1.1. Continued.

MOLECULAR ACTIVITY TASK : ausal

ROLE?
REFERENCE

PREFRONTAL CORTEX
Receptor Related Activity
NR2B subunit of the NMDAR CFM / Zhao et al., 2005
NMDAR activity Olfactory M / Tronel & Sara, 2003
AMPAR activity IA / Izquierdo et al., 2007
Dopamine D1 receptor activity IA / Izquierdo et al., 2007
Noradrenaline activity Olfactory M / Tronel et al., 2004
Reduced serotonin R mRNA expression Pav/lnstrl M - Huerta-Rivas et al., 2010

Second Messenger Molecular Activity
alpha CaMKII Spatial M / Mayford et al., 1996

De Novo Gene & Protein Expression
Increased NCAM expression in ventral PFC Spatial M - Ter Horst et al., 2008
Reduced NCAM expression in ventral PFC Spatial M - Ter Horst et al., 2008
Increased c-FOS expression Cued-FC / Morrow et al., 1999
Increased Syntaxin 1B expression Spatial M - Davis et al., 1998
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At present the only evidence that may suggest a role for the medial PFC region in 

reconsolidation of CFM is that inducible repression of CREB activity in the cortex (in addition to 

the hippocampus, amygdala and stratum) during reconsolidation impaired subsequent freezing 

behaviour upon re-exposure to the CS (Kida et al., 2002), and upregulation of Egr1 has been 

observed in the prefrontal cortex following a short retrieval session (Thomas et al., 2002). 

However it has since been shown that the presence of phosphorylated CREB expression in the 

prelimbic and infralimbic cortex does not change in association with reconsolidation (Mamiya et 

al., 2009). Thus far, evidence for the involvement of the medial prefrontal cortex in the 

reconsolidation of CFM is inconclusive. However NMDA receptor activity in the prefrontal 

cortex has been shown to be involved in the reconsolidation of object recognition memory 

(Akirav & Maroun, 2006).

1.2.3.2 Neurocircuitry Supporting Reconsolidation of CFM

The neurodrcuitry supporting consolidation of CFM has not yet been characterized. However 

speculation on the neurocircuitry underlying reconsolidation could be made by comparison to 

the neurodrcuitry underlying consolidation as both the hippocampus and amygdala have been 

implicated in both consolidation and reconsolidation of CFM. Information related to the CS may 

pass from the sensory regions of the cortex via the entorhinal cortex to the hippocampus where 

a representation of the spatial component related to the CS exposure may be encoded. 

Connectivity between neurons of the amygdala and the hippocampus may be active during 

reconsolidation. Information relating to the CS-US association may be present in the BLA 

nudeus of the amygdala and output from the central nudeus of the amygdala may control fear 

expression responses. By comparison to consolidation the prefrontal cortex may be involved in 

a comparator/modulatory role and might be a site of storage for the reconsolidated memory but 

currently there is inconclusive findings as to whether the prefrontal cortex is even activated 

during reconsolidation.

1.2.3.3 Molecular Mechanisms of the Reconsolidation of CFM

Table 1.2 lists molecular activity required for or correlating with reconsolidation of LTM in the 

hippocampus, amygdala and prefrontal cortex.
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Table 1.2. Molecules involved in the reconsolidation of LTM in the hippocampus, 
amygdala and prefrontal cortex.

MOLECULAR ACTIVITY TASK CAUSAL
ROLE?

REFERENCE

HIPPOCAMPUS
Receptor Related Activity
NR2B subunit labilisation Cued-FC / Ben Mamou et al., 2006
IL-1 receptor activity CFM / Barnes et al., *

Second Messenger Molecular Activity
PKC activity Spatial IV / Bonini et al., 2007

De Novo Gene & Protein Expression
CREB activity CFM / Mamiya et al., 2009
EGR1 activity CFM / Lee et al., 2004
Increased IL6 expression CFM Barnes et al., *
Increased IL1a expression CFM Barnes et al., *
Increased Rara expression CFM Barnes et al., *
Increased Rgs1 expression CFM Barnes et al., *
Increased Trrp5 expression CFM Barnes et al., *
Increased Grpr expression CFM Barnes et al., *
Decreased Actg2 expression CFM Barnes et al., *
Increased SGK3 expression CFM Von Hertzen & Giese, 2005
AMYGDALA
Receptor Related Activity
NMDAR activity Cued-FC / Lee et al., 2006
beta-Adrenergic activity Cued-FC / Debiec & Ledoux, 2004
CB1 receptor activity Cued-FC / Bucherelli et al., 2006

Second Messenger Molecular Activity
ERK activity Cued-FC / Duvarci et al., 2005

PKA activity Cued-FC / Tronson et al., 2006

De Novo Gene & Protein Expression
CREB activity CFM / Mamiya et al., 2009
EGR1 activity Drug M / Lee et al., 2005
C/EBP beta activity IA / Tronel et al., 2005



Table 1.2. Continued.

MOLECULAR ACTIVITY TASK CAUSAL
ROLE?

REFERENCE

PREFRONTAL CORTEX
Receptor Related Activity
NMDAR activity ObjRM ■ Akirav & Maroun, 2006

Second Messenger Molecular Activity

De Novo Gene & Protein Expression
CREB activity CFM Kida et al., 2002
Increased Egr1 expression CFM - Thomas et al., 2002



1.2.4 Extinction of CFC

1.2.4.1 Brain Regions Involved in Extinction of CFM

Evidence that the hippocampus is involved in extinction of CFM includes the finding that 

pharmacological inactivation of the dorsal hippocampus using muscimol prior to extinction 

training attenuated extinction learning (Corcoran et al., 2005). Molecular activity in the 

hippocampus has also implicated the hippocampus in extinction of CFM. Inhibition of actin 

rearrangement and extracellular regulated kinases 1 and 2 (ERK1/2) activity in the 

hippocampus leads to impaired extinction of CFM, and inhibition of protein synthesis in the 

hippocampus lead to enhanced extinction of CFM (Fischer et al., 2004; Fischer et al., 2007). 

Also implicating the hippocampus in extinction of CFM is the finding that decreased proteolysis 

of proBDNF in the hippocampus has been shown to be necessary for the extinction of CFM 

(Bames and Thomas, 2008). In addition, inhibition of histone deacetylase (HDAC) in the 

hippocampus resulted in enhanced extinction of CFM (Lattal et al., 2007), and hippocampal 

endocannabinoid activity is necessary for the extinction of CFM (De Oliveira Alvares et al.,

2008). Finally the hippocampus has also been shown to be involved in extinction as inhibition 

of Src-family tyrosine kinases (SFKs) and Src homology 2-containing protein-tyrosine 

phosphatases 1 and 2 (SHP1/2) in the dorsal hippocampus lead to facilitated and suppressed 

extinction of CFM respectively (Isosaka et al., 2009; Isosaka & Yuasa, 2010).

The amygdala has been implicated in extinction of CFM through multiple studies. Inactivation 

of populations of neurons in the BLA nucleus of the amygdala has been shown to prevent CFM 

extinction expression (Henry et al., 2008). An important recent finding from a study using the 

cued-fear conditioning paradigm has shown that the lesioning or activation of the intercalated 

cell masses (ICM) in the amygdala impair or facilitate extinction respectively (Likhtik et al., 

2008; Jungling et al., 2008). Molecular activity that implicates the amygdala in extinction of 

CFM includes the finding that phosphorylated CREB expression has been shown to be 

upregulated in the amygdala during extinction and CREB-mediated transcription has been 

shown to be necessary for extinction in general. In addition blocking protein synthesis in the 

amygdala prevented the formation of extinction memory (Mamiya et al., 2009). In addition, 

pharmacological enhancement of AMPA receptor activity in the amygdala has also been shown 

to facilitate extinction of CFM (Yamada et al., 2009), and inactivation of the BLA nucleus of the
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amygdala by a GABA A agonist immediately after an extinction session resulted in disruption to 

the extinction of CFM process (Laurent & Westbrook, 2008).

The prefrontal cortex has been implicated in extinction of CFM through both pharmacological 

studies and studies identifying molecular activity. Inactivation of the infralimbic cortex (IL) 

region of the mPFC using a cannabinoid antagonist has been shown to impair extinction of 

CFM (Laurent & Westbrook, 2009) and extinction of cued-fear conditioning was impaired when 

the IL region was inactivated by a dopamine D1 antagonist (Hikind & Maroun, 2008). 

Inactivation of the prelimbic cortex (PrL) region of the mPFC has been shown to reduce 

expression of conditioned fear to contextual and auditory stimuli but have no effect on plasticity 

related to extinction (Laurent & Westbrook, 2008). Molecular activity that implicates the mPFC 

in extinction includes the finding that phosphorylated CREB expression was upregulated in the 

mPFC during extinction and CREB-mediated transcription was required for extinction of CFM. 

Also inhibition of protein synthesis in the prefrontal cortex prevented formation of extinction 

(Mamiya et al., 2009). In addition, activation of the NMDAR containing the NR2B subunit in the 

mPFC is necessary for CFM extinction, and inactivation of the mPFC by a GABA-A agonist 

immediately after an extinction session disrupted CFM extinction (Laurent & Westbrook, 2008). 

In support of these findings implementing the PFC in extinction of CFM, lesioning of the ventral 

mPFC impaired extinction of cued-fear conditioning (Morgan et al., 1993).

1.2.4.2 Neurocircuitry Supporting Extinction of LTM

The neurocircuitry supporting extinction of CFM is in the process of being characterized. As 

discussed above, there is evidence for activity in the amygdala, prefrontal cortex and 

hippocampus during extinction of LTM. In extinction of CFM, as in consolidation of CFM, the 

central nucleus receives information from the BLA nucleus of the amygdala and then sends it 

to regions of the brainstem controlling the expression of fear. As memory becomes 

extinguished, reduced freezing behaviour can be observed in the animal upon re-exposure to 

the context (Sah & Westbrook, 2008). Recently a subpopulation of neurons in the BLA, called 

extinction neurons, have been discovered to selectively respond to a conditioned stimulus 

undergoing extinction. The activity of these neurons has been shown to be crucial for extinction 

learning. These extinction neurons are connected to the mPFC in both directions (Herry et al.,

2008). Neurons from the mPFC have been shown to densely innervate clusters of inhibitory 

neurons known as the intercalated cell masses (ICMs) (McDonald et al., 1996). It has been
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shown that a decrease in activation of these ICM neurons can result in reactivation of an 

extinguished fear response and so the ICM neurons have been proposed to be necessary for 

the expression of learned extinction (Likhtik et al., 2008). These findings are consistent with the 

finding that stimulation of the IL region of the mPFC prevents Ce nucleus neurons from being 

activated by BLA nucleus inputs (Quirk et al., 2003). Therefore the mPFC is thought to 

modulate the level of activity in the amygdala leading to reduced output from the central 

nucleus of the amygdala during extinction (Sah & Westbrook, 2008). In addition, protein 

synthesis and gene expression in the mPFC has been observed following an extinction session 

suggests that the mPFC is a site of consolidation and storage of fear extinction (Santini et al., 

2004; Herry & Mons, 2004). The hippocampus, as in consolidation of CFM, processes the 

sensory input to encode the spatial information present during the extinction session. The 

hippocampus projects this information to the mPFC and amygdala to process the specificity of 

the extinction to a particular context (Sah & Westbrook, 2008).

All of the neurodrcuitry outlined within and between the hippocampus, amygdala and mPFC is 

thought to make up part of the neural network activated during the extinction of the CFM 

(Figure 1.5).

1.2.4.3 Molecular Mechanisms of the Extinction of CFM

Table 1.3 lists molecular activity required for or correlating with extinction of LTM in the 

hippocampus, amygdala and prefrontal cortex.

1.2.5 Comparison of Consolidation, Reconsolidation and Extinction of LTM

There are both similarities and differences between consolidation, reconsolidation and 

extinction of LTM in terms of the brains regions, neurocircuitry and underlying molecular 

mechanisms involved. The hippocampus, amygdala and prefrontal cortex are involved in 

consolidation, reconsolidation and extinction of LTM (see 1.2.2.1, 1.2.3.1 and 1.2.4.1). The 

neurodrcuitry differs between consolidation, reconsolidation and extinction as each process is 

triggered by different circumstances (Nader & Hardt, 2009). An example of differing 

neurodrcuitry between consolidation and extinction of CFM is the activation of fear neurons in 

the BLA during consolidation only, and the activation of extinction neurons in the BLA during 

extinction only (Herry et al., 2008). While consolidation and reconsolidation both involve
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Figure 1.5. Neurocircuitry supporting extinction of CFM. The entorhinal cortex receives 
environmental CS information from sensory cortex projections. The entorhinal cortex then projects 
to the DG, CA3 and CA1, known as the perforant pathways. The DG projects projects to the CA3 
via the mossy fibres and the CA3 projects to the CA1 via the Schaffer collaterals. Recurrent 
networks are present in both the DG and CA3, and branches of CA3 axons also project back to 
the DG. The CA1 projects the processed CS information to the BLA nucleus of the amygdala. 
Stored integrated CS-US information is then passed along projections to the central nucleus and 
to the periaquaductal gray that initiates freezing behaviour, and other regions of the hypothalamus 
and brainstem to orchestrate other behavioural and autonomic changes. In the absence of an 
aversive sensory US, extinction neurons within the BLA project to the ICM, from which inhibitory 
neurons project to the central nucleus, inhibiting the expression of fear. Neurons in the medial 
PFC project to the extinction neurons in the BLA nucleus of the amygdala and to the ICM to 
modulate their activity. Integrated CS-US information is also projected back to the CA1 and then 
medial PFC for comparison to previously stored memories and storage of the CS-US memory.
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Table 1.3. Molecules involved in the extinction of LTM in the hippocampus, amygdala and 
prefrontal cortex.

MOLECULAR ACTIVITY TASK CAUSAL
ROLE?

REFERENCE

HIPPOCAMPUS
Receptor Related Activity
Endocannabinoid activity CFM / De Oliveira Alvares et al., 2008
NMDAR activity IA ✓ Szapiro et al., 2003
Decreased proteolysis of proBDNF CFM ✓ Barnes & Thomas, 2008

Second Messenger Molecular Activity
ERK1/2 activity CFM ✓ Fischer et al., 2007
SFKs activity CFM ✓ Isosaka et al., 2009
SFKs activity IA ✓ Bevilaqua et al., 2003
Reduced SHP1/2 activity CFM ✓ Isosaka & Yuasa, 2010
Decreased Rac-1 activity CFM ✓ Sananbenesi et al., 2007
Decreased Cdk5 activity CFM ✓ Sananbenesi et al., 2007
Increased PAK-1 activity CFM ✓ Sananbenesi et al., 2007
P38 MAPK activity IA / Rossato et al., 2006
PKA activity IA / Szapiro et al., 2003
CaMKII activity IA / Szapiro et al., 2003

De Novo Gene & Protein Expression
BDNF activity CFM ✓ Heldt et al., 2007
Inhibition of HDAC CFM ✓ Lattal et al., 2007
Actin rearrangement CFM ✓ Fischer et al., 2004
AMYGDALA
Receptor Related Activity
Increased GABA-A activity Cued-FC ✓ Akirav et al., 2006
GRPR activity Cued-FC / Shumyatsky et al., 2002
NMDAR activity Startle R / Lin et al., 2003

Second Messenger Molecular Activity
PSA-NCAM activity Cued-FC - Markram et al., 2007
PI-3K activity Startle R ✓ Lin et al., 2003

MAPK activity Startle R ✓ Lin et al., 2003

De Novo Gene & Protein Expression
CREB activity CFM / Mamiya et al., 2009
CREB activity Startle R - Lin et al., 2003
Increased insertion of GABA-A R into synapse Cued-FC / Lin et al., 2009
Increased Bdnf mRNA expression Cued-FC - Chhatwal et al., 2006
Increased c-FOS protein expression Cued-FC - Herry & Mons, 2004
Increased EGR1 protein expression Cued-FC - Herry & Mons, 2004
Increased Calcineurin expression Startle R - Lin et al., 2003
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Table 1.3. Continued.

MOLECULAR ACTIVITY TASK CAUSAL
ROLE?

REFERENCE

PREFRONTAL CORTEX
Receptor Related Activity
AMPAR activity CFM / Zushida et al., 2007
NMDAR activity CFM / Suzuki et al., 2004
NMDAR activity Cued-FC / Burgos-Robles et al., 2007
CB1R activity CFM ✓ Suzuki et al., 2004
L-VGCC activity CFM ✓ Suzuki et al., 2004
GABA-A activity Cued-FC ✓ Akirav et al., 2006
beta-Adrenergic activity Cued-FC ✓ Mueller et al., 2008

Second Messenger Molecular Activity
MAPK activity Cued-FC / Hugues et al., 2004
PKA activity Cued-FC / Mueller et al., 2008

De Novo Gene & Protein Expression
CREB activity CFM / Mamiya et al., 2009
HDAC inhibition increased BDNF activity Cued-FC / Bredy et al., 2007
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stabilization of a labile memory, the molecular mechanisms underlying these processes have 

been shown to be both similar (Kida et al., 2002) and doubly dissociable (Lee et al., 2004). 

Reconsolidation and extinction are both activated by retrieval of a memory, but have been 

shown to have distinct temporal and biochemical signatures (Suzuki et al., 2004) as well as 

similarities (Mamiya et al., 2009). Consolidation and extinction are both considered to be new 

learning, but again there are both similarities and difference in the molecular mechanisms 

underlying the two processes (Lin et al., 2003). Finally, within a memory process the molecular 

activity can vary between brain regions that are part of the engram (Tronel et al., 2005; Mamiya 

et al., 2009).

1.3 Synaptic Plasticity

1.3.1 Molecular Mechanisms of LTM and Synaptic Plasticity

Changes in neuronal molecular activity in regions of the brain including the hippocampus, 

amygdala and mPFC are necessary for the consolidation, reconsolidation and extinction of 

associative LTM (see 1.2.2.3,1.2.3.3 and 1.2.4.3). In particular, de novo gene expression and 

protein synthesis takes place following new learning and retrieval of memories that is thought 

to modulate the strength of some of the activated synaptic connections within the engram. The 

ability for the efficacy of communication between neurons to change at the site of the synapse 

when neurons are active together is one form of what is generally known as synaptic plasticity. 

In 1949, Hebb postulated that ‘when an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased’ 

(Hebb, 1949). In 1973 Bliss and Lomo discovered an artificial form of plasticity in which brief, 

high-frequency electrical stimulation of the excitatory perforant pathway (neurons originating 

from the entorhinal cortex and terminating on neurons in the dentate gyrus) produced a long- 

lasting enhancement in the strength of the stimulated synapses (Bliss & Lomo, 1973). This type 

of synaptic plasticity became known as long-term potentiation (LTP). In 1982 the BCM theory 

was posited suggesting that synaptic plasticity could be bidirectional. In contrast to the strong 

postsynaptic depolarization that was necessary for LTP to take place, long-lasting weakening 

in the strength of stimulated synapses was predicted to take place if the postsynaptic cell was 

only weakly depolarized (Bienenstock et al., 1982). Long-lasting weakening of the strength of
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synapses was experimentally induced by prolonged, low frequency electrical stimulation of the 

excitatory Schaffer collaterals (neurons originating from the CA3 and terminating on neurons in 

the CA1) (Stanton & Sejnowski, 1989). This type of synaptic plasticity became known as long­

term depression (LTD). While low level depolarisation results in LTD at the active synapses, 

depolarisation above a certain level, known as the modification threshold, results in LTP at the 

active synapses.The physiological substrate of this modification threshold is proposed to be the 

NMDA receptor, and the threshold is proposed to change dynamically to homeostatically 

regulate the excitability of the cell (Stanton, 1996). LTP and LTD have been detected to take 

place in neurons in other regions of the brain including in neurons of the prefrontal cortex 

(Laroche et al., 1990; Takita et al., 1999) and neurons found in some nuclei of the amygdala 

(Chapman et al., 1990; Wang & Gean, 1999). However while some molecular mechanisms 

found to be underlying LTP in different brain regions appear to be the same, differences have 

also been found (Bear et al., 2007). LTP and LTD, most commonly investigated in the 

hippocampus, have become models for studying the molecular mechanisms underlying the 

consolidation, reconsolidation and extinction of LTM. The synaptic plasticity and memory 

(SPM) hypothesis posits that ‘activity-dependent synaptic plasticity is induced at appropriate 

synapses during memory formation and is both necessary and sufficient for the information 

storage underlying the type of memory mediated by the brain area in which the plasticity is 

observed’ (Martin et al., 2000). However the research effort to prove or disprove the SPM 

hypothesis has been pursued for the last 22 years and so far there is no conclusive evidence 

either way (Neves et al., 2008).

LTP studies in glutamatergic synapses in the hippocampus have shown that glutamate 

released from pre-synaptic cells binds to AMPA receptors in the membrane of post-synaptic 

cell dendritic spines. The AMPA receptor ion channels open and Na+ ions pass into the 

postsynaptic cell. As positively charged ions enter into the post-synaptic cell it becomes 

depolarized. If glutamate binds to the NMDA receptor ion channel, at the same time as the 

post-synaptic cell becomes sufficiently depolarized such that the Mg2* ion no longer blocks the 

ion pore, then Ca2* ions flood into the dendritic spine along the membrane potential. In this way 

the NMDA receptor acts as a coincidence detector. The increase in the concentration of 

intracellular Ca2* then leads to second messenger activity, such as the phosphorylation of 

kinases in the dendritic spine, that may result in more AMPA receptors being inserted into the 

dendritic spine membrane. The presence of more AMPA receptors in the dendritic spine will 

increase the sensitivity of the spine to glutamate release in the future and therefore the
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strength of the synapse becomes increased. Insertion of AMPA receptors into the spine is 

positively correlated with the spine size. De novo gene expression is activated to support the 

structural changes within the dendritic spine and the modifications to signal transduction 

(LeDoux, 2000; Bear et al., 2007; Yuste & Bonhoeffer, 2001). The products of de novo gene 

expression in the nudeus diffuse throughout the neuron and are thought to be “captured” only 

by the activated synapses that have a molecular tag. This hypothesis is known as the synaptic 

tagging and capture hypothesis (Frey & Morris, 1997; Barco et al., 2008). In addition to 

postsynaptic modifications, presynaptic modifications that alter the quantity of neurotransmitter 

released and the rate of reuptake of neurotransmitter from the synaptic deft have also been 

proposed to alter the strength of a synaptic connection during synaptic plastidty (Bliss & 

Collingridge, 1993). The molecular mechanisms underlying the strength of the synapses in LTP 

may also underlie the strength of the synapses that are part of the memory engram.

A number of molecules that have been shown to be necessary for both LTP and LTM in the 

post-synaptic density indude the kinases CamKII (Malinow et al., 1989; Izquierdo et al., 2000), 

PKA (Frey et al., 1993; Izquierdo et al., 2000), PKC (Malinow et al., 1989; Izquierdo et al., 

2000), PKM<; (Osten et al., 1996; Shema et al., 2007), adenylyl cydase (Wong et al., 1999), Pl- 

3K (Man et al., 2003; Sui et al., 2008), MAPK (English & Sweatt, 1997; Izquierdo et al., 2000), 

ERK1/2 (Jones et al., 1999; Berman et al., 1998), and the scaffolding protein PSD-95 (Migaud 

et al., 1998). Genes that are expressed rapidly and transiently as part of the de novo gene 

response are known as the immediate early genes (IEG). It has been predicted that there are 

3 0 -4 0  IEG, and that 10 -15 of these IEG would be transcription factors. Other IEG have been 

shown to indude growth factors and to be involved in signal transduction and cytoskeletal 

rearrangement (Lanahan & Worley, 1998). Genes that are expressed less rapidly but still 

transiently are also expressed as part of the de novo gene response. De novo gene expression 

is generally thought to be completed within 8 hours post stimulation of the neuron. De novo 

gene expression that has been shown to be necessary for both LTP and LTM indudes CREB 

(Bourtchuladze et al., 1994), EGR1 (Cole et al., 1989; Jones et al., 2001), BDNF (Patterson et 

al., 1996; Alonso et al., 2002) and ARC (Guzowski et al., 2000). However while genes 

necessary for LTP may have also been shown to be necessary in LTM studies, there are 

occasions where genes have been shown to be required for LTP but not required for LTM of a 

particular task. For example Egrl and syntaxin 1B expression has been shown to be necessary 

for LTP but not for spatial learning in a water maze task. It is suggested that the genes 

activated following LTP are likely to be more general and more spatially extensive than the
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genes activated following a single learning episode. Therefore it was suggested that future 

comparisons between LTP and LTM should be considered in respect to specific LTM 

paradigms separately (Richter-Levin et al., 1998). Comparison of LTP and LTM findings 

indicate that molecules that have been implicated in synaptic plasticity are reasonable 

molecules to investigate for having a role in LTM, but no molecule found to be necessary for 

LTP could be interpreted as also being necessary for LTM.

1.3.2 Schizophrenia Susceptibility Genes and Synaptic Plasticity

Abnormal neuronal development leading to abnormal neuronal circuitry and function has been 

implicated in schizophrenia (Weinberger, 1987; Waddington, 1993). Schizophrenia 

susceptibility genes that are known to have a functional role in synaptic plasticity, in addition to 

being correlated with schizophrenia through gene association, linkage and postmortem studies, 

are considered to be the genes most likely to contribute to schizophrenia pathophysiology 

(Harrison & Weinberger, 2005). The involvement of the schizophrenia susceptibility genes of 

interest for this thesis, Nrg1, Dtnbpl, Disci, Egr3 and Bdnf, in synaptic plasticity is discussed 

below.

1.3.2.1 Nrg1 and Synaptic Plasticity

Several studies suggest that Nrg1 is involved in synaptic plasticity. In glutamatergic synapses 

presynaptic neuregulinl protein (NRG1) is proteolytically cleaved and the N-terminal fragment 

of the protein binds to postsynaptic receptor tyrosine kinases ErbB3 or ErbB4 modulating the 

localisation of NMDA receptors to the postsynaptic membrane (Huang et al., 2000; Falls, 

2003). Activation of the ErbB receptors by NRG1 can also lead to postsynaptic gene 

transcription via the PI3K pathway, while presynaptic gene transcription can be activated by 

proteolytic cleavage of the NRG1 C-terminal domain (Falls, 2003; Mei & Xiong, 2008; see Fig. 

1.6 ). Bath application of Nrg1 has been shown to suppress induction of LTP in the hippocampal 

CA1 region without affecting basal synaptic transmission, paired pulse facilitation or disrupting 

NMDAR mediated currents, suggesting a postsynaptic role downstream of NMDAR activation 

(Huang et al., 2000). Also in the CA1 Nrg1 has been shown to depotentiate LTP by reducing 

surface AMPA receptor expression in an activity and time dependent manner (Kwon et al., 

2005). Disruption of NRG1/ERBB signalling in the hippocampal CA3-CA1 pathway has been 

shown to destabilize synaptic AMPA receptors and lead to a loss of synaptic NMDA currents
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Fig. 1.6. NRG1 cellular interactions. As glutamate is released from the presynaptic terminal it binds 
to AMPARs and NMDARs that may lead to synaptic plasticity. NRG1 acts as a bidirectional 
neuromodulator. Proteolytic cleavage of the extracellular domain of NRG1 type I and II isoforms 
leads to this N-terminal domain fragment binding to ERBB2, ERBB3 or ERBB4 receptors in the 
postsynaptic membrane. Secondary messengers downstream of PI3K that is activated upon NRG1 
binding to the ERBB receptors leads to gene transcription in the nucleus of the postsynaptic cell that 
will modulate the synapse. The intracellular C-terminal domain in the presynaptic neuron can also be 
proteolytically cleaved and lead to gene transcription in the presynaptic cell that will modulate the 
synapse. PSD-95 is a scaffolding protein that binds to the intracellular domain of the ERBB receptors 
upon NRG1 binding to the extracellular domain of the ERBB receptors. PSD-95 also binds to 
NMDARs and therefore NRG1 indirectly modulates the cellular localisation of NMDARs in the 
postsynaptic density. 49



and dendritic spines, leading to glutamatergic hypofunction and impairments in synaptic 

plasticity (Li et al., 2007). NRG1 has been shown to regulate synaptic activity in the 

hippocampus by potentiating transmission at entorhinal-dentate synapses and suppressing 

transmission at entorhinal-CA1 synapses (Roysommuti et al., 2003). Nrg1 expression is 

upregulated in the DG and CA3 following stimulation of the perforant path that produced LTP 

(Eilam et al., 1998). In the prefrontal cortex, an increase in NRG1 has been shown to reduce 

NMDA receptor currents and increased internalisation of NMDA receptors (Gu et al., 2005). In 

contrast, Nrg1 +/- mice, that are thought to have a decreased level of Nrg1 expression, have 

fewer functional NMDA receptors in the prefrontal cortex than in WT mice (Stefansson et al., 

2002). NRG1 is a synaptic transmembrane protein that is proteolytically cleaved. The 

extracellular N-terminal domain binds to ErbB receptors in a paracrine or autocrine fashion. 

Nrg1 acts as a neuromodulator through synaptic bidirectional release and binding (Falls, 2003; 

Ozaki et al., 2004; Li et al., 2007). These studies suggest NRG1 is involved in the modulation 

of synaptic plasticity in the hippocampus (Huang et al., 2000; Kwon et al., 2005; Li et al., 2007; 

Eilam et al., 1998; Roysommuti et al., 2003) and prefrontal cortex (Gu et al., 2005; Stefansson 

et al., 2 0 0 2 ).

1.3.2.2 Dtnbp 1 and Synaptic Plasticity

Multiple studies have contributed evidence to suggest that Dtnbpl has a role in synaptic 

plasticity. Dysbindin protein (DTNBP1) is engaged in assembly and stability of the postsynaptic 

density in dendritic spines, and in the presynaptic terminal DTNBP1 is involved in priming of 

synaptic vesicles for exocytosis (Talbot et al., 2006; Tian et al., 2005; see Fig 1.7). Dtnbpl has 

been shown to be required presynaptically for the retrograde, homeostatic modulation of 

neurotransmssion (Dickman & Davis, 2009). Changes in Dtnbpl expression alter glutamate 

neurotransmission suggested that Dtnbpl influences exocytotic glutamate release via 

upregulation of the molecules in the pre-synaptic machinery (Numakawa et al., 2004). Larger 

vesicle size, slower quantal release, lower release probability and a smaller total population of 

the readily releasable vesicle pool have been found in mice with a Dtnbpl deletion (Chen et al., 

2008). Also in mice with a Dtnbpl deletion there is an increase in expression of the NR2A 

subunit of NMDA receptors at the neuronal surface and an increase in NMDA-mediated 

synaptic currents and LTP at CA1 synapses in hippocampal slices (Tang et al., 2009b).
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Fig. 1.7. DTNBP1 cellular interactions. As glutamate is released from the presynaptic terminal it
binds to AMPARs and NMDARs that may lead to synaptic plasticity. DTNBP1 acts both
presynaptically and postsynaptically to traffick proteins for maintenance or modification of the
synapse. DTNBP1 in the postsynaptic density is part of the DPC which is thought to be involved in
the trafficking and tethering of receptors, such as the NMDAR, and of signal transduction proteins
(Harrison & Weinberger, 2005). DTNBP1 has two roles in the presynaptic terminal. It is part of the
BLOC1 complex that is involved in protein trafficking and it is also involved in priming synaptic
vesicles for release (Chen et al., 2008). _.
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1.3.2.3 Disci and Synaptic Plasticity

There is no direct evidence showing that Disci is necessary for synaptic plasticity, however 

there is some evidence that suggests Disci is involved in synaptic plasticity. Disrupted-in- 

schizophrenia 1 protein (DISC1) is a scaffolding protein that holds proteins in place in the 

postsynaptic density to allow efficient molecular responses and is also involved in the 

microtubule-associated transport of proteins and mitochondria to and from the synapse 

(Porteous et al., 2006; see Fig.1.8 ). DISC1 interacts with PDE4B such that in a resting cell 

DISC1 sequesters phosphodiesterase (PDE4B), but in response to cellular adenosine 3’, 5- 

monophosphate (cAMP) DISC1 releases PDE4B and PDE4B inactivates cAMP (Millar et al.,

2005). Changes in cAMP levels and in the levels of PDE4B activity are important in synaptic 

plasticity (Frey et al., 1993; Ahmed et al., 2004; Ahmed & Frey, 2005). Another study 

suggesting that DISC1 may be involved in synaptic plasticity is that schizophrenia patients with 

a particular DISC1 allele also had impaired memory function (Cannon et al., 2005).

1.3.2.4 Egr3 and Synaptic Plasticity

Early growth response factor 3 protein (EGR3) is a transcription factor that can be expressed 

as a result of both NRG1 and BDNF signalling and promotes the transcription of many genes 

including those that encode ARC, p75 neurotrophin receptor, GABA receptor a4 subunit, Nerve 

Growth Factor receptor, EGR3 and some miRNA sequences (Guo et al., 2010). EGR3 

transcriptional activity can be repressed by NGFI-A binding proteins 1 and 2 (NAB1 and NAB2) 

in neuronal cells (O’Donovan et al., 1999; Sevetson et al., 2000; see Fig. 1.9). Evidence from 

two different studies show that Egr3 is involved in synaptic plasticity. Firstly, Egr&- mice, that 

had normal brain development and basal synaptic transmission in CA3-CA1 hippocampal 

neurons, had disrupted LTP in CA1 neurons (Li et al., 2007). Secondly, high frequency 

stimulation of the perforant pathway in the hippocampal granule cells lead to induction of Egr3 

mRNA expression that was mediated by NMDA receptor activation in glutamatergic synapses. 

In the same study Egr3 was also upregulated in the hippocampus in response to maximal 

electroconvulsive seizure (MECS) with the first signs of mRNA detected at 30 min, peak levels 

of expression detected after 1-2 hours and remaining elevated up to 8 hours after stimulation 

(Yamagata et al., 1994).
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Fig. 1.8. DISC1 cellular interactions. As glutamate is released from the presynaptic terminal it binds 
to AMPARs and NMDARs that may lead to synaptic plasticity. DISC1 is a scaffolding protein that 
when complexed with PDE4 regulates cAMP levels and thereby PKA activity which is part of the 
second messenger cascade modulating gene expression. The DISC1/NDEL1/LIS1 complex is 
involved in neuronal migration and the DISC/elF3 complex is thought to regulate translation 
(Porteous et al., 2006).
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Fig. 1.9. EGR3 cellular interactions. As glutamate is released from the presynaptic terminal it binds 
to AMPARs and NMDARs that may lead to synaptic plasticity.NRG1 binding to ERBB receptors and 
BDNF binding to TrK receptors activate second messenger cascades that lead to transcriptionof 
EGR3. The transcription factor EGR3 promotes transcription of genes that encode ARC, p75 
neurotrophin receptor, GABA receptor a4 subunit, Nerve Growth Factor receptor, EGR3 and some 
miRNA sequences. NAB1 or NAB2 can bind to EGR3 to modulate its transcriptional activity. In 
neurons NAB1 and NAB2 repress EGR3 transcriptional activity.
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1.3.2.5 Bdnf and Synaptic Plasticity

Brain derived neurotrophic factor protein (BDNF), can be found in two forms, proBDNF and 

mature BDNF, both of which are signalling proteins. BDNF can modulate synaptic plasticity 

through binding to either the p75 neurotrophin receptor (p75 NTR) or the tyrosine receptor 

kinase B (TrkB) (Cunha et al., 2010). Many studies have identified a role for BDNF in synaptic 

plasticity and LTM, and BDNF has emerged as a key regulator of synaptic plasticity (Lu et al., 

2008; Cunha et al., 2010). Some of the evidence implicating Bdnf in synaptic plasticity includes 

the findings that increased Bdnf expression in the CA1 and DG regions of the hippocampus 

followed stimulation that induced LTP (Patterson et al., 1992; Castren et al., 1993). Transient 

application of BDNF induced a marked increase in the strength of synaptic transmission in the 

CA1 region of the hippocampus (Kang & Schuman, 1995). Finally, reduced LTP was observed 

in Bdnf homozygous and heterozygous mice in the CA1 region of the hippocampus indicating 

that Bdnf expression is necessary for synaptic plasticity (Korte et al., 1995). Recent research 

has identified a cellular role for BDNF in the synaptic plasticity process. BDNF secretion during 

LTP is necessary for long-term enlargement at the single spine level. Spine enlargement 

supports additional AMPA receptor insertion into the postsynaptic membrane that leads to 

increased sensitivity of that synapse to future glutamate release (Tanaka et al., 2008).

1.4 Splice Variants of Schizophrenia Susceptibility Genes

Recent studies have highlighted that in some cases only one splice variant or a selection of 

splice variants out of the total number of splice variants of a particular schizophrenia 

susceptibility gene may be involved in schizophrenia pathophysiology, or indeed different splice 

variants of the same gene may contribute in different ways. A neuroimaging study identified 

that a SNP that had been associated with schizophrenia in the promoter region for NRG1 type 

IV splice variants was significantly correlated with decreased activation of frontal and temporal 

lobe regions and premorbid IQ, and increased development of psychotic symptoms (Hall et al.,

2006). This same SNP has also been associated with a 49% increase in the mRNA expression 

levels of NRG1 type IV splice variants in the hippocampus of individuals with schizophrenia 

compared to individuals with schizophrenia that did not have the SNP (Law et al., 2006). Law 

and colleagues (2006) also assayed the mRNA expression levels of NRG1 type I, II and III
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splice variants in the hippocampus of individuals with schizophrenia. There was no difference 

in the level of NRG1 type II and III expression between control and schizophrenic individuals 

but the level of expression of NRG1 type I splice variants was increased by 34% in the 

schizophrenic individuals compared to the control individuals (Law et al., 2006). Another study 

that investigated the levels of expression of three different splice variants of the schizophrenia 

susceptibility gene DTNBP1 found that two splice variants were at significantly increased levels 

in schizophrenic individuals compared to controls while there was no difference in the levels of 

expression of the other splice variant between schizophrenic and control individuals (Tang et 

al.t 2009). Thus when investigating or discussing the involvement of different schizophrenia 

susceptibility genes in schizophrenia pathophysiology, the role of the different splice variants of 

those genes should be considered.

1.5 Outline of Experiments

The experiments presented in this thesis were designed to investigate whether the 

schizophrenia susceptibility genes Nrg1, Dtnbpl, Disci and Egr3 are involved in hippocampal- 

dependent contextual fear long-term memory processes in the adult rat. In order to address 

these issues the following experiments were performed:

1. The exonic structures of the schizophrenia susceptibility genes of interest were 

determined, probes were designed to detect the genes and gene splice variants 

of interest, and the whole brain basal expression profile for each gene and gene 

splice variant of interest was characterized (Chapter 3).

The exonic structure of each gene was determined by aligning the experimentally 

determined mRNA sequences with the gene’s genomic sequence using the NCBI 

SPIDEY mRNA to genomic alignment software. The probes were designed to 

complement parts of the mRNA sequences to detect the genes or gene splice variants 

of interest. The adult rat whole brain basal expression profile for each probe was 

assayed using in situ hybridization (ISH) with radioactively labelled probes, and visual 

inspection of the autoradiographic images. Further analysis of the Nrg1 splice variants 

was performed at the regional level, using image densitometry, and at the cellular 

level, using silver grain counting from emulsion-dipped sections. Probes not detectable
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under basal conditions were assayed by ISH in rat brains that had had widespread 

activity induced by amphetamine.

2. It was hypothesised that the schizophrenia susceptibility genes of interest would 

be regulated in association with consolidation of CFM. Therefore the expression 

levels of the schizophrenia susceptibility genes of interest were investigated 

after CFC (Chapter 4).

The well established CFC paradigm was used to investigate the consolidation of CFM. 

CFC of adult rats consisted of a footshock administered after the rat had been exposed 

to the context for 2 min followed by removal of the rat from the context 1 min later. Full 

behavioural controls were used. The freezing behaviour of the three groups was 

measured to determine whether a CFM had formed. The expression levels of the 

schizophrenia susceptibility genes of interest, and Bdnf as a positive control, were 

assayed by ISH 2 hours post-training in some of the brain regions known to be 

involved in the consolidation of CFM, including the hippocampus, amygdala and 

prefrontal cortex. Analysis of gene expression was initially performed at both the 

regional and cellular level. Egr3 expression in the CA1 region of the hippocampus 2 

hours following CFC was additionally investigated using QPCR. The time profile of the 

regulation of Egr3 expression in the CA1 region of the hippocampus following CFC 

was also assayed using ISH and analysed at the regional level.

3. It was hypothesised that EGR3 was required for consolidation of CFM. Therefore 

the effect of intrahippocampal infusions of Egr3 antisense on CFC was 

investigated (Chapter 4).

Bilateral indwelling cannulae were placed in the hippocampus by stereotaxic surgery. 

Egr3 antisense oligodeoxynucleotides and control scrambled missense 

oligodeoxynucleotides were infused into the hippocampus through the cannulae 90 

min prior to CFC. The freezing behaviour of the rats was measured 24 hours, 15 days 

and 22 days post-CFC to determine whether the consolidation of the CFM had been 

disrupted in either of the Egr3 antisense or missense groups.

4. It was hypothesised that Egr3, Egrl and Nab2 would be regulated in 

reconsolidation and extinction of CFM. Therefore the expression of Egr3, Egr1
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and Nab2 was investigated after short or long recall of a CFM. It was also 

hypothesised that EGR3 was required for reconsolidation of CFM. Therefore the 

effect of intrahippocampal infusions of Egr3 antisense on short recall of a CFM 

was investigated (Chapter 5).

The CFC paradigm was also used to investigate reconsolidation and extinction of 

CFM. Rats that had been fear conditioned to a particular context were re-exposed to 

that context for either a short recall test or long recall test 4 days post-CFC. Freezing 

behaviour was measured during conditioning and during the retrieval sessions to 

determine whether conditioning had occurred. Freezing behaviour was also measured 

during two LTM tests to determine whether the short and long retrieval tests resulted in 

reconsolidation and extinction of the CFM respectively. The expression levels of the 

schizophrenia susceptibility gene Egr3, a member of the same gene family, Egr1, and 

a repressor of Egr3 and Egr1 transcriptional activity, Nab2, were assayed by ISH 30 

min post-retrieval of both short and long retrieval sessions and in a behavioural control 

group. Gene expression was analysed at the cellular level in some of the brain regions 

known to be involved in the reconsolidation and extinction of CFM, including the 

hippocampus, amygdala and prefrontal cortex. To investigate whether EGR3 had a 

causal role in reconsolidation of CFM, bilateral indwelling cannulae were placed in the 

hippocampus by stereotaxic surgery, and Egr3 antisense oligodeoxynucleotides and 

control scrambled missense oligodeoxynucleotides were infused into the hippocampus 

through the cannulae 90 min prior to short retrieval of a CFM. The freezing behaviour 

of the rats was measured in a STM and LTM tests to determine whether the 

reconsolidation of the CFM had been disrupted in either the Egr3 antisense or 

missense groups.
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CHAPTER 2

GENERAL METHODS

2.1 Subjects and Housing

One hundred and fifty one adult male Listar hooded rats (250-300g; Charles River, UK) were 

used in total for all experiments. The rats were housed in pairs and kept in a holding room at 

21 °C under reverse light-dark conditions (12 hours light: 12 hours dark; lights off at 10 am). 

Therefore the rats were in their active state for handling, behavioural experiments and at the 

time they were killed. The rats were allowed ad libitum access to food (rodent laboratory chow, 

Purina, UK) and water. The rats were killed by CO2 asphyxiation. Animal testing, surgery, 

infusions and care were conducted in accordance with the Animals (Scientific Procedures) Act 

of 1986 and local ethical guidelines.

2.2 Behavioural Protocols

2.2.1 Investigating Consolidation of Contextual-Fear Memory (CFM) using Contextual- 

Fear Conditioning (CFC)

Fear-conditioning is a behavioural paradigm that has been commonly used by researchers 

since 1959 (Baron, 1959), and is a well-established method used to investigate associative 

long-term memory in rodents (Fanselow, 1980). Conditioning in these studies involves the rat 

receiving an electric footshock (2 s, 0.5 mA shock), the unconditioned stimulus (US), 2 min 

after being placed in a novel conditioning chamber context, conditioned stimulus (CS), and 

returning the rat to its home cage 1 min later. This conditioning protocol has been used 

previously and is well-established (Hall et al., 2000; Lee et al., 2004; Bames & Thomas, 2008). 

The interior size of the conditioning chamber was 30.5 cm L x 24.1 cm W x 29.2 cm H. The
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chamber had aluminium panelled side walls and clear polycarbonate rear panel and front door 

(0.6 cm thick) (Med Associates Ltd, Vermont, USA). The conditioning chamber was placed 

within a sound-attenuating cubicle that had an interior size of 55.9 cm x 55.9 cm x 35.6 cm 

(Med Associates Ltd, Vermont, USA). The electric footshock was generated by the standalone 

aversive stimulater/scrambler (Med Associates Ltd, Vermont, USA) and delivered through 19 

grid floor bars evenly distributed raised 1.6 cm above the floor tray (Med Associates Ltd, 

Vermont, USA). Conditions in the conditioning chamber were controlled using Med-PC version 

IV research control and data acquisition system (Med Associates Ltd, Vermont, USA). The 

group that was conditioned was called the CS-US group, as the rat forms a long-term memory 

(LTM) of the CS being associated with the US. In order to determine whether any changes in 

gene expression observed in the CS-US group were correlated with the formation of a CS-US 

association, as opposed to the presence of the CS or US in isolation, two behavioural control 

groups were also investigated. The CS-only control group controlled for the presence of the 

CS. The latent inhibition (LI) group controlled for the presence of the US as a US was received 

but the CS was no longer novel or distinct when the US was received resulting in no CS-US 

association. This phenomenom of prolonged exposure to a CS resulting in no CS-US 

association forming upon US exposure in the presence of the CS is known a latent inhibition 

(Lubow & Moore, 1959; McLaurin et al., 1963). LI control groups have been used previously to 

control for the US component of CS-US conditioning (Impey et al., 1998; Hall et al., 2000).

All rats were handled for 5-10 min each, for 3 consecutive days, to enable the rats to become 

familiar with being handled. On day 4, the rats in the CS-US group were conditioned by being 

placed in the conditioning chamber for 2 min, then receiving an electric footshock (2 s, 0.5 mA 

shock) before being returned to their home cage 1 min later. The rats in the CS-only control 

group were placed in the conditioning chamber for 3 min and then returned to their home cage. 

Rats in the LI control group were placed in the conditioning chamber for 8 h and then received 

an electric footshock (2 s, 0.5 mA shock) before being returned to their home cage 1 min later. 

Retrieval tests, that consisted of re-exposing the rats to the CS for 2 min, were performed both 

24 hours (LTM1 test) and 3 weeks (LTM2 test) later.

2.2.2 Investigating Reconsolidation and Extinction of CFM using CFC

Using a protocol previously established by Thomas & Bames (2008), each rat was conditioned 

in two different conditioning chamber contexts. Context A had wallpaper (white background

59



with bold back stars), no house light on and lavender oil (Boots, UK), while context B had clean 

sawdust (IPS Ltd, UK) in the floor tray and the house light on. Rats were habituated to the 

contexts A and B for 20 min for 3 days. Exposure to each context was always separated by a 

minimum of 4 hours to further distinguish the two contexts. On day 4 half the rats were 

conditioned to context A and the other half to context B. On day 5 rats were conditioned in the 

context that they had not already been conditioned in. Two days after each conditioning trial 

the rats were re-exposed to the contexts that they had been conditioned to, half for 2 min (the 

Short Recall group) and the other half for 10 min (the Long Recall group). Two days post­

conditioning was the time point used for extinction sessions because consolidation should be 

complete by this time point so CFM consolidation will not be disrupted by the extinction 

sessions. The order of the contexts that the rats were exposed during the recall tests was the 

same as during conditioning. The LTM1 test was performed 4 days later to test whether the 

CS-US association had been committed to long-term memory, and a LTM2 test was performed 

14 days later to test whether the CS-US association long-term memory had persisted. The LTM 

tests consisted of placing the rats in one of the conditioned contexts for 2 min followed the next 

day by 2 min in the other conditioned context. The order to which each rat was exposed to the 

two contexts in the LTM tests was the same as in the conditioning training.

The CFC paradigm with short and long retrieval sessions described above was adapted to 

investigate whether gene expression correlates with reconsolidation and extinction of CFM. 

Rats were habituated to a single context (either A or B) for 20 min for 3 days. On day 4 they 

were conditioned in that context. Four days after conditioning, the Short Recall group of rats 

were re-exposed to the context to which they were conditioned for 2 min, and the Long Recall 

group of rats were re-exposed to the context to which they were conditioned for 10 min. After 

the Short and Long Recall tests the rats were returned to their home cages and killed 30 min 

later by CO2 asphyxiation. A control No Recall group of rats were conditioned but remained in 

their home cages and were not exposed to any retrieval sessions before being killed by CO2 

asphyxiation 4 days after conditioning. The brain was immediately excised and rapidly frozen 

on dry ice before storage at - 80°C. These brains were then used to investigate whether the 

genes of interest were regulated 30 min after short and long retrieval in association with 

reconsolidation and extinction of a CFM.
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2.2.3 Behavioural Analysis

The freezing behaviour of the rats in the boxes was digitally recorded (JSP Electronics Ltd., 

China) and viewed using Numeroscope software (Viewpoint, France). The freezing behaviour 

was scored by observation and recording the presence or absence of freezing behaviour every 

10 s. Freezing behaviour was scored throughout the 2 min pre-US and 1 min post-US periods 

for the CS-US and LI group rats and in the equivalent first 2 min and final 1 min period for the 

CS-only group rats. Freezing behaviour was also recorded and scored for the 2 min LTM1 and 

LTM2 tests.

2.3 Antisense Inhibition of Gene Expression

Antisense oligodeoxynucleotides (ODNs) are synthetic short single strands of nucleotides 

mimicking natural single stranded DNA (Szklarczyk & Kaczmarek, 1997). The sequence of 

nucleotides of the antisense ODNs is designed to complement strands of mRNA transcribed 

from the gene of interest. The antisense ODNs bind to the mRNA and this interaction prevents 

the mRNA strand from being translated into a protein, thereby knocking down the level of 

protein expression of the gene of interest (Milligan et al., 1993). There is evidence to suggest 

that translation is disrupted through a combination of steric hindrance and RNase H-like 

cleavage (Eder et al., 1993). Antisense EC-ODNs can be infused directly into the brain where 

they rapidly diffuse and are suggested to enter neurons by receptor-mediated endocytosis 

(Ogawa et a., 1995; Loke et al., 1989; Yakubov et al., 1989). Intrahippocampal infusions of 

ODNs into the dorsal CA1 diffuse throughout the hippocampus by 90 min and were cleared 

from the hippocampus by 24 hours (Lee et al., 2004).

Antisense ODNs are extremely susceptible to hydrolysis by nucleases and so chemical 

analogues derived from the phosphodiesters have been developed (Cook, 1993). The most 

common modification for brain research is introducing sulphur in place of non-bridging oxygen, 

known as antisense phosphorothioate ODNs (S-ODN) (Szklarczyk & Kaczmarek, 1997). 

However some findings suggest that the highly active thiol group of S-ODN leads to general 

cytotoxicity. A stable antisense ODN with minimal toxicity has been developed by only 

introducing a sulphur in place of the non-bridging oxygen in the phosophodiesters at the 3’- and
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5’- terminal ends of the antisense ODN and these are known as antisense end-capped 

phosphorothioate ODNs (EC-ODN) (Hoke et al., 1991; Gao et al., 1992; Ehrlich et al., 1994).

2.3.1 Design of Antisense and Missense Oligodeoxynucleotides

Antisense (ASO) oligodeoxynudeotide probes (ODNs) were designed to detect the GOI in the 

rat. Two different ASO ODNs were designed; ASOI and ASOII (see Table 2.1). A missense 

(MSO) ODNs that has the same 18 nucleotides as ASOI but in a scrambled order was 

designed and infused into the control group of rats (see Table 2.1). This was to identify whether 

the response observed in the rats receiving the ASO was due to the knockdown of the GOI or a 

neurotoxic effect related to the infusion of the ODNs. All sequences underwent a NCBI BLAST 

search to check that the ASO ODNs only had positive matches to the target GOI mRNA 

sequences and that the MSO ODN had no positive matches to any rat mRNA sequences. The 

ODNs used were PAGE-purified phosphorothioate end-capped 18-mer sequences (Sigma- 

Genosys, UK). The ODNs were resuspended in sterile PBS to 1 or 2 nmol/jil and stored at - 

20°C until required. These two concentrations of ODNs were used because previous studies 

have shown that 2 nmol/pl Egrl antisense was sufficient to knock down EGR1 protein 

expression and prevent reconsolidation of a CFM from taking place (Lee et al., 2004) and 1 

nmol/pl Bdnf antisense was sufficient to knock down BDNF protein expression and prevent 

consolidation of a CFM from taking place (Lee et al., 2004).

2.3.2 Surgical Placement of Indwelling Hippocampal Cannulae

In accordance with local regulations rats were administered analgesia (500 mg paracetamol; 

Bristol Laboratories Ltd, UK) in their water bottles (~ 200ml) on the day proceeding surgery, on 

the day of surgery and for the two days following surgery. The rats were initially anaesthetised 

for 5 minutes in a box using approximately 5% isofluorane (Abbott, UK) with an oxygen flow 

rate of 0.8 l/min. The rat was assessed throughout surgery to ensure that it was always 

anaesthetised by monitoring the claw-pinch and eye-blink reflexes. An electronic razor (Wella 

Contura, UK) was used to prepare the skull for surgery and the rat secured immediately in a 

stereotaxic frame (Model 900, David Kopf, USA). The front two teeth were placed over the 

incisor bar, set at 3.3 mm below the interaural line, and the nose bar secured in place. The rat 

continued receiving gaseous anaesthesia throughout surgery (approximately 2-3% isofluorane
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Table 2.1. Sequences of two antisense oligodeoxyribonucleotide (ODN) probes, designed to 
detect Egr3, and a missense ODN control sequence. The ODN probe sequences, the reference 
sequences from which the ODN probes were designed and the specific nucleotide position in the 
reference sequence to which the ODN probe was designed is provided for the two antisense (ASO) 
ODN probes (ASOI and ASOII). The MSO ODN probe was a scrambled version of the ASOI 
sequence so only the sequence is provided.

Oligodeoxynucleotide Sequence PubMed sequence

Egr3 antisense I (ASO I) 5’- ACCGATGTCCATCACATT -3’ NM_017086, nt 157-174

Egr3 antisense I (ASO II) 5’- ACAGATTGTCAGGCAATT -3’ NM_017086, nt 56-73

Egr3 missense (MSO) 5’- AT C AC AT CTAT CTAGCGC -3’
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with an oxygen flow rate of 0.8  l/min and a nitrogen flow rate of 0.6  l/min) and the exhaled 

gases were removed with a scavenging system. Blunted ear bars were used to fix the head in 

the appropriate position. A midline incision was made using a scalpel to expose the cranium. 

The position of the cannulae placement was measured with respect to Bregma. A bilateral 

indwelling cannulae (22 gauge, 3.8 mm centre-to-centre, 3 mm below pedestal; Plastics One, 

Semat, UK) was implanted targeting the dorsal hippocampus at the coordinates - 3.5 mm 

anterior-posterior, ± 1.9 mm medio-lateral and - 2.5 mm dorso-ventral to Bregma. Burr-holes 

were produced with a dental drill (Harvard Microtorque II Drill System, UK) at the two 

determined cannulae entry locations. Four skull screws (Plastics One, Semat, UK) were 

attached to the skull bilaterally, anterior and posterior to the cannulae holder. The cannulae 

holder was lowered into position flush with the cranium and dental acrylic (Kemdent simplex 

rapid powder and liquid, UK) was used to fix the cannulae to the skull surface and skull screws. 

The incision was closed using Mersilk 5 - 0 non-absorbable surgical sutures (Ethicon Inc, UK) 

and stainless steel wire stylets (12 mm in length; Plastics One, Semat, UK) were inserted into 

the cannulae in order to prevent the cannulae from becoming blocked. A screw cap (Plastics 

One, Semat, UK) covered the top of the cannulae holder to protect the stylets from removal. 

The rat was then removed from the stereotaxic frame. After surgery the rats were placed 

individually in Plexiglas fan heated cages (Vet Tech Solutions Ltd, UK) at 22°C for 30 min -  1h 

hour to recover before being returned to their home cages. A minimum of 7 days recovery 

period was allowed before infusions and behavioural experiments began.

2.3.3 Infusion Procedure

Injectors, 28 gauge and 1 mm longer than guide cannulae, (Plastics One, Semat, UK) were 

connected via polyethylene tubing to two 5 pi Hamilton syringes (Hamilton, Switzerland) fixed 

into a syringe pump (Harvard Apparatus 11 Plus, UK). The screw cap and stylets were 

removed from the cannulae before inserting the injectors into the cannulae in the awake rats. 

Infusion of 2 pi of PBS solution for the practice infusions, or 2 pi of ASO/MSO in PBS solution 

for the knockdown experiments, into the dorsal hippocampus took place over 8 min at a 

constant rate of 0.125 pl/min; 1 pi was infused through each cannulae. The injectors were left 

in place for two minutes following the completion of infusion before being removed to allow for 

diffusion of the injected solution away from the injector tips. The stylets and screw cap were put 

back in place and the rat returned to its home cage.
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Histology was performed to identify the site of infusion of ASO and MSO. The tissue sections 

were Nissl stained with thionin and viewed through a light microscope (Leica DMLB, Germany) 

to determine the end-point site of the injectors and therefore the site of infusion. 

Photomicrographs of typical cannulae placements are shown in Figure 2.1.

2.4 Histology

The Nissl method used thionin to stain the RNA and rough endoplasmic reticulum blue in the 

cell bodies of the brain tissue. Firstly the tissue was prepared. Brain sections 14 pm thick were 

cut coronally from the brain region(s) of interest using a cryostat (Leica CM1900, Germany) 

with chamber temperature at - 18°C, and the stage temperature at - 20°C. The sections were 

thaw-mounted onto poly-L-lysine coated glass slides (slides dipped in 5 mg/ml solution in 

ddH2 0 ; Sigma P1524, UK) and allowed to air dry at RT. The slides were placed in glass racks 

and the sections fixed by immersion in 4% ice - cold paraformaldehyde for 5 min, followed by 

1x PBS (1.3 M sodium chloride, 70mM disodium phosphate, 30 mM monosodium phosphate) 

for 1min and 70% ethanol for 4 min. For the thionin staining the sections were were rinsed in 

distilled water before being placed in succession of solutions; 1% Thionin (10 min), distilled 

water (1 min), 70% ethanol (5min), 70% ethanol plus 2.5ml 1M acetic acid (until an appropriate 

level of staining was obtained), 95% ethanol (2 x 10 min), 100% ethanol (2 x 10 min) and 

Histodear (1 x 10 min & 1 x 30 min; National Diagnostics, UK). Immediately after removal from 

Histodear, DePeX (BDH Laboratory Supplies, UK) mounting medium was used to seal the 

glass coverslips (Raymond Lamb, UK) on top of the sections.

2.5 in situ Hybridisation

In situ hybridisation (ISH) was performed to characterize the expression of the genes of interest 

throughout the adult rat brain under basal conditions and to quantify changes in gene 

expression in different brain regions following CFC, and short and long retrieval sessions. Short 

oligonudeotide probes were used as they are easily available and can penetrate cells more 

easily and thereby increase the sensitivity of the ISH experiment. All reagents were molecular 

grade and supplied by Sigma, UK, unless otherwise stated.
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Figure 2.1. Typical cannula placements in the dorsal hippocampus. Three photomicrographs taken at 2.5X magnification covering the 
hippocampus and the cortical region dorsal to the hippocampus have been merged together to show the bilateral cannula endpoints from which the 
antisense and missense oligodeoxynucleotides were infused into the dorsal hippocampus.

CD
CD



2.5.1 Design of Oligonucleotide Probes

Probes were designed to complement approximately 45 nucleotides of the mRNA sequence 

within the gene of interest. Comparison of the gene structure of known transcripts in the human 

and in the rat enabled the design of probes that would differentiate between different splice 

variants of a gene, and enable the design of probes that would detect all known splice variants 

of a gene (pan probe). Accumulation of information on gene structure was done through 

obtaining a list of all the known experimentally derived transcripts for a gene from NCBI Entrez 

Gene (httD://www.ncbi.nlm.nih.qov/qene). The appropriate list of sequences was found on this 

website by searching the gene name and from the output selecting the organism of interest; in 

this study both rat and human sequences were investigated for all genes except Nab1 and 

Nab2 for which only rat sequences were investigated.

In NCBI Entrez gene for each gene in each organism they categorise mRNA transcripts into 

experimentally determined sequences, Reference Sequences (RefSeq) and Expressed 

Sequence Tags (ESTs). Experimentally determined sequences are sequences that have been 

determined in a laboratory by researchers who input their findings into this database having 

had a peer-reviewed journal article relating to that sequence published. Experimentally 

determined sequences are denoted by accession numbers that start with one or two 

alphabetical letters eg. AY995222 and U02324. RefSeq sequences are experimentally 

determined transcripts that have been verified using other publicly available databases by 

NCBI. RefSeq sequences are denoted by accession numbers that start with ‘NMJ eg 

NM_022856. EST sequences are short single-read transcript sequences produced by one-shot 

sequencing of a cloned mRNA that represent portions of expressed genes. EST were not used 

in this study as they only represented small parts of the transcripts of interest, with the 

exception of CN603655 which was used to provide an example of the 5’-terminal fragment of a 

NRG1 type V splice variant as no other transcript sequences have been discovered for this 

splice variant. In this study the RefSeq sequences were characterised to identify the exonic 

structure of splice variants of the genes of interest as these sequences have been verified. In 

some cases, for Nrg1 in the rat and DTNBP1 in humans, the exonic structures of the 

experimentally determined sequences were also characterised in order to search for more 

splice variants.
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For each transcript that had its exonic structure characterised, the RNA sequence was 

accessed from the NCBI Entrez nucleotide website (http://www.ncbi.nlm.nih.aov/nuccore) by 

searching the accession number for that transcript. The RNA sequence was then copied into 

the mRNA sequence window in an mRNA to genomic alignment software program called NCBI 

SPIDEY (http://www.ncbi.nlm.nih.gov/spidev). The genomic sequence required for this 

alignment was obtained from NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/qene). or in the 

case of Nrg1 in the rat the genomic sequence was obtained from the UCSC Genome Browser 

(http://qenome.ucsc.edu) as the sequence obtained from NCBI gene did not extend far enough 

5’ in order to detect Nrg1 type IV. The genomic sequence for the gene, from which the query 

mRNA sequence was transcribed, was copied into the genomic sequence window in NCBI 

SPIDEY. Large intron sizes and then ‘Align’ was selected. Schematics of the exonic structure 

output was then made in Microsoft powerpoint.

Probes were designed to detect a selection of Nrg1, Dtnbpl and Disci exons specific to 

different splice variants and to detect exons in each gene that should detect all splice variants 

for that gene. Probes were also designed to detect Egr3, Nab1, Nab2 and Bdnf transcripts. 

These oligonucleotide probes were approximately 45 nucleotides long, were approximately 

GC:AT equal and near the beginning of the exon if possible. An RNA alignment tool called 

Vector NTI Align X (Invitrogen) was used to align human and rat sequences in the exons of 

interest in order to ascertain regions of high homology. If a sequence of 45 nucleotides, abiding 

to the criteria mentioned previously, could be selected in the rat sequence in regions of high 

homology to the human sequence, then this was carried out. Probes were BLASTed in NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), UCSC (http://qenome.ucsc.edu/cqi-bin/hqBlat) and 

ENSEMBL (http://www.ensembl.org/Multi/blastview) to confirm that there were no matches of a 

significant identity level to other genes within the rat genome. The reverse complement of all 

45mer sequences was determined and these sequences synthesised commercially (Sigma- 

Genosys, UK).

2.5.2 Radioactive Labelling of Oligonucleotide Probes

All water was Diethylpyrocarbonate (DEPC)-treated to make it RNase-free before use in 

labelling probes and ISH. This was to prevent RNA degradation in the brain sections that would 

alter the levels of mRNA randomly between tissue samples and render semi-quantification of 

the level of expression of the GOI inaccurate. To tail the oligonucleotides with radioactive
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sulphur-35 (^S; half-life of 87 days) the following reagents were added in order into a 1.5 ml 

Eppendorf tube: 2.5 pi of 5x Tailing buffer (Promega, UK), 5.0 pi of DEPC-treated water, 2.0 pi 

of oligonucleotide (5ng/pl), 1.5 pi of terminal deoxytransferase (Tdt) enzyme (Promega, UK) 

and 1.0 pi of ^S-dATP (Perkin-Elmer, UK). These reagents were spun down briefly in a 

centrifuge to mix and incubated at 30°C in a waterbath for 1 hour. A Sephadex G-25 Spin 

column was made; two autodaved glass balls (2.5-3.5 mm, BDH Laboratory Supplies, UK) 

were placed into a sterile 1 ml syringe (Fisher, UK) placed in a 15 ml Falcon tube, the syringe 

was then completely filled with Sephadex G-25 (dry bead diameter: 20 -  80 pm, Sigma, UK) in 

TNES (0.14 mM Sodium chloride, 20 mM Tris, 5 mM EDTA, 0.1% SDS) slurry and centifuged 

at RT for 2 min at 2000 rpm (rotations per minute). Buffer caught in the falcon tube was 

discarded, a 1.5 ml Eppendorf tube with no lid was placed into the Falcon tube and the spin 

column replaced. After 1 hour of incubation the reaction was stopped by adding 38 pi of 

DEPC-treated water. The 50 pi reaction mixture was transferred to the top of the spin column 

to be centrifuged at RT for 2 min at 2000 rpm. The labelled oligonucleotide was collected in the 

Eppendorf tube and 2 pi of 1 M DTT added. The specific activity of the labelled probe was 

determined; 2 pi were pipetted into a scintillation vial containing 2 ml of scintillation fluid 

(Perkin-Elmer, UK) and the decays per minute (dpm) assessed for 1 min in a liquid scintillation 

analyzer (Perkin-Elmer Tri-Carb 2800 TR, UK) using the QuantaSmart software (Perkin-Elmer, 

UK). Optimal specific activity was between 150 000 dpm/pl and 400 000 dpm/pl indicative of 

the labelling having correctly labelled the ODNs. The labelled oligonucleotides were stored 

at - 20°C until use.

2.5.3 Preparation of Tissue Sections

Each brain was cut coronally in 14 pm sections using a cryostat (Leica CM1900, Germany) 

with chamber temperature at - 18°C, and the stage temperature at - 20°C. The sections were 

thaw-mounted onto poly-L-lysine coated glass slides (slides dipped in 5 mg/ml solution in 

ddH2 0 ; Sigma P1524, UK) and allowed to air dry at RT. The slides were placed in glass racks 

and the sections fixed by immersion in 4% ice - cold paraformaldehyde for 5 min, followed by 

1x PBS (1.3 M sodium chloride, 70mM disodium phosphate, 30 mM monosodium phosphate) 

for 1min and 70% ethanol for 4 min. Fixation of the tissue makes the mRNA present in the 

tissue more accessible to the probes. The sections were submerged in 95% ethanol in an 

airtight storage box and stored at 4°C.
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2.5.4 Hybridisation and Washing of Slides

Hybridisation of the oligonucleotide probe to the mRNA results from hydrogen bonding 

between complementary bases and base-pair stacking using the same principles that underlie 

the thermodynamic stability of DNA (Cimino et al., 1989). Therefore the level of hybridisation of 

the probe to the mRNA can be optimised based on the temperature at which the reaction is 

carried out and on the concentration of charged ions in the hybridisation buffer. Hybridisation 

buffer was prepared by pipetting the following reagents into a 100 ml Falcon tube: 25 ml of 

100% deionised formamide, 10 ml of 20x SSC (3 m sodium chloride, 0.3 M tri-sodium citrate),

2.5 ml of 0.5 M sodium phosphate pH 7.0 (0.5 M disodium phosphate, 0.5 M monosodium 

phosphate), 0.5 ml of 0.1 M sodium pyrophosphate, 5 ml Denhardt’s solution (prepared as a 50 

x stock comprising 5 g polyvinylpyrrolidine, 5 g bovine serum albumin and 5 g Ficoll 400 in 500 

ml DEPC-treated water), 1 ml of 10 mg/ml add-alkali hydrolysed salmon sperm DNA (Sigma, 

UK), 1 ml of 5 mg/ml polyadenylic add, 50 nl of 120 mg/ml heparin and 5 g of dextran 

sulphate. The reagents were then shaken vigorously in the Falcon tube, placed at 4°C until the 

dextran sulphate was dissolved and the solution made up to 50 ml with DEPC-treated water, 

and the tube wrapped in foil and stored at 4°C. For the ISH the hybridisation buffer was mixed 

by vortexing and warmed in a hot water bath to 42°C. Slides of sections were removed from 

storage and left to air dry for a minimum of 30 min before being placed in a bioassay dish 

humidified by the addition of folded tissue soaked in DEPC-treated water in the comer of the 

dish. 100 fjJ per slide of hybridisation buffer was aliquoted into an Eppendorf tube. 2 |il of 1 M 

dithiothreitol (DTT; Sigma, UK) per slide was also added to the Eppendorf tube. The volume of 

labelled probe required to be added to the hybridisation buffer per slide was calculated by 

dividing 250 000 by the specific activity of the labelled probe such that a final specific activity of 

250 000 dpm of labelled probe/100 jal hybridisation buffer was attained. The hybridisation 

mixture was then vortexed and 100 ^l pippetted onto each slide. Pre-cut Parafilm (Fisher, UK) 

strips were used to cover sections. For the non-specific controls 100x excess unlabelled probe 

was added to each 100 |il of hybridisation mixture containing labelled probe, hybridisation 

buffer and DTT. The volume of unlabelled probe required to be added to the hybridisation 

mixture containing labelled probe was calculated by the multiplication of 250 000 by the 

concentration of the labelled probe (0.2 ng/|il) and 100 , and then dividing the product by the 

product of the specific activity of the labelled probe and the concentration of the probe (5
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ng/pl). Finally, the lid was placed on the bioassay dish and the edges sealed with Parafilm and 

the whole dish wrapped in ding film, to maintain a humid environment to prevent the slides 

from drying out, before incubating the sections overnight at 42°C.

After incubation, the Parafilm covers were removed from the slides in 1x SSC at RT, and then 

they were washed in 1x SSC at 55°C for 1 hour; changing the 1x SSC at 30 min. The sections 

were then dehydrated by pladng them in 0.1x SSC (1min), 70% ethanol (1min) and 95% 

ethanol (brief wash) at RT. The slides were then left to air dry before being placed in a film 

hypercassette (Amersham Biosdences, UK) and secured in position using double sided 

cellotape. A 14C micro-scale (RPA 504; Amersham Biosdences, UK) attached to a slide was 

also secured in position in the film cassette for later image analysis. Under dark room 

conditions, Kodak BioMax MR film (Sigma, UK) was then apposed to the slides in the film 

cassette. The films were then developed 3-14 days later, under dark room conditions, in a 

developer machine (Agfa CURIX 60, Belgium) that passes the film through developer (Agfa 

G153, Belgium), rapid fixer (Agfa G354, Belgium) and water, and then dried.

2.5.5 Exposure of Slides to Photographic Emulsion

The emulsion dipping procedure was conducted in a dark room lit only by red light (Agar 

Scientific Ltd Ilford filter safelight 904, UK). Fifty ml of 0.05% glycerol solution in deionised 

water was warmed to 42°C in a water bath. Ilford K5 nuclear emulsion in gel form (Agar 

Scientific, UK) was added to the warmed glycerol solution in a 50 ml Falcon tube in a 1:1 ratio 

and the tube gently inverted to mix. The gel was left to melt at 42°C for 20 - 30 mins. The 

melted emulsion was gently inverted to mix thoroughly before being decanted into a dipping 

chamber. The slides, with hybridised sections mounted on them, were individually dipped into 

the chamber twice to coat them in a thin layer of emulsion. The slides were stood in a rack to 

dry overnight. Then the coated dry slides were loaded into light tight boxes containing silica gel, 

sealed with tape and stored at 4°C for 7 times the number of days that the slides were exposed 

to film in order to obtain dear detectable labelling. At the end of the exposure period the boxes 

were removed from the fridge and left to equilibrate to RT for about 3 hours. Then in the dark 

room the coated slides were loaded into glass racks and submerged in Kodak D-19 Developer 

(18°C, 2 min; Agar Sdentific, UK), water (5 s), Ilford HYPAM (diluted 1+4 at RT, 4 min; Agar 

Scientific, UK) and then placed under running water for 15+ min. This was in order to 

predpitate silver grains where the radioactive sulphur beta emissions had reacted with the
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photographic nuclear emulsion. The hybridised sections were then Nissl stained to enable 

identification of cells in which to count the number of grains. Histology was performed to 

identify cells in which the number of grains were counted (see 2 .4 ).

2.5.6 Visual Observation of Gene Expression

The film with the images of gene expression in sections throughout the whole-brain was placed 

on a light box (Agar Scientific Ltd, UK). The characterization of the whole-brain gene 

expression pattern was then determined by observing the individual images of the sections by 

eye, using The Rat Brain atlas (Paxinos & Watson, 2005) to aid regional identification. For 

each region studied it was recorded in a table whether gene expression was absent (-), 

expressed at a low level (+), expressed at a medium level (++) or expressed at a high level 

(+++) relative to the range of expression in all brain regions for each probe.

2.5.7 Densitometric Image Analysis

Densitometric analysis is a quick way of obtaining the regional expression of the gene of 

interest. The film of labelled coronal sections images were scanned and saved as tiff files using 

a scanner (Dell AI0 Printer A940, UK) and software (Dell All-In-One Center, UK). ImageJ (NCBI 

tool, http://rsbweb.nih.gov/ij/) was used to measure the density of selected regions of the brain.

A film was opened in ImageJ on the computer desktop. The zoom in tool was used to view the 

image made by the microscale at 300%. Regions of interest were sampled and gray values 

measured of the background and of each of the patches from the microscale image that 

incrementally increased in level of darkness. Values were assigned to the measured gray 

values such that the level of gray from the background was made equal to 0 nCi/g, the level of 

gray from the palest patch from the micro-scale image was made equal to 40 nCi/g, and the 

level of gray from the darkest patch from the micro-scale image was made equal to 1069 nCi/g, 

with the patches of increasing darkness between being made equal to 76 nCi/g, 162 nCi/g, 310 

nCi/g, 465 nCi/g, 676 nCi/g and 869 nCi/g. In order to create a calibration curve these values 

were plotted using either a 2nd, 3rd or 4th degree polynomial function, exponential function or y = 

a + b * In (x -  c) function. The function to which the plotted values fitted best was used. 

Densitometric analysis was performed in the hippocampus (CA1, CA3 and DG regions), 

amydala (lateral, basal and central nuclei) and cerebral cortex (layers l-IV, V and VI) under
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basal conditions and in the hippocampus (CA1, CA3 and DG regions), amygdala (dorsolateral, 

lateral, basolateral nuclei) and prefrontal cortex (cingulate, prelimbic and infralimbic regions) 

following behavioural training (Fig. 2.2). The regions of interest were viewed at 1600% for 

densitometric analysis and the densitometric values were read off the calibration curve.

Samples from each region of interest were obtained either by drawing around the region (as 

performed for the cortex and amygdala) or through taking circular samples within the region of 

interest (as performed for the hippocampal regions). For densitometric analysis of basal 

expression, the number of sections from which samples were taken depended on how many of 

the sections that underwent ISH to analyse the basal whole brain expression pattern had the 

region of interest present within them. For gene expression under basal conditions measured 

by densitometry in the hippocampal regions, 5 - 1 0  circular samples per section, randomly 

selected bilaterally across the hippocampus, were measured for 15 -  18 total labelled sections 

and 4 non-specific labelled sections. For gene expression under basal conditions measured by 

densitometry in the amygdala nuclei, 2 samples selected per section by drawing round the 

nuclei of interest, one from each hemisphere, were measured for 5 -  8 total labelled sections 

and 1 - 2 non-specific labelled sections. For gene expression under basal conditions measured 

by densitometry in the cerebral cortex layers, 2 samples selected per section by drawing round 

the cortical layers of interest, one from each hemisphere, were measured for 36 -  40 total 

labelled sections and 7 - 8 non-specific labelled sections. For each region of interest the mean 

average was calculated from all the measurements assaying the total labelling and the non­

specific labelling to obtain a densitometric value for both the level of total labelling and non­

specific labelling in that region by that probe. A specific densitometric value was determined by 

subtracting the non-specific densitometric value from the total densitometric value. The specific 

densitometric values for regions of interest for a particular probe are all relative to each other if 

all measurements were determined from the same autoradiographic film.

For gene expression following behavioural training measured by densitometry in the 

hippocampal regions, 8 - 1 6  circular samples per section, randomly selected bilaterally across 

the hippocampus, were measured for 3 -  4 total labelled sections and 2 - 3  non-specific 

labelled sections. For gene expression following behavioural training measured by 

densitometry in the amygdala nuclei, 2 samples selected per section by drawing round the 

nuclei of interest, one from each hemisphere, were measured for 4 total labelled sections and 3 

non-specific labelled sections. For gene expression following behavioural training measured by
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Figure 10

PrL

Interaural 12.24 mm Bregma 3.24 mm

Figure 59l-IV

DG
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Bregma -3.12 mmInteraural 5.88 mm

Figure 2.2. Brain regions in which gene expression was assayed (A) Schematic indicating 
the cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) regions in the medial prefrontal cortex. 
(B) Schematic indicating the location of the comu ammonis 1 (CA1), cornu ammonis 3 (CA3) 
and dentate gyrus (DG) regions of the hippocampus, examples of the area of the cerebral 
cortex covered by layers l-IV, V and VI, and the dorsolateral (DLA), lateral (LA), basolateral 
(BLA) and (CeN) nuclei of the amygdala in the adult rat brain (adapted from Paxinos & Watson, 
2005).



densitometry in the prefrontal cortex regions, 2 samples selected per section by drawing round 

the prefrontal cortex regions of interest, one from each hemisphere, were measured for 3 total 

labelled sections and 2 non-specific labelled sections. Specific densitometric values for each 

region of interest for each probe was determined as described above for assaying basal 

expression densitometrically.

2.5.8 Silver Grain Counting Image Analysis

Silver grain counting analysis determines expression levels at the cellular level and is 

performed on sections of tissue that have undergone ISH, been dipped in emulsion, exposed to 

the emulsion for weeks to months and then developed. Photomicrograph images focused on 

the silver grains overlying the cells in regions of the brain of interest were captured through a 

light microscope (Leica DMLB, Germany) using a 100x magnification lens under oil immersion, 

with a digital camera (Leica DFC300 FX, Germany). These images were saved as tiff files 

using the Leica QWin v3 software (Leica, Germany), and then ImageJ was used to count the 

number of silver grains per cell. An image was opened in ImageJ on the computer desktop. 

The image was then optimised. Firstly, the contrast within the image was enhanced by 

application of an unsharp mask of 10 ± 0.6. Then the image was manually adjusted using the 

threshold tool. The limits of the threshold was such that the majority of the pixels within the 

black dots, representative of the silver grains, but minimal background staining, from the cells, 

were highlighted. The image was then converted into binary (black and white). The target 

grains were dilated and the watershed tool used to separate any compound targets into their 

component targets. The area and circularity of the targets within randomly selected cells were 

measured and copied into an Excel spreadsheet. Despite the optimisation performed some of 

the targets were still in compound shapes. In order to account for this, the area of each target 

was divided by the area of a target representative of one grain (determined by taking the 

average of the area of approximately 20 individual grains), if the value was less than 1 .5 then 

that target was recorded to represent one silver grain, and if the value was greater than 1.5 

then the number of silver grains in a target was recorded as the value resulting from the 

division of the area of each target dot by the area of a target dot representative of one silver 

grain. The Excel formulae used was:

Number of Silver Grains that a target dot represents = IF((A/a)<1.5,1,(A/a))

A = Area of target

a = Area of a target representative of one silver grain
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The number of grains per cell was calculated for each cell, and then the average number of 

grains per cell was calculated for that particular brain region for that rat. Any grains per cell 

values that were greater or less than the mean average number of grains per cell ± the 

standard deviation multiplied by 2 were excluded as outliers. The total number of cells in which 

the number of grains per cell were measured was such that the standard error of the grain per 

cell count was less than 10% of the population mean.

For silver grain counting analysis of basal gene expression 12 photomicrographs were taken 

from 6 total labelled sections and 4 photomicrographs were taken from 2 non-specific labelled 

sections for all regions of interest. For silver grain counting analysis of basal gene expression 

in the hippocampal regions and amygdala nuclei, the number of silver grains per cell (SG/cell) 

were measured in approximately 3 cells that were selected randomly from each total labelled 

photomicrograph and approximately 6 cells that were selected randomly from each non­

specific labelled photomicrograph. For silver grain counting analysis of basal expression in the 

cerebral cortex, the number of SG/cell were measured in approximately 2 cells that were 

selected randomly from each photomicrograph for both total labelled sections and non-specific 

labelled sections. For each region of interest the mean average was calculated from all the 

measurements assaying the total labelling and the non-specific labelling to obtain a SG/cell 

value for both the level of total labelling and non-specific labelling in that region by that probe. 

A specific SG/cell value was determined by subtracting the non-specific SG/cell value from the 

total SG/cell value. SG/cell values, representing the cellular level of gene expression, are 

relative only to SG/cell values obtained from tissue that underwent hybridisation with the same 

probe at the same time and were exposed to nuclear emulsion for the same length of time and 

developed together.

For silver grain counting analysis of gene expression following behavioural training 6 - 8  

photomicrographs were taken for each region of interest from 3 - 4  total labelled sections and 

4 - 6  photomicrographs for each region of interest were taken from 2 - 3  non-specific labelled 

sections. For silver grain counting analysis of gene expression following behavioural training in 

the hippocampal regions and amygdala nuclei, the number of SG/cell were measured in 

approximately 3 cells that were selected randomly from each total labelled photomicrograph 

and approximately 6 cells that were selected randomly from each non-specific labelled 

photomicrograph. For silver grain counting analysis of gene expression following behavioural 

training in the prefrontal cortex regions, the number of SG/cell were measured in approximately
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2 cells that were selected randomly from each photomicrograph for both total labelled sections 

and non-specific labelled sections. Therefore in each region of interest, the number of SG/cell 

was measured in approximately 24 -  36 total labelled cells and ain approximately 18 -24  non­

specific labelled cells. A specific SG/cell value was determined for each probe in each region of 

interest for each rat as described previously for the basal silver grain counting analysis.

2.5.9 Analysis of Heavily Labelled Cells

Heavily labelled cells in the hippocampal regions of the brain investigated at the cellular level 

were identified in two ways. Firstly, the heavily labelled cells were identified in digitally captured 

images taken at 100x magnification under bright-field conditions as cells that were very densely 

covered with silver grains in comparison to the majority of the surrounding cells. Secondly, 

heavily labelled cells were identified under dark-field conditions as sparsely distributed clusters 

of bright points. These clusters of bright points were confirmed to represent high levels of gene 

expression in cells by switching to light-field conditions without moving the slide. The number of 

heavily labelled cells per region per section were counted under dark-field conditions using the 

light microscope at 10x magnification manually. This analysis was performed on 4 total labelled 

sections and 2 -  3 non-specific labelled sections for the hippocampal regions of interest. In 

some cases the number of SG/cell in the subjectively identified heavily and non-heavily 

labelled cells were counted in approximately 3 cells per photomicrograph image (there being 2 

photomicrograph images per section) using ImageJ as described in 2.5.8.

2.5.10 Profiling Expression of Genes of Interest in Adult Rat Brains with Amphetamine 

Induced Activity

For splice variants that could not be visualised in naive brain, ISH was performed in rats that 

had increased neuronal activity induced by amphetamine. A sub-cutaneous injection of 

amphetamine solution was administered to elevate activity in the brain that would lead to 

increased expression of plasticity-dependent genes (Graybiel et al., 1990). The amphetamine 

solution was injected subcutaneously at a concentration of 5 mg of amphetamine/kg of rat The 

amphetamine was dissolved in 0.1 M PBS. To allow time for the expression of the genes of 

interest to be regulated the rats were left in their home cages for 2 hours post injection before 

being killed by CO2 asphyxiation. The brains were excised immediately, frozen on dry ice and 

stored at -80°C. ISH was performed, as described in 2.4, at least twice for each probe. For
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each attempt, ISH was completed for two total labelled slides and two non-specific labelled 

slides.

2.6 Real-Time Quantitative-PCR

Real-time quantitative-PCR (RT-QPCR) was performed to quantify changes in gene expression 

in the CA1 region of the hippocampus following CFC. RNA from the rat hippocampal tissue 

was firstly reverse transcribed into cDNA in a manner that maintained the relative levels of all 

different sequences. Forward and reverse primers were designed to complement short sense 

and antisense sequences of the cDNA of the gene of interest. The samples then underwent 0- 

PCR amplification. Each cycle of amplification involves denaturation of the double stranded 

cDNA, annealing of the primers to the complementary sense and antisense sequences and 

binding of polymerase to the primer-template hybrid to initiate DNA synthesis, and an 

elongation stage in which the DNA polymerase synthesizes a new DNA strand complementary 

to the template. Fluorescent SYBR green was intercalated with each new DNA strand 

synthesized. The increase in amplified product is directly proportional to the increase in 

fluorescence. Therefore using a standard curve the fluorescence level was used to quantify the 

relative level of product in each sample. The relative levels of cDNA between the samples 

could then be compared for Q-PCR reactions that were performed at the same time with the 

same primers (Tevfik Dorak, 2006).

2.6.1 Dissection of Hippocampus

The brain was placed on glass covered in ddH20 soaked filter paper on ice. The cerebellum 

and frontal cortex were cut off using a blade. The brain was turned onto its cortical surface with 

the rostral brain facing towards the dissector. The hemispheres were teased apart using two 

pairs of curved forceps. The thalamic and striatal regions were pinched out and discarded, and 

blood vessels removed from the hippocampal region. The hippocampal region was then rolled 

out using two pairs of curved forceps, flipped over so that the left hippocampus that was on the 

left hand side is now on the right had side, and the forceps used to unroll the dorsal DG away 

from the dorsal CA1. The dorsal CA1 was then dissected from the dorsal CA3/DG using the 

edge of the forceps. The dorsal CA1 and dorsal CA3/DG dissected tissues were stored in 

RNAIater (Qiagen, UK) in separately labelled Eppendorf tubes at - 80°C.

78



2.6.2 RNA Extraction

The total RNA was extracted and purified from the dissected CA1 and CA3/DG tissue using a 

Qiagen RNeasy protect mini kit (Qiagen, UK) according to the manufacturers instruction. 

Briefly, 600 pi of buffer RLT (Qiagen, UK) was pipetted into an Eppendorf tube to which 6 pi of

14.3 M beta-mercaptoethanol (Sigma, UK) was added. Into this Eppendorf tube was placed 20 

-  30 mg of the dissected tissue that was immediately homogenized using a rotor-stator 

homogenizer (Ika T18 basic ultra-turrax, Germany) for approximately 5 bursts of 8 sec until the 

contents of the Eppendorf tube were uniformly homogenous. The lysate was then centrifuged 

(Hettich Zentrifugen Mikro 200R, Germany) for 3 min at 14 000 rpm. The supernatant was 

pipetted into another Eppendorf tube, an equal volume of 70% ethanol added, and the pipette 

used to mix the two solutions. 700 pi of the sample was transferred to a RNeasy spin column 

(Qiagen, UK) placed in a 2 ml collection tube, the lid dosed and centrifuged for 15 s at > 10 

000 rpm. The effluent was pipetted back into the column and centrifuged again for 15 s at > 10 

000 rpm before discarding the flow-through. If more than 700 pi of sample was available the 

remainder was pipetted into the same spin column and centrifuged in the same manner, 

discarding the flow-through after the second centrifugation step. Then 700 pi of buffer RW1 

(containing ethanol) (Qiagen, UK) was pipetted into the spin column and centrifuged for 15 s at 

> 10 000 rpm before discarding the flow-through. 500 pi of buffer RPE (Qiagen, UK) was 

pipetted into the spin column, centrifuged for 15 s at > 10 000 rpm, the flow-through discarded 

and the spin column place in a new collection tube. A further 500 pi of buffer RPE was pipetted 

into the spin column and centrifuged for 2 min at > 10 000 rpm. Then the spin column was 

placed in a new 1.5 ml Eppendorf tube, 30 pi of RNase-free water (Qiagen, UK) pipetted 

directly onto the spin column membrane and left for 10 min. The RNA was eluted by 

centrifuging the Eppendorf tube for 1 min at >10 000 rpm. The RNA containing effluent was 

stored in 10 pi aliquots. One aliquot was used immediately to measure RNA concentration and 

the remainder of the aliquots were stored at - 80°C. The concentration of RNA was measured 

using a Nanodrop machine (Thermo Fisher Scientific ND-2000, UK) and Nanodrop 

3.0.1 software (Thermo Fisher Scientific, UK). The RNA concentration and absorbance (A) 

values describing the samples’ level of purity (A260/A280) and contaminants (A260/A230) were 

obtained (Tevfik Dorak, 2006). The purity value should be between 1.9 - 2.1 and the
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contaminants value should be greater than 1.8 to ensure that high-quality accurate reverse 

transcription can take place.

2.6.3 Reverse Transcription of RNA to cDNA

Reverse transcription was performed on the RNA samples to synthesise the first strand of 

cDNA ready for Q-PCR. All reagents used for the reverse transcription of RNA to cDNA were 

supplied by Stratagene, UK. Firstly, the volume of reagents required to provide enough sample 

cDNA to assay the levels of expression of 4 genes of interest was calculated. For one reverse 

transcription (RT) reaction, 13.2 pi of water, 1 pi of random hexamers, 2 pi of RNA, 0.8 pi of 

100 mM deoxyribonudeotide trisphosphate (dNTP), 2 pi of 10x buffer, 2 pi of DTT, and 1 pi of 

AffinityScript reverse transcriptase are pipetted into a tube. One RT reaction is required to 

provide enough RNA for creating 1.75 standard curves. One standard curve is necessary for 

investigating 1 gene of interest. As we were investigating 4 genes of interest, 3x the volumes of 

reagents for 1 RT reaction were used. As the extracted CA1 hippocampal RNA samples 

contain different concentrations of RNA, the volume of each RNA sample added to the 

reagents for reverse transcription varies such that the concentration of each sample is 

standardised to 2 pi of a sample that has a high concentration of RNA, thereby by minimising 

the volumes of RNA sample required, but not so high such that the samples with the lowest 

concentrations are an impractical volume to pipette. The volume of water added to the reverse 

transcription mixture is varied for each sample to maintain a constant volume. For each sample 

the appropriate volumes of RNA, water and random hexamers was pipetted into a well of a 96 

well plate; duplicates of each RNA sample were investigated. In the initial QPCR experiment 

the standard curve was created using RNA from one of the naive group CA1 samples. In the 

technical replicate QPCR experiment, the standard curve was created using RNA from the CA1 

of an additional rat under naive conditions. Enough of the RNA sample for generating the 

standard curve for creating 4 standard curves was added to water and random hexamers. 

Blank RT mix containing double distilled water instead of an RNA sample in addition to the 

other RT reagents is used as a no template control solution for the Q-PCR experiment and to 

dilute the RNA for the standard curve. One RT reaction is required to provide enough Blank RT 

mix for creating 0.5 standard curves. As 4 standard curves were required, 8x the volumes of 

reagents for 1 RT reaction were pipetted into another well. The contents of each well were 

mixed by pipetting before incubating the 96 well plate at 65°C for 5 min. The plate was then
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removed from the heat block and left on the bench at room temperature for 10 min to allow 

primer annealing. While incubation and cooling took place the appropriate volumes of the 

reagents for the second part of the RT reaction (iOxbuffer, dNTP, DTT & AffinityScript reverse 

transcriptase) were pipetted into an Eppendorf tube. After the plate had been at room 

temperature for 10 min, the appropriate volume of RT Part 2 mix was added to the wells 

containing the unknown RNA samples. Then appropriate volumes of RT Part 2 reagents were 

pipetted directly into the well containing RNA being prepared to create a standard curve, and 

into the well containing the blank RT mix. The plate was covered with an adhesive plate seal 

(ABgene, UK) and incubated at 54°C for 1 h, followed by 70°C for 15 min. The plate was then 

spun down in a centrifuge (Eppendorf Centrifuge 5810 R, UK) and placed on ice.

2.6.4 Generating a Standard Curve

To generate a standard curve, appropriate volumes of blank for the number of standard curves 

required were pipetted into four wells, and serial dilutions of the RNA sample being used for the 

standard curve were prepared. The resulting standard curve had 1x, 1/3x, 1/9x, 1/27x and 

1/81 x the RNA sample selected for creating the standard curve.

2.6.5 Real-Time Quantitative-PCR

All reagents used for Q-PCR were supplied by Stratagene, UK. Q-PCR was performed on 

duplicates of each unknown sample and triplicates of each standard curve dilution for the gene 

of interest and the reference genes Hmbs (Hydroxymethylbilane synthase), Sdha (Succinate 

dehydrogenase complex subunit A) and Ubc (Ubiquitin C). The reference genes are the three 

standard practice genes used in our laboratory (Unpublished observations). The forward and 

reverse primer sequences for Egr3, Hmbs, Sdha and Ubc, along with the respective annealing 

temperatures are given in Table 2.2. The primers were designed using Beacon Designer 7 to 

produce amplicons of approximately 200  basepairs in length within the gene of interest that 

had approximately similar melting temperatures.

For one Q-PCR reaction, 13.375 jil water, 2.5 ^l core PCR buffer, 1.25 p\ MgCb, 1.0 p\ 20 mM 

dNTP, 4.0 50% glycerol (Sigma, UK), 0.75 ^l DMSO, 1.25^1 SYBR green and 0.25 pH Taq

DNAse polymerase is required. For each gene of interest 52 reactions were performed,
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Table 2.2. Egr3, Hmbs, Sdha and Ubc primer sequences. The forward and reverse primer 
sequences with their melting temperatures (Tm), at which they anneal with the template DNA, 
and the reference sequence to which they were designed are given.

Gene Strand Sequence 5' - 3' Tm (°C) Reference
Sequence

Egr3 Forward
Reverse

TCAGATGGCTACAGAGAATG
CAGTTGGAAGGAGAGTCG

51.2
50.8

NM_017086

Hmbs Forward
Reverse

CCTGTTCAGCAAGAAGATG
TTGACAGCCAGACATAGG

50.5
49.9

NMJ313168

Sdha Forward
Reverse

GCTCTTTCCTACCCGCTCAC
GTGTCATAGAAATGCCATCTCCAG

57.5
57.4

NM_130428

Ubc Forward

Reverse
CTTTGTGAAGACCCTGAC
CCTTCTGGATGTTGTAGTC

49.0
49.1

NM_017314
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therefore a Q-PCR mastermix was prepared by pipetting the appropriate volumes of the 

reagents into an Eppendorf tube. Fifty-two microlitres of the primer solutions were then added, 

and the solution mixed by pipetting. Strip tubes of eight were placed in a 96 well plate cooling 

block holder. Using a multichannel pipette and tray 22.5 p\ of the mastermix containing primers 

was pipetted into the strip tubes. Then 2.5 nl of cDNA from all the unknown samples, 2.5 1̂ in 

triplicate of all the dilutions of the standard curve and 2.5 |il of blank were added. Strips of 8 

lids were placed on the strip tubes, the tubes were spun down in a microcentrifuge (Jencons- 

PLS, UK) to remove any bubbles and the tubes placed in the Q-PCR machine (Stratagene 

Mx3000P QPCR System, Agilent Technologies UK Ltd, UK). The setup was put into the Q- 

PCR software programme MxPro -  Mx3000P, the annealing temperatures, based on the 

melting temperatures of the primer sequences, and the elongation temperatures, based on the 

optimal temperature for DNA polymerase activity (72°C), were put into the cycle and the 

programme set to run for 40 cycles. On completion of all the cycles the Q-PCR programme 

automatically produced an amplification plot with a cycle threshold value, a standard curve and 

a dissociation curve (Appendix Fig. 1 -  7). The amplification plot displays the increasing level 

of fluorescence as the cDNA is amplified over the 40 cycles. The first few cycles do not provide 

detectable changes in fluorescence levels and is known as the baseline stage. The earliest 

detectable signal proceeds at the maximal exponential rate and is known as the exponential 

stage. Amplification proceeds at a linear rate, known as the linear stage, before the reagents 

begin to be used up leading to a plateau stage. The dissociation curve displays the melting 

temperature of any DNA product. Ideally there should only be one peak representing the 

amplicon amplified from the gene of interest, however smaller peaks that represent primer 

dimer can sometimes be observed at lower melting temperatures. Other peaks could represent 

contaminated samples and would require the experiment to be repeated.

Quantification of the Egr3, Hmbs, Sdha and Ubc cDNA was achieved through detecting 

changes in fluorescence emitted as SYBR green becoming incorporated into the amplified 

product. The standard 40 cycles used for Q-PCR experiments was extended at 38 cycles if 

some unknown samples or standard curve samples had not reached the linear stage. Ideally 

each sample amplification plot would show the four main phases of baseline, exponential, 

linear and plateau. By increasing the number of cycles, complete four phase amplification plots 

were obtained. The level of expression of each gene of interest was quantified through 

identification of the cycle number at which the sample crossed the threshold line (Ct value).
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The threshold level was automatically determined by the software such that it crossed all 

sample amplification plots in the experiment within the exponential phase. The standard curve 

was used to determine the relative amount of cDNA at threshold level for each sample. Outliers 

from the standard curve triplicate dilutions were removed before using the curve to determine 

the relative levels of cDNA. To meet the exclusion criteria the range of triplicate values had to 

be greater than one Ct value. The value that was furthest from the standard curve was 

excluded. The text report of the raw data was exported into an Excel spreadsheet (Microsoft, 

UK) before further analysis was performed. A normalisation factor was determined by taking 

the geometric mean of the three reference genes for each duplicate of each sample. The 

relative quantities were then multiplied by the normalisation factor to obtain a more accurate 

normalised gene of interest value. The arithmetic mean of the duplicate normalised gene of 

interest values was then calculated. Any outliers within the six values within a group were 

removed, reducing the n value of that group. The arithmetic mean of the remaining samples in 

each group was calculated. Fold changes were then calculated and the coefficient of variation 

quotient calculated to give an indication of the variation in the groups. The coefficient of 

variation was calculated as follows:

CV of quotient = [ ( CV of GOI) 2 + ( CV of N F ) 2 ] 1/2 

Where CV = Coefficient of variation

GOI = Gene of interest 

NF = Normalisation factor

2.7 Statistical Analysis

Statistical tests were conducted using SPSS (version 16.0, SPSS Inc., USA). Repeated 

measures Analysis of Variance (ANOVA) was used to investigate differences in freezing 

behaviour between the different behavioural groups in the different tests (Test X Group 

interaction) and between the two groups overall (Within-Group). Application of the 

Greenhouse-Geisser correction was used to test for sphericity (the equality of variances of the 

differences between levels of the repeated measures factor) that is necessary to apply a 

repeated measures ANOVA test to a dataset. Planned post hoc tests on planned comparisons 

were performed using Fishers Least Significant Difference (FLSD) statistical test. One-way 

ANOVA was used to investigate differences between the levels of gene expression determined
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using ISH and Q-PCR, and the number of heavily labelled cells, in the different behavioural 

groups studied. Planned post hoc tests were performed using the FLSD statistical test.
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3.1 INTRODUCTION

Due to the evidence implicating the schizophrenia susceptibility genes Neuregulin 1 (NRC 

Dysbindin 1 {DTNBP1), Disrupted-in-schizophrenia 1 (DISC1) and Early growth respoi 

factor 3 (EGR3) in synaptic plasticity (see 1.3.2), these genes were investigated to identil 

they were regulated in processes of associative contextual fear memory (CFM). Nrg1, Dtnl 

and Disci have multiple splice variants. Therefore before these genes of interest can 

investigated in contextual fear conditioning (CFC) in the adult rat, the basal expression prol 

for splice variants of these genes must be established. EGR3 transcriptional activity can 

repressed by NGFI-A-binding proteins 1 and 2 (NAB1 and NAB2) (Svaren et al„ 19! 

therefore Nab1 and Nab2 basal expression profiles were also determined. The exonic struct 

and an updated list of splice variants were characterised for each gene of interest (GOI 

identify which exons to design probes to in order to detect specific splice variants. Probes w 

designed to detect chosen Nrg1, Dtnbpt and Disci splice variants, and Egr3, Nab1 and Na 

and basal expression patterns are characterised for all probes in the adult rat brain.

3.1.1 Nrg1 Structure and Expression

The large and complex NRG1 gene spans approximately 1.4Mb in the human and 1.1Mb in 

rat (Falls, 2003). Many splice variants of NRG1 have been identified in human and rat, 

annotations can be found in NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/nuccore). but 

possible that more remain undetected. NRG1 splice variants have been categorised into ty 

I -  VI in humans; each type defined by a distinct 5’-exon (Falls, 2003; Steinthorsdottir et 

2004; Law et al„ 2006). An additional three types of NRG1 denoted as type VII -  IX have b<

http://www.ncbi.nlm.nih.gov/nuccore


identified in two different rapid amplification of cDNA ends (RACE) assays but not yet validated 

by RT-PCR (Steinthorsdottir et al., 2004). In the rat Nrg1 type I, II and III splice variants have 

been detected and their adult basal expression pattern have been qualitatively described 

(Kerber et al., 2003). Whether rats express the type IV, V and VI amino termini is not yet 

known. Previous to the discovery of the different amino termini in Nrg1, the combined 

expression of most, if not all, Nrg1 splice variants was characterised in the adult rat brain with 

some conflicting findings in the cortex, hippocampus and some other rat brain regions (Chen et 

al., 1994; Pinkas-Kramarski et al., 1994; Corfas et al., 1995; Eilam et al., 1998; Kerber et al.,

2003). Nrg1 splice variants vary as to whether they contain exons encoding immunoglobulin­

like domains, spacers, EGF-L a  or EGF-L p domains, stalk/juxtamembrane 1, 2, 3, 4 or 5, or 

different cytoplasmic tails a, b or c (Falls et al., 2003; Kerber et al., 2003). To optimise 

investigation of a possible role for Nrg1 in CFM, the different splice variants should be taken 

into account. However, due to the large number of splice variants of Nrg1, it is not feasible to 

probe for every known Nrg1 splice variant, therefore a more manageable approach is to 

investigate the different types of Nrg1 splice variants. In this study probes are designed and 

expression patterns determined for Nrg1 types I, II, III and IV and pan Nrg1 as they have all 

been associated with schizophrenia either through association studies or neurobiological 

functions correlating with schizophrenia pathogenesis hypotheses (Law et al., 2006; Hall et al., 

2006; Hashimoto et al., 2004; Stefansson et al., 2002; Chen et al., 2008: Nicodemus et al., 

2009).

3.1.2 Dtnbpl Structure and Expression

Only one transcript of Dtnbpl has been identified in the rat (Benson et al., 2001). In humans 

two splice variants of DTNBP1 have been detected by Northern blot analysis (Weickert et al,

2004). Further splice variants of DTNBP1 have been predicted in a previous study using a 

program called Aceview that is based on an integrated view of human genes reconstructed by 

alignment of all publicly available mRNA and expressed sequence tags of the genome 

sequence. In addition to the known 11 exons, Aceview predicted two further exons and four 

promoter sites that may lead to four predicted groups of DTNBP1 splice variants (Williams et 

al, 2004). Recently, an additional splice variant has been identified such that now three known 

DTNBP1 splice variants (A, B and C) are considered in investigations (Talbot et al., 2009; 

Oyama et al., 2009; Tang et al., 2009). DTNBP1 protein expression has been characterized in 

the adult mouse brain (Benson et al., 2001) and DTNBP1 mRNA expression has been
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characterized in the adult human brain (Weickert et al., 2004). Additional studies have 

characterized in more detail the expression of DTNBP1 mRNA and DTNBP1 protein in the 

hippocampal formation of the human brain (Talbot et al., 2006; Weickert et al., 2007). All 

studies identified DTNBP1 mRNA and DTNBP1 protein to have a very widespread expression 

pattern. It is thought not to be present in glia, but exclusively expressed in neurons, with 

particularly high protein expression levels, with respect to itself, in axons, dendrites and 

synapses (Talbot et al., 2006; Benson et al., 2001). The expression oiDTNBPI in humans and 

Dtnbpl in mice has not been splice variant specific, with the exception of a recent study 

investigating the levels of the three different splice variants in schizophrenic patients compared 

to controls in the dorsolateral prefrontal cortex (Tang et al., 2009). The expression oWtnbpI in 

the adult rat brain has not yet been characterized.

3.1.3 Disci Structure and Expression

In humans four splice variants of DISC1 have been identified. They are known as L (long), Lv 

(long variant), S (short) and Es (extremely short) (Taylor et al, 2003). Only one transcript of 

Disci has been identified in the rat (Ozeki et al., 2003), while two Disci splice variants have 

been identified in the mouse (Ma et al., 2002). Disci mRNA expression throughout the adult 

brain has been characterized in the mouse (Ma et al., 2002; Austin et al., 2004), rat (Miyoshi et 

al., 2003) and monkey (Austin et al., 2003). Disci mRNA is expressed predominantly in the 

dentate gyrus of the hippocampus. It is also detected at lower levels in the CA1 - CA3 regions 

of the hippocampus in the rodent but not monkey brain (Austin et al., 2003; Ma et al., 2002; 

Miyoshi et al., 2003). Disci mRNA is expressed in the cerebral cortex, olfactory bulbs, Purkinje 

cell layer of the cerebellum, paraventricular and arcuate nuclei of the hypothalamus and the 

amygdala (Ma et al., 2002; Austin et al., 2004; Miyoshi et al., 2003). While Disci mRNA is 

present in the cerebral cortex, it is predominantly expressed in layers II and III of the cortex in 

mice and rats, but evenly distributed across all layers in the monkey (Ma et al., 2002; Austin et 

al., 2003; Austin et al., 2004). Additional regions expressing Disci mRNA have been found in 

the monkey including the septum, interpeduncular nucleus and subthalamic nucleus (Austin et 

al., 2003). The probes used to detect Disci mRNA in these published studies did not 

differentiate between different splice variants of Disci. DISC1 protein expression has been 

characterized in regions of the adult mouse, rat and human brain (Schurov et al., 2004; Meyer 

& Morris, 2008; Ozeki et al., 2003; Kirkpatrick et al., 2006). Like the Disci mRNA expression 

found in rodents, DISC1 protein expression in the mouse is detected in the olfactory bulb,
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cerebral cortex, hippocampus, Purkinje cell layer of the cerebellum, hypothalamus (Schurov et 

al., 2004). While layers II and III of the cerebral cortex have predominant labelling of both Disci 

mRNA and DISC1 protein, predominant labelling of DISC1 protein has been observed in layers 

V and VI that has not been observed in Disci mRNA expression studies of (Schurov et al., 

2004; Ma et al., 2002; Austin et al., 2004). Although Disci mRNA and DISC1 protein are both 

expressed in the hippocampus Disci mRNA is most heavily expressed in the DG region while 

DISC1 protein is most heavily expressed in the CA3 region (Ma et al., 2002; Austin et al., 2004; 

Schurov et al., 2004; Meyer & Morris, 2008).

3.1.4 Egr3 Structure and Expression

Both human EGR3 and rat Egr3 have two exons (Patwardhan et al., 1991; Yamagata et al., 

1994). Egr3 does not have any splice variants but does have at least two isoforms and possibly 

as many as five isoforms as a result of alternative translational start sites that lead to the 

production of proteins with distinct transcriptional activation properties (O’Donovan & Baraban, 

1999). EGR3 contains an R1 repression domain to which NAB1 and NAB2 can bind, leading to 

negative regulation of EGR3 transcriptional activity. Only one transcript has been detected for 

NAB1 and NAB2 (Russo et al, 1995; Svaren et al, 1996; O’Donovan et al, 1999). Egr3 is 

expressed in the cerebral cortex, hippocampus, amygdala and basal ganglia (Yamagata et al., 

1994). Nab1 and Nab2 expression has not been characterized under basal conditions in the 

brain. However, Nab1 and Nab2 expression has been observed in coronal sections taken from

1.5mm anterior to bregma, taken from rats that had received an injection of saline. Nab2 

expression was present in layers l-lll and layers V-VI of the cerebral cortex, nucleus 

accumbens, caudate putamen and olfactory tubercle. Nab1 expression was present in the 

same regions as Nab2 but is expressed at lower levels (Jouvert et al., 2002).

3.1.5 Outline of Experiments

Experiment 1 determined the exonic structure of the genes and splice variants of interest using 

the NCBI SPIDEY software so that probes could be designed to detect the different splice 

variants of the GOI. Experiment 2 involved designing probes, testing the specificity of the 

probes and characterising the basal expression pattern throughout the whole adult rat brain for 

the schizophrenia susceptibility genes and splice variants of interest. This was done using 

radioactively labelled probes and in situ hybridisation (ISH) on a naive adult rat brain. The brain
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expression patterns were determined by visual inspection. In addition, regional and cellular 

levels of analysis of Nrg1 splice variants expression was performed in the hippocampal, 

amygdala and cerebral cortex brain regions using image densitometry and silver grain 

counting. Experiment 3 investigated if genes or splice variants, not detectable by ISH in rat 

brain tissue under basal conditions, were detectable in rat brain that had had widespread 

neuronal activity induced from a sub-cutaneous injection of amphetamine that increased 

dopamine neurotransmission (Graybiel et al., 1990).

3.2 METHODS

3.2.1 Subjects

Three male Lister hooded rats (280-350g; Charles River, UK) were used in the experiments for 

chapter 3. Animals were housed in pairs and kept in a holding room at 21°C under reverse 

light-dark conditions (lights off at 10am and on at 8pm). Animals were allowed ad libitum 

access to food and water.

3.2.2 Experiment 1: Determining Exonic Structure of Transcripts of Schizophrenia 

Susceptibility Genes of Interest

3.2.2.1 Identifying Transcripts of Schizophrenia Susceptibility Genes of Interest

The transcripts that were investigated were obtained from NCBI Entrez Gene 

(http://www.ncbi.nlm.nih.gov/Qene) (see 2.5.1) and were mostly Reference Sequences 

(RefSeq), which are experimentally determined transcripts that have been verified using other 

publicly available databases by NCBI (denoted by accession numbers that start with ‘NM_’). 

For human DTNBP1, rat Nrg1 and human NRG1 type V, additional non-RefSeq transcripts also 

had their exonic structures determined. These transcripts had been experimentally determined 

but had not been further verified. Additional sequences were characterised for human DTNBP1 

in an attempt to identify the exons predicted by Aceview, while additional sequences were 

characterised for rat Nrg1 in an attempt to identify type IV splice variants, and additional 

sequences were characterised for a human NRG1 type V sequence as at present there is no 

RefSeq NRG1 type V sequence.
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3.2.2.2 Determining the Exonic Structure of Transcripts

The NCBI SPIDEY software tool (http://www.ncbi.nlm.nih.gov/spidev/) was used to determine 

the exonic structure of the transcripts of interest (see 2.5.1). The SPIDEY software aligns the 

transcript of interest with the genomic sequence for the region of the chromosome in which the 

gene is found. For Nrg1 and Dtnbpl a composite of the splice variants exonic structures was 

created to predict the gene exonic structure. This was achieved by comparing all the exons 

identified in all the splice variants for each gene; the composite was based on the sequence 

homology of the exons, nucleotide length of the exons and the sequential position of the exons.

3.2.3 Experiment 2: Profiling the Basal Expression of Schizophrenia Susceptibility 

Genes of Interest in Adult Rat Brain

3.2.3.1 Probe Design

Probes were designed as described in 2.5.1. All designed probe sequences, the NCBI 

transcript accession numbers and nucleotide numbers that they were designed to, and the 

presence or absence of specific labelling for the probe are provided in Table 3.1. All probe 

sequences were put into BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cqi) in order to confirm 

alignment to the specific gene of interest only.

45mer oligonucleotide probes were designed to detect the 5’-defining exons of Nrg1 type I, II 

and III splice variants. The predicted 5’-defining exon of Nrg1 type IV splice variants is only 187 

bp in length and is very GC rich. It was not possible to find a 45 bp stretch of this exon that was 

approximately GC:AT equal. The GC:AT content of the probe is required to be equal for the 

hybridization conditions used. This is due to the guanine and cytosine base pairs having three 

hydrogen bonds as opposed to adenine and thymine base pairs that have only two hydrogen 

bonds meaning that probes with more GC content than AT content bind more strongly to the 

RNA and require different hybridisation and washing conditions. Therefore two probes that 

were GC:AT equal but that were 44 bp and 38 bp in length were designed. A probe was also 

designed, complementary to the EGF - like domain present in all Nrg1 transcripts, to detect all 

rat Nrg1 splice variants and was denoted as a pan-Nrg1 probe.
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Table 3.1. Sequences of oligonucleotide probes designed to detect Nrg1, Dtnbpl and D isci splice variants and Egr3, Nab1 and Nab2 mRNA. The
accession number of the reference sequences and nucleotide positions that the probes were designed to are given. The exon(s) within the genes that the 
probes detect are given. The specific activity of the probes used to carry out whole brain ISH and the number of days that the slides were exposed to film or 
emulsion is shown. Three different probes were designed to detect Nrg1 type IV splice variants and two different probes were designed to detect pan Disci.
Probes that could not be detected in naive tissue were tested in rats that had been amphetamine-treated (*).
Gene Oligonucleotide Sequence (5’ • 3’) Reference Sequence (exon to which 

probe is designed as in exonic 
structure figures)

Nucleotide 
Position of Probe 

in Reference 
Sequence

Specific
Labelling
Detected

Specific Activity 

(dpm/yl)
Days

on
Film

Days on 
Emulsion

Nrg1 I CTTCTTGCCCTTCCCCTTGCCTCTGCCTTCTTTGCGCTCAGACAT NCBI: U02324 (E444) 45-89 ✓ 208 500 11 63
II TGGCATCCGGCTCCATGAAGAAGATGTACCTGCTGTCCTCCTTGA NCBI: AF194994 (E346) 747-791 ✓ 281 500 11 63
III CCTCCCGCCAGCTACCTCAGACATGTCTGGGGAATAAATCTCCAT NCBI: DQ176766 (E1291) 1 -45 ✓ 267 500 12 63
IV a TGCTAAGCTGCAGTCCGAGTGGGCTGCGGAGATGTACT UCSC: chr16 (predicted E187) 63,052,728 • 65 X 264 000 13
IV b TGACTGCTGCAATTGGGAGGACCGGCGGGCTGCTAAGCTGCAGT UCSC: chr16 (predicted E187) 63,052,752 - 95 X 285000 10
IV a+b X 213000 + 264 50( 7
IV a+b * X 206 000 +191 00( 15
IV c TTCAATCTGGGAGGCAGTGCGCCCCGTGCCTTGCCGGCCTGTTT UCSC:chr16 (predicted E187 + E178 63,052,891 -916 X 178 000 10

+ 63,983,495 • 514
Pan CGCACTTTATGAGATGGCTGGTCCCAGTCGTGGATGTCGATGTGG UCSC: chr16 (E130) 64,093,864 - 908 ✓ 210 000 21

Dtnbpl Exon 1 TGAAATCCTGCTGCACGCTCAGCAGCCGCTCGCGCAGGGTCTCCA NCBI: NM_001037664 (E166) 115-159 ✓ 176116 14
Exon 5 TCTTCTTCTCCCAGTGGGCAGACAGCATGACCACCTCGCTGTCCA NCBI: NM_001037664 (E133) 337-381 ✓ 244 000 14
Exon 8 TGTGCTCCATTTCCAGGATCTTCTGTGCGTGTTCTGTATCGAGTT NCBI: NM.001037664 (E156) 625-669 ✓ 322 000 14
Exon 9 CATCTGCTCCAGCACGTCCACATTCACTTCCATGGAGGACATGCT NCBI: NM_001037664 (E144) 789-833 ✓ 313 000 14

Disci L GCACAGTGTGGTAAGGAAGCTGAGTAAGTGTTCCACTCACAGAGT UCSC: chr19 (gDNA following E208) 55,422,919-963 X 351 500 10
L * X 148 400 10
Lv TCAGCAAAAACGACATGAGATTCCTGCAAGGGGGACTTTTCCTCT NCBI: NM_175596 (E208 + E118) 2199 - 2243 X 362 000 10
Lv* X 166000 10
Pan a ACAACCACTGTCCCCAGTCAGCCTCTCGGATTGTCTTCTGTCATT NCBI: NMJ75596 (E974) 400 - 444 X 469 500 10
Pan a * X 170 300 10
Pan b GGGAGAGTCGGATGAAGCTGAAGTTGGAAGTAAAGGTGTCTTGGA NCBI: NM_175596 (E974) 596-640 X 164 800 4

Egr3 Pan GATTTAGCAAACTGCTCATGGTCACCGGCAGCTTCTCGGCGAGTT NCBI: NM.017086 (E154) 11-55 ✓ 360 500 13
Nab1 Pan ACAGTTGCTGGACATCATCACCACCTTGTTGGATAAAGGCATCAA NCBI: NM_022856 (E835) 277-321 ✓ 283 000 13
Nab2 Pan CCTGCTCCAACATCAGATTCTGGAGTGCTCTGGCCTGGCCAGATC NCBI: NM_001134874 (E874) 759-803 ✓ 320 000 13



To investigate whether rats express splice variants of Dtnbpl, probes were designed to detect 

four different exons in the rat. 45mer oligonucleotide probes were designed to detect the rat 

equivalent exons of the human exons that are directly downstream from the human predicted 

promoter regions P1 and P2; these were detected by the Dtnbpl exon 1 and exon 5 probes. 

The absence of exon 1 has been observed in a human DTNBP1 splice variant but exon 5 is 

present in all human DTNBP1 splice variants. Therefore the probe designed to exon 5 is 

considered a pan-Dtnbpl probe. Two other pan-Dtnbpl probes were designed; one detected 

rat exon 8 , the equivalent to human exon 11, and the other detected rat exon 9, the equivalent 

to human exon 12 .

A pan-Disci probe was designed to exon 1. L and Lv Disci splice variants have not yet been 

identified in the rat. In human DISC1 the L splice variant contains an exon 11 of 199 bp while 

the LV splice variant contains an exon 11 of 265 bp. Disci exon 10 in the rat is the equivalent 

of human DISC1 exon 11 and it is 208 bp in length. To investigate whether Disci splice 

variants L and Lv could be identified in the rat, as they are in the human, two probes were 

designed. One probe was designed to detect the last part of exon 10 and the first part of exon

11 . Another probe was designed to detect a 45 bp sequence within the 66 bp immediately 

following exon 10. This sequence was derived from the genomic sequence.

Egr3, Nab1 and Nab2 do not have different splice variants therefore only one 45mer probe per 

gene was designed to detect the expression of Egr3, Nab1 and Nab2.

3.2.3.2 Tissue Preparation

A rat was taken from its home cage and killed immediately by CO2 asphyxiation. The brain was 

immediately excised, frozen on dry ice and stored at -80°C until ready for sectioning. 14 pm 

sections throughout the whole brain were collected on poly-L-lysine dipped glass slides using a 

cryostat. Sections were collected such that consecutive sections on a slide were at 

approximately 168 urn intervals throughout the brain. Tissue was fixed in 4% 

paraformaldehyde and the slides stored in racks in 95% ethanol at 4°C (see 2.5.3).
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3.2.3.3 In Situ Hybridisation (ISH)

ISH was carried out as described in 2.5.4. The specific activity of each of the radioactively 

labelled probes used is in Table 3.1. ISH was carried out on sections throughout the whole 

brain. Eighteen slides of sections labelled with radioactively labelled probe (total labelled 

sections) and 4 slides of sections labelled with radioactively labelled probe plus excess 

unlabelled probe (non-specific labelled probe) were processed for each variant of interest. 

Autoradiographic film was laid on top of each set of slides in light-tight cassettes for the number 

of days listed in Table 3.1 for each probe. A radioactive micro-scale was opposed to each film 

for calibration. The films were developed as previously described (2.5.4). The films were then 

placed on a light box and the regional localization and relative level of gene expression 

determined by eye and recorded in a plus chart. Brain regions of high gene expression relative 

to the level of expression of the same probe in other brain regions from the same images was 

denoted by '+++’, while '++’ and *+’ denoted increasingly lower relative levels of expression of 

that gene.

3.2.3.4 Emulsion Dipping

After films had been developed for the Nrg1 type I, II and III splice variants, the slides with 

hybridised sections mounted on them were individually dipped in Ilford K5 nuclear emulsion in 

a dark room as described in 2.5.5 and left to dry overnight. Then the coated dry slides were 

loaded into light-tight boxes containing silica gel, sealed with tape and stored at 4°C for 9 

weeks (Table 3.1). The slides were then removed and developed, thionin stained and 

coverslipped as described in 2.5.5 and 2.4.

3.2.3.5 Densitometric Analysis

Regional analysis of gene expression was performed by image densitometry (ID) in selected 

brain regions from the electronically scanned autoradiographic films using ImageJ as described 

in 2.5.7. Regional analysis was performed for Nrg1 type I, II and III splice variants and pan 

Nrg1 in the CA1, CA3 and DG regions of the hippocampus, the lateral, basal and central nuclei 

of the amygdala, and layers l-IV, layer V and layer VI of the cerebral cortex (Fig. 2.2). For 

densitometric analysis of the hippocampal regions, 15-18 total labelled sections and 4 non­

specific labelled sections were analysed. For densitometric analysis of the amygdala nuclei 5-8
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total labelled sections and 1-2 non-specific labelled sections were analysed. For densitometric 

analysis of the cerebral cortex layers 36-40 total labelled sections and 7-8 non-specific labelled 

sections were analysed. The mean non-specific value was subtracted from the mean total 

labelled value to determine the mean specific value. For each type of Nrg1 splice variants, 

expression levels in the investigated brain regions were described as a percentage of the 

highest densitometric value observed for that type of splice variant.

3.2.3.6 Silver Grain Image Collection and Analysis

Photomicrographs were captured digitally. The focus was on the silver grains with cells 

detectable in the background. Photomicrographs were taken through a 100x magnification lens 

under oil immersion. The regions of interest included the CA1, CA3 and DG of the 

hippocampus, the lateral, basal and central nuclei of the amygdala, and layers l-IV, layer V and 

layer VI of the cerebral cortex. For all regions of interest, 12 photomicrographs were taken from 

6 total labelled sections and 4 photomicrographs were taken from 2 non-specific labelled 

sections. For the hippocampal regions and amygdala nuclei, approximately 3 cells were 

selected randomly from each photomicrograph from total labelled sections and approximately 6 

cells were selected randomly from each photomicrograph of non-specific labelled sections. For 

the cerebral cortex, approximately 2 cells were selected randomly from each photomicrograph 

for total labelled sections, and approximately 6 cells were selected randomly from each 

photomicrograph for non-specific labelled sections. Cellular analysis of gene expression was 

performed using ImageJ as described in 2.5.8. Silver grains were counted over these randomly 

selected counterstained cells. The specific grain count for each GOI was then calculated for 

each region by subtracting the mean non-specific labelled grain counts from the mean total 

labelled grain counts. Expression levels in the investigated brain regions were described as a 

percentage of the highest silver grain count observed for that type of splice variant.

3.2.4 Experiment 3: Profiling Expression of Nrg1 type IV Splice Variants and Disci 

Splice Variants in Adult Rat Brains with Amphetamine Induced Activity

For splice variants that could not be visualised in naive brain, ISH was performed in rats that 

had received a sub-cutaneous injection of amphetamine solution. This was administered to 

elevate activity in the brain that would lead to increased expression of plasticity-dependent 

genes (Graybiel et al., 1990). The amphetamine solution was injeciedrsubputaneously at a

\  . 
\ .
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concentration of 5 mg of amphetamine/kg of rat into two rats that were 290 g and 300 g. The 

amphetamine was dissolved in 0.1 M PBS. To allow time for the expression of the GOI to be 

regulated the rats were left in their home cages for 2 hours post injection before being killed by 

CO2 asphyxiation. The brains were excised immediately, frozen on dry ice and stored at -  

80°C. ISH was performed, as described in 2.5.4, at least twice for each probe (see Table 3.1). 

For each attempt, ISH was completed for two total labelled slides and two non-specific labelled 

slides.

3.3 RESULTS

3.3.1 Experiment 1: Determining Exonic Structure of Transcripts of Schizophrenia 

Susceptibility Genes of Interest

3.3.1.1 Nrg1 Exonic Structure

In total 17 RefSeq transcripts were identified for human NRG1 from NCBI Entrez Gene. The 

exonic structure of these transcripts was determined using NCBI SPIDEY mRNA to genomic 

DNA alignment tool. There were 11 different NRG1 type I splice variants (NRG1 hv1 - hv11), 

one NRG1 type II splice variant (NRG1 hv12), one NRG1 type III splice variant (NRG1 hv13), 3 

different NRG1 type IV splice variants (NRG1 hv14 - hv16) and one NRG1 type VI splice 

variant (NRG1 hv18). The RefSeq sequences gave at least one example of types I -  IV and VI 

of NRG1 splice variants but not an example of NRG1 type V splice variant. There were 

however another 61 experimentally determined mRNA sequences without verification from 

other publicly available databases by NCBI and a further 114 EST sequences that were 

identified as coming from the NRG1 gene. The exonic structure was only determined for one of 

these sequences in order to provide an example of an NRG1 type V splice variant (NRG1 

hv17). This sequence was selected from the sequences described in the original paper that 

discovered the type IV, V and VI 5’-defining exons (Steinthorsdottir et al., 2004). The purpose 

of determining the exons contributing to human NRG1 splice variants was purely to 

demonstrate that NRG1 has many splice variants that can be divided into six different types of 

splice variants each defined by a 5’-exon. Figure 3.1 demonstrates the complexity of NRG1 

splice variants and gives examples of all six different “types” oINRGI splice variants.
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Figure 3.1. Schematic of the exonic structures of a selection of the known human NRG1 
splice variants type I, II, III, IV, V and VI. Boxes represent exons. Purple boxes represent 
NRG1 type defining exons. Boxes are approximately relative in width compared to the number of 
nucleotides in the exon with the exception of one exon in which vertical white lines through the 
box indicates that the actual exon length is much longer than suggested by the relative width of 
the box. The number of nucleotides in an exon is given above the exon following the letter E. 
The length of the line between the boxes is approximately relative to the length of the introns. 
Vertical white lines through the black line indicate that the actual intron length is much longer 
than suggested by the relative distance between the exons in that region. mRNA sequences and 
one Expressed Sequence Tag (EST) (for NRG1 type V splice variant) were were found in NCBI 
Entrez gene and sourced from NCBI Entrez nucleotide. NCBI SPIDEY tool was used to 
determine the exonic structures. The NCBI accession numbers for each transcript are: v1, 
NM_013956; v2, NM_001160004; v3, NM_013957; v4, NM_001160008; v5, NM_013960; v6 , 
NM_013964; v7, NM_013958; v8 , NM_001160005; v9, NM.04495; v10, NM.001160002; v11, 
NM_001160007; v12, NM.013962; v13, NM_013959; v14, NM_001159999; v15, 
NM_001159995; v16, NM_001160001; v17, CN603655; v18, NM_001159996.
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The exonic structure of all 30 experimentally derived rat Nrg1 transcripts listed in NCBI Entrez 

Gene, one of which was RefSeq verified, were determined (Fig. 3.2). There were a further 10 

EST were not used in this study as they only represented small parts of the transcripts of 

interest. Characterisation of the 30 different sequences lead to the identification of 16 different 

Nrg1 type I mRNA sequences (Nrg1 rv1 -  rv16), 4 different Nrg1 type II splice variants (Nrg1 

rv17 -  rv20) and 7 different Nrg1 type III splice variants (Nrg1 rv21 -  rv27). The remaining 3 

mRNA sequences are incomplete fragments of Nrg1 splice variants. No Nrg1 type IV, V or VI 

splice variants have been identified to date.

The exons characterised as contributing to the rat and human splice variants were merged to 

create a composite of the gene exonic structure for human NRG1 and rat Nrg1 (Fig. 3.3). 

There are 12 exons in both the human and rat that are highly homologous and have exactly the 

same number of nucleotides. All other exons common to both species are highly homologous 

in regions but vary in the complete number of nucleotides per exon. There are eight exons that 

are found in humans that have not yet been identified in the rat and there is one exon in the rat 

that has not been identified in humans. However the human NRG1 gene structure is probably 

incomplete as not all mRNA sequences were reduced to their exonic structure. In addition, it is 

possible that not all splice variants have been determined and further exons may be present in 

the rat and human gene structures. For example, exons in the rat homologous to human NRG1 

type IV, V and VI 5’-defining exons may still be discovered.

3.3.1.2 Dtnbpl Exonic Structure

In total 15 experimentally determined transcripts were identified for human DTNBP1 from NCBI 

Entrez Gene and the exons contributing to these sequences were determined. From these 

transcripts 3 were RefSeq sequences (hv1 -  hv3) and only 2 of the remaining sequences were 

different from the RefSeq splice variants (hv4 & hv5) in that hv4 had an additional exon (E139) 

between E161 and E54, and the hv5 splice variant was shorter starting with the middle of the 

first E133 exon (Fig. 3.4 a). The DTNBP1 exons identified in this study were merged together 

with two predicted exons and four predicted promoter sites identified previously using the 

program Aceview (Williams et al., 2004), to create a composite of the gene exonic structure for 

human DTNBP1 (Fig. 3.4 b). The human DTNBP1 gene has 13 exons, including the predicted 

exons. Only one experimentally determined RefSeq Dtnbpl transcript has been identified in the
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Figure 3.2. Schematic of the exonic structure of all known rat Nrg1 splice variants.
Boxes represent exons. Purple boxes represent Nrg1 type defining exons. Boxes are 
approximately relative in width compared to the number of nucleotides in the exon, with the 
exception of boxes with vertical dotted white lines through the box that indicates that the actual 
exon length is much longer than suggested by the relative width of the box. The number of 
nucleotides in an exon is given above the exon following the letter E. The length of the black 
line between the boxes is approximately relative to the length of the introns. Vertical white lines 
through the black line indicate that the actual intron length is much longer than suggested by 
the relative distance between the exons in that region. All mRNA sequences were found in 
NCBI Entrez gene and sourced from NCBI Entrez nucleotide. NCBI SPIDEY tool was used to 
determine the exonic structures. The NCBI accession numbers for each transcript are: v1, 
NM_031588; v2, U02315; v3, U02316; v4, U02317; v5, U02318; v6 , U02319; v7, U02320; v8 , 
U02321; v9, U02322; v10, U02323; v11, U02324; v12, M92430; v13, AY973245; v14, 
AY995221; v15, AY995222; v16, AY995223; v17, AF194993; v18, AF194995; v19, AF194996; 
v20, AF194997; v21, AF194438; v22, AF194439; v23, AF194440; v24, AF194441; v25, 
AF194442; v26, AF194443; v27, DQ176766; v28, AY973241; v29, AY973243; v30, AY973244.
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Figure 3.3. Schematic of the predicted exonic structure of human NRG1 and rat Nrg1.
(A) Human NRG1 exonic structure determined using all verified transcripts, and one 
Expressed Sequence Tag (EST) (a fragment of NRG1 type V). (B) Rat Nrg1 exonic structure 
determined using all mRNA transcripts and the one verified transcript.The sequences were 
sourced from NCBI Entrez nucleotide and aligned using the NCBI SPIDEY mRNA genome 
alignment tool. The sequence of the Nrg1 Type IV exon (green box) was predicted using the 
USCS exon predict tool. Boxes represent exons. Purple boxes represent exons defining type. 
Boxes are approximately relative in width compared to the number of nucleotides in the exon, 
with the exception of boxes with vertical dotted white lines through the box that indicates that 
the actual exon length is much longer than suggested by the relative width of the box. The 
number of nucleotides in an exon is given above the exon following the letter E. The length of 
the black line between the boxes is approximately relative to the length of the introns. Vertical 
white lines through the black line indicate that the actual intron length is much longer than 
suggested by the relative distance between the exons in that region. Short black horizontal 
lines represent exons to which probes were designed. Black arrows label exons of coding for 
key functional domains (Harrison & Law, 2006). Type l-VI exons, 5’-defining exons of groups of 
Neuregulinl splice variants; lg, Immunoglobulin; EGF, Epidermal Growth Factor; c, core; TM, 
Transmembrane; ‘a’ tail, polyadenylated tail.

103



Human DTNBP1 transcripts

E226 

5' f l B

E226

5 - ^ B

E55E96 E61E133E133E23 E156E144

E55 E51E61E133E133E23 E156E144

E413

E413

3’

E226

s’ - H H h
E55 E51E61E133E133E23 E156 E1111

■3’

E161 E139 E51E61E133E133E23 E156 E685

WM B B BIBBI

hv5

E31 E133E23 E156E144

5 W
E408

3’

B Human DTNBP1 gene

P1 P2 P3 P4

♦ i  i  i

E226 E139 E55E96 E 5^61E133E133t23 E156 E144/E685/E1111—  ■ ■ ■ ■ ■ ■ ■ im iM E413

3’

Rat D tn b p l transcript

E166 E54 E51E61E133 E13E23 E156E144 E374

rv  5’ m m — ■  ■ ■ ■ ■ ! — m m 3’

Figure 3.4. Schematic of the exonic structure of all different human DTNBP1 transcripts, 
predicted DTNBP1 gene and the only known rat Dtnbpl transcript. (A) Exonic structure of 
all different human DTNBP1 splice variants. (B) Exonic structure of human DTNBP1 gene. Two 
exons predicted using Aceview (grey boxes) and four predicted promoter sites are included 
(Williams et al., 2004). (C) Exonic structure of the one known rat Dtnbpl transcript with the 
exons that probes were designed to indicated (red boxes). Boxes represent validated exons. 
Boxes are approximately relative in width compared to the number of nucleotides in the exon. 
P1-P4 = Promoter 1-4. Short black horizontal lines represent exons to which probes were 
designed. NCBI Entrez nucleotide and the NCBI SPIDEY tool were used to determine exonic 
structure. The NCBI accession numbers for each transcript are: r v, NM_001037664; hv1, 
NM_183041; hv2, NM_032122; hv3, NM_183040; hv4, AK310590; hv5, AF061734.
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rat from NCBI Entrez Gene. We have derived that it has 10 exons (Fig. 3.4 c). Direct 

comparison between the human and rat exonic structures, based on sequence homology, base 

pair size and sequential position, enabled identification of the exons 1, 5,8 and 9 in the rat that 

are equivalent to the exons 1,6, 11 and 12 in the human DTNBP1 gene. In human DTNBP1 

the exons 1 and 6 are directly downstream of two predicted promoter sites (Williams et al., 

2004) and so could be the 5’ exons of different DTNBP1 splice variants, however exon 6 is 

present in all splice variants and so detection of this exon would not be indicative of a splice 

variant. The detection of the equivalent exons 1 and 5 in the rat may contribute to identification 

of different splice variants in the rat through the identification of regions that express exon 5 but 

not exon 1, but the probe for exon 5 is a pan-Dtnbpl probe. Two other pan-Dtnbpl probes 

were designed to exons 8 and 9 to investigate whether they would identify any other splice 

variants through differential expression in the same brain regions.

3.3.1.3 Disci Exonic Structure

Four RefSeq human DISC1 transcripts have been identified in NCBI Entrez Gene (hv1 -  hv4). 

The shortest splice variant, hv4, is composed of the same first 3 exons as the other 3 splice 

variants except that the third exon has an additional 1466 nucleotides following the initial 

homologous 70 nucleotides. Another splice variant (hv3) is composed of the same first 9 exons 

as hv1 and hv2 except that the ninth exon has an additional 125 nucleotides following the initial 

homologous 61 nucleotides. The two other splice variants, hv1 and hv2, both have all 13 

exons but in hv1 exon 11 has an additional 66 nucleotides following the initial homologous 199 

nucleotides (Fig. 3.5 a). Only one experimentally determined RefSeq Disci transcript has been 

identified in NCBI Entrez gene (Fig. 3.5 b). Therefore there are no splice variants of Disci in 

the rat. The one identified rat Disci transcript has 12 exons that are very similar to the final 12 

exons of the human DISC1 gene.

3.3.1.4 Egr3, Nab1 and Nab2 Exonic Structure

Human EGR3 and rat Egr3 experimentally derived RefSeq transcripts have two exons, and do 

not have splice variants (Fig. 3.6 a). While the rat Egr3 exons are considerably shorter than the 

human EGR3 exons, the sequences of the rat Egr3 exons are homologous to the initial 

sequences of the human EGR3 exons. Only one transcript of rat Nab1 and Nab2 have been 

identified and they have 9 and 7 exons respectively (Fig. 3.6 b & c).
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Figure 3.5. Schematic of the exonic structure of human DISC1 splice variants and a rat 
Disci transcript. (A) Exonic structure of the four verified mRNA sequences coding for human 
DISC1 splice variants L (Long), Lv (Long variant), S (Short) and ES (Extremely Short) for 
sequences hv1-4 respectively. (B) Exonic structure of the only identified rat Disci transcript. 
Boxes represent exons. Red boxes represent exons to which probes were designed. Boxes are 
approximately relative in width compared to the number of nucleotides in the exon with the 
exception of the boxes with dotted vertical white lines that indicate that the actual exon length is 
much longer than suggested by the relative width of the box. The number of nucleotides in an 
exon is given above the exon following the letter E. The black lines between the boxes 
represent the introns but the lengths are not drawn to scale. Short black horizontal lines 
represent exons to which probes were designed; the two short lines linked by a V shape 
represent the probe that crossed the exon boundary between E208 and E118. The sequences 
were sourced from NCBI Entrez nucleotide. NCBI SPIDEY tool was used to determine exonic 
structures. The NCBI accession numbers for each transcript are: hv1, NM_018662; hv2, 
NM_001012957; hv3, NM_001012959; hv4, NM_001012958; rv, NM_175596.
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A Human EGR3 transcript
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Figure 3.6. Schematic of the exonic structure of the only identified transcripts for 
human EGR3 and rat Egr3} Nab1 and Nab2. (A) Exonic structure of human EGR3 and rat 
Egr3. (B) Exonic structure of rat Nab1. (C) Exonic structure of rat Nab2 (C). Boxes represent 
exons. Red exons represent exons to which probes were designed. Boxes are approximately 
relative in width compared to the number of nucleotides in the exon with the exception of the 
boxes with dotted vertical white lines that indicate that the actual exon length is much longer 
than suggested by the relative width of the box. The number of nucleotides in an exon is given 
above the exon following the letter E. The black lines between the boxes represent the introns 
but the lengths are not drawn to scale. Short black horizontal lines represent regions of 
sequence to which probes were designed. The sequences were sourced from NCBI Entrez 
nucleotide. NCBI SPIDEY tool was used to determine exonic structures. The NCBI accession 
numbers for each transcript are: (A) hv, NM_0044304; rv, NM_017086; (B) rv, NM_022856; (C) 
rv, NM_001134874.



3.3.2 Experiment 2: Profiling the Basal Expression of Schizophrenia Susceptibility 

Genes of Interest in Adult Rat Brain

The sequences for all of the oligonucleotide probes designed, Nrg1 type I, Nrg1 type II, Nrg1 

type III, pan-Nrg1, Dtnbpl exon 1, Dtnbpl exon 5, Dtnbpl exon 8, Dtnbpl exon 9, Disci L, 

Disci Lv, pan-Disci, Egr3, Nab1 and Nab2, and the reference sequences to which they were 

designed are displayed in Table 3.1. Also in Table 3.1 is further information on the specific 

activity of each probe, the duration of exposure of the hybridised sections to film and in some 

cases emulsion, and whether each probe detected specific labelling.

3.3.2.1 Nrg1 Basal Expression

The probes for Nrg1 type I, II and III splice variants and the pan-A/rgf probe all detected 

specific labelling. Figure 3.7 shows the expression pattern of Nrg1 type I, II and III splice 

variants and of the pan-A/rgf probe in a sample of coronal sections in an anterior to posterior 

manner from an adult rat brain under basal conditions. The distribution and relative level of 

expression of these different splice variants under basal conditions was recorded in a plus 

chart (Table 3.2). Nrg1 type I, II and III splice variants all show differences in the regions of the 

adult brain in which they are expressed. Nrg1 type IV splice variants were not detected in the 

brain under basal conditions. Expression of the pan-Nrg1 probe was widely distributed and 

present in all the brain regions that Nrg1 type I, II and III splice variants were expressed in, and 

was present in only one region, the globus pallidus in the basal ganglia, unaccounted for by 

Nrg1 type I, II and III.

The highest level of Nrg1 type I splice variants expression was observed in the hippocampal 

CA1-CA4 and DG regions, the granule cells of the olfactory bulb, the choroid plexus, bed 

nucleus of the stria terminus, the medial habenula, some nuclei of the hypothalamus, the 

pontine nucleus and the Purkinje and granule cell layers of the cerebellum. The mPFC, medial 

to posterior cerebral cortex and nuclei of the amygdala show medium levels of Nrg1 type I 

expression (Fig. 3.7 a and Table 3.2). The expression of Nrg1 type II splice variants was less 

widely distributed in the rat brain under basal conditions than Nrg1 type I splice variants. The 

highest level of expression is observed in the caudate putamen and nucleus accumbens of the 

basal ganglia, the reticular nucleus, zona incerta and geniculate nucleus of the thalamus, the
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Table 3.2. The expression profiles of Nrg1 type I, type II, type III and the pan-Nrg1 probe.
Key: - not detected, + low expression, ++medium expression, +++ high expression.

Brain region Nrg1 type I Nrg1 type II Nrg1 type III Pan Nrg1
Olfactory bulb
Periglomerular layer + + + +
External plexiform layer + + + +
Mitral cells ++ ++ +++ +++
Internal plexiform layer - - - -
Granule cells +++ ♦++ ++ +++
Ependymal cells - - - -
Cerebral cortex
Layer I ++ + + ++
Layer II ++ + + ++
Layer III ++ ++ + ++
Layer IV ++ • - +
Layer V ++ ++ ++ +++
Layer VI ++ ++ ++ +++

Amygdalohippocampal area ++ ++ ++ ++
Entorhinal cortex ++ ++ + ++
Piriform cortex ++ ++ + ++
Olfactory tract nucleus ++ + + ++
Olfactory tubercle - - - -
Islands of Calleja - - - -
Choroid plexus
Ependymal cells +++ +++ — +++

Hippocampus
CA1 pyramidal cells +++ m ++
CA2 pyramidal cells +++ - - ++
CA3 pyramidal cells +++ - - ++
CA4 pyramidal cells +++ - - ++
DG granule cells +++ + - ++

Amygdala
Cortical amygdaloid nucleus ++ + + ++
Central amygdaloid nucleus ++ - + ++
Lateral amygdaloid nucleus ++ - + ++
Medial amygdaloid nucleus ++ - + ++
Basolateral amygdaloid nucleus ++ - + ++

Basal ganglia
Caudate putamen + +++ +
Nucleus accumbens + +++ - +
Globus pallidus - - - +
Claustrum + + + ++
Subthalamic nucleus + + + +
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Table 3.2 Continued.

Substantia nigra
Pars reticulata 
Pars compacta

+
+

+
+

+
+

+
+

Septum
Lateral septum +++ +++
Medial septum - - +++ +++
Diagonal band ++ + +++ +++
Bed nucleus stria terminus +++ + - +++

Habenula
Medial +++ + +++ +++
Lateral + - - +

Thalamus
Paraventricular nucleus ++ + +
Medial dorsal nucleus ++ + + +
Anterodorsal nucleus ++ + - +
Anteroventral nucleus ++ + - +
Lateral nucleus ++ + - +
Reticular nucleus ++ +++ +++ +++
Zona incerta ++ +++ +++ +++
Dorsolateral geniculate ++ +++ ++ ++
Ventrolateral geniculate ++ +++ ++ ++
Medial geniculate ++ +++ ++ ++
Rhomboid nucleus ++ + - +
Parafascicular nucleus ++ + - +
Ventrobasal nucleus ++ - ++ ++

Hypothalamus
Medial preoptic area ++ m + +
Anterior nucleus +++ - + +
Paraventricular nucleus ++ + +++ +++

Arcuate nucleus +++ + + +

Ventromedial nucleus +++ + + ++

Dorsomedial nucleus ++ + + ++

Cerebellum
Molecular cell layer + + + ++
Purkinje cell layer +++ + ++ +++

Granule cell layer +++ + ++ +++

Pons
Pontine nuclei +++ +++ +++ +++

Transverse fibres of the pons - - - -
Longitudinal fasciculus of the - - - -

Medial Lemniscus - - - -
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A Nrg1 type I
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Figure 3.7. Autoradiographic images of whole brain mRNA expression patterns for Nrg1 
type I, type II and type III splice variants and pan Nrg1 transcripts determined using ISH.
(A) Nrg1 type I expression pattern. (B) Nrg1 type II expression pattern. (C) Nrg1 type III 
expression pattern. (D) Pan Nrg1 expression pattern. Numbers in ascending order represent 
sections anterior - posterior through the adult rat brain. Nonspecific labelling is shown in four 
sections for each probe, numbered to match similar sections with total labelling. -| 11



granule cells of the olfactory bulb, the choroid plexus and the pontine nuclei. Layer IV in the 

mPFC and cerebral cortex shows high expression of Nrg1 type II (Fig. 3.7 b and Table 3.2). 

The expression of Nrg1 type III splice variants was also less widely distributed in the rat brain

under basal conditions than Nrg1 type I splice variants. The highest level of expression is

detectable in the mitral cells of the olfactory bulb, the lateral and medial septum, the diagonal 

band of the septum, the medial habenula, the reticular nucleus and zona incerta of the 

thalamus, the paraventricular nucleus of the hypothalamus and the pontine nuclei (Fig. 3.7 c 

and Table 3.2). The Nrg1 type IV splice variants were undetectable in the adult rat brain under 

basal conditions despite using three different probes. The expression of pan Nrg1 showed wide 

distribution in the rat brain under basal conditions. The highest level of expression is detectable 

in mitral and granule cells of the olfactory bulb, layers V and VI of the cerebral cortex, the 

choroid plexus, the septum, the medial habenula, the reticular nucleus and zona incerta of the 

thalamus, the paraventricular nucleus of the hypothalamus, the pontine nuclei and the Purkinje 

and granule cell layers of the cerebellum. Of all the regions of the brain in which expression of 

Nrg1 type I, II or III splice variants was detected, expression of the pan Nrg1 also detected 

expression. The pan Nrg1 probe was also detected in the globus pallidus of the basal ganglia, 

but Nrg1 type I, II or III splice variants were not (Table 3.2).

3.3.2.2 Nrg1 Expression at the Regional Level

More detailed study of Nrg1 types I, II and III splice variants and pan-A/rgf in regions of the 

hippocampus (CA1, CA3 & DG), amygdala (LA, BLA and CeN nuclei) and cerebral cortex 

(layers l-IV, V & VI), using image densitometry gave semi-quantitative expression values at the 

regional level of analysis (Fig. 3.8).

Analysis at the regional level showed that the relative expression of Nrg1 type I was highest in 

the hippocampus, lower in the amygdala and lower still in the cerebral cortex. There was little 

difference in expression levels between the different regions, nuclei and layers of the 

hippocampus, amygdala and cortex respectively (Fig. 3.8 a). The expression of Nrg1 type II 

was highest in the DG of the hippocampus with the CA1 and CA3 both expressing less. The 

expression level of Nrg1 type II in layers l-IV of the cerebral cortex was nearly as high as in the 

DG. Cortical layers V and VI had slightly less Nrg1 type II expression than layers l-IV. 

Expression levels in the nuclei of the amygdala had approximately the same level of 

expression as in the CA1 and CA3 regions of the hippocampus (Fig. 3.8 b). The expression of
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determined using image densitometry. (A) Nrg1 type I expression distribution. (B) Nrg1 type II 
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Nrg1 type III was highest in layer VI of the cerebral cortex with layers l-IV and layer V 

expressing quite a lot less. Expression of Nrg1 type III was similar in all nuclei of the amygdala, 

and expression in the amygdala was less than in layer VI of the cortex but more than in cortical 

layers l-IV and V. The DG of the hippocampus had a similar level of expression to that 

measured in the amygdala. Like Nrg1 type II expression patterns, Nrg1 type III splice variants 

showed substantially less expression in the CA1 and CA3 than in the DG regions of the 

hippocampus (Fig. 3.8 c). Unlike any of the Nrg1 splice variants probed for the relative 

expression of the pan-A/rgf probe was highest in the amygdala. The expression of the pan- 

Nrg1 probe was lowest in the hippocampus with levels in the cortex falling between the two. 

The different nuclei of the amygdala had similar levels of expression of the pan-A/rgf probe. 

The expression of the pan-A/rgf probe was lower in the CA1 compared to CA3 and DG regions 

of the hippocampus. In the cerebral cortex, the highest level of expression of the pan-A/rgf 

probe was measured in layer VI, with layers l-IV and V expressing less (Fig. 3.8 d).

3.3.2.3 Nrg1 Expression at the Cellular Level

Cellular level expression of Nrg1 type I, II and III splice variants in the cerebral cortex layers I- 

IV, V and VI, and hippocampal regions CA1, CA3 and DG, is shown in a sample of 

photomicrographs of ISH-labelled emulsion-dipped sections counterstained with thionin (Fig. 

3.9). Examples of non-specific labelled photomicrographs are also provided for comparison. 

The density of silver grains/cell was measured (Fig. 3.10).

Cellular level analysis showed that the expression of Nrg1 type I was highest in cortex layer V, 

least in cortex layer VI, and layers l-IV showed approximately half the level of expression of 

layer V. The amygdala nuclei all had similar expression levels to cortex layers l-IV. The 

hippocampal CA3 region had the second highest level of expression and the CA1 and DG of 

the hippocampus expressed approximately half that expressed in the CA3 region (Fig. 3.10 a). 

Cellular level analysis showed that the expression of Nrg11 type II was highest in the lateral 

nucleus of the amygdala. The basal and central nuclei of the amygdala and layers l-IV and 

layer V of the cerebral cortex all showed similarly high levels of Nrg1 type II expression. Layer 

VI of the cortex showed slightly less Nrg1 type II expression than was measured in layer V. 

Nrg1 type II expression in the hippocampal CA1 and CA3 regions was undetectable while the 

DG showed low level Nrg1 type II expression (Fig. 3.10 b). Cellular level analysis showed that 

the relative expression of Nrg1 type III was highest in the CA3 of the hippocampus with quite a
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lot less expression measured in the CA1 and DG. The second highest level of expression was 

found in the lateral nucleus of the amygdala, with the basal and central nuclei expressing 

nearly half as much. The cerebral cortex layer V had a similar level of expression to that 

observed in the lateral nucleus of the amygdala, expressed at least three times as much Nrg1 

type III than layers l-IV and layer VI of the cerebral cortex (Fig. 3.10 c).

The expression of Nrg1 type III splice variants was measured at the cellular level in each of the 

cortical layers II, III, IV, V and VI in order to confirm that expression in layer V was greater than 

that measured in layers l-IV and VI as had been observed. There was much higher levels of 

expression of Nrg1 type III splice variants in layer V compared to the expression levels 

detected in layers II, III, IV and VI (Fig. 3.11). This is a similar pattern to that seen when layers 

were grouped together as layers l-IV, V and VI (Fig. 3.10 c).

3.3.2.4 Dtnbpl Basal Expression

Probes designed to detect exons 1, 5,8 and 9 from the only identified Dtnbpl transcript in the 

rat showed variation in their expression patterns in the adult rat brain, and variation in the 

relative level of expression in some brain regions. The expression patterns detected for Dtnbpl 

exons 1, 5, 8 and 9 in a selection of coronal sections throughout the adult rat brain are shown 

in Figure 3.12. The distribution patterns of Dtnbpl exons 1, 5, 8 and 9 expression in regions of 

the adult rat brain are presented in Table 3.3. Due to there not being enough brain sections 

from the rat brain used for characterization of whole brain gene expression under basal 

conditions, Dtnbpl exon 1 basal expression could only be investigated in a limited selection of 

rat brain regions determined from the naive brain sections used as controls in the behavioural 

experiment performed in Chapter 4.

The highest level of Dtnbpl exon 1 expression was observed in layer IV of the cerebral cortex, 

the piriform cortex, the choroid plexus, the hippocampal CA1 region, and the zona incerta, 

reticular nucleus and geniculate nuclei of the thalamus (Fig. 3.12 a and Table 3.3). The highest 

level of Dtnbpl exon 5 expression was observed in the granule cells of the olfactory bulb, layer 

IV of the cerebral cortex, the piriform cortex, the choroid plexus, the hippocampal CA1 region, 

and the zona incerta, reticular nucleus and geniculate nuclei of the thalamus (Fig. 3.12 b and 

Table 3.3). The highest level of Dtnbpl exon 8 expression was observed in the granule cells of 

the olfactory bulb, layer IV of the cerebral cortex, the amygdalohippocampal area, the piriform
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Figure 3.11. Number of silver grains per cell in different cortical layers for Nrg1 type
III in the adult rat brain. Layer V differs from layers II, III, IV and VI as there are many 
more cells in this layer that have more than 40 silver grains per cell eg. 19% of the cells in 
layer V compared to 1%, 2%, 6% and 0% of the cells in layers II, III, IV and VI respectively.
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Figure 3.12. Autoradiographic images of whole brain mRNA expression patterns for 
predicted Dtnbpl splice variants determined using ISH. (A) Dtnbpl exon 1 expression 
pattern. (B) Dtnbpl exon 5 expression pattern. (C) Dtnbpl exon 8 expression pattern. (D) 
Dtnbpl exon 9 expression pattern. Numbers in ascending order represent sections anterior - 
posterior through the adult rat brain. Nonspecific labelling is shown in four sections for each 
probe, numbered to match similar sections with total labelling.
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Table 3.3. The expression profiles of Dtnbpl exon 1, 5, 8 and 9. Key: - not detected, + low 
expression, ++medium expression, +++ high expression and na tissue not available.

Brain region Dtnbpl exon 1 Dtnbpl exon 5 Dtnbpl exon 8 Dtnbpl exon 9

Olfactory bulb
Periglomerular layer na + + +
External plexiform layer na + + +
Mitral cells na ++ ++ ++
Internal plexiform layer na - -
Granule cells na +++ +++ +++
Ependymal cells na - -
Prefrontal cortex- Forceps minor - - +++

Cerebral cortex
Layer I + ++
Layer II - + ++
Layer III - + ++
Layer IV +++ +++ +++ +++
Layer V - + ++
Layer VI - + ++

Amygdalohippocampal area + +++ ++
Entorhinal cortex + + +
Piriform cortex +++ +++ +++ +++
Olfactory tract nucleus na ++ ++ ++
Olfactory tubercle - - - -
Islands of Calleja - - - -
Choroid plexus
Ependymal cells +++ +++ +++ +++

Corpus callosum - - - +++

Hippocampus
CA1 pyramidal cells +++ +++ +++ +++
CA2 pyramidal cells ++ ++ +++ +++
CA3 pyramidal cells ++ ++ +++ +++
CA4 pyramidal cells ++ ++ +++ +++
DG granule cells ++ ++ +++ +++

Amygdala
Cortical amygdaloid nucleus ++ m + +

Central amygdaloid nucleus + + +++ ++
Lateral amygdaloid nucleus + + +++ ++

Medial amygdaloid nucleus + + +++ ++

Basolateral amygdaloid nucleus + + +++ ++

Basal ganglia
Caudate putamen m m + +

Nucleus accumbens - - + +

Globus pallidus - - + +

Claustrum + + + +

Subthalamic nucleus + + ++ ++



Table 3.3 Continued.

Substantia nigra
Pars reticulata 
Pars compacta

na
na

+
++

++
++

++
+

Septum
Lateral septum na + + +
Medial septum na + ++ ++
Diagonal band na + ++ ++
Bed nucleus stria terminus na + + +

Habenula
Medial ++ ++ +++ +++
Lateral + + + +

Thalamus
Paraventricular nucleus + + + +
Medial dorsal nucleus + + ++ ++
Anterodorsal nucleus + + + +
Anteroventral nucleus + + + +
Lateral nucleus + + ++ +
Reticular nucleus +++ +++ +++ ++
Zona incerta +++ +++ +++ ++
Dorsolateral geniculate +++ ++ +++ +
Ventrolateral geniculate +++ ++ +++ +
Medial geniculate +++ ++ +++ +
Rhomboid nucleus + ++ ++ +
Parafascicular nucleus + + ++ +
Ventrobasal nucleus ++ + + +

Hypothalamus
Medial preoptic area na ++ +
Anterior nucleus + - ++ +
Paraventricular nucleus + - ++ +

Arcuate nucleus - - ++ +

Ventromedial nucleus - + +++ +

Dorsomedial nucleus - + +++ +

Cerebellum
Molecular cell layer na
Purkinje cell layer na ++ ++ +++

Granule cell layer na ++ ++ ++

Pons
Pontine nuclei na ++ ++ ++

Transverse fibres of the pons na - - ++

Longitudinal fasciculus of the na - - ++

Medial Lemniscus na - - ++
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cortex, the choroid plexus, the hippocampal CA1-CA4 and DG regions, the amygdala, the 

medial habenula, zona incerta, and reticular nucleus of the thalamus, and the ventromedial and 

dorsomedial nuclei of the hypothalamus (Fig. 3.8 c and Table 3.3). The highest level of Dtnbpl 

exon 9 expression was observed in the granule cells of the olfactory bulb, forceps minor of the 

prefrontal cortex, layer IV of the cerebral cortex, the piriform cortex, the choroid plexus, the 

corpus callosum, the hippocampal CA1-CA4 and DG regions, the medial habenula and the 

Purkinje cell layer of the cerebellum (Fig. 3.8 d and Table 3.3).

A summary of the different combinations of exons that were expressed together in a region, 

from all the regions investigated, is presented in Table 3.4. Unexpectedly these findings 

suggest that there are at least 5 splice variants of Dtnbpl expressed in the adult rat brain. 

These five different splice variants and their patterns of expression are: 1) All four Dtnbpl 

exons present (exons 1, 5, 8 and 9) eg. detected in the cerebral cortex in layer IV, piriform 

cortex, ependymal cells of the choroid plexus, hippocampus, amygdala, claustrum and sub­

thalamic nucleus of the basal ganglia, habenula and the thalamus. 2) Dtnbpl exons 5, 8 and 9 

but not exon 1 eg. detected in the ventromedial and dorsomedial nuclei of the hypothalamus. 

Dtnbpl exons 5, 8 and 9 were also all detected in the same subregions of the olfactory bulb, 

olfactory tract nucleus, septum, substantia nigra, purkinje and granular cell layers of the 

cerebellum and the pontine nuclei. Dtnbpl exon 1 may have been expressed in these regions 

but this was not investigated. 3) Dtnbpl exons 1, 8 and 9 but not exon 5 eg. detected in the 

amygdalohippocampal area, cortical amygdaloid nucleus, entorhinal cortex, and the anterior 

and paraventricular nuclei of the hypothalamus. 4) Dtnbpl exons 8 and 9 but not exons 1 and 5 

eg. detected in layers I -  III and layers V -  VI of the cerebral cortex, the caudate putamen, 

nucleus accumbens and globus pallidus of the basal ganglia, and the arcuate nucleus of the 

hypothalamus. 5) Dtnbpl exon 9 but not exons 1, 5 and 8 was detected in the corpus callosum 

and forceps minor. Dtnbpl exon 9 in the absence of exons 5 and 8 was detected in the 

transverse fibres of the pons, longitudinal fasciculus of the pons and in the medial lemniscus. 

Dtnbpl exon 1 may have been expressed in these regions but this was not investigated. 

Another difference between Dtnbpl exon 9 expression and the other exons is that there were 

equal levels of Dtnbpl exon 9 expression across the different layers of the prefrontal cortex 

and posterior cerebral cortex. Prominent labelling of Dtnbpl exon 9 was however detected in 

layer IV of the central cerebral cortex, similar to Dtnbpl exons 1,5 and 8.
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Table 3.4. Predicted Dtnbpl exon splice vaiants. Deduction from the combinations of Dtnbpl 
exons 1, 5, 8 and 9 in any one region suggests that there are at least 5 splice variants of 
Dtnbpl expressed in the adult rat brain. This study has only investigated Dtnbpl exons 1, 5, 8 
and 9 so other exons which will most likely be part of these splice variants have not been 
accounted for in this table. Key: - Exon absent, + Exon present.

Dtnbpl splice 
variants

Dtnbpl exon 1 Dtnbpl exon 5 Dtnbpl exon 8 Dtnbpl exon 9

1 + + + +

2 ■ + + +

3 • ■ + +

4 • " • +

5 + ■ + +
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3.3.2.5 Disci Basal Expression

None of the three probes designed to detect Disci detected any specific labelling.

3.3.2.6 Egr3, Nab1 and Nab2 Basal Expression

The probes for Egr3, Nab1 and Nab2 all detected specific labelling (Table 3.1). The expression 

patterns detected for Egr3, Nab1 and Nab2 in a selection of coronal sections throughout the 

adult rat brain are shown in Figure 3.13. The distribution patterns of Egr3, Nab1 and Nab2 

expression in regions of the adult rat brain is presented in Table 3.5. Egr3, Nab1 and Nab2 

have similar and relatively restricted expression patterns. All three genes were expressed in 

the same subregions of the olfactory bulb, layers I -  III and layers V -  VI of the cerebral cortex, 

entorhinal cortex, piriform cortex, amygdalohippocampal area, ependymal cells of the choroid 

plexus, hippocampus, amygdala, claustrum and sub-thalamic nucleus of the basal ganglia, 

lateral septum and the purkinje and granular cell layers of the cerebellum. Nab2, but not Nab1, 

was expressed in all the regions that Egr3 was detected in including the caudate putamen and 

nucleus accumbens of the basal ganglia, and the bed nucleus stria terminus. The regions in 

which both Nab1 and Nab2 were detected in the absence Egr3 included layer IV of the cerebral 

cortex, the medial habenula, the medial dorsal nucleus of the thalamus and the pons. The 

regions in which Nab1 was detected in the absence of Egr3 and Nab2 included the medial 

septum, the diagonal band, and the anterodorsal, anteroventral, lateral, parafascicular and 

ventrobasal nuclei of the thalamus. The regions in which Nab2 was detected in the absence of 

Egr3 and Nab1 included the reticular nucleus and the zona incerta.

3.3.3 Experiment 3: Profiling Expression of Nrg1 type IV Splice Variants and Disci 

Splice Variants in Adult Rat Brains with Amphetamine Induced Activity

The Nrg1 type IV splice variants were undetectable in amphetamine treated rat brain despite 

repeating the ISH test using three different probes and trying an additional ISH test combining 

two of the probes. Pan Disci and Disci L and Lv splice variants were undetectable in 

amphetamine treated rat brain despite repeating the ISH test using two different probes for pan 

Disci.
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Figure 3.13. Autoradiographic images of whole brain mRNA expression patterns for 
Egr3, Nab1 and Nab2 determined using ISH. (A) Egr3 expresseion pattern. (B) Nab1 
expression pattern. (C) Nab2 expression pattern. Numbers in ascending order represent 
sections anterior - posterior through the adult rat brain. Nonspecific labelling is shown in 
four sections for each probe, numbered to match similar sections with total labelling.
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Table 3.5. The expression profiles of Egr3, Nab1 and Nab2. Key: - not detected, + low 
expression, ++medium expression, +++ high expression.

Brain region Egr3 Nab1 Nab2
Olfactory bulb
Periglomerular layer + + +
External plexiform layer + + +
Mitral cells + + +
Internal plexiform layer - - -
Granule cells ++ ++ ++
Ependymal cells - - -
Cerebral cortex
Layer I +++ ++ ++
Layer II +++ ++ ++
Layer III +++ ++ ++
Layer IV - ++ ++
Layer V +++ ++ ++
Layer VI +++ ++ ++

Amygdalohippocampal area ++ ++ ++
Entorhinal cortex + + +
Piriform cortex +++ +++ +++
Olfactory tract nucleus - - -
Olfactory tubercle - - -
Islands of Calleja - - -

Choroid plexus
Ependymal cells + + +

Hippocampus
CA1 pyramidal cells +++ +++ +++
CA2 pyramidal cells ++ +++ +++
CA3 pyramidal cells +++ +++ +++
CA4 pyramidal cells +++ +++ +++

DG granule cells +++ +++ +++

Amygdala
Cortical amygdaloid nucleus + + ++

Central amygdaloid nucleus + + ++

Lateral amygdaloid nucleus ++ + ++
Medial amygdaloid nucleus ++ + ++

Basolateral amygdaloid nucleus ++ + ++

Basal ganglia
Caudate putamen +++ ++

Nucleus accumbens +++ - ++

Globus pallidus - - -
Claustrum ++ + +

Subthalamic nucleus ++ + +
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Table 3.5 Continued.

Substantia nigra
Pars reticulata 
Pars compacta

- - -

Septum
Lateral septum + + ++
Medial septum - ++ -
Diagonal band - ++ -
Bed nucleus stria terminus ++ - ++

Habenula
Medial + +
Lateral - - -
Thalamus
Paraventricular nucleus
Medial dorsal nucleus - ++ ++
Anterodorsal nucleus - + -
Anteroventral nucleus - + -
Lateral nucleus - + -
Reticular nucleus - - +
Zona incerta - - +
Dorsolateral geniculate - - -
Ventrolateral geniculate - - -
Medial geniculate - - -
Rhomboid nucleus - - -
Parafascicular nucleus - + -
Ventrobasal nucleus - + -
Hypothalamus
Medial preoptic area .

Anterior nucleus - - -
Paraventricular nucleus - - -
Arcuate nucleus - - -
Ventromedial nucleus - - -
Dorsomedial nucleus - - -

Cerebellum
Molecular cell layer
Purkinje cell layer + ++ ++
Granule cell layer + ++ ++

Pons
Pontine nuclei + +

Transverse fibres of the pons - + +

Longitudinal fasciculus of the - + +

Medial Lemniscus - + +



3.4 DISCUSSION

3.4.1 Characterisation and Expression of Nrg1 Splice Variants in the Adult Rat Brain

The characterization of the exonic structure of all rat Nrg1 transcripts and creation of a gene 

exonic structure is novel. A similar approach has been carried out previously for human NRG1 

by Steinthorsdottir and colleagues. They performed mRNA to genomic alignment for more 

transcripts than completed in this study and using a different alignment approach (using NCBI 

BLAST) explaining why they found exons that were not identified in this study and why the 

exact number of nucleotides differed in some exons (Steinthorsdottir et al., 2004). They did not 

present their findings graphically, but Harrison and Law (2006) did produce a graphic of NRG1 

gene exonic structure based on Steinthorsdottir and colleagues findings combined with findings 

from two other papers (Falls, 2003; Petryshen et al., 2005). There was convergence between 

the rat and human gene exonic structures derived in this study with the exons in the rat Nrg1 

exonic structure being present in the human NRG1 exonic structure, with the exception of one 

exon, such that both the rat and human sequences contained the exons encoding the key 

EGF, Ig and TMc domains, in addition to 5’-defining exons for the type I, II and III splice 

variants. However the 5’-defining exons for the type IV, V and VI splice variants were absent in 

the rat gene exonic structure suggesting that they are not expressed in the rat like they are in 

humans.

The probes designed to detect Nrg1 type I, II and III splice variants, and the pan-A/rgf probe all 

identified specific labelling but showed varied expression patterns from visual inspection of the 

autoradiographic film. This supports the hypothesis that they have functionally distinct roles 

(Poirier et al., 2008). A comparison of the five other studies that have investigated the 

expression of Nrg1 in the adult rat brain is presented in Table 3.6 (Chen et al., 1994; Pinkas- 

Kramarski et al., 1994; Corfas et al., 1995; Eilam et al., 1998; Kerber et al., 2003). These 

studies differed in either the probes or techniques used, or the regions analysed. The 

techniques used included ISH with qualitative analysis at the silver grain level, Northern blots, 

RT-PCR, immunohistochemistry and immunoblotting. Only one other study has investigated 

the expression of Nrg1 type I, II and III splice variants in addition to a pan-A/rgf probe (Kerber 

et al., 2003). Three previous studies used a pan-Nrg1 probe designed to detect the EGF-L 

domain (Pinkas-Kramarski et al., 1994; Eilam et al., 1998; Corfas et al., 1995) and one of these
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Table 3.6. Meta-analysis of Nrg1 mRNA expression in the rat brain from the current 
literature. + expression present, - no expression, blank spaces indicate that this region of the 
brain was not discussed in the study.

Brain Region Chen 
et al., 
1994

Pinkas- 
Kramarski 
et al., 1994

Corfas et al., 
1995

Eilam 
et al., 
1998

Kerber et al., 2003

TM+EGF-L EGF-L EGF-L Ig+EGF-L EGF-L
Type 

1 II III EGF-L
Olfactory bulb +
Cerebral cortex + + + + +
Layer I + - + + +
Layer II + + + +
Layer III + + + +
Layer IV + + + +
Layer V + + + + +
Layer VI + + + +
Prefrontal cortex + +
Piriform cortex + +
Entorhinal cortex +
Frontal cortex +
Forelimb cortex +
Hindlimb cortex +
Parietal cortex +
Motor cortex +
Occipital cortex +
Olfactory tubercle +
Retrosplenial granular cortex + +
Perirhinal cortex + +
Corpus Callosum + -
Hippocampus
CA1 pyramidal cells + - - + + + +
CA2 pyramidal cells + + + +
CA3 pyramidal cells + + + + + + +
CA4 pyramidal cells + + +
DG granule cells + + + + + +
Hippocampal fissure + +
Subiculum +
Amygdala + + +
Lateral amygdaloid nucleus + +
Medial amygdaloid nucleus + +
Basolateral amygdaloid nucleus + +
Basal ganglia
Caudate putamen + +
Nucleus accumbens +
Ventral pallidum + + +
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Table 3.6 Continued.

Septum
Lateral septum +
Medial septum + + + +
Diagonal band + + + +
Basal nucleus of Meynert

4. 4. 4

Septofimbnal nucleus + +
Bed nucleus stria
terminus + +
Choroid plexus -
Ependymal cells + +
Thalamus +
Medial habenula + +
Lateral habenula - -
Paraventricular nucleus +
Reticular nucleus + + +
Entopeduncular nucleus
Hypothalamus + +
Preoptic nucleus +
Paraventricular nucleus +
Ventromedial nucleus
Dorsomedial nucleus +
Periventricular region +
Mamillary body +
Suprachiasmatic nuclei +
Supraoptic nuclei (SO) + + +
Retrochiasmatic SO +
Cerebellum + -
Molecular cell layer - + + +
Purkinje cells - + - + + +
Granule cell layer + + + + + +
Fibrillary astrocyte + +
Basket cell +
Bergman glia +
Golgi type II cell + +
Brainstem + + + +
Substantia nigra - + + +
Pontine nuclei + + + +
Lateral lemniscus
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studies also used a probe that detected all splice variants containing both an immunoglobulin 

domain and an EGF-L domain (Corfas et al., 1995). Finally, a probe that detected all splice 

variants containing both a transmembrane domain and EGF-L domain was used in another 

study (Chen et al., 1994).

At the level of autoradiography, the pan-A/rgf probe identified the expression of Nrg1 in similar 

regions to previously published studies including the cerebral cortex, regions of the 

hippocampus, amygdala, septum, brainstem and regions of the cerebellum (Chen et al., 1994; 

Pinkas-Kramarski et al., 1994; Eilam et al., 1998; Corfas et al., 1995; Kerber et al., 2003). Of 

note we also saw similar gradients of expression in the cortical layers and habenula, with 

higher expression in layer V compared to the other cortical layers, and heavier labelling in the 

medial versus lateral habenula (Chen et al., 1994; Eilam et al., 1998). In contrast to our 

findings other studies did not describe a differentiation in the expression of Nrg1 between 

cortical layers (Pinkas-Kramarski et al., 1994; Corfas et al., 1995; Kerber et al., 2003), the 

presence of Nrg1 mRNA in the CA1 (Corfas et al., 1995), or the absence of Nrg1 in the corpus 

callosum (Pinkas-Kramarski et al., 1994). These discrepancies may reflect the mRNA regions 

that different probes were targeting and highlight the complexity of the regulation of the Nrg1 

gene and the large number splice variants that result.

Nrg1 type I, II or III splice variants were expressed in all region of the brain that Nrg1 mRNA 

was identified by the pan Nrg1 probe with the exception of in the globus pallidus. This suggests 

other types of splice variants possibly including type V and VI variants are expressed in the 

globus pallidus of the adult rat brain.

In comparison to the widespread expression of Nrg1 type I, we found a more restricted 

expression of Nrg1 type II and Nrg1 type III splice variants. For example Nrg1 type I was 

observed in nearly all the brain regions in which Nrg1 type II and Nrg1 type III were observed, 

but Nrg1 type I and Nrg1 type III were not observed in as many of the hippocampal, amygdala 

or thalamic regions as Nrg1 type I. Kerber and colleagues (2003) described Nrg1 type I and II 

splice variants as having a ubiquitous expression in the adult rat brain, while expression of 

Nrg1 type III splice variants showed a more restricted distribution. Again, this difference in 

findings may reflect the complexity of Nrg1 regulation and the number of splice variants 

transcribed. Kerber and colleagues (2003) did not give details of the type-specific 

ribonucleotide probes so direct comparisons of the sequences used to detect the Nrg1
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transcripts in between the two studies cannot be carried out. Nevertheless, their study 

identified further differential expression of splice variants of Nrg1 containing different 

combinations of amino termini (I, II or III), EGF-L domains (a or p) and juxtamembrane 

domains (1, 2, 3, 4 or 5) in a limited selection of brain regions (Kerber et al., 2003). Together 

these results indicate the complex regulation of Nrg1 expression in the brain and suggest that 

Nrg1 splice variants may have different roles in different brain functions.

Nrg1 type IV splice variants were undetectable in the adult rat brain despite using three 

different probes under basal conditions and using two of these probes in amphetamine-treated 

rat brain. Amphetamine treatment causes increased dopaminergic activity in the brain that 

induces activity-regulated expression of genes (Graybiel et al., 1990). Nrg1 has been shown to 

be involved in activity-dependent synaptic plasticity (see 1.3.2.1). Therefore, amphetamine 

treatment may regulate the expression of Nrg1 type IV splice variants. The absence of 

expression after amphetamine may indicate that Nrg1 type IV expression is (i) not expressed in 

the rat brain or (ii) below the detectable range of the ISH technique used to assay it’s 

expression. NRG1 type IV expression has been detected in the human adult hippocampus and 

in human fetal whole brain using Q-PCR (Law et al., 2006; Tan et al., 2007), and in cDNA 

libraries from human hippocampus, hypothalamus and total brain using rapid amplification of 

cDNA ends (RACE) and RT-PCR (Steinthorsdottir et al., 2004). It has not been characterised 

by ISH in the rat or human brain and has not been detected in the rat by any other techniques. 

However, other researchers have also not been able to detect Nrg1 type IV variants in the rat 

brain (personal communication, Dr. Amanda Law). These preliminary data using 

complimentary experimental approaches suggest that Nrg1 type IV splice variants are present 

in the human but not rat brain. The absence of Nrg1 type IV in the rat but presence in the 

human could be indicative that Nrg1 type IV splice variants have a function that is specific to 

humans. As schizophrenia is a disorder that is thought to be specific to humans, and the 

evidence that a variant in Nrg1 type IV has been associated with particular symptoms of 

schizophrenia (Hall et al., 2006) and the same variant has been shown to have increased 

levels in schizophrenic individuals (Law et al., 2006) supports this hypothesis. ISH in human 

adult hippocampal tissue would determine of the efficiency of the hybridisation of the Nrg1 type 

IV probes we used. This experiment may be unsuccessful because the sequence used in the 

rat probe(s) to identify Nrg1 Type IV variant in the rats brain may not be complementary to the 

corresponding human exon sequence. The percentage identity between the human and rat
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Nrg1 type IV 5’ defining exon is only 63%. The first 40 bp and last 80 bp are homologous, but 

there is very little homology in the central section of the exon.

3.4.2 Semiquantitative Levels of Nrg1 Splice Variants Expression in Regions of 

Hippocampus, Cortex and Amygdala in the Adult Rat Brain

Regional and cellular semi-quantitative analysis of Nrg1 splice variants expression was 

performed in subregions of the hippocampus, cortex and amygdala to resolve conflicting 

findings in these regions in our study here and previous studies (see above).

Two previous studies found that the different regions of the hippocampus either expressed 

equal levels of NRG1 expression (Law et al., 2006) or had more NRG1 expression in the CA3 

relative to the CA1 and DG regions (Law et al., 2004). In this study type I, II and III splice 

variants were assayed in addition to a pan probe. Our findings measured at the regional level 

for the pan-probe showed regional variation in the level of Nrg1 expression, with both the CA3 

and the DG having higher Nrg1 expression than the CA1. The findings for the different splice 

variants all showed variation in the level of expression between the different regions of the 

hippocampus, with the exception of Nrg1 type I expression measured at the regional level. 

From our findings and those of Law and colleagues (2004) it can be concluded that the 

different regions of the hippocampus should be measured separately when investigating Nrg1 

expression.

For the analysis of the cortex, cortical layers l-IV were grouped together, and cells in layers V 

and VI analysed separately in an attempt to clarify whether expression in layer V was higher 

than other cortical layers (this study as measured by autoradiography, Chen et al., 1994; Eilam 

et al., 1998), or not (Pinkas-Kramarski et al., 1994; Corfas et al., 1995; Kerber et al., 2003). At 

the cellular level of analysis, we confirmed that Nrg1 type I and III splice variants, were both 

expressed at higher levels in layer V relative to layers l-IV and layer VI as previously observed 

in rats (Chen et al., 1994; Eilam et al., 1998) and humans (Law et al., 2004). In contrast, Nrg1 

type II splice variants, were not more heavily expressed in layer V of the cerebral cortex. 

Results at the regional level of analysis differed to those at the cellular level of analysis.

The cortex layers were originally grouped according to patterns of expression as determined by 

visual inspection; layer V and VI appeared to show different expression levels while layers l-IV
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showed similar levels of expression for all types of Nrg1 splice variants. Silver grain count 

analysis for cells in each of layers ll-VI for detected Nrg1 type III variants confirmed that the 

appropriate grouping of layers had been used. Furthermore, analysis using scatter graphs that 

displayed the number of grains per cell for all cells counted in cortical layers II, III, IV, V and VI, 

suggested that the number of grains per cell could fall into two groups; Low (0-20 grains/cell) or 

moderate-to-high (20-120 grains/cell). Layer V has many more cells belonging to the 

moderate-to-high group than the other layers. This may represent labelling in two different 

types of cells in the different cortical layers. For example, small GABAergic versus large 

pyramidal cells especially as pyramidal cells are predominant in layer V (Kandel, 2000). 

Indeed, photomicrograph images of the cells with overlaying silver grains are predominantly 

pyramidal-shaped cells in layer V compared to a mixture of cell shapes in layers l-IV and layer 

VI. The pyramidal-shaped cells also appear to have many more silver grains than the other 

types of cells.

The expression of Nrg1 type I and II splice variants and expression detected by the pan-A/rgf 

probe did not vary much between nuclei of the amygdala, but the expression of Nrg1 type III 

splice variants appeared to be expressed at a higher level in the lateral nucleus of the 

amygdala, relative to the basal and central nuclei of the amygdala, as measured by silver grain 

counting.

3.4.3 Comparison of Expression Levels Determined at the Regional and Cellular Level

Regional analysis by image densitometry, and cellular analysis by silver grain counting, 

showed two different relative expression patterns of Nrg1 type I, II and III splice variants 

between regions of the hippocampus, nuclei of the amygdala and layers of the cerebral cortex. 

The difference between the results from these two kinds of analysis is possibly due to cell 

density being a factor that contributes to expression measured by densitometry, but not by 

silver grain counting. For example, the expression of Nrg1 type I splice variants in cortical 

layers V and VI determined by densitometry showed approximately equal expression in these 

two layers, while expression levels determined by silver grain counting showed that the cells in 

layer V had approximately 90% more silver grains per cell than the cells in layer VI. The cell 

density in layer V was 17 cells/photo while the cell density in layer VI was 25 cells/photo. This 

means that image densitometry is more useful for detecting broad regional changes in 

expression, while silver grain counting will detect more accurate levels in individual cells. In
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addition to the increase in spatial resolution, silver grain counting is likely to be a more 

sensitive measure of gene expression if mRNA is restricted or regulated in specific cell types, 

or in a small number of cells in a particular brain region.

3.4.4 Characterisation and Expression of Dtnbpl Splice Variants in the Adult Rat Brain

The exonic structure for the only experimentally determined transcript of Dtnbpl in the rat was 

characterised and 10 exons were identified. These 10 exons were found to be homologous to 

10 of the 13 exons characterized in human DTNBP1. Probes were designed to detect rat 

homologues of two exons found in human transcripts that could lead to the identification of two 

different splice variants of DTNBP1 and another two probes were designed to detect exons that 

were expected to be present in all DTNBP1 splice variants. Through comparison of the 

expression detected by the four probes deigned to exons 1 ,5 ,8  and 9, different combinations 

of the exons expressed in any one region lead to the identification of at least five different 

splice variants of Dtnbpl in the adult rat brain (Table. 3.4). These are novel findings. Dtnbpl 

splice variants containing exons 1, 5, 8 and 9 were expressed in most regions of the adult rat 

brain, while Dtnbpl splice variants containing exons 5, 8 and 9, Dtnbpl splice variants 

containing exons 1, 8 and 9, Dtnbpl splice variants containing exons 8 and 9, and Dtnbpl 

splice variants containing exon 9, were only exclusively expressed in a few brain regions each.

Dtnbpl splice variants containing exons 1, 5, 8 and 9 were expressed heavily in layer IV of the 

cerebral cortex and all regions of the hippocampus. DTNBP1 protein was expressed in these 

two regions of the mouse brain but there was no mention of variation in the levels of DTNBP1 

expression in the different layers of the cortex (Benson et al., 2001). However expression 

studies in the human cortex using a pan probe showed that, like in the rat, there was variability 

in the levels of DTNBP1 expression between the layers. However the variation in labelling 

between the different layers was different in the human entorhinal cortex from in the human 

temporal neocortex, and neither of these patterns were the same as the layer IV heavy 

labelling detected in the rat (Weickert et al., 2004). Recently, three DTNBP1 splice variants 

have been confirmed in the human and of these, DTNBP1-) A is most heavily expressed in the 

DLPFC, while much less expression of D7NBPMB and D7A/BPMC was detected in this 

region. No differential expression in the DLPFC layers could be detected for the three different 

splice variants as expression levels were determined from dissected DLPFC using Q-PCR 

(Tang et al., 2009). The differences in cortical DTNBP1 and Dtnbpl expression in humans, rats
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and mice is likely due to the probes used in each study detecting different combinations of 

splice variants. Future characterisation and confirmation of all splice variants in rats and mice 

through northern blot analysis, and design of probes that detect each DTNBP1 splice variant 

exclusively in humans, rats and mice will lead to clarification of which splice variants are 

expressed in which layers of the cortex. It will also identify if there are species-specific splice 

variants that may also account for the difference in cortical layer labelling between the rat, 

mouse and human.

3.4.5 Disci Splice Variants and Absence of Expression Detection

Expression of Disci splice variants could not be detected in adult rat brain tissue under basal 

conditions despite two different pan-Disci probes, a Disci L and Disci Lv probe being 

designed and used. Expression of the two different pan-Disci probes could also not be 

detected in amphetamine-treated adult rat brain tissue. This may be because Disci is (i) not 

expressed in the rat brain or (ii) below the detectable range of the ISH technique used to assay 

it’s expression even after amphetamine-treatment. Alternatively, the probes may have unusual 

kinetics or tertiary structure preventing binding to the target mRNA. Disci mRNA expression 

has been detected and characterised, and DISC1 protein expression characterized, in the adult 

rat brain (Ozeki et al., 2003; Miyoshi et al., 2003). Future experiments could involve designing 

and testing additional probes complementary to Disci mRNA and using them in combination to 

increase the signal to background level. Alternatively, Disci could be measured using a 

technique based on signal amplification such as RT-PCR to aid the detection of specific 

transcripts with very low levels of expression or expression restricted to small numbers of cells 

within a region.

3.4.6 Characterisation and Expression of Egr3, Nab1 and Nab2 in the Adult Rat Brain

In agreement with previous studies, the exonic structure for Egr3 in the rat has two exons and 

the exonic structure for EGR3 in the human also has two exons (Patwardhan et al., 1991; 

Yamagata et al., 1994). The length of the exons were much shorter in the rat than in the 

human, but the sequence was highly homologous to regions within the human exons. Nab1 

and Nab2 were determined to have 9 and 7 exons respectively. In support of our analysis, 

Nab2 in the mouse has been similarly shown to have 7 exons (Svaren et al., 1996). The 

determination of these detailed exonic structures in the rat are novel findings. Interestingly, the
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first exon of Nab1 and the final 178 nucleotides of the first exon of Nab2 are the same and are 

likely to be analogous to the Nab conserved domain 1 (NCD1) identified previously (Svaren et 

al., 1996). The third and fourth exons of Nab1 and Nab2 are also the same and are likely to be 

analogous to the Nab conserved domain 2 (NCD2) also identified in the in the mouse Nab 

sequences. NCD1 has been identified to be sufficient for NAB1 and NAB2 interactions with 

EGR proteins, and NCD2 has been suggested to be a likely candidate for mediating EGR 

transcriptional repression (Svaren et al., 1996).

In agreement with a previous study, Egr3 expression was detected in the superficial and deep 

layers of the cerebral cortex, hippocampus, amygdala and most regions of the basal ganglia 

(Yamagata et al., 1994). Expression of Egr3 in additional regions of the adult rat brain were 

also described in this study. These include regions of the olfactory bulb and cerebellum. Nab1 

and Nab2 expression has not been characterized under basal conditions in the rat brain before. 

In all regions in which Egr3 was expressed, Nab2 was also expressed and Nab1 was 

expressed in most of the regions in which Egr3 was expressed. This supports the findings that 

EGR3 activity in all regions of the adult rat brain can be regulated by NAB1 and NAB2. 

Nevertheless, some regions express either Nab1 or Nab2 such as in the caudate putamen and 

nucleus accumbens of the basal ganglia, some regions of the septum and some regions of the 

thalamus. This supports the idea that NAB1 and NAB2 can have different functional roles. For 

example, Nab2 expression is activity-dependent while Nab1 expression is not (Jouvert et al., 

2002). Nab1 and Nab2 were also expressed in regions of the brain that Egr3 was not 

expressed in. It is likely that NAB1 and NAB2 may function in these regions to regulate the 

activity of other EGR family member that have a Nab conserved domain 1 and 2 (NCD1 and 

NCD2 domains), such as EGR1 (O’Donovan et al., 1999).

3.4.7 Conclusions

The expression profiles and semi-quantitative results are all drawn from one rat brain. Future 

experiments could include repeating ISH for each gene or splice variant on more rat brains to 

improve the reliability of our findings. Nrg1 and Nrg1 type I, II and III splice variants, Dtnbpl 

splice variants containing exons 1, 5, 8 and 9, Egr3, Nab1 and Nab2 show differential patterns 

of expression, but all are expressed in the hippocampus, amygdala and prefrontal cortex. 

These are regions that form part of the neural circuitry for fear-associated memory (LeDoux,
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2000). Further experiments in this thesis will focus on the investigating the regulation of these 

splice variants in fear memory processing. It is also of interest that all the schizophrenia genes 

of interest that were detected were expressed in the hippocampus and prefrontal cortex as 

these two regions are commonly smaller in volume in individuals with schizophrenia in 

comparison to controls (Harrison & Weinberger, 2005). The differential expression patterns for 

the different splice variants of Nrg1 and Dtnbpl is suggestive of different functional roles for 

these splice variants. Therefore the findings in this chapter highlight the importance of studying 

the different splice variants of genes in schizophrenia research and in our long-term memory 

investigations in the next chapter.
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CHAPTER 4

REGULATION OF SCHIZOPHRENIA SUSCEPTIBILITY GENES OF INTEREST IN 

CONSOLIDATION OF CONTEXTUAL FEAR CONDITIONING

4.1 INTRODUCTION

In the previous chapter probes were designed that detected all Nrg1 splice variants and Nrg1 

type I, II and III splice variants separately, all Dtnbpl splice variants and predicted Dtnbpl 

splice variants starting with exons 1,5 and 9 separately, Egr3, Nab1 and Nab2. The expression 

of these genes and splice variants were characterized throughout the whole rat brain. As 

specific labelling was not detected for all Disci splice variants or Disci L and Lv splice variants 

separately, or for Nrg1 type IV splice variants, these splice variants will not be investigated 

further.

4.1.1 Schizophrenia and Memory

Schizophrenia susceptibility genes may contribute to memory impairments present in 

schizophrenia (as discussed in 1.1.4). In particular, hippocampal-dependent associative long­

term memory (LTM) is a type of memory impaired in schizophrenia (Boyer et al., 2007). 

Contextual fear conditioning (CFC) in rats is a test of hippocampal-dependent associative LTM 

(Blanchard & Fial, 1968). Information on the neurocircuitry and genes involved in fear 

conditioning memory obtained from studies in rats can be extended 

to help understand the mechanisms underlying associative LTM in humans (Delgado et al., 

2006). Therefore if any schizophrenia susceptibility genes are regulated after CFC in rats this 

would provide evidence suggesting a functional role for that schizophrenia susceptibility gene 

in a core functional domain impaired in schizophrenia.
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The fear-conditioning paradigm has been used in many laboratories since 1959 (Baron, 1959) 

and is well established for studying associative memory (Fanselow, 1980). Contextual fear- 

conditioning (CFC) occurs when an aversive unconditioned stimulus (US), in this case a 

footshock, is presented to a rat shortly after it is placed in a neutral experimental context. This 

context then becomes a conditioned stimulus (CS) capable of eliciting detectable conditioned 

fear responses (CR), including freezing behaviour, when the rat is re-exposed to it (Fanselow, 

1980) (see 1.2.2). In this chapter gene expression is assayed in a group of rats that have been 

conditioned and in three control groups; a naive group, a CS-only group and a latent inhibition 

(LI) group, as used in a previous study (Hall et al., 2000). The CS-only group is exposed to the 

CS for the same time period as the conditioned group but does receive a US. This determines 

whether regulation is associated with exposure to a novel context. LI is a long-lasting 

phenomenon by which non-reinforced pre-exposure to a stimulus retards subsequent 

conditioning to that stimulus (Lubow & Moore, 1959; McLaurin et al., 1963). The LI group is 

exposed to the CS for a prolonged period of time before receiving a US. This determines 

whether regulation is associated with the experience of the footshock (Impey et al., 1998).

CFC can be used to investigate consolidation, reconsolidation and extinction of memory (see 

1.2.1). Memory consolidation theory was first proposed in 1900 by Muller and Pilzecker. They 

suggested that the processes that underlie new memories initially persist in a fragile state and 

consolidate overtime (McGaugh, 2000; Muller & Pilzecker, 1900). Consolidation is the process 

by which new memories are stored after a novel learning experience. After initial acquisition of 

a memory, cellular consolidation of the memory has been proposed by different researchers to 

take different lengths of time before it is complete; ranging from several hours (most commonly 

researched) to several days (Shedmehr & Holcomb, 1997; Bjordahl et al., 1998; McGaugh, 

2000). The consolidation of memory is hypothesised to be mediated by structural changes in 

the circuitry associated with synaptic plasticity (Bliss & Lomo, 1973; Dudai, 2002). The 

schizophrenia susceptibility genes of interest, Nrg1, Dtnbpl, Egr3 and Bdnf, have each been 

shown to be involved in synaptic plasticity, a cellular model of memory (Harrison & Weinberger, 

2005; see 1.3.2). Other research findings for these genes also suggest that they contribute to 

memory function.
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4.1.2 Schizophrenia Susceptibility Genes of Interest and Memory

NRG1 is involved in the modulation of synaptic plasticity in the hippocampus (Huang et al., 

2000; Kwon et al., 2005; Li et al., 2007; Eilam et al., 1998; Roysommuti et al., 2003) and 

prefrontal cortex (Gu et al., 2005; Stefansson et al., 2002) (see 1.1.3); both regions of the brain 

required for memory function. Also in these brain regions a Nrg1 variant has been associated 

with reduced activity in patients with schizophrenia during a Hayling sentence completion task, 

a task known to activate frontal and temporal brain regions (Hall et al., 2006). Another fMRI 

study has shown that schizophrenia risk alleles in NRG1 are positively correlated with 

hyperactivation in the cingulate gyrus, left middle frontal gyrus, bilateral fusiform gyrus and the 

left middle occipital gyrus during encoding of an episodic memory, and in the left middle 

occipital gyrus during retrieval of an episodic memory (Krug et al., 2009). Mutant mice 

heterozygous for a partial deletion of the EGF-like domain in Nrg1 (Nrg1+/) showed a 

significant reduction in freezing behaviour in a LTM test 24 hours following CFC (Ehrlichman et 

al., 2009). Performance in a task testing short-term and working memory was impaired in 

heterozygous mutant mice with a targeted disruption for type III Nrg1 (Chen et al., 2008). 

However there were no apparent working memory deficits in mice with heterozygous deletion 

of transmembrane-domain NRG1 (O’Tuathaigh et al., 2007).

DTNBP1 has a widespread expression pattern throughout the adult human brain (Weickert et 

al., 2004) and the adult rat brain (see 3.3.2) including in the hippocampal formation, prefrontal 

cortex and amygdala, all of which are brain regions involved in memory function. DTNBP1 

protein is localized to asymmetric synapses in pyramidal cells in the CA1 suggesting that 

DTNBP1 may be involved in glutamatergic neurotransmission (Talbot et al., 2006). Two studies 

have identified a correlation between variants of Dtnbpl and cognitive impairments, some of 

which were in memory function (Burdick et al., 2006; Donohoe et al., 2007). Neuroimaging 

studies have identified a correlation between different variants of Dtnbpl and impairments in 

working and episodic memory in humans, and in some cases these variants of Dtnbpl were 

also associated with schizophrenia (Wolf et al., 2010; Markov et al., 2010; Thimm et al., 2010). 

Dtnbpl variants have also been associated with reduced prefrontal brain activity using an 

electrophysiological method coupled with a cognitive task (Fallgatter et al., 2006). The 

behavioural characteristics of the Dtnbpl transgenic mouse, called the sandy mouse, includes 

a variety of memory impairments (Feng et al., 2008; Takao et al., 2008; Bhardwaj et al., 2009; 

Cox et al., 2009; Jentsch et al., 2009). The evidence of an association between Dtnbpl and
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cognitive function, including various memory impairments, and its localization to glutamatergic 

synaptic transmission combined with its expression in the hippocampus and prefrontal cortex is 

suggestive of a role for Dtnbpl in memory function.

Egr3 is a transcription factor with a zinc finger motif that is highly homologous to that of the 

other Egr family members (O’Donovan et al., 2000). Egr3 is expressed in the cerebral cortex, 

hippocampus, amygdala and basal ganglia. Although Egr1 is known to have a critical role in 

the reconsolidation of long-term fear memory in the CA1 of the hippocampus (Lee et al., 2004; 

Hall et al., 2001), the role for Egr3 in memory is less well characterized. Context and cued- 

associative learning and memory, and short-term and long-term object recognition memory are 

significantly impaired in Eg&- mice (Li et al., 2007). In contrast another family member, Egr2, 

is not considered essential for learning and memory as conditional Egr2 knock out mice have 

no impairments in fear learning, conditioned taste aversion memory or in a spatial navigation 

memory (Poirier et al., 2007). Hence despite their structural similarity, not all Egr family 

members have similar functions (Poirier et al., 2007). NAB1 and NAB2 are both repressors of 

EGR3 transcriptional activity in neurones and could therefore be involved in regulating memory 

consolidation by modulating the cfe novo gene expression resulting from EGR3 upregulation 

within an activated neuron (Svaren et al., 1998). Nab2, but not Nab1, is rapidly and transiently 

regulated in response to cocaine administration in rats (Jouvert et al., 2001) and in response to 

Nerve Growth Factor (NGF) stimulation in PC12 cells (Svaren et al., 1996) and so may also be 

regulated during memory consolidation.

BDNF has been shown to be involved in the molecular mechanisms underlying memory in 

many studies (see Cunha et al., 2010). In particular, BDNF has already been shown to be 

upregulated during, and necessary for, the consolidation of contextual fear memory (CFM) 

(Hall et al., 2000; Lee et al., 2004). Therefore the investigation of Bdnf expression in this 

chapter could act as appositive control.

4.1.3 Outline of Experiments

Experiment 1 determines whether the conditioning procedure produces CFM. Experiment 2 

investigated whether Nrg1 type I, II and III splice variants, all Dtnbpl splice variants (pan 

Dtnbpl), Dtnbpl splice variants starting with exons 1, 5 and 9 separately, Egr3, Nab1, Nab2 

and Bdnf are regulated 2 hours following CFC. The time-point of 2 hours following CFC was
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chosen as it gave the best coverage for when all genes of interest should be upregulated to 

some degree following neuronal stimulation based on available literature. Nrg1 upregulation 

following kainic acid stimulation peaked between 2.5 and 4.5 hours in different brain regions of 

interest. In the hippocampus Nrg1 expression peaked at 2 hours following a forced locomotor 

test and 1 hour following LTP stimulation (Eilam et al., 1998). Egr3 peak upregulation was 

observed between 1 and 2 hours following maximal electoconvulsive seizures and was present 

30 min and 1 hour following high frequency stimulation in the hippocampus (Yamagata et al., 

1994). Bdnf is known to be upregulated at 30 min following CFC (Hall et al., 2000) and there is 

no activity-dependent expression profile information currently known related to Dtnbpl 

Importantly two hours post-CFC is also within the consolidation period (McGaugh, 2000). As 

Bdnf has been shown to be regulated following CFC it was used in experiment 2 as a positive 

control (Hall et al., 2000). ISH was used to investigate the expression of the genes of interest 

in regions of the brain involved in circuitry known to support consolidation of CFC (see 1.3). All 

genes or splice variants of interest were assayed in the CA1, CA3 and DG of the hippocampus, 

with the exception of Nrg1 type II and Nrg1 type III that were unmeasurable in the CA3 and 

DG. For Egr3 expression in the medial prefrontal cortex (cingulate cortex (Cg1), prelimbic 

cortex (PrL) and infralimbic cortex (IL)), and in the amygdala (dorsolateral nucleus (DLA), 

lateral nucleus (LA) and basolateral nucleus (BLA)) was also conducted. Finally Nab2 was also 

assayed in the CA1 and in the DLA nucleus of the amygdala. These studies tested the 

hypothesis that regulation of Egr3, Nab1, Nab2, and different splice variants of Nrg1 and 

Dtnbpl are associated with consolidation of CFM. Experiment 3 investigated Egr3 regulation in 

the CA1 in consolidation of CFC using QPCR. Experiment 4 established the time profile of 

Egr3 regulation in the CA1 following CFC using ISH. Finally, experiment 5 investigated the 

effect of intrahippocampal infusions of Egr3 antisense on CFC, to determine if EGR3 is 

necessary for consolidation of CFM.

4.2 METHODS

4.2.1 Subjects

The subjects were adult male lister hooded rats (280-350g; Charles River, UK). They were 

housed in pairs in a holding room maintained at 21°C under a reverse light cycle (12 h 

light/dark; lights on at 10:00 P.M). All experiments were conducted in the dark period for the
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rats. Animals were allowed ad libitum access to food and water. All procedures were conducted 

in accordance with local Cardiff University Ethical Committee approval and the United Kingdom 

1986 Animals (Scientific Procedures) Act (Project license PPL 30/2236).

4.2.2 Experiment 1: Conditioning Procedure Produces Long-Term CFM and 

Establishment of the Control Groups

The contextual fear-conditioning chambers described in 2.2.1 were used. Rats were divided 

into three groups:- (i) CS-US (n=4), (ii) CS-only (n=4), and (iii) latent inhibition (LI) (n=4). Rats 

were handled for 5-10 min each, for 3 consecutive days. On day 4 the rats in the CS-US group 

were fear-conditioned. Conditioning consisted of giving an electric footshock (2 s, 0.5 mA 

shock; US) after the rat had been in the conditioning chamber (CS) for 2 min. After a further 1 

min in the chamber the rats were returned to their home cage. The rats in the CS-only control 

group were placed in the conditioning chamber for 3 min and then returned to their home cage. 

Rats in the LI control group were placed in the conditioning chamber for 8 h and then received 

an electric footshock before being returned to their home cage 1 min later. Both 24 hours and 3 

weeks later the rats were returned into the conditioning chamber for 2 min, for LTM1 and LTM2 

retrieval tests, respectively.

The behaviour of the rats in the boxes was digitally recorded. The freezing behaviour was 

scored by observation and recording the presence or absence of freezing behaviour every 10 

s. Freezing behaviour was scored throughout the 2 min pre-US and 1 min post-US periods for 

the CS-US and LI group rats and in the equivalent first 2 min and final 1 min period for the CS- 

only group rats. Freezing behaviour was also recorded for the 2 min LTM1 and LTM2 tests 

(Fig. 4.1 a).

4.2.3 Experiment 2: Profiling the Expression of Schizophrenia Susceptibility Genes 

after CFC using In Situ Hybridisation

4.2.3.1 Behaviour

Rats were divided into four groups:- (i) CS-US (n = 4), (ii) CS-only (n = 4), (iii) LI (n = 4) and (iv) 

naive (n = 4). The CS-US, CS-only and LI groups experienced the same conditions described 

in experiment 1 with the exception that the rats were killed 2 h after conditioning by CO2
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A
Group:

24 h 21 d
CS-US CS (2 min)— ► US (2 s)— ► CS (1 min) — -------► LTM1 - ----------► LTM2

LI CS (8 h) — ► US (2 s)— ► CS (1 min) — -------► LTM1 - ----------► LTM2

CS-only CS (3 min) — -------► LTM1 - — — ► LTM2

v----------------------- ^ ^ v--------
Conditioning Retrieval

B
Group:

2 h
CS-US CS (2 min)— ► US (2 s)— ► CS (1 min) —  - »

LI

CS-only

Conditioning

Figure 4.1. Contextual fear conditioning protocol for investigating consolidation of 
CFM. (A) Schematic showing behavioural procedure used for experiment 1 to test 
whether the conditioning procedure produces long-term memory and to establish the 
control groups. (B) Schematic showing behavioural procedure used for experiment 2 to 
provide tissue to profile the expression of the schizophrenia susceptibility genes of 
interest after contextual fear conditioning. Conditioned Stimulus (CS), Unconditioned 
Stimulus (US), Long-Term Memory test (LTM), Latent Inhibition (LI).
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asphyxiation (Fig. 4.1 b). Rats in the naive control group remained in home cages until killed by 

CO2 asphyxiation. The brains were excised and rapidly frozen on dry ice before storage at 

-80°C.

In order to increase the number of rats in each group for the hippocampal regions and to 

provide amygdala tissue for analysis, the behavioural experiment was repeated with an n = 6 in 

each group. Quantification of Nrg1 type I splice variants, Egr3 and Nab2 expression in the 

tissue obtained from the repeated behavioural experiment was performed using ISH.

4.2.3.2 In Situ Hybridization (ISH)

ISH was carried out as described in 2.5. The oligonucleotide probes designed in Chapter 3 

were used to assay mRNA expression of Nrg1 type I, II and III splice variants, pan Dtnbpl, 

predicted Dtnbpl splice variants starting with exons 1, 5 and 9, Egr3, Nab1 and Nab2. A Bdnf 

oligonucleotide probe was designed, complementary to nucleotides 1238-1282 of NM_012513, 

with the sequence: 5’-AGTTCCAGTGCCTTTTGTCTATGCCCCTGCAGCCTTCCTTCGTGT-3\ 

All oligonucleotides were 3’ end-labelled with [a-35S]dATP using terminal deoxynucleotidyl 

transferase; the specific activity of the labelled probes are given in Table 4.1. For tissue 

obtained from the initial behavioural experiment, ISH was carried out on coronal 14 pm 

sections of the prefrontal cortex (approx. bregma 3.7 mm) and hippocampus (approx. bregma 

-3.3mm) (3 labelled sections and 2 non-specific labelled sections for each region). For tissue 

obtained from the repeated behavioural experiment, ISH was carried out on 14 pm sections of 

the amygdala (approx. bregma -3.1mm) and hippocampus (4 labelled sections and 3 non­

specific labelled sections for each region). Hybridised sections with a 14C Microscale 

(Amersham, UK) were opposed to autoradiographic film for 4 - 17 days (Table 4.1). After 

obtaining appropriate exposure the films were developed and scanned at 1200dpi and the high 

resolution images were saved as .tiff files ready for densitometric analysis. Sections hybridised 

with Nrg1 type I, II and III splice variants, Egr3, Nab1, Nab2 and Bdnf from the initial 

behavioural experiment and with Nrg1 type I splice variants, Egr3 and Nab2 from the repeat 

behavioural experiment were then dipped in K5 photographic emulsion as described in 2.5.5. 

They were exposed for 7 - 17 weeks (Table 4.1) at 4°C before development and 

counterstaining with 0.1% thionin.
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Table 4.1. Specific activity of S35-labelled oligonucleotide probes. These probes were used to 
detect expression of genes of interest in adult rat brain sections 2 hours post-training in the CS 
only, LI and CS-US groups and in the naive group of rats. The number of days that the 
autoradiographic film and the photographic emulsion were exposed to the labelled tissue sections 
are given.

Gene Gene
subtype

Specific Activity 
(dpm/|jl)

Days on film Days on emulsion

Nrg1 I 216 000 7 55
I 148 500 12 104
II 382 500 11 72
III 305100 9 80

Dtnbpl Exon 1 176100 14 97
Exon 5 244 300 14 97
Exon 8 288 800 10 71
Exon 9 306 300 10 71

Egr3 Pan 210 500 6 57
Egr3 Pan 227 200 10 75
Nab1 Pan 208 000 7 84
Nab2 Pan 185 300 17 119
Nab2 Pan 249 000 11 83
Bdnf Pan 252 300 4 55
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4.2.3.3 Densitometric Analysis

For densitometric analysis, ImageJ was used to measure the density of selected regions of the 

brain as described in 2.5.7. Optical density values were converted to nCi/mg by reference to 

the microscale. Gene expression levels in the CS-US, CS-only and LI groups were 

standardised as a percentage of the mean level of the naive group for each region. 

Densitometric analysis was used to determine the expression of Nrg1 type I splice variants, all 

predicted Dtnbpl splice variants, Egr3 and Bdnf in the CA1, CA3 and DG regions of the 

hippocampus. Egr3 expression was also measured in the Cg1, PrL and IL regions of the 

prefrontal cortex and in the DLA, LA and BLA nuclei of the amygdala. Nrg1 type II and III splice 

variants, Nab1 and Nab2 expression were measured in the CA1 region of the hippocampus 

only. Nab2 was also measured in the DLA nucleus of the amygdala. For each subject, the 

average non-specific densitometric value for a region was subtracted from the average total 

densitometric value for that region to provide the final specific densitometric value. Gene 

expression levels in the CS-US, CS-only and LI groups were standardised as a percentage of 

the mean expression levels in the naive group for each region.

4.2.3.4 Silver Grain Image Collection and Analysis

Images of emulsion-dipped sections were obtained on a light microscope, through a 100x 

magnification lens under oil immersion, with a digital camera (see 2.5.8). The focus was on the 

silver grains (SG) with cells detectable in the background. Photomicrograph images were 

collected from the CA1 region in all hippocampal sections for Nrg1 type I, II and III splice 

variants, Egr3, Nab1, Nab2 and Bdnf. The number of SG per cell were counted using ImageJ 

over sufficient randomly selected counterstained neurones, from each region for each subject, 

such that the SE of the counts for any region was less than 10% of the population mean 

(approximately 36 total labelled cells and 24 nonspecific labelled cells). The specific SG count 

was then calculated for each region by subtracting the nonspecific counts from the total counts 

for each subject. Gene expression levels in the CS-US, CS-only and LI groups were 

standardised as a percentage of the mean number of SG in the naive group for each region. 

The average number of silver grains per cell for the naive group was recorded for each gene of 

interest.
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Heavily labelled Bdnf-positive cells in the CA1, CA3 and DG regions of the hippocampus were 

subjectively identified in two ways. Firstly, in photomicrographs as cells that were very densely 

covered with SG, by observation approximately 80 SG/cell as opposed to approximately 10 

SG/cell that was found in the majority of the cells. Secondly, they were subjectively identified 

through a dark-field microscope as sparsely distributed clusters of bright points. These clusters 

of bright points were confirmed to represent high levels of Bdnf expression in cells by switching 

to light-field conditions without moving the slide. The number of heavily labelled Bdnf-positive 

cells per hippocampal region per section were counted under dark-field conditions using the 

light microscope at 10x magnification. The number of SG per cell in the subjectively identified 

heavily and non-heavily labelled Bcfnf-positive cells from the randomly taken photomicrographs 

were counted using ImageJ. These quantifications were determined from the same 3 total and 

2 nonspecific Bcfnf-labelled sections as used for the densitometric analysis.

4.2.4 Experiment 3: Regulation of Egr3 in Consolidation of CFC using QPCR

4.2.4.1 Behaviour

Rats were divided into three groups:- (i) CS-US (n=6), (ii) LI (n=6) and (iii) naive (n=6). These 

rats underwent the same behavioural protocol as in experiment 2. Two hours after training the 

rats were killed by CO2 asphyxiation, the brains were excised immediately from the rats, the 

CA1 regions of the hippocampus dissected out and placed in an Eppendorf of RNAIater and 

stored at -80°C.

4.2.4.2 QPCR

Two QPCR experiments were performed on the same dissected CA1 hippocampal sample 

(see 2.6.1). RNA was extracted using a Qiagen RNeasy protect mini kit from the CA1 tissue 

(see 2.6.2). In the initial QPCR experiment the concentrations of the 18 RNA samples from 

experimental rats were determined (Table 4.2) and used to standardise the amount of RNA 

that underwent reverse transcription as described in 2.6.3. In the technical replicate 

experiment, samples were diluted 1:20 in ddhhO to ensure that the concentration of cDNA was 

distributed within the concentration range of the standard curve. The concentration of the 

diluted samples were determined (Table 4.3) and again used to standardise the amount of 

RNA that underwent reverse transcription across all the samples. A five point standard curve
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Table 4.2. Concentration of RNA in CA1 samples 1 to 18 used for QPCR experiment 1.
Sample purity and level of contaminants are derived from the ratio of absorbance levels
measured at a wavelength of 260 îm, 280 \im  and 230 * indicates sample that was used
for creating the standard curve.

Sample Concentration (ng/|il) Purity (Azeo/Aao) Contaminants (A26o/A23o)
S1 281.20 2.04 2.16
S2 302.30 2.03 2.13
S3 666.60 2.08 2.00
S4 821.20 2.08 2.03
S5* 488.90 2.00 1.81
S6 480.70 1.99 2.11
S7 484.80 1.98 2.10
S8 363.30 2.02 2.17
S9 519.50 1.98 2.12
S10 460.30 2.03 1.75
S11 371.50 2.05 1.72
S12 542.20 1.96 2.09
S13 443.80 1.99 2.12
S14 639.30 2.07 1.99
S15 536.10 1.99 2.00
S16 314.30 2.03 2.17
S17 652.50 2.08 2.11
S18 566.30 1.96 2.02

Table 4.3. Concentration of RNA in CA1 samples 1 to 18 diluted at 1:20 and undiluted 
sample 19 used for QPCR experiment 2. Sample purity and level of contaminants are derived
from the ratio of absorbance levels measured at a wavelength of 260 îm, 280 \im  and 230 \im. 
* indicates sample that was used for creating the standard curve.

Sample Concentration (ng/|jl) Purity (A260/A280) Contaminants (A260/A230)
S1 13.90 1.80 2.21
S2 14.10 1.89 2.46
S3 35.50 1.86 2.22
S4 44.70 1.83 2.21
S5 28.10 1.81 2.09
S6 25.30 1.94 2.35
S7 26.50 1.89 2.35
S8 16.90 1.91 2.08
S9 27.50 1.90 2.37
S10 25.00 1.86 1.93
S11 18.40 1.91 1.97
S12 28.90 1.94 2.33
S13 22.00 1.91 2.36
S14 34.90 1.76 2.18
S15 32.30 1.81 2.32
S16 14.60 1.91 2.47
S17 38.50 1.80 2.45
S18 32.30 1.81 2.44
S19 * 367.20 2.05 1.76 150



was generated by three-fold dilutions as described in 2.6.4. In the initial QPCR experiment the 

standard curve was created using RNA from one of the naive group CA1 samples. In the 

technical replicate QPCR experiment, the standard curve was created using RNA from the CA1 

of an additional rat under naive conditions. QPCR was performed in duplicates of each of the 

18 CA1 samples, and in triplicate of each standard curve dilution for Egr3 and the reference 

genes Hmbs, Sdha and Ubc as described in 2.6.4 and 2.6.5.

4.2.4.3 QPCR Analysis

Any outliers within the triplicates from the standard curve dilutions were removed in order to 

produce a more accurate standard curve. To meet the exclusion criteria the range of triplicate 

values must be greater than one Ct value. The value that is furthest from the standard curve is 

excluded. The standard curve was used to determine the relative amount of cDNA at threshold 

level for each sample. The relative level of expression of each GOI was quantified using the Ct 

value and the standard curve as described in 2.6.5. Fold changes in cDNA levels between the 

LI and CS-US groups relative to the naive group were calculated as in 2.6.5.

4.2.5 Experiment 4: Time Profile of Egr3 Regulation following CFC

12 rats underwent conditioning, as described in experiment 1. After conditioning the rats were 

returned to their home cages. 4 hours, 8 hours and 24 hours after conditioning the rats were 

killed by CO2 asphyxiation and processed for ISH as described above (see 4.2.3.2). In addition, 

two naive rats were taken from home cages and killed immediately without undergoing any 

conditioning and were processed. The tissue collected from these rats was combined with 

tissue from experiment 2. This provided 2 hour post-conditioning time point sections and further 

naive sections. Therefore naive sections and sections collected at 2 h, 4 h, 8 h and 24 h were 

used to determine the time profile of Egr3 regulation post-conditioning using ISH.

4.2.6 Experiment 5: Effect of Intrahippocampal Infusions of Egr3 Antisense on CFC

Two different Egr3 antisense oligonucleotides (ASO) and one missense oligonucleotide (MSO) 

(18 nucleotides long) were designed as described in 2.3.1. The sequences for these 

oligonucleotides are also given in 2.3.1. Rats were divided into three groups:- (i) Egr3 

antisense I oligonucleotides (ASOI) group (n=6), (ii) Egr3 antisense II oligonucleotides (ASOII)
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group (n=6), and (iii) missense oligonucleotides (MSO) group (n=6). All groups underwent 

surgery to put in place bilateral indwelling hippocampal cannula at AP -3.50, relative to bregma, 

as described in 2.3.2. A week after surgery the rats received a habituation infusion of 2\i\ of 

PBS at 0.125^1/min, and a day later they received an infusion of 2 jal of 1 nmol/pi ASOI, 2 \i\ of 

2 nmol/̂ il ASOII or 2 l̂ of 1 nmol/|xl MSO in PBS at 0.125^1/min, as described in 2.3.3.90 min 

after the infusion the rats were conditioned as in 4.2.1.24 hours later the rats had a LTM1 test 

consisting of a 2 min re-exposure to the CS only. Similar LTM2 and LTM3 retrieval tests were 

performed 14 days and 21 days post-conditioning respectively. The average level of freezing 

behaviour in the ASOI group, ASOII group and the MSO group for the pre-US period, post-US 

period, LTM1 test, LTM2 test and LTM3 test was calculated.

After behavioural analysis, rats were killed by CO2 asphyxiation. The brains were excised and 

rapidly frozen on dry ice before storage at -80°C. Histological assessment of the cannulae 

placement was performed by using a cryostat to cut and collect 14|xm sections from the dorsal 

hippocampus that the cannulae targeted, and using thionin staining and a light microscope to 

identify the cannulae endpoints as described in 2.4.

4.2.7 Behavioural Analysis

The number of 10 s intervals that had freezing behaviour present was divided by the total 

number of 10 s intervals observed. This was then expressed as the percentage of time spent 

freezing for each test.

4.2.8 Statistical Analysis

Repeated Measures Analysis of Variance (ANOVA) was used to identify significant differences 

in the freezing behaviour between the different behavioural groups after CFC as there was 

more than one measurement observed for each rat. For experiment 5 the ASOI group was 

compared to the MSO group, and the ASOII group was compared to the MSO group. One-way 

ANOVA was used to identify significant differences between the pre-US and post-US freezing 

behaviour in the CS-US group. One-way ANOVA and the Fishers Least Significant Difference 

(FLSD) statistical tests were used to measure differences between the levels of gene 

expression in the different behavioural groups or at different time points post-conditioning
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determined using ISH. For experiment 2 the standardised ISH results from the initial 

behavioural experiment (n = 4/group) were combined with the standardised ISH results from 

the second behavioural experiment (n = 5 or 6/group) to produce ISH results based on 9 or 10 

rats per group. One-way ANOVA was performed on the normalised QPCR data to measure 

differences between the levels of Egr3 expression in the different groups.

4.3 RESULTS

102 rats were used in this study in total. 12 rats were used in the establishment of the CFC 

procedure and control groups in experiment 1. 40 rats were used for ISH analysis of gene 

expression following CFC in experiment 2. One rat from the LI group in experiment 2 was 

asleep before, during and after the administration of the footshock and so was excluded from 

further analysis. 20 rats were used for QPCR analysis of Egr3 expression in experiment 3.12 

rats were used to determine the time profile of Egr3 expression in experiment 4.18 underwent 

surgery for behavioural analysis. Histological analysis showed that cannulae terminated 

bilaterally in the dorsal hippocampus in all of the operated rats and none showed signs of gross 

damage to the hippocampus (Fig. 2.1).

4.3.1 Experiment 1: Conditioning Procedure Produces Long-Term CFM

There was an effect of group on freezing behaviour during conditioning and in retrieval tests (F 

(5.356, 24.103) £  = 0.893 = 17.019, p = 0.000, repeated measures ANOVA). This was manifested by 

an increase in freezing behaviour in the CS-US group selectively following the CS-US pairing 

(F (3, 12) = 21.909, p = 0.000, ANOVA) (Fig. 4.2 a). Notably, the LI group demonstrated 

significantly attenuated conditioning as there was no freezing behaviour present in the retrieval 

tests.

The increase in freezing behaviour in the LTM tests in the CS-US group was an index that 

CFM lasted at least 14 days. The data shows that no CFM was formed in the CS-only or LI 

control groups. Thus, this conditioning procedure does produce long-term CFM while the CS- 

only and LI control groups do not.
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4.3.2 Experiment 2: Profiling the Expression of Schizophrenia Susceptibility Genes 

after CFC using In Situ Hybridisation (ISH)

4.3.2.1 Behaviour

There was an effect of group on freezing behaviour during pre-US and post-US periods in the 

initial behaviour (F m b  = 1 = 13.492, p = 0.002, repeated measures ANOVA) and in the repeat 

behavioural data (F (2, u) e = 1 = 23.768, p = 0.000, repeated measures ANOVA). This was 

manifested by an increase in freezing behaviour in the CS-US group selectively following the 

CS-US pairing in both the initial behaviour (F (i, 6) = 41.354, p = 0.001, ANOVA) and in the 

repeat behaviour (F (i, 10) = 76.220, p = 0.000, ANOVA) (Fig. 4.2 b & c). Thus, rats conditioned 

as in experiment 1 showed a similar behavioural pattern of freezing behaviour, indicating 

initiation of CFM in the CS-US group only.

4.3.2.2 Nrg1 type I, II and III Splice Variants Expression

Densitometric analysis of Nrg1 type I splice variants expression in the CA1 revealed no 

difference between the groups (F (3, 12) = 1.748, p = 0.211, ANOVA) but a priori statistical 

analysis using Fishers Least Significant Difference (FLSD) identified a 59% increase in Nrg1 

type I expression in the CS-US group relative to the LI group. When the number of rats in each 

group was increased to n = 10, no difference in the levels of expression was found between the 

groups (F (3, 35) = 1.674, p = 0.190, ANOVA), or in the a priori statistical analysis (p = 0.228, 

FLSD) (Fig. 4.3 a). In the CA3, with an n = 4 in each group, there was no difference in Nrg1 

type I levels of expression between the groups (F (3,12) = 1.869, p = 0.189, ANOVA), but a priori 

statistical analysis between the CS-US and LI groups revealed a 90% increase in the CS-US 

group relative to the LI group (Fig. 4.3 b). In the DG, with an n = 4 in each group, there was no 

difference in Nrg1 type I expression between the groups (F <3, 12) = 1.563, p = 0.250, ANOVA) 

(Fig. 4.3 c). Densitometric analysis of Nrg1 type II and III splice variants in the CA1 was not 

possible due to the very low levels expressed in this region.

Cellular level analysis on the same Nrg1 type I splice variants hybridised CA1 region, again 

showed no difference in expression levels between the groups (F (3, 35) = 0.273, p = 0.844, 

ANOVA) (Fig 4.3 d). Cellular level analysis, unlike densitometric analysis, of Nrg1 type II splice
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variants expression in the CA1 was possible. While there was no difference between the 

individual groups (F (3,12) = 1.735, p = 0.213, ANOVA), the three behavioural groups combined 

had decreased levels of Nrg1 type II expression relative to the naive group (F (1,14) = 5.989, p = 

0.028, ANOVA) (Fig. 4.3 e). Cellular level analysis of Nrg1 type III splice variants expression 

levels in the CA1 were not different between the groups (F (3, 12) = 0.923, p = 0.459, ANOVA) 

(Fig. 4.3 f).

Nrg1 type I splice variants were not regulated in correlation with consolidation of CFM in the 

CA1 or DG regions of the hippocampus. There was however a significant upregulation of Nrg1 

type I in conditioned rats relative to the LI group of rats in the CA3. Nrg1 type II and III splice 

variants were also not regulated in correlation with consolidation of CFM in the CA1, but Nrg1 

type II splice variants were downregulated in all behavioural groups relative to the naive group.

4.3.2.3 Expression Levels of Probes Designed to Dtnbpl Exons 1,5,8 and 9

Densitometric analysis in the CA1 revealed that there was no difference in the levels of 

expression between the groups for Dtnbpl exon 1 splice variants (F (3, 12) = 0.58, p = 0.64, 

ANOVA), Dtnbpl exon 5 splice variants (F (3, 12) = 0.22, p = 0.88, ANOVA), Dtnbpl exon 9 

splice variants (F (3, 12) = 1.38, p = 0.30, ANOVA) and pan Dtnbpl (Dtnbpl exon 8) (F (3, 12) = 

0.19, p = 0.90, ANOVA) (Fig. 4.4 a, d, g & j). In the CA3 it was revealed that, like the CA1, 

there was no difference in the levels of expression between the groups for Dtnbpl exon 1 

splice variants (F (3,12) = 0.30, p = 0.83, ANOVA), Dtnbpl exon 5 splice variants (F (3,12) = 0.06, 

p = 0.98, ANOVA), Dtnbpl exon 9 splice variants (F (3, 12) = 1.17, p = 0.36, ANOVA) and pan 

Dtnbpl (Dtnbpl exon 8) (F (3, 12) = 0.44, p = 0.73, ANOVA) (Fig. 4.4 b, e, h & k). In the DG it 

was revealed that, like the CA1 and CA3, there was no difference in the levels of expression 

between the groups for Dtnbpl exon 1 splice variants (F (3, 12) = 0.18, p = 0.91, ANOVA), 

Dtnbpl exon 5 splice variants (F (3,12) = 0.24, p = 0.87, ANOVA), Dtnbpl exon 9 splice variants 

(F (3, 12) = 0.59, p = 0.63, ANOVA) and pan Dtnbpl (Dtnbpl exon 8) (F (3, 12) = 0.15, p = 0.93, 

ANOVA) (Fig. 4.4 c, f, i & I). There were no changes in expression of Dtnbpl splice variants in 

the CA1, CA3 or DG hippocampal regions in correlation with consolidation of CFM 2 hours 

after CFC.
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4.3.2.4 Egr3 Expression

4.3.2.4.1 Hippocampus

Densitometric analysis of Egr3 expression in the CA1 revealed that there was a difference in 

the levels of expression between the groups (F (3,35) = 12.426, p = 0.000, ANOVA) (Fig. 4.5 a). 

Egr3 was upregulated in the CS-US group relative to the three control groups, with Egr3 being 

upregulated by 31% in the CS-US group in comparison to the naive group. These findings 

suggest that Egr3 upregulation correlates with consolidation of CFM. In addition, Egr3 was 

upregulated in the CS-only group and LI group relative to the naive group. Cellular level 

analysis of Egr3 expression in the CA1 revealed no difference between the groups (F (3, 34) = 

1.947, p = 0.141, ANOVA) (Fig. 4.5 b), but a priori statistical analysis revealed an upregulation 

of Egr3 expression by 22% in the CS-US group relative to the naive group. Densitometric 

analysis of Egr3 expression in the CA3 and DG revealed that there was no difference in the 

levels of expression between the groups (F (3, 12) = 3.002, p = 0.073, ANOVA) and (F (3, 12) = 

3.240, p = 0.060, ANOVA) respectively (Fig. 4.5 c & d). However a priori statistical analysis in 

the CA3 revealed an upregulation of Egr3 expression by 27% in the CS-US group relative to 

the naive group. Also in the DG Egr3 expression was upregulated in the CS-US group by 21% 

and 16% relative to the naive and CS-only groups respectively.

Cellular level analysis of Nab1 and Nab2 expression in the CA1 revealed that there was no 

difference between the groups (F (3, 12) = 0.149, p = 0.928, ANOVA) and (F <3,35) = 1.337, p = 

0.278, ANOVA) respectively (Fig. 4.6 a & b). Films obtained from the first Nab1 and Nab2 ISH 

experiment were not suitable for densitometric analysis. As Nab2 but not A/abfhas been shown 

to be transiently upregulated in response to cellular activity (Jouvert et al., 2001), Nab2 is more 

likely of the two genes to be regulated following CFC and so densitometric analysis of Nab2 in 

the CA1 was performed on a subsequent Nab2 ISH experiment. The CA1 region was chosen 

as Egr3 was regulated in this region. Regional analysis of Nab2 expression in the CA1 

revealed that there was no difference between the groups (F (3,19) = 2.500, p = 0.090, ANOVA). 

However a priori statistical analysis revealed that there was an upregulation of Nab2 by 26% in 

the LI group relative to the naive group (p = 0.019) (Fig. 4.6 c).
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Figure 4.5 Egr3 expression in the hippocampus 2 hours after CFC. Egr3 expression in 
the CA1 field: (A) Regional level measured using image densitometry (n = 10/group), and (B) 
Cellular level measured using grain counting (n = 10/group). (C) Egr3 expression in the CA3 
region measured using image densitometry (n = 4/group). (D) Egr3 expression in the DG
region measured using image densitometry (n = 4/group). (* p<0.05, ** p<0.01 and *** 
p<0.001, FLSD). Error bars represent SEM. ID, Image densitometry; SG, Silver grain 
counting; Egr3 naive expression (nCi/mg tissue): CA1, 61 ±4 & 55±3; CA3, 56±5; DG, 57±5. 
Naive number of SG/cell: CA1, 19±3 & 98±5.
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Egr3 expression was upregulated in correlation with consolidation of CFM in the CA1 region of 

the hippocampus as determined by regional level investigation and supported by findings at the 

cellular level of analysis. In both the CA3 and DG, Egr3 expression was upregulated in the CS- 

US group relative to the naive group, and also in the CS-US group relative to the CS-only 

group in the DG. Nab1 and Nab2 expression was not regulated in correlation with consolidation 

of CFM in the CA1, but Nab2 expression was upregulated in the LI group relative to the naive 

group.

4.3.2.4.2 Prefrontal Cortex

Densitometric analysis of Egr3 expression in the Cg1 cortex revealed that there was a 

difference in the levels of expression between the groups (F (3, 12) = 4.050, p = 0.033, ANOVA) 

(Fig. 4.7 a). Egr3 was upregulated in the CS-US group by 35% and in the CS-only group by 

34% relative to the naive group. Egr3 expression levels in the PrL cortex were different 

between the groups (F (3, 12) = 9.076, p = 0.002, ANOVA) (Fig. 4.7 b). Egr3 was upregulated in 

the CS-US group by 55% and in the CS-only group by 64% relative to the naive group. Finally, 

Egr3 expression levels in the IL cortex were also different between the groups (F (3,12) = 5.823, 

p = 0.011, ANOVA) (Fig. 4.7 c). Egr3 was upregulated in the CS-US group by 63% and in the 

CS-only group by 79% relative to the naive group.

Egr3 was not regulated in correlation with consolidation of CFM in the Cg1, PrL and IL regions 

of the medial prefrontal cortex. However, Egr3 was upregulated in the CS-US and CS-only 

groups relative to the naive group in these regions of the medial prefrontal cortex.

4.3.2.4.3 Amygdala

Densitometric analysis of Egr3 expression in the DLA nucleus of the amygdala revealed that 

there was a difference in the levels of expression between the groups (F (3, 19) = 3.512, p = 

0.035, ANOVA) (Fig. 4.8 a). Egr3 was upregulated in the CS-US group by 31% relative to the 

naive group and by 36% relative to the LI group. While Egr3 expression in the CS-only group 

was 77% of that in the CS-US group, a priori statistical analysis did not find this difference to be 

significant. Egr3 expression in the LA nucleus of the amygdala revealed that there was no 

difference in the levels of expression between the groups (F (3, 19) = 1.445, p = 0.261, ANOVA)
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Cg, 67±5; PrL, 61 ±5; IL, 47±6.
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Figure 4.8. Egr3 expression in the amygdala 2 hours after CFC. Expression levels 
were measured using image densitometry (ID) (n = 6 or 5/group). Egr3 expression in the: 
(A) DLA nucleus, (B) LA nucleus, and (C) BLA nucleus. (D) Nab2 expression in the DLA 
nucleus. (* p<0.05, ** p<0.01). Error bars represent SEM. DLA, Dorsolateral; LA, Lateral; 
BLA, Basolateral; Egr3 Naive expression (nCi/mg tissue): DLA, 32±4; LA, 23±3; BLA, 
22±3. Nab2 Naive expression (nCi/mg tissue): DLA, 12±1.
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(Fig. 4.8 b) or in the BLA nucleus of the amygdala (F (3, 19) = 1.122, p = 0.365, ANOVA) (Fig. 

4.8 c).

Nab2 expression was investigated in the DLA nucleus of the amygdala as Egr3 was regulated 

in this region. Densitometric analysis of Nab2 expression in the DLA nucleus of the amygdala 

revealed that there was a difference between the groups (F (3 , 19) = 4.075, p = 0.022, ANOVA) 

(Fig. 4.8 d). Nab2 expression in the LI group was upregulated by 44% relative to the naive 

group.

Egr3 was not regulated in correlation with consolidation of CFM in the LA or BLA nuclei of the 

amygdala. However, in the DLA nucleus of the amygdala Egr3 was upregulated in the CS-US 

group relative to the naive and LI group and the difference relative to the CS-only group was 

approaching significance. Also in the DLA nucleus of the amygdala, Nab2 was upregulated in 

the LI group relative to the naive group.

4.3.2.5 Bdnf Expression

Densitometric analysis of Bdnf expression in the CA1 revealed that there was a difference 

between the groups (F (3, 12) = 5.821, p = 0.011, ANOVA) (Fig. 4.9 a). Bdnf m s  upregulated in 

the CS-US group by 28% relative to the naive group and was also upregulated in the LI group 

by 37% relative to the naive group. In the images taken for Bdnf cellular analysis, it was 

observed in all three regions of the hippocampus that a minority of the cells were substantially 

more heavily labelled for Bdnf than the majority of the cells. In turn, the majority of the cells still 

had much higher levels of Bdnf than the non-specific labelled cells. This observation led to the 

expression of Bdnf being assayed by multiple approaches. Firstly, the number of heavily 

labelled Bcfnf-positive cells in the CA1 region of the hippocampus were counted. There was no 

difference between the groups (F (3, 12) = 3.333, p = 0.056, ANOVA), however a priori statistical 

analysis revealed that number of heavily labelled Bofnf-positive cells was increased by 46% in 

the LI group relative to the naive group, and the three behavioural groups combined had an 

increased number of heavily labelled Bc/nf-positive cells relative to the naive group (F <1, 14) = 

8.413, p = 0.012, ANOVA) (Fig. 4.9 b). Secondly, silver grain density in the heavily labelled 

Bdnf-positive cells was counted to identify whether the levels of Bdnf expression within the 

heavily labelled Bcfnf-positive cells was regulated after CFC. Analysis of Bdnf expression in the 

heavily labelled Bcfnf-positive cells in the CA1 revealed that there was no difference between
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Figure 4.9. Bdnf expression in the CA1 region of the hippocampus 2 hours after CFC.
(A) Bcfnf expression measured using image densitometry. (B) Number of heavily Bcfnf-labelled 
cells. (C) Bdnf expression levels in the heavily Bcfnf-labelled cells measured using silver grains 
counting. (D) Bdnf expression levels in the nonheavily Bcfnf-labelled cells measured using
silver grains counting. * p<0.05, * *  p<0.01 indicates significance relative to the naive group. 
Error bars represent SEM. (n=4/group) Bdnf naive expression (nCi/mg tissue): CA1, 6±0.2. 
Naive number of heavily labelled Bcfnf-positive cells: CA1, 65±7. Naive number of SG/cell: 
Heavily labelled, 73±5; Non-heavily labelled, 8±1.
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the groups (F (3, 12) = 1.855, p = 0.191, ANOVA) (Fig. 4.9 c). Thirdly, silver grain density in the 

less heavily labelled Bdnf-positive cells were counted. Analysis of Bdnf expression in the non- 

heavily labelled Bcfnf-positive cells in the CA1 revealed that there was no difference between 

the groups (F(3,11) = 0.936, p = 0.456, ANOVA) (Fig. 4.9 d).

Bdnf was not regulated in correlation with consolidation of CFM in the CA1 region of the 

hippocampus. This finding is in contrast to the upregulation of Bdnf expression detected in a 

similar previous study (Hall et al., 2000). However this difference could be due to the levels of 

expression being measured at 2 hours in this study as opposed to 30 mins in the study by Hall 

and colleagues (2000). Regional level investigation determined that Bdnf was upregulated in 

both the CS-US and LI groups relative to the naive group. However at the cellular level the 

number of heavily labelled Bcfnf-positive cells were increased in all behavioural groups relative 

to the naive group. There was no change in the levels of Bdnf expression within either the 

heavily or non- heavily labelled Bcf/?/-positive cells populations in the CA1.

Densitometric analysis of Bdnf expression in the CA3 revealed that there was no difference 

between the groups (F<3. 12) = 2.556, p = 0.104, ANOVA) (Fig. 4.10 a). A priori statistical 

analysis revealed that Bdnf expression in the CS-only group was downregulated by 24% 

relative to the naive group. The number of heavily labelled Bcfnf-positive cells in the CA3 were 

not different between the groups (Fo. 12) = 1.620, p = 0.237, ANOVA) (Fig. 4.10 b). Bdnf was 

not regulated in correlation with consolidation of CFM in the CA3 region of the hippocampus 

but was downregulated in the CS-only group relative to the naive group.

Densitometric analysis of Bdnf expression in the DG revealed that there was a difference 

between the groups (F (3, 12) = 13.625, p = 0.000, ANOVA). Bdnf expression was 

downregulated in all groups compared to naive; there was a 37% decrease in the CS-US 

group, a 45% decrease in the CS-only group and a 21% decrease in the LI group (Fig. 4.10 c). 

The number of heavily labelled Bcfnf-positive cells in the DG were different between the groups 

(F (3, 12) = 3.742, p = 0.042, ANOVA). There was an increase in the number of heavily labelled 

Bcf/tf-positive cells in the CS-only group by 25% and in the LI group by 36% to those in the 

naive group. While the number of heavily labelled Bcfnf-positive cells in the CS-US group was 

121% of that in the naive group, a priori statistical analysis did not find this difference to be 

significant. The three behavioural groups combined had an increased number of heavily
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Figure 4.10. Bdnf expression in the CA3 and DG regions of the hippocampus 2 hours 
after CFC. (A) Bdnf expression levels in the CA3 measured using image densitometry. (B) 
Number of heavily Bcfnf-labelled cells in the CA3. (C) Bdnf expression levels in the DG 
measured using image densitometry. (D) Number of heavily Bcfnf-labelled cells in the DG. *  

p<0.05, ** p<0.01, *** p<0.001 indicates significance relative to the naive group, (n = 4/group) 
Error bars represent SEM. ID, Image densitometry. Bdnf naive expression (nCi/mg tissue): CA3, 
22±2; DG, 26±3. Naive number of heavily labelled Bcfnf-positive cells: CA3,64±8; DG, 28±3.
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labelled Bdnf-positive cells relative to the naive group (F (1,14) = 9.591, p = 0.008, ANOVA) (Fig. 

4.10 d).

Bdnf was not regulated in correlation with consolidation of CFM in the DG region of the 

hippocampus. However regional analysis in the DG determined that Bdnf was downregulated 

in the behavioural groups relative to the naive group, while analysis at the cellular level 

determined that there was an increase in the number of heavily labelled Bdnf-positive cells in 

the behavioural groups relative to the naive group.

4.3.3 Experiment 3: Regulation of Egr3 in Consolidation of CFC using QPCR

To clarify whether Egr3 is regulated in the CA1 in correlation with CFM, QPCR was used to 

measure Egr3 mRNA expression in CS-US, LI and naive groups. No CS-only group was 

included due to there being no difference between the levels of Egr3 expression in the LI and 

CS-only groups in either level of analysis from the ISH experiment.

4.3.3.1 Behaviour

There was an effect of group on freezing behaviour during pre-US and post-US periods in the 

initial behaviour (F (i, 10) e = 1 = 24.096, p = 0.001, repeated measures ANOVA) (Fig. 4.11 a). 

The freezing behaviour was selectively increased in the post-US period in the CS-US group (F 

(1, 10) = 96.571, p = 0.000, ANOVA). Thus this group underwent CFC as observed in 

experiments 1 and 2. Consequently it would be predicted that the rats in the CS-US group in 

this experiment would have formed a CFM had they not been killed 2 hours after conditioning.

4.3.3.2 QPCR

Only two reference genes were used in the creation of the normalisation factor in the initial 

QPCR experiment as the Hmbs standard curve was of poor quality. In both the initial QPCR 

experiment and in the technical replicate experiment, an outlier was identified amongst the six 

values within the naive group. As this sample was consistently an outlier despite different RT 

reactions being used, the sample was considered contaminated and so sample 2 was removed 

from analysis. In total, 5 out of 120 of the total standard curve values were excluded as outliers

169



Group:

CS-US

LI

Naive

2 h
CS (2 min)- 

CS (8 h) -
v._______

US (2 s) 

US (2 s)

CS (1 min) 

CS (1 min)
V -----------

Conditioning
Homecage

Killed

100
* ★ *

3O
‘>ro
JCZ<u
CD
CDc
is l
CD

Pre-US Post-US

LI
CS-US

B

3.0 i

Egr3 CA1 QPCR 
initial study

Egr3 CA1 QPCR 
technical duplicate

CDO)eCD
-CO

2.0 -

1.0 -

3.0 -

2.0  -

1.0 -

LI CS-US LI CS-US

Figure 4.11 Regulation of Egr3 in Consolidation of CFC using QPCR. (A) Schematic of 
behavioural protocol used and freezing behaviour observed from experiment 3 for the pre-US 
and post-US periods (n=5 or 6/group. (B) Egr3 expression in the CA1 measured using Q- 
PCR (initial study). (C) Egr3 expression in the CA1 measured using Q-PCR (technical
replicate). *** p<0.001, FLSD. t  indicates significance relative to the naive group (f p<0.05, 
f t  <0.01). Error bars represent SEM.
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to produce quality standard curves. All standard curves, dissociation curves and amplification 

plots can be found in Appendix I.

In the initial QPCR experiment, the mean of the normalised Egr3 expression values in the CS- 

US group was 164% of that in the naive group (F (i, 10) = 5.108, p = 0.050, ANOVA), and was 

upregulated by 172% in the LI group relative to the naive group (F (i, 10) = 13.433, p = 0.005, 

ANOVA) (Fig. 4.11 b). Egr3 expression in the CS-US group was not different relative to the LI 

group (F (i, 10) = 0.200, p = 0.664, ANOVA). In the technical replicate QPCR experiment, the 

mean of the normalised Egr3 expression values in the CS-US group was upregulated by 153% 

(F (1, 10) = 8.523, p = 0.017, ANOVA) and in the LI group by 190% (F (i, 10) = 13.922, p = 0.005, 

ANOVA) relative to the naive group (Fig. 4.11 c). Again Egr3 expression in the CS-US group 

was not different relative to the LI group (F (i, 10) = 2.469, p = 0.147, ANOVA). Egr3 is not 

regulated in correlation with consolidation of CFM in the CA1 region of the hippocampus. 

However Egr3 expression was behaviourally induced. The differences in findings between ISH 

and QPCR is likely due to the components of the regions being measured by the two 

techniques being slightly different.

4.3.4 Experiment 4: Time Profile of Egr3 Behaviourally Induced Expression

Egr3 has been shown to be upregulated in the CS-US group relative to the naive group but due 

to the contrasting findings from regional and cellular levels of analysis it is still not clear 

whether the level of upregulation in the CS-US group is greater than that detected in the LI 

group. A time profile on Egr3 expression following conditioning was performed in order to 

determine the time-point of maximal Egr3 expression upregulation after CFC.

4.3.4.1 Behaviour

There was a significant increase in freezing behaviour in the CS-US group in the post-US 

period relative to the pre-US period for the 4 h post-conditioning (F (i, 6) = 45.632, p = 0.001, 

ANOVA), 8 h post-conditioning (F (i, 6) = 37.0, p = 0.001, ANOVA) and 24 h post-conditioning 

groups (F (i,6) = 54.0, p = 0.000, ANOVA) (Fig. 4.12 a).
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Figure 4.12 Time Profile of Egr3 Behaviourally Induced Expression in the CA1
(A) Schematic of behavioural protocol used and the freezing behaviour observed from 
experiment 4 in which all rats were conditioned. The difference between the groups is the 
time period after conditioning at which they were killed (4 h, 8 h & 24 h). (B) Egr3 
expression in naive rats (n=10), 2 hours post aquisition(n=6), 4 hours, 8 hours and 24 
hours post aquisition (n=4/group). *** p<0.001, # p<0.01 and t  P<0.05. Error bars 
represent SEM. Naive expression (nCi/mg tissue): 12.0±1.
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4.3.4.2 ISH

Densitometric analysis of Egr3 expression in naive tissue and in tissue collected at 2 h, 4 h, 8 h 

and 24 h post-conditioning revealed that there was a difference between the groups (F(4,23) = 

2.817, p = 0.049, ANOVA) (Fig. 4.12 b). Egr3 was upregulated by 39% at 2 hours post­

conditioning relative to the naive group. Behaviourally induced Egr3 expression was maximally 

regulated at 2 hours.

4.3.5 Experiment 5: Effect of Intrahippocampal Infusions of Egr3 Antisense 

Oligonucleotides on CFC

4.3.5.1 Histology

All but one rat had correct placement of the indwelling cannula fig. 4.13 a). This animal 

appeared to have an enlarged ventricle suggesting that the infusion had been into the ventricle 

as opposed to the hippocampus. It was therefore excluded from the study.

4.3.5.2 Behaviour

There was no difference in the levels of freezing behaviour between the rats infused with ASOI 

and the rats infused with MSO (F (2.69, 24.212) e= 0.673 = 0.664, p = 0.566, Repeated Measures 

ANOVA). The rats infused with a different sequence complementary to Egr3, ASOII, at double 

the concentration also showed no difference in the levels of freezing behaviour relative to the 

rats infused with MSO (F (3.568, 32.11) e= 0.892 = 1.41, p = 0.255, Repeated Measures ANOVA) 

(Fig. 4.13 b). Two different concentrations and sequences of Egr3 antisense infusions at 90 

min prior to conditioning did not prevent freezing behaviour in the following LTM tests in 

conditioned rats. Intrahippocampal infusion of Egr3 antisense oligonucleotides did not prevent 

the consolidation of CFM.
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4.4 DISCUSSION

The studies in this chapter have investigated whether the expression of the schizophrenia 

susceptibility genes, Nrg1, Dtnbpl, Egr3 and Bdnf, is regulated 2 hours after CFC. The 

upregulation of Egr3 expression peaked at 2 hours after CFC in the CA1. Egr3 expression was 

upregulated in association with consolidation of CFC in the CA1 region of the hippocampus 

and DLA of the amygdala determined by ISH. Egr3 expression was also upregulated in the 

CA1 in association with arousal. The expression of Nab2, a repressor of EGR3 activity, was 

upregulated in the CA1 and DLA following latent inhibition, a procedure in which rats are 

conditioned but do not leam. These data suggest a role for EGR3 in the formation of CFM. 

However, a subsequent functional study showed that EGR3 in the hippocampus was not 

necessary for the consolidation of CFC. Egr3 expression was upregulated in the Cg1, PrL and 

IL regions of the medial PFC in correlation with novelty detection. The expression of Nrg1 type 

I splice variants was upregulated in the CA3 in association with consolidation of CFC, while the 

expression of Nrg1 type II splice variants was downregulated in the CA1 in correlation with 

arousal; a non-mnemonic components of behavioural training that may contribute to fear 

learning. We found no regulation of Dtnbpl expression with behavioural training. In the CA1, 

we measured no changes in Bdnf expression correlating with consolidation of CFC, but Bdnf 

expression was upregulated in association with stress. A sparse population of heavily labelled 

Bcfnf-positive cells were identified in the CA1, CA3 and DG of the hippocampus. The increase 

in the number of heavily labelled Bcfnf-positive cells in CA1 and DG was associated with 

arousal or exposure to the conditioning context (Fig. 4.14).

4.4.1 Conditioning Procedure Produces Long-Term CFM

As previously shown (Hall et al, 2000), the conditioning protocol showed a significant increase 

in freezing behaviour in the conditioned group of rats compared to the CS-only and LI control 

groups in the post-US period, LTM1 and LTM2 tests. This indicated that a long-term CFM was 

formed in the conditioned (CS-US) group. This data also indicated that the temporal delay 

between introduction to the novel context and receiving the footshock in the LI group was 

appropriate to prevent formation of a long-term CFM.
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Figure 4.14. Schematic showing genes regulated by behaviour in regions of the medial prefrontal 
cortex, hippocampus and amygdala. Block arrows, information input and output following CFC; thin 
black arrows, information flow between brain regions; small arrows, up- or down-regulation of gene 
expression; *, heavily labelled Bdnf-positive cells (other Bdnf expression was measured at the regional 
level of analysis). Medial prefrontal cortex regions: cingulate cortex (Cg1), prelimbic cortex (PrL) & 
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dentate gyrus (DG). Amygdala regions: dorsolateral nucleus (DLA), lateral nucleus (LA) & basolateral 
nucleus (BLA); Contextual fear memory (CFM). Not drawn to scale.
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The CS-only and LI groups act as important control groups to dissociate context CS-mediated 

novelty/arousal and footshock US-mediated stress effects, respectively, from associative 

learning in the fear conditioned CS-US group.

4.4.2 Nrg1 Regulation in Hippocampal Regions following CFC

Expression of Nrg1 splice variants were regulated with behavioural training. The expression of 

Nrg1 type I splice variants were selectively upregulated in the CA3 in the CS-US group relative 

to the LI group. This suggests that Nrg1 type I splice variants may have a role in the 

consolidation CFM in the CA3. The expression of Nrg1 type II splice variants were not 

significantly regulated in the CA1 by behavioural training, but they were downregulated in the 

combined three behavioural groups relative to the naive group. This suggests that Nrg1 type II 

splice variants may have a role in arousal and/or stress but not in CFM in the CA1.

The upregulation of Nrg1 type I expression in the CA3 was clearly not associated with the 

aversive US as there was no change in regulation in the LI group relative to the naive group. In 

addition, the level of Nrg1 type I expression in the CA3 was not associated with CS exposure 

as there was also no change in regulation in the CS-only group relative to the naive group. 

Therefore upregulation of Nrg1 type I expression in the CS-US group was not due to stress or 

novel environment exposure and could have a potential role in the consolidation of CFM. This 

potential role is supported by findings that Nrg1+/- mutant mice had impaired LTM in a CFC 

paradigm (Ehrlichman et al., 2009). Also, as Nrg1 is known to positively modulate LTP in the 

CA3 of the hippocampus (Eilam et al., 1998; Li et al., 2007), and as LTP is a model of synaptic 

plasticity that is thought to underlie the cellular consolidation of memory (Bliss & Collingridge, 

1993), then our suggestion is again in agreement with a known role of Nrg1 in the 

hippocampus, as the upregulation of Nrg1 positively correlates with the consolidation of CFM.

The regulation of Nrg1 type II expression in association with arousal suggests that the Nrg1 

type II splice variants in the CA1 may be involved in responding to stimuli in the environment. 

However the numbers of silver grains per cell representing expression of Nrg1 type II splice 

variants was very low in the control naive rats (4 grains/cell, see also 3.3.2.3). Therefore, a 

more accurate measure of the changes in expression of this variant with behavioural training
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may require a technique that can amplify the differences between the groups such as RT- 

qPCR.

Although we have shown that there are regionally selective changes in the hippocampus for 

specific Nrg1 splice variants 2 hours after behavioural training, future work determining the 

individual temporal profile of their expression in the regions of interest are required to 

determine whether they are regulated at any other time-point following CFC.

4.4.3 Dtnbpl Regulation in Hippocampal Regions following CFC

There is no difference in expression levels between any of the behavioural groups in the CA1, 

CA3 and DG regions of the hippocampus for any of the Dtnbpl probes. These results suggest 

that there is no regulation of Dtnbpl expression associated with training in the CFC protocol. 

This finding is in agreement with a previous study on Dtnbpl mutant mice that showed no 

difference in freezing behaviour in a LTM test following CFC (Bhardwaj et al., 2009). Together 

these data suggest that there is no role for Dtnbpl in hippocampal dependent LTM. However, 

two other studies in Dtnbpl mutant mice find deficits in LTM on a Bames circular maze test 

(Takao et al., 2008) and enhanced amygdala-related fear memory in the cued-fear conditioning 

test (Bhardwaj et al., 2009). It is therefore likely that Dtnbpl is required for or contributes to 

memory acquisition in tasks other than contextual fear long-term memory.

4.4.4 Egr3 Regulation in Hippocampal Regions following CFC

We showed that Egr3 expression was upregulated in the CA1 after CFC, with levels maximal at 

2 hours, declined by 8 hours, and by 24 hours Egr3 expression had returned to basal levels. 

This profile is similar to Egr3 expression following MECS stimulation that was determined in a 

previous study (Yamagata et al., 1994).

In the CA1, Egr3 expression was measured using ISH and analysed at the densitometric and 

cellular levels, and by RT-QPCR. We showed that Egr3 expression was upregulated in all three 

experimental behavioural groups compared to naive. This suggests that Egr3 expression was 

dynamically regulated by context CS-mediated arousal and footshock US mediated stress. 

Furthermore, there were increases in Egr3 expression in the fear conditioned CS-US group 

compared to all other groups when assessed at the densitometric level. This suggests that
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Egr3 expression was specifically correlated with formation of the fear memory. These changes 

in Egr3 expression are similar to those observed in a previous study for Bdnf (Hall et al., 2000). 

BDNF activity in the hippocampus was subsequently shown to be required for the consolidation 

of CFM (Lee et al. 2004). Similarly, EGR3 may play a role in the consolidation process. The 

different sensitivity of each method of analysis to measure small changes in gene expression 

may underlie why the upregulation of Egr3 expression was not consistently observed in the 

CS-US group compared to the other behavioural groups. Nevertheless, our results agree with a 

previous study in Egr3 + mice that showed impaired LTM in a CFC retrieval test (Li et al.,

2007).

Egr3 was also upregulated in CA3 and DG in the CS-US group relative to the naive group. In 

addition, Egr3 expression was upregulated in the CS-US group relative to the CS-only group in 

the DG but not in the CA3. This indicates that behavioural training regulates Egr3 expression. 

There were only four rats in each group and the resulting high variability (large SEM) in 

measuring the expression of Egr3 may mask true differences between the groups. Future work 

using an increased number of rats in each group would determine whether Egr3 expression is 

specifically associated with the formation of CFM.

Previous work has shown that another Egr gene family member, Egr1, is also regulated by 

training in this behavioural protocol but that regulation was seen only in CA1 and in all three 

experimental groups relative to naive (Hall et al., 2000). This suggested that EGR1 expression 

was not correlated with acquisition of CFM. Indeed, infusion of antisense oligonucleotide into 

the hippocampus to prevent local translation of Egrl mRNA and reduce protein levels before 

CFC did not prevent the consolidation of CFM (Lee et al. 2004). Comparison of our findings 

with the findings of Hall and colleagues (2000) suggest that Egr3 and Egr1 are differentially 

regulated in the three sub-regions of the hippocampus by behavioural experience and further 

indicates they may play different roles in CFC.

The CA1, CA3 and DG all have different functions within the hippocampal network. All three 

regions receive inputs from the entorhinal cortex, this enables mismatch of information 

detection in the CA3 and CA1. Mossy fibres from the DG act as pattern separators as they 

make strong and sparse synapses onto the CA3 cells. DG stimulated cells in the CA3 are 

strengthened by autoassociative recurrent networks resulting in a subset of active cells. This 

process is thought to be involved in the decorrelation of similar experiences (Treves et al.,
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2008). This subset of active cells in the CA3 then activate cells in the CA1 that is considered to 

be the main output structure of the hippocampal network (Daumas et al., 2005). The CA1, CA3 

and DG have distinct but complementary functions in contextual memory consolidation 

(Vazdarjanova & Guzowski, 2004; Lee & Kesner, 2004). The CA3 is involved in forming fast 

configural representations (Daumas et al., 2005; Lee & Kesner, 2004). The CA1 is suggested 

to be important for temporal information processing (Daumas et al., 2005; Lee & Kesner, 2004; 

Leutgeb & Leutgeb, 2007). While Egr1 does not appear to be involved in processes in the DG, 

Egr3 regulation does. Egr3 and Egr1 regulation both appear to be involved in processes in the 

CA3 and CA1. These findings suggest that Egr3 and Egr1 have both similarities and 

differences in their behavioural related functions in the different sub-regions of the 

hippocampus.

To determine whether EGR3 in the hippocampus plays a causal role in the formation of CFM, 

we infused antisense oligonucleotides to prevent local translation of Egr3 mRNA and therefore 

reduce EGR3 protein levels in the dorsal hippocampus prior to CFC. Rats infused with Egr3 

antisense oligonucleotides showed no difference in levels of freezing behaviour, during the 

conditioning period or in the three LTM retrieval tests following CFC in comparison to rats that 

had received an infusion of missense oligonucleotide. There was also no effect of the Egr3 

antisense oligonucleotides on the persistence of the memory because the rate of extinction in 

the antisense group did not differ from the missense infused group. These results were found 

for two different antisense oligonucleotides designed to target Egr3 and one at double the 

concentration of the other. Potential reasons for a lack of behavioural effect following the 

administration of antisense oligodeoxynucleotides (ASO) targeting Egr3 mRNA could include 

that:

• Very high levels of Egr3 expression in the hippocampus may require a greater concentration 

of ASO to knock down enough Egr3 mRNA, and thus EGR3 protein, to have an effect on 

behaviour.

• The tertiary structure of the ASO designed for these experiments may have hindered the 

complementarity of the ASO to the target Egr3 mRNA and hence may have prevented or 

reduced the level of EGR3 knock down.

• The Egr3 ASO may have only labelled some of the target Egr3 mRNA for degradation but not 

enough may have been knocked down to have an effect on behavior. ASO does not normally 

result in 100% knocked down but instead approximately 60-80% depending on the ASO and
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the gene. Egr1 ASO infused into the same region knocked down EGR1 expression by 

approximately 70% (Lee et al., 2004).

• The half life of EGR3 protein is unknown and so it is possible the 8 hour presence of ASO 

may not be enough to prevent EGR3 being expressed and performing its functional role from 

six and a half hours post-acquisition onwards.

• It is possible that in the absence of EGR3 in the hippocampus that hippocampal involvement 

in CFC was disrupted and that activity in another brain region may have compensated for the 

disrupted hippocampal activity. This would be similar to the suggestion by some that in the 

absence of a functioning hippocampus, fear conditioning in a context can in some cases still 

take place but it is thought that instead of associating the context with the footshock that the rat 

may associate one aspect within the context with the footshock leading to an alternative 

method of learning the association (similar or the same as cued fear conditioning) (Maren et 

al., 1997; see 1.2.2.1).

• The upregulation of Egr3 in association with CFC may only be part of the role of that gene in 

CFC. In addition to de novo Egr3 expression, the EGR3 protein present in the neuron at the 

time of CFC may undergo post-translation modification as part of the molecular cascade 

leading to the modulation of the de novo gene expression. Thus the EGR3 protein present at 

the time of CFC, as opposed to the de novo Egr3 expressed following CFC, may be necessary 

for the learning of that particular association memory.

EGR3 protein knockdown by the ASO designed and used in this study remains to be 

confirmed. This would be done by performing a Western blot or immunhistochemistry on rat 

brain tissue in the region of brain in which ASO was infused 4 hours post-infusion (Lee et al., 

2004). In addition, a post-retrieval short-term memory test could be included in future 

experiments to rule out the possibility that antisense infusions targeting EGR3 mRNA may 

have a non-specific effect on hippocampal activity associated with the acquisition of fear 

memory. Our findings here suggest that EGR3 expression in the hippocampus, and perhaps 

the CA1 specifically, may not be required for consolidation of CFC. This is similar to previous 

studies that show that EGR1 is not necessary for consolidation of CFC (Lee et al., 2004).

However, it is possible that Egr3 may have a role in the stress response that may enhance the 

memory consolidation process, similar to Egr1 and Egr2 (Vreugdenhil et al., 2001; Revest et 

al., 2005), Indeed we showed increased mRNA levels in CA1 in the LI rats, who received 

footshock in the context but did not form a CFM. In addition, we also showed that Egr3
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expression may be regulated by CS-mediated arousal and/or novelty detection, or formation of 

a context representation memory. Previous behavioural experiments on Egr3-'- mice have 

shown impairments in a selection of tests of the response to stress and for novelty detection 

(Gallitano-Mendel et al., 2007) For example, Egr3>'- mice were hypersensitive to handling 

stress as measured by behavioural observations concomitant with an increased corticosterone 

(a stress hormone) response. They also displayed heightened reactivity to novelty stress 

determined using an open-field activity test, and reduced ability to locate food reward in a novel 

environment compared to in a known environment. Furthermore, they failed to habituate to the 

acoustic startle response, and made fewer spontaneous alternations than WT mice in a Y- 

maze. All these responses were suggestive of hippocampus-based memory deficits. Studies 

on other lEGs show a correlation between expression and exposure to a novel environment. 

For example, c-Fos and c-Jun are upregulated in the hippocampus two hours following a 10 

min exposure to a novel environment (Papa et al., 1993).

As the hippocampus is necessary for the integration of spatial and foreground/background 

features of the environment acquired through exploratory behaviour (Eichenbaum, 1996), 

EGR3 in this region could function in novelty detection and/or formation of a context 

representation memory. Context representations are thought to be stored either as feature 

representations or conjunctive/configural representations (Rudy & O’Reilly, 2001). Conjunctive 

representations are the result of separate features becoming bound into a unitary 

representation, and require interaction between the cortex and hippocampus (Nadel & Willner, 

1980). It has been proposed that the hippocampus is essential for the normal functioning of 

acquisition, storage and retrieval of conjunctive associations (Rudy & Sutherland, 1989). It is 

therefore possible that the upregulation of Egr3 in the behavioural groups in the CA1 of the 

hippocampus could be involved in the consolidation of a context memory. However, based on 

the Egr3 expression time profile it is unlikely that the increased Egr3 expression detected in the 

LI group is related to the acquisition of a context memory or novelty detection because these 

rats were killed 10 hours after exposure to the novel context. Rather, the changes in 

expression of Egr3 in the LI group are specifically associated with the footshock stressor.

There was no functional assessment of Nrg1 type I, II, III and pan Nrg1, Dtnbpl exon 1, exon 

5, exon 9 and exon 10, Nab1 or Nab2, as the Egr3 mRNA expression findings were the most 

suggestive of the gene being associated with LTM (the level of Egr3 expression in the test 

group was significantly upregulated in comparison to all three control groups. However the
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gene profiling did also provide evidence that would support further investigation of the genes 

Nrg1 type I in the CA3 and Nab2 in the DLA and CA1 and this would be interesting future work. 

There was no functional assessment of Nrg1 type IV or Disci L, Lv or pan as mRNA levels 

could not be detected for these genes using the probes designed. Therefore there was no 

indication of regions of interest for functional study. Importantly the absence of regulated gene 

expression does not mean that those genes are not involved in LTM. For example, MAPK and 

CREB mRNA levels of expression do not vary during LTM but post-translational modification 

(phosphorylation) of the MAPK and CREB proteins are essential for the initiation of 

transcriptional response following activation of a synapse (Atkins et al., 1998; Silva et al., 

1998).

4.4.5 Egr3 Upregulated in DLA but not LA or BLA following CFC

Egr3 was upregulated in association CFC specifically in the DLA of the amygdala. In this 

subregion of the LA, Egr3 expression was upregulated in the CS-US group relative to the LI 

and naive groups and the difference in expression levels between the CS-US group and CS- 

only group was approaching significance. Future work repeating our experiments with an 

increased number of rats in each group would determine whether Egr3 expression in the DLA 

is also correlated with exposure to a novel environment. A previous study showed that there 

was no change in the levels of Egr3 expression in the DLA of the amygdala after CFC (Malkani 

& Rosen, 2000). However, this discrepancy may be due to the different time-points at which 

expression levels were measured. Knock down of EGR3 protein with targeted infusion of 

antisense oligonucleotides would show whether Egr3 in the DLA plays a causal role in the 

consolidation of CFC. The LA of the amygdala is a region of the brain well established to be 

required for the consolidation of CFC (e.g. LeDoux, 2000). It receives input of sensory 

information related to the US footshock and contextual information relayed from the 

hippocampus. The LA is a region in which synaptic plasticity enables association of incoming 

fear conditioning-related information (Clugnet & Ledoux, 1990; Phillips & Ledoux, 1992; 

Romanski et al., 1993). EGR3 may play a role in the associative plasticity processes underlying 

the consolidation of CFM. Furthermore, our results may also suggest a role for EGR3 in fear 

memory in this specific region of the LA.

We showed no differences in Egr3 expression in the LA and the BLA between the different 

groups following CFC. This is in agreement with another study that found no change in Egr3

183



expression up to 1 hour following CFC (Malkani & Rosen, 2000). The regulation of Egr3 in the 

DLA, but not in the LA or BLA, of the amygdala is an example of Egr3 being expressed in a 

sub-regionally specific manner within a structure. In a similar study, Egr1 was upregulated in 

the LA of the amygdala in association with arousal (Hall et al., 2000). This suggests differences 

in the behaviourally related functions of Egr3 and Egr1 in the LA of the amygdala.

4.4.6 The control of EGR3 activity by NAB2 may play a role in the formation of CFM

Interestingly, we observed that Nab2 expression was upregulated in the CA1 and DLA in the LI 

group only after behavioural training. NAB2 acts as a repressor of EGR3 activity (Svaren et al., 

1998). Therefore, regulation of EGR3 activity by NAB2 may be a potential mechanism that 

prevents the formation of an association between the CS and US after extended exposure to 

the CS in the LI group that results in no conditioned freezing behaviour (See Fig. 4.14). A way 

of testing this hypothesis would be to knockdown NAB2 in the CA1 region of the hippocampus 

or DLA region of the amygdala using antisense oligonucleotides in the LI group, and then 

compare the levels of freezing behaviour in the LTM retrieval tests after contextual fear 

conditioning to those observed in a LI group that was infused with a control missense 

oligonucleotide. If NAB2 does inhibit formation of CS-US memory, then NAB2 knockdown in 

the LI group may reveal freezing behaviour at test. This would suggest that Nab2 has a role in 

the modulating the expression of CFM.

4.4.7 Egr3 Regulation in Medial Prefrontal Cortex in Correlation with Novelty Detection

Egr3 expression was upregulated in Cg1, PrL and IL regions of the medial PFC in the CS-only 

and CS-US groups relative to the naive group. This suggests that Egr3 expression was 

regulated in medial PFC by novelty or context memory formation. Lesion studies in the rat 

show that the medial PFC is required for novelty detection (Dias & Honey, 2002). Furthermore, 

activation of these regions occurs in response to exposure to a novel environment as show by 

induction of the activity regulated IEG, cFos (Handa et al., 1993) and increases in dopamine 

release (Feenstra & Botterblom, 1996). Future work to determine whether the regulation of 

EGR3 activity is specifically involved in novelty detection would be to assay Egr3 expression in 

the medial PFC regions following an object recognition memory task (Pawlak et al., 2008).
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Comparison of Egr3 regulation patterns in the hippocampus, amygdala and medial prefrontal 

cortex demonstrate that Egr3 is expressed in a structure specific manner during CFC.

4.4.8 Bdnf Regulation in Hippocampal Regions following CFC

We measured the expression of Bdnf in the CA1 as a positive marker of gene expression 

associated with CFC (Hall et al., 2000). However, at the regional level of analysis measured by 

densitometry, we found that there was no correlation between Bdnf expression and CFC. More 

specifically, we measured an increase in Bdnf expression in the LI and CS-US groups relative 

to the naive and CS-only groups, while Hall and colleagues (2000) measured an upregulation 

of Bdnf expression in the CS-US group relative to all control groups. The findings of Hall and 

colleagues suggested a role for BDNF activity in the hippocampus in the formation of CFM. 

This role was confirmed in a subsequent study (Lee et al. 2004). However, the disparity 

between our results and those of Hall and colleagues (2000) are probably due to gene 

expression being assayed at two different time-points, 2 hours and 30 min, respectively. This 

suggests that Bdnf expression has reached its peak and is at a reduced level of expression 

when measured here at 2 hours post-training. Future work determining a time profile of Bdnf 

expression regulation in the CA1 following CFC would test this suggestion.

However, LI and CS-US groups both show increased levels of Bdnf mRNA in CA1 2 hours 

post-training. Since both groups received a footshock, it is possible that the stress associated 

with the aversive US regulated Bdnf expression. If the stress-induced regulation of Bdnf 

expression was large, then sufficient levels may be measured 2 hours later, even if levels of 

Bdnf mRNA were declining back to baseline. Other studies have shown that Bdnf expression is 

regulated in response to stress. Bdnf expression was increased 2.2-fold in the hippocampus 3 

hours following five electroconvulsive shock sessions (Sartorius et al., 2009) and upregulated 

in the CA1 immediately following 15 min immobilization stress (Marmigere et al., 2003). In 

contrast, Bdnf mRNA levels were decreased in the CA1 region after corticosterone injections 

(Hansson et al., 2000). This disparity could be because changes in corticosterone levels are 

only a component of the conditions experienced following a footshock. There is a precedent for 

plasticity-regulated genes to be regulated in the CA1 in association with stress. Both Egr1 and 

Egr2 are upregulated in response to stress or corticosterone administration in CA1 

(Vreugdenhil et al., 2001; Revest et al., 2005). A dynamic relationship between corticosterone, 

learning and hippocampal BDNF has been suggested (Scaccianoce et al., 2003), and this
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complex relationship may account for Bdnf expression correlating with learning and stress at 

different time-points, and Bdnf being regulated in different directions depending on the cause of 

the stress response.

When Bdnf expression was measured at the cellular level by measuring the density of silver 

grains per cell, we identified heavily labelled Bcfnf-positive cells in the CA1, CA3 and DG of the 

hippocampus. In the CA1 there was an increase in the number of heavily labelled Bcfnf-positive 

cells in all behavioural groups suggestive of a role in arousal. Heavily labelled Bcfnf-positive 

cells have been identified in the CA1 in a previous study that investigated BDNF protein 

expression after CFC (Chen et al., 2007). Multiple time-points post-acquisition (2.5 h, 4 h, 6 h, 

24h) were studied, and an increase in the number of heavily labelled BDNF-positive cells in the 

CS-US group relative to the control groups was found that was most apparent at 4 hours (Chen 

et al., 2007). Our findings conflict with the findings of Chen and colleagues (2007) in two ways. 

Firstly, we did not see an increase in the number of heavily labelled Bcfnf-positive cells 

selectively associated with CFC. Secondly, we measured an increase in the number of heavily 

labelled Bcfnf-positive cells in all behavioural groups relative to the naive group. These 

differences could reflect that Chen and colleagues (2007) measured protein levels after 

training while we assessed Bdnf expression at the mRNA level. The increased subpopulation 

of heavily labelled Bcfnf-positive cells in the behavioural groups could represent a network of 

cells activated by exposure to the context. The CA1 has been shown to be involved in forming 

representations of context (context memory) (Frankland et al., 1998; Komorowski et al., 2009). 

David Marr (Marr, 1971) first proposed that a subpopulation of cells in the hippocampus were 

activated to be part of a network supporting a single memory, or engram. Experimental support 

of this idea was shown when the expression of Arc, a gene regulated by BDNF, was detected 

in a subpopulation of activated cells in the CA1 following exposure to a novel context 

(Vazdarjanova & Guzowski, 2004). This subpopulation of cells was shown to be associated 

with exposure to a unique environment because when the rats were exposed to a different 

novel context a different cohort of cells within the CA1 were activated. Crucially when these 

same animals were re-exposed to the initial environment only the original subpopulation of 

cells were activated.

There was no difference between the densities of silver grains in the two populations of Bcfnf- 

positive cells in the experimental groups in the CA1. Therefore, an increase in the number of
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heavily labelled Bcfnf-positive cells is likely to underlie the increase in Bcf/if-expression in CA1 

measured at the regional level by densitometry.

In the CA3, Bdnf expression was downregulated in the CS-only group. This regulation is 

unlikely to be due to novel context exposure because there was no downregulation in the CS- 

US group also exposed to a novel environment. In addition, Hall and colleagues (2000) found 

no change in Bdnf expression levels between any of the groups in the CA3 at 30 minutes post­

training (Hall et al., 2000). Therefore this is likely to be a false positive Type II error.

In the DG, measured densiometrically Bdnf expression was downregulated in all behavioural 

groups relative to the naive group. But assessing Bdnf expression at the cellular level revealed 

that the number of heavily labelled Bcfnf-positive cells increased in all behavioural groups 

relative to the naive group, suggesting that Bdnf expression is differentially regulated by 

arousal in two populations of DG cells. Candidate populations include the granule cells, 

neurogenic cells, basket cell interneurons or glial cells, and changes in transcriptional response 

to neuronal activity have been measured in them all (Treves et al., 2008; Parpura & Zorec, 

2009; Ohba et al., 2005). The heavily labelled Bcfnf-positive cells are unlikely to be neurogenic 

cells, because neurogenic cells are located in the sub-granular zone of the DG (Kuhn et al., 

1996) while we observed that the heavily labelled Bcfnf-positive cells were sparsely distributed 

all over the DG. The heavily labelled Bcfnf-positive cells could be granule cells activated in 

response to context exposure which may contribute to the context memory engram, as 

discussed above. In order to investigate whether the heavily labelled Bcfnf-positive cells were 

intemeurons or glial cells the behavioural experiment could be repeated and double labelling 

ISH could be performed with the probe for Bdnf combined with either a probe for Gad 65 to 

identify any co-localization with GABA containing intemeurons (Benson et al., 1994), or probe 

for Gfap (a marker of astrocytes) or Cd11b (a marker for microglia) to identify any co­

localization with glial cells (Pixley et al., 1984; Akiyama & McGeer, 1990).

There is a possibility that Bdnf expression regulation in the LI and CS-US groups could be 

associated with stress. However different studies have found Bdnf expression to be 

downregulated (Rasmusson et al., 2002; Gronli et al., 2006; Bland et al., 2007), unchanged 

(Allaman et al., 2008; Hall et al., 2000) or upregulated (Marmigere et al., 2003) in the DG in 

association with stress. This range in findings is likely due to different stressors being used and 

Bdnf expression being assayed at different time-points after the stress was experienced. In
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addition, different transcripts of Bdnf can be regulated in different directions in the DG in 

response to the same type of stress (Nair et al., 2007). However as Bdnf was also regulated in 

the CS-only group, that did not receive any aversive US stress, the regulation in this 

experiment is unlikely to be due to stress alone.

4.4.9 Conclusion

We suggested that schizophrenia susceptibility genes may have a role in the consolidation of 

CFM and measured the regulation of these genes after contextual fear conditioning. Here we 

show differential expression of schizophrenia susceptibility genes with behavioural training 

(Fig. 4.14). Egr3 expression regulation in the CA1 and DLA and Nrg1 type I expression 

regulation in the CA1 only, were associated with CFM. Regulation of Nab2 expression in the 

CA1 and DLA correlated with latent inhibition, while regulation of Nrg1 type II, Egr3 and Bdnf 

expression in the CA1, Egr3 in the medial PFC, and Bdnf in the DG was associated with 

arousal, stress and/or context representation memory. Therefore mutated variants of these 

genes may contribute to the cognitive impairments of schizophrenia through disruption to any 

of these behavioural responses. Further work using designed behavioural procedures are 

required to fully investigate these potential roles. Notably, we showed in this Chapter that while 

increases in Egr3 expression in the CA1 was correlated with CFM, we showed that EGR3 

activity in the hippocampus may not be necessary for consolidation of CFC. This is analogous 

to the role that EGR1 plays in the in consolidation of CFM (Hall et al. 2000, Lee et al. 2004). 

However, EGR1 was necessary for the reconsolidation (restabilisation after labilisation) of CFM 

after recall (Lee et al. 2004). In the next Chapter, we investigated whether EGR3 plays a 

functional role in the reconsolidation of hippocampal-dependent fear memory.
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CHAPTERS

REGULATION OF EGR3, EGR1 AND NAB2 IN RECONSOLIDATION AND EXTINCTION OF

CONTEXTUAL FEAR CONDITIONING

5.1 INTRODUCTION

In the previous chapter Egr3 expression was shown to be upregulated in association with 

consolidation of contextual fear conditioning (CFC) in the CA1 region of the hippocampus and 

in the DLA nucleus of the amygdala. However EGR3 was not found to be necessary for 

consolidation of CFC in the hippocampus. Nab2 expression was upregulated in association 

with latent inhibition in the same two regions. A mechanism was proposed suggesting that 

NAB2 may act as a modulator of EGR3 activity in the consolidation of contextual fear memory 

(CFM) such that consolidation of CFM only proceeds upon presentation of a US when the CS 

is novel and this involves Nab2 not being upregulated. In this chapter Egr3 and Nab2 

expression and additionally Egr1 expression is investigated to identify if any of these genes are 

regulated in correlation with reconsolidation or extinction of CFC. EGR1 is from the EGR 

family, and like EGR3, has a NAB2 binding site (O’Donovan et al., 1999; Svaren et al., 1996). 

EGR1 has already been shown to be necessary for reconsolidation of CFM (Lee et al., 2004).

5.1.1 Reconsolidation and Extinction

Reconsolidation and extinction are processes that can occur in response to retrieval of a 

memory. Retrieval of a previously established memory is thought to render the memory labile 

and susceptible to change (Misanin et al., 1968). Reconsolidation is the process by which labile 

memories are stabilized after retrieval (Nader, 2003). Extinction is the loss of a learned 

performance that occurs when a Pavlovian signal (CS) is repeatedly presented without its 

reinforcer (US). Extinction does not reflect destruction of the original learning, but is currently 

thought to involve formation of a CS-no US memory (Bouton, 2002). Different conditions of
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recall favour reconsolidation or extinction (Debiec et al., 2002; Nader, 2003; Eisenberg et al., 

2003; Pedreira & Maldonado, 2003; Suzuki et al., 2004; Lee et al., 2006). In rodents having 

undergone CFC this is observed by the presence or absence of freezing behaviour in a 

retention test after different length recall exposures (Suzuki et al., 2004; Barnes and Thomas,

2008). The neural circuitry of reconsolidation may include the hippocampus, entorhinal cortex, 

amygdala, medial prefrontal cortex (mPFC) and nucleus accumbens (Tronson and Taylor, 

2007; see 1.2.3.2). The neural circuitry of extinction is known to include the hippocampus, 

mPFC and amygdala (Quirk and Mueller, 2008; see 1.2.4.2).

5.1.2 Egrl, Egr3 and Nab2

Egr3 has the same nine-nucleotide DNA binding domain as the transcription factor Egr1 

(zif268INgfhsJKrox-24). This could lead to both genes promoting transcription of the same set 

of target genes in response to activity. However, differences in the rest of their protein structure 

could partially or totally segregate the type or temporal profile of the target genes expressed 

(Poirier et al., 2008). Both EGR3 and EGR1 contain an R1 repression domain that binds NGFI- 

A-binding proteins 1 and 2 (NAB1 and NAB2). NAB1 and NAB2 most commonly act as co­

repressors of EGR transcriptional activity (Russo et al., 1995; Svaren et al., 1996), but NAB2 

enhancement of EGR activity has been identified in Schwann cells, therefore the function of 

NABs has been suggested to depend on cell type (Desmazieres et al., 2008). Nab2, in addition 

to being constitutively expressed like Nab1, can be expressed in an activity-dependent manner 

(Svaren et al., 1996; Jouvert et al., 2002).

Egr3 and Egr1 have similar developmental and anatomical patterns of expression, similar 

anatomical activity-dependent expression patterns, and similar, but not identical, activity- 

dependent expression time profiles in response to maximal electroconvulsive seizure (MECS) 

in the hippocampus (Yamagata et al., 1994; Beckmann & Wilce, 1997). EGR1 activity in the 

hippocampus is necessary for reconsolidation (Lee et al., 2004). Upregulation of Egr1 in 

regions of the hippocampus, amygdala, mPFC and nucleus accumbens correlating with 

retrieval of hippocampal-dependent LTM could be indicative of roles for Egr1 in other regions of 

the brain in reconsolidation or extinction (Hall et al., 2001; Thomas et al., 2002; Malkani and 

Rosen, 2000; Herry and Mons, 2004). No studies have looked at Nab2 expression in LTM yet. 

The similarities and differences between Egr3 and Egr1, and the possible interactions with 

Nab2, make Egr1 and Nab2 interesting candidates to investigate for regulation in
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reconsolidation and extinction in different brain regions. Egr1 has been shown to be 

upregulated after retrieval (Hall et al., 2001) and EGR1 has been shown to be necessary for 

reconsolidation of CFM (Lee et al., 2004), therefore if Egr1 is upregulated following short recall 

session exposure in this study then this will act as a positive control for the ISH results.

5.1.3 Outline of Experiments

Experiment 1 was performed to establish whether a short recall period of 2 min, 2 days after 

CFC, resulted in reconsolidation of the CFM. Furthermore, to establish whether a long recall 

period of 10 min, 2 days after CFC, will result in extinction of the CFM. Experiment 2 

investigated the levels of expression of Egr3, Egr1 and Nab2 in brain regions that contribute to 

the neuronal circuitry supporting reconsolidation and extinction of CFM. This is assayed by 

performing ISH on brain tissue obtained 30 minutes after exposure to a short or long recall of 

CFM test that lead either to reconsolidation or extinction of that memory. The regions 

investigated include the CA1, CA3 and DG of the hippocampus, the LA and BLA nuclei of the 

amygdala, and the Cg1 and PrL/IL regions of the mPFC. Experiment 3 investigated the effect 

of intrahippocampal infusions of Egr3 antisense on reconsolidation of CFC, to determine if 

EGR3 is necessary for reconsolidation of CFM.

5.2 METHODS

5.2.1 Subjects

Forty-five male Listar hooded rats (280-300g; Charles River, UK) were housed in pairs and 

kept in a holding room at 21°C under reverse light-dark conditions (lights off at 10 am). Animals 

were allowed ad libitum access to food and water. All rats were handled for 5 min on three 

consecutive days before conditioning.
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5.2.2 Experiment 1: investigation of the Effect of Different Length Recall Tests 

following CFC on CFM

5.2.2.1 Behavioural Apparatus

As described in 2.2.2, two contextual fear-conditioning chambers were used, but they were 

designed to differ in a number of features including size, spatial location, odor and lighting. 

Exposure to each context was separated by a minimum of 4 hours. Context A had wallpaper, 

no house light on and lavender oil, while context B had clean sawdust in the floor tray and the 

house light on. The experiments were performed during the lights off period for the rats.

5.2.2.2 Behavioural Paradigm

Twelve rats were habituated to the contexts A and B for 20 min for 3 days. On day 4 half the 

rats were conditioned to context A and the other half to context B (Fig. 5.1). On day 5 rats were 

conditioned in the context that they had not already been conditioned in. Conditioning 

consisted of receiving a footshock (2 s, 0.5mA shock; the unconditioned stimulus [US]) 2 min 

after being placed in the conditioning chamber (the conditioned stimulus [CS]). After a further 1 

min in the chamber the rats were returned to their home cages. Two days after conditioning 

rats were re-exposed to one of the contexts that they had been conditioned to, half for 2 min 

and the other half for 10 min. Three days after conditioning rats were re-exposed to the other 

context that they had been conditioned to, again half for 2 min and the other half for 10 min. 

The order of the contexts that the rats were exposed to during the recall tests was the same as 

during conditioning. The first long-term memory test (LTM1) was performed 4 days later and a 

second test (LTM2) performed 14 days later. The LTM tests consisted of placing the rats in one 

of the conditioned contexts for 2 min followed the next day by 2 min in the other conditioned 

context. The order to which each rat was exposed to the two contexts in the LTM tests was the 

same as in the conditioning training (Fig. 5.1 a).

192



f  ^ r n

Context 1 (C1): Context 2 (C2):
* Wallpaper • Clean sawdust in floor tray
• House light off * House light on
• Lavender oil

V  J V J
3 d x

Habituation Conditioning Retrieval LTM1 LTM2

C1 

4 hj
C2

C1 

24 hj
C2

2d C1 Sd C1 14 d C1
____

24 h j
i

24 h
i

k
24 h j

r

C2 C2 C2

2 min in C1/C2 
and 10 min in 

the other

Group: 

Short Recall

Long Recall 

No Recall

3 d x 
Habituation

3 d x 
Habituation

3 d x 
Habituation

1 d 3d 30 min

Conditioning.

Conditioning-

Conditioning

2 min Retrieval 
in C1/C2

JO min Retrieval 
in C1/C2

Killed

Figure 5.1. Schematic of behavioural paradigm used to investigate the effects on LTM of 2 
min and 10 min retrieval exposures to a context already associated with CFM. (A) Schematic 
of behavioral paradigm used to investigate whether 2 min short recall of a CFM lead to 
reconsolidation of the CFM, and whether a 10 min long recall of a CFM leads to extinction of a 
CFM. Each rat formed two CFM, one associated with each context (C1 and C2). Each rat had 2 
min exposure to one of the contexts and a 10 min exposure to the other context 2 days after being 
conditioned. Long-term memory (LTM) tests were performed to investigate if the different time 
length of retrieval periods effected LTM of that specific memory. (B) Schematic of the behavioural 
paradigm used to investigate gene expression following Short Recall and Long Recall of a CFM. d, 
day; h, hours; LTM, long-term memory.
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5.2.3 Experiment 2: Profiling the Expression of Egr3, Egrl and Nab2 after Short and 

Long Exposure to a Conditioned Context using In Situ Hybridisation

5.2.3.1 Behaviour

The rats were divided into three groups: (i) No Recall (n=4), (ii) Short Recall (n=4), and (iii) 

Long Recall (n=4). Rats were habituated to a single context (either A or B) for 20 min for 3 

days. On day 4 they were conditioned in that context. Three days after conditioning, 4 rats 

were re-exposed for 2 min to the context to which they were conditioned (Short Recall group), 

and 4 rats were re-exposed for 10 min to the context to which they were conditioned (Long 

Recall group). After the short and long recall tests the rats were returned to their home cages 

and killed 30 min later by CO2 asphyxiation. The other 4 rats that had undergone conditioning 

remained in their home cages and were not re-exposed to the conditioning context, and were 

killed by CO2 asphyxiation 3 days after conditioning (No Recall group) (Fig. 5.1 b). The brains 

were excised immediately after they were killed and rapidly frozen on dry ice. The brains were 

then stored at - 80°C.

5.2.3.2 In Situ hybridisation

In situ hybridisation (ISH) was carried out as described in 2.5. In addition to the Egr3 45mer 

oligonucleotide probe designed for previous experiments, probes were designed for Egr1, 

complementary to nucleotides 460-505 of the Egr1 gene (Milbrandt, 1987), and Nab2, 

complementary to nucleotides 891-935 from transcript XM_235224 (NCBI). All oligonucleotides 

were 3’ end-labelled with [a-35S] dATP using terminal deoxynudeotidyl transferase. The 

specific activity of the labelled probes are given in Table 5.1. All labelled probes were used to 

assay mRNA expression. ISH was carried out on coronal 14 îm sections of the mPFC (3 

labelled sections and 2 non-specific labelled sections), hippocampus (4 labelled sections and 2 

non-specific labelled sections) and amygdala (3 labelled sections and 2 non-specific labelled 

sections). Hybridised sections were opposed to autoradiographic film for 3 to 7 days to check 

that the probes detected labelling specific to gene expression (Table 5.1). Hybridised sections 

were then dipped in K5 photographic nuclear emulsion as described in 2.5.5. They were
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Table 5.1. Specific activity of S35-labelled oligonucleotide probes. These probes were used to 
detect expression of genes of interest in adult rat brain sections 30 minutes post-training in the 
Recall and No Recall groups and in the naive group of rats. The number of days that the labelled 
tissue sections were exposed to photographic emulsion are given.

Gene Specific Activity (dpm/pl) Days on emulsion

Egr1 152 900 21
Egr3 138 100 49
Nab2 207 400 49
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exposed for 21 to 49 days (Table 5.1) at 4°C before being developed and then counterstained 

with 0.1% thionin.

5.2.3.3 Silver Grain image Collection and Analysis

Images of emulsion-dipped sections were obtained on a light microscope, through a 100x 

magnification lens under oil immersion, with a digital camera. The focus was on the silver 

grains (SG) with thionin stained cells detectable in the background. Photomicrograph images 

were collected from the Cg1 and PrL/IL regions in all medial PFC sections, from the CA1, CA3 

and DG regions in all hippocampal sections, and from the DLA, LA and BLA nuclei in all 

amygdala sections for Egr3, Egr1 and Nab2. The number of SG per cell were counted using 

ImageJ over sufficient randomly selected counterstained neurons, from each region, bilaterally, 

for each subject, such that the SE of the counts for any region was less than 10% of the 

population mean. Approximately 24 total labelled cells (from the hybridised sections) and 18 

non-specific labelled cells (from the control sections hybridised with labelled probe and 100x 

excess unlabelled probe) were measured to meet this criteria. The specific SG count was then 

calculated for each region by subtracting the non-specific counts from the total counts for each 

subject. Gene expression levels in the Short Recall and Long Recall groups were standardised 

as a percentage of the mean number of SG in the control No Recall group for each region.

Heavily labelled Egr3- and Eg/T-positive cells in the DG region of the hippocampus were 

subjectively identified through a dark-field microscope as sparsely distributed clusters of bright 

points. These clusters of bright points were confirmed to represent high levels of Egr3 and Egr1 

expression in cells by switching to light-field conditions without moving the slide. The number of 

heavily labelled Egr3- and Egrf-positive cells was counted under dark-field conditions using the 

light microscope at 10x magnification. This analysis was determined from the same Egr3- and 

EgrMabelled sections as used for the silver grain counting analysis.

5.2.4 Experiment 3: Effect of Intrahippocampal infusions of Egr3 Antisense on Short 

Exposure to a Conditioned Context

The Egr3 antisense oligodeoxynucleotides (ODNs), ASOII, and the missense ODNs (MSO) 

used in chapter 4 were used to investigate whether EGR3 is required for reconsolidation of 

CFM. This was done through hippocampal infusions of the Egr3 antisense prior to a CFM short
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retrieval test and analysing freezing behaviour in following LTM tests. The sequences for the 

ODNs are given in Table 2.1. All rats underwent surgery and were divided into two groups:- (i) 

Egr3 ASOII group (n=9), and (ii) MSO group (n=12). The surgery involved putting in place 

bilateral indwelling hippocampal cannula at AP -3.50, relative to bregma, as described in 2.3.2. 

A week after surgery the rats received a habituation infusion of 2 \i\ of PBS at 0.125 îl/min and 

a day later they underwent CFC. Three days later they received an infusion of 2 l̂ of 2 nmol/ l̂ 

ASOII or 2 jil of 1 nmol/|al MSO in PBS at 0.125^1/min, as described in 2.3.3. The rats were 

placed back in the conditioning chamber for 2 min, 90 min after the infusion, for a Post- 

Retrieval (PR) test. The rats were placed in the conditioning chamber 3 hours later for a post­

retrieval short-term memory (PR-STM) test and 24 hours later for a LTM1 test. Both these tests 

consisted of a 2 min re-exposure to the CS only. Similar LTM2 and LTM3 retrieval tests were 

performed 14 days and 18 days following the LTM1 test respectively. The average level of 

freezing behaviour in the ASOII group and the MSO group for the pre-US period, post-US 

period, PR test, PR-STM test, LTM1 test, LTM2 test and LTM3 test was calculated.

After behavioural analysis, rats were killed by CO2 asphyxiation. The brains were excised and 

rapidly frozen on dry ice and stored at - 80°C. Histological assessment of the cannulae 

placement was performed by using a cryostat to cut and collect 14^m sections from the dorsal 

hippocampus that the cannulae targeted, and using thionin staining and a light microscope to 

identify the cannulae endpoints as described in 2.4.

5.2.5 Behavioural Analysis

The number of 10 s intervals that had freezing behaviour present was divided by the total 

number of 10 s intervals observed. This was then expressed as the percentage of time spent 

freezing for each test.

5.2.6 Statistical Analysis

Repeated measures Analysis of Variance (ANOVA) was used to identify significant differences 

in the freezing behaviour between the different behavioural groups prior to and following CFC 

for Experiments 1, 2 and 3. For analysis of the ISH results in Experiment 2 one-way ANOVA 

and the Fishers Least Significant Difference (FLSD) statistical tests were used to measure
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differences between the levels of gene expression in the different behavioural groups. A priori 

planned comparisons comparing the level of gene expression in the Recall groups relative to 

the No Recall group were performed using the FLSD test.

5.3 RESULTS

5.3.1 Experiment 1: Investigation of the Effect of Different Length Recall Tests 

following CFC on CFM

The effect of fear conditioning and short and long recall tests in two contexts is shown in Figure

5.2 a. There were significant effects of training and test phases on freezing behaviour (F (4.225. 

46.475) e=  0.469 = 11.518, p = 0.000, repeated measures ANOVA). Rats showed significant levels 

of freezing behaviour in the post-US session compared to the pre-US session in both the C1 

and the C2 conditioning trials. Freezing behaviour in both the Short Recall and the first 2 min of 

the Long Recall groups was no different from that in the post-US sessions showing that rats in 

these groups had formed a CS-US memory. There was no significant difference between the 

freezing behaviour in the short recall session copmpared to the LTM1 and LTM2 retention tests 

in the Short Recall group. In contrast, there was a significant decrease in the freezing 

behaviour in the first 2 min of the long recall session compared to the LTM1 and LTM2 

retention tests in the Long Recall group. The freezing behaviour in the final 2 min of the long 

recall session was half that observed in the first two min indicating that there was within- 

session extinction present in the Long Recall group (F (2.681. 29.487)8= 0.670 = 8.257, p = 0.001, 

repeated measures ANOVA) (Fig. 5.2 c).

5.3.2 Experiment 2: Profiling the Expression of Egr3, Egrl and Nab2 after Short and 

Long Exposure to a Conditioned Context using In Situ Hybridisation

5.3.2.1 Behaviour

The behaviour that the rats underwent prior to ISH showed an effect of fear conditioning (Fig.

5.2 b). There were significant effects of training and test phases on freezing behaviour (F (1.353, 

9.471)8=0.677 = 16.711, p = 0.001, repeated measures ANOVA). Rats showed significant levels of
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Figure 5.2. Short (2 min) and long (10 min) exposure to a conditioned context. (A) Freezing 
behaviour following short and long exposure to a conditioned context showing no change in 
freezing behaviour in LTM tests following Short Recall but significant reduction in freezing 
behaviour in LTM tests following Long Recall. (B) Freezing behaviour of rats during conditioning, 
Short Recall and the first 2 min of Long Recall, for rats that were killed for Experiment 2. (C) 
Freezing behaviour in 2 min intervals throughout Long Recall sessions from both Experiment 1 
(triangle) and Experiment 2 (square). * p<0.05, ** p<0.01, *** p<0.001.
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freezing behaviour in the post-US session compared to the pre-US session in the conditioning 

trial. Freezing behaviour in both the Short Recall group and the first 2 min of the Long Recall 

group was significantly increased compared to pre-US session in the conditioning showing that 

rats in these groups had formed a CS-US memory. There was no significant difference in the 

levels of freezing behaviour between the Short Recall group and the first 2 min of the Long 

Recall group. The freezing behaviour in the final 2 min was not significantly reduced compared 

that observed in the first two min of the extinction session for the Long Recall group indicating 

that there was no significant within-session extinction present in the Long Recall group (Fig. 5.2

c).

5.3.2.2 Hippocampal Expression of Egri, Egr3 and Nab2 after Short and Long Exposure 

to a Conditioned Context

The levels of Egr1, Egr3 and Nab2 expression measured in the hippocampal CA1, CA3 and 

DG regions in the Short Recall, Long Recall and No Recall groups are presented in Figure 5.3. 

While there was no effect of group on Egri expression in the CA1 region of the hippocampus 

(F (2,9) = 3.928, p = 0.059, ANOVA), planned comparison between both of the Recall groups 

and the No Recall group showed that Egri expression was upregulated 30 min after recall in 

both the Short Recall and Long Recall groups relative to the No Recall group (Fig. 5.3 a). Egri 

expression was also upregulated 30 min after recall in both the Short Recall and Long Recall 

groups relative to the No Recall group in the CA3 region of the hippocampus (F (2,9) = 8.470, p 

= 0.009, ANOVA) (Fig. 5.3 b). There was no difference in expression levels of Egri between 

any of the groups in the DG region of the hippocampus (Fig. 5.3 c). Egr3 was upregulated 30 

min after recall in both the Short Recall and Long Recall groups relative to the No Recall group 

in the CA1 (F (2,9) = 9.634, p = 0.006, ANOVA) and CA3 (F (2,9) = 15.280, p = 0.001, ANOVA) 

regions of the hippocampus. There was no change in levels of expression in the DG region of 

the hippocampus (Fig. 5.3 d - f). Nab2 was upregulated 30 min after recall in both the Short 

Recall and Long Recall groups relative to the No Recall group in the CA1 (F (2,9) = 25.535, p = 

0.000, ANOVA), CA3 (F (2,9 ) = 13.105, p = 0.002, ANOVA) and DG (F {2,9 ) = 19.660, p = 0.001, 

ANOVA) regions of the hippocampus (Fig. 5.3 g - i). Thus, Egri, Egr3 and Nab2 are 

upregulated by both short and long exposure to a conditioned context in the CA1 and CA3, and 

Nab2 was also upregulated in the DG under both recall conditions.
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Although, no changes were detected in the level of Egri or Egr3 expression across the general 

population of cells in the DG region of the hippocampus in either the Short Recall or Long 

Recall groups, there were increased numbers of heavily labelled cells in both Recall groups 

compared to the No Recall group for Egri (F (2,9) = 36.652, p = 0.000, ANOVA) and Egr3 (F (2, 

9) = 16.050, p = 0.001, ANOVA). The number of heavily labelled Eg/T-positive cells in the 

Recall groups increased by approximately 1300% relative to the No Recall group, and the 

number of heavily labelled Egr3-positive cells in the Recall groups increased by approximately 

700% relative to the No Recall group (Fig. 5.4). The photomicrographs in Figure 5.4 a show 

heavily labelled Egrf-positive cells in the DG in the Long Recall group compared to the No 

Recall group, and show the more evenly distributed Egri labelling in the CA1 and CA3 regions 

in these two groups for comparison.

5.3.2.3 Prefrontal Cortex Expression of Egri, Egr3 and Nab2 after Short and Long 

Exposure to a Conditioned Context

Egri expression is significantly upregulated 30 min after recall in both the Short Recall and 

Long Recall groups relative to the No Recall group in the Cg1 (F (2, 9) = 10.489, p = 0.004, 

ANOVA), and PrL/IL (F (2,9) = 10.718, p = 0.004, ANOVA), regions of the mPFC (Fig. 5.5 a & 

b). No changes in expression levels of Egr3 and Nab2 were detected between either of the 

Recall groups in comparison to the No Recall groups in either the Cg1 or PrL/IL regions of the 

mPFC (Fig. 5.5 c-f).

5.3.2.4 Amygdala Expression of Egri, Egr3 and Nab2 after Short and Long Exposure to 

a Conditioned Context

Egri expression was upregulated 30 min after recall in both the Short Recall and Long Recall 

groups relative to the No Recall group in the LA (F (2,9) = 5.206, p = 0.031, ANOVA) and BLA 

(F (2, 9) = 4.860, p = 0.037, ANOVA) nuclei of the amygdala (Fig. 5.6 a & b). Egr3 expression 

was also upregulated 30 min after recall in both the Short Recall and Long Recall groups 

relative to the No Recall group in the LA (F (2,9) = 7.369, p = 0.013, ANOVA) and BLA (F (2,9) = 

23.125, p = 0.000, ANOVA) nuclei of the amygdala (Fig. 5.6 c & d). In contrast, there was no 

difference in expression levels of Nab2 between any of the groups in the LA or BLA nuclei of 

the amygdala (Fig. 5.6 e & f). Further analysis of Egr3 expression in the BLA nucleus of the

202



Long RecallNo Recall

B
Egri DG Egr3 DG

60 60 -

40 -

20 -

No Short Long 

Recall
No Short Long 

Recall

Figure 5.4. Heavily labelled cells for Egri and Egr3 mRNA in DG region of 
hippocampus during short (2 min) and long (10 min) recall. (A) Photomicrographs 
under darkfield conditions at x10 magnification showing heavily labelled Egrl-positive cells 
present in the dorsal DG for long recall group ,but not in the no recall group. Darkfield 
photomicrographs of the CA1 and CA3 regions in long recall and no recall groups are 
provided for comparison. (B) Number of heavily labelled Egrf-positive cells and Egr3- 
positive cells in DG for short and long recall groups and the no recall group. *** p<0.001 
Error bars represent SEM. Scale bar p,m.
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amygdala showed that from the cells counted, 10% of the cells in the No Recall group 

expressed more than 50 grains per cell, while 27% and 30% of the cells in the Short Recall and 

Long Recall groups, respectively, expressed more than 50 grains per cell (Fig. 5.7 a - c). This 

could be indicative of an increase of Egr3 expression within a subpopulation of the cells.

5.3.2.5 Summary of ISH Results

A summary of Egr1, Egr3 and Nab2 regulation 30 min after short and long exposure to a 

conditioned context in the hippocampal regions, mPFC regions and amygdala nuclei is 

presented in Table 5.2.

5.3.3 Experiment 3: Effect of Intrahippocampal Infusions of Egr3 Antisense on Short 

Exposure to a Conditioned Context

Of the 21 rats that underwent surgery, 2 died in the 24 hrs following the practice PBS infusions. 

Four rats were excluded from the analysis because of blocked or loose (one rat) cannulae. One 

rat was removed at LTM1 due to illness.

5.3.3.1 Histology

Four rats were identified as having misplaced indwelling cannula. They were therefore 

excluded from the study. The other 10 rats had correctly placed indwelling cannulae (Fig. 5.8

a).

5.3.3.2 Behaviour

The increased levels of freezing behaviour in both the ASOII and MSO groups in the post-US 

period during conditioning and in the following retrieval tests indicated that the rats had been 

conditioned. There was an effect of Test on freezing behaviour (F (3.962,27.735)8=0.660 = 12.974, p 

= 0.000, repeated measures ANOVA). There was no Test x Group interaction indicating that 

there was no difference in the levels of freezing behaviour between the rats infused with ASOII 

and the rats infused with MSO (F (3.962,27.735)8=0.660 = 0.431, p = 0.784, repeated measures
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Table 5.2. Summary of Egr1, Egr3 and Nab2 regulation in regions of the hippocampus 
and prefrontal cortex and nuclei of the amygdala 30 min after both Short Recall and 
Long Recall of a CFM. t > gene expression is upregulated at the cellular level relative to the 
No Recall group; f*, gene expression is upregulated in a small population of cells in the DG 
relative to the No Recall group; no difference in gene expression relative to the No Recall 
group.

Brain
Structure of 
interest

Region of 
brain structure

Egrl Egr3 Nab2

Hippocampus CA1 A A A

CA3 A A

t  ...
DG A * > ^ T

Amygdala BLA A A
■

LA > A
■

Prefrontal
Cortex

CG > - -

PL T - -
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CFC. (A) Schematic indicating the site of infusion of the antisense (ASO) and missense (MSO). (B) 
Schematic of behaviour and infusion protocol used and the freezing behaviour of rats during CFC 
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Error bars represent SEM.
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ANOVA) (Fig. 5.8 b). Egr3 antisense infusions at 90 min prior to CFM retrieval resulted in 

similar levels of freezing behaviour in the following LTM tests in conditioned rats compared to 

conditioned rats receiving missense infusions at 90 min prior to CFM retrieval. 

Intrahippocampal infusion of Egr3 antisense ODNs 90 min prior to the short retrieval test did 

not prevent the reconsolidation of CFM.

5.4 DISCUSSION

Conditioned freezing behaviour in LTM retention tests was reduced in rats exposed to a recall 

session of 10 min, whereas there was no change in freezing behaviour in the LTM retention 

tests in rats exposed to a recall session of 2 min. This shows that a recall session of 10 min is 

sufficient to induce extinction as previously described (Barnes and Thomas, 2008). A recall 

session of 2 min has been established to induce reconsolidation, in rats having undergone 

contextual fear conditioning (Lee et al., 2004; Bames and Thomas, 2008). However for the 

freezing behaviour observed in rats used to provide brain tissue for gene expression profiling, 

there was no within-session extinction observed in the extinction session for the Long Recall 

group. This finding may be interpreted as both the Short Recall and Long Recall groups having 

undergone the same process (ie reconsolidation). However Bdnf and Arc expression have also 

been assayed in the same tissue as used in this experiment (unpublished findings) and they 

showed different responses between the Short Recall group and the Long Recall group. This 

suggests that different processes have been engaged in the Short Recall group compared to 

the Long Recall group.

Egr1, Egr3 and Nab2 expression was upregulated in the CA1 and CA3 regions of the 

hippocampus during the initial stages of both reconsolidation and extinction. Nab2 expression 

was also upregulated in the DG of the hippocampus. Egr1 and Egr3 expression was 

upregulated in a subpopulation of the DG cells in both reconsolidation and extinction. The 

expression of Egr1, but not Egr3 or Nab2, is upregulated in the Cg1 and PrL/IL regions of the 

mPFC in both reconsolidation and extinction. Egr1 and Egr3 expression is upregulated in the 

LA and BLA nuclei of the amygdala in both reconsolidation and extinction, but no significant 

changes in the levels of expression of Nab2 were detected in either the LA or BLA nuclei of the 

amygdala in either reconsolidation or extinction. Further study of Egr3 expression in the BLA 

nucleus of the amygdala showed that a subpopulation of cells expressed much higher levels of 

Egr3 expression compared to the majority of cells. Figure 5.9 summarises all the changes in 

Egr1, Egr3 and Nab2 regulation associated with reconsolidation and extinction of CFM. These
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Figure 5.9. Schematic showing Egr1, Egr3 and Nab2 regulation in association with reconsolidation 
and extinction in regions of the medial prefrontal cortex, hippocampus and amygdala. Block 
arrows, information input and output following CFC; thin black arrows, information flow between brain 
regions; small arrows, up- or down-regulation of gene expression; *, heavily labelled cells (no regulation 
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prelimbic cortex (PrL) & infralimbic cortex (IL). Hippocampal regions: cornus ammonis 1 (CA1), cornus 
ammonis 3 (CA3) & dentate gyrus (DG). Amygdala regions: dorsolateral nucleus (DLA), lateral nucleus 
(LA) & basolateral nucleus (BLA); Contextual fear memory (CFM). Not drawn to scale.
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data suggest a role for EGR3 in the reconsolidation and extinction of CFM in the hippocampus. 

However, a subsequent functional study in which hippocampal infusions of Egr3 antisense 90 

min prior to CFM retrieval did not effect freezing behaviour in the following LTM tests, indicating 

that EGR3 in the hippocampus was not necessary for the reconsolidation of CFC.

5.4.1 Egrl Expression Upregulated by Retrieval of a CFM

Our findings that Egr1 is upregulated in the CA1 by 2 and 10 mins exposures to a fear 

conditioned context are complimented by a previous study showing that Egr1 mRNA is also 

upregulated in this hippocampal region after the retrieval of a CFM by an 8 min retrieval trial 

(Hall et al., 2001). The regulation of Egr1 in the CA1 is also consistent with a series of 

experiments that showed that hippocampal EGR1 plays a functional role in reconsolidation 

(Lee et al., 2004). One other study measured no changes in expression of Egr1 in CA1 30 min 

after retrieval of CFM using a recall test with duration of 4 min (Malkani & Rosen, 2000). 

However, this discrepancy may be due to the use of a different control group to account for US 

(immediate US instead of LI), or the different level of analysis used (autoradiographic 

densitometry instead of silver grain counting, which inherently has a lower level of spatial 

accuracy). The increase in the levels of Egr1 mRNA in CA3 we observed after 2 and 10 min 

recall of CFM are consistent with a study that showed upregulation of EGR1 protein 2 h 

following retrieval of a CFM in the CA3/DG region (Lee et al., 2004). Furthermore, lack of 

change in Egr1 expression in the general cell population in DG after recall is consistent with 

observations in the study by Hall et al (2001) that show no change in Egr1 mRNA expression 

30 min after retrieval of a CFM that had a recall test with a duration of 8 min. Nevertheless, 

using a different analytical approach we identified a subpopulation of cells in the DG, mainly in 

the dorsal blade, with heavy Egr1 labelling after short and long recall sessions. Activity in 

these cells may indicate their involvement in a sparse network of neurons supporting the 

reconsolidation and extinction of the CS-US memory (Marr, 1970). They may also represent 

neurogenic cells that are activated during reconsolidation and extinction (Frankland & Miller, 

2008; Kee et al., 2007; Ko et al., 2009). However this argument is problematical, since 

neurogenesis and transport from the SGZ takes days to weeks and we investigated changes in 

expression only 30 min after recall.

Our studies have identified upregulation of Egr1 mRNA expression in the Cg1 and PrL/IL 

regions of the mPFC following short and long recall of CFM, conditions of recall that we show
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correlated to the reconsolidation and extinction of CFM, respectively. Post-retrieval 

upregulation of Egr1 mRNA in the Cg1 and the PrL has been observed before (Thomas et al., 

2002). The regulation of levels of EGR1 protein in PrL/IL mPFC have been associated with 

extinction training of CFC, with decreases measured after one extinction training session and 

increases after a second (Herry & Mons, 2004). However in that study, the first extinction 

session took place 5 hours after conditioning, a time-point at which consolidation of CFC was 

not likely to have been completed. In addition, no control No Recall group was used so whether 

the changes identified in EGR1 expression was related to extinction cannot be determined. In 

conclusion, our findings agree with previous studies that implicate Egr1 activity in the mPFC by 

recall of CFC.

Our data show that Egr1 expression was upregulated in the general cell population of both the 

LA and BLA nuclei of the amygdala during reconsolidation or extinction of CFM. These findings 

are supported by two previous studies. Firstly, upregulation of Egr1 expression was observed 

in the BLA nucleus of the amygdala 30 min post-retrieval (Hall et al., 2001). Secondly, 

increases in EGR1 protein expression have also been identified in the mouse lateral amygdala 

2 hours after a second extinction training session, 24 hours after cued fear conditioning (Herry 

& Mons, 2004).

In summary our findings show that upregulation of Egr1 expression is correlated with both 

reconsolidation and extinction of CFM in the CA1, CA3 regions of the hippocampus and a 

subpopulation of cells in the DG regions of the hippocampus, in the Cg1 and PrL/IL regions of 

the mPFC and in the LA and BLA nuclei of the amygdala.

5.4.2 Egr3 Expression Upregulated by Retrieval of a CFM

We measured an increase in the expression of Egr3 in the CA1, CA3 and the DG after recall of 

CFM by both a 2 min and 10 min exposure to the context CS. The increase in Egr3 expression 

in DG, like that for Egr1, was confined to a small population of DG cells. These represent novel 

data concerning the expression of Egr3 with recall of CFM. This upregulation of Egr3 in the 

pattern described above suggests EGR3 may have a role in both reconsolidation and extinction 

of CFM. However, intrahippocampal infusion of Egr3 antisense into the hippocampus 90 min 

before a short recall exposure to a conditioned context did not lead to altered freezing 

behaviour in the following retention tests. This suggests that EGR3 activity in the hippocampus
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is not necessary for reconsolidation of CFM. However, since EGR3 protein expression was not 

quantified, the efficacy of the antisense approach used in this study to reduce the translation of 

Egr3 mRNA to EGR3 protein was not confirmed. Necessary future work includes performing 

Western blot analysis to determine whether EGR3 protein is regulated in the CA1 following the 

recall of a CFM, and whether the levels of EGR3 protein are reduced, or knocked down, 

following recall of a CFM.

Our data show that Egr3 expression was upregulated in the general cell population of both the 

LA and BLA nuclei of the amygdala during reconsolidation or extinction of CFM. There are no 

previous studies on the expression of this gene in these regions during these processes so 

these findings are novel. An increase in Egr3 expression in a subpopulation of cells in the BLA 

nucleus of the amygdala after recall was observed. Studies have identified a role for a minority 

subpopulation of cells in the BLA called the intercalated cell mass (ICM) compared to the 

majority of the BLA cell population in extinction (Quirk & Mueller, 2008). A role for the ICM has 

not yet been investigated in reconsolidation. This data suggests that different populations of 

cells within the amygdala may differentially contribute to, or participate in, memory processing 

after recall. It remains to be determined which subpopulation of cells this high Egr3 expressing 

group represents, or whether they play a role in the reconsolidation and extinction of fear 

memory.

There was no change in the level of Egr3 expression in the Cg1 and PrL/IL regions of the 

mPFC. In summary our findings show that upregulation of Egr3 expression is correlated with 

both reconsolidation and extinction of CFM in the CA1, CA3 regions of the hippocampus and a 

subpopulation of cells in the DG regions of the hippocampus, and in the LA and BLA nuclei of 

the amygdala and in a subpopulation of cells in the BLA nucleus of the amygdala, but not in the 

Cg1 and PrL/IL regions of the mPFC.

5.4.3 Nab2 Expression Upregulated by Retrieval of a CFM

We measured an increase in the expression of Nab2, a repressor of EGR activity, in the CA1, 

CA3 and the DG after recall of CFM by both a 2 min and 10 min exposure to the context CS. In 

contrast, no change in Nab2 expression was observed in the LA or BLA nuclei of the amygdala 

or in the Cg1 or PrL/IL regions of the mPFC. These findings represent novel data concerning 

the expression of Nab2 with recall of CFM. In summary our findings show that upregulation of
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Nab2 expression is correlated with both reconsolidation and extinction of CFM in the CA1, CA3 

and DG regions of the hippocampus, but not in the nuclei of the amygdala or regions of the 

mPFC.

5.4.4 Neurocircuitry Supporting Retrieval of a CFM

Our findings suggest that cells in the CA1, CA3 and DG of the hippocampus, the Cg1 and 

PrL/IL regions of the mPFC and the LA and BLA nuclei of the amygdala are involved in the 

neurocircuitry involved in reconsolidation and extinction.

5.4.4.1 Hippocampus

A role for the hippocampus has already been implicated in reconsolidation as gene 

transcription in the hippocampus is necessary for reconsolidation of CFM (Lee et al., 2004). In 

addition, protein synthesis in the hippocampus is necessary for reconsolidation of CFM (Debiec 

et al., 2002; Lee et al. 2004; Mamiya et al., 2009), spatial memory (Rossato et al., 2006b) and 

object recognition memory (Rossato et al., 2007). Molecular activity in the hippocampus such 

as upregulation of Egr1 in the CA1 after short recall of a cued fear memory (Hall et al., 2001), 

hippocampal EGR1 activity in CFM reconsolidation (Lee et al., 2004), and CREB activity and 

ARC protein expression in the CA1 and CA3 after short recall of a CFM (Mamiya et al., 2009) 

further support for a role for the hippocampus in the neurocircuitry underlying reconsolidation. 

A role for the hippocampus has also been implicated in extinction as gene transcription in the 

hippocampus is necessary for reconsolidation of inhibitory avoidance (IA) memory (Vianna et 

al., 2003), and protein synthesis in the hippocampus is necessary for extinction of CFM or IA 

memory (Thomas & Barnes, 2008; Vianna et al., 2001; Power et al., 2006). Molecular activity in 

the hippocampus such as NMDA receptor activation (Szapiro et al., 2003), kinase activity 

including PKA, p38 MAPK, JNK, CDK5, PAK-1, MEK/ERK and SRC tyrosine kinases 

(Bevilaqua et al., 2003; Bevilaqua et al., 2007; Fischer et al., 2006; Rossato et al., 2006a; 

Sananbenesi et al., 2007; Szapiro et al., 2003), and actin rearrangement (Fischer et al., 2004) 

are necessary for or correlate with memory extinction. Thus our data showing an upregulation 

of the expression of Egr1, Egr3 and Nab2 mRNA in the hippocampus 30 min after recall in the 

Short Recall and Long Recall groups but not in the No Recall control group suggests that they 

are likely candidates genes to be involved in reconsolidation and extinction. However our
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finding that EGR3 is not required for reconsolidation suggests that any involvement may not be 

necessary.

5.4.4.2 Prefrontal Cortex

A role for the mPFC has been implicated in reconsolidation as protein synthesis in the PFC is 

required for the reconsolidation of object recognition memory (Akirav & Maroun, 2006). 

Molecular activity in the mPFC such as NMDA receptor activity (Akirav & Maroun, 2006), MEK 

activity (Maroun & Akirav, 2009) and CREB activity (Kida et al., 2002) are necessary for 

memory reconsolidation. A role for the mPFC in extinction has also been implicated by many 

studies. Electrolytic lesions of the ventromedial PFC and dorsomedial PFC showed that both 

these regions were necessary for extinction of cued fear memory and that they have 

functionally different roles in extinction (Morgan et al., 1993; Morgan & LeDoux, 1995; Quirk et 

al., 2000). Cell or afferent-specific pharmacological lesions specific to the IL and PL of the 

medial PFC also found the mPFC to be necessary in extinction of both CFM and cued 

appetitive memory (Femandez-Espejo, 2003; Rhodes & Killcross, 2007). Electrophysiological 

studies indicate that stimulation of the mPFC pre-extinction, during extinction and post­

extinction enhances retrieval of cued fear conditioned extinction memory (Milad & Quirk, 2002; 

Herry & Garcia, 2002; Farinelli et al., 2006). At the molecular level, protein synthesis in the 

mPFC is necessary for both cued fear conditioned and conditioned taste aversion extinction 

memory (Santini et al., 2004; Akirav et al., 2006). Molecular activity in the mPFC such as 

NMDA, GABAa and p-adrenergic receptor activity (Suzuki et al., 2004; Akirav et al., 2006; 

Mueller et al., 2008), MAPK and PKA kinase activity (Hugues et al., 2004; Mueller et al., 2008), 

CREB activity (Mamiya et al., 2009), and increased c-Fos expression (Santini et al., 2004) are 

necessary for or correlate with memory extinction. Therefore our correlation of Egr1 mRNA 

upregulation in the Cg1 and IL/PrL region of the medial PFC 30 min after Short Recall and 

Long Recall groups compared to the No Recall control group identifies Egrl as a candidate 

gene to be involved in reconsolidation and extinction in a second region of the brain in addition 

to the hippocampus.

5.4.4.3 Amygdala

A role for the amygdala has been implicated in reconsolidation through multiple studies. An 

electrophysiological study found that disruption of reconsolidation was correlated with a
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reduction of synaptic potentiation in the LA nucleus of the amygdala (Doyere et al., 2007). 

Protein synthesis has also been shown to be necessary for reconsolidation in the BLA in some 

studies (Nader et al., 2000; Lee et al., 2005). Molecular activity in the amygdala such as 

NMDA, CB1 and p-adrenergic receptor activity (Lee et al., 2006; Bucherelli et al., 2006; Debiec 

& Ledoux, 2004), PKA and ERK kinase activity (Tronson et al., 2006; Duvarci et al., 2005), 

CREB activity (Mamiya et al., 2009) and EGR1 and C/EBPp activity (Lee et al., 2005; Tronel et 

al., 2005) are necessary for or correlate with memory reconsolidation. A role for the amygdala 

has also been implicated in extinction. An electrophysiology study found neuronal activity in the 

LA nucleus in extinction (Hobin et al., 2003) and protein synthesis in the amygdala has been 

shown to be necessary for extinction (Lin et al., 2003; Bahar et al., 2003). Molecular activity in 

the amygdala such as NMDA and GABA receptor activity (Akirav et al., 2006; Berlau & 

McGaugh, 2006; Lee et al., 2006), PI-3K and MAPK kinase activity (Lin et al., 2003), CREB 

activity (Mamiya et al., 2009), and increased expression of Bdnf, c-FOS, EGR1 and calcineurin 

(Chhatwal et al., 2006; Herry & Mons, 2004; Lin et al., 2003) are necessary for or correlate with 

memory extinction. Thus our data showing an upregulation of the expression of Egr1 and Egr3 

in the amygdala 30 min after recall in the Short Recall and Long Recall groups but not in the 

No Recall control group suggests that they are likely candidates genes to be involved in 

reconsolidation and extinction. In addition, the increase in Egr3 expression observed in a 

subpopulation of cells in the BLA nucleus of the amygdala in this study in the Long Recall 

group may represent the extinction neurons that have also been observed in the BLA nucleus 

of the amygdala (Herry et al., 2008). However no such reconsolidation neurons have been 

observed to explain the presence of a similar subpopulation of high Egr3 expressing cells in the 

BLA nucleus of the amygdala in the Short Recall group in this study, but a previous study has 

shown that ablation of a subpopulation of cells that have increased CREB expression in the LA 

nucleus of the amygdala following fear conditioning results in impaired subsequent memory 

recall (Han et al., 2007). This evidence supports our finding of a subpopulation of neurons 

being activated in the amygdala during a short recall session.

5.4.5 Dissociable Roles for Egrl and Egr3 following Recall of a CFM

Our results show dissociable roles for EGR1 and EGR3 in the reconsolidation of CFM. 

Although, the expression of Egr1 and Egr3 are similarly regulated in the hippocampus by 

retrieval conditions that favour reconsolidation (a 2min exposure to the context CS), we show
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that infusions of Egr3 ASO prior to recall had no effects on CFM. These results contrast to a 

similar experiment that showed that Egr1 ASO interfered with reconsolidation (Lee et al., 

2004). Thus it appears that EGR1 but not EGR3 activity in the dorsal hippocampus is required 

for the reconsolidation of CFM.

It is possible that the increase in Egr3 expression after 2 min context exposure is related to 

activity in the hippocampus but unrelated directly to reconsolidation. However, unlike in 

previous chapters the regulation of Egr3 cannot be associated with footshock stress, as the 

rats did not receive a footshock in the recall sessions. Neither can the upregulation be due to 

exposure to a novel environment as the recall test is not the first time the rats have been in the 

conditioning chamber. However as our results in the previous chapter suggested Egr3 could be 

upregulated in response to arousal, the upregulation in the Short Recall and Long Recall 

groups in this chapter may also be upregulated in response to arousal. Indeed, we saw a 

similar increase in hippocampal Egr3 expression after recall by a 10 min exposure to the 

conditioned context that induced extinction rather than reconsolidation.

Alternatively, an increase in Egr3 activity in the hippocampus may be related to extinction 

processes that may be engaged in parallel with reconsolidation. A study on appetitive learning 

in the honeybee suggested that reactivation of a CS-US memory with five CS-only 

presentations induced two memory traces, both a reconsolidated acquisition memory and an 

extinction memory (Stollhoff et al., 2005). They therefore suggested that these processes 

induced by memory retrieval take place in parallel rather than in an “all-or-nothing” law 

(Stollhoff et al., 2005). This same group went on to develop the internal reinforcement 

hypothesis that interpreted these findings, when combined with literature, to propose that in 

retrieving a consolidated memory, extinction learning and “reminder learning” take place. This 

introduces a concept of reminder learning in place of reconsolidation and is only theoretical at 

present (Eisenhardt & Menzel, 2007). Another finding that supports this possibility that 

reconsolidation and extinction could occur in parallel is that extinction is not a sufficient 

condition to inhibit induction of reconsolidation (Duvarci et al., 2006). There is a hypothesis of 

trace dominance that proposes that reconsolidation and extinction processes compete and the 

dominant one is the one most affected by protein synthesis inhibition (Nader, 2003). It is thus 

possible that both processes occur in parallel at a molecular and cellular level but only one 

process is dominant at the behavioural level due to some so far unknown inhibitory mechanism 

preventing one network being behaviourally expressed under particular conditions.
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In contrast to parallel existence of these two processes, there is evidence from fear memory 

experiments in crabs that show that reconsolidation or extinction after one non-reinforced trial 

are mutually exclusive, and are “switched on” in isolation, within seconds after the offset of the 

CS re-exposure (Pedreira & Maldonado, 2003; Perez-Cuesta et al., 2007). Recent 

observations in our laboratory support the hypothesis that reconsolidation and extinction are 

mutually exclusive processes. We show that recombinant BDNF infused into the dorsal 

hippocampus prior to an extended exposure to conditioned context prevents extinction, and 

further that conditioned fear is maintained when Zif268 ASO is also co-infused (unpublished 

observations). This suggests that only extinction and not reconsolidation processes are 

engaged with Long Recall. In addition, when a protein synthesis inhibitor was administered 30 

min before a short CS re-exposure, reduced freezing behaviour in a LTM test 24 hours later, 

suggested reconsolidation of the memory had been disrupted. However, when protein 

synthesis inhibitor was administered before a long CS re-exposure, no reduction in freezing 

behaviour in a LTM test 24 hours later, suggested that extinction of the memory had been 

disrupted (Barnes and Thomas, 2008). The ability of protein synthesis inhibitors to impair 

reconsolidation and extinction and result in either the loss or maintenance of the conditioned 

response under different durations of recall further suggests that the two memory processes 

are independently engaged after retrieval.

It is possible that the activity of the repressor NAB2 regulates the function of EGR1 and EGR3 

after recall. Nab2 expression in the hippocampus is increased after both short and long recall 

exposures. We hypothesise that NAB2 may regulate the activity of EGR3 after short recall, 

permitting EGR1 dependent reconsolidation. It is also possible that NAB2 may modulate EGR1 

activity after long CS exposure to allow extinction. This hypothesis could be tested if 

knockdown of the EGR3 activity at long recall with ASO prevented extinction. It would also 

predict that reducing NAB2 levels during both short and long recall could interfere with 

reconsolidation and extinction.

While they both show similar upregulation patterns in the hippocampus, our results indicate a 

brain region specific regulatory response to recall for Egr1 in the medial PFC. The differential 

expression pattern in Egr1 and Egr3 expression in this brain region is further evidence of 

dissociable roles for these EGR proteins in memory processes. Further evidence that EGR 

proteins do not functionally compensate for each other comes form observations in transgenic
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mouse models. For example, Egr1 and Egr3 expression levels do not change in Egr2r>- mice 

(Poirier et al., 2007). In addition EgrV- mice and EgrS1- mice behave differently on the same 

behavioural tasks (Poirier et al., 2008).

5.4.6 Conclusion

The main findings of these experiments is that the neurocircuitry underlying reconsolidation 

and extinction of contextual fear conditioning in rats are both likely to include the CA1, CA3 and 

DG of the hippocampus, the Cg1 and PrL/IL regions of the mPFC and the LA and BLA nuclei of 

the amygdala. In addition, differential expression patterns of the Egr transcription factors in the 

mPFC was identified, as Egr1 but not Egr3 was upregulated in both reconsolidation and 

extinction in the mPFC. No dissociation between reconsolidation and extinction was observed 

through investigating the expression of Egr1, Egr3 and Nab2 in the hippocampus, mPFC and 

amygdala. Finally EGR3 expression in the hippocampus is not required for reconsolidation of 

CFC.
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CHAPTER 6

GENERAL DISCUSSION

6.1 Summary of Results

The experiments presented in this thesis were designed initially to test the hypothesis that the 

schizophrenia susceptibility genes Nrg1, Dtnbpl, Disci and Egr3 are regulated in correlation 

with hippocampal-dependent contextual fear long-term memory processes in the adult rat 

brain. From the experimental findings in this thesis it can be concluded that of the 

schizophrenia susceptibility genes investigated the expression of Egr3 was upregulated in 

correlation with the consolidation, reconsolidation and extinction of contextual fear long-term 

memory (CFM), the expression of Nrg1 type I splice variants was upregulated in correlation 

with the consolidation of CFM, and Dtnbpl expression was not regulated in association with 

the consolidation of CFM. No conclusions could be drawn regarding Disci expression as none 

of the probes designed could detect specific labelling. Bdnf expression was not upregulated in 

the CA1 at 2 hours following CFC, as might have been expected considering Bdnf had 

previously been shown to be upregulated at 30 min after CFC (Hall et al., 2000). However a 

small population of cells within the CA1 and DG had an increased number of cells expressing 

heavy Egr3 labelling in association with arousal, and at the regional level Bdnf m s  upregulated 

in association with footshock stress in the CA1. Egr1 and Nab2 expression was upregulated in 

correlation with the reconsolidation and extinction of CFM. Further experiments were 

performed in order to test the second hypothesis that the schizophrenia susceptibility genes 

that were regulated in correlation with LTM processes are causally involved in these 

processes. Knockdown of EGR3 using antisense oligodeoxynucleotides 90 min prior to CFC or 

retrieval of a CFM did not prevent consolidation or reconsolidation of the CFM respectively. 

However these findings come with the caveat that knockdown of EGR3 protein was not 

confirmed.
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Our findings add to the evidence implicating the hippocampus, amygdala and mPFC in the 

neurocircuitry supporting CFM processes. Cells in the CA1, CA3 and a small sparse population 

of cells in the DG region of the hippocampus, and cells in the dorsolateral nucleus of the 

amygdala all have gene expression that is regulated in association with the consolidation of 

CFM. Cells in the CA1, CA3 and DG regions and a subpopulation of cells within the DG region 

of the hippocampus, in the Cg1 and PrL/IL regions of the mPFC, and in the LA nucleus, BLA 

nucleus and a subpopulation of cells within the BLA nucleus of the amygdala all have gene 

expression that is regulated in correlation with reconsolidation and extinction.

6.2 Schizophrenia Susceptibility Genes and CFM

6.2.1 Egrl, Egr3, Nab2 and Nrg1 type I in consolidation, reconsoiidation and extinction 

of CFM

Combining our findings with previous literature shows that neither Egrl nor Egr3 have a 

functional role in the consolidation of CFM (Lee et al., 2004) but Egr3 is upregulated in 

association with the consolidation of CFM. It is possible that compensatory mechanisms, such 

as EGR2 or EGR4 activity, may function in the role that EGR3 would normally have in the 

consolidation of CFM. However there is evidence that EGR proteins do not functionally 

compensate for each other, as no change in Egrl and Egr3 expression levels are observed in 

Egr2-'- mice (Poirier et al., 2007). In addition knockdown of EGR3 activity could not be 

compensated for by EGR1 activity as EGR1 has been shown not to be regulated or functional 

required for the consolidation of CFM (Lee et al., 2004). Alternatively, the upregulation of Egr3 

in this study may be related to a role in the molecular activity underpinning the arousal 

component associated with CFC. Interestingly, both Egrl and Egr3 are upregulated in 

association with reconsoiidation of CFM while EGR1 but not EGR3 activity is required for 

reconsoiidation of CFM. This highlights that EGR1 and EGR3 do not have identical functional 

roles. The upregulation of Egr3 in reconsoiidation could again be associated with arousal 

related to the short retrieval session. Egrl and Egr3 expression were both found to be 

upregulated in correlation with extinction of CFM in this study and EGR1 protein is upregulated 

in association with extinction (Herry & Mons, 2004) but no functional studies have yet been 

performed to see if this upregulation is necessary for extinction of CFM.
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Our findings that Nab2 is upregulated in the LI group in both the CA1 region of the 

hippocampus and the DLA of the amygdala, regions in which Egr3 is upregulated in 

association with the consolidation of CFM but not with LI, lead us to hypothesise that the 

increased levels of NAB2 in the LI group may repress EGR3 activity and thus could be a 

potential mechanism that prevents the formation of an association between the CS and US 

after extended exposure to the CS. In effect NAB2 would be acting as a modulator of EGR1 

and EGR3 activity in CFM.

NRG1 type I activation of ERBB receptors and BDNF activation of tyrosine receptor kinase can 

lead to an increase in transcription of EGR3 via separate second messenger cascades . Once 

translated this increase in EGR3 can lead to an increase in the transcription of other genes 

including Arc and Egr3 itself (Guo et al., 2010). It is interesting to note that we found both Nrg1 

type I and Egr3 expression to be upregulated in correlation with the consolidation of CFM. 

However no functional link can be implied from our findings as the change in regulation of 

either or both these genes could be related to homeostatic maintenance or regulation by other 

proteins.

6.2.2 Novelty Detection, Stress, Arousal and CFM

Part of the process of forming an associative CFM is the identification of novel CS exposure. 

Egr3 expression was upregulated in the medial prefrontal cortex in association with novel CS 

exposure. Novelty detection is a well established role for the medial prefrontal cortex (Dias & 

Honey, 2002; Handa et al., 1993; Feenstra & Botterblom, 1996). Another part of the process of 

forming an associative CFM is the identification of the US. In CFM the US is an electric 

footshock and so evokes stress. Bdnf expression is upregulated in the CA1 of the 

hippocampus in association with stress. The hippocampus is a region of the brain rich in 

glucocorticoid receptors which are receptive to the stress regulated hormones glucocorticoids 

and corticosterone (Vreugdenhil et al., 2001; Revest et al., 2005). Thus it is possible that BDNF 

activity in the CA1 of the hippocampus may be one of the molecular mediators of the stress 

response. In this way upregulation of Egr3 and Bdnf expression in the medial prefrontal cortex 

and CA1 region of the hippocampus 2 hours after CFC could indirectly contribute to the 

formation of the association between the context and the footshock in CFM.
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Arousal is the behavioural response to stimuli that have some salience. It is unlikely that a rat 

experiencing a novel environment or receiving a footshock would not be aroused. When gene 

expression was regulated in all three behavioural groups but not in the naive group, we 

suggest that this change in gene expression, which could not be associated with the novel 

context alone or the footshock alone, could be correlated with an arousal response. Bdnf 

expression in the CA1 and DG regions of the hippocampus, Egr3 expression in the CA1 and 

expression of Nrg1 type II splice variants in the CA1 region of the hippocampus was regulated 

in correlation with arousal.

Combining our findings with a previous study, Bdnf has been shown to be regulated in 

association with three different behavioural processes in the CA1 of the hippocampus following 

CFC. Bdnf is upregulated in association with the consolidation of a CFM at 30 min post­

conditioning (Hall et al., 2000) and upregulated at 2 h post-conditioning in association with 

stress (detected at the regional level) and arousal (detected at the cellular level). Whether 

BDNF is functionally involved in stress response and arousal 2 hours post-conditioning is 

unknown, however this variation in the pattern of Bdnf expression within one and a half hours 

in one brain region highlights the dynamic nature of Bdnf expression and the importance of 

using different timepoints when investigating the molecular correlates of CFM.

6.3 Justification for and Assessment of the Approach taken in this Study in the 

Context of Current Schizophrenia Research

6.3.1 Problems with Progressing from Gene Variants Associated with Schizophrenia 

to Determining the Causal Mechanisms Underlying the Pathophysiology of 

Schizophrenia in Humans

Through the use of linkage, cytogenetic, gene association and GWAS studies researchers are 

able to identify variants in the genome that are associated with schizophrenia (Harrison & 

Weinberger, 2005; O’Donovan et al., 2008). Neuroimaging studies have also been used to 

correlate gene variants with different aspects of schizophrenia (Hall et al., 2006; McIntosh et 

al., 2007; Lawrie et al., 2008). These individual findings, while providing a starting place for 

trying to identify what actually causes schizophrenia are all only correlative findings. 

Schizophrenia does not have any consistent physiological identifiable markers and the disorder 

is currently diagnosed based on the reporting and observation of positive, negative and
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cognitive symptoms (Barch, 2005). Treatment until recently has been targeted at dopamine 

receptors based on the findings that drugs that modulate dopamine release produce paranoid 

psychotic symptoms in healthy individuals (Griffith et al., 1968; Angrist & Gershon, 1970; Bell, 

1973). While this shows that dopamine signalling is likely to be involved in the pathophysiology 

of schizophrenia it does not discern whether dopamine dysregulation is a cause or 

consequence of the disorder. However it is unlikely that disrupted dopamine signalling is the 

only molecular activity disrupted in schizophrenia as dopamine receptor antagonist drugs only 

reduce the severity of symptoms but do not ameliorate all the symptoms of schizophrenia 

(Toda & Abi-Dargham, 2007). In addition postmortem, pharmacological, neuroimaging and 

gene association studies suggest that glutamatergic, GABAergic and cholinergic signalling are 

also likely to contribute to schizophrenia pathophysiology (Lisman et al., 2008; Hall et al., 2009; 

see 1.1.1).

The next step in determining schizophrenia pathophysiology is to use these correlative findings 

to determine the causal pathophysiology of schizophrenia. In order to implicate any of the gene 

variants associated with schizophrenia as having a causal role in schizophrenia 

pathophysiology it would be necessary to either introduce the gene variant into a healthy 

human to see whether the individual develops schizophrenia, or to replace that gene variant 

with a healthy gene in a schizophrenic individual to see whether the symptoms of 

schizophrenia are alleviated. As it is unethical to introduce a gene variant into an individual that 

is thought to cause a disorder, the only way to prove that any of the identified schizophrenia 

susceptibility genes have a causal role in schizophrenia would be by a replacement of the gene 

variants with the healthy variant. The insertion of exogenous “good” DNA into the human body 

to replace defective DNA to treat diseases caused by a mutant allele of a gene is known as 

gene therapy (Friedman & Roblin, 1972). Gene therapy has only been used successfully in a 

few studies and some of these cases have had unexceptable side-effects such as leukaemia 

(Abbott, 1992; Morgan et al., 2006; Ott et al., 2006; Levine et al., 2006; Maguire et al., 2008; 

Kaiser, 2009). Anyhow gene therapy is very unlikely to ever work for a disorder such as 

schizophrenia as the genetic component contributing to schizophrenia pathogenesis is not 

based on one gene variant but instead results from the combination of many gene variants of 

varying effect sizes (Craddock et al., 2007). Therefore if gene therapy could be made to work 

for one of the schizophrenia susceptibility genes it is very unlikely that this would lead to 

alleviation of the disorder. As replacement of multiple defective genes by gene therapy is not
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feasible at present, the identification of causal gene variants in schizophrenia in humans does 

not appear to be possible.

6.3.2 Using Animal Models to a Determine the Causal Mechanisms Underlying the 

Pathophysiology of Schizophrenia

In order to understand the physiological causes of schizophrenia it is necessary to perform 

research in animals. This however raises other problems, as schizophrenia is believed to be a 

disorder found only in humans. Researchers have approached this problem by performing a 

range of experiments in animals. A common approach has included investigating whether 

different schizophrenia susceptibility genes are required for animals to perform behaviours or 

tasks that are analogous to schizophrenia endophenotypes. Endophenotypes are specific 

phenotypes of behaviour that are altered in individuals with schizophrenia. These studies are 

performed by characterising the behaviour of germline knockout or transgenic mice in a battery 

of behavioural paradigms and tasks. Such a study may observe that in the absence of the 

schizophrenia susceptibility gene X in the mouse, behaviours A and B are altered. As 

behaviours A and B are also altered in schizophrenic individuals then it is possible that variants 

of the schizophrenia susceptibility gene X are likely to be involved in the pathophysiology 

underlying schizophrenia. For example, in mice carrying a null mutation in the Dtnbpl gene, 

known as the sandy mouse, impairments in working memory and in long-term memory 

retention, and social withdrawal have been observed (Jentsch et al., 2009; Feng et al., 2008; 

Takao et al., 2008; Bhardwaj et al., 2009; Cox et al., 2009). These altered behaviours are 

similar to some of the endophenotypes of schizophrenia and thus DTNBP1 activity is 

implicated in schizophrenia pathophysiology.

Another approach used to understand the pathophysiology of schizophrenia using animals 

includes using pharmacological agents to create a mouse model that displays impaired 

behaviours similar to those impaired in individuals with schizophrenia. Examples of these types 

of mouse models include mice treated with NMDA receptor antagonists MK801 (Hitri et al., 

1993), phencyclidine or amphetamine (Mandillo et al., 2003) which show behaviour that is 

thought to model some aspects of schizophrenia and provide for investigation of physiology 

that may be disrupted in schizophrenia.
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In some cases basic research in animals has identified proteins that interact with the protein 

products of schizophrenia susceptibility genes and identified a cellular mechanism in which the 

protein product is involved through in vivo and/or in vitro experiments. By combining these 

basic research findings with current hypotheses of schizophrenia pathogenesis, a greater 

understanding of the cellular pathways and mechanisms involved in schizophrenia 

pathophysiology can be obtained. For example a recent review by Maxwell Bennett discussed 

how schizophrenia susceptibility genes contribute to the molecular mechanisms controlling 

synapse formation and regression in the context of the neurodevelopmental hypotheses of 

schizophrenia (Bennett, 2010).

6.3.3 The Validity of the Approach used in this Study for Determining the Causal 

Mechanisms Underlying the Pathophysiology of Schizophrenia

The approach taken in this study to identify a causal role for a selection of the identified 

schizophrenia susceptibility genes in schizophrenia differs to other animal studies as we first 

studied whether they were regulated in correlation with an endophenotype of schizophenia in 

healthy rats and then if a gene was regulated it was further investigated to determine whether 

the protein product of that gene had a causal role in the endophenotype, using knockdown of 

the expression of the gene of interest restricted to the period of time in which the process under 

investigation is taking place ie. during the behavioural training. The advantages of this 

approach in comparison to the other approaches using animals to understand schizophrenia is 

that more genes can be assayed more quickly than using the knockout or transgenic 

approaches, and by using in situ hybridisation to investigate gene regulation following the 

behavioural task, regional specificity related to the gene’s role in that behaviour can be 

obtained. In addition temporal and spatially specific causal roles for the genes of interest 

identified by transient knock down of the expression can be obtained in relation to the 

behaviour. Temporal and spatially specific knockdown of gene expression can also be obtained 

in some transgenic models but in germline knockout mice where the gene has been knocked 

out from the beginning of development, it is difficult to be certain whether any behaviour 

characterised is directly related to that gene or not For example, the change in behaviour could 

be due to disruption of a particular stage of development that is necessary to enable the mouse 

to perform the behaviour that is analysed as an index that a particular cognitive process has 

occurred but that is not necessarily required for the molecular process underlying the 

behaviour.
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We investigated whether a small selection of schizophrenia susceptibility genes had a role in 

one of the many cognitive processes known to be abnormal in patients with schizophrenia. The 

processes underlying associative LTM in rats are believed to be the same as those underlying 

associative LTM in humans (Delgado et al., 2006). The experiments in this study did not 

identify a causal role for any of the schizophrenia susceptibility genes in associative LTM but 

this does not by any means suggest that our approach is redundant. It must be considered that 

there are hundreds of schizophrenia susceptibility genes and many different impaired cognitive 

processes in schizophrenia. Therefore it is possible that other schizophrenia susceptibility 

genes have a causal role in associative LTM and that the schizophrenia susceptibility genes 

that we have studied here could have a causal role in one or more of the other cognitive 

processes that are impaired in schizophrenia. In this way it can be seen that it will take a 

considerable amount of time yet before the causal pathophysiology of schizophrenia will be 

fully understood.

6.3.4 Modifications Required to the Approach used in this Study for Researching 

Schizophrenia Pathophysiology

The chances of identifying a causal role for a schizophrenia susceptibility gene in a 

schizophrenia endophenotype will increase as its role is investigated in more endophenotypes. 

Therefore more behavioural paradigms and tasks testing more of the endophenotypes need to 

be established. Behavioural paradigms other than fear conditioning that have been used to 

investigate molecular mechanisms of associative LTM include inhibitory avoidance (Bernabeu 

et al., 1997; Taubenfeld et al., 2001; Izquierdo et al., 2007), object recognition memory (Akirav 

& Maroun, 2006), spatial learning (Davis et al., 1998; Bonini et al., 2007), appetive (drug) 

pavlovian instrumental learning (Lee et al., 2005), and startle-response (Lin et al., 2003). Other 

endophenotypes of schizophrenia for which there are already possible analogous behavioural 

tests include working memory using the Morris water maze (Morris, 1984), latent inhibition 

using the conditioned emotional response paradigm (Sotty et al., 1996), and decision-making 

using the stroop test (Haddon et al., 2008). However the involvement of different schizophrenia 

susceptibility gene variants in different behaviours is not always going to be related to changes 

in gene regulation. For example, working memory does not depend on cfe novo gene 

transcription (McGaugh, 2000). In this case it could be disruption to the functional activity of the 

protein product that contributes to the altered endophenotype. Therefore it would be more
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sensible to design an assay to detect the levels of the activated protein if possible, perhaps by 

performing a Western blot to identify whether the rats killed immediately following the working 

memory task eg Morris water maze training, have a different level of post-translationally 

modified protein compared to behavioural control rats. Alternatively, in some cases drugs could 

be infused to inactivate the protein during the behavioural training to see if the activated protein 

is required for that endophenotype.

Another consideration for future use of this approach is that recent research in the field of 

genomic transcription have identified that micro RNA (miRNA) and long non-coding RNA 

(ncRNA) are also transcribed from the genome in addition to genes and have a range of 

cellular roles. These miRNA and ncRNA sequences can be transcribed from DNA sequence 

that also encodes part of a gene (Mattick, 2009). As it is variation in the genome that has been 

identified in the gene association and GWAS studies it is now necessary to take into account 

any miRNAs or ncRNAs that might be disrupted by these genomic variations in addition to 

genes that might be disrupted by the variation.

6.3.5 The Future of Schizophrenia Research

As the causal role for an increasing number of the schizophrenia susceptibility genes become 

understood, it is likely that through combining the implicated genes with previous basic 

research literature, such as the protein-protein interactions of that gene’s protein product, that 

the ability to discover further causal roles of additional schizophrenia susceptibility genes will 

be more forthcoming. It is not necessary to investigate all schizophrenia susceptibility genes to 

understand the pathophysiology of schizophrenia, as the schizophrenia susceptibility genes in 

this approach are only being used as a tool to help uncover the pathophysiology of 

schizophrenia. As explained previously it is not the identification of gene variants, even if they 

are causally implicated in schizophrenia, that is going to help improve treatment of 

schizophrenia but it is the identification of the molecular pathways that are disrupted in 

schizophrenia that will provide pharmaceutical targets. These targets will hopefully be more 

specific to the symptoms of schizophrenia and thereby maximise reduction of unwanted 

symptoms without developing unwanted side-effects.
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6.4 Future Work

The observations from the experiments in this thesis have identified findings that are worthy of 

further investigation to contribute to our understanding of the molecular activity underlying 

hippocampal-dependent LTM, and the role of schizophrenia susceptibility genes in other 

schizophrenia endophenotypes.

6.4.1 Further Investigation of the Role of Schizophrenia Susceptibility Genes in LTM

Our findings that hippocampal infusion of Egr3 antisense to knockdown EGR3 expression 90 

min prior to CFC or retrieval did not effect the level of freezing behaviour demonstrated by the 

rats, suggested that EGR3 was not necessary for the consolidation or reconsoiidation of CFM. 

However as stated previously our findings came with the caveat that we did not confirm that the 

EGR3 protein expression levels had actually been reduced under these conditions, therefore 

an important piece of future work would include confirmation of EGR3 knockdown following the 

antisense infusion. This could be done by assaying EGR3 protein levels using Western blotting 

following antisense infusion. It would also be important to confirm that EGR3 expression levels 

were not altered by the infusion of the missense oligodeoxynucleotides.

The functional roles of EGR1 and EGR3 proteins in the consolidation and reconsoiidation of 

CFM have been investigated but the functional roles of these proteins have not been 

investigated in the extinction process of CFM. Egrl and Egr3 mRNA expression has been 

shown to be upregulated in correlation with extinction of CFM, therefore it will be interesting to 

see if they have functional roles in extinction of CFM and if there are similar of different 

functional roles for these two genes in the extinction of CFM then similarities between either 

extinction and consolidation or extinction and reconsoiidation will be identified. Furthermore, 

from our findings we suggested a mechanism in which EGR3 activity may be regulated by 

NAB2 to prevent the formation of an association between the CS and US after prolonged 

exposure to the CS. As suggested previously this hypothesis could be tested with Nab2 

antisense infusion targeted at the hippocampus or dorsolateral nucleus of the amygdala prior to 

LI to see if in the absence of NAB2 the rats do show freezing behaviour indicative of 

conditioning having taken place despite the prolonged CS exposure.
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Further investigation of regulation of Nrg1 type I expression following CFC in the CA3 region of 

the hippocampus is warranted. Firstly generation of a time profile to identify the point of peak 

Nrg1 type I mRNA upregulation would be performed and then antisense knockdown of Nrg1 

type I in the CA3 could be performed to investigate whether the upregulation of Nrg1 type I has 

a functional role in the consolidation of CFM.

Finally, considering that no change in Bdnf expression was observed at 2 hours post-CFC 

correlating with the consolidation of CFM in this study, but in a previous study Bdnf has been 

identified to be upregulated at 30 minutes post-CFC in correlation with the consolidation of 

CFM (Hall et al., 2000), and to have a functional role in the consolidation of CFM (Lee et al., 

2004), it may be of interest to determine the time profile of Bdnf upregulation in the CA1 region 

of the hippocampus at 30 min, 60 min, 90 min, 2 hours, 4 hours, 8 hours and 24 hours using 

ISH. It would be of particular interest to analyse the tissue at 30 min to see if a small sparse 

population of heavily labelled Bdnf-positive cells are present at this earlier timepoint as has 

been observed at the 2 hour timepoint in this study.

6.4.2 Investigation of the Role of Schizophrenia Susceptibility Genes in Other 

Schizophrenia Related Behaviours

Other future work based on our findings that gene regulation is suggested to correlate with 

other behavioural phenotypes, such as LI, stress, novelty detection and arousal, could be 

pursued. The involvement of the investigated schizophrenia susceptibility genes in these 

behavioural phenotypes, may also be of interest to schizophrenia research that is trying to 

understand the pathophysiology of a disorder that is diagnosed based on observation of 

abnormal behaviour. For example, to further investigate the finding that Egr3 is upregulated in 

association with novelty detection in the mPFC, the expression levels of Egr3 could be assayed 

in the same region using ISH following an object recognition task.
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APPENDIX

The amplification plots, dissociation curves and standard curves obtained and used in the Q- 

PCR analysis are provided in the following seven figures.
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Figure 1. EGR3 QPCR consolidation experiment 1. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 2. UBCQPCR consolidation experiment 1. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 3. SDH>4 QPCR consolidation experiment 1. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 4. EGR3 QPCR consolidation experiment 2. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 5. UBC QPCR consolidation experiment 2. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 6. SDHAQPCR consolidation experiment 2. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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Figure 7. HMBS QPCR consolidation experiment 2. (A) Amplification plot. (B) Dissociation
curve. (C) Standard curve. Ct, Cycle threshold; dR, magnitude of fluorescence of Reporter
dye; -R’ (T), negative first-derivative of the melting curve; T, Temperature.
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