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Abstract

We present a new numerical treatment of the vorticity-velocity form of the governing
equations of fluid motion, based on the application of compact finite differences. The
mathematical formulation of these equations is discussed, as are the techniques used to
discretise them. The solver thus obtained is validated against analytical solutions to model
problems, and against the more physical test case of developing Tollmien-Schlichting waves

in a parallelised Blasius boundary layer.

We then use this solver to examine a reduced-order model of streaks in a turbulent
boundary layer. The properties of the streaks produced by the solver are discussed,

with a particular focus on the means of their generation.

Following this, we examine the use of spanwise oscillation of the wall, which is known
to reduce drag in turbulent boundary layers. The parameters of the oscillation (specifi-
cally its magnitude, its frequency and the phase difference between the wall motion and
the streak forcing) are altered and their influence on streak development investigated. It
is found that in certain cases, the modification to the basis flow by wall oscillation means
that the perturbations can grow exponentially. We also investigate the effects of altering
the pattern of oscillation from sinusoidal in time to a smoothed square wave or sawtooth
wave. Finally, the results are reviewed and conclusions drawn, and possible extensions to

the research presented in the thesis are suggested.
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Chapter 1

Introduction & background

1.1 Turbulent boundary layers

Despite many years of investigation, our understanding of turbulent flow remains rela-
tively incomplete; its nature and behaviour are arguably among the last major unsolved
problems in classical physics. A particular area of interest is the turbulent boundary layer
(TBL). At low to moderate Reynolds numbers, boundary layers are laminar, with layers of
fluid at different heights from the wall travelling at different speeds and slipping smoothly
over one another. At sufficiently high Reynolds numbers, boundary layer flow undergoes
transition and becomes highly chaotic, with large spatial and temporal fluctuations at a
wide range of scales. These fluctuations are physically associated with flow features called
eddies, which exist at a range of spatial and temporal scales. The largest are on the scale
of the boundary layer thickness; the smallest are on the ‘Kolmogorov microscales’, where

the kinetic energy of the turbulent fluctuations is dissipated into heat.

Because of these chaotic fluctuations, there are no straightforward analytic solutions to
the equations governing fluid motion for turbulent flows comparable to the familiar lami-
nar flow solutions such as the Blasius and Falkner-Skan boundary layers or Poiseuille and

Couette channel flows (although analytic solutions of a form resembling the structures



found in turbulent boundary layers are attested in the literature [78]). In fact, it is very
difficult to treat turbulent boundary layer flows with the usual governing equations at all,
and we are normally forced to take a different tack: either to attempt numerical solution,
or to use some kind of time averaging to modify the governing equations, which has its

own set of associated difficulties.

The result of averaging the governing equations in time is to introduce several new vari-
ables representing the effects of the turbulent fluctuations. However, the governing equa-
tions of fluid flow (the Navier-Stokes equations, the continuity equation and the energy
transport equation) fully and exactly express the conservation of mass, momentum and
energy for a continuous Newtonian fluid. This means that the details of the turbulent
fluctuations elided by the time-averaging are under-specified. Thus, we must introduce
a turbulence model, which attempts to close the system by the use of model equations
coupling the variables of the mean flow with the new variables, representing the stresses

resulting from turbulent fluctuations.

These new variables appear as additional stress terms. Most turbulence models use the
Boussinesq assumption i.e., they assume that these additional stress terms vary in direct
proportion to the spatial gradients of the mean velocity. This means that these turbulent
stresses are in effect treated as an increment on the viscosity, usually referred to as the
turbulent, apparent or eddy viscosity, and denoted ¢,,. Across most of a turbulent bound-
ary layer, the eddy viscosity is much larger than the molecular viscosity. Almost every
turbulence model relies at least in part on empirical data to specify the pseudo-viscous
effects of the turbulent fluctuations. Note that the usual technique of time-averaging is re-
ferred to as Reynolds averaging, and thus simulations using these governing equations and

turbulence models are often called Reynolds-averaged Navier-Stokes (RANS) calculations.

With a suitable choice of turbulence model, it is possible to solve the time-averaged gov-

erning .equations to obtain analytic solutions for turbulent flows. The averaging means



that fluctuations below certain time-scales are smeared into the variables representing
turbulent stresses; thus, these solutions do not, by their very nature, predict every detail
of the flow. There are some common features that can be seen across the entire class of
wall-bounded turbulent flows for which analytic solutions exist, possibly the most impor-
tant of which is the division of the flow into two layers. Near the wall we find the inner
region (also called the wall region) where the behaviour of the flow is strongly influenced
by the proximity of the wall. Within the wall region, the area in closest proximity to the
wall is almost entirely dominated by viscous effects, and is thus called the viscous sub-
layer. Further away from the wall we find the outer region, where the wall affects the flow
only indirectly. This is often called the core region for channel and pipe flows or the wake
region for boundary layer flows. For all wall-bounded flows at the same Reynolds number
the mean flow profile in the wall region is identical. There is some variation in the outer
region, but they nevertheless share many similar features. There is not an instant switch
between the inner and outer layers, but a smooth transition. The wall-normal extent in

which this transition occurs is usually referred to as the overlap or buffer region.

Even without detailed turbulence modelling, a good deal of information can be deduced
about the mean turbulent boundary layer profile. The division between inner and outer
regions can be thought of as a division between those parts of the boundary layer that
are directly affected by the viscosity and the wall condition (which condition is embod-
ied in the wall shear stress), and those parts which are affected only indirectly. Let us
consider the inner region. We wish to specify the mean velocity profile U(z), where a bar
indicates time-averaging and z is the normal distance from the wall. In addition to z, the
velocity profile also depends on the wall stress 7, and the physical properties of the fluid

as embodied by the density p and the viscosity p. Thus we have:

U= f(z,7w,p,1) (1.1)
From the Buckingham-II theorem, we can express this as a relationship of two dimension-

less groups. Let us first define the wall-friction velocity u, as a velocity scale:
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Uy = \/% (1.2)

Then our dimensionless relationship can be written as:

V(%) (1.3

v

Where v is the kinematic viscosity, v = u/p. In the viscous sublayer very close to the wall,
turbulent fluctuations are almost completely damped out and the shear stress is roughly
constant at the wall value. Thus we can say that in the sublayer:
ou
= = 14
I" 6 z Tw ( )
Solving this equation and rearranging gives us:
U u,z

Ry (15)

U, v

Thus there is a linear relationship between the mean velocity and the wall-normal dis-
placement. u, is a natural velocity scale for turbulent boundary layer flows and 4, = v/u,
a natural length scale. Quantities nondimensionalised by these scales are said to be in

wall units, and denoted by a superscript +. Thus, equation 1.5 can be recast simply as:

Ut =z* (1.6)

Having found an equation that deals with the part of the flow near the wall where viscous
effects are significant, let us now consider the outer flow, where viscosity plays only an
indirect role. Here, the influential parameters are the distance from the wall z, the wall
stress 7, and the fluid density p. In addition the boundary layer thickness, 4, is an
important length scale. Note that conventionally in this layer we express the velocity
profile as a ‘defect’ (i.e., difference) from the freestream velocity U, — U, rather than
simply as the velocity itself. For this reason, the law governing the variation of velocity in
the outer region is often called the velocity defect law. This can be expressed in a similar

fashion to equation 1.1 as:



Uo — U = g(z,7u,p,0) (1.7)

Using the Buckingham-II theorem to nondimensionalise as before, and defining a dimen-

sionless outer length scale by ( = 2/4, we find the relevant dimensionless relationship.

=9(¢) (1.8)

As mentioned above, unlike the profile for the inner region, the details of the outer region

profile vary across different flows.

We must also deal with the buffer region between the inner and outer flows. In the

buffer region, the inner and outer profiles must overlap smoothly. We can use this to say

that the sum of our general expressions for the inner and outer profiles must be differ-

entiable. Using the boundary layer thickness expressed in wall units to mediate between
the inner and outer variables by writing z* = (%, we see that:

U 0 (2] (2)

Us Us ) v
Us = 9(Q)+ f(¢6%)

If we differentiate twice in succession, once with respect to ¢ and once with respect to §+,

(1.9)

we find:

F/(C*) + CB*F1(CEY) = 0
Pzt + 2t f(zY) = 0 (1.10)
d df
&) =0

We can integrate this to show that z* - df /dz" is equal to a constant. This constant is
conventionally represented as 1/x; « is called von Kdrman’s constant. If we integrate once

more we find a logarithmic profile, of the form:

0+ = f(z*) = %lnz* +B (1.11)
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Where B is another constant of integration. The values of x and B have been determined
experimentally as kK = 0.41 and B = 5.5 (although see the results discussed by Marusic
et al., which suggest that the values of these constants are not as universal as originally

thought [51]).

An alternative to seeking analytic solutions for turbulent flow is to seek numerical so-
lutions instead. There are a range of approaches to numerical solution of the equations.
For flow configurations which are not amenable to analytic solutions (because of com-
plicated geometry, for instance) we can retain the turbulence modelling but solve the
model equations numerically. This is reasonably practical in terms of computational re-
source requirements, but more complex flow configurations are often very different from
the configurations used to generate the empirical data on which the turbulence models

rely. Thus, they may not predict the physics of real flows very closely.

Instead of incorporating the turbulence modelling into the numerical model, it is also
possible to attempt to solve the governing equations with no time averaging, including all
the details of the turbulent fluctuations. This is called direct numerical simulation (DNS),
and brings in its own set of difficulties. For instance, as mentioned earlier, turbulent fluc-
tuations occur at a wide range of scales. This means that DNS simulations require very
fine resolution to capture the smallest scales, making them extremely demanding in terms
of computational resources. DNS of the full governing equations for fluid motion, with no
simplification, has historically been restricted for all practical purposes to relatively low
Reynolds numbers. However, as more and more computing power becomes available, the
range of problems amenable to investigation by DNS is growing. Wu et al. recently used
a DNS approach to look at boundary layer transition, using experimentally-measured
slabs of isotropic turbulence in the freestream to trigger bypass transition in an initially
laminar boundary layer [80]. Although the Reynolds number of the simulated flow was
still far too low for many practical purposes, it is still an important and interesting step

forward.. The brief note by Marusic, published in the same journal as the paper of Wu



et al., is a good summary of the current state of DNS, and clearly expresses the place of

their investigation within this context [49].

There is also an intermediate choice between RANS and DNS called large eddy simu-
lation (LES). With this technique, we explicitly calculate the turbulent fluctuations on
larger temporal and spatial scales, as is done in DNS, but use turbulence modelling to
account for the effects of smaller-scale fluctuations. The rationale is that smaller scales
are in some sense more generic, and therefore that the difficulties in using turbulence

models for broad classes of flows are somewhat alleviated.

1.2 Streaks

Although early investigations of turbulent boundary layers emphasised the statistics of
turbulent fluctuations (see for instance the work of Klebanoff [42]), subsequent studies
have more often focussed on particular structures within the boundary layer. Robinson’s
review paper gives a good overview of the various structures that have been proposed
as dominating the kinematics and dynamics of the boundary layer [67]. Undoubtedly,
however, one of the most important of these phenomena is the set of near-wall structures
called streaks. Streaks are regions in a turbulent boundary layer where streamwise veloc-
ity is significantly higher or lower than the spanwise mean. They are relatively long in the
streamwise direction (that is, in the direction aligned with the mean flow) and relatively
narrow in the spanwise direction (that is, in the direction normal to the streamwise di-
rection but still in the plane of the wall). They are found in the regions of the boundary
layer closest to the wall, 2* < 30. The streaks are not perfectly parallel to the wall,
but are tilted upwards. It is generally accepted that streaks are of central importance to
the maintenance of the energetic fluctuations of the turbulent boundary layer, although
there is not a broad consensus on the details; it is certain, however, that streakiness is
associated with strong transient growth of perturbations. Concomitant with these streaks

are quasi-streamwise vortices; the term quasi-streamwise is used because they are tilted

10



in the same way as the streaks.

Streaks have been observed experimentally since at least the 1960s. Kline et al. [44]
presented one of the earliest thorough investigations of streaks, and were among the first
to surmise that streaks are central to the maintenance of boundary layer turbulence.
They proposed a life-cycle for the streaks wherein they appear near the wall, are ran-
domly subject to a lift-up process that pulls them out towards the main body of the flow,
and then become unstable. This instability takes the form of growing oscillations and
then a violent breakdown, or burst, involving the ejection of low-speed fluid outwards
from the vicinity of the wall. Kline’s paper proposed that the bursting of the streaks
was a main contributor to the high levels of production of turbulent kinetic energy near
the wall. Also noted was the apparent natural spanwise scale of the streaks: an aver-
age spanwise separation of 100 wall units was observed across a range of different flows,
suggesting that the streaks scale with inner variables i.e. u, and v. This scaling is also

found in many other studies, for instance those of Kim et al. and Klewicki & Falco [41,43].

Several of the most important results from the next decade-and-a-half’s investigations
into streaks are summarised in the review paper of Cantwell [10]. Kline et al.’s suggestion
that the streak bursts were responsible for producing a great deal of turbulent energy was
confirmed, at least for 2* < 100. The average spanwise streak spacing was confirmed
as 100 wall units, but it was found that the separation of streaks was somewhat skewed,
with the median spacing a little smaller at 80 wall units (see for instance the work of
Smith and Metzler {71]). The wall-normal range of the streaks was found to be largely
restricted to within the log-law region (i.e. the buffer region). More recently, Cossu et al.
found that numerical simulations of disturbances in a turbulent boundary layer indicated
that streaky structures with a spanwise spacing of approximately 80 wall units reached
greater magnitude than similar structures with any other spacing [19], which suggests
that structures of this spanwise scale would be observed most frequently i.e., would be

the median structures.
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Although the streaks are observed to scale with inner variables, that doesn’t mean that
the inner part of the flow where the streaks are found does not interact at all with the
outer flow. See, for instance, the results of Rao et al. [63], which suggested that although
the spatial scale of the streaks scale with the inner variables, the temporal frequency of
the bursting events associated with the streaks scale with the outer variables, implying
that the outer part of the boundary layer still influences the development of structures
near the wall. More recent and very interesting results exploring the connection between
large-scale structures in the outer part and streaks nearer the wall of the boundary layer
are presented in the experimental investigation of Hutchins and Marusic, and the numeri-
cal results of Cossu et al. and Jiménez et al. [19,30,34,50]. Aubry et al. used a dynamical
systems approach to modelling the streamwise vortices (referred to here, as occasionally
elsewhere in the literature, as ‘rolls’) and similarly found that the pressure footprint of

the outer flow is vital in determining the bursting frequency [2].

There are a number of theories as to the relationship between the quasi-streamwise vor-
tices and the streaks. The conventional view is that the vortices act to pump low-speed
fluid away from the wall towards the main flow, and similarly bring high-speed fluid
down into the wall region. As these vortices are convected in the streamwise direction,
they leave behind the streaks as a sort of trail of vertically-convected high- or low-speed
fluid [58,74]. The vortices are often supposed to be in pairs of opposite sign, perhaps
representing the legs of a hairpin vortex. Hairpin vortices are observed in many studies
of turbulent boundary layers, and are thought to be created by mean-shear stretching
of closed-loop vortices forming on the wall. Jeong et al. used a sophisticated criterion
to educe vortical structures in a canonical numerical dataset [32], and found that their
solutions contained complicated arrays of approximately streamwise vortices. The rela-
tionships and mutual influence of these vortices are very complex, but most appear to
share some quite precise characteristics, including their streamwise extent and their in-

clination with respect to the streamwise direction. Unlike the more recent data of Wu &
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Moin (80], which found veritable forests of hairpins, Jeong et al. found no hairpins in the
buffer region, although they suggest that the heads or loops of the hairpins may be located
outwith the wall-normal range they investigated, with the observed vortices being the legs
of these structures. Whether or not this is the case, the streaks were observed to occur
in the expected location in relation to the vortices. It has also been pointed out that the
turbulent boundary layer naturally tends to form streak-like structures, even from ran-
dom perturbations in wall-normal velocity [12], although the fact that many things could

produce streaks does not preclude the vortices from being the actual source of the streaks.

Streaks are also associated with so-called ‘ejection’ and ‘sweep’ processes. In an ejec-
tion, low-speed fluid from near the wall is thrown out, and in a sweep, high-speed fluid is
convected towards the wall. This obviously creates larger velocity gradients near the wall,
and thus higher skin friction. Thus we can anticipate that the streaks, apart from their
association with the turbulent self-maintenance, are also directly responsible for at least
part of the strong friction drag in turbulent boundary layers. This is borne out by the
work of Jeon et al., who performed statistical analysis on skin friction data from a series
of DNS simulations and found that regions of high friction on the wall correlated well
with the quasi-streamwise vortices, and thus with the streaks [31]. Orlandi and Jiménez’s
simplified 2D model of near-wall vortices also implied that there is a connection between

the vortices, the streaks and the generation of high skin friction values [56].

The mechanisms by which the streaks grow and the mechanisms by which the quasi-
streamwise are generated vortices are not fully settled; one possibility is that the streaks
themselves generate the streaks. This idea seems plausible but has not been rigorously
proven, although several hypotheses have been proposed. Possibly the most common
idea is that the wall-normal vorticity profiles that arise from alternating high-speed and
low-speed streaks are prone to inflectional instabilities. Exponential growth of these in-
stabilities would produce wall-normal rather than streamwise vortices, but the shear of

the mean profile would tilt these to produce the expected quasi-streamwise alignment.
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This cycle is explored in some detail by Hamilton et al., who looked at turbulence in a
Couette flow [28]. In order to exclude extraneous detail, they simulated turbulence in a
streamwise- and spanwise-periodic box, then reduced the size of this box to the minimum
size that permitted self-regenerating turbulence. That such a limit exists implies there
is a natural scale to wall-bounded turbulence. As might be expected from the natural
spacing of the streaks, turbulence was found to eventually decay for domains narrower
than 100 wall units in the spanwise direction. This investigation also found a natural
time scale to the turbulence cycle, with streaks being created, breaking down and then
being recreated over a time period of t* = 100. It was found that the streaky profiles are
indeed linearly unstable, but that the growth in a real flow, developing in time, is signifi-
cantly greater than the growth rate found by freezing the background flow and allowing
perturbations to grow as normal modes. One of the most important suggestions was that
the individual processes of the turbulence regeneration cycle (streak generation, streak
breakdown, vortex formation) each have, for a given spatial scale, a particular temporal
scale. The natural length scale of the near wall structures is the smallest spatial scale at
which the temporal scales of all the processes coincide appropriately. Thus, even although
structures of the right type occur at a wide range of scales, only those at the correct scale
are reinforced and therefore observed in real turbulent boundary layers. Jiménez et al.
used a similar technique to isolate an individual self-sustaining unit of near-wall turbu-
lence [33,35,36]. This allowed several insights into the complex interactions of near-wall
structures that dominate turbulent dynamics. Waleffe later showed that a similar self-
sustaining process occurred in a sinusoidal shear flow, with both no-slip and free-slip
conditions at the wall [79], which suggests that the cycle may be generic in wall-bounded

shear flows.

Alternatively, Schoppa and Hussain proposed a transient growth mechanism for streaks
which are steady to normal-mode perturbations [70]. This growth is algebraic but suffi-
ciently strong in the short term that it may cause normal-mode-steady streaks to grow

to an amplitude where nonlinear effects become significant before the streak perturba-
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tions begin to decay exponentially. This mechanism of streak growth creates a sheet of
streamwise vorticity which eventually rolls up to form the quasi-streamwise vortices. Note
that it is possible that more than one self-maintaining turbulent cycle exists theoretically;
among all possiblé cycles, the one that produces the strongest turbulence will be the one

that is most often observed physically.

A further candidate for the source of the quasi-streamwise vortices is that, in addition
to generating the streaks, they generate their own successors, a process sometimes called
parent-child vortex generation. If there is a streamwise vortex situated above a wall, it will
induce on the wall a region of vorticity having the opposite sign to itself. The same lift-up
mechanism by which the vortices generate the streaks then (by this proposed mechanism)
lifts these zones of induced vorticity away from the wall, which then roll up to create
new vortices even as the vortices that originally create them dissipate or are annihilated
by turbulent fluctuations. This hypothesis has somewhat fallen out of favour, since lit-
tle evidence has been found to back it up; Jiménez and Pinelli found that suppressing
the physical processes necessary for this did not prevent the formation of new vortices,
while Orlandi and Jiménez found that in a two-dimensional model of turbulent streaks and

vortices, the vorticity sheets near the wall would never roll up to form new vortices [36,56].

The above discussion outlines the current state of understanding of turbulent bound-
ary layers, but it should be borne in mind that much of the knowledge we have gained is
highly conjectural, and that even many quite fundamental aspects of turbulent boundary
layer behaviour (for instance, is the von Kdrmén constant truly a constant?) are still sub-
ject to continued scrutiny. The recent review paper by Marusic et al. examines the state
of the art in many parts of boundary layer studies, and demonstrates the uncertain nature

of many of the tentative conclusions that have been drawn about turbulent flow [51].
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1.3 Wall control

Having established that streaks are of importance in maintaining turbulent boundary
layers and generating large values of skin friction, we may ask if there is some way in
which we can influence the development of the streaks in order to control turbulence.
The ultimate goal of such a task would be either to inhibit turbulence, so that we could
reduce friction drag in turbulent boundary layers, or to strengthen turbulence, in order
to prevent or delay boundary layer separation. A range of forcing strategies have been
investigated, including riblets aligned with the mean flow (see Choi [15]), suction-injection
devices (see the paper of Kim which summarises many years of numerical investigation,
or the work of Choi et al. [13,40]) and spanwise oscillation of the wall. More exotic ap-
proaches such as the use of electrohydrodynamic Lorentz forces for conducting fluids (see
for instance the work of Breuer et al. {7,8]), seeding the flow with microbubbles (mod-
elled numerically by Xu et al. as a body force [81]) or injecting polymers into the fluid
have also been attempted. There are several very good review papers discussing various
aspects of the mechanisms used to reduce drag in turbulent boundary layers [38,39]. In
addition to the fluid mechanics behind the techniques used to influence the turbulent
boundary layer, significant attention has been paid to the development of appropriate
control systems [4,25,52]. Sophisticated control schemes are relevant if we want to de-
velop a mechanism for manipulating the turbulent flow that responds to the instantaneous
condition of the flow; thus we would need not only a means of influencing the flow but a

means of measuring it as well, which introduces its own set of difficulties.

The control mechanism we intend to investigate is spanwise oscillation of the wall. There
are many studies that implement this forcing method, both numerical and experimental.
The pioneering numerical study was by Jung et al. [1,37], who built on earlier studies
by (among others) Moin et al. examining the effects of a constant transverse motion of
the wall [53]. Experimental studies of the same phenomena were carried out at around

the same time, for instance those of Laadhari et al. [45], and continue to be pursued.
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Although both methods of investigation find that oscillation of the wall can significantly
reduce drag in turbulent boundary layers, DNS investigations tend to predict larger re-
ductions than experiments: ~ 40% compared to ~ 25%, see for instance the discussion by
Ricco and Wu [66}; Quadrio and Ricco suggest that at least part of this discrepancy may
be caused by experimental measurements being made at locations where the spatial tran-
sient effects of the leading edge of the oscillating section of wall are still significant [60].
In addition to the mean flow effect of reduced drag, most studies agree that changes to
statistical measures of the flow are alse found, including reductions in turbulence produc-
tion, magnitude of turbulent fluctuations and an upward shift of the logarithmic part of
the mean velocity profile. This shift is indicative of a thickening of the viscous sublayer
and is characteristic of drag reduction in turbulent flows. Rotating a pipe about its flow
axis has been found to have similar results on turbulént pipe flows to wall oscillations
in channel and flat plate boundary layer flows; see for instance the work of Orlandi and

Fatica, or Quadrio and Sibilla [55,62].

The principle advantages offered by spanwise oscillation over other control methods are
twofold. Firstly, it requires no feedback, so we do not need to deal with the additional
layer of complexity added by flow detection and control schemes, and secondly, it is a
mechanism that works by manipulating the entire flow. Therefore, it does not need to
be applied on the scale of the boundary layer structures themselves, but can instead be
much larger. This is an advantage at higher Reynolds numbers (aircraft flight Reynolds
numbers, for instance) where the structures of the boundary layer become much smaller

and therefore creating devices on the same scale becomes much more difficult.

In addition to the obvious parameters of the wall motion (e.g. amplitude or frequency), a
potentially useful means of characterising the wall motion is through the use of the param-
eter S, as introduced by Choi et al. [14] and investigated by Ricco and Quadrio [61,65].
This parameter is used in an attempt to find a straightforward relationship between the

wall oscillation (as characterised by its amplitude and frequency, or equivalents) and the

17



amount of drag reduction. Its definition is not fully analytic, but instead incorporates
some empirical data. This data is selected in order to give a best fit (quadratic for Choi
et al., linear for Ricco and Quadrio) to the drag reduction data. The results presented
in Quadrio and Ricco’s 2004 paper, in particular, show a remarkable linear fit for drag
reduction on this parameter, on the condition that they restrict themselves to wall os-
cillations characterised by a period T* < 150. In common with many investigations of
spanwise wall oscillations, they find that an optimum drag reduction is obtained with an

oscillatory period of T+ ~ 100 — 125.

A common explanation for the effectiveness of wall oscillations in reducing turbulent drag
is directly related to the streaks. Most studies find that the spanwise velocities induced by
the wall motion are very well approximated by the laminar oscillatory Stokes problem. It
is theorised that the layer of spanwise-moving fluid (the so-called Stokes layer) induced by
the spanwise motion of the wall breaks up the spatial coherence of the quasi-streamwise
vortices and the streaks, so that instead of pumping low-speed fluid from near the wall
into the low-speed streaks and high-speed fluid from further out in the boundary layer
into the high-speed streaks, the vortices do the opposite, and thus the streak formation
is inhibited. This hypothesised mechanism is predicated on the wall-normal separation
between the vortices and the streaks, such that a Stokes layer of the appropriate thick-
ness will induce a relative separation. This explanation, or similar, is advanced by many

different researchers (3,16, 23, 24].

Onorato et al. propose a different mechanism for turbulent drag reduction by wall oscilla-
tion [54]. They suggest that the oscillating Stokes layer induced by the wall motion works
to annihilate the wall-normal vorticity that flanks the low-speed streaks, thus hindering
the process by which the streaks generate new streamwise vortices. Of course, given the
highly interactive nature of the near-wall vortices and streaks and their complex relation-
ships, which are not fully understood, it is quite possible that the wall oscillation might

interfere with more than one part of the autonomous turbulence cycle. Furthermore,

18



interfering with any part of the cycle will have a knock-on effect on other parts, which
in an experiment or a complete DNS simulation may make it difficult to disentangle the
direct effects of the oscillation from the indirect ones. In this thesis, we intend to use
a reduced-order model of streaks to try to elucidate some of the mechanisms by which

spanwise wall oscillations manipulate near-wall structures in turbulent boundary layers.
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Chapter 2

Mathematical formulation

2.1 Governing equations

We seek a suitable model for investigating the behaviour of small disturbances to flat-
plate boundary layer solutions, with an eye towards producing a reduced-order model of
streaks in turbulent boundary layers. The formulation that we use has been used before,
and is described quite thoroughly in a comprehensive paper by Davies and Carpenter [22];
its application to various problems of interest, including the use of compliant walls to
influence disturbance growth in flat-plate and rotating-disc boundary layers is presented
in a later paper by Davies as well as the references therein [20]. Since this formulation
is at the heart of our work here we will nevertheless discuss it in some detail. We begin
by considering the three-dimensional nondimensionalised Navier-Stokes equations for an
incompressible Newtonian fluid.
ou AU

E'{“(U'V)U:—VP-FE (21)

Where Re, the Reynolds number, is defined as:
Usd

With v the kinematic viscosity of the fluid, d an appropriate length scale and U, the
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freestream velocity (i.e., the flow velocity that would exist in the absence of the plate).
The Navier-Stokes equations can be thought of as momentum transport equations, and by
taking the curl of the Navier-Stokes equations we can change them into vorticity transport
equations (VTEs);

onN A

-§+aywn=«rwu+ig (2.3)

The principal advantage of solving the VTEs instead of the Navier-Stokes equations is
the elimination of pressure. Finding suitable boundary conditions for pressure has been
known to present considerable difficulties [73]; finding appropriate boundary conditions
for vorticity has also proved problematic historically, but by using integral conditions (as
described in section 2.2.2) this problem is overcome. Furthermore, since we are investi-
gating boundary layer stability, solving for the vorticity field directly is helpful in that
vortical features are thought to be central to mechanisms of the self-sustaining turbulence

cycle.

We are faced with a problem in attempting to solve these equations. There are three
VTEsS, one for each of the Cartesian spatial dimensions. However, there are six variables:
three components of vorticity, £2, and three components of velocity, U. We must there-
fore find some closure for the system of equations, a relationship between velocity and
vorticity. A very simple relationship that immediately suggests itself is the definition of

vorticity:

Q=VxU (2.4)

However, as will become clear in the chapter discussing the numerical techniques employed
for solving these equations, we will be solving the VTEs to obtain the components of
velocity, and solving the equations we use to close the system to obtain the components
of velocity. It is therefore convenient to take the curl of the definition of vorticity, as

this decouples the velocity components. By taking into account the continuity condition,
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V - U =0, we are left with three Poisson equations.

AU =-V x Q (2.5)

We are interested in the development of perturbations to known boundary layer solutions.
To that end, we will represent each of the solution variables as the sum of a basis solution,
known to satisfy the governing equations, and a small perturbation to that solution. Thus,

we write:

N = Qp+w
U = Ug+u

(2.6)

And we substitute these expressions into the governing equations. Since the basis solution
satisfies the governing equations by definition, all terms involving only the basis variables
can be eliminated. If we assume that the perturbations are infinitesimally small, then we
can linearise by eliminating the products of perturbation terms. The governing equations

for the perturbation variables can therefore be written:

A
o (Up Vw+(u- V)2 = (@5 V)u+ (- V)Up+ 22

Au = -Vxw
Since we are interested in boundary layer flows, further simplifications are possible. Let

us assume that the basis solution for the boundary layer takes the form:

UB = (UB(Z),0,0)
QB = (O’ U,B(z)ao)

Where z is the spatial dimension normal to the wall that creates our boundary layer and

(2.8)

the prime indicates differentiation with respect to this dimension. In doing this we have
assumed that there is no development of the boundary layer in the direction of the mean

flow i.e. we have assumed a parallelised flow. Our VTESs can then be rewritten as follows:

22



awz c%}z , 8uy wa

Zz _ =¥ = 2.9
a Vg, ~Usy, Re (29)
Owy Owy , Ouy " Auw,
— — ~Up—+Ugu, = 2.10
ot +Us oz Bay + g Re ( )
Ow, Ow, , Ou, _ Auw,
ot + UBT?Z ~Us dy Re (2.11)

The subscripts are used to mark the different components according to which spatial
dimension they are aligned with. Thus we have obtained a set of six equations to solve
for six variables. However, it is possible to make life slightly easier for ourselves by a
division of our solution variables into primary and secondary groups. In this scheme, the
secondary variables are defined explicitly in terms of the primary variables. Thus, we need
only solve for the primary variables, reducing the number of governing equations we need
to solve. The primary variables are {w,,wy, u,} and the secondary variables {ug, uy, w,}.

Our secondary variables can be defined as:

ug(z) = —/:o (wy+aa1:)d2
wy(z) = / ” (wx - %’LZ)dz (2.12)
wi(z) = /zm (%‘f + %fy!) dz

With z a dummy variable. The definitions of u, and u, are obtained by integrating the

definitions of w, and w;, respectively, along the wall-normal dimension. The definition of
w, is obtained by integrating the solenoidality condition on vorticity in a similar fashion.
Note that these definitions make use of the boundary condition that all variables go to
zero infinitely far from the wall. Boundary conditions are discussed in more detail in

section 2.2.2.

In the spanwise dimension, we apply a Fourier transformation:

f(e9,5t) = / " oo, 2, )edp (2.13)
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Where f is any solution variable. Since we have linearised our governing equations, each
Fourier wavenumber is independent of all others. Thus we can investigate the stability of
our boundary layer solutions to perturbations of a particular spanwise wavenumber, 3,

by solving the folléwing set of equations:

8wz Owy v auy _ (A = :82)
ot +Us Oz Up dr Re °° (2.14)
Ow ow, ..., " A - p?
”'522 + UB—a‘aTy - ’LﬂUBUy + UBUZ = %wy (215)
~ ) ow
(A - ﬂ2)uz = Z,wa - ‘3‘5" (216)

Which we obtain by substituting the Fourier transformation in equation 2.13 into equa-
tions 2.9, 2.10 and the wall-normal component of thevvelocity Poisson equation in 2.7.

Here, A is a modified Laplacian:

- o2 2
A=|—+—
(83:2 az2)
Note that the subscript § used in the definition of the Fourier transformation has been

dropped in the above statement of the governing equations to aid comprehensibility.

2.1.1 Two-dimensional equations

A simpler two-dimensional form of the equations can also be derived. In this formulation,
we have only the streamwise and wall-normal dimensions. One upshot of this is that
vorticity is no longer a vector quantity, but a scalar. The two-dimensional vorticity can
be defined, in a way analogous to the spanwise component of three-dimensional vorticity,
as:

_ Ou;  Ou,

w= 0z oz

Note that we have retained from the three-dimensional formulation the convention that

(2.17)

z denotes the streamwise direction and z the wall-normal. This (z, z) pair is somewhat
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unusual but hopefully will help avoid confusion in comparing 2D and 3D results. The two-
dimensional VTE is obtained by subtracting the z-derivative of the wall-normal Navier-
Stokes equation from the z-derivative of the streamwise Navier-Stokes equation. We can
also think of it as simply being the only non-zero component of the three-dimensional VTE
if we assume spanwise uniformity and u, = 0. If we then distinguish between basis and
perturbation variables, as in equation (2.6), assume the same form for the basis flow as
in equation (2.8), and finally linearise as before, we obtain the following two-dimensional
VTE:
Ow ow Aw

—5Z+U35;+UBUZ=—R—E

We see that this is similar to the three-dimensional VTE for the spanwise component of

(2.18)

vorticity, equation (2.10). The equation above contains two solution variables, w and u,;
to close the system we use a Poisson equation for u,. This is derived by differentiating the
definition of the two-dimensional vorticity with respect to x and applying the continuity
condition:

Ow

2.1.2 Nonlinear formulation

If we introduce the perturbation decomposition 2.6 into the basic vector form of the VTEs
2.3, but don’t linearise, we obtain a nonlinear formulation. With a nonlinear formulation,
it makes little sense to investigate a single spanwise mode. The assumption that all solu-
tion variables vary as e*?¥ is unsuitable, since nonlinear multiplication of the perturbation
variables would result in the different modes (that is, different values of §) influencing

one another, and disentangling a single mode becomes very difficult.

We can, however, investigate a certain limited sort of nonlinearity. Ordinarily, if boundary

layer perturbations have grown to the stage that nonlinear effects have become significant,
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then the flow has also become three-dimensional. However, if we artificially suppress three-
dimensionality by setting all spanwise derivatives to zero (equivalent to taking § = 0),
then we can investigate a subset of nonlinear effects. Doing this yields the following

streamwise and spanwise VTEs:

Ow Ow Ow Ju ou Aw
= = z—_z = ; z z—m z_z —= (2.2
5t + (U + uy) P +u 3 Upw, + w e +w s + e (2.20)
Owy Owy Owy - Ouy Ouy,  Awy
%y Vs = wend byt 21
ot +(UB+“I)ax+ * 9z + Upu w oz tw 82+ Re (2:21)

Since Up = (Up(2),0,0) and Qp = (0,Ux(2),0), we would retain only one term each
from (Upg - V)w and (f2p - V)u. But, since we are assuming spanwise uniformity, all
spanwise derivatives go to zero, meaning that the single term from (Qp - V)u in fact
vanishes altogether. This is also the reason only two of three terms have been retained
from (u- V)w and (w - V)u. Since there is no z-component in Qpg, (u - V)Qp makes no
contribution to the streamwise VTE, and we can make a similar statement for (w-V)Upg
in the spanwise VTE. In both of these cases, since our basis flow has been parallelised,

we need only include the wall-normal derivatives of basis variables.

2.1.3 Secondary perturbations

There is another method that allows us to investigate nonlinear, or at least quasi-nonlinear,
phenomena: the introduction of a secondary perturbation. In this method, we set 8 =0
and then solve either the nonlinear formulation described in section 2.1.2 or the linear
formulation to get a spanwise-uniform solution to the perturbation equations. Let us call
the velocity and vorticity fields of this solution u; and w; respectively. This solution
is then scaled appropriately and added to our basis solution to get a new, secondary
basis solution, defined as Ug = Ug + eu; and Qg = Qp + ew;, where ¢ is the scaling
factor. Note that, unlike the primary basis flows, there is more than one nonzero com-
ponent of the basis variables, so we introduce the notation Ug = (Ug;, Us,, Us,) and

Qs = (Qsz, Nsy, Qs,). We then solve the perturbation equations again for the secondary
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perturbation solution, uy and ws, with Ug and g as our new basic state. In short, we
are using our linearised formulation to create a new basis, then linearising around this

basis a second time.

The Poisson equation for the secondary component of u, remains unchanged, but be-
cause of additional non-zero terms in Ug and 25 that do not appear in Ug and g,
far more terms representing convection and vortex stretching appear in the VTEs. If we
replace Upg and Qg with Ug and s in equations 2.7, then we can recast the VTEs that

are solved, after some manipulation, as:

Owog Owsg . 0wy gy sz
T + Ug, EP + ifUsywo, + Us, Ep + Ugy e + uq, %
. Ous, . Oug,
= —Qg; (’Lﬂll.gy + 3; ) + ’LBstuh + Qg, (wzy + —i)
OUsz Us: | (A~ f*)ws
+ woy g + wa, 5, + Re (2.22)
6w2y aWQy . ngy 6ﬂsy aﬂsy
En + Us, Iz +lﬂUsyw2y+ Us, Ep + Ug, oz + usg, Ep
ou, A = BP)wgy,
= iﬂQSzuzz + iﬂQSyu?y + QSz (iﬂUZz - w2z) + woe ajy + ( ]%86 )w2y (223)

Here, (3 is the spanwise wavenumber of the variation in the secondary perturbation vari-
ables. The equations have been recast so as to minimise the number of terms involving
secondary variables that need to be calculated. Note that ‘secondary’ is used with two
meanings in this work, referring both to the variables that are not calculated directly (as
defined by equation 2.12) and to the secondary perturbations from the formulation given

here.
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2.2 Domain

We need to choose a domain suitable for the problem we are interested in: the develop-
ment of small disturbances in a flat-plate boundary layer. The most obvious choice is a
semi-infinite Cartesian domain over an infinite flat plate. The spatial dimensions are z,
which is aligned with the direction of the basis flow, and which we call the streamwise
direction; y, orthogonal to z in the plane of the wall, which we call the spanwise direction;

and z, the wall-normal direction.

We define streamwise limits on the domain such that the all points in domain satisfy
0<z< L,. We call the boundary at £ = 0 the inlet and the boundary at z = L,
the outlet. In the wall normal direction, the domain stretches from z = 0 at the wall to
infinity. A transformation used to map the semi-infinite wall-normal domain to a finite

one is discussed in section 2.2.1.

As mentioned previously, in the three-dimensional case a Fourier transformation is ap-
plied to the spanwise dimension, and only individual modes are investigated in any given
solution. Thus we can think of our spanwise domain as being periodic and infinite in

extent.

2.2.1 Wall-normal transformation

It is intended to use finite difference methods to solve the governing equations. However,
finite differences cannot be straightforwardly applied to a semi-infinite domain. Thus, a
transformation is applied to the wall-normal coordinate. The transformation used maps

z + 7 such that all 7-coordinates belong to the range [0, 1]:

o
T4z

n (2.24)

[ here is a parameter that controls the stretchedness of the transformed wall-normal do-

main compared to the untransformed domain.
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This transformation for the numerical method changes the ways in which the wall-normal

derivatives and integrals are treated. Consider:

of n° of

= 17 2.25
0z l oy (225)
2 4 92 o3
of _ mos 2mof (2.26)
022 2an? 12 9y
Consider also:
oo 7
/ jaz=1 [ Lag (2.27)
z o 7
With Zz and 7 being dummy variables. Specifically:
o] 1 f
0 o 7

In these expressions, f stands in for any arbitrary function. Note that since (per equation
2.24) 7 — 0 as z — oo, we can see from equation 2.25 that in order for df/dn to remain
bounded in the limit  — 0, 8f/0z must vanish at an infinite distance from the solid

boundary. Similar considerations apply for the higher-order wall-normal derivatives.

2.2.2 Solution constraints

We are interested in the growth or decay of perturbations to a boundary layer solution.
We will introduce these perturbations at some particular point or region of the domain.
Since we have a semi-infinite wall-normal domain, we can say that any point in the do-
main is infinitely separated from the upper boundary (i.e. z — oo0). This is intended to
be a model of a physical problem, so we apply the condition that all model variables go
to zero infinitely far from the wall. However, note that, although pressure does not ex-
plicitly appear in our formulation, for an incompressible fluid pressure changes propagate

infinitely fast.
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We also apply a zero boundary condition on all primary variables at the inlet. It is
expected that the upstream influence of the perturbations will be relatively small, so this
condition should not introduce any difficulties as long as the perturbations are located,

in some sense, sufficiently far downstream of the inlet.

The outlet condition is more problematic. If we assume that our perturbations will grow

or decay in an oscillatory manner, then a possible appropriate boundary condition is:

&f
Ox?

where f is any perturbation variable. This is consistent with a sinusoidal variation of

= —a’f, (2.29)

wavenumber « in the streamwise direction. There is now a further problem: the selec-
tion of a suitable a. In certain cases, such as the Tollmien-Schlichting waves discussed
in section 4.2 we will have an anticipated wavenumber, which allows us to specify a.
Elsewhere, for transiently growing solutions which we do not expect to pass through the

outflow boundary, we set a = 0.

At the wall, all components of velocity are fully specified by the no-slip condition. How-
ever, there is no natural condition on vorticity at the wall. In order to overcome this
difficulty, we apply an integral condition to vorticity, as discussed in the paper of Davies
and Carpenter [22]. This specifies constraints on the variation of vorticity along any given
wall normal line by taking the integral of the definition of vorticity along this line. For

the components of vorticity which are primary variables, we have the following integral

wedz = / ( £ ) dz+1

/0 0 9y v
wydz = gy — 2 1dz

/0 Y ./0 ( oz )

Here the hatted variables represent the specified wall velocities. The integral condition

conditions:

(2.30)

on vorticity in the two-dimensional case is identical to the three-dimensional integral
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condition on w,. These constraints are equivalent to the no-slip condition on velocity.

2.3 Tollmien-Schlichting waves and boundary layer
eigenvalues

In experimental investigations of boundary layer transition, growing waves, referred to
as Tollmien-Schlichting waves, are frequently observed [68]. It is surmised that these
are caused by the selective amplification of perturbations present in the outer flow. The
attempt to describe Tollmien-Schlichting waves analytically through mathematical models
of the boundary layer is part of primary stability theory, and it is these analytic solutions
that we will use to verify the numerics. One of the most important tools in primary
stability theory is the classical Orr-Sommerfeld equation, which we derive by assuming

the existence of wavelike solutions to the equation [69]:

9 o L8 A2
[<5A+U3£A_ Ba_ﬁ)]uz—o (231)

This equation is obtained by eliminating pressure from the linearised and parallelised
perturbation form of the wall-normal Navier-Stokes equation. If we specify the wavelike

form of the solution to be:

uy(‘rv yv Z, t) = ,ay(z)ei(az+;3y—'yt)’ (232)
then the classical Orr-Sommerfeld equation drops out:
( D2 _ a2 _ ﬂ2)2
Re

Here, D is a differential operator denoting differentiation with respect to z. This equation,

(—iy + iaUp)(D? — o — #%) —ialUp +

i, =0 (2.33)

together with suitable boundary conditions, defines an eigenvalue problem. If we assume
that the flow is specified (meaning that we know the values of Re and the flow profile

Ug(z)) and we are given a spanwise wavenumber (3, then we are interested in solving this
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eigenvalue problem for either v, the temporal frequency, or «, the streamwise wavenum-
ber. There is no restriction to real frequencies or wavenumbers in general. Traditionally,
however, the approach has been to assume a real o and find the corresponding -y eigen-
values. This correéponds to having a perturbation that is uniform throughout space and
seeing whether it grows (i.e. Im(y) < 0) or decays (Im(y) > 0) in time. Solving for v
rather than « is also more straightforward in that v appears only in the order 1, whereas

« appears in the order 4.

However, this is not necessarily very realistic; or at least, it does not necessarily cor-
respond very well to the types of perturbation that are more often observed empirically.
Typically, we will have a perturbation of specified temporal frequency which evolves in
space. In the Orr-Sommerfeld equation, this correspondé to a known real v and a complex
a that we must calculate. Unfortunately, as mentioned above, this is made difficult by

the higher order a terms in the eigenvalue problem.

In order to obtain complex spatial eigenvalues for validation of numerical results, the
method used by Thomas [75] is applied, and we briefly summarise it here. This begins by
assuming a wavelike solution to the two-dimensional VTE, equation (2.18), resulting in an
Orr-Sommerfeld-like equation. In order to deal with the u, term, we use a streamfunction
¢, defined such that:

u; = —%:i;uz = % (2.34)
Thus the two-dimensional Poisson equation for wall-normal velocity can be recast as a

Poisson equation for the streamfunction:

Ad = w (2.35)

Introducing the wavelike solution assumption, as in equation (2.32) but without the de-

pendence on the spanwise dimension y, leaves us with the following paired eigenproblems.
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. 2 _ 2\~
—i@ +iaUpw — iaUgep = (_Q__R;éa_)_“_). (2.36)

(D*-ap = @ (2.37)

Thomas’ method finitely expands the variables w and  in terms of odd Chebyshev poly-

nomials, such that for a variable f we have:

N
f(x’zat) = ka(:U’t)TZk—l(n) (238)

k=1

This means that if we integrate the equations (2.36) and (2.37) twice with respect to our

transformed wall-normal variable 7, we obtain the equations:

~ —_ 2 N
—i71 + ialUp® — ialUpp = (KR—O;I)Q (2.39)
(K-aol)p = Iz, (2.40)

where I and K denote tridiagonal and pentadiagonal matrices acting on the vectors w
and é respectively. @ and é are vectors containing the Chebyshev coefficients of @ and ®.
Coupled with discrete representations of the boundary conditions on ¢ and the integral

condition on @, we can define a matrix equation of the form:

(Bo + By + o?By)(@,4)" =0 (2.41)

We can reduce the order of « in this equation by making the substitutions:

z=(@9¢)7, =0z (2.42)

Thus we get a matrix equation which is first order in a:

|
Q
&
I
1o

-B, -B B, 0
( P 2 (2.43)

I 0 0 I

18
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Here, 0 and I are appropriately sized zero and identity matrices. This is a generalised
eigenvalue problem for . Given a suitable initial guess, a cubically convergent method
can be used to determine the most unstable eigenvalue and thus the anticipated complex
wavenumber of the ‘Tollmien-Schlichting waves for the flow configuration specified by Upg

and Re and the perturbation specified by 7.

2.4 Prescribing the basic state

2.4.1 The Blasius boundary layer

As mentioned above, and represented mathematically in equations (2.6), the topic of in-
terest is the stability of established boundary layer solutions to small perturbations. Our
principal test for validation of the model is its ability to accurately capture Tollmien-
Schlichting waves, as discussed in section 2.3. In order to model this, the classical mecha-
nism of transition from laminar to turbulent flow, we used as a basis the Blasius boundary
layer, a suitable solution for a boundary layer on a semi-infinite flat plate aligned with the
free-stream flow. Since a semi-infinite plate has no natural length scale, it is reasonable to
assume that the boundary layer profile has no scale in the x and z directions, but rather
can be characterised by a single dimension &, obtained by a suitable combination of z
and z [57]. We take the boundary layer equations for the case where there is no external

pressure gradient:

ou, aUu,
E + % 0 (2.44)
ou, ou, o%’U,
U, E + U, % =y 552 (2.45)
We define our similarity variable ¢ as:
Uso
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And then recast our equations in terms of a nondimensalised streamfunction. Introduc-
ing a streamfunction means that the continuity condition is automatically satisfied. We
denote the nondimensional streamfunction as f(£). Introducing these dimensionless vari-
ables into the zero‘pressure gradient flat plate boundary layer equations, a nonlinear

ordinary differential equation is found:

fIII + %ffll — 0 (247)

Suitable boundary conditions on f can be found by considering the no-slip condition at the
wall and the fact that U, must tend to Uy in the limit &€ — oo. There exist many standard
techniques appropriate for the solution of the Blasius boundary layer equation. For the

research presented here, the solutions were found using code furnished by Thomas [75].

2.4.2 The turbulent boundary layer

In addition to Tollmien-Schlichting waves, we are also interested in the behaviour of
perturbations in a streaky turbulent boundary layer. Thus, we need to generate a suitable
turbulent mean profile. There are many well-known results that can be used for this
purpose; Prandtl, for instance, showed that the mean turbulent profile behaved linearly
in the viscous sublayer very close to the wall as long ago as 1910 [59]; for further details of
some of these results, see section 1.1. However, most of these results have only a limited
wall-normal range in which they are applicable, as is reflected in the conventional division
of the mean turbulent profile into the innermost viscous sublayer, the outer log-law layer
(where viscous effects are negligible) and the intermediate buffer region. Spalding [72]
formulated a new “law of the wall”, valid throughout the turbulent boundary layer, by
reversing the usual formulation of velocity profiles and specifying 2% in terms of U*.
(Note that the superscript + symbol is used to indicate wall units, which are discussed

in the introductory chapter and whose implementation here is explained below.)

(2.48)

+ _ 7+ —-xkB | kU™ +_ (&U?  (sU*)*  (sU*)*
zr=U"+e [e —-1-rUT - TR TR ,
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x and B constants that have been determined empirically (k = 0.41, B = 5.5). & is called

von Kdrmaéan’s constant.

Recall that we need not only the velocity profile, but also the profile of the first and
second wall-normal derivatives of velocity. These can also be obtained from Spalding’s

law-of-the-wall, by first differentiating to obtain:

+ +)2 +)3
dz = 14 ke "B enU+_1_nU+_(KU ) _(K'U )
dau+ 2! 3! (2.49)
d22:+ _ 2 _-kB enU+ -1- KU+ _ (K(/+)2 .
awe T "° 2t |’
and then applying the following identities to calculate the required derivatives:
dut 1
dzt ~  dzt/dU+
2.
PUT —dt AU (2.50)
dzt2  (dz*t/dU+)3

Note that Spalding’s law of the wall gives the velocity profile implicitly; thus we cannot
simply calculate the values of the profile at the wall-normal nodes of the discretisation. In-
stead, we calculate z*, dU* /dz* and d*U* /dz*? for many different values of U*; typically,
100K different values, where K is the number of nodes in the wall-normal discretisation.
Splines for the velocity and velocity derivatives are then constructed on the spatial points
that have been obtained from Spalding’s law, and these splines are evaluated at the nodes

in order to obtain the profiles.

In the outer part of the turbulent boundary layer, there is a gap between the experimen-
tally observed velocity profile and the log-law profile, such that the log-law under-predicts
the true velocity. Coles [18] observed that this gap was of a wake-like form. Thus, a more

accurate velocity profile can be obtained from the following expression:
Ut(z%) = U+(z+)+Ef z (2.51)
s K ot '
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Here UZ is the profile that we have obtained from Spalding’s formulation of the law-
of-the-wall (which matches the log-law profile in the outer part of the boundary layer).
IT is the Coles wake parameter, which expresses the magnitude of the deviation of the
velocity profile from the law-of-the-wall (for flat plate boundary layers, we have IT = 0.45).
f(z*/6%) is an S-shaped function which is 0 at the wall (2t = 0) and 1 at the boundary
layer edge (2t = é%). There are many forms that f has been assumed to take; in

generating our turbulent profile, we use:

2 3
()5 ()
The Coles terms are a simple additive correction to the calculated profile, and they are
defined explicitly. Therefore, they are included in a straightforward fashion, by addition
to the profile obtained from the evaluation of the Spalding spline at the nodes of the

spatial discretisation. The derivatives of the Coles terms are also, of course, added to the

velocity derivative profiles.

As mentioned earlier, the turbulent boundary layer profile is calculated in wall units;
in order to make it usable, we must convert from wall variables to the dimensionless vari-
ables used in the numerical formulation. The numerical formulation in the solver does not
use dimensional outer variables, but rather variables that have been non-dimensionalised
using the velocity and length scales used to define the Reynolds number, as per equa-
tion 2.2. The velocity scale has previously been specified as the freestream velocity, but
the length scale has heretofore been left arbitrary. For the sake of convenience, we here
take the non-dimensionalising length as the boundary layer displacement thickness ¢*, as
defined in equation (2.55). Thus, if we take a bar as denoting the dimensionless solver

variables, we can say that:

7t =zt Ut = UUL, (2.53)

We can then convert the profiles that we have calculated in wall variables into the solver
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variables as follows:

_ U+

U = —U':_g-
dU &+ dU+t
QU Ut
dz UL dz+2

How are we to obtain the length and velocity scales ** and U}, that will allow us to
convert between the wall and outer variables? §** is the displacement thickness in wall

units; the displacement thickness in outer units is defined as:

& = /0 ” (1 - %) dz (2.55)

If we suppose that there is a nominal boundary layer thickness § beyond which U(2) = U,

this can be rewritten as:

5 = /0 6(1 - 5[{:) dz (2.56)

The length and velocity scales used to convert from outer units to wall units are v/u, and
u, respectively, where u, is the friction velocity. Thus:
+ 2Us

= (2.57)

and:

st
v U
o = — [ (1-—=—)de*
o( U)Z

uT oo

o[ Lot . (2.58)
= Z 5 - U;_t—/o‘ U dz
Now, if we represent U* as:
U““(z‘“)—M+B+E 3 al 2—2 al . (2.59)
K K o+ ot ' '
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that is to say, as the log-law profile plus the Coles wake correction, we can perform the

integration in equation 2.58 analytically. This gives us:

st

&+ 2 3
- lnz* 211 zt 2zt
+ .4+ &2 2N 5 (% +
0(J dz = /0 (T+B+ p [3(6+) 2(()"*') })dl
11

X (2.60)
= 5+[ln5 1+B+—]

K
Thus:

Vo 1 (Iné* -1 11

P R ] N
§ [, Iné*—1 I '
= Ugg[Uw'—r ‘B‘;}

Now, recalling how we represented U* in equation 2.59, we can obtain an expression for

UF by setting z* = 6%, then substitute this into equation 2.61 and finally obtain:

*

1411
= )
kUG

Then, since the boundary layer displacement thickness is the length scale for dimensionless

(2.62)

solver variables, we can say that the boundary layer thickness itself (in dimensionless solver

variables) is given by:

b= —= (2.63)

And thus:

ot = 2 5+

(2.64)

1+1I
We can then substitute our §* value into equation (2.59) to calculate U},. Finally, we

note that:
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Ux0*
v

_ Uxdu, (2.65)

Uy V

= UL+

Thus, having found a value for U}, we can calculate the corresponding 6*t. Since we
know U}, we know the range of values of Ut we need to solve the Spalding law-of-the-wall
for in order to construct our splines. Since we know §*t, we are able to determine what
values of 2* we need to evaluate the splines at in order to obtain the nodal values of
the velocity and velocity derivative profiles, and we have constructed a satisfactory mean

turbulent boundary layer profile.

It is interesting to note that, in this formulation, the value of 4% is identical to the
friction Reynolds number, Re,. In the Re = 10* case, which is investigated extensively

in later chapters, this yields Re, =~ 2800.

2.5 Spanwise forcing

We hope to investigate the effects of spanwise forcing on the development of boundary
layer perturbations; in other words, we want to be able to specify a non-zero uy. at the
wall. u, is a secondary variable in our formulation; the only place that the value of u,
at the wall appears in our formulation is as 4, in our integral condition on w;, equation

2.30. This means it is very straightforward to include wall forcing in our formulation.

In order to confirm that the spanwise forcing has been been incorporated correctly, we
seek some appropriate analytic solution against which we can compare our numerical re-
sults. By making some simplifying assumptions, such analytic solutions can be found.
Firstly, we assume that there is no streamwise dependence, so all streamwise derivatives

are identically zero. Secondly, since the governing equations are linear, we can assume
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that all solution variables vary only in the same spanwise and temporal modes as the
spanwise excitation itself. In other words, we assume that all variables take the following

form:

fly,2,t) = f*(2)e"Pv (2.66)

For the sake of ease, and without loss of generality, we set 3 > 0. Having made these
simplifications, it is now possible to immediately solve the streamwise vorticity transport

equation, which simplifies to:

d*w? _ .
dz; ~(B* —iyRe)w: =0 (2.67)
If we then define:
v? = % — iyRe, (2.68)

We can write down an analytic solution.

wy = Ae™* (2.69)

A an arbitrary constant. A term in e“* also appears, but if we assume that Re(v) > 0,
we can immediately discard this term, since we have a zero boundary condition on all
variables infinitely far away from the wall. Then, using the simplified continuity equation
and the definition of streamwise vorticity, we can derive two ordinary differential equations

relating the components of velocity u; and u} to w}:

d2 2 * dw::
(825 —F ) T T
d? .

The homogeneous parts of both solutions are identical to within an arbitrary multiplicative

(2.70)

constant once we take into account the zero boundary condition infinitely far away from

the wall. To obtain the inhomogeneous part of the solution, we substitute in our solution
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for w? and follow the usual procedure for the solution of an ordinary differential equation.
By imposing the boundary condition at the wall 4,(y,t) = ﬂ;ei(ﬂy‘”") (4; the amplitude
of the spanwise oscillation), we can eliminate the arbitrary constants that arise as part
of the homogenous ‘solution, leaving A as the only arbitrary constant in the solutions.

The solutions that we obtain for the two components of velocity by this procedure are as

follows:
vA —vz —Bz ~x _—fz
up = m(e —eﬂ)+uyea
igA , (2.71)
u, = uz—ﬂz(e — e %)

In order to eliminate the arbitrary constant A, we plug these two solutions for u; and u;

into the definition of w}, which yields:

wr=Ae "+ (a; + (6= ")A) e P? (2.72)

We need the term in e 5% to vanish in order to maintain consistency between the solutions
for w; given in equations 2.69 and 2.72. Thus, we are able to determine A = (8 + v),
and we have the analytic solutions against which to compare our numerical results for

spanwise forcing:

vi
* Yy -vz -z ~x _—[z
= ——e —e +u,.e
u o= )+
. WPy _
u o= V___zza(e vi _ g=fz) (2.73)
u); = '&;(,8 + l/)e_"z

In the limit 8 — 0 i.e., as we approach the case where there is spanwise uniformity, these
solutions are identical to the standard Stokes oscillatory solutions. Note that these solu-
tions are independent of the basis flow. It would also be useful to have an analytic solution
for w;. However, if we examine the modified spanwise vorticity transport equation:

d*w;

dz2y — (8 - iyRe)w; = Re(Ugu} —ifUgu;), (2.74)
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we see that wy is not independent of the basis flow. Since we do not have a closed-form
analytic expression for the basis flow, but rather only a numerical one (see sections 2.4.1
and 2.4.2), we cannot obtain an analytic w, against which to compare our numerical

results.
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Chapter 3

Numerical methods

In this chapter, the various numerical techniques used to solve the governing equations
are described. Some general points such as the discretisation of the domain and the
transformation of the wall are discussed first. Following this, the details of the solvers for
the vorticity transport equations and the Poisson equation are given. Lastly, there is a

description of the complete algorithms for the solver.

3.1 General features

3.1.1 Domain discretisation

In the streamwise direction, we choose a uniform discretisation of J + 1 nodes such that
the Oth node lies on the inlet and the Jth node lies on the outlet. This uniform streamwise
discretisation, as we will see later, is crucial for the implementation of a direct solver for

the Poisson equation.

The discretisation of the wall-normal dimension is also uniform, albeit uniform in the
transformed variable 7, which is defined in equation 2.24. From the point of view of
domain discretisation, [ can be thought of as a parameter that controls the clustering

of node points in the wall-normal direction. Any discretisation of the transformed wall
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normal coordinate will give us a set of wall-normal stations, one for each node point,
which we can label {no, 71, ...7x}. Each of these stations in the transformed coordinate
corresponds to a station in the untransformed coordinate, giving us a related set of wall-
normal stations {zo, 21, ...2xk}. A uniform discretisation of the n-coordinate would give a

set of evenly-spaced node points such that An = 7 — nx—; is the same for every k.

Intuitively, we see that wall-normal stations of these node points in the untransformed
coordinate will be clustered near the wall; indeed, we can show that the separation be-
tween wall-normal stations tends towards infinity as we move away from the wall. Let us
consider two adjacent stations in the wall-normal discretisation, located at z; and 2,-; in
the untransformed coordinate or 7 and 7,_; in the transformed. 7, —nx—; = An, per our
uniform discretisation in the transformed variable; let us denote by Az, the corresponding
separation in the untransformed variable, i.e., Az, = 2, — 2x—;. By equation 2.24, we can

say that:

l l

An = — , 3.1

K l+z 1+2z ( )
and therefore, by rearranging suitably, we can show that:
—An(l [ _

Az, = ZO0F 20 201) (3.2)

l
Thus we see that the separation in the untransformed domain indeed tends to infinity as
we move infinitely far from the wall. The sign of Az is negative because the numbering
of the nodes is chosen for convenience when dealing with 7, one of the consequences of
which being that 2z is in fact closer to the wall than 2;_;. The parameter [ controls the
tightness of the node clustering near the wall: as [ gets smaller, the node points in 2 are

clustered closer to the wall.

45



3.1.2 Compact finite differences

The idea of compact finite differences is a development of the more familiar concept of
finite differences. A finite difference is a discretised approximation for a derivative. For
instance, the most common central finite difference approximation to the first derivative

takes the form:

f,(xk) — f(xk+1)2—hf($k—l) + O(hz), (33)

where the subscripts count nodes in a uniform domain discretisation, with h being the

separation of two adjacent nodes. It is relatively easy to confirm that, if we take a Taylor
series. expansion of the terms on the right-hand side of the equation above, we will get the
above expression to within an error term of order h2. We see that this finite difference
formulation gives us the approximate value of the derivative explicitly; we simply plug

the known nodal values in and get out our approximation.

The corresponding compact finite difference formulation yields a higher-order approxi-
mation to the derivatives without the need for a larger difference stencil i.e., involving

values from the same nodes:

)+ 1) + ) = MO TG oy gy

The price we pay for this is that the formulation becomes implicit, and we need to solve
a system of equations to obtain the derivatives. This is obviously of little use if we only
need to know the derivative at a particular point, but here, where we require the value of
the derivative across the entire solution domain, it becomes more useful. The fourth-order
centred schemes set out in Lele’s paper [47] were used to calculate the first and second
streamwise derivatives where required e.g. in the explicit terms of the vorticity transport
equation. Lele’s paper also discusses the advantages of central difference schemes in terms

of preserving phase in wavelike solutions.
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Compact finite differences were also implemented for the wall-normal derivatives; this

is discussed in more detail in section 3.2.2.

3.2 Vorticity transport equation solver

3.2.1 Time stepping scheme

The main task of solving the vorticity transport equation numerically is that of creating a
semi-implicit time-stepping scheme. Some different methods were attempted, including,
for instance, a Runge-Kutta scheme, but the only method described here is the one that

was used to produce the results presented later in the thesis.

We chose an iterative approach, where at each step some terms are treated implicitly
and some explicitly. By using explicit in this context, we mean only that the terms are
taken from the previous iteration; the overall scheme is still implicit. The first task was to
decide which terms are to be treated implicitly. This decision is made on the basis of both
physical and computational grounds. Firstly, what terms represent the most important
physical mechanisms of vorticity transport? Secondly, how difficult will it be, computa-

tionally, to invert the system of equations that result from treating some terms implicitly?

The first consideration is relatively straightforward; for a boundary layer flow, the most
important transport mechanism for vorticity is wall-normal diffusion. It is the terms rep-
resenting this in the equations 2.14 and 2.15 that we will want to treat implicitly. In
the three dimensional case, since we use spectral methods for the spanwise dimension, it

becomes trivially easy to also treat spanwise diffusion implicitly.
As mentioned above, the time stepping scheme used was iterative. For the first step,

the explicit terms are calculated using values from previous times, and we obtain a first

approximation to the solution variables at the new time. This first approximation is then
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used to update the explicit terms, and we iterate this procedure until convergence, up-
dating the explicit terms with each solution. This update includes solving the Poisson
equation to update u, using the new solution for vorticity. In practice, it was found that
apart from the ﬁrst‘ few time levels, the solution would converge after only a single itera-

tion.

Using a second-order backward difference for the time derivative, and denoting the im-
plicit terms as I and the explicit terms as E, we obtain the following equations to be

solved numerically (w stands in for whichever component of vorticity is being solved for):

3wn,0 0 4wn—l _ wn—2

- s = n—1 _ -2 2
2AT = SAL +2F E"™* 4+ 0(At?) (3.5)
3w™* ni 4wl —wn? nyi—1 2
SAL -1 = T+E + O(At?) (3.6)

The superscripts n and ¢ label the time level and number of iterations at the current
time level respectively. Equation 3.5 gives a simplified discretisation for the first step,
the solution of which we treat as the Oth iteration for the iterative corrector step (hence
the second superscript 0). The equations for both case are discretised about the time
level n, which is the current time level i.e. the time level for which we are attempting to
obtain a solution. The term 2E™~! — E™2 on the right-hand side of equation 3.5 serves
as an Adams-Bashforth projection of the explicit terms to time level n. Equation 3.6
show a simplified version of the discretisated equation which we solve iteratively until

convergence, defined by € < ¢, where ¢ is defined by:

_ Z \/(wn,i—l)Z — (wn,i)2
Sl

And e is a sufficiently small tolerance. The summations in the definition of € are over all

€ (3.7)

the nodes in the spatial discretisation.
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3.2.2 Spatial discretisation

Let us consider the semi-discretised formulation of a generalised VTE, after the transfor-
mation of the wall-normal coordinate.
3w® 1 (7)4 o’w  29? 6w) 4t — 2

= =+ === 4+ F At? 3.8
2At  Re \ 12 6772+l2 an 2At +E+0(AL), (38)

with F standing in for the explicit terms. An early version of the VTE solver had used
centred finite differences for the wall-normal derivatives (8w/dn and 8%w/8n?) to give a
tridiagonal system of equations for the implicit terms. This scheme was second-order ac-
curate. However, using compact finite differences, it is possible to concoct a scheme which
is foufth—order accurate but still tridiagonal, meaning that a higher order of accuracy can
be obtained for no additional computational effort. To see how this is set up, let us first

introduce the following notation:

4 3
(W) = n' Fw L 20w
2on2 12 0y

By matching coefficients in Taylor expansions about the kth wall-normal node, we can

(3.9)
derive the following tridiagonal relation between nodal values of A(w) and w:

k3 k3
To(k — 1) %1 T M ¥ g ke
_ 6An%k3

512

((k — Dwi—1 — kwi + (k + V)wk41) + O(An*) (3.10)

Note that we use wy to mean w evaluated at the kth wall-normal node and )¢ to mean
A(w) evaluated at the same location. The appearance of An? on the numerator of the
right-hand side, rather than the denominator, is due to the appearance of powers of 7 in
the wall-normal derivatives after performing the transformation. Using this relationship,
the equation (3.8) can be recast as a relationship between the values of vorticity at three
adjacent nodes and the values of the terms on the right-hand side of equation (3.8) at the

same three adjacent nodes:

49



3 K3 [ wp_, Wity 6AN% k>
3 (pe & -  Dwkr — 2k + (K +1
oA (“’k 10 (((c 18 T k1) 57 Re [k Dwe-r = 2k + (k4 Do
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In this and subsequent equations describing the discretisation scheme, we use = to indicate
that the equalities are not exact but instead second-order accurate in time and fourth-
order accurate in space. As mentioned above, this yields a tridiagonal system in the same
way as the more conventional centred finite difference approach, and thus, in conjunction
with a numerical representation of the integral condition on vorticity, can be solved using

a modification of the Thomas algorithm (for which see 3.2.4).

3.2.3 Calculation of the explicit terms

All the spatial derivative terms in the vorticity transport equations that are not to be
treated implicitly are included in the explicit terms E in equations (3.5) & (3.6). In this
section, we briefly discuss the treatment of the explicit terms. In the two dimensional

case, the explicit term is given by the following expression:

— i__azw?! - U?ﬂ!
Re 0x2 oz

In the linear three dimensional case, the explicit terms for the streamwise and spanwise

- U"u, (3.12)

vorticity transport equations are given, respectively, by the following equations:

1 0%w, Owy, ,0Uy
B = ko Ve Ve (3.13)
1 Pw Ow ou
E = — y _ v 1y )
Y Te 2 U—Bx +U By U'u, (3.14)

For the nonlinear version of the governing equations, as discussed in section 2.1.2, the

explicit terms are subject to some manipulation to obtain the most convenient form.
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Principally this is to do with reducing the number of different secondary variables that

appear.
1 Pw, Owy Ow, ou, , ou,
Erm = Re 02 U+ Ux)@; T Usgs T W + (U + wy + ————) w,(3.15)
1 azwy awy " awy
Ey;nl - E; 312 - (U + uz)—a’; — Uy (U + E) (316)

The explicit terms for the secondary perturbation formulation of the governing equations

(see section 2.1.3) are manipulated in a similar way. The expressions obtained are given

below.
1 820.221. 8w2z . ngz 805, BU2Z
E:z: = 5= - T o r z o, z__Qz'—'— 1
2 Ro oz~ Usegg  WUswn —Usim —un— = — Qe=+ (317)
ou 0Us, . 0, . 0Usg,
Qs (wzy + “éf) twr— = <1ﬂQSy - _85—) Uze — 108salzy + —5 = wae
1 82w2 8w2 8(4.)2 GQS BUS
E = —— Y — _y —_ J— 2 Y J— . Yy = Yy '1
2 Re 022 e ifUsywry = Us 0z Y2 0z twa oz + (318

0Qsy
oz

The streamwise derivatives of any component of w, whenever it appears in the explicit
terms, are calculated using a compact finite difference scheme, as described in the paper by
Lele [47]. Note that on the outflow boundary we apply the boundary condition §%w/dz? =
—a?w for the second streamwise derivatives, which is consistent with a sinusoidal variation
with wavenumber « in the z-direction. For the validation of the solvers ability to capture
Tollmien-Schlichting waves (see section 4.2), we set a to be the expected wavenumber.
For calculating streaks, as discussed in chapter 5, we set a = 0; that is to say, we set the

second streamwise derivatives to zero on the outlet.
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3.2.4 Numerical integration
Secondary variables

Of the expressions that appear in the explicit terms, the only ones that require some
sort of special treatment are those involving secondary variables (see equations 2.12 and
associated discussion). Recall that these are defined as integrals of the primary variables.
We must therefore find some suitable way of calculating integrally defined terms. Hav-
ing incorporated compact finite differences into the spatial discretisation of the governing
equations, it is sensible to see if there is a way to implement them in the integration of
the secondary variables. Thus, we now look at the use compact finite differences to obtain
the unknown nodal values of a variable (say f) from the known nodal values of its first

wall-normal derivative, rather than vice-versa.

Naively, the natural scheme to use is the standard centred compact finite differences
as described in Lele’s paper [47], but it can immediately be seen that this presents a
problem when working from the nodal derivatives to the nodal values of the variable it-
self. The fourth order classical Pade scheme, which is used elsewhere in the program to
calculate first derivatives, is of the following form for some arbitrary variable f defined

on a uniform discretisation of 7:

2 Uit = fuet) = Jiot qUia + ) + O() (3.19)

But we see that this formulation decouples the odd nodes from the even nodes, and since
we are trying to calculate the variables from their derivatives, it is therefore unworkable.
This fourth-order-accurate relationship between nodal values at three adjacent nodes is
unique, and so there is no work-around that will preserve the same structure of the
resulting system of difference equations. We must consider another way of dealing with
the problem. Let us consider a scheme that is centred about an imaginary node located

between nodes k£ and k + 1:
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fe— fesr = afi_y +bfp + cfiyy + dfi s + O(ADY) (3.20)
Note that equation 3.20 contains only four free coefficients (a, b, ¢, d), rather than the
five that might be expected for a fourth-order compact finite difference scheme. This is
because it can be immediately seen that the terms in f on the left-hand side must balance,
since only terms in f’ and higher derivatives appear on the right-hand side. Therefore
we can immediately specify the relationship between these two terms, eliminating one of
the coefficients. The remaining coefficients can be determined in the usual manner. After

some rearrangement, we obtain:

— 1 , , / ’
L A',j;kﬂ - 2_4(f’°—1 —13fy = 13fi1 + fiqa) + O(A71) (3.21)

By a similar process we can devise non-centred compact difference equations of a compa-

rable type for the boundary nodes:

hohi o Lo —19f+55- 1) +O(an)
An 24 )
—_ _ 1 .
fKA_7f7K1 = 2 Ofic+19fk 1 — 5fxa+ fic—a) + O(Ar)

Let us look at one instance of how this scheme is used in the solver; take, for example, the
calculation of the term Ou,/dz in the explicit terms of the streamwise vorticity transport
equation, c.f. equations 2.14 and 3.13. Assuming that the order of differentiation can be
changed, we can use the definition of the streamwise component of vorticity to obtain the

following equation, taking into account the wall-normal transformation:

du,\ | [(fw, O%u,
(%) =7 (E - azay) (3.23)

Here the prime denotes differentiation with respect to the transformed wall-normal coor-

dinate n. We have Dirichlet boundary conditions available for u, both at the wall and
infinitely far away from the wall, and it is therefore trivial to obtain Dirichlet boundary
conditions for du,/0z. Thus we have a value which can be used as f; in equation 3.22,

allowing us to calculate fi1 (that is, du,/0x at node k = 1). Then using equation 3.21,
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a straightforward marching procedure can be used to calculate all the required values of
du,/dz throughout the interior of the domain. Since we have a Dirichlet condition for
du,/Oz at the wall, the value of fx from equation 3.22 is already known in this instance.
If there is no such Dirichlet condition, as is the case when calculating w,, the second
equation of 3.22 can be used to calculate fx using fx_;, the final nodal value obtained

from the marching procedure.

Integral condition

This scheme can also be used to calculate the integral conditions on the components of
vorticity. We will discuss a generalised version of the integral conditions on w, and w, as

given in equation 2.30. We write this generalised condition as:

/ wdz = / gdz + constant, (3.24)
0 0

where the value of the integrand g is known at each node of the domain, and we denote its
value at node k by gr. We thus have two tasks: firstly, to calculate the integral f0°° gdz,
and, secondly, to find a discrete representation of the constraint on w. As we will see,
solving the first problem will take us a long way towards solving the second. We begin

by defining:

lg(m)
G'(n) = 7 (3.25)
We use the prime to mean the same thing as in the previous section: differentiation
with respect to the transformed wall-normal coordinate 7. Assuming that g is such that

g/n* — 0 as n — 0, we can say that:

G(n) =

g(2)dz, (3.26)



with 7 and Z dummy variables. Thus we see that G(1) gives us the integral condition on
vorticity, once we have taken into account the additive constant that appears in equation

3.24.

Now, if we define G} as G'(n) evaluated at the wall-normal node k, and Gy in a sim-
ilar fashion, we can apply the scheme given by equations 3.21 and 3.22 to calculate G,
which is equal to f° gdz. We're not interested in the values of G in the interior of the

domain, so we construct the following expression:

Gk = (GK - GK_l) + (G}(_l - GK-—Q) + -4 (Gl - Gg) (3.27)

Gy is, of course, identically zero. It should be apparent that, by rearranging equations

3.21 and 3.22, we can express this as:

A
Gk = ‘ézn(GlK +19G%_; = 5G_3 + G _s)

AT’ ! ! An 7
+ ﬁ(—GK +13Gx_1 + 183G _s — Gx_3) + -+ + 52(6*3 — 5G5 + 19G] + 9G;) (3.28)

As mentioned above, Gj, is obtained by evaluating equation 3.25 at node k. Thus we

write:

!
=2 (3.29)
Tk

By collecting terms for each value of &, we can therefore rewrite equation 3.28 as:

K
GK = degk, (330)
k=1
where:
o= -4 (3.31)
" k2Aq ‘

except for the following special cases near the boundaries of the domain.
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_ 3u . _ 5l . da = 251
d 24A7° da 2447’ 3 = 216An (3.32)

dg = WKIQE,; dx_1= m'?ll—f)zz;,; dg—2 = m; dx_3 = 2—4(,(%273—,,
We mentioned earlier that calculating the integral f0°° gdz would help us obtain a discreti-
sation of the integral condition on w, and we can show now why that is. It is hopefully
apparent that the coefficients di, which define a relationship between the nodal values of
g and its integral across the domain, can just as easily be applied to w. Thus we can write
down our discrete representation of the integral condition:

K

Z drwr = Gk + constant, (3.33)
k=1

and we have obtained a fourth-order accurate representation of the integral condition on

w, using compact finite differences.

Now, equation 3.11 relates the values of the solution variables at any interior node k

to the two adjacent nodes in the wall normal direction, and we thus rewrite it as:

Qpwi—1 + brwi + Crwi+1 = Pk, (3.34)

where p contains all the information we already know: the explicit terms (representing
convection, vortex stretching and streamwise diffusion) and the terms of the discretised
time derivative from previous timesteps. We therefore have a system of K — 1 equations
for K unknowns. These unknowns are the values of w at the nodes 1 < k < K the
value of w at node 0 is already known from our Dirichlet condition which specifies that

all perturbation variables must go to zero infinitely far away from the wall.

Closure is achieved using a discrete representation of the integral condition on vortic-
ity, as described above. There is one further subtlety to bear in mind, however. Since we
are calculating the vorticity values at a new time step, the integral constraint must obvi-

ously apply at this timestep. However, the data used to calculate the integrand g from
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equation 3.24 is taken from earlier timesteps. To resolve this problem, we use a similar

procedure to the one used with the explicit terms, as expressed in equations 3.5 and 3.6.

Let us introduce the notation ¢ to represent the entire right-hand side of equation 3.33.

For the first time thé VTEs are solved at a new time level n, we use an Adams-Bashforth

projection from stored values of ¢ to approximate (*; for subsequent iterations, we calcu-

late ¢ afresh using data from the most recent solution at the current time level.

We have thus managed to close the system of equations. To solve this, we use a modified

Thomas algorithm, as mentioned above. Let us look at the system of discretised equations

that arises when solving either vorticity transport equation along a particular wall-normal

line in matrix form:

dy
by

a2

do
(5]

by

C2

Qg

by,

Ck

aK-1

b1

dx

CK—

1

wq

w2

Wk

WK-1

WK

£
P2

Pk

L PK-1

(3.35)

The solution technique here is to use each equation representing a discretisation of the

vorticity transport equation to eliminate a variable from the subsequent equation and

from the equation representing the integral condition. We begin by defining:

22}

151

5}

Then, for all 2 < k < K — 1, we define:

57

by

o1



A

pe = by —cro1
Hik-1
Ok—1
0 = dp—Cr-1——
Hk—1
ay
Vg = pg— Vg-1—
Hi—1
Ok-1
bk = Llg—1— Vg1
k-1

This leaves us with a system of two equations:

dk-1wK-1+ dxwk = Ltk _1

UK -1WK-1 + CK-1WK = VK -1

It is trivial to solve this for wg; back-substitution can then be used to obtain all the values
of w along this wall-normal line. Repeating this process for all streamwise stations and
all spanwise wavenumbers (where applicable) allows us to obtain a complete solution to

the vorticity transport equation.

3.3 Poisson equation solver

The basic approach taken here to solve the Poisson equation is to reduce the partial differ-
ential equation to several ordinary differential equations which are then solved indepen-
dently. This is done by applying compact finite differences to the streamwise derivatives,
and then applying a sine transformation which, in conjunction with the use of trigono-
metric identities, allows each streamwise wave number to be dealt with independently.

We use the following fourth order compact finite difference relationship:

Uzij—1 — 2Uyj + Ugjp - _}__6_2_(
Azx? 12 9z2

where j is a counter for the streamwise nodes of the domain discretisation. Once again,

Uyj—1 + 10u,; + uz;j+1) + O(A$4), (3.36)

as in section 3.2.2, we use ~ to indicate that the equalities are approximate to within

58



fourth-order accuracy in space (time, of course, does not appear in the Poisson equa-
tions). Substituting this into the 3D Poisson equation 2.16, we obtain a semi-discretised
equation which relates the values of w and its wall-normal and spanwise derivatives at

any streamwise station to their values at neighbouring stations:

Ugj—1 — 2Uyj + Upigr | 1 iz_
Azx? 12 \ 822

In the 2D Poisson equation, the term 3%, representing the second spanwise derivative,

- 52) (Uzij-1 + 10Uz; + ugjin1) = f; (3.37)

does not appear. The term f; on the right hand side contains an average of the terms

from the right-hand side of the 2D or 3D Poisson equations 2.19 or 2.16:

_ 71 (Bwyia L Owyy | Owyin

fizp = ‘1—2'( E +10 E + p (3.38)
1 Owy 5. Owy 1. Ow,

fiap = - [zﬂwx B L—l + 5 [zﬁwz P L + 17 [zﬁwx 5 |0 (3.39)

fi2p and fj3p are very similar; the only difference is the appearance of spanwise deriva-
tives of w, (i.e., ifw,;) in the three-dimensional case. As mentioned above, we intend to
decouple the streamwise locations from one another by applying a sine transformation for
the streamwise variation of the wall-normal velocity w. However, if a sine transform is
to be performed on a variable, it is necessary that its value goes to zero at the limits of
its domain; in this case, at the nodes j = 0 (the inlet) and j = J (the outlet). The inlet
boundary condition already specifies that u,o = 0, but the outlet boundary condition
does not. In order to use the sine transformation we therefore introduce a new variable
U, equal to u, everywhere except at the streamwise node J. Thus, the equation above

holds for each node 1 < j < J — 2, and at the node j = J — 1, we have instead:

Uy g2 — 2Uzgy 1 ( d?

5 \32 -

2 ~ - —
AIL'2 12 ) (uz;J—Z + 10uz;J—1) -

12 [mx BxL_2+6 [ﬂ“’z FE]H—“A? 12 (32,2 F7 ) uzs (3:40)
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This is a statement of the 3D equation; to get the equivalent statement for the 2D equation
simply set 8 = 0. We now define a function f, equal to f at nodes 1 < j < J —2, and
equal to the right-hand side of equation 3.40 at node j = J — 1. It can be seen that,
in order to calculate ‘the right-hand side of the difference equation at this node, we need
to know u,.;; however, we are not given a Dirichlet condition for the velocity at this
location. Instead, we are given a condition relating the velocity to its second streamwise
derivative, as described in section 2.2.2. Substituting this boundary condition into the

Poisson equation, we are left with:

(di_; —a® - ﬂ"’) Uyg = [iﬂwz - %J } (3.41)
The 3? and w, terms are dropped in the 2D case. We can apply compact finite differences
in the same manner as in the vorticity transport equations to deal with the wall-normal
derivative. We can then solve using the Thomas alorithm as before, since we have simple
Dirichlet conditions on u, both at the wall and at infinity. Using these calculated values

for u,.;, f 7—1 can be obtained.
At this point the sine transformation alluded to earlier can be applied:

J .
Gg= Y az;msin(ﬂnj—”) (3.42)

m=0
Note that, since f is only specified for the nodes 1 < j < J — 1, we can set it to zero
at the inlet and outlet, and therefore can apply the same sine transformation. Note also
that this sine transformation is only applicable if our node spacing is uniform throughout

the domain, as mentioned in section 3.1.1. Making these substitutions, we obtain:

2 J - .
(AL:BZ + %2 (% - ﬂ2)> Z '&z;m(SiIl (——(J })mﬂ’) + sin (——(J +})mﬂ) +
m=0
-2 5 (d? 2 I [jmn L. (jmn
7 + slaz Ié) )) 0uz;msm (T) = Z fmsin <——J—) (3.43)
m=0
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Using suitable trigonometric identities, the offset sine terms (i.e., those for which (j & 1)
appear in the argument) can be eliminated and the entire equation can be recast in terms
of sine functions of one particular wave number. Because of the linear independence
of sine functions of different, wave numbers, the equation holds for each wave number
individually. If we define a variable o,, by:

mm

= cos, 44
Om = COS— (3.44)

then we can write the following ordinary differential equation for each wavenumber m:

[&(om -1+ (—"l"—;—& (di; - ﬁ2)] Uzim = fm (3.45)
Thus, our first step is to apply the sine transformation in equation (3.42) to the right-
hand side of our equation in the space domain, then to solve the frequency domain ODE,
equation (3.43). There are natural Dirichlet conditions on the variable u,; the no-slip and
no-penetration condition means that the velocity at the wall is fully specified, and because
we are dealing with perturbation variables, the velocity tends to zero as the wall-normal
distance tends to infinity. Since the velocity at these wall-normal stations is specified at
all streamwise locations, it is trivial to perform the same sine transformation and obtain
Dirichlet conditions at both ends of the wall-normal domain for all streamwise wave num-

bers.

The wall-normal differential operator that appears is simply d?/dz2, and therefore compact
finite differences can be used as before. This allows us, after performing the wall-normal
transformation and applying the discretisation discussed in section 3.2.2, to recast the
sine-transformed Poisson equation as follows. Note that the wall-normal node counter
has been rendered as superscript in this instance to prevent excessive piling-up of sub-

scripts.

61



k3 ( om —1 Om + 5 [AU2(k - 1) _ 62 ]) ~k—1

5Ax%(k —1)3 6 2 12(k — 1)3 zm
2 2 2An%kt ok
+ (E(Um - 1) — (O'm + 5) [? + 52 ]) Uym
E om — 1 +am+5 An2(k+1)“ 32 et
5Ax?(k +1)3 6 2 12(k + 1)3 zm

_w KB fh+t
=Int 15 ((k —1F e+ 1)8) (346)

Like the discretised version of equation (3.41), this gives us a system of tridiagonal equa-
tions (one for each streamwise wavenumber) which can be solved with the Thomas algo-

rithm.

3.4 Complete program

When writing the complete program using the techniques described above, the first thing
to note is that a great deal can be precomputed. For instance, the coefficients associated
with the discretisations of the vorticity transport equation and Poisson equation can be
calculated before the main run of the program, as well as the variables y; and é; from

section 3.2.4 and their analogues from the solution of the Poisson equation.

Secondly, given that we are using a time discretisation that requires information from
two previous time levels, we need to consider what we will use as initial conditions. It
was thought that the most straightforward way to deal with this difficulty would be to
start from a solution that is identically zero everywhere, which clearly satisfies the gov-
erning equations. We will then introduce some non-zero perturbation in ¢ > 0 by some
suitable means, such as suction/blowing at the wall or body forcing. Note that formally
this scheme is not well-posed, since in setting the solution to zero for the times ¢ = 0 and
t = —At at the first time step the statement of the problem becomes over-specified; this

formal problem could have been overcome by bootstrapping the first step with a suitable
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Runge-Kutta scheme, but in practice presented no real difficulties.

We now give a basic outline of the structure of the solver. Statements that appear in

italics are not relevant to the 2D solver.

Initialise precomputable parameters and solution variables
BEGIN TIME LOOP

Increment time

Start of first iteration

Solve streamwise vorticity transport equation using Adams-Bashforth projections for explicit

terms and integral condition

Solve spanwise vorticity transport equation using Adams-Bashforth projections for explicit

terms and integral condition
Solve Poisson equation for wall-normal velocity
BEGIN ITERATION LOOP

Start of subsequent iterations

Solve streamwise vorticity transport equation using most recent values for explicit terms

and integral condition

Solve spanwise vorticity transport equation using most recent values for explicit terms

and integral condition
Solve Poisson equation for wall-normal velocity
Check for convergence; if converged, exit iteration loop

END ITERATION LOOP
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Update stored variables

If required, output data

END TIME LOOP
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Chapter 4

Solver validation

4.1 Order of accuracy

In order to verify that the numerical method is as accurate as expected, we perform grid
refinement studies for simplified cases for which exact analytic solution exist. In order to
do this, the Poisson solver and VTE solver were decoupled. This gives us a pair of model
equations to solve which are representative of the real governing equations discussed in

chapter 2. These equations are:

af _ Af
% = Rt P (4.1)
Ag = U (4.2)

Here the variables ® and ¥ are chosen such that they specify the desired solutions to the

model equations.

For the decoupled VTE, we used ® = (%if ~ 1)e~**Ysinz, corresponding to a solution
f = e~(**sinz, with a spanwise wavenumber 3 = 0.15 and Reynolds number Re = 1000.
The spatial domain used was semi-infinite in the z-direction, with the transformation

described in section 2.2.1 applied. In the z-direction the limits were 0 < z < 5. The
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problem was initiated at time ¢t = 0, with the initial condition on f being the exact solu-
tion at that time. The problem was allowed to develop until ¢t = 0.1. To verify that our
numerical scheme is fourth-order accurate in space, we performed a series of simulations
with a fixed timestep At = 0.005. Each successive simulation was performed on a more
fine-grained grid; the streamwise and spanwise dimensions were refined simultaneously
to avoid a situation wherein the errors associated with the discretisation in one spatial
dimension swamp the reduction of errors associated with the refinement of the discretisa-
tion in the other. The results of this spatial grid refinement study are presented in figure
4.1. The errors are calculated using the formula:

Error = —&L_f’l (4.3)

> il

Where the index i encompasses all the nodes of the discretisation, f; is the value of the
numerical solution at the node i and f; is the evaluation of the analytic solution at the
spatial location of the node i. We see that there is the expected fourth-order reduction
in error as the grid is refined. A similar procedure was followed to ensure that the time-
stepping scheme preserved second-order accuracy: we use a spatial grid with fixed values
for the node separation Az, An = 0.125 and perform a series of calculations with pro-
gressively finer timesteps to verify the temporal accuracy. The simulation was stopped
at t = 0.1 in all cases, and the error is defined as before. The results, which show the

expected second-order reduction in error, are depicted in figure 4.2.

To test the accuracy of the decoupled Poisson solver, we used ¥ = —(8? — 2)e~?sinz in
equation 4.2, corresponding to a solution g = ze™?*sinz. This solution was chosen because
it is broadly similar to the expected forms of solution in the real problem, with the solution
zero-valued both at the wall and infinitely far from the wall. For this problem, a slightly
larger domain was used (0 < z < 10). Once again, the discretisations of both spatial
dimensions were refined simultaneously. The results of the refinement are shown in figure

4.3, which shows the expected fourth-order reduction in error.
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Figure 4.1: Dependence of errors on spatial grid size in decoupled VTE solver

4.2 Tollmien-Schlichting waves

Having shown that our numerical technique has the expected order of accuracy, we now
seek a benchmark problem for the coupled solvers. We will test the solver’s ability to pre-
dict spatially-developing Tollmien-Schlichting waves in a Blasius boundary layer. Using a
form of the Orr-Sommerfeld equations, it is possible to predict the complex wavenumber
of a Tollmien-Schlichting wave excited by a given frequency of perturbation, as discussed
in section 2.3. This gives us a criterion by which to judge how well our solver captures

this phenomenon.

Figure 4.4 shows an example of the type of solution we obtain; it has the expected form,
of a spatially quasi-periodic wave with maxima at the wall and in a critical layer some
distance from the wall. Some quantitative confirmation of its accuracy is also required,

however; the problem is thus one of verifying that our numerical data matches the ex-
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Figure 4.2: Dependence of errors on size of timestep in decoupled VTE solver

pected Tollmien-Schlichting wave. Let us assume that the numerical results, at least in
some region sufficiently far downstream from the location where the temporal perturba-
tion is introduced, have the form of a Tollmien-Schlichting wave. This means that, along
any particular streamwise line at constant z, the computed values of any of the solution

variables should approximate a function of the following form.

f(z) = A9

Where A is an amplitude, ¢ a phase and a a complex wavenumber. A and ¢ are not of

interest. Let us examine the imaginary component of f, f;.

filz) = Ae"“"(”"”)sin[ar(a:—-qﬁ)]

= Ae™*sin[a,(z — ¢)] (4.4)

With A" = Ae™?. We wish to determine the values o; and .. Calculating a value for
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Figure 4.3: Dependence of errors on spatial grid size in decoupled Poisson solver

o, is in fact relatively straightforward: we simply hunt for extrema and zeroes in our
data series. For finite values of x, the only zeroes that occur in f; are those for which
sin[a,(z—¢)] = 0. (Note that we have assumed that a; is finite.) Similarly, the extrema of
fi occur only where tan[a,(z — ¢)] = a,/a;. The upshot of this is that if we hunt through
our data for zeroes and extrema, we can use their locations to calculate «,. Zeroes of
the function sin(¢) occur at intervals of 7 in ¢, and the function tan(t) is w-periodic in ¢.

Thus, if we locate two successive zeroes at the locations z,, and z,, we know that:

Ol,-(.’l:m - (b) +m o= ar(mn - ¢)

o = T (4.5)

Ip —ITm
This also holds if z,, and z, represent the locations of two successive extrema. Our pro-
cedure, then, is to find the average separation of successive zeroes and successive extrema

in the data set, and use this to calculate an average half-period; that is, the average value
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of z, — z,, for all successive pairs (Z,,,) of zeroes or extrema. (This is in fact more
accurately described as a quasi-half-period, since our function is not truly periodic but
also exponentially growing or decaying.) Once we have obtained this average, we use it

in place of z,, — T,, in equation 4.5 to obtain our value of a,.

The calculation of o; is slightly less straightforward. If we introduce an offset variable

£ =z — zo, we can recast equation (4.4) as:

fi(z) = A"e *Esinfa, (€ + zo — )] (4.6)

Where A” = A'e%_ The phase in the trigonometric term is still problematic. However,
let us assume that we choose our offset such that f;(£§) =0 at £ = 0. It must then be the
case, as described above, that sin[a,(zo — ¢)] = 0. If this is the case, then we must have
zg — ¢ = mm, m € Z. Thus, our phase term can be ignored. By integrating our function

over successive half-periods, it is possible to show that:
Dr/ar
—ar [ St T (€

n
U o o F(E)dE

Thus, by calculating a numerical approximation to the integrals in the above expression,

o; =

(4.7)

and using the value of ¢, that has been calculated using the method described above, an
approximate value for o; can be determined. This method allows us to calculate both
parts of the complex wavenumber of the spatially developing wave described by our data
set. We can compare this to the expected wavenumber from the Orr-Sommerfeld solver
described in section 2.3 in order to test the validity of our results. Some of these results
are tabulated in tables 4.2 and 4.2; recall that ~y is the real-valued frequecy of the pertur-

bation used to excite the Tollmien-Schlichting waves.

We see that the values of a; and, particularly, a, calculated from our numerical data
agree quite well with the values predicted by the Orr-Sommerfeld solver. A particularly

satisfactory result is that the sign of «; is preserved in all instances; in other words, our
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Re |« Expected a, | Computed a, | Percentage error
10* | 0.03 | 0.11691 0.11714 0.197%
10° | 0.05 | 0.18104 0.18009 —0.525%
0.04 | 0.15369 0.15377 0.052%
0.03 | 0.12329 0.12352 0.187%
0.02 | 0.088171 0.088496 0.369%
0.015 | 0.068428 0.068094 —0.488%
0.01 | 0.048404 0.048332 —0.149%
0.005 | 0.023258 0.023271 0.056%
10° | 0.005 | 0.024537 0.024529 —0.033%
0.004 | 0.019661 0.019565 —0.488%
0.003 | 0.014732 0.014784 0.353%
0.002 | 9.768 x 1073 | 9.8277 x 1073 | 0.61%

Table 4.1: Comparison between real part of expected and calculated Tollmien-Schlichting

wavenumbers for 8 = 0.15

71



Re | v Expected o; Computed «; Percentage error
104 | 0.03 | —8.8445 x 1073 | —8.7833 x 1073 | —0.692%
10° | 0.05 | 8.4486 x 10~% | 8.4711 x 1073 | 0.266%
0.04 |5.94x1078 6.2396 x 1073 | 5.044%
0.03 |3.613x 1073 3.4886 x 1073 | —3.443%
0.02 |1.4857x 10~ |1.4782x10"® | —0.505%
0.015 | 1.0289 x 103 | 1.0316 x 1073 | 0.262%
0.01 | —1.096 x 1075 | —2.9031 x 107¢ | —73.512%
0.005 | —2.3011 x 1073 | —2.2949 x 10~% | —0.269%
10° | 0.005 | 4.1833 x 10~* [ 4.0853 x 10~* | —2.343%
0.004 | 2.7934 x 107* | 3.1117 x 10~* | 11.395%
0.003 | 1.4438 x 10™* | 1.4873 x 10~* | 3.013%
0.002 | 7.317 x 10~° 7.2484 x 10~° | ~0.938%

Table 4.2: Comparison between imaginary part of expected and calculated Tollmien-Schlichting

wavenumbers for § = 0.15
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solver always correctly predicts the presence of spatial growth or decay.

Figure 4.4: Example of a Tollmien-Schlichting solution obtained using our compact finite dif-
ference solver. Solution parameters are Re = 105,7 = 0.05; plotted variable is Re(uy), the real

part of spanwise vorticity.

The numerical values of a* do not match the expected values as well as the numerical
values of ¢, but they are still in most cases quite satisfactory. One factor that explains
the bigger discrepancies for a* is, simply, that the absolute values of a* are significantly
smaller than those of ar for almost every case. Thus, even a very small absolute error in
41 can cause quite a large relative error. Indeed, the case with Re = 105 and 7 = 0.01,
which has the largest percentage error in a*, has an absolute error in a* which is among
the smallest of any of the cases, and only appears relatively large because the expected
value of ofi is roughly an order of magnitude smaller than in any other case. A more
careful examination of the data obtained from simulations performed with these parame-

ters shows that the few wavelengths of the resultant Tollmien-Schlichting wave which lie
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closest to the outlet boundary exhibit a slightly greater growth than those parts of the
wavetrain closer to the interior of the domain. This suggests that the outflow boundary
affects the spatial development of the waves subtly, such that the effect is only significant
where the expected magnitude of ai is very small. Recalculating the complex wavenumber
without these last few wavelengths of data reduces the discrepancy between the expected
analytic value and the numerical value by almost a half, although this still leaves us with
a quite significant difference. Performing the simulations again with a finer resolution in
the streamwise direction showed no significant effect on the error in a;, which suggests

that the waves are satisfactorily resolved.

We can therefore say that our complete solver satisfactorily captures Tollmien-Schlichting
waves, and is therefore capable of dealing with more realistic problems, as well as the

simplified model solutions used to verify the order of accuracy in the previous section.

4.3 Spanwise forcing

We elected to investigate the case where the oscillating wall included a stationary section in
the region nearest the inlet and an oscillating panel further downstream. This means there
will need to be at least some part of the domain where there is streamwise variation, which
will introduce three-dimensional effects that may significantly influence the numerical
solution. For this reason it was decided that it would be productive to perform some
preliminary numerical calculations using a simplified version of the numerical formulation
with no streamwise development. These calculations, in common with those from the fully
three-dimensional solver, used zero initial conditions and a ramping up of the excitation.

Recall that the analytic solution for w, takes the (complex-valued) form:

we(y, 2,t) = ty(B + v)exp(i(By — vt) — vz) (4.8)

Where v is defined by v? = 3% — iyRe, Re(v) > 0 and Gy is the amplitude of the wall

oscillation. Some results from these calculations are presented below in figure 4.5.
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Figure 4.5: Comparison of 2D model solutions for spanwise excitation with analytic solutions.

Solution parameters: Re = 10000,

It is seen that the numerical solution very quickly tends toward the analytic‘solution.
Even by a quarter of the way through the first cycle of the spanwise oscillation, the nu-
merical solution is already qualitatively very similar to the analytic solution, and by the
end of the first full cycle the solutions are almost indistinguishable. Repeating the simu-
lations with frequencies of an order of magnitude higher or lower gave similar agreement.
This gives us reason to believe that the use of zero initial conditions the three-dimensional

solver should not introduce numerical instability due to explosively-growing transients or

similar problems.

Having obtained satisfactory results with a simplified two-dimensional solver, we now

consider how to deal with the

1
065 ar

v =0.01, 8 =0. T is the period of the spanwise oscillation.

spanwise excitation in the three-dimensional solver, as
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mentioned above. The streamwise variation of 4, (recall that this is the amplitude of
the wall oscillation, as defined in section 2.5) goes from zero at the inlet, to some con-
stant non-zero value downstream. The region of transition should be sufficiently smooth
to avoid numerical difficulties. It was decided that the simplest solution was to use a
hyperbolic tangent function, given below.

2, (z) = ﬁ;[tanh(S(:I;— L))+ 1] (49)

Here S is a factor controlling the steepness of the profile in the step (the larger the value

of S, the steeper the slope), and L; is the location about which the step is centred. A
caricature of the solution domain is shown in figure 4.6; this depicts the plate on which
the boundary layer is developing. Note that the spanwise extent of the domain is purely
notional, since we are dealing with a single spanwise wavenumber rather than a bounded
spanwise space; the plate is simply drawn this way for ease of visualisation. A sketch of

the 4,(z) obtained from equation 4.9 is included in this caricature.

In figure 4.7, we see that the wall-normal profiles of Re(w,), the real part of the stream-
wise vorticity, from the three-dimensional solver also agree well with the analytic solu-
tions, and in fact are almost indistinguishable from the two-dimensional solutions. Note
that the data were taken from the outlet boundary. This sampling location was chosen
because it was expected that the data furthest downstream would be least influenced
by the three-dimensional effects. Tests showed that the solution values on the outflow
were relatively insensitive to changes in the value of « in the outflow boundary condi-
tion (as expressed in equation 2.29). Note that in these cases it was not necessary to
take complex-valued variables, since we used 8 = 0, and under these circumstances the
real and imaginary components decouple. However, since we had developed a solver that
utilised complex variables, we saw no reason not to use the full complex wall oscillation

defined by 4, = ﬁ;e”', which excited a complex response.

In order to further investigate three-dimensional effects, a selection of simulations were
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Figure 4.6: Sketch of the solution domain; the form of the streamwise variation of 4, the
amplitude of the spanwise wall oscillation, is shown to the right of the flat plate which creates

the boundary layer basis flow.
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Figure 4.7: Comparison of 3D model solutions for spanwise excitation with analytic solutions.

Solution parameters: Re = 10000, v = 0.01, 8 = 0. T is the period of the spanwise oscillation.
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performed in which Re was varied but the product yRe kept constant. Keeping the
same value of yRe meant that the two-dimensional analytic solutions were identical, since
both vy and Re only appear in the analytic solution through the parameter v, and in
the definition of v (given in section 2.5 and reiterated above), they appear multiplied
together. Some results of this series of simulations are presented in figure 4.8, which
presents values of Re(w,) along the wall. The streamwise location along the wall is
expressed as £ — L,: in other words, the distance downstream of the step location. We see
that, for larger Reynolds numbers, the three-dimensional effects due to the step extend
further downstream, but that by the outflow boundary Re(w,) at the wall has settled
down to a value near the two-dimensional solution. Looking again at 4.7, though, we
can see that this discrepancy in the wall values is small compared to the variation of the

profiles in the wall-normal dimension.
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Figure 4.8: Re(w;) at the wall for different Reynolds numbers, compared to value of Re(w;)
at the wall for 2D analytic solution. yRe = 100. Data taken from the time after two complete

oscillations have elapsed.
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Chapter 5

Turbulent streaks

Before investigating the influence of spanwise wall forcing on streak development, we need
to perform some simulations of the streaks alone without any wall motion to determine if
our reduced-order model of streaks, with our implementation of compact finite differences,
gives realistic results. The problem we now face is how to generate streaks in a practical
and physically meaningful way. The approach we decided to implement was based on
that of Fasel, who used a spatially localised force to generate Klebanoff modes in laminar
boundary layers [27]; these are in some respects quite similar to streaks in turbulent
boundary layers. Fasel used a disturbance which simulated a body force that could be
practically implemented in an experiment; since he employed, as we do, a velocity-vorticity
formulation of the governing equations, this means the force appears as a cross-product
i.e., as the spatial derivatives of a force rather than the force itself. Fasel’s method has been
adapted by Lockerby et al and Carpenter et al [11,48] to generate streaks in a turbulent
boundary layer, and we will employ the same approach. This involves introducing a

forcing of the following form:

F = A(t)exp[—k.(z — z)* — k(2 — 25)?] (5.1)

This is in the form of a Gaussian, with A(t) the amplitude as a function of time, z;

and z; the spatial coordinates around which the forcing is centred, and k, and k, pa-
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rameters which describe how quickly the Gaussian profiles decay in the streamwise and
wall-normal directions respectively. The most significant difference between this and the
forcing strategy of Fasel is that this term acts as a vorticity source which does not cor-
respond to a physically realisable forcing. F is introduced as an additional term in the
secondary perturbation form of the streamwise VTE, equation 2.22, which is dealt with
numerically by simply adding it to the explicit terms of equation 3.18. We also need to
remember that, although we are only imposing a forcing term on the streamwise vorticity,
due to the solendoidality of w, this entails an induced wall-normal vorticity as well. Brief
consideration of the solenoidality condition reveals that the wall-normal vorticity is of the
form of two stripes of positive and negative vorticity between the point of application of

F and the wall.

Unlike their laminar counterparts, turbulent wall-bounded flows are linearly stable: there
is no equivalent to the growing Tollmien-Schlichting waves that embody the classical route
to transition [64]. Of course, if there were any such linear instabilities, we would already
have an answer to how turbulence sustains itself and there would be no need to investigate
streaks. Despite this lack of linear instability, it is still possible for a perturbation to a
turbulent boundary layer to grow significantly in a short period of time; it must, however,
eventually decay as ¢ — oo. The mechanisms by which this happens are explained in some
detail by Henningson et al. and by Trefethen et al. [29,76], but we will briefly discuss them
here. Let us obtain a linearised perturbation form of the momentum transport equations,
derived from equation 2.1 in the same way equation 2.7 is derived from equation 2.3.
Ou Au

é_t_ + (UB . V)u =-Vp+ —}g (5.2)

We can recast this using operator notation:

ou _
ot

The linear stability of the turbulent boundary layer means that all the eigenvalues of the

L(u) (5.3)
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operator L have negative real parts. However, L in this problem is non-normal, meaning
that its eigenfunctions do not form an orthogonal set. The upshot of this is that, although
each individual mode decays, their superposition may not necessarily do so. In cases, such
as the generation of streaks, where initial growth is observed, we can divide the overall
history of the perturbation into a strong algebraic transient growth phase followed by an

exponential viscous decay.

As described in chapter 3, our numerical scheme takes advantage of the linear formu-
lation of the governing equations by simulating only a single spanwise wavenumber in
any given solver run. The scheme thus imposes a spanwise wavelength, which we denote
by A, on the streak. This may not match the corresponding length scale for the streaks
that evolve in real turbulent boundary layers. In order to overcome this restriction, we
perform a search across a range of values for A and z; to find the streak whose magnitude
is the greatest for some appropriate measure. We then make the further assumption that
the disturbances present in real turbulent boundary layers which we have modelled by
equation 5.1 occur with roughly equal probability across the range of (X, z¢) pairs investi-
gated. Then, we can say that the greatest-magnitude streak is selected by the basis flow
since, given our assumed equally-probable set of disturbances at different (), z¢) pairs, one
particular pair will produce the strongest streaks, and therefore the streaks that would be
observed in a real turbulent boundary layer. We call these the optimum streaks. We hope
to find optimum streaks whose development is a function of the basis turbulent boundary

layer only i.e., unaffected by the fine details of the initial forcing.

However, we are still somewhat putting the cart before the horse. How do we mea-
sure the magnitude of the induced streaks? The criterion by which streak magnitude
ought to be measured remains a point of contention. Some sources have used a criterion
based on the total amount of energy contained in the streak after some time has elapsed
as compared to the energy of the initial perturbation; see for instance the work of Butler

and Farrell [9]. This time limitation is imposed in order to take account of random tur-
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bulent motions; it is assumed that nominally possible streak-like events that occur over a
time longer than the turbulent time scale (called the ‘eddy turnover time’) are disrupted
by these random motions and thus do not occur in real turbulent boundary layers. Other
sources simply take the maximum value in the streaky velocity field during the algebraic
growth period as the streak magnitude [48]. This is the criterion we use here. Different
criteria may turn up different results; thus, when we talk about finding an optimum streak
it should be borne in mind that this optimum is only with respect to the magnitude crite-
rion employed, and is not a universal optimum. A possible alternative is to examine the
time history of the maximum velocity value, and take the initial slope during the growth
phase as a measure of the streak strength. Intuitively this is a more direct measure of
the algebraic growth than taking the maximum value, which is determined by a balance
between initial transient growth and eventual viscous dissipation. However, for the most
important practical cases it was found that the maximum velocity value in early streak
development was swamped by the non-physical velocities associated with the forcing term

given in equation 5.1.

Several simulations were run in order to find the optimum streaks; streak strength was
determined using the simple maximum criterion. Note that in addition to the variation of
wall-normal forcing location ij and spanwise wavelength A*, we can vary other parame-
ters that define the forcing: notably, k, and k,. In common with the results of Carpenter
et al [11], we find that the streak response is relatively insensitive to variations in k,, but
can be changed significantly by altering the value of k,. Furthermore, the variation of
the forcing in time can also be changed, and was found to alter the generation of streaks
quite profoundly. This is explored in more detail in section 5.2; for the results presented
in other sections, we use the same approach as Lockerby et al [48] and use a forcing that is
switched on for times t* < 15 and switched off at all other times. This follows the exper-
imental work of Gad-el-Hak et al., who found that this timing when used with localised
suction produced the best streaks on a towed flat plate. The switching is abrupt, so we

refer to the time profile of this forcing scheme as Heaviside-like. All results presented are
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for a displacement Reynolds number of 10* unless noted otherwise.
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Figure 5.1: Relative streak magnitude for Gaussian perturbation in w, at various heights and
spanwise wavelengths, with k, chosen such that the streamwise half-width of the Gaussian profile

is =, = 300

5.1 Influence of k,

The parameter k, controls how quickly the streak-generating forcing 5.1 decays in the z-
(i.e. streamwise) direction. We specify k, here not by its numerical value, but by the
corresponding streamwise half-width, zp,,. This half-width is defined as the distance one
must travel along the z-direction from the peak of the Gaussian to a point where the
forcing is 1% of its peak value. It is easily seen from equation 5.1 that the relationship

between k; and z,, is:
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Figure 5.2: Relative streak magnitude for Gaussian perturbation in w, at various heights and
spanwise wavelengths, with k, chosen such that the streamwise half-width of the Gaussian profile

is zf = 150

We hope to find that, with careful selection of k, and other parameters, it is possible to
use the forcing profile 5.1 to generically model the disturbances in real turbulent boundary
layers. By this, we mean that we hope to find that there exists, among the set of all pos-
sible perturbations in such boundary layers, a class of perturbations including both those
modelled by 5.1 and those that are found in real turbulent boundary layers. Furthermore,
we hope that this class is such that any two members of it generate essentially identical
streak responses. Were this the case, we could be assured that the precise details of the
disturbance do not need attention, and a relatively straightforward disturbance model like

5.1 is satisfactory. If we assume that the most common perturbations in real boundary
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layers are small-scale, both temporally and spatially, the sensible approach is to investi-
gate the changes in streak response as we alter the parameters of 5.1 to make the forcing

profile more pointlike.
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Figure 5.3: Relative streak magnitude for Gaussian perturbation in w, at various heights and
spanwise wavelengths, with k; chosen such that the streamwise half-width of the Gaussian profile
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Figures 5.1 to 5.4 present the maximum streak magnitudes for a selection of (A*, zj{) pairs,
normalised by the maximum magnitude of the optimum streak. Each graph corresponds
to a different k, value; they are shown in order of zj,, from broadest to narrowest. It is
clearly seen that, as the streamwise half-width of the forcing profile decreases, the ten-
dency is for the optimum streak to occur at lower values of both z}" and A*. A comparison
of figures 5.3 and 5.4 shows that by the time the z;., is reduced to around 30, further

narrowiﬁg of the forcing profile no longer has any significant affect. Results from simula-
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tions performed with a half-width of 7.5 confirm this, but are not shown here since they
are indistinguishable from the results with a half-width of 15. The final optimum streak
obtained is at z}“ = 12.5, At = 75. The spanwise spacing is somewhat lower than the
commonly-given value of 100 wall units, but is well within the experimentally observed
values of At = 120 =+ 52 reported by Zacksenhouse [82]. It is also in close agreement
with the optimum streak found by Cossu et al. in their numerical investigation using an
energy-based criterion, \* = 81.5 + 1 [19]. Consider also that we are picking out the
most strongly amplified streak, and thus the one that will be observed most often; it is
thus more suitable to compare this to the median observed streak spacing rather than the
meén, and this is the value given by Cantwell, in a review of several sets of experimental

data, as 80 wall units [10].
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Figure 5.4: Relative streak magnitude for Gaussian perturbation in w, at various heights and
spanwise wavelengths, with k; chosen such that the streamwise half-width of the Gaussian profile

. + .
iszy,, =15

87



As mentioned above, the results from figures 5.1 to 5.4 are normalised. This normalisa-
tion is performed for each value of k;; in other words, comparing the results from one
graph to another doesn’t tell us anything about the relative magnitude of the streaks for
different values of k;. In order to compare optimum streaks for different k, values, it is
useful to look at their histories i.e. how the maximum streak strength varies in time. This

information is presented in figure 5.5.
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Figure 5.5: Time histories of the optimum streaks for a range of values of k;.

Before discussing these results, though, we’ll digress briefly to point out some details
of how the forcing amplitude is scaled when changing the value of k., and why. If we
integrate the forcing profile along the streamwise direction, we see that for smaller values
of k, (that is, a broader half-width) there will be a greater amount of force imparted
in the qreation of the streak. (Remember that although we speak of imparting a force

through the forcing term of equation 5.1, it is more accurate to call F' an imposed vorticity
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source.) Using the fact that the integral of a one-dimensional Gaussian centred around

an arbitrary point xy can be expressed as:

oo _ 2
/ Aexp (“'c c‘”") dz = Acy/T (5.5)

It is possible to see that, by making sure that the magnitude of the forcing varies in direct

proportion with v/k,, the same amount of force will be imparted for all values of k.

An examination of figure 5.5 tells us first that the narrower forcing profiles give us
stronger streaks for the same normalised forcing magnitude. We also see that the maxi-
mum is reached earlier for narrower profiles. The streaks reach their maximum strength
at the point where the exponential viscous decay begins to outweigh the algebraic inviscid
growth. A later maximum therefore suggests either that the growth in the algebraic phase
is stronger or more prolonged, or that the exponential decay is weaker. The gradients after
the maximum are shallower in the zp,, = 150 and zp,, = 300 cases than in the xp,, = 15
and zj,, = 30 cases, indicating that there is weaker exponential decay in the broader forc-
ing cases. The growth of these cases is also significantly shallower, which indicates that
the algebraic growth is also weaker; it may also be more prolonged, and this, in combina-

tion with the weaker decay, is a possible explanation for the later maxima, of the large x,,.

As mentioned above, the optimum streak found for the z}\, = 15 case is indistinguishable
from the xj,, = 7.5 case. Calculating the streak development for narrower forcing profiles
has similar results, in that no significant change in the streak development is observed.
This suggests that we have found, as was posited earlier, a value of x,, below which all
streak forcings produce identical results. We can tentatively say, then, that for z;};, < 15
the fine details of the forcing are unimportant and we can use this as a satisfactory model
of real disturbances. However, see section 5.2 below on the influence of changing the time

variation of the forcing profile for more discussion of this point.

Figures 5.6 to 5.8 show the development of this optimum streak over a relatively long
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Figure 5.6: Contour plots of u+ for the optimum streak with x*w = 15. Profiles are shown at

times t+ —8,24,40,56,72 from top to bottom. Contours axe at intervals of u+ = 50.
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Figure 5.7: Contour plots of  for the optimum streak with x*w = 15. Plans are shown at times
t+ = 8,40,72 from top to bottom. Contours are at intervals of u+ = 50, with positive values
represented by solid lines and negative values by dotted lines. Data taken from a wall-normal

location z+ = 15
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period, illustrating the streak during both the growth and the decay. It is apparent from
figures 5.6 and 5.7 that the streak very quickly attains a streamwise length scale of around
200 and lengthens to around 400 over the course of its development. This is large in com-
parison with the spanwise scale (specified by the choice of wavenumber, A+ = 75) and the
wall-normal scale, and the streak remains within 50 wall units of the wall for all times.
Note also the tilted appearance of the streak, with the leading edge lifting away from the

wall. This is consistent with earlier observations by other investigators [48].

Figure 5.8: Contour plots of »+ and for the optimum streak with x*w = 15. Profiles are
shown at times 7+ = 8,40, 72 from top to bottom. Thin black lines are u+, thick grey lines are
CH. Contours are at intervals of = 50 and w+= 5. with positive values represented by solid
lines and negative values by dotted lines. Data are taken from different streamwise locations for

each frame; from top to bottom, data are shown at x+ = 450,650,1000.

Another interesting feature is visible in figure 5.8, which shows the perturbation stream-

wise vorticity as well as the perturbation streamwise velocity. We see that the vorticity
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decays much faster than the velocity, and in fact decays during the growth phase of the
streak. It is important to bear in mind that the vorticity shown in this figure does not
represent the quasi-streamwise vortices, which occur above the streaks in real turbulent
boundary layers (as discussed in section 1.2); indeed, these vortices are not truly present
in our calculations. This is one of the abstractions that our model incorporates, in an
attempt to isolate the streaks from other turbulent boundary layer structures and phe-

nomena.

Figure 5.9: Contour plots of u£ for the optimum streak with streamwise forcing half-width of
15 in wall units. Profiles are shown at times 7+ = 3,6,9,12,15 from top to bottom. Contours
are at intervals of u+ = 25, with positive contours solid and negative contours dotted. The zero

contour is unmarked.
Returning briefly to figure 5.5, we note the kink that can be seen in the half-width 15 and

30 cases during the growth phase, around 7+ « 8. This initially seems quite mysterious,

but there is a relatively simple explanation, which is well illustrated in figures 5.6 and 5.9.
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The explanation for the streak magnitude discontinuities in figure 5.5 is illustrated in
the first frame of figure 5.6, where the streak has a two-lobed structure. The longer lobe
which is further downstream is the streak itself at an early stage of development; the
more compact lobe further upstream is an artefact of the forcing and thus not indicative
of any real streak physics, since we are using the forcing as a low-order approximation to
the non-linear streak formation process (cf. the work of Landahl [46]). A more detailed
examination of this two-lobed structure is presented in figure 5.9, where we see the same
streak, but in a smaller range of streamwise values and at earlier times. In this figure, it
is apparent that the peak value of u, in the forcing lobe is initially greater than that in
the streak lobe. At some point during the streak development, however, the peak value
of u, in the streak lobe becomes greater than that in the forcing lobe. At this point, our
streak magnitude criterion, which simply searches for the greatest |u,| value in the flow

field, starts to track the peak in the streak lobe.

The reason that the discontinuity is more pronounced in the case where the forcing half-
width is 15 is because of the normalisation of the forcing amplitude A, as discussed above.
In order to compensate for the reduced width of the forcing profile, the amplitude of the
forcing is increased. This creates a stronger peak in the forcing lobe, and therefore the
peak in the forcing lobe will be greater than that in the streak lobe for a longer period of

time.

This also suggests an explanation for why no such discontinuity appears in the cases
where z,, is much larger. In these cases, the normalisation of the forcing amplitude to
a lower value means that the peak value of velocity in the streak becomes much greater
than the peak value in the forcing lobe almost immediately. Additional evidence for this
explanation is seen in the profiles of the optimum streak for the case where the forcing
half-width is 300, as depicted in figure 5.10. No forcing peak equivalent to that observed
in the first part of figure 5.6 is visible. In fact, profiles at the same early times as those

depicted in figure 5.9 (not included here) also show no forcing lobe, indicating that the
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Figure 5.10: Contour plots of for the optimum streak with streamwise forcing half-width of
300 in wall units. Profiles are shown at times 1+ = 8,24,40,56,72 from top to bottom. Contours

are at intervals of u+ —25.
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streak is the dominant feature throughout. Note too that, although the streamwise length
scale of the streak in figure 5.10 is somewhat longer than that in figure 5.6, the length
scale of the streak during the growth phase (around 250 wall units) is much shorter than
the length scale of the forcing (600, twice the half-width) and certainly has not increased
by the same factor that the forcing length scale has. This suggests that there is a natural
streak length scale determined by the basis flow, and the nature of the forcing, although

it can alter the streak strength, has little influence over the streak’s streamwise scale.

5.2 Influence of forcing time profile

As mentioned above, in addition to the sensitivity of the streak growth to k;, there is
also considerable sensitivity to the time profile of the forcing. For the results presented
in the previous section, as in some previous numerical studies [11,48], we have used the
same kind of time profile as in Gad-el-Hak’s experimental work (25|, whereby forcing is
simply switched on if ¢+ < 15 and is switched off otherwise. This choice of time profile
was made on the basis that it produced the best artificially induced burst; recall from
chapter 1 that a burst is a highly nonlinear streak breakdown process involving liftup of
the streak from the wall and growing oscillations on the interface between regions of high-
and low-speed fluid, so the time profile we use is chosen on a criterion linked to the streak

strength, albeit indirectly.

As discussed above, our results indicated that there exists an zj,, limit below which the
details of the forcing are unimportant, with the exception that at very small spatial scales
viscous dissipation comes to dominate the dynamics. Thus, we say that this is a limit of
sensitivity to spatial scales associated with the basis flow, since if the streak development
is not affected by the details of the forcing below this limit, it must be determined by the
basis flow only. We wish to find if there is, similarly, a limit of sensitivity to temporal

scales for the forcing.
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Figure 5.11: Development of streak magnitude in time for the streak with z}“ =125 At =75
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Initially, we performed this investigation by simply shortening the length of time for
which the forcing was switched on. The Heaviside-like nature of the forcing profile in
time was retained. As in the investigation of the streak development’s dependence on
the spatial variation of the forcing, the technique used was to make the time profile more
pointlike. Specifically, if we imagine the initial time forcing profile as an approximation to
a delta function centred around t* = 7.5, then we can make the forcing more like a delta
function by reducing the time interval between this centre and the switching on or off.
Thus, just as with the variation of k, to determine the spatial dependency of the streaks
on the forcing, the temporal dependency of the streaks on the forcing can be parametrised
entirely by a half-width, t3,,. For the original time forcing profile, this half width is 7.5
in wall units. Note that as the half-width is reduced, we need to introduce a correction
to the amplitude of the forcing to account for its reduced duration, as was done when
investigating the influence of k.. The amplitude correction is simpler here; recalling that
thw of our original profile can be expressed as ¢7 = 7.5, the factor by which we need to

correct the amplitude is simply ¢}, /7.5.

The results of this investigation are shown in figure 5.11. We see that there is not a
clear convergence; at first as the time half-width is reduced the streak reaches a greater
maximum earlier in time, but that this trend is reversed for half-widths below 1. A possible
explanation for this behaviour is that the use of a Heaviside-like forcing profile means that
we have created essentially infinite gradients in time at the switch-on and switch-off. This
is not something that the discretisation scheme can handle gracefully, and it becomes
more significant as the duration of the forcing decreases since the switching necessarily
occurs over the duration of a single time-step. A more satisfactory method of making the
time forcing profile more like delta-like is to choose a function with a smoother profile.

The smoothed time profile used is similar to the Heaviside-like forcing profile in that it
is centred around a time t}L = 7.5 and in that only a single parameter (ts,, the time
half-width) is needed to distinguish the different forcing profiles from one another. There

is, again, an adjustment made to the amplitude of the forcing in order to compensate for
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changes in its duration. The switching on and off was made smoother by defining A(t)

from equation 5.1 as an appropriately chosen sum of tanh functions, of the form:

A(t) = %[tanh(at[t+ - (tF = tf)) + tanh(oy[(t] —t7,) — t*])] (5.6)

Where o, is a factor that controls the smoothness of the switch-on and -off. It is chosen
such that the switching is fast enough to maintain a plateau-like form with the smallest
thw, but still sufficiently resolved when using a reasonable timestep. A selection of these
time profiles is depicted in figure 5.13, and the results from using them are presented
in figure 5.12. We see that these results are similar to the case with the abrupt switch-
ing (see figure 5.11), but that here there is convergence, with the streak development
effectively converging for time half-widths of ¢} = 0.5 and below. However, there is a
complication. Having discovered what seems to be a natural time scale of the basis flow,
in that the details of the forcing on time scales smaller than ¢t ~ 1 don’t affect the gross
development of the streak, we find that the relative streak strengths have changed i.e. we
have a new optimum streak. The new optimum is illustrated in figure 5.14 and shown
to be at zJT = 10, A* = 45. This is no longer in the range of streak spacings observed
experimentally by Zacksenhouse [82]; bear in mind, as mentioned earlier, that this is an

optimum with respect to the particular streak magnitude criterion we have employed, .

Furthermore, the new apparent optimum streak is found to be once more sensitive to
changes in k.. Although the results presented in section 5.1 seemed to indicate that the
overall course of streak development is not affected by the spatial details of the forcing
if z}, < 15, we now find that after reducing the duration of the streak forcing to what
seems to be its natural scale, further reductions of xp, result once again in significant
changes to the streak development. This is illustrated in figure 5.15, where we see that
even with z} < 2, the streak development is still changing as the streamwise half-width
is reduced. The computational cost of simulating streaks initiated by a forcing of smaller
streamwise length becomes prohibitive as the size of the elements required to adequately

resolve the profile becomes smaller, so no further simulations were performed. It seems,
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Figure 5.14: Relative streak magnitude for Gaussian perturbation in w, at various heights
and spanwise wavelengths, with k; chosen such that the streamwise half-width of the Gaussian

profile is 27 = 15. A smoothed forcing time profile is employed, with ty,, = 0.5
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however, that the natural length and time scales for the forcing surmised earlier to be

inherent to the basis flow are not so straightforward.
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Figure 5.15: Development of streak magnitude in time for the streak with z}' =10, AT = 45.

Different graphs show the response for different forcing durations, as characterised by spatial

half-width, z} . All time profiles use a smoothed switching, with ¢} = 0.5.

Our first investigation of the influence of k&, on the streak indicated that for half-widths
below zj, = 15, the streak that developed in response to the introduction of the forc-
ing did not substantially change if z;, was altered. We therefore regarded z; = 15 as
a cutoff point, below which the basis flow was insensitive to finer details of the forcing
(although it seems likely that for very small z;f , the viscous diffusion associated with
large spatial gradients might begin to make itself more strongly felt). A similar analysis
seemed to apply to the temporal half-width, with ¢} = 0.5 being the sensitivity cutoff,

as illustrated in figure 5.14. Recall, however, that we found the zit, = 15 cutoff with a
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fixed time profile, characterised by tf, = 7.5; the results described above show that if
we change t},, the z; -value of the sensitivity cutoff changes. We now find something
similar for the time profile: if z , previously held constant, is changed, the sensitivity
cutoff value of ¢, also changes; this is shown in figure 5.16, where we show the effects of
changing ¢ with z}, = 1.875, and we see that the streak response alters for different

t}  values below the previously surmised sensitivity cutoff of ¢, = 0.5.
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Figure 5.16: Development of streak magnitude in time for the streak with z}L =10, At =45
and k, based on a streamwise half-width of 1.875 wall units. Different plots show different values

of thy.

Although these results are not conclusive, they are strongly suggestive: they seem to show
that the sensitivity cutoff values of zj,, and ¢}, are not inherent in the basis flow. Only if
we fix ¢} is there a cutoff value for z;}, , and vice versa. It appears, then, that the basis

flow doesn’t specify the sensitivity cutoff values per se, but rather the relationship be-
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tween them. It is difficult to see how the details of this relationship might be determined

more precisely.

The conclusion we can draw from this is that the use of a pointlike forcing to generate
streaks in problems such as these does not in and of itself adequately model the processes
that generate streaks in real boundary layers. Making use of empirical data to specify
some parameters of the forcing, as has been done heretofore, seems necessary to ensure

that our streak generation process resembles the real process in its relevant aspects.

5.3 Influence of Reynolds number

In common with previously published results (see, for instance, Carpenter et al. [11]),
we find that the Reynolds number has little effect on the optimum spanwise spacing of
the streaks. Recall that the results presented above were obtained with a Reynolds num-
ber of 10000; figures 5.17 and 5.18 show the relative streak magnitudes in the vicinity of

the optimum streak when the Reynolds number is decreased or increased by a factor of 10.

The optimum streak from the cases shown doesn’t change with Reynolds number, and a
finer-grained search for the optimum streak did not find a change in the optimum span-
wise spacing either. The work of Cossu et al., who used an energy criterion to measure
streak magnitude, also indicated that the influence of the Reynolds number on the /\jpt is

negligible, or at least very small [19].

We also find, as expected, that the streak magnitude scales on inner units, which change
as the Reynolds number is altered. Consider that the streak forcing, as given in equation
5.1, has units of vorticity per time. Thus, for the amplitude of the forcing in the different
Reynolds number cases to be equivalent, we need the amplitude of the forcing, multiplied
by the square of an appropriate inner time scale, to be the same across the board. An

appropriate scale is given by the ratio §*t/UZX. Thus, we expect the streak histories at
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Figure 5.18: Streak magnitude for Gaussian perturbation in w; at various heights and spanwise
wavelengths, with k, chosen such that the streamwise half-width of the Gaussian profile is

ztT = 15. Re = 10°

107



different Reynolds numbers to collapse (at least approximately) on to a single line when
normalised by this quantity. This is borne out in figure 5.19. On the main graph the
collapse appears exact, but the inset shows that there are minor differences in the de-
tails of the streak development; thus we have not simply performed the same simulation
three times with different linear scalings, but have demonstrated that our solver genuinely

demonstrates the streak inner scaling also observed in other investigations.
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Figure 5.19: Development of streak magnitude in time for the streak with z}' = 12.5 and
At = 75. Different plots show different values of Re. Streak magnitudes are normalised as

described above. Inset shows a detail of the peak values.
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Chapter 6

Spanwise forcing

6.1 Implementation and initial case

In addition to using our solver to investigate the streaks themselves, we are also interested
in seeing how spanwise forcing influences the development of the optimum streak. Since
we found that in our formulation, the simplified forcing used to generate the streaks ap-
pears not to have a straightforward natural scale, as discussed in section 5.2, we are forced
to make a choice of parameters for the streak-generating force, and thus also, albeit indi-
rectly, a choice of optimum streak characteristics. We will choose parameters that bring
in some empirical data, by implementing the same time profile that was used initially i.e.,
the simple Heaviside-like forcing suggested by the work of Gad-el-Hak et al. [25]. For the
spatial extent of the forcing, we use z}, = 15, which was found to give us the optimum

streak of figure 5.4, with A* = 75 the spanwise spacing.

In order to investigate the effects of wall forcing on the streaks, we will use the sec-
ondary perturbation formulation described in section 2.1.3. This, in essence, involves
solving the governing equations twice: once to calculate the effects of introducing wall
forcing and to create a new secondary basis, and then again to model the streak devel-

opment .on this new basis. Note that, since we are still dealing with streaks, which have
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been observed to scale on wall units, we shall continue to use wall units throughout this
chapter, unless specifically noted. On a similar note, we shall continue to focus on the

flow with Res = 10%.
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Figure 6.1: Development of streak magnitude in time for the optimum streak for a range of

spanwise wall oscillation magnitudes. T = 250. ¢ = 0 in all cases

The first results we present use a simple, sinusoidal-in-time wall oscillation, the same type
that produces a Stokes layer. Our solver’s ability to accurately capture a Stokes layer is
discussed in section 4.3. We investigate in the first section the effects of altering the
amplitude of the oscillation and the phase of the streak forcing with respect to the wall
oscillation. The oscillatory velocity of the wall is specified by our choice of 4, in equation
2.30. Recall that in our formulation, velocities are normalised by the freestream velocity,
so we express the oscillation amplitude as a percentage of this value. For example, if we
choose 1, such that it is a sinusoidal oscillation with maximum value 0.01, we call this
an amplitude of 1%. This corresponds to a peak wall velocity of 0.27 in wall units. The

phase is of relevance because, for many of the calculations we have performed, the time
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over which the streak develops is short with respect to the oscillatory period. The phase
angle ¢ is defined in terms of the wall frequency, and expresses how much of the oscillation
has elapsed between the nominal start of the cycle (arbitrarily designated as the point in
time where the wall velocity reaches a positive-valued maximum) and the switching-on
of the streak forcing. Values of ¢ separated by exactly 7 were found to produce identical
results (unsurprisingly, since this produces the same oscillation in the opposite direction)
so we investigate only phase angles in the range 0 < ¢ < 7. Figure 6.2 shows repre-
sentative examples of the Stokes layers at a selection of phase angles: these profiles are
obtained with an oscillatory amplitude of 1%, and may simply be scaled linearly to get
the‘ corresponding profiles for different amplitude. The spanwise forcing is not uniform in
the streamwise direction; instead, the wall near the inlet is stationary and the wall begins
oscillating at the streamwise location £ = L,. This is sketched in figure 4.6, and the exact

formulation of the streamwise variation is given by equation 4.9.

Our canonical case uses a frequency (note that it is expressed in wall units) of v* = 7 /125,
giving a period of T+ = 250. Since our formulation uses zero initial conditions, we thought
it sensible to adopt the following procedure for our simulations. The amplitude is ramped
up smoothly from zero to its desired value over the first half-period of the wall oscillation,
and the streak forcing is then switched on at the start of the next oscillation, or slightly
later if we wish to introduce a phase difference. A test run confirmed that there was
no appreciable difference between the secondary basis flow at the end of the first oscilla-
tion (that is, the one including the half-period ramp-up) and the end of the second, thus
assuring us that any transience associated with the ramp-up was negligible by the time
of the earliest streak forcing switch-on. This means we avoid unphysical transients that
might distort the effect of the wall oscillation on the streak development. Similar studies
performed by other investigators have also found that the temporal transients associated
with switching-on a transverse wall oscillation last no more than a single period even if
the switching is sudden; see for instance the study of Quadrio and Ricco, which focusses

specifically on such transience [60].
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Figure 6.2: Illustrative examples of the u; and w} wall-normal distributions for a Stokes layer
with a wall oscillation amplitude of 1%. Different plots show different phase angles; the phase
angles shown are the same as those used to define different start times for the streak forcing in
figure 6.3. The plots presented here therefore represent idealised (streamwise uniform) versions
of the secondary basis flow at the instant the streak forcing is turned on for the various cases

shown in the first frame of figure 6.3.
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Interestingly, in performing the calculations for the secondary basis flow driven by the
wall oscillation, we can see that, due to the imposition of spanwise uniformity (i.e., setting
B = 0) and the parallelisation of the primary basis flow, the streamwise VTE is decoupled
from the spanwise VTE and the Poisson equation for u,. We can see this if we substitute

B3 = 0 into the equations 2.14 to 2.16, which gives the equations:

awz awx _ 1] Awl’
ot +Us or Upw: + Re
Owy Owy " A
B Vs, tUs%: =
Owy
Au. = —5

We see that the only term in the streamwise VTE not involving w, is Upw,, and spanwise
uniformity means that w, is calculated from an integral relation involving only w,, as
can be seen from the definition of the secondary variables (that is, those variables not
calculated explicitly in our formulation, rather than those pertaining to the secondary
perturbations) given in equation 2.12. Both the spanwise VTE and the Poisson equa-
tion for u, involve only the variables w, and u,, and thus, while they are coupled to
one another, they are not influenced by w,. Furthermore, since the spanwise oscillation
of the wall only forces the flow through the integral condition on w,, this means that
when calculating our secondary basis, only the streamwise VTE needs to be solved; w,

and u, will remain identically zero at all times, and therefore do not need to be calculated.

Also worth noting is that, under the same circumstances of spanwise uniformity and
parallelised basis flow, and with spanwise oscillation of the wall the only mode of exci-
tation, the solution to the nonlinear equations 2.20 and 2.21 is identical to the solution
from the linear equations. While the streamwise VTE is not formally decoupled from
the spanwise VTE and the Poisson equation in this case, it is possible to see that, if we

start with zero initial conditions, w, and u, will once more remain identically zero for all
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times. The key to this is firstly that the sum w.(0u,/0z) + w,(du,/0z) which appears
on the right-hand side of equation 2.21 cancels exactly, since under spanwise uniformity
wy = —0u,/0z and w, = Ou,/0z, and secondly that the secondary variable u, is defined
entirely by w, and u, (per equation 2.12) and thus will remain identically zero if w, and

u, do.

Thus, the streamwise oscillation of the wall does not, in the absence of other forcing,
influence the spanwise vorticity or wall-normal velocity, and all the nonlinear terms in the
streamwise vorticity equation 2.20 are identically zero. The most important consequence
of this is that we have shown our treatment of the secondary basis flow, for the cases we

have investigated, to be fully equivalent to the nonlinear treatment.
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Figure 6.3: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with T+ = 250.
Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%,
amplitude 5%. Within each frame, different ploté show different phases ¢: solid grey ¢ = 0, dashed grey ¢ = 7/6, dotted grey
¢ = m/4, dash-dotted grey ¢ = /3, solid black ¢ = 7/2, dashed black ¢ = 27/3, dotted black ¢ = 3r/4, dash-dotted black
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Figure 6.1 shows the effects of spanwise wall oscillation amplitude on the development of
streak magnitude in the canonical case with the phase difference ¢ set to zero. Figure
6.3 shows the effects of varying this phase difference for a range of amplitudes. The time
for each simulation has been zeroed to the instant the forcing is switched on. We see
that, particularly for larger forcing amplitudes, the effect of changing the phase angle is
sometimes very dramatic, significantly more so than the effect of changing the amplitude
in the ¢ = 0 case seen in figure 6.1. For this case, we observe a reduction of maximum
streak strength as the amplitude of the wall motion increases, but the development of
the streak strength in time is qualitatively similar to the unforced case. Changing ¢ in
the A = 0.01U,, case similarly changes the maximum magnitude and time at which the
maximum is attained, but the time development remains largely similar in form to the
unforced cases. Changing ¢ in the A = 0.1U,, case, however, can drastically alter the
course of streak development, as seen in the fourth frame of figure 6.3. The effect of
changing phase angle with an oscillation amplitude that is intermediate between these
two values is somewhere between the gradual adjustment as seen in the A = 0.01U,, case
and the sharp changes seen in the A = 0.1U,, case, as is illustrated in the second and

third frames of the same figure.

The massive change in the history of the streak magnitude as a result of a relatively small
change in phase angle, such as that illustrated in figure 6.3 if ¢ is changed from 0 to
7/6 in the 10% amplitude case, seems unusual. However, if we alter the phase in smaller
increments (as seen in figure 6.4), we see that there is in some sense a smooth change to
this drastically reduced streak magnitude, which gives us confidence in the validity of our

results.
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Figure 6.4: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. Tt = 250. ¢ gives the phase of the
wall oscillation at which the streak forcing is turned on. t* is zeroed to the switching on of the

streak forcing in each case.
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Figure 6.5: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
with magnitude 1% of freestream velocity and period T+ = 250. ¢ = 7t/2. Values are taken from a wall-normal location z+ = 15.
Contours are at intervals of 50, with positive contours solid and negative contours dashed. The zero contour is omitted. Values

shown for times < = 18,36,54 from top to bottom.
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Figure 6.6: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
with magnitude 1% of freestream velocity and period T+ = 250. 4= n/2. Values arc from time t+ = 54 after switching-on of
forcing, corresponding to the third frame of figure 6.5. Contours are at intervals of 25, with positive contours solid and negative

contours dashed. The zero contour is omitted. Values shown for streamwise locations x+ = 850,950,1050 from top to bottom.



50 v T T 50
~——— Analytic solution
Numericat solution - x” = 850
451 - ~ - Numerical solution - x° = 950 h 45+
— Numerical solution ~ x" = 1050
401 4 40+
ki1 4
o}
~ 25
20 +
154
10}
Sk
0 N N s N L 0 o L R N
-03 -025 -02 -0.15 -0.1v -0.05 [} 0.05 ~0.04 -0.03 -0.02 -0.01 o 0.01

g, ag,
Figure 6.7: Comparison of the numerical secondary basis flow for the case illustrated in figure
6.6 with the corresponding Stokes oscillatory boundary layer. All parameters are as stated in
figure 6.6. Grey lines show the analytic solution, black lines the numerical solution at different

streamwise locations as indicated by the legend.

Similar to what we observed in the streaks with no forcing, we see that in some of the cases
where the amplitude of the wall oscillation is comparatively high, there are kinks in the
development of the streak magnitude. This suggests that, as in that case, there may be
more than one local maximum in the flow field, and that our streak magnitude criterion,
which finds the global maximum, is tracking different peaks at different times during the
streak development. Comparing the results for simulations at two different amplitudes
shows that this is indeed the case. Figures 6.5 and 6.6 depict the development of streaks
subject to low-amplitude wall oscillation. We see that there is relatively little distortion of
the streaks compared to the unforced case; they still appear fairly straight (although not

perfectly aligned with the mean flow, as they are in the unforced case illustrated in figure
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5.7) in a plan view and similar to the unforced streak in elevation. Also worth noting is
the direction of tilt in the plane parallel to the wall (as shown in figure 6.6, where the first
frame shows a cross-section of the streaks near the trailing edge and subsequent frames
show cross-sections from further downstream): we see that the sense of the tilt is such
that the trailing edge of the streak is more displaced in the instantaneous direction of the
cross-flow wall motion. This is the expected result, since the trailing edge is closer to the
wall and therefore should be more effected by its spanwise motion. Figure 6.7 confirms
that the secondary basis flow on which the streaks are developing matches quite well with

the Stokes oscillatory boundary layer.
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Figure 6.8: Contours of Refu”) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
with magnitude 1% of freestream velocity and period 7+ = 250. £= 27r/3. Values are taken from a wall-normal location z+ = 15.
Contours are at intervals of 5, with positive contours solid and negative contours dashed. The zero contour is omitted. Values

shown for times ¢+ = 18, 36,54 from top to bottom.
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Figure 6.9: Contours of -fte(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
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contours dashed. The zero contour is omitted. Values shown for streamwise locations x + = 700,800,900 from top to bottom.



Comparing figure 6.8 with figure 6.6, we can see that the distortion of the streaks when
subject to a large-amplitude wall oscillation is significantly greater than in the lower-
amplitude case, and that multiple local extrema can be seen in the latter two frames.
This suggests an explanation for the discontinuities in the streak development: if differ-
ent extrema emerge and decay at different times and rates, then clearly one that was at
one point the global maximum can be superseded by another. In this situation, as soon as
the magnitude of the new extremum exceeds that of the old, there will be a discontinuity
in the overall development of the streak magnitude, since we will suddenly be tracking the
development of a different maximum. Also interesting in the higher-amplitude case are
the elevation views of the streak, shown in figure 6.9, where we see that the larger spanwise
velocities near the wall have caused much greater changes in the streak structure than
in the lower amplitude case (seen in figure 6.5. The stronger shear has greatly distorted
the streaks, to such an extent that the low-speed streaks have a patch of high-speed fluid

entrained underneath them by the action of the induced Stokes layer, and vice versa.

We revisit a similar high-amplitude case, with a different phase angle, later in the chapter;
the streaks from this simulation are depicted in figure 6.15 and perhaps provide a better
illustration of multiple local maxima. In the first frame we can see that the structure
of the streak resembles a tadpole, with a strong maximum near the leading end of the
streak and a trailing tail. In subsequent frames, we see that a local maximum has arisen
in the tail, separate from the original maximum. Associated with both of these maxima
there are streaklike structures, strongly tilted in the spanwise direction. These two streaks
are aligned one behind the other in the mean flow direction. At later times we can see
yvet more auxiliary streaks arising, suggesting that it is possible for the maximum being
tracked by the streak magnitude condition to hop around from one local maximum to
another several times throughout the course of the overall streak development, creating

multiple discontinuities in the streak history.

It is not clear, however, exactly what mechanism causes the formation of these auxiliary
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Figure 6.10: Surface plot of Re(u+) for optimum streak created by a forcing with a streamwise
profile half-width of 15 wall units, subject to a wall oscillation of magnitude 10% of freestream
velocity with 7+ = 250. Data taken from ¢+ = 54. The phase lag between the wall oscillation

and the switching-on of the streak forcing is 0 = 71/6
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Figure 6.11: Surface plot of /m(u+) for optimum streak created by a forcing with a streamwise
profile half-width of 15 wall units, subject to a wall oscillation of magnitude 10% of freestream
velocity with 7+ = 250. Data taken from t+ = 54. The phase lag between the wall oscillation

and the switching-on of the streak forcing is <= 7+/6
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streaks, or even whether it is accurate to talk about a single main streak with auxiliary
structures. It may instead be that the appearance of several streaks is caused by the
superimposition of a wavelike solution on a streak solution that more closely resembles
that of the unforced case. In other words, the new basis flow created by the introduction
of spanwise wall oscillation to the mean turbulent boundary layer profile might be more
prone to unstable wavelike perturbations. An example of this type of solution is illus-
trated in figures 6.10 and 6.11, which show the real and imaginary parts of the streamwise
perturbation velocity u} at time t* = 54 subject to a strong spanwise wall oscillation.
These surface plots show the variation in the (z*, z*)-plane; data from similar simulations

were used to create the contour plots of the (z+,y*)-plane seen in figures 6.8 and 6.15.

Although these perturbations seem to have a wavelike structure, it is difficult from these
diagrams (or indeed from a more thorough investigation) to pick out more detailed char-
acteristics: the amplitude and wavenumber, for instance. This is made more complicated
by the fact that (if this is in fact a wave and not an auxiliary streak, or even something
else altogether!) it is firstly in the form of a wavepacket rather than a wavetrain, meaning
that the nature of the envelope also needs to be determined, and is secondly entangled in
the structure of the underlying streak such that it cannot straightforwardly be extricated.
For further discussion of the generation and growth of wavelike disturbances in spanwise-

forced boundary layers, see section 6.3.

The linear formulation of the governing equations for the secondary perturbations means
that there is unavoidably a degree of arbitrariness in the magnitude of the perturbations.
However, the cases presented in this chapter are all based on the optimum streak of chapter
5 (except for the results presented in figure 6.37; see the end of section 6.4 for discussion of
these), and all use a streak forcing with characteristic half-widths z};, = 15,¢} = 7.5. The
scaling of the forcing amplitude with the parameter &, (related to xj, through equation
5.4) is discussed in section 5.1; none of the other parameters altered in our investigations

influence this amplitude. Thus, since the streaks in all the results of this chapter were
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generated using a forcing of the same k, and therefore the same amplitude, the absolute
magnitude of the flow variables as depicted in, for example, figures 6.5 and 6.8 can be
meaningfully compared with one another and with the corresponding results from the

optimum streak not subject to any wall oscillation, as depicted in figures 5.6, 5.7 and 5.8.

6.2 Frozen oscillation

Examining figure 6.3, it can be seen that the histories of the streak development for the
cases ¢ = 27/3,37/4 and to a lesser extent 57 /6 show an interesting behaviour: they
appear, at late times when all other cases are decaying normally, to show the streaks
entering a delayed growth phase. Figure 6.12 shows the development of the streaks with
these phase angles over a longer time period, and compares it with the wall oscillation.
Note that, unlike the previous graphs showing the streak magnitude histories, this graph
does not zero time to the point at which the streak forcing is switched on. The data
are shown in this way to see if, across the different phase offsets between the wall cycle
and the streak forcing, there is commonality to the way the streaks develop at particular
points in the wall oscillation cycle. Something of this sort is in fact what we see, with
the delayed growth of the streaks in all cases beginning at around t* = 380. There is
also a small blip of growth at a much later time of around ¢t = 520, just after half the

oscillatory cycle has elapsed.

This suggests that there are particular parts of the wall oscillation cycle which are more
conducive to promoting or preventing streak growth than others. In order to test this
hypothesis, we ran a series of simulations similar to those performed already, making the
modification that, as soon as the forcing that generates the streaks is switched on, we
stop updating the basis flow. In other words, the secondary basis is frozen at the instant
of switching on the force. In figures 6.13 and 6.14 we plot some of the results from these

simulations.
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Figure 6.12: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. T% = 250. Below the plot of the time

development of the streak magnitude is a plot of the wall oscillation.
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Figure 6.13: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. 7% = 250. Solid lines are as in the
amplitude 10% frame of figure 6.3, dashed lines are the streak magnitude with the spanwise
oscillation frozen at the moment streak forcing begins. Each graph depicts a different phase
between the oscillation and beginning of streak forcing. Clockwise from top left: ¢ = 0,¢ =

w/6,¢=7m/3,¢=m/A
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Figure 6.14: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. T = 250. Solid lines are as in the
amplitude 10% frame of figure 6.3, dashed lines are the streak magnitude with the spanwise
oscillation frozen at the moment streak forcing begins. Each graph depicts a different phase
between the oscillation and beginning of streak forcing. Clockwise from top left: ¢ = 7/2,¢ =

2n/3,¢ = 57/6.¢ = 3w /4.
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The results from these cases show that freezing the basis can either encourage or inhibit
streak formation compared to the case where the oscillation continues, depending on the
phase angle at which the streak forcing was switched on. Streaks develop to significantly
greater magnitudes than in the physical case if the oscillation is frozen at ¢ = 7/6 or
¢ = 7 /4, but their magnitude is greatly reduced in the ¢ = 37/4 and ¢ = 57/6 cases. If
we can determine more precisely what qualities of the secondary basis flow at these phase
angles cause the streak development to be altered in this way, it may be possible to tailor
the wall oscillation profile to our requirements (i.e. promotion or amelioration of streaks),

rather than only using the sinusoidal oscillation examined heretofore.

Also of interest is figure 6.16, which depicts the streaks in plan view for the case where
the wall oscillation has been frozen at ¢ = n/4. If we compare this to figure 6.15, we
see that the effect of freezing the wall oscillation is to increase the spanwise tilt of the
streaks. This is not unexpected, since the speed of the wall decreases if we are starting
from a low value of ¢. There are also fewer minima and maxima apparent. This could be
simply due to the increase in the contour interval meaning the lower-magnitude extrema
are no longer seen in the visualisation, or it could be due to the apparent increase in the
streamwise spacing of the extrema. If we assume the presence of wavelike perturbations
in these solutions, this corresponds to a larger wavenumber and therefore the appearance

of fewer extrema within a wavepacket of the same streamwise extent.
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Figure 6.15: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
with magnitude 10% of freestream velocity and period T+ = 250. <= 7r/4. Values arc taken from a wall-normal location z+ = 15.
Contours are at intervals of 25, with positive contours solid and negative contours dashed. The zero contour is omitted. Values

shown for times 7+ = 18,36,54 from top to bottom.
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Figure 6.16: Contours of Re(u+) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
of magnitude 10% of freestrcam velocity with T+ = 250 which is frozen at the instant the streak forcing is switched on. Values arc
from a wall-normal location z+ = 15. Contours are at intervals of 50, with positive contours solid and negative contours dashed.

The zero contour is omitted. = 7774. Values shown for times = 18,36,54 from top to bottom.



6.3 Exponential growth of normal modes
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Figure 6.17: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. T+ = 250. A logarithmic scale is used

for the velocities.

A longer term plot of those frozen oscillation cases where it seems that streak growth is
most strongly promoted is shown in figure 6.17. Using a logarithmic scale for the streak
magnitude, it is clear that the long-term growth of the streaks with frozen wall oscilla-
tions is exponential, and therefore produced by an unstable normal mode. This implies
that for at least part of the wall oscillation cycle, the instantaneous basis flow is prone
to unstable growth of normal modes i.e., for some of the cycle, the effect of the wall
oscillation is in fact destabilising (since it is well-established that mean turbulent profiles
are asymptotically stable to linear perturbations [64], in that although short-term growth
of perturbations is possible, all perturbations will tend towards zero in finite time). De-

spite this, wall oscillation overall tends to reduce streak magnitude. This suggests that
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a modified wall oscillation, which passes rapidly through those parts of the cycle which
are instantaneously unstable and spends more time in those parts of the cycle which
arc instantaneously stable, might be more effective in inhibiting streak development than

the naively chosen sinusoidal oscillation. For more discussion of this point, see section 6.5.

2000

2000

2000

Figure 6.18: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 250
which is frozen at the instant the streak forcing is switched on. 0 = 7r/6. Values shown for times
t+ = 40,80,120,160,200 from top to bottom. Contour intervals are different in each plot. From
top to bottom, the intervals are 50,200,1500,1.5 x 104,2 x 105. In each case, positive contours

are solid and negative contours dotted. The zero contour is omitted.

Further evidence of the presence of unstable normal modes in some of the frozen oscilla-
tion flows is presented in figure 6.18, which shows the development of the perturbation
over relatively long times in the case where the wall oscillation is frozen at a phase angle

of 0 = 7r/6. At early times, we see that the perturbation displays both oscillatory and
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streaklike characteristics. The oscillatory nature is obvious, in that there are extrema of
alternating signs along the streamwise direction. The streaklike nature is more apparent
if one pictures an envelope around the perturbations; this shows the same lifting of the
leading edge away from the wall as shown by streaks elsewhere e.g. figure 5.6. However,
for later times the perturbation is in the form of a spatially convecting and temporally
growing wavepacket, with no apparent streaky character. Thus it is inaccurate to talk of
the exponentially growing perturbation as a streak in these artificial cases, except perhaps
for its generation and very early development. Note that the scale of the contours changes
significantly from one frame to the next, since the magnitude of the perturbation is grow-
ing exponentially. The packet nature of the wavelike perturbation is to be expected, given

that it is generated not by a continuous source but rather one that is only present for a

fixed time.

Similar results are shown in figures 6.19 and 6.20, for the other cases shown in figure
6.17 to have exponential growth. We see that in each case, the wavelike perturbation
comes to dominate at later times, although in the ¢ = 7/3 case the initially streaklike na-
ture of the perturbation is evident for longer, which is presumably due to its exponential
growth phase beginning at a later time. We note also that the streamwise wavenumber
of the wavelike perturbation appears to be different in the various cases, judging by the
streamwise spacing of the extrema, so the wavenumber of the unstable mode must be

fairly sensitive to the form of the frozen basis state.

Looking back at figure 6.12, we see that the times that are most prone to streak growth
during the cycle are those shortly after the velocity of the wall oscillation has reached
a maximum or minimum but before it has returned to zero. The simulations of frozen
oscillations, in this light, produce the expected results, since freezing the oscillations
at a time within this period of sensitivity (0 < ¢ < 7/2) produces a secondary basis
able to support exponentially growing perturbations. This is in contrast to the work of

Blennerhassett et al. [5,6], which examined the behaviour of linear perturbations in one-
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Figure 6.19: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with 7+ = 250
which is frozen at the instant the streak forcing is switched on. = 7r/4. Values shown for
times ¢+ = 40,80,120,160,200 from top to bottom. Contour intervals are different in each plot.
From top to bottom, the intervals are 20,150,1500,1.5 x 104, 1.5 x 105. In each case, positive

contours are solid and negative contours dotted. The zero contour is omitted.



Figure 6.20: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 250
which is frozen at the instant the streak forcing is switched on. $>= 7r/3. Values shown for times
t+=40,80,120,160,200 from top to bottom. Contour intervals are different in each plot. From
top to bottom, the intervals are 10,20,1000,1000,5000. In each case, positive contours are solid

and negative contours dotted. The zero contour is omitted.



and two-dimensional Stokes layers and found that the disturbance growth was strongest
when the oscillation velocity was close to zero. They also found that disturbances would
only grow above a critical Reynolds number of approximately 700. The Reynolds number
in this instance is calculated using the characteristics of the Stokes layer; if we denote this
as Reg, it can be calculated in this instance from the Reynolds number in our formulation
(recall, as per section 2.4.2, that our Reynolds number is calculated from the displacement

thickness, so we write it as Res-):

Res = u 2
v (6.1)

Recall that 4; is the amplitude of the wall oscillation. For Res- = 10* and an oscillation
amplitude of 10%, this gives us Regs = 12, which is much lower than the critical Reynolds
number of Blennerhassett. The investigation by Vittori and Verzicco found a lower critical
Reynolds number for disturbances to a Stokes layer, ~ 550, but this is still much higher
than the value in our simulations which nevertheless seem to show growth of unstable

modes [77].

Bear in mind, however, that we are looking at a quite different type of perturbation,
one propagating not along the direction of the Stokes oscillation but in the direction
transverse to it. It is reasonable to assume that the presence of a nonzero mean flow
will profoundly influence the stability characteristics of the Stokes layer, but in this case
it may be misleading to think of the problem in this manner. Instead, it may be more
meaningful to think of the disturbances as existing and developing in a modified turbulent

boundary layer.
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6.4 Effect of changing T

Another topic of interest is the influence of T*, the period of the wall oscillation, on the
effectiveness of our control scheme. Figures 6.21 and 6.22 present the same information
for T* = 125 as is shown in figures 6.1 and 6.3 for T+ = 250 i.e., for a doubling of
frequency. We see that the reduction of the streak magnitude is greater in each case.
Although this may not be immediately clear from a visual comparison of figures 6.3 and
6.22, it is confirmed by the results presented in figure 6.23, which presents the maximum
streak magnitudes at a range of phase angles for both 7% = 125 and T+ = 250. This
leads us to surmise that the effect of increasing the period from the canonical T = 250
might simply be to reduce the ability of the wall forcing to affect the streak development.
Figures 6.24 and 6.25, which show data from the T+ = 500 case, indicate that this may

be too simplistic a view.
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Figure 6.21: Development of streak magnitude in time for the optimum streak for a range of

spanwise wall oscillation magnitudes. T+ = 125. ¢ = 0 in all cases
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Figure 6.22: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with T+ = 125.

Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%,

amplitude 5%. Within each frame, different plots show different phases ¢: solid grey ¢ = 0, dashed grey ¢ = /6, dotted grey
¢ = m/4, dash-dotted grey ¢ = n/3, solid black ¢ = /2, dashed black ¢ = 27/3, dotted black ¢ = 3w /4, dash-dotted black

¢ = 57/6.
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Figure 6.23: Ratios of maximum streak magnitude attained in cases with wall normal forcing
to the unforced case. Empty symbols with dotted lines show the T+ = 250 case, filled symbols
with dashed lines the T+ = 125 case. Circles, forcing amplitude 1%; squares, forcing amplitude

2.5%; diamonds, forcing amplitude 5%.
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Figure 6.24: Development of streak magnitude in time for the optimum streak for a range of

spanwise wall oscillation magnitudes. Tt = 500. ¢ = 0 in all cases
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Figure 6.25: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with T+ = 500.
Different frames show different forcing amplitudes: (a) amplitude 1%, (b) amplitude 2.5%, (c) amplitude 5%, (d) amplitude 10%.
Within each frame, different plots show different phases ¢: solid grey ¢ = 0, dashed grey ¢ = 7/6, dotted grey ¢ = 7/4, dash-dotted
grey ¢ = /3, solid black ¢ = 7/2, dashed black ¢ = 27/3, dotted black ¢ = 37/4, dash-dotted black ¢ = 57 /6.



The most interesting phenomenon observed in the results presented in these figures is that
high-amplitude wall oscillations, for certain phase angles, significantly amplify the streak
growth. This is most apparent for the amplitude 10% cases with ¢ =0, 7/6 and 57/6 i.e.
those cases where the wall velocity is at or near an extremum when the streak forcing is
switched on (these calculations do not freeze the wall oscillation). The longer term devel-
opment of these streaks is illustrated in figure 6.26, which employs a logarithmic scale for
ut ... The strongest streak, with phase angle ¢ = 57 /6, displays some concavity during
its growth when plotted on a logarithmic scale, indicating that the growth is extremely

rapid. The maximum attained by this streak is ~ 50 times greater than that attained by

the unmodified streak.

Infu; )

Figure 6.26: Development of streak magnitude in time for the optimum streak, with a spanwise
wall oscillation magnitude of 10% of freestream velocity. T+ = 500. Dotted line: ¢ = 0, dashed
line: ¢ = m/6, dash-dotted line: ¢ = 57 /6, solid line: streak with no wall oscillation. t* is

zeroed to the switching on of the streak forcing in each case.
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Profiles of these disturbances in the (z*, z*)-plane are shown in figures 6.27 to 6.29. We
see that the form of the perturbations resembles that of the linearly growing wavepackets
seen in the frozen oscillation cases (figures 6.18 to 6.20). However, these perturbations do
not appear so purely wavelike. We observe that unlike the frozen oscillation cases, where
the wavepacket alignment was purely parallel to the wall, part of the leading edge of the
perturbations is lifted away from the wall in the same manner as a streak in an unforced
boundary layer. This is particularly visible in figure 6.27. A simulation of the ¢ = 57/6
case (illustrated in figure 6.29) on a refined grid produced results indistinguishable from
those presented here. This indicates that these results are genuine and not artifacts
of an insufficiently resolved flow field (assuming, of course, that the ¢ = 57/6 case is
representative). It seems, then, that in some cases where there is an oscillating basic
state, normal-mode-like disturbances can grow and then decay, and in the process produce
(or rather sustain) streaky structures until much later times than is possible in a basic

turbulent boundary layer state without any wall oscillation.
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Figure 6.27: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with T+ = 500.
0 = 0. Values shown for times ¢+ = 40,80,120,160,200 from top to bottom. Contour intervals
are different in each plot. From top to bottom, the intervals are 100,300,1000,1000,500. In

each case, positive contours are solid and negative contours dotted. The zero contour is omitted.
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Figure 6.28: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of ffeestream velocity with T+ = 500.
8 = T1/6. Values shown for times ¢+ = 40,80,120,160,200 from top to bottom. Contour intervals
are different in each plot. From top to bottom, the intervals axe 40,100,150,100,75. In each

case, positive contours are solid and negative contours dotted. The zero contour is omitted.
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Figure 6.29: Profiles of Re(u+) for optimum streak based on a half-width of 15 wall units,
subject to a spanwise wall oscillation of magnitude 10% of freestream velocity with 7'+ = 500.
@ = 57t/6. Values shown for times t+ = 40,80,120,160,200 from top to bottom. Contour
intervals are different in each plot. From top to bottom, the intervals are 50,250,1250,4000,3000.
In each case, positive contours are solid and negative contours dotted. The zero contour is

omitted.
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Figure 6.30: Ratio of maximum streak strength attained in various cases with wall oscillation to the unforced case. Different frames
show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%, amplitude 10%, amplitude 5%. Within
each frame, different symbols correspond to different oscillation periods: squares, T+ = 250; circles, T+ = 125; stars, T+ = 100;
diamonds, Tt = 75; crosses, T+ = 50. Streak strength, on the vertical axis, is expressed as a fraction of the strength strength

attained by the optimum streak in the unforced case.
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Figure 6.31: Dependence of the maximum streak strength attained in various wall oscillation
cases on oscillation period. Streak strength is expressed as a fraction of the streak strength

attained by the optimum streak in the unforced case.

Results from simulations at a wider range of frequencies are given in figures 6.30 and 6.31.
Figure 6.30 shows the variation of streak magnitude with ¢, and we see that as a general
rule there is a U-shaped trend, such that values of ¢ specifying a forcing switch-on at
or near extrema produce less of a reduction, and intermediate values produce a greater
reduction. Figure 6.31 uses a weighted average across a range of phase angles to produce
a single averaged streak magnitude for any given amplitude-7T* pair. We see that increas-
ing the amplitude of the oscillation produces a greater reduction in streak strength, as do
higher frequencies. The exception to this rule is the 1% amplitude case, where T+ = 20

yields an optimum reduction of the streak strength and higher frequencies are less effective.

The avéraged streak magnitude shown in figure 6.31 is calculated in the following man-
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ner. For the cases with Tt > 25, we performed simulations for the phase angles ¢ =
0,%,%,%,5,%,% and 3. This is the set of phase angles used to produce the results
shown in, for example, figures 6.3 and 6.22. To obtain our weighting, we place these
values of ¢ on the interval 0 < ¢ < 7 and assign a weight to the data obtained at a given
value of ¢ according to the proportion of this interval which is closer to this value than
any other of the values used. Note that the interval was considered to be cyclic for the
purpose of calculating this weight; thus the points 111-2” < ¢ < m are treated as being closer
to = 0 than ¢ = is’i. In this scheme, the data obtained using ¢ = 0 or § has a weight
of é, the data obtained using ¢ = § or 3—;’- has a weight of %, and the data obtained
using any other value of ¢ has a weight of é. For cases with Tt < 25, we found that the
changes in the streak development as ¢ was altered were no longer so pronounced, as is
illustrated in figure 6.32. Thus we performed calculations for only four different values of
=

¢, ¢=0,%,5 and 37": the weighting was correspondingly simplified, with each of these

cases having a weighting of i for the calculation of the average maximum magnitude.
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Figure 6.32: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with T+ = 20.

Different frames show different forcing amplitudes: (a) amplitude 1%, (b) amplitude 2.5%, (c) amplitude 5%, (d) amplitude 10%.
Within cach frame, different plots show different phases ¢: solid line ¢ = 0, dashed line ¢ = /4, dotted line ¢ = 7/2, dash-dotted

line ¢ = 37 /4.
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Figure 6.33: Contours of Re(u”) for optimum streak based on a half-width of 15 wall units, subject to a spanwise wall oscillation
with magnitude 1% of freestream velocity and period 71+ = 20. #£= 7r/2. Values arc taken from a wall-normal location z+ = 15.
Contours are at intervals of 25, with positive contours solid and negative contours dashed. The zero contour is omitted. Values

shown for times 7+ = 18,36,54 from top to bottom.



The streaks from the amplitude 1% case with an oscillation period T* = 20 are illustrated
in plan view in figure 6.33. There do not appear to be any significant structural changes
for these high-frequency oscillations when compared to the canonical case, as illustrated
in figure 6.5; we still have streaks roughly aligned with the freestream, but exhibiting
some deviation from the mean flow direction. One observable change with the increase
in frequency is that due to the fact that the period of the oscillation is now short enough
to be on the same order as the length of time over which the streak develops, we see that
the streak has become somewhat kinked, since the direction of the wall forcing changes a

few times of the course of the streak’s lifetime.

In order to understand why there appears to be an optimum period for streak reduc-
tion in the case where the amplitude of the wall oscillation is 1%, but not if the amplitude
is any higher, let us compare figures 6.34 and 6.35, which depict streaks subject to wall
oscillations at amplitudes of 1% and 5%. We see that in the higher-amplitude case, there
are more local extrema present in the flow field, of relatively low magnitude. The lower-
amplitude case still has more than one local extremum, but these are much stronger.
This structure is more similar to the streak structure that is seen in the unforced case, as
illustrated in (for example) figure 5.6. We can hypothesise, therefore, that for low-period
oscillations at relatively high amplitudes, the effect of the wall oscillation is sufficiently
strong to disrupt the streak formation so thoroughly that the dynamics governing the
streak in the unforced and lower-amplitude cases no longer dominate the flow. This leaves
incoherent perturbations whose timescales grow ever shorter as the period of the oscilla-
tion decreases, and thus attain ever lower magnitudes. It seems then, that at least in our
reduced order model which isolates the streaks from the rest of the turbulent boundary
layer dynamics and structures, that not only can we weaken streaks through oscillation
of the wall, but with a sufficiently strong oscillatory amplitude we can completely disrupt

their existence as coherent structures.

An alternative way of characterising the wall oscillations is by the maximum displacement
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Figure 6.34: Profiles Re(u+) for the perturbation generated by the streak forcing with zj =
12.5, A+ = 75, subject to a wall oscillation of amplitude 1% (equivalent to a wall oscillation
amplitude of u+* = 0.271) with period T+ = 15. Contours are at intervals of 20, with positive
contours solid and negative contours dashed. The zero contour is omitted. Values shown for

times = 10,20,30 from top to bottom.

158



40
30

20

400 450 500 550 600 650 700 750 800 850 900

Figure 6.35: Profiles Re(u+) for the perturbation generated by the streak forcing with zy =
12.5, A+ = 75, subject to a wall oscillation of amplitude 5% (equivalent to a wall oscillation
amplitude of u+* = 1.35) with period 7+ = 10. Contours are at intervals of 5, with positive
contours solid and negative contours dashed. The zero contour is omitted. Values shown for

times ¢+= 10,20,30 from top to bottom.
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the wall goes through from its initial at-rest position, which we calculate as D¥ = 4;* /4*.
We hoped that this might be a useful means of parametrising the wall oscillation in such
a way as to show commonalities among the cases with different velocity amplitudes, but

as seen in figure 6.36, no such relationship is apparent.

06—8 o .
o]
(o]
k-
2 05} B
> o
[e]
£ 3
© o
§ 04 ° N
o o o
L o ° ]
$ 03 oo ° °
0© o
o o O ©
02 o 1 1 i 1 1
[ 10 20 30 40 50 60

Figure 6.36: Dependence of the maximum streak strength attained in various wall oscillation
cases on maximum displacement of wall. Streak strength is expressed as a fraction of the streak

strength attained by the optimum streak in the unforced case.

There is another point worth considering, before we press on. We have assumed in our
examination of the wall oscillation that the spanwise spacing A* which gives the optimum
streak in the unforced case will continue to give the optimum streak in the case with
oscillations. However, we have no a priori reason to assume this; the situation may
instead be that the oscillations reduce the strength of the A* = 75 streaks significantly
more than streaks of other spanwise wavenumbers, thus creating a new optimum; it is
plausible that there are streaks that are in fact strengthened by the wall motion. We

investigate this possibility by performing a series of simulations with a range of different
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At values, the results of which are presented in figure 6.37. The streak magnitudes shown
were calculated using the same weighted average that was employed for the results shown
in figure 6.31.
 uTm .o N T T 1 1
o X** 70
a X* =75 (Unforced optimum)
*oX* =80
X* =90
X* =100

§ 085 + o X* 110 s
a *OXH* 120

Figure 6.37: Dependence of the maximum streak strength attained on T+, with a wall oscillation
of amplitude 1%. Streak strength is expressed as a fraction of the streak strength attained for
the optimum streak (z* = 12.5, A+ = 75) in the unforced case. Different symbols show different
values of At; lines are included for some values of At to illustrate upper and lower limits of the

streak magnitudes for different values of 7'+.

We see that varying A+ does indeed change the amount of reduction of the streak mag-
nitude, although the overall trend is preserved, and the change is not very large. For
large values of T+, there is a tight clustering of magnitudes for A+-values near the un-
forced optimum of A+ = 75, although for A+ > 100 there is a significant drop-off. Below
T+ = 50, however, we find that the optimum (i.e., least reduced in magnitude by the
oscillation) streaks occur at A+ = 100, and it is the streaks at lower values of A+ that now

drop off. This is consistent with the observation reported by di Cicca et al. and Choi et
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al. {17,24], who noted that streaks in fact occur at a wide range of spanwise scales, even
though the median or mean scale may be taken as representative. With the imposition of
an oscillatory wall, many of the lower-A* scales are forced to coalesce, meaning that the

observed mean and median streak spacings go up.

6.5 The oscillatory cycle of the wall

Heretofore, all the oscillations we’ve investigated have been sinusoidal, in the i, the
spanwise velocity of the wall, varied as cos(yt). However, it is worth asking whether this
is in fact an optimum oscillatory profile. In this section, we investigate the effects of using
different wall oscillation patterns: to wit, a smoothed square-wave profile and a sawtooth
profile. We calculate these profiles by first defining a modified time 7 = ¢t (mod 27/7),

then using the following formulae:

4 (1 — 2T—7) if r<7/y

. ™ m

Uy=9 4 o7 . (6.2)
—{— -3 if 7>7/y
T\ T

! tanh ( — — 7 if r<7/
. In ( cosh 7/2v) 2y =T (6.3)
. ! tanh Sl if 7>/ '
In ( cosh m/27v) M 2y seT 7

Equation 6.2 defines the sawtooth profile and equation 6.3 the smoothed square-wave
profile. The magnitude of these profiles has been normalised such that the integral over a
half-period is the same among the different profiles i.e., such that the total displacement of
the wall is the same for any oscillatory pattern. When we talk about the amplitude of the
oscillation in the square-wave and sawtooth cases, then, we do not mean the actual peak
velocity attained by the wall, but the peak velocity that would be reach in a sinusoidal
wall oscillation of the same total displacement. These profiles are depicted in figure 6.38.
Plots of the development of streak magnitude for the square-wave and sawtooth cases,

with an oscillation period of T* = 250 are given in figures 6.39 to 6.42; the equivalent data
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Figure 6.38: Depiction of the different oscillatory profiles. Time, on the horizontal axis, is
expressed as a fraction of the oscillatory period. Magnitude, on the vertical axis, is expressed

as a fraction of the amplitude of the sinusoidal oscillation.

for sinusoidal wall oscillation are presented in figures 6.1 and 6.3. We see largely similar
characteristics as the sinusoidal oscillations for both square-wave and sawtooth profiles:
significant changes in streak development for different values of ¢ and generally stronger
reductions in streak strength as the oscillation amplitude is increased, for example. Note,
however, for the square-wave oscillation in the cases with adjusted amplitudes of 5%
and 10%, there are some cases for which there is significant amplification of the streaks.
Presumably these cases are those for which, during the part of the oscillation when the

wall velocity stays relatively constant, the modified secondary basis is unstable.
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Figure 6.39: Development of streak magnitude in time for the optimum streak for a range of

spanwise square-wave wall oscillation magnitudes. 77 = 250. ¢ = 0 in all cases
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Figure 6.40: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with a square-

wave profile and Tt = 250. Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude
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Figure 6.41: Development of streak magnitude in time for the optimum streak for a range of

spanwise sawtooth wall oscillation magnitudes. T = /250. ¢ = 0 in all cases
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Figure 6.42: Development of streak magnitude in time for the streak with A* = 75 for a variety of wall oscillations with a sawtooth
profile and T+ = 250. Different frames show different forcing amplitudes. Clockwise from top left: amplitude 1%, amplitude 2.5%,
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black ¢ = 57/6.



A high-level summary of the effects of changing the oscillatory profile is depicted in figure
6.43. We see that changing the profile of the wall oscillation can alter the effectiveness
of the wall forcing in inhibiting streak development. Both the square-wave and sawtooth
profiles cause a stronger reduction in maximum streak strength than the sinusoidal profile
for periods near the optimum, and there is little to choose between them in this region.
For longer periods, however, we find that although the sawtooth oscillation still produces
greater strength reductions than the sinusoidal oscillation, the difference between the
square-wave and sinusoidal profiles gradually reduces. Indeed, for periods Tt > 100, the

square-wave oscillation is less effective than the sinusoidal.

We find, then that careful tailoring of the oscillatory profile can indeed provide stronger
streak reduction than the naive implementation of a sinusoidal oscillation. It is possible,
of course, that there are other profiles that are yet more effective than those described
here, since we have not performed a systematic search of all possible oscillatory profiles.
Nonetheless, the same general trends are found regardless of the exact profile used, down
to the optimum value of T* for the amplitude 1% oscillation, so it seems unlikely that

gross changes in results are possible by fine-tuning the oscillatory profile.
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Figure 6.43: Dependence of the maximum streak strength attained in various wall oscillation cases with wall oscillation. Streak

strength is expressed as a fraction of the streak strength attained for the optimum streak (zf = 12.5, A+ = 75) in the unforced case.



Chapter 7

Summary and conclusions

The dual purposes of the work presented in this thesis were to develop and validate a high-
order finite difference discretisation of the governing equations as formulated in chapter
2, and to investigate a reduced-order model for streaks in turbulent boundary layers us-
ing this numerical model, with particular emphasis on the effects of introducing spanwise
oscillations of the wall. The effectiveness of spanwise wall oscillations in reducing wall
friction in turbulent boundary layers has been known for about two decades, since the
investigations of Akhavan, Jung and their colleagues [1,37]. Since it is widely accepted
that streaks are of central importance in the self-sustaining turbulent cycle, we hoped that
through the use of our reduced-order model we could shed some light on the disruption

of turbulence by wall oscillations.

The mathematical model we used was a velocity-vorticity reformulation of the Navier-
Stokes equations. Formulations similar to this have been successfully employed for a range
of boundary layer problems, for instance the influence on Tollmien-Schlichting waves of
wall compliance [21] or of spatially evolving basis flows [26]. Although there are no natu-
ral boundary conditions for vorticity at the wall, by taking the wall-normal dimension to
be semi-infinite, we can apply an integral constraint on vorticity across the entire domain
which is fully equivalent to the no-slip conditions on velocity. Another useful feature

of this set of six equations (the three components of the vorticity transport equations
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plus the three velocity Poisson equations that formally close the system, see equations
2.3 and 2.5) is that it is only necessary to solve three of them. The remaining variables

can be defined in terms of the variables which are calculated explicitly; see equations 2.12.

The numerical treatment of the governing equations centred around the use of fourth-
order compact finite diffences. This allowed a relatively high-accuracy discretisation,
while retaining a narrow grid stencil. This means that our higher accuracy is achieved
without an increase in computational effort. The same compact finite difference scheme
used to discretise the wall-normal and streamwise derivatives was adapted to treat the
integral conditions and the numerical quadrature used to calculate the secondary vari-
ables. In the spanwise dimension we perform a Fourier decomposition and take only a
single mode. A fully implicit iterative scheme was employed to advance the solution in

time. Chapter 3 explains the numerical scheme in more detail.

By decoupling the solvers for the vorticity transport equation and the Poisson equation,
then testing them with analytic solutions, we were able to verify the order of accuracy of
our numerical scheme. Posing a problem with an analytic solution for the coupled system
of equations is not so straightforward; instead, we tested the coupled solver against a
more realistic problem: the generation of Tollmien-Schlichting waves. The performance
of the solver in this test problem is discussed in some detail in chapter 4, but in summary
we can say that the results obtained were satisfactory, particularly in that the solver was

shown to be robust up to a Reynolds number of 10°.

The reduced-order model of the streaks treated them, in a sense, as of a kind with the
Tollmien-Schlichting waves; that is, as linearised perturbations to a known basis solution.
Of course, a different basis flow was used: the streaks develop on a parallelised mean tur-
bulent flow rather than a parallelised Blasius (i.e., laminar) profile. The other principal
difference was the forcing used to generation the perturbations. Instead of a continuous,

time-harmonic forcing, the streak were generated with a non-physical source of stream-
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wise vorticity. This source was meant to be generically pointlike, in the hope that there
existed spatial and temporal limits of sensitivity; by this we mean scales below which the

streak response would not substantially alter if the fine details of the forcing were changed.

Our results indicated that such limits did not exist in a straightforward sense. Only
if we fix a temporal scale for the forcing does a sensitivity limit on the spatial extent of
the forcing become apparent, and vice versa. Within the practical resolution limits of
our solver, then, it seems impossible to find a generic pointlike force for the generation
of streaks, at least using Gaussian distributions of the form that we considered. We con-
cluded that it was necessary to impose some sort of scale on the forcing based on empirical

data; this is discussed in more detail in chapter 5.

Since our formulation is restricted to a single spanwise wavenumber, we needed to deter-
mine which wavenumber would best model real streaks. The details of this determination
are available in section 5.1; suffice it to say here that we found an optimum spanwise
spacing At = 75, which is on the low end of experimental measures of the mean streak
spacing [82], but very close to the observed median spacing A* = 80 [71]. It is reasonable
that our simulations would pick out the median rather than the mean streak spacing,
since the optimum (i.e., most strongly amplified) streak will be the streak that is most
often seen in a turbulent boundary layer. This analysis is contingent on the assumption
that the forcings which generate streaks of different spanwise spacing are approximately

equally likely to occur.

We incorporated spanwise forcing by solving the governing equations twice. The first
solution was spanwise uniform, and the only excitation was a spanwise oscillation of the
walls. This solution therefore approximated a Stokes oscillatory solution; it was not iden-
tical to this because the amplitude of the oscillation varied along the streamwise direction.
As shown in section 6.1, the solution we obtain under these circumstances using our linear

formulation is identical to the nonlinear formulation. By adding this solution to our orig-
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inal parallelised boundary layer solution, we create a modified basis flow. If we then solve
the governing equations a second time on this new secondary basis using the same forcing
parameters that generate the optimum streak, we can observe how the introduction of

spanwise forcing alters the streak response.

Our initial investigation employed an oscillation of period T+ = 250; since our streaks
typically reach their maximum after 30-40 wall units have elapsed from the switching-on
of the forcing, the point in the wall cycle at which the streak forcing is introduced will
significantly change the basis on which the streak develops during its lifetime. We mea-
sure this by a phase angle, ¢ , between the nominal start of the wall cycle and the forcing
switch-on. As can be seen in figure 6.3, altering ¢ can significantly influence the streak

development, particularly for higher amplitudes.

The observation of apparent delayed streak growth in some high-amplitude cases led
us to surmise that there were certain parts of the wall cycle more prone to promoting
streak growth than others, and this hypothesis was borne out by the results of longer-
term simulations, as presented in figure 6.12. We also found that, by freezing the wall
oscillation at certain instants, it was possible to find (unphysical) basis flows which sup-
ported exponentially growing normal modes. Thus we can say that some of our oscillating
basis flows, even if their overall effect is to reduce streak strength, pass through condi-
tions in which they are instantaneously unstable. By tailoring the oscillatory profile so
that it spends less time in the unstable conditions, we hoped to be able to improve the
performance of the wall oscillations. This is discussed in section 6.5, where we show that

some improvement is indeed possible by tweaking the oscillatory profile.

We found that altering the period of the wall oscillation had a number of interesting
effects. As a general rule, increasing the frequency of the oscillation resulted in a greater
reduction of streak strength, although for the lowest amplitude oscillations an optimum

oscillatory period T+ = 20 was apparent. This is significantly lower than the optimum
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period for turbulent drag reduction reported in experimental and DNS studies, which
implies that there are perhaps multiple mechanisms by which spanwise wall oscillations
interfere with the autonomous cycle of turbulence production, rather than the streaks

being the only important turbulence-producing structure directly affected.

In the other direction, significantly increasing the period of the wall oscillations pro-
duced certain cases where the streaks grew to significantly greater magnitudes than in
the unforced case, a factor of 50 being the largest increase observed. It is possible, then,
that there are some spanwise wall oscillations which will amplify turbulence rather than

reduce it.

A potentially more illuminating way of looking at the cases where we have growth of
normal modes (i.e., the frozen basis case) or perturbations that show very strong tran-
sient growth and have a normal mode-like form is to consider the stability of the turbulent
mean profile. Although it is a well-known result that turbulent profiles are asymptoti-
cally stable to any normal mode perturbation at all Reynolds numbers [64], it appears
that relatively small stable modifications of this profile (such as our frozen oscillations)
can produce a basis flow which supports exponentially growing disturbances. Similarly,
we can greatly increase the transient growth factor with a careful choice of oscillatory

modification to the turbulent profile.

This suggests a promising area of research into which the results of this thesis could
be extended. It is plausible that a more detailed search of the space of profiles formed
from the sum of the turbulent mean profile and transverse oscillatory flows might find yet
greater transient growth factors, or even a basis flow which can support an exponentially
growing quasi-periodic disturbance. Similarly, it would be interesting to explore the space
of steady modifications to the turbulent profile (at least that part of the space which can
be obtained from freezing wall oscillations, as in section 6.2) to try to determine the

minimal modification that still produces exponential growth. There would be additional
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interest in investigating whether the conditions for creating an asymptotically unstable
modified basis depend on Reynolds number. Perhaps the most promising aspect of these
results is that it suggests another mechanism by which turbulence might sustain itself:
if at high Reynolds number even small modifications to the mean profile can produce a
basis capable of supporting exponential growth, it is easy to see that relatively long-lived
structures might create a situation in which smaller perturbations could be rapidly am-

plified through linear mechanisms.

There are a number of other ways in which this research could be extended: for instance,
we could investigate the effects of multiple oscillating panels, or incorporate spanwise
varying wall motion, perhaps by applying Floquet theory. Nevertheless, in having applied
and validated a novel numerical formulation to the vorticity-velocity equations of fluid
motion, and having found a number of interesting results by applying this formulation
to a reduced-order model of streaks in a turbulent boundary layer, the work presented in
this thesis represents a novel and potentially useful addition to the body of research on

turbulent boundary layer flows and their numerical modelling.
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