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A bstract

We present a new numerical treatment of the vorticity-velocity form of the governing 

equations of fluid motion, based on the application of compact finite differences. The 

mathematical formulation of these equations is discussed, as are the techniques used to 

discretise them. The solver thus obtained is validated against analytical solutions to model 

problems, and against the more physical test case of developing Tollmien-Schlichting waves 

in a parallelised Blasius boundary layer.

We then use this solver to examine a reduced-order model of streaks in a turbulent 

boundary layer. The properties of the streaks produced by the solver are discussed, 

with a particular focus on the means of their generation.

Following this, we examine the use of spanwise oscillation of the wall, which is known 

to reduce drag in turbulent boundary layers. The parameters of the oscillation (specifi

cally its magnitude, its frequency and the phase difference between the wall motion and 

the streak forcing) are altered and their influence on streak development investigated. It 

is found that in certain cases, the modification to the basis flow by wall oscillation means 

that the perturbations can grow exponentially. We also investigate the effects of altering 

the pattern of oscillation from sinusoidal in time to a smoothed square wave or sawtooth 

wave. Finally, the results are reviewed and conclusions drawn, and possible extensions to 

the research presented in the thesis are suggested.
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Chapter 1 

Introduction &; background

1.1 Turbulent boundary layers

Despite many years of investigation, our understanding of turbulent flow remains rela

tively incomplete; its nature and behaviour are arguably among the last major unsolved 

problems in classical physics. A particular area of interest is the turbulent boundary layer 

(TBL). At low to moderate Reynolds numbers, boundary layers are laminar, with layers of 

fluid at different heights from the wall travelling at different speeds and slipping smoothly 

over one another. At sufficiently high Reynolds numbers, boundary layer flow undergoes 

transition and becomes highly chaotic, with large spatial and tem poral fluctuations at a 

wide range of scales. These fluctuations are physically associated with flow features called 

eddies, which exist at a range of spatial and temporal scales. The largest are on the scale 

of the boundary layer thickness; the smallest are on the ‘Kolmogorov microscales’, where 

the kinetic energy of the turbulent fluctuations is dissipated into heat.

Because of these chaotic fluctuations, there are no straightforward analytic solutions to 

the equations governing fluid motion for turbulent flows comparable to the familiar lami

nar flow solutions such as the Blasius and Falkner-Skan boundary layers or Poiseuille and 

Couette channel flows (although analytic solutions of a form resembling the structures
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found in turbulent boundary layers are attested in the literature [78]). In fact, it is very 

difficult to treat turbulent boundary layer flows with the usual governing equations at all, 

and we are normally forced to take a different tack: either to attem pt numerical solution, 

or to use some kind of time averaging to modify the governing equations, which has its 

own set of associated difficulties.

The result of averaging the governing equations in time is to introduce several new vari

ables representing the effects of the turbulent fluctuations. However, the governing equa

tions of fluid flow (the Navier-Stokes equations, the continuity equation and the energy 

transport equation) fully and exactly express the conservation of mass, momentum and 

energy for a continuous Newtonian fluid. This means tha t the details of the turbulent 

fluctuations elided by the time-averaging are under-specified. Thus, we must introduce 

a turbulence model, which attempts to close the system by the use of model equations 

coupling the variables of the mean flow with the new variables, representing the stresses 

resulting from turbulent fluctuations.

These new variables appear as additional stress terms. Most turbulence models use the 

Boussinesq assumption i.e., they assume that these additional stress terms vary in direct 

proportion to the spatial gradients of the mean velocity. This means tha t these turbulent 

stresses axe in effect treated as an increment on the viscosity, usually referred to as the 

turbulent, apparent or eddy viscosity, and denoted em. Across most of a turbulent bound

ary layer, the eddy viscosity is much larger than the molecular viscosity. Almost every 

turbulence model relies at least in part on empirical data  to specify the pseudo-viscous 

effects of the turbulent fluctuations. Note tha t the usual technique of time-averaging is re

ferred to as Reynolds averaging, and thus simulations using these governing equations and 

turbulence models are often called Reynolds-averaged Navier-Stokes (RANS) calculations.

With a suitable choice of turbulence model, it is possible to solve the time-averaged gov

erning equations to obtain analytic solutions for turbulent flows. The averaging means

5



that fluctuations below certain time-scales are smeared into the variables representing 

turbulent stresses; thus, these solutions do not, by their very nature, predict every detail 

of the flow. There are some common features tha t can be seen across the entire class of 

wall-bounded turbulent flows for which analytic solutions exist, possibly the most impor

tant of which is the division of the flow into two layers. Near the wall we find the inner 

region (also called the wall region) where the behaviour of the flow is strongly influenced 

by the proximity of the wall. Within the wall region, the area in closest proximity to the 

wall is almost entirely dominated by viscous effects, and is thus called the viscous sub

layer. Further away from the wall we find the outer region, where the wall affects the flow 

only indirectly. This is often called the core region for channel and pipe flows or the wake 

region for boundary layer flows. For all wall-bounded flows at the same Reynolds number 

the mean flow profile in the wall region is identical. There is some variation in the outer 

region, but they nevertheless share many similar features. There is not an instant switch 

between the inner and outer layers, but a smooth transition. The wall-normal extent in 

which this transition occurs is usually referred to as the overlap or buffer region.

Even without detailed turbulence modelling, a good deal of information can be deduced 

about the mean turbulent boundary layer profile. The division between inner and outer 

regions can be thought of as a division between those parts of the boundary layer that 

axe directly affected by the viscosity and the wall condition (which condition is embod

ied in the wall shear stress), and those parts which are affected only indirectly. Let us 

consider the inner region. We wish to specify the mean velocity profile U(z), where a bar 

indicates time-averaging and z is the normal distance from the wall. In addition to 2 , the 

velocity profile also depends on the wall stress tw and the physical properties of the fluid 

as embodied by the density p and the viscosity p. Thus we have:

U  =  f ( z , T w , p , p )  ( 1 . 1)

From the Buckingham-ll theorem, we can express this as a relationship of two dimension- 

less groups. Let us first define the wall-friction velocity u T as a velocity scale:
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p
Then our dimensionless relationship can be written as:

(1.3)

Where v  is the kinematic viscosity, v  =  p , / p .  In the viscous sublayer very close to the wall, 

turbulent fluctuations are almost completely damped out and the shear stress is roughly 

constant at the wall value. Thus we can say that in the sublayer:

Solving this equation and rearranging gives us:

£  =  ^  (1.5)
UT V

Thus there is a linear relationship between the mean velocity and the wall-normal dis

placement. uT is a natural velocity scale for turbulent boundary layer flows and 6V = v / u T

wall units, and denoted by a superscript -f . Thus, equation 1.5 can be recast simply as:

Having found an equation that deals with the part of the flow near the wall where viscous 

effects are significant, let us now consider the outer flow, where viscosity plays only an 

indirect role. Here, the influential parameters are the distance from the wall z, the wall 

stress t w and the fluid density p .  In addition the boundary layer thickness, 6,  is an 

important length scale. Note that conventionally in this layer we express the velocity 

profile as a ‘defect’ (i.e., difference) from the freestream velocity C/qo — U , rather than 

simply as the velocity itself. For this reason, the law governing the variation of velocity in 

the outer region is often called the velocity defect law. This can be expressed in a similar 

fashion to equation 1.1 as:

(1.4)

a natural length scale. Quantities nondimensionalised by these scales are said to be in

U+ = z+ (1.6)



tfoo -  U = g(z,Tw,p,6)  (1.7)

Using the Buckingham-II theorem to nondimensionalise as before, and defining a dimen- 

sionless outer length scale by £ = z/6, we find the relevant dimensionless relationship.

Uoo-U
= 9(0 ( 1.8)

As mentioned above, unlike the profile for the inner region, the details of the outer region 

profile vary across different flows.

We must also deal with the buffer region between the inner and outer flows. In the 

buffer region, the inner and outer profiles must overlap smoothly. We can use this to say 

that the sum of our general expressions for the inner and outer profiles must be differ

entiable. Using the boundary layer thickness expressed in wall units to mediate between 

the inner and outer variables by writing z+ = we see that:

If we differentiate twice in succession, once with respect to £ and once with respect to £+,

We can integrate this to show that z + • d f /d z + is equal to a constant. This constant is 

conventionally represented as 1 / a c ; k  is called von Karman’s constant. If we integrate once 

more we find a logarithmic profile, of the form:

(1.9)
U£, =  g ( 0  + m +)

we find:

(1.10)

v+ = f ( z +) =  h n z + +  B
AC

( l . l l )
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Where B  is another constant of integration. The values of k, and B  have been determined 

experimentally as /t =  0.41 and B  =  5.5 (although see the results discussed by Marusic 

et al., which suggest tha t the values of these constants axe not as universal as originally 

thought [51]).

An alternative to seeking analytic solutions for turbulent flow is to seek numerical so

lutions instead. There are a range of approaches to numerical solution of the equations. 

For flow configurations which are not amenable to analytic solutions (because of com

plicated geometry, for instance) we can retain the turbulence modelling but solve the 

model equations numerically. This is reasonably practical in terms of computational re

source requirements, but more complex flow configurations are often very different from 

the configurations used to generate the empirical data on which the turbulence models 

rely. Thus, they may not predict the physics of real flows very closely.

Instead of incorporating the turbulence modelling into the numerical model, it is also 

possible to attem pt to solve the governing equations with no time averaging, including all 

the details of the turbulent fluctuations. This is called direct numerical simulation (DNS), 

and brings in its own set of difficulties. For instance, as mentioned earlier, turbulent fluc

tuations occur at a wide range of scales. This means that DNS simulations require very 

fine resolution to capture the smallest scales, making them extremely demanding in terms 

of computational resources. DNS of the full governing equations for fluid motion, with no 

simplification, has historically been restricted for all practical purposes to relatively low 

Reynolds numbers. However, as more and more computing power becomes available, the 

range of problems amenable to investigation by DNS is growing. Wu et al. recently used 

a DNS approach to look at boundary layer transition, using experimentally-measured 

slabs of isotropic turbulence in the freestream to trigger bypass transition in an initially 

laminar boundary layer [80]. Although the Reynolds number of the simulated flow was 

still far too low for many practical purposes, it is still an im portant and interesting step 

forward.. The brief note by Marusic, published in the same journal as the paper of Wu
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et al., is a good summary of the current state of DNS, and clearly expresses the place of 

their investigation within this context [49].

There is also an intermediate choice between RANS and DNS called large eddy simu

lation (LES). W ith this technique, we explicitly calculate the turbulent fluctuations on 

larger temporal and spatial scales, as is done in DNS, but use turbulence modelling to 

account for the effects of smaller-scale fluctuations. The rationale is that smaller scales 

are in some sense more generic, and therefore tha t the difficulties in using turbulence 

models for broad classes of flows are somewhat alleviated.

1.2 Streaks

Although early investigations of turbulent boundary layers emphasised the statistics of 

turbulent fluctuations (see for instance the work of Klebanoff [42]), subsequent studies 

have more often focussed on particular structures within the boundary layer. Robinson’s 

review paper gives a good overview of the various structures th a t have been proposed 

as dominating the kinematics and dynamics of the boundary layer [67]. Undoubtedly, 

however, one of the most important of these phenomena is the set of near-wall structures 

called streaks. Streaks are regions in a turbulent boundary layer where streamwise veloc

ity is significantly higher or lower than the spanwise mean. They are relatively long in the 

streamwise direction (that is, in the direction aligned with the mean flow) and relatively 

narrow in the spanwise direction (that is, in the direction normal to the streamwise di

rection but still in the plane of the wall). They are found in the regions of the boundary 

layer closest to the wall, z + < 30. The streaks are not perfectly parallel to the wall, 

but are tilted upwards. It is generally accepted that streaks are of central importance to 

the maintenance of the energetic fluctuations of the turbulent boundary layer, although 

there is not a broad consensus on the details; it is certain, however, that streakiness is 

associated with strong transient growth of perturbations. Concomitant with these streaks 

are quasi-streamwise vortices; the term quasi-streamwise is used because they are tilted
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in the same way as the streaks.

Streaks have been observed experimentally since at least the 1960s. Kline et al. [44] 

presented one of the earliest thorough investigations of streaks, and were among the first 

to surmise that streaks are central to the maintenance of boundary layer turbulence. 

They proposed a life-cycle for the streaks wherein they appear near the wall, are ran

domly subject to a lift-up process that pulls them out towards the main body of the flow, 

and then become unstable. This instability takes the form of growing oscillations and 

then a violent breakdown, or burst, involving the ejection of low-speed fluid outwards 

from the vicinity of the wall. Kline’s paper proposed tha t the bursting of the streaks 

was a main contributor to the high levels of production of turbulent kinetic energy near 

the wall. Also noted was the apparent natural spanwise scale of the streaks: an aver

age spanwise separation of 100 wall units was observed across a range of different flows, 

suggesting tha t the streaks scale with inner variables i.e. uT and v. This scaling is also 

found in many other studies, for instance those of Kim et al. and Klewicki & Falco [41,43].

Several of the most im portant results from the next decade-and-a-half’s investigations 

into streaks are summarised in the review paper of Cantwell [10]. Kline et al.’s suggestion 

that the streak bursts were responsible for producing a great deal of turbulent energy was 

confirmed, at least for z + < 100. The average spanwise streak spacing was confirmed 

as 100 wall units, but it was found that the separation of streaks was somewhat skewed, 

with the median spacing a little smaller at 80 wall units (see for instance the work of 

Smith and Metzler [71]). The wall-normal range of the streaks was found to be largely 

restricted to within the log-law region (i.e. the buffer region). More recently, Cossu et al. 

found that numerical simulations of disturbances in a turbulent boundary layer indicated 

that streaky structures with a spanwise spacing of approximately 80 wall units reached 

greater magnitude than similar structures with any other spacing [19], which suggests 

that structures of this spanwise scale would be observed most frequently i.e., would be 

the median structures.
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Although the streaks are observed to scale with inner variables, that doesn’t mean that 

the inner part of the flow where the streaks are found does not interact at all with the 

outer flow. See, for instance, the results of Rao et al. [63], which suggested that although 

the spatial scale of the streaks scale with the inner variables, the temporal frequency of 

the bursting events associated with the streaks scale with the outer variables, implying 

that the outer part of the boundary layer still influences the development of structures 

near the wall. More recent and very interesting results exploring the connection between 

large-scale structures in the outer part and streaks nearer the wall of the boundary layer 

are presented in the experimental investigation of Hutchins and Marusic, and the numeri

cal results of Cossu et al. and Jimenez et al. [19,30,34,50]. Aubry et al. used a dynamical 

systems approach to modelling the streamwise vortices (referred to here, as occasionally 

elsewhere in the literature, as ‘rolls’) and similarly found tha t the pressure footprint of 

the outer flow is vital in determining the bursting frequency [2].

There are a number of theories as to the relationship between the quasi-streamwise vor

tices and the streaks. The conventional view is that the vortices act to  pump low-speed 

fluid away from the wall towards the main flow, and similarly bring high-speed fluid 

down into the wall region. As these vortices are convected in the streamwise direction, 

they leave behind the streaks as a sort of trail of vertically-convected high- or low-speed 

fluid [58,74]. The vortices are often supposed to be in pairs of opposite sign, perhaps 

representing the legs of a hairpin vortex. Hairpin vortices are observed in many studies 

of turbulent boundary layers, and are thought to be created by mean-shear stretching 

of closed-loop vortices forming on the wall. Jeong et al. used a sophisticated criterion 

to educe vortical structures in a canonical numerical dataset [32], and found that their 

solutions contained complicated arrays of approximately streamwise vortices. The rela

tionships and mutual influence of these vortices are very complex, but most appear to 

share some quite precise characteristics, including their streamwise extent and their in

clination with respect to the streamwise direction. Unlike the more recent data of Wu &
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Moin [80], which found veritable forests of hairpins, Jeong et al. found no hairpins in the 

buffer region, although they suggest that the heads or loops of the hairpins may be located 

outwith the wall-normal range they investigated, with the observed vortices being the legs 

of these structures. W hether or not this is the case, the streaks were observed to occur 

in the expected location in relation to the vortices. It has also been pointed out that the 

turbulent boundary layer naturally tends to form streak-like structures, even from ran

dom perturbations in wall-normal velocity [12], although the fact tha t many things could 

produce streaks does not preclude the vortices from being the actual source of the streaks.

Streaks are also associated with so-called ‘ejection’ and ‘sweep’ processes. In an ejec

tion, low-speed fluid from near the wall is thrown out, and in a sweep, high-speed fluid is 

convected towards the wall. This obviously creates larger velocity gradients near the wall, 

and thus higher skin friction. Thus we can anticipate tha t the streaks, apart from their 

association with the turbulent self-maintenance, are also directly responsible for at least 

part of the strong friction drag in turbulent boundary layers. This is borne out by the 

work of Jeon et al., who performed statistical analysis on skin friction data  from a series 

of DNS simulations and found tha t regions of high friction on the wall correlated well 

with the quasi-streamwise vortices, and thus with the streaks [31]. Orlandi and Jimenez’s 

simplified 2D model of near-wall vortices also implied tha t there is a connection between 

the vortices, the streaks and the generation of high skin friction values [56].

The mechanisms by which the streaks grow and the mechanisms by which the quasi- 

streamwise are generated vortices are not fully settled; one possibility is that the streaks 

themselves generate the streaks. This idea seems plausible but has not been rigorously 

proven, although several hypotheses have been proposed. Possibly the most common 

idea is tha t the wall-normal vorticity profiles that arise from alternating high-speed and 

low-speed streaks are prone to inflectional instabilities. Exponential growth of these in

stabilities would produce wall-normal rather than streamwise vortices, but the shear of 

the mean profile would tilt these to produce the expected quasi-streamwise alignment.
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This cycle is explored in some detail by Hamilton et al., who looked at turbulence in a 

Couette flow [28]. In order to exclude extraneous detail, they simulated turbulence in a 

streamwise- and spanwise-periodic box, then reduced the size of this box to the minimum 

size that permitted self-regenerating turbulence. T hat such a limit exists implies there 

is a natural scale to wall-bounded turbulence. As might be expected from the natural 

spacing of the streaks, turbulence was found to eventually decay for domains narrower 

than 100 wall units in the spanwise direction. This investigation also found a natural 

time scale to the turbulence cycle, with streaks being created, breaking down and then 

being recreated over a time period of £+ «  100. It was found tha t the streaky profiles are 

indeed linearly unstable, but that the growth in a real flow, developing in time, is signifi

cantly greater than the growth rate found by freezing the background flow and allowing 

perturbations to grow as normal modes. One of the most im portant suggestions was that 

the individual processes of the turbulence regeneration cycle (streak generation, streak 

breakdown, vortex formation) each have, for a given spatial scale, a particular temporal 

scale. The natural length scale of the near wall structures is the smallest spatial scale at 

which the temporal scales of all the processes coincide appropriately. Thus, even although 

structures of the right type occur at a wide range of scales, only those at the correct scale 

are reinforced and therefore observed in real turbulent boundary layers. Jimenez et al. 

used a similar technique to isolate an individual self-sustaining unit of near-wall turbu

lence [33,35,36]. This allowed several insights into the complex interactions of near-wall 

structures that dominate turbulent dynamics. Waleffe later showed tha t a similar self- 

sustaining process occurred in a sinusoidal shear flow, with both no-slip and free-slip 

conditions at the wall [79], which suggests tha t the cycle may be generic in wall-bounded 

shear flows.

Alternatively, Schoppa and Hussain proposed a transient growth mechanism for streaks 

which axe steady to normal-mode perturbations [70]. This growth is algebraic but suffi

ciently strong in the short term that it may cause normal-mode-steady streaks to grow 

to an amplitude where nonlinear effects become significant before the streak perturba
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tions begin to decay exponentially. This mechanism of streak growth creates a sheet of 

streamwise vorticity which eventually rolls up to form the quasi-streamwise vortices. Note 

that it is possible tha t more than one self-maintaining turbulent cycle exists theoretically; 

among all possible cycles, the one that produces the strongest turbulence will be the one 

that is most often observed physically.

A further candidate for the source of the quasi-streamwise vortices is that, in addition 

to generating the streaks, they generate their own successors, a process sometimes called 

parent-child vortex generation. If there is a streamwise vortex situated above a wall, it will 

induce on the wall a region of vorticity having the opposite sign to itself. The same lift-up 

mechanism by which the vortices generate the streaks then (by this proposed mechanism) 

lifts these zones of induced vorticity away from the wall, which then roll up to create 

new vortices even as the vortices that originally create them dissipate or are annihilated 

by turbulent fluctuations. This hypothesis has somewhat fallen out of favour, since lit

tle evidence has been found to back it up; Jimenez and Pinelli found that suppressing 

the physical processes necessary for this did not prevent the formation of new vortices, 

while Orlandi and Jimenez found that in a two-dimensional model of turbulent streaks and 

vortices, the vorticity sheets near the wall would never roll up to form new vortices [36,56].

The above discussion outlines the current state of understanding of turbulent bound

ary layers, but it should be borne in mind that much of the knowledge we have gained is 

highly conjectural, and that even many quite fundamental aspects of turbulent boundary 

layer behaviour (for instance, is the von Karman constant truly a constant?) are still sub

ject to continued scrutiny. The recent review paper by Marusic et al. examines the state 

of the art in many parts of boundary layer studies, and demonstrates the uncertain nature 

of many of the tentative conclusions that have been drawn about turbulent flow [51].
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1.3 W all control

Having established tha t streaks are of importance in maintaining turbulent boundary 

layers and generating large values of skin friction, we may ask if there is some way in 

which we can influence the development of the streaks in order to control turbulence. 

The ultimate goal of such a task would be either to inhibit turbulence, so that we could 

reduce friction drag in turbulent boundary layers, or to strengthen turbulence, in order 

to prevent or delay boundary layer separation. A range of forcing strategies have been 

investigated, including riblets aligned with the mean flow (see Choi [15]), suction-injection 

devices (see the paper of Kim which summarises many years of numerical investigation, 

or the work of Choi et al. [13,40]) and spanwise oscillation of the wall. More exotic ap

proaches such as the use of electrohydrodynamic Lorentz forces for conducting fluids (see 

for instance the work of Breuer et al. [7,8]), seeding the flow with microbubbles (mod

elled numerically by Xu et al. as a body force [81]) or injecting polymers into the fluid 

have also been attempted. There are several very good review papers discussing various 

aspects of the mechanisms used to reduce drag in turbulent boundary layers [38,39]. In 

addition to the fluid mechanics behind the techniques used to influence the turbulent 

boundary layer, significant attention has been paid to the development of appropriate 

control systems [4,25,52]. Sophisticated control schemes are relevant if we want to de

velop a mechanism for manipulating the turbulent flow that responds to the instantaneous 

condition of the flow; thus we would need not only a means of influencing the flow but a 

means of measuring it as well, which introduces its own set of difficulties.

The control mechanism we intend to investigate is spanwise oscillation of the wall. There 

are many studies tha t implement this forcing method, both numerical and experimental. 

The pioneering numerical study was by Jung et al. [1,37], who built on earlier studies 

by (among others) Moin et al. examining the effects of a constant transverse motion of 

the wall [53]. Experimental studies of the same phenomena were carried out at around 

the same time, for instance those of Laadhari et al. [45], and continue to be pursued.
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Although both methods of investigation find tha t oscillation of the wall can significantly 

reduce drag in turbulent boundary layers, DNS investigations tend to predict larger re

ductions than experiments: ~  40% compared to ~  25%, see for instance the discussion by 

Ricco and Wu [66]. Quadrio and Ricco suggest tha t at least part of this discrepancy may 

be caused by experimental measurements being made at locations where the spatial tran

sient effects of the leading edge of the oscillating section of wall are still significant [60]. 

In addition to the mean flow effect of reduced drag, most studies agree that changes to 

statistical measures of the flow are alse found, including reductions in turbulence produc

tion, magnitude of turbulent fluctuations and an upward shift of the logarithmic part of 

the mean velocity profile. This shift is indicative of a thickening of the viscous sublayer 

and is characteristic of drag reduction in turbulent flows. Rotating a pipe about its flow 

axis has been found to have similar results on turbulent pipe flows to wall oscillations 

in channel and flat plate boundary layer flows; see for instance the work of Orlandi and 

Fatica, or Quadrio and Sibilla [55,62].

The principle advantages offered by spanwise oscillation over other control methods are 

twofold. Firstly, it requires no feedback, so we do not need to deal with the additional 

layer of complexity added by flow detection and control schemes, and secondly, it is a 

mechanism that works by manipulating the entire flow. Therefore, it does not need to 

be applied on the scale of the boundary layer structures themselves, but can instead be 

much larger. This is an advantage at higher Reynolds numbers (aircraft flight Reynolds 

numbers, for instance) where the structures of the boundary layer become much smaller 

and therefore creating devices on the same scale becomes much more difficult.

In addition to the obvious parameters of the wall motion (e.g. amplitude or frequency), a 

potentially useful means of characterising the wall motion is through the use of the param

eter S, as introduced by Choi et al. [14] and investigated by Ricco and Quadrio [61,65]. 

This parameter is used in an attem pt to find a straightforward relationship between the 

wall oscillation (as characterised by its amplitude and frequency, or equivalents) and the
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amount of drag reduction. Its definition is not fully analytic, but instead incorporates 

some empirical data. This data is selected in order to give a best fit (quadratic for Choi 

et al., linear for Ricco and Quadrio) to the drag reduction data. The results presented 

in Quadrio and Ricco’s 2004 paper, in particular, show a remarkable linear fit for drag 

reduction on this parameter, on the condition that they restrict themselves to wall os

cillations characterised by a period T + < 150. In common with many investigations of 

spanwise wall oscillations, they find that an optimum drag reduction is obtained with an 

oscillatory period of T + «  100 — 125.

A common explanation for the effectiveness of wall oscillations in reducing turbulent drag 

is directly related to the streaks. Most studies find that the spanwise velocities induced by 

the wall motion are very well approximated by the laminar oscillatory Stokes problem. It 

is theorised that the layer of spanwise-moving fluid (the so-called Stokes layer) induced by 

the spanwise motion of the wall breaks up the spatial coherence of the quasi-streamwise 

vortices and the streaks, so that instead of pumping low-speed fluid from near the wall 

into the low-speed streaks and high-speed fluid from further out in the boundary layer 

into the high-speed streaks, the vortices do the opposite, and thus the streak formation 

is inhibited. This hypothesised mechanism is predicated on the wall-normal separation 

between the vortices and the streaks, such that a Stokes layer of the appropriate thick

ness will induce a relative separation. This explanation, or similar, is advanced by many 

different researchers [3,16,23,24],

Onorato et al. propose a different mechanism for turbulent drag reduction by wall oscilla

tion [54]. They suggest that the oscillating Stokes layer induced by the wall motion works 

to annihilate the wall-normal vorticity that flanks the low-speed streaks, thus hindering 

the process by which the streaks generate new streamwise vortices. Of course, given the 

highly interactive nature of the near-wall vortices and streaks and their complex relation

ships, which are not fully understood, it is quite possible tha t the wall oscillation might 

interfere with more than one part of the autonomous turbulence cycle. Furthermore,
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interfering with any part of the cycle will have a knock-on effect on other parts, which 

in an experiment or a complete DNS simulation may make it difficult to disentangle the 

direct effects of the oscillation from the indirect ones. In this thesis, we intend to use 

a reduced-order model of streaks to try to elucidate some of the mechanisms by which 

spanwise wall oscillations manipulate near-wall structures in turbulent boundary layers.
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Chapter 2

M athem atical form ulation

2.1 G overning equations

We seek a suitable model for investigating the behaviour of small disturbances to flat-

plate boundary layer solutions, with an eye towards producing a reduced-order model of 

streaks in turbulent boundary layers. The formulation tha t we use has been used before, 

and is described quite thoroughly in a comprehensive paper by Davies and Carpenter [22]; 

its application to various problems of interest, including the use of compliant walls to 

influence disturbance growth in flat-plate and rotating-disc boundary layers is presented 

in a later paper by Davies as well as the references therein [20]. Since this formulation 

is at the heart of our work here we will nevertheless discuss it in some detail. We begin 

by considering the three-dimensional nondimensionalised Navier-Stokes equations for an 

incompressible Newtonian fluid.

With v the kinematic viscosity of the fluid, d an appropriate length scale and the

(2 .1)

Where R e , the Reynolds number, is defined as:

(2 .2)
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freestream velocity (i.e., the flow velocity that would exist in the absence of the plate).

The Navier-Stokes equations can be thought of as momentum transport equations, and by 

taking the curl of the Navier-Stokes equations we can change them into vorticity transport 

equations (VTEs).

the elimination of pressure. Finding suitable boundary conditions for pressure has been 

known to present considerable difficulties [73]; finding appropriate boundary conditions 

for vorticity has also proved problematic historically, but by using integral conditions (as 

described in section 2.2.2) this problem is overcome. Furthermore, since we are investi

gating boundary layer stability, solving for the vorticity field directly is helpful in that 

vortical features are thought to be central to mechanisms of the self-sustaining turbulence 

cycle.

We are faced with a problem in attempting to solve these equations. There are three 

VTEs, one for each of the Cartesian spatial dimensions. However, there are six variables: 

three components of vorticity, fi, and three components of velocity, U . We must there

fore find some closure for the system of equations, a relationship between velocity and 

vorticity. A very simple relationship that immediately suggests itself is the definition of 

vorticity:

However, as will become clear in the chapter discussing the numerical techniques employed 

for solving these equations, we will be solving the VTEs to obtain the components of 

velocity, and solving the equations we use to close the system to obtain the components 

of velocity. It is therefore convenient to take the curl of the definition of vorticity, as 

this decouples the velocity components. By taking into account the continuity condition,

(2.3)

The principal advantage of solving the VTEs instead of the Navier-Stokes equations is

(2.4)
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V • U  =  0, we are left with three Poisson equations.

AU =  —V x f t  (2.5)

We are interested in the development of perturbations to known boundary layer solutions. 

To that end, we will represent each of the solution variables as the sum of a basis solution,

known to satisfy the governing equations, and a small perturbation to that solution. Thus,

we write:

n = + “ (26)
U =  U b + u

And we substitute these expressions into the governing equations. Since the basis solution 

satisfies the governing equations by definition, all terms involving only the basis variables 

can be eliminated. If we assume that the perturbations are infinitesimally small, then we 

can linearise by eliminating the products of perturbation terms. The governing equations 

for the perturbation variables can therefore be written:

^  +  (U B • V)w +  (u ■ V )n B =  (f iB -V)u +  ( w - V ) U B +  ^
ut He ^  7)

Au =  —V x u>

Since we are interested in boundary layer flows, further simplifications are possible. Let 

us assume that the basis solution for the boundary layer takes the form:

V B = (UB(z), 0,0)

n B =  (o,t/B(z),o)
Where z is the spatial dimension normal to the wall tha t creates our boundary layer and 

the prime indicates differentiation with respect to this dimension. In doing this we have 

assumed that there is no development of the boundary layer in the direction of the mean 

flow i.e. we have assumed a parallelised flow. Our VTEs can then be rewritten as follows:
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The subscripts are used to mark the different components according to which spatial 

dimension they are aligned with. Thus we have obtained a set of six equations to solve 

for six variables. However, it is possible to make life slightly easier for ourselves by a 

division of our solution variables into primary and secondary groups. In this scheme, the 

secondary variables are defined explicitly in terms of the primary variables. Thus, we need 

only solve for the primary variables, reducing the number of governing equations we need 

to solve. The primary variables are {cjX:ujy,u z} and the secondary variables {ux, uv, ljz}. 

Our secondary variables can be defined as:

With z  a dummy variable. The definitions of ux and uy are obtained by integrating the 

definitions of u y and ljx, respectively, along the wall-normal dimension. The definition of 

u z is obtained by integrating the solenoidality condition on vorticity in a similar fashion. 

Note that these definitions make use of the boundary condition tha t all variables go to 

zero infinitely far from the wall. Boundary conditions are discussed in more detail in 

section 2.2.2.

(2 .12)

In the spanwise dimension, we apply a Fourier transformation:



Where /  is any solution variable. Since we have linearised our governing equations, each 

Fourier wavenumber is independent of all others. Thus we can investigate the stability of 

our boundary layer solutions to perturbations of a particular spanwise wavenumber, /?, 

by solving the following set of equations:

-  T -  <*“ >
^  + UB^ - i 0 U ' Buy + U£uz =  ( A ~ / 2)^  (2-15)

(A -  0 2)U; =  i/3wx -  ^  (2.16)

Which we obtain by substituting the Fourier transformation in equation 2.13 into equa

tions 2.9, 2.10 and the wall-normal component of the velocity Poisson equation in 2.7. 

Here, A is a modified Laplacian:

dz2 )

Note that the subscript (3 used in the definition of the Fourier transformation has been 

dropped in the above statement of the governing equations to aid comprehensibility.

2.1.1 Two-dimensional equations

A simpler two-dimensional form of the equations can also be derived. In this formulation, 

we have only the streamwise and wall-normal dimensions. One upshot of this is that 

vorticity is no longer a vector quantity, but a scalar. The two-dimensional vorticity can 

be defined, in a way analogous to the spanwise component of three-dimensional vorticity, 

as:

dux duz
(2' 17)

Note that we have retained from the three-dimensional formulation the convention that 

x  denotes the streamwise direction and 2  the wall-normal. This (x, z) pair is somewhat
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unusual but hopefully will help avoid confusion in comparing 2D and 3D results. The two- 

dimensional VTE is obtained by subtracting the rc-derivative of the wall-normal Navier- 

Stokes equation from the 2 -derivative of the streamwise Navier-Stokes equation. We can 

also think of it as simply being the only non-zero component of the three-dimensional VTE 

if we assume spanwise uniformity and uy = 0. If we then distinguish between basis and 

perturbation variables, as in equation (2 .6 ), assume the same form for the basis flow as 

in equation (2 .8 ), and finally linearise as before, we obtain the following two-dimensional 

VTE:

du dco .. A u>
_  +  £ / b _  +  [ / ^  =  _  ( 2 . 1 8 )

We see that this is similar to the three-dimensional VTE for the spanwise component of 

vorticity, equation (2.10). The equation above contains two solution variables, uj and uz\ 

to close the system we use a Poisson equation for uz. This is derived by differentiating the 

definition of the two-dimensional vorticity with respect to x  and applying the continuity 

condition:

A u z = ~ —  (2.19)

2.1.2 Nonlinear formulation

If we introduce the perturbation decomposition 2.6 into the basic vector form of the VTEs 

2.3, but don’t linearise, we obtain a nonlinear formulation. W ith a nonlinear formulation,

it makes little sense to investigate a single spanwise mode. The assumption that all solu

tion variables vary as el/3y is unsuitable, since nonlinear multiplication of the perturbation 

variables would result in the different modes (that is, different values of (3) influencing 

one another, and disentangling a single mode becomes very difficult.

We can, however, investigate a certain limited sort of nonlinearity. Ordinarily, if boundary 

layer perturbations have grown to the stage tha t nonlinear effects have become significant,
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then the flow has also become three-dimensional. However, if we artificially suppress three- 

dimensionality by setting all spanwise derivatives to zero (equivalent to taking {3 = 0), 

then we can investigate a subset of nonlinear effects. Doing this yields the following 

streamwise and spanwise VTEs:

dujx , (TT , ^du)s 8ux _  TT, t dux t dux t A u x fn
~ d f  + iUB + Ul)^  + u^  ~  t/B“ J +  ‘J l a ^  +  ^ a 7  +  _R 7 (2'20)

8 U y  / r T  . 8 u J y  d u j y  _ 8 U y  8 U y  A c Uy  / « « l \^  + (Ub + Ui)^ + u ^  + u '<Uz =  ^ + u , _ j r  +  _ j -  (2 .2 !)

Since U s  =  (UB(z), 0,0) and £lB =  (0, UrB(z), 0), we would retain only one term each 

from (U s • V)u> and (S7s • V)u. But, since we are assuming spanwise uniformity, all 

spanwise derivatives go to zero, meaning that the single term  from (QB • V )u in fact

vanishes altogether. This is also the reason only two of three terms have been retained

from (u • V)u; and (u> • V)u. Since there is no x-component in f t B, (u • V)f2s makes no 

contribution to the streamwise VTE, and we can make a similar statem ent for (a? • V )U s 

in the spanwise VTE. In both of these cases, since our basis flow has been parallelised, 

we need only include the wall-normal derivatives of basis variables.

2.1.3 Secondary perturbations

There is another method tha t allows us to investigate nonlinear, or at least quasi-nonlinear, 

phenomena: the introduction of a secondary perturbation. In this method, we set (3 = 0 

and then solve either the nonlinear formulation described in section 2 .1 .2  or the linear 

formulation to get a spanwise-uniform solution to the perturbation equations. Let us call 

the velocity and vorticity fields of this solution Ui and uq respectively. This solution 

is then scaled appropriately and added to our basis solution to get a new, secondary 

basis solution, defined as U s =  U b +  eui and f is  = Q B + euq, where e is the scaling 

factor. Note that, unlike the primary basis flows, there is more than one nonzero com

ponent of the basis variables, so we introduce the notation U s =  {Usx,Usy,Usz) and 

Cts = (fi'sz, Dsy, Qsz)- We then solve the perturbation equations again for the secondary
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perturbation solution, u 2 and u>2, with U s and f l s  as our new basic state. In short, we 

are using our linearised formulation to create a new basis, then linearising around this 

basis a second time.

The Poisson equation for the secondary component of uz remains unchanged, but be

cause of additional non-zero terms in U s and f Is th a t do not appear in U s  and fi# , 

far more terms representing convection and vortex stretching appear in the VTEs. If we 

replace U s  and f i s  with U s and Cls in equations 2.7, then we can recast the VTEs that 

are solved, after some manipulation, as:

%)2x , TT du>2X TT d u 2x d f tsx  , d Q Sx
 1" Sx~fa. lPUSyU2x +  Usz—q^ U2x—q^  1” ^ 2Z~Q^~

= ~ ^ S x  (^-flu 2y +  ̂ + i(3Qsyu2x + &Sz {^ 2 y  H---

M ia- BTJa- (A  -, dUSx , dUsx , ( A - P ) u2X ,noo , + W2i_ +1J22_  +     (2.22)

d u ) 2 y  , T T  d u j 2 y  , . O T T  , T T  d u 2 y  , d Q S y  dnSy
~ d f  + Us* - fa  +  +  V s ' - a T  + + u**~ dT

= if3QSxU2x + i0nsyit2y + &SZ ( tp u 2z -  u 2x) + ui2x^ ~ -  +  R  Û2y (2-23)

Here, @ is the spanwise wavenumber of the variation in the secondary perturbation vari

ables. The equations have been recast so as to minimise the number of terms involving 

secondary variables tha t need to be calculated. Note tha t ‘secondary’ is used with two 

meanings in this work, referring both to the variables tha t are not calculated directly (as 

defined by equation 2 .1 2 ) and to the secondary perturbations from the formulation given 

here.
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2.2 D om ain

We need to choose a domain suitable for the problem we are interested in: the develop

ment of small disturbances in a flat-plate boundary layer. The most obvious choice is a 

semi-infinite Cartesian domain over an infinite flat plate. The spatial dimensions are x, 

which is aligned with the direction of the basis flow, and which we call the streamwise 

direction; y , orthogonal to x in the plane of the wall, which we call the spanwise direction; 

and z, the wall-normal direction.

We define streamwise limits on the domain such tha t the all points in domain satisfy

0 < x < Lx. We call the boundary at x = 0 the inlet and the boundary at x = Lx 

the outlet. In the wall normal direction, the domain stretches from z =  0 at the wall to 

infinity. A transformation used to map the semi-infinite wall-normal domain to a finite 

one is discussed in section 2 .2 .1 .

As mentioned previously, in the three-dimensional case a Fourier transformation is ap

plied to the spanwise dimension, and only individual modes are investigated in any given 

solution. Thus we can think of our spanwise domain as being periodic and infinite in 

extent.

2.2.1 Wall-normal transformation

It is intended to use finite difference methods to solve the governing equations. However, 

finite differences cannot be straightforwardly applied to a semi-infinite domain. Thus, a 

transformation is applied to the wall-normal coordinate. The transformation used maps 

z »—► rj such that all 77-coordinates belong to the range [0 , 1]:

^ n b  (2-24)
1 here is a parameter that controls the stretchedness of the transformed wall-normal do

main compared to the untransformed domain.
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This transformation for the numerical method changes the ways in which the wall-normal 

derivatives and integrals are treated. Consider:

d f  V2 d f  ( .
dz =  ~ T d r )  (2'25)

-  £ £ ± ± 2j £ ? l  t o o t *
dz2 12 drf I2 dr] 1 j

Consider also:

roo rrj r

/  fd z  = l 4 df, (2.27)
J z  Jo V

With z  and fj being dummy variables. Specifically:

[ X fd z  =  l [  £ d V (2.28)
Jo  Jo  V

In these expressions, /  stands in for any arbitrary function. Note th a t since (per equation 

2.24) r] —* 0 as z  —> oo, we can see from equation 2.25 that in order for d f  /dr] to remain 

bounded in the limit 77 —> 0 , d f  /d z  must vanish at an infinite distance from the solid 

boundary. Similar considerations apply for the higher-order wall-normal derivatives.

2.2.2 Solution constraints

We are interested in the growth or decay of perturbations to a boundary layer solution. 

We will introduce these perturbations at some particular point or region of the domain. 

Since we have a semi-infinite wall-normal domain, we can say tha t any point in the do

main is infinitely separated from the upper boundary (i.e. z  —* 0 0 ). This is intended to

be a model of a physical problem, so we apply the condition tha t all model variables go

to zero infinitely far from the wall. However, note that, although pressure does not ex

plicitly appear in our formulation, for an incompressible fluid pressure changes propagate 

infinitely fast.
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We also apply a zero boundary condition on all primary variables at the inlet. It is 

expected that the upstream influence of the perturbations will be relatively small, so this 

condition should not introduce any difficulties as long as the perturbations are located, 

in some sense, sufficiently far downstream of the inlet.

The outlet condition is more problematic. If we assume tha t our perturbations will grow 

or decay in an oscillatory manner, then a possible appropriate boundary condition is:

%  “  - q 2 /' (2-29) 

where /  is any perturbation variable. This is consistent with a sinusoidal variation of 

wavenumber a  in the streamwise direction. There is now a further problem: the selec

tion of a suitable a. In certain cases, such as the Tollmien-Schlichting waves discussed 

in section 4.2 we will have an anticipated wavenumber, which allows us to specify a. 

Elsewhere, for transiently growing solutions which we do not expect to pass through the 

outflow boundary, we set a = 0 .

At the wall, all components of velocity are fully specified by the no-slip condition. How

ever, there is no natural condition on vorticity at the wall. In order to overcome this 

difficulty, we apply an integral condition to vorticity, as discussed in the paper of Davies 

and Carpenter [2 2 ]. This specifies constraints on the variation of vorticity along any given 

wall normal line by taking the integral of the definition of vorticity along this line. For 

the components of vorticity which are primary variables, we have the following integral 

conditions:

roo f ° ° ( d u z \ J
/ u>xdz =  / —— \dz + uv

Jo  Jo  \ d y )
r  , . r f 9 u z \ ,  (

I  =  U x ~  J o  v ^ r

Here the hatted variables represent the specified wall velocities. The integral condition 

on vorticity in the two-dimensional case is identical to the three-dimensional integral
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condition on cuy. These constraints are equivalent to the no-slip condition on velocity.

2.3 Tollm ien-Schlichting waves and boundary layer 

eigenvalues

In experimental investigations of boundary layer transition, growing waves, referred to 

as Tollmien-Schlichting waves, are frequently observed [6 8 ]. It is surmised that these 

are caused by the selective amplification of perturbations present in the outer flow. The 

attem pt to describe Tollmien-Schlichting waves analytically through mathematical models 

of the boundary layer is part of primary stability theory, and it is these analytic solutions 

that we will use to verify the numerics. One of the most im portant tools in primary 

stability theory is the classical Orr-Sommerfeld equation, which we derive by assuming 

the existence of wavelike solutions to the equation [69]:

This equation is obtained by eliminating pressure from the linearised and parallelised

Here, D  is a differential operator denoting differentiation with respect to z. This equation, 

together with suitable boundary conditions, defines an eigenvalue problem. If we assume

Ub {z)) and we are given a spanwise wavenumber /3, then we are interested in solving this

(2.31)

perturbation form of the wall-normal Navier-Stokes equation. If we specify the wavelike 

form of the solution to be:

uy( x ,y ,z , t )  = uy(z)el{ax+i3y (2.32)

then the classical Orr-Sommerfeld equation drops out:

( —2 7  +  iaUB)(D2 — a 2 — (32) — iaUq +

that the flow is specified (meaning that we know the values of Re and the flow profile
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eigenvalue problem for either 7 , the temporal frequency, or a , the streamwise wavenum

ber. There is no restriction to real frequencies or wavenumbers in general. Traditionally, 

however, the approach has been to assume a real a  and find the corresponding 7  eigen

values. This corresponds to having a perturbation tha t is uniform throughout space and 

seeing whether it grows (i.e. /m (7 ) < 0) or decays ( Im ( 7 ) > 0) in time. Solving for 7  

rather than a  is also more straightforward in that 7  appears only in the order 1 , whereas 

a  appears in the order 4.

However, this is not necessarily very realistic; or at least, it does not necessarily cor

respond very well to the types of perturbation that are more often observed empirically. 

Typically, we will have a perturbation of specified temporal frequency which evolves in 

space. In the Orr-Sommerfeld equation, this corresponds to a known real 7  and a complex 

a  tha t we must calculate. Unfortunately, as mentioned above, this is made difficult by 

the higher order a  terms in the eigenvalue problem.

In order to obtain complex spatial eigenvalues for validation of numerical results, the 

method used by Thomas [75] is applied, and we briefly summarise it here. This begins by 

assuming a wavelike solution to the two-dimensional VTE, equation (2.18), resulting in an 

Orr-Sommerfeld-like equation. In order to deal with the uz term, we use a streamfunction 

0 , defined such that:

dd> 36 , .
= =  ( 34)

Thus the two-dimensional Poisson equation for wall-normal velocity can be recast as a 

Poisson equation for the streamfunction:

A(p = u  (2.35)

Introducing the wavelike solution assumption, as in equation (2.32) but without the de

pendence on the spanwise dimension y , leaves us with the following paired eigenproblems.
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+  iodJb& — iocUg^ =

(D2 — a 2)4> = Cj

(D2 -  a 2)u
Re

(2.36)

(2.37)

Thomas’ method finitely expands the variables u) and 0 in terms of odd Chebyshev poly

nomials, such tha t for a variable /  we have:

N

f ( x , z , t )  = ^ r f k{x,t)T2k-i{ri) (2.38)
k= 1

This means that if we integrate the equations (2.36) and (2.37) twice with respect to our 

transformed wall-normal variable rj, we obtain the equations:

—iy lu  +  ialUs^L ~  iotlUg^) =
(K  -  a 2l)u

Re
(K — a 2l)4> = to ,

(2.39)

(2.40)

where I and K  denote tridiagonal and pentadiagonal matrices acting on the vectors u) 

and 0 respectively, uj and 0 are vectors containing the Chebyshev coefficients of u  and 0. 

Coupled with discrete representations of the boundary conditions on 0  and the integral 

condition on <D, we can define a matrix equation of the form:

(B0 -I- aB i  +  a 2B 2)(Q.,$)T = 0 

We can reduce the order of a  in this equation by making the substitutions:

(2.41)

x — (u), 0 )T, x x = ax  

Thus we get a matrix equation which is first order in a:

- B i

1
0cq1

— a
b 2 0

)
X i

I 0 0 I I X
=  0

(2.42)

(2.43)
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Here, 0 and /  are appropriately sized zero and identity matrices. This is a generalised 

eigenvalue problem for a. Given a suitable initial guess, a cubically convergent method 

can be used to determine the most unstable eigenvalue and thus the anticipated complex 

wavenumber of the Tollmien-Schlichting waves for the flow configuration specified by Ub 

and Re and the perturbation specified by 7 .

2.4 P rescrib ing the basic sta te  

2.4.1 The Blasius boundary layer

As mentioned above, and represented mathematically in equations (2.6), the topic of in

terest is the stability of established boundary layer solutions to small perturbations. Our 

principal test for validation of the model is its ability to accurately capture Tollmien- 

Schlichting waves, as discussed in section 2.3. In order to model this, the classical mecha

nism of transition from laminar to turbulent flow, we used as a basis the Blasius boundary 

layer, a suitable solution for a boundary layer on a semi-infinite flat plate aligned with the 

free-stream flow. Since a semi-infinite plate has no natural length scale, it is reasonable to 

assume that the boundary layer profile has no scale in the x  and z  directions, but rather 

can be characterised by a single dimension £, obtained by a suitable combination of x 

and 2  [57]. We take the boundary layer equations for the case where there is no external 

pressure gradient:

(2.44)

(2.45)

We define our similarity variable £ as:

dUx dUz

dU*
dx

+ U:

dx
dU.

+
dz

dz

=  0

d2Ux 
' dz2



And then recast our equations in terms of a nondimensalised streamfunction. Introduc

ing a streamfunction means that the continuity condition is automatically satisfied. We 

denote the nondimensional streamfunction as /(C)- Introducing these dimensionless vari

ables into the zero pressure gradient flat plate boundary layer equations, a nonlinear 

ordinary differential equation is found:

Suitable boundary conditions on /  can be found by considering the no-slip condition at the 

wall and the fact tha t Ux must tend to £/<» in the limit £ —> oo. There exist many standard

research presented here, the solutions were found using code furnished by Thomas [75].

2.4.2 The turbulent boundary layer

In addition to Tollmien-Schlichting waves, we are also interested in the behaviour of

perturbations in a streaky turbulent boundary layer. Thus, we need to generate a suitable 

turbulent mean profile. There are many well-known results th a t can be used for this 

purpose; Prandtl, for instance, showed that the mean turbulent profile behaved linearly 

in the viscous sublayer very close to the wall as long ago as 1910 [59]; for further details of 

some of these results, see section 1 .1 . However, most of these results have only a limited 

wall-normal range in which they are applicable, as is reflected in the conventional division 

of the mean turbulent profile into the innermost viscous sublayer, the outer log-law layer 

(where viscous effects are negligible) and the intermediate buffer region. Spalding [72] 

formulated a new “law of the wall” , valid throughout the turbulent boundary layer, by 

reversing the usual formulation of velocity profiles and specifying z + in terms of U+.

(Note that the superscript +  symbol is used to indicate wall units, which are discussed

in the introductory chapter and whose implementation here is explained below.)

(2.47)

techniques appropriate for the solution of the Blasius boundary layer equation. For the

(2.48)
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k and B  constants tha t have been determined empirically (k =  0.41, B  = 5.5). k is called 

von Karman’s constant.

Recall that we need not only the velocity profile, but also the profile of the first and 

second wall-normal derivatives of velocity. These can also be obtained from Spalding’s 

law-of-the-wall, by first differentiating to obtain:

dz+
dU+
(Pz+
dU+2

= 1 +  Ke

= n2e kB

—k B ,/c U+ -  1 -  kU+
(kU+)2 (kU+Y

eKU+ -  1 -  kU+ -

2 !
(kU+)2'

3!

2 !

(2.49)

and then applying the following identities to calculate the required derivatives:

1dU+
dz+ ~  dz+/dU+ 

d2U+ - d2z+/dU +2
(2.50)

dz+2 (dz+/dU+)3 
Note that Spalding’s law of the wall gives the velocity profile implicitly; thus we cannot

simply calculate the values of the profile at the wall-normal nodes of the discretisation. In

stead, we calculate z +, dU+/d z + and d2U+/d z +2 for many different values of U+; typically, 

100K  different values, where K  is the number of nodes in the wall-normal discretisation. 

Splines for the velocity and velocity derivatives are then constructed on the spatial points 

that have been obtained from Spalding’s law, and these splines are evaluated at the nodes 

in order to obtain the profiles.

In the outer part of the turbulent boundary layer, there is a gap between the experimen

tally observed velocity profile and the log-law profile, such tha t the log-law under-predicts 

the true velocity. Coles [18] observed that this gap was of a wake-like form. Thus, a more 

accurate velocity profile can be obtained from the following expression:

U+{z+) = Ut(z+) + (2.51)
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Here U£ is the profile that we have obtained from Spalding’s formulation of the law- 

of-the-wall (which matches the log-law profile in the outer part of the boundary layer), 

n  is the Coles wake parameter, which expresses the magnitude of the deviation of the 

velocity profile from the law-of-the-wall (for flat plate boundary layers, we have n  =  0.45). 

f ( z +/8+) is an S-shaped function which is 0 at the wall (z + = 0) and 1 at the boundary 

layer edge (z+ =  <5+). There are many forms tha t /  has been assumed to take; in 

generating our turbulent profile, we use:

The Coles terms are a simple additive correction to the calculated profile, and they are 

defined explicitly. Therefore, they are included in a straightforward fashion, by addition 

to the profile obtained from the evaluation of the Spalding spline at the nodes of the 

spatial discretisation. The derivatives of the Coles terms are also, of course, added to the 

velocity derivative profiles.

As mentioned earlier, the turbulent boundary layer profile is calculated in wall units; 

in order to make it usable, we must convert from wall variables to the dimensionless vari

ables used in the numerical formulation. The numerical formulation in the solver does not 

use dimensional outer variables, but rather variables that have been non-dimensionalised 

using the velocity and length scales used to define the Reynolds number, as per equa

tion 2.2. The velocity scale has previously been specified as the freestream velocity, but 

the length scale has heretofore been left arbitrary. For the sake of convenience, we here 

take the non-dimensionalising length as the boundary layer displacement thickness £*, as 

defined in equation (2.55). Thus, if we take a bar as denoting the dimensionless solver 

variables, we can say that:

z + = z6m+;U+ = UU+ (2.53)

We can then convert the profiles that we have calculated in wall variables into the solver
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variables as follows:

U =

dU
dz

d?U

El
u+
6'+ dU+ 
U+dz+  
8'+2 d2U+

(2.54)

dz2 U+ dz+ 2

How are we to obtain the length and velocity scales and C/+ tha t will allow us to 

convert between the wall and outer variables? £*+ is the displacement thickness in wall 

units; the displacement thickness in outer units is defined as:

Uoo
dz (2.55)

If we suppose that there is a nominal boundary layer thickness 6 beyond which U(z) = U0Q, 

this can be rewritten as:

8* =

'0  \  Uqq
dz (2.56)

The length and velocity scales used to convert from outer units to wall units are v /u r and 

uT respectively, where uT is the friction velocity. Thus:

zun
V

(2.57)

and:

6*  = - f iuT Jo
1 -  jj-  ) dz+

C'n
V

Ur
8+

t k L

<5 +

U+dz+
(2.58)

Now, if we represent U+ as:



that is to say, as the log-law profile plus the Coles wake correction, we can perform the 

integration in equation 2.58 analytically. This gives us:

/Jo

<5 +

U+dz+
211r ( — +B+

Jo  \  K K

S + \ ™ ^ 1 + B + X
AC AC

3 | f ) - h £ ' ‘
d z +

(2.60)

Thus:

6* =
u8+
u T

_8_
U t

1 /ln<5+ -  1 „  n

s
AC AC

(2.61)

Now, recalling how we represented U+ in equation 2.59, we can obtain an expression for 

t/+ by setting z+ =  <5+, then substitute this into equation 2.61 and finally obtain:

8* =
AC U+

(2.62)

Then, since the boundary layer displacement thickness is the length scale for dimensionless 

solver variables, we can say that the boundary layer thickness itself (in dimensionless solver 

variables) is given by:

8 = i + n (2.63)

And thus:

8+ = J J ^ 8 * + l + n
a c  Re

(2.64)

i  + n
We can then substitute our 8+ value into equation (2.59) to calculate £/+. Finally, we 

note that:
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Re =  U~ 5'
I/

U o o  5 * u t (2.65)
uT v 

= U+6*+

Thus, having found a value for £/«£,, we can calculate the corresponding <5*+. Since we 

know £/+, we know the range of values of U+ we need to solve the Spalding law-of-the-wall 

for in order to construct our splines. Since we know we are able to determine what 

values of z + we need to evaluate the splines at in order to obtain the nodal values of 

the velocity and velocity derivative profiles, and we have constructed a satisfactory mean 

turbulent boundary layer profile.

It is interesting to note that, in this formulation, the value of <5+ is identical to the 

friction Reynolds number, ReT. In the Re = 104 case, which is investigated extensively 

in later chapters, this yields ReT «  2800.

2.5 Spanwise forcing

We hope to investigate the effects of spanwise forcing on the development of boundary 

layer perturbations; in other words, we want to be able to specify a non-zero uy at the 

wall. uy is a secondary variable in our formulation; the only place tha t the value of uy 

at the wall appears in our formulation is as uy in our integral condition on u x, equation 

2.30. This means it is very straightforward to include wall forcing in our formulation.

In order to confirm that the spanwise forcing has been been incorporated correctly, we 

seek some appropriate analytic solution against which we can compare our numerical re

sults. By making some simplifying assumptions, such analytic solutions can be found. 

Firstly, we assume that there is no streamwise dependence, so all streamwise derivatives 

are identically zero. Secondly, since the governing equations are linear, we can assume
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that all solution variables vary only in the same spanwise and temporal modes as the 

spanwise excitation itself. In other words, we assume tha t all variables take the following 

form:

(2 .66)

For the sake of ease, and without loss of generality, we set (3 > 0. Having made these 

simplifications, it is now possible to immediately solve the streamwise vorticity transport 

equation, which simplifies to:

A  an arbitrary constant. A term in evz also appears, but if we assume that Re(v) > 0, 

we can immediately discard this term, since we have a zero boundary condition on all 

variables infinitely far away from the wall. Then, using the simplified continuity equation 

and the definition of streamwise vorticity, we can derive two ordinary differential equations 

relating the components of velocity u* and u*z to u*:

The homogeneous parts of both solutions are identical to within an arbitrary multiplicative 

constant once we take into account the zero boundary condition infinitely far away from 

the wall. To obtain the inhomogeneous part of the solution, we substitute in our solution

(2.67)

If we then define:

v2 = (32 — i'yRe, (2 .68)

We can write down an analytic solution.

(2.69)

(2.70)
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for u* and follow the usual procedure for the solution of an ordinary differential equation. 

By imposing the boundary condition at the wall uy(y,t)  = u*et^ y~'yt̂  (u* the amplitude 

of the spanwise oscillation), we can eliminate the arbitrary constants that arise as part 

of the homogenous solution, leaving A  as the only arbitrary constant in the solutions. 

The solutions that we obtain for the two components of velocity by this procedure are as 

follows:

vA
y i/2 — q2

id  A (2'71)
K  -  -  e - * )

In order to eliminate the arbitrary constant A , we plug these two solutions for u* and u*z 

into the definition of u * } which yields:

<4 =  Ae~vz +  / } ( * ;+  {~ ^ P )  e - *  (2.72)

We need the term in e~^z to vanish in order to maintain consistency between the solutions 

for u* given in equations 2.69 and 2.72. Thus, we are able to determine A = u*((3 +  i/), 

and we have the analytic solutions against which to compare our numerical results for 

spanwise forcing:

vu*
u* =  v- ( e~uz- e - P z) + iL*ye -pz

y v — (3 
i(3u.

^ {e~ uz - e ~ Pz) (2-73)
v - ( 3

u x = +

In the limit (3 —» 0 i.e., as we approeich the case where there is spanwise uniformity, these 

solutions are identical to the standard Stokes oscillatory solutions. Note that these solu

tions are independent of the basis flow. It would also be useful to have an analytic solution 

for However, if we examine the modified spanwise vorticity transport equation:

d?u*
il R e )u-y =  Re(U£ul -  i0U'BUy), (2.74)
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we see that uj* is not independent of the basis flow. Since we do not have a closed-form 

analytic expression for the basis flow, but rather only a numerical one (see sections 2.4.1 

and 2.4.2), we cannot obtain an analytic u>* against which to compare our numerical 

results.
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Chapter 3

Num erical m ethods

In this chapter, the various numerical techniques used to solve the governing equations 

are described. Some general points such as the discretisation of the domain and the 

transformation of the wall are discussed first. Following this, the details of the solvers for 

the vorticity transport equations and the Poisson equation are given. Lastly, there is a 

description of the complete algorithms for the solver.

3.1 General features

3.1.1 Domain discretisation

In the streamwise direction, we choose a uniform discretisation of J  +  1 nodes such that 

the Oth node lies on the inlet and the J th  node lies on the outlet. This uniform streamwise 

discretisation, as we will see later, is crucial for the implementation of a direct solver for 

the Poisson equation.

The discretisation of the wall-normal dimension is also uniform, albeit uniform in the 

transformed variable i), which is defined in equation 2.24. From the point of view of 

domain discretisation, I can be thought of as a parameter tha t controls the clustering 

of node points in the wall-normal direction. Any discretisation of the transformed wall
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normal coordinate will give us a set of wall-normal stations, one for each node point,

which we can label {770, 771, . .  Vk }- Each of these stations in the transformed coordinate

corresponds to a station in the untransformed coordinate, giving us a related set of wall- 

normal stations {zo, Zi, . . .  z k }. A uniform discretisation of the 77-coordinate would give a 

set of evenly-spaced node points such that A 77 = rjk — rjk-i is the same for every k.

Intuitively, we see tha t wall-normal stations of these node points in the untransformed 

coordinate will be clustered near the wall; indeed, we can show that the separation be

tween wall-normal stations tends towards infinity as we move away from the wall. Let us 

consider two adjacent stations in the wall-normal discretisation, located at Zk and Zk-i in 

the untransformed coordinate or r)k and 77^—1 in the transformed. 77*, — 77^-1 =  A77, per our 

uniform discretisation in the transformed variable; let us denote by A Zk the corresponding 

separation in the untransformed variable, i.e., A Zk = Zk~ Zk~\. By equation 2.24, we can 

say that:

A t} =  t t — n r — ’ (3 -1)/ +  Zk I +  Zk— 1 

and therefore, by rearranging suitably, we can show that:

A *  =  -* > (*  + +  (3.2)

Thus we see that the separation in the untransformed domain indeed tends to infinity as 

we move infinitely far from the wall. The sign of A Zk is negative because the numbering 

of the nodes is chosen for convenience when dealing with 77, one of the consequences of 

which being that Zk is in fact closer to the wall than Zk-i- The parameter I controls the 

tightness of the node clustering near the wall: as I gets smaller, the node points in z are 

clustered closer to the wall.
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3.1.2 Compact finite differences

The idea of compact finite differences is a development of the more familiar concept of 

finite differences. A finite difference is a discretised approximation for a derivative. For 

instance, the most common central finite difference approximation to the first derivative 

takes the form:

/'(**) =  /(X t+ l)2~ /(X t~l) +  0 ( h 2), (3.3)

where the subscripts count nodes in a uniform domain discretisation, with h being the 

separation of two adjacent nodes. It is relatively easy to confirm that, if we take a Taylor 

series expansion of the terms on the right-hand side of the equation above, we will get the 

above expression to within an error term of order h2. We see tha t this finite difference 

formulation gives us the approximate value of the derivative explicitly; we simply plug 

the known nodal values in and get out our approximation.

The corresponding compact finite difference formulation yields a higher-order approxi

mation to the derivatives without the need for a larger difference stencil i.e., involving 

values from the same nodes:

i / ' ( x fc_i) +  /'(**) +  =  3(/(X*+l)4~ f [Xk- l)) + 0 ( h 4) (3.4)

The price we pay for this is that the formulation becomes implicit, and we need to solve 

a system of equations to obtain the derivatives. This is obviously of little use if we only 

need to know the derivative at a particular point, but here, where we require the value of 

the derivative across the entire solution domain, it becomes more useful. The fourth-order 

centred schemes set out in Lele’s paper [47] were used to calculate the first and second 

streamwise derivatives where required e.g. in the explicit terms of the vorticity transport 

equation. Lele’s paper also discusses the advantages of central difference schemes in terms 

of preserving phase in wavelike solutions.
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Compact finite differences were also implemented for the wall-normal derivatives; this 

is discussed in more detail in section 3.2.2.

3.2 V orticity  transport equation  solver

3.2.1 Time stepping scheme

The main task of solving the vorticity transport equation numerically is that of creating a 

semi-implicit time-stepping scheme. Some different methods were attempted, including, 

for instance, a Runge-Kutta scheme, but the only method described here is the one that 

was used to produce the results presented later in the thesis.

We chose an iterative approach, where at each step some terms are treated implicitly 

and some explicitly. By using explicit in this context, we mean only tha t the terms are 

taken from the previous iteration; the overall scheme is still implicit. The first task was to 

decide which terms are to be treated implicitly. This decision is made on the basis of both 

physical and computational grounds. Firstly, what terms represent the most important 

physical mechanisms of vorticity transport? Secondly, how difficult will it be, computa

tionally, to invert the system of equations that result from treating some terms implicitly?

The first consideration is relatively straightforward; for a boundary layer flow, the most 

important transport mechanism for vorticity is wall-normal diffusion. It is the terms rep

resenting this in the equations 2.14 and 2.15 that we will want to treat implicitly. In 

the three dimensional case, since we use spectral methods for the spanwise dimension, it 

becomes trivially easy to also treat spanwise diffusion implicitly.

As mentioned above, the time stepping scheme used was iterative. For the first step, 

the explicit terms are calculated using values from previous times, and we obtain a first 

approximation to the solution variables at the new time. This first approximation is then
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used to update the explicit terms, and we iterate this procedure until convergence, up

dating the explicit terms with each solution. This update includes solving the Poisson 

equation to update uz using the new solution for vorticity. In practice, it was found that 

apart from the first few time levels, the solution would converge after only a single itera

tion.

Using a second-order backward difference for the time derivative, and denoting the im

plicit terms as I  and the explicit terms as £ , we obtain the following equations to be 

solved numerically (a; stands in for whichever component of vorticity is being solved for):

q .  , n , 0  a . , n - 1  _  . ,n —2

=   2 At--------+  2 £ " ' 1 “  'E7’~ 2 +  ° (At2) (3’5)
q ,  ,n ,i  A,  , " - 1  _  ,  ,n - 2

r *  =  ------ —---------+  B"’*-1 +  0(A<2) (3.6)
2 A t 2 A t

The superscripts n and i label the time level and number of iterations at the current 

time level respectively. Equation 3.5 gives a simplified discretisation for the first step, 

the solution of which we treat as the Oth iteration for the iterative corrector step (hence 

the second superscript 0). The equations for both case are discretised about the time 

level n, which is the current time level i.e. the time level for which we are attempting to 

obtain a solution. The term 2E n~l — E n~2 on the right-hand side of equation 3.5 serves 

as an Adams-Bashforth projection of the explicit terms to time level n. Equation 3.6 

show a simplified version of the discretisated equation which we solve iteratively until 

convergence, defined by e < ec, where e is defined by:

_ _  £  v V " '* " 1) 2 -  (w" ’*)2

And ec is a sufficiently small tolerance. The summations in the definition of e are over all 

the nodes in the spatial discretisation.
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3.2.2 Spatial discretisation

Let us consider the semi-discretised formulation of a generalised VTE, after the transfor

mation of the wall-normal coordinate.

3W" 1 ( r?  Pu, +  2 £  M  =  * * ~ x ;  " n- 2 + E  + 0 (A t2}| (3.8)
2 A t  Re  V I2 dr)2 12 dr))  2A t

with E  standing in for the explicit terms. An early version of the VTE solver had used 

centred finite differences for the wall-normal derivatives (du/dr) and d2uj/drj2) to give a 

tridiagonal system of equations for the implicit terms. This scheme was second-order ac

curate. However, using compact finite differences, it is possible to concoct a scheme which 

is fourth-order accurate but still tridiagonal, meaning tha t a higher order of accuracy can 

be obtained for no additional computational effort. To see how this is set up, let us first 

introduce the following notation:

^  P drf P di)  ̂ *
By matching coefficients in Taylor expansions about the /cth wall-normal node, we can 

derive the following tridiagonal relation between nodal values of A (a;) and u:

k3 x x k3 x
1 0 (fc — l ) 3 * +  1 0 ( f c - l ) 3 * +1

=  ~  ((k — l)w*_i — ku>k +  (k +  l)a'*+i) +  0(Arj4) (3.10)

Note that we use Uk to mean u  evaluated at the kth  wall-normal node and Ak to mean 

A(a;) evaluated at the same location. The appearance of Ar)2 on the numerator of the 

right-hand side, rather than the denominator, is due to the appearance of powers of r) in 

the wall-normal derivatives after performing the transformation. Using this relationship, 

the equation (3.8) can be recast as a relationship between the values of vorticity at three 

adjacent nodes and the values of the terms on the right-hand side of equation (3.8) at the 

same three adjacent nodes:
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2A t * + + + ' i - i
■ H " ' -  " r ’ +  ,  +  *■ ( < * ! - * !  +  E , \  +

2A t 10{k -  l ) 3 V 2A*

10(k +  l ) 3 \  2A t

In this and subsequent equations describing the discretisation scheme, we use ~  to indicate 

that the equalities are not exact but instead second-order accurate in time and fourth- 

order accurate in space. As mentioned above, this yields a tridiagonal system in the same 

way as the more conventional centred finite difference approach, and thus, in conjunction 

with a numerical representation of the integral condition on vorticity, can be solved using 

a modification of the Thomas algorithm (for which see 3.2.4).

3.2.3 Calculation of the explicit terms

All the spatial derivative terms in the vorticity transport equations tha t are not to be 

treated implicitly are included in the explicit terms E  in equations (3.5) & (3.6). In this 

section, we briefly discuss the treatment of the explicit terms. In the two dimensional 

case, the explicit term is given by the following expression:

E = i ^ - U ^ - V "u‘ ^

In the linear three dimensional case, the explicit terms for the streamwise and spanwise 

vorticity transport equations are given, respectively, by the following equations:

For the nonlinear version of the governing equations, as discussed in section 2.1.2, the 

explicit terms are subject to some manipulation to obtain the most convenient form.
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Principally this is to do with reducing the number of different secondary variables that 

appear.

\  w2(3.15)

(3.16)

The explicit terms for the secondary perturbation formulation of the governing equations

(see section 2.1.3) are manipulated in a similar way. The expressions obtained are given 

below.

The streamwise derivatives of any component of u, whenever it appears in the explicit 

terms, are calculated using a compact finite difference scheme, as described in the paper by

—a 2u  for the second streamwise derivatives, which is consistent with a sinusoidal variation 

with wavenumber a in the x-direction. For the validation of the solvers ability to capture 

Tollmien-Schlichting waves (see section 4.2), we set a  to be the expected wavenumber. 

For calculating streaks, as discussed in chapter 5, we set a = 0; tha t is to say, we set the 

second streamwise derivatives to zero on the outlet.

l ( 3 U S y UJ2x  — U s z

1 d  f j  d u ) 2y  ■ n r  T TT ^ U ) 2y  Q ^ t g y  d J J g y

- R e ~ d f  ~  -  l0 V s^  ~  Us‘ ^ T  ~  +

^ S z ( ' i ,P'U'2z ^ 2 x )  “b ^2x ( 7̂  ] “b i P ^ S y ^ 2 y

Lele [47]. Note that on the outflow boundary we apply the boundary condition d2uj/dx2
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3.2.4 Num erical integration 

Secondary variables

Of the expressions that appear in the explicit terms, the only ones that require some 

sort of special treatm ent axe those involving secondary variables (see equations 2 .1 2  and 

associated discussion). Recall that these are defined as integrals of the primary variables. 

We must therefore find some suitable way of calculating integrally defined terms. Hav

ing incorporated compact finite differences into the spatial discretisation of the governing 

equations, it is sensible to see if there is a way to implement them in the integration of 

the secondary variables. Thus, we now look at the use compact finite differences to obtain 

the unknown nodal values of a variable (say / )  from the known nodal values of its first 

wall-normal derivative, rather than vice-versa.

Naively, the natural scheme to use is the standard centred compact finite differences 

as described in Lele’s paper [47], but it can immediately be seen th a t this presents a 

problem when working from the nodal derivatives to the nodal values of the variable it

self. The fourth order classical Pade scheme, which is used elsewhere in the program to 

calculate first derivatives, is of the following form for some arbitrary variable /  defined 

on a uniform discretisation of rj:

4 ^ ( A + i  -  A - i)  = f'k + \ ( f k - 1 +  f U i) +  0(Ar}4) (3.19)

But we see that this formulation decouples the odd nodes from the even nodes, and since 

we are trying to calculate the variables from their derivatives, it is therefore unworkable. 

This fourth-order-accurate relationship between nodal values at three adjacent nodes is 

unique, and so there is no work-around that will preserve the same structure of the 

resulting system of difference equations. We must consider another way of dealing with 

the problem. Let us consider a scheme that is centred about an imaginary node located 

between nodes k and k +  1 :
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f t  -  fk+ 1 =  a f U  + bf'k + cf'k+1 + d f’k+2 + 0 ( A V4) (3.20)

Note tha t equation 3.20 contains only four free coefficients (a, b, c, d), rather than the 

five tha t might be expected for a fourth-order compact finite difference scheme. This is 

because it can be immediately seen that the terms in /  on the left-hand side must balance, 

since only terms in / '  and higher derivatives appear on the right-hand side. Therefore 

we can immediately specify the relationship between these two terms, eliminating one of 

the coefficients. The remaining coefficients can be determined in the usual manner. After 

some rearrangement, we obtain:

h  ~  fvk+1 =  ^ ( £ - 1  -  13/; -  13 /;+1 +  / ; +2) +  O (A r f)  (3.21)

By a similar process we can devise non-centred compact difference equations of a compa

rable type for the boundary nodes:

^  ^  =  7T7(9/i: +  1 9 /k -i -  5/ ^ _ 2 +  I k s ) +  O(Ar)4)
(3.22)

Arj 24
Let us look at one instance of how this scheme is used in the solver; take, for example, the 

calculation of the term duy/d x  in the explicit terms of the streamwise vorticity transport 

equation, c.f. equations 2.14 and 3.13. Assuming that the order of differentiation can be 

changed, we can use the definition of the streamwise component of vorticity to obtain the 

following equation, taking into account the wall-normal transformation:

duy \ '  I f d u x d2uz \
dx )  t)2 \  dx d x d y )

Here the prime denotes differentiation with respect to the transformed wall-normal coor

dinate 77. We have Dirichlet boundary conditions available for uy both at the wall and 

infinitely far away from the wall, and it is therefore trivial to obtain Dirichlet boundary 

conditions for duy/dx.  Thus we have a value which can be used as /o in equation 3.22, 

allowing us to calculate f \  (that is, duy/d x  at node k = 1). Then using equation 3.21,
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a straightforward marching procedure can be used to calculate all the required values of 

d u y / d x  throughout the interior of the domain. Since we have a Dirichlet condition for 

d u y / d x  at the wall, the value of / k from equation 3.22 is already known in this instance. 

If there is no such Dirichlet condition, as is the case when calculating u z, the second 

equation of 3.22 can be used to calculate / k  using / k - i ,  the final nodal value obtained 

from the marching procedure.

Integral condition

This scheme can also be used to calculate the integral conditions on the components of 

vorticity. We will discuss a generalised version of the integral conditions on u>x and ujy as 

given in equation 2.30. We write this generalised condition as:

poo poo

/ udz  =  / gdz +  constant, (3.24)
Jo  Jo

where the value of the integrand g is known at each node of the domain, and we denote its 

value at node k by gk- We thus have two tasks: firstly, to calculate the integral J0°° gdz, 

and, secondly, to find a discrete representation of the constraint on uj. As we will see, 

solving the first problem will take us a long way towards solving the second. We begin 

by defining:

£?(,) =  (3.25)
T

We use the prime to mean the same thing as in the previous section: differentiation

with respect to the transformed wall-normal coordinate 77. Assuming that g is such that

g jr f  —> 0  as 77 —> 0 , we can say that:

G(rj) = f  G'(ij)dr)

-  rssfuJo T
/

OO
g{z)dz ,
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with 77 and z dummy variables. Thus we see that G (l) gives us the integral condition on 

vorticity, once we have taken into account the additive constant tha t appears in equation 

3.24.

Now, if we define G'k as G'{rj) evaluated at the wall-normal node fc, and G* in a sim

ilar fashion, we can apply the scheme given by equations 3.21 and 3.22 to calculate G#, 

which is equal to f£° gdz. We’re not interested in the values of G in the interior of the 

domain, so we construct the following expression:

Gk  =  (Gk  — Gk -  1) +  {Gk -  1 — Gk - 2) +  • • • +  (Gi — Go) (3.27)

Go is, of course, identically zero. It should be apparent that, by rearranging equations 

3.21 and 3.22, we can express this as:

Gk  — ~2^(G'k  +  19G^_j -  5G'K_2 +  G'K_3)

+ +  IS G ^ .! +  13G'k _2 -  G'k _3) -1-------1- 2 ^ (G ;3 ~  5G '2 +  19Gi +  9G'0) (3.28)

As mentioned above, G'k is obtained by evaluating equation 3.25 a t node k. Thus we 

write:

G’k = ^  (3.29)

By collecting terms for each value of /c, we can therefore rewrite equation 3.28 as:

K

GK = ^ 2 ,d kgk, (3.30)
k= 1

where:

* = ^  (3-3 i> 

except for the following special cases near the boundaries of the domain.
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j  — 31/ . j  _  5/ . J  _  25/
 ̂ 24A77 ’  ̂ 24At/’  ̂ 216Arj 0 2 ^

j  _  / . _  31/ J  _  5/ j  _  25/
— 24iC2Arj’ a K - l  — 24(K -1)‘2A t/’ “ *"-2 6 (X -2 ) 2 Ar/> “ # - 3  24 (K -3)2A»j

We mentioned earlier that calculating the integral J0°° gdz would help us obtain a discreti

sation of the integral condition on u,  and we can show now why tha t is. It is hopefully 

apparent that the coefficients dfc, which define a relationship between the nodal values of 

g and its integral across the domain, can just as easily be applied to u.  Thus we can write

down our discrete representation of the integral condition:

K

y  d ^ k  = Gk  +  constant, (3.33)
k~l

and we have obtained a fourth-order accurate representation of the integral condition on 

cox using compact finite differences.

Now, equation 3.11 relates the values of the solution variables at any interior node k 

to the two adjacent nodes in the wall normal direction, and we thus rewrite it as:

O'k^k- 1 +  bkU>k +  Ck^k+l =  Pfc, (3.34)

where p contains all the information we already know: the explicit terms (representing 

convection, vortex stretching and streamwise diffusion) and the terms of the discretised 

time derivative from previous timesteps. We therefore have a system of K  — 1 equations 

for K  unknowns. These unknowns are the values of u  a t the nodes 1 < k < K\ the 

value of u  at node 0 is already known from our Dirichlet condition which specifies that 

all perturbation variables must go to zero infinitely far away from the wall.

Closure is achieved using a discrete representation of the integral condition on vortic

ity, as described above. There is one further subtlety to bear in mind, however. Since we 

are calculating the vorticity values at a new time step, the integral constraint must obvi

ously apply at this timestep. However, the data used to calculate the integrand g from
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equation 3.24 is taken from earlier timesteps. To resolve this problem, we use a similar 

procedure to the one used with the explicit terms, as expressed in equations 3.5 and 3.6. 

Let us introduce the notation i to represent the entire right-hand side of equation 3.33. 

For the first time the VTEs are solved at a new time level n, we use an Adams-Bashforth 

projection from stored values of t to approximate tn; for subsequent iterations, we calcu

late i afresh using data  from the most recent solution at the current time level.

We have thus managed to close the system of equations. To solve this, we use a modified 

Thomas algorithm, as mentioned above. Let us look at the system of discretised equations 

that arises when solving either vorticity transport equation along a particular wall-normal 

line in matrix form:

1

*-Si

CM
"«3

-e
■

LJl i

b i  c i U)2 P i

a 2  ^ 2  0 2 P 2

W k
=

b k  Qc P k

W K - 1

& K - 1 t > K - 1 C k -  1 U k P k - i

The solution technique here is to use each equation representing a discretisation of the 

vorticity transport equation to eliminate a variable from the subsequent equation and 

from the equation representing the integral condition. We begin by defining:

Si =  di

P i =  h

V\ =  Pi

<i =  i

Then, for all 2  < k < K  — 1 , we define:
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P k = bk - U k
C k — 1

P - k - l

4 =  dk — 4 - i
C f c - l .......

p k - 1

G'k
V k =  P k ~ V k - 1

P ' k - l

4 -
I'h = I 'k - 1 V k - 1

P ' k - l

This leaves us with a system of two equations:

5 k - i V k - i  + d ^ K  — i k -  1 

P k - i ^ k - i +  Ck - \ U r  =  v k - i

It is trivial to solve this for ujk', back-substitution can then be used to obtain all the values 

of cu along this wall-normal line. Repeating this process for all streamwise stations and 

all spanwise wavenumbers (where applicable) allows us to obtain a complete solution to 

the vorticity transport equation.

3.3 Poisson equation solver

The basic approach taken here to solve the Poisson equation is to  reduce the partial differ

ential equation to several ordinary differential equations which are then solved indepen

dently. This is done by applying compact finite differences to the streamwise derivatives, 

and then applying a sine transformation which, in conjunction with the use of trigono

metric identities, allows each streamwise wave number to be dealt with independently. 

We use the following fourth order compact finite difference relationship:

u z \ j - 1 2U z -j +  U z j + i    I d ,  I m  i \ i a 4\ /o o a \
^j.2 ~  1 2  dx2 ~b Uz'j+0  "b 0 ( A x  ), (3.36)

where j  is a counter for the streamwise nodes of the domain discretisation. Once again, 

as in section 3.2.2, we use «  to indicate that the equalities are approximate to within

58



fourth-order accuracy in space (time, of course, does not appear in the Poisson equa

tions). Substituting this into the 3D Poisson equation 2.16, we obtain a semi-discretised 

equation which relates the values of w and its wall-normal and spanwise derivatives at 

any streamwise station to their values at neighbouring stations:

V'zJ—l 2u z-j P  V'zj+l > ^ ril I I i i n  i \ tI" 77: ( 7T"o — ) (Uz \ j - 1 P  10Uzj  -j- Uz.j+ 1) — f jAx2 ' 1 2  \ d z 2 ^  J  ~  11 (3'37)

In the 2D Poisson equation, the term /32, representing the second spanwise derivative, 

does not appear. The term f j  on the right hand side contains an average of the terms 

from the right-hand side of the 2D or 3D Poisson equations 2.19 or 2.16:

fj\2D =  

/?;3£> =

— 1 ( d u
12

Jy,j- 1
dx

P 10
dujyj du
dx

P 1/0+ 1
dx

1 du,. 5 du,. 1 du,,
1 2

rfux  -  —  
dx 4-. +  *

l/3ux 0 dx
ifiux v 

dx

(3.38)

(3.39)
j + 1

fj\2D and fj.3D are very similar; the only difference is the appearance of spanwise deriva

tives of u)x (i.e., i(3u)x) in the three-dimensional case. As mentioned above, we intend to 

decouple the streamwise locations from one another by applying a sine transformation for 

the streamwise variation of the wall-normal velocity w. However, if a sine transform is 

to be performed on a variable, it is necessary that its value goes to zero at the limits of 

its domain; in this case, at the nodes j  = 0 (the inlet) and j  = J  (the outlet). The inlet 

boundary condition already specifies that u z .0 =  0 , but the outlet boundary condition 

does not. In order to use the sine transformation we therefore introduce a new variable 

uz, equal to uz everywhere except at the streamwise node J . Thus, the equation above 

holds for each node 1 < j  < J  — 2 , and at the node j  = J  — 1 , we have instead:

lz,J-2—2 — 2  u
A x 2

1

12

z\J— 1

(3ujx

1 d2
12 \Kdz2

d U y

dx _ J —2

~  /32 ) (uz-j-2 p  1 0 u*;j_i) =

Uz;J5 
+ 6

a duJy(3ux - dx j - 1 A x 2 12 Vdz2 P u,;j (3.40)
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This is a statement of the 3D equation; to get the equivalent statement for the 2D equation

equal to the right-hand side of equation 3.40 at node j  = J  — 1. It can be seen that,

to know uz-j; however, we are not given a Dirichlet condition for the velocity at this 

location. Instead, we are given a condition relating the velocity to its second streamwise 

derivative, as described in section 2.2.2. Substituting this boundary condition into the 

Poisson equation, we are left with:

in the same manner as in the vorticity transport equations to deal with the wall-normal 

derivative. We can then solve using the Thomas alorithm as before, since we have simple 

Dirichlet conditions on uz both at the wall and at infinity. Using these calculated values 

for uz-j, f j - i  can be obtained.

At this point the sine transformation alluded to earlier can be applied:

j
= y ^ f iz ;m s in (^ ^ )  (3.42)

m = 0

Note that, since /  is only specified for the nodes 1 < j  < J  — 1, we can set it to zero 

at the inlet and outlet, and therefore can apply the same sine transformation. Note also 

that this sine transformation is only applicable if our node spacing is uniform throughout 

the domain, as mentioned in section 3.1.1. Making these substitutions, we obtain:

simply set j3 =  0. We now define a function / ,  equal to /  at nodes 1 < j  < J  — 2 , and

in order to calculate the right-hand side of the difference equation at this node, we need

(3.41)

The (32 and u x terms are dropped in the 2D case. We can apply compact finite differences



Using suitable trigonometric identities, the offset sine terms (i.e., those for which ( j  ±  1)

appear in the argument) can be eliminated and the entire equation can be recast in terms 

of sine functions of one particular wave number. Because of the linear independence

then we can write the following ordinary differential equation for each wavenumber m:

Thus, our first step is to apply the sine transformation in equation (3.42) to the right- 

hand side of our equation in the space domain, then to solve the frequency domain ODE, 

equation (3.43). There are natural Dirichlet conditions on the variable uz\ the no-slip and 

no-penetration condition means that the velocity at the wall is fully specified, and because 

we are dealing with perturbation variables, the velocity tends to zero as the wall-normal 

distance tends to infinity. Since the velocity at these wall-normal stations is specified at 

all streamwise locations, it is trivial to perform the same sine transformation and obtain 

Dirichlet conditions at both ends of the wall-normal domain for all streamwise wave num

bers.

The wall-normal differential operator that appears is simply d2/d z 2, and therefore compact 

finite differences can be used as before. This allows us, after performing the wall-normal 

transformation and applying the discretisation discussed in section 3.2.2, to recast the 

sine-transformed Poisson equation as follows. Note tha t the wall-normal node counter 

has been rendered as superscript in this instance to prevent excessive piling-up of sub

scripts.

of sine functions of different wave numbers, the equation holds for each wave number 

individually. If we define a variable am by:

mn
(Jm  —  C O S "

j '
(3.44)

(3.45)
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0”m 1

5A x 2(k — l ) 3
+ (7m “I" 5 A i f ( k  — 1) p 2

I2 1 2 (fc — 1 )3_ til- 1

+

+  k2

A x 2
1

(<7m 1 ) (^ m  5 )
P2 2A r;2fc4

6  +  512
u"

^5Aa:2(A: +  l ) 3
+

+  5 Ar)2{k +  1 ) P 2

12

= f k +J m 1

12(k +  l ) 3
uk+Jz\m

k 3 I  f ,
k- 1

+
fc+1

10 V (A: — l ) 3 (fc +  1)3
(3.46)

Like the discretised version of equation (3.41), this gives us a system of tridiagonal equa

tions (one for each streamwise wavenumber) which can be solved with the Thomas algo

rithm.

3.4 C om plete program

When writing the complete program using the techniques described above, the first thing 

to note is that a great deal can be precomputed. For instance, the coefficients associated 

with the discretisations of the vorticity transport equation and Poisson equation can be 

calculated before the main run of the program, as well as the variables fik and 6k from 

section 3.2.4 and their analogues from the solution of the Poisson equation.

Secondly, given that we are using a time discretisation tha t requires information from 

two previous time levels, we need to consider what we will use as initial conditions. It 

was thought that the most straightforward way to deal with this difficulty would be to 

start from a solution that is identically zero everywhere, which clearly satisfies the gov

erning equations. We will then introduce some non-zero perturbation in t > 0 by some 

suitable means, such as suction/blowing at the wall or body forcing. Note that formally 

this scheme is not well-posed, since in setting the solution to zero for the times t =  0  and 

t =  —At at the first time step the statement of the problem becomes over-specified; this 

formal problem could have been overcome by bootstrapping the first step with a suitable
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Runge-Kutta scheme, but in practice presented no real difficulties.

We now give a basic outline of the structure of the solver. Statements that appear in 

italics are not relevant to the 2D solver.

Initialise precomputable parameters and solution variables 

B e g i n  t i m e  l o o p  

Increment time 

S tart of first iteration

Solve streamwise vorticity transport equation using Adams-Bashforth projections for explicit 

terms and integral condition

Solve spanwise vorticity transport equation using Adams-Bashforth projections for explicit 

terms and integral condition

Solve Poisson equation for wall-normal velocity

B e g i n  i t e r a t i o n  l o o p

S tart of subsequent iterations

Solve streamwise vorticity transport equation using most recent values for explicit terms 

and integral condition

Solve spanwise vorticity transport equation using most recent values for explicit terms 

and integral condition

Solve Poisson equation for wall-normal velocity 

Check for convergence; if converged, exit iteration loop 

E n d  i t e r a t i o n  l o o p
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Update stored variables 

If required, output data 

E n d  t i m e  l o o p



Chapter 4

Solver validation

4.1 Order o f accuracy

In order to verify that the numerical method is as accurate as expected, we perform grid 

refinement studies for simplified cases for which exact analytic solution exist. In order to 

do this, the Poisson solver and VTE solver were decoupled. This gives us a pair of model 

equations to solve which are representative of the real governing equations discussed in 

chapter 2. These equations are:

l  -

A 9  =  *  (4.2)

Here the variables 4> and \I/ are chosen such that they specify the desired solutions to the 

model equations.

For the decoupled VTE, we used $  =  — l)e - (z+^sin:r, corresponding to a solution

/  =  e~(z+^sinx, with a spanwise wavenumber (3 = 0.15 and Reynolds number Re =  1000. 

The spatial domain used was semi-infinite in the z-direction, with the transformation 

described in section 2.2.1 applied. In the x-direction the limits were 0 < x  < 5. The
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problem was initiated at time t = 0 , with the initial condition on /  being the exact solu

tion at that time. The problem was allowed to develop until t =  0.1. To verify that our 

numerical scheme is fourth-order accurate in space, we performed a series of simulations 

with a fixed timestep A t  = 0.005. Each successive simulation was performed on a more 

fine-grained grid; the streamwise and spanwise dimensions were refined simultaneously 

to avoid a situation wherein the errors associated with the discretisation in one spatial 

dimension swamp the reduction of errors associated with the refinement of the discretisa

tion in the other. The results of this spatial grid refinement study are presented in figure 

4.1. The errors are calculated using the formula:

Error (4'3)

Where the index i encompasses all the nodes of the discretisation, /* is the value of the 

numerical solution at the node i and /* is the evaluation of the analytic solution at the 

spatial location of the node i. We see that there is the expected fourth-order reduction 

in error as the grid is refined. A similar procedure was followed to ensure that the time- 

stepping scheme preserved second-order accuracy: we use a spatial grid with fixed values 

for the node separation Ax, Ag = 0.125 and perform a series of calculations with pro

gressively finer timesteps to verify the temporal accuracy. The simulation was stopped 

at t = 0.1 in all cases, and the error is defined as before. The results, which show the 

expected second-order reduction in error, are depicted in figure 4.2.

To test the accuracy of the decoupled Poisson solver, we used \1/ =  —((32 — 2)e-2sinx in 

equation 4.2, corresponding to a solution g = ze~zsinrc. This solution was chosen because 

it is broadly similar to the expected forms of solution in the real problem, with the solution 

zero-valued both at the wall and infinitely far from the wall. For this problem, a slightly 

larger domain was used (0 < x < 10). Once again, the discretisations of both spatial 

dimensions were refined simultaneously. The results of the refinement are shown in figure 

4.3, which shows the expected fourth-order reduction in error.
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Figure 4.1: Dependence of errors on spatial grid size in decoupled VTE solver

4.2 Tollm ien-Schlichting waves

Having shown that our numerical technique has the expected order of accuracy, we now 

seek a benchmark problem for the coupled solvers. We will test the solver’s ability to pre

dict spatially-developing Tollmien-Schlichting waves in a Blasius boundary layer. Using a 

form of the Orr-Sommerfeld equations, it is possible to predict the complex wavenumber 

of a Tollmien-Schlichting wave excited by a given frequency of perturbation, as discussed 

in section 2.3. This gives us a criterion by which to judge how well our solver captures 

this phenomenon.

Figure 4.4 shows an example of the type of solution we obtain; it has the expected form, 

of a spatially quasi-periodic wave with maxima at the wall and in a critical layer some 

distance from the wall. Some quantitative confirmation of its accuracy is also required, 

however; the problem is thus one of verifying tha t our numerical data matches the ex-
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Figure 4.2: Dependence of errors on size of timestep in decoupled VTE solver

pected Tollmien-Schlichting wave. Let us assume that the numerical results, at least in 

some region sufficiently far downstream from the location where the temporal perturba

tion is introduced, have the form of a Tollmien-Schlichting wave. This means that, along

any particular streamwise line at constant z, the computed values of any of the solution 

variables should approximate a function of the following form.

f ( x )  =  Aeia x̂~®

Where A  is an amplitude, 0 a phase and a  a complex wavenumber. A  and 0 are not of 

interest. Let us examine the imaginary component of / ,  /*.

f i (x ) =  Ae_a^x_^sin[Q!r (a: — 0 )]

=  j4'e-aiXsin[ar (:r — 0)] (4.4)

With A' = Aeai<t>. We wish to determine the values a* and ar. Calculating a value for
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Figure 4.3: Dependence of errors on spatial grid size in decoupled Poisson solver

ar is in fact relatively straightforward: we simply hunt for extrema and zeroes in our 

data series. For finite values of x, the only zeroes that occur in fi  are those for which 

sin[ar (x — 0 )] =  0. (Note that we have assumed that a* is finite.) Similarly, the extrema of 

fi occur only where tan[ar (x — 0 )] =  av/a*. The upshot of this is th a t if we hunt through 

our data for zeroes and extrema, we can use their locations to calculate ar. Zeroes of 

the function sin(f) occur at intervals of tt in £, and the function tan(f) is 7r-periodic in t. 

Thus, if we locate two successive zeroes at the locations x m and xn, we know that:

0) "P ^  =  (^n 0)

7r
otr = -----------  (4.5)

X n  % m

This also holds if xm and xn represent the locations of two successive extrema. Our pro

cedure, then, is to find the average separation of successive zeroes and successive extrema 

in the data set, and use this to calculate an average half-period; that is, the average value
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of xn — xm for all successive pairs (xm,x n) of zeroes or extrema. (This is in fact more 

accurately described as a quasi-half-period, since our function is not truly periodic but 

also exponentially growing or decaying.) Once we have obtained this average, we use it 

in place of xn — x m in equation 4.5 to obtain our value of a r.

The calculation of a* is slightly less straightforward. If we introduce an offset variable 

f  =  x — Xq, we can recast equation (4.4) as:

Where A" = A'e aiX°. The phase in the trigonometric term is still problematic. However,

case, as described above, that sin[ar (a:o — 0)] =  0. If this is the case, then we must have 

Xo — (f) — rmr, m  £ Z. Thus, our phase term can be ignored. By integrating our function 

over successive half-periods, it is possible to show that:

Thus, by calculating a numerical approximation to the integrals in the above expression, 

and using the value of ar tha t has been calculated using the method described above, an 

approximate value for a* can be determined. This method allows us to calculate both 

parts of the complex wavenumber of the spatially developing wave described by our data 

set. We can compare this to the expected wavenumber from the Orr-Sommerfeld solver 

described in section 2.3 in order to test the validity of our results. Some of these results 

are tabulated in tables 4.2 and 4.2; recall tha t 7  is the real-valued frequecy of the pertur

bation used to excite the Tollmien-Schlichting waves.

We see that the values of a* and, particularly, a r calculated from our numerical data 

agree quite well with the values predicted by the Orr-Sommerfeld solver. A particularly 

satisfactory result is that the sign of on is preserved in all instances; in other words, our

fi(x) = A"e “^ sm [ar (( +  x 0 -  0 )] (4.6)

let us assume tha t we choose our offset such that /i(£) =  0 at £ =  0. It must then be the

r ( n + \ ) i r / a r
n n / a r (4.7)
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Re 7 Expected ar Computed a r Percentage error

1 0 4 0.03 0.11691 0.11714 0.197%

1 0 5 0.05 0.18104 0.18009 -0.525%

0.04 0.15369 0.15377 0.052%

0.03 0.12329 0.12352 0.187%

0 .0 2 0.088171 0.088496 0.369%

0.015 0.068428 0.068094 -0.488%

0 .0 1 0.048404 0.048332 -0.149%

0.005 0.023258 0.023271 0.056%

1 0 6 0.005 0.024537 0.024529 -0.033%

0.004 0.019661 0.019565 -0.488%

0.003 0.014732 0.014784 0.353%

0 .0 0 2 9.768 x 10" 3 9.8277 x 10" 3 0.61%

Table 4.1: Comparison between real part of expected and calculated Tollmien-Schlichting 

wavenumbers for 0 = 0.15
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Re 7 Expected a* Computed a* Percentage error

1 0 4 0.03 -8.8445 x 10" 3 -8.7833 x 10~ 3 -0.692%

1 0 5 0.05 8.4486 x 10“ 3 8.4711 x 10~ 3 0.266%

0.04 5.94 x 10" 3 6.2396 x 10~ 3 5.044%

0.03 3.613 x 10~ 3 3.4886 x 10~ 3 -3.443%

0 .0 2 1.4857 x 10“ 3 1.4782 x 10" 3 -0.505%

0.015 1.0289 x 10" 3 1.0316 x 10" 3 0.262%

0 .0 1 -1.096 x 10~ 5 -2.9031 x 10~ 6 -73.512%

0.005 -2.3011 x 10" 3 -2.2949 x 10" 3 -0.269%

1 0 6 0.005 4.1833 x 10~ 4 ' 4.0853 x 10" 4 -2.343%

0.004 2.7934 x 10“ 4 3.1117 x 10" 4 11.395%

0.003 1.4438 x 10~ 4 1.4873 x 10" 4 3.013%

0 .0 0 2 7.317 x 10- 5 7.2484 x 10“ 5 -0.938%

Table 4.2: Comparison between imaginary part of expected and calculated Tollmien-Schlichting 

wavenumbers for 0 =  0.15
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solver always correctly predicts the presence of spatial growth or decay.

Figure 4.4: Example of a Tollmien-Schlichting solution obtained using our compact finite dif

ference solver. Solution parameters are Re  =  105,7  =  0.05; plotted variable is Re(uy), the real 

part of spanwise vorticity.

The numerical values of a* do not match the expected values as well as the numerical 

values of c*r , but they are still in most cases quite satisfactory. One factor that explains 

the bigger discrepancies for a* is, simply, that the absolute values of a* are significantly 

smaller than those of ar for almost every case. Thus, even a very small absolute error in 

<Hi can cause quite a large relative error. Indeed, the case with Re = 105 and 7  = 0.01, 

which has the largest percentage error in a*, has an absolute error in a* which is among 

the smallest of any of the cases, and only appears relatively large because the expected 

value of oti is roughly an order of magnitude smaller than in any other case. A more 

careful examination of the data obtained from simulations performed with these parame

ters shows tha t the few wavelengths of the resultant Tollmien-Schlichting wave which lie
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closest to the outlet boundary exhibit a slightly greater growth than those parts of the 

wavetrain closer to the interior of the domain. This suggests that the outflow boundary 

affects the spatial development of the waves subtly, such tha t the effect is only significant 

where the expected magnitude of ai is very small. Recalculating the complex wavenumber 

without these last few wavelengths of data reduces the discrepancy between the expected 

analytic value and the numerical value by almost a half, although this still leaves us with 

a quite significant difference. Performing the simulations again with a finer resolution in 

the streamwise direction showed no significant effect on the error in a*, which suggests 

that the waves are satisfactorily resolved.

We can therefore say that our complete solver satisfactorily captures Tollmien-Schlichting 

waves, and is therefore capable of dealing with more realistic problems, as well as the 

simplified model solutions used to verify the order of accuracy in the previous section.

4.3 Spanwise forcing

We elected to investigate the case where the oscillating wall included a stationary section in 

the region nearest the inlet and an oscillating panel further downstream. This means there 

will need to be at least some part of the domain where there is streamwise variation, which 

will introduce three-dimensional effects that may significantly influence the numerical 

solution. For this reason it was decided that it would be productive to perform some 

preliminary numerical calculations using a simplified version of the numerical formulation 

with no streamwise development. These calculations, in common with those from the fully 

three-dimensional solver, used zero initial conditions and a ramping up of the excitation. 

Recall that the analytic solution for u x takes the (complex-valued) form:

u x(y, z, t) =  u*(p +  v)exp(i((3y -  7 1) -  vz) (4.8)

Where v is defined by v2 =  0 1 — i jR e ,  Re(u) > 0 and u* is the amplitude of the wall 

oscillation. Some results from these calculations are presented below in figure 4.5.
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 Analytic solution - 1 = T/4
 Analytic solution -1 = T/2

Analytic solution - 1 * T 
□ Numerical solution - 1 -  T/4
* Numerical solution - 1 = T/2
0  Numerical solution -  t = T
O Numerical solution - 1 => 2T

0.5 0.55 0.6 0.65 0.75
») 0.85 0.95

Figure 4.5: Comparison of 2D model solutions for spanwise excitation with analytic solutions. 

Solution parameters: Re =  10000, 7  =  0.01, P = 0. T is the period of the spanwise oscillation.

It is seen that the numerical solution very quickly tends toward the analytic solution. 

Even by a quarter of the way through the first cycle of the spanwise oscillation, the nu

merical solution is already qualitatively very similar to the analytic solution, and by the 

end of the first full cycle the solutions are almost indistinguishable. Repeating the simu

lations with frequencies of an order of magnitude higher or lower gave similar agreement. 

This gives us reason to believe that the use of zero initial conditions the three-dimensional 

solver should not introduce numerical instability due to explosively-growing transients or 

similar problems.

Having obtained satisfactory results with a simplified two-dimensional solver, we now 

consider how to deal with the spanwise excitation in the three-dimensional solver, as
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mentioned above. The streamwise variation of u* (recall that this is the amplitude of 

the wall oscillation, as defined in section 2.5) goes from zero at the inlet, to some con

stant non-zero value downstream. The region of transition should be sufficiently smooth 

to avoid numerical difficulties. It was decided tha t the simplest solution was to use a

hyperbolic tangent function, given below.

u y ( x ) =  ~ L . ) )  +  1] (4 9)

Here S' is a factor controlling the steepness of the profile in the step (the larger the value 

of S', the steeper the slope), and Ls is the location about which the step is centred. A 

caricature of the solution domain is shown in figure 4.6; this depicts the plate on which 

the boundary layer is developing. Note that the spanwise extent of the domain is purely 

notional, since we are dealing with a single spanwise wavenumber rather than a bounded 

spanwise space; the plate is simply drawn this way for ease of visualisation. A sketch of

the uy(x) obtained from equation 4.9 is included in this caricature.

In figure 4.7, we see that the wall-normal profiles of Re(ujx), the real part of the stream- 

wise vorticity, from the three-dimensional solver also agree well with the analytic solu

tions, and in fact are almost indistinguishable from the two-dimensional solutions. Note 

that the data were taken from the outlet boundary. This sampling location was chosen 

because it was expected that the data furthest downstream would be least influenced 

by the three-dimensional effects. Tests showed tha t the solution values on the outflow 

were relatively insensitive to changes in the value of a  in the outflow boundary condi

tion (as expressed in equation 2.29). Note that in these cases it was not necessary to 

take complex-valued variables, since we used (5 = 0 , and under these circumstances the 

real and imaginary components decouple. However, since we had developed a solver that 

utilised complex variables, we saw no reason not to use the full complex wall oscillation 

defined by uy = u*el,yi, which excited a complex response.

In order to further investigate three-dimensional effects, a selection of simulations were
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Figure 4.6: Sketch of the solution domain; the form of the streamwise variation of u*, the 

amplitude of the spanwise wall oscillation, is shown to the right of the flat plate which creates 

the boundary layer basis flow.
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 Analytic solution -  t * T/4
 Analytic solution -  t * T/2

Analytic solution - 1 * T

Numerical solution - 1 * T 
Numerical solution - 1 = 2T

0.5 0.55 0.7 0.85 0.9 0.95n

Figure 4.7: Comparison of 3D model solutions for spanwise excitation with analytic solutions. 

Solution parameters: Re =  10000, 7  =  0.01, (3 = 0. T is the period of the spanwise oscillation.
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performed in which Re was varied but the product 7 Re kept constant. Keeping the 

same value of 7 Re meant that the two-dimensional analytic solutions were identical, since 

both 7  and Re only appear in the analytic solution through the parameter 17 and in 

the definition of v (given in section 2.5 and reiterated above), they appear multiplied 

together. Some results of this series of simulations are presented in figure 4.8, which 

presents values of Re{ux) along the wall. The streamwise location along the wall is 

expressed as x — L s: in other words, the distance downstream of the step location. We see 

that, for larger Reynolds numbers, the three-dimensional effects due to the step extend 

further downstream, but that by the outflow boundary Re(cjx) a t the wall has settled 

down to a value near the two-dimensional solution. Looking again at 4.7, though, we 

can see that this discrepancy in the wall values is small compared to the variation of the 

profiles in the wall-normal dimension.

7 2
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*-L.

Figure 4.8: Re(ujx) at the wall for different Reynolds numbers, compared to value of Re{ujx) 

at the wall for 2D analytic solution. 7 Re = 100. Data taken from the time after two complete 

oscillations have elapsed.

—  Value of analytic solution at wall
 R e = 1 0 0
  R e = 1 0 0 0

R e = 10000
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Chapter 5

Turbulent streaks

Before investigating the influence of spanwise wall forcing on streak development, we need 

to perform some simulations of the streaks alone without any wall motion to determine if 

our reduced-order model of streaks, with our implementation of compact finite differences, 

gives realistic results. The problem we now face is how to generate streaks in a practical 

and physically meaningful way. The approach we decided to implement was based on 

that of Fasel, who used a spatially localised force to generate Klebanoff modes in laminar 

boundary layers [27]; these are in some respects quite similar to streaks in turbulent 

boundary layers. Fasel used a disturbance which simulated a body force that could be 

practically implemented in an experiment; since he employed, as we do, a velocity-vorticity 

formulation of the governing equations, this means the force appears as a cross-product 

i.e., as the spatial derivatives of a force rather than the force itself. Fasel’s method has been 

adapted by Lockerby et al and Carpenter et al [11,48] to generate streaks in a turbulent 

boundary layer, and we will employ the same approach. This involves introducing a 

forcing of the following form:

F  = A(t)exp[—kx(x — X f ) 2 — kz(z — Z f )2] (5.1)

This is in the form of a Gaussian, with A{t) the amplitude as a function of time, x j  

and zj  the spatial coordinates around which the forcing is centred, and kx and kz pa
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rameters which describe how quickly the Gaussian profiles decay in the streamwise and 

wall-normal directions respectively. The most significant difference between this and the

forcing strategy of Fasel is that this term acts as a vorticity source which does not cor

respond to a physically realisable forcing. F  is introduced as an additional term in the 

secondary perturbation form of the streamwise VTE, equation 2.22, which is dealt with

remember that, although we are only imposing a forcing term on the streamwise vorticity, 

due to the solendoidality of this entails an induced wall-normal vorticity as well. Brief

form of two stripes of positive and negative vorticity between the point of application of 

F  and the wall.

Unlike their laminar counterparts, turbulent wall-bounded flows are linearly stable: there 

is no equivalent to the growing Tollmien-Schlichting waves tha t embody the classical route 

to transition [64]. Of course, if there were any such linear instabilities, we would already 

have an answer to how turbulence sustains itself and there would be no need to investigate 

streaks. Despite this lack of linear instability, it is still possible for a perturbation to a 

turbulent boundary layer to grow significantly in a short period of time; it must, however, 

eventually decay as t —► oo. The mechanisms by which this happens are explained in some 

detail by Henningson et al. and by Trefethen et al. [29,76], but we will briefly discuss them 

here. Let us obtain a linearised perturbation form of the momentum transport equations, 

derived from equation 2.1 in the same way equation 2.7 is derived from equation 2.3.

numerically by simply adding it to the explicit terms of equation 3.18. We also need to

consideration of the solenoidality condition reveals tha t the wall-normal vorticity is of the

(5.2)

We can recast this using operator notation:

(5.3)

The linear stability of the turbulent boundary layer means that all the eigenvalues of the
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operator L have negative real parts. However, L in this problem is non-normal, meaning 

that its eigenfunctions do not form an orthogonal set. The upshot of this is that, although 

each individual mode decays, their superposition may not necessarily do so. In cases, such 

as the generation of streaks, where initial growth is observed, we can divide the overall 

history of the perturbation into a strong algebraic transient growth phase followed by an 

exponential viscous decay.

As described in chapter 3, our numerical scheme takes advantage of the linear formu

lation of the governing equations by simulating only a single spanwise wavenumber in 

any given solver run. The scheme thus imposes a spanwise wavelength, which we denote 

by A, on the streak. This may not match the corresponding length scale for the streaks 

that evolve in real turbulent boundary layers. In order to overcome this restriction, we 

perform a search across a range of values for A and Zf to find the streak whose magnitude 

is the greatest for some appropriate measure. We then make the further assumption that 

the disturbances present in real turbulent boundary layers which we have modelled by 

equation 5.1 occur with roughly equal probability across the range of (A, zf)  pairs investi

gated. Then, we can say tha t the greatest-magnitude streak is selected by the basis flow 

since, given our assumed equally-probable set of disturbances at different (A, Z f )  pairs, one 

particular pair will produce the strongest streaks, and therefore the streaks that would be 

observed in a real turbulent boundary layer. We call these the optimum streaks. We hope 

to find optimum streaks whose development is a function of the basis turbulent boundary 

layer only i.e., unaffected by the fine details of the initial forcing.

However, we are still somewhat putting the cart before the horse. How do we mea

sure the magnitude of the induced streaks? The criterion by which streak magnitude 

ought to be measured remains a point of contention. Some sources have used a criterion 

based on the total amount of energy contained in the streak after some time has elapsed 

as compared to the energy of the initial perturbation; see for instance the work of Butler 

and Farrell [9]. This time limitation is imposed in order to take account of random tur
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bulent motions; it is assumed that nominally possible streak-like events that occur over a 

time longer than the turbulent time scale (called the ‘eddy turnover time’) are disrupted 

by these random motions and thus do not occur in real turbulent boundary layers. Other 

sources simply take the maximum value in the streaky velocity field during the algebraic 

growth period as the streak magnitude [48]. This is the criterion we use here. Different 

criteria may turn up different results; thus, when we talk about finding an optimum streak 

it should be borne in mind that this optimum is only with respect to the magnitude crite

rion employed, and is not a universal optimum. A possible alternative is to examine the 

time history of the maximum velocity value, and take the initial slope during the growth 

phase as a measure of the streak strength. Intuitively this is a more direct measure of 

the algebraic growth than taking the maximum value, which is determined by a balance 

between initial transient growth and eventual viscous dissipation. However, for the most 

important practical cases it was found that the maximum velocity value in early streak 

development was swamped by the non-physical velocities associated with the forcing term 

given in equation 5.1.

Several simulations were run in order to find the optimum streaks; streak strength was 

determined using the simple maximum criterion. Note tha t in addition to the variation of 

wall-normal forcing location z j  and spanwise wavelength A+ , we can vary other parame

ters that define the forcing: notably, kx and kz. In common with the results of Carpenter 

et al [1 1 ], we find that the streak response is relatively insensitive to variations in kz, but 

can be changed significantly by altering the value of kx. Furthermore, the variation of 

the forcing in time can also be changed, and was found to alter the generation of streaks 

quite profoundly. This is explored in more detail in section 5.2; for the results presented 

in other sections, we use the same approach as Lockerby et al [48] and use a forcing that is 

switched on for times t+ < 15 and switched off at all other times. This follows the exper

imental work of Gad-el-Hak et n/., who found tha t this timing when used with localised 

suction produced the best streaks on a towed flat plate. The switching is abrupt, so we 

refer to the time profile of this forcing scheme as Heaviside-like. All results presented are
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for a displacement Reynolds number of 104 unless noted otherwise.
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Figure 5.1: Relative streak magnitude for Gaussian perturbation in u>x at various heights and 

spanwise wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile 

is x+w = 300

5.1 Influence o f kx

The parameter kx controls how quickly the streak-generating forcing 5.1 decays in the x- 

(i.e. streamwise) direction. We specify kx here not by its numerical value, but by the 

corresponding streamwise half-width, Xhw■ This half-width is defined as the distance one 

must travel along the x-direction from the peak of the Gaussian to a point where the 

forcing is 1% of its peak value. It is easily seen from equation 5.1 that the relationship 

between kx and Xhw is:

z* = 17.5
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Figure 5.2: Relative streak magnitude for Gaussian perturbation in ujx at various heights and 

spanwise wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile

is XL  = 150

We hope to find that, with careful selection of kx and other parameters, it is possible to 

use the forcing profile 5.1 to generically model the disturbances in real turbulent boundary 

layers. By this, we mean that we hope to find that there exists, among the set of all pos

sible perturbations in such boundary layers, a class of perturbations including both those 

modelled by 5.1 and those that are found in real turbulent boundary layers. Furthermore, 

we hope that this class is such that any two members of it generate essentially identical 

streak responses. Were this the case, we could be assured tha t the precise details of the 

disturbance do not need attention, and a relatively straightforward disturbance model like 

5.1 is satisfactory. If we assume that the most common perturbations in real boundary

85



layers are small-scale, both temporally and spatially, the sensible approach is to investi

gate the changes in streak response as we alter the parameters of 5.1 to make the forcing 

profile more pointlike.
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Figure 5.3: Relative streak magnitude for Gaussian perturbation in u x at various heights and 

spanwise wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile

is xtw = 30

Figures 5.1 to 5.4 present the maximum streak magnitudes for a selection of (A+, z f )  pairs, 

normalised by the maximum magnitude of the optimum streak. Each graph corresponds 

to a different kx value; they are shown in order of x f w, from broadest to narrowest. It is 

clearly seen that, as the streamwise half-width of the forcing profile decreases, the ten

dency is for the optimum streak to occur at lower values of both z f  and A+. A comparison 

of figures 5.3 and 5.4 shows that by the time the x f w is reduced to around 30, further 

narrowing of the forcing profile no longer has any significant affect. Results from simula

Z* = 12.5 

z! = 15
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tions performed with a half-width of 7.5 confirm this, but are not shown here since they 

are indistinguishable from the results with a half-width of 15. The final optimum streak 

obtained is at z^  '=  12.5, A+ =  75. The spanwise spacing is somewhat lower than the 

commonly-given value of 1 0 0  wall units, but is well within the experimentally observed 

values of A+ =  120 ±  52 reported by Zacksenhouse [82]. It is also in close agreement 

with the optimum streak found by Cossu et al. in their numerical investigation using an 

energy-based criterion, A+ =  81.5 ±  1 [19]. Consider also tha t we are picking out the 

most strongly amplified streak, and thus the one tha t will be observed most often; it is 

thus more suitable to compare this to the median observed streak spacing rather than the 

mean, and this is the value given by Cantwell, in a review of several sets of experimental 

data, as 80 wall units [1 0 ].

z* = 12.5

z; = 15

0.95
100 120

X*

Figure 5.4: Relative streak magnitude for Gaussian perturbation in cox at various heights and

spanwise wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile
+ 
hwis x t  -  15
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As mentioned above, the results from figures 5.1 to 5.4 are normalised. This normalisa

tion is performed for each value of kx, in other words, comparing the results from one 

graph to another doesn’t tell us anything about the relative magnitude of the streaks for 

different values of kx. In order to compare optimum streaks for different kx values, it is 

useful to look at their histories i.e. how the maximum streak strength varies in time. This 

information is presented in figure 5.5.
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Figure 5.5: Time histories of the optimum streaks for a range of values of kx.

Before discussing these results, though, we’ll digress briefly to point out some details 

of how the forcing amplitude is scaled when changing the value of kx, and why. If we 

integrate the forcing profile along the streamwise direction, we see that for smaller values 

of kx (that is, a broader half-width) there will be a greater amount of force imparted 

in the creation of the streak. (Remember tha t although we speak of imparting a force 

through the forcing term of equation 5.1, it is more accurate to call F  an imposed vorticity



source.) Using the fact that the integral of a one-dimensional Gaussian centred around 

an arbitrary point xq can be expressed as:

It is possible to see that, by making sure that the magnitude of the forcing varies in direct 

proportion with the same amount of force will be imparted for all values of kx.

An examination of figure 5.5 tells us first that the narrower forcing profiles give us 

stronger streaks for the same normalised forcing magnitude. We also see tha t the maxi

mum is reached earlier for narrower profiles. The streaks reach their maximum strength 

at the point where the exponential viscous decay begins to outweigh the algebraic inviscid 

growth. A later maximum therefore suggests either that the growth in the algebraic phase 

is stronger or more prolonged, or that the exponential decay is weaker. The gradients after 

the maximum are shallower in the Xhw =  150 and x^w =  300 cases than in the Xhw =  15 

and Xhw — 30 cases, indicating that there is weaker exponential decay in the broader forc

ing cases. The growth of these cases is also significantly shallower, which indicates that 

the algebraic growth is also weaker; it may also be more prolonged, and this, in combina

tion with the weaker decay, is a possible explanation for the later maxima of the large Xhw-

As mentioned above, the optimum streak found for the x^w =  15 case is indistinguishable 

from the x^w =  7.5 case. Calculating the streak development for narrower forcing profiles 

has similar results, in that no significant change in the streak development is observed. 

This suggests that we have found, as was posited earlier, a value of Xhw below which all 

streak forcings produce identical results. We can tentatively say, then, that for x%w < 1 5  

the fine details of the forcing are unimportant and we can use this as a satisfactory model 

of real disturbances. However, see section 5.2 below on the influence of changing the time 

variation of the forcing profile for more discussion of this point.

Figures 5.6 to 5.8 show the development of this optimum streak over a relatively long
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Figure 5.6: Contour plots of u+ for the optimum streak with x^w =  15. Profiles are shown at 

times t + — 8,24,40,56,72 from top to bottom. Contours axe at intervals of u+ =  50.
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Figure 5.7: Contour plots of for the optimum streak with x^w =  15. Plans are shown at times 

t+ =  8,40,72 from top to bottom. Contours are at intervals of u+ =  50, with positive values 

represented by solid lines and negative values by dotted lines. Data taken from a wall-normal 

location z + =  15
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period, illustrating the streak during both the growth and the decay. It is apparent from 

figures 5 .6  and 5 .7  that the streak very quickly attains a streamwise length scale of around 

200 and lengthens to around 400 over the course of its development. This is large in com

parison with the spanwise scale (specified by the choice of wavenumber, A+ =  75) and the 

wall-normal scale, and the streak remains within 50 wall units of the wall for all times. 

Note also the tilted appearance of the streak, with the leading edge lifting away from the 

wall. This is consistent with earlier observations by other investigators [48].

Figure 5.8: Contour plots of u+ and for the optimum streak with x^w =  15. Profiles are 

shown at times t + =  8,40, 72 from top to bottom. Thin black lines are u+, thick grey lines are 

CJ+. Contours are at intervals of =  50 and u>+ =  5. with positive values represented by solid 

lines and negative values by dotted lines. Data are taken from different streamwise locations for 

each frame; from top to bottom, data are shown at x + =  450,650,1000.

Another interesting feature is visible in figure 5.8, which shows the perturbation stream- 

wise vorticity as well as the perturbation streamwise velocity. We see that the vorticity
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decays much faster than the velocity, and in fact decays during the growth phase of the 

streak. It is important to bear in mind that the vorticity shown in this figure does not 

represent the quasi-streamwise vortices, which occur above the streaks in real turbulent 

boundary layers (as discussed in section 1.2); indeed, these vortices are not truly present 

in our calculations. This is one of the abstractions that our model incorporates, in an 

attempt to isolate the streaks from other turbulent boundary layer structures and phe

nomena.

x*

Figure 5.9: Contour plots of u£  for the optimum streak with streamwise forcing half-width of 

15 in wall units. Profiles are shown at times t + =  3 ,6 ,9 ,12,15 from top to bottom. Contours 

are at intervals of u+ =  25, with positive contours solid and negative contours dotted. The zero 

contour is unmarked.

Returning briefly to figure 5.5, we note the kink that can be seen in the half-width 15 and 

30 cases during the growth phase, around t + «  8. This initially seems quite mysterious, 

but there is a relatively simple explanation, which is well illustrated in figures 5.6 and 5.9.
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The explanation for the streak magnitude discontinuities in figure 5.5 is illustrated in 

the first frame of figure 5.6, where the streak has a two-lobed structure. The longer lobe 

which is further downstream is the streak itself at an early stage of development; the 

more compact lobe further upstream is an artefact of the forcing and thus not indicative 

of any real streak physics, since we are using the forcing as a low-order approximation to 

the non-linear streak formation process (c/. the work of Landahl [46]). A more detailed 

examination of this two-lobed structure is presented in figure 5.9, where we see the same 

streak, but in a smaller range of streamwise values and at earlier times. In this figure, it 

is apparent that the peak value of ux in the forcing lobe is initially greater than that in 

the streak lobe. At some point during the streak development, however, the peak value 

of ux in the streak lobe becomes greater than that in the forcing lobe. At this point, our 

streak magnitude criterion, which simply searches for the greatest \ux\ value in the flow 

field, starts to track the peak in the streak lobe.

The reason that the discontinuity is more pronounced in the case where the forcing half

width is 15 is because of the normalisation of the forcing amplitude A, as discussed above. 

In order to compensate for the reduced width of the forcing profile, the amplitude of the 

forcing is increased. This creates a stronger peak in the forcing lobe, and therefore the 

peak in the forcing lobe will be greater than that in the streak lobe for a longer period of 

time.

This also suggests an explanation for why no such discontinuity appears in the cases 

where Xhw is much larger. In these cases, the normalisation of the forcing amplitude to 

a lower value means that the peak value of velocity in the streak becomes much greater 

than the peak value in the forcing lobe almost immediately. Additional evidence for this 

explanation is seen in the profiles of the optimum streak for the case where the forcing 

half-width is 300, as depicted in figure 5.10. No forcing peak equivalent to that observed 

in the first part of figure 5.6 is visible. In fact, profiles at the same early times as those 

depicted in figure 5.9 (not included here) also show no forcing lobe, indicating that the
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Figure 5.10: Contour plots of for the optimum streak with streamwise forcing half-width of 

300 in wall units. Profiles are shown at times t+ =  8,24,40,56,72 from top to bottom. Contours 

are at intervals of u+ — 25.
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streak is the dominant feature throughout. Note too that, although the streamwise length 

scale of the streak in figure 5.10 is somewhat longer than that in figure 5.6, the length 

scale of the streak during the growth phase (around 250 wall units) is much shorter than 

the length scale of the forcing (600, twice the half-width) and certainly has not increased 

by the same factor tha t the forcing length scale has. This suggests that there is a natural 

streak length scale determined by the basis flow, and the nature of the forcing, although 

it can alter the streak strength, has little influence over the streak’s streamwise scale.

5.2 Influence o f forcing tim e profile

As mentioned above, in addition to the sensitivity of the streak growth to kx, there is 

also considerable sensitivity to the time profile of the forcing. For the results presented 

in the previous section, as in some previous numerical studies [11,48], we have used the 

same kind of time profile as in Gad-el-Hak’s experimental work [25], whereby forcing is 

simply switched on if t+ < 15 and is switched off otherwise. This choice of time profile 

was made on the basis tha t it produced the best artificially induced burst; recall from 

chapter 1 that a burst is a highly nonlinear streak breakdown process involving liftup of 

the streak from the wall and growing oscillations on the interface between regions of high- 

and low-speed fluid, so the time profile we use is chosen on a criterion linked to the streak 

strength, albeit indirectly.

As discussed above, our results indicated that there exists an Xhw limit below which the 

details of the forcing are unimportant, with the exception that at very small spatial scales 

viscous dissipation comes to dominate the dynamics. Thus, we say that this is a limit of 

sensitivity to spatial scales associated with the basis flow, since if the streak development 

is not affected by the details of the forcing below this limit, it must be determined by the 

basis flow only. We wish to find if there is, similarly, a limit of sensitivity to temporal 

scales for the forcing.
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Figure 5.11: Development of streak magnitude in time for the streak with z j  = 12.5, A+ = 75 

and kx based on a streamwise half-width of 15 wall units. Different plots show different values 

of th w
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Initially, we performed this investigation by simply shortening the length of time for 

which the forcing was switched on. The Heaviside-like nature of the forcing profile in 

time was retained. As in the investigation of the streak development’s dependence on 

the spatial variation of the forcing, the technique used was to make the time profile more 

pointlike. Specifically, if we imagine the initial time forcing profile as an approximation to 

a delta function centred around t+ =  7.5, then we can make the forcing more like a delta 

function by reducing the time interval between this centre and the switching on or off. 

Thus, just as with the variation of kx to determine the spatial dependency of the streaks 

on the forcing, the temporal dependency of the streaks on the forcing can be parametrised 

entirely by a half-width, thw. For the original time forcing profile, this half width is 7.5 

in wall units. Note that as the half-width is reduced, we need to introduce a correction 

to the amplitude of the forcing to account for its reduced duration, as was done when 

investigating the influence of kx. The amplitude correction is simpler here; recalling that 

thw of our original profile can be expressed as t* =  7.5, the factor by which we need to 

correct the amplitude is simply «L/7-5.

The results of this investigation are shown in figure 5.11. We see tha t there is not a 

clear convergence; at first as the time half-width is reduced the streak reaches a greater 

maximum earlier in time, but that this trend is reversed for half-widths below 1 . A possible 

explanation for this behaviour is that the use of a Heaviside-like forcing profile means that 

we have created essentially infinite gradients in time at the switch-on and switch-off. This 

is not something that the discretisation scheme can handle gracefully, and it becomes 

more significant as the duration of the forcing decreases since the switching necessarily 

occurs over the duration of a single time-step. A more satisfactory method of making the 

time forcing profile more like delta-like is to choose a function with a smoother profile. 

The smoothed time profile used is similar to the Heaviside-like forcing profile in that it 

is centred around a time t j  =  7.5 and in that only a single parameter (thw, the time 

half-width) is needed to distinguish the different forcing profiles from one another. There 

is, again, an adjustment made to the amplitude of the forcing in order to compensate for
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Figure 5.12: Development of streak magnitude in time for the streak with z~j = 12.5, A+ = 75 

and kx based on a streamwise half-width of 15 wall units. Different plots show different values 

of thw

99



C=7-5
c =5
C=2'5
C =1
C =0-5
C=0-25
C=°-125~

Figure 5.13: Selection of smoothed time profiles A(t) of streak forcing (equation 5.1) for different 

values of Magnitude is expressed as multiples of maximum magnitude in t^w — 7.5 case.
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changes in its duration. The switching on and off was made smoother by defining A (t) 

from equation 5 .1  as an appropriately chosen sum of tanh functions, of the form:

A(t) = i[ tan h (a t [f+ -  ( t f  -  # J ] )  +  tanh (at [(t+ -  t%J  -  £+])] (5.6)

Where at is a factor tha t controls the smoothness of the switch-on and -off. It is chosen 

such that the switching is fast enough to maintain a plateau-like form with the smallest 

thw, but still sufficiently resolved when using a reasonable timestep. A selection of these 

time profiles is depicted in figure 5.13, and the results from using them are presented 

in figure 5.12. We see tha t these results are similar to the case with the abrupt switch

ing (see figure 5 .1 1 ), but that here there is convergence, with the streak development 

effectively converging for time half-widths of =  0.5 and below. However, there is a 

complication. Having discovered what seems to be a natural time scale of the basis flow, 

in that the details of the forcing on time scales smaller than t+ «  1 don’t affect the gross 

development of the streak, we find that the relative streak strengths have changed i.e. we 

have a new optimum streak. The new optimum is illustrated in figure 5.14 and shown 

to be at Zj = 10, A+ =  45. This is no longer in the range of streak spacings observed 

experimentally by Zacksenhouse [82]; bear in mind, as mentioned earlier, that this is an 

optimum with respect to the particular streak magnitude criterion we have employed, .

Furthermore, the new apparent optimum streak is found to be once more sensitive to 

changes in kx. Although the results presented in section 5.1 seemed to indicate that the 

overall course of streak development is not affected by the spatial details of the forcing 

if x^w < 15, we now find that after reducing the duration of the streak forcing to what 

seems to be its natural scale, further reductions of Xhw result once again in significant 

changes to the streak development. This is illustrated in figure 5.15, where we see tha t 

even with x^w < 2 , the streak development is still changing as the streamwise half-width 

is reduced. The computational cost of simulating streaks initiated by a forcing of smaller 

streamwise length becomes prohibitive as the size of the elements required to adequately 

resolve the profile becomes smaller, so no further simulations were performed. It seems,
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Figure 5.14: Relative streak magnitude for Gaussian perturbation in ujx at various heights 

and spanwise wavelengths, with kx chosen such that the streamwise half-width of the Gaussian 

profile is x+ = 15. A smoothed forcing time profile is employed, with t^w = 0.5
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however, that the natural length and time scales for the forcing surmised earlier to be 

inherent to the basis flow are not so straightforward.

1500

-  -  Half-width * 7.5 
Half-width = 3.75 

 Half-width « 1.875

3

500

t*

Figure 5.15: Development of streak magnitude in time for the streak with z j  — 10, A+ = 45. 

Different graphs show the response for different forcing durations, as characterised by spatial 

half-width, x£w. All time profiles use a smoothed switching, with = 0.5.

Our first investigation of the influence of kx on the streak indicated that for half-widths 

below x^w = 15, the streak that developed in response to the introduction of the forc

ing did not substantially change if x^w was altered. We therefore regarded x^w =  15 as 

a cutoff point, below which the basis flow was insensitive to finer details of the forcing 

(although it seems likely that for very small the viscous diffusion associated with 

large spatial gradients might begin to make itself more strongly felt). A similar analysis 

seemed to apply to the temporal half-width, with t%w = 0.5 being the sensitivity cutoff, 

as illustrated in figure 5.14. Recall, however, that we found the x^w =  15 cutoff with a
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fixed time profile, characterised by t£w =  7.5; the results described above show that if 

we change the x ^w-value of the sensitivity cutoff changes. We now find something 

similar for the time profile: if x^w, previously held constant, is changed, the sensitivity 

cutoff value of t£w also changes; this is shown in figure 5.16, where we show the effects of 

changing t£w with x%w =  1.875, and we see that the streak response alters for different 

t~̂w values below the previously surmised sensitivity cutoff of t£w =  0.5.

1600

1200

3

t*

Figure 5.16: Development of streak magnitude in time for the streak with z j  = 10, A+ = 45 

and kx based on a streamwise half-width of 1.875 wall units. Different plots show different values 

of th w

Although these results are not conclusive, they are strongly suggestive: they seem to show 

that the sensitivity cutoff values of x%w and t^w are not inherent in the basis flow. Only if 

we fix t£w is there a cutoff value for x%w, and vice versa. It appears, then, that the basis 

flow doesn’t specify the sensitivity cutoff values per se, but rather the relationship be
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tween them. It is difficult to see how the details of this relationship might be determined 

more precisely.

The conclusion we can draw from this is that the use of a pointlike forcing to generate 

streaks in problems such as these does not in and of itself adequately model the processes 

that generate streaks in real boundary layers. Making use of empirical data  to specify 

some parameters of the forcing, as has been done heretofore, seems necessary to ensure 

that our streak generation process resembles the real process in its relevant aspects.

5.3 Influence o f R eynolds number

In common with previously published results (see, for instance, Carpenter et al. [11]), 

we find that the Reynolds number has little effect on the optimum spanwise spacing of 

the streaks. Recall that the results presented above were obtained with a Reynolds num

ber of 10000; figures 5.17 and 5.18 show the relative streak magnitudes in the vicinity of 

the optimum streak when the Reynolds number is decreased or increased by a factor of 10.

The optimum streak from the cases shown doesn’t change with Reynolds number, and a 

finer-grained search for the optimum streak did not find a change in the optimum span- 

wise spacing either. The work of Cossu et al., who used an energy criterion to measure 

streak magnitude, also indicated that the influence of the Reynolds number on the A+1 is 

negligible, or at least very small [19].

We also find, as expected, that the streak magnitude scales on inner units, which change 

as the Reynolds number is altered. Consider that the streak forcing, as given in equation 

5.1, has units of vorticity per time. Thus, for the amplitude of the forcing in the different 

Reynolds number cases to be equivalent, we need the amplitude of the forcing, multiplied 

by the square of an appropriate inner time scale, to be the same across the board. An 

appropriate scale is given by the ratio £*+/t/+ . Thus, we expect the streak histories at
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Figure 5.17: Streak magnitude for Gaussian perturbation in u;x at various heights and spanwise 

wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile is 

x+ = 15. Re = 103
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Figure 5.18: Streak magnitude for Gaussian perturbation in cox at various heights and spanwise 

wavelengths, with kx chosen such that the streamwise half-width of the Gaussian profile is 

x+ = 15. Re = 105
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different Reynolds numbers to collapse (at least approximately) on to a single line when 

normalised by this quantity. This is borne out in figure 5.19. On the main graph the 

collapse appears exact, but the inset shows that there are minor differences in the de

tails of the streak development; thus we have not simply performed the same simulation 

three times with different linear scalings, but have demonstrated tha t our solver genuinely 

demonstrates the streak inner scaling also observed in other investigations.

 Re = 103
 Re = 104

O Re = 105
0.6

0.4

1Cg
<812 0.595

0.2

40
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Figure 5.19: Development of streak magnitude in time for the streak with =  12.5 and 

A+ = 75. Different plots show different values of Re. Streak magnitudes are normalised as 

described above. Inset shows a detail of the peak values.
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Chapter 6 

Spanwise forcing

6.1 Im plem entation  and initial case

In addition to using our solver to investigate the streaks themselves, we are also interested 

in seeing how spanwise forcing influences the development of the optimum streak. Since 

we found that in our formulation, the simplified forcing used to generate the streaks ap

pears not to have a straightforward natural scale, as discussed in section 5.2, we are forced 

to make a choice of parameters for the streak-generating force, and thus also, albeit indi

rectly, a choice of optimum streak characteristics. We will choose parameters that bring 

in some empirical data, by implementing the same time profile tha t was used initially i.e., 

the simple Heaviside-like forcing suggested by the work of Gad-el-Hak et al. [25]. For the 

spatial extent of the forcing, we use x^w =  15, which was found to give us the optimum 

streak of figure 5.4, with A+ =  75 the spanwise spacing.

In order to investigate the effects of wall forcing on the streaks, we will use the sec

ondary perturbation formulation described in section 2.1.3. This, in essence, involves 

solving the governing equations twice: once to calculate the effects of introducing wall 

forcing and to create a new secondary basis, and then again to model the streak devel

opment .on this new basis. Note that, since we are still dealing with streaks, which have
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been observed to scale on wall units, we shall continue to use wall units throughout this 

chapter, unless specifically noted. On a similar note, we shall continue to focus on the 

flow with Res» =  104.
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■ .....No forcing
 Amplitude 1%
 Amplitude 2.5%

Amplitude 5% 
 Amplitude 10%

350
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Figure 6.1: Development of streak magnitude in time for the optimum streak for a range of 

spanwise wall oscillation magnitudes. T+ = 250. 0 = 0 in all cases

The first results we present use a simple, sinusoidal-in-time wall oscillation, the same type 

that produces a Stokes layer. Our solver’s ability to accurately capture a Stokes layer is 

discussed in section 4.3. We investigate in the first section the effects of altering the 

amplitude of the oscillation and the phase of the streak forcing with respect to the wall 

oscillation. The oscillatory velocity of the wall is specified by our choice of uy in equation 

2.30. Recall that in our formulation, velocities are normalised by the freestream velocity, 

so we express the oscillation amplitude as a percentage of this value. For example, if we 

choose uy such that it is a sinusoidal oscillation with maximum value 0.01, we call this 

an amplitude of 1%. This corresponds to a peak wall velocity of 0.27 in wall units. The 

phase is of relevance because, for many of the calculations we have performed, the time
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over which the streak develops is short with respect to the oscillatory period. The phase 

angle </> is defined in terms of the wall frequency, and expresses how much of the oscillation 

has elapsed between the nominal start of the cycle (arbitrarily designated as the point in 

time where the wall velocity reaches a positive-valued maximum) and the switching-on 

of the streak forcing. Values of 0 separated by exactly 7r were found to produce identical 

results (unsurprisingly, since this produces the same oscillation in the opposite direction) 

so we investigate only phase angles in the range 0 <  <p < n. Figure 6.2 shows repre

sentative examples of the Stokes layers at a selection of phase angles: these profiles are 

obtained with an oscillatory amplitude of 1%, and may simply be scaled linearly to get 

the corresponding profiles for different amplitude. The spanwise forcing is not uniform in 

the streamwise direction; instead, the wall near the inlet is stationary and the wall begins 

oscillating at the streamwise location x = Ls. This is sketched in figure 4.6, and the exact 

formulation of the streamwise variation is given by equation 4.9.

Our canonical case uses a frequency (note that it is expressed in wall units) of 7 + =  7t/125, 

giving a period of T + = 250. Since our formulation uses zero initial conditions, we thought 

it sensible to adopt the following procedure for our simulations. The amplitude is ramped 

up smoothly from zero to its desired value over the first half-period of the wall oscillation, 

and the streak forcing is then switched on at the start of the next oscillation, or slightly 

later if we wish to introduce a phase difference. A test run confirmed th a t there was 

no appreciable difference between the secondary basis flow at the end of the first oscilla

tion (that is, the one including the half-period ramp-up) and the end of the second, thus 

assuring us that any transience associated with the ramp-up was negligible by the time 

of the earliest streak forcing switch-on. This means we avoid unphysical transients that 

might distort the effect of the wall oscillation on the streak development. Similar studies 

performed by other investigators have also found tha t the temporal transients associated 

with switching-on a transverse wall oscillation last no more than a single period even if 

the switching is sudden; see for instance the study of Quadrio and Ricco, which focusses 

specifically on such transience [60].
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Figure 6.2: Illustrative examples of the Uy and wall-normal distributions for a Stokes layer 

with a wall oscillation amplitude of 1%. Different plots show different phase angles; the phase 

angles shown are the same as those used to define different start times for the streak forcing in 

figure 6.3. The plots presented here therefore represent idealised (streamwise uniform) versions 

of the secondary basis flow at the instant the streak forcing is turned on for the various cases 

shown in the first frame of figure 6.3.
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Interestingly, in performing the calculations for the secondary basis flow driven by the 

wall oscillation, we can see that, due to the imposition of spanwise uniformity (i.e., setting 

(3 =  0) and the parallelisation of the primary basis flow, the streamwise VTE is decoupled 

from the spanwise VTE and the Poisson equation for uz. We can see this if we substitute 

(3 =  0 into the equations 2.14 to 2.16, which gives the equations:

dux T T dux f Au ,̂
U b  0  —  U b ujz -\-dt dx Re

duh, „  duv Ata
7- + UB^ r -  + U'Luz = y

dt dx Re

A dVyA uz = — —  
ox

We see that the only term in the streamwise VTE not involving u x is UBu z , and spanwise 

uniformity means that u z is calculated from an integral relation involving only u x, as 

can be seen from the definition of the secondary variables (that is, those variables not 

calculated explicitly in our formulation, rather than those pertaining to the secondary 

perturbations) given in equation 2.12. Both the spanwise VTE and the Poisson equa

tion for uz involve only the variables u>y and uz, and thus, while they are coupled to 

one another, they are not influenced by ujx. Furthermore, since the spanwise oscillation 

of the wall only forces the flow through the integral condition on ojx, this means tha t 

when calculating our secondary basis, only the streamwise VTE needs to be solved; coy 

and uz will remain identically zero at all times, and therefore do not need to be calculated.

Also worth noting is that, under the same circumstances of spanwise uniformity and 

parallelised basis flow, and with spanwise oscillation of the wall the only mode of exci

tation, the solution to the nonlinear equations 2.20 and 2.21 is identical to the solution 

from the linear equations. While the streamwise VTE is not formally decoupled from 

the spanwise VTE and the Poisson equation in this case, it is possible to see that, if we 

start with zero initial conditions, luy and u z will once more remain identically zero for all
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times. The key to this is firstly that the sum u x(duy/dx)  +  ujz(duy/ d z ) which appears 

on the right-hand side of equation 2.21 cancels exactly, since under spanwise uniformity 

ujx =  —duy/d z  and ujz = duy/dx,  and secondly that the secondary variable ux is defined 

entirely by u y and uz (per equation 2.12) and thus will remain identically zero if a)y and 

uz do.

Thus, the streamwise oscillation of the wall does not, in the absence of other forcing, 

influence the spanwise vorticity or wall-normal velocity, and all the nonlinear terms in the 

streamwise vorticity equation 2.20 are identically zero. The most im portant consequence 

of this is that we have shown our treatment of the secondary basis flow, for the cases we 

have investigated, to be fully equivalent to the nonlinear treatment.
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Figure 6.3: Development of streak magnitude in time for the streak with A+ = 75 for a variety of wall oscillations with T+ = 250. 

Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%, 

amplitude 5%. Within each frame, different plots show different phases 0: solid grey 0 = 0, dashed grey 0 = 7t/6, dotted grey 

(j) =  7r/4, dash-dotted grey 0 = 7r/3, solid black 0 = 7t/2, dashed black 0 = 2ir/3, dotted black 0 = 37r/4, dash-dotted black 

0 = 57r/6.



Figure 6.1 shows the effects of spanwise wall oscillation amplitude on the development of 

streak magnitude in the canonical case with the phase difference 0 set to zero. Figure 

6.3 shows the effects of varying this phase difference for a range of amplitudes. The time 

for each simulation has been zeroed to the instant the forcing is switched on. We see 

that, particularly for larger forcing amplitudes, the effect of changing the phase angle is 

sometimes very dramatic, significantly more so than the effect of changing the amplitude 

in the 0 =  0 case seen in figure 6.1. For this case, we observe a reduction of maximum 

streak strength as the amplitude of the wall motion increases, but the development of 

the streak strength in time is qualitatively similar to the unforced case. Changing 0 in 

the A = 0.01 Uqo case similarly changes the maximum magnitude and time at which the 

maximum is attained, but the time development remains largely similar in form to the 

unforced cases. Changing 0 in the A  =  O.IUqo case, however, can drastically alter the 

course of streak development, as seen in the fourth frame of figure 6.3. The effect of 

changing phase angle with an oscillation amplitude that is intermediate between these 

two values is somewhere between the gradual adjustment as seen in the A  =  O.Olt/oo case 

and the sharp changes seen in the A = O.IUqo case, as is illustrated in the second and 

third frames of the same figure.

The massive change in the history of the streak magnitude as a result of a relatively small 

change in phase angle, such as that illustrated in figure 6.3 if 0 is changed from 0 to 

7r/6 in the 10% amplitude case, seems unusual. However, if we alter the phase in smaller 

increments (as seen in figure 6.4), we see that there is in some sense a smooth change to 

this drastically reduced streak magnitude, which gives us confidence in the validity of our 

results.
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Figure 6.4: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T + = 250. 0 gives the phase of the 

wall oscillation at which the streak forcing is turned on. t+ is zeroed to the switching on of the 

streak forcing in each case.
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Figure 6.5: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 1% of freestream velocity and period T+ =  250. (j) =  7t/2. Values are taken from a wall-normal location z + =  15. 

Contours are at intervals of 50, with positive contours solid and negative contours dashed. The zero contour is omitted. Values 

shown for times <+ =  18,36,54 from top to bottom.
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Figure 6.6: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 1% of freestream velocity and period T+ =  250. 4> =  n/2. Values arc from time t+ =  54 after switching-on of 

forcing, corresponding to the third frame of figure 6.5. Contours are at intervals of 25, with positive contours solid and negative 

contours dashed. The zero contour is omitted. Values shown for streamwise locations x + =  850,950,1050 from top to bottom.
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Figure 6.7: Comparison of the numerical secondary basis flow for the case illustrated in figure 

6.6 with the corresponding Stokes oscillatory boundary layer. All parameters are as stated in 

figure 6.6. Grey lines show the analytic solution, black lines the numerical solution at different 

streamwise locations as indicated by the legend.

Similar to what we observed in the streaks with no forcing, we see tha t in some of the cases 

where the amplitude of the wall oscillation is comparatively high, there are kinks in the 

development of the streak magnitude. This suggests tha t, as in th a t case, there may be 

more than one local maximum in the flow field, and th a t our streak magnitude criterion, 

which finds the global maximum, is tracking different peaks at different times during the 

streak development. Comparing the results for simulations at two different amplitudes 

shows tha t this is indeed the case. Figures 6.5 and 6.6 depict the development of streaks 

subject to low-amplitude wall oscillation. We see tha t there is relatively little distortion of 

the streaks compared to the unforced case; they still appear fairly straight (although not 

perfectly aligned with the mean flow, as they are in the unforced case illustrated in figure
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5.7) in a plan view and similar to the unforced streak in elevation. Also worth noting is 

the direction of tilt in the plane parallel to the wall (as shown in figure 6.6, where the first 

frame shows a cross-section of the streaks near the trailing edge and subsequent frames 

show cross-sections from further downstream): we see th a t the sense of the tilt is such 

tha t the trailing edge of the streak is more displaced in the instantaneous direction of the 

cross-flow wall motion. This is the expected result, since the trailing edge is closer to the 

wall and therefore should be more effected by its spanwise motion. Figure 6.7 confirms 

that the secondary basis flow on which the streaks are developing matches quite well with 

the Stokes oscillatory boundary layer.
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Figure 6.8: Contours of Re{u^) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 1% of freestream velocity and period T + =  250. 4> =  27r/3. Values are taken from a wall-normal location z + =  15. 

Contours are at intervals of 5, with positive contours solid and negative contours dashed. The zero contour is omitted. Values 

shown for times t + =  18, 36,54 from top to bottom.
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Figure 6.9: Contours of -fte(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 1% of freestrcam velocity and period T + = 250. = 2n/3. Values arc from time t+ = 36 after switching-on of

forcing, corresponding to the second frame of figure 6.5. Contours are at intervals of 5, with positive contours solid and negative 

contours dashed. The zero contour is omitted. Values shown for streamwise locations x + = 700,800,900 from top to bottom.



Comparing figure 6.8 with figure 6.6, we can see th a t the distortion of the streaks when 

subject to a large-amplitude wall oscillation is significantly greater than in the lower- 

amplitude case, and tha t multiple local extrema can be seen in the la tter two frames. 

This suggests an explanation for the discontinuities in the streak development: if differ

ent, extrema emerge and decay at different times and rates, then clearly one tha t was at 

one point the global maximum can be superseded by another. In this situation, as soon as 

the magnitude of the new extremum exceeds tha t of the old, there will be a discontinuity 

in the overall development of the streak magnitude, since we will suddenly be tracking the 

development of a different maximum. Also interesting in the higher-amplitude case are 

the elevation views of the streak, shown in figure 6.9, where we see th a t the larger spanwise 

velocities near the wall have caused much greater changes in the streak structure than 

in the lower am plitude case (seen in figure 6.5. The stronger shear has greatly distorted 

the streaks, to such an extent th a t the low-speed streaks have a patch of high-speed fluid 

entrained underneath them by the action of the induced Stokes layer, and vice versa.

We revisit a similar high-amplitude case, with a different phase angle, later in the chapter; 

the streaks from this simulation are depicted in figure 6.15 and perhaps provide a better 

illustration of multiple local maxima. In the first frame we can see th a t the structure 

of the streak resembles a tadpole, with a strong maximum near the leading end of the 

streak and a trailing tail. In subsequent frames, we see tha t a local maximum has arisen 

in the tail, separate from the original maximum. Associated with both of these maxima 

there are streaklike structures, strongly tilted in the spanwise direction. These two streaks 

are aligned one behind the other in the mean flow direction. At later times we can see 

yet more auxiliary streaks arising, suggesting th a t it is possible for the maximum being 

tracked by the streak magnitude condition to hop around from one local maximum to 

another several times throughout the course of the overall streak development, creating 

multiple discontinuities in the streak history.

It is not clear, however, exactly what mechanism causes the formation of these auxiliary
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Figure 6.10: Surface plot of Re(u+) for optimum streak created by a forcing with a streamwise 

profile half-width of 15 wall units, subject to a wall oscillation of magnitude 10% of freestream 

velocity with T+ = 250. Data taken from t+ =  54. The phase lag between the wall oscillation 

and the switching-on of the streak forcing is 0 = 7r/6



80-,

60 -

4 0 -

I 2 0 -

0-
50

- 2 0 - 40

-4 0
500

600 20
700

800
900

1000
1100

1200
1300

x*

Figure 6.11: Surface plot of /m(u+) for optimum streak created by a forcing with a streamwise 

profile half-width of 15 wall units, subject to a wall oscillation of magnitude 10% of freestream 

velocity with T + =  250. Data taken from t+ = 54. The phase lag between the wall oscillation 

and the switching-on of the streak forcing is <\> =  7 r / 6
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streaks, or even whether it is accurate to talk about a single main streak with auxiliary 

structures. It may instead be tha t the appearance of several streaks is caused by the 

superimposition of a wavelike solution on a streak solution tha t more closely resembles 

that of the unforced case. In other words, the new basis flow created by the introduction 

of spanwise wall oscillation to the mean turbulent boundary layer profile might be more 

prone to unstable wavelike perturbations. An example of this type of solution is illus

trated in figures 6.10 and 6.11, which show the real and imaginary parts of the streamwise 

perturbation velocity u+ a t time t+ =  54 subject to a strong spanwise wall oscillation. 

These surface plots show the variation in the (x +, 2 +)-plane; da ta  from similar simulations 

were used to create the contour plots of the (x+ , ?/+)-plane seen in figures 6.8 and 6.15.

Although these perturbations seem to have a wavelike structure, it is difficult from these 

diagrams (or indeed from a more thorough investigation) to pick out more detailed char

acteristics: the amplitude and wavenumber, for instance. This is made more complicated 

by the fact tha t (if this is in fact a wave and not an auxiliary streak, or even something 

else altogether!) it is firstly in the form of a wavepacket rather than  a wavetrain, meaning 

tha t the nature of the envelope also needs to be determined, and is secondly entangled in 

the structure of the underlying streak such tha t it cannot straightforwardly be extricated. 

For further discussion of the generation and growth of wavelike disturbances in spanwise- 

forced boundary layers, see section 6.3.

The linear formulation of the governing equations for the secondary perturbations means 

that there is unavoidably a degree of arbitrariness in the magnitude of the perturbations. 

However, the cases presented in this chapter are all based on the optimum streak of chapter 

5 (except for the results presented in figure 6.37; see the end of section 6.4 for discussion of 

these), and all use a streak forcing with characteristic half-widths x%w = 15, t£w = 7.5. The 

scaling of the forcing amplitude with the param eter kx (related to Xhw through equation 

5.4) is discussed in section 5.1; none of the other param eters altered in our investigations 

influence this amplitude. Thus, since the streaks in all the results of this chapter were
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generated using a forcing of the same kx and therefore the same amplitude, the absolute 

magnitude of the flow variables as depicted in, for example, figures 6.5 and 6.8 can be 

meaningfully compared with one another and with the corresponding results from the 

optimum streak not subject to any wall oscillation, as depicted in figures 5.6, 5.7 and 5.8.

6.2 Frozen oscilla tion

Examining figure 6.3, it can be seen that the histories of the streak development for the 

cases <f) = 27r/3,37r/4 and to a lesser extent 57t/6 show an interesting behaviour: they 

appear, a t late times when all other cases are decaying normally, to show the streaks 

entering a delayed growth phase. Figure 6.12 shows the development of the streaks with 

these phase angles over a longer time period, and compares it with the wall oscillation. 

Note tha t, unlike the previous graphs showing the streak m agnitude histories, this graph 

does not zero time to the point at which the streak forcing is switched on. The data 

are shown in this way to see if, across the different phase offsets between the wall cycle 

and the streak forcing, there is commonality to the way the streaks develop at particular 

points in the wall oscillation cycle. Something of this sort is in fact what we see, with 

the delayed growth of the streaks in all cases beginning a t around t+ = 380. There is 

also a small blip of growth a t a much later time of around t+ = 520, just after half the 

oscillatory cycle has elapsed.

This suggests tha t there are particular parts of the wall oscillation cycle which are more 

conducive to promoting or preventing streak growth than others. In order to test this 

hypothesis, we ran a series of simulations similar to those performed already, making the 

modification that, as soon as the forcing tha t generates the streaks is switched on, we 

stop updating the basis flow. In other words, the secondary basis is frozen at the instant 

of switching on the force. In figures 6.13 and 6.14 we plot some of the results from these 

simulations.
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Figure 6.12: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T + = 250. Below the plot of the time 

development of the streak magnitude is a plot of the wall oscillation.
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Figure 6.13: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T + = 250. Solid lines axe as in the 

amplitude 10% frame of figure 6.3, dashed lines are the streak magnitude with the spanwise 

oscillation frozen at the moment streak forcing begins. Each graph depicts a different phase 

between the oscillation and beginning of streak forcing. Clockwise from top left: 4> = 0, =  

7t/6, <p = 7r/3, (f> = 'n/A.
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Figure 6.14: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T+ = 250. Solid lines are as in the 

amplitude 10% frame of figure 6.3, dashed lines are the streak magnitude with the spanwise 

oscillation frozen at the moment streak forcing begins. Each graph depicts a different phase 

between the oscillation and beginning of streak forcing. Clockwise from top left: 0 = 7r/2, 0 = 

27r/3, 0 = 57t/ 6. 0 = 37r/4.
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The results from these cases show that freezing the basis can either encourage or inhibit 

streak formation compared to the case where the oscillation continues, depending on the 

phase angle a t which the streak forcing was switched on. Streaks develop to significantly 

greater magnitudes than in the physical case if the oscillation is frozen at 0 =  7r/6 or 

0 = 7r/4, but their magnitude is greatly reduced in the 0 =  37t/4 and 0 =  57t/6 cases. If 

we can determine more precisely what qualities of the secondary basis flow at these phase 

angles cause the streak development to be altered in this way, it may be possible to tailor 

the wall oscillation profile to our requirements (i.e. promotion or amelioration of streaks), 

rather than only using the sinusoidal oscillation examined heretofore.

Also of interest is figure 6.16, which depicts the streaks in plan view for the case where 

the wall oscillation has been frozen at 0 =  7r/4. If we compare this to figure 6.15, we 

see th a t the effect of freezing the wall oscillation is to  increase the spanwise tilt of the 

streaks. This is not unexpected, since the speed of the wall decreases if we are starting 

from a low value of 0. There are also fewer minima and maxima apparent. This could be 

simply due to the increase in the contour interval meaning the lower-magnitude extrema 

are no longer seen in the visualisation, or it could be due to the apparent increase in the 

streamwise spacing of the extrema. If we assume the presence of wavelike perturbations 

in these solutions, this corresponds to a larger wavenumber and therefore the appearance 

of fewer extrema within a wavepacket of the same streamwise extent.
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Figure 6.15: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 10% of freestream velocity and period T+ =  250. <t> =  7r/4. Values arc taken from a wall-normal location z + =  15. 

Contours are at intervals of 25, with positive contours solid and negative contours dashed. The zero contour is omitted. Values 

shown for times t + =  18,36,54 from top to bottom.
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Figure 6.16: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

of magnitude 10% of freestrcam velocity with T+ = 250 which is frozen at the instant the streak forcing is switched on. Values arc 

from a wall-normal location z + =  15. Contours are at intervals of 50, with positive contours solid and negative contours dashed. 

The zero contour is omitted. <f> =  tt/4. Values shown for times =  18,36,54 from top to bottom.
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Figure 6.17: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T + =  250. A logarithmic scale is used 

for the velocities.

A longer term plot of those frozen oscillation cases where it seems th a t streak growth is 

most strongly promoted is shown in figure 6.17. Using a logarithmic scale for the streak 

magnitude, it is clear tha t the long-term growth of the streaks with frozen wall oscilla

tions is exponential, and therefore produced by an unstable normal mode. This implies 

tha t for at least part of the wall oscillation cycle, the instantaneous basis flow is prone 

to unstable growth of normal modes i.e., for some of the cycle, the effect of the wall 

oscillation is in fact destabilising (since it is well-established th a t mean turbulent profiles 

are asymptotically stable to linear perturbations [64], in th a t although short-term growth 

of perturbations is possible, all perturbations will tend towards zero in finite time). De

spite this, wall oscillation overall tends to reduce streak magnitude. This suggests that
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a modified wall oscillation, which passes rapidly through those parts of the cycle which 

are instantaneously unstable and spends more time in those parts of the cycle which 

arc instantaneously stable, might be more effective in inhibiting streak development than 

the naively chosen sinusoidal oscillation. For more discussion of this point, see section 6.5.

2000

2000

2000

Figure 6.18: Profiles of Re(u+)  for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ =  250 

which is frozen at the instant the streak forcing is switched on. 0  =  7r/6. Values shown for times 

t + =  40,80,120,160,200 from top to bottom. Contour intervals are different in each plot. From 

top to bottom, the intervals are 50,200,1500,1.5 x 104,2 x 105. In each case, positive contours 

are solid and negative contours dotted. The zero contour is omitted.

Further evidence of the presence of unstable normal modes in some of the frozen oscilla

tion flows is presented in figure 6.18, which shows the development of the perturbation 

over relatively long times in the case where the wall oscillation is frozen at a phase angle 

of 0 =  7r/6. At early times, we see that the perturbation displays both oscillatory and
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streaklike characteristics. The oscillatory nature is obvious, in tha t there are extrema of 

alternating signs along the streamwise direction. The streaklike nature is more apparent 

if one pictures an envelope around the perturbations; this shows the same lifting of the 

leading edge away from the wall as shown by streaks elsewhere e.g. figure 5.6. However, 

for later times the perturbation is in the form of a spatially convecting and temporally 

growing wavepacket, with no apparent streaky character. Thus it is inaccurate to talk of 

the exponentially growing perturbation as a streak in these artificial cases, except perhaps 

for its generation and very early development. Note th a t the scale of the contours changes 

significantly from one frame to the next, since the magnitude of the perturbation is grow

ing exponentially. The packet nature of the wavelike perturbation is to be expected, given 

tha t it is generated not by a continuous source but rather one th a t is only present for a 

fixed time.

Similar results are shown in figures 6.19 and 6.20, for the other cases shown in figure 

6.17 to have exponential growth. We see that in each case, the wavelike perturbation 

comes to dominate at later times, although in the <j> = n / 3 case the initially streaklike na

ture of the perturbation is evident for longer, which is presumably due to its exponential 

growth phase beginning at a later time. We note also th a t the streamwise wavenumber 

of the wavelike perturbation appears to be different in the various cases, judging by the 

streamwise spacing of the extrema, so the wavenumber of the unstable mode must be 

fairly sensitive to the form of the frozen basis state.

Looking back at figure 6.12, we see tha t the times th a t are most prone to streak growth 

during the cycle are those shortly after the velocity of the wall oscillation has reached 

a maximum or minimum but before it has returned to zero. The simulations of frozen 

oscillations, in this light, produce the expected results, since freezing the oscillations 

at a time within this period of sensitivity (0 < (f> < 7t/2) produces a secondary basis 

able to support exponentially growing perturbations. This is in contrast to the work of 

Blennerhassett et al. [5,6], which examined the behaviour of linear perturbations in one-
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Figure 6.19: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 250 

which is frozen at the instant the streak forcing is switched on. (f> =  7r/4. Values shown for 

times t+ = 40,80,120,160,200 from top to bottom. Contour intervals are different in each plot. 

From top to bottom, the intervals are 20,150,1500,1.5 x 104, 1.5 x 105. In each case, positive 

contours are solid and negative contours dotted. The zero contour is omitted.



Figure 6.20: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 250 

which is frozen at the instant the streak forcing is switched on. <j> = 7r/3. Values shown for times 

t+ = 40,80,120,160,200 from top to bottom. Contour intervals are different in each plot. From 

top to bottom, the intervals are 10,20,1000,1000,5000. In each case, positive contours are solid 

and negative contours dotted. The zero contour is omitted.



and two-dimensional Stokes layers and found tha t the disturbance growth was strongest 

when the oscillation velocity was close to zero. They also found tha t disturbances would 

only grow above a critical Reynolds number of approximately 700. The Reynolds number 

in this instance is calculated using the characteristics of the Stokes layer; if we denote this 

as Res, it can be calculated in this instance from the Reynolds number in our formulation 

(recall, as per section 2.4.2, tha t our Reynolds number is calculated from the displacement 

thickness, so we write it as Res-):

D  '  *  I R ^ S mRes = u*.
2 7  (6.1)

s / W 1
Recall th a t u*y is the am plitude of the wall oscillation. For Res- =  104 and an oscillation 

amplitude of 10%, this gives us Res ~  12, which is much lower than the critical Reynolds 

number of Blennerhassett. The investigation by Vittori and Verzicco found a lower critical 

Reynolds number for disturbances to a Stokes layer, ~  550, but this is still much higher 

than the value in our simulations which nevertheless seem to show growth of unstable 

modes [77].

Bear in mind, however, th a t we are looking at a quite different type of perturbation, 

one propagating not along the direction of the Stokes oscillation but in the direction 

transverse to it. It is reasonable to assume tha t the presence of a nonzero mean flow 

will profoundly influence the stability characteristics of the Stokes layer, but in this case 

it may be misleading to think of the problem in this manner. Instead, it may be more 

meaningful to think of the disturbances as existing and developing in a modified turbulent 

boundary layer.
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6.4 E ffect o f changing T +

Another topic of interest is the influence of T + , the period of the wall oscillation, on the 

effectiveness of our control scheme. Figures 6.21 and 6.22 present the same information 

for T + = 125 as is shown in figures 6.1 and 6.3 for T + =  250 i.e., for a doubling of 

frequency. We see th a t the reduction of the streak m agnitude is greater in each case. 

Although this may not be immediately clear from a visual comparison of figures 6.3 and 

6.22, it is confirmed by the results presented in figure 6.23, which presents the maximum 

streak magnitudes a t a range of phase angles for both T + =  125 and T + = 250. This 

leads us to surmise th a t the effect of increasing the period from the canonical T + = 250 

might simply be to reduce the ability of the wall forcing to  affect the streak development. 

Figures 6.24 and 6.25, which show data from the T + =  500 case, indicate tha t this may 

be too simplistic a view.
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Figure 6.21: Development of streak magnitude in time for the optimum streak for a range of 

spanwise wall oscillation magnitudes. T + = 125. 0 =  0 in all cases
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Figure 6.22: Development of streak magnitude in time for the streak with A+ =  75 for a variety of wall oscillations with T + =  125. 

Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%, 

amplitude 5%. Within each frame, different plots show different phases 0: solid grey 0  =  0, dashed grey 0  =  7r/6, dotted grey 

0 =  7r/4, dash-dotted grey 0  =  7r/3, .solid black 0  =  7r/2, dashed black 0 =  2n/3,  dotted black 0 =  37t/4, dash-dotted black 

0 - 57t/6.



Figure 6.23: Ratios of maximum streak magnitude attained in cases with wall normal forcing 

to the unforced case. Empty symbols with dotted lines show the T + =  250 case, filled symbols 

with dashed lines the T + = 125 case. Circles, forcing amplitude 1%; squares, forcing amplitude 

2.5%; diamonds, forcing amplitude 5%.
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Figure 6.24: Development of streak magnitude in time for the optimum streak for a range of 

spanwise wall oscillation magnitudes. T + = 500. 0 = 0 in all cases
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Figure 6.25: Development of streak magnitude in time for the streak with A+ = 75 for a variety of wall oscillations with T+ = 500. 

Different frames show different forcing amplitudes: (a) amplitude 1%, (b) amplitude 2.5%, (c) amplitude 5%, (d) amplitude 10%. 

Within each frame, different plots show different phases 0: solid grey 0 = 0, dashed grey 0 = 7r/6, dotted grey 0 = vr/4, dash-dotted 

grey 0 = 7r/3, solid black 0 =  7r/2, dashed black 0 = 2tt/3, dotted black 0 = 37t / 4 , dash-dotted black 0 = 57t / 6 .



The most interesting phenomenon observed in the results presented in these figures is tha t 

high-amplitude wall oscillations, for certain phase angles, significantly amplify the streak 

growth. This is most apparent for the amplitude 10% cases with 0 =  0,7r/6 and 57r/6 i.e. 

those cases where the wall velocity is at or near an extremum when the streak forcing is 

switched on (these calculations do not freeze the wall oscillation). The longer term devel

opment of these streaks is illustrated in figure 6.26, which employs a logarithmic scale for 

u^nax- The strongest streak, with phase angle 0 =  57r/6, displays some concavity during 

its growth when plotted on a logarithmic scale, indicating th a t the growth is extremely 

rapid. The maximum attained by this streak is ~  50 times greater than tha t attained by 

the unmodified streak.
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Figure 6.26: Development of streak magnitude in time for the optimum streak, with a spanwise 

wall oscillation magnitude of 10% of freestream velocity. T + = 500. Dotted line: 0 = 0, dashed 

line: 0 = 7r/6, dash-dotted line: 0 = 57r/6, solid line: streak with no wall oscillation. t+ is 

zeroed to the switching on of the streak forcing in each case.
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Profiles of these disturbances in the (a;+ , z+)-plane are shown in figures 6.27 to 6.29. We 

see tha t the form of the perturbations resembles tha t of the linearly growing wavepackets 

seen in the frozen oscillation cases (figures 6.18 to 6.20). However, these perturbations do 

not appear so purely wavelike. We observe tha t unlike the frozen oscillation cases, where 

the wavepacket alignment was purely parallel to the wall, part of the leading edge of the 

perturbations is lifted away from the wall in the same manner as a streak in an unforced 

boundary layer. This is particularly visible in figure 6.27. A simulation of the (f> = 57t/6 

case (illustrated in figure 6.29) on a refined grid produced results indistinguishable from 

those presented here. This indicates that these results are genuine and not artifacts 

of an insufficiently resolved flow field (assuming, of course, th a t the (j) = 57r/6 case is 

representative). It seems, then, that in some cases where there is an oscillating basic 

state, normal-mode-like disturbances can grow and then decay, and in the process produce 

(or rather sustain) streaky structures until much later times than is possible in a basic 

turbulent boundary layer state without any wall oscillation.

148



Figure 6.27: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 500. 

0 = 0. Values shown for times t+ =  40,80,120,160,200 from top to bottom. Contour intervals 

are different in each plot. From top to bottom, the intervals are 100,300,1000,1000,500. In 

each case, positive contours are solid and negative contours dotted. The zero contour is omitted.
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Figure 6.28: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of ffeestream velocity with T+ = 500. 

$ = 7r/6. Values shown for times t+ = 40,80,120,160,200 from top to bottom. Contour intervals 

are different in each plot. From top to bottom, the intervals axe 40,100,150,100,75. In each 

case, positive contours are solid and negative contours dotted. The zero contour is omitted.
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Figure 6.29: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units, 

subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T + = 500. 

(f) = 57t/6. Values shown for times t+ = 40,80,120,160,200 from top to bottom. Contour 

intervals are different in each plot. From top to bottom, the intervals are 50,250,1250,4000,3000. 

In each case, positive contours are solid and negative contours dotted. The zero contour is 

omitted.
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Figure 6.30: Ratio of maximum streak strength attained in various cases with wall oscillation to the unforced case. Different frames 

show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%, amplitude 5%. Within 

each frame, different symbols correspond to different oscillation periods: squares, T + = 250; circles, T + = 125; stars, T + = 100; 

diamonds, T + = 75; crosses, T + = 50. Streak strength, on the vertical axis, is expressed as a fraction of the strength strength 

attained by the optimum streak in the unforced case.



Figure 6.31: Dependence of the maximum streak strength attained in various wall oscillation 

cases on oscillation period. Streak strength is expressed as a fraction of the streak strength 

attained by the optimum streak in the unforced case.

Results from simulations at a wider range of frequencies are given in figures 6.30 and 6.31. 

Figure 6.30 shows the variation of streak magnitude with 0, and we see tha t as a general 

rule there is a U-shaped trend, such that values of (f> specifying a forcing switch-on at 

or near extrema produce less of a reduction, and interm ediate values produce a greater 

reduction. Figure 6.31 uses a weighted average across a range of phase angles to produce 

a single averaged streak magnitude for any given am plitude-T+ pair. We see that increas

ing the amplitude of the oscillation produces a greater reduction in streak strength, as do 

higher frequencies. The exception to this rule is the 1% amplitude case, where T + = 20 

yields an optimum reduction of the streak strength and higher frequencies are less effective.

The averaged streak magnitude shown in figure 6.31 is calculated in the following man-



ner. For the cases with T + > 25, we performed simulations for the phase angles 0 = 

and Y ' This *s se  ̂ angles used to produce the results

shown in, for example, figures 6.3 and 6.22. To obtain our weighting, we place these 

values of 0  on the interval 0 < 0 < 7r and assign a weight to  the data  obtained at a given 

value of 0 according to the proportion of this interval which is closer to this value than 

any other of the values used. Note that the interval was considered to be cyclic for the 

purpose of calculating this weight; thus the points < 0 <  n  are treated as being closer 

to 0  =  0 than 0 =  ^ .  In this scheme, the data obtained using 0 =  0 or |  has a weight 

of the data  obtained using 0 =  |  or ^  has a weight of T , and the data obtained 

using any other value of 0  has a weight of For cases with T + < 25, we found that the 

changes in the streak development as 0 was altered were no longer so pronounced, as is 

illustrated in figure 6.32. Thus we performed calculations for only four different values of 

0, 0 =  0, | ,  |  and the weighting was correspondingly simplified, with each of these 

cases having a weighting of \  for the calculation of the average maximum magnitude.
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Figure 6.32: Development of streak magnitude in time for the streak with A"*" = 75 for a variety of wall oscillations with T + = 20.

Different frames show different forcing amplitudes: (a) amplitude 1%, (b) amplitude 2.5%, (c) amplitude 5%, (d) amplitude 10%.

Within each frame, different plots show different phases <£: solid line (f> = 0, dashed line <f> — 7t / 4 , dotted line (f> =  7t / 2 , dash-dotted 
line <j) = 37r/4.
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Figure 6.33: Contours of Re(u^) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation 

with magnitude 1% of freestream velocity and period 71+ =  20. <f> =  7r/2. Values arc taken from a wall-normal location z+ =  15. 

Contours are at intervals of 25, with positive contours solid and negative contours dashed. The zero contour is omitted. Values 

shown for times t+ =  18,36,54 from top to bottom.



The streaks from the amplitude 1% case with an oscillation period T + = 20 are illustrated 

in plan view in figure 6.33. There do not appear to be any significant structural changes 

for these high-frequency oscillations when compared to the canonical case, as illustrated 

in figure 6.5; we still have streaks roughly aligned with the freestream, but exhibiting 

some deviation from the mean flow direction. One observable change with the increase 

in frequency is tha t due to the fact that the period of the oscillation is now short enough 

to be on the same order as the length of time over which the streak develops, we see that 

the streak has become somewhat kinked, since the direction of the wall forcing changes a 

few times of the course of the streak’s lifetime.

In order to understand why there appears to be an optimum period for streak reduc

tion in the case where the amplitude of the wall oscillation is 1%, but not if the amplitude 

is any higher, let us compare figures 6.34 and 6.35, which depict streaks subject to wall 

oscillations at amplitudes of 1% and 5%. We see that in the higher-amplitude case, there 

are more local extrema present in the flow field, of relatively low magnitude. The lower- 

amplitude case still has more than one local extremum, but these are much stronger. 

This structure is more similar to the streak structure th a t is seen in the unforced case, as 

illustrated in (for example) figure 5.6. We can hypothesise, therefore, th a t for low-period 

oscillations at relatively high amplitudes, the effect of the wall oscillation is sufficiently 

strong to disrupt the streak formation so thoroughly th a t the dynamics governing the 

streak in the unforced and lower-amplitude cases no longer dominate the flow. This leaves 

incoherent perturbations whose timescales grow ever shorter as the period of the oscilla

tion decreases, and thus attain  ever lower magnitudes. It seems then, th a t at least in our 

reduced order model which isolates the streaks from the rest of the turbulent boundary 

layer dynamics and structures, tha t not only can we weaken streaks through oscillation 

of the wall, but with a sufficiently strong oscillatory am plitude we can completely disrupt 

their existence as coherent structures.

An alternative way of characterising the wall oscillations is by the maximum displacement
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Figure 6.34: Profiles Re(u+) for the perturbation generated by the streak forcing with z j  = 

12.5, A+ = 75, subject to a wall oscillation of amplitude 1% (equivalent to a wall oscillation 

amplitude of u+* = 0.271) with period T+ = 15. Contours are at intervals of 20, with positive 

contours solid and negative contours dashed. The zero contour is omitted. Values shown for 

times = 10,20,30 from top to bottom.
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Figure 6.35: Profiles Re(u+) for the perturbation generated by the streak forcing with zy = 

12.5, A+ = 75, subject to a wall oscillation of amplitude 5% (equivalent to a wall oscillation 

amplitude of u+* =  1.35) with period T + = 10. Contours are at intervals of 5, with positive 

contours solid and negative contours dashed. The zero contour is omitted. Values shown for 

times t+ = 10,20,30 from top to bottom.
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the wall goes through from its initial at-rest position, which we calculate as D + = u*+/ 7 +. 

We hoped th a t this might be a useful means of param etrising the wall oscillation in such 

a way as to show commonalities among the cases with different velocity amplitudes, but 

as seen in figure 6.36, no such relationship is apparent.
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Figure 6.36: Dependence of the maximum streak strength attained in various wall oscillation 

cases on maximum displacement of wall. Streak strength is expressed as a fraction of the streak 

strength attained by the optimum streak in the unforced case.

There is another point worth considering, before we press on. We have assumed in our 

examination of the wall oscillation tha t the spanwise spacing A+ which gives the optimum 

streak in the unforced case will continue to give the optimum streak in the case with 

oscillations. However, we have no a priori reason to assume this; the situation may 

instead be tha t the oscillations reduce the strength of the A+ =  75 streaks significantly 

more than streaks of other spanwise wavenumbers, thus creating a new optimum; it is 

plausible tha t there are streaks that are in fact strengthened by the wall motion. We 

investigate this possibility by performing a series of simulations with a range of different
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A+ values, the results of which are presented in figure 6.37. The streak magnitudes shown 

were calculated using the same weighted average that was employed for the results shown 

in figure 6.31.
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Figure 6.37: Dependence of the maximum streak strength attained on T+, with a wall oscillation 

of amplitude 1%. Streak strength is expressed as a fraction of the streak strength attained for 

the optimum streak (z  ̂ =  12.5, A+ = 75) in the unforced case. Different symbols show different 

values of A+; lines are included for some values of A+ to illustrate upper and lower limits of the 

streak magnitudes for different values of T +.

We see that varying A+ does indeed change the amount of reduction of the streak mag

nitude, although the overall trend is preserved, and the change is not very large. For 

large values of T +, there is a tight clustering of magnitudes for A+-values near the un

forced optimum of A+ =  75, although for A+ > 100 there is a significant drop-off. Below 

T + =  50, however, we find that the optimum (i.e., least reduced in magnitude by the 

oscillation) streaks occur at A+ =  100, and it is the streaks at lower values of A+ that now 

drop off. This is consistent with the observation reported by di Cicca et al. and Choi et
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al. [17,24], who noted th a t streaks in fact occur at a wide range of spanwise scales, even 

though the median or mean scale may be taken as representative. W ith the imposition of 

an oscillatory wall, many of the lower-A+ scales are forced to coalesce, meaning that the 

observed mean and median streak spacings go up.

6.5 T he osc illa tory  cycle o f th e  w all

Heretofore, all the oscillations we’ve investigated have been sinusoidal, in the uy, the 

spanwise velocity of the wall, varied as cos(7 1). However, it is worth asking whether this 

is in fact an optimum oscillatory profile. In this section, we investigate the effects of using 

different wall oscillation patterns: to wit, a smoothed square-wave profile and a sawtooth 

profile. We calculate these profiles by first defining a modified time r  =  t (m od 2 ^ / 7 ), 

then using the following formulae:

if r < , / 7
7T \  7r

Uy =

if T > n h
7T \  7r )

-tanh ( ——  r  J if r  <  7 7 /7

(6 .2)

In ( cosh 77/ 2 7 ) \ 2 7

1 , /  S tt' ,•tanh ( r —— ) if r  >  7 7 /7

(6.3)

, In ( cosh 7t / 2 7 ) \  2 7

Equation 6.2 defines the sawtooth profile and equation 6.3 the smoothed square-wave

profile. The magnitude of these profiles has been normalised such th a t the integral over a

half-period is the same among the different profiles i.e., such th a t the to tal displacement of

the wall is the same for any oscillatory pattern. When we talk about the amplitude of the

oscillation in the square-wave and sawtooth cases, then, we do not mean the actual peak

velocity attained by the wall, but the peak velocity th a t would be reach in a sinusoidal

wall oscillation of the same total displacement. These profiles are depicted in figure 6.38.

Plots of the development of streak magnitude for the square-wave and sawtooth cases,

with an oscillation period of T + = 250 are given in figures 6.39 to 6.42; the equivalent data
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in’

Figure 6.38: Depiction of the different oscillatory profiles. Time, on the horizontal axis, is 

expressed as a fraction of the oscillatory period. Magnitude, on the vertical axis, is expressed 

as a fraction of the amplitude of the sinusoidal oscillation.

for sinusoidal wall oscillation are presented in figures 6.1 and 6.3. We see largely similar 

characteristics as the sinusoidal oscillations for both square-wave and sawtooth profiles: 

significant changes in streak development for different values of <p and generally stronger 

reductions in streak strength as the oscillation amplitude is increased, for example. Note, 

however, for the square-wave oscillation in the cases with adjusted amplitudes of 5% 

and 10%, there are some cases for which there is significant amplification of the streaks. 

Presumably these cases are those for which, during the part of the oscillation when the 

wall velocity stays relatively constant, the modified secondary basis is unstable.
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Figure 6.39: Development of streak magnitude in time for the optimum streak for a range of 

spanwise square-wave wall oscillation magnitudes. T + = 250. 0 = 0 in all cases
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Figure 6.40: Development of streak magnitude in time for the streak with A+ = 75 for a variety of wall oscillations with a square- 

wave profile and T + = 250. Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 

2.5%, amplitude 10%, amplitude 5%. Within each frame, different plots show different phases 0: solid grey 0 = 0, dashed grey 

0 = 7r/6, dotted grey 0 = n/4, dash-dotted grey 0 = 7t / 3 , solid black 0 = 7t / 2 , dashed black 0 = 27t/3, dotted black 0 = 37t / 4 , 

dash-dotted black 0 = 5n/6.
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Figure 6.41: Development of streak magnitude in time for the optimum streak for a range of 

spanwise sawtooth wall oscillation magnitudes. T + =  /250. 0 = 0 in all cases
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Figure 6.42: Development of streak magnitude in time for the streak with A+ = 75 for a variety of wall oscillations with a sawtooth 

profile and = 250. Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, 

amplitude 10%, amplitude 5%. Within each frame, different plots show different phases 0: solid grey 0 = 0, dashed grey 0 = tt/6, 
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A high-level summary of the effects of changing the oscillatory profile is depicted in figure 

6.43. We see tha t changing the profile of the wall oscillation can alter the effectiveness 

of the wall forcing in inhibiting streak development. Both the square-wave and sawtooth 

profiles cause a stronger reduction in maximum streak strength than the sinusoidal profile 

for periods near the optimum, and there is little to choose between them in this region. 

For longer periods, however, we find th a t although the sawtooth oscillation still produces 

greater strength reductions than the sinusoidal oscillation, the difference between the 

square-wave and sinusoidal profiles gradually reduces. Indeed, for periods T + > 100, the 

square-wave oscillation is less effective than  the sinusoidal.

We find, then tha t careful tailoring of the oscillatory profile can indeed provide stronger 

streak reduction than the naive implementation of a sinusoidal oscillation. It is possible, 

of course, tha t there are other profiles th a t are yet more effective than  those described 

here, since we have not performed a systematic search of all possible oscillatory profiles. 

Nonetheless, the same general trends are found regardless of the exact profile used, down 

to the optimum value of T + for the am plitude 1% oscillation, so it seems unlikely that 

gross changes in results are possible by fine-tuning the oscillatory profile.
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Figure 6.43: Dependence of the maximum streak strength attained in various wall oscillation cases with wall oscillation. Streak 

strength is expressed as a fraction of the streak strength attained for the optimum streak ( z f  =  12.5, A+ =  75) in the unforced case.



C hapter 7 

Sum m ary and conclusions

The dual purposes of the work presented in this thesis were to develop and validate a high- 

order finite difference discretisation of the governing equations as formulated in chapter 

2, and to investigate a reduced-order model for streaks in turbulent boundary layers us

ing this numerical model, with particular emphasis on the effects of introducing spanwise 

oscillations of the wall. The effectiveness of spanwise wall oscillations in reducing wall 

friction in turbulent boundary layers has been known for about two decades, since the 

investigations of Akhavan, Jung and their colleagues [1,37]. Since it is widely accepted 

that streaks are of central im portance in the self-sustaining turbulent cycle, we hoped that 

through the use of our reduced-order model we could shed some light on the disruption 

of turbulence by wall oscillations.

The mathematical model we used was a velocity-vorticity reformulation of the Navier- 

Stokes equations. Formulations similar to this have been successfully employed for a range 

of boundary layer problems, for instance the influence on Tollmien-Schlichting waves of 

wall compliance [21] or of spatially evolving basis flows [26]. Although there are no natu

ral boundary conditions for vorticity at the wall, by taking the wall-normal dimension to 

be semi-infinite, we can apply an integral constraint on vorticity across the entire domain 

which is fully equivalent to the no-slip conditions on velocity. Another useful feature 

of this set of six equations (the three components of the vorticity transport equations
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plus the three velocity Poisson equations th a t formally close the system, see equations 

2.3 and 2.5) is th a t it is only necessary to solve three of them. The remaining variables 

can be defined in term s of the variables which are calculated explicitly; see equations 2.12.

The numerical trea tm ent of the governing equations centred around the use of fourth- 

order compact finite diffences. This allowed a relatively high-accuracy discretisation, 

while retaining a narrow grid stencil. This means tha t our higher accuracy is achieved 

without an increase in com putational effort. The same compact finite difference scheme 

used to discretise the wall-normal and streamwise derivatives was adapted to treat the 

integral conditions and the numerical quadrature used to calculate the secondary vari

ables. In the spanwise dimension we perform a Fourier decomposition and take only a 

single mode. A fully implicit iterative scheme was employed to advance the solution in 

time. Chapter 3 explains the numerical scheme in more detail.

By decoupling the solvers for the vorticity transport equation and the Poisson equation, 

then testing them with analytic solutions, we were able to verify the order of accuracy of 

our numerical scheme. Posing a problem with an analytic solution for the coupled system 

of equations is not so straightforward; instead, we tested the coupled solver against a 

more realistic problem: the generation of Tollmien-Schlichting waves. The performance 

of the solver in this test problem is discussed in some detail in chapter 4, but in summary 

we can say tha t the results obtained were satisfactory, particularly in tha t the solver was 

shown to be robust up to a Reynolds number of 106.

The reduced-order model of the streaks trea ted  them , in a sense, as of a kind with the 

Tollmien-Schlichting waves; tha t is, as linearised perturbations to a known basis solution. 

Of course, a different basis flow was used: the streaks develop on a parallelised mean tur

bulent flow rather than a parallelised Blasius (i.e., laminar) profile. The other principal 

difference was the forcing used to generation the perturbations. Instead of a continuous, 

time-harmonic forcing, the streak were generated with a non-physical source of stream-
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wise vorticity. This source was meant to be generically pointlike, in the hope that there 

existed spatial and tem poral limits of sensitivity; by this we mean scales below which the 

streak response would not substantially alter if the fine details of the forcing were changed.

Our results indicated th a t such limits did not exist in a straightforward sense. Only 

if we fix a tem poral scale for the forcing does a sensitivity limit on the spatial extent of 

the forcing become apparent, and vice versa. W ithin the practical resolution limits of 

our solver, then, it seems impossible to find a generic pointlike force for the generation 

of streaks, at least using Gaussian distributions of the form tha t we considered. We con

cluded tha t it was necessary to impose some sort of scale on the forcing based on empirical 

data; this is discussed in more detail in chapter 5.

Since our formulation is restricted to a single spanwise wavenumber, we needed to deter

mine which wavenumber would best model real streaks. The details of this determination 

are available in section 5.1; suffice it to  say here th a t we found an optimum spanwise 

spacing A+ =  75, which is on the low end of experimental measures of the mean streak 

spacing [82], but very close to the observed median spacing A+ =  80 [71]. It is reasonable 

that our simulations would pick out the median rather than the mean streak spacing, 

since the optimum (i.e., most strongly amplified) streak will be the streak tha t is most 

often seen in a turbulent boundary layer. This analysis is contingent on the assumption 

tha t the forcings which generate streaks of different spanwise spacing are approximately 

equally likely to occur.

We incorporated spanwise forcing by solving the governing equations twice. The first 

solution was spanwise uniform, and the only excitation was a spanwise oscillation of the 

walls. This solution therefore approxim ated a Stokes oscillatory solution; it was not iden

tical to this because the am plitude of the oscillation varied along the streamwise direction. 

As shown in section 6.1, the solution we obtain under these circumstances using our linear 

formulation is identical to the nonlinear formulation. By adding this solution to our orig
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inal parallelised boundary layer solution, we create a modified basis flow. If we then solve 

the governing equations a second time on this new secondary basis using the same forcing 

parameters th a t generate the optimum streak, we can observe how the introduction of 

spanwise forcing alters the streak response.

Our initial investigation employed an oscillation of period T + = 250; since our streaks 

typically reach their m axim um  after 30-40 wall units have elapsed from the switching-on 

of the forcing, the point in the wall cycle a t which the streak forcing is introduced will 

significantly change the basis on which the streak develops during its lifetime. We mea

sure this by a phase angle, (p , between the nominal start of the wall cycle and the forcing 

switch-on. As can be seen in figure 6.3, altering (f> can significantly influence the streak 

development, particularly for higher amplitudes.

The observation of apparent delayed streak growth in some high-amplitude cases led 

us to surmise tha t there were certain parts of the wall cycle more prone to promoting 

streak growth than others, and this hypothesis was borne out by the results of longer- 

term simulations, as presented in figure 6.12. We also found tha t, by freezing the wall 

oscillation at certain instants, it was possible to find (unphysical) basis flows which sup

ported exponentially growing normal modes. Thus we can say tha t some of our oscillating 

basis flows, even if their overall effect is to  reduce streak strength, pass through condi

tions in which they are instantaneously unstable. By tailoring the oscillatory profile so 

tha t it spends less time in the unstable conditions, we hoped to be able to improve the 

performance of the wall oscillations. This is discussed in section 6.5, where we show that 

some improvement is indeed possible by tweaking the oscillatory profile.

We found that altering the period of the wall oscillation had a number of interesting 

effects. As a general rule, increasing the frequency of the oscillation resulted in a greater 

reduction of streak strength, although for the lowest amplitude oscillations an optimum 

oscillatory period T + =  20 was apparent. This is significantly lower than the optimum
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period for turbulent drag reduction reported in experimental and DNS studies, which 

implies th a t there are perhaps multiple mechanisms by which spanwise wall oscillations 

interfere with the autonomous cycle of turbulence production, rather than the streaks 

being the only im portant turbulence-producing structure directly affected.

In the other direction, significantly increasing the period of the wall oscillations pro

duced certain cases where the streaks grew to significantly greater magnitudes than in 

the unforced case, a factor of 50 being the largest increase observed. It is possible, then, 

that there are some spanwise wall oscillations which will amplify turbulence rather than 

reduce it.

A potentially more illuminating way of looking a t the cases where we have growth of 

normal modes (i.e., the frozen basis case) or perturbations th a t show very strong tran

sient growth and have a normal mode-like form is to consider the stability of the turbulent 

mean profile. Although it is a well-known result tha t turbulent profiles are asymptoti

cally stable to any normal mode perturbation at all Reynolds numbers [64], it appears 

that relatively small stable modifications of this profile (such as our frozen oscillations) 

can produce a basis flow which supports exponentially growing disturbances. Similarly, 

we can greatly increase the transient growth factor with a careful choice of oscillatory 

modification to the turbulent profile.

This suggests a promising area of research into which the results of this thesis could 

be extended. It is plausible tha t a more detailed search of the space of profiles formed 

from the sum of the turbulent mean profile and transverse oscillatory flows might find yet 

greater transient growth factors, or even a basis flow which can support an exponentially 

growing quasi-periodic disturbance. Similarly, it would be interesting to explore the space 

of steady modifications to the turbulent profile (at least tha t part of the space which can 

be obtained from freezing wall oscillations, as in section 6.2) to try to determine the 

minimal modification that still produces exponential growth. There would be additional
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interest in investigating whether the conditions for creating an asymptotically unstable 

modified basis depend on Reynolds number. Perhaps the most promising aspect of these 

results is tha t it suggests another mechanism by which turbulence might sustain itself: 

if at high Reynolds number even small modifications to the mean profile can produce a 

basis capable of supporting exponential growth, it is easy to see tha t relatively long-lived 

structures might create a situation in which smaller perturbations could be rapidly am

plified through linear mechanisms.

There are a number of other ways in which this research could be extended: for instance, 

we could investigate the effects of multiple oscillating panels, or incorporate spanwise 

varying wall motion, perhaps by applying Floquet theory. Nevertheless, in having applied 

and validated a novel numerical formulation to the vorticity-velocity equations of fluid 

motion, and having found a number of interesting results by applying this formulation 

to a reduced-order model of streaks in a turbulent boundary layer, the work presented in 

this thesis represents a novel and potentially useful addition to  the body of research on 

turbulent boundary layer flows and their numerical modelling.
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