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Summary

Microarrays are a powerful technology, enabling the determination of mRNA levels 
for tens of thousands of genes from a single sample. However, the resulting gene 
expression datasets are often difficult to interpret due to their size and complexity. 
The overall aim of this study is to evaluate a diverse selection of methods for the 
analysis of large-scale gene expression data derived from human brain, and to apply 
them to furthering the understanding of heritable psychiatric disorders. One strand of 
research presented here focuses on using clustering algorithms to group genes 
according to their expression. Several methods for expression clustering were 
implemented and used upon brain expression datasets. The technique of Gene 
Ontology enrichment was then used to assess the concordance of the resulting 
clusters with current biological knowledge. The results suggest that combining 
different clustering methods is the most effective strategy, as it allows the discovery 
of the widest range of clusters. Clusters produced by these methods were then 
investigated for enrichment with genes associated with, or differentially expressed in, 
bipolar disorder or schizophrenia. Particularly enriched clusters were further studied 
using the functional annotation database MetaCore. The second strand of this 
research focused on using control adult brain expression data and expression 
quantitative trait analysis to divide SNPs into those with a greater and lesser effect 
on global gene expression. This classification was used to enhance the prediction of 
schizophrenia affected status from genome-wide association study SNP data using 
polygenic score analysis, a method which aggregates information from a large 
number of loci. It was found that SNPs which have a larger effect on global gene 
expression are significantly superior at predicting schizophrenia affected status 
through polygenic score analysis, a novel finding which suggests that expression 
data from control adult brain can have relevance to the study of schizophrenia.
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Chapter One

Introduction

1.1 Summary
This chapter gives an overview of the process by which large expression datasets 

are created, the current state of the techniques used to analyse them, and their 

application to the understanding of psychiatric disorders. Firstly, some background 

information on gene expression and the role of nucleic acids in the cell is discussed 

(Section 1.2), and the overall aim of the study set out (Section 1.3). A brief 

description of the history of microarray technology is given (Section 1.4) and the 

practical steps involved in their use are described (Section 1.5). The data processing 

and quality control steps used to transform the image of the microarray into a usable 

spreadsheet of expression data are described (Section 1.6). Unique features of the 

two most commonly used microarray platforms, Affymetrix and lllumina, are detailed 

(Section 1.7), and genotyping arrays and genome-wide association studies are also 

described (Section 1.8). In Section 1.9, the utility of expression data in 

understanding human disease in general, and psychiatric disease in particular, is 

discussed. The limitations of some types of expression data analysis, and the need 

to find new analytical methods, are also examined here. Finally, in Section 1.10, a 

brief overview of the approaches examined in the later chapters of this study is 

given.

1.2 Nucleic acids and gene expression

Nucleic acids are molecules that perform a variety of important functions within the 

cell. Deoxyribonucleic acid (DNA) is used as a storage medium, containing the 

information the cell machinery needs to survive and perform its functions in the 

organism, and is also the means by which an organism passes on characteristics to 

its offspring. DNA is well suited to long-term storage because it is a relatively stable 

molecule.
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RNA is transcribed from sections of DNA called genes. Some of this, referred 

to as messenger RNA or mRNA, is transported from the nucleus to other locations in 

the cell, where it is translated into proteins, which fulfil the vast majority of structural 

and catalytic functions the organism requires. mRNA effectively acts as a short-term 

storage medium and transporter of information around the cell.

This process is supported by other types of RNA (1). Some species of small 

nuclear RNA (snRNA) are important in the process of splicing, where the non­

protein-encoding segments of an mRNA molecule (introns) are removed. snRNAs 

can also play a role in the regulation of transcription. Other RNA types play a part in 

the translation from mRNA to protein. Ribosomal RNA (rRNA) forms the major part 

of the ribosome, the structure where translation occurs, while transfer RNA (tRNA) 

facilitates the attachment of the correct amino acid to the growing protein chain at 

the ribosome. MicroRNA (miRNA) molecules can bind to the 3’ untranslated region 

of an mRNA, blocking its translation.

This whole process by which a gene can affect the behaviour of a cell, and so 

the whole organism, is termed ‘gene expression’. It is heavily regulated at every 

stage of the process, especially transcription, which can require complex interactions 

between large numbers of DNA sequence elements and proteins referred to as 

‘transcription factors’. One way in which the level of expression of a gene in a tissue 

can be estimated is by quantifying the abundance of mRNA molecules produced by 

each gene. Although there are several levels of regulation before and after the 

production of mRNA, protein and mRNA abundance do generally correlate positively 

(2), and some level of mRNA production is required for the corresponding protein to 

be present. Hence, biological inferences can be made from mRNA abundance, 

although the presence of these subsequent stages of regulation must be borne in 

mind while doing so.

DNA microarrays are one of the most powerful ways of evaluating gene 

expression, as they allow estimation of mRNA abundance for a high proportion of 

the genes expressed in a biological sample. This study focuses on ways of using 

these gene expression data to improve the understanding of psychiatric disorders.
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1.3 Aim of study
The overall aim of this study is to evaluate a diverse selection of methods for the 

analysis of large-scale gene expression data derived from human brain, and to apply 

them to furthering the understanding of heritable psychiatric disorders. Brain 

expression datasets are used both alone and in concert with genome-wide 

association study (QWAS) data for this purpose.

1.4 History of microarrays
The origins of the microarray begin with a 1975 paper by Southern et al describing 

the Southern blot (3, 4). In this process a target DNA molecule possibly containing a 

sequence of interest is cut with endonucleases and denatured into single strands 

with a reagent such as sodium hydroxide. The strands are separated with 

electrophoresis, and bound to a nylon or nitrocellulose sheet.

The sheet is then washed with a single stranded radiolabelled probe DNA, 

complementary to the sequence of interest. If the sequence of interest is present in 

the target DNA, the probe will preferentially hybridise to the target DNA fragment, so 

the radiolabel will remain present on the DNA even after washing. This principle was 

extended to use other target molecules, such as RNA (northern blotting) and protein 

(western blotting) (5, 6). Western blots are based upon antibodies specific to the 

target protein, rather than hybridisation.

A decade later, some research groups began to expand these techniques to 

use multiple probes bound to a nylon sheet or glass slide (3). This led to the first 

microarrays produced using photolithography (7). This is a fabrication technique 

similar to that used to etch circuitry into computer chips. The silicon is covered with a 

masking agent which is removed in specific areas by the application of ultraviolet 

light. The appropriate oligonucleotide base for that probe can then be bound to the 

unmasked areas. The chip is then covered in masking agent again, and the process 

is repeated, gradually building up the sequence of the probes.

Microarrays were rapidly turned to a number of uses, particularly 

determination of mRNA expression and SNP genotyping (3). Expression data 

derived from Affymetrix and lllumina mRNA microarrays are the primary focus of this 

study, but genotyping microarray data are also discussed in Chapter 3.
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Early microarray studies suffered from a number of drawbacks. They were 

often interested purely in identifying differentially expressed genes between affected 

and control states. Many also used only basic metrics such as fold change (i.e. the 

ratio of expression in controls to expression in cases) to define ‘differential 

expression’, and did not attempt to correct for the considerable multiple testing 

burden created by testing thousands of gene transcripts (8).

This issue was compounded by the small sample sizes in early studies, which 

could be as small as two samples from a single donor under different conditions (9). 

Although sample sizes have increased as the microarray technology has matured 

and chip prices have fallen, the typical sample size in brain gene expression studies 

targeting psychiatric disorders are not as large as for genome-wide association 

studies. This is because of the necessity of taking brain samples from recently 

deceased subjects, which limits the number of samples that are available.

Microarray chips generally have numerous probes in a grid of spots. The 

spots are also referred to as ‘features’. All probe molecules within a single feature 

will have the same sequence. Many features across the microarray contain probes 

with the same sequence, to give multiple readings from that probe; these are said to 

belong to the same ‘probeset’. Distinct probesets can target different parts of the 

same transcript. In some cases these form an extra layer of replication, while in 

others different probesets hybridise to alternatively spliced forms of a gene 

transcript.

In the following years, the number of features present on a microarray chip 

increased rapidly, while their cost gradually reduced (3). In addition to Affymetrix, 

other companies also produced microarrays, including Agilent and lllumina. These 

products are similar to Affymetrix microarrays, but with some architectural 

differences, such as lllumina applying their probes to tiny beads attached to the 

surface of the chip, rather than the flat surface of the chip itself.

Other types of microarray and glass slide spotted array have also been 

created. Antibody microarrays are used to measure protein levels in a fashion 

analogous to the western blot (10). As the biological importance of microRNAs 

(miRNA) has become apparent, microarrays designed to detect their expression 

levels have also been produced (11).
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Figure 1.1. Practical steps needed to measure mRNA expression of a sample 

using a microarray
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reality they would be 25 nucleotides long on Affymetrix microarrays, and 50 

nucleotides long on lllumina microarrays.
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1.5 Method of use
The laboratory techniques used to quantify mRNA expression using microarrays 

begin with the sample of interest (Figure 1.1). Initially, RNA is extracted from the 

sample using standard molecular biology techniques (12). These can be divided into 

methods that dissolve the RNA in a solution, and column-based methods which 

purify the mRNA by binding the polyadenine tails of mRNA molecules to silica beads 

with attached polythymine nucleotide tracts.

The mRNA is reverse transcribed, producing cDNA. This is then transcribed, 

using nucleotides labelled with biotin, producing labelled cRNA molecules with the 

same sequence as the original mRNA. Generally, the biotin labels are attached to 

uracil bases in the cRNA, although alternative protocols do exist where other 

nucleotides are labelled (13). The cRNA is then fragmented, to create cRNA 

fragments with similar lengths, and also to prevent cRNA secondary structure 

interfering with the hybridisation process (14).

The cRNA is then applied to the surface of the microarray under tightly 

controlled conditions, particularly temperature. Once hybridisation has occurred 

between the target cRNA and the probes on the array, unhybridised cRNA is 

washed off using a series of salt buffers. The array is then stained with avidin, to 

which is attached a fluorophore such as Cy3. The avidin has an extremely high 

affinity for the biotin labels and binds to them, labelling the nucleotide fragments 

hybridised to the array with fluorophore.

The microarray is then read using a scanner, which uses a laser to excite the 

fluorophores attached to the cRNA and a camera to read the fluorescence produced. 

This produces an image file of the chip, where the fluorescence at each probe is 

proportional to the concentration of mRNA complementary to that probe in the 

original sample.

1.6 Data pre-processing
Several steps are necessary to transform this image file into a spreadsheet of data 

suitable for further analysis (Figure 1.2). For Affymetrix and lllumina microarrays, the 

first step is to process the image. The microarray features containing the probes are 

picked out from the darker background. A sample of the background noise level
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Figure 1.2. Steps needed to transform microarray image files into a 

spreadsheet of data

RMA normalisation
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missing data

Probes from the same probeset are combined into a single
expression value

Background fluorescence levels are determined for each
probe

Misshapen or damaged probes or areas of the microarray
are removed
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surrounding each feature is then taken, and this value subtracted from the signal for 

that feature.

Quality control steps are then performed. These involve automatically 

identifying features or areas of the microarray that may be unreliable. Features may 

be excluded because they are poorly defined, misshapen, incorrectly placed, or 

overlapping another feature. Entire areas may be excluded because of high 

background noise, completely lacking signal, or showing signs of damage.

Alternative quality control metrics can also be used, such as ‘harshlighting’, 

which identifies damaged areas of the microarray (15). Non-automated visual 

inspection can also identify problem areas that automated methods miss. The 

exclusion of some features does not usually lead to a transcript being removed from 

the final dataset, as each transcript has multiple identical probes which map to it 

(16). However, if only a few probes remain in a probeset, then it may be excluded 

from the dataset.

In the next step, each feature is assigned to a transcript. For Affymetrix data, 

this requires a ‘chip definition file’ (CDF). CDFs can be provided by the 

manufacturers of the microarray, but custom CDFs can also be useful (17). For 

example, in Chapter 2, it is important that multiple probesets which map to the same 

transcript are aggregated into a single transcript. This is because these probesets 

are likely to correlate with each other, erroneously influencing the comparison of 

clustering methods (see Chapter 2, section 2.2.1). This problem is solved by using a 

custom CDF that combines the data from multiple probesets from the same gene.

For lllumina data, a similar step is performed to associate features with 

transcripts, but because of the random assembly of lllumina chips (see Section 1.7 

below), a separate definition file, similar to a CDF, is needed for each microarray. 

These files are produced by lllumina and distributed with the microarrays.

The signals from each probeset are then normalised and combined into a

single numerical value. Several different methods can be used for this. RMA (Robust

Multi-array Average) is one of the most common methods (18), and is used in this

study. First, the fluorescence value of each probe is log transformed, and the probes

are ranked by their fluorescence value. RMA then performs quantile normalisation.

The highest probe fluorescence value on each chip is replaced with the mean of the

highest values across all chips. This procedure is then repeated for the next-highest
8



probe value on each chip, then the next-highest, and so on until all probes have 

been replaced. Tukey’s median polish is then used to estimate the expression of 

each probe on each chip while excluding effects that are specific to particular chips 

or particular probes (19).

Other normalisation methods also exist, such as MAS5 (see Section 1.7 

below) and GCRMA (16, 20). This is a variant of RMA which uses the guanine- 

cytosine content of probes to inform the estimation of transcript expression levels.

Once the data are in the form of a spreadsheet giving the signal intensity for 

each transcript in each sample, further quality control is performed. Samples and 

transcripts with a high proportion of missing data are excluded from further analysis, 

as this suggests they may have technical problems. It can also suggest that mRNA 

expression was at too low a level to be reliably detected by the microarray. Boxplots 

can also be constructed for the non-normalised expression data in each sample, and 

those with a considerably different mean expression level to the others can be 

excluded. The dataset is then ready for further analysis.

1.7 Affymetrix and lllumina microarray platforms
The majority of the information presented here applies equally to both Affymetrix and 

lllumina microarrays. However, there are some major differences between these 

array platforms. Ilumina chips have a slightly different design to the Affymetrix chips. 

Instead of bonding the probes directly to the chip substrate, the probes are bound to 

silica beads placed within wells in the surface of the chip. This allows somewhat 

denser packing of features, which permits lllumina chips to contain many more 

technical replicates of a probe for a given transcript -  an average of 30 probes with 

the same sequence for lllumina arrays, compared to between 11 and 20 for 

Affymetrix U133 chips. However, smaller feature size can affect probe-level variance 

to some extent (21), slightly offsetting the advantage of more replicates.

lllumina oligonucleotide probes are 50 nucleotides long, compared to 25 

nucleotides for Affymetrix. There are advantages and disadvantages to both choices 

of probe length. The longer lllumina probes are less likely to randomly match a non­

target sequence, but can be more vulnerable to other kinds of non-specific binding 

(22). lllumina probes are more sensitive to the presence of their target sequence

than Affymetrix probes, because of the increase in binding energy in the
9



hybridisation between a longer probe and target sequence. However, because 

lllumina probes are longer, they are also more likely to be affected by SNPs 

occurring in their target sequence, which will weaken the hybridisation between 

probe and target and reduce the apparent expression value. This can also potentially 

result in an artefactual correlation between SNP genotype and expression.

The biggest difference, however, is the way in which lllumina produces and 

determines the location of the probes (23). Where Affymetrix chips have a defined 

layout with the location of each probe defined in advance of the production of a chip, 

beads with different probes are applied to lllumina chips at random. The identities of 

the probes attached to each bead are discovered by using a secondary ‘decoder’ 

oligonucleotide sequence attached to the probes. A set of fluorescently labelled 

oligonucleotides, which will bind to some but not all decoder sequences (and not to 

the probe sequences themselves) is hybridised to the array, and the fluorescence 

they give off recorded. Generally, two separate sequences of oligonucleotide are 

bound to the array in a single hybridisation, each with a different fluorescent dye 

attached. The oligonucleotides are then dehybridised, and the process is repeated 

with two different labelled oligonucleotide sequences. The process is iterated several 

times, and the binding status of each decoder sequence recorded. This builds up a 

unique pattern of decoder hybridisation for each bead, which uniquely identifies the 

probe sequence. This decoding step is performed for each chip by the 

manufacturers, who distribute the resulting map of the chip as a data file.

Older Affymetrix microarrays, including the U133 platform which the work in 

chapter 2 is based upon, contain two types of probe -  ‘perfect match’ (PM) and 

‘mismatch’ (MM) probes. Perfect match probes are exactly complementary to their 

target sequence, while mismatch probes contain a single non-complementary base 

at a central nucleotide (20). Originally, MM probes were intended to allow correction 

for non-specific RNA hybridisation when using the MAS5 normalisation method.

More recently it has been discovered that the relationship between PM and MM 

fluorescence values is not linear (24, 25). Hence, subtracting MM signal from PM 

signal can increase the variance of the final probe intensity, especially where PM 

signal is low, and so MM probe correction is not now commonly used.

Newer Affymetrix microarrays, such as the HuGene and HuExon platforms,

omit MM probes, replacing them with a series of probes with varying GC (guanine or
10



cytosine) content, some of which match sequences in the human genome, and some 

of which do not (21). This is intended to allow correction for non-specific mRNA 

binding to the chip. GC content is an important variable for the hybridisation reaction, 

as link between guanine and cytosine contains three hydrogen bonds, and so is 

stronger than the link between adenine and thymine or uracil, which contains only 

two hydrogen bonds.

1.8 Genome-wide association study data
In addition to brain gene expression data, this study also uses genome-wide 

association study (GWAS) data, also derived using microarray-based methods. 

These are data which show the alleles present at a large number of common SNPs 

across the whole genome, often over a million SNPs in thousands or tens of 

thousands of samples (26). These function in a similar way to expression 

microarrays, but in place of the probes for specific transcripts, probes which are 

complementary to the sequence surrounding particular SNPs are attached to the 

array (27). Instead of mRNA, genomic DNA fragments are amplified using the 

polymerase chain reaction (PCR), labelled and hybridised to the microarray, which is 

scanned as described above. Software can then identify the alleles present at each 

SNP in the sample.

The sequence of the probes attached to the microarray differs depending on 

the array platform used. In earlier array-based methods, separate probes specific to 

the sequence containing each allele were used (27). In more recent methods, such 

as the lllumina GoldenGate protocol, oligonucleotide fragments containing different 

alleles are labelled with fluorophores producing different wavelengths of light during 

the PCR stage of the process (28). The probes on the microarray are designed to 

hybridise to sequences containing either allele present at a SNP. Hence, light from 

one of the two fluorophores will be produced by a feature where the sample is 

homozygous for the corresponding SNP, while light from both fluorophores will be 

produced where the sample is heterozygous for the corresponding SNP. This allows 

a single probe to determine the genotype of a SNP, rather than requiring a probe for 

each allele.

By examining the alleles present at a large number of SNPs in control

populations and populations affected by a condition, it is possible to identify SNPs
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where one allele is more common in affected samples and the other is more 

common in control samples. These SNPs are said to be associated with the 

condition. Such SNPs may play a role in the aetiology of the condition themselves, 

or they may be in linkage disequilibrium (LD) with another genomic feature that 

does.

Two SNPs are in LD if their genotypes at each locus are correlated. This 

arises because they are close together on the genome, and so there are relatively 

few locations where recombination events can occur during meiosis between them. 

As these recombination events are necessary to allow SNPs on the same 

chromosome to be transmitted independently during reproduction, SNPs that are 

close together on the genome are more likely to be transmitted together, leading to 

correlation of their genotypes. The presence of associated SNPs within or near to a 

gene suggests that the gene may be related to the condition studied.

GWAS studies have a clear advantage over brain expression studies in their 

ability to use genomic DNA from any body tissue. Sample availability is therefore 

much less limited than expression studies, allowing much larger sample sizes (e.g. 

3322 cases and 3587 controls in the schizophrenia GWAS performed by the 

International Schizophrenia Consortium) (29).

For some conditions, such as type II diabetes and macular degeneration, 

GWAS studies have identified several genes as being related to the aetiology of the 

disease, and replicated these associations in other studies (30-32). However, in the 

study of psychiatric disorders, such as schizophrenia and bipolar disorder, only a 

small number of loci have been reproducibly associated with affected status (see 

Section 1.9 below) (33-36). These loci explain only a small proportion of the risk for 

these disorders. This relative lack of strongly implicated loci is likely to be due to the 

small effect sizes of common SNPs in these disorders (37). In this study, one of the 

aims is to use expression data and GWAS data together, to investigate whether 

combining them could improve understanding of the biological mechanisms 

underlying neuropsychiatric disorders.

1.9 Expression data and human health
Large-scale expression data produced using microarrays has helped researchers to

understand many human diseases. This is particularly true in the field of cancer
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research, where the possibility of using microarrays themselves as diagnostic tools 

has also been explored. Studies examining the power of microarray data derived 

from extracted tumours to predict the prognosis of cancer patients have found that 

using microarrays led to improvements in predicting the course of the disease and 

the chance of survival (38). Novel subtypes of many cancers have also been defined 

based upon microarray expression data (39, 40).

The primary topic of investigation in this thesis is the extent to which 

expression data can aid in the understanding of psychiatric disorders. Compared 

with other organs, the brain offers unique challenges to study. Brain tissue samples 

are more difficult to acquire than tissue from some other organs, as they can usually 

only be taken post mortem. This reduces the sample sizes that can be achieved, 

limiting the power of any analysis. Sampling after death also produces other 

confounders which can affect the quality of expression data, including agonal state, 

post mortem interval, and brain pH (41).

The brain also has particularly complex expression patterns, with at least 58% 

of human genes expressed to some extent (42). The variety of cell types present in 

the brain, broadly divisible into neurons, astrocytes and oligodendrocytes, but 

including many types of each, further exacerbates this complexity of expression.

This can make demonstrating the existence of these expression patterns more 

difficult, and discoveries harder to replicate in independent datasets. Recent data 

suggest some psychiatric disorders are also highly polygenic (e.g. schizophrenia, 

bipolar disorder), although some others are not (e.g. familial early onset Alzheimer’s 

disease, caused by mutations in PSEN1, PSEN2 and APP) (43). Highly polygenic 

disorders are less amenable to study through genome-wide association studies, as 

the effect sizes of individual truly associated variants are small and difficult to 

distinguish from random variation (29).

This study focuses on bipolar disorder and schizophrenia, although the 

methods discussed could also be applied to other disorders. The term ‘bipolar 

disorder’ is used to describe a spectrum of mood disorders that are characterised by 

cycles of mania and depression (44). There are several subtypes of the disorder, 

including bipolar disorder I, bipolar disorder II, where mania is replaced by a less 

pronounced state referred to as hypomania, and cyclothymia, where cycling occurs

between a relatively mild mood elevation and a less severe depressive state. Bipolar
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disorder can also be subdivided by the frequency of the cycles, including rapid 

cycling (more than four episodes annually) and ultra-rapid cycling (more than four 

episodes monthly) subtypes. Bipolar has a heritability of 80% according to twin 

studies (45).

Schizophrenia is a mental disorder characterised by psychotic symptoms 

such as hallucinations and delusions, irrational and disorganised speech and 

thought patterns, and reduced emotional responsiveness (46). The DSM-IV 

recognises several diagnostic categories of the disorder, including paranoid 

schizophrenia, which includes auditory hallucinations and paranoid delusions, 

disorganised schizophrenia, where irrational thinking and blunted emotional affect 

are prominent, and undifferentiated schizophrenia, a more general category. It is 

highly heritable (around 80% heritability), which implies that genetic factors play a 

major role in its aetiology (47). Onset generally occurs during late adolescence or 

early adulthood, although it can occur earlier or later (48).

In addition to the small effect sizes of at least the common risk alleles which 

makes gene identification challenging, many additional factors make these disorders 

difficult to study. Very little, if anything is known with certainty about the 

pathophysiological mechanisms underlying either disorder and therefore while there 

are large numbers of hypotheses, these are mainly quite vague, involving concepts 

like neurodevelopment or synaptic function (49, 50). As a result, studies that target 

specific genes on the basis of those hypotheses are not highly likely to be 

successful. In fact this lack of success of candidate gene studies is a feature of 

genetic studies of most common disease, even those like diabetes which at least at 

a superficial level, more was known in advance about biological mechanisms. As this 

thesis is focused on the application of gene expression studies to further 

investigation of disorders in a generic way and aims to apply those methods in a 

manner that is atheoretical in terms of disease mechanisms (other than the disorders 

involving genes and the brain) I do not discuss the detail of any of those hypotheses.

Both disorders are defined by highly variable symptoms. In other words the

diagnostic categories span groups of individuals, pairs of which may have very little

in common in terms of clinical features. The courses of the disorders are highly

variable, sometimes only involving a single episode, while in other cases becoming a

chronic condition that affects the sufferer for the rest of their life (36). Furthermore,
14



there is symptomatic overlap between bipolar disorder and schizophrenia. Bipolar 

patients can suffer from delusions and disorganised thinking while many 

schizophrenia patients have prominent symptoms of mood disorder. There is also an 

intermediate category, schizoaffective disorder, can be used where the symptoms of 

both disorders occur in the same individual. For neither disorder are their 

confirmatory diagnostic tests of biological validity (e.g. blood tests) and it is therefore 

uncertain to what extent the diagnostic groups are simply descriptive terms covering 

a range of unrelated disorders or are coherent syndromes with related underlying 

causes across cases. The effect of this is that at the level of biological validity, it is 

difficult to define sets of patients that one can be certain are likely to have related 

disorders, which in effect, adds noise to any analyses, genetic or otherwise, that 

attempts to find differences between patient groups and unaffected people. Adding 

to the difficulties, it also appears from recent epidemiology and from molecular 

genetic studies that there is a considerable degree of overlap in the genetic risk of 

the disorders (36), which strongly point to lack of validity of the diagnostic 

boundaries, at least with respect to genetic aetiology.

Despite these issues, current GWAS analyses and meta-analyses have found 

some polymorphisms that are associated with bipolar disorder or schizophrenia at a 

genome-wide significant level. In the case of schizophrenia, these include two 

independent sites in the major histocompatibility complex (51). They also include a 

SNP within an intron of the transcription factor TCF4 and near to the neuronal gene 

neurogranin. For bipolar disorder, genome-wide significant SNPs were found within 

the gene PBRM1 and near to the gene ANK3 (52, 53).

Other SNPs are highly significantly associated with both schizophrenia and 

bipolar disorder. These include SNPs near the genes ZNF804A and CACNA1C (53, 

54). CACNA1C is a calcium ion channel sub-unit, but little is known about the 

function of ZNF804A. These significant trans-disorder associations further suggest 

that there may be common mechanisms in the aetiology of schizophrenia and 

bipolar disorder.

Another type of data that has produced some results for schizophrenia are

copy number variant studies. These are studies which identify deletions and

duplications of areas of the genome. Some rare deletions have been shown to

dramatically increase the risk of schizophrenia, such as a microdeletion within
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chromosome 22q11, which causes veiocardiofacial syndrome. Generally, there are 

also an excess of rare CNVs in schizophrenia cases compared to controls, 

especially large deletions (55), suggesting rare CNVs may be aetiologically relevant 

to schizophrenia.

These findings demonstrate that large-scale genetic methods can produce 

results of relevance to the pathophysiology of neuropsychiatric disease. However, 

these results only explain a tiny fraction of the variation in risk. The challenges 

involved in understanding psychiatric disorders are considerable, and so progress 

may depend upon investigation and utilisation of different types of data sources (56). 

Expression data potentially offers such a source of data. For example, genes which 

both contain associated SNPs and are differentially expressed between cases and 

controls may be more likely to be true positives, and so further study can be focused 

on them (see Section 1.8 below). The analyses performed in this study are intended 

to illuminate some of the ways in which expression data can be used to investigate 

psychiatric disease.

1.10 Overview of later chapters
Chapter 2 is a comparison of four different microarray expression data clustering 

methods when used upon human brain expression data -  k-means clustering, 

Chinese Restaurant Clustering (CRC), the Iterative Signature Algorithm (ISA) and 

the Memory Iterative Signature Algorithm (memlSA). The primary metric used to 

compare the methods is the percentage of clusters produced that are significantly 

enriched for one or more Gene Ontology (GO) ‘biological process’ categories. This 

assesses the degree to which the methods agree with current biological knowledge.

Chapter 3 investigates the utility of combining expression data and GWAS 

data to further improve schizophrenia affected status prediction through polygenic 

score analysis. The purpose of this is to discover whether or not SNPs which affect 

gene expression are significantly enriched for SNPs associated for schizophrenia. A 

significant enrichment would demonstrate that expression data is relevant to 

schizophrenia aetiology.

Chapter 4 investigates the function of genes in selected expression clusters

produced using the clustering methods described in chapter 2. The clusters are

subdivided into subclusters using k-means clustering. The commercial functional
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annotation database and software package MetaCore is used to determine how 

heavily enriched the clusters and subclusters are for GO and MetaCore functional 

categories. The enrichment of clusters and subclusters for genes associated with, or 

differentially expressed in, schizophrenia and bipolar disorder is also determined, 

using the program EASE.
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Chapter Two

A comparison of four clustering methods for brain expression 

microarray data

2.1 Introduction

2.1.1 Background
Clustering genes according to their expression profiles is an important step in 

interpreting data from microarray studies. Clustering can help summarise datasets, 

reducing tens of thousands of genes to a much smaller number of clusters. It can aid 

understanding of systemic effects; looking for a small change in expression between 

disease states across many genes in a cluster could be a better strategy for finding 

the causes of complex, polygenic disorders than looking for large changes in single 

genes (57). Clustering can also help predict gene function, as coexpressed genes 

are more likely to have similar functions than non-coexpressed genes (58).

There are many clustering methods for microarray expression data currently 

available (59). However, there are few comparisons of these methods, making it 

hard for researchers to make a rational choice between them. The majority of papers 

comparing multiple clustering methods use simulated data or data from simple 

organisms such as bacteria and yeast (60-62), which may limit the applicability of 

their findings to data from more complex sources such as human tissues which 

express more genes. Thus, to investigate human disease, it would be useful to test 

the methods upon expression data derived from complex human tissues, among 

which brain tissue is particularly complex since it expresses a higher proportion of 

the genome transcribed than other tissues (63, 64). Thalamuthu et al (65) have 

previously looked at a wide range of datasets, including some human expression 

datasets. However, since they restricted their analysis to functionally defined subsets 

of genes, that analysis did not fully reflect the complexity of human expression, 

particularly for disorders where there is insufficient knowledge of their aetiology to 

focus on specific subsets of genes.
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2.1.2 Clustering methods selected for comparison

Four methods were examined: k-means clustering(66), Chinese Restaurant 

Clustering (CRC)(67), the Iterative Signature Algorithm (ISA)(68, 69) and a new, 

progressive variant of ISA called memlSA. These were chosen after a literature 

survey of the available methods (Table 2.1). All four are unsupervised methods that 

derive the clusters from the input data, rather than supervised methods which 

classify genes into user-specified clusters.

Many of the available comparative clustering studies focus exclusively on 

older methods (61, 70), or restrict their analysis to a single class of clustering 

methods (60, 62). In this study, the methods were chosen on the basis of variety.

ISA and memlSA are examples of biclustering methods, CRC is a mixture model 

based method, while k-means clustering is a simple, well-understood algorithm.

They were reported as performing well by their authors and/or other studies (60, 61).

One of the weaknesses of ISA is that it does not use already-found clusters to 

inform further clustering. It can find a given strong cluster hundreds of times before 

finding a weak one. An attempt has been made to mitigate this -  PISA, the 

progressive signature algorithm, which works by requiring the sample set of each 

successive cluster to be orthogonal to (i.e. as different as possible from) all the 

sample sets of all previous clusters(71). This allows the method to find weaker 

clusters obscured by stronger clusters with which they share genes. However, no 

implementation is yet available for this.

In order to investigate the effect of a progressive clustering strategy, memlSA 

was created. It is a modified version of ISA, which weights against genes that are 

already members of a cluster (see Section 2.2.9 below for more details). The 

methods were also chosen partly on the basis of novelty. Apart from k-means 

clustering, they are too recent to have been included in many previous surveys of 

clustering methods, and so are particularly in need of testing.
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Table 2.1 -  Survey of clustering methods

Name Abbreviation Refe. Ease of 
use

Apparent
computation

time

Reason for inclusion or 
rejection

Iterative
Signature
Algorithm

ISA (60, 69) 4 High

Included, because of 
the five methods 

examined in Prelic et 
a/, ISA performed well 
on both the simulated 

and real datasets.

Progressive
Iterative

Signature
Algorithm

PISA (71) N/A High

Rejected because 
implementation was 

unavailable. However, 
memlSA was based 

upon PISA, to allow a 
progressive variant of 
ISA to be investigated.

CLUSTER CLUSTER (61, 72) 1 Low

k-means clustering in 
this package was 
included, as it was 

found to be effective in 
Riva et al. Self 

organising maps were 
rejected, as, unlike k- 
means, they restrict 

the clusters to a two- 
dimensional map.

Divisive
Analysis

Clustering
DIANA (73) 1 Low

Rejected, as 
hierarchical methods 
do not offer a simple 
and objective way to 
separate the tree into 

multiple clusters.

Model-based
Clustering MCLUST (74) 2 Medium

Rejected, as GIMM 
and CRC are infinite 

mixture model 
methods that 

automatically find the 
correct number of 

clusters (see 
Medvedovic and 
Sivaganesan).

Gaussian 
Infinite Mixture 

Model
GIMM (75) 2

Very high on 
large 

datasets

Investigated, but 
rejected because of 

extremely high 
computation time on 

large datasets.
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Chinese
restaurant
clustering

CRC (67) 2 Medium

included, because it 
allows an infinite 
mixture modelling 

approach to be applied 
to large datasets.

Singular Value 
Decomposition 

Microarray 
Analysis

SVDMAN (68, 76) 2 Medium

Rejected, as SVD is 
sensitive to the noise 
found in microarray 

datasets (see 
Bergmann et at).

Gene Shaving Gene
Shaving (68, 77) 2 Low

Rejected, as it is 
based upon SVD and 
so may suffer from the 
same noise sensitivity 
(see Bergmann et al).

Generalised 
Topological 

Overlap Matrix
GTOM (78) 2 Medium

Rejected, as network 
based methods are too 

different to 
unsupervised 

clustering to be directly 
comparable.

Statistical 
Algorithmic 
Method For 

Bicluster 
Analysis

SAMBA (60, 79) 2 Medium

Rejected because ISA 
outperformed it in 

terms of GO 
enrichment on real 
yeast datasets (see 

Prelic et al).

cMonkey cMonkey (80) 5 Very high

Investigated, but 
rejected because of 

extremely high 
computation time on 

large datasets.

Table of the methods considered for comparison. Refs. = references. ‘Ease of use’ is a subjective 

assessment of how simple the method is to use (1=most simple, 5=most complex).

2.1.3 Rejected clustering methods
Several other methods were considered for inclusion in this comparison, but 

subsequently rejected. A self-organising map is a clustering method similar to k- 

means, but it arbitrarily restricts the clusters to a two-dimensional plane (72). 

Hierarchical methods, such as DIANA, were rejected, because they do not offer a 

simple way of dividing the tree they produce into clusters (73). They also assume 

that the clusters are hierarchically organised, which may not be true.
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Two other modelling methods were examined in addition to CRC -  MCLUST 

and GIMM (74, 75). MCLUST was rejected because, unlike CRC and GIMM, it does 

not automatically choose the best number of clusters from the data. GIMM was 

initially investigated, but its runtime scales quadratically with number of input genes 

(complexity of 0(n2)), so its use was impractical. The runtime of CRC scales with the 

number of input genes times the logarithm of the number of input genes (complexity 

of 0(n log n)), so it was chosen instead.

Two methods based on singular value decomposition were also considered, 

SVDMAN and gene shaving (76, 77). However, it has been found that these 

methods perform poorly on large, noisy datasets like microarray data, so they were 

rejected (68). A network-based method, GTOM, was examined, but was felt to be 

too different to CRC, ISA and k-means for a direct comparison, as it depended on 

having a network of relationships between the genes already constructed (78). 

Another biclustering method, SAMBA, was rejected because ISA outperformed it 

(60, 79).

Lastly, a complex biclustering method called cMonkey was investigated. This 

integrated data from a number of sources, including cis regulatory elements, protein- 

protein interactions, and expression data, to group similar genes together (80). It 

was rejected because it was too computationally intensive to be used on a large 

human brain expression dataset.

2.1.4 Comparison of clustering methods
The performance of the four clustering methods (CRC, k-means, ISA and memlSA) 

was compared by examining the results for biologically meaningful clustering by 

looking for gene ontology (GO) enrichments within the resulting clusters. The 

methods were also compared on the percentage of genes from the dataset that were 

assigned a cluster (‘gene coverage’) and computation time.

2.2 Methods

2.2.1 Datasets
Three datasets were used for testing, the Dobrin (81), McLean 66 (82) (MC66) and

Perrone-Bizzozero (PB - GEO dataset GSE4036) (83) datasets (Table 2.2). They
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were downloaded in CEL format from the Stanley Medical Research Online 

Genomics database(81), the Harvard National Brain Databank database(82) and 

GEO(84), respectively. They were then processed using R(85), with custom CDF 

files to map the probes to genes(86). Box plots were used to examine the quality of 

the data, and several outlier samples (defined as an average expression across all 

genes 10% lower or higher than the mean for all samples) were removed. Three 

versions of each dataset were produced. One was normalised by the RMA median 

polish method, for use in CRC and k-means(87). The other two were normalised to 

produce a gene-normalised and sample-normalised dataset for running ISA(68).

Creating the gene-normalised dataset for ISA entailed finding the square root 

of the sum of squares of each sample (V £x2), and dividing every value for that 

sample by the result. The mean was then found for each gene, and deducted from 

every value for that gene. Lastly, the square root of the sum of squares of each gene 

(V£y2) was found, and every value for that gene divided by the result. To create the 

sample-normalised dataset, the procedure was followed in reverse -  finding and 

dividing by V£y2 for each gene, deducting the mean from every sample, and finding 

and dividing by V£x2 for each sample.

2.2.2 Gene coverage
Gene coverage, the percentage of genes on the chip that are put into at least one 

cluster, was assessed for the cluster set produced by each method.

Table 2.2 -  Characteristics of datasets used to test clustering methods
Pre quality control 
number of samples

Post quality cor 
number of sam

itrol
pies Tissue Chip Number 

of genes
Con SCZ BP Con SCZ BP

Dobrin 25 26 27 20 22 22 Brodmann 
Area 46

Affymetrix 
133 plus 2.0 20292

McLean 66 27 18 19 27 15 19
Dorsolateral
Prefrontal
Cortex

Affymetrix
133A 12757

Perrone-
Bizzozero
cerebellum

14 14 0 14 14 0 Cerebellum Affymetrix 
133 plus 2.0 20292

Con=control, SCZ=schizophrenia, BP=bipolar disorder.
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2.2.3 Speed
The methods were also assessed by speed. As ISA and memlSA are dependent on 

parallelisation to run at a reasonable speed, this is taken as real-world time taken to 

run, rather than computer run-time used. For k-means and penalised k-means, this 

includes the time taken to estimate k.

2.2.4 GO enrichment
GO enrichment is an overrepresentation analysis method that assesses the 

percentage of clusters that are significantly enriched (compared to all annotated 

genes on the microarray) with genes from one or more Gene Ontology categories 

(using the goa_human dataset provided with GOstat) at different significance levels, 

using Fisher’s exact test and the Benjamini false discovery rate multiple testing 

correction(88). Clusters were tested for enrichment (using Fisher’s exact test) for all 

GO biological process terms 3 or more levels deep into the hierarchical tree of GO 

terms, at several different levels of significance. At least 3 genes from the input 

cluster had to match a GO category for the cluster to be counted as enriched for that 

category, to ensure that chance appearance of 1 or 2 genes from a GO category 

with few members could not affect the results. The percentage of clusters matching 

this criterion gives a measure of the biological, functional relevance of the clusters.

GO enrichment was determined with the web-based service, GOstat (89).

This accepts multiple kinds of gene name or ID as input, allowing approximately 85% 

of genes within the input clusters to be included. This was automated using WWW- 

Mechanize, a Perl module(90).

2.2.5 Random cluster set construction
To compare the results of GO enrichments for the various clustering algorithms, 

several random cluster sets were also examined using GO enrichment. Four sets of 

clusters with the same distribution of cluster sizes as those made by k-means (at the 

value of k recommended by cascadeKM), CRC, ISA and memlSA (both after 

removal of overlapping clusters) were produced. The cluster sets made from the 

Dobrin, MC66 and PB datasets were combined when determining the distribution of 

sizes. The new cluster sets had genes chosen at random from all those available on 

the Affymetrix U133 Plus 2.0 chip.
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Figure 2.1 - Flowchart summarising the method used by k-means clustering

k centroids (quasi-data points representing the centres of the 
clusters) are distributed at random among the data points

The distance (usually Euclidean distance, but other measures can be used) 
between every data point and each centroid is calculated

Each data point is associated with the nearest centroid

The centroids move to minimise the distance between them and their 
associated points, so moving to the centre of the ir points

Have the centroids moved a sufficiently small amount 
- i .e .  has convergence been reached?

.No

The configuration of clusters is remembered

No
Has the limit on the number of iterations been reached?

Yes

The cluster configuration with the smallest distance between points 
and their associated centroids is output as the clustering solution

Finish

k is a user-defined input parameter which sets the number of clusters k-means clustering will find.
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2.2.6 k-means
k-means clustering is a standard clustering method that has been in use for several 

decades (91). It requires that the number of clusters into which the genes are sorted 

is specified beforehand (k). k-means clustering is a single cluster membership 

method - each gene can belong to only one cluster and every gene must be 

assigned to a cluster. Essentially, it distributes k centroids (quasi-data points 

representing cluster centres) throughout the data. Data points are then assigned to 

their nearest cluster, and the centroids are moved to minimise the distance between 

them and their assigned data points. This is repeated until the centroids stop 

moving. A number of distance measures can be used to define distance between 

data point and centroid, with Euclidean distance being one of the most commonly 

used and simplest. The procedure is summarised in Figure 2.1.

There are numerous variants of k-means clustering (92, 93). Here, two are 

tried -  standard k-means clustering, as above, and penalised k-means clustering. 

Penalised k-means clustering uses a threshold parameter (A) to allow some of the 

genes to be treated as noise, and not clustered. Initially, an estimate for the value of 

k was found for all three datasets using the cascadeKM function in R. Values of k 

between 2 and 35 were assessed, with 25 iterations per value, and the k values that 

minimised the Calinski criterion were chosen (94). The recommended values of k 

were 6 for Dobrin, 7 for MC66 and 8 for PB cerebellum, k-means and penalised k- 

means were then performed on all four datasets at 200 iterations and these values 

of k. The recommended value of 0.1 was used for A in penalised k-means.

These small values of k will only partition the data into several large clusters, 

which may be too general a grouping to provide biologically relevant inferences. To 

examine the performance of k-means when producing smaller, more specific 

clusters, and also for a more direct comparison to CRC, k-means and penalised k- 

means clustering were also performed with values of k equal to the numbers of 

clusters produced by CRC on that dataset (23 in all cases).

k-means was performed using Cluster 3.0 (66). Penalised k-means clustering 

was performed using PWKmeans (93). Both were performed on a Windows desktop 

PC with 2 GB RAM, using a 2.66 Ghz processor.
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2.2.7 CRC

CRC(67) is a model-based clustering method.. The name arises from a metaphor 

where genes are regarded as customers in a Chinese restaurant with unlimited 

tables of unlimited size, each representing a cluster, and their food orders represent 

the expression profile of each gene. The customers are then seated at tables 

according to the similarities of their food orders. CRC has several advantages over 

other methods. It can handle missing data and cluster genes based on negative 

correlation and time-shifted correlation. Like k-means it is a single cluster 

membership method. Its methodology is complex, and is based upon treating the 

expression profiles of the genes as the sum of multiple normal distributions.

The procedure is outlined in Figure 2.2. Each iteration of the flowchart in 

Figure 2.2 can be considered a Markov chain process. CRC runs a number of these 

chains in parallel (set by the user -10  is the recommended amount), and reports the 

highest likelihood cluster set as the final output. The chains are also limited to a 

certain number of iterations through the flowchart before reporting their clusters. This 

is another parameter decided by the user, and is recommended to be set at 20. 

Finally, a probability cut-off can be input, which determines how high the likelihood of 

a gene being a member of a cluster needs to be in order for it to be included in the 

final output. In practice, most genes are members of their cluster with probability 1, 

so this removes few genes.

CRC was performed on all three datasets. It was performed at two parameter 

sets for each dataset -1 0  chains/20 cycles per chain/probability cut-off of 0.7, and 

20 chains/40 cycles per chain/probability cut-off of 0.9. CRC was performed using a 

standalone program (67). It was performed on a Unix server running Redhat OS with 

32 GB RAM, using one 2.2 Ghz processor.
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Figure 2.2 - Flowchart summarising the method used by CRC

genes are distributed among an arbitrary number of arbitrary clusters

The next gene in order is picked

The effect on the cluster indicator variables of moving this gene to 
a cluster on its own is calculated

The next cluster in order is picked

The effect on the cluster indicator variables of moving this gene to this cluster is calculated

Have the effects of moving this gene to all clusters been calculated?

■Yes

One of the possible 'moves' for the gene is chosen at random, with probabilities proportional 
to their effect on the cluster indicator variables

Has a move been calculated for all genes?

Yes

Yes Has the number of clusters converged, or the limit on the number of iterations been reached?

The genes are passed through 
again, from the beginning

Finish

One run through this flowchart equates to a single chain in CRC, with several chains being run in 

parallel. The number of parallel chains and the maximum number of iterations are user-defined 

parameters.
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2.2.8 ISA
ISA is a biclustering method -  it clusters both rows and columns of the dataset, here 

the genes and the specific samples they come from (68, 69). This allows ISA to 

focus on subsets of samples with good signal for the genes of the cluster, reducing 

the amount of noise (see Figure 2.3). Unlike k-means and CRC, it is not a single­

cluster membership method: it allows genes and samples to belong to multiple 

clusters, and does not have to put every gene into a cluster. Prelid et al found that a 

high proportion of its clusters were significantly enriched for one or more GO terms 

□ □□□□□JnnnyDy30DynyDDyEN.CITE 

yeast.

ISA produces tens of thousands of clusters. In post-processing, to reduce this 

set to a manageable size, duplicate clusters are removed, similar clusters are 

merged, and clusters can be reiterated through ISA. The nature of post-processing 

affects the final clusters. ISA also assigns ‘scores’ to genes and samples it has 

clustered, as part of its method. A gene or sample with a high score will have more 

influence on the samples or genes selected at the next stage of the process. The 

final values of these scores are reported in the ISA output. A high score here 

indicates that the gene or sample has had greater influence over the contents of the 

clusters than a gene or sample with a low score.

ISA was performed on the Dobrin dataset across a range of parameters and 

post-processing regimes in order to find the best combination. The two most 

important parameters are to and tc, defined by the user. They determine how great 

the level of expression for a gene (tG) or sample (tc) needs to be for selection in the 

cluster. Both are defined in standard deviations from the weighted mean of all genes 

over the selected samples, or all samples over the selected genes. Higher values 

lead to more, smaller clusters, lower values to fewer, larger clusters.

A preliminary run with 10 iterations and a wide range of parameter values was 

performed to find sensible starting values for tc and to. Initially, ISA was run using tc 

values of 0.25 and 1.25 and \q values between 1.0 and 4.7 (inclusive, increasing in

0.1 intervals), with 10000 iterations. Runs were also performed at 20000 and 30000 

iterations. The effects of 3 post-processing options, each with 2 choices, on the 

clusters produced from the Dobrin dataset were investigated:
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Figure 2.3 - Flowchart summarising the method used by ISA

Random sample of genes picked

Mean expression of each sample over these genes in the 
sample normalised matrix found -  weighted by the 

score of each gene (initially equal)

Those samples with mean expression Tc standard deviations 
above this value are selected and these mean values taken as 

'sample scores' -  Tc is a predefined threshold value

i -

Mean expression of each gene over these samples in the 
gene normalised matrix found -  weighted by the 

_______________ score of each sample_______________
1 F

Those genes with mean expression Tg standard deviations 
above this value are selected and these mean values taken as 

‘gene scores' -  Tg is a predefined threshold value

i
Are selected genes the same as the previous iteration?

Have sufficient random samples been processed?

^  Yes

No

Selected genes and samples are written to a file (with scores)
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1. The presence or absence of filtering. With filtering used, low-occurrence 

clusters were removed -  those that appear less than 3 times within those 

clusters produced by a single pair of parameters. Only completely identical 

clusters count towards this threshold. Also, filtering removed clusters 

containing less than 40 genes.

2. Reiteration, or not, of the resulting cluster sets through ISA.

3. When the clusters created with different parameter levels were combined, 

either stringent criteria (80% gene overlap, 70% sample overlap, Pearson 

correlation >0.8 between the scores of shared genes and samples) or lax 

criteria (60% gene overlap, 50% sample overlap, Pearson correlation > 0.6 

between the scores of shared genes and samples) were used.

The 8 regimes given by different combinations of these 3 options were compared 

(Table 2.3). As it gave the best results, the filtered, non-reiterated, lax combination 

criteria set was used in all further ISA and memlSA analyses. To compare with 

memlSA, CRC and k-means, runs were performed on all three datasets, at 20000 

iterations (option 7 in Table 2.3). These runs used tG values of 1.0 to 4.2 (inclusive, 

increasing in 0.1 intervals). Different tc values were used for different datasets, as 

each contained different numbers of samples -  Dobrin was run at tc 0.2, 0.5 and 1.0, 

MC66 at 0.25 and 1.25, and PB cerebellum at 0.1, 0.4 and 0.7. Filtering was used -  

a cluster had to have appeared 3 times, and contain at least 40 genes, to be 

included in the final output. Clusters that shared 70% or more of their genes with a 

larger cluster were removed from the final results (see below).

ISA was written in Perl (see Appendix A file 1, ISAScripts.zip for a zip file 

containing all ISA and memlSA scripts), based upon the previous Matlab 

implementation^). This implementation has all of the properties of the Matlab 

version. The post-processing scripts were written in Perl. The normalisation script 

was written in R(85). ISA was parallelised using the CONDOR network at Cardiff 

University, which distributes individual ISA runs to unused Windows desktop 

computers across campus(95).
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Table 2.3 -  Effects of different post-processing techniques on GO enrichment
of clusters derived from ISA on Dobrin dataset

1 2 3 4 5 6 7 8
Filtered for size and 
occurrence No No No No Yes Yes Yes Yes

Reiterated Yes Yes No No Yes Yes No No

Stringent combining criteria No Yes No Yes No Yes No Yes

% enriched at p-val < 0.3 78.2 80.0 80.2 82.3 86.2 84.2 75.7 87.0

% enriched at p-val <0.1 48.7 47.2 51.6 49.3 52.3 56.3 48.6 57.5

% enriched at p-val < 0.05 34.6 36.4 38.5 39.6 40.0 46.2 45.9 48.7

% enriched at p-val < 0.01 28.2 25.4 28.6 31.2 36.9 33.0 35.1 36.0

% enriched at p-val < 0.001 23.1 17.1 25.3 22.6 30.8 23.7 29.7 24.9

% enriched at p-val < 0.0001 20.5 12.5 18.7 17.9 27.7 19.2 27.0 19.9

Clusters containing 40 or less genes, or that appeared less than 3 times in the output, were filtered 

out in the ‘filtered’ sets (sets 5-8). Reiterated sets were passed through ISA again (sets 1-2 and 5-6). 

Stringent combination criteria (80% gene overlap, 70% sample overlap, r > 0.8) were used in sets 2, 

4 ,6  and 8, and lax combination criteria (60% gene overlap, 50% sample overlap, r>0.6) were used in 

sets 1, 3, 5 and 7.

2.2.9 memlSA

The underlying method of memlSA is closely based on ISA and similar to PISA(71) 

(Figure 2.3). It biases against both genes and samples that have already been put 

into a cluster, according to two user input parameters, f  and n. The bias is calculated 

relative to the highest scoring gene and sample in a cluster -  this has its 

gene/sample score multiplied by the factor (1 - f ) in future iterations. All other 

genes/samples found in a cluster have their future scores reduced by a smaller 

amount. This is determined by the proportion of their score and the highest 

gene/sample score -  a gene with a quarter of the score of the highest gene will have 

its future scores multiplied by 1 -  (f* 0.25). The intent of this is to bias against the 

highest scoring genes of a cluster while allowing lower scoring genes to be relatively 

unaffected and still be included in subsequent clusters (the highest scoring genes 

typically have scores 10 times greater than the majority of genes in a cluster). If a 

gene/sample is included in a subsequent cluster, the biases are multiplied together -  

a gene which is the strongest gene in two successive clusters would have its score 

multiplied by (1 -  f )2 in following iterations. These biases are only remembered for a
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certain number of iterations (n). Every n iterations, the slate is wiped clean. This is to 

ensure that memlSA does not begin returning noise once it has found all the 

available clusters in the data, and to limit the effect that an early misclustering can 

have on the results.

memlSA was run on the Dobrin dataset at 20000 iterations with a number of 

different values for f  and n (Table 2.4). It was found the results were generally robust 

to the values of f and n, and that /=0.75 and n=5 produced clusters with the highest 

GO enrichment, so these values were used in all further analysis. A filtering step was 

also attempted on one dataset to see if it would improve GO enrichment. For this, 

those genes whose gene scores were in the bottom 10% for their cluster were 

removed from the cluster. This step reduced both gene coverage and GO 

enrichment and so was not used further.

memlSA was run on the Dobrin, MC66 and PB cerebellum datasets at tG 1.0 

to 4.2 (inclusive, increasing in 0.1 intervals) and tc 0.2, 0.5 and 1.0. Filtering was 

carried out as with ISA, using an occurrence threshold of 3 and a size threshold of 

40. memlSA was implemented in Perl, and was based upon the new Perl 

implementation of ISA. Like ISA, it was parallelised using CONDOR.
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Table 2.4 -  Comparison of GO enrichments for different memlSA parameters in 

Dobrin (overlaps not removed)

% enriched at 
varying p-vals

f=  0.5, n = 10 f=  0.75, n = 5
f = 0.75, n = 5,10%  of genes 
with lowest gene scores 
removed from clusters

f -  0.5, a ? = 3

p-val < 0.3 62.5 92.3 88.5 85.7

p-val <0.1 50.0 65.4 57.7 60.7

p-val < 0.05 50.0 57.7 53.8 50.0

p-val < 0.01 43.8 42.3 42.3 46.4

p-val < 0.001 37.5 38.5 38.5 42.9

p-val < 0.0001 31.3 34.6 26.9 28.6

Gene coverage 61.1 78.8 74.7 74.7
Number of clusters 
found 16 26 26 28

The parameter f controls how heavily the method biases against already-found genes. The 
parameter n controls how many iterations of memlSA the biases are stored for.

2.2.10 Assessing overlap between clusters
We examined inter-method overlap in gene membership of clusters for the four 

methods and intra-method overlap of ISA and memlSA. CRC and k-means, as 

single-cluster membership methods, had no intra-method overlap between their 

clusters. ISA and memlSA cluster sets, however, both contained a large amount of 

intra-method overlap, making them impossible to compare fairly with clusters 

produced by k-means or CRC. To try to facilitate fair comparison, clusters with gene 

overlap above a certain level (values of 60, 70 and 80% gene overlap were tried) 

were merged but since this resulted in datasets with fewer than 3 clusters, this 

approach was abandoned. As an alternative, where over 70% of the genes in the 

smaller of a pair of clusters was shared with a larger cluster, the smaller cluster was 

removed. This process was performed on a subset of ISA and memlSA output -  

those raw clusters produced at to = 2.1 or greater were used, and the rest discarded. 

This was in order to prevent a few very large clusters causing the removal of nearly 

all smaller clusters. This overlap removal step was applied after all other post­

processing.
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2.2.11 Combining methods
As there was not a large amount of overlap in clusters obtained between the ISA 

methods and either CRC or k-means, the possibility of combining their cluster sets to 

improve GO enrichment was investigated. The cluster sets were simply combined 

and clusters that had over 70% gene overlap with a larger cluster were removed as 

above. One set contained k-means, memlSA and ISA clusters, one set contained 

CRC, memlSA and ISA clusters. The memlSA and ISA clusters had already had 

overlaps removed before combining. The CRC set used was the 10 chains/20 cycles 

per chain /0.7 cut-off. The k-means sets used were the k=23 sets.

2.3 Results
All four methods performed better than the random cluster sets when examined 

using GO enrichment to represent known biological relationships (Figures 2.4-2.6). 

This implies that all the clustering methods result in groupings of biological 

significance. Of the three random cluster sets, those with the same size distribution 

as ISA had slightly lower GO enrichment than those with the same size distribution 

as memlSA or CRC. This may suggest that GO enrichment has a small bias against 

ISA due to the sizes of clusters it produces. However, at p<0.05 the difference 

dropped to under 1% GO enrichment, suggesting that any such bias is slight and 

may well be due to chance.

2.3.1 k-means and penalised k-means
k-means and penalised k-means produced clusters with high GO enrichments, 

especially at the lower k values recommended by cascadeKM. In these low-k cluster 

sets, k-means obtained higher GO enrichments than penalised k-means. In the k=23 

cluster sets, they produced cluster sets with similar GO enrichment (Figures 2.4-2.6). 

As k-means gave similar GO enrichment to penalised k-means and by definition 

clustered more genes it was used in comparisons with the other methods.
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Figure 2.4 - GO enrichment and gene coverage of clusters for all methods -  Dobrin dataset

Orange, green, yellow and light blue bars are the percentage of clusters that are significantly enriched 

for one or more GO categories at p<0.05, 0.01, 0.001 and 0.0001 respectively. The dark blue bar is 

gene coverage, the percentage of genes available on the chip that are assigned to at least one 

cluster. Numbers in square brackets are the number of clusters produced by that method. ‘Dist.’ = 

distribution of sizes. Parameter set A for CRC is 10 chains and 20 iterations per chain. Parameter set 

B for CRC is 20 chains and 40 iterations per chain.
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Figure 2.5 - GO enrichment and gene coverage of clusters for all methods -  MC66 dataset

Orange, green, yellow and light blue bars are the percentage of clusters that are significantly enriched 

for one or more GO categories at p<0.05, 0.01, 0.001 and 0.0001 respectively. The dark blue bar is 

gene coverage, the percentage of genes available on the chip that are assigned to at least one 

cluster. Numbers in square brackets are the number of clusters produced by that method. ‘Dist.’ = 

distribution of sizes. Parameter set A for CRC is 10 chains and 20 iterations per chain. Parameter set 

B for CRC is 20 chains and 40 iterations per chain.
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Figure 2.6 - GO enrichment and gene coverage of clusters for all methods -  PB dataset

Orange, green, yellow and light blue bars are the percentage of clusters that are significantly enriched 

for one or more GO categories at p<0.05, 0.01, 0.001 and 0.0001 respectively. The dark blue bar is 

gene coverage, the percentage of genes available on the chip that are assigned to at least one 

cluster. Numbers in square brackets are the number of clusters produced by that method. ‘Dist.’ = 

distribution of sizes. Parameter set A for CRC is 10 chains and 20 iterations per chain. Parameter set 

B for CRC is 20 chains and 40 iterations per chain.
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2.3.2 Effect of CRC parameters on GO enrichment
The different parameter sets used for CRC made little difference to the GO 

enrichments of its clusters (Figures 2.4-2.6). Increasing the numbers of iterations or 

cycles or increasing the probability cut off had little effect which suggests that 

altering these parameters is unnecessary, and that the default values of 10 cycles 

and 20 iterations per cycle should be used for most datasets, with parameters only 

being increased on very large datasets. One problem noted with CRC was that 

analysing more than 202 samples caused the program to crash. This occurred on 

both Windows and Linux versions of the program, so was presumed to be an 

inherent problem with the program.

2.3.3 Effect of ISA parameters on GO enrichment
In contrast to CRC, changing the parameters of ISA can have unpredictable effects 

on the GO enrichment of its clusters, particularly after overlaps have been removed 

(see Figures 2.4-2.6). The different values of tc used in memlSA and ISA for the PB 

cerebellum and MC66 datasets may help explain some unexpected results -  in 

particular, the very large number of clusters produced by memlSA prior to removing 

the overlaps in PB cerebellum, and the unexpectedly poor performance of memlSA 

on the MC66 dataset. However, these may also be due to chance differences in the 

selection of random starting clusters, or to inherent qualities of the methods.

Increasing the number of iterations from 10000 to 20000 improved the GO 

enrichment of the ISA clusters in the Dobrin dataset (Table 2.5). However, 

increasing them further to 30000 did not improve GO enrichment, and so 20000 was 

used as the number of iterations for all other runs.
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Table 2.5 -  Comparison of GO enrichment and gene coverage of ISA clusters 

at different numbers of reiterations

% enriched at 
varying p- 
values

10,000 iterations 20,000 iterations 30,000 iterations

p-val <0.3 75.7 75.0 77.4

p-val <0.1 48.6 56.3 51.6

p-val < 0.05 45.9 53.1 48.4

p-val < 0.01 35.1 46.9 38.7

p-val < 0.001 29.7 40.6 35.5

p-val < 0.0001 27.0 34.4 32.3

Gene coverage 53.3 53.2 53.3

Table showing the GO enrichment and gene coverage of ISA clusters at 10000, 20000 and 30000 

iterations.

2.3.4 Effect of memlSA parameters on GO enrichment
memlSA is robust to the choice of f  and n, as all of the combinations tried produced 

reasonable GO enrichments (see Table 2.4). f= 0.7 and n=5 were chosen because 

they produced clusters with slightly better GO enrichments than other parameter 

sets.

2.3.5 Comparison of clusters detected
There was a large amount of overlap between the clusters produced using penalised 

k-means and k-means at k= 23, with the majority of clusters (from all three datasets) 

having over 70% overlap with a cluster from the other method, and all others having 

over 40% overlap (see Table 2.6 and Appendix A file 2, AIIOverlaps.xls for more 

detail).

Since these methods found similar clusters, further analysis was focused on 

standard k-means clustering, as it had 100% gene coverage.
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Table 2.6 - Percentage overlap between clusters produced by different 
methods

k-means Penalised k- 
means CRC ISA memlSA

k-means 100 62.3 52.2 8.7 8.7
Penalised k- 
means 63.8 100 57.5 4.3 4.3
CRC 52.2 54.5 100 7.2 27.5
ISA 25 25 23.1 100 95.2
memlSA 26.1 26.1 26.1 56.5 100

Values in table indicate the percentage of clusters produced by the method in the first column that 

have over 70% gene overlap with one or more clusters produced by the method in the top row.

There was considerable overlap in the results obtained between k-means and 

CRC across all three datasets. This suggests that k-means and CRC find similar 

patterns within the datasets. Conversely, there was little overlap between either k- 

means or CRC and either memlSA or ISA clusters. In the case of ISA, there were a 

few overlaps at 70% or above for each dataset. In the case of memlSA, there was a 

large cluster that overlapped with several of the smaller clusters produced by CRC at 

70% or more, plus one other 70% plus overlap between more similarly sized 

clusters, in all three datasets.

Removing clusters with over 70% intra-method gene overlap from the ISA and 

memlSA cluster sets reduced the number of clusters considerably. These sets 

contained only 4-10 clusters and were much smaller than the original ones.

However, their GO enrichments were generally considerably higher (see Figures 

2.4-2.6) but at the cost of a considerable drop in gene coverage.

2.3.6 Combining methods
The cluster sets produced by combining the methods had similar gene coverage to 

those produced by CRC/k-means alone (see Figures 2.4-2.6). They generally had a 

higher number of clusters. For the CRC/ISA/memlSA combined set, the GO 

enrichment of these clusters was higher in the Dobrin and PB cerebellum datasets.

In the k-means/ISA/memlSA combined sets, the gains in GO enrichment relative to 

k-means alone were generally smaller: under 5% at most levels of p. There were a

42



few small losses in GO enrichment in some datasets and at some levels of p, but 

generally the impact on GO enrichment was still positive.

2.3.7 Gene coverage
Before highly overlapping clusters were removed from the clusters produced by ISA, 

k-means had the highest gene coverage (100% by definition), followed by CRC, and 

then by memlSA and lastly ISA. However, these cluster sets are not directly 

comparable on number of clusters or on GO enrichment, as the cluster sets 

produced by ISA and memlSA contain a large amount of redundancy.

As memlSA and ISA had much lower gene coverage than k-means or CRC, 

the relationship between mean gene expression levels and cluster membership was 

examined for these methods in the Dobrin dataset. For both ISA and memlSA, no 

significant correlation was found (r=-0.132 for ISA, r=-0.081 for memlSA).

2.3.8 Cluster size
The number of genes per cluster for each method and dataset was also examined, 

and the mean cluster size and standard deviation computed (see Appendix A file 3, 

SizeDistribution.xls). Generally, CRC, k-means and penalised k-means were 

consistent in their cluster sizes, which appear to vary only with the number of genes 

in the dataset. The average cluster size was between 800 and 900 for these three 

methods in both 133P datasets (Dobrin and PB), and between 500 and 600 in the 

MC66 dataset. ISA generally produces clusters that are smaller than this, between 

400 and 600 on average (with no obvious relationship to number of genes or 

samples in the dataset). memlSA, conversely, is particularly prone to producing 

datasets with one or two particularly large clusters, giving it a higher average cluster 

size and standard deviation. This is because the larger number of unique clusters it 

produces makes it more likely for clusters to overlap and be merged, leading to 

these extremely large clusters.

To examine whether cluster size affected enrichment, cluster size was 

checked for correlation with log™ of the p-values of the best GO hit for each cluster 

(unenriched clusters were treated as having a p-value of 1). No significant

correlation was found for any of the methods.
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2.3.9 Speed
The three datasets were used to evaluate approximate runtimes for the four methods 

(Table 2.7). CRC and k-means are very fast methods, with a runtime of a few hours 

on current computer technology with typical parameters on human brain datasets. 

ISA and memlSA, meanwhile, are much slower, taking up to a month without 

parallelisation. Even with parallelisation using CONDOR, ISA and memlSA can take 

over 24 hours for a full parameter set when post-processing is included. Restricting 

the parameters to to 2.1 and above, as in the non-overlapping cluster set(see section

2.2.10 above), reduces these times by up to half.

Table 2.7 - Comparison of method runtimes

Runtime on 
different datasets

ISA (using 
CONDOR)

memlSA (using 
CONDOR) C R C -1 0 /2 0 C R C -2 0 /4 0

Dobrin 23h 6min 37h 22min 2h 12min 7h 53min
MC66 17h 23min 28h 55min 1h 15min 4h 33min
PB cerebellum 15h 11min 24h 13min 1h 7min 3h 53min

Table showing the real-world time taken for the methods to run on each dataset.

2.4 Discussion

2.4.1 Inter- and intra-method gene overlap
Nearly all ISA clusters had over 70% overlap with a memlSA cluster across all three 

datasets. However, less than half of the memlSA clusters had over 70% overlap with 

a cluster from ISA, as many of the ISA clusters overlap with the same memlSA 

cluster. This level of overlap is surprisingly high, considering that their post­

processing regimes already include a step to merge similar clusters. However, this 

step requires high sample overlap and correlation of shared gene/sample scores in 

addition to simple gene overlap. It also uses the size of the larger cluster to calculate 

overlap -  i.e. 50% overlap in this step indicates that 50% of the genes in the larger 

cluster are found in the smaller cluster. As a result, it tends to only combine clusters

of a similar size. The ability of memlSA to bias against already-found clusters may
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help it find clusters that would previously have been hidden by a stronger cluster, a 

useful feature when looking for novel clusters.

The tendency of the cluster merging step in ISA and memlSA to only combine 

clusters of a similar size may help to explain the improvement in GO enrichment the 

removal of overlapping clusters produces. Requiring a similar size and similar 

samples and gene/sample scores may help to ensure that only those clusters which 

come from the same signal are actually merged, excluding noise clusters with a 

coincidentally high gene overlap. The overlap removal process would then remove 

these clusters from the dataset altogether, improving GO enrichment.

The reasons for the poorer performance of memlSA on the MC66 dataset are 

not known. It is possible that the difference in the tc and to parameters between 

memlSA and ISA for this dataset was critical. The smaller number of genes in this 

dataset might also be important, and so reducing the values of tc used may help. 

Alternatively, it might be that chance played a role. memlSA may be inherently more 

prone to chance variation than ISA or CRC.

2.4.2 Comparisons with other clustering method surveys
The findings here broadly agree with several other surveys of clustering methods 

(Figures 2.4-2.6). ISA is an effective method that produces clusters with high GO 

enrichment, as suggested previously by Prelic et al (60), but the cluster sets 

presented here generally do not have as high a proportion of GO enriched clusters 

as theirs. This is likely to be a consequence of the greater complexity of the input 

data. Using synthetic datasets, Prelic et al found that ISA coped well with high levels 

of noise, but was affected by overlapping clusters. It is likely that the complex human 

brain datasets used here have more overlapping clusters than the S. cerevisiae 

datasets Prelic et al used. This may explain why memlSA generally had superior GO 

enrichments to ISA in my analysis, as the capacity to use previously found clusters 

to inform further clustering should help it uncover clusters that are overlapped by a 

more obvious cluster.

Garge et al found k-means clustering effective (70) on a wide range of input

datasets. They compared the cluster sets produced by subsets of the datasets,

using similarity as a measure of cluster stability. Although k-means performed well,

none of the methods they tested had high stability scores (over 0.55), even on
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datasets with sample sizes of 50 or more. The results do not examine stability 

directly, but suggest that clusters can be biologically meaningful at similar sample 

sizes, despite this instability.

The results of Garge et al are echoed by the k-means cluster sets reported 

here, which have high GO enrichment and gene coverage scores. These scores 

were generally higher than CRC, the mixture modelling method examined here. This 

contrasts with the findings of Thalamuthu et al, who found that modelling methods 

were superior to k-means clustering (65). This difference is again likely to be due to 

the datasets used; in particular the datasets used here were much larger in size. 

When using synthetic datasets, Thalamuthu et al found that MCLUST (a model- 

based clustering method) and tightClust were better at ignoring scattered 

background genes in favour of genuine clusters (74, 96). In this study, the probability 

cut-off parameter of CRC or the penalised version of k-means are similarly intended 

to allow the method to exclude peripheral cluster genes that may only be cluster 

members by chance. However, these methods did not prove superior to standard k- 

means in terms of GO enrichment scores, so this ability may not be critical to 

successfully clustering complex human datasets.

k-means clustering, CRC, ISA and memlSA are all potentially useful methods. 

Considered alone, k-means clustering is probably the most useful of the four, as it is 

fast, does not require parallelisation, and produces clusters with slightly higher levels 

of GO enrichment than CRC when producing similar numbers of clusters. When 

used to find smaller numbers of clusters more in line with the estimation of k, the GO 

enrichments are higher still, reaching 100% at some levels of p. It also assigns a 

cluster to every gene (100% gene coverage), unlike overlap-removed ISA and 

memlSA (under 30% gene coverage). Although this must lead to some false 

positives, this does not seem to have affected the GO enrichment scores unduly, 

and is an advantage in exploratory studies where as wide a view as possible is 

desired.

Furthermore, k-means is a relatively simple and very well understood method. 

This simplicity may be the reason for its good performance here, as it may allow it to 

cope with a wide variety of input data. CRC, conversely, has many more parameters 

and so may have had scope to become optimised for the smaller yeast and bacterial 

datasets it was built for and tested upon.
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However, for the fullest picture of clusters available in a dataset, combining 

memlSA, ISA and k-means is the best option, as it offers higher GO enrichment than 

k-means alone in two out of the three test datasets while retaining 100% gene 

coverage (see Figures 2.4-2.6). Even in the MC66 dataset, it added additional 

clusters not found by k-means without reducing GO enrichment. One of these 

memlSA clusters (found in both dorsolateral prefrontal cortex datasets) was found to 

be significantly enriched for schizophrenia-associated genes and genes differentially 

expressed in schizophrenia (see Chapter 4 below), further emphasising the utility of 

combining methods. If time allows, this combined method should be the method of 

choice for clustering microarray brain expression data.
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Chapter Three

Expression quantitative trait loci and polygenic score analysis in 

schizophrenia

3.1 Introduction

3.1.1 Summary
It is widely thought that alleles that influence susceptibility to common diseases, 

including schizophrenia, will frequently do so through effects on gene expression. 

Since only a small proportion of the genetic variance for schizophrenia has been 

attributed to specific loci, this remains an unproven hypothesis. The International 

Schizophrenia Consortium (ISC) recently reported analyses that would support a 

substantial polygenic contribution to that disorder, and showed that schizophrenia 

risk alleles are enriched among SNPs selected for marginal evidence for association 

(p<0.5) from genome wide association analyses (29). It follows that if schizophrenia 

susceptibility alleles commonly influence gene expression, those marginally 

associated SNPs which are also eQTLs should be enriched for true association 

signals compared with SNPs which are not eQTLs. To test this, I identified 

marginally associated (p<0.5) SNPs from two of the largest available schizophrenia 

GWAS datasets. eQTL status was assigned to those SNPs based upon eQTL 

datasets derived from adult human brain. Using the polygenic score method of 

analysis reported by the ISC, I observed that higher probability cis-eQTLs predicted 

schizophrenia status better in independent datasets than those with a lower 

probability for being a cis-eQTL. My data support the hypothesis that a proportion of 

common alleles confer risk of schizophrenia through impact on gene expression. 

Moreover, of considerable practical importance, my data show that notwithstanding 

the likely developmental origin of schizophrenia, studies of adult brain tissue can in 

principle allow relevant susceptibility eQTLs to be identified.
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3.1.2 Background
A high proportion of mutations for simple (Mendelian) genetic disorders exert their 

pathogenic functional effects by altering the structure of the protein encoded by the 

mutant gene. However, this does not appear to be the case for the majority of 

susceptibility alleles for common phenotypes, at least not those that are common 

enough to be identified through genome-wide association studies (GWAS) (97). This 

is compatible with the hypothesis that inherited variation that impacts upon mRNA 

expression plays an important part in susceptibility to complex traits, including many 

human diseases (98-100). Since only a small proportion of the genetic variance for 

risk to common diseases has been attributed to specific loci (101,102), this is an 

unproven hypothesis. This issue is a particular problem for schizophrenia and other 

psychiatric disorders, where only a small number of strongly supported associations 

to common alleles have been reported (29, 51, 103-105) and none of these has yet 

been functionally characterised.

3.1.3 Expression data and the validity of genetic association with disease
From the perspective of identifying risk alleles of genes, the hypothesis that 

susceptibility variants for schizophrenia will be enriched for variants that influence 

mRNA expression is not merely of academic interest. For example some authors 

(106-108) have reported associations between gene expression changes and 

particular genetic variants or haplotypes whose associations with schizophrenia are 

controversial, the idea being that association with expression lends additional 

support to the association with disease status. Others have also used this principle 

in non-psychiatric disorders to localize the likely susceptibility genes or functional 

variants within regions of association (109). Given that the effect sizes of most 

common alleles are small (29) and unlikely to be reliably separated from chance 

findings in the full genome context in the near future with available sample sizes

(103), the ability to assign an enhanced prior probability to variants associated with 

gene expression may be of additional value in identifying novel disease associations.

Although the convergent use of expression and genetic data for informing 

pathophysiological theory seems intuitively reasonable (110), the validity of this 

approach for informing genetic studies is crucially dependent on the assumption that

true associations are in fact enriched among variants that impact upon gene
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expression. Moreover, in the case of schizophrenia, attempts to relate disorder- 

associated variants to effects on gene expression are generally based upon mRNA 

studies of adult brain, adult peripheral tissues, or cell lines derived from those 

peripheral tissues. Whether such studies are justified for disorders like 

schizophrenia, whose origins are thought to be developmental, is unclear, although it 

seems plausible they may be relevant since some characteristics of schizophrenia, 

such as grey matter loss, tend to appear in adolescence (111), and it seems 

reasonable to postulate that the effects of many regulatory variants relevant to 

aetiology may persist into adulthood, even those which exert their pathogenic effects 

in development.

3.1.4 Expression quantitative trait loci (eQTLs)
Here, I sought to test the hypothesis that polymorphisms that are associated with 

gene expression in adult brain samples are enriched among those that show 

evidence for association to schizophrenia. Loci that exert an effect on gene 

expression are often called expression quantitative trait loci (eQTLs) (112). At a 

genome-wide level, putative eQTLs can be identified by combining GWAS SNP data 

with global transcriptomic data obtained from the same subjects, the aim being to 

identify eQTLs by correlating genotypes at SNP loci with gene expression levels. In 

the present study, to identify putative eQTLs, I used a dataset reported by Myers and 

colleagues (42,113), currently one of the largest expression datasets derived from 

human brain available that also contains genotype data for each sample. A few 

months prior to submission of this thesis, and genotype and expression data based 

upon human frontal cortex became available from another study, that of Gibbs et al 

(114), and this allowed me to attempt to replicate my primary observations from the 

dataset of Myers. I also used a dataset based upon human lymphoblastoid cell lines 

to examine whether eQTLs derived from non-brain tissue might have relevance to 

schizophrenia (115).

The Myers et al and Gibbs et al studies, which allow the determination of 

eQTLs by including both expression and genotype data, do not include data from 

brains of individuals who, during life, had suffered from schizophrenia (42,114).
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3.1.5 Polygenic scores
To identify sets of variants enriched for schizophrenia susceptibility alleles, I 

exploited the approach of the International Schizophrenia Consortium (29) who 

recently demonstrated the existence of thousands of risk alleles for schizophrenia. 

They also showed that these risk alleles are enriched among large sets of SNPs 

surpassing very liberal thresholds of association (e.g. P<0.5). In essence, the ISC 

defined sets of putative schizophrenia risk alleles in a training GWAS dataset as 

being those alleles that were more common in cases than controls at loci meeting 

very relaxed thresholds of significance for association. Individuals in independent 

test GWAS datasets were assigned what can be referred to as a ‘polygenic score’ 

based upon the number of putative risk alleles carried by that individual, and then 

the scores for cases and controls in those datasets were compared. The main 

finding was that in independent datasets, these ‘polygenic scores’ were significantly 

higher in cases than in controls. The ISC explored several thresholds for association 

in the training GWAS, including p<0.1, p<0.2, p<0.3, p<0.4 and p<0.5. The most 

significant distinction between diagnostic groups in the test samples occurred when 

the threshold for association in the training GWAS was set at p<0.5. Although 

increasing numbers of false positive SNPs must be included at more lax thresholds, 

it appears this was outweighed by the inclusion of more SNPs that captured 

susceptibility alleles.

The ISC also performed polygenic score analysis using both maximum and 

minimum p-value thresholds (e.g. SNPs within a range 0.2<p<0.5). Polygenic scores 

based upon these SNP sets also regressed significantly upon affected status, further 

demonstrating that SNPs at these association thresholds are informative in relation 

to schizophrenia status. Modelling studies suggested that the most plausible 

explanation for the effectiveness of lax association thresholds was that there is a 

substantial polygenic component to schizophrenia comprising of thousands of risk 

alleles and that this contributes at least 30% of the overall variance in risk of the 

disorder at the population level.

Here, I used this general approach to test whether eQTLs are enriched 

among schizophrenia associated alleles. Schizophrenia ‘risk’ alleles were defined 

according to the method reported by the ISC (29) in a subset of the ISC data and

also in the European American subset of the Molecular Genetics of Schizophrenia
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study (104). These SNPs were then classified as ‘top eQTL’ and ‘bottom eQTL’ sets 

based upon their p-value for association with expression levels of transcripts in the 

various eQTL datasets, and these sets were then tested for differences in their 

polygenic scores in cases and controls independent of the training sets.

3.1.6 eQTL p-value collation
Three methods for collating the eQTL p-values into a single measure were 

considered. The first was to take the most significant eligible eQTL p-value for each 

SNP. The second method was simply to count the number of associations to all 

eligible transcripts that a given SNP has that surpass a nominal level of significance. 

The third method was ‘cumulative minus log p\ where the negative log of all eQTL p- 

values a SNP has is added together. This method offered a balance between the 

first method, which ranks SNPs with a single strong eQTL highest, and the second, 

which gives the highest scores to SNPs with a larger number of smaller eQTLs.

The first method was chosen for further analysis as it is simple and easy to 

implement. Also, when used in cis context, which requires SNPs and transcripts to 

be within a certain distance of each other before their eQTLs are considered (see 

Section 3.2.2 below), it is the least biased by the number of transcripts close to a 

SNP. When using the second method, a SNP within range of 10 genes will have, on 

average, 5 times as great a score as one in range of 2.

3.1.7 Subgroups of genes for calculating eQTLs
To test whether SNPs that affect the expression of specific subgroups of genes can 

offer superior predictive power compared to SNPs that affect any gene in the 

expression dataset, top and bottom eQTL SNP sets were determined for a number 

of gene subgroups. These included sets of genes which are differentially expressed 

in the post mortem brains of people who had suffered schizophrenia or bipolar 

disorder, according to the Stanley Medical Research Institute Online Genomics 

database (116). The bipolar disorder genes were included on the basis that 

schizophrenia and bipolar disorder have shown considerable genetic overlap in 

several studies (55).

Gene sets based upon coexpressed clusters of genes which are also

enriched for schizophrenia-related genes were also examined. See Chapter 2 for
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more details of the methods used to find these clusters, and Chapter 4 for functional 

analysis of these clusters. A gene set consisting of genes present in the Dobrin 3093 

cluster (defined in Chapter 4, Section 4.2.1) was included; subsequently this is 

referred to as the ‘Dobrin 3093’ gene set.

3.2 Methods

3.2.1 Dataset acquisition and preparation
In the primary analysis, eQTL p values were calculated from the dataset of Myers 

and colleagues (42,113). This contains genotypes (Affymetrix GeneChip Human 

Mapping 500K Array Set) for 380157 SNPs which met their quality control criteria 

(defined below) and expression (lllumina v1 Human RefSeq-8 BeadChip) data for 

176 Alzheimer’s disease cases and 188 controls. The analysis was restricted to the 

control samples to exclude the impact of neurodegeneration on gene expression 

measures. I selected this option rather than allowing for affected status in the 

analysis as a crude categorical adjustment will not allow for a number of variables 

within the affected group that will be expected to have major effects on gene 

expression, including possible aetiological heterogeneity, duration of illness prior to 

death, and rate of disease progression.

Beginning with the rank-invariant normalised expression data (42), samples 

with over 10% missing data were removed, as were probes with over 25% missing 

data. These values were arbitrarily chosen on the basis to be somewhat more 

stringent than the original publication without removing a large proportion of the data. 

Only the probe with the lowest proportion of missing data was retained for each gene 

(arbitrarily retaining the first to appear in the dataset file in the case of a tie). This 

was to prevent the results being biased in favour of transcripts with multiple probes, 

since multiple probes provide each SNP multiple opportunities to be designated an 

eQTL. However, by adopting this procedure, I effectively ignore the impact of eQTLs 

on transcript splicing isoforms. To minimize the impact of different brain regions in 

the dataset, I included only samples from the two most common regions represented 

in the study (frontal cortex and temporal cortex). Overall, 163 samples and 8361 

probes were retained for analysis.
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As in the primary publication, the expression data were log transformed to 

minimise the effect of departures from normality in the analysis (using the statistical 

package R (117)) and the data were adjusted for a number of non-genetic covariates 

using linear regression in R. These were gender, post mortem interval, age at death, 

institute performing the chip analysis, and hybridisation date, as well as for brain 

area (frontal or temporal cortex). I additionally covaried for the expression value for 

Enolase 2 (EN02), a neuronal marker. The intention in making this correction was to 

reduce expression variance arising from differing proportions of neurons between 

the samples (118, 119).

To examine whether the results from the primary analysis replicated, I used 

the frontal cortex dataset of Gibbs to derive eQTLs (114). The expression data were 

normalised and log transformed as described in the original publication. Samples 

and transcripts where over 50% of the data were missing were removed, leaving 133 

samples and 14467 transcripts. The data were adjusted for covariates using linear 

regression in R (117) -  these were gender, age at death, post mortem interval, 

institute performing the chip analysis, hybridisation batch, and EN02 expression.

As a secondary analysis, the lymphoblastoid cell line GeneVar expression 

dataset was also used to derive eQTLs (115). This was to investigate the effect of 

using a non-brain tissue for eQTL determination. To prevent population differences 

affecting the results, this analysis was restricted to the CEU (North Americans of 

European descent) section of the GeneVar dataset. No additional quality control was 

performed; the genotype and expression datasets were used to derive eQTLs 

exactly as provided on the GeneVar website 

(http://www.sanger.ac.uk/humgen/genevar/).

For the Myers et al genotype data, the same quality control metrics as the 

original publication were used (42). All SNPs were required to have minor allele 

frequency of at least 1%, a call rate of at least 90%, and an exact Hardy-Weinberg 

equilibrium p-value > 0.05. The same quality control metrics as the original 

publication were also used for the Gibbs et al genotype data. SNPs in the Gibbs et al 

dataset were required to have at least three samples that were homozygous for the 

minor allele, a call rate of at least 95%, and an exact Hardy-Weinberg equilibrium p- 

value > 0.001.
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The International Schizophrenia Consortium (ISC) (29) and Molecular 

Genetics of Schizophrenia (MGS) (104) GWAS datasets were used for the study as 

these are currently the largest GWAS datasets available to me. In exploiting these 

datasets, I essentially followed the study design of the ISC. For the initial analysis, 

the ISC dataset was divided to create training and target subsets. The dataset was 

split by assigning alternate cases and alternate controls to the training and target 

datasets, so that each contained half of the cases and half of the controls. These 

training and target datasets derived from within the ISC sample are termed the ‘Split 

ISC datasets’. To derive a set of putative risk alleles fully independent of the ISC, I 

used the MGS European American dataset (104). P values were provided by the 

authors of that study as per the analysis reported in the primary publication.

3.2.2 eQTL determination
Linear regression of the expression values for each gene (correcting for covariates 

as described above) on SNP genotypes (coded on the number of minor alleles: 0,1 

or 2) was performed using PLINK (120, 121). This gave p-values for association 

between each SNP and the mRNA expression as measured by each probe-set. To 

test my hypothesis, I based the analysis upon cis-eQTL p-values. C/s-eQTLs are 

variants that are in chromosomal proximity to the transcripts they putatively regulate, 

and previous studies suggest cis-eQTLs have a higher prior probability for being true 

eQTLs than trans eQTLs (112), the latter being defined on the basis of association 

with transcripts with which they are not physically co-located. Moreover, trans eQTL 

analysis involves a much greater degree of multiple testing (all SNPs against all 

probesets) than cis-e QTL analysis.

These considerations suggest that sets of ‘top cis eQTLs’ will be more greatly 

enriched for true eQTLs than sets of top trans eQTLs, so restriction to cis eQTLs 

should enhance the power of the analysis, cis eQTLs were ranked by p value with 

respect to any transcript within a certain distance of the SNP locus -  the ’cis 

window’. A window of 100kb was used for the primary analysis. Exploratory windows 

of 50kb and 150kb were used for secondary analyses. The choice of distance is 

arbitrary, but 100kb was used in the primary analysis based upon a previous study 

suggesting that cis eQTLs are enriched within this boundary (122).
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If a SNP was within range of multiple transcripts, the lowest p-value for any 

transcript was taken as the eQTL p-value. SNPs within range of multiple transcripts 

have multiple chances to attain a significant cis eQTL p-value; this is a potential 

source of bias but it may also be that SNPs that are close to a large number of 

genes are more likely to tag an eQTL than those near only one gene.

Given the presumed lower probability for any trans eQTL representing a true 

association, I expected that even if the primary hypothesis was correct, SNPs 

selected on this basis of trans eQTL status would be less effective at distinguishing 

between cases and controls. In the ISC study, when polygenic scores were 

calculated separately for SNPs within genes and SNPs over 500kb away from any 

gene, the former correlated with affected status more significantly than the latter 

(29). This suggests that SNPs which are distant from genes are less enriched for 

susceptibility alleles, although that analysis did not distinguish between SNPs that 

are or are not eQTLs. As a secondary analysis, I also explored the relative ability of 

top and bottom eQTLs after ranking those loci by the most significant p-value for 

association to any transcript in the dataset, that is, SNPs were ranked on the basis 

of cis and trans effects.

3.2.3 Risk allele counts
The SNPs available in the training datasets were placed into the following categories 

according to eQTL p-value: top 5% eQTLs, top 50% eQTLs, bottom 50% eQTLs, 

and bottom 5% eQTLs. As in the ISC study, the SNPs in all sets were linkage 

disequilibrium (LD) pruned according to the estimate of r2 in the particular training 

dataset being used. A window size of 200 consecutive SNPs was compared for LD, 

which was moved along the chromosomes in steps of 5 SNPs. The maximum r2 

permitted between two compared SNPs was 0.25 -  an r2 greater than this resulted in 

the arbitrary removal of one of the SNPs.

In the randomly split ISC training datasets, as in the primary ISC paper (29), 

allelic P values and odds ratios for association were calculated by a Cochrane- 

Mantel-Haenszel test conditioned by country of origin using the QC-cleaned datasets 

provided by that group. Training on the MGS European American Sample was 

based upon the association results that formed the basis of the primary publication

(104) and did not require access to individual genotypes. SNPs that had association
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p<0.5 in training sets were carried through for polygenic score analysis. The alleles 

of these SNPs that were more common in cases were defined as risk alleles. PLINK 

(using the --score option) was then used to perform a count of the number of risk 

alleles for each sample in the target dataset, weighted by the odds ratio at each 

SNP. PLINK gives the mean risk allele score for each individual, that is, the risk 

allele score is divided by the number of SNPs for which there are data in that 

individual.

3.2.4 Controlling for minor allele frequency and population stratification
For each pruned cis-e QTL SNP list in the primary analysis, and for significant results 

from the secondary analyses, I calculated the mean and standard deviation of MAF 

for pruned SNPs in the target association datasets (full ISC dataset for MGS/ISC 

analyses, the target split ISC dataset for the split ISC analyses). These MAF values 

were then compared using t-tests. This was necessary in case the process of 

ranking the SNPs by their most significant eQTL p-value introduced systematic 

differences in allele frequency between high and low eQTL SNP sets. These 

differences in allele frequency could affect the results of the analyses, as alleles 

which affect complex traits can have different distribution of MAF to the majority of 

SNPs. For example, SNPs which affect human height tend to have a lower MAF 

than typical SNPs (37). In the polygenic score analysis performed by the ISC, a 

disproportionately large proportion of the signal was carried by alleles with relatively 

high MAF (29), and therefore if selection of SNPs by eQTL status resulted in groups 

with very different MAFs, this could in principle generate spurious results.

Although the regression analyses described below (see Section 3.2.6) include 

population of origin as a covariate, it is possible that population stratification may 

have complex effects on our data that cannot be corrected for with a linear covariate. 

Population stratification can inflate or deflate the significance of the link between 

phenotype and polygenic score, if members of a population are over-represented in 

the same phenotypic category in both the training and target datasets (29). Although 

both the top and bottom eQTL SNP lists use the same training and target datasets, it 

is possible that if a SNP list contains particularly heavily stratified SNPs it will be 

more susceptible to this effect. This could create false positive differences between 

top and bottom eQTL SNP lists.
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Hence, to examine whether the results might be influenced by population 

stratification, I obtained F s t  values for each SNP based upon the ISC sample that 

are part of a previous study (123, 124). F s t  is a measure of population stratification 

and is based upon the sequence similarity of members of a subpopulation, 

compared to their similarity with the population as a whole. In a heavily stratified 

population, members of the subpopulations will be much more similar to each other 

than to the whole population, leading to a high F s t  score. Mean F s t  scores were 

determined for each SNP list, and compared using t-tests.

SNPs with as close a F St  value as possible to each SNP in the smaller of the 

two SNP lists (top or bottom eQTL) were extracted without replacement from the 

larger SNP list to create eQTL sets matched for F s t-  A small number of SNPs could 

not be matched (arbitrarily defined as those where the closest match had a F s t  value 

over 0.0005 different) and were removed from the analysis. This definition of 

unmatchable SNPs was chosen because it created pairs of SNP lists with the same 

number of SNPs and the same mean and standard deviation of F s t ,  while only 

excluding a small proportion of the SNP lists. As above, I calculated risk allele 

scores for each F s t  matched SNP list, and compared the scores for top and bottom 

eQTL SNP lists using logistic regression.

3.2.5 Secondary analyses
Top and bottom eQTL SNP lists were also constructed based upon eQTLs 

calculated using a subset of gene transcripts (see Figure 3.1 for an overview of the 

primary and secondary analyses). These were:

• Genes differentially expressed in schizophrenia or bipolar disorder 

according to the Stanley Medical Research Institute Online Genomics 

database, at p<0.05.

• Genes from the Dobrin 3093-gene cluster, found by using the clustering 

method memlSA on the Dobrin expression dataset (see Chapters 2 and 4 

for more details of this cluster).

In each case, only SNP / transcript comparisons involving transcripts from the 

subgroup were considered. The subgroup analyses were otherwise similar to the 

primary analysis. They were performed in cis context (100kb cis window only), using

the dataset of Myers et al to define eQTLs and the MGS, ISC and split ISC datasets
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Figure 3.1 Overview of the process of eQTL production and polygenic score analysis
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for training and targeting. To reduce the multiplicity of similar analyses, comparisons 

involving the bottom 5% of eQTLs were not considered (only those based on the top 

5%, top 50% and bottom 50% eQTLs). The only exception to this was those 

analyses based upon eQTLs from the Gibbs et al dataset, as these were intended as 

a direct replication of the primary analyses, and so included the comparisons using 

the bottom 5% eQTL SNP list. Several other secondary analyses were performed to 

examine the effect of altering other parts of the method. These included:

• Analyses based upon eQTLs in cis/trans context in the dataset of Myers et 

al (i.e. based upon all possible SNP / transcript pairs -  see Section 3.2.2 

above).

• Analyses which used eQTL data derived from the GeneVar 

lymphoblastoid cell line expression dataset (see Section 3.2.1 above).

• Analyses which varied the distance at which a gene and SNP were 

considered to be in cis context with each other -  50kb and 150kb were 

tried.

Apart from the specific points of variation mentioned in the list above, these analyses 

were similar to the primary analysis, although the bottom 5% eQTL comparison was 

again omitted.

3.2.6 Logistic regression
For each individual in the target datasets, I calculated the difference between the risk 

allele score derived from the top eQTLs (5% or 50%) and that derived from the 

bottom eQTLs (5% or 50%), the null hypothesis being that these differences should 

be equal in cases and controls. I performed logistic regression of case/control status 

on risk allele score difference and also ISC sample country of origin to evaluate the 

significance of this difference. I used the Im function in R for this, which performs a 

variety of linear modelling tasks including regression.

The mean risk allele score was calculated separately across all cases and 

across all controls, for both top and bottom eQTL SNP lists. The mean risk allele 

score for controls was subtracted from the mean risk allele score for cases; this is 

subsequently referred to as risk allele score case/control difference. As a measure of 

effect size in each comparison between top and bottom eQTL SNP lists, the risk

allele score case/control difference for the bottom eQTL SNP list was subtracted
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from the risk allele score case/control difference for the top eQTL SNP list. This is 

subsequently referred to as the difference in risk allele score disparity -  a positive 

value indicates that the top eQTL SNP list predicts schizophrenia affected status 

better than the bottom eQTL SNP list, while a negative value indicates the reverse.

Logistic regression of disease status on risk allele score was also calculated 

to determine how significantly each individual SNP list predicted disease status. For 

each SNP list, I also calculated the Nagelkerke pseudo-R2 (125), which is a measure 

of how well the risk allele score predicts schizophrenia disease state, by subtracting 

the R2 of the regression without the risk allele score term included from the R2 of the 

regression with the risk allele score term included.

3.3 Results
3.3.1 Primary analysis -  cis eQTLs derived from the Myers et al brain 

expression dataset
When I defined risk alleles using half of the ISC sample as the training set (Table 

3.1, rows 1-3), the difference in the risk allele scores between the top and bottom 

cis-eQTLs was greater in the cases than in the controls for all tested pairs (reflected 

in positive values in the ‘difference in risk allele score disparity’ column). Moreover, 

for all tests, this difference was significant (reflected in the columns labelled 

‘regression p-value’). This is consistent with the hypothesis that schizophrenia 

susceptibility alleles are enriched among cis-e QTLs. Qualitatively similar findings 

were observed when the risk alleles were defined from the MGS European dataset 

(which is entirely independent of the ISC dataset) in that the differences in the 

scores between the top and bottom c/s-eQTLs were greater in the cases than in the 

controls (Table 3.1, rows 4-6). Although the comparisons are not independent (top 

5% versus bottom 50% clearly overlaps with top 50% v bottom 50%), two cis tests 

are significant if the Bonferroni correction for three independent replication tests is 

used.

For all but one SNP list, the regression of schizophrenia affected status upon 

risk allele score was significant (Table 3.2, ‘regression p-value’ column)). This shows 

that the significant results in Table 3.1 are not due to the bottom eQTL SNP lists

failing to significantly predict schizophrenia affected status, rather that the top eQTLs
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perform better. However, the bottom 5% eQTL analyses are less significant. Their 

SNP counts are 20 to 25% of the size of the bottom 50% eQTL analyses, but their 

significance is several orders of magnitude less (Table 3.2, rows 4 and 8, columns 

‘SNP count’ and ‘Regression p-value’). The Nagelkerke pseudo-R2 values of the 

bottom 5% SNP lists, which indicate the percentage of variation in disease state 

explained by the polygenic score value, are also low. In both the MGS/ISC and split 

ISC results, the bottom 5% eQTL SNP list is considerably bigger than the top 5% 

eQTL list, but has a much smaller Nagelkerke pseudo-R2 (Table 3.2, rows 2, 4, 6 

and 8, columns ‘SNP count’ and ‘Nagelkerke pseudo-R2’).

Table 3.1. Difference in risk allele score case-control disparity between top and
bottom cis Myers et al brain eQTL SNP lists (100kb cis window)

Row
Expression
dataset

Gene
subgroup

Trained
in

Targeted
in

Top
eQTL
(%)

Bottom 
eQTL (%)

Regression
p-value

Difference 
in risk 
allele score 
disparity

1 Myers et al All genes Split ISC Split ISC 50 50 0.014 2.56E-05
2 Myers et al All genes Split ISC Split ISC 5 50 0.014 8.15E-05
3 Myers et al All genes Split ISC Split ISC 5 5 0.012 9.63E-05
4 Myers et al All genes MGS ISC 50 50 0.298 1.63E-05
5 Myers et al All genes MGS ISC 5 50 0.002 9.27E-05
6 Myers et al All genes MGS ISC 5 5 0.003 8.57E-05

Table 3.2. Regression of affected status on risk allele score, primary analyses
(cis context, 100kb cis window)

Row
Expression
dataset

Training
dataset

Target
dataset

T o p /
bottom
eQTL
percentage

Nagelkerke
pseudo-R2

Regression
p-value

Case
risk
allele
score

Control 
risk allele 
score

Case/ 
control 
risk allele 
score 
difference

SNP
count

1 Myers et al Split ISC Split ISC Top 50% 1.59 1.43E-14 0.04748 0.04743 5.36E-05 10805
2 Myers et al Split ISC Split ISC Top 5% 0.47 2.09E-05 0.04646 0.04635 1.10E-04 1285
3 Myers et al Split ISC Split ISC Bottom 50% 0.63 9.22E-07 0.04849 0.04846 2.86E-05 10967
4 Myers et al Split ISC Split ISC Bottom 5% 0.04 1.12E-01 0.04579 0.04578 1.38E-05 2033
5 Myers et al MGS ISC Top 50% 0.50 8.78E-10 0.04709 0.04706 3.08E-05 3903
6 Myers et al MGS ISC Top 5% 0.30 1.47E-06 0.04565 0.04554 1.07E-04 435
7 Myers et al MGS ISC Bottom 50% 0.30 1.63E-06 0.04709 0.04707 1.45E-05 4037
8 Myers et al MGS ISC Bottom 5% 0.11 2.70E-03 0.04469 0.04467 2.15E-05 1154
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3.3.2 Replication analysis -  cis eQTLs derived from Gibbs et al brain dataset
In the dataset of Gibbs et al, there were no significant differences between top and 

bottom eQTL SNP lists (Table 3.3, rows 1-3, column ‘Regression p-value’) in the 

split ISC analyses, although for all comparisons, the top eQTL SNP list produced a 

higher risk allele score case/control difference than the bottom eQTL SNP list (Table

3.3, rows 1-3, column ‘Difference in risk allele score disparity’). However, for the 

MGS/ISC analysis, the top eQTL SNPs were highly significantly better predictors of 

affected status than the bottom SNP lists (Table 3.3, rows 4-6, columns ‘Regression 

p-value’ and ‘Difference in risk allele score disparity’). These would remain highly 

significant even after Bonferroni correction for three tests in two test samples.

Table 3.3. Difference in risk allele score case-control disparity between top and
bottom cis Gibbs eta/eQTL SNP lists (100kb cis window)

Row
Expression
dataset

Gene
subgroup

Trained
in

Targeted
in

Top
eQTL
(%)

Bottom
eQTL
{%)

Regression
p-value

Difference in 
risk allele 
score 
disparity

1 Gibbs et al All genes Split ISC Split ISC 50 50 3.99E-01 7.82E-06
2 Gibbs etal All genes Split ISC Split ISC 5 50 1.70E-01 3.10E-05
3 Gibbs et al All genes Split ISC Split ISC 5 5 4.40E-01 2.16E-05
4 Gibbs et al All genes MGS ISC 50 50 1.76E-04 2.71E-05
5 Gibbs et al All genes MGS ISC 5 50 5.02E-05 6.71E-05
6 Gibbs et al All genes MGS ISC 5 5 9.51E-04 6.68E-05

3.3.3 Secondary analysis -  cis/trans Myers et al brain eQTLs
There were no consistent patterns or significant differences in the risk allele score 

case/control disparity between the top and bottom cis/trans eQTL SNP list (Table

3.4, rows 1-6).

Table 3.4. Difference in risk allele score case-control disparity between top and
bottom cis/trans Myers et al brain eQTL SNP lists

Row
Expression
dataset

Gene
subgroup Context

Trained
in

Targeted
in

Top
eQTL
(%)

Bottom
eQTL
(%)

Regression
p-value

Difference in 
risk allele score 
disparity

1 Myers et al All genes cis/trans Split ISC Split ISC 50 50 0.252 -7.33E-06
2 Myers et al All genes cis/trans Split ISC Split ISC 5 50 0.518 8.91E-06
3 Myers et al All genes cis/trans Split ISC Split ISC 5 5 0.687 1.54E-05
4 Myers et al All genes cis/trans MGS ISC 50 50 0.715 -2.72E-06
5 Myers et al All genes cis/trans MGS ISC 5 50 0.747 -2.02E-06
6 Myers et al All genes cis/trans MGS ISC 5 5 0.323 -5.59E-06
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3.3.4 Secondary analysis -  cis lymphoblast cell line eQTLs
No cis eQTL analysis based on SNPs derived from the GeneVar lymphoblastoid cell 

line expression dataset was significant (Table 3.5, rows 1-4).

Table 3.5. Difference in risk allele score case-control disparity between top and 

bottom cis lymphoblastoid cell line eQTL SNP lists

Row
Expression
dataset Gene subgroup

Trained
in

Targeted
in

Top eQTL 
(%)

Bottom eQTL
(%)

Regression
p-value

Difference 
in risk 
allele score 
disparity

1 GeneVar All genes Split ISC Split ISC 50 50 0.535 -2.55E-06
2 GeneVar All genes Split ISC Split ISC 5 50 0.735 1.05E-05
3 GeneVar All genes MGS ISC 50 50 0.868 -1.96E-06
4 GeneVar All genes MGS ISC 5 50 0.940 3.11E-07
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3.3.5 Secondary analysis -  cis brain eQTLs based upon genes differentially 

expressed in schizophrenia or bipolar disorder
There were no significant results in the analyses using genes differentially expressed 

in schizophrenia (Table 3.6, rows 1-4, ‘regression p-value’ column) or bipolar 

disorder (Table 3.6, rows 5-8). One possible reason for this is the small size of some 

of the SNP lists. For example, the top 5% eQTL SNP list for genes differentially 

expressed in schizophrenia contains only 46 SNPs (see row 2 of Table S6 in 

Appendix B, column ‘SNP count’).

Table 3.6. Difference in risk allele score case-control disparity between cis

brain eQTL SNP lists based on genes differentially expressed in schizophrenia 

or bipolar disorder

Row
Expression
dataset

Gene
subgroup Context

Trained
in

Targeted
in

Top eQTL 
(%)

Bottom 
eQTL (%)

Regression
p-value

Difference 
in risk 
allele 
score 
disparity

1 Myers et al

Schizophrenia
differential
expression cis Split ISC Split ISC 50 50 0.141 8.72E-05

2 Myers et al

Schizophrenia
differential
expression cis Split ISC Split ISC 5 50 0.653 0.000105

3 Myers et al

Schizophrenia
differential
expression cis MGS ISC 50 50 0.532 -1.03E-05

4 Myers et al

Schizophrenia
differential
expression cis MGS ISC 5 50 0.569 2.85E-06

5 Myers et al

Bipolar
disorder
differential
expression cis Split ISC Split ISC 50 50 0.891 -1.44E-05

6 Myers et al

Bipolar
disorder
differential
expression cis Split ISC Split ISC 5 50 0.256 0.000121

7 Myers et al

Bipolar
disorder
differential
expression cis MGS ISC 50 50 0.693 1.63E-05

8 Myers et al

Bipolar
disorder
differential
expression cis MGS ISC 5 50 0.152 -4.86E-05
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3.3.6 Secondary analyses based upon alternate cis windows
Using varying cis ranges had little effect when the split ISC dataset was used for 

training and targeting -  the results for a range of 50kb and 150kb were very similar 

to the results for 100kb from the primary analysis (Table 3.7, rows 1-6). However, in 

the analysis trained in the MGS and targeted in the ISC, the 50kb and 150kb results 

no longer had a nominally significant positive difference in risk allele score disparity 

(Table 3.7, rows 9-12).

Table 3.7. Difference in risk allele score case-control disparity between top and 

bottom eQTL SNP lists, secondary analyses with eQTLs based upon all genes
(c/s results with variant cis windows, 100kb results included for comparison)

Row
Expression
dataset

Gene
subgroup

Trainin
g
dataset

Target
dataset

cis
windo
w

Top
eQTL
(%)

Bottom
eQTL
(%)

Regressio 
n p-value

Difference in 
risk allele 
score disparity

1 Myers et al All genes Split ISC Split ISC lOOkb 50 50 0.014 2.56E-05
2 Myers et al All genes Split ISC Split ISC lOOkb 5 50 0.014 8.15E-05
3 Myers et al All genes Split ISC Split ISC 150kb 50 50 0.0171 2.67E-05
4 Myers et al All genes Split ISC Split ISC 150kb 5 50 0.0131 7.23E-05
5 Myers et al All genes Split ISC Split ISC 50kb 50 50 0.0556 1.85E-05
6 Myers et al All genes Split ISC Split ISC 50kb 5 50 0.0140 7.63E-05
7 Myers et al All genes MGS ISC lOOkb 50 50 0.298 1.63E-05
8 Myers et al All genes MGS ISC lOOkb 5 50 0.002 9.27E-05
9 Myers et al All genes MGS ISC 150kb 50 50 0.117 -1.44E-05
10 Myers et al All genes MGS ISC 150kb 5 50 0.202 -1.15E-05
11 Myers et al All genes MGS ISC 50kb 50 50 0.562 1.23E-05
12 Myers et al All genes MGS ISC 50kb 5 50 0.836 -2.04E-05
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3.3.7 Secondary analyses using eQTLs based upon expression cluster genes 

(cis context)
In the analyses based upon eQTLs from genes in the Dobrin 3093 coexpression 

cluster, there was one nominally significant result. This was not in the direction 

predicted by the hypothesis, since the bottom eQTL SNP list outperformed the top 

eQTL SNP when the top 5% and bottom 50% lists were compared (p=0.02, Table 

3.8, row 4). However, in the split ISC dataset, no such effect was observed, with the 

(non-significant) trend being for top eQTLs to outperform bottom.

Table 3.8. Difference in risk allele score case-control disparity between top and 

bottom eQTL SNP lists, secondary analyses with eQTLs based upon
expression cluster genes (cis context with a cis window of 100kb)

Row
Expression
dataset Gene subgroup

Training
dataset

Target
dataset

Top 
eQTL 
SNP list 
(%)

Bottom 
eQTL SNP 
list (%)

Regression
p-value

Difference 
in risk allele 
score 
disparity

1 Myers et al Dobrin 3093 cluster Split ISC Split ISC 50 50 0.567 1.83E-05
2 Myers et al Dobrin 3093 cluster Split ISC Split ISC 5 50 0.869 3.52E-05
3 Myers et al Dobrin 3093 cluster MGS ISC 50 50 0.989 3.92E-06
4 Myers et al Dobrin 3093 cluster MGS ISC 5 50 0.027 -6.70E-05
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3.3.8 Minor allele frequency and population stratification, primary analysis
In the primary analyses, of the 5 tests in which the top cis-e QTLs were significantly 

better at discriminating case-control status, the mean MAF was slightly but 

significantly higher in 2 of the top cis-e QTLs (Table 3.9, rows 2 and 5, column ‘T-test 

significance of MAF difference’), whereas for the other three tests, any trends were 

for a lower MAF in the top cis-e QTLs set (Table 3.9, rows 1,2 and 6). (This suggests 

that the findings are unlikely to be due to differences in MAF between the sets.

In each analysis, the top cis-eQTL set had significantly higher mean F s t  than 

the bottom eQTL SNP lists (Table 3.9, column T-test significance of Fst difference’), 

indicating that my analysis might be confounded by enhanced stratification in the top 

cis-e QTL set. Also, the most significant Fst difference occurred in the MGS/ISC top 

50% versus bottom 50% result (Table 3.9, row 4). In that analysis, there was no 

significant difference in risk allele score case/control disparity between top and 

bottom eQTL SNP lists, suggesting Fst difference alone of the magnitudes being 

observed, sufficient to cause a significant result. This is as expected since in order 

for this bias to affect my analysis, the MGS sample and the ISC samples would have 

to be ascertained in such a manner that the same alleles (not just the same loci) are 

similarly biased towards overrepresentation in cases in each dataset.

Table 3.9. Regression of affected status on difference in risk allele score case 

control disparity between top and bottom eQTL SNP lists, plus t-tests of 
difference in MAF and F s t  -  primary analysis SNP lists not matched for F St

Row
Trained
in

Targeted
in

Top
eQTL
(%)

Bottom
eQTL
(%)

Difference 
in risk 
allele score 
case- 
control 
disparity

Reg. p- 
value

Mean
top
eQTL
MAF

Mean
bottom
eQTL
MAF

T-test sig. 
of MAF 
diff.

Mean
top
eQTL
Fst

Mean 
bottom 
eQTL Fst

T-test sig. 
of Fst diff.

1 Split ISC Split ISC 50 50 2.56E-05 0.014 0.227 0.228 0.948 0.0027 0.0026 0.006

2 Split ISC Split ISC 5 50 8.15E-05 0.014 0.241 0.228 0.001 0.0028 0.0026 0.019

3 Split ISC Split ISC 5 5 9.63E-05 0.012 0.241 0.246 0.268 0.0028 0.0026 0.020

4 MGS ISC 50 50 1.63E-05 0.298 0.227 0.228 0.594 0.0027 0.0026 0.006

5 MGS ISC 5 50 9.27E-05 0.002 0.238 0.228 0.047 0.0028 0.0026 0.019

6 MGS ISC 5 5 8.57E-05 0.003 0.238 0.249 0.054 0.0028 0.0026 0.020
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Although I do not consider Fst difference a likely explanation (29) for the 

observations of better performance of top eQTLs in the primary analysis, to evaluate 

this further, all primary analyses were repeated using F s t  matched SNP sets. After 

matching, there were no significant differences in mean F s t  between pairs of 

comparator groups (Table 3.10, column T-test significance of Fst difference’). 

Nevertheless, for two of the three analyses in the split ISC datasets, the top cis- 

eQTLs significantly discriminated better between cases and controls than the bottom 

cis-e QTLs (Table 3.10, rows 2-3), and I obtained significant replication for both 

findings when the MGS sample was used as the training set (Table 3.10, rows 5-6). 

Moreover, for two of the F s t  matched analyses that were significant, the top cis- 

eQTL sets had lower MAF than the bottom set (Table 3.10, rows 3 and 6), and for 

two of the results, the top group had higher MAF (Table 3.10, rows 2 and 5). I 

therefore conclude that the primary analysis findings are not driven by systematic 

biases in these variables.

Table 3.10. Regression of affected status on difference in risk allele score 

case-control disparity between top and bottom eQTL SNP lists, plus t-tests of 
difference in MAF and F s t  -  primary analysis SNP lists matched for F s t

Row
Trained
in

Targeted
in

Top
eQTL
(%)

Bottom
eQTL
(%)

Difference in 
risk allele 
score case- 
control 
disparity

Reg. p- 
value

Mean
top
eQTL
MAF

Mean
bottom
eQTL
MAF

T-test 
sig. of 
MAF diff.

Mean
top
eQTL
Fst

Mean
bottom
eQTL
Fst

T-test 
sig. of Fst 
diff.

1 Split ISC Split ISC 50 50 2.33E-05 0.076 0.227 0.227 0.999 0.0026 0.0026 0.565

2 Split ISC Split ISC 5 50 1.18E-04 0.006 0.241 0.227 0.007 0.0028 0.0028 0.809

3 Split ISC Split ISC 5 5 1.55E-04 0.005 0.242 0.244 0.603 0.0026 0.0026 0.573

4 MGS ISC 50 50 5.18E-06 0.544 0.227 0.227 0.999 0.0027 0.0027 0.814

5 MGS ISC 5 50 5.61E-05 0.022 0.241 0.227 0.007 0.0027 0.0027 0.968

6 MGS ISC 5 5 5.06E-05 0.019 0.242 0.244 0.626 0.0027 0.0027 0.833
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3.3.9 Minor allele frequency and population stratification, secondary analysis
I also examined the mean F s t  and MAF for the significant run based upon the Dobrin 

3093 gene subgroup (Table 3.8, row 4). Both MAF and Fst were significantly 

different between top and bottom eQTL SNP lists (Table 3.11, row 1). A SNP list 

matched for Fst was constructed, which no longer had a significant regression p- 

value (Table 3.11, row 2, ‘Regression p-value’ column). However, the magnitude of 

the difference in risk allele score case/control disparity is similar to the non-matched 

result, suggesting this lack of significance may simply be due to the removal of SNPs 

in the matching process rather than indicative that MAF and/or F s t  were responsible 

for the nominally significant observed effect.

Table 3.11. Regression of affected status on difference in risk allele score 

case-control disparity between top and bottom eQTL SNP lists, plus t-tests of 
difference in MAF and Fst -  secondary analysis SNP lists based upon Dobrin 

3093 coexpression cluster genes

Row
Trained
in

Targeted
in

Matched
on

Top
eQTL
(%)

Bottom
eQTL
(%)

Difference 
in risk aliele 
score case- 
control 
disparity

Reg. p- 
value

Mean
top
eQTL
MAF

Mean
bottom
eQTL
MAF

T-test sig. 
of MAF 
diff.

Mean
top
eQTL Fst

Mean
bottom
eQTL
Fst

T-test 
sig. of 
Fjt diff.

1 MGS ISC
Not
matched 5 50 -6.70E-05 0.027 0.235 0.220 9.0E-03 0.0025 0.0027 0.033

2 MGS ISC Fst 5 50 -6.99E-05 0.167 0.235 0.205 8.63E-05 0.0025 0.0026 0.515

3.4 Discussion

3.4.1 Relevance of genetic regulation of expression to schizophrenia aetiology
To date, only a small proportion of genetic susceptibility to schizophrenia, or indeed 

any psychiatric disorder, has been explained by robustly associated DNA variants. 

Moreover, in no case has the functional effect of a DNA variant responsible for a 

robust schizophrenia association been determined. It follows that the basic 

mechanisms by which genetic variation contribute to this disorder are unknown. One 

leading hypothesis is that a substantial amount of genetic risk is conferred by
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common alleles that influence gene expression, that is, common eQTLs. However, 

while the existence of many common schizophrenia risk alleles has been 

demonstrated (29), there is no evidence to support the hypothesis that any of these 

influence gene expression. In the light of a recent rekindling of interest in the 

hypothesis that genetic risk for the disorder is likely to be attributable to rare variants 

of major effect, which by analogy with Mendelian disorders are likely to be 

dominated by mutations that change the protein coding sequences of genes, the 

demonstration or refutation of a contribution from eQTLs is of practical importance 

for several reasons.

The search for functional variants underpinning disease associations 

observed in GWAS studies in general is proving to be far from a trivial endeavour. 

Although it is relatively simple to scan the exonic sequences of individual genes for 

common (and even fairly rare) non-synonymous variants, the process of scanning 

the full genomic context of a gene for potential cis-e QTLs, and then demonstrating 

that those variants impact on expression in a disease relevant manner remains 

difficult. Comprehensive variant discovery is increasingly being facilitated by high 

capacity sequencing technology, but the demonstration of relevant functionality is 

not. In order to justify those endeavours, it is therefore important to demonstrate that 

effects on gene expression are in fact relevant mechanisms underpinning the 

influence of common susceptibility variants. As discussed above, the use of gene 

expression data to support less than fully convincing genetic associations, or in other 

words, to assign higher prior probability to particular variants, requires evidence that 

cis-e QTLs do in fact have a higher probability of being truly associated with disease 

than random sets of alleles.

Even if risk variants are enriched for common cis-e QTLs, it cannot be taken 

for granted that control adult brain tissues, far less other sources of mRNA, are 

suitable substrates for generating eQTLs for disorders like schizophrenia whose 

presumed origins are developmental (49).

3.4.2 cis eQTL SNPs predict disease state better than non-eQTL SNPs
To undertake the first large scale test of the involvement of eQTLs in schizophrenia,

I exploited a recent finding of the ISC that sets of marginally associated alleles

derived from large GWAS datasets contain large numbers of true schizophrenia-
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associated alleles. Using two independent GWAS datasets I demonstrated that 

among the variants selected for marginal association to schizophrenia, those that 

additionally show evidence for being cis-e QTLs predict affection status better than 

those variants showing no evidence for being cis-e QTLs. In other words, I show for 

the first time that schizophrenia risk alleles are indeed enriched for eQTLs. As 

expected from the ISC study, no set of SNPs explained more than a small fraction of 

the variance in disease risk (Table 3.2, column ‘Nagelkerke pseudo-R2’), although 

more comprehensive genome coverage may explain a much higher proportion of 

this variance (29).

This finding was further reinforced by the results based upon the dataset of 

Gibbs et a/. Although the results trained and targeted in the split ISC dataset did not 

reach significance, they did show a trend toward the top eQTL SNP lists predicting 

affected status better than the bottom eQTL SNP lists. However, in the analyses 

trained in the MGS and targeted in the ISC dataset, the top eQTL SNP lists 

predicted disease state better than the bottom eQTL SNP lists. This finding was 

highly significant, would survive correction for multiple testing of the primary 

hypothesis, and therefore provides a replication of my results using the Myers et al 

eQTLs.

In contrast to the findings with cis-e QTLs, SNPs, classified on the basis of 

potential trans effects were not superior at predicting schizophrenia disease status. 

This may be because the much greater multiple testing burden inherent to trans 

eQTL analysis means a smaller proportion of the top rated trans-eQTLs are true 

positives. The weaker performance of cis/trans eQTLs may also reflect a lesser 

importance of trans eQTLs (112). The work presented here does not distinguish 

between these possibilities.

While top sets of cis-e QTLs perform better than bottom sets, it is evident 

(Table 3.2, column ‘Regression p-value’) that even the latter significantly, often 

highly significantly, predict affected status. This might be because a substantial part 

of the true association signal is not related to variants that alter gene expression. 

Alternatively, though a priori, I do not consider it particularly likely it may be that 

virtually all true common associations derive from eQTLs, but that many of these are 

incorrectly classified as such in this study. The samples from which I derived eQTL

status are relatively small in GWAS terms, and therefore have limited power to
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identify weak eQTLs. Moreover, the already limited power will be further constrained 

by variance introduced by the many well known confounders that plague the use of 

post mortem expression datasets, such as post mortem interval, brain pH and 

agonal factors (126). Both factors are likely to result in eQTL classification errors.

Potentially pointing to an important impact of eQTL misclassification, 

comparisons of the most extreme cis-e QTL categories (top and bottom 5% sets) 

revealed considerable differences in the ability of those groups to discriminate case 

and control status in the primary analysis (Tables 3.1 and 3.2). Thus, the risk allele 

score differences between cases and controls were about 10 times greater for the 

top 5% of cis-e QTLs (Table 3.2, rows 2 and 6), and were 3-4 orders of magnitude 

more significant, than for the bottom 5% of cis-e QTLs (Table 3.2, rows 4 and 8). The 

former also had better predictive power as indicated by a larger Nagelkerke R2, 

despite greater numbers of SNPs in the bottom 5% group. Indeed the bottom 5% of 

cis-e QTLs were either not significant predictors at all (trained in the split ISC dataset, 

Table 3.2, row 4) or the statistical significance of prediction was relatively modest 

(trained in the MGS dataset, Table 3.2, row 8). Assuming the extreme top and 

bottom cis-e QTL groups contain SNPs that are least likely to be misclassified, I 

postulate that the proportion of the polygenic signal captured by eQTLs might be 

greatly enhanced by more precise delineation of eQTL status.

3.4.3 Secondary analyses
In contrast to the primary analyses, the majority of the secondary analyses did not 

show any significant results. The analyses based upon Myers et al cis/trans eQTLs 

(Table 3.4), the analyses using GeneVar cis/trans eQTLs (Table 3.5) and the 

analyses based upon Myers et al eQTLs derived from transcripts with evidence for 

differential expression in bipolar disorder or schizophrenia (Table 3.6) all showed no 

significant differences between top and bottom eQTL SNP lists. The analyses using 

eQTLs based upon transcripts present in the Dobrin 3093 expression cluster showed 

one significant result, where the bottom 50% eQTL SNP list had a higher risk allele 

score case/control difference than the top 5% eQTL SNP list when the MGS and ISC 

datasets were used for training and targeting (Table 3.8, row 4). However, this result
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did not replicate when the split ISC dataset was used for training and targeting 

(Table 3.8, row 2).

The results based upon Myers cis eQTLs using cis windows of 50kb and 

150kb agreed with the primary analysis when the split ISC dataset was used for 

training and targeting, finding the top eQTL SNP lists produced significantly higher 

risk allele score case/control differences than the bottom eQTL SNP lists (Table 3.7, 

rows 3 to 6). However, in the MGS/ISC analyses, the 50kb and 150kb results are all 

non-significant, and the bottom eQTL SNP lists produced higher risk allele score 

case/control differences than the top eQTL SNP lists (Table 3.7, rows 9 to 12).

This is a surprising shift, considering that the MGS/ISC top 5% versus bottom 

50% result in the primary analysis showed a significantly higher risk allele score 

case/control difference for the top 5% eQTL SNP list, and that changing the cis 

window is a relatively minor change to the method. The shift also occurs regardless 

of whether the cis window is decreased (50kb) or increased (150kb) relative to the 

primary analysis. Part of the explanation may be the nature of the pruning step, 

which when given a pair of SNPs in high linkage disequilibrium arbitrarily selects one 

to be excluded. This means that a small difference between SNP lists before pruning 

can be amplified into a larger difference in SNP complement after pruning.

Another reason for the shift could be the relatively small effect sizes of the 

analyses in general, compared to the values of the risk allele scores. The former are 

less than, or close to, le -4 (Tables 3.1 and 3.3-3.8, column ‘Difference in risk allele 

score disparity’), while the risk allele scores for cases or controls are typically in the 

range 0.04 to 0.05 (Table 3.2, columns ‘Case risk allele score’ and ‘Control risk allele 

score’). This means that a relatively small percentage change in any one of four 

values (top eQTL case risk allele score, top eQTL control risk allele score, bottom 

eQTL case risk allele score, bottom eQTL control risk allele score) can produce a 

large percentage change in the difference in risk allele score disparity.

3.4.4 Secondary analyses -  GeneVar expression dataset
The results based upon putative eQTLs from the GeneVar lymphocyte dataset

showed no significant differences between top and bottom eQTL SNP lists (Table
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3.5, rows 1-4). Furthermore, there was no trend toward either top or bottom eQTL 

SNP lists having higher risk allele score case/control differences -  2 of the results 

favoured the top eQTL SNP list (Table 3.5, rows 2 and 4), 2 favoured the bottom 

eQTL SNP list (Table 3.5, rows 1 and 3). Thus, my analysis provides no support for 

the use of eQTLs derived from lymphoblastoid cell lines in molecular genetic studies 

of schizophrenia. This loosely agrees with the findings of Rollins et al, who found 

that only 22.9% of transcripts are expressed at the same level in cerebellar cortex 

and peripheral blood mononuclear cells (127).

However, there are several important caveats. The GeneVar dataset only 

contains expression data for 55 samples of European origin, so it will have less 

power to calculate eQTLs and sort SNPs into top and bottom categories than the 

datasets of Myers et al (163 samples) or Gibbs et al (133 samples). Also, additional 

quality control or analysis could improve the relevance of the GeneVar dataset to 

brain function and schizophrenia aetiology. For example, setting a minimum mean 

expression level for transcripts could exclude those transcripts that are not 

expressed in lymphoblastoid cell lines. Also, restricting the transcripts to those 

known to correlate well between blood and brain may be a useful step.

3.4.5 Comparisons with other studies
Schadt et al used eQTL data from human liver to provide evidence to prioritise 

candidate type I diabetes and coronary artery disease susceptibility genes found 

through GWAS studies (122). Unlike the study here, they did not use a method 

which combines information from multiple SNPs into a single score. They found that 

eQTL and expression evidence suggested that RPS26, not ERBB3 as previously 

thought, was responsible for a novel type I diabetes association signal on 

chromosome 12q3. They demonstrated that RPS26 expression was significantly 

associated with the SNPs most strongly associated with affected status, and that 

RPS26 had higher expression than ERBB3 in pancreas. Using network methods, 

they also showed that SNPs near RPS26 affected the expression of another gene 

associated with diabetes, H2-Eb1. In coronary artery disease, similar methods 

showed that SORT 1 and CELSR2 were responsible for an association signal on 

chromosome 1q13. Although their study was focused on individual genes and

association signals, rather than aggregating the effects of multiple SNPs as I do
76



here, that study suggests that expression data can be relevant to complex traits and 

useful in explaining association data.

Nicolae et al (128) examined the hypothesis that eQTL SNPs might be more 

likely to be associated with disease traits compared with sets of randomly drawn 

SNPs with the same distribution of minor allele frequency. The phenotypes they 

investigated were Crohn’s disease, rheumatoid arthritis, type 1 and 2 diabetes, 

hypertension, coronary artery disease and bipolar disorder. They used genotype and 

lymphoblastoid cell line expression data from the CEU (European descent) and YRI 

(Yoruban descent) populations of the GeneVar study (115, 129) to define eQTLs, 

and the Wellcome Trust Case-Control Consortium genotype data to determine 

whether eQTL SNPs are enriched for SNPs associated with disease traits. They 

found enrichment of eQTL SNPs for SNPs associated with Crohn’s disease, type 1 

diabetes and rheumatoid arthritis, but not the other disorders (type 2 diabetes, 

hypertension, coronary artery disease and bipolar disorder). One reason why their 

analysis revealing enrichment of eQTL SNPs for SNPs associated with autoimmune 

system related disorders might relate to the use of lymphoblastoid cell lines to define 

eQTL status as that cell line is more likely to be relevant to diseases where immune 

system behaviour plays a major role. As noted above, one study reported only a 

modest degree of convergence between expression in cerebellar cortex and 

peripheral blood mononuclear cells (127), suggesting as many might predict that 

such peripheral tissues may not be well suited for producing expression data with 

relevance to conditions which affect the brain. This is borne out by my study, where 

using the GeneVar and HapMap data to define eQTLs did not help to predict 

schizophrenia affected status through polygenic score analysis (Table 3.5, rows 1-4, 

see Section 3.4.4 above), although other explanations for the poor performance of 

that dataset are discussed above.

The converse analysis, examining whether disease-associated SNPs are 

likely to be enriched for eQTL SNPs, was also performed. Nicolae et al found that 

SNPs most associated with affected status in bipolar disorder were enriched for 

eQTLs. This was also true of SNPs associated with Crohn’s disease, hypertension, 

rheumatoid arthritis and type I diabetes.

However, no p-value was reported for these findings, and it was based upon

only the top 10,000 most associated SNPs for each disorder. The study also
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examined 34 other groups of 10,000 SNPs each (ordered on strength of 

association), but did not account for the multiple testing burden this places upon their 

findings. In most cases, these 34 groups were not more significantly enriched for 

eQTLs than would be expected by chance.

The difference between this analysis and the analysis examining whether 

eQTL SNPs were enriched for disorder associated SNPs may be the use of 

alternative eQTL score thresholds. In this analysis, the associated SNPs were 

examined for enrichment with any SNPs with an eQTL score that exceeded a 

threshold of 3, while in the previous analysis only the 10,000 SNPs with the highest 

eQTL scores were used.

Nonetheless, the finding that SNPs highly significantly associated with bipolar 

disorder are enriched for lymphoblastoid cell line eQTL SNPs is potentially relevant 

to the study of psychiatric disease if it can be further verified, as it suggests that 

even expression data from non-brain tissues can have some relevance to psychiatric 

research.

3.4.6 Future work
The work presented in this chapter could be continued in a number of directions. 

Better eQTL classification could, in principle, be relatively simply achieved by 1) 

using larger human brain expression and SNP datasets 2) increasing the 

transcriptome coverage; the primary analysis here only incorporates 8361 probes 

representing only 25-30% of the protein encoding genes in the human genome (130)

3) using expression datasets derived from different brain regions and from different 

stages of human development.

More work could be done to accurately account for the multiple testing burden 

the large number of secondary analyses places upon significant results using eQTLs 

based on the Myers et al dataset. The results are heavily interdependent -  top 5% 

eQTL SNP lists necessarily overlap with top 50% eQTL SNP lists, and many of the 

gene subgroups overlap with one another (especially the schizophrenia and bipolar 

disorder differential expression SNP lists). As a result, it will probably be necessary 

to use a permutation-based method to assess significance. One possibility would be
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a permutation analysis based upon random partitions of SNPs in place of partitions 

based upon eQTL status.

Another issue worth considering is the possibility that some SNPs attained 

erroneously significant eQTLs because they lay within a sequence to which the 

expression probe binds. Changes in the genetic code in such a location will affect 

probe binding and so appear to alter expression levels. However, misclassifying 

eQTLs due to this will only add noise to the analysis, reducing power rather than 

increasing the risk of a false positive.

Lastly, the power of the analysis could be increased by using a larger 

association dataset for polygenic score analysis. The large meta-analysis 

forthcoming from the Psychiatric Genome-Wide Association Consortium would be 

ideal for this purpose.

3.4.7 Conclusions
In summary, I have undertaken the first large scale analysis of the hypothesis that 

schizophrenia risk is mediated in part by common DNA variants that influence gene 

expression. My results broadly support this hypothesis, although given failure to 

replicate the split ISC findings in the Gibbs data, additional replication in better 

powered samples will be required before this can be fully confidently accepted. 

Nevertheless, my data provide the first demonstration that gene expression studies 

in human adult brain can be informative for genetic investigations of schizophrenia. 

Larger eQTL datasets, representing different brain regions and developmental 

stages, will be required to maximally exploit the enhanced prior probability for cis- 

eQTLs as genetic susceptibility loci.
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Chapter Four

Functional analysis using MetaCore of gene expression clusters 

derived from human brain

4.1 Introduction

4.1.1 Background
In Chapter 2, four different clustering methods were used on the Dobrin and MC66 

brain gene expression datasets, and compared by how enriched the clusters they 

produced are for Gene Ontology (GO) terms. The most effective method of 

clustering was to combine the output from memlSA and k-means clustering. Twenty- 

six gene clusters were found by using these two clustering methods on the Dobrin 

brain expression dataset, and another 25 from using these methods on the MC66 

dataset. In this chapter, two clusters from these two sets enriched for genes 

associated with or differentially expressed in schizophrenia or bipolar disorder are 

identified and further analysed using enrichment analysis in MetaCore and network 

analysis.

4.1.2 Aetiology of schizophrenia and bipolar disorder
Schizophrenia and bipolar disorder are debilitating neuropsychiatric conditions. 

Schizophrenia is characterised by psychosis, disorganised thought, and blunted 

affect (though symptoms can vary considerably from case to case), while bipolar 

disorder is characterised by dramatic shifts in mood between depression and mania. 

Both disorders are serious public health problems, affecting around 0.5% 

(schizophrenia) and 1% to 1.5% (bipolar disorder) of the UK population (131, 132). 

They are also highly heritable, with estimates as high as 80% for both schizophrenia 

and bipolar disorder (55, 133).

Numerous hypotheses have been proposed for the genetic causes of 

schizophrenia and bipolar disorder. One of the first for schizophrenia was the 

dopamine hypothesis, suggesting that dysregulation of the neurotransmitter
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dopamine was involved in schizophrenia. This was originally based upon the 

observation that dopamine levels in rat brains were affected by antipsychotic 

medication (134). Other schizophrenia hypotheses include the neurodevelopmenal 

hypothesis, which suggests that insults early in brain development can lead to 

schizophrenia in adolescence, and the myelin hypothesis, which is based upon the 

reduced presence of white matter in the brains of schizophrenia cases (49,135). 

Other molecules among the many which have been suggested as playing a role in 

schizophrenia include glutamate, GABA, and oestrogen (136-138).

Fewer hypotheses have been suggested for bipolar disorder aetiology. The 

two primary theories are the serotonin hypothesis and the noradrenaline hypothesis 

(139). These hypotheses are thought to be complementary, rather than opposing.

Many of the schizophrenia hypotheses are also not mutually exclusive (e.g. 

neurodevelopmental insults can potentially lead to adult abnormalities in dopamine 

regulation). Furthermore, it is uncertain the extent to which these conditions are 

single syndromes with relatively unified causes, or whether subtypes with distinct 

causes and characteristics might be defined in the future.

A reason for focusing on both bipolar disorder and schizophrenia is that there 

is believed to be considerable overlap between them (140). In terms of symptoms, 

schizophrenia sufferers can display mood swings, while psychosis can be a feature 

of mania in some cases of bipolar disorder. Cases which display features of both 

bipolar disorder and schizophrenia without either predominating occur, a condition 

referred to as schizoaffective disorder. There is also some evidence that similar 

genetic causes underlie both schizophrenia and bipolar disorder (36).

The multiplicity and non-mutually exclusive nature of schizophrenia and 

bipolar disorder hypotheses can make them difficult to compare objectively. Large 

scale expression and GWAS datasets offer a data-driven, rather than hypothesis- 

driven, mode of investigation into these neuropsychiatric conditions. Clustering of 

genes according to mRNA expression has particular potential in moving beyond the 

individual differentially expressed or associated genes. The identification of gene 

clusters enriched for disorder associated or differentially expressed genes and which 

contain genes related to particular biological functions may implicate those functions 

in the aetiology of the disorder.
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4.1.3 Enrichment analysis
Clustering genes according to their expression profiles is only the first step in 

understanding how they work together and their function. One common method 

which can give further insight into the function of an expression cluster is enrichment 

analysis. This compares the number of genes present in a cluster that belong to a 

variety of functional categories, compared with the number of genes present in the 

‘background1 gene list that the clusters are drawn from. A statistical distribution (most 

frequently the hypergeometric distribution) is used to assess significance for any 

enrichment of genes belonging to a particular category in a cluster.

As with clustering methods (see Chapter 2), there are an enormous variety of 

tools available to perform enrichment analysis. Huang et al identify three broad 

classes of enrichment analysis -  singular enrichment analysis (SEA), gene set 

enrichment analysis (GSEA), and modular enrichment analysis (MEA) (141, 142).

SEA enrichment methods are the simplest class, where genes from each 

functional category are checked for frequency in the background and target lists 

individually. GSEA methods are more complex. They involve calculating a score of 

interest for each gene (e.g. the fold change in a differential expression microarray 

experiment) and then ranking the genes according to this score. The GSEA 

algorithms then calculate whether the genes in each functional category have higher 

ranks than would be expected by chance, using a number of parametric statistical 

methods (141).

One difficulty with GSEA methods is the necessity of distilling the behaviour of 

each gene in an experiment down to a single value. This is a particular problem for 

expression cluster gene lists, where the methods are rarely designed to ascribe a 

continuous value for cluster membership to every gene in a dataset.

Also, some measures are difficult to reduce to a single value. For example, in 

the case of GWAS data, each gene will contain a different number of SNPs, each 

with its own association value. Furthermore, these SNPs may not be independent, 

as SNPs close to each other on the chromosome may be in linkage disequilibrium 

(i.e. they are more likely to be transmitted together during reproduction). There is no 

standard, universally accepted method of combining association values across 

multiple SNPs while taking into account linkage disequilibrium and the differing 

numbers of SNPs.
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MEA methods are similar to SEA, but use the hierarchical, interconnected 

nature of GO to enhance their performance. Functional categories are at an 

advantage if genes from related functional categories are also present in the target 

list. However, they do have the disadvantage that they bias against ‘orphan’ 

categories that have few related functional categories. As the brain is one of the 

most complex and poorly understood human organs (143,144), it is likely that the 

relationships between functional categories related to it are also less well 

understood. Hence, data from the brain may be particularly badly affected by the 

tendency of MEA to bias toward already well-annotated groups of GO terms, thus 

SEA methods were preferred over MEA methods in this analysis.

A number of different functional ontologies can be used in enrichment 

analysis. One of the most common is the Gene Ontology (GO), which is a publically 

available, hierarchical system of terms divided into three groups -  the molecular 

function of the product of a gene, the biological process it participates in, and the 

cellular locations it appears in (145). Alternate versions of GO are available, such as 

GOslim. This removes many of the more detailed terms, making it useful for giving a 

broad functional overview of a group of genes, but also risking missing enrichments 

for detailed gene categories.

Other public ontologies also exist, such as the Kyoto Encyclopedia of Genes 

and Genomes (KEGG), which organising genes into interacting pathways (146). 

Protein Analysis Through Evolutionary Relationships (PANTHER) is also pathway- 

based, but is focused upon proteins rather than genes (147, 148). Commercial 

ontologies are also available, such as MetaCore, a commercial ontology database 

produced by GeneGO Inc. (see Section 4.1.4 below).

As the number of functional categories present in the ontologies used in 

enrichment analysis is large, it is necessary to correct the significance values of 

each category for multiple testing. Since traditional statistical correction methods 

such as the Bonferroni correction or the family-wise error rate are extremely 

conservative when dealing with a large number of non-independent categories, false 

discovery rate (FDR) multiple testing correction is commonly used (149).

In this analysis, the clusters were analysed with the web service GOstat (150) 

(see Chapter 2, section 2.2.4), the standalone program EASE (151), and the

commercial package MetaCore (152). GOstat was chosen because it can use gene
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lists containing multiple types of gene ID, allowing a high proportion of the cluster to 

be included in the analysis.

EASE was used because, unlike most tools, which only work using a 

particular functional ontology, it can be used to examine gene sets for enrichment 

with user-specified gene lists. It was used to examine the enrichments of the clusters 

with genes found to be associated with schizophrenia and bipolar disorder according 

to a WTCCC GWAS study (153, 154), and genes differentially expressed in bipolar 

disorder or schizophrenia according to the Stanley Medical Research Institute Online 

Genomics Database (116).

4.1.4 MetaCore
MetaCore, from GeneGO Inc. (URL: http://www.genego.com), is a commercial 

database and software package designed for functional analysis (152). It allows the 

user to construct networks of genes linked by interactions drawn from the curation of 

PubMed abstracts. This curation is performed entirely by individual scientists, rather 

than using automated searches through the literature, which avoids many of the 

pitfalls associated with automatic text mining (155).

MetaCore has several levels of functional category and annotation. The 

MetaCore maps are the most tightly controlled level, consisting of well supported 

pathways whose members and interactions are selected by curation by individual 

researchers (rather than being automatically derived from a database of interactions) 

(Figure 4.1). These maps display relationships between proteins and other 

biologically relevant entities. The maps can include activating effects (green arrows), 

deactivating effects (red arrows), less well-characterised or more complex 

relationships (grey arrows), and can also show when an interaction between proteins 

is broken or formed in a particular disease state. Explanatory notes help to explain 

the details of the process or disease, and also show where the map is believed to 

connect to other MetaCore maps.

Although user-defined interactions cannot be added to MetaCore maps, it is 

possible to annotate them with the contents of one or more gene lists (Figure 4.1, 

red bars adjacent to some proteins). If a gene list has numerical data linked to it, 

these bars can display this, for instance mean expression of each gene in case
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samples and control samples. Figure 4.2 shows the MetaCore map and network 

legend and illustrates the other kinds of information a MetaCore map can display.

The next level of curation down contains the MetaCore networks. These can 

be dynamically created by MetaCore based on user input lists, or they can 

correspond to a particular functional category (Figure 4.3). Again, they display 

interactions between genes and other biologically relevant entities as arrows. As with 

MetaCore maps, they can mark genes that are present in gene lists of interest (red 

circles), and can also mark genes that are members of a particular functional 

category (blue circles).

Below the maps and networks, MetaCore also supports Gene Ontology (GO) 

biological process, molecular function and cellular localisation annotations and also 

MeSH terms, which link genes to diseases (http://www.nlm.nih.gov/mesh/) (145,

156). These categories are identical to the publicly available GO and MeSH 

ontologies.

MetaCore has several advantages over the publicly available ontologies. The 

hand-curated database it uses contains a considerable amount of information that is 

not contained in GO. This is especially important in the field of psychiatric genetics, 

where the biological systems concerned are incompletely understood, and likely to 

be complex. Hence, any additional information on the relationships between genes is 

invaluable. The MetaCore maps are another useful resource, defining which gene 

links are sufficiently well supported to be generally considered reliable.

The MetaCore networks, conversely, are useful because of their flexibility -  

any gene can be included, and interactions can be added from outside MetaCore. A 

variety of algorithms to build a network from a gene list and genes closely related to 

those in the list is provided. For large gene lists, only using direct interactions 

between list members can produce an easy-to-interpret network, although it will 

always omit interactions that function through another biological entity unless these 

entities are included in your input gene list.
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Figure 4.1. Example of a MetaCore map -  ‘Parkin disorder in Parkinson’s Disease’

Mutations in the PARK2 gene coding for Parkin lead to the loss of its E3 
ubiquitin ligase activity and cause autosomal recessive juvenile 
parkinsonism (AR-JP), a familial form of Parkinson's disease.

Nitrosative stress leads to S-nitrosylation of 
Parkin and impairs its E3 ubiquitin ligase 
activity in sporadic Parkinson's disease.
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Figure 4.2. Legend of MetaCore maps and networks
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Figure 4.3. Example of a MetaCore network -  ‘synaptic vesicle exocytosis’
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j B 5 AP complex 1 ^

Amphiphysin I

A
VAMP3

2ELKS

2
J i  VAMP1

2 STXBP5 v  X
MALS A .  ♦  Syntaxin  3

X  S yntaX,n? R a?5A
Syntaxin 12 J

VPS45A

1 I  *  *  2I  Pallidin X  Rab-14 Rabenosyn-S
X U  R a b - llA

4
cAMP-GEFII

2SNAP-25
I  2

VAMP8 Syntaphilin

J Sec8 
Snapin

1 2 7M U N c is -2  m u n c i8 -3  4
J  SIpS

2
RPH3AL

3
Rab-3

2
Piccolo

2
ERC2/CAST

2
R IM S l

X
DOC2

r  a
VAPA Syncollin ^

_  SNIiynapttrfagmin

S rtL4
Rabphilin-3A

X
2

VTI1B

2Dynamin-1
A 2 4

Sec3 Sec5 BIG2

A
Sec6

SV2B SV2A

A
EXO70 £  

Secl5B

A
SeclO

A RfMS2RIMS4
A

MUNC13

2
Liprin-a lpha l SaiYoor

2
Liprin-alpha4

4
Intersectin

Septin S (CDC-REL1)

Alpha-fynucle in

Liprin-alpha2

BasToon _ 2
Ljprin-alpha3 ■4

R IM -bp2 MUNC18 a|Pha-Taxili"  SCAMPI

t
Rab-27B

2
Annexin IV

4
Parkin

Z
Beta-synudein

See Figure 4.2 for legend. Red circ les indicate genes present in activated datasets in 

MetaCore (genes containing SNPs associated w ith schizophrenia at p<0.005 in the W TC C C  

dataset here). Blue circles indicate genes belonging to the current functional o r d isease 

category of interest (‘schizophrenia and d isorders w ith psychotic sym ptom s’ here). Edges 

have been faded for m aximum clarity o f gene names.



For smaller gene lists, the ‘shortest path’ algorithm allows MetaCore to add 

additional proteins or other biological entities if they lie between two members of the 

list. This can add useful information to the network. The maximum number of entities 

permitted to lie between two list members can be directly controlled, allowing the 

user to ensure that the network does not become unrealistically complex.

There are other options for lists which contain only a few genes. The ‘auto 

expand’ option adds interactions to the network until the genes in the input list are 

linked. This gives the widest possible view of the role of the input genes.

Alternatively, the ‘self regulation’ algorithm links the genes with the shortest paths 

possible, but restricts the network to paths which contain transcription factors, in 

order to suggest paths by which the genes may regulate one another.

However, MetaCore does have some weaknesses. The MeSH terms it 

includes are (as with the publicly available MeSH) based upon automatic text mining 

of the genome, and contain some false positives. The visualisation options for 

networks sometimes lack flexibility -  for example, interactions added from outside 

MetaCore can only appear as thick pink lines on the graph. This can make the 

network hard to interpret if a large number of these lines intersect. It can also be very 

difficult to extract output from MetaCore in a simple text format, requiring the user to 

transcribe genes of interest by hand. Furthermore, it is impossible to have MetaCore 

annotate a network with functional category membership information unless that 

category is in the top 12 most represented functional categories for that network.

This can create difficulties when using the networks to address previously formed 

hypotheses.
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4.1.5 Expression correlation network analysis
Expression correlation networks are created by linking genes whose expression 

patterns have high positive correlation. They exist as hard-threshold and soft- 

threshold types (157). In the former, edges are binary, existing where the correlation 

between two nodes exceeds a threshold. In the latter, edges have weights derived 

from the extent of the correlation. However, when visualising a soft-threshold 

network, it is usually still necessary to exclude edges below a certain level to keep 

the graph readable.

These correlation networks are useful for directly visualising the relationships 

between genes, and showing groups of potentially related genes within a cluster. 

However, they can become difficult to interpret as the number of genes increases, as 

the number of possible edges increases quadratically with gene number. This means 

they are best used upon gene clusters containing at most a few hundred genes.

Correlation networks can be particularly vulnerable to false positives, as a 

single false positive correlation can pull two functionally disparate areas of the 

network together, distorting the graph and hampering any biologically relevant 

interpretation. This effect becomes more pronounced the more nodes there are in a 

network.

Here, an alternative method of hard-threshold expression correlation network 

production is used (referred to here as ‘two-step network production’). Initially, the 

network is seeded with the edges with the highest correlation. Then, nodes are 

iteratively added to the network if they are correlated above a lower threshold with 

two nodes that are already linked by an edge. The robustness of the two-step 

method to random noise is compared to the standard method, by using a large 

number of perturbed datasets based upon a cluster from the MC66 dataset.

Note that this network construction method (like most similar methods) only 

uses positive correlations. This is because genes that negatively correlate may 

possess opposing functions (e.g. being related to opposite sides of the cell cycle).

Two-step networks are also constructed for any subclusters heavily enriched 

for schizophrenia or bipolar disorder associated or differentially expressed genes. 

The edges of the correlation networks are then added to the MetaCore networks.
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4.1.6 GeneCard Inferred Functionality Scores (GIFtS)
To detect clusters containing particularly poorly studied genes, GeneCard Inferred 

Functionality Scores (GIFtS) were used (158). These scores are a count of the 

number of GeneCard data types a gene has information for (out of a total of 77). The 

mean GIFtS was calculated for each cluster and subcluster, and mean GIFtS of 

subclusters compared to parent clusters to identify particularly heavily or lightly 

annotated subclusters.

The intent of this was to find particularly lightly annotated subclusters that 

were also enriched for genes associated with or differentially expressed in 

schizophrenia or bipolar disorder. Such subclusters may be particularly worthwhile to 

focus further research on, as relatively little is known about their biology.

4.2 Methods

4.2.1 Enrichment of clusters for schizophrenia related genes
The 26 clusters produced from the combined k-means/ISA/memlSA method on the 

Dobrin dataset (see Chapter 2, Section 2.3.6) were tested for enrichment with 607 

genes which contained at least one SNP associated with schizophrenia at nominal 

p<0.005 according to a recent genome-wide association study (the UK 

schizophrenia study -  see Chapter 3, Section 3.2.1). This enrichment test was 

performed using the program EASE (153,159), which implements a version of 

Fisher’s Exact Test, and used the full complement of genes in the Dobrin dataset as 

a background. The UK schizophrenia dataset consists of 2938 control samples from 

the WTCCC genome-wide association study (160) and 479 cases from a UK 

schizophrenia study (153).

Clusters enriched for schizophrenia-associated genes were also tested for 

enrichment with 352 genes found to be differentially expressed between 

schizophrenics and controls in the analysis of the Stanley Medical Research Institute 

Online Genomics Database (81) at an uncorrected p-value of 0.02 or lower. This 

choice of p-value was somewhat arbitrary, but was found to produce a differentially 

expressed gene list of a reasonable size (355 genes). Again, this used EASE, and 

used the full set of genes present in the Dobrin dataset as a background.
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It should be pointed out that, as the Dobrin dataset is a large part of the 

Stanley database, both this analysis and the equivalent bipolar analysis (see Section

4.2.3 below) are somewhat circular when applied to clusters based on Dobrin 

expression data. Hence, it is particularly important to show replication for any 

enrichment of differentially expressed genes in these clusters.

These clusters were also examined for enrichment in KEGG and BioCarta 

pathways, using the Composite Regulatory Signature Database (161) 

(http://140.120.213.10:8080/crsd/main/home.jsp), and for enrichment in GO 

biological process categories using GOstat.

EASE was also used to test these clusters for enrichment with genes found to 

be ten-fold or more upregulated in specific cell types within brain tissue according to 

Cahoy et al (162)- specifically, neurons, oligodendrocytes and astrocytes.

Clusters enriched for disease associated or differentially expressed genes from the 

Dobrin dataset were examined for overlap with every cluster from the MC66 dataset. 

Clusters that shared a high proportion of their genes with any enriched cluster from 

the Dobrin dataset were then identified. Their enrichment for schizophrenia- 

associated genes and genes differentially expressed in schizophrenia was then 

determined with EASE.

One cluster from the Dobrin dataset was particularly enriched for genes 

associated with schizophrenia (see Results, Section 4.3.1 below). This cluster 

contained 3093 genes, so is subsequently referred to as the ‘Dobrin 3093’ cluster. 

Two clusters from the MC66 dataset overlapped with it, one 2546-gene cluster and 

one 436-gene cluster. 52.3% of genes in the 2546 gene cluster were also present in 

the Dobrin 3093 gene cluster and 48.8% of genes in the 436 gene cluster were 

present in the Dobrin 3093 gene cluster. These are subsequently referred to as the 

‘MC66 2546’ and ‘MC66 436’ clusters, and they were examined for enrichment with 

schizophrenia-associated or differentially expressed genes with EASE in the same 

way as the Dobrin 3093 (except using the full set of MC66 genes as a background 

list). Similarly, they were also examined for enrichment with KEGG or BioCarta 

pathways using the Composite Regulatory Signature Database, and for genes 

upregulated in brain cell types using EASE. Further analyses primarily focused on 

the Dobrin 3093 and MC66 2546 clusters.
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4.2.2 Permutation-based enrichment significance
In order to prevent the overlap between the Dobrin 3093 cluster and the MC66 2546 

and 436 clusters producing an apparent enrichment of schizophrenia-associated 

genes in the latter by chance, an additional permutation-based method was used to 

examine whether the MC66 2546 and 436 clusters were enriched for schizophrenia- 

associated or differentially expressed genes. If a cluster remained enriched when 

using this permutation-based method, it could be considered an independent 

replication of the enrichment of the Dobrin 3093 for schizophrenia-associated genes.

4000 pairs of clusters were constructed at random from the genes present on 

the Affymetrix 133A chip, as follows. Firstly, the number of genes shared between 

the three clusters was calculated (see Figure 4.4). These figures were then used to 

create randomised MC66 clusters with the same level of overlap with the Dobrin 

cluster and each other.

165 genes from the Dobrin 3093-gene cluster were selected at random, and 

placed in both the 2546-gene and 436-gene MC66 randomised clusters. From the 

remaining Dobrin cluster genes, 1068 and 24 genes were selected at random, the 

former placed in the 2546-gene randomised cluster, the latter placed in the 436-gene 

randomised cluster. Then, 102 genes from the genes on the chip not present in the 

Dobrin 3093-gene cluster were selected at random, and placed in both the 2546- 

gene and 436-gene randomised clusters. From the remaining genes on the chip not 

present in the Dobrin 3093-gene cluster, 983 and 90 genes were selected at 

random, the former placed in the 2546-gene randomised cluster, the latter in the 

436-gene randomised cluster. This was repeated 4000 times to produce a 

population of 8000 random clusters. These permuted clusters were then processed 

with EASE in the same way as the original cluster (looking for enrichment for genes 

associated with schizophrenia and genes differentially expressed in schizophrenia), 

allowing the original results to be compared to them. The permutation p-value for 

enrichment was defined as the number of permuted clusters which were more 

significantly enriched than the original cluster, divided by the total number of 

permuted clusters.
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Figure 4.4. Overlap between putative schizophrenia-related clusters produced 

from Dobrin and MC66 datasets
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Figure 4.5. Subdivision of Dobrin 3093-gene and MC66 2546-gene clusters 

using k-means clustering
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4.2.3 Enrichment for genes associated with or differentially expressed in 

bipolar disorder
To examine the possible relevance of the clusters to bipolar disorder, the Dobrin 

3093, MC66 2546 and MC66 436 clusters were examined for enrichment with a set 

of 624 genes containing at least one SNP associated with bipolar disorder at 

nominal p<0.005 in the WTCCC bipolar disorder study (160). The clusters were also 

tested for enrichment with a set of 538 genes found to be differentially expressed 

between bipolar disorder samples and controls in the analysis of the Stanley Medical 

Research Institute Online Genomics Database (81) at an uncorrected p-value of 

0.02 or lower. Again, this used EASE, and used the full set of genes present in the 

Dobrin or MC66 datasets as background lists.

4.2.4 Subdivision of clusters
The MC66 2546-gene cluster and Dobrin 3093-gene cluster were further subdivided 

using k-means clustering (see Chapter 2). To determine an appropriate value for k, 

the expression data for the genes of both clusters were analysed with the 

cascadeKM function in R (http://vegan.r-forge.r-project.org). The value of k which 

maximised the Calinski criterion was 3 in both cases. The expression data for the 

genes of these six subclusters were also analysed with cascadeKM. The optimal 

value of k was 3 in all cases.

k-means clustering was used with k=3 and 10000 iterations on the MC66 

2546-gene cluster and the Dobrin 3093-gene cluster, k-means was then run on the 6 

subclusters this produced, again with k=3 and 10000 iterations, creating 18 smaller 

subclusters (see Figure 4.5).

Since their parent clusters overlapped heavily (see Section 4.2.1 above), the 

subclusters were examined for overlapping gene content using a Perl script. Using 

EASE, these subclusters were also examined for enrichment with genes differentially 

expressed in schizophrenia or bipolar disorder, genes associated with schizophrenia 

or bipolar disorder, and genes linked to brain cell types in the same way as the 

original clusters.
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4.2.5 GIFtS

The mean GIFtS values were calculated for the genes of each cluster, subcluster 

and background gene list using data from the GeneCards website 

(http://www.genecards.org). To ensure independence from the tests for enrichment 

for functional categories, the presence or absence of GO category data was 

excluded from the total GIFtS value of each gene. These mean GIFtS values were 

compared to each other and to the parent clusters to identify clusters and 

subclusters with particularly high GIFtS values, which could indicate that 

enrichments for functional or disease-related categories may be due to annotation 

bias. Conversely, clusters and subclusters with lower GIFtS values were also 

identified, as their enrichments are less likely to be due to annotation bias.

4.2.6 MetaCore

The 24 subclusters and their two parent clusters were uploaded to the functional 

analysis tool MetaCore. They were each tested for enrichment with genes from a 

number of types of MetaCore functional category, including:

1) MetaCore maps

2) MetaCore networks

3) GO biological process categories

4) GO molecular function categories

5) GO localisation categories

These tests used the proprietary enrichment algorithm included in MetaCore. The 

genes from clusters that were heavily enriched for genes associated with or 

differentially expressed in schizophrenia according to EASE were further examined 

using the network-building capabilities of MetaCore. Only direct, trusted links 

between genes were used to populate the network, and analysis focused on any 

large groups of linked genes that emerged. These groups were expanded by adding 

links found by performing two-step coexpression network construction upon the 

expression data of the cluster (see below). The clusters were also examined for 

enrichment with the ‘disease’ functional category in MetaCore. This links genes with 

diseases based upon literature mining.
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4.2.7 Two-step coexpression network construction and testing
To examine the usefulness of coexpression network construction while limiting the 

effect of random false positive links, a two-step network construction method was 

used. Initially, correlations between the expression profiles of the genes were 

calculated. The network is then seeded with edges. Nodes are linked whenever their 

Pearson’s correlation coefficient is greater than a stringent threshold s. In the 

second step, nodes that have a Pearson’s correlation coefficient above a more lax 

threshold / with two already linked genes are added to the network. This step is 

repeated until no further nodes can be added to the network. In order to allow 

maximum comparability between networks generated from different data, s and I are 

expressed in terms of standard deviations above the mean correlation coefficient for 

all gene pairs. Note that the two-step method only considers positive correlations 

between genes -  no edges are placed based upon negative correlations.

The intent of this two-step process was to limit the effect of single, random 

false positive links between nodes. These can bring biologically disparate sections of 

the graph close together when visualised, hindering interpretation of the network.

To provide a comparison, a single-step coexpression network construction 

method was written. This simply assigned links between nodes whenever the 

Pearson correlation between their expression profiles exceeded a threshold, t.

Again, t was expressed in terms of standard deviations above the mean correlation 

coefficient for all gene pairs, and only positive expression correlations between 

genes were considered.

To examine the sensitivity of the one-step and two-step method to noise, 

three sets of perturbed datasets were produced. Each perturbed dataset was based 

upon the expression profiles of a 401-gene subcluster (cluster 2.1) of the MC66 

2546-gene expression cluster (see above). In each set, 1000 perturbed versions of 

the expression data were created using a Perl script. In the first set, a random 20% 

of the expression values were increased or decreased by a factor between 0 and 

20% (also chosen at random for each cell). In the second set, 40% of the data was 

perturbed at random, by up to 40% of their expression value. In the third set, 60% of 

the data was perturbed at random, by up to 60% of their expression value.

In all two-step analyses presented here, the parameters s and I are set to 1.8

and 1.5 respectively, as, when used on MC66 subcluster 2.1, these values were
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found to produce interpretable networks without either a large excess or total lack of 

edges. Similarly, when the one-step method was used, t was set to 1.6, as this value 

also produced interpretable networks when used on MC66 subcluster 2.1.

One- and two-step networks were produced for each perturbed dataset.

These were compared to the one- and two-step networks produced for the original 

401-gene subcluster using a Perl script. This determined how many links between 

nodes were present in both networks, as a percentage of links that were present in 

at least one network. This quantity acted as a metric of network stability when 

presented with noisy data. T-tests were used to compare these percentages 

between the 1 and 2 step networks.

The two-step coexpression network construction method was used upon 

MC66 2546 and Dobrin 3093 subclusters with significant functional analysis 

enrichments in categories that could plausibly play a role in bipolar disorder or 

schizophrenia aetiology. The correlations from these networks were included when 

building networks with MetaCore (see above).The effect of this on the number of 

genes included on the network and the most significant functional category 

enrichment of the network was also examined.

4.2.8 Correction for gene length
Subsequent to the other analyses, a second round of enrichment analysis was 

performed. In the previous analysis, genes were selected based upon the most 

associated SNP they contained. However, this biased toward long genes, as these 

are likely to contain a larger number of independent SNPs, and so will have multiple 

opportunities to obtain a highly associated SNP. This may induce a bias toward 

genes expressed in neurons, as they tend to be long (163).

In this second analysis, the p-value of the most associated SNP was 

corrected by gene length. This was achieved by creating 1000 versions of the 

GWAS dataset with randomly permuted case/control status, and calculating 

association values for every SNP in each permuted dataset. Again, genes are 

assigned association p-values based upon the most significant association of any 

SNP within their sequence. The length-adjusted p-value for each gene is equal to 

the number of permuted runs where the association p-value of the gene is more

significant than the association p-value in the original run, divided by 1000. This
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corrects for different gene lengths and patterns of linkage disequilibrium between 

genes.

Lists of gene length adjusted associated genes were produced based upon 

three sources -  the WTCCC bipolar disorder sample, the UK schizophrenia sample 

and the International Schizophrenia Consortium (ISC) sample (29). The enrichment 

of clusters and subclusters was calculated using EASE.

4.3 Results

4.3.1 Enrichment of clusters for schizophrenia related genes
The clusters produced from the combined k-means/ISA/memlSA method on the 

Dobrin dataset were tested for enrichment with 607 genes associated with 

schizophrenia according to a recent genome-wide association study (160), using the 

program EASE (159). These 607 genes each contained at least one SNP associated 

with schizophrenia at an Armitage p-value of 0.005 or under. One cluster, containing 

3093 genes and originally found by memlSA, was enriched (p=0.0004 before 

correction, p=0.0104 after Bonferroni correction).

This cluster was also tested for enrichment with 352 genes found to be 

differentially expressed between schizophrenics and controls in the analysis of the 

Stanley Medical Research Institute Online Genomics Database (81) at an 

uncorrected p-value of 0.02 or lower. The cluster showed a non-significant trend 

toward enrichment, at a nominal p-value of 0.09.

Clusters from combined k-means/ISA/memlSA in the independent MC66 

dataset that shared a high proportion of their genes with this enriched cluster were 

then identified. Two clusters were found (containing 2546 and 436 genes 

respectively), both of which were nominally enriched for both schizophrenia- 

associated genes (2546-gene cluster at p=0.00844, 436-gene cluster at p=0.0117) 

and genes differentially expressed in schizophrenia (2546-gene cluster at p=0.004, 

436-gene cluster at p=0.00047) (Table 4.1). 52% of the genes in the 2546-gene 

cluster were present in the Dobrin 3093 cluster, as were 47% of the genes in the 

436-gene
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Table 4.1. Enrichment of parent clusters for genes associated with or 
differentially expressed in schizophrenia or bipolar disorder

Cluster
name

Cluster
size

Average 
GIFtS value 
of genes

Enrichment p- 
value for UK 
SCZ associated 
genes

Enrichment 
p-value for 
genes diff. 
expressed in 
SCZ

Enrichment p- 
value for 
WTCCC BP 
associated 
genes

Enrichment 
p-value for 
genes diff. 
expressed 
in BP

Dobrin 3093 3093 49.54 0.0004 0.062 4.00E-07 4.42E-08
MC66 2546 2546 51.75 0.00844 0.004 0.0478 1.3E-12

MC66 436 436 57.76 0.0117 0.0005 0.0140 0.0843

cluster. However, these enrichments may have been due to their overlap with the 

3093-gene Dobrin cluster, and so cannot be considered independent replications of 

the original cluster.

To avoid this confounding effect, the enrichment of the clusters for 

schizophrenia-associated genes and genes differentially expressed in schizophrenia 

was determined using a permutation-based method. The 436-gene cluster was 

significantly enriched for the schizophrenia associated genes (p=0.0255), while the 

2546-gene cluster was not (p =0.169). Both clusters were significantly enriched for 

genes differentially expressed in schizophrenia (permutation p = 0.0053 for the 

2546-gene cluster, permutation p = 0.0005 for the 436-gene cluster).

These two clusters and the Dobrin 3093-gene cluster were tested for 

enrichment with genes associated with bipolar disorder according to the WTCCC 

study, and also for genes differentially expressed in bipolar disorder according to the 

Stanley Medical Research Institute Online Genomics Database (81, 154). The 

Dobrin 3093-gene cluster was strongly enriched for both the WTCCC bipolar 

association gene list (p=1.54e-4 after Bonferroni correction) and the Stanley 

differentially expressed gene list (psI.ISe*6after Bonferroni correction).

The MC66 2546-gene and 436-gene clusters were again tested using 

permutation. The 2546-gene cluster was enriched for the Stanley bipolar disorder 

differentially expressed genes (perm p = 0), but not for the bipolar disorder 

association genelist. The 436-gene cluster was enriched for the WTCCC bipolar
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disorder association list (perm p=0.0215) but not for the Stanley bipolar disorder 

differentially expressed genes.

These clusters were also examined for enrichment in KEGG and BioCarta 

pathways, using the Composite Regulatory Signature Database (161) 

(http://140.120.213.10:8080/crsd/main/home.jsp). The top hit for the Dobrin cluster 

and the 2546-gene MC66 cluster was the KEGG entry for the MAPK signalling 

pathway (p=1.12e'7, FDR q=0.00024 in Dobrin, p=6.95e‘10, FDR q=1.46e-6 in MC66). 

The only significant hit for the MC66 436-gene cluster was from the BioCarta 

Synaptic Junction pathway (p=3.88e‘5, FDR q=2.71e'2) (Table 4.2).

The MC66 436-gene cluster was also examined using GOstat, where the best 

hit was for the ‘nervous system development’ GO category (p=0.044 after FDR 

correction). There was also a near-significant hit for serine / threonine kinases 

(p=0.07 after FDR).

The three clusters were also tested for enrichment with genes found to be 

ten-fold or more upregulated in specific cell types within brain tissue according to 

Cahoy et a /(162)- specifically, neurons, oligodendrocytes and astrocytes. All three 

clusters were found to be highly significantly enriched with genes upregulated in 

neurons (p=2.5e‘21 in Dobrin, p=1.55e'16 in MC66, Bonferroni corrected). There was 

also some enrichment for genes upregulated in oligodendrocytes (Dobrin p=0.06, 

MC66 p=2.4e'4, Bonferroni corrected) and astrocytes (Dobrin p=5.13e"22, MC66 

p=2.26e'10, Bonferroni corrected).
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Table 4.2. Enrichment of parent clusters for KEGG, BioCarta, MetaCore and 

GO functional categories, and genes upregulated in brain cell types

Cluster
name

Heavily enriched functional categories Database P value Heavily enriched 
cell type lists

Dobrin
3093

MAPK signaling
Amphoterin signaling
Angiogenesis regulation
Acetyltransferases
Negative regulation of development
Cell communication
Anti-apoptosis
Angiogenesis
Kinase regulation

KEGG
MetaCore
MetaCore
GO
GO
GO
GO
GO
GO

1.12e'7
3.42e'6
2.59e’4
1.13e'8
1.21e'8
1.71e'7
2.25e'7
4.24e’7
2.09e’6

Astrocytes,
neurons

MC66 2546 MAPK signaling
Cytoplasmic microtubules
Synaptic contact
CNS development
Regulation of synaptic transmission
Acetyltransferases
Regulation of exocytosis

KEGG
MetaCore
MetaCore
GO
GO
GO
GO

6.95e10
2.98e'5
1.25e‘4
L ie '11
9.28e10
7. l i e  9
2.24e’8

Neurons, 
astrocytes

MC66 436 Synaptic junction 
Synaptic contact
Cell surface receptor linked signaling pathway 
Regulation of cell projection organization 
CNS development

BioCarta
MetaCore
GO
GO
GO

3.88e'5
9.5e’s
1.76e’7
4.85e‘7
8.06e'7

Neurons,
oligodendrocytes

Three overlapping clusters, enriched to varying degrees for either schizophrenia- 

associated genes or genes differentially expressed in schizophrenia were found from 

the two independent dorsolateral prefrontal cortex datasets (82,116). The apparent 

excess of schizophrenia-associated genes in the 2546-gene MC66 cluster could be 

explained by it being selected based upon overlap with the Dobrin cluster. Thus, 

although the cluster itself appears independently in both datasets, it does not 

constitute independent evidence for schizophrenia-associated genes clustering 

together with respect to their expression levels. However, the 436-gene MC66 

cluster remained significantly enriched when assessed by the permutation method 

and so does constitute independent evidence of this. Also, both MC66 clusters did 

show significant over-representation for genes differentially expressed in 

schizophrenia, even after correction for the overlap with the Dobrin cluster. This 

demonstrates the ability of the clustering methods (originally memlSA for all these 

clusters) in finding potentially disease-related functional clusters.
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4.3.2 Two-step coexpression network construction and testing
One-step and two-step networks were produced from the 3000 perturbed datasets, 

and these compared to the non-perturbed networks. A significantly higher 

percentage of links were present in both original and perturbed networks when 2- 

step network production was used (in all three perturbed datasets - Table 4.3). This 

indicates that 2-step network production is more robust to random noise than the 1- 

step network.

The effect on functional analysis enrichment of adding the two-step 

coexpression network interactions to two of the MetaCore networks was also 

examined. The Dobrin 2.3

network acquired 23 additional genes, an increase of 31%, and its most significant 

GO category was of a similar order of magnitude (p=3.9e'6, compared to p=1 .Se-6 

previously). The MC66 1.3 network acquired 80 additional genes, an increase of 

48%, and its most significant GO category was also of a similar order of magnitude 

(p=3.8e'16, compared to p=1.2e‘18 previously). The expansion of the network was felt 

to be worth the slight reduction in significance, so two-step gene coexpression 

interactions were added to all interesting clusters in MetaCore.

Table 4.3. Effect of using perturbed datasets on one-step and two-step 

expression correlation network construction

Percentage 
chance of a 
data point 
being 
perturbed

Maximum 
perturbation 
of a data 
point

Mean percentage of 
links present in both 
original and 
perturbed one-step 
networks

Mean percentage of 
links present in both 
original and 
perturbed two-step 
networks

t-test p-vaiue

20% 20% 82.46804 84.45711 <2.2e16
40% 40% 55.42918 60.28294 <2.2e16
60% 60% 31.44726 37.52607 <2.2e16
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4.3.3 Functional analysis of subclusters using MetaCore and EASE
Subclusters derived from the Dobrin 3093-gene cluster were examined for 

overlapping gene content with the subclusters derived from the MC66 2546-gene 

cluster. Overlap was defined as the smaller cluster sharing 30% or more of its genes 

with the larger cluster. The majority of the subclusters overlapped with a subcluster 

from the other dataset, although some did not. Several of the clusters were also 

enriched for genes associated with, or differentially expressed in, schizophrenia or 

bipolar disorder. The clusters were examined for enrichment with five types of 

MetaCore functional categories, as well as the Cahoy cell type lists.

4.3.4 Dobrin 3093-gene and MC66 2546-gene cluster
Both the Dobrin 3093-gene and MC66 2546-gene cluster were examined for 

enrichment with MetaCore. Neither was enriched for any MetaCore maps, although 

the Dobrin cluster was significantly enriched for the MetaCore amphoterin signalling 

network. The two clusters have very similar enrichments for GO molecular function 

(acetyltransferases, angiotensin, alpha adrenergic receptor, G-proteins) and GO 

cellular compartment (cytoplasm, synapse, plasma membrane) categories (Table 

4.2). The similarities in the GO biological process categories between them were not 

as great -  the MC66 2546-gene cluster was much less enriched for kinases, in 

particular. However, both clusters contain concentrations of development-related 

genes, transport-related genes and anti-apoptotic genes.

4.3.5 MC66 subcluster 1 and 1.3 and Dobrin subclusters 2,1.1 and 1.2
Subcluster 1 of the MC66 2546-gene cluster, and its constituent subclusters (1.1, 1.2 

and 1.3) were examined for overlap with the Dobrin subclusters (Tables 4.4 and 4.5).

MC66 subcluster 1 and Dobrin subcluster 2 are both enriched for genes 

associated with and differentially expressed in bipolar disorder, so these pathways 

may be important in bipolar aetiology (Table 4.6). They also have some enrichment 

for schizophrenia associated genes, although less significantly. They contain genes 

related to GABA neurotransmission, calcium signalling, synaptic contact, and 

synaptic vesicle exocytosis (Table 4.7).

MC66 subcluster 1.3 is particularly interesting. Both it and Dobrin subcluster 

2.2, with which it overlaps heavily, are enriched for SCZ associated, BP associated
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and BP differentially expressed genes. When examined with MetaCore, it is also 

enriched for genes linked with schizophrenia in MeSH (MetaCore p=3.09e'7) (Table 

4.8). Few other subclusters showed any enrichment for SCZ MeSH terms, so further 

attention was focused on this cluster. However, Dobrin subcluster 2.2 is not enriched 

for the SCZ MeSH terms (Table 4.9). Genes in these two subclusters do not have 

significantly higher GIFtS than their parent clusters (Dobrin t-test p = 0.43, MC661- 

test p = 0.17).

Tables 4.4 and 4.5 Dobrin 3093 and MC66 2546 subcluster overlap

Dobrin 3093 M C 66 2546 O verlap

1 1 34.3%

1.1 1.1 43.9%

1.2 1.2 46.2%

1.3 2.2 30.4%

2 1 50.2%

2.1 2.1 44.7%

2.2 1.3 70.6%

2.3 N /A N /A

3 2 52.4%

3.1 2.1 39.6%

3.2 2.2 52.1%

3.3 N /A N /A

M C 66 2546 Dobrin 3093 Overlap

1 2 50.2%

1.1 1.1 43.9%

1.2 1.2 46.2%

1.3 2.2 70.6%

2 3 52.4%

2.1 3.1 39.6%

2.2 3.2 52.1%

2.3 1.2 31.1%

3 N /A N/A

3.1 N /A N/A

3.2 N /A N /A

3.3 1.3 30.4%

Tables show subcluster from other dataset with highest overlap (N/A indicates that no subcluster 

shared over 30% of its genes with the subcluster)
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Table 4.6. Dobrin 3093 and MC66 2546 expression clusters and subclusters - 
cluster size, GIFtS value, overlap and enrichment for schizophrenia or bipolar 
disorder associated or differentially expressed genes

Cluster
name

Cluster
size

Average 
GIFtS 
value of 
genes

Best
overlap
(N /A  = no
overlap
above
30%)

Enrichment 
p-value for 
WTCCC SCZ 
associated 
genes

Enrichment 
p-value for 
genes diff. 
expressed 
in SCZ

Enrichment 
p-value for 
WTCCC BP 
associated 
genes

Enrichment 
p-value for 
genes diff. 
expressed 
in BP

Dobrin 1 697 48.26 MC661 0.84 0.164 0.316 2.27E-08
Dobrin 1.1 215 47.99 MC66 1.1 0.736 0.661 0.75 7.84E-06
Dobrin 1.2 148 50.31 MC66 1.2 0.943 0.815 0.317 0.467
Dobrin 1.3 334 47.50 MC66 3.3 0.597 0.0356 0.279 7.07E-05
Dobrin 2 868 49.51 MC661 6.12E-05 0.899 4.21E-08 0.00104
Dobrin 2.1 208 49.87 MC66 1.3 0.433 1 0.152 0.556
Dobrin 2.2 274 50.04 MC66 1.3 0.000298 0.468 0.000101 0.000917
Dobrin 2.3 386 48.95 N/A 0.0135 0.804 0.000121 0.0607
Dobrin 3 1209 50.36 MC66 2 0.035 0.0115 0.303 0.479
Dobrin 3.1 317 51.45 MC66 2.1 0.00367 1.4E-05 0.396 0.0217
Dobrin 3.2 484 52.23 MC66 2.2 0.745 0.45 0.524 0.925
Dobrin 3.3 408 47.18 N/A 0.187 0.931 0.316 0.79
MC661 843 51.43 Dobrin 2 0.058 0.798 0.00195 1.79E-18
MC66 1.1 377 50.13 Dobrin 1.1 0.86 0.919 0.905 5.88E-11
MC66 1.2 53 53.06 Dobrin 1.2 1 1 0.0451 0.311
MC66 1.3 413 52.42 Dobrin 2.2 0.00126 0.437 8.3E-05 2.08E-08
MC66 2 737 53.63 Dobrin 2 0.166 0.00031 0.728 0.113
MC66 2.1 349 54.38 Dobrin 3.1 0.00542 8.872E-05 0.826 0.0844
MC66 2.2 96 56.41 Dobrin 3.2 1 0.433 0.945 0.0295
MC66 2.3 292 51.82 Dobrin 1.2 0.78 0.295 0.267 0.935
MC66 3 856 50.69 N/A 0.0912 0.101 0.398 0.585
MC66 3.1 78 51.32 N/A 0.00394 0.0104 0.0239 0.403
MC66 3.2 305 52.64 N/A 0.727 0.983 0.664 0.99
MC66 3.3 472 49.34 Dobrin 1.3 0.224 0.0482 0.698 0.137

Bold type indicates nominally significant clusters and subclusters.
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Table 4.7. Cahoy cell type and MetaCore functional categories enriched in the 

top-level subclusters of the Dobrin 3093 and MC66 2546 clusters
Subcluster
name

MetaCore/GO biological process categories 
enriched in cluster

Database P value Cell type lists enriched 
in cluster

Dobrin 1 Helicases GO 6.67e-7 Oligodendrocyte
Protein localisation GO 6.10e-6 Astrocyte
Anti-apoptosis GO 1.23e-5

Dobrin 2 GABA neurotransmission MetaCore 4.12e-12 Neuron
Synaptic vesicle exocytosis MetaCore 1.24e-7
Synaptic contact MetaCore 6.57e-7
Calcium signaling MetaCore 6.66e-8
Neuroendocrine-macrophage connector MetaCore 2.42e-5
Synaptic transmission GO 1.00e-7
Neuron development GO 9 .75e-ll
Synaptic vesicle transport GO 2.79e-9
Memory GO 1.61e-9

Dobrin 3 Angiogenesis MetaCore 1.41e-9 Astrocyte
Amphoterin signaling MetaCore 4.69e-8
Thl7-derived cytokines MetaCore 4.52e-8
Platelet-endothelium-leukocyte interactions MetaCore 4.75e-7
IL-1 signaling MetaCore 3.99e-7
Wounding response GO 3.51e-21
Development GO 4.45e-20
Angiogenesis GO 3.44e-20
Kinases GO 1.06e-14
Apoptosis regulation GO 6.04e-13

MC661 GABA neurotransmission MetaCore 7.13e-7 Neuron
Synaptic contact MetaCore 5.72e-6
GABA-A receptor life cycle MetaCore 2.86e-5
Nerve impulse transmission MetaCore 5.76e-6
Synaptic transmission GO 1.75e-7
Transport GO 5.29e-7
CNS development GO 1.05e-6

MC66 2 Platelet-endothelium-leukocyte interactions MetaCore 2.01e-6 Astrocyte
Angiogenesis regulation MetaCore 3.38e-6
Chemotaxis MetaCore 5.41e-6
Wound response GO 9.25e-20
Inflammation GO 2.57e-13

MC66 3 Neurotransmitter transport GO 3.93e-9 Neuron,
Synaptic transmission GO 4.21e-9 oligodendrocyte
GABA secretion GO 4.75e-8
Synaptic plasticity regulation GO 1.9e-6
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Table 4.8. Cahoy cell type and MetaCore functional categories enriched in the
9 low-level subclusters of the MC66 2546 expression cluster
Subcluster
name

MetaCore GO biological process categories 
enriched in cluster

Database P-value Cell type lists enriched 
in subcluster

MC66 1.1 DNA damage and BRCA1 MetaCore 8.44e-5 Oligodendrocyte
Cellular biopolymer metabolic process GO 3.41e-6

MC66 1.2 Connective tissue degradation MetaCore 2.79e-5 Oligodendrocyte
Myelination GO 4.88e-9
Neuronal action potential regulation GO 3.68e-8
Vasoconstriction GO 7.31e-6
Ion homeostasis GO 8.47e-6
Beta amyloid metabolism GO 1.07e-5

MC66 1.3 ERK inhibition MetaCore 1.88e-6 Neuron
CDK5 presynaptic signaling MetaCore 3.36e-6
Neuroendocrine-macrophage connector MetaCore 5.09e-6
GABA neurotransmission MetaCore 3.42e-6
Synaptic contact MetaCore 1.82e-6
Cytoplasmic microtubules MetaCore 3.58-5
MeSH schizophrenia terms MetaCore 3.09e-7
Transport GO 2.23e-13
Synaptic transmission GO 4 .5 6 e -ll
CNS development GO 1.92e-10
Ribonucleotide biosynthesis GO 8.45e-10
ATP metabolism GO 5.81e-9

MC66 2.1 Skeletal muscle development MetaCore 6.02e-6 Astrocyte
Actin MetaCore 4.32e-5
Developmental regulation GO 5.71e-ll
Wounding response GO 8.32e-10
Muscle contraction GO 2.57e-8
CNS development GO 2.12e-8
Angiogenesis GO 6.86e-7

MC66 2.2 Thl7 cytokines MetaCore 1.56e-10 Astrocyte
Interferon MetaCore 2.58-9
Complement MetaCore 2.96e-9
Immunity GO 7.96e-25
Wound response GO 1.95e-23
Inflammation GO 2.85e-22
Leukocyte chemotaxis GO 5.91e-15

MC66 2.3 Muscle development GO 8.18e-7 Astrocyte
Nucleosome assembly GO 3.48e-6
Chromatin silencing GO 4.03e-6

MC66 3.1 Nuclear protein export GO 2.88e-5 Neuron
Transcription upregulation GO 3.06e-5

MC66 3.2 Synaptogenesis MetaCore 6.47e-7 Neuron
RAB3 regulation MetaCore 7.25e-6
Transmission of nerve impulse MetaCore 7.72e-6
Nerve impulse transmission regulation GO 6.11e-13
Neurotransmitter secretion GO 4.86e-12
Cellular localisation regulation GO 2.12e-8
Synaptic plasticity regulation GO 2.41e-8
Regulation of presynaptic vesicle fusion GO 1.58e-7

MC66 3.3 Bleb formation GO 4.94e-6 Oligodendrocyte
GABA secretion GO 2.08e-5
K+transport GO 2.12e-5
Dopamine GO 4.73e-5
Serotonin GO 6.12e-5
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Table 4.9. Cahoy cell type and MetaCore functional categories enriched in the
9 low-level subclusters of the Dobrin 3093 expression cluster

Cluster name MetaCore GO biological process categories 
enriched in cluster

Database P-value Cell type lists enriched 
in subcluster

Dobrin 1.1 Protein localization GO 2.66e-5 Oligodendrocyte
Dobrin 1.2 Cell adhesion (amyloid proteins) 

EGF pathway regulation 
Nucleosome assembly 
Memory 
Anti-apoptosis

MetaCore
GO
GO
GO
GO

1.65e-4
3.23e-7
2.10e-6
3.39e-6
4.68e-5

Astrocyte
Oligodendrocyte

Dobrin 1.3 Biopolymer metabolism 
Helicases

GO
GO

3.60e-6
2.16e-5

Oligodendrocyte

Dobrin 2.1 Neurogenesis 
Angiogenesis 
Muscle contraction
Activation of phospholipase C by acetylcholine 
Axonogenesis
Negative regulation of adenylate cyclase 
Kinase regulation

MetaCore
MetaCore
GO
GO
GO
GO
GO

1.87e-5
7.37e-5
5.85e-8
1.65e-6
1.70e-6
1.95e-6
2.38e-6

Neuron

Dobrin 2.2 GABA neurotransmission 
GABA-A receptor life cycle 
Synaptic vesicle exocytosis 
CNS development 
Neurotransmitter transport 
Synaptic transmission 
Microtubule-based movement 
Memory

MetaCore
MetaCore
MetaCore
GO
GO
GO
GO
GO

1.31e-4
1.15e-6
6.93e-5
1.33e-7
2.35e-7
5.70e-7
1.14e-6
1.61e-6

Neuron

Dobrin 2.3 MIF signaling
Transmission of nerve impulse
Synaptic transmission
Ion transport
Synaptogenesis
Vesicle fusion
Cellular insulin response

MetaCore
MetaCore
GO
GO
GO
GO
GO

7.45e-6
7.39e-5
5.40e-10
8.63e-8
1.33e-7
5.24e-7
5.26e-7

Neuron

Dobrin 3.1 Lysine metabolism
Angiogenesis
Angiogenesis
CNS development
Cell proliferation regulation
Inflammatory response
Nitric oxide mediated signal transduction

MetaCore
MetaCore
GO
GO
GO
GO
GO

7.32e-6
5.36e-5
8.12e-13
2.69e-7
6.13e-7
4.14e-6
4.86e-6

Astrocyte

Dobrin 3.2 Platelet-endothelium-leukocyte interactions
Angiogenesis
Interferon
Thl7 cytokines
Wounding response
Development
Inflammatory response
Leukocyte migration
Cell proliferation regulation

MetaCore
MetaCore
MetaCore
MetaCore
GO
GO
GO
GO
GO

8.3 8e -ll
1.44e-8
1.21e-7
4.62e-7
2.42e-23
7.29e-22
2.24e-19
2.96e-15
1.45e-14

Astrocyte

Dobrin 3.3 Interleukin 
HGF signalling 
Transcription regulation 
Kinases
Regulation of neuron apoptosis

MetaCore
MetaCore
GO
GO
GO

4.90e-6
4.58e-5
2.87e-10
3.84e-6
4.86e-5

Oligodendrocyte
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Dobrin subcluster 2.2 and MC66 subcluster 1.3 are also enriched for genes 

linked to GABA neurotransmission, nervous system development, synaptic vesicles 

and synaptic transmission, as are their parent subclusters.

MC66 subcluster 1.3 was used with the Build Network function in MetaCore. 

As the number of genes was large (392 genes recognised in MetaCore), only direct 

interactions between genes were included on the network. In addition, interactions 

from the 2-step correlation network for the subcluster were included in the network 

(see Section 4.3.2). Those genes which interacted with each other were left in the 

network, and other genes removed (Figures 4.6 and 4.8).

In these figures, green circles indicate genes linked to schizophrenia or 

bipolar disorder according to MeSH, red circles indicate genes associated with 

schizophrenia or bipolar disorder in the WTCCC study (153, 154) and blue circles 

indicate genes differentially expressed between cases and controls in the Stanley 

database (116). Although all three are spread throughout the network in 

schizophrenia, they appear to be particularly concentrated in the top left area of 

Figure 4.6. This coincides with the area where genes annotated as involved in 

synaptic transmission in GO are found.

However, this may also reflect the difference in the types of data used -  the 

top left mainly contains genes with interactions drawn from MetaCore, while the 

bottom right is mainly interactions from the two-step expression correlation network.

It is possible that the genes with links in MetaCore are better studied than the 

expression correlation network genes, but genes annotated with the ‘transport’ GO 

category were spread much more evenly around the network. This suggests that 

both areas have some level of GO annotation, and so the placement of genes 

annotated as synaptic transmission related alongside genes associated with or 

differentially expressed in schizophrenia may have functional significance.

The genes in the network also show enrichment for central nervous system 

development genes (p=3.4e-6). Again, these show some bias for the genes with links 

in MetaCore, but this is not so pronounced as with the synaptic transmission genes.

Dobrin subcluster 2.2, which overlaps with MC66 subcluster 1.3 (70% genes 

shared -  Tables 4.4 and 4.5) was also used to build a network in MetaCore (Figures

4.7 and 4.9). Again, interactions from the 2-step correlation network for the
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subcluster were included. Red circles indicate schizophrenia associated genes in the 

WTCCC study, green circles indicate genes annotated as schizophrenia-linked 

genes in MeSH, and blue circles indicate genes listed as being differentially 

expressed in schizophrenia in the Stanley database.

Most SCZ-related genes are in the top half of the network. This coincides with 

the placing of several GO categories, most obviously including CNS development, 

synaptic transmission and synaptic vesicle transport. Although the lower half of the 

network has fewer genes than the upper half, all genes there were included in both 

the WTCCC and Stanley studies, and so had the opportunity to be considered.

Unlike schizophrenia, genes relevant to bipolar disorder are not concentrated in a 

particular part of the network (Figures 4.7 and 4.9). They appear both in regions 

linked together by edges based upon coexpression and regions linked by MetaCore 

interactions. It is also notable that several genes from this cluster are both 

differentially expressed in BP and associated with BP (AUMH, secretogranin, IDH3A, 

KAP3, AP180, UQCRFS1, neuroserpin, carbonic anhydrase X). This congruence 

strengthens the evidence that they underlie BP aetiology.
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Ĵk
C IT E D 2

Jk
EPAS1

P A K 1

N e u r e x in  l r a lp h a

C a M K  I

M y o s in  V a

\  !
A

* *
lalm odulin

G - p r o t e ln  l a f t a /  g a m m a

S y n ta V in
S L C X A 1 /E A A T 3

*
T u b e V in

\
\ A

C D K 5

N D R C 4

<1yVNji
N e u r e x in  1 - b e t a

M E K 4 (M A P 2 K 4 )

_  /  
S ta tH m ln  — j

j  M A P 2  

P A F A H  a lp h a  ( L IS l )

D C T N U fr lS O G Iu e d )

*
R a p lC D S l

D N M 1 L  (D R P 1 )

dypiAi 2
T h io r e d o x in

X >
P G K l S L C 2 5 A 4  * 2

2  S y n & p s ln  II

A L E X 2

Jk
HLF

' V ... X .
S L C 1 7 A 7

JNK2(MAPK9)
w /

X
SYP

1 f  2-
V A M P l

Nft-
P T P R 0 1 4 - 3 - 3 fe 'ta /d e « « a

: ^ A,Pha
M E K l(W h A I» 2 K l) : PREf>L

M ; AATC
#  G ly c in e  r e c e p t o r  b e ta  c t ra in

i
G LS K

2*  ^
“ d e in  P R K A R 1 /M D H 2

VS W V D 3  T
j  _ P t fR M C l

6 5 2

M
H U E L

A R P P -1 9

2
T M 9 S F 2

K C N A 'R l

Y
S y n a p to ta g m ln  I

2
S T M N 2

S2*S N J k P -2 5

N e u r o c a ld n  d e l t a uoH tri

TIPfTcell Im m undmddulatory protein)
>2

K IA A 1 2 7 9

E n d o p h iiT n  A 1

&
x M“ L1 f

C A C N B 2  f  R e e p l

/■ /  -V
A m p h ip h y s ln  I * 2  ,

S e c r e to g r a n ln  1 
* Ifr ATP6viB2

"2
* 2  WAP3 

1 4 - ? - 3  e ta

• A Y  1*
A T P 6 A P 2  A T P 5 C 3

:2
O A Z IN

T O M
Y -  *2 "
> M 2 0

N D U F S 4

H P R T
S C O T

■ a
\C T R 1 <

-2
C LA S P 2

N M N A 2

&
R a b p h i l ln - 3 A

/ X

*
D C A M K L l

P K C -b e ta 2  , 4 N
55!cli 2^

A P 1 8 0  T '

2-  i
NSF

N e u ro s e r

i l l
N e u ro b e ja c h ln

i
A P 1 8 0

S e c re to tjra n i

•2
1 4 - 3 - 3  b e t a /a lp h a

C a M K  II d e l t a

S e c r e to g r a n ln  y  
n  II

Tp ip s

C 9 T A 4
&JL '

M l to f l l ln

^  *  2
M̂ &S 2 °Pt,̂ Ur,n 2

S T A M 1

-2
D y n a m ln - 3

U Q C R C 2

M M S 2

* i*Mr
P 1 2 D G A P

2
D A M  1

Q T L 3

2
P E X l l b

2
S D F R l

P LC L2
G A B A -A  r e c e p to r

( T   > 1
M A P I  R G S?

C a lc ip r e s s in  2

C A C N A 2 D 3

i ij 2 
< ? X -2

: A
C -A M T A l

P L K 2 '2
A N K M Y 2

2
M 0 2 5

2 '
L R P 1 3 0

2
Z N F 3 6 S

2
M R P L3

2
T R IP 3

M R fM .15

r
< X

S H P -2
2

L D B 2

/
Y«-

■ G G K B R -

I ....
p c 2  < s p c ? r

F G F l‘3

/v2 
/  G C C 2

r
BBS6

• • T -
C C K

? - r
N e u r o p e p t id e  Y



Figure 4.6. MetaCore network of MC66 subcluster 1.3
Pink lines indicate that genes are coexpressed according to the two-step expression 
correlation network method. Red circles indicate genes associated with schizophrenia 
according to the WTCCC study. Blue circles indicate genes differentially expressed in 
schizophrenia according to the Stanley Online Genomics website. Green circles indicate 
genes linked with schizophrenia in MeSH, according to MetaCore. Dotted red box indicates 
region enriched for these three types of gene. Green arrows indicate activating interactions 
between genes, red arrows indicate deactivating interactions between genes, and grey 
arrows indicate non-specific interactions between genes. Note that green and blue circles, 
dotted red box, and fading of pink lines were added in post-processing and are not available 
through MetaCore.
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Figure 4.7. MetaCore network of Dobrin subcluster 2.2
Pink lines indicate that genes are coexpressed according to the two-step expression 
correlation network method. Red circles indicate genes associated with schizophrenia 
according to the WTCCC study. Blue circles indicate genes differentially expressed in 
schizophrenia according to the Stanley Online Genomics website. Green circles indicate 
genes linked with schizophrenia in MeSH, according to MetaCore. Green arrows indicate 
activating interactions between genes, red arrows indicate deactivating interactions between 
genes, and grey arrows indicate non-specific interactions between genes. Dotted red box 
indicates region enriched for these three types of gene. Note that green and blue circles, 
dotted red box, and fading of pink lines were added in post-processing and are not available 
through MetaCore.
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SLĈ A7

P G K 1

1
A L E X 2

X
SYP

2-
V A M P l

i v \
i,

K C N A fe l

^ A lp h a - s ^ n u c le ln

M E K K W A P 2 K 1 )  PREPU -A
 ̂ S M Y D 3

G LS K  X  A A T C

Y  G ly c in e  r e c e p t d r  b e ta  c h a in  *  2
2  T IP (T  c e l l  im m u n d m o d u la to r y  p r o te in )

F TP R ° 1 4 - 3 - 3  f e t a / d e l t a  . ^  ;

- 2  K A P 3  P IM T  
1 4 - 4 - 3  e ta

P R K A R 1 * 1 D H 2

J *P(?RMC1

M
H U E L

2
T M 9 S F 2

£>52

X
A R P P -1 9 *2

K IA A 1 2 7 9

‘ u e H c i

RGS4

2
S T M N 2

Y
S y n a p to ta g m ln  I

S N * P - 2 S

N e u r o c a lc ln  d e l t a  2
A m p h ip h y s ln  I 2

S e c r e to g r a n in  12<
E n d o p h l l ln  A 1

2 ,v.u?i
NEUL1

• x
C A C N B 2  ^  r R e e p l

P K C -b e ta 2

Y  *
A T P 6 A P 2  A T P 5 G 3

.2
O A Z IN

J tN%LL2
A T P 6 V 1 B 2

M
N & 3 A P 1

* y"
T O M 2 0

N D U F S 4
lle R S

O A t" !

N M N A 2
♦ 2 *

N e u r o b e a c h ln

D Y N C 1 IJ

; V-il'
S C O T

M

D C A M K L l

X
R a b p h l l ln - 3 A

BO
S e c r e to g r a n in  II

1 4 - 3 - 3  b e t a / a lp h a

P LC L2
G A B A -A  r e c e p t o r

C a M K  II d e l t a

M A P I

2*
N e u r o s e r ^ in

- ♦  . 2
S e c r e to g r a n in  V

X
C A C N A 2 D 3

2
O X - 2

X
PIPS

C9TTA4

■tjf 2 2
M i t o f i l ln ^  D y n a m ln - 3

2
P E X l l b

R IO  

O p t ln e u r ln

,2
C LA S P 2

C a lc lp r e s s in  2

S H P -2
M

A T P 1 A 1

2
L D B 2

■ i l l  '
C C K B R

V
P C 2 (S P C 2 )

mi'
C A M T A l

2
G C C 2

<+■ 2
P L K 2  ^  M 0 2 S

A N K M Y 2

2
BBS6

2 -
S T A M l

2
L R P 1 3 0

2
Z N F 3 6 5

U Q C R C 2

W
M M S 2

2
P 1 2 0 G A P 2

MRPU3

2
D A M  1

A U M H

G T L 3

2
T R IP 3

2V
M R P L 1 5

T X N D C 9

PTS

G L O D 4

■r-
C C K N e u r o p e p t id e  Y

PCI



Figure 4.8. MetaCore network of MC66 subciuster 1.3
Pink lines indicate that genes are coexpressed according to the two-step expression 
correlation network method. Red circles indicate genes associated with bipolar disorder 
according to the WTCCC study. Blue circles indicate genes differentially expressed in 
bipolar disorder according to the Stanley Online Genomics website. Green circles indicate 
genes linked with bipolar disorder in MeSH, according to MetaCore. Green arrows indicate 
activating interactions between genes, red arrows indicate deactivating interactions between 
genes, and grey arrows indicate non-specific interactions between genes. Note that green 
and blue circles and fading of pink lines were added in post-processing and are not available 
through MetaCore.
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Figure 4.9. MetaCore network of Dobrin subcluster 2.2
Pink lines indicate that genes are coexpressed according to the two-step expression 
correlation network method. Red circles indicate genes associated with bipolar disorder 
according to the WTCCC study. Blue circles indicate genes differentially expressed in 
bipolar disorder according to the Stanley Online Genomics website. Green circles indicate 
genes linked with bipolar disorder in MeSH, according to MetaCore. Green arrows indicate 
activating interactions between genes, red arrows indicate deactivating interactions between 
genes, and grey arrows indicate non-specific interactions between genes. Note that green 
and blue circles and fading of pink lines were added in post-processing and are not available 
through MetaCore.
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4.3.6 MC66 subcluster 2 and Dobrin subcluster 3

Another interesting pair of clusters is MC66 subcluster 2 and Dobrin subcluster 3, 

which share over 50% of their genes. Both of these clusters show enrichment for 

genes differentially expressed in schizophrenia (MC66 p=0.0003, Dobrin p=0.011), 

and Dobrin subcluster 3 is also enriched for genes associated with schizophrenia 

(p=0.035). Both clusters are also enriched for genes upregulated in astrocytes, and 

are enriched for functional categories relating to angiogenesis, CNS development 

and immune response (Table 4.5).

Of the three component subclusters of Dobrin subcluster 3, subcluster 3.1 is 

the most interesting. It has increased enrichment for SCZ associated (p=0.0037) and 

differentially expressed (p=1.4e-5) genes compared to its parent subcluster, and also 

shows some enrichment for BP differentially expressed genes (p=0.022). It shares 

39.6% of its genes with MC66 subcluster 2.1, which is also heavily enriched for SCZ 

associated genes and SCZ differentially expressed genes. The other subclusters 

from MC66 subcluster 2 and Dobrin subcluster 3 are not enriched for SCZ or BP 

related genes.

Both MC66 subcluster 2.1 and Dobrin subcluster 3.1 are enriched for genes 

relating to angiogenesis and CNS development. The Dobrin subcluster is also 

enriched for immune response genes, like the parent subclusters.

4.3.7 MC66 subcluster 3.1
Few other subclusters show significant enrichment for schizophrenia or bipolar 

disorder differentially expressed or associated genes. One that does is MC66 

subcluster 3.1. This cluster is enriched for schizophrenia associated genes 

(p=0.0039), schizophrenia differentially expressed genes (p=0.01) and bipolar 

disorder associated genes (p=0.024). It does not show any overlap with any other 

subcluster, although this may be because this subcluster is small (78 genes).

The small size would make this subcluster suitable for network manipulation 

in GeneGO, but there are only two pairs of genes with canonical links between them 

in the subcluster. The genes in this subcluster are less well annotated than the other 

subclusters, with an average GIFtS value for genes in this cluster of 51.3. This is 

below the average GIFtS value for the top-level MC66 2546 cluster (51.7). However,
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the difference between the two sets of GIFtS values was not significant (t-test p = 

0.68).

This suggests that the enrichment for disease-related genes is unlikely to be 

due to a concentration of highly investigated genes, and may explain the lack of links 

between them. The cluster is enriched for genes upregulated in neurons, and slightly 

enriched for a small number of GO categories (nuclear protein export, transcription 

upregulation).

4.3.8 Enrichment for gene-length adjusted association lists

Subsequent to the other analyses, the Dobrin 3093 and MC66 2546 clusters and 

their subclusters were analysed for enrichment with lists of bipolar disorder 

(WTCCC) and schizophrenia (ISC and UK) associated genes, corrected for the 

effects of gene length (Table 4.10). The clusters and subclusters were much less 

enriched for these gene lists than they were for those not adjusted for gene length, 

suggesting that bias due to gene length may have been one reason for the previous 

enrichments for disease associated genes.

However, some subclusters were nominally significantly enriched for WTCCC 

bipolar associated genes (MC66 1.3, MC66 2.3), although these do not survive 

Bonferroni correction for multiple testing with 26 subclusters (MC66 1.3 Bonferroni 

corrected p = 0.488, MC66 2.3 corrected p = 0.7). The MC66 1 and MC66 1.1 

subclusters were nominally significantly enriched for ISC schizophrenia associated 

genes, and the MC66 1.1 subcluster remains significantly enriched after Bonferroni 

correction (Bonferroni corrected p = 0.017). Other subclusters were close to nominal 

significance for WTCCC bipolar associated genes (Dobrin 3093, Dobrin 3093 

subcluster 2) or ISC schizophrenia associated genes (MC66 2546). No clusters or 

subclusters were enriched for genes associated with schizophrenia according to the 

UK schizophrenia study. This may be because the small size of this study limits its 

power to detect true associations.

MC66 subcluster 1.1 may be worth investigating further for relevance to 

schizophrenia. It is enriched for relatively few MetaCore or GO functional categories. 

However, it is significantly enriched for a MetaCore map relating to BRCA1 and DNA 

damage (Table 4.8). It overlaps with Dobrin subcluster 1.1, which has a similarly low

number of enriched functional categories (Tables 4.4 and 4.5), but which is not
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significantly enriched for schizophrenia associated genes. The average GIFtS value 

of genes from both these subclusters is lower than the average GIFtS value of genes 

in the parent Dobrin 3093 and MC66 2546 expression clusters, perhaps suggesting 

that these subclusters contain relatively poorly annotated genes that could benefit 

from more study.
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Table 4.10. Enrichment of clusters and subclusters for schizophrenia and 

bipolar disorder associated genes, adjusted for length

Cluster name

ISC schizophrenia 
associated genes, 
p<0.05

UK schizophrenia 
associated genes, 
p<0.05

WTCCC bipolar 
disorder associated 
genes, p<0.05

Dobrin 3093 0.281 0.907 0.061
Dobrin 3093 1 0.159 0.831 0.431
Dobrin 3093 1.1 0.168 0.871 0.674
Dobrin 3093 1.2 0.745 0.868 0.105
Dobrin 3093 1.3 0.210 0.514 0.725
Dobrin 3093 2 0.565 0.450 0.068
Dobrin 3093 2.1 0.534 0.616 0.197
Dobrin 3093 2.2 0.586 0.329 0.339
Dobrin 3093 2.3 0.587 0.593 0.150
Dobrin 3093 3 0.540 0.933 0.254
Dobrin 3093 3.1 0.963 0.481 0.752
Dobrin 3093 3.2 0.556 0.993 0.483
Dobrin 3093 3.3 0.111 0.630 0.074

MC66 2546 0.058 0.532 0.166

MC66 2546 1 0.009 0.874 0.190

MC66 2546 1.1 0.0007 0.734 0.970

MC66 2546 1.2 0.491 N/A 0.164

MC66 2546 1.3 0.530 0.738 0.019

MC66 2546 2 0.538 0.623 0.378

MC66 2546 2.1 0.827 0.342 0.939

MC66 2546 2.2 0.934 N/A 0.684

MC66 2546 2.3 0.115 0.572 0.027

MC66 2546 3 0.716 0.350 0.311

MC66 2546 3.1 0.644 0.588 0.316

MC66 2546 3.2 0.676 0.415 0.460

MC66 2546 3.3 0.668 0.408 0.421
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4.4 Discussion

4.4.1 Recurrent themes in the functional categories of the clusters
A number of functional categories appear in the clusters and subclusters from both 

the Dobrin and MC66 datasets that are enriched for genes relevant to schizophrenia 

and bipolar disorder (Tables 4.2 and 4.4-4.9). The large size of MC66 2546 and 

Dobrin 3093 clusters makes inference about individual genes difficult. However, both 

the larger clusters are enriched for genes present in the KEGG MAP kinase 

pathway, suggesting that this pathway may relate to their function, and possibly to 

the aetiology of schizophrenia. Members of this pathway have also been found to be 

differentially expressed between controls and schizophrenics in other brain regions 

(164). In addition, when structural variants such as microdeletions occur in the 

genomes of schizophrenics, some evidence suggests that they are particularly likely 

to occur in the genes of the MAP kinase pathway (165).

However, the MAP kinase-related genes present in the two large clusters do 

not overlap with the schizophrenia associated gene set or the differentially 

expressed in schizophrenia gene set (they share no genes at all in either the MC66 

or Dobrin cluster). This might suggest the MAP kinase function of the clusters may 

be incidental to their roles in schizophrenia aetiology. Further investigation with other 

functional analysis tools (both free and commercial) may reveal more about these 

clusters, and would be a good avenue for further study

Of the subclusters, the Dobrin 2.2 and MC66 1.3 subcluster pair are both 

enriched for genes associated with schizophrenia and bipolar disorder according to 

the original analysis. The MC66 1.3 subcluster is also enriched for genes annotated 

as schizophrenia related, according to MeSH and MetaCore.

These results were somewhat undermined by the subsequent enrichment 

analysis using association values that took into account varying gene lengths. 

Although the Dobrin 2.2 subcluster was no longer significantly enriched for bipolar or 

schizophrenia associated genes in this analysis, the MC66 1.3 subcluster remained 

nominally enriched for bipolar disorder associated genes. As both subclusters are 

also highly significantly enriched for genes differentially expressed in bipolar disorder 

(Tables 4.8 and 4.9), they retain some of their potential relevance to bipolar

aetiology despite the reduction in significance for association enrichment.
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The two subclusters are also both annotated with several MetaCore and GO 

terms that could plausibly play a role in the aetiology of schizophrenia and bipolar 

disorder. These include GABA neurotransmission (166, 167), nervous system 

development and synaptic vesicles (168-170).

Evidence for the GABA hypothesis of schizophrenia has mounted over the 

past few years, especially expression-based evidence that shows a reduction in 

GABA receptors across multiple brain areas (171). Reductions in GAD1, in 

particular, have been found in dorsolateral prefrontal cortex, anterior cingulate 

region, and hippocampus (166). GABA also has strong influence over dopamine 

neurotransmitter levels, allowing the GABA hypothesis of schizophrenia to exist 

alongside the dopamine hypothesis.

Study of synaptic vesicles in schizophrenia and bipolar disorder has primarily 

focused on particular genes involved in synaptic vesicle function, like SNARE and 

SVMT (168, 169). However, some putative schizophrenia-related genes, such as 

dysbindin and DISC1, are also linked with synaptic vesicle function (172-174). 

Furthermore, the synaptic vesicle exocytosis MetaCore network is extremely heavily 

enriched with genes annotated as schizophrenia genes in MeSH (43.75% of the 

genes in the network, MetaCore p=1e'17). This enrichment is likely to be at least 

partly due to annotation bias, as a neuronal process like synaptic vesicle exocytosis 

is an obvious place to look for a relationship to schizophrenia aetiology. However, 

this may not be the only cause of the enrichment, as the existence of gene 

coexpression clusters derived from two independent datasets which are enriched for 

both synaptic vesicle genes and genes related to schizophrenia suggests.

The Dobrin subcluster 3.1 and the MC66 subcluster 2.1 are enriched for 

genes differentially expressed in or associated with schizophrenia, and also show 

enrichment for CNS development genes (Tables 4.8 and 4.9). In addition to this, 

they are enriched for angiogenesis genes. There is little evidence linking 

angiogenesis and schizophrenia, but one study has found that SNPs near BAI3, an 

angiogenesis inhibitor, are associated with the severity of disorganised symptoms in 

schizophrenia (175).
This work could be expanded and extended in a number of ways. The Dobrin 

3093 and MC66 2546 clusters and their subclusters could be further tested for a

functional relationship with schizophrenia by testing for enrichment with the results of
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other GWAS studies (such as the ISC (29)) or other differential expression studies. 

The clusters could also be used to define eQTLs for polygenic score analysis, as 

was done with the MC66 1.3 subcluster (see Chapter 3, Section 3.2.5), although the 

top eQTL SNP lists for that subcluster were not generally superior to the bottom 

eQTL SNP lists at discriminating between cases and controls through polygenic.

4.4.2 MetaCore

MetaCore demonstrated several strengths in this study. In some subclusters, the 

MetaCore maps and networks showed enrichments for functional categories that the 

standard GO categories did not detect or did not rank so highly. The most obvious 

example of this is in the MC66 subcluster 1.3 and the Dobrin subcluster 2.2. In these 

overlapping subclusters, the significant enrichment for genes relating to GABA 

neurotransmission only appeared in the MetaCore maps and networks, not the GO 

categories (Tables 4.6 and 4.7, Supplemental Data 1).

The MetaCore networks themselves were also useful (Figures 4.6 to 4.9). 

Their capacity to be annotated with external data (such as the lists of schizophrenia 

associated genes) and internal MetaCore data (such as the MeSH schizophrenia 

genes) enables the identification of subsets of the network enriched for these 

disease-relevant genes through visual inspection. However, as this analysis is not 

statistically founded, care must be taken to ensure that such areas do not appear 

enriched simply because of the arrangement of genes in the network (e.g. due to 

some areas having a higher density of genes than others).

MetaCore does have some weaknesses. The visualisation options when 

viewing networks do not give the user much control over the appearance of the 

graph. Although this is usually only a cosmetic problem, it can sometimes hamper 

interpretation, such as forcing the use of thick, pink lines to represent user-defined 

interactions (concentrations of which tend to obscure other interactions). Also, it is 

only possible to annotate the network with one set of genes at a time. In Figures 4.6 

to 4.9, it was necessary to use an image editor to fade the pink lines, brighten the 

other lines, and to add additional annotation through the use of green and blue 

circles.
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Also, previous methods used by MetaCore to determine enrichment 

significance appeared to be biased towards finding significant results, even finding 

near-significant functional categories when the same gene list was used as target 

and background. However, this issue has been solved in the latest version of 

MetaCore -  enrichment analyses using the same gene list for target and background 

now find no results.

MetaCore has a wide array of capabilities, and this study has only used a 

small proportion of them. It would be interesting to investigate to what extent the 

disease-related genes in the Dobrin and MC66 clusters and subclusters overlap with 

the different functional categories for which they are enriched. Currently it is a 

challenge to do this systematically, due to the inability of MetaCore to output the 

genes of networks as plain text or to annotate networks with freely chosen functional 

categories. However, it may be possible to use its ability to export to the external 

network visualisation program Cytoscape to circumvent these limitations.

4.4.3 GIFtS
Ascribing mean GIFtS values to clusters enabled me to exclude annotation bias as a 

probable reason for enrichment (e.g. MC66 subcluster 3.1, see Section 4.3.7 above). 

The lack of interactions present between genes of this cluster in MetaCore might 

suggest that the cluster is a chance finding with no biological relevance, especially 

as it does not overlap heavily with any Dobrin subclusters. However, a lower mean 

GIFtS value than the MC66 2546 cluster implies that it cluster contains less well 

annotated and studied genes, explaining the lack of MetaCore interactions and 

alternatively suggesting that focusing future investigations on the genes of this 

duster may be particularly fruitful.

The lack of significant enrichments for this cluster when using association 

gene lists adjusted for gene length undermines this conclusion, though, and 

suggests that the enrichments of MC66 subcluster 3.1 may be due only to chance. 

However, MC66 subcluster 1.1, which is enriched for schizophrenia associated 

genes after adjustment for gene length and which also lacks many enrichments for 

genes from particular functional categories, has a lower GIFtS value than the parent

129



MC66 2546 cluster. This again suggests that genes in this subcluster could benefit 
from further study.

The work on GIFtS could be continued in several ways. Firstly, a more 

structured study examining the effects of using mean GIFtS to define the annotation 

level of expression clusters and other gene groups would be a necessary first step 

before GIFtS could be used like this on a larger scale. Comparing and contrasting 

GIFtS to other measures of annotation level, such as a count of the number of 

PubMed abstracts a gene is mentioned in, would also be useful.

Many of the data types which underlie GIFtS values are likely to be 

correlated. For example, it would be highly unlikely to have data on the SNPs a gene 

contains without first knowing the sequence of the gene. Using principle component 

analysis to analyse the underlying binary annotation data would allow the 

determination of which data types best distinguish between levels of annotation. This 

may also allow for improved definitions of annotation level, and possibly the creation 

of meaningful dimensions or subtypes of annotation level.

4.4.4 Enrichment for length adjusted associated gene lists
Generally, the enrichments for length adjusted associated gene lists were much less 

significant than the enrichments for the non-length adjusted gene lists (Table 4.10). 

As both the Dobrin 3093 and MC66 2546 clusters are enriched for genes with 

upregulated expression in neurons, it is possible that the presence of a large number 

of long neuronal genes biased the clusters and subclusters toward enrichment.

However, some subclusters retained some enrichment for disorder- 

associated genes, such as MC66 subcluster 1.3 (see Section 4.4.1 above). Others, 

such as MC66 subcluster 1 and 1.1 were much more enriched when gene length 

was corrected for and associated genes based upon the ISC were used. MC66 

subcluster 1.1 has few enrichments for functional annotations, but MC66 subcluster 

1 is enriched for GABA receptors, nervous system development and synaptic 

contact (Table 4.7).
It is also possible that the permutation-based adjustment for gene length 

biases too heavily against long genes (see Section 4.2.8 above). For example, a true 

association signal which exists at one end of a gene could be diluted more heavily if

that gene was long. This is because a long gene is likely to contain more non-
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associated, independent SNPs, each of which will have the opportunity to obtain a 

more significant p>value than the true signal during the permutations.

It would be interesting to examine the correlation between average gene 

length of a cluster or subcluster and significance of enrichment for disorder 

associated genes (using adjustment for gene length). A negative correlation between 

gene length and significance might indicate that the adjustment for gene length was 

too stringent, and is biasing the method in favour of shorter genes.

4.4.5 Two-step correlation network construction

The results for the two-step correlation networks supported the hypothesis that 

limiting network edge addition to regions of the network where reliable edges already 

exist leads to networks that are more robust to noise. The similarities between the 

networks produced from randomly perturbed and unperturbed data were much 

greater for the two-step correlation networks than the one-step correlation networks. 

Also, using the two-step correlation networks allowed a considerable increase in the 

number of genes on the network for a relatively modest reduction in significance of 

the most significant GO category. This suggests that two-step expression correlation 

network construction should be considered as an alternative to the standard one- 

step method in future work.

The method could be extended in a number of ways. Adding further steps to 

the method is a possibility -  permitting increasingly lax thresholds as the number of 

already-linked transcripts the expression of a gene correlates with increases. Using 

alternative data sources (such as MetaCore interactions) to seed the network with 

reliable edges (in addition to those seeded by the more stringent correlation 

threshold) might also increase the quality of the network produced.

The effect of using correlation thresholds based upon standard deviations 

above the mean absolute correlation would also be interesting to examine further. 

Using standard deviations allows for maximum comparability between two-step 

expression correlation networks produced from different sources, as regardless of 

the absolute extent of correlation, similar proportions of nodes will be linked by 

edges. However, it does not allow for the comparison of absolute correlation
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between networks, and means that adding or removing nodes from a network could 

affect the presence or absence of other edges.

Using highly significant negative correlations to link genes is another way in 

which the method could be extended. However, although this would allow the 

inclusion of connections where a negative correlation does indicate shared function, 

it may also include connections between genes that have opposing functions (e.g. 

genes from opposite sides of the cell cycle). It may be a better strategy to use 

positive correlations with the two-step method to determine low-level connections 

between genes and to form these genes into groups, then to use one-step positive 

and negative correlations between average expression values to show relationships 

among the groups. Positive and negative correlation of average expression could 

also be used to form a network from the clusters produced by mem ISA and k- 

means.

Extending the two-step method to report the average correlation among genes of a 

network, or giving the user a choice between absolute and relative correlation 

thresholds, might be useful. Alternatively, the method could also calculate the 

significance of each correlation, giving the option of using a significance threshold.
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Chapter Five

General Discussion

5.1 Expression data and psychiatric disease

A very large quantity of expression data has been produced through microarray 

analysis in the last 15 years (176). However, it has proven difficult to translate these 

data into reproducible results that have an impact on the understanding of human 

psychiatric disorders such as schizophrenia (177).

Part of the problem in the early days of large-scale expression analysis was 

the focus on finding genes that are differentially expressed between disease states. 

Individual genes found through differential expression analysis often fail to replicate 

in other studies or between different microarray platforms (178). This is partly due to 

the multiple testing burden inherent to testing thousands or tens of thousands of 

genes, and partly due to the relatively small sample sizes of microarray experiments. 

This leads to a high proportion of false positive results.

This is issue is further compounded by the diagnostic uncertainty affecting 

some neuropsychiatric disorders, especially schizophrenia (36). Currently, it is 

uncertain the extent to which schizophrenia represents a unified disease state with a 

common aetiology or a cluster of syndromes with related symptoms but a variety of 

causes. Some evidence suggests the former, such as the age of onset occurring in 

adolescence or early adulthood in the majority of schizophrenia cases. Other 

evidence points toward the latter, such as the range of symptoms experienced by 

schizophrenia patients or the existence of schizophrenia symptoms as part of rare 

developmental syndromes with specific genetic causes, such as velocardiofacial 

syndrome, caused by a deletion of chromosome 22q11.2 (179).

This diagnostic uncertainty reduces the power of microarray experiments to 

detect differentially expressed transcripts, as the expression of a gene may only vary 

in a specific subset of schizophrenia cases. It also reduces the reproducibility of 

differential expression results, as a result may depend upon the mix of subtypes of 

schizophrenia cases present in a dataset, which may not exist in independently
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derived datasets. Examining methods that look beyond the individual differentially 

expressed genes was therefore thought to be particularly appropriate in psychiatric 

diseases.

5.2 Comparison of clustering methods

These issues with differential expression analysis, have led to a greater focus upon 

clustering genes according to the similarity of their expression profile. Clustering 

methods can aid understanding of a dataset by simplifying the data from tens of 

thousands of genes to a much smaller number of gene expression clusters. They 

can also be a source of inference in their own right, as similarities in expression can 

indicate similarity in biological function (180).

In Chapter 2 , 1 examined the utility of four different clustering methods when 

applied to three brain gene expression datasets -  k-means clustering, Chinese 

Restaurant Clustering (CRC), the Iterative Signature Algorithm (ISA), and the 

Memory Iterative Signature Algorithm (memlSA) (66, 67, 181). Of the four methods, 

memlSA produced the highest percentage of enriched clusters, but these clusters 

only included a relatively small percentage of available genes. K-means clustering 

produced a slightly higher percentage of enriched clusters than CRC while assigning 

a cluster to every gene. The failure of CRC to outperform the simpler k-means 

clustering suggests that relatively simple methods may be more effective when used 

upon data with a particularly complex coexpression structure, such as brain 

expression data (42).

CRC and k-means clustering found similar sets of clusters, while memlSA 

and ISA produced different cluster sets to them. This was primarily due to the ability 

of memlSA and ISA to find clusters that only exist in subsets of the available 

samples. Therefore, combining the clusters found by k-means clustering and 

memlSA into a single set is a good strategy to find the widest possible selection of 

expression clusters in a dataset.

It is notable that one of the simplest clustering methods, k-means clustering, 

was the most effective upon brain gene expression data. It is possible that the 

simplicity of this method, which makes minimal assumptions about the structure of 

the data, is particularly well suited to dealing with highly complex brain expression 

data.
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This work could be expanded to examine a variety of other clustering 

methods. In particular, network-based methods, such as the Generalised 

Topological Overlap Matrix (GTOM) were not considered (182). It would also be 

interesting to see what effects the two-step network calculation method discussed in 

Chapter 4 would have upon the effectiveness of these methods.

5.3 eQTLs and the relevance of expression data to psychiatric disease
In addition to clustering and differential expression analysis, expression data can be 

used with SNP data from the same samples to calculate ‘expression quantitative trait 

loci’ (eQTLs). eQTLs are SNPs where there is evidence that the allele present has 

an effect on the expression of a gene transcript (112). They are found by regressing 

expression transcript level on genotype.

In Chapter 3 ,1 investigated whether SNPs which affect gene expression were 

more effective at predicting the schizophrenia affected status of samples from a 

separate dataset through polygenic score analysis. This method aggregates 

schizophrenia risk information across a large number of common SNPs associated 

with affected status at a lax threshold (p<0.5). Previous studies show that polygenic 

score is significantly higher in cases than in controls, suggesting that these common 

alleles of small effect play a role in schizophrenia aetiology (29, 104).

My results showed that these expression-affecting SNPs were in fact superior 

at predicting case/control status. Demonstrating that SNPs which affect gene 

expression are better predictors of schizophrenia implies that expression may be a 

mechanism by which common alleles influence schizophrenia risk. This has several 

implications for research into psychiatric disorders. Firstly, it supports the hypothesis 

that common SNP variants of limited effect are the primary genetic driver of 

schizophrenia development, rather than rarer variants of greater effect. Secondly, it 

validates the potential utility of expression data in the study of schizophrenia, 

suggesting that expression clustering and differential expression may also have 

relevance to the aetiology of the disorder.
Lastly, it shows that it is possible to use expression data to enhance the 

analysis of GWAS data for neuropsychiatric conditions. Although the analysis in this 

study deals with aggregated association and expression data, it may also be

possible to use them together to investigate specific genes. For example, if a gene
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which contained SNPs nominally, but not genome-widely, significantly associated 

with schizophrenia could be shown to affect the expression of a gene that is 

genome-wide significantly associated with schizophrenia, the evidence for both 

genes being true positives is strengthened.

Other authors have combined expression data with GWAS data to investigate 

a variety of medical conditions. Schadt et al used liver expression data to provide 

evidence to prioritise candidate genes for coronary artery disease and type I 

diabetes found through GWAS (122). This differed from the work here in that it 

focused on individual association loci, rather than using a method like polygenic 

score analysis to aggregate association data from across the genome. Nicolae et al 

looked at several medical conditions, examining the 10,000 most disorder 

associated SNPs for enrichment with SNPs with a high eQTL score (183). They 

found enrichment when considering autoimmune related conditions, which may be 

due to their use of lymphoblastoid cell line expression data to derive eQTLs.

However, neither of these studies took as large a selection of SNPs as my 

study, which combined eQTL data with SNPs from anywhere in the genome 

associated with schizophrenia at a lax p-value threshold of p<0.5. Hence, my study 

provides evidence that expression data can be combined usefully with GWAS data, 

whether using SNPs that are reliably associated with affected status or SNPs that 

only have the most marginal evidence for association.

5.4 Functional analysis of expression clusters using enrichment analysis
The clusters produced by using the memlSA and k-means clustering methods 

described in Chapter 2 on the Dobrin prefrontal cortex brain expression dataset were 

examined for enrichment for genes containing SNPs associated with schizophrenia 

according to a UK GWAS study (116, 184). A 3093-gene coexpression cluster, found 

using memlSA, was found to be significantly enriched for these genes.

Two clusters produced by using memlSA on the McLean 66 (MC66) 

prefrontal cortex expression dataset were identified as overlapping with the Dobrin 

3093-gene coexpression cluster, one containing 2546 genes and the other 

containing 436 genes. These clusters were significantly enriched for schizophrenia 

associated genes, and also for genes differentially expressed in schizophrenia 

according to the Stanley database.
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The Dobrin 3093-gene cluster and the two MC66 clusters were also examined 

for enrichment with genes differentially expressed in, or containing SNPs associated 

with, bipolar disorder. All three clusters were significantly enriched for both 

associated and differentially expressed genes, except for the MC66 436-gene cluster 

which was only significantly enriched for associated genes.

K-means clustering was used to subdivide the Dobrin 3093-gene and MC66 

2546-gene cluster into three subclusters each. Each of these subclusters was also 

divided into three using k-means clustering, creating a second layer of subclusters. 

The subclusters were also tested for enrichment for genes upregulated in brain cell 

types. Additionally, Dobrin subclusters which shared a high proportion of their genes 

with an MC66 subcluster were identified.

The subclusters were examined for enrichment with genes associated with or 

differentially expressed in schizophrenia or bipolar disorder. Several particularly 

heavily enriched subclusters were identified. One of the most enriched was MC66 

subcluster 1.3, which shared a high proportion of genes with Dobrin subcluster 2.2. 

Both of these subclusters were significantly enriched for schizophrenia associated 

genes, bipolar disorder associated genes, and genes differentially expressed in 

bipolar disorder.

However, this analysis did not take differences in gene length into account 

when determining enrichment for disorder associated genes. As long genes will on 

average contain more independent SNPs than short genes, there will be a greater 

likelihood of a long gene containing a particularly significantly associated SNP. This 

will bias lists of disorder associated genes toward including long genes. The analysis 

was therefore repeated using an external set of disorder associated genes which 

had been corrected for this bias.

The analysis using the length-adjusted disorder associated genes found that 

most of the clusters and subclusters were no longer significantly enriched for 

schizophrenia or bipolar disorder associated genes. There were some exceptions -  

in particular, MC66 subcluster 1.3 remained significantly enriched for bipolar disorder 

associated genes. However, the Dobrin subcluster 2.2, which shares a high 

proportion of genes with MC66 subcluster 1.3, was no longer significantly enriched 

for these genes.
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MetaCore was used to examine the clusters and subclusters for enrichment 

with several different functional categories. The MC66 1.3 and Dobrin 2.2 

subclusters were particularly enriched for genes relating to GABA neurotransmission 

and synaptic vesicles. This may suggest a link between these functional categories 

and the aetiology of bipolar disorder.

Overall, these results show that enrichment analysis can be a powerful tool 

for gaining insight into the possible functions of coexpression clusters. However, the 

analyses also demonstrate the effect a serious bias can have, with far fewer 

significant results after gene length was taken into account.

This work could be expanded in a number of directions. Firstly, it would be 

useful to return to the cluster sets produced by memlSA and k-means clustering, and 

examine them for enrichment for the sets of genes associated with schizophrenia or 

bipolar disorder after correcting for gene length. If a strongly enriched cluster was 

found, it could also be further analysed using MetaCore.

Correlations between the clusters and subclusters could also be calculated, to 

determine relationships between them within a cluster set. Additionally, correlations 

could function as an alternative to the proportion of genes shared when finding 

related clusters and subclusters between cluster sets derived from different 

expression datasets. The best method of calculating consensus expression values 

across the genes of a whole cluster would need to be determined, although simply 

taking the mean expression of all genes in a cluster could be used as a starting 

point.
MetaCore has a wide range of capabilities not touched upon in this study. In 

particular, using it to identify genes which multiple strands of evidence suggest are 

related to schizophrenia or bipolar disorder and which belong to functional 

categories of relevance to brain function would be useful. Direct interactions 

between these genes and other well-supported putative disorder related genes 

would also be interesting. Such genes are likely to be worthy of further investigation, 

using either bioinformatics or laboratory based techniques.
Similar approaches integrating information from a range of data types have 

proved useful in the study of other disorders, such as atherosclerosis or cancer 

(185). The results that these systems biology techniques have produced include

specific insights into the relationship between a particular gene and disease (186).
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They also include broader findings that connect atherosclerosis to functional 

categories, and have helped to emphasise the active role of immunity in the disease 
(187).

The study of these two diseases is different to the situation in the 

neuropsychiatric disorders examined here. They do not suffer the problems of tissue 

availability and diagnostic uncertainty to the same degree as schizophrenia or 

bipolar disorder. Furthermore, even before the advent of large-scale expression and 

GWAS datasets, the aetiology of both cancer and atherosclerosis was well 

understood, giving systems biology methods a reliable framework to add to. Despite 

these factors, integrative approaches offer a powerful way to increase our 

understanding of mental disorders.

5.5 Further work
The work in this study could be expanded in a number of directions. The comparison 

of clustering methods in Chapter 2, for example, could be expanded by increasing 

the number and type of methods studied. The eQTL and polygenic score analysis in 

Chapter 3 would benefit from replication using alternative GWAS datasets, or 

alternative datasets containing both expression and association data to derive 

eQTLs.

A potential use of eQTL data is to demonstrate a connection between a 

GWAS locus associated with a disorder and the expression values of a gene in the 

vicinity of the SNP. This can sometimes show that the mode of action of a disorder- 

associated SNP is not always through the closest gene to it. For example, Schadt et 

al found that eQTL and expression evidence suggested that RPS26, not ERBB3 as 

previously thought, was responsible for a novel type I diabetes association signal on 

chromosome 12q3 (122).

However, these relationships are not always simple to dissect. When 

Cookson et al examined an obesity associated missense SNP in SH2B1, they found 

it also affected the expression values of the nearby genes EIF3C and TUFM (109). It 

is uncertain whether this SNP is in linkage disequilibrium with another SNP that 

directly affects EIF3C and TUFM expression, or whether SH2B1 protein has a 

regulatory role in EIF3C and TUFM expression that the missense mutation affects.
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It might be useful to extend the eQTL and polygenic score analysis work in 

Chapter 3 by attempting to use expression data alone to predict affected status. A 

training dataset could be used to establish mean expression levels for cases and 

controls, and find the significance of any difference in expression between them. For 

each sample in the target dataset, the number of transcripts with expression levels 

closer to the mean expression for cases than controls could be assessed, and 

affected status regressed upon this.

The clustering methods described in Chapter 2 could also be used to group 

similar schizophrenia or bipolar disorder cases together, effectively defining 

expression-based subtypes of these disorders. Defining such subtypes could help to 

better link these diagnostic categories to the underlying biology, in a similar way to 

which expression data is used to define subtypes of some types of cancer (188). The 

subtypes would be particularly useful if they could be shown to also have relevance 

to external symptoms of the disorder (for example, an expression subtype whose 

members all suffer from paranoid delusions) or to the genotypes of the samples (e.g. 

an expression subtype whose members all share a risk allele in a specific gene).

The second two extensions share a common weakness. As they both use 

expression data from schizophrenia or bipolar disorder cases, they both may be 

affected by changes in expression caused by the treatment of neuropsychiatric 

disorders, rather than changes in expression caused by the disorders themselves. 

Although this may be corrected for by using linear regression with covariates that 

represent the extent of treatment in each sample, such as lifetime dosage of 

antipsychotic drugs in the case of schizophrenia, it is possible that the effects of 

such treatments are too complex to be simply accounted for.

5.6 Conclusions
Overall, this study demonstrates a variety of ways in which expression data can be

relevant to research into neuropsychiatric disorders. In Chapter 2, the clustering

methods detailed provide structure to the data, moving from the mass of expression

data to more specific clusters of coexpressed genes. These clusters were further

subdivided in Chapter 4, and enrichment analysis used to suggest links between the

subclusters and schizophrenia or bipolar disorder. Enrichment analysis was also

used to annotate the clusters and subclusters with functional categories. Clusters
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and subclusters that are enriched both for disorder-related genes and genes from a 

functional category suggest a possible link between that disorder and that functional 
category.

In contrast to this increasing specificity, in Chapter 3, entire brain expression 

datasets were used to categorise SNPs into sets with greater and lesser effect on 

global expression. These ability of these SNP sets to predict schizophrenia affected 

status through polygenic score analysis was then examined, and it was shown that 

the SNPs which affected expression to a greater extent also predicted schizophrenia 

affected status significantly better. This is a useful and novel finding which 

demonstrates that, despite the probable neurodevelopmental origin of schizophrenia, 

gene expression data from adult human brain can have relevance to the study of 

neuropsychiatric disease.
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Appendix A -  additional files

Appendix file 1 -  ISAscripts.zip

ZIP archive containing the Perl and R scripts needed to run the version of ISA and 

memlSA described here. Includes lnstructions.txt, a step-by-step guide to using 

them, and the Perl scripts needed to make them work with CONDOR.

Appendix file 2 -  AIIOverlaps.xls

Spreadsheet showing inter-method overlap for clusters from all methods, in all 

datasets. Overlap is defined as the percentage of genes present in the smaller 

cluster that are also found in the larger cluster.

Appendix file 3 -  SizeDistribution.xls
Spreadsheet showing number of genes present (cluster size) in each cluster for 

each method across all datasets. Also shows mean cluster size and standard 

deviation of cluster sizes.

Appendix file 4 -  Subcluster_Functional_Enrichment.zip

ZIP archive containing text files with significantly enriched functional categories for 

both parent clusters and all 24 subclusters. Functional category types are: MetaCore 

maps, MetaCore networks, GO biological process categories, GO molecular function 

categories, GO localisation categories. Where more than 50 functional categories 

are enriched, the top 50 are presented. ‘NS’ indicates that this was the top hit, but it 

did not reach significance.

Appendix file 5 -  Final_Thesis.doc

An electronic copy of this thesis.

Appendix file 6 -  Clustering_Comparison_Paper.pdf
An electronic copy of the peer-reviewed paper based upon Chapter 2.

Appendix file 7 -  eQTL_Polygenic_Score_Paper.docx
An electronic copy of the final draft of the paper based upon Chapter 3.
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Appendix B Tables showing regression of affected status on risk allele score 
for Chapter 3 secondary analyses

Table S1; Regression of affected status on risk allele score, secondary analyses (trans/cis 

context)

Row
Expression
dataset

Training
dataset

Target
dataset

Top /  bottom 
eQTL
percentage

Nagelkerke
pseudo-R2

Regression p- 
value

Case/control 
risk allele score 
difference

SNP
count

1 Myers et al Split ISC Split ISC Top 50% 1.48 7.58E-07 2.97E-05 27061
2 Myers et al Split ISC Split ISC Top 5% 0.46 6.24E-04 4.59E-05 4115
3 Myers et al Split ISC Split ISC Bottom 50% 1.92 1.37E-09 3.70E-05 26275
4 Myers et al Split ISC Split ISC Bottom 5% 0.40 7.74E-05 3.05E-05 4584
5 Myers et al MGS ISC Top 50% 0.70 5.61E-13 9.06E-06 15414

6 Myers et al MGS ISC Top 5% 0.13 1.03E-03 1.30E-05 2369

7 Myers et al MGS ISC Bottom 50% 0.68 1.25E-12 7.62E-06 14929

8 Myers et al MGS ISC Bottom 5% 0.30 1.63E-06 1.86E-05 2551

Table S2. Regression of affected status on risk allele score, secondary analyses using

GeneVar expression dataset (c/s context with 100kb c/'s window)

Row
Expression
dataset

Gene
subgroup

Training
dataset

Target
dataset

Top or 
bottom 
eQTL SNP 

list
Regression
coefficient

Regression
p-value

Nagelkerke
pseudo-R2

SNP
count

1 GeneVar All genes MGS ISC Bottom 50% 165.2 3.55E-08 0.00402 10643

2 GeneVar All genes MGS ISC Top 5% 23.23 0.0353 0.000471 1273

3 GeneVar All genes MGS ISC Top 50% 150.5 2.56E-07 0.00350 10130

4 GeneVar All genes Split ISC Split ISC Bottom 50% 283.8 2.16E-12 0.0132 18954

5 GeneVar All genes Split ISC Split ISC Top 5% 45.01 0.00297 0.00215 2238

6 GeneVar All genes Split ISC Split ISC Top 50% 246.9 5.80E-10 0.0102 18022
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Table S3. Regression of affected status on risk allele score, secondary analyses using

Gibbs et al expression dataset (cis context with 10Okb cis window)

Row
Expression
dataset

Training
dataset

Target
dataset

Top /  bottom 
eQTL
percentage

Nagelkerke
pseudo-R2

Regression
p-value

Case/control 
risk allele 
score 
difference SNP count

1 Gibbs et al Split ISC Split ISC Top 50% 1.68 2.63E-15 4.77E-05 14448
2 Gibbs et al Split ISC Split ISC Top 5% 0.40 8.56E-05 7.50E-05 1664
3 Gibbs et al Split ISC Split ISC Bottom 50% 1.31 2.82E-12 3.85E-05 14900
4 Gibbs et al Split ISC Split ISC Bottom 5% 0.32 0.000405 4.82E-05 2497
5 Gibbs et al MGS ISC Top 50% 0.60 2.08E-11 1.64E-05 8363
6 Gibbs et al MGS ISC Top 5% 0.31 1.16E-06 6.94E-05 989
7 Gibbs et al MGS ISC Bottom 50% 0.02 0.081694 -1.00E-05 8205
8 Gibbs et al MGS ISC Bottom 5% -5.49E-05 0.438684 -1.43E-05 1465

Table S4. Regression of affected status on risk allele score, secondary analyses based upon 

all genes (cis results with variant cis windows and results based upon the full set of SNPs in

the dataset of Myers et al)

Row
Expression
dataset

Gene
subgroup

Training
dataset

Target
dataset

CIS

window

Top or 
bottom 
eQTL SNP 
list

Regression
coefficient

Regression
p-value

Nagelkerke
pseudo-R2

SNP
count

1 Myers et al All genes MGS ISC 150kb Bottom 50% 136.2 1.60E-08 0.00424 7001

2 Myers et al All genes MGS ISC 150kb Top 5% 5.348 0.528 -8.25E-05 819

3 Myers et al All genes MGS ISC 150kb Top 50% 86.73 0.000335 0.00163 7014

4 Myers et al All genes MGS ISC 50kb Bottom 50% 99.03 1.15E-06 0.00311 4901

5 Myers et al All genes MGS ISC 50kb Top 5% 10.79 0.134 0.000171 556

6 Myers et al All genes MGS ISC 50kb Top 50% 84.61 1.01E-13 0.00941 4170

7 Myers et al All genes Split ISC Split ISC 150kb Bottom 50% 173.7 2.64E-07 0.00699 12582

8 Myers et al All genes Split ISC Split ISC 150kb Top 5% 53.31 1.11E-05 0.00503 1495

9 Myers et al All genes Split ISC Split ISC 150kb Top 50% 255.7 1.01E-14 0.0161 12398

10 Myers et al All genes Split ISC Split ISC 50kb Bottom 50% 127.6 5.35E-06 0.00541 8865

11 Myers et al All genes Split ISC Split ISC 50kb Top 5% 42.59 2.97E-05 0.00451 1047

12 Myers et al All genes Split ISC Split ISC 50kb Top 50% 188.0 2.02E-11 0.012 8830
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Table S5. Regression of affected status on risk allele score, secondary analyses with eQTLs

based upon expression cluster genes (cis context with 100kb cis window)

Row
Expression
dataset

Gene
subgroup

Training
dataset

Target
dataset

Top or 
bottom 
eQTL SNP 
list

Regression
coefficient

Regression
p-value

Nagelkerke
pseudo-R2

SNP
count

1 Myers et al
Dobrin 3093 
cluster MGS ISC

Bottom
50% 8.494 0.476 -6.75E-05 1685

2 Myers et al
Dobrin 3093 
cluster MGS ISC Top 5% -8.574 0.0390 0.000448 198

3 Myers et al
Dobrin 3093 
cluster MGS ISC Top 50% 9.390 0.448 -5.82E-05 1742

4 Myers et al
Dobrin 3093 
cluster Split ISC Split ISC

Bottom
50% 74.11 2.57E-05 0.00459 3103

5 Myers et al
Dobrin 3093 
cluster Split ISC Split ISC Top 5% 11.00 0.0878 0.000526 358

6 Myers et al
Dobrin 3093 
cluster Split ISC Split ISC Top 50% 81.35 1.95E-06 0.00594 3124
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Table S6. Regression of affected status on risk allele score, secondary analyses with eQTLs

based upon genes differentially expressed in schizophrenia or bipolar disorder (cis context

with cis window of 10Okb)

Row
Expression
dataset Gene subgroup

Training
dataset

Target
dataset

Top or 
bottom 
eQTL SNP 
list

Regression
coefficient

Regression
p-value

Nagelkerke
pseudo-R2

SNP
count

1 Myers et al

Schizophrenia
differential
expression MGS ISC

Bottom
50% 12.56 0.027 0.000534 335

2 Myers et al

Schizophrenia
differential
expression MGS ISC Top 5% 0.2266 0.902 -0.000135 46

3 Myers et al

Schizophrenia
differential
expression MGS ISC Top 50% 6.581 0.215 7.38E-05 335

4 Myers et al

Schizophrenia
differential
expression Split ISC Split ISC

Bottom
50% 8.136 0.286 3.79E-05 591

5 Myers et al

Schizophrenia
differential
expression Split ISC Split ISC Top 5% 2.182 0.406 -8.48E-05 73

6 Myers et al

Schizophrenia
differential
expression Split ISC Split ISC Top 50% 20.94 0.00535 0.00186 613

7 Myers et al

Bipolar disorder
differential
expression MGS ISC

Bottom
50% 14.06 0.044 0.00042 574

8 Myers et al

Bipolar disorder
differential
expression MGS ISC Top 5% -1.969 0.413 -4.51E-05 66

9 Myers et al

Bipolar disorder
differential
expression MGS ISC Top 50% 9.334 0.16 0.000134 549

10 Myers et al

Bipolar disorder
differential
expression Split ISC Split ISC

Bottom
50% 16.06 0.103 0.000458 982

11 Myers et al

Bipolar disorder
differential
expression Split ISC Split ISC Top 5% 5.81 0.082 0.000557 117

12 Myers et al

Bipolar disorder
differential
expression Split ISC Split ISC Top 50% 13.99 0.148 0.0003 976
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Appendix C Paper based upon chapter 2: A comparison of four clustering 

methods for brain expression microarray data
Published in BMC Bioinformatics 9:490 on November 25th 2008.
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A b s tra c t_________________________________________________________________________
Background: D N A  microarrays, which determine the expression levels of tens of thousands of 
genes from a sample, are an important research tool. However, the volume of data they produce 
can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity 
of their expression profiles can simplify the data, and potentially provides an important source of 
biological inference, but these methods have not been tested systematically on datasets from  
complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memlSA, 
are used upon three brain expression datasets. The results are compared on speed, gene coverage 
and GO enrichment. The effects of combining the clusters produced by each method are also 
assessed.

Results: k-means outperforms the other methods, with 100% gene coverage and G O  enrichments 
only slightly exceeded by memlSA and ISA. Those tw o methods produce greater G O  enrichments 
on the datasets used, but at the cost of much lower gene coverage, fewer clusters produced, and 
speed. The clusters they find are largely different to those produced by k-means. Combining 
clusters produced by k-means and memlSA or ISA leads to increased G O  enrichment and number 
of clusters produced (compared to  k-means alone), without negatively impacting gene coverage. 
memlSA can also find potentially disease-related clusters. In two independent dorsolateral 
prefrontal cortex datasets, it finds three overlapping clusters that are either enriched for genes 
associated with schizophrenia, genes differentially expressed in schizophrenia, or both. Two of 
these clusters are enriched for genes of the MAP kinase pathway, suggesting a possible role for this 
pathway in the aetiology of schizophrenia.

Conclusion: Considered alone, k-means clustering is the most effective of the four methods on 
typical microarray brain expression datasets. However, memlSA and ISA can add extra high-quality 
clusters to the set produced by k-means, so combining these three methods is the method of 
choice.
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B ackground
Clustering genes according to  th e ir expression profiles is 
an im portant step in  interpreting data from  m icroarray 
studies. Clustering can help summarise datasets, reducing 
tens o f thousands o f genes to a much sm aller number o f 
clusters. It can aid understanding o f systemic effects; look­
ing fo r a small change in  expression between disease states 
across many genes in  a cluster could be a better strategy fo r 
finding the causes o f complex, polygenic disorders than 
looking for large changes in  single genes[ll. Clustering 
can also help predict gene function, as coexpressed genes 
are more likely to have sim ilar functions than non-coex- 
pressed genes[2].

There are many clustering methods fo r m icroarray expres­
sion data currently available[3]. However, there are few 
comparisons o f these methods, m aking it  hard fo r 
researchers to make a rational choice between them. The 
m ajority o f papers comparing m u ltip le  clustering m eth­
ods use simulated data or data from  simple organisms 
such as bacteria and yeast [4-6], w hich may lim it the 
applicability o f their findings to  data from  more complex 
sources such as human tissues w hich express more genes. 
Thus, to investigate human disease, it  w ould be useful to  
test the methods upon expression data derived from  com­
plex human tissues, among w hich brain tissue is particu­
larly complex since it  expresses a higher proportion o f the 
genome transcribed than other tissues[7,8]. Thalam uthu 
etdl [9] have previously looked at a w ide range o f datasets, 
including some human expression datasets. However, 
since they restricted their analysis to  functiona lly  defined 
subsets o f genes, that analysis d id  no t fu lly  reflect the 
complexity o f human expression, particularly fo r disor­
ders where there is insufficient knowledge o f the ir aetiol­
ogy to focus on specific subsets o f genes.

We have examined four methods, k-means clustering! 10], 
Chinese Restaurant Clustering (CRC)[11], the Iterative 
Signature Algorithm  (ISA) [12,13] and a new, progressive 
variant o f ISA called memlSA. memlSA was loosely based 
upon another method called PISA, fo r which there was no 
suitable implem entation! 14]. These were chosen after a 
literature survey o f the available methods (see table in  
Additional Files 1). A ll four are unsupervised methods 
that derive the clusters from  the inpu t data, rather than 
supervised methods which classify genes in to  user-speci­
fied clusters.

Many o f the available comparative clustering studies focus 
exclusively on older methods [5,15], or restrict the ir anal­
ysis to  a single class o f clustering methods [4 ,6]. In  our 
study, the methods were chosen on the basis o f variety. 
ISA and memlSA are examples o f biclustering methods, 
CRC is a m ixture model based method, w hile  k-means 
clustering is a simple, well-understood algorithm . They

were reported as perform ing w ell by the ir authors and/or 
other studies [4,5].

The methods were also chosen partly on the basis o f nov­
elty. Apart from  k-means clustering, they are too recent to 
have been included in  many previous surveys o f clustering 
methods, and so are particularly in  need o f testing.

We compared the performance o f these three methods by 
exam ining the results fo r b io log ica lly meaningful cluster­
ing by looking fo r gene ontology (GO) enrichments 
w ith in  the resulting clusters. We also generated and com­
pared a m odified variation o f ISA, memlSA, which 
weighted against genes that were already members o f a 
cluster to  prevent bias o f clusters detected from  the strong­
est genes w ith in  them.

M eth o d s
Datasets
Three datasets were used fo r testing, the D obrin [16], 
McLean 66 [17] (MC66) and Perrone-Bizzozero (PB -  
GEO dataset GSE4036) [18] datasets (Table 1). They were 
downloaded in  CEL form at from  the Stanley Medical 
Research O nline Genomics database[16], the Harvard 
National Brain Databank database[17] and GEO[19], 
respectively. They were then processed using R[20], w ith  
custom CDF files to  map the probes to  genes[21]. Box 
plots were used to  examine the qua lity o f the data, and 
several ou tlie r samples were removed. Three versions o f 
each dataset were produced. One was normalised by the 
RMA median polish method, fo r use in  CRC and k- 
means[22]. The other tw o were normalised to  produce a 
gene-normalised and sample-normalised dataset fo r run­
ning ISA[12].

Gene coverage
Gene coverage, the percentage o f genes on the chip that 
are put in to  at least one cluster, was assessed fo r the cluster 
set produced by each method.

Speed
The methods were also assessed by speed. As ISA and 
memlSA are dependent on parallelisation to  run at a rea­
sonable speed, this is taken as real-world tim e taken to 
run, rather than computer run-tim e used. For k-means 
and penalised k-means, this includes the tim e taken to 
estimate k.

GO enrichment
GO enrichment is a method that assesses the percentage 
o f clusters that are significantly enriched (compared to  a ll 
annotated genes on the m icroarray) w ith  genes from  one 
or more Gene O ntology categories (from  the goa_human 
database) at different significance levels, using Fisher's 
exact test and the Benjam ini false discovery rate m ultip le
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Pre quality control number of 
samples

Post quality control number of 
samples

Tissue Chip Number of 
genes

Control SCZ BP Control SCZ BP

Dobrin 25 26 27 20 22 22 Brodmann 
Area 46

Affymetrix 
133 plus 2.0

20292

McLean 66 27 18 19 27 15 19 Dorsolateral
Prefrontal
Cortex

Affymetrix
I33A

12757

Perrone-
Bizzozero
cerebellum

14 14 0 14 14 0 Cerebellum Affymetrix 
133 plus 2.0

20292

Quality control consisted of box plotting the samples and removing outliers.

testing correction[23]. Clusters were tested fo r enrichment 
(using Fisher's exact test) fo r a ll GO biological process 
terms 3 or more levels deep in to  the hierarchical tree o f 
GO terms, at several different levels o f significance. A t 
least 3 genes from the input cluster had to  match a GO cat­
egory for the cluster to be counted as enriched fo r that cat­
egory, to ensure that chance appearance o f 1 or 2 genes 
from a GO category w ith  few members could no t affect 
the results. The percentage o f clusters matching this crite­
rion gives a measure o f the biological, functional rele­
vance o f the clusters.

GO enrichment was determined w ith  the web-based serv­
ice, GOstat[24]. This accepts m ultip le  kinds o f gene name 
or ID as input, allowing approximately 85% o f genes 
w ith in  the input clusters to be included. This was auto­
mated using WWW-Mechanize, a Perl m odule[25].

To compare the results o f GO enrichments fo r the various 
clustering algorithms, we also examined several random 
cluster sets using GO enrichment. Four sets o f clusters 
w ith  the same distribution o f cluster sizes as those made 
by k-means (at the value o f k recommended by cas- 
cadeKM), CRC, ISA and memlSA (both after removal o f 
overlapping clusters) were produced. The cluster sets 
made from  the Dobrin, MC66 and PB datasets were com­
bined when determining the d istribu tion  o f sizes. The 
new cluster sets had genes chosen at random from  a ll 
those available on the Affym etrix 133P chip.

k-means
k-means clustering is a standard clustering method that 
has been in  use fo r several decades [26]. It  requires that 
the user specify the number o f clusters to  sort the genes 
into (fe). k-means clustering is a single cluster membership 
method -  each gene can belong to  only one cluster and it  
also assigns every gene to a cluster. Essentially, it  d istrib ­
utes fe centroids (quasi-data points representing cluster 
centres) throughout the data. Data points are then

assigned to the ir nearest cluster, and the centroids are 
moved to m inim ise the distance between them and their 
assigned data points. This is repeated u n til the centroids 
stop moving. A number o f distance measures can be used 
to  define distance between data po in t and centroid, w ith  
Euclidean distance being one o f the most comm only used 
and simplest. The procedure is summarised in  Fig. 1.

There are numerous variants o f k-means clustering 
[27,28]. Here, two are tried -  standard k-means clustering, 
as above, and penalised k-means clustering. Penalised k- 
means clustering uses a threshold parameter (A.) to  allow 
some o f the genes to  be treated as noise, and not clustered.

In itia lly , an estimate fo r the value o f k was found fo r a ll 
three datasets using the cascadeKM function in  R. Values 
o f k between 2 and 35 were assessed, w ith  25 iterations 
per value, and the k values that m inim ised the Calinski 
criterion were chosen [29]. The recommended values o f k 
were 6 fo r Dobrin, 7 fo r MC66 and 8 fo r PB cerebellum, 
k-means and penalised k-means were then performed on 
a ll four datasets at 200 iterations and these values o f k. 
The recommended value o f 0.1 was used fo r X in  penal­
ised k-means.

These small values o f k w ill only partition  the data in to  
several large clusters, which may be too general a grouping 
to  provide biologically relevant inferences. To examine 
the performance o f k-means when producing smaller, 
more specific clusters, and also fo r a more direct compar­
ison to CRC, k-means and penalised k-means clustering 
were also performed w ith  values o f k equal to  the num­
bers o f clusters produced by CRC on that dataset (23 in  a ll 
cases).

k-means was performed using Cluster 3.0 [10]. Penalised 
k-means clustering was performed using PWKmeans [28]. 
Both were performed on a W indows desktop PC w ith  2 
GB RAM, using a 2.66 Ghz processor.
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££XfeidS (quasi-data points representing the centres o fthe  
clusters) are distributed at random among the data points

The distance (usually Euclidean distance, but other measures can be used) 
between every data point and each ggxjftgid is calculated

Each data point is associated w ith the nearest Q^xsUgijd

The move to minimise the distance between them  and their 
associated points, so moving to the centre of the ir points

r

Have the Qe.ntjr.gjds moved a sufficiently small amount 
-  i.e. has convergence been reached?

Yes

The configuration of clusters is remembered

Has the limit on the number o f iterations been reached?

Yes

No

The cluster configuration with the smallest distance between points 
and their associated g& j&rgisls is output as the clustering solution

Finish

Figure I
Flowchart summarising the m ethod used by k-means clustering, k is a user-defined input parameter which sets the 
number of clusters k-means clustering w ill find.
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CRC
CRC[11] is a model-based clustering method. The name 
arises from a metaphor where genes are regarded as cus­
tomers in  a Chinese restaurant w ith  unlim ited tables o f 
unlim ited size, each representing a cluster, and the ir food 
orders represent the expression p ro file  o f each gene. The 
customers are then seated at tables according to  the sim i­
larities o f their food orders. CRC has several advantages 
over other methods. It can handle m issing data and clus­
ter genes based on negative correlation and tim e-shifted 
correlation. Like k-means it  is a single cluster membership 
method. Its methodology is complex, and is based upon 
treating the expression profiles o f the genes as the sum o f 
m ultiple normal distributions.

The procedure is outlined in  Fig. 2. Each iteration o f the 
flowchart in  Fig. 2 can be considered a Markov chain proc­
ess. CRC runs a number o f these chains in  parallel (set by 
the user -  10 is the recommended amount), and reports 
the highest likelihood cluster set as the fin a l output. The 
chains are also lim ited to  a certain number o f iterations 
through the flowchart before reporting the ir clusters. This 
is another parameter decided by the user, and is recom­
mended to be set at 20. Finally, a probability cu t-o ff can 
be input, which determines how high the like lihood o f a 
gene being a member o f a cluster needs to  be in  order fo r 
it to be included in  the fina l output. In  practice, most 
genes are members o f their cluster w ith  probability 1, so 
this removes few genes.

CRC was performed on a ll three datasets. It was per­
formed at two parameter sets fo r each dataset -  10 chains/ 
20 cycles per chain/probability cut-o ff o f 0.7, and 20 
chains/40 cycles per chain/probability cut-o ff o f 0.9.

CRC was performed using a standalone program [11]. It 
was performed on a Unix server running Redhat OS w ith  
32 GB RAM, using one 2.2 Ghz processor.

ISA
ISA is a biclustering method -  it  clusters both rows and 
columns o f the dataset, here the genes and the specific 
samples they come from  [12,13]. This allows ISA to focus 
on subsets o f samples w ith  good signal fo r the genes o f the 
cluster, reducing the amount o f noise (see Fig. 3). Unlike 
k-means and CRC, it  is not a single-duster membership 
method: it  allows genes and samples to belong to m u lti­
ple dusters, and does not have to  put every gene in to  a 
cluster. A high proportion o f its dusters were found to be 
significantly enriched fo r one or more GO terms in  yeast 
data[4].

ISA produces tens o f thousands o f dusters. In  postprocess­
ing, to reduce this set to a manageable size, duplicate dus­
ters are removed, sim ilar dusters are merged, and dusters

can be reiterated through ISA. The nature o f postprocess­
ing affects the fina l dusters.

ISA also assigns 'scores' to  genes and samples it  has dus- 
tered, as part o f its method. A gene or sample w ith  a high 
score w ill have more influence on the samples or genes 
selected at the next stage o f the process. The fina l values o f 
these scores are reported in  ISA's output. A high score here 
indicates that the gene or sample has had greater influence 
over the dusters' contents than a gene or sample w ith  a 
low  score.

ISA was used on the D obrin datasets w ith  8 different post­
processing regimes (see A dditional Files 2, ISAPost- 
processing.doc, fo r details). The regime that produced the 
highest GO enrichments induded filte ring  the dusters by 
size and number o f occurrences, and using less stringent 
sim ilarity criteria when combing sim ilar dusters.

To compare w ith  memlSA, CRC and k-means, runs were 
performed on a ll three datasets, at 20000 iterations. These 
runs used ^  values o f 1.0 to  4.2 (indusive, increasing in  
0.1 intervals). D ifferent Rvalues were used fo r different 
datasets, as each contained different numbers o f samples 
-  D obrin was run at tc 0.2, 0.5 and 1.0, MC66 at 0.25 and 
1.25, and PB cerebellum at 0.1, 0.4 and 0.7. Filtering was 
used -  a duster had to have appeared 3 times, and contain 
at least 40 genes, to  be induded in  the fina l output. Clus­
ters that shared 70% or more o f the ir genes w ith  a larger 
duster were removed from  the fina l results (see below).

ISA was w ritten in  Perl (see Additional Files 3, ISAS- 
cripts.zip fo r a zip file  containing a ll ISA and memlSA 
scripts), based upon the previous Matlab implementa- 
tion [13 ]. This implem entation has a ll o f the properties o f 
the Matlab version. The postprocessing scripts were w rit­
ten in  Perl. The normalisation script was w ritten in  R[20]. 
ISA was parallelised using C ardiff University's CONDOR 
network, which distributes ind ividua l ISA runs to unused 
Windows desktop computers across campus[30].

memlSA
The underlying method o f memlSA is dosely based on 
ISA and sim ilar to  PISA[14] (Fig. 3). It biases against both 
genes and samples that have already been put in to  a dus­
ter, according to two user input parameters, /  and n. The 
bias is calculated relative to  the highest scoring gene and 
sample in  a duster -  this has its gene/sample score m u lti­
plied by the factor (1 - f )  in  future iterations. A ll other 
genes/samples found in  a duster have the ir future scores 
reduced by a smaller amount. This is determined by the 
proportion o f their score and the highest gene/sample 
score -  a gene w ith  a quarter o f the score o f the highest 
gene w ill have its future scores m ultip lied  by 1 - ( f  * 0.25). 
The in tent o f this is to bias against the highest scoring
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All genes are distributed among an arbitrary number of arbitrary clusters

The next gene in order is picked

The effect on the cluster indicator variables of moving this gene to 
a cluster on its own is calculated

The next cluster in order is picked

The effect on the cluster indicator variables of moving this gene to this cluster is calculated

No
Have the effects of moving this gene to all clusters been calculated?

One of the possible 'moves' for the gene is chosen at random, with probabilities proportional 
to their effect on the cluster indicator variables

No
Has a move been calculated for all genes?

Yes

Yes Has the number of clusters converged, or the limit on the number of iterations been reached?

The genes are passed through 
again, from the beginningFinish

Figure 2
Flowchart summarising the m ethod used by CRC. One run through this flowchart equates to  a single chain in CRC, 
with several chains being run in parallel. The number o f parallel chains and the maximum number o f iterations are user-defined
parameters.

genes of a cluster while allowing lower scoring genes to be 
relatively unaffected and still be included in subsequent 
clusters (the highest scoring genes typically have scores 10 
times greater than the majority of genes in a cluster). If  a 
gene/sample is included in a subsequent cluster, the 
biases are multiplied together -  a gene which is the strong­

est gene in two successive clusters would have its score 
multiplied by (1 - f ) 2 in following iterations.

These biases are only remembered for a certain number of 
iterations (n). Every n iterations, the slate is wiped clean. 
This is to ensure that memlSA does not begin returning
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Random sample of genes picked <-----

I
Mean expression of each sample over these genes in the 

sample normalised matrix found -  weighted by the 
score of each gene (initially equal)

<—

Those samples with mean expression Tc standard deviations 
above this value are selected and these mean values taken as 

'sample scores' -  Tc is a predefined threshold value

r

Mean expression of each gene over these samples in the 
gene normalised matrix found -  weighted by the 

score of each sample

r

Those genes with mean expression Tg standard deviations 
above this value are selected and these mean values taken as 

'gene scores' -  Tg is a predefined threshold value

f  Are selected genes the same as the previous iteration? J
No

Yes

Selected genes and samples are written to a file (with scores)

Have sufficient random samples been processed?
No

Finish

Figure 3
Flowchart summarising the m ethod used by ISA. tQand tca re  user-defined threshold parameters. They determine how 
great the level of expression fo r a gene o r sample (defined in standard deviations from the weighted mean o f all genes over 
those samples, o r all samples over those genes) needs to  be fo r selection in the cluster. Higher values lead to  more, smaller 
clusters, lower values to  fewer, larger clusters. A  preliminary run at a low  number of iterations, w ith a wide range o f values fo r 
t Gand t c, is used to  determine a sensible range o f ^ a n d  t c values fo r use in the main run.
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noise once it has found a ll the available dusters in  the 
data, and to lim it the effect that an early m isdustering can 
have on the results.

memlSA was run on the D obrin dataset at 20000 itera­
tions w ith a number o f different values fo r/a n d  n (Table 
2). It was found the results were generally robust to  the 
values o f/a n d  n, and th a t/=  0.7 and n = 5 produced dus­
ters w ith the highest GO enrichment, so these values were 
used in  all further analysis. A filte ring  step was also 
attempted on one dataset to see i f  it  w ould improve GO 
enrichment. For this, those genes whose gene scores were 
in  the bottom 10% fo r the ir duster were removed from  
the duster. This step reduced both gene coverage and GO 
enrichment and so was not used further.

memlSA was run on the Dobrin, MC66 and PB cerebel­
lum  datasets at ^  1.0 to 4.2 (indusive, increasing in  0.1 
intervals) and tc 0.2, 0.5 and 1.0. F iltering was carried out 
as w ith  ISA, using an occurrence threshold o f 3 and a size 
threshold o f 40.

memlSA was implemented in  Perl, and was based upon 
the new Perl implementation o f ISA. Like ISA, it  was par­
allelised using CONDOR.

Assessing overlap between dusters
We examined inter-method overlap in  gene membership 
o f dusters for the four methods and intra-m ethod overlap 
o f ISA and memlSA. CRC and k-means, as single-duster 
membership methods, had no intra-m ethod overlap 
between their dusters. ISA and memlSA duster sets, how­
ever, both contained a large amount o f intra-m ethod 
overlap, making them impossible to  compare fa irly  w ith  
clusters produced by k-means or CRC. To try  to  fadlita te

fa ir comparison, dusters w ith  gene overlap above a cer­
ta in level (values o f 60, 70 and 80% gene overlap were 
tried) were merged but since this resulted in  datasets w ith  
fewer than 3 clusters, this approach was abandoned. As an 
alternative, where over 70% o f the genes in  the smaller o f 
a pair o f dusters was shared w ith  a larger duster, the 
smaller duster was removed. This process was performed 
on a subset o f ISA and memlSA output -  those raw dus­
ters produced at tc  = 2.1 or greater were used, and the rest 
discarded. This was in  order to prevent a few very large 
dusters causing the removal o f nearly a ll smaller dusters. 
This overlap removal step was applied after a ll other post­
processing.

Combining methods
As there was not a large amount o f overlap in  dusters 
obtained between the ISA methods and either CRC or k- 
means, the possibility o f com bining the ir duster sets to 
improve GO enrichment was investigated. The duster sets 
were sim ply combined and dusters that had over 70% 
gene overlap w ith  a larger duster were removed as above. 
One set contained k-means, memlSA and ISA clusters, one 
set contained CRC, memlSA and ISA dusters. The 
memlSA and ISA dusters had already had overlaps 
removed before combining. The CRC set used was the 10 
chains/20 cycles per chain/0.7 cut-off. The k-means sets 
used were the k = 23 and k  = 22 sets.

Enrichment o f dusters for schizophrenia related genes
The dusters produced from  the combined k-means/ISA/ 
memlSA method on the D obrin dataset were tested fo r 
enrichment w ith  607 genes associated w ith  schizophrenia 
below a nom inal threshold o f p < 0.005 according to  a 
recent genome-wide assodation study [31]using the pro­
gram EASE [32], which implements a version o f Fisher's

Table 2: Comparison of GO enrichments for different memlSA parameters in Dobrin (overlaps not removed)

% enriched at 
varying p-vals

f  = 0.5, 
n = 10

f = 0.75, 
n = 5

f  = 0.75, n = 5, 10% of genes with lowest 
gene scores removed from clusters

f = 0.5, 
n = 3

p-val < 0.3 62.5 92.3 88.5 85.7

p-val < 0.1 50.0 65.4 57.7 60.7

p-val < 0.05 50.0 57.7 53.8 50.0

p-val < 0.01 43.8 42.3 42.3 46.4

p-val < 0.001 37.5 38.5 38.5 42.9

p-val < 0.0001 3 1.3 34.6 26.9 28.6

Gene coverage 6I.I 78.8 74.7 74.7

Number of clusters found 16 26 26 28
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Exact Test. Enriched dusters were also tested fo r enrich­
ment for 352 genes d ifferentia lly expressed between schiz­
ophrenics and controls in  the analysis o f the Stanley 
Medical Research Institute O nline Genomics Data­
b a s e ^ ] at an uncorrected p-value o f 0.02 o r lower.

Clusters from  combined k-means/ISA/memlSA in  the 
independent MC66 dataset that shared over 45% o f the ir 
genes w ith any enriched duster from  the D obrin  dataset 
were then identified. Their enrichment fo r schizophrenia- 
assodated genes and genes d ifferentia lly expressed in  
schizophrenia was then determined w ith  EASE. A  permu­
tation-based method o f enrichment determ ination was 
also used. This allows the enrichment p-value fo r the 
MC66 dusters to be determined independently o f the 
Dobrin duster. 4000 pairs o f dusters were constructed at 
random from the genes present on the A ffym etrix 133A 
chip.

The random dusters were constructed in  pairs, as follows. 
Firstly, the number o f genes shared between the three 
clusters was calculated (see Fig. 4). These figures were then 
used to create randomised MC66 dusters w ith  the same 
level o f overlap w ith  the Dobrin duster and each other.

165 genes from  the Dobrin 3093-gene duster were 
selected at random, and placed in  both the 2546-gene and 
436-gene MC66 randomised dusters. From the rem aining 
Dobrin duster genes, 1068 and 24 genes were selected at 
random, the former placed in  the 2546-gene randomised 
duster, the latter placed in  the 436-gene randomised dus-

MC66
436-

gene
cluster

MC66
2546-
gene
cluster

Dobrin 3039-gene cluster

Figure 4
Overlap between putative schizophrenia-related  
clusters produced from  Dobrin and M C66 datasets.
Venn diagram showing the amount of overlap between the 
clusters enriched for schizophrenia-related genes, in order to  
construct randomised clusters for permutation.

ter. Then, 102 genes from  the genes on the chip not 
present in  the Dobrin 3093-gene duster were selected at 
random, and placed in  both the 2546-gene and 436-gene 
randomised dusters. From the remaining genes on the 
chip not present in  the D obrin 3093-gene duster, 983 and 
90 genes were selected at random, the form er placed in  
the 2546-gene randomised duster, the latter in  the 436- 
gene randomised duster. This was repeated 4000 times to  
produce a population o f 8000 random dusters. These 
dusters were then processed w ith  EASE in  the same way as 
the original duster, allow ing the original results to  be 
compared to  them.

These dusters were also examined fo r enrichment in  
KEGG and BioCarta pathways, using the Composite Reg­
ulatory Signature Database [33] (h ttp :// 
140.120.213.10:8080/crsd/main/home. jsp). and fo r
enrichment in  GO biological process categories using 
GOstat.

EASE was also used to test these dusters fo r enrichment 
w ith  genes found to  be ten-fold o r more upregulated in  
specific cell types w ith in  brain tissue according to  Cahoy 
et al [34]-spedfically, neurons, oligodendrocytes and 
astrocytes.

R esults and discussion
A ll four methods performed better than the random dus­
ter sets when examined using GO enrichment to  represent 
known biological rdationships (Figs. 5 ,6, 7). This im plies 
that a ll the dustering methods result in  groupings o f b io ­
logical significance. O f the three random duster sets, 
those w ith  the same size d istribu tion  as ISA had slightly 
lower GO enrichment than those w ith  the same size dis­
tribu tion  as memlSA or CRC. This may suggest that GO 
enrichment has a small bias against ISA due to  the sizes o f 
dusters it  produces. However, at p < 0.05 the difference 
dropped to under 1% GO enrichment, suggesting that any 
such bias is extremely slight and may w ell be due to  
chance.

k-means and penalised k-means
k-means and penalised k-means produced dusters w ith  
high GO enrichments, espedally at the lower k values rec­
ommended by cascadeKM. In  these low -k duster sets, k- 
means obtained higher GO enrichments than penalised k- 
means. In  the k = 22 and k = 23 duster sets, they produced 
duster sets w ith  sim ilar GO enrichment (Figs. 5, 6, 7). As 
k-means gave sim ilar GO enrichment to  penalised k- 
means and by defin ition  dustered more genes it  was used 
in  comparisons w ith  the other methods.

Effect of CRC parameters on GO enrichment
The different parameter sets used fo r CRC made little  d if­
ference to the GO enrichments o f its dusters. (Figs. 5, 6,
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Figure 5
G O  enrichm ent and gene coverage o f clusters fo r all m ethods -  D obrin  dataset. Orange, green, yellow and light 
blue bars are the percentage o f clusters that are significantly enriched fo r one o r more GO categories at p < 0.05, 0 .01, 0.001 
and 0.0001 respectively. Dark blue bar is gene coverage, the percentage o f genes available on the chip that are assigned to  at 
least one cluster. Numbers in square brackets are the number o f clusters produced by that method. 'Dist.' = distribution of 
sizes. Parameter set A for CRC is 10 chains and 20 iterations per chain. Parameter set B fo r CRC is 20 chains and 40 iterations 
per chain.

7). Increasing the numbers of iterations or cycles or 
increasing the probability cut off had little effect which 
suggests that altering these parameters is unnecessary, and 
that the default values of 10 cycles and 20 iterations per 
cycle should be used for most datasets, with parameters 
only being increased on very large datasets. One problem 
noted with CRC was that analysing more than 202 sam­
ples caused the program to crash. This occurred on both 
Windows and Linux versions of the program, so was pre­
sumed to be an inherent problem with the program.

Effect of ISA parameters on GO enrichment
In contrast to CRC, changing the parameters of ISA can 
have unpredictable effects on the GO enrichment of its 
clusters, particularly after overlaps have been removed 
(see Figs. 5, 6, 7). The different values of tc used in 
memlSA and ISA for the PB cerebellum and MC66 data­
sets may help explain some unexpected results -  in partic­

ular, the very large number of clusters produced by 
memlSA prior to removing the overlaps in PB cerebellum, 
and the unexpectedly poor performance of memlSA on 
the MC66 dataset. However, these may also be due to 
chance differences in the selection of random starting 
clusters, or to inherent qualities of the methods.

Effect o f memlSA parameters on GO enrichment
memlSA is robust to the choice of /  and n, as all o f the 
combinations tried produced reasonable GO enrichments 
(see Table 2). / =  0.7 and n = 5 were chosen because they 
produced clusters with slightly better GO enrichments 
than other parameter sets.

Comparison o f clusters detected
There was a large amount of overlap between the clusters 
produced using penalised k-means and k-means at k = 23, 
with the majority of clusters (from all three datasets) hav-
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Figure 6
G O  enrichm ent and gene coverage o f clusters fo r all m ethods -  M C66 dataset. Orange, green, yellow and light blue 
bars are the percentage of clusters that are significantly enriched fo r one o r more GO categories at p < 0.05, 0 .01, 0.001 and 
0.0001 respectively. Dark blue bar is gene coverage, the percentage o f genes available on the chip that are assigned to  at least 
one cluster. Numbers in square brackets are the number o f clusters produced by that method. 'Dist.' = distribution o f sizes. 
Parameter set A for CRC is 10 chains and 20 iterations per chain. Parameter set B fo r CRC is 20 chains and 40 iterations per 
chain.

ing over 70% overlap with a cluster from the other 
method, and all others having over 40% overlap (see 
Table 3 and Additional Files 4 -  AllOverlaps.xls for more 
detail). Since these methods found similar clusters, fur­
ther analysis was focused on standard k-means clustering, 
as it had 100% gene coverage.

There was considerable overlap in the results obtained 
between k-means and CRC across all three datasets. This 
suggests that k-means and CRC find similar patterns 
within the datasets. Conversely, there was little overlap 
between either k-means or CRC and either memlSA or ISA 
clusters. In the case of ISA, there were a few overlaps at 
70% or above for each dataset. In the case of memlSA, 
there was a large cluster that overlapped with several of 
the smaller clusters produced by CRC at 70% or more,

plus one other 70% plus overlap between more similarly 
sized clusters, in all three datasets.

Removing clusters with over 70% intra-method gene over­
lap from the ISA and memlSA cluster sets reduced the 
number of clusters considerably. These sets contained 
only 4 -10  clusters and were much smaller than the origi­
nal ones. However, their GO enrichments were generally 
considerably higher (see Figs. 5, 6, 7) but at the cost of a 
considerable drop in gene coverage.

Nearly all ISA clusters had over 70% overlap with a 
memlSA cluster across all three datasets. However, less 
than half of the memlSA clusters had over 70% overlap 
with a cluster from ISA, as many of the ISA clusters overlap 
with the same memlSA cluster. This level o f overlap is sur­
prisingly high, considering that their post-processing
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Figure 7
G O  enrichm ent and gene coverage o f clusters fo r all m ethods -  PB dataset. Orange, green, yellow and light blue 
bars are the percentage of clusters that are significantly enriched fo r one o r more GO categories at p < 0.05, 0 .01, 0.001 and 
0.0001 respectively. Dark blue bar is gene coverage, the percentage o f genes available on the chip that are assigned to  at least 
one cluster. Numbers in square brackets are the number o f clusters produced by that method. 'D ist.1 = distribution o f sizes. 
Parameter set A  for CRC is 10 chains and 20 iterations per chain. Parameter set B fo r CRC is 20 chains and 40 iterations per 
chain.

Table 3: Percentage overlap between clusters produced by different methods

k-means Penalised k-means CRC ISA memlSA

k-means 100 62.3 52.2 8.7 8.7

Penalised k-means 63.8 100 57.5 4.3 4.3

CRC 52.2 54.5 100 7.2 27.5

ISA 25 25 23.1 100 95.2

memlSA 26.1 26.1 26.1 56.5 100

Values in table indicate the percentage of clusters produced by the method in the left margin that have over 70% gene overlap with one or more 
clusters produced by the method in the top margin.
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regimes already include a step to  merge sim ila r clusters. 
However, this step requires high sample overlap and cor­
relation o f shared gene/sample scores in  addition to  sim­
ple gene overlap. It also uses the size o f the larger cluster 
to calculate overlap -  i.e. 50% overlap in  th is step in d i­
cates that 50% o f the genes in  the larger cluster are found 
in  the smaller cluster. As a result, it  tends to  only combine 
clusters o f a sim ilar size. The a b ility  o f memlSA to bias 
against already-found clusters may help it  fin d  clusters 
that would previously have been hidden by a stronger 
cluster, a useful feature when looking fo r novel clusters.

The tendency o f the cluster merging step in  ISA and 
memlSA to only combine clusters o f a sim ilar size may 
help to explain the improvement in  GO enrichm ent the 
removal o f overlapping clusters produces. Requiring a 
sim ilar size and sim ilar samples and gene/sample scores 
may help to ensure that only those clusters which come 
from  the same signal are actually merged, excluding noise 
clusters w ith  a coincidentally high gene overlap. The over­
lap removal process would then remove these clusters 
from  the dataset altogether, im proving GO enrichment.

The reasons for the poorer performance o f memlSA on the 
MC66 dataset are not known. It is possible that the d iffer­
ence in  the tc and tc parameters between memlSA and ISA 
fo r this dataset was critical. The smaller number o f genes 
in  this dataset m ight also be im portant, and so reducing 
the values o f ̂  used may help. Alternatively, it  m ight be 
that chance played a role. memlSA may be inherently 
more prone to chance variation than ISA or CRC.

Combining methods
The cluster sets produced by com bining the methods had 
sim ilar gene coverage to those produced by CRC/k-means 
alone (see Figs. 5, 6, 7). They generally had a higher 
number o f clusters. For the CRC/ISA/memlSA combined 
set, the GO enrichment o f these clusters was higher in  the 
Dobrin and PB cerebellum datasets,. In  the k-means/ISA/ 
memlSA combined sets, the gains in  GO enrichment rela­
tive to k-means alone were generally smaller: under 5% at 
most levels o f p. There were a few small losses in  GO 
enrichment in  some datasets and at some levels o f p, but 
generally the impact on GO enrichment was s till positive.

Gene coverage
Before highly overlapping clusters were removed from  the 
clusters produced by ISA, k-means had the highest gene 
coverage (100% by defin ition), fo llow ed by CRC, and 
then by memlSA and lastly ISA. However, these cluster 
sets are not directly comparable on number o f clusters or 
on GO enrichment, as the cluster sets produced by ISA 
and memlSA contain a large amount o f redundancy.

As memlSA and ISA had much lower gene coverage than 
k-means or CRC, the relationship between mean gene

expression levels and cluster membership was examined 
fo r these methods in  the D obrin dataset. For both ISA and 
memlSA, no significant correlation was found (r = -0.132 
fo r ISA, r = -0.081 fo r memlSA).

Cluster size
The number o f genes per cluster fo r each method and 
dataset was also examined, and the mean cluster size and 
standard deviation computed (see Additional Files 5, Size- 
D istribution.xls). Generally, CRC, k-means and penalised 
k-means were consistent in  the ir cluster sizes, which 
appear to  vary only w ith  the number o f genes in  the data­
set. The average cluster size was between 800 and 900 for 
these three methods in  both 133P datasets (D obrin and 
PB), and between 500 and 600 in  the MC66 dataset. ISA 
generally produces clusters that are smaller than this, 
between 400 and 600 on average (w ith  no obvious rela­
tionship to  number o f genes or samples in  the dataset). 
memlSA, conversely, is particularly prone to  producing 
datasets w ith  one or two particularly large clusters, giving 
it  a higher average cluster size and standard deviation. 
This is because the larger number o f unique clusters it  pro­
duces makes it  more like ly  fo r clusters to  overlap and be 
merged, leading to these extremely large clusters.

To examine whether cluster size affected enrichment, clus­
ter size was checked fo r correlation w ith  log10 o f the p-val­
ues o f the best GO h it fo r each cluster (unenriched clusters 
were treated as having a p-value o f 1). No significant cor­
relation was found fo r any o f the methods.

Speed
The three datasets were used to  evaluate approximate 
runtimes fo r the four methods (see Table 4). CRC and k- 
means are very fast methods, w ith  a runtim e o f a few 
hours on current computer technology. ISA and memlSA, 
meanwhile, are much slower, taking up to  a m onth w ith ­
out parallelisation. Even w ith  parallelisation using CON­
DOR, ISA and memlSA can take over 24 hours fo r a fu ll 
parameter set when post-processing is included. Restrict­
ing the parameters to  tQ 2.1 and above, as in  the non-over­
lapping cluster set before, reduces these times by up to 
half.

Enrichment o f clusters for schizophrenia related genes
The clusters produced from  the combined k-means/ISA/ 
memlSA method on the D obrin  dataset were tested fo r 
enrichment w ith  607 genes associated w ith  schizophrenia 
according to a recent genome-wide association study[31], 
using the program EASE [32]. These 607 genes each con­
tained at least one SNP associated w ith  schizophrenia at 
an Armitage p-value o f 0.005 or under. One cluster, con­
ta ining 3093 genes and orig ina lly found by memlSA, was 
enriched (p = 0.0104 after Bonferroni correction fo r 26 
clusters).
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Table 4: Comparison of method runtimes

Runtime on different datasets ISA (using CONDOR) memlSA (using CONDOR) CRC -  10/20 CRC -  20/40

Dobrin 23 h 6 min 37 h 22 min 2 h 12 min 7 h 53 min

MC66 17 h 23 min 28 h 55 min I h 15 min 4 h 33 min

PB cerebellum 15 h 11 min 24 h 13 min I h 7 min 3 h 53 min

Table showing the real-world time taken for the methods to run on each dataset.

This duster was also tested fo r enrichm ent w ith  352 genes 
found to be differentially expressed between schizophren­
ics and controls in  the analysis o f the Stanley Medical 
Research Institute Online Genomics Database[16] at an 
uncorrected p-value o f 0.02 or lower. The cluster was 
slightly enriched, at a p-value o f 0.09.

Clusters from  combined k-means/ISA/memlSA in  the 
independent MC66 dataset that shared over 45% o f the ir 
genes w ith this enriched duster were then identified. Two 
dusters were found (containing 2546 and 436 genes 
respectively), both o f which were nom ina lly enriched fo r 
both schizophrenia-assodated genes (2546-gene duster 
at p = 0.0127, 436-gene cluster at p = 0.0117) and genes 
differentially expressed in  schizophrenia (2546-gene dus­
ter at p -  0.0064, 436-gene duster at p = 0.00047 -  see 
Additional Files 6, Clusters.xls, fo r the gene symbols o f the 
genes in  these dusters). However, since these clusters have 
some overlap w ith  the 3093-gene D obrin cluster, th is can­
not be considered independent replication o f the original 
duster.

To avoid this confounding effect, the ir enrichm ent fo r 
schizophrenia-assodated genes and genes d ifferentia lly 
expressed in  schizophrenia was determined using a per­
mutation-based method. The 436-gene duster remained 
significantly enriched fo r the schizophrenia assodated 
genes, while the 2546-gene duster showed some enrich­
ment, but this was insuffident to  be significant (permuta­
tion  p = 0.169 for the 2546-gene duster, perm utation p = 
0.0255 for the 436-gene duster). However, both dusters 
were significantly enriched fo r genes d ifferentia lly 
expressed in  schizophrenia (perm utation p = 0.0053 fo r 
the 2546-gene duster, permutation p = 0.0005 fo r the 
436-gene duster).

These dusters were also examined fo r enrichment in  
KEGG and BioCarta pathways, using the Composite Reg­
ulatory Signature Database (33] (http://.
140.120.213.10:8080/crsd/main/home.isD). The top h it 
fo r the Dobrin duster and the 2546-gene MC66 duster 
was the KEGG entry fo r the MAPK signalling pathway (p 
= 1.12e 7, FDRq = 0.00024 in  Dobrin, p = 6.95e10, FDRq 
= 1.46e'6 in  MC66). The only significant h it fo r the MC66

436-gene cluster was from  the BioCarta Synaptic Junction 
pathway (p = 3.88e 5, FDR q = 2.7 le 2).

The MC66 436-gene cluster was also examined using 
GOstat, where the best h it was fo r G0:0007399 (nervous 
system development) GO category (p = 0.044 after FDR 
correction).

The three dusters were also tested fo r enrichment w ith  
genes found to  be ten-fold o r more upregulated in  specific 
cell types w ith in  brain tissue according to  Cahoy et al [34]- 
specifically, neurons, oligodendrocytes and astrocytes. A ll 
three dusters were found to be h igh ly significantly 
enriched w ith  genes upregulated in  neurons (p = 2.5e-21 in  
D obrin, p = 1.55c16 in  MC66, Bonferroni corrected). 
There was also enrichment fo r genes upregulated in  o li­
godendrocytes (D obrin  p = 0.06, MC66 p = 2 .4c4, Bonfer­
ron i corrected) and astrocytes (D obrin  p = 5.13c22, MC66 
p = 2.26e10, Bonferroni corrected).

Three overlapping dusters, enriched to  varying degrees fo r 
either schizophrenia-assodated genes o r genes differen­
tia lly  expressed in  schizophrenia, were found from  the 
two independent dorsolateral prefrontal cortex datasets. 
The apparent excess o f schizophrenia-assodated genes in  
the 2546-gene MC66 duster could be explained by its 
overlap w ith  the D obrin duster. Thus, th is duster does 
not constitute independent evidence fo r schizophrenia- 
assodated genes dustering together w ith  respect to  the ir 
expression levels. However, the 436-gene MC66 duster 
remained significantly enriched when assessed by the per­
m utation method. Both MC66 clusters d id  show sign ifi­
cant over-representation fo r genes d iffe ren tia lly  expressed 
in  schizophrenia, even after correction fo r the overlap 
w ith  the D obrin duster. This demonstrates the a b ility  o f 
the methods to find  potentia lly disease-related gene dus­
ters that are replicable in  m ultip le  datasets.

The large size o f two o f the dusters makes inferences 
about ind ividual genes d ifficu lt. However, both the larger 
dusters are enriched fo r genes present in  the KEGG MAP 
kinase pathway, suggesting that this pathway may relate 
to  the aetiology o f schizophrenia. Members o f this path­
way have also been found to be d ifferentia lly expressed

Page 14 of 17
(page number not for citation purposes)

http://www.biomedcentral.eom/1471-2105/9/490


BMC Bioinformatics 2008, 9:490 http://www.biomedcentral.eom/1471-2105/9/490

between controls and schizophrenics in  other brain 
regions [35]. In  addition, when structural variants such as 
microdeletions occur in  the genomes o f schizophrenics, 
they are particularly like ly to  occur in  the genes o f the 
MAP kinase pathway [36].

The smaller cluster was also found to be near-significantly 
enriched for serine/threonine kinase genes (the class o f 
kinases which MAP kinases belong to ), and also fo r syn­
aptic junction and neurological development genes. As 
this cluster is enriched fo r both schizophrenia associated 
genes and genes differentia lly expressed in  schizophrenia, 
further investigation o f the role o f these pathways in  
schizophrenia aetiology may be useful.

However, the MAP kinase-related genes present in  the two 
large clusters do not overlap w ith  the schizophrenia asso­
ciated gene set or the d ifferentia lly expressed in  schizo­
phrenia gene set (they share no genes at a ll in  either the 
MC66 or Dobrin cluster). This m ight suggest the MAP 
kinase function o f the clusters may be incidental to  the ir 
roles in  schizophrenia aetiology. Further investigation 
w ith  other functional analysis tools may a llow  more b io ­
logical inferences from  these clusters.

Comparisons with other clustering method surveys
Our findings broadly agree w ith  several other surveys o f 
clustering methods (Figs. 5, 6, 7). Like Prelic et al, we find  
that ISA is an effective method that produces clusters w ith  
high GO enrichment [4], but our cluster sets generally do 
not have as high a proportion o f GO enriched clusters as 
theirs. This is likely to be a consequence o f the greater 
complexity o f the input data.

Garge et al found k-means clustering effective [15] on a 
wide range o f input datasets. This is echoed by the k- 
means cluster sets reported here, which have high GO 
enrichment and gene coverage scores. These scores were 
generally higher than CRC, the m ixture m odelling 
method examined here. This contrasts w ith  the findings o f 
Thalamuthu et al, who found that m odelling methods 
were superior to k-means clustering [9]. This difference is 
again likely to be due to the datasets used; in  particular the 
datasets used here were much larger in  size.

Conclusion
k-means clustering, CRC, ISA and memlSA are a ll poten­
tia lly  useful methods. Considered alone, k-means cluster­
ing is probably the most useful o f the four, as it  is fast, 
does not require parallelisation, and produces clusters 
w ith  slightly higher levels o f GO enrichment than CRC 
when producing sim ilar numbers o f clusters. When used 
to find  smaller numbers o f clusters more in  line  w ith  the 
estimation o f k, the GO enrichments are higher s till,

reaching 100% at some levels o f p. It also assigns a cluster 
to  every gene (100% gene coverage), unlike overlap- 
removed ISA and memlSA (under 30% gene coverage). 
Although th is must lead to some false positives, this does 
not seem to  have affected the GO enrichment scores 
unduly, and is an advantage in  exploratory studies where 
as wide a view as possible is desired. Furthermore, k- 
means is a relatively simple and very w ell understood 
method. This sim plicity may be the reason fo r its good 
performance here, as it  may allow  it  to  cope w ith  a wide 
variety o f inpu t data. CRC, conversely, has many more 
parameters and so may have had scope to become opti­
mised fo r the smaller yeast and bacterial datasets it  was 
b u ilt fo r and tested upon.

However, fo r the fu llest picture o f clusters available in  a 
dataset, com bining memlSA, ISA and k-means is the best 
option, as it  offers higher GO enrichment than k-means 
alone in  two out o f the three test datasets w hile retaining 
100% gene coverage (see Figs. 5, 6, 7). Even in  the MC66 
dataset, it  added additional clusters not found by k-means 
w ithout reducing GO enrichment. One o f these memlSA 
clusters (found in  both dorsolateral prefrontal cortex 
datasets) was found to be significantly enriched fo r schiz­
ophrenia-associated genes and genes d ifferentia lly 
expressed in  schizophrenia, further emphasising the u til­
ity  o f com bining methods. I f  tim e allows, this combined 
method should be the m ethod o f choice fo r clustering 
m icroarray brain expression data.
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Abstract

It is widely thought that alleles that influence susceptibility to common diseases, including 

schizophrenia, will frequently do so through effects on gene expression. Since only a small 

proportion of the genetic variance for schizophrenia has been attributed to specific loci, this 

remains an unproven hypothesis. The International Schizophrenia Consortium (ISC) recently 

reported a substantial polygenic contribution to that disorder, and that schizophrenia risk alleles are 

enriched among SNPs selected for marginal evidence for association (p<0.5) from genome wide 

association studies (GWAS). It follows that if schizophrenia susceptibility alleles are enriched for 

those that affect gene expression, those marginally associated SNPs which are also eQTLs should 

carry more true association signals compared with SNPs which are not. To test this, we identified 

marginally associated (p<0.5) SNPs from two of the largest available schizophrenia GWAS 

datasets. W e assigned eQTL status to those SNPs based upon an eQTL dataset derived from 

adult human brain. Using the polygenic score method of analysis reported by the ISC, we observed 

and replicated the observation that higher probability c is-eQ TLs predicted schizophrenia better 

than those with a lower probability for being a c/s-eQTL. Our data support the hypothesis that 

alleles conferring risk of schizophrenia are enriched among those that affect gene expression. 

Moreover, our data show that notwithstanding the likely developmental origin of schizophrenia, 

studies of adult brain tissue can in principle allow relevant susceptibility eQTLs to be identified.
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Introduction

A high proportion of mutations for simple (Mendelian) genetic disorders exert their pathogenic 

effects by altering the structure of the encoded protein but this does not appear to be the case for 

the majority of susceptibility alleles for common phenotypes identified through genome-wide 

association studies (GWAS) (1). This is compatible with the hypothesis that inherited variation that 

impacts upon mRNA expression plays an important part in susceptibility to complex traits (2-4). 

Only a small proportion of the genetic variance for risk to common diseases has been attributed to 

specific loci (5, 6) including schizophrenia (7-10). Therefore, while it has been argued that gene 

expression analysis is a key component of understanding the pathogenesis of schizophrenia 

(11,12), the hypothesis of the involvement in that disorder of alleles that influence gene expression 

is unproven.

From the perspective of identifying risk alleles, the hypothesis that susceptibility variants for 

schizophrenia will be enriched for variants that influence mRNA expression is not merely of 

academic interest. W e (11 ,1 2 ) and others (13) have reported associations between gene 

expression and genetic variants whose associations with schizophrenia are controversial, the idea 

being that association with expression lends credibility to association with disease status. Others 

have used this principle in non-psychiatric disorders to localise the likely susceptibility genes or 

functional variants within regions of association (14). Since the effect sizes of common alleles are 

small (7), and most are unlikely to be reliably separated from chance findings in the full genome 

context in the near future (9), the ability to assign an enhanced prior probability to variants 

associated with gene expression may be of value in identifying novel disease associations.

Although the convergent use of expression and genetic data for informing 

pathophysiological theory seems intuitively reasonable (15), the validity of this approach for 

informing genetic studies depends on the assumption that true associations are enriched among 

variants that impact upon gene expression. Moreover, in the case of schizophrenia, attempts to 

relate disorder-associated variants to gene expression are generally based upon mRNA studies of 

adult brain, peripheral tissues, or cell lines. Whether such studies are justified for disorders like 

schizophrenia, whose origins are thought to be developmental, is unclear. Interestingly, however,
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in a recent study (16), SNPs that affected expression in lymphoblasts were enriched among the top 

10,000 GWAS associations for a number of disorders including associations from a bipolar GWAS.

Here, we tested the hypothesis that polymorphisms that are associated with schizophrenia 

are enriched among those that show evidence for association to gene expression in adult brain.

Loci that exert an effect on gene expression are often called expression quantitative trait loci 

(eQTLs) (17). In the present study, to identify putative eQTLs, we used the dataset originally 

reported by Myers and colleagues (18 ,19 ), currently the largest expression dataset derived from 

human brain available to us that also contains genotype data for each sample.

To identify sets of variants enriched for schizophrenia susceptibility alleles, we exploited the 

approach of the International Schizophrenia Consortium (ISC) (7) who recently demonstrated the 

existence of large numbers of risk alleles for schizophrenia. They also showed that these are 

enriched among large sets of SNPs surpassing very liberal significance thresholds of association 

(e.g. P<0.5). The ISC defined sets of putative schizophrenia risk alleles in a training GWAS dataset 

as those that were more common in cases than controls at loci meeting the relaxed thresholds. 

Individuals in independent test GWAS datasets were assigned a 'polygenic score’ based upon the 

number of putative risk alleles carried by that individual, and then the scores for cases and controls 

in those datasets were compared. In independent datasets, these ‘polygenic scores’ were 

significantly higher in cases than in controls, with the most significant distinction between groups 

occurring when the threshold for association in the training GWAS was set at p<0.5. Modeling 

suggested that the most plausible explanation for this finding was that there is a substantial 

polygenic component to schizophrenia comprising thousands of risk alleles, and that this 

contributes at least 30% of the overall variance in risk of the disorder at the population level.

Here, we used this general approach to test whether eQTLs are enriched among 

schizophrenia associated alleles. W e defined schizophrenia ‘risk’ alleles according to the method 

reported by the ISC (7) in a subset of the ISC data and also in the European American subset of 

the Molecular Genetics of Schizophrenia study (10). Using the dataset of Myers and colleagues 

(18), these SNPs were then classified as ‘top eQTL’ and ‘bottom eQTL’ sets based upon their p-
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value for association with expression levels of transcripts, and these sets were then tested for 

differences in their polygenic scores in cases and controls independent of the training sets.

Method

The eQTL dataset (18, 19) contains genotypes (Affymetrix GeneChip Human Mapping 500K Array) 

from 380157 SNPs, and expression (lllumina v1 Human RefSeq-8 BeadChip) data on 8650 

transcripts, meeting the quality control criteria described in (22). There were 176 Alzheimer’s 

disease cases and 188 controls in the dataset, however our analysis was restricted to controls to 

exclude the impact of neurodegeneration on gene expression measures. W e selected this option 

rather than allowing for affected status in the analysis as a crude categorical adjustment will not 

allow for a number of variables within the affected group that can be expected to have major 

effects, including aetiological heterogeneity, duration of illness, and rate of disease progression.

Beginning with the rank-invariant normalised expression data (18), samples with over 10% 

missing data were removed, as were probes with over 25% missing data in the remaining 

individuals. Where multiple probes mapped to the same gene, we retained only the probe with the 

lowest proportion of missing data (arbitrarily retaining the first to appear in the dataset file in the 

case of a tie). To minimize the impact of different brain regions in the dataset, we included only 

samples from the two most common regions represented in the study (frontal cortex and temporal 

cortex). Overall, we retained 163 samples and 8361 probes for analysis.

As in the primary publication, the data were log transformed to minimise the effect of 

departures from normality (using the statistical package R (20)). The log-transformed expression 

values were adjusted for a number of non-genetic covariates using linear regression. These 

covariates were gender, post mortem interval, brain area, age at death, institute and hybridisation 

date, and the expression value for E no lase  2  (EN 02). The residuals of this regression were used 

as covariate-adjusted expression values in all further analyses. E N 02  is a neuronal marker. Our 

intention in making this correction was to reduce expression variance arising from varying 

proportions of neurons in the samples (21, 22). W e were unable to adjust our analyses for pH as
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those data were not available. However, we note that failure to adjust for this, or for other important 

variables that might lead to classification errors (false positive or negative) will bias our study 

towards the null. This is because false calls will blur any true differences between top and bottom 

eQTL groups, including differences in the extent to which they are enriched for schizophrenia 

susceptibility alleles.

For the Myers genotype data, we used the same quality control metrics as the original 

publication (18). All SNPs were required to have minor allele frequency of at least 1%, a call rate of 

at least 90%, and an exact Hardy-Weinberg equilibrium p-value > 0.05.

The ISC (7) and MGS (10) GWAS datasets were used for the study as these are currently 

the largest GWAS datasets available to us. W e essentially followed the study design of the ISC. 

The ISC dataset was divided to create training and test subsets by assigning alternate cases and 

alternate controls to the training and test datasets; these we call the ‘Split ISC’ datasets. To derive 

a set of putative risk alleles independent of the ISC, we used the p-values from the MGS European 

American dataset (10) and tested these in the full ISC dataset. Full descriptions of those datasets 

are given in the primary publications (7 ,10 ).

eQTL determination

Linear regression of the expression values for each gene (correcting for covariates) on SNP  

genotypes (coded as the number of minor alleles: 0 ,1  or 2) was performed using PLINK v1.05 (23, 

24). This gave p-values for association between each SNP and mRNA expression as measured by 

each probe-set. To test our hypothesis, we based our analysis upon c/s-eQTL p-values. C is-eQTLs 

are variants that are in chromosomal proximity to the transcripts they putatively regulate, and have 

a higher prior probability for being true eQTLs than trans-eQTLs (17), the latter being defined on 

the basis of association with transcripts with which they are not co-located. Moreover, trans-eQTL 

analysis involves a much greater degree of multiple testing (all SNPs against all probesets) than 

cis-eQTL analysis. These considerations suggest that sets of ‘top c/s-eQTLs’ will be more greatly 

enriched for true eQTLs than sets of top trans-e  QTLs, so restriction to c/s-eQTLs should enhance 

the power of our analysis, cis-e  QTLs were ranked by p-value with respect to any transcript within
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10Okb of the SNP locus. The criterion of 100kb is to an extent arbitrary, but was based upon a 

previous study suggesting that cis-e  QTLs are enriched within this boundary (25). If a SNP was 

within range of multiple transcripts, the lowest p-value for any transcript was taken as the eQTL p- 

value.

Given the presumed lower probability for any frans-eQTL representing a true association, 

we expected that even if our primary hypothesis was correct, SNPs selected on this basis of trans- 

eQTL status would be less effective at distinguishing between cases and controls. Nevertheless, 

as a secondary analysis, we explored the relative ability of top and bottom eQTLs after ranking 

those loci by the most significant p-value for association to any transcript in the dataset.

W e did not specifically exclude probes corresponding to target sequences that contain 

SNPs, some of which might influence the efficiency of probe hybridisation. Where this occurs, 

expression of the target transcript could appear correlated with the SNP in the probe sequence, 

which could then be falsely classified as an eQTL, and the same is true for any SNPs in high 

linkage disequilibrium (LD) with that SNP. Conversely, where there is a true eQTLs that is in weak 

or low LD with a second SNP under a probe that influences hybridisation efficiency, the impact of 

that second SNP is likely to be to reduce the estimated correlation between the eQTL and gene 

expression, the result being a tendency to false negative eQTL classification. As argued above, 

eQTL misclassifications will bias this study towards towards the null. Nevertheless, for information, 

we present some summary information about the occurrence of known SNPs within probe target 

sequences.

Of 1372 probes representing the transcripts associated with the top 5% of QTLs, only 56 

(4%) contain a SNP called at high quality (less than 5% missing genotypes) with a minor allele 

frequency >1% in the HapMap CEU sample (HapMap Phase 2 version 23). Only a single SNP out 

of the 2580 SNPs that comprised our pruned list of top 5% of eQTLs was either within a probe, or 

in strong LD (R2>0.8) with a variant known to be within a probe. This appears to contrast with an 

earlier study (21) in which about 13% of significant eQTLs were to probes targeting polymorphic 

transcript sequences. However, that earlier study was concerned with highly significantly 

associated eQTLs which might be particularly enriched for this particular artefact. Also, the dataset
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we used (22) was much more stringently filtered (reducing transcripts from 14,078 to 8650) than 

the other study (21), and we additionally further reduced this by removing probes with >25%  

missing data. Probes binding to sequences with common SNPs that influence hybridisation may 

have relatively high data-failure rates, and therefore we speculate this process would remove some 

of the affected transcripts. Finally, we aggressively LD prune our SNP data, which reduces the 

probability of including a SNP in even moderately high LD with a SNP in a probe sequence.

Post hoc  analysis confirmed that our conclusions remain the same whether or not we 

exclude probes corresponding to sequences with known SNPs. Since the average impact of 

variants under target probes on misclassification is uncertain (22) but in the context of this study, it 

is likely to be a trivial source of misclassification compared with chance (see above), and since any 

bias is conservative (i.e. towards the null) we present the analysis of all probes in this manuscript.

Risk allele counts

The SNPs available in the training datasets were placed into the following categories according to 

eQTL p-value: top 5% eQTLs (corresponding to p<0.02), top 50% eQTLs (corresponding to 

p<0.38), bottom 50% eQTLs, and bottom 5% eQTLs. As in the ISC study, the SNPs in all sets 

were LD pruned (PLINK's -indep-pairwise option; window size=200, step=5, r2 threshold=0.25).

In the randomly split ISC training datasets, as in the ISC paper (7), allelic p-values and 

odds ratios for association were calculated by a Cochrane-Mantel-Haenszel test conditioned by 

country of origin using the QC-cleaned datasets provided by that group. Training on the MGS  

European American Sample was based upon the association results that formed the basis of the 

primary publication (10). SNPs that had association p<0.5 in training sets were carried through for 

polygenic score analysis. Alleles that were more common in cases were defined as risk alleles. 

PLINK (using the —score option) was then used to perform a count of the number of risk alleles for 

each sample in the target dataset, weighted by the odds ratio at each SNP. PLINK gives the mean 

risk allele score for each individual, that is, the risk allele score is divided by the number of SNPs 

for which there are data in that individual.
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Controlling for minor allele frequency and population stratification

For each pruned cis-e  QTL SNP list, to test if ranking the SNPs by their most significant eQTL p- 

value introduced systematic differences in allele frequency between high and low eQTL SNP sets 

we calculated the mean and standard deviation of MAF and then compared them using t-tests.

To examine whether our results might be influenced by population stratification, we 

obtained from a previous study (26) Fst values derived from the ISC sample for each SNP. FST is a 

measure of population stratification and is based upon the sequence similarity of members of a 

subpopulation, compared to their similarity with the population as a whole (27). In a stratified 

population, members of the subpopulations will be more similar to each other than to the whole 

population, leading to a high F St  score.

SNPs with as close a F St  value as possible to each SNP in the smaller of the two SNP lists 

(top or bottom eQTL) were extracted without replacement from the larger of the two SNP lists (top 

or bottom) to create eQTL sets matched for F St .  A small number of SNPs could not be matched 

(those where the closest match differed by an Fst >0.0005) and were removed from the analysis. 

This created pairs of SNP lists with the same number of SNPs and extremely similar means and 

standard deviations of F St  (Supplementary Table 1).

Logistic regression

For each individual in the test ISC datasets, we calculated the difference between the polygenic 

score derived from the top eQTLs (5% or 50%) and that derived from the bottom eQTLs (5% or 

50%), the null hypothesis being that these differences should be equal in cases and controls. W e  

performed logistic regression of case/control status on risk allele score difference and also ISC 

sample country of origin to evaluate the significance of this difference. A significant positive 

regression coefficient indicates that the difference in risk scores between cases and controls is 

significantly greater for the top eQTL set.

Logistic regression of disease status on risk allele score was also calculated to determine 

how well each individual SNP list predicted disease status. W e calculated the Nagelkerke pseudo- 

R2 (28), which is a measure of how well the risk allele score predicts schizophrenia by subtracting
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the R2 of the regression without the risk allele score term included from the R2 of the regression 

with the risk allele score term included.

Results

When we defined risk alleles using half of the ISC sample as the training set (Table 1, Split ISC 

analyses), the difference in the scores between the top and bottom c/s-eQTLs was significantly 

greater in the cases than in the controls for all analyses. This is consistent with the hypothesis that 

schizophrenia susceptibility alleles are enriched among cis-e QTLs. Similar findings were observed 

when the risk alleles were defined from the MGS European dataset (entirely independent of the 

ISC dataset), with significant replication being obtained for two of the tests, even corrected for 

three replication tests (Table 1). Supplementary table 2 lists the pruned set of SNPs comprising 

those that were associated in the MGS training set at P<0.5 that were both within the top 5% of 

eQTLs and for which the allele designated as the ‘risk’ allele in the MGS sample was associated in 

the ISC sample at a nominally significant level (P<0.05). We should stress that for the reasons 

discussed already in this manuscript, the existence of potential sources of misclassification means 

the confidence that any one of these variants is either a genuine eQTL or that it is associated with 

the disorder is low, our study being designed to test a general hypothesis using global datasets 

and a methodology that can tolerate low signal to noise ratios rather than to identify individual 

findings of high significance. We also note the information driving our analysis comes not just from 

those alleles that are associated at nominally significant levels; rather it comes from the cumulative 

scores from all variants included in the analysis, however weakly associated they are.

There were no significant differences between the scores from the top and bottom trans- 

eQTLs between cases and controls (data not shown) in any analysis.

Minor allele frequency and population stratification

Of the 5 tests in which the top c/s-eQTLs were significantly better at discriminating case-control 

status, the mean MAF was slightly but significantly higher in 2 of the top cis-e QTL sets, whereas
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for the other three tests, any trends were for a lower MAF in the top cis-e QTLs set (Table 1). This 

suggests that our findings are unlikely to be due to differences in MAF between the sets.

However, for each analysis, the top cis-e  QTL set had significantly higher mean FSt  than the 

bottom eQTL SNP lists indicating that our analysis might be confounded by enhanced stratification 

in the top c/s-eQTL set. For this to bias to our results, the MGS and ISC samples would have to be 

ascertained such that the same alleles are similarly biased towards overrepresentation in cases in 

each dataset. Although we do not consider this likely (7), to evaluate whether this does influence 

our results, we repeated all analyses using FSt  matched SNP sets. After matching, there were no 

significant differences in mean FSt  between pairs of comparator groups (Supplementary Table 1). 

Nevertheless, for two of the three analyses in the split ISC datasets, the top cis-e  QTLs significantly 

discriminated better between cases and controls than the bottom cis-e  QTLs, both of which 

replicated when the MGS sample was used as the training set. Moreover, in the FSt  adjusted data, 

for two of the significant runs, the top cis-e  QTL sets had lower MAF and for two of the runs, the top 

group had higher MAF. W e therefore conclude that our findings are not driven by systematic 

biases in these variables.

Discussion

To date, only a minuscule proportion of genetic susceptibility to schizophrenia, or indeed any 

psychiatric disorder, has been explained by robustly associated DNA variants. Moreover, in no 

case has the functional effect of a DNA variant responsible for a robust schizophrenia association 

been determined. It follows that the basic mechanisms by which genetic variation contribute to this 

disorder are unknown. One leading hypothesis is that a substantial amount of genetic risk is 

conferred by common alleles that influence gene expression, that is, common cis-e  QTLs.

However, while the existence of many common schizophrenia risk alleles has been demonstrated 

(7), there is no evidence to support the hypothesis that any of these influence gene expression. In 

the light of a recent rekindling of interest in the hypothesis that genetic risk for the disorder is 

mainly attributable to rare variants of major effect (29), which by analogy with Mendelian disorders
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are likely to be dominated by mutations that change the protein coding sequences of genes, the 

demonstration of a contribution from cis-eQTLs is of practical importance for several reasons.

The search for functional variants underpinning disease associations observed in GWAS 

studies is in general proving to be far from a trivial endeavour. Although it is relatively simple to 

scan the exonic sequences of individual genes for common non-synonymous variants, the process 

of scanning the full genomic context of a gene for potential cis-e QTLs, and then demonstrating that 

those variants impact on expression in a disease relevant manner remains arduous. To justify 

those endeavours, it is important to demonstrate that effects on gene expression are relevant 

mechanisms underpinning the influence of common susceptibility variants. Second, as discussed 

above, the use of gene expression data to support genetic associations or to assign higher prior 

probability to particular variants requires evidence that cis-e QTLs do in fact have a higher 

probability of being associated with disease. Finally, even if risk variants are enriched for common 

cis-e QTLs, it cannot be taken for granted that adult brain tissues, far less other sources of mRNA, 

are suitable substrates for generating eQTLs for disorders like schizophrenia whose presumed 

origins are developmental.

Using two independent training datasets we now demonstrate that among the variants 

selected for marginal association to schizophrenia, those that additionally show evidence for being 

cis-eQTLs predict affection status better than those variants showing no evidence for being cis- 

eQTLs. Thus, we show for the first time that schizophrenia risk alleles are indeed enriched for 

eQTLs. As expected from the ISC study, no set of SNPs explained more than a small fraction of 

the variance in disease risk (Table 2), although more comprehensive genome coverage in more 

powerful larger samples is likely to explain a much higher proportion (7).

In contrast to the findings with cis-e QTLs, SNPs, classified on the basis of potential trans 

effects were not superior at predicting schizophrenia affection status. This may be because the 

much greater multiple testing burden inherent to trans-eQTL analysis means a smaller proportion 

of the top rated trans-e QTLs are true positives.

While top sets of cis-e QTLs perform better than bottom sets in predicting disease risk, it is 

evident (Table 2) that even the latter significantly predict affected status. Moreover, after training in
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the MGS dataset, the top 5% of eQTLs were only 1.3 times more likely than the bottom 5% of 

eQTLs to achieve a nominal significance level of p<0.05 in the ISC dataset. This might be because 

a substantial part of the true association signal is not related to variants that alter gene expression. 

Alternatively, it may be that virtually all true association signals are eQTLs, but that many of these 

were incorrectly classified. We note the sample from which we derived eQTL status is relatively 

small in GWAS terms, and therefore has limited power to identify weak eQTLs. Moreover, the 

already limited power will be further constrained by variance introduced by the many well known 

confounders that plague the use of post mortem expression datasets (30). Both factors are likely to 

result in eQTL classification errors.

Potentially pointing to an important impact of eQTL misclassification, comparisons of the 

most extreme c/s-eQTL categories (top and bottom 5% sets) revealed considerable differences in 

the ability of those groups to discriminate case and control status (Table 2). Thus, the risk allele 

score differences between cases and controls were about 10 times greater for the top 5% of cis- 

eQTLs and were 3-4 orders of magnitude more significant than they were for the bottom 5% of cis- 

eQTLs. The former also had better predictive power as indicated by a larger Nagelkerke R2, 

despite greater numbers of SNPs in the bottom 5% group. Indeed the bottom 5% of cis- eQTLs 

were either not significant predictors at all (trained in ISC) or the statistical significance of 

prediction was relatively modest (trained in the MGS). Assuming the extreme top and bottom c/s- 

eQTL groups contain SNPs that are least likely to be misclassified, we postulate that the proportion 

of the polygenic signal captured by eQTLs will be enhanced by more precise delineation of eQTL 

status. Better eQTL classification could be relatively simply achieved by 1) using larger human 

brain expression and SNP datasets 2) increasing the transcriptome coverage; the present analysis 

only incorporates 8361 probes representing only 25-30% of the protein encoding genes in the 

human genome (31) and 3) using expression datasets derived from different brain regions rather 

than simply cortical structures as we have done here, and from different stages of human 

development, as functional variants may have variable temporal and spatial influences.

In summary, we have undertaken the first large scale analysis of the hypothesis that 

schizophrenia risk is mediated in part by common DNA variants that influence gene expression.
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Our results support this hypothesis. In doing so, we provide the first systematic demonstration that 

gene expression studies in human adult brain are informative for genetic investigations of 

schizophrenia. Larger eQTL datasets with the power to achieve lower eQTL misclassification rates, 

representing different brain regions and developmental stages, will be required to exploit the 

enhanced prior probability for c is -eQ TLs to identify specific susceptibility loci.
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Tables

Table 1. Regression of affected status on difference in risk allele score derived from top and 

bottom eQTL sets.

Trained
in

Targeted
in

eQTL
comparison

Difference 
in risk 
allele score

Regression
p-value

Mean 
MAF of 
top 
eQTLs

Mean 
MAF of 
bottom 
eQTLs

T-test
significance 
of difference 
in MAF

Split
ISC Split ISC

Top 50%  
versus 
bottom 50% 2.56E-05 0.014 0.227 0.228 0.948

Split
ISC Split ISC

Top 5% 
versus 
bottom 50% 8.15E-05 0.014 0.241 0.228 0.001

Split
ISC Split ISC

Top 5% 
versus 
bottom 5% 9.63E-05 0.012 0.241 0.246 0.268

MGS ISC

Top 50% 
versus 
bottom 50% 1.63E-05 0.298 0.227 0.228 0.594

MGS ISC

Top 5% 
versus 
bottom 50% 9.27E-05 0.002 0.238 0.228 0.047

MGS ISC

Top 5% 
versus 
bottom 5% 8.57E-05 0.003 0.238 0.249 0.054

Abbreviations: MAF -  minor allele frequency. Regression of affected status on difference in risk 

allele score derived from top and bottom eQTL sets. A positive score in the ‘Difference in risk allele 

score’ column indicates that the difference between the top eQTL and bottom eQTL sets is greater 

in cases than controls.
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Table 2. Regression of affected status on risk allele score.

Training
dataset

Target
dataset

Top / bottom 
eQTL set

SNP
count

Nagelkerke
pseudo-R2

Regression p- 
value

Case/control risk allele 
score difference

Split ISC Split ISC Top 50% 10805 1.59 1.43E-14 5.36E-05

Split ISC Split ISC Top 5% 1285 0.47 2.09E-05 1.10E-04

Split ISC Split ISC Bottom 50% 10967 0.63 9.22E-07 2.86E-05

Split ISC Split ISC Bottom 5% 2033 0.04 0.1122 1.38E-05

MGS ISC Top 50% 3903 0.50 8.78E-10 3.08E-05

MGS ISC Top 5% 435 0.30 1.47E-06 1.07E-04

MGS ISC Bottom 50% 4037 0.30 1.63E-06 1.45E-05

MGS ISC Bottom 5% 1154 0.11 0.0027 2.15E-05

Regression of affected status on risk allele score for individual c/s-eQTL SNP lists. Population of 

origin was used as a covariate in this regression. Nagelkerke R2 is a measure of variance in 

disease state that is explained by the risk score. SNP count is the number of SNPs in the set.
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Supplementary table 1 (see Supplementary_Table_1.xls)

Regression of affected status on difference in risk allele score derived from top and bottom eQTL 

sets matched for F St - A positive score in the ‘Difference in risk allele score’ column indicates that 

the difference between the top eQTL and bottom eQTL sets is greater in cases than controls.

Supplementary table 2 (see Supplementary_Table_2.xls)

Pruned set of SNPs comprising those that were associated in the MGS training set at P<0.5 that 

were both within the top 5% of eQTLs and for which the allele designated as the risk allele in the 

MGS sample was associated in the ISC sample at a nominally significant level (P<0.05). We also 

provide the estimated OR as it applies to the allele designated allele 1.
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