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ABSTRACT

One of the key challenges in systems biology is the modelling of cellular systems. 

Advanced models with molecular information that facilitate in the prediction of 

cellular behaviour under various conditions are fundamental for revealing cellular 

level characteristics and underlying principles of cellular functions. It has been 

acknowledged that the success of systems biology depends not only on studies based 

on specific instance of life, but also on studies based on the principles governing the 

entire organisational space of life. The modelling of adaptive dynamics is identified as 

an essential requirement to understand the organisational space of biological systems. 

The novel Collective Intelligence framework proposed in this thesis offers great 

potential for modelling multi-scale adaptive dynamics from molecules to cell in 

physiological timescale. The major contribution to systems biology is based on 

defining cellular functions in the context of a multi-objective topology and 

implementing this principle, as an in silico model, to study performances of 

intracellular functions by measuring the activities of diverse species of functional 

products. The major contribution to computing is identifying a novel Collective 

Intelligence approach based on information processing strategies of biomolecules and 

utilising it for modelling intracellular activities. The aim of the thesis is to investigate 

systems biology approaches in representing biological complexity from molecules to 

cells and developing computational approaches to bring abstract theories to practical 

use by: (1) Characterising major biomolecular self-organising mechanisms. (2) Using 

a bottom-up integrative approach to model intercellular organisational behaviour. (3) 

Develop a Collective Intelligence based cell modelling and simulation environment to 

conduct analysis studies. This thesis argues that a system theoretic approach based on 

Collective Intelligence where the concepts of self-organisation and emergence 

underlie the approach is ideal to represent the multi-scale and multi-tasking nature of 

a biological cell from the bottom-up. This thesis proposes a Collective Intelligence 

based cell modelling and simulation environment using agents to conduct analysis 

studies on collective behaviour of biomolecules.
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“The problem o f  biology is not to stand aghast at the complexity but to conquer

Sydney Brenner



Chapter 1

Introduction

“For systems biology to mature into a solid scientific discipline, there must be a solid 

theoretical and methodological foundation ”

Hiroaki Kitano

1.1 Overview

This chapter describes the research project’s outline. The chapter begins with the 

background and motivation behind the research and analyses the work required. The 

section on relevant work defines the scope of the project and looks at some 

corresponding paradigms. The aim, objectives, research questions and the hypothesis 

are formulated based on the scope of the project. A brief justification of the adopted 

approach and methodology used is described in Sections 1.7 and 1.8. Section 1.9 lists 

the publications that emerged as result of the project. The scope and organisation of 

the thesis is described in the final section.

1.2 Background

The transition of molecular biology into systems biology was facilitated by the 

development of various high-throughput technologies, representing the ‘biology’ root 

to systems biology and formal analysis methodologies, representing the ‘systems’ root 

to systems biology (Westerhoff and Palsson 2004). The huge volumes of data 

generated mainly by reductionist approaches, led to a rapid growth in the field of 

bioinformatics. Bioinformatics developed the computational tools to provide solutions 

for research problems that biologists encounter. Although the scope of the application 

was mostly based on pattern recognition approaches, it was realised that a more 

formal and mechanistic framework was required for the systematic analysis of
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multiple ‘omics’ data types. This led to the development of genome-scale in silico 

modelling to analyse the systemic properties of cellular functions (Westerhoff and 

Palsson 2004).

While biomolecular science studies individual biomolecules with the aim of revealing 

how molecules function, systems biology, aims to predict the consequences of the 

particular molecular mechanism on the whole organism. However, molecular 

sciences have become one of the most effective branches of science, by utilising 

reductionist approaches to characterise the molecular basis of life for a diverse 

number of organisms. However understanding the molecular constituents is necessary 

but not sufficient for system level understanding (Bork 2005; Dubitzky 2006), and a 

quantitative reconstruction of the system with its constituents, is required. Systems 

biology utilise reconstruction approaches to study system wide phenomena. One of 

the aims of systems biology is to understand biological phenomena, which emerge 

from the complex interactions that occur within and between the levels of biological 

organisation strata. Hence, by determining how functions arise due to the dynamic 

interactions of constituents, systems biology addresses the missing links between 

molecules and physiology (Bruggeman and Westerhoff 2007). Considering this 

ambitious goal, systems biology is still in its infancy, and the success of this new 

discipline will depend on delivering meaningful results by integrating methods and 

approaches developed in other disciplines.

Systems biology studies are mainly conducted in two forms. Studies based on 

incompletely characterised cellular systems mostly take the form of a top-down 

approach, to identify the correlations between the various variables of the systems. 

Although this approach emphasises inductive discovery science, this seldom leads to 

molecular knowledge. (Bruggeman and Westerhoff 2007) consider that these studies 

must either transform into or associate with more mechanism based approaches 

adopted by bottom-up systems biology studies. However the aim of this approach 

should not simply be to deduce functional phenomenon based on certain underlying 

molecular interactions, rather it is also important to demonstrate that the phenomenon 

really occurs. Hence, a significant effort has to be placed on experimental 

determination of the actual interaction parameters and a precise modelling of the 

phenomenon. However, bottom-up systems biology cannot tolerate unknown factors 

and, thus, will need to integrate with top-down, genome-wide ‘omics’ systems
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biology approaches to ensure completeness. Since systems biology is a science 

(Westerhoff and Alberghina 2005), it should also aim to discover general principles, 

which relate to all aspects of cellular organisation. This approach to systems biology 

could lead to substantial fundamental insights into the principles that underlie biology 

(Bruggeman and Westerhoff 2007).

1.3 Motivation

One of the key challenges in systems biology is the modelling of cellular systems. 

The president of the International Society for Systems Biology Dr. Hiroaki Kitano has 

recognised the importance of developing these models as a fundamental intermediate 

step to achieving in silico biological simulations (Kitano 2002c; Kitano 2002a; Kitano 

2002b; Kitano 2004a; Kitano 2004b; Kitano 2005; Kitano 2006; Kitano 2007). These 

advanced models should incorporate molecular information, facilitating the prediction 

of cellular behaviour under various conditions, which are fundamental to revealing the 

cellular level characteristics and principles of cellular functions (Kitano 2007). Some 

of the key cellular characteristics include robustness, adaptability and efficacy. Kitano 

(Kitano 2007) has identified the importance of mechanistic principles and constraints 

in biological adaptation (illustrated in Figure 1.1), which are in line with the author’s 

direction of investigation.

Environmental constraints

5
3
B
2
co

V)

Living organisms as  

instances of design

Fundamental principles.
Theories on elementary matters and interactions

Figure 1.1: The organisational space o f  life (adapted from Kitano 2007)
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Biological systems have been and continue to be organised by evolutionary principles. 

While fundamental (i.e. laws relevant to physical systems) and organisational (i.e. 

laws relevant to biological systems) principles act as internal constraints in biological 

systems, evolution acts to guide towards an organisation of biological systems based 

on environmental constraints or pressures. Feasible organisations are only producible 

within the constraints of fundamental and organisational principles. It has been 

acknowledged (Kitano 2007) that the success of systems biology depends not only on 

studies based on a specific instance of life, but also on studies based on the principles 

governing the entire possible diversity within observed viable biological systems.

The current data driven modelling approaches focus on specific instances or examples 

of life, whereas the field of artificial life is engaged in unravelling the principles 

governing the entire organisational space of life (Goldstein, Husbands et al. 2010). 

Based on the classical definition, "artificial life is a field o f study devoted to 

understanding life by attempting to abstract the fundamental dynamical principles 

underlying biological phenomena, and recreating these dynamics in other physical 

media - such as computers - making them accessible to new kinds o f  experimental 

manipulation and testing” (Langton 1992), it was postulated that artificial life and 

complex systems research would be the driving force for understanding life via 

theoretical methods (Langton 1988). However, initial endeavours had little or no 

impact on the biological community, because these theories were unable to provide 

useful predictions, guiding principles or verification of real biological issues (Kitano 

2002b). Since those early days, biological knowledge has expanded at an 

extraordinary rate in these research areas, giving rise to entire new disciplines, such as 

systems biology in the year 2005 (Bork 2005; Church 2005; Liu 2005; Kahlem and 

Bimey 2006). Although a consensus definition of systems biology is yet to emerge, it 

has been defined as “the search for the syntax o f biological information, that is, the 

study o f  the dynamic networks o f  interacting biological elements” (Aebersold 2005). 

A major part of this biological syntax is the organisation of elements encoded by the 

genome, into functional units and dynamic interactions between these units to control 

and perform their various complex biological functions. There are other areas of 

research that are now providing new and exciting perspectives for systems biology by 

introducing a varied set of principles. For example the field of complex adaptive 

systems studies the adaptability of systems, the field of cybernetics studies control
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and communication in systems (Heylighen and Joslyn 2001), the field of natural 

computing aims to understand nature from the perspective of information processing 

(Lila and Grzegorz 2008). The development of a general theoretical framework and 

its “integration into biological research, thus represents an exciting branch o f systems 

biology” (Aebersold 2005).

These definitions imply that systems biology and artificial life share a common 

objective: “A principled and comprehensive understanding o f living systems” (Kim 

and Eils 2008). Both interdisciplinary fields utilise formalisms to model and analyse 

biological systems. Although the use of models is complimentary, systems biology 

focuses on analysing and understanding experimental data using fairly generic 

modelling techniques, artificial life “considers rather elaborate and specific 

computational and other formal models as objects o f  experimentation, aiming to 

understand general biological features that are not necessarily represented by 

quantitative data” (Kim and Eils 2008). Hence, the modelling philosophy of artificial 

life differs considerably from systems biology, as it studies not only “life as we know 

it” but also “life as it might be”.

As the models of biological systems increase in complexity in the future, the two 

fields are expected to considerably overlap as the methodologies to model the 

biological organisation strata are combined with advanced techniques for empirical 

model inference. Further, it is also predicted that as model complexity increases the 

relative amount of molecular biology data and associated knowledge to validate 

model inference methods will decrease. Hence models that incorporate multiple levels 

of biological organisation will become increasingly important as a source of realistic 

synthetic test data (Kim and Eils 2008).

One of the exciting fields of artificial life is developing biologically inspired 

approaches by observing biological phenomena. Collective Intelligence is a social 

phenomenon and is defined as the group of individuals doing things collectively that 

seem intelligent (Malone 2006). It is a shared intelligence that emerges from 

cooperation, competition and coordination of many individuals. Swarm Intelligence 

refers to the phenomena of a system of spatially distributed entities coordinating their 

actions in a decentralised and self-organising manner, so as to exhibit intelligent 

collective behaviour in local interactions. The concepts of self-organisation and
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emergence underlie swarming, and these systems are inherently adaptive, robust, 

flexible, stochastic and concurrent.

1.4 Research Required

One of the grand challenges in biology is the formulation of a unified fundamental 

theory governing biological systems (Kitano 2007) which may lead to the formulation 

of laws for life. To achieve this goal it is essential to resolve the gap between the level 

of description used in thermodynamics and other basic physical sciences and the 

abstraction levels (i.e. interactions within biological organisation strata) used to define 

concepts such as robustness, adaptability, efficacy and other system level properties in 

biological systems.

Kitano frequently emphasises robustness, which is a fundamental characteristic of 

biological systems (Kitano 2004a). This issue is encompassed by “for systems biology 

to mature into a solid scientific discipline there must be a solid theoretical and 

methodological foundation” (Kitano 2007). Systems biology is widely accepted as 

encompassing both computational modelling and simulation (Jones 2008). Computer 

simulation is an effective way of visualising complex dynamics, intrinsic to biological 

systems and exploring the validity of assumptions that form the foundations of our 

understanding of cellular processes. Kitano (Kitano 2007) stated that “The scientific 

goal o f systems biology is not merely to create precision models o f  cells and organs, 

but also to discover fundamental and structural principles behind biological systems 

that define the possible design space o f life”. He expanded on this point by identifying 

the importance of understanding the fundamental and organisational theories that 

provide deeper insights into the governing principles that underpin complex evolvable 

systems. Of the numerous challenges that need to be overcome, a key issue is how to 

represent system level properties such as robustness, adaptability and efficacy, so that 

we can study the effects of perturbations at molecular level on the performances of a 

biological system. A theory of biological robustness should be extended to deal with 

organisational level adaptation. This will require defining the parameters that govern 

biological organisation and development of a comprehensive set of innovative 

computational methods to model such characteristics. This work may bring abstract 

theory to practical use by identifying specific constraints governing the organisation
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of biological systems. Kitano stated that as theoretical research progresses, the ability 

to predict and reverse engineer the organisation of biological systems will advance 

and finally, the theory will have to be integrated with thermodynamics (Kitano 2007). 

Further, fields such as nonequilibrium dissipative systems, nonlinear dynamics and 

chaos theory, are yet to be extended to the principles of living systems. Nevertheless, 

these theories still do not consider the diversity and organised nature of biological 

systems, nor do they consider the major challenge, when attempting to bridge this gap 

of selection through evolution (Kitano 2007).

Self-organisation is considered to be one of the mechanisms of biological evolution 

(Kauffman 1993). These concepts that were initially developed in chemistry and 

physics are now beginning to be applied to the organisation of the living cell. 

Studying self-organisation processes in cell biology enforces a focus on principles and 

collective behaviours of the biomolecules that underlies the emergence of coherent 

dynamic cell shapes and functions (Karsenti 2008). Eric Karsenti, Head of the Cell 

Biology and Biophysics Unit, EMBL stated that a major difficulty facing biology, 

concerns the origin of structures and their associated functions. This has been an 

ongoing question in developmental biology, and related questions such as the origin 

of intracellular structures and their associated purpose must also be addressed at the 

cellular level (Karsenti 2008).

It has been declared that “whole cell simulation is a grand challenge of the 21st 

century” (Tomita 2001). To this end there are numerous groups attempting to build 

cell simulation environments with the aim of addressing various intracellular activities 

at different modelling resolutions. These resolutions range from the level of atoms to 

molecules and cells, which represent the micro, meso and macro modelling 

approaches. Macro modelling approaches are population based models and assume 

the cell is a well mixed environment of biomolecules, this is in direct opposition to 

current thinking, which has moved beyond the simple concept of a cell as an 

unstructured mixture (Andersen 2004). Mesoscopic approaches model cells at a 

molecular resolution, whilst microscopic approaches, such as molecular dynamics 

model molecular behaviour at the atomic level. A detailed discussion of these 

approaches is presented in Chapter 3.
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1.5 Relevant Work

The author’s direction of investigation was confined to the principles governing the 

functional organisation of biological cells, especially focusing on the adaptive 

dynamics between the levels of molecular resolution and cellular resolution. 

Moreover, the investigation is interconnected to the fields of Systems Biology, 

Complex Systems and Natural Computing. The model is focused on molecular 

resolution, especially modelling biomolecular activities in space and time. There are 

various levels of simulation aiming to model intracellular activities.

1.5.1 Corresponding Paradigms

Many cell simulation environments are emerging, aiming to model the whole or parts 

of the cell, based on various mechanistic principles. The population based mass action 

kinetic modelling approach is adopted by simulation environments such as the E-Cell 

(E-Cell Project 2009) and the Virtual Cell (NRCAM 2009) being developed by the 

National Resource for Cell Analysis and Modelling. The population based stochastic 

kinetic modelling approach is adopted by Agent Cell (Emonet, Macal et al. 2005) 

being developed collaboratively by the Institute for Biophysical Dynamics, the James 

Frank Institute and the Centre for Complex Adaptive Agent Systems Simulation, 

Argon National Laboratory, SmartCell was developed in the Serrano Laboratory of 

the Heidelberg Laboratory of EMBL, and MesoRD was developed by Uppsala 

University, Sweden. A particle based stochastic modelling approach is adopted by 

simulation environments, such as M-Cell (Stiles and Bartol 2001) being developed by 

the Salk Institute for Biological Studies, Cell++ being developed by Parkinsons 

Laboratory of Computational Systems Biology, CyberCell (Sundararaj, Guo et al. 

2004) is under development at the Institute for Biomolecular Sciences, University of 

Alberta, ChemCell (Plimpton and Slepoy 2005) is being developed at Sandia National 

Laboratories, Smoldyn is being developed by the Molecular Science Institute, Berkley 

and GridCell (Boulianne, Al Assaad et al. 2008) is being developed by the Integrated 

Microsystems Laboratory, McGill University. Moreover, the WebCell (Lee, Park et 

al. 2007) and Silicon Cell (Snoep, Bruggeman et al. 2006) are basically collaborative 

environments that share cell simulation resources, such as tools and data for 

modelling cells. Microsoft Research, Cambridge Laboratory is venturing into 

developing a fully programmable in silico cell, by using pure computational
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formalisms rather than mathematical formalisms. A detailed review of these 

approaches is presented in Chapter 3.

The research closest to that presented in this dissertation, is that of particle based 

simulations, which focuses on molecular resolution, and represents spatial 

information by modelling biological entities such as functional products as individual 

objects. This modelling is centred on a whole molecule approach.

1.6 Aim, Objectives and Hypothesis of the Research

1.6.1 Aim of the Research

The aim of the research is to investigate systems biology approaches to representing 

biological complexity from molecules to cells and developing computational 

approaches to bring abstract theories to practical use.

1.6.2 Objectives of the Research

The objectives are:

■ Characterising the major biomolecular self-organising mechanisms

This will require eliciting novel cellular information processing strategies at the 

molecular level, by focusing on information/signal dissemination and transformation. 

By delivering this objective we intend to address questions relating to cellular self­

maintenance; drivers for self-organisation and Collective Intelligence, and the effects 

of limitations of molecular activities on the intracellular organisational behaviour.

■ Using a bottom-up integrative approach to model the intracellular 

organisational behaviour

By delivering this objective we intend to address questions relating to representing 

collective behaviour of biomolecules in silico to model cellular level phenomena; a 

suitable model development process; the modelling approach that can represent 

intracellular organisational behaviour; to study the emergence of cellular level 

characteristics such as adaptation, robustness and efficacy; functionally uniting the
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activities of functional products to form collectives and the criteria for identifying 

functional units to represent intracellular tasks/objectives.

■ Developing a Collective Intelligence based cell modelling and simulation 

environment to conduct analysis studies

The purpose of analysis studies is to learn about and get a better understanding of 

cellular phenomena. By delivering this objective, we intend to address questions 

relating to the required molecular level information to model biomolecules and their 

interactions; approaches to analyse the dynamics of biomolecular interaction; 

measuring and controlling organisational behaviour within a biological cell, and 

measurement of cellular performance.

■ Developing biomolecular inspired adaptive algorithms to conduct design 

studies

The purpose of design studies is problem solving, or seeking solutions to problems 

found in biological cells, namely remedies for pathological phases, or finding 

solutions, which engineer biological systems with new requirements. In delivering 

this objective we intend to address questions relating to engineering a biological cell 

as an in silico swarming system; the construction and deconstruction of tasks between 

basic molecular activities to complex cellular activities; the representation of 

communication barriers amongst biomolecules; the representation of the extremely 

concurrent nature of biomolecular interactions; incorporation of forms of positive and 

negative feedback and modelling the amplification of fluctuations that give rise to 

solutions.

1.6.3 Hypothesis

The research hypothesis is:

A Collective Intelligence based cell modelling framework, which is able to adapt to 

multiple task/objectives concurrently, in the face o f perturbation and uncertainty, 

would mechanistically represent the diverse intracellular performances/functions, and 

capture the adaptive dynamics o f  a biological cell

This hypothesis is based on the following, that:
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■ Swarm systems are able to pursue multiple lower level tasks concurrently 

which interact to create system level functions

■ Swarm systems are able to adapt their behaviour and maintain 

performance/functions to meet their goals in the face of perturbation and 

uncertainty

■ Cellular adaptation in physiological timescale occurs due to self-organisation 

which is the underlying principle of swarm systems

■ Coordination, cooperation and competition are some of the hallmarks of 

swarm systems which can also be observed in the collective behaviour of 

biomolecules

■ Intelligent behaviour emerges out of the activities of entities in space and time.

■ Biomolecular activities are transformed into performances, which manifest as 

cellular level functions

■ Functional units which define the tasks, are subjected to adaptive pressure

1.7 Research Direction

This section justifies the direction of research in terms of adapted systems biology 

approach used for the study, modelling methodologies, mechanistic principles, and 

the formalism and framework used for the development of the approach. These are 

more fully discussed in Chapter 3.

Biological adaptations occur in physiological, developmental and evolutionary 

timescales. However the scope of research has been in modelling multi-scale adaptive 

dynamics from molecules to cell at the physiological timescale, where biomolecular 

interactions significantly contribute to this process. A mechanistic model development 

approach is adopted to model the diverse behaviour of biomolecular species and to 

provide mechanistic explanations of cellular phenomena. Although different 

mechanistic principles have been developed to describe different aspects of observed 

natural phenomena, they have limitations in their applicability to represent biological 

phenomena. A combination of mechanistic principles governing the organisation of 

biomolecular activities will be required to describe biological phenomena. A detailed 

discussion of these principles is presented in Chapter 3. The mechanistic principles
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are primarily based on systems theory (especially complex adaptive systems), where 

principles of self-organisation are implemented, using the logic of Collective 

Intelligence to model adaptive dynamics from the bottom-up in a physiological 

timescale. A detailed discussion of this mechanism is presented in Chapter 4. The aim 

of this approach is to demonstrate how principles and properties of Collective 

Intelligence can address how biological cells dynamically adapt to multiple objectives 

concurrently, facilitated by constituent biomolecular activities. The objectives of 

biological systems are constantly evolving, due to the ever changing demands of their 

environment. Biological systems meet these demands by pursuing these objectives, 

aided by their constituents, giving rise to biological functions. Tasks emerge, when 

pursuing these objectives, which are concurrent and mutually dependent. The main 

contributors to concurrency in biochemical activities are the specialised activities 

performed by redundant members of diverse biomolecular species. Complex global 

tasks of the cell are formed from diverse basic tasks of intracellular groups of 

biomolecular species. Cellular functions are quantified in terms of the performances 

of solutions, which are constructed/deconstructed in terms of the objectives/tasks of 

the cell. Categorising the collective behaviour of functional products in terms of 

objectives/tasks can deconstruct the global objectives/tasks of a cell into basic tasks 

required to pursue them. A detailed discussion of this process of simplifying cellular 

complexity due to diverse biomolecular interactions, is presented in Chapter 2.

A cellular environment represents both biomolecules and their activities which 

contribute to the self * properties of the cell. These activities cause direct and indirect 

influences amongst various species of native biomolecules, which facilitate in self 

regulation of cellular processes. Agent based formalism is used in the wider 

framework of Collective Intelligence to model self-organisation and the emergence 

that occurs due to diverse biomolecular activities. Further, this approach facilitates 

analysis of global effects of changes in behavioural rules imposed on diverse 

biomolecular species, where the effects of rules are amplified due to redundant 

members of biomolecular species. The representation of agent based formalism at the 

level of molecular resolution also addresses the heterogeneous nature of the cellular 

environment and the existence of very low numbers of some functional products. 

Since the organisational behaviour within a cell cannot be directly observed or 

empirically measured, it requires a simulation framework to be built that can represent
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native biomolecules, capture the results of their activities and provide a means to 

evaluate these results. The analysis of cellular behaviour should be based on the 

chemical activities of molecules rather than their abundance, since activities provide 

an accurate description of a chemical system, in which performances of functional 

products are analysed based on their level of activities.

1.8 Research Methodology

A bottom-up systems biology study is conducted, which adopts a mechanism based 

approach to deductive reasoning. The methodology adopted for this research is the U- 

model approach (see Figure 1.2), which has been used for significant number of 

studies on Collective Intelligence (Schut 2007). In line with the project’s aim, a 

suitable theory or mechanistic principle was formulated to explain the multi-scale 

adaptive dynamics from molecules to cell. The objectives and research questions were 

formulated to meet the aim of the project. A working hypothesis was formulated to 

test the mechanistic principle. Further observations were collected from the literature 

to address the hypothesis. The structure of the model was developed from the 

proposed mechanistic principle. Appropriate model parameters, which are 

consequential to the observations, were identified. Appropriate data sources were 

identified to represent the model parameters. These included independent variables, 

that were altered for different series and variables that remained constant throughout a 

simulation experiment. The dependent variables represent the data points for the 

simulation, which were to be used for analysis of the experimental results.

The model requirements were listed to develop a mechanist model. Preparation for the 

experiments began with the model specification. The specification describes the 

assumptions made in advance and design choices made progressively as the research 

proceeded. These are described in detail in Chapter 4 and Chapter 5. The 

implementation was based on the model specification and the identification of a 

suitable simulation package for the simulation study. A number of experiments were 

conducted iteratively. This includes the stages of experimental design and setup, 

performing the experiment, obtaining results and analysing the results.
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Figure 1.2: The U model

1.9 Research Contributions

The research contribution is based on determining the fundamental and organisational 

principles behind biological systems that define a possible design space of biological 

cells, and applying these principles to build mechanistic models of biological 

phenomena. The novelty of the thesis and its major contribution to knowledge is 

based on defining cellular functions in the context of a multi-objective topology and 

implementing this principle, as an in silico model, to study a performances of 

intracellular functions by measuring activities of diverse species of functional 

products. Further, this approach represents biological adaptation at the biochemical 

level -  a feature that network topology is unable to represent. The major contribution 

to computing is identifying a novel Collective Intelligence approach based on
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information processing strategies of biomolecules and utilising it for modelling 

intracellular activities. The contributions include:

1. Use of an agent based formalism in the wider framework of Collective 

Intelligence, which considers principles and properties of self-organising 

processes to determine fundamental and organisational principles of a 

biological cell (see Chapters 2 and 4).

2. Showing the significance of analysing the biomolecular activities rather than 

their abundance, as this provides an accurate description of a biochemical 

system. The biomolecular organisational behaviour is analysed by quantifying 

cellular functions in terms of measuring performance of objectives/tasks 

formed by the activities of diverse functional products (see Sections 3.5.2.3 

and 4.4).

3. Providing an environment to analyse organisational behaviour within a cell, 

that cannot be directly observed or empirically measured. This is achieved by 

using a simulation framework to represent native biomolecules, capturing 

results of their activities and providing a way to evaluate these results 

(Periyasamy, Gray et al. 2008a; Periyasamy, Kille et al. 2008) (see Chapters 5 

and 6).

4. Showing that cells have adopted a unique strategy to continuously realise their 

objectives/tasks or adaptive requirements (self-awareness) by eliminating 

obsolete information and generating new information in their internal 

organisation. The tendency for biomolecular degradation by means of random 

or regulated process and collective autocatalysis provides an ideal 

reinforcement adaptive mechanism for a cell (Periyasamy, Gray et al. 2008b) 

(see Section 2.5).

5. Implementing a novel system-theoretic approach to molecular systems biology 

by utilising biomolecular inspired multi-objective strategies from a Collective 

Intelligence perspective to capture higher level performances of a cell 

(Periyasamy, Gray et al. 2009) (see Section 7.5).

6. Using novel criteria for modularising interactions among functional products, 

which are based on performance interactions, which emerge from competition 

and cooperation among the functional products (Periyasamy, Gray et al.
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2009). Direct and inverse performance interactions can reveal organisation of 

basic objectives/tasks into complex global tasks, in order to 

construct/deconstruct tasks between molecular resolution and cellular 

resolution (see Chapters 2 and 5).

Titles and abstracts of presented and published work are listed in Appendix A.

1.10 The Scope and Organisation of this Thesis

The scope of the thesis is defined from different perspectives. As stated in Section 

1.4, the thesis is confined to principles governing organisational space of biological 

cells. The novel framework proposed offers great potential for modelling multi-scale 

adaptive dynamics from molecules to cell in a physiological timescale. The purpose 

of the framework is to model how a biological cell is organised to adapt and use this 

to understand more about the transitions between healthy and pathological phases of 

biological systems. The thesis is focused on modelling biochemical systems, based on 

principles governing an organisational space rather than developing a data driven 

modelling approach. The aim of the thesis is to investigate approaches, representing 

biological complexity from molecules to cells, and developing computational 

approaches to bring abstract theories to practical use. This thesis argues that a system 

theoretic approach based on Collective Intelligence, where the underlying concepts of 

self-organisation and emergence, underlie the approach is well suited to representing 

the multi-scale and multi-objective/task nature of a biological cell from the bottom- 

up. It proposes a Collective Intelligence based cell modelling and simulation 

environment, which can be used to conduct analysis studies on the collective 

behaviour of biomolecules driven by their activities. These activities are organised 

into a hierarchy of tasks, where basic tasks contribute to the formation of complex and 

mutually dependent global tasks of a cell, which ultimately represent cellular 

functionalities.

The thesis is organised according to the progressive development of the Collective 

Intelligence framework, a novel approach to modelling and simulating a biological 

cell using the principles of Collective Intelligence. Its chapters are:

Chapter 2: Multi-Scale Adaptive Dynamics from Molecules to Cell. This defines 

the problem of modelling the adaptive dynamics of biological cells and evaluates the
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requirements to address these problems. The heart of the problem is to understand 

how biological systems are organised, to realise the transitions between healthy and 

pathological phases, and adapt accordingly. The thesis is focussed on adaptations that 

occur within physiological timescales, where biomolecular activities contributing to 

functional organisation, play a key role within a cell’s lifecycle.

Chapter 3: Modelling Biological Phenomena. This specifies the functional and non­

functional requirements needed to build mechanistic models based on the first 

principles of addressing the problems articulated in Chapter 2. A critical review is 

conducted of related work, with respect to modelling from a molecular resolution to 

cellular resolution and addressing the feasibility of achieving the specified 

requirements based on available resources and technology.

Chapter 4: Representation of Biomolecules and their Activities within an In 

silico Environment. This describes how swarming can address issues raised in 

Chapter 2. The principles and properties of Collective Intelligence are addressed in 

the context of collective behaviour of biomolecules. In silico representations of native 

biomolecules and their activities, which constitute a cellular environment are 

discussed.

Chapter 5: A Collective Intelligence Approach to Modelling Intelligent Cellular 

Organisation. This provides a model specification based on the problem definition 

and model requirements discussed in Chapters 2 and 3, respectively. The model 

specification provides an overview of the model’s focus, resolution and complexity. 

The design concepts describe the general concepts underlying design of the model.

Chapter 6: Swarm Based Cell Modelling and Simulation Environment. This 

describes the general implementation of the model specification, which is used to 

setup and run various simulation experiments based on specific scenarios.

Chapter 7: Model Evaluation by Simulating Biological Phenomena. This 

evaluates the Collective Intelligence framework by conducting a series of simulation 

experiments. These experiments model the physical and biological constraints, 

involved in the organisational behaviour within biological cells, which affect their 

adaptive processes. Based on the results of the experiments, the validity of the 

simulation experiment and framework is justified.
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Chapter 8: Conclusion and Further Work. This provides answers to the 

investigated research questions, based on the objectives and draws conclusions based 

on the findings of the research.

1.11 Concluding Remarks

The scope of systems biology consists of top-down systems biology studies, bottom- 

up systems biology studies and discovering general principles of biological systems. It 

has been acknowledged that the success of systems biology depends not only on 

studies based on a specific instance of life, but also on studies based on principles 

governing the entire organisational space of life. Hence, modelling of adaptive 

dynamics is identified as an essential requirement to understand the organisational 

space of biological systems. This requires the development of advanced models with 

molecular information that facilitates the prediction of cellular behaviour under 

various conditions. This is needed to reveal the cellular level characteristics and the 

underlying principles of cellular functions. The aim of the thesis is to investigate 

systems biology approaches to representing biological complexity from molecules to 

cells and developing computational approaches to bring abstract theories to practical 

use. The conclusion is to adapt a bottom-up systems biology approach and utilise a 

mechanistic model development process to develop a computational model, using an 

agent based formalism in the wider framework of Collective Intelligence to represent 

the intracellular behavioural/functional organisation. The research contribution is 

determining the fundamental and organisational principles behind biological systems 

that define the possible design space of biological cells and applying these principles 

to build mechanistic models of biological phenomena.

The next chapter investigates the characteristics and properties of biological systems 

and the challenges in modelling the adaptive dynamics of biological cells by 

describing biological complexity from molecules to cell.



Chapter 2

Multi-Scale Adaptive Dynamics from Molecules to

Cell

“For systems biology to be truly successful, not only studies on specific instances o f  

life, but also studies on principles governing the entire design space are required. ”

Hiroaki Kitano

2.1 Overview

The aim of this chapter is to characterise mechanisms and factors that are 

consequential to adaptive dynamics of biological cells and determine requirements to 

address these problems. Section 2.2 describes biomolecules and their activities, 

constituting a cellular environment. The significance of the problem is to gain an 

understanding of how biological systems are organised to realise transitions between 

healthy and pathological phases, and adapt accordingly. Although biological 

adaptations occur in physiological, developmental and evolutionary timescales, the 

thesis is focussed on adaptations that occur within physiological timescales, where 

biomolecular activities contributing to functional organisation, play a key role within 

a cell’s lifecycle. Cellular activities are hierarchically organised into various basic 

tasks, which merge to form the complex and greater tasks of a cell. Section 2.3 

evaluates the mechanisms of biological adaptation and specifies two categories of 

goals/objectives, which define these tasks driving the adaptive process. Section 2.4 

describes the multi-objective nature of biological systems and the constraints involved 

in pursuing these objectives. The formation of intelligent cellular organisation from 

the collective behaviour of biomolecules is discussed. Section 2.5 describes the 

hierarchical nature of biological systems by simplifying cellular complexity via the
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construction/deconstruction of basic objectives/tasks into mutually dependent 

complex global tasks.

2.2 Cellular Organisation, Adaptation and Complexity from 

the Bottom-Up

Modelling and simulating multi-level dynamics of biological systems are one of the 

most complex endeavours in computational systems biology, due to the fact that 

biological processes consist of multi-level spatial and temporal scales 

(Bassingthwaighte, Chizeck et al. 2006; Schnell, Grima et al. 2007; Noble 2008). 

Living systems are the most complex systems known in nature. This is due to the 

multiple levels of constraints associated with them. Living systems are constrained by 

physical laws, like non-living systems and also have additional levels of constraints 

associated with complex biological processes. These two levels constitute the 

fundamental and organisational principles, which are required to model the 

complexity of biological cells from the bottom-up. When considering the relationship 

between individual biomolecules and the cells to which they contribute, we can 

identify their resemblance to complex, dynamic, self-organising, adaptive, concurrent, 

robust, reactive and proactive systems (Michener, Baerwald et al. 2001). Some of 

typical properties of complex systems include dynamics, emergent behaviour, 

nonlinearity, bi-stability, nested organisation, feedbacks (i.e. horizontal and vertical) 

and scale freeness (Dubitzky 2006). Biomolecular activities occurring within the 

gene, transcript, protein and metabolite space contribute to the organisation of a 

biological cell. These activities form various causalities (i.e. causal links amongst 

events), which form the organisational closure of a cell (see Figure 2.1). This closure 

is different from thermodynamic closure, which is observed in isolated systems. 

Although biological systems are organisationally closed, they are thermodynamically 

open systems that exist far from thermodynamic equilibrium by exchanging matter 

and energy with their environment (Van Regenmortel 2007). For example, at the 

organisational level various resources (e.g. metabolites) are consumed and produced 

by various enzyme mediated reactions, and if this is visualised by comparing every 

resource against every reaction, complex dependencies between enzyme mediated 

reactions at a thermodynamic level can be observed. Appendix B provides an example
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o f  these d ependencies and relevant free energy constraints, w h ich  determ ine the 

therm odynam ic equilibrium  o f  respective reactions. A s a physical system  the law s o f  

therm odynam ics govern cellu lar m etabolism  and as liv in g  system  adaptability, 

robustness and e ffica cy  ensures the persistence o f  a system .

Metabolite C Metabolite D
Metabolite Space

Metabolite A Metabolite B

► Protein 2 Complex
Protein SpaceProtein 4Protein 1

Protein

Gene 4
Gene 2 ^ Gene Space

Gene 1 Gene 3

---------------► Resource Flow

--------------- ► Physical interaction

------------- Influence

Figure 2.1: The autocatalytic cycles that traverse across gene space to metabolite space

A n appropriate system s b io logy  approach (B ruggem an and W esterh off 2 0 0 7 ) w ill 

have to be adopted to m odel the self-organisation  o f  b iom olecu lar activ ities in order 

to study em ergence o f  an intracellular behavioural organisation. S in ce it requires a 

m echanism  based explanation, it has to be m echanistically  m odelled  using a bottom - 

up approach and integrating m olecular level inform ation. M od elling  at the level o f  

m olecular resolu tion  w ill require representing m olecular properties, together w ith  

spatial and tem poral constraints o f  the cellu lar environm ent.

2.2.1 Characteristics of Biomolecules and Cells

There are tw o  kinds o f  properties w hich characterise b iom olecu les. Intrinsic 

properties are com p letely  determ ined by a b io m o lecu le’s primary structure (i.e . the 

m ass and sequ en ces o f  D N A , R N A  and proteins). W hile the primary structures o f  

D N A  and R N A  (i.e . m R N A ) contribute to the b io logica l activ ities by harbouring and 

dissem inating sequential inform ation, the three d im ensional structures o f  proteins and 

R N A  (i.e. tR N A  and rR N A ) contribute to b io log ica l activity by function ing as
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messengers, transporters, mechanical entities and enzymes (Stryer 1988). 

Biomolecules physically interact through activities to form collective autocatalysis, so 

that they recursively depend on each other in generation and realisation of various 

biological processes. The three-dimensional shape adopted by these molecular 

sequences in water is crucial to their biological activity. These tertiary structures are 

largely maintained by non-covalent forces and are hence subjected to thermal 

fluctuations ranging from local atomic displacement to complete unfolding (Brooks, 

Karplus et al. 1988). Protein structures are in constant motion, and they tend to 

sample a collection of different confirmations, which could change interaction 

patterns, while they perform their activities in a particular biological process (Vinson 

2009). A protein’s conformational space can be described by an energy landscape. 

Based on the timescale of biomolecular interactions and their relative mobility the 

cellular organisation can be classified from seemingly static intracellular 

organisations to dynamic intracellular organisations of biomolecules. Further the 

duration of an interaction adds another level of complexity in biomolecular 

interaction, since it renders participating biomolecules inaccessible to other 

biomolecules. The interactions of biomolecules, that represent a dynamic organisation 

are brief and produce complex biochemical tasks. These include the covalent and non- 

covalent interactions of biomolecules that produce biochemical activities, such as 

gene-regulatory, signalling and metabolic activities of the cell. These dynamic 

activities are highly adaptive in the context of a cell’s physiological timescale. The 

interactions of biomolecules, that represent a seemingly static organisation are lengthy 

and produce complex spatial structures, via non-covalent biomolecular interactions 

within a cell’s physiological timescale.

While biomolecular adaptation is crucial in altering characteristics of biomolecular 

behaviour, biomolecular activities (i.e. their performance) are crucial to the adaptation 

of a cell. A cell, as a living organisation, has managed to perform its biological 

activities by regulating the physical activities of its biomolecules. A cell is composed 

of physical entities such as macromolecules, small molecules, ions and water, which 

are constantly in flux. These physical entities are constrained by the laws of 

thermodynamics and become part of a living system, when their contributions have an 

effect on the living system. The extent to which these entities are self produced by a 

cell determines the degree of cellular autonomy. However, scale and nature (i.e.
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positive or negative) of these entities’ contribution to cellular activities can differ. 

Further the distribution, interaction and migration of these entities can influence the 

global dynamics of a cell. The internal organisation (i.e. functional and structural) of a 

cell depends on the self-organising interplay of non-covalent and covalent 

interactions. Reversible interactions of biomolecules are mediated by three kinds of 

non-covalent bonds, namely electrostatic bonds, hydrogen bonds and van der Waals 

bonds (Stryer 1988). These weak non-covalent forces are at the heart of all 

mechanistic activities of biomolecules and influence the dynamics of a cell. A key 

attribute that emerges out of these forces is the affinity for interactions, which also 

introduces competition and cooperation amongst constituent biomolecules in a shared 

environment. In an environment, that contains about 70 percent (i.e. by weight) of 

water, depletion forces (i.e. hydrophobic attractions) and diffusion play a non-specific 

role in biomolecular migration and distribution, while directed transport are specific 

to molecular species (Dogterom 2001). Molecules constituting the cells diffuse at a 

very slow rate due to molecular crowding. This slow rate of biochemical 

transformation and migration, which affects the rate of information/signal 

propagation, has caused cells to adopt a distributed strategy to control and coordinate 

cellular activities during the course of evolution.

2.3 Biological Adaptation from the Fundamental and 

Organisational Perspectives

Biological adaptations occur within the physiological, developmental and 

evolutionary timescales. Although the problem is focused on physiological 

timescales, it is useful to understand how biological systems are organised to adapt 

across these timescales, i.e. how the information regarding the performance between 

biological systems and the environment are exchanged across these scales. 

Biological systems dynamically adapt to multiple objectives concurrently, facilitated 

by their constituents. The objectives of biological systems are constantly evolving due 

to ever changing demands of its environment. These objectives are imposed by the 

environment which consists of physical and biological elements of individual 

biological systems. Biological systems meet these demands by pursuing objectives 

aided by their constituents, giving rise to biological processes which are perceived as
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biological functions. Biological tasks emerge when pursuing these objectives which 

are concurrent and mutually dependent. These objectives on which the selective 

pressure is imposed are eventually organised into a hierarchy forming the biological 

organisation strata, where the amount of time required in pursuing the objectives 

increases, when moving up the hierarchy.

The neo-Darwinian view of evolution is built on three main observations of natural 

selection (Crespi 2001). First is heredity, where the composition of traits is 

determined by parents. Second is variation, where random alterations expand the 

search space of individuals, providing desirable attributes of diversity. Third is 

differential reproduction, where fitter individuals have a higher probability of 

surviving or reproducing to the next generation. However, according to modem 

research on evolution, there are two fundamental limitations of the existing theory 

(Eberhart and Shi 2007). The first is that the origin of life by chance or alteration is 

highly improbable in the earth’s historical time frame. The second is that evolution of 

complex life forms solely through alterations is also highly improbable. This leads to 

a new view of evolution, in which self-organisation plays an important role in 

biological adaptation (Kauffman 1993). Complex systems can appear over a relatively 

short time frame compared to Darwinian evolution. In this new perception of 

evolution, it appears that natural selection and self-organisation are intertwined and 

operate together to facilitate biological adaptation. The following sections will focus 

on self-organisation, while Section 2.5.2 will briefly discuss natural selection in the 

context of multi-level biological organisation.

biological adaptation = natural selection + self-organisation

Based on principles of biological adaptation it is important to understand natural 

goals, which act as drivers and the constraints involved in guiding the organisational 

behaviour of a cell. These goals come in two forms, objectives which are universal to 

every biological system, and objectives that are specific to species. Species specific 

objectives will have to be pursued, whilst concurrently complying with universal 

objectives of living systems. In the context of intracellular adaptive dynamics, these 

goals/objectives and constraints represent biochemical activities in a cell. However, a 

gradual increase in diversity of biochemical activities, means there is now a great deal 

of complexity due to billions of years of evolution (Coming 1995). Initial biochemical
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tasks were much simpler, compared to the complex tasks that exist today. Hence the 

best way to understand the principles behind construction of biochemical tasks, is to 

look at simple biochemical activities that existed in proto-cells, which brings our 

attention to the theory of the origins of life, and enable common objectives of living 

systems to be abstracted. Before striving to answer, how life emerged? It is essential 

to answer two vital questions. What constitutes a minimal life? And why did it 

emerge? Stuart Kauffman proposed five physical conditions for minimal life 

(Kauffman and Clayton 2006). To answer the second question, it is important to 

understand objectives of molecules in terms of physical and chemical laws. However 

a question that needs addressing is: Did the molecules have the deliberation to create 

minimal life or were they guided by the constraints o f the physical environment to 

create life as a spin-off, whilst maintaining their original objectives? The notion of 

objective may differ at different levels in biological organisation strata. At an atomic 

level, the atoms stabilise by having a propensity to reach a noble gas configuration. 

However, they are constrained by the different affinities of different atoms, this leads 

to attaining a specific molecular configuration, whilst maintaining their original goal. 

At the molecular level, molecules stabilise by having a propensity to lower the 

internal energy (i.e. electronic, vibrational and rotational energy) state. This is 

achieved by a conformational change to reach the lowest possible energy state, based 

on its immediate environment (van Gunsteren, Bakowies et al. 2006). Further these 

molecules tend to cluster to reach stability. This propensity of physical interaction 

between molecules to reach their goal may answer the important question, why 

molecules interact? The laws of thermodynamics play an important role in this 

process (Wolfe 2002).

Although there are no standard models for the origin of life, it is thought the first 

biological systems (i.e. a protocell) emerged from simple organic molecules, that were 

capable of self-maintaining, self-replicating and evolving (Sole, Munteanu et al. 

2007). There are two broad classes of theory, as to how life first originated from non­

living matter. The replicator first theory states that large molecules capable of 

replicating (such as RNA) formed by chance, whereas the metabolism first theory 

states that small molecules formed an evolving network of reactions driven by an 

energy source (Shapiro 2007). A minimal life can be viewed from a physical (i.e. 

thermodynamics), chemical or biological perspective. The thermodynamic definition
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of life states that a localised region that increases order (i.e. decreases in entropy) 

through cycles driven by energy flow, would be considered alive. Shapiro states five 

requirements for the metabolism first theory which are useful to abstract the universal 

objectives pursued by biological systems:

1) A boundary is needed to separate life from non-life,

2) An energy source is needed to drive the organisation process,

3) A coupling mechanism must link the release of energy to the organisation process 

that produces and sustains life,

4) A chemical network must be formed to permit adaptation and evolution, and

5) The network must grow and reproduce

A boundary need not be a physical barrier, such as a membrane bounded system. It 

can also be an organisational closure, formed due to collective autocatalysis. For a 

chemical network to adapt and evolve, it should be goal/objective oriented. These 

drive the adaptive process. Understanding reproductive strategies is important, in 

identifying the units of selection involved in biological adaptation. This is discussed 

in Section 2.5.2. There are various replication strategies established in a biological 

hierarchy. The replication of biological entities (atoms, biomolecules, cells and 

organisms) can occur independently or dependently. Totally independent entities (e.g. 

unicellular organisms and some multi-cellular organisms) can self-replicate whereas 

dependant entities have to rely on other entities of the same species (e.g. sexual 

reproduction), or entities from different species (e.g. biomolecules and virus) or 

external synthesis machineries (e.g. atoms). Atoms can neither self-replicate, nor 

influence other atoms for reproduction. They have to depend on external 

nucleosynthesis machineries (such as the Big Bang nucleosynthesis, Stellar 

nucleosynthesis, Supernova nucleosynthesis, or Cosmic ray spallation) (Clayton 

1983) and can be classified as allopoietic systems. Reproduction within biomolecular 

species depends on complex interactions with other biomolecular species. This forms 

the synthetic machinery known as autocatalytic sets or collective autocatalysis. The 

biological cell as a whole is considered to be an autopoietic system, where numerous 

autocatalytic sets interact via control loops to self govern the cell. The transition from 

allopoietic to autopoietic status is one of the hallmarks of the protocell. An 

autocatalytic set is a collection of molecular entities, each of which can be created
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catalytically by other molecular entities within the set, such that as a whole, the set is 

able to catalyse its own production (Kauffman 1993). Further, these sets have the 

ability to replicate themselves even if they are split apart into two physically separate 

spaces (Shenhav, Oz et al. 2007). Biochemical activities are complex autocatalytic 

sets and the reproductive information for these sets can be stored as sequential and 

compositional information (Segre , Ben-Eli et al. 2000; Segre and Lancet 2000). 

Although sequential information storage mechanisms dominate (DNA and RNA 

sequences) organisation of biological cells, the idea of a “compositional genome”, 

which can accumulate and reproduce collectives of biomolecules (i.e. chemical 

information), is being proposed as an alternate theory for the formation of protocells.

Objectives that are universal to every living system and are specific to organisms, 

have to be pursued concurrently for persistence of biological systems. The two major 

tasks found in biological systems are anabolism and catabolism, which self-regulate 

the distribution of matter and energy in biological systems. Matter in various forms is 

produced to perform diverse activities within a cell. These can be universal to every 

biological system or specific to organisms. The tasks of catabolic activities are to 

release energy and basic building blocks for the production of complex biomolecules.

2.4 Organisational Space of Biological Cells

Biomolecules give rise to living entities by arranging themselves into coordinated 

biochemical activities, whose ultimate outcome is the production of life. The multi­

dimensional problem that needs to be resolved, incorporates balancing a myriad of 

biological activities at various levels of biological organisation to result in a viable 

living system. However, a suitable resolution must exist within the “organisational 

space” defined by the constraints of each constituent biomolecule and their activities. 

At a cellular level, solutions to the adaptive requirement emerge from the 

simultaneous optimisation of multiple and mostly conflicting (due to competition 

amongst biochemical objectives) objectives via various critiquing mechanisms (forms 

of feedback and reinforcement mechanisms which facilitate self-organisation and 

selection), and function as regulators in space and time. A critic has a perception at its 

system level, that one outcome is qualitatively better than another at this level, but 

cannot determine whether this will be true at higher levels and thus cannot determine,
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if it will lead to an absolute fitness specific to the requirement. Moreover, a critic 

doesn’t inherently know what is the optimum solution, or even if one exist (Eberhart 

and Shi 2007). Although each of the objectives will not have an optimal solution, the 

solutions observed will ultimately satisfy the requirements in a sustained biological 

equilibrium. However challenges to this equilibrium which exceed the capacity of a 

specific system to compensate will create a pathological process, resulting in a multi­

objective re-optimisation manifested as biological adaptation. Further pathological 

processes have become an integral part of biological adaptation due to failure in 

achieving the objectives caused by unanticipated constraints. Moreover there will be 

multiple biological solutions, which represent different “trade-offs” among objectives 

and constraints, associated with a biological system. The preferred solution will vary 

depending on changing requirements (i.e. criteria) exerted by the organisation’s 

dynamic environment.

Feedback mechanisms are noticeably different from reinforcement mechanisms. In 

feedback, molecular switches directly interact with a signalling molecule (input 

signal) to alter the response without changing the basic responsive behaviour of a 

system to future occurrences. Positive feedback includes replication of functional 

products and activating them. Negative feedback includes the degradation of 

functional products, the inhibition of a functional product’s activities, competition for 

resources, exhaustion for resources and the saturation of biomolecular activities. 

Feedback is short-lived, being limited by the duration of interactions. In contrast, 

reinforcement occurs when an event following a response causes an alteration in the 

probability of that response occurring in future. Reinforcement changes the basic 

responsive behaviour of a system to future occurrences independent of the signalling 

molecule (e.g. alterations in processing time of enzymes or their abundance). A 

permanent change in the responsive behaviour of a system to future occurrences will 

occur with reinforcement (Wikipedia Contributors 2009a).

At molecular resolution level, two types of molecular switch exist. One type remains 

active by default, and is deactivated by a signalling molecule (negative feedback) and 

another type remains inactive by default and can be activated by a signalling molecule 

(positive feedback). However at cellular resolution level, when we look at these 

redundant events (molecular switches as redundant counterparts in two different states 

due to activation or deactivation) as a statistical process, two distinct patterns emerge.
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These feedbacks include positive feedback that amplifies a desired outcome and 

negative feedback that reduces an undesired outcome.

Table 2.1: The amplification and reduction of activity via feedback mechanisms

Active by default Decrease in Active switches Increase in Active switches

Inactive by default Increase in Active switches Decrease in Active switches

2.4.1 Cellular Level Properties

2.4.1.1 Adaptability

Intelligence is often associated with learning, which is an adaptive process. The most 

appropriate definition for intelligence that covers all computational intelligence 

approaches is described as “the capability of a system to adapt its behaviour to meet 

its goals in a range of environment” (Fogel 2006). The ability to learn or adapt is one 

of the hallmarks of intelligent systems. This can also be witnessed in biological cells, 

where cellular intelligence emerges as an organisational/system level property. The 

mechanism, that drives this intelligent behaviour is reinforcement adaptation, which is 

ubiquitous to biological systems. Reinforcement adaptation is facilitated via a critic, 

which follows a general principle that serves to guide the adaptive process. Biological 

systems can be assumed to follow the law o f sufficiency, which states that if a solution 

is good enough, fast enough, and cheap enough, it is sufficient (Eberhart and Shi 

2007). Hence the suitability of a solution (i.e. fitness) is not an absolute measure, 

rather it is a relative measure (i.e. how good the solution is relative to other solutions). 

Figure 2.2 shows the outcome of the law of sufficiency, which causes diversity in 

outcomes, which could give rise to diverse solutions as observed in nature. If 

perfection is the norm, there will be no room for deviation or defects in the outcomes 

eventually leading to uniformity in solutions.

The proactive nature of cellular behaviour is a result of the collective organisation of 

biomolecules and their interactions in space and time. Each biomolecule is simply 

reacting in a determinate way to stimuli and in-tum responding by stimulating other 

biomolecules to regulate activities amongst them. Various activities are required to
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provide system  w id e responses to perturbations. H ow ever these activ ities have their 

lim itations, and have to be regulated in term s o f  w hen, w here and w hat activ ities  

should occur to provide tim ely  responses to perturbations in a constrained  

environm ent. A s a result, various stages o f  regulation have ev o lv ed  in anticipation o f  

perturbations, w h ich  facilitate transformation o f  reactive activ ities o f  native  

b iom olecu les to a co llec tiv e ly  proactive organisation. The presence o f  h igher stages o f  

regulation such as translational and post-translational regulation, facilitate anticipation  

o f  recurring perturbations, w h ich  also im prove the perform ance o f  a ce ll.

Acceptable
performance/fitn ess

Optimum
performance/fitness All solutions within the 

margin of deviation are fit 
enough to meet the 

demands of the objectives 
set by the environment

Allowable margin of 
deviation/error

Figure 2.2: The outcome o f  the law o f  sufficiency is diversity in solutions, where the fittest

solutions converge into an attractor basin

From a reductionist perspective, the organisational properties evident at cellu lar leve l 

such as effic ien cy , robustness and adaptability, cannot be perceived  by characterising  

b iom olecu les. In the context o f  reductionism , a ce ll is perceived  tangib ly  as its 

constituent b iom olecu les m igrating, p hysica lly  interacting and causing the density  o f  

biom olecu lar populations to fluctuate in space and tim e. H ow ever, this perception  is  

m islead ing , s in ce the ce ll is a co llec tive  o f  autonom ous b iom olecu les exh ibiting  

co h esiv en ess  on ly  at a holistic  level. M oreover the intra-organisational behaviour o f  a 

ce ll cannot be d irectly  observed or em pirically  m easured, because th is requires 

analysis o f  the perform ances o f  b iom olecular sp ecies v ia  their activ ities, analysing the 

contributions o f  basic tasks to the com plex  global tasks o f  the ce ll and tracing  

causalities v ia  causal links am ongst b iom olecular activities. A t an organisational 

leve l, the cellu lar behaviour can on ly  be probabilistically determ ined, sin ce causalities  

occur due to concurrent b iom olecular activities. Figure 2.3 sh ow s the determ inist and
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reactive nature o f  a b iom olecu le  g iv in g  rise to a cellu lar organisation, w hich  is 

probabilistic and proactive in nature. The determ inistic nature o f  b iom olecu lar  

behaviour can produce coordinated behaviour am ongst b iom olecu les, causing  

reproducible or rhythm ic intracellular organisational behaviour, in the face o f  

perturbation and uncertainty.

Proactive

CD
COca(0
CDa:

R eactive

Passive

Biological cell

B iom olecule

D eterm inistic Probabilistic

B ehaviour

Figure 2.3: The nature o f  a biomolecule and the biological cell. From the reactive and 

deterministic nature o f  biomolecular activities, the complex, nondeterministic and proactive

cellular behaviour will emerge.

2.4.1.2 Robustness

Robustness is an organisational/system  level property, w hich  is defined  as “the ability  

to m aintain perform ance in the face o f  perturbation and uncertainty”(S te llin g , Sauer et 

al. 2 0 0 4 ). F low ever com prehension  o f  h ow  robustness is accom plished  at the cellu lar  

or m olecular lev e l is  still lim ited (Hartman, Garvik et al. 2 0 0 1 ), due to its intim ate 

link w ith  the com plex ity  o f  cellu lar system s (S telling , Sauer et al. 2 0 0 6 ). A n  

important realisation  is, that robustness is concerned w ith preserving the functions o f  

a system  rather than system  states. This d istingu ishes robustness from  stability or 

h om eostasis (K itano 2 007). Homeostasis is a process, that preserves the state o f  the 

system  rather than its function. R obustness determ ines the boundaries (see  Figure 2.4: 

T he form ation o f  robustness and its associated  b io log ica l equilibrium .) o f  the m ulti­

d im ensional problem  (i.e. perturbation and uncertainty) and the function  (i.e.
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performance) space, in which biological equilibrium can exist. Perturbation defines 

the extrinsic (environmental) stimulus and intrinsic (programmed) stimulus. 

Uncertainty defines the stochastic nature of the constraints, such as the intervals 

between biomolecular activities and the availability of resources, which a cell cannot 

produce. In the context of biological adaptation, function is defined as progression 

along some causality, to a goal or successful outcome (Dusenbery 1992). Some of the 

factors that contribute to robustness are redundancy and degeneracy, plasticity and 

concurrency. Degeneracy (Edelman and Gaily 2001) is the ability of different 

solutions to perform the same function, such as an enzyme’s performance can be 

maintained by altering its processing time or abundance. In contrast Redundancy 

occurs, when the same function is performed by identical solutions. Also redundancy 

refers to the degree of replica. One of the outcomes of degeneracy is the pleiotropic 

and polygenic nature of functional products, where they positively and negatively 

influence multiple cellular functions, concurrently. The term functional product is 

currently more favoured, than the term gene product, due to changing views of genes 

(Gerstein, Bruce et al. 2007). Although degeneracy provides flexibility (many 

options) for a cell to arrive at a solution (i.e. possibly accelerate adaptation), it adds to 

complexity in recognising contributions and compensatory adjustments made by 

different options to the solution (this phenomena is demonstrated in Section 7.4). 

Plasticity is the ability of a system to readily adapt to new, different, or changing 

requirements (Gamier, Gautrais et al. 2007). Concurrency manifests with the 

existence of redundant and specialised biological entities, such as diverse 

biomolecular species and cell types. The effects of robustness are sensitiveness 

(fluctuation of performance to perturbations) and adaptability. Robustness facilitates 

adaptability by accumulating variations whilst maintaining a functional phenotype, 

such as silent or neutral mutations in the genome.

Further, cellular organisation has the ability to efficiently adapt within the bounds of 

biological equilibrium and gracefully degrade its performance, when 

functional/performance requirements, perturbation or uncertainty levels demand more 

than the capacity of robustness. Hence, not only does biological cell maintain 

performance, which is constrained by its genome, within the capacity of its 

robustness, but it also has the ability to reconfigure the responsiveness at the genome 

level to meet performance demands of the dynamically changing capacity of
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robustness. The fitness o f  so lution  in an internal cellu lar organisation is constantly  

being evaluated and it is the m easure o f  perform ance w ith respect to an objective. 

That is h o w  w ell an intended task is being fu lfilled . A lthough every functional 

product has a purpose (intended activ ity), ultim ately their contribution to the overall 

perform ance o f  a cellu lar organisation, w hich  in turn contributes to its reproductive 

su ccess, is essentia l to an understanding o f  their im pact from the bottom -up. T hese  

functional products w ill have positive contributions to sustaining b io log ica l 

equilibrium , w hen  their activ ities are performed w hen  required. H ow ever, w hen  their 

activ ities are silen ced  or perform ed w hen not required, it can have a n egative  

contribution to sustaining b io log ica l equilibrium . B iom olecu lar activ ities are 

directional/vectorial in  term s o f  their causality (cause and effect), w h ich  contributes to 

the transform ation o f  the cellu lar organisation’s equilibrium  state, either tow ards or 

aw ay from  equilibrium , depending on an organisation’s state. H ence the purpose o f  a 

functional product in the context o f  its higher organisation (ce ll) depends on the 

circum stance, in w hich  the activ ities are performed. In a normal system  various 

feedback  m echanism s, form ed by regulatory sw itches w hich  span from  transcriptional 

lev e l to post translational level, ensure the activ ities occur in an appropriate 

circum stance to sustain cellu lar functions.
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Figure 2.4: The formation o f robustness and its associated biological equilibrium.

(a) Perturbation and Uncertainty- The existence o f  the normal system phases (biological 

equilibrium within the bounds o f  robustness) boundaries in 2-dimensional problem space, 

(b) Performance - The existence o f Pareto optimal frontier (The region o f  high fitness) 

boundaries in 2-dimensional function space.
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2.4.2 Uncertainty in a Cellular Environment

The process of biological adaptation involves self-organisation and selection, which 

contributes to the optimisation of biological systems. These two mechanisms, which 

are facilitated by feedback and reinforcement mechanisms, should occur with 

acceptable fidelity to ensure persistent behaviour in biological systems. A cell’s 

ability to organise implies, that it has the ability to optimise cellular activities under 

various perturbations and uncertainty. The existence of uncertainty in a cellular 

environment for which the genome has no control, is due to the presence of faulty 

activities, unpredictability of causal activities inherent due to concurrency, and the 

downstream amplification of activities. For example, during the course of evolution 

an error frequency of about 1 O'4 per amino acid residue, has been selected to produce 

the greatest number of functional proteins in the shortest time (Stryer 1988). The 

ability to organise depends on the predictability of biomolecular activities, which have 

to significantly dominate uncertain activities. Due to the uncertain nature of the 

cellular environment, cellular adaptation is driven by the most probable molecular 

activities that occur, based on the constraints in their local environment. Constraints 

reduce uncertainty by guiding the system. The main constraints for molecular 

activities include, cost of the activity in terms of time and energy (i.e. enzyme 

turnover cycle), spacetime interval amongst the activities, and the stability and 

availability of reactants (biomolecules) to participate in the activity. The uncertainty 

involved in spacetime intervals amongst activities, depends on the probability at 

which respective reactants meet. Biomolecules utilise three kinds of diffusion search 

spaces. These are, one dimensional (along the DNA), two dimensional (within the 

membrane), and three dimensional (in the cytosol), to find their counterparts which 

initiate activities. However, the cost of biomolecular activities has been a major 

constraint (limiting factor) in cellular adaptation, since the amount of time required 

for various biomolecular activities, significantly dominates the time requirements for 

diffusion mediated encounters.

The stability of native biomolecules also plays a major role in the self-organising 

process of a cell, because it determines the functional ability of these molecules. The 

main factors, which affect stability of molecules are temperature, pH and vulnerability 

to destruction. Proteins are the molecular machines of a cell and they have evolved to 

be the major contributors to the organisational dynamics of the cell. Proteins exist in
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various stages of the lifecycle (Belle, Tanay et al. 2006) and differ noticeably in their 

half-lives. While some are destructed very rapidly (typically enzymes), others are 

very stable (mechanical proteins). In Proteins the half-life is determined to a large 

extent by its amino-terminal residue (see Table 2.2), which acts as a signal for 

stability and has been retained over the course of evolution (Stryer 1988). There is a 

complex interplay between protein degradation, its regulation and other determinants 

of protein metabolism (Saric and Goldberg 2006). The cellular organisation has 

adopted this susceptibility of native biomolecular degradation as nonspecific negative 

feedbacks, which contribute to the internal organisation of a cell.

Table 2.2: Half-lives of cytosolic proteins which depend on the nature of their amino- 
terminal residue (Adapted from (Stryer 1988)

Stabilizing

Methionine

Glycine

Alanine >20 hours

Serine

Threonine

Valine

Destabilizing

Isoleucine ~30 minutes

Glutamate ~30 minutes

Tyrosin ~10 minutes

Glutamine ~10 minutes

Proline ~1 minutes

Highly destabilizing

Leucine ~3 minutes

Phenylalanine ~3 minutes

Aspartate ~3 minutes

Lysin ~3 minutes

Arginine ~2 minutes
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2.4.3 The Impact of Time and Energy in Biological Adaptation

The role o f  energy in b io logica l adaptation has been em phasised  in 

“th erm oeconom ics”, as productivity, effic ien cy  and profitability o f  various 

m echanism s for capturing and utilising available energy to build b iom ass and do work  

(C om in g  200 2 ). In m etabolism  there is a net energy gain in catabolic activ ities, and a 

net energy lo ss  in anabolic activities. In b iochem ical system s, energy released by 

catabolism  is utilised  to drive the synthesis o f  A T P (know n as currency o f  energy), 

w h ich  in turn is used  for anabolism . S ince ATP is released to a com m on  pool and 

used as a currency, c e lls  have the flex ib ility  to u tilise it for any activ ity  that requires 

it. T o facilitate this en zym es play a crucial role in m etabolism , because they drive 

b io lo g ica lly  desirable but therm odynam ically unfavourable reactions by coup ling  

them  to favourable ones. The self-organisation  processes in ce lls  are non-spontaneous, 

because energy is required to produce various functional products to m aintain order in 

ce lls . V arious steady states o f  b io logica l system s, w hich  have em erged to m aintain  

bio log ica l equilibrium  far from therm odynam ic equilibrium , attract non-spontaneous  

processes to increase order, whereas therm odynam ic equilibrium  attracts spontaneous 

p rocesses to decrease order. The trajectory betw een  these tw o  b iochem ical system  

phases is controlled  by m etabolism , where anabolism  is dom inated  by non- 

spontaneous p rocesses, and catabolism  is dom inated by spontaneous p rocesses (see  

Figure 2 .5 ).

T his sp ecific ity  has constrained and guided self-organisation  in b iochem ical system s. 

Constant energy flux (energy d issipation) betw een  spontaneous and non-spontaneous  

processes provides instability, w hich  is required for the self-organisation  process. I f  

the m etabolic phase o f  a b io log ica l system  reaches therm odynam ic equilibrium , it w ill 

no longer be considered  as a liv in g  system . The frequency o f  reproduction o f  ce lls

Thermodynamic Equilibrium Biological Equilibrium

Non-spontaneous
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Figure 2.5: The role o f metabolism in cellular homeostasis

36



Multi-Scale Adaptive Dynamics from Molecules to Cell

will depend on the amount of energy utilised for reproduction. Energy utilised for 

other mundane activities of a cell can reduce the frequency of reproduction.

Various regulatory switches have evolved to self-organise a cellular environment. 

While some switches utilise little or no energy (e.g. binding of signalling molecules), 

others require chemical modifications using high energy bonds (e.g. chemical 

modifications mainly by phosphate groups and other groups such as acetyl, methyl 

and adenyl). Activities of functional products are orchestrated via various regulatory 

mechanisms which range from transcriptional regulation (genetic level), through post- 

transcriptional regulation, translational regulation (transcript level) and post- 

translational regulation (protein level). While transcriptional regulation provides slow 

and globalised cellular responses, post-translational regulation provides rapid and 

localised cellular responses. Transcriptional response is the most time and energy 

consuming process, since genetic information has to be transcribed and mostly 

translated to produce a functional product. In contrast, post-translational response is 

the least time and energy consuming process, since functional product is simply 

switched between an active and inactive state. Further transcriptional regulating is 

relatively stationary, while the remaining regulatory mechanisms are mobile and 

provide rapid and localised regulation within a cellular environment. Regulations 

facilitate in the timing of a functional product’s activities. Appropriate timing of 

activities is essential, because its impact depends on the phenotypic state of a cell.

2.5 Multi-Level Biological Organisation

A biological cell is organised into an objective/task hierarchy, which contains various 

cohesive levels (see Figure 2.6). These objectives range from the level of molecular 

species, where they are atomic and independent of one another, to the basic tasks and 

finally to cellular level, where objectives become global, mutually dependent and 

biological. When more than one biomolecular species is involved in the formation of 

a basic task, mutual dependency will exist amongst the biomolecular species. Hence 

there is a gradual transition from objectives being independent at the molecular level 

to mutual dependency of objectives at the cellular level. The objectives between 

levels of the hierarchy are semantically different. The tasks/objectives range from 

being physical to chemical and biological, when traversing from molecular resolution



Multi-Scale Adaptive Dynamics from Molecules to Cell

to cellular resolution. At molecular resolution, the tasks are physical. At the 

biomolecular species level, the objective is represented by their ensemble activity. At 

the cooperative level where basic functional units emerge, objectives are involved in 

completing chemical tasks. However, at the cellular level objectives have the 

characteristics that are fundamental to living systems. That is efficient use of energy, 

timely responses to perturbation, persistence and other biological characteristics. 

Further these system level tasks/objectives are not communicated directly to 

constituent biomolecules, rather they are self-maintained in a concurrent manner. 

Nature is inherently concurrent and biological systems are no exceptions. Since 

cellular objectives are not maintained centrally, cells have adopted a unique strategy 

to continuously realise their objectives by eliminating obsolete information from their 

organisation. The propensity of biomolecular degradation by means of random or 

regulated processes and collective autocatalysis provides an ideal reinforcement 

adaptive mechanism for a cell. The process of biomolecular degradation can eliminate 

obsolete biomolecular activities and so keep cellular activities up to date, and recycle 

resources to maintain cellular activities in a resource constrained and dynamic 

environment. These mechanisms are ubiquitous cellular processes and are pivotal for 

adaptive dynamics and evolution of an intelligent cellular organisation (Periyasamy, 

Gray et al. 2008b).

Cellular level objectives are constrained by lower level objectives, many of which are 

in conflict, so various regulatory mechanisms facilitate in managing these conflicts. 

The higher level objectives enforce adaptive requirements for the lower level 

objectives. Measuring performances of objectives within a hierarchy would facilitate 

understanding of the functional organisation of a cell. Multi-objective topology 

provides a concurrent and hierarchical view of cellular dynamics. A typical multi­

objective optimisation scenario will generate a set of dominant solutions, which forms 

the Pareto optimal frontier (the efficient frontier) (Wikipedia Contributors 2010a). 

Optimisation uses a controlled trial and error process, where a cellular system is 

steered along a path of increasing organisation. Pareto optimality is an economic 

concept, which can be used to study system efficiency and the distribution of 

component activities. A Pareto efficient frontier is one, in which any change to 

enhance the performance of an objective is impossible without making the 

performance of another objective inferior. This is often the case, when there are
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conflicts among mutually dependent objectives. A mathematically oriented 

(quantitative) definition for self-organised behaviour has been articulated as 

(Fleischer 2005) “Self-organized behaviour in a complex system involving multiple 

performance measures is a sequence o f system states corresponding to movement 

along a Pareto optimal frontier”. This defines the best global solution that can 

emerge based on the constraints.

Adaptive 
requirements

i1
Optimisation

Figure 2.6: The objective hierarchy forming nested organisation in biological systems.

For example, aerobic and anaerobic respirations are dynamic solutions, which have 

emerged to fulfil the objective of liberating energy in the presence and absence of 

oxygen respectively. In the presence of oxygen, biomolecular activities pertaining to 

aerobic respiration will dominate, and in the absence of oxygen, biomolecular 

activities pertaining to anaerobic respiration tend to dominate. Hence, these two 

solutions, although they appear redundant with respect to a cellular objective of 

releasing energy, are really complementary (i.e. degenerate) with respect to the 

problem of oxygen content (Rosenfeld 2002). These adaptive strategies, which are a 

result of collaborative efforts of biomolecules, provide complimentary solutions for 

cells. The critiquing mechanisms of evolution are destined to select appropriate 

anatomical or physiological solutions (Regenmortel 2004).

2.5.1 Task Formation and Integration in Cells

Modularity is a way of simplifying complex systems into a set of simple systems 

using functional abstractions. To this end various criteria for simplifying complex 

biochemical activities of life have been proposed, using modularity to encapsulate
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biological complexity. One such modularity is based on a cellular component, 

biological processes and molecular function, which do not represent the nested 

hierarchy of biological organisation existing today (i.e. how various basic tasks have 

been evolving to form various complex cellular level tasks), that has evolved from 

proto-cells to complex multi-cellular organisms. Moreover the long standing question 

is to what extent the concept of modularity introduced for engineered systems, 

provides realistic and useful abstractions for systems organised by biological 

adaptation (Szallasi, Periwal et al. 2006). Although modularity can be observed in the 

biological organisation strata in terms of perceivable and physically bounded entities 

(molecules, organelles, cells, organs and individuals), their applicability in 

modularising intracellular activities of functional products into functional units 

constituting cellular processes is doubtful. Intracellular functions that lack physical 

boundaries are temporal phenomena, which emerge from causally linked 

biomolecular activities. A logical approach to simplify cellular processes, is by 

constructing/deconstructing these processes into objectives/tasks on which selective 

pressure is imposed. Further modularity is concealed, due to mutual dependency 

amongst higher level tasks. The effects of mutual dependency amongst the 

objectives/tasks, which occurs due to the presence of degenerate and redundant 

factors, and the convergence and divergence of causal effects of biomolecular 

activities, adds to the complexity of modularising biochemical activities. Mutual 

dependencies complicate the process of identifying the degree of orthogonality (i.e. 

independence), which facilitates the modularisation from molecular resolution to 

cellular resolution via deconstruction of objectives into the basic and atomic tasks 

required to pursue them. The emergence of global cellular behaviour is a result of 

functional products, which are specialised to pursue their intended tasks. Further acts 

of cooperation, competition and coordination emerge from the collective behaviour of 

functional products. These actions are not mutually exclusive, rather they contribute 

concurrently to the pursuit of various collective tasks of cell and higher multi-cellular 

organisations. The criteria used to modularise interactions among functional products, 

are based on performance/fitness interactions, which emerge out of competition and 

cooperation among functional products. This is the mechanism by which evolution 

formed and evolved collaborative groups, containing one or more species of 

functional product. These functional products within a group cooperate with each 

other for a common objective/task. Competitive and cooperative adaptation among
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various biomolecular species is ubiquitous amongst their activities. While inverse 

performance/fitness interaction exists between competing biomolecular species, 

positive performance/fitness interaction will exist among cooperating biomolecular 

species. Direct and inverse fitness interactions can reveal the organisation of an 

objective hierarchy in order to construct/deconstruct tasks between molecular 

resolution and cellular resolution. Further this relationship is appropriate to model 

impact amongst various species of a biomolecule’s activity on the intracellular and the 

cellular level tasks, as a whole.

Hypercycles are formed due to convergence and divergence of causalities. The 

interaction between a common transcription factor and various cis regulatory sites, is 

an indication of divergence in causality. The presence of divergence points in 

biochemical networks is an indication of competition for a common substrate and 

from these, conflicts among higher level cellular tasks/objectives will arise. Shared 

resources are a major cause of conflicts in intracellular organisation. A basic task or a 

cooperative module in biochemical activities is defined as a group of one or more 

species of functional product collaborating for a common objective. These modules 

will have the characteristic, that every functional product’s performance will have a 

beneficial effect on the other and the whole group’s performance. The absence of any 

one member species of a group, will have no value for the existence of the remaining 

member species of the group (all or nothing phenomena). In molecular complexes the 

participating biomolecular species form cooperative groups. In the context of 

metabolic networks, this is a pathway which exists between two junction points. This 

will be the smallest module of objective function, from which higher levels of 

objective function will have to be assembled. Fitness at a functional product level is a 

function of its efficiency and stability. Efficiency depends on a product’s affinity for 

interaction, and the time and energy requirements for its activity. An improved 

performance for one competing group implies a decreased performance for the other 

group. Hence they have an inhibitory effect on other competing groups. Further, 

biomolecules are forced to sacrifice their efficiency for betterment of a cellular 

organisation. This inverse performance between two levels can only occur in the 

presence of conflicting objectives. These conflicting groups will impose immense 

selection pressure on their regulatory mechanism.
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Multi-scale interactions deal with associating molecular level activities to cellular 

level processes. These include representing spatial, temporal and energy constraints, 

and analysing efficiency, robustness and adaptability from molecular resolution to 

cellular resolution. Biomolecular activities differ in timescales, which can range from 

microseconds, as observed in some of the most efficient enzymes, to minutes as 

observed in transcription and translation of functional products. Although these 

differences may not appear significant superficially, it has a significant impact on the 

self-organisation of cellular processes. While a scoring mechanism is essential to 

measure performance, a ranking mechanism facilitates by guiding molecular level 

interactions to a desired system level behaviour. Further, posing questions at a cellular 

resolution and seeking answers at a molecular resolution, and vice versa, is one of the 

requirements of multi-scale interaction. Scoring and ranking biomolecular activities 

will enable a traverse between these two resolutions. Every biomolecular activity is 

susceptible to critiquing mechanisms (which act as regulators) of adaptation, which 

occur horizontally and vertically in the biological organisation strata. Further these 

critiquing mechanisms are exercised at physiological, developmental and evolutionary 

timescales.

Managing integrity in multi-cellular organisms requires an additional set of gene 

products to regulate extrinsic control mechanisms. Existing multi-cellular organisms 

show two distinct types of control mechanisms to maintain multi-cellular integrity. 

They are hormonal control mechanisms and neuronal control mechanisms. Hormonal 

control is a broadcasting mechanism used by specialised cell groups to communicate 

with other cells types. These decentralised control mechanisms have the ability to 

target specific cell types without any directional constraints. With the emergence of 

neurons in complex multi-cellular organisms, biological systems have evolved to 

incorporate centralised control strategies, which are mostly reliable but fragile, have a 

high rate of signal/information propagation and high specificity. Emergence of this 

cell type expanded the multi cellular organism’s phenotypic space by providing more 

options, which led to the production of better solutions to meet the adaptive 

requirements of higher biological organisation.
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2.5.2 Units and Levels of Selection

Recent work on major evolutionary transitions (from one level of organisation (the 

cell) to another (multi-cellular individuals)) emphasises the point that the general 

theory of evolution by natural selection must be hierarchical (Brandon 2001). 

Selection is one of the causes of biological adaption, which is defined as the 

“differential reproduction o f biological units due to difference in form or character 

between these units ”(Crespi 2001). Various biological units are subjected to the 

effects of selection at different levels of biological organisation. Units of selection are 

defined as the “units whose frequencies are adjusted by natural selection across 

generations ”{Crespi 2001). Levels of selection are defined, as the “levels o f  

biological organisation where natural selection occurs, within generations ”{Crespi 

2001). Biological units are arranged in a hierarchy (see Table 2.3), with lower level 

units nested into higher ones. Units at different levels exhibit diverse properties with 

respect to how they reproduce and the mechanisms by which they interact with units 

at different levels and aspects of the environment.

Table 2.3: The primary levels o f biological organisation, the units at each level, and the 

properties o f the units (adapted from (Crespi 2001))

Genes High High Very high No Replicator

Chromosomes High High Medium No Replicator

Genotypes High High Low No Replicator

Gene products High High N/A Yes Interactor

Cells Variable High N/A Yes Interactor

Individuals High High Low Yes Interactor

Groups Variable Variable Variable Yes Interactor

Species Variable Very low Variable Yes Interactor

Communities Variable Low Variable Yes Interactor

2.5.2.1 Units of selection

Individuals occupy a special place in the biological organisation strata, because each 

contains genes, chromosomes, genotypes, functional products and cell(s). Individuals
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typically live, reproduce and die as units. Further they represent the constituents 

which combine in various ways to form the levels above them. The extent to which 

units at different levels are units of selection depends on Darwin’s three conditions. 

First “the units must exhibit variation among themselves in their effects” (Crespi 

2001). Second “the units must have some rate o f differential reproduction, which 

determines the frequency o f  selective episodes, and this turnover must be causally 

linked to variation among units” (Crespi 2001). Third “the units must persist as 

unique, replicating variant units for a sufficient number o f selective episodes to have 

their frequencies adjusted by natural selection” (Crespi 2001).

Based on the above criteria genes, chromosomes or genotypes can be the only units of 

selection. The “gene is the primary unit of selection because it is the only unit 

exhibiting high variation, high turnover rate and the ability to replicate or reproduce 

with extremely high fidelity” (Crespi 2001). Chromosomes become units of selection 

only when the rates of recombination are very low or zero, and genotypes become 

units of selection only in asexual organisms, where the absence of recombination and 

meiosis results in the inheritance of an entire genome unaltered. Further, being a 

replicator is vital to being a unit of selection.

2.5.2.2 Levels of selection

This describes, where selection exerts its pressure in the biological hierarchy. 

“Selection requires the expression of trait variation at some level, and interaction of 

that trait variation with the environment so that the units at that level and the lower 

level differentially reproduce” (Crespi 2001). Expressed traits include functional 

products or effects and phenotypes of individuals, groups or communities. Of these, 

individuals usually represent the most important level of selection.

2.5.3 Timescales of Biological Adaptation

Biological adaptations occur in physiological, developmental and evolutionary 

timescales. The information for this adaptive process is mainly stored as genetic 

information in the genome. This information exists not only in a gene’s coding 

sequences but also in its regulatory sequences (Hopi and Jerry 2007; Prud'homme, 

Gompel et al. 2007; Wray 2007; David and Virginie 2008). While genetic adaptations 

contribute to biological adaptations at evolutionary timescales, epigenetic adaptations



Multi-Scale Adaptive Dynamics from Molecules to Cell

contribute to biological adaptations at developmental timescale (cellular 

differentiation). Since genetic adaptations mostly occur during the reproduction of 

organisms, the evolutionary timescales will differ with the rate of reproduction. For 

example, the reproductive rate of bacteria is much higher than multi-cellular 

organisms. The rate of genetic adaptation tends to be much higher in organisms with a 

higher reproductive rate. Hence the evolutionary timescales will differ with 

organisms.

2.5.3.1 Epigenetic adaptations

Epigenetics has several meanings all with independent roots in biology. Although the 

working definition has become narrower, the term epigenetics was introduced and 

defined by Conrad H Waddington as the study of genotype giving rise to phenotype 

(Bird 2007). This represents the most extreme case of epigenetics where the position 

of each molecule is accounted for by the phenotypic state of the cell. Robin Holliday 

(Robin 1990) has defined epigenetics as the mechanism for spatial and temporal 

control of gene activity, during the development of complex organisms. It implies 

changes in phenotype, that is changes influencing the development of an organism, 

are due to mechanisms other than changes in the DNA sequences. There are various 

epigenetic mechanisms (Allis, Jenuwein et al. 2006; Tost 2008) listed in Appendix C 

and most of them are trans-generational mechanisms.

Many geneticists now believe that the behaviour of our genes can be altered by 

experience and can be passed on to future generations. This could transform our 

understanding of biological adaption (Hunter 2008). Hence the outcome of a 

phenotype is influenced by environmental factors, and epigenetic processes mediate 

genotype-to-phenotype relationships within the limits of a genotype, and respond to 

environmental perturbations to produce a phenotype. Only a subset of the genome is 

expressed at any given moment during physiological and developmental activities of 

an organism, and this is controlled by genetic as well as epigenetic mechanisms 

(Turner 2007). While genetic adaptation is a slow process, epigenetic adaptation is 

comparatively a quicker process (Rando and Verstrepen 2007). Although these two 

processes seem to evolve independently, they both contribute to the final phenotypic 

outcome. Hence the success of the phenotype not only depends on the genotype, but
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also on the epigenotype. While phenotypic features cannot directly influence 

genotypic information they can influence epigenotypic information.

2.6 Concluding Remarks

This chapter has defined the adaptive dynamics of biological cells by utilising a multi­

objective topology. This differs from a conventional network topology based 

description of intracellular dynamics. The chapter has also exemplified biological 

complexity from molecules to cell by deciphering the functional organisation of 

biological cells via multi-objective representation of intracellular adaptive dynamics. 

This chapter has characterised the crucial factors involved in biological adaptation 

such as adaptability, robustness and efficacy in the context of multi-objective 

topology which provides a hierarchical and concurrent view of the intracellular 

dynamics. An appropriate systems biology approach will have to be utilised to model 

the self-organisation of biomolecular activities in order to study the emergence of 

intracellular behavioural organisation. Since this requires a mechanism based 

explanation, it has to be mechanistically modelled using a bottom-up approach, which 

integrates molecular level information. Modelling at the level of molecular resolution 

requires representation of both the molecular properties, and the spatial and temporal 

constraints of the cellular environment. One of the challenges is that the 

organisational behaviour of a cell, is not something that can be directly observed or 

empirically measured. Instead it needs a group of actors to represent the functional 

products, a set of cellular resources utilised by these functional products, a way to 

capture the results of the functional products’ activities, and a method to evaluate 

these results. The cellular activities, which correspond to a functional organisation are 

hierarchically organised into various basic tasks, which merge to form the complex 

and greater tasks of a cell. The next chapter specifies the functional and non­

functional requirements needed to address the problems described in this chapter. It 

critically reviews related work with respect to modelling intracellular dynamics and 

evaluates suitable methodologies and platforms to address the research aims.



Chapter 3

Modelling Biological Phenomena

“The data are accumulating and the computers are humming, what we are lacking 

are the words, the grammar and the syntax o f a new language... ”

Denis Bray

3.1 Overview

The aim of this chapter is to specify modelling requirements for addressing problems 

articulated in Chapter 2 and critically review related work with respect to modelling 

from molecular resolution to cellular resolution. Further, it addresses the feasibility of 

achieving the specified requirements with available resources. Section 3.2 specifies 

the major requirements needed to build a model to embrace the inherent principles 

governing self-organisation, adaptability, robustness and efficacy in biological cells. 

The scope of systems biology is reviewed in Section 3.3 to identify appropriate 

systems biology approach for the study. In Section 3.4, model development processes 

and hierarchical modelling approaches are reviewed to identify appropriate modelling 

methodologies. Section 3.5 reviews the scopes, strengths and limitations of various 

types of biological modelling formalisms. Section 3.6 evaluates modelling 

methodologies and modelling formalisms against model requirements to identify an 

appropriate model development process, hierarchical modelling approach and 

modelling formalism. Further, an agent based formalism in the wider framework of 

Collective Intelligence is identified as the approach for modelling and simulation of 

multi-scale adaptive dynamics from molecules to cell. Section 3.7 evaluates the 

feasibility of implementing and developing the chosen modelling approach in terms of 

available biological data sources, programming environments, platforms and 

computational advances.
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3.2 Requirements for Modelling the Adaptive Dynamics 

from Molecules to Cell

3.2.1 Model Requirements

Modelling multi-scale adaptive dynamics from molecules to cell level, will require in 

silico representations at molecular resolution to model biomolecules and their 

activities in space and time. The activities which cause direct and indirect interactions 

amongst the biomolecules contribute to self-organising and emergent behaviour in 

biological cells. However these emergent behaviours must be analysable to produce 

practical models. One of the challenges is that organisational behaviour of a cell is not 

something that can be directly observed or empirically measured. Instead it needs a 

group of actors to represent the functional products, represent a set of cellular 

resources utilised by these functional products, capture the results of the functional 

products’ activities and a method to evaluate these results. Self-organisation is the 

main principle required to build a mechanistic model. Since biomolecules do not 

possess any cognitive ability, they are unaware of the global state of a cell. The state 

of a cell has no direct influence on the behaviour of biomolecules, rather they simply 

react to the immediate environment in which they exist. To represent these 

phenomena, biomolecules must be represented as reactive entities without any 

deliberation with respect to their behaviour based on the global state of cell.

The following requirements are desirable for modelling the multi-scale adaptive 

dynamics from molecules to cell.

■ The ability to model between molecular (the lowest level of abstraction) and 

cellular resolution (the highest level of abstraction). This requires representing 

multiple scales (from molecular to cellular) simultaneously to analyse 

performances within the objective/task hierarchy, analysing the timescales of 

molecular activities and the timescales at which their contributions can be 

realised, analysing energy requirements for molecular activities and energy 

production and consumption at the cellular resolution, analysing the efficiency 

of the functional products’ activities and the efficacy of the diverse 

objectives/tasks to which they contribute, analysing stability of the functional 

products and their robustness at cellular resolution, and analysing adaptability
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in the physiological timescales of functional products and at cellular resolution 

to which they contribute.

■ The ability to represent concurrency, which is endemic in biological cells

■ The ability to mechanistically explain emergent properties from molecules to 

cell

■ The ability to measure organisational behaviour within a biological cell

3.2.2 Data Requirements

Many macroscopic descriptions of cellular phenomena are only an approximation, 

idealisation and generalisation of real molecular processes. Due to insufficient 

description/information at this level, they often rely on probabilistic or statistical 

concepts. In contrast, microscopic descriptions of molecular activities are associated 

with detailed descriptions. However, many molecular details are insignificant, 

irrelevant and inconsequential to specific macroscopic phenomena (Fromm 2005). 

Hence, every detail at molecular resolution will not be required to represent the 

intracellular organisational behaviour. The level of detail required to represent 

phenomena will increase when moving from population, to molecular and atomic 

levels. Further the information used at each level is semantically different. The 

significant, relevant and prominent properties for activities and interactions that are 

consequential to intracellular organisational behaviour will have to be identified. Two 

types of constraint which represent organisational and physical constraints will have 

to be represented, to model their effects on collective behaviour. This will require 

molecular level information, such as their diffusion constants, time and energy 

requirements for their activities, their localisation and abundance in a cell. 

Biomolecular activities are transformed into events, when they occur in a stipulated 

space and time. Modelling these events will require information at molecular 

resolution, such as time and energy requirements to represent the respective events. 

Modelling event intervals will require the diffusion constants of biomolecules, the 

distance amongst biomolecules and the affinities for interaction. Further biochemical 

thermodynamic information is required to model the physical constraints of 

biomolecular activities. Gibbs free energy (Stryer 1988) is mainly used as a 

thermodynamic property in biochemistry to provide quantitative answers to the
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probable direction of chemical reactions. Free energy is also used to represent 

affinities for interaction amongst biomolecules. Information such as biomolecular 

degradation and error frequencies for transcription, translation and replication can 

also be beneficial when building a comprehensive model of a cell.

3.2.3 Technical Requirements

Modelling biomolecules will require a formalism that can model the behaviour of 

biomolecules and the intracellular environment. A cellular environment is spatially 

heterogeneous, because it is crowded, granular and inhomogeneous (Ridgway, 

Broderick et al. 2006). Stochasticity refers to the inherent uncertainty to movement, 

interaction and activity of every biomolecule. Further, the low copy numbers of some 

vital bimolecular species and their ensemble activities will fluctuate in a way that can 

only be described in terms of probability (Ridgway, Broderick et al. 2006). Under 

these circumstances, the low of mass action for reaction kinetics is no longer 

applicable. Hence modelling at molecular resolution will require a stochastic 

approach. Further at the level of molecular resolution, molecular activities are 

discrete, thus requiring formalisms capable of simulating discrete time steps. Hence, a 

discrete event simulator is required to model discrete biomolecular activities in space 

and time. Further the formalism should also be able to simulate at the individual 

molecular level to represent molecular behaviour and intracellular spatial 

heterogeneity (Ridgway, Broderick et al. 2006). Moreover, at an individual level the 

rules are qualitative, however a quantitative approach is required to analyse ensemble 

activities of biomolecules across space and time. Since a multi-level approach is 

required to model the adaptive dynamics from molecules to cell, the formalism should 

be able to structure hierarchically and be compositional into functional units from the 

bottom-up. A suitable framework will be required to capture and analyse the emergent 

behaviour of biomolecular interactions.

3.2.4 Non-Functional Requirements

The framework should be extensible to allow consideration of future expansions of 

biomolecular representations and their rules. The model should be scalable in order to 

meet computational demands, when implementing large scale models of biological 

cells containing billions of biomolecules. The model should be interoperable with
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existing modelling tools, as this will facilitate exchanging model descriptions and 

testing results.

3.3 The Scope of Systems Biology

While biomolecular science studies individual biomolecules with the aim of revealing 

how molecules function, systems science aims to predict the consequences of a 

particular molecular mechanism on the whole organism. However, molecular sciences 

have become one of the most successful branches of science, by characterising the 

molecular basis of life for a diverse number of organisms. Molecular bioscience uses 

reductionist approaches, which initially give prominence to the overall behaviour of 

systems, and progressively identifies and explores the constituents via decomposition, 

to characterise the underlying functions of the constituent biomolecules. However, 

understanding the constituent is necessary but not sufficient for system-level 

understanding, and a quantitative reconstruction of a system with its constituents, is 

required. Systems science utilises reconstruction approach to study system wide 

phenomena. One of the aims of systems biology is to understand biological 

phenomena, which emerge from complex interactions that occur within and between 

the levels of the biological organisation strata. Hence, by determining how a function 

arises, due to dynamic interactions of constituents, systems biology addresses the 

missing links between molecules and physiology (Bruggeman and Westerhoff 2007). 

The systems biology approach utilised for studying the biological organisation strata 

will determine appropriate methodologies for multi-level representation of biological 

phenomena.

3.3.1 Top-Down Systems Biology

A top-down approach to systems biology identifies “molecular interaction networks 

on the basis o f correlated molecular behaviour observed in genome-wide ‘omics’ 

studies” (Bruggeman and Westerhoff 2007). It gives insights via inductive reasoning, 

reasoning from detailed facts to general principles. The models based on this 

approach are phenomenological. They are not based on mechanisms and, mostly, do 

not integrate knowledge about relationships between molecules. The top-down 

approach, which has emerged as a new and dominant method for systems biology,
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identifies patterns in molecular interactions, which underlie system behaviour. 

Moreover, this approach is utilised for cellular systems which have not yet been 

characterised to a considerable mechanistic detail, and in which much remains to be 

discovered (Bruggeman and Westerhoff 2007). The major strengths of this approach 

is that it is genome wide and incorporates most ‘omics’ technologies.

3.3.2 Bottom-Up Systems Biology

A bottom-up approach to systems biology gives prominence to functional units and 

studies, the mechanisms through which functional properties arise in interactions of 

constituents (Bruggeman and Westerhoff 2007). It gives insights via deductive 

reasoning, reasoning from general principles to a particular observation. This can 

reveal functional properties, which emerge from the lower levels of biological or 

cellular organisation, which have been characterised to a high level of mechanistic 

detail (Bruggeman and Westerhoff 2007). The main goal of this approach is to 

combine biochemical process models into a global scale representation of biological 

systems. Models based on this approach are mechanism-based. Although all bottom- 

up systems biology studies have a common goal to obtain mechanism-based 

descriptions from lower levels to higher levels of biological organisation, the 

resources required for modelling differ with the mechanistic principles used. The 

problem with a bottom-up approach is computability and scope of its application. 

Computability depends on what level of abstractions the reconstruction process begins 

and terminates. The scope is the validation of fundamental molecular processes in 

living systems, as well as non-living systems and emphasising that at this level no 

other processes are required (Noble 2008).

3.3.3 Discovering General Principles of Biological System Behaviour

Since systems biology is a science (Westerhoff and Alberghina 2005), it should also 

aim to discover general principles, which relate to all aspects of cellular organisation. 

This effort in biology is driven by the fact that different species have many systemic 

properties and molecular mechanisms in common. “Such interspecies commonalities 

lead to general principles that offer predictive power and a fundamental 

understanding o f living systems that transcend single species” (Bruggeman and
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Westerhoff 2007). This approach to systems biology can lead to substantial 

fundamental insights into the principles, which underlie biology.

In combination with experimentation and theory, modelling (Szallasi, Stelling et al.

2006) remains an integral and important part of systems biology studies. The next 

section describes available biological modelling approaches.

3.4 Biological Modelling Methodologies

Identifying an ideal modelling approach based on model requirements, still causes a 

lot of confusion and disagreement amongst modellers (Nestorov, Hadjitodorov et al. 

1999). Further a model is only as good as the data available to develop and test it. 

Although new models are constantly being proposed by modellers, claiming the new 

model extends the knowledge of a phenomenon or process, these models appear to be 

unable to cover the full complexity of the real world. However, this has not stopped 

modellers from developing new models at varying levels of complexity, generality 

and validity. The increasing success rate of modelling technologies in providing 

solutions in all areas of modem life is sufficient to justify this progressive 

development (Nestorov, Hadjitodorov et al. 1999).

3.4.1 Model Development Processes

There is a growing demand for models of biological systems to better reflect 

biological phenomena. The model development process depends on whether a top- 

down or bottom-up systems biology approach is adopted. There are two major types 

of model development processes (Tham 1998 - 2000), driven by the two extremes of 

feasibility and reality. The first is based on empirically generated data (empirical or 

data driven models), which facilitates top-down systems biology studies. The second 

is based on underlying principles governing behaviour of phenomenon or process 

(mechanistic models), which facilitate bottom-up systems biology studies. Table 3.1 

summarises the main differences between these types of development processes.



Modelling Biological Phenomena

Table 3.1: The comparison between empirical and mechanistic model development process 

types (This table is developed from (Tham 1998 - 2000))

Procedure

T.mpiricnl

1. Collect data from the process
2. Specify the correlation 

structure between variables
3. Use a numerical technique to 

find parameters for the 
structure, such that 
correlation between the data 
is maximised

4. Validate model against an 
‘unseen’ data set

5. If model is not satisfactory, 
go to step 2.______________

M ech an istic

1. Use fundamental knowledge 
of interactions between 
process variables to define the 
model structure

2. Perform experiments to 
determine parameters of the 
model

3. Collect data from process to 
validate the model

4. If model is not satisfactory, 
go to step 1 and re-examine 
process knowledge_________

Advantages & 

Disadvantages

Depends on availability of 
representative data for model 
building and validation 
Apart from cause and effect 
between variables, little else 
is required in terms of 
process knowledge 
A trial and error approach is 
adopted
Are feasible in delivering 
some form of working model 
The parameters of data 
driven models are just 
numbers encapsulating 
combined effects, thus it is 
difficult to attach physical or 
biological meaning to them.

Does not require much data 
for model development, and 
hence is not subject to 
idiosyncrasy in data 
Requires a fundamental 
understanding of principles 
governing the process 
Can be very time consuming 
Provides more realistic 
predictions
Can conduct more analysis 
studies
It provides an opportunity to 
associate meaningful 
elements.

Empirical model development approaches build predictive models based on ‘omics’ 

datasets, which currently lack a necessary comprehensiveness and accuracy in 

measurements to build realistic models. However they exist due to a need to develop 

quantitative techniques to make use of these datasets and consider their associated 

uncertainties (Lee, Gianchandani et al. 2006). These models are problem specific and 

their applicability is limited to empirical conditions, in which the cause (input) and 

effect (output) relations were obtained. In contrast mechanistic model development 

approaches are ideal to design new processes, to troubleshoot pathological behaviours
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in systems, or to guide towards fundamental improvements in process operability. 

Based on model requirements, a mechanistic model development approach is chosen 

to model the principles governing the biomolecular activities within biological cell. 

Mechanistic principles are used to model different aspects of reality, which include 

laws of nature, such as chemical and physical laws, and principles from economic 

theory, information theory, systems theory, organisational theory and theory of 

computation. Although these principles emerged to describe different aspects of 

natural phenomena, they have limitations in their applicability to represent biological 

phenomena. A combination of these principles will be required to describe biological 

phenomena, since biology has yet to transform itself into a theory rich science 

(Wingreen and Botstein 2006) to formulate its own laws. The applicability of a model 

will depend on the scope of the principles. The more universal the principle is, the 

wider its applicability will be. Existing modelling approaches are evaluated to identify 

ideal mechanistic principles, from which a model will be developed.

3.4.2 Hierarchical Modelling

Multi-level modelling is an important part of modelling biological phenomena due to 

the hierarchical nature of biological organisation. There are various hierarchical 

modelling methodologies for representing biological phenomena within the extremes 

of top-down and bottom-up methodologies. Top-down modelling is based on analytic 

thinking, whereas bottom-up modelling is based on synthetic thinking. All these 

methodologies have strengths and weaknesses.

A bottom-up modelling methodology is more suitable when extensibility of the model 

is required. Bottom-up developed models have increased compositionality at the 

lower level and a greater independence from certain higher level requirements, which 

constitute the most volatile part of the model (Markus and Andreas 2004). Top-down 

modelling approaches are ideal for modelling specific biological problems. Since 

construction of a model starts with a specific biological problem or phenomena, it is 

more likely to produce a workable model for the scenario being used. However, a 

model cannot be tested until it is completed. Although a decision to use a top-down or 

bottom-up modelling methodology is not primarily based on extensibility, it will give 

added value to a model. Extensibility of a model depends on compositionality and 

flexibility.
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Compositionality depends on an ability to decompose or compose models. While top- 

down modelling tries to study specific biological phenomena, bottom-up modelling 

forces the modeller to think in terms of orthogonal and extensible components, 

because a constructed model must be flexible enough to study unexplainable 

biological phenomena. Bottom-up modelling of diverse biological phenomena is 

facilitated by addition of components and reconfiguring their interactions. Bottom-up 

modelling contributes to separation of concerns, which favours orthogonal 

extensibility of biological function. Separation of concerns can also reduce 

complexity in modelling. Top-down modelling contributes to the separation of 

scenarios (Markus and Andreas 2004). However biological adaptability is dependent 

on concerns which manifest as functional units.

Flexibility is an important feature of the model since it determines modifiability to 

meet new future requirements. Since bottom-up modelling is initiated by 

representation of the constituents and their interactions, its stability depends on the 

consistency of lower level details. These details, which consist of molecular 

information, have been well characterised in molecular sciences. Since bottom-up 

models are not globally controlled, they can virtually be represented at any size 

without major modifications to underlying architecture. Moreover the basic 

architecture will remain the same, which gives design flexibility when addressing 

other applications. In contrast, top-down modelling, based on scenarios, will have to 

start from scratch to represent new scenarios.

3.5 Existing Biological Modelling Formalisms

Based on the scope of an application, existing modelling formalisms are characterised 

as deterministic or stochastic models, as discrete or continuous models, as 

macrosopic, mesoscopic or microscopic models, as quantitative, semi-quantitative or 

qualitative models, predictive or explorative models, homogeneous or heterogeneous 

spatio-temporal models (Kell and Knowles 2006). Modelling formalisms can also 

have a combination of above mentioned characteristics and the chosen selection will 

depend on the modelling requirements.

Further, there are two major dynamic modelling formalisms based on in silico 

representations of biological phenomena. They are the mathematical formalisms,
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which are based on denotational semantics, and computational formalisms which are 

based on operational semantics.

Table 3.2: The comparison between mathematical and computational model

Language Equations Algorithms

Semantics Denotational: meaning of 

model is represented in 

equations

Operational: meaning of 

model is represented as a set 

of instructions

Basic entity Transfer function State machines

Relations Relates different variables to 

each other

Relates states to each other

Meaning Models rate of change Models cause and effect

Dynamism The steps performed by 

executor are abstracted. This 

hides causal, spatial and 

temporal relationships 

between those steps

All relationships between 

steps are exposed.

System transition Changes occur in variables’ 

values when the system 

changes state

Highlights why and how 

system transitions occur

System behaviour Abstracts overall system 

behaviour through equations. 

Describes the average 

system’s behaviour with 

continuous state spaces

Precisely describes a 

system’s behaviour with 

discrete state spaces

Origins Mathematics Computing theories

Table 3.2 summarises the main differences between mathematical and computational 

formalisms (Fisher and Henzinger 2007; Hunt, Ropella et al. 2008). The current 

modelling tools for systems biology are dominated by mathematical approaches 

(Coveney and Fowler 2005). Mathematical simulations are solved by using 

computing resources as a service. Equations are sequential tools which attempt to
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model a system, whose behaviour is completely determined by input/output 

relationships. However, input/output relationships are not suitable for characterising 

the behaviour of concurrent systems such as biological systems (Corrado 2009). A 

network topology will be the outcome of equation based models, which provide a 

sequential representation of the system’s dynamics. Further it cultivates sequential 

thinking. Equation based models with inherent sequential assumptions impact the 

notion of causality which corresponds to a temporal ordering of events. However in 

the context of parallelism, causality is a function of concurrency (Corrado 2009). 

Intracellular biochemical activities are highly concurrent. Network topologies will 

also have to deal with combinatorial explosions arising from different states of 

biomolecules, their relations and interactions. Further analysing distribution of 

causalities at points of convergence and divergence, is an inherent problem in 

equation based models. It should be realised, that emergence of continuous phase 

spaces at the aggregation level, which mathematical formalisms use, are actually 

emergent properties of discrete state spaces at an individual level, which can be 

represented in computational formalisms.

Various modelling formalisms and tools have been reported in (Gilbert, Fuss et al. 

2006; Grima and Schnell 2008; Pahle 2009; Walker and Southgate 2009).

3.5.1 Mathematical Modelling Formalisms

Currently there are many different types of models, using various mathematical 

formalisms to represent biological systems. However the scope of this discussion is 

based on modelling strategies, which study intracellular reactions. Based on spatial 

representation and predictability of intracellular reactions, the models are classified as 

non-spatial-deterministic, spatial-deterministic, non-spatial-stochastic, and spatial- 

stochastic models. Population based kinetic models are one type of the widely used 

mathematical models that treat reacting components as population pools. These 

include mass action kinetic models which are deterministic and can either represent 

spatial or non-spatial scenarios, and stochastic kinetic models, which are stochastic 

and can either represent spatial or non-spatial scenarios. The distinctions between 

these two approaches are tabulated in Table 3.3. However in individual based 

stochastic models, resolution of spatial representation is high (single molecular
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resolution), and predictability of reactions is stochastic. Further, they assume 

heterogeneity in molecular distribution and discreteness among molecules.

Table 3.3: The distinctions between mass action kinetic models and the stochastic kinetic

models

Model type Macroscopic Macroscopic

Focus Population dynamics Population dynamics

Population pools Continuous concentrations Discrete population

Entity Indistinguishable mass of 

identical elements

Indistinguishable mass of 

identical elements

Spatial Homogeneous distribution Homogeneous distribution

representation No reaction diffusion No reaction diffusion

Spatial resolution Low Low

State of the model Defined by a concentration of 

elements

Defined by population 

number of all species 

involved

Predictability Deterministic, - same starting 

condition same result

Stochastic

Transformation

Function

Reaction rate Probability

Equation Rate/Differential equation Chemical master equation

Chemical Kinetics Rate constant Reaction constant

Assumptions Homogeneity, continuum Homogeneity, discrete

3.5.1.1 Mass action kinetic models

Kinetic models can be created using various methodologies to simulate biological 

systems. The most commonly used methodology is mass action kinetics, which is 

based on the law of mass action (Wanner, Finney et al. 2005). These models represent 

molecular information, as aggregated variables for every distinct molecular 

population. The state of a model is defined by population of its molecules at any 

particular time. The main assumptions of this model are that reactants are well mixed,
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homogeneously distributed in space and large numbers of chemical species are 

present, which can be represented as concentrations varying on a continuous scale. 

However these assumptions do not comply with cellular systems, since their 

characteristics are far from continuous and deterministic. Dynamic behaviour of a cell 

is mostly expressed using ordinary differential equations (ODE), which are implicitly 

non-spatial and deterministic. When adding spatial dimensions to these approaches, 

ODEs are transformed into corresponding partial differential equations (PDE). E- 

Cell (E-Cell Project 2009) is an international research project, which aims to model 

and reconstruct biological phenomena in silico. This model utilises ODEs, in the form 

of rate equations (RE) to represent intracellular dynamics. In contrast, Virtual Cell 

(NRCAM 2009) utilises PDEs with a finite volume method in the form of reaction- 

diffusion equations (RDE), to represent reaction and diffusion rates of molecules, in 

its spatial simulation framework. A cell’s spatial structure is depicted as 

compartments in this framework. These compartments are further subdivided into 

sub-volumes via a mesh-generator. Although a finer time step and sub-volume size 

can produce more accurate solutions, it will require more computational resources. 

Although PDEs are known to be one of the most computationally scalable spatial 

simulation algorithms, their deterministic nature cannot accurately represent 

intracellular noise (Takahashi, Aijunan et al. 2005). These models are deterministic, 

continuous, macroscopic, quantitative and can represent spatial homogeneity or 

heterogeneity. However they are not hierarchical or compositional.

3.5.1.2 Stochastic kinetic models

These models also represent molecular information as aggregated variables for every 

distinct molecular population. Further these models treat molecular population pools, 

as discrete populations and map mass action reaction rates onto probabilities to 

generate a stochastic formulation of chemical kinetics (i.e. rate equations) in the form 

of a chemical master equation (CME) (Gillespie 2007). CME is computationally 

simulated, using the Gillespie algorithm (GA), which is also known as the Stochastic 

Simulation Algorithm (SSA). This algorithm uses probabilities, called reaction 

constants, which are derived from chemical kinetics rate constants, to determine 

whether a reaction occurs. The algorithm is initiated by specifying molecular 

population numbers, and reaction constants for possible reactions of respective 

molecules. Random numbers will determine duration of elapsed time, and what
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reaction occurred within that interval. Finally, molecular population numbers are 

adjusted along with dependent probabilities. This cycle is continued during 

simulation. Although these models take account of the discrete and random nature of 

chemical reactions, they still do not consider distinction between individual 

molecules. Reacting species are still represented as population pools and are spatially 

homogeneously distributed. Cellular systems exhibit complex spatial heterogeneity 

and the relative positioning of biomolecules with respect to one another is 

fundamental to the organisation of biological cells. Algorithms have been developed 

from SSA to address the problem of spatial heterogeneity in reaction diffusion 

systems. They utilise reaction-diffusion master equations (RDME), to represent 

reaction and diffusion probabilities of molecules in their formalism. Simulation 

software such as SmartCell (Ander, Beltrao et al. 2004) and MesoRD (Hattne, Fange 

et al. 2005) has adopted this strategy, so it can tackle some issues of spatial 

heterogeneity. However they are incapable of simulating at molecular resolution. 

These models are deterministic, continuous, macroscopic, quantitative and can 

represent spatial homogeneity or heterogeneity. However they are not hierarchical or 

compositional.

Intracellular reaction kinetics can be modelled using RE, RDE, CME and RDME. 

However an appropriate choice of formalism for a particular study depends on 

concentrations, distance travelled by molecular species during their lifetime, size of 

the intracellular space, in which a reaction occurs and the extent of macromolecular 

crowding in the stipulated region (Grima and Schnell 2008). Although these 

macroscopic approaches represent molecular information at an aggregation level, they 

are unable to represent spatially heterogeneous populations at molecular resolution 

and have an inherent problem of combinatorial complexity, caused by biomolecules, 

which can assume multiple distinct states (post-translational modifications, ligand 

occupation or conformational states). Also three dimensional structures of 

biomolecules are represented as conformational states, which in turn will determine 

their chemical activity. In addition molecules can aggregate to form a complex, which 

is also considered as different states of the participating biomolecular species. These 

issues can only be addressed by models capable of modelling at the level of molecular 

resolution, where the concept of concentration is not applicable and effects of 

stochastic activities dominate the system behaviour.
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3.5.1.3 System Dynamics

System Dynamics (SD) is a ‘whole system’ modelling approach, which is used to 

understand the overall dynamic behaviour of complex systems over discrete time 

steps (North and Macal 2007). This involves identification of the main state variables, 

which define behaviour of the system and relating these variables through difference 

equations or differential equations. SD is a graphical representation of the population 

(aggregation) based mathematical model, where complex systems are modelled using 

feedback loops, stocks (state variables) and flows (time delays) to describe the 

nonlinear behaviour of the whole system (Wikipedia Contributors 2009c). SD is a 

top-down approach and has been applied in population, ecological and economic 

systems. Although they are ideal to model horizontal causality of complex systems, 

they lack an ability to model self-organisation, emergence, and upward and downward 

causal levels that are prevalent in complex hierarchical systems. These models are 

deterministic, continuous, macroscopic, quantitative, and can represent spatial 

homogeneity. However they do not support composition or hierarchical structuring.

3.5.2 Computational Modelling Formalisms

Approaches based on computing introduce systems, hierarchical and concurrent 

thinking to the study of biological phenomena. Various formalisms from computer 

science are contributing towards gaining a deeper understanding of biological 

function (Brent and Bruck 2006). However their applicability is mostly limited to 

qualitative modelling of biological phenomena, and they are effective when modelling 

with incomplete quantitative data. These models are formal models, primarily based 

on operational semantics. Numerous terms have been assigned to this category of 

models, including executable biology, programming biology and algorithmic systems 

biology (Laursen 2009).

These formalisms can have a combination of characteristics. They can represent 

concurrency in the form of synchronous state changes, where state machines change 

state simultaneously, and/or in the form of asynchronous state changes, where some 

state machines change state independently. Further, they can be deterministic due to 

synchronous state transitions, be non-deterministic due to asynchronous state 

transitions, or stochastic due to probabilistic state transitions. In the context of 

structuring, they can be compositional when the behaviour of the system is specified
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by interacting modules, and/or hierarchical if modules can be utilised as reusable 

building blocks to represent higher levels of the model (Fisher and Henzinger 2007).

3.5.2.1 Boolean networks

Boolean networks are used in qualitative modelling of biological networks to 

represent individual biomolecules as in an active or inactive state, while intermediate 

states are neglected. Hence a node can only have two states. The activation states of 

all biomolecules at a specific step, will determine activation states for the next step. A 

Boolean network can simulate causal and temporal relationships amongst the 

activation of different biomolecules (Fisher and Henzinger 2007). Since it uses a 

network topology, it models sequential dynamics in biomolecular networks. These 

models are deterministic, use discrete time steps, can represent individual 

biomolecules (mesoscopic), and qualitative. The main limitation of Boolean networks 

is that they do not support composition and hierarchical structuring of models, and are 

not designed to represent intracellular space.

3.5.2.2 Petri nets

One of the strengths of Petri nets is modelling of concurrency in biological systems. It 

is an established technique for modelling distributed systems (Fisher and Henzinger

2007). Petri nets are graphs, which contain two kinds of nodes - place nodes, which 

represent the resources of system, and transition nodes, which represent events that 

change resource states. Nodes can be in many states. Petri nets have been used for 

qualitative modelling of concurrent behaviour in biochemical networks, such as 

metabolic pathways and protein synthesis. While Boolean networks are deterministic, 

Petri nets can also be nondeterministic, stochastic or both. However, stochasticity is 

imposed rather than arising from underlying interactions. Further, Petri nets are 

discrete, mesoscopic and qualitative. The main limitation of Petri nets is that they do 

not support composition of larger models from smaller ones and are not designed to 

represent intracellular space. Intracellular space can only be represented explicitly, 

when different place nodes contain, the same biomolecular species, representing 

different compartments. However, this is analogous to extending an ODE formalism 

to a PDE formalism and makes extensibility a daunting task. Moreover, since Petri 

nets are based on network topology, they suffer from combinatorial explosion. Petri 

nets do not support composition or hierarchical structuring. However Petri net
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formalism has been extended with Hierarchical Petri nets to support composition of 

more complex models (Materi and Wishart 2007).

3.5.2.3 Particle based formalism

Particle based formalisms utilise biological entities, as individual passive objects 

using a centrally controlled thread of execution. They have been used for spatial 

stochastic simulation at molecular resolution and in Molecular dynamics to model at 

atomic resolution.

In particle based stochastic approaches every reacting molecule is represented 

individually and reactions between molecules occur in a probabilistic manner. A 

mesoscopic model treats biological entities as individual objects. The state of the 

model is defined by aggregated states of all particles in the model. These models are 

used for reaction diffusion systems, such as metabolic pathways and signal 

transduction systems. Most tools that are based on this approach use Brownian 

dynamic algorithms to simulate the Brownian motion, and use Monte Carlo 

algorithms to simulate reaction events (Tolle and Le Novere 2006). Monte Carlo 

algorithms compute an outcome by generating random numbers, which are compared 

to a probability calculated from reaction rates. This framework is adopted with 

variations in representing space by MCell (Stiles and Bartol 2001), Smoldyn 

(Andrews and Bray 2004), CyberCell (Broderick, Ru’aini et al. 2005), ChemCell 

(Plimpton and Slepoy 2005), Cell++ (Sanford, Yip et al. 2006), GridCell (Boulianne, 

Al Assaad et al. 2008) and StochSim (Le Novere and Shimizu 2001). These particle 

based stochastic approaches were developed, when spatial heterogeneity and 

stochasticity itself became an objective of the research (Pahle 2009). Factors that 

contribute to spatial heterogeneity and stochasticity are low molecular numbers, 

macromolecular crowding, spatial constraints and intracellular noise. The aim of these 

approaches is to explicitly model intracellular kinetics in the presence of factors, 

which contribute to stochastic behaviour.

Molecular dynamics (MD) is a particle based approach and plays an important role 

in modelling intra-dynamics of molecules by giving insights into molecular motion on 

an atomic scale (van Gunsteren, Bakowies et al. 2006). MD is a multidisciplinary 

method and is a specialised discipline of molecular modelling based on statistical 

mechanics. Fundamental physical rules regulate the motions of all molecules 

constituting a cell. The computational requirement of MD simulation increases with
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the number of interacting atoms. Although MD is the most accurate and fundamental 

approach in the context of representing every physical parameter applicable at the 

level of the atoms, it cannot be used to simulate whole cell systems, due to the 

presence of a large number of atoms among biomolecules constituting a cell. A range 

of molecular dynamics software is listed in (Wikipedia Contributors 2009b).

Particle based models are stochastic, discrete, mesoscopic, quantitative and can 

represent intracellular spatial heterogeneity. Further they do not support composition 

or hierarchical structuring.

3.5.2.4 State charts

State chart formalism is naturally suited to object specification, which have well 

characterised internal behaviour. In conjunction with object model diagrams, they 

provide a graphical representation of the dynamics of objects, using states, transitions, 

events and conditions (Avital, Jasmin et al. 2008). Many biological phenomena have 

been modelled using state chart formalisms (Cohen and Harel 2007). The state chart 

formalism can be nondeterministic, stochastic or both, use discrete time steps, can 

technically represent biological entities, such as atoms, molecules or cells, can be 

qualitative or quantitative and can represent intracellular spatial heterogeneity. State 

charts models can be structured hierarchically and compositionally.

3.5.2.5 Cellular automata

Cellular Automata (CA) formalism has been used to model natural phenomena, which 

include physical systems and biological systems, such as molecular, bacterial, cellular 

and ecological models (Walker and Southgate 2009). CA can be used to model both 

temporal and spatio-temporal processes, using discrete time and/or spatial steps 

(Materi and Wishart 2007). Further, an extended formalism based on Dynamic 

Cellular Automata (DCA) has incorporated stochasticity by permitting random 

motion to represent molecules in a cell. SimCell has adopted the DCA formalism 

(Wishart, Yang et al. 2005). Basic CA formalism is deterministic, discrete, 

mesoscopic, can be qualitative or quantitative, and can represent intracellular spatial 

heterogeneity. CA models can be structured compositionally to support hierarchical 

structuring.
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3.5.2.6 Agents based formalism

An Agent based formalism is similar in concept and design to Dynamic Cellular 

Automata. Since agents exist in an environment, they are allowed to interact with 

each other and their environment in space and time, based on pre-defined rules. The 

rules define the behaviour of entities by the diverse states that an entity can be in 

during its life time. The motion can be directed or random. The rules can be simple or 

highly complex. In contrast to CA models, agent based formalisms do not require 

spatial grids or synchronised time steps (Materi and Wishart 2007). Agent based 

formalisms are widely used to model complex systems in areas such as sociology 

(Epstein 2009), business (North and Macal 2007), economics (Buchanan 2009; 

Farmer and Foley 2009) and ecology (Grimm, Berger et al. 2006). In contrast, use of 

agent based formalism to model biological complexity, when a range in scale is 

needed from molecules to organisms, is still in its infancy. Currently agent based 

formalisms are emerging as solutions for systems biology (Webb and White 2006; 

Thome, Bailey et al. 2007). Most agent based formalisms are represented as Multi- 

Agent Systems (MAS) (Walker, Southgate et al.; Cannata, Corradini et al. 2005; 

Merelli, Armano et al. 2006; Catholijn and Jan 2007; Sutterlin, Huber et al. 2009). 

Agent Cell (Emonet, Macal et al. 2005) utilises an agent based formalism at the 

cellular resolution level and stochastic approaches to model the intracellular 

dynamics. It has used a top-down approach to model cellular behaviour.

Agent based formalisms are stochastic, use discrete time steps, can technically 

represent biological entities such as atoms, molecules or cells, can be qualitative or 

quantitative, and can represent intracellular spatial heterogeneity. Agent based models 

can be structured hierarchically and compositionally.

3.5.2.7 Process calculi

Process calculi approaches emphasise significance of interactions amongst 

biomolecules, as the driving force for biochemical processes (Kwiatkowska and 

Heath 2009). Here execution of the model is defined via a sequence of events. There 

are many variants of process calculi, that have been used as a modelling language for 

molecular interactions, such as rc-calculus, ambient calculus and brane calculus 

(Fisher and Henzinger 2007). SPiM is a modelling and simulation tool based on 

stochastic rc-calculus, which uses the Gillespie algorithm (Gillespie 2007) as a basis of
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its computational engine to simulate biochemical systems (Gilbert, Fuss et al. 2006). 

Currently process calculi models are being developed by a programming biology 

group at Microsoft Research, Cambridge Labs (Cardelli 2005). There is work being 

undertaken on bioware languages for systems biology. This will represent the 

structure and function of biological systems via formal languages (Cardelli 2005). 

Further Microsoft Research -  University of Trento Centre for Computational and 

Systems Biology have engaged in an approach known as Algorithmic Systems 

Biology (Corrado 2009), which aims at devising proper abstractions of living systems, 

in order to capture their intrinsic concurrency, causality and probabilistic nature into 

algorithmic descriptions that can be executed, analysed and simulated in computers.

The process calculi formalism can be deterministic or stochastic, use continuous time, 

can technically represent biomolecular processes, is qualitative and cannot represent 

intracellular space. Process calculi models can be structured compositely, but are 

unable to represent hierarchical structuring.

3.5.2.8 Scenario based formalisms

These include Live Sequence Charts (LSCs), which are interobject in nature and are 

appropriate for describing behavioural requirements (Avital, Jasmin et al. 2008). LSC 

is a visual formalism for specifying sequences of events and message passing between 

objects. Behaviours are specified as scenarios of events and actions, with diverse 

possibilities. LSC uses two types of charts, namely, universal and existential. 

Universal charts are used to specify restrictions by constraining certain behaviours. 

Existential charts specify sample interaction between a system and its environment. 

The scenario based formalism can be deterministic, use discrete time steps, be 

phenomenological (represent cellular level behaviour), qualitative and cannot 

represent intracellular space. These models cannot be structured hierarchically and 

compositionally.

3.5.3 Hybrid Modelling Formalisms

These models combine mathematical and computational formalisms. These 

frameworks integrate variables, which span discrete and continuous domains. The 

discrete component of a model utilises a computational formalism, and the continuous 

component of the model utilises a mathematical formalism. Discrete variables are
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controlled by the changes in discrete states, which can depend on continuous 

variables. Further, a change in continuous variables is governed by transformation 

equations, such as differential equations, which depend on discrete states. By merging 

mathematical formalisms and computational formalisms, hybrid models tend to bridge 

the gap by incorporating characteristics unique to mathematical and computational 

formalisms. These models are appropriate for modelling relationships between 

substances that change overtime. CompuCell (Izaguirre, Chaturvedi et al. 2004) 

utilises a hybrid approach, where the cell is modelled as objects and the intracellular 

and intercellular behaviour is incorporated with differential equations. Moreover the 

basic Petri net formalism has been extended to deal with continuous variables, thus 

giving rise to Hybrid Petri nets (Materi and Wishart 2007).

3.6 Evaluation of Modelling Methodologies and Formalisms 

against Model Requirements

Since modelling multi-scale adaptive dynamics from molecules to cell requires a 

mechanism based description of functional properties that emerge as a result of 

molecular interactions, the study follows a bottom-up systems biology approach. This 

approach utilises a mechanistic model development process, where the structure of the 

model depends on the mechanistic principle adopted. Further a hierarchical 

representation of the intended study is based on a bottom-up methodology. This is 

because the aim of the study is to understand how biological cells dynamically adapt 

to multiple objectives concurrently, facilitated by constituent biomolecular activities, 

which require traversing from lower level molecular resolution to higher level cellular 

resolution. Multi-objective topology provides a concurrent and hierarchical view of 

biological systems, whereas network topology provides a sequential and horizontal 

view of biological systems. However, mathematical models, which use network 

topology, are designed to model at population/aggregation level and are unable to 

model at level of molecular resolution.

Moreover the state of the system in mass action kinetic models, stochastic kinetic 

models and particle based stochastic models is assessed based on the abundance of 

reactants. They analyse population dynamics in intracellular reactions. However the 

actual state of a cell should be represented by levels of native biomolecular activities
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rather than abundance of biomolecules. Native biomolecules that are performing (i.e. 

engaged in activities rather than being idle or inactive) represent an effective 

population which is mostly a subset of the available population in a cellular 

environment. Although the states of chemical systems are described in terms of 

concentrations of molecules, it is the chemical activities of the molecules, which 

provide the most accurate description of a system. In Chemistry the use of 

concentration as an approximation to chemical activity is based on the assumption, 

that the difference between concentration (actual population) and chemical activity 

(effective population) is insignificant, due to the presence of high populations of 

molecules and a negligible percentage of inactive molecules found in conventional 

chemical systems. However in biological cells, where functional products are 

complex molecules and only certain states out of all possible states will have an 

ability to perform the intended activity, there will be a significant deviation between 

actual population and effective population. Due to very low populations this disparity 

is amplified further, which means the state of a cell is misjudged. Activities of various 

biomolecular species will contribute to the internal organisation of a cell. Apart from 

contributing to molecular crowding, biomolecules that merely occupy a cellular 

environment will have minimal contributions to the performance of a cell. Since 

particle based stochastic models use Monte Carlo algorithms to compute an outcome 

by generating random numbers, which are compared to a probability, calculated from 

reaction rates, they do not distinguish between processing time requirements for 

different activities at the level of molecular resolution. This is a property of reactants, 

especially the enzymes, which perform most of the chemical transformation in a cell. 

Although reaction rates inherently, consider the rate of association, the rate of 

dissociation and the rate of catalysis into a single expression, this distinction must be 

explicit, when modelling at the level of molecular resolution. Reaction rates represent 

ensemble averages of reactants of the chemical system. Hence, deliberately altering 

the interactions of reactants based on reaction rates at the level of molecular 

resolution will basically reproduce an observed behaviour. Further, the inherent 

constraints of biomolecular activities, such as processing time, energy requirements 

and thermodynamic constraints that effect the internal organisation of the cell are not 

considered in kinetic models, because they model rate of change in chemical systems.
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The choice of modelling formalism is based on the ability to meet model 

requirements. For hierarchical modelling between molecular resolution and cellular 

resolution, models can be built at the abstraction level of individual biomolecules, at 

population/aggregation level and at cellular level representing a biological cell as 

whole, Mathematical formalisms work at population level, by identifying key system 

level aggregate variables, that define the behaviour of a system. They can either 

represent a population of molecules, cells, or organisms at a time. Simultaneous 

integration of equations across levels is not feasible. Although mathematical 

formalisms are ideal to model sequential dynamics and horizontal causality of 

complex systems, they lack the ability to model self-organisation, emergence, and 

upward and downward causal levels that are prevalent in complex hierarchical 

systems. Individual based models used by most computational formalisms, can 

represent biomolecules, cells or organisms as atomic entities. At cellular level they 

represent a cell as a whole and decompose it into components representing sub­

systems. At the molecular resolution they can represent the causal links amongst 

biomolecular events. Table 3.4 shows that an individual based approach that is able to 

represent space is suitable for representing biomolecules and meets the model 

requirements listed in Section 3.2.1. These formalisms include state charts, CA, agent 

based formalism and the particle based formalism. These representations are intra­

object in nature and utilise an object modelling approach that facilitates reusability. 

Particle based formalisms use passive software objects to represent entities. In 

contrast agent based formalisms use active objects to represent entities. The important 

differences between objects as represented in particle based models and agents are 

listed in Table 3.5 (Odell 2002).
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Table 3.4: Comparison o f modelling formalisms based on model requirements

| 1 1
Mass action 

kinetic models

No No No No No No No Law of mss 

action

Stochastic 

kinetic models

No No No Yes No No No Law of mss

action

Probability

System

dynamics

No No No No No No No Rate Law

Particle based

stochastic

models

Yes Yes No Yes No No Yes Probability

Diffusion

Molecular

Dynamics

Yes Yes No Yes No No Yes Statistical

mechanics

Boolean

networks

Yes No No No No No No Boolean

Logic

Petri nets Yes No No Yes No No Yes Logic

State Chart 

formalism

Yes Yes Yes Yes Yes Yes Yes Automata

theory

Cellular

Automata

Yes Yes Yes Yes Yes Yes Yes Automata

theory

Agent based 

formalism

Yes Yes Yes Yes Yes Yes Yes Automata

theory

Process calculi Yes No No Yes No No Yes Automata

theory
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Table 3.5: Comparison between objects and agents

Degree of autonomy ■ Can exhibit control over its 

states

■ Cannot exhibit control over 

its behaviour

■ The decision whether to 

execute a method lies 

within the object that 

invokes the method

■ Can exhibit control over its 

states

■ Can exhibit control over its 

behaviour

■ The decision lies within 

the agent that receives the 

request

Flexibility Have no flexibility in 

addressing its behaviour

Can flexibly address its 

behaviour (i.e. reactive, 

proactive and social)

Thread of control Have a centrally controlled 

thread

Have their own thread of 

control

To model uncertainty, concurrency, self-organisation and emergence, which are 

prevalent in intracellular biochemical activities, a formalism based on active objects is 

required, since they have a high degree of autonomy. Although the rules, which 

remain constant at the physiological timescale, define what a particular species of 

biomolecule can perform, the uncertainty involved in, when and where these rules are 

executed by redundant members of a species cause emergent behaviours in a cell. 

Hence, this requires autonomy at an individual level. Formalisms that support 

autonomy are state charts, agents and CA. State charts have been used for top-down 

reconstruction of biological systems. However, when considering the flexibility of 

representing directed and random motion of biomolecules, ability to represent grid or 

continuous space, ability to represent synchronous and asynchronous time steps, 

ability to represent interaction between molecules and their environment, ability to 

dynamically schedule molecular events and duration of those events, agent based 

formalism provides a more appropriate solution than Cellular Automata formalism. 

Further, general purpose agent based tool kits are widely available compared to the 

situation for the other two formalisms.
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3.6.1 Agent Frameworks Applicable for Modelling Cellular 

Phenomena

There are various agent oriented conceptual frameworks for modelling biological 

phenomena. Most agent based formalisms are represented as Multi-Agent Systems 

(MAS) (Walker, Southgate et al.; Cannata, Corradini et al. 2005; Merelli, Armano et 

al. 2006; Catholijn and Jan 2007; Sutterlin, Huber et al. 2009). However agent based 

formalisms are also represented as Complex Adaptive Systems (CAS). Agents are 

basic building blocks for both CAS and MAS frameworks. The distinguishing feature 

between a CAS and MAS is that CAS focuses on system level properties and features, 

while MAS focuses on individual level features. In MAS the system is composed of 

multiple interacting adaptive agents, whereas in CAS the agents, as well as the 

systems, are adaptive. CAS has a high degree of adaptive capacity, which gives 

resilience in the face of perturbation.

MAS are utilised for top-down approaches to resemble the macro models, where a 

whole population of entities are divided into homogeneous sub-populations (Cannata, 

Corradini et al. 2005). This approach attempts to simulate changes in the average 

characteristics of a whole population. By contrast in bottom-up approaches, which 

resemble meso models, the spatially distributed entity population is heterogeneous 

and consists of distinct agents with unique state and interaction behaviour that evolve 

with time. Further, agents can be combined to create a society of agents that would 

facilitate in creating an environment for artificial life (Kyung-Joong Kim 2006). 

Bottom-up approaches are widely used for simulations of self-organisation and 

emergent phenomena (Schut 2007). Swarm/Collective Intelligence (Cl) which 

inherently considers self-organisation and emergence uses biologically inspired 

approaches to study collective behaviour in self-organising systems (Kennedy and 

Eberhart 2001). Swarm systems are typically made up of a population of simple 

agents interacting locally with each other and with their environment. There is no 

centralised control structure dictating how individual agents should behave. Local 

interactions between such agents mostly lead to emergence of global behaviour. 

Further, in the Cl framework, agents as well the system have an ability to adapt.

In Aspect oriented approach, MAS representation is used to capture the emergent 

behaviour that arise from diverse interactions of multiple agents (Palmer,
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Kirschenbaum et al. 2005; Linda, Daniel et al. 2006), because it is complex to 

encapsulate emergence in a conventional programming language. An object oriented 

approach is capable of encapsulating attributes and behaviour of a single agent within 

a class instance. However emergent properties do not exist within single agent 

behaviour, but emerge from spatio-temporal interactions of many agents. Hence, to 

encapsulate emergence, an approach that can represent modularity across a set of 

objects and a set of object interactions is required. Further, it requires encapsulation of 

a set of classes and class method invocations (Palmer, Kirschenbaum et al. 2005). An 

object oriented approach can not support such modularity. An Aspect oriented 

approach can support encapsulation of concerns that cross the object oriented class 

boundary.

Further, there are middle-out approaches that use both of these approaches, which can 

be demarcated at a particular level in the hierarchy. A holonic approach also uses top- 

down and bottom-up approaches in a totally fused manner and captures the benefits of 

both approaches (Rodriguez, Hilaire et al. 2007).

A framework, in which agent based formalism can be implemented is needed. This 

will depend on the mechanistic principle used to model the biological cell.

3.6.2 Selection and Implementation of an Appropriate Approach

A cellular environment represents both biomolecules and their activities, which 

contribute to the self * properties, such as self-regulating and self-awareness of a cell. 

The activities cause direct and indirect influences amongst various species of native 

biomolecules, which facilitate in the self regulation of cellular processes. Agent based 

formalism is used in the wider framework of Collective Intelligence to model self­

organisation and emergence that occurs due to diverse biomolecular activities. This 

approach facilitates analysis of global effects of changes in behavioural rules imposed 

on diverse biomolecular species, where the effects of rules are amplified due to 

redundant members of a biomolecular species. Representation of agent based 

formalism at the level of molecular resolution also addresses the heterogeneous nature 

of a cellular environment and the existence of very low numbers of some functional 

products. The core of a model is driven by the principles of Swarm/Collective 

Intelligence, which capture the inherent characteristics of a cell such as adaptability, 

robustness and efficacy with no external supervision (Schut 2007). Modelling and
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simulating these characteristics is essential to truly understand the mechanism by 

which intracellular solutions emerge via various biomolecular activities to meet the 

adaptive requirements of cells. This insight is essential to understand the 

transformation between normal and pathological processes in cellular systems. Some 

of the noteworthy properties of Collective Intelligence systems are adaptivity, 

emergence, global-local order, interaction, rules, redundancy, robustness and 

randomness (Schut 2007).

Since organisational behaviour within a cell cannot be directly observed or 

empirically measured, it requires a simulation framework, such as Cl, which can 

represent native biomolecules, capture the results of their activities and provide a 

means to evaluate these results. Analysis of cellular behaviour should be based on 

chemical activities of molecules rather than their abundance, since activities provide 

an accurate description of a chemical system, where performances of the functional 

products are analysed based on their level of activities.

The challenge of implementing agent based formalisms lies in specifying how agents 

behave, and in choosing the rules they use to make decisions. This is mostly done by 

common sense and guesswork, which means it is only sometimes sufficient to model 

real behaviour. Further, an attempt to model all the detail of a realistic problem, can 

quickly lead to a complicated simulation, where it is difficult to determine causalities 

amongst the behaviour. For agent based modelling to be useful, the development of a 

model must proceed systematically and avoid random assumptions, have careful 

grounding, test each part of the model against reality, and introduce additional 

complexity, only when it is required. If properly done an agent based approach can 

provide an exceptional understanding of the emergent properties of the interacting 

parts in complex phenomena, where intuition fails to give an understanding (Farmer 

and Foley 2009).

3.7 Feasibility of Meeting Model Requirements

The aim of this section is to evaluate the feasibility of implementing and developing a 

Collective Intelligence based cell modelling environment with available biological 

data sources, programming environments, platforms and computational advances.
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3.7.1 Resource Requirements and Availability

3.7.1.1 Biological data sources

Models developed by application of any empirical or mechanistic model development 

process, will only be as good as the data available to develop and test them. Hence 

availability of a collection of quantitative, high-quality and validated datasets that 

reflect the organisation of functional products, into functional units; with dynamic 

interactions between these units, which control and perform their diverse and complex 

biological functions (i.e. syntax of biological information), is critical to the success of 

systems biology (Aebersold 2005). However current techniques that have successfully 

accumulated large amounts of detailed information for established genetic approaches 

are not sufficient for systems biology. “Systems biologist will have to develop new 

quantitative technologies that are capable o f systematically measuring the dynamics 

and ordering of, as well as relationships and interactions between the molecules that 

constitute biological systems” (Aebersold 2005).

Biological data sources, that have been accumulated over the last few decades range 

from molecular biology data, ‘omics’ data sets (Joyce and Palsson 2006; Katherine 

Hollywood 2006), to biochemical and biophysical data. Identifying appropriate and 

reliable data sources is a challenge, due to abundance of inconsistent information 

found globally. There are currently 1170 molecular biology databases distributed 

globally (Galperin and Cochrane 2009). They are broadly categorised as Nucleotide 

sequence databases, RNA sequence and structure, Protein sequence databases, 

Structure databases, Genomics databases (non-human), Metabolic enzymes and 

pathways, Human other vertebrate genomes, Human genes and diseases, Microarray 

data and other gene expression databases, Proteomics resources, other molecular 

biology databases, Organelle databases, Plant databases, and Immunological 

databases. However the required data source will depend on the systems biology 

approach used. A review on data sources required for integrative systems biology has 

been conducted (Ng, Bursteinas et al. 2006), which identifies data for top-down 

systems biology studies. However for the selected approach, information compatible 

at the level of molecular resolution will be required.

Modelling biomolecular activities and the stochastic nature of intervals between 

activities will require information at a molecular resolution. This process needs
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information about pre-conditions and post-conditions for the activities, and the time 

and energy requirements of the activities, information about the stochastic nature of 

spacetime intervals between activities, such as abundance and diffusion constants of 

biomolecules. Although there is limited information on concentration and the 

abundance of molecules inside a cell, various experimental evidence suggests that 

many intracellular biochemical reactions involve reactant molecules at nanomolar 

(nM) concentration scales (Grima and Schnell 2008). Based on absolute numbers, a 

concentration of InM roughly corresponds to 2500 molecules in a sphere with a 

diameter of 20 micrometers, which is equivalent to an average mammalian cell. 

Moreover 100 nM corresponds to 100 molecules in a typical E.coli bacterial cell (a 

cylinder - 2 micrometers in length and 1 micrometer in diameter). The relationship 

between concentration and absolute molecular numbers in specific volume is 

tabulated in Appendix F-l. In terms of average intermolecular distance, InM 

corresponds to an average distance equal to 1.47 micrometer, while 100 nM 

corresponds to a distance approximately equal to 0.32 micrometer. The relationship 

between concentration and average molecular distance is tabulated in Appendix F-2. 

Although most metabolites have concentrations in the nM range there are some 

glycolytic metabolites having concentration in the order of millimoles (mM) (Grima 

and Schnell 2008).

The widely used thermodynamic property in biochemistry is Gibbs free energy 

(which is a measure of the potential of a chemical system to do work, and can be used 

to model physical constraints. Thermodynamic constraints will determine the 

probability of molecular activities occurring. This information is available at (Alberty 

2005; Alberty 2009). Thermodynamic information on biochemical reactions is stored 

as the Standard Gibbs free energy of formation (AfG°) and Standard Enthalpy of 

formation (AfH°) of the molecular species involved in biochemical reactions. These 

sources are standard and reliable, and are the most efficient way to store 

thermodynamic information. Further there are tools to calculate the above values at 

any desired pH, ionic strength and temperature, and to calculate Standard Gibbs free 

energy of reactions (ArG°), the Standard Enthalpy of reactions (ArH°), and the 

equilibrium constants for reactions at any desired temperature. Population based 

chemical kinetic data such as the kcat, rate of transcription and translation, can be 

transformed into compatible molecular level information. Duration of molecular
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activities such as an enzyme’s processing time/ turnover cycle, which are ps -  ms 

events, should be derived from enzyme turnover numbers which can be obtained 

from an enzyme database such as BRENDA (Chang A., Scheer M. et al. 2009). Time 

required for translation of various proteins can be calculated from the peptide length 

of proteins and rate of translation, e.g. in Prokaryotes it is approximately 15 amino 

acids per second. This information can be obtained from protein databases, such as 

UniProt (Galperin and Cochrane 2009). The time required for transcription of RNA 

can be calculated from the lengths of the genes, and the rate of transcription, e.g. rate 

of transcription in Prokaryotes is approximately 45-50 nucleotides per second and rate 

of DNA polymerisation is approximately 833 nucleotides per second. This 

information can be obtained from nucleotide sequence databases (Galperin and 

Cochrane 2009).

From a biological perspective, energy requirements are characterised in terms of

Adenosine Tri Phosphate (ATP), which is known as the currency of energy in a cell.

Energy requirements for various molecular activities can be obtained from standard

biochemistry text, such as (Stryer 1988) (namely, the energy cost for synthesis of a

protein with N number of amino acids is 4N ATPs). The average life span of

functional products can be calculated from half lives of functional products. A typical

half-life of mRNA is 2 to 3 minutes in Prokaryotes and hours to days in Eukaryotes

(Stryer 1988). Diffusion constants for various biomolecules can be calculated from

their molecular mass or obtained via empirical observations. For typical size proteins
0 1in Prokaryote the diffusion constant is 5m s- . Error frequencies for various 

biomolecular activities are also obtainable from standard biochemistry text such as 

(Stryer 1988). For example, the error frequency for Protein synthesis is 10‘4 per amino 

acid residue.

3.7.1.2 Programming environments for managing modelling resources

Programming environments differ for bioinformatics, computational biology and 

systems biology. Bioinformatics focuses on data analysis and management, whereas 

computational and systems biology focuses on systems modelling and simulation. 

Currently a suitable language for bioinformatics does not exist. Hence toolkits in 

several different languages have been written to provide bioinformaticians with 

options to choose the best language for a specific job. Libraries of routines and data
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objects for bioinformatics exist in C (EMBOSS’s Ajax Library), C++ (NCBI’s C++ 

toolkit, TIGR), Java (BioJava, caBIO), Perl (BioPerl), Python (BioPython), R 

(BioConductor), Ruby (BioRuby) and Lisp (BioBike). The BioSQL project presents a 

generic relational model for representing biological sequence objects and features, 

their annotations and ontologies are independent of an actual data source. The 

BioMart project (Haider, Ballester et al. 2009) is focused to provide easy and fast data 

mining access to large datasets of mammalian genomes.

The issue of model integration arises, when building Meta-models or multi-level 

model integration. Integrating micro-models with macro-models, model 

synchronisation, upward causation and downward causation are other issues that must 

be considered, when integrating models at different abstraction levels. The current 

tools for modelling and simulation are dominated by mathematical modelling 

approaches (Coveney and Fowler 2005), which are not interoperable with informatics 

tools and are biologist unfriendly. An Agent Based Modelling and Simulation 

(ABMS) approach will not only provide solutions for both biologists and biology, but 

also be interoperable with existing informatics tools, biologist friendly and most 

importantly, when agents are represented at molecular resolution, facilitate 

interoperability between structural biology and systems biology - two important yet 

disconnected research domains.

The issue of model interoperability arises when using heterogeneous models across 

applications. The possible ways to integrate models are to use standard data exchange 

formats or produce reusable modules for model construction. Systems Biology 

Markup Language (SBML Contributors 2010) is a file format that has become the 

standard for computational biologists to exchange kinetic models between SBML 

compatible tools. CellML is a similar file format used to store and exchange in silico 

mathematical models (CellML Project Community 2001-2010). In contrast Little b is 

a modelling language, that considers a modular approach to modelling by taking 

individual modelling components, plugging them together and getting a 

comprehensive view of the emerging behaviour (Krieger 2006). Little b is a 

modularised reusable package, that can be used to assemble a model cell. The chosen 

Collective Intelligence approach focuses on using object modelling techniques and 

agent oriented programming. SB-UML is an object oriented modelling language that 

is customised for systems biology (Magali Roux-Rouquie and Soto 2005). The aim of
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agent oriented programming in systems biology is integrating diverse heterogeneous 

models to achieve model interoperability. In agent oriented software engineering, 

complex systems are organised as autonomous software entities called agents which 

are situated in an environment and communicate via high-level languages and 

protocols. This approach supports biologist querying a system, which is very close to 

their mental model(Luck and Merelli 2005; Merelli, Armano et al. 2006).

There are many languages for agent oriented programming (Dastani and Gomez-Sanz 

2005). Most agent programming languages, such as 3APL, Jasen, Jadex and Jack are 

designed to implement reactive agents. Agents can be implemented in object-oriented 

languages, declarative languages or a combination of both. Agent oriented 

programming languages and tools, such as Jade, Jack and Jadex are extensions of 

Java, or implemented in Java (Jason, 3APL). Agent Programming languages, that are 

implemented using declarative languages are ConGolog, MetateM, DyLog, Flux, 

DALI, MINERVA, ALIAS and Agent-0. 3APL, PROSOCS and PROVA 

(Kozlenkov, Penaloza et al. 2006) are implemented in combination of imperative ( 

Java) and declarative (Prolog) programming languages (Dastani and Gomez-Sanz 

2005).

Rather than developing an agent based simulation environment from scratch by using 

one of the above programming languages, it is feasible to use an agent based 

simulation package to implement a model. The next section evaluates some widely 

available platforms for simulating Collective Intelligence.

3.7.1.3 Platforms for simulating complex adaptive systems

Currently available platforms for simulating Collective Intelligence can be located at 

(SwarmWiki Contributors 2009). There are open source, freeware and preparatory 

packages for agent based modelling and simulation. Some widely used open source 

packages are SWARM, Repast Simphony (Repast S), MASON and Ascape. Some 

widely used freeware packages are NetLogo and StarLogo. Available proprietary 

packages are AgentSheets, AnyLogic and iGEN. Some reviews have been conducted 

recently on widely used platforms (Gilbert and Bankes 2002; Castle and Crooks 2006; 

Railsback, Lytinen et al. 2006). Based on a comparison of open source packages (see 

Table 3.6), Repast Simphony was identified as the most suitable tool to model and 

simulate the collective behaviour of biomolecules, mainly due to Repast Simphony’s
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open source, rapid progress, versatility, support and its expanding user community 

(Macal and North 2008; Repast Development Team 2008).

Table 3.6: Comparison o f open source toolkits

Current
Developers

Santa Fe Institute / 
SWARM 
Development 
Group, USA

Argonne National 
Laboratory, USA

Center for Social 
Complexity & 
evolutionary 
computation lab, 
George Mason 
University, USA

NuTech 
Solutions, Inc. 
BiosGroup, Inc.

Metascape, LLC

Date of 
Inception

1996 2000 2003 1997

Current version 2.2 Repast S 1.2 14 5.5

Website http://'www. swarm. 
org

http://repast.sourceforg
e.net

http://cs.gmu.edu/~ec 
lab/proj ects/mason

http://ascape.sour

ceforge.net/

Implementation
Language

Objective-C / Java Java / Python / 
Microsoft.Net

Java Java

Operating
System

Windows, UNIX, 
Linux, Mac OSX

Windows, UNIX, 
Linux, Mac OSX

Windows, UNIX, 
Linux, Mac OSX

Windows, UNIX, 

Linux, Mac OSX

Flexibility User specified 
algorithms

User specified 
algorithms

User specified 
algorithms

User specified 
algorithms

Speed Runs well on 
screen/ Has batch 
mode

Runs well on screen/ 
Has batch mode

Runs well on screen/ 
Has batch mode

Runs well on 
screen/ Has batch 
mode

Facilities Extensible (Not 
Built in) result 
logging and 
graphing

Built in and Extensible 
result logging and 
graphing

Extensible result 
logging and graphing 
(graphing not Built 
in)

Built in and 
Extensible result 
logging and 
graphing

Analysis Support basic 
statistical methods

Support advance 
statistical methods

Support basic 
statistical methods

Support basic
statistical
methods

Adaptation Merely reactive Evolution o f Agent 
algorithms including 
learning

Evolution o f Agent 
algorithms including 
learning

Evolution of 
Agent attributes

Self­
organisation

Multi-level
feedback

Multi-level feedback, 
Feedback between 
agents and their 
environment

Feedback between 
agents and their 
environment

Feedback 
between agents 
and their 
environment

Causality Vertical and 
horizontal

Vertical and horizontal Horizontal Horizontal

Exascale
computing

Millions o f agents Billions o f agents - 
Trillions of agents

Millions of agents Millions of 
agents

Process Single processes 
discrete event 
simulator

fully concurrent 
multithreaded discrete 
event scheduler

Single processes 
discrete event 
simulator

Single processes 
discrete event 
simulator

Required
programming
experience

Strong Strong Strong Strong

http://'www
http://repast.sourceforg
http://cs.gmu.edu/~ec
http://ascape.sour
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External tool 
integration

Yes (e.g. R and S- 
plus statistical 
packages)

the R statistics 
environment, *ORA 
and Pajek network 
analysis plugins,
VisAD scientific 

visualization package, 
the Weka data mining 
platform, many popular 
spreadsheets, 
the MATLAB computa 
tional mathematics 
environment, and 
the iReport visual 
report designer;)

JFreeChart, iText, 
Java Media 
Framework, 
and Quaqua

No

Distributed
Computing
support

No Yes
(via Terracotta)

No No

Availability of 
demonstration 
models

Yes Yes Yes Yes

Source code of 
demonstration 
models

Yes Yes Yes Yes

Tutorials / How­
to
Documentation

Yes Yes Yes Yes

Additional
information

(Minar, Burkhart et 
al. 1996)

Agent Analyst 
Extension
(http://www.institute.re
dlands.edu/
agentanalyst)
Useful weblog:
http://www.gisagents.b
logspot.com

(Luke, Cioffi-Revilla 
et al. 2004)

(Inchiosa and 

Parker 2002)

3.7.2 Technological Feasibility

Simulations using Swarm/Collective intelligence typically involve many agents and 

are generally classified as huge simulations (Schut 2007). A technological feasibility 

was undertaken to assess it in terms of software and hardware requirements to extend 

the cell model to represent a minimal cell to realise the full potential of the Collective 

Intelligence based cell modelling environment. Current agent based modelling 

software are extensible and support billions of agents. The Global Scale Agent Model 

to simulate epidemics includes 6.5 billion distinct agents (Epstein 2009). However, a 

typical E.coli prokaryotic cell contains an estimated 50 million molecules, which 

includes all the macromolecules, metabolites, cofactors and ions (Broderick, Ru'aini 

et al. 2005). Further, a typical Mycoplasma bacterium only contains an estimated 1 

million molecules (Broderick, Ru'aini et al. 2005). However, representing a biological 

cell, which contains a large molecular population will require a parallel or distributed

http://www.institute.re
http://www.gisagents.b
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simulation system, which involves scaling the simulation over multiple processors. 

Hence a logical solution to scale up a Collective Intelligence based cell modelling and 

simulation environment will be to use a high performance computing architecture. 

The Repast community has attempted to use a distributed simulation architecture, 

which could facilitate enormous computing resources and data sets. The High Level 

Architecture (HLA) integrated with Repast (HLA RePast) is capable of harnessing 

the computational power of a distributed simulation infrastructure (Minson and 

Theodoropoulos 2008). Moreover HLA GRID RePast (Theodoropoulos, Zhang et 

al. 2006), which integrates HLARepast and HLA GRID, acts as a middleware for 

executing distributed, large scale simulations of agent based systems over Grids. 

However, the Repast development team has recently integrated the current version of 

Repast Simphony with Terracotta, which is an open source scalability platform. 

Terracotta seems to provide a better solution than previous approaches, since it is easy 

to scale java applications to multiple computers (Terracotta 2009). An alternate 

solution is to use supercomputers. Based on the top 500 supercomputer list (Meuer, 

Strohmaier et al. 2009), which lists the world’s most powerful supercomputers, that 

are competing for the top spots biannually. These computers have reached a 

performance capacity of the order of petaflops/s (quadrillion calculations per second) 

with nearly a quarter of a million cores. “Personal Super Computers” are now 

emerging as an alternative to conventional supercomputers. These personal 

workstations, have around 960 cores and up to 250 times the computing performance 

of a PC, and are sold at a fraction of the cost of conventional supercomputers (Nvidia 

2009). Personal super computers now promise teraflops on a desktop, which is 

equivalent to the world’s fastest supercomputer in 1997. Moreover, personal 

computers are rapidly improving performances by using multi core architectures. 

There are prototypes by AMD and Intel with architectures combining multi 

processors containing multi cores (AMD 2008).

3.8 Concluding Remarks

In this chapter the modelling requirements are identified. Biological modelling 

methodologies are reviewed and compared with the requirements. This led to a 

decision to adopt with suitable adaptations a bottom-up systems biology approach and 

utilise a mechanistic model development process to develop a computational model,
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using agent based formalism in the wider framework of Collective Intelligence to 

represent the intracellular behavioural/functional organisation. This is because the aim 

of the study is to understand how biological cells dynamically adapt to multiple 

objectives concurrently which are facilitated by the constituent biomolecular 

activities, which require traversing from lower level molecular resolution to higher 

level cellular resolution. Such a multi-objective topology provides a concurrent and 

hierarchical view of biological systems, whereas a network topology provides a 

sequential and horizontal view of biological systems. However, mathematical models, 

which use a network topology, are designed to model at the population/aggregation 

level and are unable to model at the molecular resolution level. The Collective 

Intelligence approach challenges the assumption used in classical chemistry for its 

applicability in cellular chemistry. This approach focuses on biomolecular activities 

rather than the biomolecules because when, where and what biomolecular activities 

are performed are crucial for adaptive dynamics in a physiological timescale. Further 

it can be used to analyse the causation of biomolecular activities in space and time.

This model is driven by the principles of Swarm/Collective Intelligence, which 

capture the inherent characteristics of a cell, such as adaptability, robustness and 

efficacy with no external supervision (Schut 2007). Modelling and simulating these 

characteristics is essential to understanding the mechanism by which intracellular 

solutions emerge from a situation in which many biomolecular activities are 

happening that meet the adaptive requirements of cells. This insight is essential to 

gaining an understanding of the transformation between normal and pathological 

processes in cellular systems. Some of the noteworthy properties of Collective 

Intelligence systems are adaptivity, emergence, global-local order, interaction, rules, 

redundancy, robustness and randomness (Schut 2007) which are the characteristics 

needed if we are to represent a biological cell. Out of the widely used agent based 

modelling and simulation toolkits, Repast Simphony was chosen mainly due to its 

rapid progress, versatility, support and expanding user community. The next chapter 

describes how swarming can address the issues raised in Chapter 2.



Chapter 4

Representation of Biomolecules and their 

Activities within an In silico Environment

“Imagination is more important than knowledge. For knowledge is limited to all we 

now know and understand, while imagination embraces the entire world, and all 

there ever will be to know and understand. ”

Albert Einstein

4.1 Overview

The aim of this chapter is to describe how swarming can address issues raised in 

Chapter 2. It introduces the scope, principles and properties of Swarm/Collective 

Intelligence. The Collective Intelligence framework is based on a meta-formalism, 

which can be used for complex and self-organising systems. The problem framework 

is based on Cellular Intelligence, that is a biological cell’s ability to organise and 

adapt to perturbation and uncertainty, which reflects on the characteristics of 

intelligence. In silico representations of native biomolecules and their activities, 

which constitute a cellular environment, are discussed in Sections 4.3 and 4.4, 

respectively. Fundamental principles utilised are self-organisation and 

thermodynamics to represent biological and physical constraints respectively. This 

guides the intracellular organisation by reducing uncertainty. Section 4.5 describes 

biological and physical constraints involved in self-organisation of biological cells. 

The dynamic framework utilises a multi-objective topology, as its model structure and 

describes the logic of Collective Intelligence, which can be used to 

construct/deconstruct tasks for the intracellular organisational behaviour of a cell in a 

physiological timescale. Section 4.6 describes the in silico representation of a cellular 

environment, which uses both biomolecules and their activities.
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4.2 Swarming the Internal Organisation of Biological Cells

Intelligence is often associated with learning, which is an adaptive process. The most 

appropriate definition for intelligence, that incorporates all computational intelligence 

approaches is described as “the capability of a system to adapt its behaviour to meet 

its goals in a range of environment” (Fogel 2006). The ability to learn or adapt is one 

of the hallmarks of intelligent systems. This can also be witnessed in biological cells, 

where cellular intelligence emerges as an organisational level property of the 

collective behaviour of biomolecules. Cellular intelligence is defined as the ability to 

regulate when, where and what biomolecular activities should occur to maintain 

biological equilibrium in a range of environments. However, the process of adaptation 

is fundamentally different at a cellular level, since intelligence resides not in 

individual native biomolecules, but in diverse interactions/activities amongst them. At 

an organisational level, behaviour can be perceived as a pattern of response to 

perturbation. These patterns of responses are self-regulated amongst diverse 

biomolecular activities which include transcriptional, post-transcriptional, 

translational and post-translational activities. Although there are various categories of 

real-time adaptation, such as supervised, unsupervised and reinforcement adaptation, 

the mechanism that drives adaptive behaviour in biological systems is reinforcement 

adaptation (Eberhart and Shi 2007). While a supervised adaptive process will have a 

predetermined goal and external supervision to meet the goal, reinforcement 

adaptation does not have such goals or supervision. It relies on a critic to provide 

heuristic reinforcement information. Modelling collective behaviour of biomolecules 

will involve representing cellular adaptation in a Swarm/Collective Intelligence 

framework.

4.2.1 The Principles of Swarming

Evolutionary Computation (EC) paradigms are inspired by adaptive strategies utilised 

by biological systems. While these strategies can be found in every level of biological 

organisation, almost all EC techniques, which comprise the techniques of 

Evolutionary Algorithms (EA) to Swarm Intelligence (SI) have been inspired by 

organism level adaptive strategies (Eiben and Smith 2007). While EA techniques are 

based on trans-generational genetic adaptation of organisms (biologically inspired), SI 

is mainly based on intra-generational collective behavioural adaptation of organisms
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(socially inspired). Natural selection forms the basis for EA techniques and there are 

many different variations such as Genetic Algorithms (GA), Evolutionary 

Programming (EP), Evolution Strategies (ES), Genetic Programming (GP) and 

Learning Classifier Systems (LCS). Adaptation using distributed collective problem 

solving strategies and self-organisation, form the basis for SI techniques (Engelbrecht 

2005). The techniques of SI mainly comprise Ant Colony Optimization (ACO), 

Particle Swarm Optimization (PSO), Differential Evolution (DE) and Cultural 

Algorithms (CA) (Periyasamy, Gray et al. 2008b).

Particle swarm algorithms have been inspired by the collective behaviour of social 

animals. They operate on the principles of collision avoidance, velocity matching and 

flock centering. Ant colony algorithms have been inspired by social insects. They 

operate on the principle of stigmergy, which is a form of indirect communication 

using the environment as a mediator. Two forms of stigmergy have been defined: 

sematectonic and sign-based. Sematectonic stigmergy refers to communication via 

changes in the physical characteristics of the environment (e.g. nest building, nest 

cleaning, and brood sorting). Sign-based stigmergy facilitates communication via a 

signalling mechanism implemented via chemical compounds deposited by ants (e.g. 

pheromone trails). A stochastic diffusion search uses direct one-to-one 

communication and the information is diffused via this communication, while a 

Gravitational Search Algorithm (GSA) is developed based on the law of gravity and 

notion of the mass interactions. Information is transmitted using gravitational force 

between different masses. Intelligent water drops (IWD) has been inspired from 

natural rivers. In the IWD algorithm, several artificial water drops cooperate to 

change their environment in such a way that the optimal path is revealed as the one 

with the lowest soil on its links (Wikipedia Contributors 2010c).

The study of Swarm Intelligence is providing insights into management of complex 

systems (Miller 2007). Swarm technologies are solving complex problems, where 

traditional approaches are unsuccessful (Hinchey, Sterritt et al. 2007). Swarming has 

been inspired by collective behaviour of social insect colonies and other societies 

(Bonabeau, Dorigo et al. 1999; Gamier, Gautrais et al. 2007). The proactive 

behaviour of swarm systems mainly results from a reactive behaviour of its 

constituent entities rather than an entitie’s deliberative behaviour. Swarm Intelligence 

refers to the phenomena of a system of spatially distributed entities coordinating their
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actions in a decentralised and self-organising manner, so as to exhibit complex 

collective behaviour from local interactions. The concepts of self-organisation and 

emergence underlie swarming and these systems are inherently adaptive, robust, 

flexible, stochastic and concurrent. The first step towards modelling intracellular 

organisational behaviour is, understanding the mechanisms that foster collective 

behaviour among biomolecules. The main features of Swarm Intelligence involve 

forms of limited or minimal communications and/or interactions, large numbers of 

interacting entities with limited reach, and some global efficient, emergent or self­

organised behaviour (Fleischer 2003). Further the four basic ingredients for 

manifestation of self-organisation are (Bonabeau, Dorigo et al. 1999):

■ Forms of positive feedback -  an amplification mechanism that promotes 

creation of autocatalysis amongst biomolecules, which build up the activities 

in group. It promotes cooperation, in which mutual dependency fosters 

persistence of members of the group. Activities are generally amplified by 

replicating biomolecules and/or activating them.

■ Forms of negative feedback -  this compensates positive feedback and 

facilitates stabilisation of a group’s activities. Activities are usually lessened 

by degradation of native biomolecules, either by competitive or non­

competitive inhibition. It controls competition among groups. Negative 

feedback is caused by inhibition of biomolecular activities, competition for 

resources, saturation of biomolecular activities and exhaustion of a resource.

■ Amplification of fluctuations -  this gives rise to new solutions for internal 

organisation of cell. It includes fluctuations in when, where and what native 

biomolecular activities should occur, alterations caused by mutations and 

recombination, and variations in time and energy requirements of individual 

activities. Alterations at the genomic level will have a long term global effect 

compared to alterations during transcription and translation, which are local 

and short term. Although intracellular organisation sustains itself despite 

randomness, randomness facilitates discovery of new solutions.

■ Multiple interactions of multiple entities -  give rise to extremely concurrent 

and redundant biomolecular activities distributed in time and space within a 

cellular environment. Although redundant activities occur at different points in
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time and space, they provide a statistical interpretation of ensemble activities, 

on which global effects are judged. Basically redundancy provides a medium 

by which the characteristics of individual native biomolecules are amplified.

The above ingredients of self-organisation will naturally give rise to organisational 

level properties such as dynamic, emergence, robustness, plasticity, bifurcation and 

multi-stability (Gamier, Gautrais et al. 2007). In biological cells, dynamic nature is 

observed in the form of oscillatory behaviours with respect to biochemical tasks or 

points of control. There are numerous points of control within the diverse cellular 

biochemical activities, which tend to regulate a cell. Chemical oscillation is a 

macroscopic (statistical interpretation at population level) process which wavers 

between conflicting courses of action (biomolecular activity) and exhibits periodic 

changes of control activities. This is a macroscopic phenomenon, which results from 

the ensemble behaviour of native biomolecules. A notable feature of oscillation is the 

existence of equilibrium and presence of restoration forces in either direction, which 

grow stronger the further the system deviates from equilibrium. In biochemical 

systems, this force is formed by a feedback couple, (positive and negative), with 

respect to a steady state. While certain feedbacks have specific effects on a task such 

as activation or inactivation of a specific species of functional product, others (e.g. 

production and degradation of native biomolecules) can have general effects on 

cellular tasks/objectives. The extent and sensitivity of deviation are two properties 

that can be observed in a chemical oscillatory system. The extent depends on causal 

distance of feedbacks. The closer feedbacks are to the point of control the smaller the 

deviation from equilibrium, because they provide greater flexibility by reducing 

uncertainty and control delays over biomolecular activities contributing to the steady 

state. Thus, the distance of feedbacks from the point of control contributes to delays, 

which affect the time required to realise the appropriate level of response required at 

the point of control. Sensitivity determines the speed at which deviation occurs. 

Further a cell consists of many chemical oscillatory systems, and this in turn produces 

complex control behaviour, that facilitates sustaining internal organisation of a cell.

Emergent properties arise from nonlinear interactions amongst biomolecules. 

Bifurcation is the appearance of a qualitative change in collective behaviour, when 

changes are made to the bifurcation parameters. This behaviour can produce new 

stable solutions. Multi-stability implies that for a given set of parameters, the system
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can reach different stable states (i.e. attractor) depending on the initial conditions and 

on random fluctuations. The two most important emergent properties are robustness, 

which is the ability of a system to maintain its functions under diverse conditions and 

plasticity, which is the ability of a system to readily adapt to new, different, or 

changing requirements. Robustness results from redundancy, which gives rise to 

multiple interactions of multiple entities. Moreover, failures of a few members are 

rapidly compensated by the remaining members. Plasticity refers to organisational 

adaptations that occur without any change of the behavioural rule at an individual 

level. This collective behaviour is modulated by perturbation which comprises 

extrinsic (environmental) stimulations and intrinsic (programmed) stimulations. These 

stimulations are responsible for biasing rather than altering the responses.

One distinguishing feature between conventional swarming and biological cell 

swarming is that conventional swarms consist of homogeneous or heterogeneous 

types of entities, whereas a biological cell will consist solely of heterogeneous types 

of entities representing different biomolecular species. Each biomolecular species is 

restricted to certain kinds of behaviour, with constraints on interaction and 

collaboration with other biomolecular species. Since constraints can reduce 

uncertainty, this naturally leads to the formation of order out of chaos, amongst the 

activities of native biomolecular species. Native biomolecules are defined as complex 

biopolymers (functional products) created by the cellular machinery using its own 

genetic information. In contrast, metabolites are perceived to be cellular resources in 

various forms. Native biomolecules collaborate via direct and indirect interactions. 

Direct interactions occur, when native biomolecules come into physical contact, such 

as in complex formation, signalling and regulatory activities. Indirect interactions 

occur when native biomolecules share resources, such as metabolites. These indirect 

interactions, known as stigmergy, are a key concept in the field of Swarm Intelligence 

(Parunak 2003), and result from the self-organising mechanism of spontaneous 

indirect coordination between agents due to the shared environment which means they 

can sense and modulate. This produces complex intelligent behaviour in the absence 

of planning, control and direct communication between agents, and supports efficient 

collaboration between very simple agents, which lack any memory, intelligence or 

knowledge of each other (Wikipedia Contributors 2010b).
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In existing SI techniques, the behaviour/characteristic of computational individual is 

reproduced by directly interacting with neighbours in space and these interactions are 

non selective. Whereas in collective behaviour of biomolecules, the 

behaviour/characteristic of computational individual (species) is reproduced by 

causally influencing other computational individuals (species) that form the 

autocatalytic set. Moreover these interactions are highly selective. The social 

phenomena which contributed to the existing SI techniques pursue goals/objectives 

which are spatial in nature and strive to explore and exploit solutions in space within 

the bounds of their temporal constraints. By contrast, biological cells pursue 

goals/objectives which are temporal in nature and strive to explore and exploit 

solutions in time within the bounds of their spatial constraints. The noteworthy 

distinctions with respect to existing techniques are shown in Table 4.1.

Table 4.1: Distinguishing features between existing swarm intelligence techniques and

collective behaviour o f  biom olecules

In ACO pheromones produced by 
computational individuals degrade 
with time

Computational individuals do not 
produce pheromones but the 
individuals degrade with time

In CA and SDS computational 
individuals dynamically adapt by 
imitating their neighbours 
behaviour/characteristics

Computational individuals cannot 
imitate their neighbours (exceptions: 
Prions are infections conformational 
states of proteins that can convert 
other native state versions of the 
same protein to an infectious 
conformational state)

4.2.2 Analysing and Designing Swarm Systems

Every living system has to deal with spatial and temporal constraints. Cellular 

organisation exists in a confined space and cells are compelled to manage their 

biochemical activities within this confined space. Unlike conventional swarm 

systems, that tend to address problems which are spatial in nature, such as locating 

resources or paths in space, cellular systems tend to be more concerned with problems
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that are temporal in nature, such as transformations. For example in a cellular 

environment resources are in different forms and these resources have to be in 

specific forms to be accessible by a particular enzyme. In a cellular environment, the 

emphasis is more on accessibility of resources, rather than locating resources in space. 

While identifying paths in space concerns representation of an appropriate sequence 

of locations in space, identifying paths in time concerns representation of an 

appropriate sequence of events, which separates causes and effects. Biochemical 

activities facilitate identifying appropriate paths in time, amongst diverse stimulations 

and responses that occur in a cell. Although cellular organisation tends to have spatial 

issues, they represent constraints for the temporal objectives (timely responses) of a 

cell. In contrast the objectives of conventional swarming systems are spatial in nature 

and temporal issues represent the constraints for a system. The adaptive requirement 

determines whether objectives become temporal or spatial in nature (see Figure 4.1).

Figure 4.1: Relationship between spatial and temporal issues in situated systems.

Swarming is appropriate for system features such as discreetness, deprivation, 

distribution, decentralisation and dynamism. Swarm engineering (SE) is a 

methodology used to engineer system functionalities through emergence. SE is a 

process for careful design of a group of agents to have a predictable global behaviour 

(Kazadi 2003). SE uses a middle meeting methodology, that generates a swarm 

condition which is followed by generating a set of agent behaviour to satisfy the given 

swarm condition. More details on engineering swarming systems can be found in 

(Parunak 2003; Parunak and Brueckner 2004). Since swarm systems have no external 

control mechanisms, they can be represented virtually by any size without major 

modifications to the underlying architecture. Moreover the basic architecture remains 

the same, which gives design flexibility for applications. Swarm systems are ideal for
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unknown and unpredictable situations. As a whole, these systems have the ability to 

adapt to rapid changes in a manner that cannot be achieved by centralised control 

systems. Since the constituent entities in a swarm system only communicate locally, 

the issue of communication delays are eradicated. Moreover individual entities do not 

depend on instructions, which enable them to react quickly and consistently in their 

environment. This leads to a higher fault tolerance, due to lack of failure by 

centralised control. Hence, modelling local interactions within a biological cell has 

two implications. It is significant, when there is communication congestion, and these 

interactions are sufficient to maintain a wide range coordination within the cells.

There are many issues that must be considered when programming a swarming 

system. The behaviour of a swarm system must be sensible to someone outside the 

system boundary. This means that progress of the system should be perceivable. The 

term organisation in self-organisation has distinct but related meanings, such as a 

mapping, a process or a structure. Mapping can facilitate comparison of the degree of 

organisation between two systems or the same systems at different times. Many 

definitions for self-organisation have been proposed. From a physical perspective, it is 

defined as a process that reduces the entropy of a system without external 

intervention. Various criteria for mapping organisation have been suggested, among 

these entropy and symmetry are common suggestions (Parunak and Brueckner 2004). 

However, these methods are too abstract and can only be applied to organisation of 

spatial structures, rather than functional organisation which is temporal in nature. 

Further these criteria seem to be too abstract and do not have any practical use in 

measuring intercellular organisational behaviour. Intracellular organisation cannot be 

observed and neither can it be empirically measured, because functional organisation 

is more of a temporal phenomena rather than spatial phenomena. These temporal 

phenomena, which manifest as temporal symmetry, are reproducible rhythmic 

behaviour of a cell. The following mathematical/quantitative oriented definition for 

self-organisation has the ability to measure intracellular organisational behaviour. 

“Self-organized behaviour in a complex system involving multiple performance 

measures is a sequence of system states corresponding to movement along a Pareto 

optimal frontier” (Fleischer 2005). In this context functional organisation is measured 

in terms of efficiency of diverse functional units that constitute intracellular 

organisational behaviour.
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Dynamic systems have to deal with changing requirements, and swarming is an ideal 

approach for dealing with dynamically changing requirements. The constituent 

entities of the system do not encode system level behaviour explicitly. The 

consequence of this is that entities will not require modification with changing 

requirements. The scope of cellular organisation is characterised by the amount of 

change to which a cell’s adaptive requirements are susceptible. This is how frequently 

the adaptive requirements change. If the extent of change is small, cells are more 

likely to anticipate and deliver acceptable performance within the bounds of their 

original configuration. This configuration will determine when, where and what 

native biomolecules should be functional. However, when the extent of change is 

huge, there is more value for cells to adapt to unanticipated requirements. Timely 

response is a crucial factor for the overall fitness of a cell. As rate of change begins to 

outpace the intracellular rate of information/signal migration and transformations 

within a cell, they will constantly find themselves providing solutions to obsolete 

problems. This will lead to the collapse of the cellular organisation. 

Information/signal migration represents a signal physically moving in space, and 

information transformation represents information existing in different formats, such 

as genetic, transcript or protein, where transformations among these formats occur via 

transcription and translation. Based on timescales chemical transformations appear to 

provide major constraints to arriving at a solution. Except for a genetic format, 

heritable information present in other formats will contribute to epigenetic 

inheritance. Epigenetic inheritance often lasts for one or two generations, because, 

information stability decreases from a genetic format to the transcript format and to a 

protein format.

4.2.3 Collective Intelligence Framework

The aim of this approach is to integrate biomolecular activities occurring within the 

gene, transcript, protein and metabolite spaces, so that interactions across spaces can 

be studied. The approach utilises a multi-objective topology based on Collective 

Intelligence to model adaptive dynamics of biological cells. Adaptive dynamics at a 

physiological timescale, occur due to biomolecular interactions rather than genetic 

adaptation. The performance/fitness interaction is a fundamental criterion used to 

modularise biomolecular interactions from the bottom-up. Further this criterion also
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facilitates identification of cooperation and competition between biomolecular 

species, which in turn act as organisational constraints on the biological adaptations 

that occur from physiological to evolutionary timescales. This approach is based on a 

meta-formalism, that can be used for modelling complex and self-organising systems 

(Fleischer 2005). This formalism is based on three foundational components. The first 

is based on a set of first principles which include relevant laws of nature such as 

evolution and thermodynamics. The second is the dynamic framework based on a 

concept of multi-objective topology aided by Pareto optimality, which provides a 

novel way to characterise system interaction, behaviour and efficiency on different 

scales. The third is the problem framework, which is based on Cellular Intelligence.

The laws of evolution (selection and self-organisation) and thermodynamics are used 

as the governing principles of cellular optimisation. While the driving force at a 

fundamental level is the natural propensity of biochemical systems to reach 

thermodynamic equilibrium (AG tends towards zero), at an organisational level it is 

the natural propensity of biological systems to maintain biological equilibrium. The 

goal of this approach is to model a biological cell as a swarm intelligence system and 

to elicit self-organising mechanisms, which allow internal cellular organisation as a 

whole to behave intelligently in a coordinated manner as a result of direct and indirect 

biomolecular interactions.

Preliminary research work has been conducted to develop a Collective Intelligence 

based cell modelling and simulation environment. This environment was used to 

identify major factors that contribute to a self-organising process of functional 

products. Some self-organising mechanisms, that were investigated are forms of 

positive and negative feedbacks amongst functional products, amplification of 

fluctuations and multiple interactions amongst multiple functional products 

(Bonabeau, Dorigo et al. 1999). Various internal constraints were also considered to 

analyse their impact on the self-organising process. In particular, time and energy 

requirements for activities of functional products and cellular thermodynamic 

requirements were considered to model molecular level constraints associated with 

cellular level activities. Biomolecular activities contribute to the internal organisation 

of a biological cell, and these cannot be directly observed or empirically measured. 

Since the chemical activities of molecules, rather than their abundance, provide an 

accurate description of a chemical system, the performances of functional products
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are analysed, based on their level of activities. However effects of these activities 

contribute differentially to the objectives (higher tasks) based on the nature of 

influence (positive or negative), it could have on those tasks with time.

Organisational behaviour within a cell corresponds to its functionalities, which 

manifests due to diverse activities of functional products in space and time. These 

activities cause interactions among functional products, which are brief encounters 

when considering the timescales for noticeable impact to occur at the cellular 

resolution. Due to the dynamic nature of the objectives, biological systems are forced 

to meet adaptive requirements by pursuing the objectives aided by its constituents, 

thus giving rise to biological processes which are seen as biological functions. In the 

context of a cellular system these constituents are functional products with the 

potential to perform their intended activities. However these activities have to be 

orchestrated in order to pursue objectives/tasks against perturbation and uncertainty, 

thus causing activities of diverse species of functional products to fluctuate. Since 

pursuing objectives/tasks is a temporal phenomenon, simplification of biological 

complexity is achieved by mechanistically constructing/deconstructing the global 

tasks of a cellular system into basic tasks required to pursue them. The performance 

of tasks is quantified, in order to quantify the functions of cellular systems.

Complex 
Global Tasks

Basic Tasks

Native
Biomolecules

Figure 4.2: Complexity barrier between macroscopic cellular and intercellular processes that

emerge from basic biomolecular activities.

Collective Intelligence logic considers the principles and properties of self-organising 

processes and this facilitates understanding of fundamental and organisational 

principles of biological systems, which define the possible organisational space of life 

(Kitano 2007). Identifying and modelling major self-organising mechanisms of a cell
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is the most crucial task to be undertaken in mapping the problem space to the function 

space of a cell. The function space is deconstructed into individual molecular level 

tasks, which comprise contributions from individual biomolecules, group level tasks 

which comprise contributions from respective biomolecular species, and team level 

tasks comprising contributions from heterogeneous species of biomolecules. 

Categorising the collective behaviour of functional products, in terms of 

objectives/tasks can deconstruct the global objectives/tasks of a cell into the basic 

tasks required to pursue them. Representing objectives/tasks using multi-objective 

topology provides, a concurrent and hierarchical view of cellular dynamics by 

constructing higher cellular tasks/objectives using feasible solutions, originating from 

lower level tasks/objectives and the constraints associated with them. Coordination 

among the basic and complex global tasks is achieved via various regulatory 

mechanisms, which control competition using negative feedback mechanisms, 

whereas cooperation is favoured by positive feedback mechanisms. This framework 

facilitates mechanistic identification of relationships between basic tasks performed 

by a biomolecular species. Performance interactions among tasks are fundamental to 

modelling propagation of impact among the basic tasks, which are constituents of the 

higher tasks (see Figure 4.2). Performance is measured at each task level, ranging 

from basic tasks to complex global tasks of a cell. Factors that affect performance at 

the level of functional product are efficiency and stability. Efficiency depends on a 

product’s affinity for interaction, and the time and energy requirements for the 

activity. At a group level, the net activity of a particular species of functional product 

is considered, and at the cooperative module level, where different species of 

functional products participate to complete a particular task, performance is 

associated to the number of completed task within a time frame. Moreover, 

performance of complex tasks, which constitute a combination of basic tasks, are 

measured by their output.

4.3 Modelling the Characteristics and Behaviour of 

Biomolecules

Biomolecules have evolved into different forms and are classified as native or foreign 

biomolecules. Native biomolecules represent chromosomes, transcripts and proteins,
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while foreign biomolecules are metabolites. Chromosomes are composed of genes. 

Transcripts are further categorised as mRNA, tRNA, rRNA and smallRNA. Proteins 

are classified as enzymes, signalling, regulatory, transport and mechanical proteins 

(see Figure 4.3). Metabolites are broadly classified as primary and secondary 

metabolites. In addition to contributing to certain regulatory (metabolic regulation) 

and signalling activities, metabolites provide the source of matter and energy required 

to build and sustain the cellular organisation.

tRna

rRna

Enzyme

smalRna

Biomolecule

Transport FVotein

Chromosome

Mechanical Pro te n

Messenger Protein

+ L o c a t b n  

+ B a s e  L e n g th

Gene

+ N a m e  

+ B a s e  L e n g th  

+ H a l f  L ife  

- t - F u r c t b n a l  S ta te

Transcript
+ N a r r e

+ P o ty  p e p t id e  L e n g th  

+ C o r f i r n a t i o n a l  S ta te  

+ F t n c t i o n a l  S ta te  

+ T e m p e r a tu r e  R a n g e  

+ p H  R a n g e  

+ H a l f  L ife

R-otein

Figure 4.3: Class diagram o f  biomolecules

The reactive behaviour of native biomolecules is modelled using state machines, 

where states and transition between states, are represented in agents. Proteins can 

exist in different conformational states, phosphorylation states or functional states
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(active or inactive). When active the protein can exist in idle or performing states (see 

Figure 4.4). Other noteworthy properties, which proteins can have, are stability to 

temperature and pH. These properties determine a protein’s performance. Also 

transcripts and proteins are vulnerable to degradation which is represented by its half- 

life.

Phosporylation/Dephosporylation
Binding/Unbinding

PerfomringIdle

Inactive

Active

Figure 4.4: Typical functional states o f  a biomolecule

4.4 Modelling Interactions of Biomolecules

The significance of modelling biomolecular activities, as opposed to biomolecules 

themselves, is that biomolecular activities represent interactions that take place in 

order to sustain a biological cell. These activities cause direct and indirect interactions 

among biomolecules and have a distinct location in space and time, modelled as 

biomolecular events. Measuring the activities of proteins rather than their actual 

abundance reveals effective abundance. Apart from contributing to molecular 

crowding, biomolecules which are merely occupying the cellular environment, will 

not have any major effect on cellular processes. A biomolecule’s contributions are 

judged by its activities. As explained in Section 3.5.2.3, the chemical activities of 

molecules provide the most accurate description of a chemical system. Nevertheless, 

the dynamic state of chemical systems are described in terms of concentrations, as an 

approximation to chemical activity based on an assumption that the difference 

between the concentration (actual population) and the chemical activity (effective 

population) is insignificant. However in biological cells, where functional products 

are complex molecules, and only certain states out of all possible states, have the
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ability to perform an intended activity, there is a significant deviation between the 

actual population and the effective population. For example, proteins that can undergo 

various post-translational modifications can lead to various phosporylation states or 

conformational states. These states can affect a protein’s activity and can cause 

significant deviations, when representing proteins with their actual abundance. Hence 

actual abundance does not reflect the true dynamic state of a cell.

Time and energy requirements are crucial, when modelling biomolecular events, since 

time, energy and efficiency are some of the biologically relevant properties. 

Efficiency can be represented at an individual and organisational level. At individual 

level, the time and energy requirements of a biomolecular activity play a significant 

role in biomolecular efficiency. At organisational level the concurrent orchestration of 

biomolecular activities to provide best possible solutions to multiple objectives, play a 

significant role in cellular efficacy. The duration (time requirements) of various 

biomolecular activities are shown in Figure 4.5. The temporal scale represents intra­

molecular and inter-molecular dynamics (molecular interactions). A typical temporal 

scale for cellular phenomena varies from femtoseconds (10'15 s) to hours (103 s). 

Atomic interactions/quantum dynamics take place in the order of picoseconds (10‘12 

s). Many conformational changes in macromolecules are microsecond (10'6 s) events. 

Metabolic activities, which are characterised by enzymatic reaction, take place in the 

order of milliseconds (10' s). Many non-covalent interactions (molecular binding 

reactions) between macromolecules as found in signal transduction activities and 

regulatory activities occur in the range of nanoseconds (10'9 s) to microsecond (10'6 s) 

(Stryer 1988). The duration of biomolecular activities is significant in the organisation 

of cellular activities, because the perception of time is different at every level of 

biological organisation. For example, our perception of a second is like eternity in the 

atomic or molecular world (Cox 2008). The causal episodes of activities decrease 

from atomic to molecular and then to cellular scale, which makes biological processes 

appear slower, when moving up the biological organisation strata.

The energy content of some biochemical entities are shown in Figure 4.6. However at 

the level of molecular resolution, energy requirements for biomolecular activities are 

characterised in terms of ATP. While phosporylation activities require a single 

molecule of ATP, the ATP requirement for transcription and translation activities 

depends on the length of the gene and transcript, respectively.
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Molecular abundance, molecular crowding and confinement also determine the 

probability of reactants meeting, since they affect mobility. Table 4.2 shows typical 

amounts of biomolecules found in biological cells (Takahashi, Yugi et al. 2002).

Table 4.2: Abundance o f  intracellular compartments and biomolecules in cells

Compartments 10

Biomolecules lQli-14 lOW-'is

Biomolecular Species 10J_4 lO4'5’
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A typical E.coli prokaryotic cell contains an estimated 50 million molecules. This 

includes all macromolecules, metabolites, cofactors and ions (Broderick, Ru'aini et al. 

2005). A typical Mycoplasma bacterium only contains an estimated 1 million 

molecules (Broderick, Ru'aini et al. 2005). Hence, we can conclude that although cells 

contain a huge number of molecules, only a fraction of them are involved in the 

formation of a dynamic intracellular organisation. The spatial scale represents the 

volume of different biological entities. While volume of containers (cells and 

organelles) facilitates in calculating abundance of biomolecules, the volume of 

biomolecules facilitates in calculating their mobility in a cellular environment. Spatial 

scale intracellular components (Schnell, Grima et al. 2007) are shown in Table 4.3.

Table 4.3: Lengths o f  cellular components

Cell 10-100 micrometers

Cell nucleus 5 micrometers

Mitochondrion 2 micrometers

Ribosome 30 nanometers

Protein 4-10 nanometers

Small molecule (e.g. H2 O) 0.5-1 nanometer

4.4.1 Direct Interactions

Direct interactions occur when biomolecules come into physical contact with each 

other. This could occur between native biomolecules, during complex formation, 

signalling or regulatory activities, or between native biomolecules and foreign 

biomolecules during enzyme catalyzed reactions. All biological structures and 

processes depend on an interplay of non-covalent and covalent interactions. 

Reversible biomolecular interactions, which are mediated by non-covalent forces, are 

at the heart of the dynamics of life. For example, recognition of substrates by enzymes 

and detection of signalling molecules are mediated by non-covalent bonds. 

Fundamental non-covalent bonds include electrostatic, hydrogen and van der Walls 

bonds, which differ in geometry, strength and specificity (Stryer 1988). The 

probability of physical interactions depends on the affinities of the biomolecules 

caused by non-covalent forces.
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4.4.2 Indirect Interactions

Indirect interactions occur due to influence/causality. An ideal way to represent 

causality, which can have positive or negative effects, is via performance interactions. 

Positive performance interactions occur due to cooperation among native 

biomolecules, and negative performance interactions due to competition among native 

biomolecules. Based on these criteria, fundamental units of cooperation are identified 

among the many biomolecular interactions. Identifying how these units are 

configured, can facilitate the understanding of cellular organisational strategies, such 

as how cells have evolved to manage cooperation and competition among these units 

by the regulations imposed. For example, enzymes cooperate and compete indirectly 

by physically interacting with respective metabolites.

4.4.3 Local Interactions

Due to the low number of certain native biomolecules, binding sites in the genome, 

and molecular crowding, a cellular environment appears to be spatially heterogeneous 

and stochastic, hence the need for a stochastic approach to represent discrete 

biomolecular activities occurring across space and time. Different regions of a cellular 

environment will have different compositions of biomolecules. To model these 

stochastic fluctuations, biomolecular interactions have to be modelled, based on 

locally available information. Local interactions are the direct and indirect 

interactions, which occur in the neighbourhood of biomolecules. However, there is no 

global interaction with a cell, since biomolecules are reactive entities, functioning 

without any cognitive ability. They simply interact without any global awareness.

4.5 Modelling Collective Behaviour of Biomolecules

Intelligent cellular organisation emerges out of biomolecular interactions in space and 

time, which contribute to the collective behaviour of biomolecules. Collective 

behaviour of biomolecules are organised into a nested objective hierarchy. Objectives 

range from being physical to chemical and biological, when traversing from 

molecular resolution to cellular resolution. Mutual dependency of cellular objectives 

on lower objectives contributes to the combined complexity. Identifying orthogonal 

objectives will be a key to representing cooperative modules. Theoretically
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orthogonal objectives are fully independent of each other and their combined 

complexity is simply additive. However, in reality orthogonal objectives are only 

approximately orthogonal. The lowest objectives are found at the resolution of 

biomolecules, where they are physical and based on covalent (processing) and non- 

covalent (binding) interactions. Orthogonal objectives can also be identified from a 

physical and chemical perspective. While physical space is independent, chemical 

space is constrained by physical objectives. Objectives at the level of biomolecular 

species, which also define their niche in a cell, are the collective efforts of member 

species. Interactions between the lower objectives occur via feedbacks. Collective 

autocatalysis is a form of positive feedback, which promotes the cohesiveness of 

lower level objectives and positively contributes to higher level objectives of a cell. 

Collaboration among lower objectives is promoted. In contrast, competition among 

lower level objectives promotes negative feedback (influence) amongst objectives. 

Both representation and analysis of collective behaviour of biomolecules, can 

facilitate analysis studies of a cell. Biomolecular activities contribute to the internal 

organisation of a biological cell, their abundance is typically abstracted into a network 

topology to analyse population dynamics in space and time. This topology has 

become an idealisation of reality (Stelling, Sauer et al. 2004). However to analyse the 

degree of organisation, performance of various intracellular organisations, such as 

modules will have to be measured, as performance reflects the behaviour of modules. 

Clearly biomolecular activities rather than their abundance, will be significant in 

measuring performance of their respective modules. Any performance deviation of 

any of a module’s member biomolecular species, will have a direct impact in that 

module.

4.5.1 Biological Constraints of Intracellular Organisation

Biologically relevant constraints are time, energy, matter and space. Of these time and 

energy play a major role in regulating biomolecular activities. Matter organised in 

different ways carries information required to perform activities. This information is 

present as a one-dimensional sequential format (a gene), which is transformed into 

three-dimensional structural formats (native biomolecules). These structures 

determine the qualitative features of a biomolecule, which in turn determines the 

activity it performs. Out of the space of possible activities, which various
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biomolecules can perform in living systems, only a subset of these activities will be 

available for a certain living system. Feasible solutions can only be provided based on 

available activities and their regulation. While most stimulations are native as they are 

configured to regulate by the genome, remaining ones are foreign in nature, such as 

metabolic regulation and extrinsic signals. A cell requires various biomolecular 

activities to be performed to sustain biological equilibrium. Time becomes a limiting 

factor, when activities have to be performed within a stipulated time. Energy becomes 

a limiting factor, when activities have to be performed with efficient use of energy. 

Since two kinds of responses can emerge to meet this demand, cellular organisation 

has the option of a trade off between time and energy, which is determined by both 

qualitative and quantitative responses of biomolecular activities. Qualitative responses 

of biomolecular species are determined by the time it takes to perform a stipulated 

activity, reusability (the number of activities a native biomolecule can perform during 

its existence) and energy usage. Quantitative responses are determined by investment 

of time, energy and material needed to produce the required amount of biomolecules 

to perform the activities. It is analogous to measuring work by using time units, such 

as person hours to complete a job. If time is of the essence, a larger work force will be 

allocated, otherwise a smaller work force will be sufficient. Various levels of 

regulation have evolved to quantitatively modulate the amount of biomolecular 

activities.

4.5.2 Physical Constraints of Biomolecular Interactions

The fundamental nature of all biomolecular interactions is energy, and the science of 

thermodynamics provides a valuable tool to help comprehend energy (Stryer 1988). 

The organised nature of living systems seems astonishing, given it emerges from a 

chaotic world of non-living objects. Nevertheless, the organisation perceptible in a 

biological cell emerges from biological activities, that are subjected to the same 

physical laws (in particular the laws of thermodynamics), that govern all physical 

activities. The physical systems’ hierarchy comprises quarks, which form sub-atomic 

particles, which in turn form atoms, and finally molecules. All physical systems in the 

universe follow the second law of thermodynamics and proceed in an exergonic 

direction, which is AG < 0; in a direction that tends to lower the free energy of a 

system by expending energy in the form of work. Hence a system that is far from
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equilibrium (AG = 0) has the potential to do work. The second law of 

thermodynamics predicts the direction of change for any biochemical reaction by 

stating that entropy must increase for any spontaneous process (Grace 2004). Entropy 

is a measure of the degree of randomness or disorder in a system. When activities or 

events are equally probable in space and time, complete randomness/disorder will 

prevail within the system. However, due to naturally occurring constraints the 

probabilities of activities/events are altered in space and time, which paves the way 

for emergent patterns in self-organising physical systems. Although at an individual 

level events are discrete and appear to be chaotic, at the collective level they appear to 

be in a continuum and ordered based on statistical interpretation of the events. These 

patterns form the traces of order at the higher level in hierarchical systems, such as 

biological systems. Hence constraints, which reduce uncertainty by altering 

probabilities at a particular level, are the causes of order within a system. The order 

that emerges can have different consequences, such as producing normal or 

pathological behaviours at the systems level, where the level of selection also begins.

Thermodynamic equilibrium, which is approximated to chemical equilibrium at 

constant temperature and pressure, is the most probable system state amongst the 

physical constraints. This dynamic equilibrium is the natural tendency of biochemical 

systems, which constrain their biological objectives. This steady state is perceived 

differently in different domains, such as classical thermodynamics, statistical 

thermodynamics (statistical mechanics or molecular thermodynamics), or chemical 

kinetics. In classical thermodynamics and chemical kinetics, chemical equilibrium is 

viewed at the macroscopic level. At equilibrium, a net conversion of reactants to 

products cannot be observed and AG = 0 by definition. Moreover, in chemical 

kinetics, at equilibrium the rate of forward and reverse reactions are equal. Like 

classical thermodynamics, chemical kinetics deals with macroscopic/aggregate 

variables. In particular, rates at which various chemical transformations occur, such as 

reaction rates, rate constants, rate of catalysis (turnover number) and half-life.

The power of classical thermodynamics is driven by its ability to model the overall 

behaviour of a system without knowing molecular details. The complimentary domain 

of statistical mechanics, applies the laws of physics to individual particles (molecules, 

atoms and photons) to deduce the behaviour of macroscopic systems, by considering 

the statistical behaviour of a large number of particles (Wolfe 2001). Statistical
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thermodynamics was bom with the work of Boltzmann, which set the stage for 

redefining chemistry, in terms of probability (Hanson and Green 2008). It has the 

ability to make macroscopic predictions, in terms of microscopic properties. The laws 

of thermodynamics apply to macroscopic systems. At the microscopic level, they are 

applied statistically to a large number of molecules, but not to individual molecules. 

The force of nature driving all chemical reactions in all systems, living and non­

living, is basically that systems are going from less probable states (states having a 

small number of possible configurations) to more probable states (states having many 

possible configurations) (Wolfe 2001). Hence the most probable distribution 

represents the equilibrium. In a system of interacting particles the energy is shared 

within particles, which will reach a state where global statistics are unchanged in 

time.

Figure 4.7 shows a typical chemical reaction based on statistical thermodynamics, 

where the probabilities of events contributing to a forward or backward reaction are 

equal, when a chemical system is at equilibrium.

f r e a c t i v e

• r e a c t i v e

E a -
'u n  r e a c t i v e

w i t h o u t  e n z y m e

Ea -

0

A  -  w ith  e n z y m e
'u n r e a c t i v e

Figure 4.7: Fraction o f  particles that will react at any given temperature depends upon how  

many particles have at least the energy o f  Level e in the presence o f  an enzyme or Level t in

the absence o f  an enzyme.

Gibbs free energy (G) is the capacity of a system to do work at constant temperature 

and pressure. This is a condition that is applicable for most biochemical reactions 

(Grace 2004). It is the most widely used thermodynamic property in biochemistry, 

and is also an appropriate thermodynamic property to cover molecular resolution, 

where the distinction between heat and other forms of energy disappears (Wolfe
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2001). Table 4.4 shows the physical properties applicable at the level of cellular 

resolution and at the level of molecular resolution. The Gibbs free energy change 

predicts whether reactions (interactions) can occur spontaneously, or whether energy 

must be supplied for a reaction to occur. For any spontaneous reaction, the free energy 

of the products must be less than the free energy of the reactants, i.e. AG must be 

negative (Grace 2004). The value of AG depends on the standard free energy change 

for the reaction (ArG°) and concentrations of reactants and products. A critical point is 

that the metabolic processes are governed by the activities of key enzymes rather than 

by the law of mass action (Stryer 1988).

Table 4.4: M acroscopic and microscopic view s in cellular thermodynamics

Physical entity Cell Molecule

Domain Thermodynamics Newtonian or quantum 

mechanics

Temperature Well defined and measurable Not applicable

Pressure Well defined and measurable Not applicable

Work, heat and 

kinetic energy

Clearly distinguished Distinction almost disappears

Every reaction has a propensity of reaching an equilibrium state. This is driven by 

Gibbs free energy, since propensity is due to a system trying to minimise its Gibbs 

free energy. Within a cell chemical reactions are driven towards a local 

thermodynamic equilibrium, where the intensive properties vary in space and time, as 

opposed to a global thermodynamic equilibrium, where intensive properties are 

homogeneous throughout a system. However, a local thermodynamic equilibrium 

varies so slowly, that one can assume thermodynamic equilibrium within a particular 

neighbourhood.

The AG of a reaction is influenced by the AGf° of reactants and products and the 

abundance of reactants and products. For a simple reaction AG is given by Equation 

4.1.

AG = AG° + R T ln j3-\ Equation 4.1
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where ArG° = Gf°b -  Gf°a is the difference in standard free energy of formation 

between molecules A and B, R is the universal gas constant, and [A] and [B] are the 

concentrations of A and B. At equilibrium, when AGr is zero, the difference in 

standard free energy between molecules A and B is exactly compensated by their 

concentration difference (Dogterom 2001). Although the value of ArG determines, 

whether a reaction can occur spontaneously, it does not make any predictions about 

the speed of the reaction (Dogterom 2001). The reaction rate is controlled by 

activation energy, which determines the number of successful associations that 

overcome the activation barrier.

Figure 4.8 shows a typical enzyme catalysed reaction. For a single elementary 

reaction kcat which is the rate of catalysis for a function of k3 . The turnover number 

which is equal to kinetic constant of an enzyme is “the number o f substrate 

molecules converted into products by an enzyme molecule in a unit time, when the 

enzyme is fully saturated with substrate” (Stryer 1988). The catalytic step is assumed 

to be constant for a particular temperature and pH, since it is a property of the 

enzyme. The turnover cycles (processing time) for enzymes are distinct. Carbonic 

anhydrase has one of the shortest known turnover cycles namely, 1.7 microseconds 

per cycle. However, the ultimate limit on the value of enzymatic velocity is set by kj, 

which is the rate of formation of ES complexes. However, this rate cannot be faster 

than the diffusion controlled encounter of an enzyme and its substrate (Stryer 1988). 

Diffusion limits the value of ki, so that the velocity of a chemical reaction cannot be 

higher than between 108 and 109 M '1 S'1. In fact the catalytic velocity of a enzymes 

actylcolinesterase, carbonic anhydrase and triosephosphate are between 108 and 109 

M '1 S'1, which shows that they have attained kinetic perfection (Stryer 1988). Their 

catalytic velocity is restricted only by the rate, at which they encounter substrate (i.e. 

ki) in a cellular environment.
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Figure 4.8: An elementary enzyme catalysed reaction.

4.6 The Cellular Environment

The physical space, which consists of native biomolecules and their environment is 

perceived as the Euclidean space, where spatial and temporal dimensions are distinct. 

The environment space represents resources, such as metabolites, ions and other 

macromolecules (i.e. foreign biomolecules). The activities amongst native 

biomolecules, and between native biomolecules and foreign biomolecules occur in the 

physical space. Enzymes are major contributors to cellular metabolism. In a typical 

enzyme catalysed reaction, the enzymes represent the native biomolecules and the 

metabolites are represented as part of the environment. Every region of the metabolite 

space holds a local population. These spaces are used by various chemical reactions to 

produce or consume metabolites. The reactants continuously diffuse based on 

diffusion gradients. Hence every metabolite space will be in constant flux, due to 

various biochemical reactions occurring in different regions of the cellular 

environment. The reactants and products at a particular locality will determine its free 

energy levels and the probability of a reaction occurring. This also affects the 

probability of substrates encountering relevant enzymes in the specified region. 

Enzymes assist in this process by accelerating the attainment of equilibrium but do 

not shift their position. The catalytic velocity is restricted by the rate at which the 

enzymes encounter substrates (ki) in the cellular environment. The ATP which is 

known as the universal currency of free energy in biological systems is a widely used
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metabolite to couple with non-spontaneous reactions in metabolism. Yet the ATP —► 

ADP is always maintained far from equilibrium (i.e. A G is always negative) in the 

cells.

4.7 Concluding Remarks

The Collective Intelligence approach is well suited to represent the adaptability that is 

a feature of the collective behaviour of biomolecules. Cellular Intelligence is defined 

as the ability to regulate when, where and what biomolecular activities occur to 

maintain biological equilibrium in diverse environments. Hence modelling the 

collective behaviour of biomolecules will involve representing cellular adaptation 

utilising Swarm/Collective Intelligence. The concepts of self-organisation and 

emergence underlie swarming and these systems are inherently adaptive, robust, 

flexible, stochastic and concurrent. The first step towards modelling intracellular 

organisational behaviour is understanding the mechanisms that foster collective 

behaviour among biomolecules. The main features of a Swarm Intelligence approach 

involve forms of limited or minimal communication and/or interaction, large numbers 

of interacting entities with limited reach, and some global efficient, emergent or self- 

organising behaviour (Fleischer 2003). Further the four basic ingredients for the 

manifestation of self-organisation are (Bonabeau, Dorigo et al. 1999): Forms of 

positive feedback, forms of negative feedback, amplification of fluctuations, multiple 

interactions of multiple entities. The existing Swarm Intelligence techniques are not 

able to represent the intracellular adaptive dynamics since they pursue 

goals/objectives which are spatial in nature and strive to explore and exploit solutions 

in space within the bounds of their temporal constraints. Hence new techniques based 

on biomolecular inspired mechanisms will have to be developed in order to pursue 

goals/objectives which are temporal in nature and strive to explore and exploit 

solutions in time within the bounds of their spatial constraints. The Collective 

Intelligence framework is based on a meta-formalism, which can be used for complex 

and self-organising systems. The problem framework is based on Cellular 

Intelligence, that represents a biological cell’s ability to organise and adapt to 

perturbation and uncertainty, which reflects on the characteristics of intelligence. The 

fundamental principles utilised are self-organisation and thermodynamics to represent 

biological and physical constraints, respectively. The dynamic framework utilises
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multi-objective topology as a core of the model and describes the logic of Collective 

Intelligence, which is used to construct/deconstruct tasks for intracellular 

organisational behaviour of the cell in physiological timescale. The next chapter 

provides the model specification, which implements a SwarmCell model, and utilises 

an agent based formalism in the wider framework of Collective Intelligence to 

conduct analysis studies of a biological cell.



Chapter 5

A Collective Intelligence Approach to Modelling

Intelligent Cellular Organisation

“It is possible make things o f great complexity out o f things that are very simple.

There is no conservation o f simplicity. ”

Stephen Wolfram

5.1 Overview

The aim of this chapter is to provide a model specification based on the problem 

definition and model requirements discussed in Chapters 2 and 3 respectively. Section

5.2 describes the model specification. It provides an overview, giving an idea of the 

model’s focus, resolution and complexity. Section 5.2.1 specifies the purpose of 

implementing the SwarmCell model. Section 5.2.2 specifies the representation of 

biomolecules and their attributes, and describes the spatial and temporal scales 

utilised to model interactions. Section 5.2.3 describes the execution of the model in 

terms of scheduling sub-models. Section 5.2.4 describes design concepts of the model 

in terms of representing emergence, adaptability, objectives, learning, prediction, 

sensing, interactions, stochasticity, collectives and observation. These design concepts 

facilitate integration of the agent based formalism into a wider framework of 

Collective Intelligence. A description of the model in detail is given in Section 5.2.5 

through the model initialisation process. Section 5.2.6 covers the model inputs during 

the simulation and Section 5.2.7 the sub-models details. The model specification 

provides required functionalities to implement a SwarmCell model and conduct 

analysis studies from molecule to cell level using simulation experiments.
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5.2 The Model

The model specification of the SwarmCell prototype is described, using the ODD 

protocol for agent based models (Grimm, Berger et al. 2006), developed by the open 

agent based modelling consortium (Open ABM Consortium 2010). The prototype 

utilises an agent based formalism to model the collective behaviour of native 

biomolecules. Concepts from Complex Adaptive Systems (CAS) are applied to build 

a mechanistic model of a biological cell. The physical space represents the core of the 

model, where interactions among native biomolecules and resources occur (see Figure 

5.1). The resources are modelled as part of a native biomolecule’s environment, and 

the rules for biomolecular mobility and interactions (i.e. agent-agent and agent- 

environment interactions) are also represented. The model is targeted for use in 

analysis and design studies. For design studies, it requires development of appropriate 

adaptive algorithms, based on Collective Intelligence, especially biomolecular 

inspired algorithms. Tradeoffs between details of reality derived from theoretical 

foundations, i.e. from fundamental principles, and the feasibility of modelling with 

relevant data has been an ongoing issue, during the mechanistic model development 

process. The level of model detail required is determined by the aim, hypothesis and 

available data for the investigation.

Environment/Data Space 
(The Core of SwarmCell)

Physical Space 
(The Core of SwarmCell)

n

/  V
RAsm irrA s /  *

Native Biom olecules

Figure 5.1: The core o f  the SwarmCell model representing the physical space
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5.2.1 Purpose

The purpose of a SwarmCell model is to study collective behaviour of native 

biomolecules, constituting a biological cell by applying the principles of self­

organisation and logic of Collective Intelligence to model intracellular tasks and 

associated constraints. The aim of the study is to define cellular functions in the 

context of a multi-objective topology and implement them as an in silico mechanistic 

model, to study the performance of intracellular functions by measuring activities of 

diverse species of functional products. The model integrates biomolecular activities 

occurring within the gene, transcript, protein and metabolite space. It represents 

various stages of regulation to correlate between perturbations and performances of a 

cell.

5.2.2 Entities, State Variables and Scales

The model utilises a bottom-up approach, where the lowest and highest levels of 

model representation are at the molecular and cellular resolution, respectively. The 

model comprises the following types of entity; native biomolecules - represented as 

individual entities, biomolecular species and tasks - represented as collectives, grid 

cells represented as spatial units, i.e. environmental conditions that vary over the 

physical space in the molecular environment, and resources such as metabolites 

represent the environment. The native biomolecules are represented at molecular 

resolution, while their metabolite counterparts are represented as populations, which 

fluctuate within the physical space of the cellular environment. The decision to 

represent native biomolecules as individual entities, is due to their low copy numbers 

and state specific behaviours. In contrast the metabolites do not posses state specific 

behaviour and are usually found in greater abundance. The environment is modelled 

as a Euclidean space, where spatial and temporal dimensions are discrete. This three 

dimensional space is divided into distinct grids with the time dimension represented 

as discrete time steps. The native biomolecules are characterised by state variables 

based on their role in the cells, see Table 5.1. Metabolites are represented as scalar 

fields, since they do not have state specific behaviour as found in native biomolecules. 

Each distinct grid in the metabolite space contains an abundance (number) of various 

metabolites, ions and other resources.
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Table 5.1: State variables and types o f  biomolecules

Genes Name, Location, Base length N/A

Transcripts Name, Base length, Half-life, 

locality and Functional state

mRNA, tRNA, rRNA and 

smallRNA

Proteins Name, Locality, Polypeptide 

length, Conformational state, 

Functional state,

Temperature range, pH range 

and Half-life

Enzymes, Transport 

proteins, Messenger 

proteins and Mechanical 

proteins

Biomolecular species are characterised by state variables, such as its biomolecular 

species name, number of individual biomolecules present, and their overall activity 

levels. Since the functional product representing a gene can eventually transform into 

a transcript or protein, the overall activities of these functional products will reflect on 

the significance of respective genes.

Scales represent the nature of the objectives/tasks forming the complex hierarchy of 

mutually dependent activities of a cell. Cellular functions are quantified in terms of 

performance of solutions, which are constructed/deconstructed in terms of 

objectives/tasks of a cell. The solution space is deconstructed into individual 

molecular level tasks - consisting of the contribution made by individual 

biomolecules, group level tasks - consisting of the contribution made by the same 

biomolecular species, and team level tasks - consisting of the contribution made by 

the heterogeneous species of biomolecules. Categorising the collective behaviour of 

functional products in terms of objectives/tasks can deconstruct the global 

objectives/tasks of a cell into the basic tasks required to pursue them. Hence these 

tasks are characterised by state variables, such as their objective and performance. 

The construction of global tasks from basic tasks requires associating performance 

from basic to global tasks of a cell. Performance can be a measure of a biomolecular 

species’ activity level in the case of tasks containing a single biomolecular species, 

and the number of completed tasks in the case of tasks containing more than one 

biomolecular species.
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The temporal scale, which begins at milliseconds, can represent most of the native 

biomolecular activities. Although certain enzymes perform their activities in the order 

of microseconds, and molecular binding activities take place in the order of 

nanoseconds their interactions are treated as instantaneous. Since the model is using a 

bottom-up approach, only a single timescale is used to represent discrete biomolecular 

activities. However, a time step can be represented at any timescale suited to the 

analysis study. Hence, usually a time step represents one millisecond and the 

simulations run from several seconds to minutes depending on the scenario. The 

spatial scale is represented on a nanometre scale, where each grid cell represents 200 

nanometres and the physical interaction space comprises 2 x 2 x 2  micrometer3(8 

Hm3).

5.2.3 Process Overview and Scheduling

The model proceeds in millisecond time steps. Processes scheduled are based on 

model scenarios (simulation experiments). Within each time step, two processes are 

executed in the following order: biomolecular movement, biomolecular interactions 

(interactions between native biomolecules, and between native biomolecules and 

resource molecules). Processes such as biomolecular degradation and reproductive 

errors are also executed depending on the scenario. Since every type of interaction has 

a specific time duration (event interval), the biomolecular event intervals are 

scheduled using a dynamic event scheduler. The events are scheduled 

asynchronously, since pre-conditions for a particular event must be satisfied before 

the event can commence. Events are terminated when post-conditions are satisfied for 

a particular event. The initiation of events and the spacetime intervals among events 

are modelled stochastically. Between each time step, a diffusion of resources occurs 

and the abundance of resources are updated synchronously by the scheduler for every 

grid cell.

5.2.4 Design Concepts

5.2.4.1 Emergence

Analysing emergent behaviour of a cell, which occurs as a result of biomolecular 

activities, is one of the objectives of this study. The lowest abstraction level is
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represented by biomolecules, and the highest abstraction level is represented by the 

organisation of a cell. The emergent dynamics occur, due to uncertain nature of the 

cellular environment, as explained in section 2.4. Global level analysis of emergent 

behaviour is conducted using a network topology and a multi-objective topology. The 

network topology, which provides a sequential representation of the emergent 

dynamics, is used to trace the flow or propagation of resources, energy and signals 

within a cell. Biochemical pathways will emerge as a result of these fluxes. The 

multi-objective topology, which provides a concurrent representation of emergent 

dynamics, is used to capture the performances of a native biomolecular species and 

their collaborations, which provide vital solutions to higher level objectives/tasks of a 

cell. The rules that define the goals of biomolecules, aim to produce generalisable 

outcomes for the heterogeneous swarm. Although deliberately designing agents with 

global awareness may sound interesting and satisfying, it will not lead to generation 

of emergent outcomes of intracellular organisational behaviour. The logic for reactive 

agents is much simpler than that of intelligent agents.

5.2.4.2 Adaptation

Adaptations occur at individual and organisational levels in a cell. Instability due to 

variations, is the primary contributor to adaptations in biological systems. Variations 

are caused by alterations in biomolecular activity. At the individual level, variations 

occur at evolutionary timescales, where the sources (genetic) of native biomolecules 

are altered, causing the rules of behaviour to change. These rules govern the state, 

transition of states and state specific behaviour. However, at the physiological 

timescales, the rules do not change, rather execution of the rules changes the states of 

native biomolecules via transitions, which trigger state specific behaviour. These are 

simply reactive behaviour, having predictable state specific responses to the 

dynamically changing environment. However, when and where these rules are 

executed by biomolecules depends on the stimulations they receive from their local 

environment. Hence by influencing a particular biomolecular response via intrinsic 

(programmed stimuli) and extrinsic stimulations, a biological cell is able to adapt to a 

dynamically changing environment at the physiological timescale. At organisational 

level, adaptations occur at physiological, developmental and evolutionary timescales. 

While at physiological and developmental timescales, the state transitions and state 

specific behaviour of native biomolecules contribute to organisational adaptation, at



Swarm Based Cell Modelling and Simulation Environment

evolutionary timescales changes in individual rules contribute to organisational 

adaptation. The propagation of phases of a cell cycle, are periodic adaptations, which 

are guided mainly by intrinsic stimulations. The conformational changes of 

biomolecules that occur by sensing the environment are an individual level adaptation 

to maintain molecular stability.

5.2.4.3 Objectives

A biological cell is organised into objectives/tasks, which range from basic to 

complex global level tasks of a cell. The tasks at an individual level of native 

biomolecules are basically to perform intended activities, which are basic and 

independent. These tasks are common to individuals from a particular biomolecular 

species, and include simple biochemical transformations and binding activities. 

However the collective performance of individuals from distinct biomolecular species 

will determine the impact on a cell. This is usually the sum of the activities of a 

particular biomolecular species in a stipulated time frame. The fundamental unit of 

objective solution is a cooperative task, which consists of individuals representing one 

or more native biomolecular species cooperating for a common objective/task. When 

more than one biomolecular species is involved in the formation of a task, mutual 

dependency will exist among the biomolecular species. Hence there is a gradual 

transition from objectives being independent at the molecular level to mutual 

dependency of objectives at the cellular level. The mutual dependency of higher 

objectives is due to the concurrent effects of various lower level tasks on higher level 

objectives. The multi-dimensional solution space is represented by objectives, which 

are organised into a hierarchy, where each level is semantically different from other 

levels. Fitness is a measure of the performance of these objectives. At the molecular 

level performances are measured by the level of activities of native biomolecular 

species. The effect on the multi-dimensional problem space is determined by 

quantifying the performance of these objectives.

5.2.4.4 Learning

Native biomolecules are unable to change their adaptive traits (rules) over time by 

taking account of their experience, since they are simple reactive entities with no 

known cognitive ability. However their adaptive traits are modified as a result of 

random alterations in the genome and appropriate modifications will persist. Learning
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is an organisational level property of a cell and is facilitated by various regulatory 

activities of native biomolecules. It is a process of reconfiguring by searching for 

when, where and what biomolecular activities should occur, based on adaptive 

requirements. It is a compromise between qualitative features of native biomolecules 

(what activities can be done under what conditions) and quantitative features of their 

regulation in a cell (when the activities occur) and multi-cellular structures (where the 

activities occur). However, the process of learning does not occur at physiological 

timescales.

5.2.4.5 Prediction

Predictability refers to the proactive behaviour of a biological cell, where it is more 

likely to anticipate and deliver timely responses to perturbations. However this 

behaviour is most prominent in evolutionary timescale, where regulation of 

intracellular activities is gradually shifted to a point of intended activity. This is a 

reconfiguration process, and acceptable performances can be observed within the 

bounds of their original configuration. Cells have developed rhythmic behaviour 

(oscillations) in regulating biomolecular activities between stimulations and 

responses. The frequency of occurrence of these stimulation and responses will 

reinforce the rhythms.

5.2.4.6 Sensing

A native biomolecule is able to sense itself and its immediate environment. Hence it is 

assumed to know its own location and state, so that it applies its state specific 

behaviour. The local environment of a molecule is its neighbouring molecules, 

located within a grid cell.

5.2.4.7 Interactions

Redundant interactions of specialised biomolecules will give rise to extremely 

concurrent biomolecular activities, distributed in time and space within a cellular 

environment. Direct interactions occur when native biomolecules come into physical 

contact with each other. With enzymes these interactions will produce catalytic 

activities and with signalling molecules, these interactions produce binding activities. 

Signalling activities contribute to feedback among biomolecules. Indirect interactions 

occur, when enzymes use shared environment to interact with mediating metabolites.
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Interactions in the form of influences between tasks/objectives occur via competition 

and cooperation. Cooperating biomolecular species will have beneficiary effects on 

each other, whereas competing biomolecular species will have inhibitory effects on 

each other.

5.2.4.8 Stochasticity

Stochasticity of intracellular activities manifests in many forms. These include 

fluctuation in abundance and distribution of biomolecules, and in activities and their 

effects. These factors contribute to cellular dynamics at the physiological timescale. 

Fluctuations in terms of where, when and what biomolecular activities occur, is 

regulated by various feedback mechanisms. Feedback can be specific to a species of 

biomolecules, (via direct physical contact as in activation and inactivation), or to a 

group of biomolecular species, or in general to all biomolecular species (saturation). 

Stochasticity caused by an uneven distribution of biomolecules in space and time, is 

modelled as biomolecular mobility using Brownian dynamics. Although the duration 

of biomolecular activities can fluctuate at the evolutionary timescale due to alterations 

in their rules, they remain relatively constant at the physiological timescale. Hence, 

while duration of activities remains constant, the intervals amongst activities are 

modelled stochastically. The presence of neighbouring molecules will have an 

important effect on free energy levels of the reactants, products and intermediate 

states. The total density of non-water molecules in a cell is very high and can be 

referred to as a crowded environment. The effects due to macromolecular crowding 

may alter both the reaction equilibrium and reaction rates in a non-specific way. 

Hence, native biomolecules of the same species can have heterogeneous behaviour 

due to altered states.

5.2.4.9 Collectives

Collectives can be members from the same biomolecular species or different 

biomolecular species collaborating for a common objective/task. The type of mutual 

dependency (competition or cooperation) amongst objectives depends on the 

performance interaction between tasks. While positive feedback facilitates 

cooperation, negative feedback controls competition. A cooperative module is defined 

as a group of one or more species of a functional product, collaborating for a common 

objective/task. At the cellular level mutual dependency of biomolecules facilitates



Swarm Based Cell Modelling and Simulation Environment

cooperation, and controls competition to form an organisational closure. Hence, 

positive feedbacks coupled to negative feedbacks facilitate in stabilising the cellular 

organisation. The mutual dependency of biomolecular activities causes concurrent 

effects on higher objectives. This enables capture of indirect (invisible) interactions, 

which occur due to causally linked activities.

5.2.4.10 Observation

The dependent variables represent data points for the simulation, which are used for 

analysis of the experimental results. These variables represent the abundance of 

biomolecules, the levels of native biomolecular activities, simulation time, free energy 

levels, and states of the chemical systems. To analyse intracellular activities, the 

aggregate variables are abstracted into a network topology and a multi-objective 

topology to provide a sequential and concurrent view of the intracellular dynamics, 

respectively. The population level variables, such as abundance of metabolites, are 

analysed using dynamic graphs and abstracted using a network topology for 

qualitative visualisation of flux directions. The level of activities is used to measure 

performances of tasks/objectives and is abstracted using multi-objective topology. In 

the multi-objective topology, biomolecular activities are abstracted based on 

competition and cooperation of native biomolecules. The performances of these tasks 

are analysed, based on the ensemble activities that vary with time and are based on 

comparing relative performances among tasks, see Figure 5.2.

Perform ance Analysis

Q.
Task 3

8c
CD
E

Task 2 Q.
Time

Task 1
Tasks

Time

Figure 5.2: Analysis o f  performances
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The platform accommodates multi-scale visualisation and semantic zooming to 

analyse intracellular activities between levels of molecular resolution and cellular 

resolution.

5.2.5 Initialisation

Although various species of native biomolecules have distinct locations in the cellular 

environment, due to alack of molecular distribution information, a significantly small 

proportion of molecular species are randomly distributed in the intracellular 

environment. Further to represent various cell types (humans have over 200 different 

cell types) a cell model must be able to initialize with an appropriate molecular 

population to represent differentiated cell types.

5.2.6 Input Data

The model does not use input data to represent time varying processes.

5.2.7 Sub-models

The sub-models specify some of the universal constraints, contributing to internal 

organisation of a cell, such as biomolecular mobility, biomolecular interaction, 

biomolecular degradation and error frequencies in transcription and translation.

5.2.7.1 Biomolecular mobility

Physical processes that affect mobility and spatial distribution of native biomolecules 

in a cell determine, where and when these biomolecules are brought into contact with 

each other in the intracellular environment (Dogterom 2001).

Enzymes find their substrate through diffusion, confinement and complex formation. 

The delivery of enzymes to their substrates is mostly mediated by diffusion. The 

advantage of this is that during their diffusive journey, an active enzyme can 

encounter and interact with multiple substrates, which give rise to the possibility of 

signal amplification. For travelling short distances, diffusion is an efficient means of 

transportation. The diffusion constant of proteins in the cytosol is about 10 times 

lower than in pure water. However, the diffusion constant for small ions in a cell is 

virtually the same as pure water (Dogterom 2001). Table 5.2 provides some diffusion 

constants for some metabolites, ions and macromolecules.
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Table 5.2: Diffusion Coefficients in aqueous solutions (Source (Nobel 2009))

Small solutes in water

Alanine 0.92 x 10'9 920

Citrate 0.66 x 10'9 660

Glucose 0.67 x 10'9 670
Glycine 1.1 x 10‘9 1100

Sucrose 0.52 x 10'9 520

Ca2+ (with Cl') 1.2 x 10‘9 1200

K+ (with Cl') 1.9 x 10‘9 1900

Na+ (with CT) 1.5 x 10‘9 1500

c o 2 1.7 x 10'9 1700

Globular proteins in water 

Molecular mass (kDa)

15 1 x 10'10 100

1000 1 x 10‘" 10

A random walk in Brownian motion is a sequence of steps of constant size 8 in a 

space at regular time intervals x, where each subsequent step is chosen to move in a 

new randomly chosen direction. The Einstein equation shows that the average 

distance Ar that a molecule performing a random walk travels from its starting point, 

increases with the square root of time, and depends on the dimensionality of diffusion 

(see Equations 5.1, 5.2 and 5.3).

For three dimensional diffusion

A r=  yf(6Dt) Equation 5.1

For two dimensional diffusion

Ar = ^/(4Dt) Equation 5.2

For one dimensional diffusion
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Ar = yj(2Dt) Equation 5.3

Where D = 8 x is the diffusion coefficient

Appendix F:3 and F:4 show the relationship between diffusion constant vs distance 

travelled for particular time steps and time required to travel particular distances. For 

a typical protein of the size of a few nanometres, it will take about 0.03 s to travel 

1 pm in three dimensional diffusion space, assuming a diffusion constant of 5 pm2 s-1. 

Table 5.3 and Table 5.4 list distances travelled for particular timeframes and the time 

required travelling particular distances, respectively in three dimensional diffusion 

space.

Table 5.3: Distance travelled during various time steps based on diffusion constant

Typical size protein

5 pm2 s_1 5.5 pm 0.17 pm 0.0055 pm

5500 nm 170 nm 5.5 nm

Table 5.4: Time required travelling a particular distance based on diffusion constant

0.1 pm/100 nm 0.3 ms 0.025 ms

0.2 pm/200 nm 1.3 ms 0.10 ms

1 pm 0.03s/30 ms 2.5 ms

1 mm 9h 15 minutes 42 minutes

Mobility/diffusion is normalised between the mobility of individual native 

biomolecules and the population based diffusion used by resources, based on Table

5.4. The native biomolecules are scheduled to move every 1.3 ms and resources are 

scheduled to diffuse every 0.1 ms since every grid cell is divided into 200 nm3.
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S.2.7.2 Biomolecular interactions

Native biomolecular interactions are driven by a favourable change in free energy, 

which occurs when molecules interact with their substrates. Biomolecular interactions 

in the cellular environment are facilitated by depletion forces, random walk, directed 

transport, and confinement of molecules (co-localisation) to domains in the membrane 

or other structures. Every native biomolecular species’ interactions are different. 

Hence the pre- and post-conditions for these interactions will also differ. 

Biomolecular interactions occur between native biomolecules in signalling and 

regulatory activities, and between native biomolecules and resource molecules in 

metabolic activities. Every type of interaction has a specific time duration (event 

interval) and is triggered at different times. The dynamic event scheduler is used to 

model initiation and the termination of various biomolecular events. The events are 

initiated, when pre-conditions for particular events are satisfied and when these events 

are terminated the post-conditions are satisfied for respective events.

In metabolic activities pre-conditions are determined by free energy state of a reaction 

(see Equation 5.4).

AG = AG° + R T ln ^ \  Equation 5.4
[ A ]

Where AG° = G ° b  -  G ° a  is the difference in standard free energy between molecules 

A and B, R= NAke, where R is the universal gas constant and, ke is Boltzmann's 

constant, and [A] and [B] are the concentrations of A and B. At equilibrium, 

when AG is zero, the difference in standard free energy between molecules A and B is 

exactly compensated by their concentration difference (Dogterom 2001).

The standard AGr (reaction) can be calculated from the standard AGf (formation) of 

reactants and products or from empirically measured values. The enzymes are able to 

sense the free energy values of their respective reactions and decide to proceed with 

the reactions if AGr is negative. Although the value of AGr determines whether a 

reaction can occur spontaneously, it does not make any predictions about the speed of 

the reaction. The reaction rate is controlled by the activation energy. It determines the 

number of successful associations that overcome the activation barrier.
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Table 5.5: Maximum turnover number and the calculated turnover cycle o f some enzymes

(Source (Stryer 1988))

Carbonic anhydrase 600,000 1.7 ps

3-ketosteroid isomerase 280,000 3.6 ps

Acetylcholinesterase 25,000 40 ps

Penicillnase 2,000 500 ps

Lactate dehydrogenase 1,000 1 ms

Chymotrypsin 100 10 ms

DNA polymerase I 15 66.7 ms

Tryptophan synthetase 2 500 ms

Lysozyme 0.5 2 s

The turnover cycle of enzymes, shown in Table 5.5, represents processing time of 

enzymes. The enzymatic activities are recorded, when processing is complete. The 

inputs for the process, are the reactants and the output will be the products, including 

by-products. The processing time is represented as event intervals.

5.2.7.3 Biomolecular Degradation

Similar to radioactive decay, biomolecular degradation is a statistical process, which 

depends upon the instability of particular biomolecular species. The predictions of 

biomolecular degradation can be stated in terms of the half-life, the degradation 

constant or the average lifetime. The relationship between these quantities is given in 

Equation 5.5.

T1/2 =  lJf-  «  = 0.693t Equation 5.5

Where T 1 /2 is the half-life, X is the degradation constant and x is the average/mean 

lifetime. The degradation process and the observed half-life dependence of 

ubiquitination can be predicted by assuming that individual biomolecular 

degradations are purely random events. If there are N biomolecules at some time t, 

then the number AN, which would degrade in any given time interval At, would be 

proportional to N. The Equation 5.6 provides the relationship between these factors.
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AN =-ANAt Equation 5.6

Where X is a constant of proportionality, which is also called the degradation constant. 

Table 5.6 lists the half-life, average lifetime and degradation constants for proteins 

containing various amino terminal residues, which were calculated using Equation

5.5.

Table 5.6: Half-life, average lifetime and degradation constants for proteins containing

various amino-terminal residues.

Stabilizing

Methionine

Glycine

Alanine >1200 1731.6 0.0005775 9.625 x lO'6

Serine

Threonine

Valine

Destabilizing

Isoleucine

Glutamate -30 43.3 0.0231 3.85 x 10'4

Tyrosin

Glutamine -10 14.43 0.0693 1.12 x 10'3

Proline -7 10.1 0.099 1.65 x 10°

Highly destabilizing

Leucine

Phenylalanine

Aspartate -3 4.33 0.231 3.85 x 10'3

Lysin

Arginine -2 2.89 0.3465 5.78 x 10‘3
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Biomolecular degradation can be implemented by imposing the process using 

probabilities derived from the degradation constant, or by using the average life time 

for degradation to emerge from the process.

Probability approach: the degradation constant (constant of proportionality) of the 

respective native biomolecules is assigned during initialisation. These constants will 

depend on the resolution of the time steps and they are inherently normalised. The 

process of degradation occurs during every time step, where random probabilities 

generated by every biomolecule are compared with its degradation constant. If the 

condition is satisfied the biomolecule is removed from the environment.

Average life time approach: the average life of a native biomolecular species is 

assigned and the age of every native biomolecule is randomly determined during 

initialisation. From this data the remaining life time is calculated and biomolecules 

are removed from the environment, when they reach their life time. The process of 

degradation can be scheduled based on the remaining life time, or by incrementing 

age and checking whether the biomolecule has reached its life time during every time 

step. The increment depends on the resolution of the time step (minutes or seconds).

5.2.7.4 Error Frequencies

The probability p of forming a protein with no errors depends on n. This is shown in 

Equation 5.7.

p = ( l - £ )n Equation 5.7

Where p is probability of forming a protein with no errors, n is number of amino acid 

residue, and e is frequency of inserting a wrong amino acid, and it is known to be KT4 

per amino acid residue. The error frequency of RNA biosynthesis is about 10'4 to 10’5 

per nucleotide residue. The error frequency of DNA biosynthesis is about 10‘9 per 

nucleotide residue. Table 5.7 lists probabilities of forming a protein with no errors, 

which depends on the lengths of polypeptide chain.

During protein synthesis probabilities are calculated based on length of the mRNA, 

and the decision to produce an error free protein is made based on a randomly 

generated number.
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Table 5.7: Probabilities o f forming a protein o f various lengths with no errors

100 0.99

200 0.98

300 0 .97

400 0 .96

500 0.95

600 0 .94

700 0.93

800 0.92

900 0.91

1000 0.90

5.3 Concluding Remarks

This chapter has contributed to the specification of the Collective Intelligence 

framework utilised in the cell modelling and simulation environment. The purpose of 

this chapter is to describe the model’s focus, resolution and complexity. The model’s 

scope is to study collective behaviour of biomolecules constituting a biological cell. 

The model utilises a bottom-up approach, where lowest and highest levels of model 

representation are at molecular and cellular resolution, respectively. The processes 

scheduled are based on model scenarios, which can include various combinations of 

sub-models. The design concepts of the model represent emergence, adaptability, 

objectives, learning, prediction, sensing, interactions, stochasticity, collectives and 

observation. These design concepts facilitate integration of an agent based formalism 

into a wider framework of Collective Intelligence. The sub-models described in this 

chapter represent some of the universal constraints, contributing to the internal 

organisation of a cell, such as biomolecular mobility, biomolecular interaction, 

biomolecular degradation and error frequencies in transcription and translation. The 

model specification has provided the required functionalities to implement a 

SwarmCell model and conduct analysis studies from molecules to cell using 

simulation experiments.



Chapter 6

Swarm Based Cell Modelling and Simulation

Environment

“The model is not an oracle, it is an automation o f your understanding. ”

John Heath

6.1 Overview

This chapter has contributed to implementation of the model specification. It is used 

to setup and run various simulation experiments based on specific scenarios. The 

model is implemented using Repast Simphony (Repast S), an agent based discrete 

event simulation toolkit. Section 6.2 describes the general features of the Repast S 

toolkit, which is followed by the description of specific features that are used to 

implement the model specification. Section 6.3 describes the structure of the 

SwarmCell simulation environment, which was the outcome of the transformation 

from model specification to implementation, and depends on the toolkit used. The 

general implementation of a SwarmCell simulation environment, consists of templates 

for creating various instances of functional products and the physical environment 

which can represent the metabolites, ions and cofactors. Section 6.4 describes the 

master context, which contains all components of the model. Section 6.5 describes 

sub-contexts, which contain the physical space, the pathway layer and the cell layer. 

Section 6.6 describes implementation of functional products. Section 6.7 describes 

the shared environment in detail. Section 6.8 describes the model’s user interface. 

Observation components were implemented to analyse activities of the functional 

products and determine abundance of metabolites.
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6.2 Repast Simphony Simulation Package

The model is implemented using Repast Simphony version 1.2, an agent-based 

modelling and simulation toolkit (North 2006). Repast S is organised into Contexts, 

Projections and Agents (Howe, Collier et al. 2006). The Context is a form of “proto­

space”, which provides a container that can maintain a localised state for agents. A 

context’s state can maintain multiple interaction spaces called Projections. Projections 

are designed, so that they can be used to represent a wide range of abstract spaces, 

from graphs to grids to realistic geographic spaces. Importantly, projections and 

agents or individuals are independent of one another. Agents can be agnostic to the 

type of projection in which they are interacting, and projections can be agnostic to the 

type of agents, whose relationships they maintain. Finally, the context provides a 

logical location to maintain agent behaviours that is dependent on localised agent 

interactions and the environment. The model is developed by creating the main 

Context and the members of the Context can be Agents, sub-Contexts and Projections. 

There are many types of Projections in Repast S, consisting of continuous space, grid, 

network, geography and Scalar fields. Figure 6.1 shows the relevant components 

utilised for the implementation of the SwarmCell environment.

Scalar fields 
as Resources/

Continuous and Grid 
Projections as 

Physical Space
Agents as Native

Figure 6.1: Repast S components utilised for the SwarmCell model.

6.3 Model Implementation

The model is implemented using Eclipse and libraries of Repast S version 1.2. The 

structure of the SwarmCell simulation environment, which was the outcome of the
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transformation from model specification to implementation, is based on Repast S. 

Table 6.1 shows the relationship between the components described in the model 

specification, the components of Repast S utilised, and representation of those 

components in the implemented cell model. The general implementation of a 

SwarmCell simulation environment consists of templates for creating various 

instances of biomolecules and their environmental resources. In addition the 

observation components are implemented to analyse activities of native biomolecules 

and abundance of native and foreign biomolecules. Dynamic graphing is utilised for 

quantitative analysis of intracellular organisational behaviour. The activities of 

biomolecules are abstracted into reaction dynamics to observe changes in 

biomolecular abundance, and performance dynamics to observe changes in 

biomolecular performances. Qualitative visualisation is performed by representing 

reaction dynamics in a network topology, and the performance dynamics in a multi­

objective topology.

Table 6.1: Relationship between components described in the model specification, Repast S

and model implementation

Cell Model Context SwarmCell core

Biological cell Context Cell Layer

Native Biomolecules Agents Instances of Proto Agents

Resources (Metabolites 

and ions)

Projection: Scalar Field Environment

Native Biomolecules’ 

confinement

Context Physical/interaction Space

Native Biomolecules’ 

Locality

Projections: Continuous 

space and Grid space

Euclidian space

Native Biomolecular 

Interactions

Projection: Network and 

Graphs

Pathway Layer

Observation Graphs Visualisation of output
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6.4 The M aster Context

The master Context initialises the cell model by creating sub-contexts. It builds and 

returns a context based on the information provided in the context builder 

(‘CellModelContexf ). Building a context consists of filling it with agents, adding 

projections and creating attributes to pass parameters during initialisation. When the 

master context is executed, the system will provide a created context based on 

information given in the sub-contexts, which is specified in Section 6.5. When called 

for sub-contexts, each sub-context that was added when the master context was built 

will be executed to create the sub-context. The “model.score” file (see Figure 6.3) is 

used to create the user interface for the cell model. The structure of the model is 

shown in Figure 6.2.

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Grid SpaceProto Agent

Euclidean Space 
(Continuous 

space and Grid)

Pathway Layer

Proto Agents 
(native  

biomolecules)

Environment 
(Scalar Field)

Network
Projection

Physical Layer

Proto Agent

Cell Layer

SwarmCell

Figure 6.2: Structure o f  the SwarmCell environment.
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modnl.frcore

platform: A'
mCell

model.storw

t platfbr m: Aesour ce/Swar mCe I I/s war mcell. rs/model. score

SI *■ Call Layer 
9  a- Cell Agent 
a  *• Call O’id 

Attrtoutes
• Styles

mt *  Pathway Layer 
a  ♦ Pathway Agent 

Attrbutes
•  Styles

B *  Physical Layer 
•  ♦ Gene Agent 
a ♦  Transact Agent 
tt ♦ ProtBm Agent 
a  Metabolite Agent 
a ♦ Mrrva 
a  ♦  Rbosome 
a  ♦  Rma 
a -4- Aconitase 
a ♦  ATPSynthasa 
a *> CitrateSynthetase 
a  ♦  Fumarase 
a  <• IsocltrateOehycfrogenase 
a ♦ KetogtutarateOehydrogenase

a 4- SuccnateDehydrogenase 
a  4 SuccrrylCoASynthatase 
a ■* Molecule Space 
a ♦  Call Locality Grid 

XU Energy Space 
m  ADP Space 
m  Citrate Space 
OS IsocitratB Space 
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Figure 6.3: Templates for native biomolecules and resources as present in model.score File.

6.5 T he Sub-C ontexts

6.5.1 Physical Layer

The Physical layer initialises the physical space, which consists of native 

biomolecules, physical space and environments. Figure 6.4 shows the physical space 

during execution.

a  ♦  MalateOehydrogenase
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Figure 6.4: Physical Space during execution.

6.5.2 Pathway Layer

The Pathway layer initialises the network projection, which captures the population 

dynamics of interacting biomolecular species and provides a network representation 

of the flux directions. Figure 6.5 shows the Pathway layer during execution.

Figure 6.5: Pathway Layer during execution.

6.5.3 Cell Layer

The Cell layer initialises the observation component, which captures the global 

chemical phases of biomolecular interactions, such as the chemical equilibrium and 

thermodynamic phase which is utilised to generate the dynamic graphs during
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simulation. It also controls the diffusion of scalar fields representing metabolites. 

Figure 6.6 shows the Cell layer during execution.

Figure 6.6: Cell Layer during execution.

6.6 Native Biom olecules

Since every native biomolecular species has a unique behaviour, templates are created 

for each participating native biomolecular species. The variables are represented as 

attributes and the behaviours as methods. The common attributes and methods are 

abstracted into higher classes. The highest class for native biomolecules is 

“MoleculeAgent” which has a direction, speed for mobility and movement.

6.7 Environm ents

Each foreign biomolecular species (metabolites) is represented in a three dimensional 

Scalar Field Projection. These projections are subdivided into grid cells, which hold a 

scalar value representing abundance of metabolites in that grid cell. Figure 6.7 shows 

scalar field space during execution.
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Figure 6.7: Scalar field space during execution.

6.7.1 Observations

To observe emergent phenomena various graphs and visualisation modules were 

implemented. The pathway layer and the cell layer are used to visualise biomolecular 

activities based on network topology. The cell layer represents the orthogonal states 

of a cell by observing the performance of objectives. The pathway layer observes bio­

molecular activities, flux directions, magnitude and bio-molecular population changes 

in the core of SwarmCell, which is represented by the physical layer.

The observation agent captures values of all required dependent variables of the 

simulation. First the dependent variables are defined and instructions to capture the 

values are given. These values will be used to produce the required dynamic graphs of 

the simulation.

6.8 M odel Interface

The SwarmCell interface is designed to conduct simulation experiments. It consists of 

two main sections, namely the experimental input and output for setting up simulation 

experiments. The experimental input section sets up experimental scenarios, by 

providing values for independent and other variables, setting up a user panel and 

setting up experimental observations for dependent variables. Observations include 

defining the types of dynamic charts and visualising components for experimental 

outputs. The experimental output section displays the defined visualising components
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for the simulation output. Figures Figure 6.8 and Figure 6.9 show the model interface 
during execution.

■  SwermCell R rpeit Sim phony
f m  f j /  lone vwm

t tm M l u u u  J  \ n*CM«aii

ISw irm C ell R e p n l Simphony
F *  Ba> lo o k  v m k

i ■ w t u w u t s  * *

C
M B j

r o c s m  2M i

Equilibrium  of Reaction

-  .* *

,n ■ ■

M a C F to t f n  M w  l « u .  «iu*elt»Caicvoatai TC*Cyd« Cut. S « 1 M I
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Figure 6.8: SwarmCell Interface.
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Scenario Tree

7

'

SwarmCell Model 
. j  SwarmCell 

|A  Charts 
9  «Ljj Data Loaders

*  CellModelContext 
®  Data Sets

Displays 
A  Miscellaneous Actions 

9  Model Initialization
*  Schedule Initialization 
A  Watcher Initialization

M  Out putters 
^  Random Streams 
O  User Specified Actions 

9  Cell Layer
Charts 

«  Data Loaders 
* Data Sets 

^  Displays
*  Miscellaneous Actions
*  Model Initialization 
GJ Outputters
*  Random Streams 

9  Pathway Layer
9  i** Charts

Delta G of Reaction 
A  Equilibrium of Reaction
*  Metabolite Concentration 

«  Data Loaders
9  Data Sets

*  Delta G 
«  Metabolite

H  Displays
«  Miscellaneous Actions
*  Model Initialization 

Outputters
«  Random Streams 

9  v j  Physical Layer 
9  ftS  Charts

«  Defca G of Reaction 
A  Equilibrium

*  Data Loaders 
9 ®  Data Sets

n  Average Delta G

- M

*  TCA Cycle 
A  Grid 

A  Miscellaneous Actions 
n  Model Initialization 
HI Outputters 
A Random Streams

Run Options

Schedule Options 

Pause At: '0

Stop At: |0

■

Schedule Tick Delay (milliseconds x 25)

10 12
I

14
I * I 1 I 

16 18 20

SparkSne Options 

Sparkline Points: 50

0  Sparklines are Drawn as Line Graphs

Parameter

lo o  Is

20

20

20

Smulation Parameters

Cell Grid Height:

Cell Grid Width:

Cell Locality Grid X Extent:

Ce# Locality Grid Y Extent:

Cell Locality Grid Z Extent: 

Default Random Seed: 

Molecule Space X Extent: 20 

Molecule Space Y Extent:

20

20

1,632,626,182

20

Molecule Space Z Extent: 20 

initial conAcetylCoA:

initial conCitrate: 100

initial conCoA: 90 

initial conOxaloacetate: 10

Figure 6.9: Experim ental setup.
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6.9 Model Execution

The agent based discrete event simulator library, Repast Simphony, is used to model 

the biomolecular events with specific duration and spacetime intervals between 

events. The constraints associated with events are thermodynamic constraints, 

especially free energy constraints. The molecular events have varying energy 

requirements. Chemical kinetic data such as rate constants for kcat, transcription and 

translation were transformed into compatible molecular level information. While 

biomolecular event intervals are scheduled, using a dynamic event scheduler, the 

spacetime intervals between events are modelled stochastically. Since metabolic 

intermediates appear to be substrates for various biochemical reactions, their 

abundance will influence the free energy levels (AG) of those reactions, which in turn 

determine the spontaneity o f reactions. Each substrate is represented as a distinct three 

dimensional scalar space from which various enzymes interact with the appropriate 

substrate spaces by consuming or producing relevant substrates. This causes 

disturbances, as gradients are imposed by the dissipation of substrates. This 

dynamically changing and decentralized mechanism of information flow in the 

cellular environment is used as a quantitative stigmergy for determination of 

enzymatic activities and interaction between different enzymes within a module. 

Enzymes use a combination o f these common substrate environments as feedbacks for 

their future activities.

6.10 Concluding Remarks

This chapter has described the implementation o f the model specification, which is 

used to setup and run various simulation experiments based on Collective Intelligence 

scenarios. The purpose of the implementation is to simulate the collective behaviour 

of biomolecules constituting a biological cell. The agents have been used as an 

ingredient for the simulation of Collective Intelligence, which is facilitated by Repast 

Simphony (Repast S), an agent based discrete event simulation toolkit. The 

architecture of the SwarmCell simulation environment facilitates multi-scale 

modelling from the level o f molecular resolution to cellular resolution, which is 

fundamental for the study o f Collective Intelligence phenomena. The ability o f the 

architecture to represent the shared environment is also beneficial as it can model
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indirect interactions amongst the biomolecules, which is a feature of Collective 

Intelligence. Moreover, multi-scale visualization and semantic zooming are two of 

the important functionalities represented by this architecture, which facilitates the 

analysis o f Collective Intelligence phenomena in biological cells.
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Chapter 7

Model Evaluation by Simulating Biological

Phenomena

“Nothing in biology makes sense, except in the light o f  evolution. ”

T. G. Dobzhansky

7.1 Overview

The aim of this chapter is to evaluate the Collective Intelligence framework by 
conducting a series of simulation experiments. Experiments are based on modelling 
the physical and biological constraints involved in intracellular organisational 
behaviour, which affect adaptive traits. The biomolecular organisational behaviour is 
analysed by quantifying cellular functions in terms of measuring performances of 
objectives/tasks as in Section 7.5. Various scenarios that occur within the 
mitochondrial environment are simulated. In Section 7.4, an enzyme catalysed 
reaction of the Tricarboxylic Acid (TCA) cycle is modelled to demonstrate how 
degeneracy in a biochemical system provides the flexibility to adapt, but recognises 
the contributions and compensatory adjustments made by different factors in arriving 
at a solution more complex. Further the thermodynamic requirements and the 
complex dependencies among metabolites act as constraints on attaining the chemical 
equilibrium and steady state. In Section 7.5 the multi-objective topology is 
represented by modelling two competing tasks in metabolic activities to analyse the 
effects of different factors, such as abundance and efficiency of enzymes on the 
performances of competing tasks. Based on the results of experiments, the validity of 
the simulation experiment and the validity of the framework are demonstrated.
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7.2 The Verification of Simulation Experiments

The simulation experiments were conducted in a personal computer system with a 
configuration of,

■ Operating system: Windows XP Professional SP3

■ Processor: Intel Pentium® D 3.00 GHz

■ RAM: 1 GB

■ Graphics Processor: Intel® 82945G Express chipset onboard graphics

The General features of the SwarmCell simulation environment were verified during 
its development phase. The sub-models which consist of biomolecular degradation, 
biomolecular mobility, biomolecular interaction and biomolecular reproductive errors 
were implemented and verified before the conduct of simulation experiments. Both 
static and dynamic testing procedures were used during the implementation of sub­
models. For static testing, code reviews, inspection and walkthroughs were utilised. 
For dynamic testing, test cases were used to verify the sub-models, which consisted of 
testing with hypothetical input parameters and comparing the output with expected 

output.

7.3 Simulating Biomolecular Degradation

This simulation tests one of the constraints involved in the self-organisation process 
specified in Section 5.2.7.3, which describes the degradation process based on 
average life time and probability. The two approaches are implemented and analysed 

to compare their accuracy.

7.3.1 Experiment Hypothesis

Biomolecular degradation can be represented at the molecular resolution level by 

using a probability based approach or average age approach to emulate the 

elimination o f  obsolete information in Collective intelligence systems such as a 

biological cell.
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Self-awareness is one of the important properties of Collective intelligence. This is an 
observable feature of biological cells. Cells have adopted a unique strategy to 
continuously realise their objectives/tasks or adaptive requirements by eliminating 
obsolete information and generating new information in their internal organisation. 
The tendency for biomolecular degradation by means of random or regulated process 
and collective autocatalysis, provides an ideal reinforcement adaptive mechanism for 
a cell. The Half-life of functional products is an indication of the duration of their 
contribution in an intracellular environment. This experiment demonstrates two 
possible approaches that can be used to emulate the degradation of information, which 
is one of the contributing factors to self-organisation, occurring in Collective 
Intelligence. The expected result of this experiment would be to the comply with 
empirically observed half-lives of functional products. This can be utilised to study 
other Collective Intelligence phenomena that are a consequence of biomolecular 
degradation.

7.3.2 Experiment Design

This section describes the independent variables and dependent variables that were 

used in the simulation. Since the two approaches are to be compared for accuracy, a 
simple comparative design (Montgomery 2008) was chosen for the experiment. The 
affect of the two approaches on half-life was tested. For each approach, several 
simulation runs were conducted. The two approaches are considered, as the design 
points to model biomolecular degradation and the output of the experiment, the 
population of biomolecules that varies with time. Table 7.1 shows the design 
specification of the experiment with two design points representing the two 

approaches.

Table 7.1: Design specification o f  the experiment showing the design matrix for simulating

biomolecular degradation

Series 1 Average life based

Series 2 Probability based

The experiment consisted of two series and each series consisted of five simulation
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runs due to the stochastic nature of the model. This includes the random distribution 
of age and the probabilistic nature of biomolecular degradation. The termination 
condition for every simulation run was the degradation of the biomolecular population 
by almost 100 percent.

7.3.3 Experiment Setup

The sub-model that was consequential for this scenario is biomolecular degradation. 
This part of the model was verified using the two molecular level approaches for 
biomolecular degradation. The parameters, shown in Table 7.2 remained constant 
throughout the experiment.

Table 7.2: The constants and their values used for simulating biomolecular degradation

Number of grid cells 1000

Size of the simulation space 2 x 2 x 2  pm3

Initial population size 1000

Degradation constant 0.0231 minute'1

Half-life 30 minutes

Average life time 43.3 minutes

Time Steps minutes

7.3.4 Experiment Results

The results of the experiment are tabulated in Appendix E (a). For each series, five 
independent runs were performed and the number of iterations required for the 
population to halve was recorded from the dynamic line graphs (see Figure 7.1).
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Figure 7.1: The results o f the half-life experiment

7.3.5 Result Analysis

The purpose of the experiment was to compare the observed simulation results 
obtained from the average life based approach and the probability based approach, 
with the experimentally obtained results. The expected outcome was that both the 
approaches would comply with the expected results, in that the population should 
halve every 30 minutes. However, while the probability based approach complied 
with this expectation, the average life based approach significantly deviated from the 
expected results (see Figure 7.1). As discussed in Section 5.2.7.3, biomolecular 
degradation is a statistical process, which depends on the instability of the particular 
biomolecular species. The empirically observed half-life does not imply that every 
member of the particular biomolecular species will have the same life span, rather 
half-life represents the average life spans of the respective biomolecular species. In 
reality the absolute life spans of specific biomolecular species will differ, but will 
produce an average life span, which will represent the observed half-life. The problem 
with the average life approach is that the molecules are initialised with random age 
that cannot exceed the average life of the molecules. This implies that all the
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molecules will degrade, when the simulation time reaches the average age of the 
biomolecules, which is what the results indicate. Hence, the molecules will have to be 
added at different times during the simulation to have the expected results. However, 
this will complicate the analysis, because it will be hard to trace the halving of the 
biomolecular population.

7.3.6 Experiment Validation

Biomolecular degradation, which acts as a negative feedback, is a ubiquitous process 
in the intracellular environment. Although proteins and transcripts are vulnerable to 

this process, the transcripts appear to be more stable than the proteins. In proteins, this 
process depends on ubiquitination. Although, there are no explanations for the 
distribution of life span, which produces the observed half-life, different species of 
proteins appear to have distinguishable half-lives based on their amino-terminal 
residue. Of theses, enzymes tend to have the shortest half-lives, while structural 
proteins have longer half-lives. The probability based approach has complied with the 
empirically observed results. However, the rate at which the biomolecules are 
produced, will have to be integrated with the biomolecular degradation process to 
build a realistic model. These two processes will produce an oscillatory behaviour, 
which stabilises the intracellular organisation. This framework can be used to predict 
the in vitro effects of swapping the alpha amino side chains of proteins by analysing 

the system level behaviour of the cell.

7.3.7 Experiment Conclusion

Biomolecular degradation is modelled at an individual level. This experiment has 
demonstrated by representing empirically observed half-life at the individual level by 

using rules, rather than at the population level which utilises rate equations. The result 
of this experiment complies with empirically observed half-lives of functional 
products, which can be utilised to study other Collective Intelligence phenomena that 
are a feature of biomolecular degradation.
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7.4 Simulating Degeneracy in a Biochemical System

The aim of this experiment is to demonstrate how degeneracy in a biochemical system 
provides flexibility to adapt, but adds to the complexity of recognising the 
contributions and compensatory adjustments made by different factors in arriving at a 
solution. Further the thermodynamic requirements and complex dependencies 
amongst metabolites act as constraints on the attainment of a steady state. This is 
equivalent to chemical equilibrium for single reaction systems. The reaction chosen 
for this experiment is the first enzyme catalysed reaction in the TCA cycle. The 
enzyme involved in this reaction is Citrate Synthase. The reaction is:

Citrate Synthase
AcetylCoA  + oxaloaceta te  + H20  ---------------- ► citra te  + Co A + H+

Every metabolite has a standard Gibbs free energy of formation, listed in Table 7.3. 
These values are used to calculate the standard Gibbs free energy of the reaction.

Table 7.3 : Gibbs free energy o f  formation o f  metabolites involved in the reaction 1 o f  the

TCA cycle

Oxaloacetate

Acetyl CoA -60.49 kJ mol'1

Citrate -963.46 kJ mol'1

CoA -7.98 kJ mol'1

h2o -157.28 kJ mol'1

H+ 0.0 kJ mol’1

The ArG° for this reaction is -7.5 kcal morV-31.4 kJ mol"1 where the equation used to 

calculate the local environment’s ArG is:

[Citrate] [CoA] [H+]
AG =  A G2 -  2.303 RT log10 [Acetyl CoA] [Oxaloacetate]

The enzyme is constrained by the thermodynamic property, AG, in the local 
environment. This behaviour is modelled in swarm agents, where the agents, sense the 

AG value in the local environment for a particular reaction and behave accordingly. 
The cellular environment is split into smaller local environments to emulate and
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represent localised populations of metabolite, as opposed to global populations. The 
metabolites are modelled as part of the environment, where the numbers fluctuate in 
the local environment due to reactions and diffusion. These fluctuations will cause 
localised AG values to emerge, which will bias the behaviour of enzymes modelled as 
agents. Measuring the performance of functional products, such as enzymes is crucial 
to modelling the intracellular organisational behaviour. The performance of enzymes 
is a collective property, which depends on two factors, namely the efficiency and 
abundance of the activity. These are compromised by interacting. The efficiency of 
the enzyme is amplified via the redundant counterparts, and this affects the overall 
performance of the intended task of the particular enzyme species.

7.4.1 Experiment Hypothesis

The performance o f  a particular enzyme species can be represented by the enzyme's 

efficiency and abundance o f  enzyme activity

The goal of reaching equilibrium is studied against factors, such as enzyme efficiency 
and abundance, which are perturbed in the experiment. The expected outcome of the 
study is a demonstration of the impact of perturbation (change in factor levels) on the 
goal (time required to attain equilibrium), the sensitivity of particular perturbations on 
attaining the equilibrium and the identification of interaction effects between the 
factors. It is expected that there will be no interactions between factors, since there are 
no influences between the represented factors.

7.4.2 Experiment Design

The independent, dependent and other variables used in the simulation are described 
here. Since there are many factors, which affect the attainment of chemical 
equilibrium, a 2k Factorial design was chosen (Montgomery 2008), where k 
corresponds to the number of factors (independent variables). The main effect of a 

factor is defined to be the change in response produced by a change in the level of the 
factor. To understand how each of the factors affects a response, two levels per factor 
were chosen. For each of the 2k factor level combinations, several simulation runs 
were conducted. The iterations or time steps for a simulation run depend on the time 

taken to attain chemical equilibrium. Table 7.4 lists the factors represented in the
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experiments. The abundance of enzymes represents the effective abundance and the 
value ranges were estimated based on the typical amounts found in a cell, which are 
of the order of nM. The values for the turnover cycle/processing time of wild type and 
mutant enzymes were obtained from the enzyme database BRENDA (Chang A., 
Scheer M. et al. 2009). Higher values for metabolites were chosen relative to the 
enzymes, due to their higher abundance. These are of the orders of nM - pM (Nazaret, 
Heiske et al. 2009). The relationship between biomolecular concentration and the 
molecules present in specific volumes are tabulated in Appendix F.

Table 7.4: Variables and their value ranges used for simulating the biochemical reaction

Independent Variables
The abundance of enzyme Citrate Synthase(EA) 200 400
The turnover cycle of enzyme(ET) 66.7 ms 120.5 ms
The initial phase/state of the chemical -0.756 kcal -0.490 kcal
system(EP) mol'1 mol'1

Abundance of Acetyl CoA 6,000 5,000
Abundance of Citrate 180,000 200,000
Abundance of Oxaloacetate 6,000 5,000
Abundance of CoA 160,000 180,000

Dependent Variables
Phase/State of reaction equilibrium
AG of reaction
Abundance of metabolites
Number of iterations to reach equilibrium

The factors that affect the time required to attain chemical equilibrium, are the 

abundance of the enzyme, the enzyme’s processing time/tumover cycle, and the free 
energy phase of the chemical system. The free energy phase of the chemical system is 
its equilibrium phase/state. It is a phase, describing how far it is from chemical 
equilibrium. Since AG = 0 at chemical equilibrium, the more negative or positive AG 

is, the further away it is from attaining chemical equilibrium. The factors, that affect
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the initial AG phase of the chemical system, are abundance of participating reactants 
and products. Table 7.5 shows the design specification for the experiment with eight 
design points representing the three independent factors.

Table 7.5: Design specification o f  the experiment showing the design matrix for simulating

biochemical reaction

■
Series 1 (+,+»+) High High High
Series 2 (+>+»-) High High Low

Series 3 (+>-»+) High Low High

Series 4 High Low Low

Series 5 (-,+,+) Low High High

Series 6 (-,+*-) Low High Low

Series 7 (->-*+) Low Low High

Series 8 Low Low Low

The experiment consisted of eight series to investigate all possible combinations of 
the factor levels. Each series consisted of five simulation runs due to the stochastic 

nature of the model, such as the random movements of the biomolecules and the 
asynchronous nature of biomolecular activities. The termination condition for every 

simulation run was the phase chemical system reaching equilibrium.

7.4.3 Experiment Setup

The sub-model that was consequential for this scenario is the biomolecular mobility 
and biomolecular interaction. The scenario of the experiment was verified using test 
cases, which consisted of hypothetical input parameters for enzyme abundance, 
turnover cycle and the initial phase of the chemical system, with expected output for 
the time required to reach chemical equilibrium. Table 7.6 shows the constant 

parameter values used throughout this experiment.
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Table 7.6: V ariables and their value ranges used for simulating biochem ical reaction

Number of grid cells 1000

Size of the simulation space 2 x 2 x 2  pnr*

Diffusion constant of the enzyme 5 pm V1

Diffusion constant of the metabolites 66 pm V1

Time step millisecond

7.4.4 Experim ent Results

The results of the experiment are given in Appendix E (b). The number of iterations 

required to attain equilibrium was recorded from the dynamic line graphs. Each 

iteration represents a millisecond. The distribution of the responses is shown in Figure 

7.2 and the global equilibrium constants attained by the different combinations of 

factor levels are shown in Figure 7.3.

Time Requirements
2000

1800

1600

1400

1200

1000

800

600

400

200

0

nr
J l

nr nr
A,

nr
.A.

nr
JL

2 3 4

Simulation Run

♦  Seriesl 

■  Series 2 

▲ Series 3 

X  Series 4  

X  Series 5 

-  Series 6

•  Series 7 

Series 8

Figure 7.2: T im e require to attain equilibrium  with respect to enzyme abundance, processing 

tim e and the initial equilibrium  phase o f  the chemical system. Table 7.5 shows the 

corresponding series num bers with the levels o f  factors used.
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Figure 7.3: The global equilibrium  constants attained by the different com binations o f  factor 

levels. Table 7.5 show s the corresponding series numbers with the levels o f  factors used.

7.4.5 Result Analysis

Based on the equilibrium constants attained by the different series as shown in Figure 

7.3, the implementation of the scenario is verified to be functional, since the 

equilibrium constant is in the order of 330,000. The main effects of moving the values 

of factors from their higher level to lower level values are shown in Figure 7.4. The 

change in enzyme abundance from high to low has a negative influence on the 

attainment of equilibrium. The change in enzyme processing time/tumover cycle from 

high to low has a positive influence on the attainment of equilibrium. Further the 

change in the initial equilibrium phase of the chemical system from high to low has a 

negative influence on the attainment of equilibrium.
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Figure 7.4: The effects o f  change in factor levels with respect to response time

Sensitivity analysis is performed to analyse the sensitivity of changes in factor levels 

to specific responses, which can indicate the robustness of responses to the changes in 

levels of specific factors. This can help to formulate the limits between perturbation 

and performance, which define the boundaries of robustness. To analyse the 

sensitivity of response variables with respect to the changes in the levels of factors or 

independent variables, the magnitude between the levels of factors were compared to 

the magnitude of the change in responses. Figure 7.5 shows the sensitiveness of factor 

level changes, in reaching chemical equilibrium.
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Sensitivity Analysis
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Figure 7.5: The analysis o f  sensitivity o f  factor level changes, in reaching chemical

equilibrium

The degree of interaction between the factors is measured by the k-factor interaction 

effect, which is shown in Figure 7.6, Figure 7.7 and Figure 7.8. This value is 

calculated by multiplying the design point sign vectors, then multiplying the resulting 

vector and response vector, and then dividing the result by 2k'1(Schut 2007).
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Figure 7.6: The interaction effects between the abundance o f  enzyme (EA) vs turnover cycle 
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Based on the analysis of the interaction between factors, there are no noticeable 

interactions between the factors since the difference in responses between the levels
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of one factor is the same at all levels (i.e. almost parallel) to the other factors. The 

interaction effects depend on the independent and dependent variables chosen for the 

experiment. Interaction between factors will emerge when the scenario is represented 

with feedbacks amongst biomolecular activities and these feedbacks are consequential 

to the specific response that is being investigated.

7.4.6 Experiment Validation

The simulation demonstrates how degeneracy in a biochemical system provides 

flexibility, but adds to the complexity in recognising the contributions and 

compensatory adjustments made by different factors in arriving at a solution. The two 

factors that are directly involved in the adjustment of the enzymes’ performance are 

enzyme abundance and an enzyme’s processing time/turnover cycle. Further the 

thermodynamic requirements have to be satisfied for a chemical activity to occur, and 

the complex dependencies among metabolites will determine the reactants and the 

free energy phase o f the chemical system. The free energy phases of the chemical 

system will determine how far the chemical system is from attaining chemical 

equilibrium or steady state. The significance of using thermodynamic properties such 

as Gibbs free energy is that it gives an indication of the potential o f a biochemical 

system to do work, which determines the direction of spontaneity of the reaction. A 

chemical system with negative, AG, indicates that it has the potential to expel energy 

in the form o f work or heat. However, it does not indicate how quickly (kinetics) the 

equilibrium can be achieved. This depends on the number of enzymes, the enzyme’s 

processing time/turnover cycle and the initial free energy state (A G value) of the 

biochemical system, which depends on the metabolites involved in the chemical 

system. Further, the analysis o f the time required to attain chemical equilibrium by 

different levels o f the factors, such as enzyme abundance and enzyme turnover cycle, 

can indicate how quickly the chemical system can reach a steady state during in vitro 

perturbation experiments. Measuring the performance of functional products, such as 

enzymes is crucial in modelling the intracellular organisations behaviour. The 

complex dependencies on metabolites of various reactions of the TCA cycle are 

shown in Appendix B. This indicates the complexity involved in associating the 

performances o f the enzymes, based on measuring the abundance of the metabolites. 

The metabolites are produced and consumed by various enzymatic reactions in the
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cell, which makes it impossible to trace the performances of enzymes. The abundance 

of metabolites reflects on the net abundance (not gross abundance), which emerges 

from concurrent activities o f different enzymes producing or consuming the particular 

metabolite. The ideal strategy is to measure the activity of enzymes, which is related 

to the performance of the enzyme. Further the complex dependencies also indicate the 

thermodynamic constraints involved in the reactions, which is ignored in chemical 

kinetics experiments. This correlation effect between the independent variables and 

the dependent variable obtained for this scenario can be compared with similar in 

vitro experiment, to ascertain the validity of the model’s mechanistic structure.

To define the capacity o f robustness with respect to perturbations and performances of 

biochemical tasks, the analysis o f sensitivity of change in the levels of specific 

perturbation to the specific intracellular performance will be critical. It can be used to 

define the limits o f specific perturbation, which can maintain a desired performance. 

The relationship between perturbation and performance is dependent on the 

intercellular organisational behaviour, which is regulated by numerous feedbacks 

amidst uncertainty.

7.4.7 Experiment Conclusion

The Collective Intelligence framework experiment has demonstrated that both 

qualitative and quantitative factors can compensate each other to meet a performance. 

The ability to measure the activities of functional products and relate them to the 

performance, and consequently to the intracellular functionalities is the distinctive 

feature of this framework. Also it has shown that the ability to represent spatial, 

temporal and thermodynamic constraints within the framework contributes to being 

able to make a more realistic representation of intracellular dynamics.

7.5 Simulating Competition in Metabolic Activities

The aim o f this experiment is to use the multi-objective topology to model two 

competing tasks in metabolic activities and analyse the effects of different factors, 

such as abundance and efficiency of enzymes on the performances of the competing 

tasks. Measuring the performance of functional products, such as enzymes, is crucial 

in modelling the contributions they make as biomolecular species to the
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organisational behaviour of the cell and the genes, which they represent. The 

performance of enzymes is a collective property, which depends on factors, such as 

the efficiency and abundance of activity, which are compensated by each other. The 

efficiency of the enzyme is amplified by their redundant counterparts, which affect 

the overall performance of the intended task of respective enzyme species. The 

pathway modelled is the biosynthesis of aromatic amino acids in E.coli, see Figure 

7.9. This pathway diverges at chorismate into a prephenate and anthranilate branch. 

The problem space is represented by metabolites, which comprise chorismate, 

prephenate, anthranilate, L-glutamine, pyruvate and L-glutamate. The function space 

is represented by two groups of enzymes forming the two competing tasks, producing 

the metabolites prephenate and anthranilate. The critical point is that the performance 

of metabolic tasks are governed by the activities of key enzymes rather than by the 

law of mass action (Stryer 1988). The enzyme involved in the conversion of 

chorismate to prephenate is Chorismate Mutase. The wild type of this enzyme has a 

turnover number about 39s'1 and the ArG° for this reaction is -SbkJmol'^Kast, Tewari 

et al. 1997). The enzyme involved in the conversion of chorismate to anthranilate is 

Anthrinilate Synthase. The wild type of this enzyme has a turnover number around 

383s'1 and the ArG° for this reaction is -183kJmofl (Bymes, Goldberg et al. 2000).

Shikimate ---------

Phosphoenolpyruvate 

+

Erythrose 4-phosphate

Figure 7.9: Pathway for the biosynthesis of aromatic amino acids in E. coli 

7.5.1 E x p e r im e n t H ypo thesis

Competing enzyme species can have an inhibitory effect on their performances.

The overall performance of a particular enzyme species is analysed against the 

performance of a competing enzyme species. The competition for a common

--------------------------► Chorismate
A n th r in i la te  /  \  C h o r i s m a te

S y n th a s e  j \  M u ta s e

(Turnover cycle /  \  (Turnover cycle
= 2.61 milliseconds) /  \ =  25.64 milliseconds)

AG° = -183 kJmol'1 t  \  aG° = -56 kJmol'1
Anthranilate Prephenate

Tryptophan Tyrosin Phenylalanine
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metabolite is analysed using factors such as enzyme efficiency and abundance, which 

are perturbed in the experiment.

The expected outcome o f the study is to demonstrate the impact o f perturbation 

(change in factor levels) on the overall performance of a particular enzyme species. 

The sensitivity o f a particular perturbation on the performance of a particular enzyme 

species and the identification of interaction effects between factors. It is expected that 

there will be no interactions between factors, since the scenario does not include any 

feedbacks between the competing enzyme species.

7.5.2 Experiment Design

The independent, dependent and other variables used in this simulation experiment 

are described here. Since there are many factors, which affect the performances of the 

group’s tasks a 2k'p Fractional factorial design (Montgomery 2008) was chosen, where 

k corresponds to the number o f factors (i.e. independent variables) and p corresponds 

to the excluded factors, such as the regulation of the enzymes. The main effect o f a 

factor is the change in response produced by a change in the level of the factor (Schut 

2007). To understand how each factor affects the responses, two levels per factor 

were chosen. For each o f the 2k'p factor level combinations, several simulation runs 

were conducted. The iterations or time steps for each simulation run depends on the 

time taken to attain a steady state. Table 7.7 lists the values of the factors represented 

in this experiment. The abundance of enzymes represents the effective abundance, 

and the value ranges were estimated based on the typical amounts found in a cell, 

which were o f the order o f nM. The values for the turnover cycle/processing time of 

wild type and mutant enzymes were obtained from the enzyme database BRENDA 

(Chang A., Scheer M. et al. 2009). Higher values for the metabolites were chosen due 

to their higher abundance, relative to the enzymes. These are of the orders of nM - 

pM (Nazaret, Heiske et al. 2009). The relationship between biomolecular 

concentration and the molecules present in specific volumes are tabulated in 

Appendix F.
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Table 7.7: The variables and their value ranges used for simulation competition and

cooperation in metabolic pathway

Independent Variables
The abundance of enzyme Chorismate Mutase(CMA) 100 200

The abundance of enzyme Anthrinilate Synthase(ASA) 100 200

The turnover cycle o f Chorismate Mutase(CMT) 19.7ms 25.6 ms

The turnover cycle o f Anthrinilate Synthase(AST) 2.6 ms 164.5 ms

Dependent Variables
State o f reaction equilibrium

AG of reactions 1 and 2

Abundance o f metabolites

Number o f iterations to reach the end point

Performances o f the groups

Although the relative values are more than sufficient to model the principles 

governing this experiment, absolute values obtained from experimentation were 

chosen as a realistic representation of the experiment. The factors that affect an 

enzyme’s performance in performing the competing tasks in metabolic activities, are 

abundance of enzyme activities and the enzyme’s turnover cycle. Although the 

turnover cycles are unique to every enzyme species, the abundance of their activities 

are controlled by various regulatory mechanisms, involved in the production, 

activation, deactivation and degradation of enzymes. The initial free energy state of 

chemical system remains constant throughout the experiment. The factors that affect 

the initial free energy state (AG) of the chemical system are abundance of 

participating reactants and products. Table 7.8 shows the design specification of the 

experiment with sixteen design points, representing four independent factors.
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Table 7.8: Design specification o f  the experiment showing the design matrix for simulating 

competition and cooperation in metabolic pathway

Series 1 (+,+,+,+) High High High High

Series 2 (+,+,+,-) High High High Low

Series 3 (+,+,-,+) High High Low High

Series 4 High High Low Low

Series 5 (+,-,+,+) High Low High High

Series 6 (+*■->+,-) High Low High Low

Series 7 High Low Low High

Series 8 High Low Low Low

Series 9 (-,+,+,+) Low High High High

Series 10 Low High High Low

Series 11 (->+»->+) Low High Low High

Series 12 (-»+»->-) Low High Low Low

Series 13 Low Low High High

Series 14 Low Low High Low

Series 15 Low Low Low High

Series 16 Low Low Low Low

The experiment consisted of sixteen series, to allow investigation of all possible 

combinations o f the factor levels. Each series consisted of three simulation runs due to 

the stochastic nature of the model, such as the random movements of the 

biomolecules and the asynchronous nature of biomolecular activities. The termination 

condition for every simulation run was the complete consumption of Chorismate.

7.5.3 Experiment Setup

The sub-model that was consequential for this scenario is the biomolecular mobility 

and biomolecular interaction. The scenario o f the experiment was verified using test
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cases, which consisted of hypothetical input parameters for enzyme abundance and 

enzyme turnover cycle, with expected output for the performances of enzymes. Table 

7.9 shows the constant parameter values used throughout this experiment.

Table 7.9: Variables and their value ranges used for simulation competition and cooperation

in metabolic pathway

Number of grid cells 1000

Size of the simulation space 2 x 2 x 2  pmJ

Diffusion constant o f the enzymes 5 pm V 1

Diffusion constant o f the metabolites 66 jim V 1

AG° for reaction 1 -56KJ mol'1

AG° for reaction 2 -183KJ m of1

Time step milliseconds

The initial phase o f the chemical systems 

The abundance of Anthranilate 65,000

The abundance of Pyruvate 50,000

The abundance of Lglutamine 70,000

The abundance of Lglutamate 55,000

The abundance of Prephenate 60,000

The abundance of Chorismate 30,000

7.5.4 Experiment Results

The results of the experiment are given in Appendix E (c). For each series, three 

independent runs were performed and the performances of the enzymes and the final 

levels o f the metabolites were recorded from the dynamic line graphs. The 

distribution of the responses is shown in Figure 7.10. Figure 7.11 shows the 

consumption of Chorismate by the two competing tasks, involving Chorismate 

Mutase and Anthrinilate Synthase.
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Figure 7.10: The performance o f  Chorismate Mutase with respect to abundance and 

processing time o f  enzyme Chorismate Mutase and Anthrinilate Synthase. Table 7.8 shows 

the corresponding series numbers with the levels o f  factors used.
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Chorismate Consumption
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Figure 7.11: T he consum ption o f  Chorism ate by the two com peting tasks involving 

Chorism ate M utase and A nthrin ilate Synthase. The amount o f  Prephenate and Anthranilate 

produced in each series is shown in blue and red respectively

7.5.5 Result Analysis

Figure 7.12 shows the main effects of the factor value moving from high to low level 

values. The degree of interaction between the factors is measured by the k-factor 

interaction effect. This value can be calculated by multiplying the design point sign 

vectors, then multiplying the resulting vector by its response vector, and dividing the 

result by 2k'V The change in Chorismate Mutase (CMA) abundance from high to low 

value has a negative influence on the performance of Chorismate Mutase. The change 

in Anthrinilate Synthase (ASA) abundance from high to low value, has a positive 

influence on the performance of Chorismate Mutase. The change in Chorismate 

Mutase enzyme’s processing time/turnover cycle (CMT) from high to low value has a 

positive influence on the performance of Chorismate Mutase. The change in 

Anthrinilate Synthase enzyme’s processing time/tumover cycle (AST) from high to 

low value has a negative influence on the performance of Chorismate Mutase.

The flux between these two directions is determined by the quantity and efficiency of 

the enzyme. While enzyme efficiency is a direct reflection of the quality of the coding 

sequence, its level of activity is reflected in its regulation. Although the cells have no 

control over the enzyme’s efficiency, it has evolved the ability to gain control over its 

activity levels by regulating it quantitatively.
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above factors
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Sensitivity analysis is performed to analyse the sensitivity of Chorismate mutase’s 

performance to the change in levels of enzyme abundance and enzyme turnover cycle. 

This can indicate the robustness of this task to specific perturbations, such as the 

change in factor levels. To analyse the sensitivity of response variables with respect to 

the factors or independent variables, the magnitude between the levels of the factors 

were compared to the magnitude of the change in responses. Based on Figure 7.13, 

the impact of change in the levels of enzyme abundance, such as CMA and ASA to 

the performance of the Chorismate mutase, is almost the same. Similarly the impact 

of change in levels of enzyme turnover cycle, such as CMT and AST to the 

performance of the Chorismate mutase, is almost the same.

The degree of interaction between factors is measured by the k-factor interaction 

effect which is shown in Figure 7.14, Figure 7.15, Figure 7.16 and Figure 7.17. This 

value is calculated by multiplying the design point sign vectors, then multiplying the 

resulting vector and response vector, and then dividing the result by 2k_1(Schut 2007).

Interaction Effects - CMA vs ASA, CMT & 
AST
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Figure 7.14: The interaction effects betw een the abundance o f  Chorism ate M utase (C M A ) vs 

abundance o f  A nthrinilate Synthase (A SA ), T urnover C ycle o f  Chorism ate M utase (C M T) 

and T urnover C ycle o f  A nthrin ilate Synthase (AST)
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Figure 7.15: The interaction effects between the abundance o f Anthrinilate Synthase (A SA ) 

vs abundance o f  Chorismate Mutase (C M A ), Turnover Cycle o f  Chorismate Mutase (CM T) 

and Turnover C ycle o f  Anthrinilate Synthase (AST)
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Figure 7.16: The interaction effects between the Turnover Cycle o f  Chorismate Mutase 
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(A SA ) and Turnover C ycle o f  Anthrinilate Synthase (AST)
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Figure 7.17: T he interaction effects between the Turnover Cycle o f  Anthrinilate Synthase 

(A ST) vs abundance o f  C horism ate M utase (CM A), abundance o f  A nthrinilate Synthase 

(A SA ) and T urnover C ycle o f  Chorism ate Mutase (CM T)

Based on an analysis of the interaction effects between factors, there are no noticeable 

interactions between the factors, since the difference in responses between the levels 

of one factor, is the same at all levels (almost parallel) of the other factors. This 

indicates, that the effect of a factor, is independent of the levels chosen for other 

factors, and confirms that there are no mutual dependencies, influence (beneficial or 

inhibitory effects) or feedbacks between factors. Positive or negative feedbacks, 

amongst the biomolecules, cause mutual dependencies amongst the factors 

constituting it. However, the interaction effects do not provide information regarding 

the presence of positive or negative influences between factors. The interaction 

effects depend on the independent and dependent variables chosen for the experiment. 

This result was expected in modelling the performances of particular species of 

functional product, such as enzymes, since there were no feedbacks between the two 

species of enzymes in this scenario. The factors such as enzyme abundance and 

enzyme’s turnover cycle were associated solely to the respective species of enzyme. 

However, when modelling and measuring the performances of complex tasks, 

involving more than a single species of functional product, dependences will exist
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between the factors causing interactions to occur between factors. These interactions 

are further complicated, when modelling complex tasks involving feedbacks between 

species o f functional products.

7.5,6 Experiment Validation

The multi-objective topology is used to model two competing tasks in metabolic 

activities and analyse the effects of different factors, such as abundance and efficiency 

of enzymes on the performances of competing tasks. These factors act as 

organisational constraints, when providing solutions to cellular systems. Measuring 

the performance o f functional products, such as enzymes, is crucial when modelling 

the contributions they make to the organisational behaviour of the cell. Performance 

of enzymes is a collective property, which depends on factors such as efficiency and 

abundance of activity, which compensate each other. The efficiency of the enzyme is 

amplified, via their redundant counterparts, which affects the overall performance of 

the intended task of the respective enzyme species.

The turnover number is reflected in the efficiency of enzymes, where the most 

efficient enzymes have very high turnover numbers. Mutations to enzymes can alter 

the turnover numbers, which in turn will affect the performance of the respective 

metabolic pathways. While some enzymes show large resistance to evolution, due to 

numerous inverse fitness interactions, others have fewer inverse fitness interactions 

and have more flexibility to alter their efficiency via mutations. A wild type enzyme 

is replaced by a mutant enzyme having different turnover number to model the effects 

at the population level. Thus an improved efficiency at the molecular level will 

improve the performance and hence the fitness of the respective tasks, but may have 

an adverse effect at a global level of cellular organisation. Hence enzymes tend to 

sacrifice their efficiency to improve the efficiency at the cellular level. The results 

show that with an increase in efficiency of a particular enzyme, the net gain of the 

pathway, in terms of end product production, has increased. These effects are 

profound in irreversible reactions, when compared to reversible reactions. Various 

processes can control the performance by positively or negatively influencing the 

task. Positive influences include the activation of enzymes and increasing the 

population o f the enzymes. Negative influences include negative feedbacks, such as
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enzyme deactivation and inhibition, and lowering the enzyme population via 

degradation.

7.5.7 Experiment Conclusion

This experiment has demonstrated how qualitative and quantitative features of 

competing enzyme species can have an inhibitory effect on the overall performances. 

Further, the simulation has demonstrated, that there are no feedbacks by analysing the 

interaction effects between factors. The simulation has made it possible to analyse the 

impact o f a particular biomolecular species on the performance of higher tasks by 

altering their characteristics or silencing them. Hence, the main effects of these factors 

can be used to analyse the impact of biomolecular species in the presence and absence 

of specific biomolecular species. It has also made it possible to model the features 

which contribute to the intracellular adaptive dynamics, such as coordination, 

cooperation and competition between diverse biomolecular species.

7.6 Evaluation of the Collective Intelligence Framework

7.6.1 Functionalities Achieved

Measuring the performance of functional products such as enzymes is crucial in 

modelling the contributions they make to the intracellular organisational behaviour. 

The framework has the ability to represent the intracellular dynamics at a molecular 

and cellular resolution by representing the characteristics (attributes and behaviour) of 

functional products and by observing the system level behaviour. Further the 

performances o f functional products can be associated with the fitness (the 

adaptive/evolutionary success) of the respective species of functional product and the 

genes involved in propagating them. To achieve this, the activities (the effective 

abundance) as opposed to the actual abundance of the respective functional products 

have to be analysed. However, conventionally the actual abundance, on which the 

kinetic models depend, is empirically measured rather than the effective abundance, 

which represents the activities contributing to cellular functions and 

adaptive/evolutionary success. This framework fills the gap by providing the 

environment to analyse the intracellular organisational behaviour, which cannot be



Model Evaluation by Simulating Biological Phenomena

directly observed or empirically measured, by representing the functional products, 

capturing the results of their activities and providing the means to evaluate these 

results. Further the framework has the ability to integrate thermodynamic and energy 

constraints, which also have an impact on the behaviour of cellular systems. These 

constraints are not integrated in conventional kinetic models, which solely rely on rate 

laws.

The Cl framework has the ability to model between the molecular and cellular 

resolution, by characterising the functional products in terms of their attributes and 

behaviour at the molecular resolution and observing their species/population level 

behaviour, which contributes to intracellular organisational behaviour. This requires 

representing multiple scales, from molecular to cellular resolution, simultaneously to 

analyse:

■ the performances within the objective/task hierarchy,

■ the timescales o f molecular activities and the timescales at which their 

contributions can be realised,

■ the energy requirements for the molecular activities and the energy production 

and consumption at the cellular resolution,

■ the efficiency o f functional product’s activities, and the efficacy of the diverse 

objectives/tasks to which they contribute,

■ the stability o f the functional products, and their robustness at the cellular 

resolution, and

■ the reactivity of functional products at physiological timescales, and the 

adaptability at the cellular resolution to which they contribute.

The Cl framework has the ability to model adaptability at the molecular and 

organisational level by the characterisation of functional products which reflect on 

their coding sequence. These sequences act as replicators of the functional product’s 

characteristics, and propagate to future generations of the biological systems involved. 

The adaptability at the organisational level is achieved via biasing the activities of the 

functional products in the form of internal and external stimulations to sustain the 

organisation without any alterations to the inherent characteristics of the functional 

products.
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The Cl framework has the ability to represent concurrency by modelling redundant 

counterparts of diverse species of specialised functional products at the molecular 

resolution. This facilitates the diverse activities of functional products to occur 

concurrently in space and time, and avoid the combinatorial explosion inherent in 

sequential representations.

Moreover, the above features facilitate the Cl framework to mechanistically model 

and analyse the emergent properties of the cell from the molecular resolution. The 

analysis o f the organisational behaviour within the cell is achieved by measuring the 

performances o f the objectives/tasks. The performances of the tasks are quantified in 

order to quantify the functions of the cellular systems.

7.6.2 Resources Utilised

One of the aims of systems biology is to integrate heterogeneous data for developing 

models. The Collective Intelligence framework integrates more detailed biochemical 

information than the population based kinetic models. Modelling at molecular 

resolution required molecular level information, such as their diffusion constants, time 

and energy requirements for their activities, their localisations and abundance in the 

cell. Further biochemical thermodynamic information such as the Gibbs free energies 

of formations and reactions were integrated to model the physical constraints of 

biomolecular activity. The enzymes were represented by their processing time which 

is a characteristic o f the enzymes and was derived from their Kcat values.

An agent based discrete event simulator was used to model the biomolecular activities 

in space and time. However modelling a complete biological cell can test the limits of 

the available software and hardware for simulating Collective Intelligence. These 

limitations included the capacity to handle billions of agents and the features of agent 

based simulation technologies.

7.6.3 Limitations of the Framework

Although this approach is ideal for modelling the biological cell, its main limitation is 

the computational requirement to model multi-cellular structures. Modelling the 

whole multi-cellular organism at the molecular resolution is not feasible based on the 

current capabilities o f computational technology.
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The Systems Biology Markup Language (SBML Contributors 2010) is the widely 

used tool for model integration and interoperability. However SBML is incompatible 

with the developed Collective Intelligence framework, since it is designed and used 

for kinetic models, where the kinetic parameters are specified in terms of the rate of 

change o f molecular abundance. A new form of representation will be required to 

characterise every species of functional product in terms of their attributes and 

behaviour as illustrated in Section 4.3. This will require extending the Unified 

Modelling Language (UML) to Systems Biology (Magali and Debora Schuch da

2006).

7.7 Concluding Remarks

This chapter evaluated a Collective Intelligence framework by conducting a series of 

simulation experiments. Experiments were based on modelling physical and 

biological constraints involved in intracellular organisational behaviour, which affect 

the collective behaviour of biomolecules. In Section 7.3, Collective Intelligence is 

modelled at an individual level. This experiment has demonstrated by emulating 

empirically observed half-life at an individual level, rather than at the population 

level. This can be used to study intracellular self-organisation and Collective 

Intelligence phenomena which are a feature of biomolecular degradation. In Section 

7.4, a Collective Intelligence experiment has demonstrated that both qualitative and 

quantitative factors can compensate each other to meet a performance. The ability to 

measure activities o f functional products and relate them to performance, and 

consequently to intracellular functionalities is the distinctive characteristic of this 

framework. Also it has shown the ability to represent spatial, temporal and 

thermodynamic constraints within the framework contribute to being able to make a 

more realistic representation of intracellular dynamics. In Section 7.5, a Collective 

Intelligence experiment has demonstrated how qualitative and quantitative features of 

competing enzyme species can have an inhibitory effect on overall performance. 

Further the simulation has made it possible to analyse the impact of particular 

biomolecular species on performances of higher tasks by altering their characteristics 

or silencing them. Hence, the main effects of these factors can be used to analyse the 

impact o f biomolecular species in the presence and absence of specific biomolecular 

species. It has also made it possible to model features which contribute to
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intracellular adaptive dynamics, such as coordination, cooperation and competition 

between diverse biomolecular species. Based on the results of these experiments, the 

validity of the simulation experiment and the validity of the framework were 

demonstrated.



Chapter 8

Conclusion and Further Work

“Although the road ahead is long and winding, it leads to a future where biology and 

medicine are transformed into precision engineering. ”

Hiroaki Kitano

8.1 Overview

This chapter provides answers to the investigated research questions based on the 

objectives and draws conclusions based on the findings of the research. Section 8.2 

reviews the objectives set for the research and provides answers to the research 

question. This is followed by a review of the thesis in Section 8.3. Section 8.4 

describes the contribution to knowledge by specifying the insights gained from the 

research. The chapter concludes by discussing further work and recommendations for 

future research that emerged from this research project in Section 8.5.

8.2 Review of Objectives

8.2.1 Characterising the major biomolecular self-organising 

mechanisms

The answers and conclusions for this objective and the associated questions were 

provided in Chapters 2 and 4. The main questions that this objective addressed are:

How self-maintenance is utilised in biological cells?

Since the cellular objectives are not maintained centrally, the cells have adopted a 

unique strategy to continuously realise their objectives or adaptive requirements by
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removing obsolete information from the intracellular organisation. The propensity of 

native biomolecular degradation by means of random or regulated process and 

collective autocatalysis provides an ideal reinforcement adaptive mechanism for a 

cell. This process o f native biomolecular degradation can eliminate obsolete 

biomolecular activities to keep cellular activities up to date, and recycle resources to 

maintain almost a steady biomolecular population in a resource constrained and 

dynamic environment.

What drives self-organisation that underlies Collective Intelligence in cells?

The process o f self-organisation in biological cells is driven by organisational and 

physical constraints. Constraints in general, reduce uncertainty and facilitate order in 

biological cells. Feedbacks which range from highly specific to more general signals 

play a dominant role in intracellular organisational behaviour. While signals with high 

specificity provide precision control of biomolecular activities, signals with less 

specificity will have broad and vague control of activities. These varying degrees of 

specificity have constrained and guided self-organisation in biochemical systems. 

Section 4.2.1 has listed major positive and negative feedback mechanisms observed in 

biological cells. The cellular organisation has adopted the propensity of functional 

product degradation as a contributor of self-organisation of a cell. The cooperation 

and competition between biomolecular species contributes to the self-organisation 

process by acting as organisational and regulatory constraints for cellular adaptations. 

Enzymes, which are one of the key players in self-organisation, play a crucial role in 

metabolism, because they drive biologically desirable but thermodynamically 

unfavourable reactions by coupling them to favourable ones. The self-organisation 

processes in cells are non-spontaneous, because energy is required to produce various 

functional products to maintain order in cells. Various steady states of biological 

systems, which have emerged to maintain biological equilibrium far from 

thermodynamic equilibrium, attract non-spontaneous processes to increase order, 

whereas thermodynamic equilibrium attracts spontaneous processes to decrease order. 

The trajectory between these two biochemical system phases is controlled by 

metabolism, where anabolism is dominated by non-spontaneous processes, and 

catabolism is dominated by spontaneous processes, are coupled mostly using ATP as 

a shared medium.
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How the limitations o f  every biomolecular activity will affect the intracellular 

organisational behaviour?

A feasible solution is only producible within the constraints of fundamental and 

organisational principles. The proactive nature of cellular behaviour is a result of 

biomolecules and their interactions in space and time. Although the rules, which 

remain constant at the physiological timescale, define what a particular species of 

biomolecule can perform, the uncertainty involved in when and where these rules are 

executed by redundant members of the species cause emergent behaviours in a cell. 

Further, each biomolecule is simply reacting in a determinate way to stimuli and in- 

tum responding by stimulating other biomolecules to regulate activities amongst 

them. Various activities are required to provide system wide responses to 

perturbations. However these activities have their limitations, and have to be 

regulated in terms of when, where and what activities should occur to provide timely 

responses to perturbations in a constrained environment. Based on physical 

constraints, every native bimolecular activity has limitations in terms of time and 

energy requirements. Various stages of regulation have evolved in anticipation of 

perturbations, which facilitated the transformation of the reactive activities of native 

biomolecules to a collectively proactive organisation. These regulatory mechanisms, 

range from transcriptional regulation (genetic level), post-transcriptional regulation, 

translational regulation (transcript level) and post-translational regulation (protein 

level). While transcriptional regulation provides slow and globalised cellular 

responses, post-translational regulation provides rapid and localised cellular 

responses. Transcriptional response is the most time and energy consuming process, 

since the genetic information has to be transcribed and mostly translated to produce a 

functional product. In contrast a post-translational response is the least time and 

energy consuming process, since the functional product is simply switched between 

an active and inactive state. The presence of higher stages of regulation such as 

translational and post-translational regulation, facilitate the anticipation of recurring 

perturbations, which also improves the performance of a cell.
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8.2.2 Using a bottom-up integrative approach to model the 

intracellular organisational behaviour

The answers and conclusions for this objective and the associated questions were 

provided in Chapters 2, 3, 4 and 5. The main questions that this objective addressed 

are:

How to represent the collective behaviour o f  biomolecules in silico, to model cellular 

level phenomena?

The biomolecules are represented at an individual level and integrated into the 

Collective Intelligence framework, to study intracellular organisational behaviour of a 

cell. Intelligence is described as “the capability of a system to adapt its behaviour to 

meet its goals in a range of environment” (Fogel 2006). Intelligence is often 

associated with learning, which is an adaptive process. The ability to learn or adapt is 

one of the hallmarks o f intelligent systems. This can also be witnessed in biological 

cells, where Cellular Intelligence emerges as an organisational level property from 

collective behaviour of biomolecules. Cellular Intelligence is the ability of biological 

cells to organise and adapt to perturbation and uncertainty, which reflects on the 

characteristics o f intelligence. However, the process of adaptation is fundamentally 

different at the cellular level, since the intelligence resides not in individual native 

biomolecules, but in the diverse interactions/activities amongst them.

This approach facilitates analysis o f the global effects of changes in behavioural rules 

imposed on diverse biomolecular species, where the effects of the rules are amplified 

due to redundant members of the biomolecular species. The representation at the level 

of molecular resolution also addresses the heterogeneous nature of the cellular 

environment and the existence of very low numbers of some functional products. 

Since the organisational behaviour within a cell cannot be directly observed or 

empirically measured, it requires a simulation framework that can represent native 

biomolecules, capture results of their activities and provide a way to evaluate these 

results.

What modelling approach can represent the intracellular organisational behaviour to 

study the emergence o f  cellular level characteristics such as adaptability, robustness 

and efficiency?
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The cellular environment represents both biomolecules and their activities which 

contribute to the self * properties of a cell. The activities cause direct and indirect 

influences amongst various species of native biomolecules, which facilitate the self 

regulation of cellular processes. Agent based formalism is used in the wider 

framework of Collective Intelligence to model self-organisation and the emergence 

that occurs due to diverse biomolecular activities. Further the approach is driven by 

the principles o f Swarm/Collective Intelligence to capture the inherent characteristics 

of the cell, such as adaptability, robustness and efficacy with no external supervision 

(Schut 2007). Some of the noteworthy properties of Collective Intelligence systems 

are adaptivity, emergence, global-local order, interaction, rules, redundancy, 

robustness and randomness (Schut 2007).

How do you functionally unite the activities o f  functional products from the bottom- 

up?

Although modularity can be observed in the biological organisation strata in terms of 

perceivable and physically bounded entities (molecules, organelles, cells, organs and 

individuals), their applicability in modularising intracellular activities of functional 

products into functional units, which constitute the cellular processes is doubtful. 

Intracellular functions, lack physical boundaries and are temporal phenomena, which 

emerge from the causally linked biomolecular activities. In the context of biological 

adaptation, function is defined as the progression along some causality, towards a goal 

or successful outcome. A logical approach to simplify cellular processes is by 

constructing/deconstructing these processes into objectives/tasks, on which selective 

pressure is imposed.

What are the criteria fo r  indentifying functional units to represent intracellular 

tasks/objectives ?

The criteria used to identify functional units by modularising the interactions among 

the functional products, are based on performance/fitness interactions, which emerge 

out o f competition and cooperation amongst functional products. This is the 

mechanism by which evolution formed and evolved collaborative groups, containing 

one or more species of functional product. These functional products within a group 

cooperate with each other for a common objective/task. Competitive and cooperative 

adaptation among various biomolecular species is ubiquitous amongst their activities.



Conclusion and Further Work

While inverse/inhibitory performance/fitness interaction exists between competing 

biomolecular species, positive/beneficial performance/fitness interaction will exist 

among cooperating biomolecular species. Beneficial and inhibitory performance 

interactions can reveal the organisation of the objective hierarchy in order to 

construct/deconstruct the tasks between molecular resolution and cellular resolution.

8.2.3 Developing a Collective Intelligence based cell modelling and 

simulation environment to conduct analysis studies

The answers and conclusions for this objective and the associated questions were 

provided in Chapters 3, 4, 5 and 7. The main questions that this objective addressed 

are:

What molecular level information is required to model biomolecules and their 

interactions?

Many macroscopic descriptions of cellular phenomena are only an approximation, 

idealisation and generalisation of real molecular processes. Due to insufficient 

description/information at this level, they often rely on probabilistic or statistical 

concepts. The microscopic descriptions of molecular activities are associated with 

detailed descriptions. However, many molecular details are insignificant, irrelevant 

and inconsequential to specific macroscopic phenomena (Fromm 2005). Hence, 

every detail at molecular resolution will not be required to represent the intracellular 

organisational behaviour. The level of detail required to represent phenomena will 

increase, when moving from population to molecular and atomic levels. Further the 

information used at each level is semantically different. The significant, relevant and 

prominent properties for activities and interactions representing intracellular 

organisational behaviour will have to be identified. The two types of constraints, 

which represent organisational and physical constraints will have to be represented, to 

model their effects on collective behaviour. This will require molecular level 

information, such as their diffusion constants, time and energy requirements for their 

activities, their localisations and abundance in a cell. Biomolecular activities are 

transformed into events, when they occur in stipulated space and time. Modelling 

these events will require information at molecular resolution, such as time and energy 

requirements to represent the respective events. Modelling event intervals will require
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the diffusion constants of biomolecules, the distance amongst the biomolecules and 

the affinities for interaction.

Further biochemical thermodynamic information is required to model the physical 

constraints of the biomolecular activities. Gibbs free energy is mainly used as a 

thermodynamic property in biochemistry to provide quantitative answers to the 

probable direction of chemical reactions. Free energy is also used to represent 

affinities for interaction amongst biomolecules. Information such as biomolecular 

degradation and error frequencies for transcription, translation and replication can 

also be beneficial when building a comprehensive model of the cell.

What is the best approach to analyse the adaptive dynamics o f  biomolecular 

interaction?

Since the modelling of multi-scale adaptive dynamics from molecules to cell requires 

a mechanism based description of functional properties, which emerge as a result of 

molecular interactions, the study follows the bottom-up systems biology approach. 

This approach utilises a mechanistic model development process, where the structure 

of the model depends on the mechanistic principle adopted. Further the hierarchical 

representation o f the intended study is based on a bottom-up methodology. This is 

because the aim o f the study is to understand how biological cells dynamically adapt 

to multiple objectives concurrently, facilitated by constituent biomolecular activities, 

which require traversing from lower level molecular resolution to higher level cellular 

resolution. The objectives of biological systems are constantly evolving due to ever 

changing demands o f their environment. Biological systems meet these demands by 

pursuing the objectives aided by their constituents, giving rise to biological processes, 

which manifest as biological functions. Further pathological processes have become 

an integral part o f biological adaptation due to failure in achieving objectives caused 

by unanticipated constraints. The multi-objective topology provides a concurrent and 

hierarchical view o f biological systems, whereas the network topology provides a 

sequential and horizontal view of biological systems.

How to measure and control organisational behaviour within the biological cell?

Numerous methods have been proposed to measure organisation in self-organising 

systems. However, these methods are too abstract and can only be applied to 

organisation of spatial structures, rather than functional organisation, which is
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temporal in nature. Moreover, a mathematically oriented definition for self­

organisation is proposed, which has the ability to quantify functional organisation. 

This is defined as “Self-organized behaviour in a complex system involving multiple 

performance measures is a sequence of system states corresponding to movement 

along a Pareto optimal frontier”. In this context the functional organisation is 

measured in terms of efficiency of diverse functional units that constitute the 

intracellular organisational behaviour. Further the performances of the functional 

units should be measured to get the best possible optimal values as a whole.

How to measure intracellular performances?

The best approach to measure cellular performance is to identify cooperative modules 

and measure the performances of these modules. These performances are basically the 

measured activity levels of the member native biomolecular species. Measuring the 

activities o f the native biomolecules rather than their actual abundance would reveal 

effective abundance. Apart from contributing to molecular crowding, biomolecules 

merely occupying the cellular environment will not have any major effect on the 

cellular processes. Their contributions are judged by their activities. As explained in 

Section 3.5.2.3 chemical activity of molecules provides the most accurate description 

of a chemical system. Nevertheless, the dynamic state of chemical systems are 

described in terms of concentrations as an approximation to chemical activity based 

on the assumption that the difference between concentration (the actual population) 

and chemical activity (effective population) is insignificant. However in biological 

cells where functional products are complex molecules and only certain states out of 

all the possible states, have the ability to perform the intended activity, there is a 

significant deviation between actual population and effective population. Hence actual 

abundance will not reflect the true Dynamic phase of a cell.

8.3 Thesis Review

The scope of systems biology covers top-down systems biology studies, bottom-up 

systems biology studies and discovering general principles of biological systems. It 

has been acknowledged that the success of systems biology depends not only on 

studies based on specific instance of life, but also on studies based on the principles 

governing the entire organisational space of life. Hence, modelling adaptive dynamics
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is an essential requirement to understand the organisational space of biological 

systems. This requires the development of advanced models with molecular 

information that facilitate the prediction of cellular behaviour under various 

conditions. This is needed to reveal the cellular level characteristics and the 

underlying principles of cellular functions. The aim of this thesis was to investigate 

systems biology approaches to representing biological complexity from molecules to 

cells and developing computational approaches which bring abstract theories to 

practical use. An adaptation of a bottom-up systems biology approach and utilisation 

of a mechanistic model development process has created a computational model, 

using agent based formalism in a wider framework of Collective Intelligence to 

represent intracellular behavioural/functional organisation. The research contribution 

was determination of fundamental and organisational principles behind biological 

systems that define a possible design space of biological cells and applying these 

principles to build mechanistic models of biological phenomena.

This was followed by defining the adaptive dynamics of biological cells by utilising a 

multi-objective topology which differs from a conventional network topology based 

description o f intracellular dynamics. Further, it has exemplified biological 

complexity from molecules to cell by deciphering a functional organisation of 

biological cells via a multi-objective representation of intracellular adaptive 

dynamics. Crucial factors involved in biological adaptation such as adaptability, 

robustness and efficacy in the context of multi-objective topology have been 

characterised. This provides a hierarchical and concurrent view of intracellular 

dynamics. An appropriate systems biology approach will have to be adopted to model 

self-organisation of biomolecular activities in order to study the emergence of 

intracellular behavioural organisation. Since it requires a mechanism based 

explanation, it has to be mechanistically modelled using a bottom-up approach and 

integrating molecular level information. Modelling at the level of molecular 

resolution will require representing molecular properties together with spatial and 

temporal constraints of a cellular environment. One of the challenges is, that the 

organisational behaviour of a cell, is not something that can be directly observed or 

empirically measured. Instead it needs a group of actors to represent functional 

products, represent a set o f cellular resources utilised by these functional products, 

capture the results o f functional products’ activities and a method to evaluate these
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results. The cellular activities, which correspond to a functional organisation are 

hierarchically organised into various basic tasks, merging to form complex and 

greater tasks of a cell.

The decision was to adapt a bottom-up systems biology approach and utilise a 

mechanistic model development process to develop a computational model, using 

agent based formalism in the wider framework of Collective Intelligence to represent 

intracellular behavioural/functional organisation. This is because the aim of the study 

was to understand how biological cells dynamically adapt to multiple objectives 

concurrently, facilitated by the constituent biomolecular activities, which require 

traversing from lower level molecular resolution to higher level cellular resolution. 

The multi-objective topology provides a concurrent and hierarchical view of 

biological systems, whereas a network topology provides a sequential and horizontal 

view of biological systems. However, mathematical models, which use a network 

topology, are designed to model at the population/aggregation level and are unable to 

model at the level o f molecular resolution. The Collective Intelligence approach 

challenges the assumption used in classical chemistry for its applicability in cellular 

chemistry. Further this approach focuses on biomolecular activities rather than 

biomolecules because when, where and what biomolecular activities are performed 

are crucial for adaptive dynamics in the physiological timescale. Further it can be 

used to analyse the causation of biomolecular activities in space and time.

The core of the model is driven by the principles of Swarm/Collective Intelligence 

which capture the inherent characteristics of a cell such as adaptability, robustness 

and efficacy with no external supervision (Schut 2007). Modelling and simulating 

these characteristics is essential to truly understand the mechanism by which 

intracellular solutions emerge via various biomolecular activities to meet the adaptive 

requirements o f cells. This insight is essential to understand the transformation 

between normal and pathological processes in cellular systems. Some of the 

noteworthy properties o f Collective Intelligence systems are adaptivity, emergence, 

global-local order, interaction, rules, redundancy, robustness and randomness (Schut

2007). Out o f the widely available agent based modelling and simulation toolkits, 

Repast Simphony was chosen mainly due to its rapid progress, versatility, support and 

expanding user community.
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A Collective Intelligence approach is ideal to represent the adaptability that emerges 

out o f the collective behaviour of biomolecules. Cellular Intelligence is defined as the 

ability to regulate when, where and what biomolecular activities occur to maintain 

biological equilibrium in diverse environments. Hence modelling collective 

behaviour o f biomolecules will involve representing cellular adaptation in a 

Swarm/Collective Intelligence framework. The concepts of self-organisation and 

emergence underlie swarming and these systems are inherently adaptive, robust, 

flexible, stochastic and concurrent. The first step towards modelling intracellular 

organisational behaviour is, understanding the mechanisms that foster collective 

behaviour among biomolecules. The main features of Swarm Intelligence involve 

forms of limited or minimal communications and/or interactions, large numbers of 

interacting entities with limited reach, and some global efficient, emergent or self­

organised behaviour (Fleischer 2003). Further the four basic ingredients for 

manifestation of self-organisation are (Bonabeau, Dorigo et al. 1999): Forms of 

positive feedback, forms of negative feedback, amplification of fluctuations, multiple 

interactions of multiple entities. The existing Swarm Intelligence techniques are 

unable to represent intracellular adaptive dynamics. Hence new techniques based on 

biomolecular inspired mechanisms will have to be developed. A Collective 

Intelligence framework is based on a meta-formalism, which can be used for complex 

and self-organising systems. The problem framework is based on Cellular 

Intelligence, that represents a biological cell’s ability to organise and adapt to 

perturbation and uncertainty, which reflects on the characteristics of intelligence. The 

fundamental principles utilised are self-organisation and thermodynamics to represent 

biological and physical constraints, respectively. The dynamic framework utilises 

multi-objective topology as the core of the model and describes the logic of Collective 

Intelligence, which is used to construct/deconstruct tasks for the intracellular 

organisational behaviour o f the cell in the physiological timescale.

A specification o f a Collective Intelligence framework utilised for cell modelling and 

simulation environment was developed. The purpose was to describe the model’s 

focus, resolution and complexity. The scope of the model is to study collective 

behaviour of biomolecules constituting a biological cell. The model utilises a bottom- 

up approach, where the lowest and highest levels of model representation are at the 

molecular and cellular resolution, respectively. The processes scheduled are based on
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model scenarios which can include various combinations of sub-models. The design 

concepts of the model represent emergence, adaptability, objectives, learning, 

prediction, sensing, interactions, stochasticity, collectives and observation. These 

design concepts facilitate the integration of an agent based formalism into a wider 

framework of Collective Intelligence. The sub-models specify some of the universal 

constraints, contributing to the internal organisation of a cell, such as biomolecular 

mobility, biomolecular interaction, biomolecular degradation and error frequencies in 

transcription and translation. The model specification has provided required 

functionalities to implement a SwarmCell model and conduct analysis studies from 

molecules to cell using simulation experiments.

The implementation of the model specification followed, which was used to setup and 

run various simulation experiments based on Collective Intelligence scenarios. The 

purpose of the implementation was to simulate the collective behaviour of 

biomolecules constituting a biological cell. The agents have been used as an 

ingredient for the simulation of Collective Intelligence, which is facilitated by Repast 

Simphony (Repast S), an agent based discrete event simulation toolkit. The 

architecture o f the SwarmCell simulation environment facilitates multi-scale 

modelling from the level of molecular resolution to cellular resolution, which is 

fundamental for the study of Collective Intelligence phenomena. The ability of the 

architecture to represent the shared environment is also beneficial as it can model 

indirect interactions amongst the biomolecules, which is a feature of Collective 

Intelligence. Moreover, multi-scale visualization and semantic zooming are two of 

the important functionalities represented by this architecture, which facilitates the 

analysis o f Collective Intelligence phenomena in biological cells.

The Collective Intelligence framework was evaluated by conducting a series of 

simulation experiments. Experiments were based on modelling physical and 

biological constraints involved in intracellular organisational behaviour, which affect 

the collective behaviour of biomolecules. Collective Intelligence is modelled at an 

individual level. The first experiment demonstrated by emulating empirically 

observed half-life at an individual level, rather than at the population level. This can 

be used to study intracellular self-organisation and Collective Intelligence phenomena 

which are a feature o f biomolecular degradation. The second Collective Intelligence 

experiment demonstrated that both qualitative and quantitative factors can
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compensate each other to meet a performance. The ability to measure activities of 

functional products and relate them to performance, and consequently to intracellular 

functionalities is the distinctive characteristic of this framework. Also it has shown 

the ability to represent spatial, temporal and thermodynamic constraints within the 

framework contribute to being able to make a more realistic representation of 

intracellular dynamics. The final Collective Intelligence experiment demonstrated 

how qualitative and quantitative features of competing enzyme species can have an 

inhibitory effect on overall performance. Further the simulation has made it possible 

to analyse the impact o f particular biomolecular species on performances of higher 

tasks by altering their characteristics or silencing them. Hence, the main effects of 

these factors can be used to analyse the impact of biomolecular species in the 

presence and absence of specific biomolecular species. It has also made it possible to 

model features which contribute to intracellular adaptive dynamics, such as 

coordination, cooperation and competition between diverse biomolecular species. 

Based on the results o f these experiments, the validity of the simulation experiment 

and the validity of the framework were demonstrated.

8.4 Contribution to Knowledge

The research contributes to determination of fundamental and organisational 

principles behind biological systems that define a possible design space for biological 

cells and applying these principles to build mechanistic models of biological 

phenomena. The novelty of the thesis and its major contribution to knowledge is 

based on defining cellular functions in the context of a multi-objective topology and 

implementing this principle, as an in silico model, to study performances of 

intracellular functions by measuring activities of diverse species of functional 

products. This approach represents biological adaptation at the biochemical level 

which a network topology is unable to represent. The major contribution to computing 

is identifying a novel Collective Intelligence approach based on the information 

processing strategies of biomolecules and utilising it for modelling intracellular 

activities. The contributions include:

1. Use of an agent based formalism in the wider framework of Collective 

Intelligence, which considers principles and properties of self-organising
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processes to determine fundamental and organisational principles of a 

biological cell (see Chapters 2 and 4).

2. Showing the significance of analysing biomolecular activities, rather than their 

abundance, as this provides an accurate description of a biochemical system. 

The biomolecular organisational behaviour is analysed by quantifying cellular 

functions by measuring performance of objectives/tasks formed by the 

activities of diverse functional products (see Sections 3.5.2.3 and 4.4).

3. Providing an environment to analyse organisational behaviour within a cell, 

that cannot be directly observed or empirically measured. This is achieved by 

using a simulation framework to represent functional products, capturing 

results o f their activities and providing a method to evaluate these results 

(Periyasamy, Gray et al. 2008a; Periyasamy, Kille et al. 2008) (see Chapters 5 

and 6).

4. Showing that cells have adopted a unique strategy to continuously realise their 

objectives/tasks or adaptive requirements (self-awareness) by eliminating 

obsolete information and generating new information in their internal 

organisation. The tendency for biomolecular degradation by means of random 

or regulated process and collective autocatalysis provides an ideal 

reinforcement adaptive mechanism for a cell (Periyasamy, Gray et al. 2008b) 

(see Section 2.5).

5. Implementing a novel system-theoretic approach to molecular systems biology 

by utilising biomolecular inspired multi-objective strategies from a Collective 

Intelligence perspective to capture higher level performances of a cell 

(Periyasamy, Gray et al. 2009) (see Section 7.5).

6. Using novel criteria to modularise interactions among functional products, 

which are based on performance interactions, emerging from competition and 

cooperation among the functional products (Periyasamy, Gray et al. 2009). 

Direct and inverse performance interactions can reveal the organisation of 

basic objectives/tasks into complex global tasks, in order to 

construct/deconstruct tasks between molecular resolution and cellular 

resolution (see Chapters 2 and 5).
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8.5 Further Work

“Biology and computer science - life and computation -  are related. I  am confident 

that at their interface great discoveries await those who seek them. ”

Leonard Adleman

There is an opportunity for Swarm/Collective Intelligence to unravel the hidden 

complexity of biological systems from molecules to cells. The most daunting task is 

to comprehend how biological tasks/objectives emerge as an ongoing process of 

optimisation to meet adaptive requirements, which is why this approach has the 

potential to unravel the complexity among the levels of molecular resolution and 

cellular resolution. While a scoring mechanism is essential to measure performance, a 

ranking mechanism facilitates by guiding molecular level interactions to a desired 

system level behaviour. Further, posing questions at the cellular resolution and 

seeking answers at the molecular resolution, and vice versa, is one of the challenges in 

multi-scale models. Scoring and ranking biomolecular activities will facilitate 

development of biomolecular inspired adaptive algorithms to conduct design studies. 

This is part of the fourth objective which has not yet been achieved. The purpose of 

design studies is problem solving, or seeking solutions to problems found in 

biological cells, namely remedies for pathological phases, or finding solutions, which 

engineer biological systems with new requirements. In delivering this objective we 

intend to address questions relating to engineering a biological cell as an in silico 

swarming system. These questions are: the construction and deconstruction of tasks 

from basic molecular activities to complex cellular activities of a minimal cell, the 

representation of the communication barriers amongst biomolecules; representation of 

the extremely concurrent nature of biomolecular interactions; incorporation of forms 

of positive and negative feedback and modelling amplification of fluctuations that 

give rise to solutions in a minimal cell

For this, further biomolecular optimisation strategies have to be implemented. Since 

optimisation strategies utilised in conventional swarm systems have adopted 

principles from higher levels of biological organisation, such as inter-organism 

adaptive processes, they do not represent adaptive strategies utilised by biomolecules. 

Hence, novel adaptive/optimisation strategies will have to be found and implemented
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based on biomolecular self-organising mechanisms. The Collective Intelligence based 

biomolecular optimisation approach is based on a meta-formalism, that can be used 

for complex and self-organising systems (Fleischer 2005). This formalism is based on 

three foundational components, of which, two components have been addressed in 

detail. First, the problem framework is based on Cellular Intelligence, that is a 

biological cell’s ability to organise and adapt to perturbation and uncertainty, which 

reflects on characteristics of intelligence. Second, the fundamental principles utilised 

are self-organisation and thermodynamics to represent biological and physical 

constraints respectively, which guides the intracellular organisation by reducing 

uncertainty. Third, the dynamic framework is based on the concept of Scale Invariant 

Pareto Optimality, which provides a novel way to characterise system interaction, 

behaviour and efficiency on different scales. However, as the initial stage, the multi­

objective topology was utilised as the model structure to represent the logic of 

Collective Intelligence, which can be used to construct/deconstruct tasks for 

intracellular organisational behaviour of a cell in the physiological timescale. To fully 

comprehend Pareto Optimality, numerous intracellular objectives/tasks will have to be 

implemented. This will require representing a minimal cell, in itself a significant 

challenge.

To fully comprehend the SwarmCell framework, at the least a minimal cell will have 

to be implemented. This will require significant time and personnel. However this job 

can be simplified by attempting to model an organism with the smallest gene set. This 

framework can be extended for design studies such as for synthetic biology. There is 

growing interest in Synthetic Biology to identify the minimal genes require for a 

living organism. One group is focused on constructing chemical systems capable of 

replicating and evolving by being fed by small molecule nutrients (Forster and Church 

2006). The Synthetic biology group at J. Craig Venter Institute has created the first 

synthetic bacterium species Mycoplasma laboratorium by gradually knocking out 

genes from Mycoplasma genitalium (Glass, Assad-Garcia et al. 2006), which is the 

natural free living organism with the smallest number of genes. However a recently 

discovered bacterial species Carsonella ruddi (an endosymbiont) is known to have the 

smallest genome, with an estimated 182 genes (Nakabachi, Yamashita et al. 2006).

The key features to be addressed, once a minimal cell is in place, are: the production 

of solutions and their persistence; emergent properties such as proactive behaviour
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and robustness of a cell; modelling qualitative changes in collective behaviour of 

functional products via bifurcations, which produce new stable solutions due to 

perturbations; and modelling multi-stability, where for a given set of constraints, the 

systems can reach different stable states depending on initial conditions and random 

fluctuations (Gamier, Gautrais et al. 2007). Modelling these features will require 

development of biomolecular inspired adaptive algorithms to understand how novel 

solutions emerge based on the initial configuration and, physical and organisational 

constraints of a biological cell. This can also facilitate studying how cancer cells 

acquire unique capabilities by converging from various preliminary conditions during 

the process o f adaptation within a multi-cellular system.



Appendix A 

Publications

■ Periyasamy, S., P. Kille and A. Gray. 2008. Biological Complexity in the 

Agent World, in Proceedings o f  the IADIS International Conference Applied 

Computing, Portugal, 10-13 April 2008. pp. 171-178.

Agent-based modelling and simulation (ABMS) are widely used to model complex 

systems in areas such as sociology, business, economics and ecology. In contrast, the 

use of ABMS to model biological complexity that range in scale from molecules to 

organisms is still in its infancy. Complex systems emerge due to local interactions 

between its simple entities and their environment. Modelling biological entities and 

their interactions provides significant challenges associated with multi-scaled spatial 

and temporal nature of the systems involved. We propose a novel prototype cell 

model implemented using the principles of Swarm/Collective Intelligence. This paper 

first describes the functional and non-functional requirements to implement 

“SwarmCell” - an Agent Based Cell Modelling and Simulation (ABCMS) 

environment that can be used to model and simulate local interactions between bio­

molecules and their environment to predict higher level emergent structures. The 

paper then describes the design and the progress made in implementing the ABCMS 

using Repast Simphony - a general purpose ABMS environment, to represent 

biological complexity from molecules to cells.

■ Periyasamy, S., A. Gray and P. Kille. 2008. The Epigenetic Algorithm, in 

Proceedings o f  the IEEE Congress on Evolutionary Computation (IEEE 

World Congress on Computational Intelligence), Hong Kong, 1-6 June 2008. 

pp. 3228-3236.

Evolutionary Computation (EC) paradigms are inspired by the optimization strategies 

utilized by biological systems. While these strategies can be found in every level of 

biological organization, almost all of the EC techniques which comprise techniques
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from Evolutionary Algorithm (EA) to Swarm Intelligence (SI) have been inspired by 

organism level optimization strategies. While EA is based on trans-generational 

genetic adaptation of organisms (biologically inspired), SI is mainly based on intra- 

generational collective behavioural adaptation of organisms (socially inspired). This 

paper describes the optimization strategies that bio-molecules utilize both for intra- 

generational and trans-generational adaptation of biological cells. These adaptive 

strategies which are known as epigenetic mechanisms emerged long before any other 

biological strategy and form the basis for Epigenetic Algorithms (EGA). Further, the 

paper proposes an intra-generational EGA based on bio-molecular degradation and 

autocatalysis which are ubiquitous cellular processes and are pivotal for the adaptive 

dynamics and evolution of intelligent cellular organization.

■ Periyasamy, S., A. Gray and P. Kille. 2008. A Collective Intelligence

Approach to Modelling Intelligent Cellular Organisation, in Proceedings o f  

the International Conference on Systems Biology, Gothenburg, Sweden, 23-27 

August 2008. pp. 152 - 153.

Objective: The aim of this approach is to adopt principles of Collective Intelligence 

(Cl) in representing the intelligent cellular organisation. A biological cell consists of 

various molecular species confined to distinct locations in the cell. These molecules 

have no centralised control and use a distributed problem solving strategy to sustain 

the cellular organisation. The main features of Cl that we strive to implement are 

limited communication and interactions, large number of interacting entities with 

limited contact and some globally efficient, emergent or self-organising behaviour. 

We implement these features using an Agent Based Modelling and Simulation 

(ABMS) environment to capture the cellular level phenomena. Further we intend to 

progress towards developing an in silico based synthetic minimal biological cell.

Results: A prototype model using the above approach has been implemented using an 

ABMS toolkit. The reactive agents represent bio-molecules and the logic for these 

agents is much simpler than that of intelligent agents. The rules that depict the goals 

of the bio-molecules, aim to produce generalisable outcomes of the heterogeneous 

swarm. Although deliberately designing swarms to do specific cellular activities may
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sound interesting and satisfying, it will be incapable of generating generalised 

methods to capture all cellular activities.

Conclusion: The collective intelligence approach to modelling intelligent cellular 

organisation is the ideal way of capturing intelligent cellular level behaviour. This 

behaviour is fundamental to capturing the adaptive dynamics that occurs in a cell’s 

lifecycle. The most daunting task is to comprehend how biological structures emerge 

as an ongoing process of optimisation to occupy functional niches. This optimisation 

is powered by various levels of selection in the biological hierarchy. Further this 

approach could facilitate in capturing the mechanistic transition between biological 

and pathological processes at the cellular level and assess the impact of various 

molecular species on cellular level activities.

■ Periyasamy, S., A. Gray and P. Kille. 2009. Multiscale Adaptive Dynamics 

from Molecules to Cells, in Proceedings o f  the Foundations o f  Systems 

Biology in Engineering, Denver, Colorado, USA, 9-12 August 2009: 

Omnipress, pp. 105 -108.

The paper proposes a novel system-theoretic approach to molecular systems biology 

by utilizing biomolecular inspired multi-objective optimization strategies from a 

collective intelligence perspective to capture the higher level performances of the cell. 

Based on the adaptive nature of biological systems and to achieve the aim of 

associating biological processes to the evolutionary mechanisms, the biological cell is 

represented in a multi dimensional problem, function and fitness space to analyze the 

multiple conflicting performances of biochemical activities. This approach could 

justify how cellular adaptation deals with multiple objectives simultaneously and 

specifies multi criteria conditions for the adaptation of intelligent cellular 

organisation. Further, it emphasises on optimization based analysis which deviates 

from the conventional mechanisms of analysing higher level cellular behaviour that 

uses various biochemical network based analysis techniques and methodologies.
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Appendix B 

The Dependencies Between Metabolites and 

Reactions

The com plex dependencies o f  metabolites involved in the TCA cycle (P: Produced; C:

Consumed)

7 S
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A/G° = -1428.93 kJm ol'1
NAD+
AjG° = 1038.86 kJm ol'1

C C c

NADH
AjG° = 1101.47 kJmoT1

P P p

FAD
AjG° = 1238.65 kJm ol'1

c

f a d h 2
AjG° = 1279.68 kJm oT1

p

Pi
AjG° = -1058.56 kJmol*1

c

co2
AjG° = -394.36 kJ m ol'1

P P

The chemical reactions in TCA cycle

1 Acetyl CoA + oxaloacetate + H20  —► citrate + CoA + 
H+

Citrate synthetase

2 Citrate <-► cis-aconitate + H20 Aconitase
3 cis-Aconitate + H20  <-+ isocitrate Aconitace
4 Isocitrate + NAD+ a-Keto-glutarate + C 0 2 + 
NADH

Isocitrate dehydrogenase

5 a-Keto-glutarate + NAD+ + CoA *-* succinyl CoA + a-Keto-glutarate
C 0 2 + NADH dehydrogenase
6 Succinyl CoA + Pj + ADP *-*■ succinate + ATP + CoA Succinyl CoA syntetase
7 Succinate + FAD fumarate + FADH2 Succinate dehydrogenase
8 Fumarate + H20  <-► malate Fumarase
9 Malate + NAD+ oxaloacetate + NADH + H+ Malate dehydrogenase
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Appendix C 

The Epigenetic Mechanisms

The trans-generational epigenetic mechanisms (Source (Allis, Jenuwein et al. 2006; 

Tost 2008))

Gene silencing Transcriptional gene silencing is a result of 

histone modifications. Post-transcriptional 

gene silencing is a result of mRNA 

destruction (i.e. RNAi)

Paramutation Characteristic of a gene is remembered and 

observed in later generations, even if that 

particular version of the gene is no longer 

present. In is a RNA directed inheritance 

mechanism

Bookmarking Transmit cellular memory of patterns of 

gene expression in a cell.

Genomic imprinting Certain gene are expressed in a parent of 

origin specific manner (i.e. gene expression 

occurs from only one allele -  not both 

allele).

Position effect The effect on the expression of a gene when 

its location in a chromosome is changed.

Reprogramming Remodeling of epigenetic markers (DNA 

methylation) during mammalian
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development.

Transvection Interaction between corresponding allele of 

homologous chromosome which can lead to 

either gene activation or repression

Maternal effect Genotype of mother is expressed in 

phenotype of its offspring.

X-inactivation On of the two copies of the x-chromosome 

present in female mammals is inactivated.
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Appendix D 

The Features of Repast Simphony

Repast Simphony is a free and open source agent-based modelling toolkit that

simplifies model creation and use. Repast Simphony offers users a rich variety of

features including the following (Adapted from (Repast Development Team 2008)):

• Fluid model component development using any mixture of Java, Groovy, 

and flowcharts in each project;

•  A pure Java point-and-click model execution environment that includes built-in 

results logging and graphing tools as well as automated connections to a variety 

of optional external tools including the R statistics

environment, ORA and Pajek network analysis plugins, A live agent SQL query 

tool plugin, the VisAD scientific visualization package, the Weka data mining 

platform, many popular spreadsheets, the MATLAB computational mathematics 

environment, and the iReport visual report designer;

• An extremely flexible hierarchically nested definition of space including the 

ability to do point-and-click and modeling and visualization of 2D 

environments; 3D environments; networks including full integration with 

the JUNG network modeling library as well as Microsoft Excel spreadsheets 

and UCINET DL file importing; and geographical spaces including 2D and 3D 

Geographical Information Systems (GIS) support;

• A range o f data storage "freeze dryers" for model check pointing and restoration 

including XML file storage, text file storage, and database storage;

• A fully concurrent multithreaded discrete event scheduler;

• Libraries for genetic algorithms, neural networks, regression, random number 

generation, and specialized mathematics;
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• An automated Monte Carlo simulation framework which supports multiple 

modes of model results optimization;

• Built-in tools for integrating external models;

• Distributed computing with Terracotta;

• Full object-orientation;

• Optional end-to-end XML simulation

• A point-and-click model deployment system; and

• Availability on virtually all modem personal computing platforms including 

Windows, Mac OS, and Linux.
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Appendix E 

The Results of Simulation Experiments

(a) The responses of the dependent variable for simulating biomolecular 
degradation

D e s i g n  P o i n t s  I t e r a t i o n s  ( T i m e  -  m i n u t e s )

1/2 1/4 1/S

Series 1 Simulation run 1 23.20 33.00 38.15

(Average life based) Simulation run 2 23.00 34.00 39.50

Simulation run 3 22.50 33.50 39.15

Simulation run 4 22.50 34.00 38.80

Simulation run 5 23.40 33.80 39.00

Series 2 Simulation run 1 28.75 59.00 87.20

(Probability based) Simulation run 2 33.70 64.00 94.00

Simulation run 3 30.00 62.30 95.00

Simulation run 4 28.50 58.85 87.00

Simulation run 5 30.30 58.80 87.40
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(b) The responses of the dependent variable for simulating biochemical reaction

D e s ig n  P o in t s  R e s p o n s e  ( T i m e  - 111s)

Series 1 Simulation run 1 483.5

(+»+,+) Simulation run 2 483.5

Simulation run 3 483.7

Simulation run 4 483.5

Simulation run 5 483.5

Average 483.54

Series 2 Simulation run 1 268.5

(+»+,-) Simulation run 2 268.5

Simulation run 3 268

Simulation run 4 268.5

Simulation run 5 268.5

Average 268.4

Series 3 Simulation run 1 848

(+>->+) Simulation run 2 848.15

Simulation run 3 846.9

Simulation run 4 847.5

Simulation run 5 848.7

Average 847.85

Series 4 Simulation run 1 473.3

(+>-»-) Simulation run 2 471.6

Simulation run 3 472

Simulation run 4 473.68

Simulation run 5 472.5

Average 472.62

Series 5 Simulation run 1 966.2

(-,+»+) Simulation run 2 965.8

Simulation run 3 966

Simulation run 4 965.8

Simulation run 5 966
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Average 965.96

Series 6 Simulation run 1 535.5

Simulation run 2 535.5

Simulation run 3 536

Simulation run 4 536

Simulation run 5 535.5

Average 535.7

Series 7 Simulation run 1 1712

Simulation run 2 1709.03

Simulation run 3 1711

Simulation run 4 1715.35

Simulation run 5 1715

Average 1712.48

Series 8 Simulation run 1 955.5

Simulation run 2 960

Simulation run 3 961

Simulation run 4 957.5

Simulation run 5 956

Average 958

The effects of change in factor levels with respect to iterations

Series 1 (+,+,+) 483.54 483.54 483.54 483.54
Series 2 (+,+,-) 268.4 268.4 -268.4 268.4
Series 3 (+,-,+) 847.85 -847.85 847.85 847.85
Series 4 472.62 -472.62 -472.62 472.62
Series 5 (-,+,+) -965.96 965.96 965.96 965.96
Series 6 -535.70 535.70 -535.70 535.70
Series 7 (-,-»+) -1712.48 -1712.48 1712.48 1712.48
Series 8 -958 -958 -958 958
High 518.1 563.4 1002.46

Low 1043.04 997.74 558.68

Effects from high to low -524.94 -434.34 443.78
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(c) The variables and their value ranges used for simulation competition and

cooperation in metabolic pathway

D e s i g n  P o i n t s  R e s p o n s e

Series 1 Simulation run 1 25,022 4000 85.022 69.00

(+,+,+,+) Simulation run 2 25,021 4000 85.021 69.00

Simulation run 3 25,021 4000 85.021 69.00

Average 25,021.33 4000 85,021.33 69.00

Series 2 Simulation run 1 2,796 26,275 62.796 91.275

(+,+,+,-) Simulation run 2 2,798 26,271 62.798 91.271

Simulation run 3 2,801 26,264 62.801 91.264

Average 2,798.33 26,270 62,798.33 91,270

Series 3 Simulation run 1 25,823 3,200 85,823 68.200

(+,+,-,+) Simulation run 2 25,822 3,200 85,822 68.200

Simulation run 3 25,825 3,200 85.825 68.200

Average 25,823.33 3,200 85,823.33 68,200

Series 4 Simulation run 1 3527 25,548 63.527 90.548

Simulation run 2 3527 25,545 63.527 90.545

Simulation run 3 3521 25,551 63.521 90.551

Average 3525 25,548 63,525 90,548

Series 5 Simulation run 1 26,905 2,100 86.905 67.100

(+,-,+,+) Simulation run 2 26,916 2,100 86.916 67.100

Simulation run 3 26,908 2,100 86.908 67.100

Average 26909.66 2,100 86,909.66 67,100

Series 6 Simulation run 1 5,081 23,968 65.081 88.968

Simulation run 2 5,077 23,967 65.077 88.967

Simulation run 3 5,081 23,965 65.081 88.965
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Average 5079.66 23,966.67 65,079.66 88,967

Series 7 Simulation run 1 27,309 1,700 87,309 66.700

Simulation run 2 27,310 1,700 87,310 66.700

Simulation run 3 27,313 1,700 87,313 66.700

Average 27,310.66 1,700 87,310.66 66,700

Series 8 Simulation run 1 6236 22,813 66.236 87.813

Simulation run 2 6223 22,823 66.223 87.823

Simulation run 3 6241 22,808 66.241 87.808

Average 6233.33 22,814.67 66,233.33 87,815

Series 9 

(-,+,+,+)

Simulation run 1 22,012 7,000 82.012 72.000

Simulation run 2 22,009 7,000 82.009 72.000

Simulation run 3 22,012 7,000 82.012 72.000

Average 22011 7,000 82,012 72,000

Series 10 Simulation run 1 1,481 27,596 61.481 92.596

Simulation run 2 1,480 27,593 61.480 92.593

Simulation run 3 1,483 27,591 61.483 92.591

Average 1481.33 27,593.33 61,481.33 92,593

Series 11 Simulation run 1 23,302 5,770 83.302 70.770

Simulation run 2 23,302 5,776 83.302 70.776

Simulation run 3 23,305 5,767 83.305 70.767

Average 23303 5,771 83,303 70,771

Series 12 Simulation run 1 1,878 27,192 61.878 92.192

Simulation run 2 1,871 27,202 61.871 92.202

Simulation run 3 1,872 27,195 61.872 92.195

Average 1873.66 27,196.33 61,873.66 92,196

Series 13 Simulation run 1 25,019 3,999 85,019 68.999

Simulation run 2 25,017 4,000 85,017 69.000

Simulation run 3 25,019 4,000 85.019 69.000

Average 25018.33 3,999.67 85,018.33 69,000

Series 14 

(->-»+>-)

Simulation run 1 2,786 26,253 62.786 91.253

Simulation run 2 2,786 26,260 62.786 91.260

Simulation run 3 2,784 26.256 62.784 91.256
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Average 2,785.33 26,256.33 62,785.33 91,256

Series 15 Simulation run 1 25,814 3,200 85,814 68.200

Simulation run 2 25,816 3,200 85,816 68.200

Simulation run 3 25,817 3,200 85,817 68.200

Average 25,815.66 3,200 85,815.66 68,000

Series 16 Simulation run 1 3,495 25,548 63.495 90.548

Simulation run 2 3,503 25,542 63.503 90.542

Simulation run 3 3,492 25,557 63.492 90.557

Average 3,496.66 25,549 63,496.66 90,549

The effects o f change in factor levels with respect to the performance of Chorismate

Mutase

Series 1 (+,+,+,+) +25,021.33 +25,021.33 +25,021.33 +25,021.33

Series 2(+,+,+,-) +2,798.33 +2,798.33 +2,798.33 -2,798.33

Series 3 (+,+,-,+) +25,823.33 +25,823.33 -25,823.33 +25,823.33

Series 4(+,+,-,-) +3525 +3525 -3525 -3525

Series 5(+,-,+,+) +26909.66 -26909.66 +26909.66 +26909.66

Series 6(+,-,+,-) +5079.66 -5079.66 +5079.66 -5079.66

Series 7(+,-,-,+) +27310.66 -27310.66 -27310.66 +27310.66

Series 8(+,-,-,-) +6233.33 -6233.33 -6233.33 -6233.33

Series 9(-,+,+,+) -22011 +22011 +22011 +22011

Series 10(-,+,+,-) -481.33 +481.33 +481.33 -481.33

Series 11 -23303 +23303 -23303 +23303

Series 12(-,+,-,-) -1873.66 +1873.66 -1873.66 -1873.66

Series 13(-,-,+,+) -25018.33 -25018.33 +25018.33 +25018.33

Series 14(-,-,+,-) -2785.33 -2785.33 +2785.33 -2785.33

Series 15(-, -25815.66 -25815.66 -25815.66 +25815.66

Series 16(-, -3496.66 -3496.66 -3496.66 -3496.66

High 122701.30/8 104836.98/8 110104.97/8 201212.97/8
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= 15,337.33 = 13,104.62 = 13763.12 = 25151.62

Low 104784.97/8

=13,098.12

122649.29/8

=15331.16

117381.3/8 

= 14,672.66

26273.3/8

=3284.16

Effects from high to low 

Average response change

17916.33/8 

= 2239.21

-17812.31/8 

= -2226.54

-7276.33/8 

= -909.54

174939.67/8 

= 21867.46
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The Calculation of Experimental Parameters

F: 1 - The relationship between concentration and molecules in specific volumes

mim m m ^^m
1 pm3 10 pm3 100 pm3 1000 pm3 10000 pm3

In M 6.022 x 1 0 1 6.022 x 10° 6.022 x 101 6.022 x 102 6.022 x 103
10 nM 6.022 x 10° 6.022 x 101 6.022 x 102 6.022 x 103 6.022 x 104
100 nM 6.022 x 101 6.022 x 102 6.022 x 103 6.022 x 104 6.022 x 105
1 |iM 6.022 x 102 6.022 x 103 6.022 x 104 6.022 x 10s 6.022 x 106
10 pM 6.022 x 103 6.022 x 104 6.022 x 105 6.022 x 106 6.022 x 107
100 pM 6.022 x 104 6.022 x 105 6.022 x 106 6.022 x 107 6.022 x 108
Im M 6.022 x 105 6.022 x 106 6.022 x 107 6.022 x 108 6.022 x 109
10 mM 6.022 x 106 6.022 x 107 6.022 x 108 6.022 x 109 6.022 x 1010
lOOmM 6.022 x 107 6.022 x 108 6.022 x 109 6.022 x 1010 6.022 x 1011
1M 6.022 x 108 6.022 x 109 6.022 x 1010 6.022 x 1011 6.022 x 1012

F:2 - The relationship between concentration and average distance amongst molecules

1 nM 1.469 pm
10 nM 0.682 pm
100 nM 0.316 pm
1 pM 0.1469 pm
10 pM 0.0682 pm
100 pM 0.0316 pm
1 mM 0.01469 pm
10 mM 0.00682 pm
lOOmM 0.00316 pm
1M 0.001469 pm



Appendix

F:3 - The relationship between diffusion constants and distance travelled in specific
time steps

1 2.44949 0.07746 0.002449 40 15.49193 0.489898 0.015492
2 3.464102 0.109545 0.003464 41 15.68439 0.495984 0.015684
3 4.242641 0.134164 0.004243 42 15.87451 0.501996 0.015875
4 4.898979 0.154919 0.004899 43 16.06238 0.507937 0.016062
5 5.477226 0.173205 0.005477 44 16.24808 0.513809 0.016248
6 6 0.189737 0.006 45 16.43168 0.519615 0.016432
7 6.480741 0.204939 0.006481 46 16.61325 0.525357 0.016613
8 6.928203 0.219089 0.006928 47 16.79286 0.531037 0.016793
9 7.348469 0.232379 0.007348 48 16.97056 0.536656 0.016971

10 7.745967 0.244949 0.007746 49 17.14643 0.542218 0.017146
11 8 .124038 0.256905 0.008124 50 17.32051 0.547723 0.017321
12 8.485281 0.268328 0.008485 51 17.49286 0.553173 0.017493
13 8.831761 0.279285 0.008832 52 17.66352 0.55857 0.017664
14 9.165151 0.289828 0.009165 53 17.83255 0.563915 0.017833
15 9.486833 0.3 0.009487 54 18 0.56921 0.018
16 9.797959 0.309839 0.009798 55 18.1659 0.574456 0.018166
17 10.0995 0.319374 0.0101 56 18.3303 0.579655 0.01833
18 10.3923 0.328634 0.010392 57 18.49324 0.584808 0.018493
19 10.67708 0.337639 0.010677 58 18.65476 0.589915 0.018655
20 10.95445 0.34641 0.010954 59 18.81489 0.594979 0.018815
21 11.22497 0.354965 0.011225 60 18.97367 0.6 0.018974
22 11.48913 0.363318 0.011489 61 19.13113 0.604979 0.019131
23 11.74734 0.371484 0.011747 62 19.2873 0.609918 0.019287
24 12 0.379473 0.012 63 19.44222 0.614817 0.019442
25 12.24745 0.387298 0.012247 64 19.59592 0.619677 0.019596
26 12.49 0.394968 0.01249 65 19.74842 0.6245 0.019748
27 12.72792 0.402492 0.012728 66 19.89975 0.629285 0.0199
28 12.96148 0.409878 0.012961 67 20.04994 0.634035 0.02005
29 13.19091 0.417133 0.013191 68 20.19901 0.638749 0.020199
30 13.41641 0.424264 0.013416 69 20.34699 0.643428 0.020347
31 13.63818 0.431277 0.013638 70 20.4939 0.648074 0.020494
32 13.85641 0.438178 0.013856 71 20.63977 0.652687 0.02064
33 14.07125 0.444972 0.014071 72 20.78461 0.657267 0.020785
34 14.28286 0.451664 0.014283 73 20.92845 0.661816 0.020928
35 14.49138 0.458258 0.014491 74 21.07131 0.666333 0.021071

36 14.69694 0.464758 0.014697 75 21.2132 0.67082 0.021213
37 14.89966 0.471169 0.0149 76 21.35416 0.675278 0.021354

38 15.09967 0.477493 0.0151 77 21.49419 0.679706 0.021494

39 15.29706 0.483735 0.015297 78 21.63331 0.684105 0.021633
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79 21.77154 0.688477 0.021772 90 23.2379 0.734847 0.023238
80 21.9089 0.69282 0.021909 91 23.36664 0.738918 0.023367
81 22.04541 0.697137 0.022045 92 23.49468 0.742967 0.023495
82 22.18107 0.701427 0.022181 93 23.62202 0.746994 0.023622
83 22.31591 0.705691 0.022316 94 23.74868 0.750999 0.023749
84 22.44994 0.70993 0.02245 95 23.87467 0.754983 0.023875
85 22.58318 0.714143 0.022583 96 24 0.758947 0.024
86 22.71563 0.718331 0.022716 97 24.12468 0.762889 0.024125
87 22.84732 0.722496 0.022847 98 24.24871 0.766812 0.024249
88 22.97825 0.726636 0.022978 99 24.37212 0.770714 0.024372
89 23.10844 0.730753 0.023108 100 24.4949 0.774597 0.024495

F:4 - The relationship between diffusion constants and the time required to travel a
specific distance

1 0.001667 0.006667 0.041667 0.166667 16.66667 1666.667 166666.7
2 0.000833 0.003333 0.020833 0.083333 8.333333 833.3333 83333.33
3 0.000556 0.002222 0.013889 0.055556 5.555556 555.5556 55555.56
4 0.000417 0.001667 0.010417 0.041667 4.166667 416.6667 41666.67
5 0.000333 0.001333 0.008333 0.033333 3.333333 333.3333 33333.33
6 0.000278 0.001111 0.006944 0.027778 2.777778 277.7778 27777.78
7 0.000238 0.000952 0.005952 0.02381 2.380952 238.0952 23809.52
8 0.000208 0.000833 0.005208 0.020833 2.083333 208.3333 20833.33
9 0.000185 0.000741 0.00463 0.018519 1.851852 185.1852 18518.52

10 0.000167 0.000667 0.004167 0.016667 1.666667 166.6667 16666.67
11 0.000152 0.000606 0.003788 0.015152 1.515152 151.5152 15151.52
12 0.000139 0.000556 0.003472 0.013889 1.388889 138.8889 13888.89
13 0.000128 0.000513 0.003205 0.012821 1.282051 128.2051 12820.51
14 0.000119 0.000476 0.002976 0.011905 1.190476 119.0476 11904.76
15 0.000111 0.000444 0.002778 0.011111 1.111111 111.1111 11111.11
16 0.000104 0.000417 0.002604 0.010417 1.041667 104.1667 10416.67
17 9.8E-05 0.000392 0.002451 0.009804 0.980392 98.03922 9803.922
18 9.26E-05 0.00037 0.002315 0.009259 0.925926 92.59259 9259.259
19 8.77E-05 0.000351 0.002193 0.008772 0.877193 87.7193 8771.93
20 8.33E-05 0.000333 0.002083 0.008333 0.833333 83.33333 8333.333
21 7.94E-05 0.000317 0.001984 0.007937 0.793651 79.36508 7936.508
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22 7.58E-05 0.000303 0.001894 0.007576 0.757576 75.75758 7575.758
23 7.25E-05 0.00029 0.001812 0.007246 0.724638 72.46377 7246.377
24 6.94E-05 0.000278 0.001736 0.006944 0.694444 69.44444 6944.444
25 6.67E-05 0.000267 0.001667 0.006667 0.666667 66.66667 6666.667
26 6.41E-05 0.000256 0.001603 0.00641 0.641026 64.10256 6410.256
27 6.17E-05 0.000247 0.001543 0.006173 0.617284 61.7284 6172.84
28 5.95E-05 0.000238 0.001488 0.005952 0.595238 59.52381 5952.381
29 5.75E-05 0.00023 0.001437 0.005747 0.574713 57.47126 5747.126
30 5.56E-05 0.000222 0.001389 0.005556 0.555556 55.55556 5555.556
31 5.38E-05 0.000215 0.001344 0.005376 0.537634 53.76344 5376.344
32 5.21E-05 0.000208 0.001302 0.005208 0.520833 52.08333 5208.333
33 5.05E-05 0.000202 0.001263 0.005051 0.505051 50.50505 5050.505
34 4.9E-05 0.000196 0.001225 0.004902 0.490196 49.01961 4901.961
35 4.76E-05 0.00019 0.00119 0.004762 0.47619 47.61905 4761.905
36 4.63E-05 0.000185 0.001157 0.00463 0.462963 46.2963 4629.63
37 4.5E-05 0.00018 0.001126 0.004505 0.45045 45.04505 4504.505
38 4.39E-05 0.000175 0.001096 0.004386 0.438596 43.85965 4385.965
39 4.27E-05 0.000171 0.001068 0.004274 0.42735 42.73504 4273.504
40 4.17E-05 0.000167 0.001042 0.004167 0.416667 41.66667 4166.667
41 4.07E-05 0.000163 0.001016 0.004065 0.406504 40.65041 4065.041
42 3.97E-05 0.000159 0.000992 0.003968 0.396825 39.68254 3968.254
43 3.88E-05 0.000155 0.000969 0.003876 0.387597 38.75969 3875.969
44 3.79E-05 0.000152 0.000947 0.003788 0.378788 37.87879 3787.879
45 3.7E-05 0.000148 0.000926 0.003704 0.37037 37.03704 3703.704
46 3.62E-05 0.000145 0.000906 0.003623 0.362319 36.23188 3623.188
47 3.55E-05 0.000142 0.000887 0.003546 0.35461 35.46099 3546.099
48 3.47E-05 0.000139 0.000868 0.003472 0.347222 34.72222 3472.222
49 3.4E-05 0.000136 0.00085 0.003401 0.340136 34.01361 3401.361
50 3.33E-05 0.000133 0.000833 0.003333 0.333333 33.33333 3333.333

51 3.27E-05 0.000131 0.000817 0.003268 0.326797 32.67974 3267.974

52 3.21E-05 0.000128 0.000801 0.003205 0.320513 32.05128 3205.128
53 3.14E-05 0.000126 0.000786 0.003145 0.314465 31.44654 3144.654

54 3.09E-05 0.000123 0.000772 0.003086 0.308642 30.8642 3086.42

55 3.03E-05 0.000121 0.000758 0.00303 0.30303 30.30303 3030.303

56 2.98E-05 0.000119 0.000744 0.002976 0.297619 29.7619 2976.19

57 2.92E-05 0.000117 0.000731 0.002924 0.292398 29.23977 2923.977

58 2.87E-05 0.000115 0.000718 0.002874 0.287356 28.73563 2873.563

59 2.82E-05 0.000113 0.000706 0.002825 0.282486 28.24859 2824.859

60 2.78E-05 0.000111 0.000694 0.002778 0.277778 27.77778 2777.778

61 2.73E-05 0.000109 0.000683 0.002732 0.273224 27.3224 2732.24

62 2.69E-05 0.000108 0.000672 0.002688 0.268817 26.88172 2688.172

63 2.65E-05 0.000106 0.000661 0.002646 0.26455 26.45503 2645.503

64 2.6E-05 0.000104 0.000651 0.002604 0.260417 26.04167 2604.167

65 2.56E-05 0.000103 0.000641 0.002564 0.25641 25.64103 2564.103
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66 2.53E-05 0.000101 0.000631 0.002525 0.252525 25.25253 2525.253
67 2.49E-05 9.95E-05 0.000622 0.002488 0.248756 24.87562 2487.562
68 2.45E-05 9.8E-05 0.000613 0.002451 0.245098 24.5098 2450.98
69 2.42E-05 9.66E-05 0.000604 0.002415 0.241546 24.15459 2415.459
70 2.38E-05 9.52E-05 0.000595 0.002381 0.238095 23.80952 2380.952
71 2.35E-05 9.39E-05 0.000587 0.002347 0.234742 23.47418 2347.418
72 2.31E-05 9.26E-05 0.000579 0.002315 0.231481 23.14815 2314.815
73 2.28E-05 9.13E-05 0.000571 0.002283 0.228311 22.83105 2283.105
74 2.25E-05 9.01E-05 0.000563 0.002252 0.225225 22.52252 2252.252
75 2.22E-05 8.89E-05 0.000556 0.002222 0.222222 22.22222 2222.222
76 2.19E-05 8.77E-05 0.000548 0.002193 0.219298 21.92982 2192.982
77 2.16E-05 8.66E-05 0.000541 0.002165 0.21645 21.64502 2164.502
78 2.14E-05 8.55E-05 0.000534 0.002137 0.213675 21.36752 2136.752
79 2.11E-05 8.44E-05 0.000527 0.00211 0.21097 21.09705 2109.705
80 2.08E-05 8.33E-05 0.000521 0.002083 0.208333 20.83333 2083.333
81 2.06E-05 8.23E-05 0.000514 0.002058 0.205761 20.57613 2057.613
82 2.03E-05 8.13E-05 0.000508 0.002033 0.203252 20.3252 2032.52
83 2.01E-05 8.03E-05 0.000502 0.002008 0.200803 20.08032 2008.032
84 1.98E-05 7.94E-05 0.000496 0.001984 0.198413 19.84127 1984.127
85 1.96E-05 7.84E-05 0.00049 0.001961 0.196078 19.60784 1960.784
86 1.94E-05 7.75E-05 0.000484 0.001938 0.193798 19.37984 1937.984
87 1.92E-05 7.66E-05 0.000479 0.001916 0.191571 19.15709 1915.709
88 1.89E-05 7.58E-05 0.000473 0.001894 0.189394 18.93939 1893.939
89 1.87E-05 7.49E-05 0.000468 0.001873 0.187266 18.72659 1872.659
90 1.85E-05 7.41E-05 0.000463 0.001852 0.185185 18.51852 1851.852

91 1.83E-05 7.33E-05 0.000458 0.001832 0.18315 18.31502 1831.502
92 1.81E-05 7.25E-05 0.000453 0.001812 0.181159 18.11594 1811.594

93 1.79E-05 7.17E-05 0.000448 0.001792 0.179211 17.92115 1792.115
94 1.77E-05 7.09E-05 0.000443 0.001773 0.177305 17.7305 1773.05

95 1.75E-05 7.02E-05 0.000439 0.001754 0.175439 17.54386 1754.386

96 1.74E-05 6.94E-05 0.000434 0.001736 0.173611 17.36111 1736.111

97 1.72E-05 6.87E-05 0.00043 0.001718 0.171821 17.18213 1718.213

98 1.7E-05 6.8E-05 0.000425 0.001701 0.170068 17.0068 1700.68

99 1.68E-05 6.73E-05 0.000421 0.001684 0.16835 16.83502 1683.502

100 1.67E-05 6.67E-05 0.000417 0.001667 0.166667 16.66667 1666.667
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