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Abstract

The integration o f  b io inform atics da ta  sources is one o f  the m ost 

challenging  problem s facing b io inform aticians today due to the 

increasing  num ber o f  b ioinform atics data  sources and the exponential 

grow th o f  their content.

In this thesis, w e have presented a novel approach  to in teroperability  

based on the use o f  b iological relationships that have used relationship- 

based in tegration to integrate b io inform atics da ta  sources; this refers to 

the use o f  different relationship  types w ith  d ifferent relationship 

closeness values to link gene expression datasets w ith  other inform ation 

available in public b io inform atics data  sources. T hese relationships 

provide flexible linkage for b io log ists to d iscover linked  data across the 

biological universe. R elationship  closeness is a variab le  used  to m easure 

the closeness o f  the b iological entities in a rela tionsh ip  and is a 

characteristic  o f  the relationship. The novelty  o f  th is approach  is that it 

allow s a user to link a gene expression dataset w ith  heterogeneous data 

sources dynam ically  and flexibly to facilitate com parative  genom ics 

investigations. O ur research  has dem onstrated that using different 

relationships allow s b io logists to analyze experim ental datasets in 

d ifferent w ays, shorten the tim e needed to analyze the datasets and 

provide an easier w ay to undertake this analysis. T hus, it provides m ore 

pow er to b iologists to do experim entations using  changing threshold 

values and linkage types. This is achieved  in our fram ew ork by 

introducing the Soft L ink M odel (SLM ) and a R elationship  K now ledge 

Base (RK B), w hich is built and used by SLM . Integration and D ata 

M ining B ioinform atics D ata sources system  (ID M B D ) is im plem ented as 

an illustration o f  concept p ro to type to dem onstrate  the technique o f  

linkages described in the thesis.
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Chapter 1 

Introduction

1.1 Synopsis

B ioinform atics data sources are he terogeneous in their representation 

and query capabilities across diverse in fo rm ation  fields held in 

d istributed autonom ous resources. T he vo lum e o f  da ta  collected and 

stored in these distributed and heterogeneous da ta  sources, presents a 

m ajor challenge w ith  respect to the efficient and  effective accession, 

processing , extraction, discovery and in tegration  o f  th is inform ation. In 

particu lar, th is occurs w hen a b io logist w ants to use  data  m ining tools 

linked w ith  inform ation held in existing know ledge and  com putational 

resources in investigations to exploit the exponen tia lly  increasing 

am ount o f  com parative genom ic data. In this chapter, a background to 

this problem  is provided, follow ed by the research  m otivations for the 

thesis. N ext, the hypothesis, the aim s and ob jectives o f  the research are 

presented. The research m ethodology used is p resen ted , follow ed by a 

sum m ary o f  the overall achievem ents o f  the research . T he chapter ends 

by describ ing the organization o f  the thesis.

1.2 B ackground to Integration  o f  b io in form atics sources

The integration o f  bio inform atics data  sources is one o f  the m ost 

challenging problem s facing b io info rm atic ians today, due to the 

increasing num ber o f  b io inform atics da ta  sources and the exponential 

g row th o f  their content and usage [131, 138]. These sources usually  

d iffer in their structure, scope and contents [139]. M ost data sources are 

centred on one prim ary class o f  objects, such as gene, protein, or D N A

1



CHAPTER 1: INTRODUCTION

sequences. This m eans that each data  source contains d ifferent p ieces o f  

biological inform ation and know ledge reflecting the purpose o f  the 

source, and can answ er queries appropria te  to its dom ain, but cannot 

help w ith  queries that cross dom ain  boundaries and involve different 

data  repositories. A n area o f  research  that is grow ing in im portance.

In m ost existing integration system s, jo in in g  inform ation held  in 

d ifferent data sources is based  on the un iqueness o f  com m on fields in 

the sources o r by  linkage through on to logy  term s. D ata entries in som e 

data sources have relationships expressed  as links, o r predefined cross- 

references. Such cross-references are usually  sto red  as a pair o f  values, 

for exam ple, target-data source and accession  num ber, and are effected 

through a hyperlink on a w ebpage [36, 140]. T hese  links are added to 

data entries for m any different reasons: for exam ple, data  curators insert 

them  as structural relationships betw een tw o  da ta  sources, and 

biologists insert them  w hen they  discover a  con fiden t relationship 

betw een item s [36]. Yet, these links are not estab lished  in collaboration 

w ith  the curator o f  the linked data sources. T hese  static links 

(hyperlinks) are problem atic, as the hyperlink  m ay change. Thus, i f  a 

curator changes, o r w ithdraw s an entry that is re la ted  to an entry in 

another data source, the link fails [36, 140]. W ith  sources changing 

quickly, this leads to inconsistency and continual updating  is needed. 

M oreover, m any b io inform atics data sources do no t support explicit 

relationships w ith  data held  in o ther data sources, such  as ortholog and 

o ther types o f  relationship. B io inform atics da ta  sources need linking 

using associations betw een entities that are hard  to find, as they are 

im plicit in the sources and not explicit in the data  [3]. Relationships 

betw een data held in such data sources are u sua lly  num erous, and only 

partially  explicit. There is, therefore, a g row ing  need  to link these data 

sources using dynam ic and flexible link ing  at a h igher level through 

relationships, particularly  i f  this can be ach ieved  in an efficient m anner.

2
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1.2.1 Experimental Datasets

The em ergence o f  b io technology  has m ade it possible to study the 

expression o f  thousands o f  genes o r p ro teins in a single experim ent in 

the laboratory, w hich creates an experim ental dataset [7, 181]. This 

raises m any challenges:

•  In order to m ine relevant b io log ical know ledge from  an 

experim ental dataset, it is im portan t no t only to analyse the 

experim ental data, but also to c ross-reference  and associate the 

large volum es o f  data p roduced in th is w ay w ith inform ation 

available in external b io inform atics da ta  sources, in order to 

conduct com parative genom ics investigations and so predict gene 

functions and study evolutionary analysis [186].

•  D ue to the com plexity  o f  the b iological p rob lem s under study and 

the lack o f  com plete experim ental and analy tical m odels, there is 

a need to design a know ledge-driven  system  tha t assists in the 

explanation and validation o f  the p red ic tive  outcom es o f  

experim ents [198].

•  R esearchers have great difficulty in setting  up  large-scale 

experim ents, m ain ly  because o f  a shortage o f  expertise and 

lim ited resources to recru it appropriate s ta ff  [25], so m ost current 

researchers annotate genes one at a tim e, u sing  online data 

sources or a m anual literature search [106]. A  previous study 

[107] has revealed that 40 to 60%  o f  genes found  in new  genom ic 

sequences do not have assigned functions.

•  M any researchers struggle to iden tify  the m ost appropriate 

sources and tools to be used  in the analysis o f  their experim ental 

datasets [106].

•  One o f  the significant challenges is to integrate gene annotation 

w ith the gene expression and  sequence inform ation [136, 138, 

193, 194], so that b io log ists can study genes based on their

3
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function, chrom osom al location , and tissue expression, and cross- 

reference the data derived  from  different species across diverse 

expression analysis p latform s.

•  W hen linking and in tegrating data  presented in an experim ental 

dataset in a sem i-structured  form  w ith data held in a 

b ioinform atics data source, it is essen tia l to determ ine as m uch 

inform ation about the experim ental dataset as possible. This 

inform ation can be detected au tom atica lly  from  its m etadata, such 

as colum n nam es and their content descrip tions [75].

Thus, instead o f  overw helm ing researchers w ith  long lists o f  

unannotated data, researchers need  a system  that allow s them  to 

annotate genes, and m icroarray1 inform ation  by  linkage to additional 

inform ation from  various online public data  sources. T he system  should 

have the ability to integrate experim ental da tasets w ith  the rich set o f  

gene annotation inform ation available w ith in  and across species. Such a 

system  should  allow  researchers to collect and m anage large am ounts o f  

gene expression, gene sequence, and gene anno ta tion  data.

In our research, w e aim  to develop a fram ew ork  for integrating 

bioinform atics data  sources that uses rela tionsh ips across species and 

user preferences. It should allow  the user to specify  constraints and 

param eters for the integration, w hich w ould  a llow  a biologist to 

facilitate flexible usage o f  d ifferent types o f  com parative genom ics 

relationships in investigations.

1.3 R ationale

In 2006, over 100,000 individual sam ples w ere  deposited in public 

repositories for gene expression /m olecu lar abundance data. These 

subm issions represent over 2000 p latfo rm s or array types from  60 

different species [87]. This body  o f  public  data is grow ing

1 Microarray is a high-throughput technology used in molecular biology and in medicine.
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exponentially  and is m atched by  an equal or greater num ber o f  studies 

in the private dom ain. Few  too ls have been developed to com pare 

directly  the results y ielded from  individual studies. A lthough, 

significant advances have been m ade in visualizing [22, 38, 47, 88] and 

m anipulating  individual datasets (includ ing  data processing [200], 

statistical analysis[103], clustering [16, 211] and annotation based over­

representation  [73]), these approaches a llow  only cross-experim ental 

com parison by subjective analysis o f  the  output. These com parisons 

offer an opportunity  to reveal conserved  disease m echanism s or 

com m on m odes o f  action in cases o f  tox icosis caused by chem ical 

exposure. The value o f  this data to  the fundam enta l understanding o f  

these processes cannot be underestim ated , b u t new  approaches are 

needed. The m ajor hurdles to these datase t com parisons include 

variations in reported nom enclature, da tabase  versioning, 

orthology/paralogy, choice o f  relationship , and  the  threshold  used to 

determ ine relationship validity. In  this research, w e set out to develop a 

p latform  that w ould allow  direct com parison  be tw een  tw o datasets, 

w ith in  species, allow ing variable gene identifiers to  be  m apped onto the 

species-specific  prim ary data source, w hich in tu rn  could  be used to 

y ield  sequence or gene annotation that w ould  fac ilita te  com parison, 

w ith flexibility  in the types used and the thresho lds o f  linkage.

1.4 T he hypothesis and the aim  o f  the research

The research hypothesis for this thesis is:

Hidden relationships between biological objects can be used in 
integrating bioinformatics data sources, so that a biologist can flexibly 
link an experimental dataset with bioinformatics data sources and the 
resulting data source can be mined effectively to inform the 
investigation.

Thus, the aim  o f  the research is to  investigate  the use o f  relationships 

betw een biological objects to link  heterogeneous bioinform atics data 

sources to annotate genes d iscovered  in experim ents and predict gene 

functions via com parative genom ics analysis.
5
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1.4.1 O bjectives

In order to dem onstrate the hypothesis, w e aim  to m eet a num ber o f  

objectives:

O bjective 1: to extract an exp erim en ta l dataset’s m etadata and to 

detect su itable candidate keys for lin k age in it

M ost experim ental datasets are stored in unstructured  files that do not 

have m etadata saved in logical fields. In o rder to investigate fully the 

dataset being generated by a m icroarray  o r in a laboratory  experim ent, it 

is essential to detect and use as m uch  inform ation about the 

experim ental dataset as possible. This in fo rm ation  can be found in 

headings and content descriptions, and needs to  be extracted and 

exploited  to ensure that the data can be in tegrated  in valid  ways and so 

increase the scope o f  the investigations o f  the experim ental dataset. 

Thus, a tool is needed to d iscover and extract th is inform ation.

Experim ental datasets usually  have m any elem ents. O n ly  a few  o f  these 

elem ents can be used as a candidate key for linkage w ith  o ther data. A  

candidate key  helps us to jo in  tuples in datasets w ith  other data. 

T herefore, w e need  to try to detect au tom atically  cand idate  keys that 

can be used to link and integrate a dataset w ith  pub lic  da ta  sources.

O bjective 2: to transform  extracted  m etadata and datasets into a 

form  that can be used for linkage w ith other sou rces

U sually, experim ental datasets are not in a fo rm  tha t can be directly 

linked to o ther bioinform atics data  sources. T he m etadata should be 

stored in a form at that allow s its effective use. A lso , datasets need to be 

analysed and stored so that they can be in teg rated  and linked to other 

b ioinform atics sources. O nce the data  has been  stored in a suitable 

structure, it can be used to link  w ith  o ther appropriate public 

b ioinform atics sources.

6
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O bjective 3: to show  that these relationships can provide flexib le  

and loosely coupled linkages across heterogeneous data sources

B ioinform atics data sources con tain  a  large variety o f  objects. T hese 

objects are connected in a varie ty  o f  w ays giving an extensive 

in terconnected graph o f  relationships. T hese relationships are often  

m any-to-m any, and refer to dynam ic effects that one object has on 

another. D iscovering these relationsh ips betw een  biological objects is 

im portant for biologists so that they can investigate  w hether the links 

enrich their know ledge about the genetic structure . Thus, the discovered 

relationships provide a m eans for jo in in g  in fo rm ation  and linking data 

sources dynam ically  and flexibly, and so p rov ide  biologists w ith rich 

inform ation and annotation. Thus, the ob jec tive  is to detect these 

sem antic relationships and bu ild  a re la tionsh ip  know ledge base 

contain ing this inform ation that can be used  to jo in  inform ation based 

on the GO  classification association o r hom ology  betw een  sequences, 

so that a b iologist can assess the significance o f  the d ifferen t links used 

in an investigation.

O bjective 4: to build a know ledge base o f  d iscovered  relationships  

betw een sources and to exploit this to com b in e annotation  

know ledge from  different sources.

D iscovered relationships betw een biological ob jects w ill be stored in a 

know ledge base that can be used  in the in tegration  process to enrich a 

query. U ser queries can be extended using  these  relationsh ips to obtain 

a greater am ount o f  relevant inform ation. T he ob jec tive  is to store these 

relationships in an appropriate m odel so that they  can be reused in 

future investigations.

O bjective 5: to provide users w ith  u n iform  access to bioinform atics 

sources so that they can be queried  as i f  they w ere a single source, 

thus shielding users from  the un d erly in g  structure o f sources.

A n integration aim  is to provide users w ith  a single interface to access 

and query m ultiple b io inform atics sources. The system  should enable

7
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users to subm it a single query to m ultip le  bioinform atics data sources, 

and return  a unified  set o f  resu lts ra ther than the user having to spend 

unnecessary  tim e subm itting the sam e query over and over again to 

m any data sources and then in tegrating  the results m anually. M oreover, 

end users o f  the integration system  shou ld  not need to be aw are o f  the 

underly ing  structure o f  sources w hen  accessing or querying 

heterogeneous data sources. The system  should handle all the 

underlying m echanics needed to p rocess a u se r’s query and return  

results. The objective is to hide the in ternal structure o f  these sources 

from  users to sim plify  the interface for the b io log ist.

1.5 R esearch A pproach

In th is section, w e sum m arise the m ethodology  used  in conducting our 

research. F irstly, the problem  is defined as link ing  experim ental datasets 

from  biological experim ents w ith  heterogeneous b io inform atics data 

sources in flexible w ays to support know ledge d iscovery , com parative 

genom ics, o r further investigation. E xisting in teg ration  system s are 

then rev iew ed to determ ine the m ost appropria te  approach. The 

literature rev iew  is split into tw o tracks; the first concen tra tes on the 

in tegration o f  heterogeneous data sources in general and  the second is 

about b io inform atics data source in tegration  and  the m ining o f  

b iological data. These tracks are then com bined  to support the research 

aim.

D iscussions w ith  professionals in b iological science w as undertaken, as 

it w as our targeted application field. Dr. Peter K ille  (B ioscience School, 

C a rd iff U niversity) w as frequently  consu lted  to ensure that our research 

m et a b io log ist’s needs. E xperim ental da tasets w ere  collected under the 

supervision o f  s ta ff o f  the School o f  B ioscience. D ifferent 

bioinform atics data sources w ere se lec ted  to be integrated w ith these 

datasets based on the biology under investigation , nam ely, W orm base 

[46, 210], M G D  [33-35, 41, 71] and  G ene O ntology (GO) [89].

B ased  on our investigation o f  the research  problem , w e built a m odel for 

capturing and storing relationships betw een  the biological objects to be
8
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used for the integration and linkage o f  the bioinform atics data  sources. 

A n initial system  structure w as p roposed  w hich provided a user w ith  

uniform  access to heterogeneous b io inform atics sources. The final step 

in our research w as the im plem entation  o f  our proposed system  as a 

prototype.

1.6 O verall A chievem ents o f  the research

The follow ing is a sum m ary o f  the m ain  ach ievem ents o f  this research:

a) Introducing an approach for ex tracting  an experim ental 

da tase t’s m etadata and iden tify ing  appropriate candidate 

keys for linkage w ith  o ther re la ted  data  (C hapter 6).

b) The creation (see C hapter 4) o f  a  novel approach — SLM  - 

to the integration o f  b io inform atics da ta  sources w hich 

allow s biologists to create easily , d ifferen t types o f  linkages 

betw een bioinform atics data sources, d rive  the integration 

process, change the linkage type flex ib ly , ad just the linkage 

easily, so that the investigator can try  d ifferen t linkages, see 

the effect o f  using them  and so determ ine w hich  one i f  any 

m atches the purposes o f  their research  and produces 

significant results. This allow s b io log ists to analyze 

experim ental datasets in d ifferent w ays, shortens the tim e 

needed to analyze the datasets and p rov ides an easier w ay 

to undertake this analysis. T hus, SLM  provides biologists 

w ith a tool w hich supports experim entation  by using 

different threshold  values and  linkage types and thereby 

supports investigative research  (C hap ter 8).

c) The creation o f  a know ledge base  o f  the discovered 

relationships betw een b io log ical objects (Section 9.4), 

w hich is used to com pare and link  the experim ental datasets 

w ith  public sources. T his know ledge base im proves 

com parative approaches to annotate genes, by identifying 

possible relationships betw een  objects across species, and

9
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predicting p ro tein -function  from  sequence hom ology, 

orthology and G O -term s. B y integrating functional and 

sequence data across species, biologist can annotate the 

genom e o f  a species using  functional data from  another. 

C om parative genom ics p rov ides evidence for close

evolutionary relationships betw een  gene fam ilies. A lso, this 

know ledge can be reused  in o ther investigations.

d) A  flexible m ediator arch itecture  for linking (i.e. integrating) 

experim ental datasets w ith  re levan t inform ation held in 

heterogeneous data sources (see C hap ter 5). This m eans 

that a b iologist does no t need  to d irec tly  query individual 

data sources or use a variety  o f  In terne t search tools for this 

purpose. W e present a m ed iato r-based  integration

architecture that links experim ental da tasets to relevant 

inform ation held  in heterogeneous da ta  sources. O ur 

m ediated architecture offers a set o f  too ls fo r discovering 

sem antic relationships betw een b io log ical objects,

brow sing these relationships and au tom ating  m etadata 

extraction, and offering a single po in t o f  access to a set o f  

data  sources. It enables flex ib le  integration o f  

heterogeneous data sources. T his a llow s b iologists to be 

able to create easily , d ifferent types o f  linkages betw een 

bioinform atics data sources, drive the in tegration  process, 

change the linkage type flexibly , ad just the linkage easily 

so that the investigator can try  d ifferen t linkages to see 

w hich one i f  any m atches the pu rposes o f  their research and 

determ ine the effect o f  d ifferen t rela tionsh ips easily and so 

identify  their b iological significance.

e) The D eterm ination o f  the optim al threshold for cross­

species orthology rela tionsh ips. T his is dem onstrated for 

M ouse and C .elegans (see Section 8.5).
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Six papers w ere published on the w ork  reported in th is thesis. The full 

details o f  these papers are found  in  [8-12]. The conferences and the 

w orkshops in w hich the papers appear are:

1. 21st A nnual B ritish N ational C onference on D atabases, B N C O D  

21, Edinburgh, U K , 7-9 July  2004.

2. S ixth Inform atics W orkshop fo r R esearch  Students, U niversity o f  

B radford, B radford, UK , M arch  2005.

3. 22nd B ritish N ational C onference on  D atabases, BNCO D 22, 

Sunderland, U K , 5-7 July 2005.

4. H IB IT  05: International Sym posium  on  H ealth  Inform atics and 

B ioinform atics, B elek, A ntalya, T urkey , 10-12 N ovem ber 2005

5. 4 th  International W orkshop on B io log ical D a ta  M anagem ent - 

B ID M  '06 in conjunction w ith  D EX A  2006, K rakow , Poland, 3-7 

Septem ber 2006.

6. V LD B  2006 on D ata M ining in B io in form atics in conjunction 

w ith  V L D B  2006, Seoul, South K orea, 11-15 S eptem ber 2006.

1.7 Thesis organization

This section presents an overview  o f  the thesis organization. An 

overview  o f  the chapter contents is given.

•  Chapter 2: Background
This chapter gives the necessary  background  inform ation 

about the characteristics o f  b io log ical objects and 

bioinform atics data sources.

•  Chapter 3: Bioinformatics Data source Integration
This chapter surveys the background  areas o f  research related 

to the m ain ideas p resen ted  in the thesis on linking datasets.
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•  Chapter 4: Soft Link M odel
This chapter introduces the proposed  Soft L ink M odel for data 

source integration and describes the approach used.

•  Chapter 5: System Architecture
This chapter introduces the design  o f  the architecture and the 

different com ponents o f  the ID M B D  (Integration and D ata 

M ining o f  B ioinform atics D ata  sources) system .

•  Chapter 6: Implementation
This chapter discusses the im plem enta tion  issues for the 

proposed system , and describes the p ro to type  im plem entation.

•  Chapter 7: Extracting Metadata o f  Experimental Dataset
This chapter presents an approach  for extracting the 

experim ental da tase ts’ m etadata  and  find ing  the suitable 

linkage keys that can be used fo r in tegration  based on a 

m athem atical foundation. Furtherm ore, it show s how  to m ap a 

linkage key w ith the dom ain onto logy to find  rela ted  concepts 

and sem antic relationships.

•  Chapter 8: Analysis o f  “wet laboratory99 data
This chapter dem onstrates the u tility  o f  ou r p ro to type system. 

W e used  the tools to analyse datasets generated  by wet 

laboratory experim entation. The aim  w as to  dem onstrate that 

the soft link fram ew ork w ould  a llow  us to derive novel 

insights into the experim ental system  by  determ ining the 

elem ents conserved betw een species.

•  Chapter 9: Evaluation
This chapter provides an evaluation  o f  the system  in term s o f  

different dim ensions.

•  Chapter 10: Conclusions and fu ture work
This chapter sum m arizes and  com m ents on the contributions 

m ade by the research and d iscusses the perspectives and 

research directions that rem ain  open for future w ork that could

12
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be carried out to im prove the effectiveness o f  the SLM  as a 

m ethod o f  in tegrating heterogeneous bioinform atics data 

sources.



CHAPTER 2 

Background

2.1 Synopsis

This chapter gives the background about b io log ical data and 

b ioinform atics data sources. The necessary  background  inform ation 

about bioinform atics data sources is presented. T his covers reasons for 

the grow th in the num ber and size o f  b io in fo rm atics da ta  sources, and 

the characteristics o f  bioinform atics and its data  sources. T his grow th is 

often described in the literature as ex p lo s iv e [l 13, 187, 214].

H eterogeneity  present in b ioinform atics data  sources is detailed and 

types o f  conflict explained. D ata m odels are defined  and described in 

detail, and their advantages and disadvantages d iscussed .

2.2 Introduction

In recent years, there has been  a m assive increase  in the num ber and 

size o f  bioinform atics data sources, w hich  is expected  to  continue at the 

sam e, o r an even faster pace in the com ing years [131]. The growth in 

the num ber o f  data sources is related  to the con ten t o f  data held in them  

[65]. The reasons for this grow th can  be sum m arised  as follows:

i. R apid progress o f  the hum an genom e project and other 

sequencing projects [58]; 

ii. Easy access to stored data p rov ided  by  the Internet [13, 131];

iii. Proliferation o f  new  b iodata  analysis technologies, bio-statistical 

approaches, com putational algorithm s, know ledge discovery, 

data m ining and data analysis too ls [60, 157];
14
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iv. D esign and developm ent o f  new  biotechnology and efficient 

(w ith respect to speed and  accuracy) experim ental techniques, 

prim arily  D N A  sequencing, D N A  m icroarrays and other high 

throughput technologies [131]; and

v. M assive investm ent in genom ics by  governm ents and the 

pharm aceutical industry [92, 131, 199].

In June 2008, the G enB ank database a lone he ld  the records o f  m ore 

than 88,554,578 sequences and over 92 ,008,611,867 bases [86]. 

A ccording to a recent survey, m ore than  1078 bioinform atics data 

sources are available online [83]. Table 2.1 and  F igure 2.1 show the 

increase in the num ber o f  b ioinform atics da ta  sources from  1999 to the 

present day. F igure 2.2 illustrates the developm en t o f  the international 

N ucleotide Sequences database [86]. F igure 2.3 show s the grow th o f  

the G enB ank database from  1982 to 2005. In  th is period , there w as an 

exponential grow th in base pair data from  680K  to 56,037 m illion and 

in sequences from  606 to 52 m illion [85]. Such explosive  grow th is 

expected to continue well into the 21st century  [113, 114, 187, 196].

D ata sources are m aintained by d ifferen t com m unities and 

organizations [131, 138]; they are autonom ous, d istribu ted , disparate, 

heterogeneous and often do not provide d irect access [29, 138]. A 

description o f  these characteristics can be found in section  2.3.2.

D ata sources in general can be classified  as p rim ary  o r secondary. A  

prim ary source holds inform ation from  an experim ent and  is som etim es 

called  an archival data source. It contains raw  data  o f  sequences or 

structures. E xam ples o f  these prim ary sources are G enB ank [31, 32], 

EM BI and D D B J for G enom e sequences and  the P ro tein  D atabank for 

protein structures [21].
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Growth o f b io in form atics data s o u r c e s
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Figure 2.1: Growth o f  bioinform atics data sources 1999-2008 based on 

statistics pub lished  in [79-83]

Year 1999 2000 2001 2002 2003 2004 2 0 0 5 2006 2007 2008

Number 197 226 281 335 386 548 7 19 858 968 1078

Table 2.1: Growth o f  bioinform atics data sources (1999-2008) [82-85]
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Growth of the
International Nucleotide S equence  D atabase Collaboration

P ars  eoolntxj!«d by G fiB arfcg— « EMSL— DOBJ —i

Figure 2.2: D evelopm ent o f  the international N ucleo tide Sequence  

D atabase [85]

Secondary data source inform ation is derived from  prim ary data source 

data; Secondary data sources hold data, such as conserved sequences, 

signature sequences and active site residues o f  the protein families 

derived by the m ultiple sequence alignm ent o f  a set o f  related proteins. 

A secondary data source is called a curated data source and examples 

include M GD [34] and W orm base [46].

W hile the contents o f  prim ary data sources are controlled by the 

subm itter, the contents o f  secondary data sources are controlled by a 

third party. Secondary data sources are derived from  the following 

procedures [132]:

•  A nnotating and enriching data, either m anually  or automatically,

• Cleansing and rem oving redundant inform ation,

• Collecting data from literature,

• M ining and com piling data from  several data sources, and

• Analysing prim ary data.
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In general, bioinform atics data sources cover a w ide range o f  subjects 

and data types, including gene sequences, gene expression data, protein 

sequences, protein structure and m etabolic pathways. They can be 

classified as general purpose or specific purpose data sources [29].
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F igure 2.3: Growth o f  GenBank (1982-2005) [85]

2.3 C h aracter is t ics  o f  b io in fo r m a t ic s  d ata  sources

The characteristics o f  bioinform atics data sources are presented here to 

give the reader an understanding o f  the field and the challenges it 

presents.
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2.3.1 D a ta

Elm asri and N avathe [70] identify  several characteristics o f  b iological 

data that m ake it d ifficult to m anage:

C om plex ity : biological data are questionab ly  the m ost com plex data 

know n w hen com pared w ith  m ost o ther applications [177]. They are 

connected to each other in m any w ays, in a h ighly  interconnected graph 

o f  relationships [174]. Thus, defin itions o f  such biological data m ust be 

able to represent a com plex substructure o f  da ta  as well as relationships 

[70, 154]. For exam ple, b ioinform atics da ta  sources include not only 

the functions o f  individual genes and p ro te ins, but their com plex 

interactions w ithin a tissue, cell tissue, and  w ho le  organism  [70, 154, 

159, 177].

D iversity : B iological data have a great d iversity  o f  types, such as 

sequences, spatial, 3D structures, graphs, string, scalar and vector data. 

T here m ay also be overlaps in data types betw een  d ifferen t species and 

different genom e sources [70, 154].

In co m p le te : B iological data are very  often  incom plete  since som e 

biological objects are large and full descrip tions take tim e to achieve, or 

the lim ited resources available prevent the co llec tion  o f  relevant data 

[177]. For exam ple, m ost o f  the genom es are incom plete  and not 

annotated because the function o f  som e genes is still unknow n.

L a rg e  size: O ne o f  the m ost notable characteristics o f  b iological data is 

their large size on account o f  the com plexity  o f  b io log ical concepts, 

data types and structure. Sequences, graphs, p ro te in -p ro te in  interactions 

all contribute to the com plexity  and size o f  b io log ical data  [131].

L a c k  o f  a s ta n d a rd ise d  n o m e n c la tu re : D ifferen t organisations and 

com m unities use their ow n term inology to  describe  biological concepts. 

Thus, b iological data frequently  suffer from  am biguous and unclear 

concepts since there is no standardised  nom enclature  for them  [131, 

177].
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2.3.2 D ata sources

H ere w e discuss the differing characteristics o f  bio inform atics data 

sources [29]:

H eterogeneous In structure and content: each data source has its ow n 

data m odel and uses its ow n term ino logy  and ontology. D ifferent 

designers, have used several w ays to  m odel a particu lar concept and the 

aim  o f  the experim ent and pro ject all con tribu te  to this heterogeneity 

[98, 154]. Thus, the structure o f  data sources, and  representations o f  the 

sam e data query results m ay be d ifferent (see section  2.4).

Large in size: in the last few  years, the num ber and size o f  new  

bioinform atics data sources has been  g row ing  exponentially , as has the 

num ber o f  com putational tools available fo r analysing  these data. There 

is no sign o f  any deceleration o f  grow th [29].

D ynam ic: bioinform atics data  sources are dynam ic. T heir interfaces 

alter from  tim e to tim e and their schem as change at a  rap id  pace as do 

their contents [70].

A utonom ous: bioinform atics data sources are au tonom ously  ow ned 

and m aintained  by  different com m unities and o rgan isations often for 

different purposes [138]. C onsequently, query  types allow ed on data 

sources and the precise m ode o f  interaction are d iverse  because o f  the 

different reasons for hold ing  the data [29, 138].

W idely distributed: bioinform atics data sources are w ide ly  distributed 

across the w orld, and such data  is currently  no t he ld  in a centralised 

location for analytical purposes. This is m ost like ly  to continue to be 

the case [29, 138].

2.4 H eterogeneity in B ioin form atics D ata  Sources

This section identifies d ifferent types o f  heterogeneity  that affect 

bioinform atics data sources w ith  the aim  o f  show ing the challenges 

they present to m aking an in teroperable system . This heterogeneity m ay 

exist at three levels, nam ely, syntactic , sem antic  and data m odel levels 

[26, 69, 84, 99, 110, 123, 128, 129, 131].
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2.4.1 Syntactic

Syntactic conflicts, som e referred  as technical conflict, arise due to the 

use o f  different storage parad igm s and form ats, platform s, type o f  

system s and com m unication p ro toco ls [128, 131, 134]. Syntactic 

conflicts m ay also occur due to the use  o f  different query interfaces, for 

exam ple, SQL, OQ L, X query/X path , the access m ethod used, for 

exam ple, O D BC, JD BC, SO AP, and the  sto rage m ethod [128, 131].

2.4.2 Sem antic

The classification o f  the sem antic he terogeneities can be found in [69, 

98, 99, 128, 129, 131].

W on K im  [128] describes a schem a as

“containing a semantic description o f  the information in a given 
database, which can be represented in many ways in the same 
data models. Given such inter- and intra-model variability, it is a 
formidable task to integrate many schemas into a homogeneous 
schema. "

Thus, sem antic conflicts are concerned w ith  d ifferences in the 

representation , m eaning, interpretation or use o f  the sam e or related 

data [26, 84, 98, 99]. The m ost im portant sem antic  heterogeneity  

affecting b io inform atics data source integrations are:

Schem a conflicts: concepts m ay be represen ted  using  different data 

structures in different databases, for exam ple, an en tity  in one schem a 

m ay be an attribute in another, d ifferent data  types are used (string or 

integer), different units are used  (pound, k ilo), and  the precision m ay 

vary (two or four decim al places; m ark  or grade o f  a m etric). O ther 

causes o f  conflict include d ifferent w ays o f  representing  incom plete 

inform ation (for exam ple, the m eaning  o f  nu lls), and different ways o f  

identifying objects in databases [69, 98, 99, 152]. A nother conflict is 

data value conflict; this arises w hen  d ifferen t representations are used 

for equivalent data. These conflicts include discrepancies o f  type, unit, 

precision, allow ed values, spelling  and abbreviations [98, 99, 152]. For
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exam ple, gene num ber is represen ted  by  A rabic num bers in M G I and 

R om an num bers in W orm .

D ata versus schem a conflicts: these  conflicts arise w hen data (values) 

in one schem a are considered as m etada ta  (type nam es) in another data  

source. F or exam ple, a data value in one relational schem a m ay be the 

nam e o f  an attribute in another rela tional schem a [98, 129, 152].

E ntity identification conflicts: entity  identification  conflicts occur 

w hen there is difficulty determ ining w hether tw o or m ore entities 

(instances) in different data sources refer to the sam e real w orld entity. 

For exam ple, a m ouse gene identifier in M G I is d ifferent from  the sam e 

gene accession num ber in G enbank [152].

N am ing conflict: nam ing conflicts arise w hen  d ifferen t nam es are used 

for the sam e concepts in the real w orld  or the sam e nam es are used for 

different concepts in the real w orld. This occurs w hen  the designers’ 

term inology and nom enclatures used  to describe a real w orld  concept 

lead to synonym  and hom onym  problem s. In the first, tw o different 

nam es are used  to describe the sam e concept; fo r exam ple, som e data 

sources use com m on English species nam es w hile  o thers use system atic 

species nam es. In a hom onym , the sam e nam e is u sed  to describe 

different real w orld  concepts [98, 99, 152].

G eneralisation /Specialisation  C onflict: som e p ro te in  dom ains have 

functional annotations from  different sources. Thus, 

generalisation/specialisation conflict m ay occur. F o r exam ple, sources 

m ay describe the sam e gene function using  the gene ontology 

m olecular function but use different h ierarchical levels [152].

L inked Conflict: this is caused by  the m ethod  used  to link sources. For 

exam ple, M G I links to Sw iss-Prot th rough  its m arker concept, to 

RatM ap through orthologs, to P ubM ed th rough  references, and to 

G enB ank through their m arkers (fo r genes) or m olecular probes and 

segm ents (for anonym ous D N A  segm ents) [138].
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Scope conflict: th is arises w hen  one source clearly encodes the scope 

o f  its data w ith  respect to species, w hereas another source refers to the 

species im plicitly, as it covers on ly  one species [131, 134, 135].

2.4.3 D a ta  m odels

A  data m odel is an abstract, logical defin ition  o f  the objects used to 

m odel the structure o f  data [55-57, 184]. D ata  m odel conflicts occur 

w hen databases use different m odels, fo r exam ple, relational, object- 

oriented, A ceD B , hierarchical, to m odel the data  [98, 146].

F la t  files: it is estim ated that 80%  o f  b io log ical data  are in text form  

[191]. In the past, b ioinform atics data  w ere  no rm ally  stored in ASCII 

text files. Today, m any bioinform atics data  sources are held  in flat files, 

w hich are a single, large table, containing on ly  one record  structure and 

no links betw een separate records. This flat file is struc tu red  using letter 

codes at the beginning o f  each line [40]. A ccess to da ta  in flat files is 

carried  out sequentially, so access is slow  because  the entire file m ust 

be searched sequentially to find the w anted data. T hey  also suffer from  

data redundancy, inconsistent data, inflexibility , lim ited  data sharing, 

poor enforcem ent o f  standards, low  program m ing  productiv ity , and 

excessive program  and data m aintenance [141].

C urrently, there is a shift to hold b io inform atics da ta  sources in 

relational, object o r object relational database m anagem ent system  

(D B M S) or as X M L data. F lat files are no  longer considered 

appropriate alternatives to D B M Ss. H ow ever, flat files are the de facto 

data exchange standard in the field, since m any  bioinform atics 

applications operate on flat files, for exam ple, B L A ST [15] and FA STA 

[143].

A C eD B : A CeD B is a database m anagem ent system  developed to store 

data o f  a sm all w orm  called C. elegans. In  [5] it is described as follows:

“ACeDB was originally developed fo r  the C. elegans genome 

project, from  which its name is derived (A Caenorhabditis 
elegans DataBase). However, the tools in it have been 
generalised so as to be much more flexible and the same
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software is now used fo r  many different genomic databases from  
bacteria to fungi to plants to man. It is also increasingly used fo r  
databases with non-biological content."

Thus, A C eD B  can refer to a database and data  relating to the nem atode 

C. elegans, or to this database m anagem ent system . O nly a few, but 

nevertheless significant, b io inform atics data  sources are im plem ented 

using A CeD B [40]. The A ceD B  m odel has several advantages — 

accom m odation o f  rough data item s; easy  ex tension  o f  the schema; and 

a pow erful and high level query language called  A Q L; furtherm ore, it is 

an appropriate m odel for sm all to m edium  sized  internal databases [40].

O bject O riented D ata M odel: the O b ject O rien ted  D ata M odel 

(O O D M ) evolved in the m id-to-late 1980s subsequent to the 

appearance o f  object-oriented program m ing languages, such as C++ 

[126]. A ccording to B ry and K roger [40], in  2003, about 7% o f  all 

m olecular biological databases are im plem ented  using  O bject O riented 

D atabase M anagem ent System s (O O D B M Ss). A  c lear advantage o f  the 

O O D B  is its ability to represent the relationships betw een  biological 

objects. M oreover, com plex data types that can be im plem ented  using 

object orien ted  program m ing language can be stored  by  storing objects.

R elational D ata M odel: the relational data m odel w as first introduced 

in 1970 [50]. A  relational m odel represents data  as a tw o-dim ensional 

table called a relation. It is based on the m athem atica l theory o f  

relational algebra and calculus [56]. Since a considerab le  am ount o f  

b ioinform atics data sources are based  on p roprie tary  flat file solutions, 

relational D B M Ss are not as popu lar for b io in fo rm atics data sources as 

in o ther application dom ains, for exam ple, business applications. 

Recently, m any flat file data sources have been  converted  to relational 

D BM Ss [40]. Searching, analysing, and  com paring  sequences is not 

possible w ithin relational databases, a lthough  som e system s have 

recently  been developed that facilitate sequence analysis. The relational 

m odel does not support all types o f  relationsh ips betw een biological 

entities in a direct and intuitive w ay  [141, 167].
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O b je c t-R e la tio n a l D a ta  M ode l: S tonebraker [184, 185] and K im  [78, 

127] developed the object-relational data m odel (O RD M ) in the 1990s. 

The O R D M  has inherited the robust transaction and perform ance 

m anagem ent features o f  the re la tional m odel and the flexibility o f  the 

object-oriented data m odel. A ccord ing  to B ry  and K roger [40], about 

3%  o f  all bioinform atics data sources are im plem ented on O bject 

R elational D atabase M anagem ent System s (O RD BM S).

The issue o f  the interoperability and in tegration  o f  bioinform atics data 

sources has received  considerable a tten tion  in bioinform atics. M any 

bioinform atics integration system s have been  developed (Chapter 3). 

Interoperability  is required since it is no t p rac tical to  build  a single 

database for all biological data. M ost o f  the  conflict resolution 

techniques used in b ioinform atics can be found  in [61, 128].

2.5 Sum m ary

This chapter introduced the necessary  background  abou t bio logical data 

and bioinform atics. It covered the grow th  o f  biological and 

b io inform atics data sources. Then it h ighlighted  som e characteristics o f  

biological data  and sources and challenges o f  in tegration . Finally, it 

classifies the heterogeneity  present into types o f  heterogeneity . In the 

next chapter, w e w ill discuss different in tegration  approaches and 

survey som e o f  the existing bioinform atics in teg ration  system s.
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Chapter 3 

Bioinformatics Data Source 
Integration

3.1 Synopsis

In this chapter, general approaches to in teg rating  heterogeneous 

bioinform atics data sources are d iscussed  and  each  approach is 

described briefly. Several b io inform atics da ta  source integration 

system s that have been reported in the literatu re  are then  surveyed, 

leading to the presentation o f  the fram ew ork o f  ou r approach.

3.2 Introduction

B ioinform atics data sources are heterogeneous in the ir representation 

and query capabilities across diverse inform ation  fields, and are held in 

disparate, distributed, autonom ous data sources [138, 139]. The volum e 

o f  data collected and stored in these d istributed  and  heterogeneous data 

sources presents a m ajor challenge w ith  respect to  efficient and 

effective accession, and the processing , ex traction , discovery and 

integration o f  this inform ation [209]. U sing  existing  knowledge, 

com putational resources and data m in ing  too ls, a b io logist can exploit 

the exponentially  increasing am ount o f  com parative genom ic data to 

form ulate novel hypotheses [195], lead ing  to the inform ed design o f  

new  cycles o f  laboratory research [138, 209]. T here are several w ays o f  

testing such hypotheses, w hich are effective w hen data is static and 

standard linkage types are to be used , bu t lim ited w hen the data is 

dynam ic or novel types o f  linkage are required. These lim itations are
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caused by  the evolving and changing  nature o f  the data in these data 

sources, w hich m eans the researchers need  to w ork w ith the m ost up-to- 

date version o f  the data and be able to u tilise different linkages in the 

investigations. These changes in  the data  sources are due to the 

evolving understanding o f  the field  w here new  gene annotations are 

continually  being discovered and the find ings from  new  bioinform atics 

investigations lead to new  know ledge. T his m eans that there is a need 

to update the data held in the da ta  sources to reflect the new  

understanding [209].

In order to perform  a high-throughput analysis o f  b iological data, it is 

necessary to access and process inform ation  from  a variety o f  data 

sources using standard and proprietary  query  in terfaces and analytical 

tools. These data sources m ay be heterogeneous, distributed over 

intranets or the Internet, o r m ay exist in a large num ber o f  public 

b iological data repositories and require d iverse app lica tions to access, 

filter, interpret and com bine them .

3.3 Integration  approaches

Integration approaches can be classified accord ing  to  the architecture 

and integration strategies used (see Figure 3.1). T he linkage can be 

achieved using one o f  the three types o f  strategy (see F igure  3.2).

3.3.1 Architecture

D ata integration and the linkage o f  b io inform atics data  sources have 

attracted the attention o f  researchers for several years [4, 64, 119, 131]. 

E xisting system s for integrating b io inform atics data  sources use a 

num ber o f  different integration approaches. C urrently , there are four 

basic m odels: m ediation, federation, w arehousing  and navigation or 

link-based integration (see Figure 3.1).
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Federation Link-driven and 
NavigationData warehousing Mediation

Architecture

F igure 3.1: B asic  data integration m odels b a sed  on architecture

Field value match

Join Strategy

Cross-referenceOntologies concepts

F igure 3.2: B asic jo in in g  and  in tegra tion  stra tegies
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3.3.1.1 D ata w arehousing

D ata w arehousing brings data  from  different data sources into a 

centralised local system  so that they  can be integrated and shared [138]. 

D ata w arehouses often use w rappers to im port data from  rem ote 

sources. These data are m aterialized locally  through a global schem a 

used to process queries. W hile this sim plifies the access and analysis o f  

data stored in heterogeneous data reposito ries by  bringing them  to a 

central store w ith a com m on structure, the challenge is to keep the data 

in the w arehouse current w hen changes are m ade to the rem ote sources. 

This is a particularly  difficult task  w hen the w arehouse is large and the 

sources being linked are disparate, w idely  dynam ic and autonom ous. It 

requires a large m aintenance effort and an in -dep th  understanding o f  

data schem a. O n the other hand, data can be read ily  accessed, w ithout 

delay or bandw idth  lim itation, and duplication , errors and sem antic 

inconsistencies can be rem oved through app ly ing  data  w arehousing 

procedure.

The m ain  advantages o f  this approach are that system  perform ance 

tends to be m uch im proved. Q uery optim ization  can  be perform ed 

locally  and com m unication latency to access various data  sources is 

elim inated. System  reliab ility  is also im proved since there are few er 

dependencies on netw ork  connectiv ity  and the availab ility  o f  the data 

sources. A nother advantage is that, w hile the underly ing  data sources 

m ay contain  errors, a separate cleansed  copy o f  correct data can be 

kept. M oreover, the researchers can add additional inform ation, or 

annotation, to this data, w hich can be significant. H ow ever, because a 

w arehouse requires a large m aintenance effo rt as the underlying data 

sources change, th is generates several p ractical problem s, such as how  

to detect w hether the rem ote sources have changed, how  to autom ate 

the refresh process, and how  to track  the  orig ins or ‘provenance’ o f  data 

[59]. In addition, the com plexity  and cost o f  m aintenance can m ake 

large scale data w arehousing im practical fo r large biology laboratories 

[131]. This approach m ight be realistic  only  at a m oderate scale w hen
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dealing w ith  a  lim ited set o f  data  sources [59]. Thus, the cost o f  the 

m aintenance, storage and updating  o f  data are critical issues in data 

w arehousing. D A V ID  [63], G U S [95], and A llG enes [138] are 

exam ples o f  this approach.

3.3.1.2 Federation

In a federation architecture, the database system s are independent and 

autonom ous [179]. D ata are accessed from  their original location and 

retrieved via a m iddlew are com ponent, w h ich  uses a com m on data 

m odel and a m apping schem a to m ap heterogeneous data source 

schem as into the integrated schem a. W hile  th is approach  provides users 

w ith up-to-date data by accessing the local da ta  source, the m aintenance 

o f  a target schem a can be costly  due to frequen t changes in data source 

schem as. M oreover, com plete understanding  o f  all the  individual data 

sources is required and each source has its ow n w rapper, w hich  m ust be 

m aintained by the federation [96, 179]. A lso, since da ta  in data sources 

m ay not be clean, integrating dirty  data m ay generate  in tegrated dirty 

data o r cause com plications in the in tegration p rocess. T hus, significant 

overheads m ay be needed to connect he terogeneous data  sources, 

execute a user query, receive data from  sources, m erge  data into a 

single result set, and return  a result to a user. T he m ain  advantages are 

that it preserves source autonom y and uses the  m ost recen tly  available 

version o f  data. K 2/B iokleisli [58, 59, 138] and  D iscoveryL ink [97, 

138] are exam ples o f  this approach.

3.3.1.3 M ediation

In 1992, W iederhold introduced the m ediato r-w rapper architecture 

[201], w hich has an interm ediate p rocessing  layer called the m ediator 

and decouples the data sources and c lien t layers. This m ediator offers 

an integrated view  o f  data sources th rough  w rappers. The m ediator 

provides a virtual view  o f  the in teg rated  sources that is read-only. The 

m ediator interacts w ith  the au tonom ous data  sources via w rappers, and 

handles a user query by splitting it into sub-queries, sending the sub­
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queries to appropriate w rappers, and  integrating the results locally  to 

provide responses to queries. E xam ples o f  m ediation system s are 

covered in [45, 134, 135, 138, 139].

3.3.1.4 L ink-driven and N avigation

This architecture is w idely used in W eb retrieval. M any data sources 

provide links to other data sources. U sually , accession num bers or other 

global identifiers are used for in terlink ing , for exam ple, The Life 

Science Identifier (LSID )2 [48]. Som e databases use other attributes for 

the interlinking, such as ontology term s [18], EC  num bers [2] and CAS 

registry  num bers [42]. H ow ever, as d ifferen t da ta  sources use different 

identifiers for the sam e entries, it is a labour-in tensive  approach. For 

this reason, m ost databases provide links on ly  to the m ost relevant 

databases v ia  accession num bers [131, 133-135]. E xam ples include the 

Sequential R etrieval System  (SRS) [74, 138], B ioN av iga to r and Entrez 

[145, 175]. Since this type o f  in tegration system  allow s users to 

navigate from  one source to another via p redefined  static  links, there is 

a lim it on the scope o f  user queries. O ther d raw backs are that links are 

static and unidirectional, m ay not exist betw een re la ted  entries or m ay 

have been broken o r have poor scalability; fu rtherm ore, usually  there 

are no com m on keys to jo in  tables and data sources. A s bioinform atics 

data sources have d ifferent form ats, such as flat files, X M L, HTM L, 

unstructured, relational and object-oriented files, cross-referencing  does 

not alw ays w ork  in a straightforw ard w ay [131, 134].

3.3.2 Joining and matching strategies (m echanism )

In this section, w e describe m ethods used  to link  d ifferent data sources 

together in different approaches. T his linkage can  be achieved using 

one o f  the three types o f  strategy (see F igure  3.2).

2 An LSID Is represented a s  a Uniform R esource Nam e (URN) with the following format.

URN:LSID:<Authority>:<Namespace>:<ObjectID>[:<Version>]_
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3.3.2.1 Integration based on m atching keyw ord values 

(keyw ord-based)

The m ost fam iliar approach for in tegrating  data is to m atch fields 

betw een data sources. For exam ple, tw o entries from  diverse data 

sources m ay be linked based on the iden tity  o f  an accession num ber in 

these entries. Identifiers (accession num bers) are often used to jo in , 

in terlink  and integrate. H ow ever, th is sim ple  m atching strategy m ay not 

give high quality integrated data, due to  sem antic heterogeneity 

betw een sources. In brief, d ifferent sources m ay use different 

term inologies. For exam ple, one source m ay use scientific nam es for a 

species (M us m usculus or E scherichia  coli) w hile  another uses the 

com m on nam e (m ouse or B acterium  coli). In  addition , even w hen data 

sources use the sam e term inology, d ifferen t lex ical variants m ay be 

used for the sam e term , for exam ple, “B Cell leukaem ia” , “Leukaem ia, 

B C ell” or “B-C ell L eukaem ia’s” . Further, the  reso lu tion  level o f  the 

data m ay differ across sources. For exam ple, one source m ay describe a 

d isease phenotype as “Leukaem ia” w hile another specifies “Leukaem ia, 

B -C ell, A cute” [44]. Exam ples o f  system s using  th is approach  are SRS 

[74, 138], and E ntrez [172, 175].

Thus, a com m on approach is to integrate in fo rm ation  based on 

syntactical equivalence, i.e., tw o objects w ith  the sam e nam e (or two 

fields w ith sam e value). H ow ever, this is not alw ays sufficient because 

nam es o f  biological objects (proteins, genes, pa thw ays) are som etim es 

assigned by different laboratories in d ifferen t com m unities and so 

differ; thus, other approaches based on the characteristics o f  objects are 

needed [36].

3.3.2.2 U sage o f  ontology (concept-based)

A ccording to G ruber’s definition [93], “an  onto logy is a specification o f  

a conceptualisation^ . A n onto logy is the form al specification o f  

vocabularies o f  concepts and the re la tionsh ips am ong them  in a dom ain. 

U se o f  an ontology in data source in tegration  has previously been 

studied by [51, 62, 162]. A n onto logy also p lays a role in heterogeneous

32



CHAPTER 3: BIOINFORMATICS DATA SOURCE INTEGRATION

data source integration in w hich  the term s are m apped sem antically  to a 

concept on a proprietary on to logy  [176]. A  survey on the use o f  

ontologies for heterogeneous database integration can be found in 

[176]. A n ontology can be used to support the integration o f  data from  

different external data sources in a transparen t w ay, capturing the exact 

proposed sem antics o f  the data source term s, and rem oving m istaken 

synonym s. The dom ain ontology o f  system s like TA M BIS[23, 182] and 

SEM ED A  [134] allows users to fo rm ulate  queries w ithout know ledge 

o f  the underlying data source or d irect access to the sources [176]. This 

m eans that the users do not need to know  the underly ing  structure o f  

data sources.

A n ontology can help in solving in teroperab ility  problem s am ong 

heterogeneous databases, since it establishes a com m on understanding 

o f  the term inology betw een different research  com m unities. It provides 

definitions for the vocabulary used to represen t know ledge and can be 

used to create an integrated schem a that p rov ides specific  and com plete 

m odels o f  particu lar dom ains [17].

In recen t years, ontologies have been w ide ly  used  for database 

integration and searching [24, 43, 165, 197]. D ifferen t ontologies and 

approaches have been used in the dom ain o f  b io inform atics. Some 

integration system s use a single ontology approach  and others use 

m ultiple ontologies for integration purposes. A  single ontology 

approach can be used to support in tegration w hen  the sources share 

nearly  sim ilar view s on a dom ain [54]. H ow ever, i f  the bioinform atics 

sources have different view s on a dom ain , fo r exam ple, they have 

different levels o f  granularity  or d ifferen t aggregation  levels, finding 

the m inim al ontology com m itm ent becom es a d ifficu lt task [93] due to 

the num ber o f  heterogeneity  conflicts that m ay  arise [197], A lso, a 

single ontology approach is subject to changes in the data sources, 

w hich can affect the conceptualization o f  the dom ain represented in the 

ontology. Since it is not possib le  to  bu ild  a com m on vocabulary that is 

general enough to cover all the d ifferen t b ioinform atics sources, and is
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also specific enough to offer translation  support, such draw backs have 

led to the use o f  m ultiple ontology approaches [197].

A lthough ontologies can resolve sem antic heterogeneity problem s, 

broaden the scope o f  searches that need  to be carried out on integrated 

data sources, and enhance the quality  and integrity o f  data to be 

in tegrated from  heterogeneous sources, there  are factors that lim it their 

use. F irstly, ontologies can be incom plete  in their representation o f  a 

dom ain due to incom plete ISA links, P a rt-O f hierarchies, incom plete 

lexicons, or m issing concepts. Secondly , com putational tools that 

com pute a m apping betw een data in sources and  ontology concepts are 

still im m ature and m ay not be easy to apply  e ffectively  [44]. M oreover, 

the lack o f  a com m on vocabulary m akes it d ifficu lt to com pare different 

source ontologies [197], w hich use d ifferent represen tations.

Furtherm ore, since the understanding o f  b io log ical system s keeps 

changing, and the technical dom ains crossed  by  genom ics and 

bioinform atics are disparate, there are alw ays d ifficu lties in capturing 

all the inform ation in biological system s [194]. T hus, the different 

ontologies can becom e divergent in definition o f  term s [101].

B ecause different system s (for exam ple, SE M E D A , T A M B IS , BA CIIS) 

use d ifferent ontologies, there is a clash be tw een  them  due to 

differences in term inology and other types o f  dom ain  difference. 

W iederhold [201, 202] describes four types o f  dom ain  difference:

•  Term inology : d ifferent nam es are used  for the sam e 

concepts.

•  Scope : sim ilar categories m ay no t m atch  exactly; their 

extensions m ay intersect, bu t each  m ay have instances that 

cannot be classified under any o f  the other.

•  E ncoding : the valid  values for a property  can be different, 

as different scales could  be used.
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•  C ontext: a term  in one dom ain can have a com pletely  

different m eaning in ano ther [101, 102].

In m ore recent w ork [153] identify  w ays to handle these m ism atches.

3.3.2.3 C ross-referencing or H ard  L inks

A nother integrating strategy for b io in fo rm atics data sources is through 

the use o f  hard links. H ard links are u sed  to link entries in disparate 

data sources. For exam ple, i f  an M G I en try  is about the sequencing o f  a 

specific gene, a hard  link is established be tw een  the M G I entry and the 

corresponding nucleotide entry in G enB ank  [27], as this provides 

additional inform ation about the gene .

In this approach, a user queries a data source and  the  processing  follows 

hypertext links to related inform ation in o ther da ta  sources [27]. D ata 

entries in different data sources can have rela tionsh ips expressed as 

links, or predefined cross-references. C ross-references betw een related 

entries in heterogeneous sources are stored e ither in the  form  o f  index 

files as in SRS [74, 138], or hypertext links as in E n trez  [145, 175]. 

These cross-references are used to achieve in teroperability  o f  

heterogeneous bioinform atics data sources. T hey can  be represented 

either by  an entry in an ontology or by a global un ique identifier (e.g. 

LSID). Such links o r cross-references are de term ined  in several ways, 

such as a com putation o f  sim ilarity betw een sequences using alignm ent 

tools such BLA ST, or by m ining the literature to d iscover linkage [140].

B leiholder et al. [36] discuss how  links are added to data entries in 

bioinform atics data sources, and identify  the fo llow ing reasons:

•  Researchers add them  w hen  they  discover a confident 

relationship betw een items.

•  D ata curators add them  as a sign o f  a structural relationship 

betw een two data sources.

•  Com putational tools, for instance, BLA ST, add them  w hen a 

sim ilarity is found betw een tw o data entries.
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In som e existing integration system s, jo in ing  inform ation held in 

different data sources is based on cross-reference links. For exam ple, 

one m ay w ant to find all D N A  sequences in EM BL [49, 105, 118, 137] 

or G enB ank [30-32, 85, 86], for a p ro te in  found in Swiss-Prot [37]. This 

query requires a hard link jo in  using  the accession num bers listed as 

cross-references in the Sw iss-Prot source to the accession num bers in 

EM B L and GenBank.

How ever, cross-references, or hard links, have several drawbacks. They 

are subject to nam ing and value conflicts. F o r exam ple, i f  a curator 

changes or deletes an entry that is rela ted  to an entry in another data 

source, the link fails [36, 140]. M oreover, these links are syntactically 

poor because they are present only at a h igh  level o f  granularity, i.e., at 

the data entry level. A lso, they are sem antically  w eak, because they do 

not provide any explicit m eaning, and a user on ly  know s the data entries 

are related in som e w ay [36].

3.4 E xisting system s

B ioinform atics data source integration system s d iffer from  each other in 

several d im ensions. W e w ill characterise ex isting  system s in term s o f  

the dim ensions in Table 3.1.

From  the start o f  this research, the au thor kep t a list o f  the 

bioinform atics in tegration system s described in the literature. This list 

is not necessary com plete but is com prehensive and contains 30 

system s at this point in tim e (M arch 2008). T he m ost com m on 

architecture used in these system s is based  on  data  w arehousing 

architecture (30%  o f  the system s). W hile  system s like SEM EDA, 

P/FM D  and TSIM M IS use a m ediation  arch itecture , o ther system s like 

k2/B iokleisli, D iscoveryL ink and ISY S use a federation architecture. 

U nlike D iscoveryLink, TA M BIS offers a g lobal schem a and data 

reconciliation. A  full com parison is g iven  in A ppendix  A.
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dim ension descrip tion
Integration approach this is w hether the system  uses a data w arehousing, 

federation o r m ediation approach T1891.
D ata m odel a m odel describes in an abstract w ay how  data is 

held  in database m anagem ent system s. The 
com m only used  m odels are H ierarchical, N etw ork, 
Relational, O bject O riented, or O bject-Relational 
[55-57].

Level o f  
transparency

refers to the degree to w hich the user is shielded 
from  the underly ing  structure and the need to choose 
the required source to  answ er a u ser’s query T189].

Integration degree this is e ither loose o r tight. A  system  is tightly 
coupled i f  all the  schem as o f  the integrated sources 
are m apped to  one g lobal schem a, w hereas a system  
is loosely coupled  i f  there  is no global schem a T189].

M aterialisation the process o f  copy ing  data  from  a prim ary database 
to a replicate database.

D ata types types o f  data the in tegration  system  handles.
Q uery operators refers to the operators in a u ser query that the 

integration system  can handle.
U ser m odel type o f  users w ho w ill use  the system .
D ata Source 
interface

how  to connect to a da ta  source.

G lobal schem a 
type

the com m on schem a describ ing  the data  content o f  a 
data w arehouse or federation  tha t holds integrated 
data from  a num ber o f  da ta  sources.

N um ber o f  sources num ber o f  data sources involved.
R esolving
heterogeneity

this refers to w hether the  in tegration  system s resolve 
the heterogeneity  betw een  the sources and level o f  
this resolution [189].

D om ain the nature o f  the data  sources involved in the 
integration - gene databases, D N A  sequences, other 
dom ains.

O ntology this refers to the extent an on to logy  is used  to resolve 
heterogeneity betw een sources.

Q uery planning how  the query execution p lan  w ill access different, 
autonom ous sources and pu t the  resu lts  from  diverse 
data sources together to  form  the com plete  result

Q uery caching a m echanism  that allow s users to  use effectively the 
results o f  p rio r queries to  answ er a  new  query.

Q uery adaptive a query processing  system  is designed  to be adaptive 
i f  it receives inform ation from  its environm ent and 
determ ines its behav iou r accord ing  to that 
inform ation in an iterative m anner.

System  platform the platform  in w hich the in tegration  system  runs.
D om ain schem a the dom ain term ino logy  and  any other information 

that is needed.
U ser interface how  users in teract w ith  the in tegration system.
Q uery language the language in w hich  users o f  a system  can 

interactively form ulate queries and generate results. 
It is based on the conten ts o f  the data sources.

API is there an application  program  interface to the 
integration system .

O utput form at the form at o f  the  ou tput produced.

Table 3.1: dim ensions used  in characterising  existing system
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W e present here a sam ple o f  ex isting  bioinform atics integration system s 

described in the literature. It includes SRS [74, 138], D A V ID  [63], 

TA M B IS [24, 138, 182], and m yG rid  [183]. SRS is a link-based 

integration system , w hile T A M B IS is an O bject O riented m ultiD B 

query system  and D A V ID  is a data  w arehousing  system. These sam ples 

are chosen to show specialised so lu tions through to m ore general 

solutions. These w ere chosen as they  are p opu lar and are representative 

o f  integration system s that use d ifferen t approaches, nam ely, D ata 

w arehousing, federation, M ediation and  L ink-navigation . m yGrid and 

B ioM O B Y  w ere chosen as being represen ta tives o f  the state o f  the art. 

For each o f  these system s, an overview  and d iscussion  o f  their strong 

and w eak points is provided.

3.4.1 SR S

The SRS - Sequential Retrieval System  - [74] is a B ioscience product 

o f  LIO N . Initially, SRS w as developed at E M B L  and extended at the 

EBI. In 1999, it w as acquired by LIO N  B ioscience. C urrently , it is one 

o f  the m ost w idely  used bioinform atics data source retrieval system s; it 

uses a link-driven approach. The system  accesses different 

bioinform atics data sources and builds an index to in tegrate  them . Each 

data source m ust be w rapped and indexed by  Icarus, w hich  is a special 

w rapper program m ing language w ithin SRS [138]. It uses Icarus-based 

m eta-data to describe each source [138]. W hilst SRS provides the user 

w ith  som e transparency regard ing  the location, connection  protocols 

and query language o f  each source, it does no t sh ie ld  its user from the 

form ats and conventions o f  the in tegrated  sources. SRS has various 

strengths:

Extensibility: since it uses a flat file based  index ing  m echanism , adding 

new  sources is easy and straightforw ard [74, 138, 173].

F lex ib ility : it has an easy-to-use graphical u ser interface that acts as a 

unified  front end to access m ultip le  da ta  sources [74, 138, 173].
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O n the other hand, SRS has several w eaknesses: firstly, it is a keyw ord- 

based retrieval system , rather than  an inform ation integration system , so 

it does not provide any transform ation  or further operability above the 

query user result; thus, the user has to  use other tools (such as BLA ST, 

FA STA ) for further analysis. Secondly , it w orks only w ith flat files, 

X M L and relational databases and it does no t integrate other types o f  

sources, such as O bject-O riented. T hird ly , it does not enhance the data 

sem antically  nor does it create a g lobal schem a over the data [74, 138, 

173].

3.4.2 D A V ID

D A V ID  is an acronym  for D atabase for A nnota tion , V isualisation, and 

Integrated D iscovery [63]. D A V ID  is an in tegration  system  com prising 

bioinform atics tools and data sources developed  by  the Laboratory o f  

Im m unopathogenesis and B ioinform atics at SA IC -Frederick , Inc. for 

the N ational Institute o f  A llergy and Infectious D iseases o f  the N ational 

Institute o f  H ealth  in B ethesda in the U SA . D A V ID  aim s to integrate 

inform ation-rich  data sources to provide users w ith  a functional 

annotation and analysis o f  large lists o f  genes includ ing  hum an, m ouse, 

rat or fly genom es. It also integrates d ifferent m in ing  tools w ith the 

system  to assist users to discover the b io logical m ean ing  o f  the gene 

lists that result from  the analysis o f  m icroarray  data  or other high 

throughput genom ic data. It provides excellen t graphical reports and 

sum m aries. The data sources in tegrated  in D A V ID  include G enBank, 

U niG ene [166], R efSeq [115, 166], L ocusL ink  [166], K EG G  [117], 

O M IM  [151], and G ene O ntology [18]. Its w arehouse  is an ORA CLE 

database designed to hold the functional annota tion  o f  genes. It uses 

LocusLink accession num bers to link  to the prim ary  sources o f  

annotation, w hich have further gene specific inform ation. W ith 

D A V ID , it is the responsibility  o f  users to ex tract and identify the gene 

identifiers m anually from  the experim ental datasets and feed them  to 

the system .
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D A V ID  has strengths: firstly, since it is based on data w arehousing, its 

m ain advantage is that system  perform ance tends to be m uch better than 

other approaches. Secondly, its access to heterogeneous data sources is 

not lim ited by  com m unication and  bandw idth  factors. Thirdly, its 

reliability  tends to be better than that o f  o ther system s because there are 

no dependencies on netw ork connec tiv ity  o r the availability o f  the 

underlying data sources.

O n the other hand, it has certain w eaknesses. F irstly , it is not usually 

possible to subm it an ad hoc query. Secondly , since it uses a 

w arehousing approach, it suffers data w arehousing  approach problem s, 

such as the large m aintenance effort, lim ited  flex ib ility  to accom m odate 

changing requirem ents, w hich are expensive to  im plem ent, and it does 

not scale w ell to a large num ber o f  data  sources. In addition, adding 

new  sources m ay lead to a redesign and repopu la tion  o f  the data. 

M oreover, D A V ID  does not provide b io log ists w ith  up-to-date data as 

it depends on w hen the w arehouse is updated. S ince D A V ID  uses hard 

links as cross-references betw een sources, there  is a p roblem  w hen 

sources change their references. Thus, it uses an in flex ib le  hyperlink 

navigation, w hich  does not allow  the user to choose a desired link 

betw een sources.

3.4.3 T A M B IS

TA M B IS [90] is an acronym  for T ransparen t A ccess to M ultiple 

B ioinform atics Inform ation Sources. It is an in teg ration  system  that is 

built on top o f  B ioK leisli [58, 59] and uses an  extensive ontology 

expressed in the description logic G R A IL  — G A L E N  Representation 

and Integration Language [147, 169]. H ow ever, un like BioKleisli, it 

resolves sem antic heterogeneities. T his system  w as the first to use an 

ontology to support the in tegration o f  b io inform atics data sources 

[138]. It allow s biologists to form ulate  com plex  queries over m ultiple 

b ioinform atics data sources using  a com m on query interface. In 

TA M B IS, data source-specific C PL  (C ollection Program m ing 

L anguage) [208] queries are m apped  onto a global schem a that is an
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ontology. This ontology is also used  for query construction and 

validation. W hilst the w rapper ex tracts the u se r’s query results from  

rem ote sources, the m ediator in tegrates the results and sends them  to 

the user. TA M BIS provides a g raph ical user interface to form ulate 

queries by  brow sing concepts over its dom ain  ontology [155]. TA M BIS 

has m ore than 300 CPL functions defined  by  BioKleisli. Each CPL 

extracts only one type o f  data from  a single rem ote data source; 

how ever, the approach fails w hen the access interface o f  a data source 

changes [28].

The m ain com ponents o f  the TA M B IS arch itectu re  are [23, 182]:

•  The biological concept m odel,

•  The know ledge-driven graphical u ser in terface,

•  The source m odel,

•  The query transform ation m odule, and

•  The query execution m odule.

The steps in processing user queries are as follow s:

•  U ser expresses a query in G RA IL, w hich  is a declarative  source- 

independent description logic.

•  The G R A IL  Q uery is translated into its G R A IL  Internal Form  

(GIF).

•  The G IF query is transform ed into a source-dependen t query in 

CPL, w hich is processed  against the data  sources.

T A M B IS’s strengths are that it supports the transparency  o f  rem ote 

sources and hides the sources from  users, and  tha t the dom ain ontology 

allow s a user to form ulate a query w ithout hav ing  any know ledge o f  the 

underlying data source [29].

H ow ever, its w eaknesses are that, firstly , it is no t robust to changes in a 

data source since its m ain com ponent, the m apping m odel, is 

im plem ented m anually. Secondly, add ing  new  sources into the system  

is not a straightforw ard process. T hird ly , its interface is com plicated 

and requires the user to have T A M B IS  expertise. Fourthly, CPL is 

hardw ired into the system , w hich  m akes it difficult to use this query
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language from  an external system . Fifthly, there is no A PI interface. 

Sixthly, TA M BIS supports only  one input form at, nam ely, a Java 

A pplet [77].

3.4.4 m yG rid

m yG rid is a general solution that g ives access to rem ote and disparate 

b iological system s. It w as started in late 2001 in M anchester, England 

[183]. It had been noted that b io log ists w ere  spending tim e building 

applications w hen w hat they really  w an ted  to  do w as to investigate the 

biology. m yG rid w as an attem pt to facilita te  access to com putational 

tools, experim ents and data sources for these researchers. It has a W eb 

service-oriented architecture, and allow s w eb  access to various 

services, utilising its m iddlew are suite o f  too ls fo r conducting  in silico  

experim ents. A  user interacts w ith  m yG rid  th rough  a too lk it containing 

com ponents for m anaging bioinform atics experim en ts, w hich  can be 

saved. U sing a registry built on RD F and O W L  ontologies, m yG rid 

converts investigations into their resource com ponents. A n abstraction 

layer called  G rid Services then handles the com m unication  w ith  each o f  

these resources to obtain the required inform ation. T his h ides from  the 

b iologist details o f  how  each com ponent w orks.

A  w eakness o f  m yG rid  is that it does not have a sim ple  interface; its 

users have to interact w ith its toolkit, m aking  m yG rid  difficult to use 

and preventing biologists from  accessing the functionality  o f  the system  

[68].

3.4.5 B ioM O B Y

The B ioM O B Y  is an open source research  p ro jec t initiated to provide 

m ore interoperability betw een b io log ical data  hosts and analytical 

services. It began at a retreat o f  represen tatives from  the m odel 

organism  database com m unity in Sep tem ber 2001 [206]. It aim s to 

provide an architecture for hosts to:

•  Exchange com m on data represen tation  form ats.
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•  Establish a m echanism  to represent m eaning or context for 

m achine-accessible data and services.

•  D escribe biological services in  term s o f  their input and output

•  Support the discovery and d istribu tion  o f  biological data and 

bioinform atics services th rough  w eb  services.

The B ioM O B Y  interoperability system  consists o f  the follow ing 

prim ary com ponents [206]:

•  M O BY  O bject and Service h ierarch ies: A n ontology describing 

the relationships betw een O bjects and  Services.

•  M O B Y  Objects: A n onto logy describ ing  biological data 

structures.

•  M O B Y  Service: A n ontology describ ing  b io inform atics services.

•  M O BY  Central: A  W eb Service reg is try  that acts as a search 

engine w hich allow s biologists to d iscover resources capable o f  

executing the task  they w ish  to undertake.

There are several w orkflow  tools that can search  and brow se the 

B ioM O B Y  registry, for exam ple T avem a [109, 124, 158, 190] 

w orkbench and G brow se M oby [203].

A lthough B ioM O B Y  allow s greater in teroperab ility  betw een data 

sources [207], there are som e lim itations, fo r exam ple, Service 

discovery is insufficient to describe all aspects o f  the w eb  services that 

it supports [207]. It does not handle the p rob lem  o f  service providers 

changing their interfaces w ithout updating  the M O B Y  reg istry [204]. 

C ross-references are sem antically  poor to som e ex ten t and are treated 

equally under the current API. M oreover, B ioM O B Y  lacks a flexible 

query tool that allow s rich queries to be  execu ted  on the federated data 

as it does not support the B oolean operators (A N D  , O R  and NO T) in 

queries [205].

3.4.6 Sem antic W eb for Life Sciences (SW L S)

The m ission o f  the Sem antic W eb for L ife Sciences com m unity is to 

im prove the ability to conduct hypothesis-driven  experim ents [91] and
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other b ioinform atics analysis by  u tilization  o f  w eb-accessible data 

sources and analytical tools. T his is achieved by use o f  the Sem antic 

W eb technologies for life science [156, 163]. The W 3C -led Sem antic 

W eb initiative has established several o f  the standards and technologies 

needed to achieve SW LS [91]. T hese include:

•  The Life Science Identifier system  (LSID ): this w as designed to 

provide a unique global iden tifie r fo r entities. An LSID  is 

independent, stable, persistent, and  reso lvab le  [48].

•  The Resource D escription F ram ew ork  (R D F): it is a m ethod for 

know ledge representation w hich  prov ides flexibility and 

extensibility o f  resources descrip tion. R D F  describes know ledge 

by  decom posing it into sm all parts called  trip les, nam ely subject, 

object and predicate [168] . It can be  represen ted  as a graph 

using:

o  a node for the subject.

o  a node for the object.

o  an edge for the predicate, d irected  from  the subject node to 

the object node.

•  The W eb O ntology Language (O W L): it p rov ides a language to 

specify and define the type o f  objects and  the ir relations w ith 

each other w ithin ontologies [160].

A  lot o f  w ork and research has been done in th is p ro jec t and several 

tools have been created. H ow ever, at the beg inn ing  o f  th is PhD  project 

the tools w ere im m ature and suffered from  draw backs so w e could not 

use them  in the PhD  project. For exam ple there  w as:

•  a lack o f  sem antic inform ation about the  relationships,

•  no a standard RD F(S) data access m echanism ,

•  the cost o f  storing and querying  R D F trip les w as high, and

•  the adoption o f  LSID  w as in its infancy  and is still not universal 

[91, 171, 213]. Thus this w ork  w as no t available for use in this 

project.
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SLM  in its current form  is able to use L SID s as identifiers i f  the sources 

being analysed use LSIDs. W ith  respect to RDF, SLM  can use this 

resource fram ew ork, provided a ltera tions are m ade to the code. SLM  

can take advantage o f  the S W L S ’s sem antic inform ation about a 

resource i f  it is available. This m ay requ ire  som e changes in SLM.

3.5 C hallenges

The integration challenge is that the ex isting  approaches and strategies 

suffer from  the follow ing difficulties:

i) L inkage types are fixed and  d ifficu lt to change as they are 

determ ined by  w rappers in a  da ta  w arehouse, the m iddleware 

com ponent in a federation, o r the  code that executes the 

w arehouse in m ediation.

ii) B reaking o f  links: w hen a U R L  changes, the d irect links to it 

have to be changed. This p rim arily  affects L ink-driven and 

navigation system s, bu t can occur in da ta  w arehousing  and 

federation based system s.

iii) C hanges in database contents in the source m ay  no t occur in 

the data used  until a later tim e, so the resu lts m ay  not reflect 

the latest data. This affects data w arehousing , b u t no t the other 

approaches.

iv) D ifficulties in linking to non-b io in fo rm atics data sources: 

link-driven and navigation system s can  hand le  th is in a lim ited 

m anner, w hile the other types o f  system s have problem s.

v) Inability to support m ultip le  types o f  relationship: all four 

approaches are subject to th is lim ita tion  to som e extent.

vi) D ata sources frequently  cannot be jo in e d  using sim ple term - 

m atching or com parison operators. E ven m ore sophisticated 

approaches, w hich use on to log ies to enum erate jo inable term s, 

are often not sufficient [94]. It is a be tter to find m ethods for 

flexible linkage that a llow  users to drive the integration
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process and change the  linkages, as this allow s the easy 

investigation o f  alternatives theories.

It is often the case that a user needs to be able to change linkages and 

experim ent w ith them  in d ifferent w ays as part o f  an investigation to 

see w hat yields interesting results. T hus, it is im portant that it is easy 

for a b ioinform atician to be able to change the linkage type flexibly, 

and adjust the linkage so they can try  investigating  different linkages to 

see w hich one i f  any m atches the pu rposes o f  their research. A  jo in  

should be undertaken to reflect a sem antic  rela tionsh ip  betw een objects, 

as sem antic relationships betw een p roperties o f  concepts m ay solve 

data integration problem s in the b io in fo rm atics dom ain. This m eans 

that there is a need for a researcher to be able to  create different types 

o f  linkages betw een bioinform atics sources easily  so that it is easy to 

investigate the effect o f  different relationships.

3.6 Sum m ary

In this chapter, general approaches to in tegrating  heterogeneous 

bioinform atics data sources w ere discussed. T hese approaches w ere 

classified  into tw o m ain categories: a rch itectu re  and m atching

strategies. E ach architecture w as described b riefly  in section  3.3.1. The 

strategies used to link data across data sources w ere  discussed in 

section 3.3.2. Several bioinform atics data  source in tegration  system s 

that have been reported in the literature w ere  then  critiqued  to identify 

w hy a m ore flexible fram ew ork is needed  in th is area  o f  research. In the 

next chapter (C hapter 4), w e introduce our p roposed  approach - the Soft 

L ink M odel (SLM ).
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Chapter 4 

Soft Link Model

4.1 Synopsis

To address the challenges identified  in section  3.5, it is proposed that 

sem antic relationships based  on the properties o f  concepts m ay solve 

m any o f  the data in tegration problem s in the b io in fo rm atics dom ain. 

This chapter starts by in troducing com parative  genom ics, its 

im portance as a dom ain, and various types o f  b io log ica l relationships. 

T he proposed  Soft L ink M odel (SLM ) approach is then  introduced, in 

w hich  in tegration is based on relationships betw een  concepts, not ju s t 

on fleld-values. A  feature o f  the SLM  approach is that the user can 

custom ize the linkage o f  data sources, by  c reating  h is/her ow n Soft 

L ink M odel, w hich  reflects a linkage to be investigated  in the research.

4.2 C om parative genom ics

Com parative genom ics is the study o f  rela tionsh ips betw een  genom es 

o f  different species and the analysis and com parison  o f  these genom es 

[100]. It is usually  undertaken to d iscover new  properties o f  genes.

Com parative genom ics offers opportun ities to draw  on inform ation 

from  historically  distinct d iscip lines, to link  disparate biological 

kingdom s, and so bridge basic  and  applied  science. Cross-species 

com parisons are increasing the understand ing  o f  how  genes are 

structured, and how  gene structure rela tes to gene function, and how  

changes in D N A  have contribu ted  to the p lan e t’s biological diversity
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[150]. This has led to new  com putational m ethods being developed that 

investigate chrom osom al organisation , structure and hom ology.

B y integrating functional and sequence data  across species, biologists 

are able to annotate the genom e o f  a species by  using functional data 

from  other species. Furtherm ore, com parative genom ics provides 

evidence o f  close evolutionary re la tionsh ips betw een gene fam ilies. 

A ccording to A djaye and his co llaborators,

The advantages o f  cross-species comparison are two-fold. First, 
cross-species gene-expression comparison is a powerful tool fo r  
the discovery o f  evolutionarily conserved mechanisms and 
pathways o f  expression control. The advantage o f  cDNA 
microarrays in this context is that broad areas o f  homology are 
compared and hybridization probes are sufficiently large so that 
small inter-species differences in nucleotide sequences would not 
affect the analytical results. This comparative genomics 
approach allows a common set o f  genes within a specific 
developmental, metabolic, or disease-related gene pathway to be 
evaluated in experimental models o f  human diseases. Second, the 
use o f  microarrays in studies o f  mammalian species other than 
human and rodents may advance our understanding o f  human 

health and disease [6].

Currently, 40 to 60%  o f  the genes found in new  genom ic sequences do 

not have assigned functions. Som e functions can  be deduced by 

com putational-structure determ ination and p ro te in  folding, but m any 

research problem s rem ain to be solved in  th is area  [107]. Thus, 

com putational m ethods w ill continue to p lay  a m ajor role in the 

functional annotation o f  genom es in the fo reseeab le  future.
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4.3 B iological relationsh ips

Palakal and his co llaborators define object and relationships as

follows:

The term "object" refers to any biological entity such as a 
protein, gene, cell cycle, etc. and “relationship” refers to any 
dynamic action one object has on another, e.g. protein inhibiting 
another protein or one object belonging to another object such 
as, the cells composing an organ [161].

A  biological relationship  can  take  several form s. In [52], the

follow ing classes o f  relationship  are g iven:

•  E volutionary (for exam ple, hom olog , o rtho log  or paralog),

•  Functional G enom ic (for exam ple, a b io log ical process, a cellular 

com ponent, or a m olecular function),

•  Structural,

•  Phylogenetic,

•  M apping T erm inology (M arkers, L inkage, o r Synteny),

•  G enetic or M olecular C oncept (fo r exam ple, G enes, 

Polym orphism s),

•  C ontainm ent, and

•  N om enclature  (for exam ple, gene A  in species X  =  gene B in 

species Y).

W e are concentrating in this thesis on E vo lu tionary  Relationships 

(hom olog, ortholog, paralog) and som e o f  the  Functional G enom ic 

relationships (biological p rocess, cellu lar com ponent, m olecular 

function), as they are used  to d iscover rem ote  evolutionary and 

functional sim ilarities betw een gene products. Since evolutionarily- 

related genes are h igh ly  likely  to share com m on aspects o f  function, a 

m easurem ent o f  these rela tionships, w h ich  determ ines how  sim ilar they 

are, can be useful for gene functional annotation.
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4.3.1 H om ologous seq u en ces

H om ology is defined by  H illis as "sim ilarity  due to inheritance fro m  a 

com m on ancestor" [104]. T w o sequences are hom ologous i f  they share 

a com m on evolutionary history , i.e., there  existed  an ancestral m olecule 

in the past that w as ancestral to bo th  o f  the sequences. A  hom olog can 

be either w ithin the sam e organ ism  (a paralog), or am ong different 

species (an ortholog) (see F igure 4 .1).

4.3.1.1 Types o f  H om ology

There are m any types o f  hom ology  [104], fo r instance:

•  Orthology

O rthologous genes are hom ologs tha t evo lved  as a result o f  a 

speciation event [104]. In o ther w ords, o rtho logy  is a  hom ology that 

reflects the descent o f  a species [164]. O rtho logous genes m ay or 

m ay not have the sam e function.

•  Paralogy

T his is a hom ology reflecting the descent o f  genes. P aralogous genes 

are hom ologs that d iverged as a result o f  a gene duplication  event 

[104]. Paralogy m ay be distinguished from  ortho logy  by  checking 

w hether o r no t tw o hom ologs are found in the sam e individual [164].

•  X enology

X enologous genes are hom ologs that d iverged  as a resu lt o f  a lateral 

gene transfer [104]. A ntibiotic resistan t genes are a classic exam ple 

o f  X enologs.

•  Synology

Synologs are genes that end up  in an organ ism  through a fusion o f  

lineages [104].
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homologs

paralogs

frog a  chickOC mousea mouse p chick P frogP

a-chain gene p-chain gene

gene duplication

early globin gene

F igure  4.1: O rthologs and para logs exp la ined  g ra p h ica lly  [76]

4.3.2 Significance of the types of relationship

In this section, w e present the relationship  types u sed  in SLM , and 

present also their p lace in the biological dom ain.

4.3.2.1 H om ology

The search for hom ologous genes w ith in  o rganism s or across species is 

undertaken to identify  genes that are sim ilar. I f  a  pa ir o f  genes is 

detected as hom ologous, and the p roperties o f  one are know n, and the 

other has unknow n properties, then the researcher can investigate 

w hether the second gene has the sam e properties (i.e., functions, 

m echanism s and structure) as the first gene. Investigating  the structures 

and functions o f  genes and pro teins com m on to m ultiple species is an 

im portant focus o f  com parative genom ics research  [125], as it allow s 

prediction o f  the functions o f  a new  gene.
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4.3.2.2 O rthology and P aralogy

O rtholog and paralog re la tionsh ips are im portant for the follow ing 

reasons:

• O rtholog relationships are im portan t in determ ining functional 

equivalence [111].

•  Paralog relationships can be u sed  for function prediction. 

Paralogous genes are often  invo lved  in the sam e process, but 

have different m olecular functions, fo r exam ple, globins.

Thus, the results o f  orthology and  para logy  support functional 

predictions and gene clustering. H ow ever, due to  the com plexity o f  

biological problem s and the lack o f  com plete  experim ental and 

analytical m odels, there is a need  to design  au tom ated  know ledge- 

driven techniques to assist in the exp lanation  and  validation o f  

predictive outcom es [198]. This is a d river o f  b io in fo rm atics research.

4.3 .2 .3  G O -B ased com parison

The autom ated  com parison o f  com plete sets o f  genes encoded in two 

genom es can provide insight into the genetic basis o f  differences in 

b iological traits betw een species. The G ene O n to logy  (G O ) consortium  

has created a com m on vocabulary  to explain the re la tionsh ips o f  gene

products across species and to annotate genes fo r com parison  purposes

[178]. The inclusion o f  GO  annotations in gene expression  studies m ay 

explain w hy genes in a particu lar group share sim ilar expression 

patterns, and it m ay help in identify ing  functionally -enriched  clusters o f  

genes [198]. The G O  com prises three m ain  ontologies:

M olecular Function (M F): The functions o f  a  gene product are the 

jobs it does [89], for instance, b inding . A  p a ir o f  genes can have the 

sam e function i f  annotated by  an equ ivalen t G O  term .

B iological Process (BP): T his refers to  the processes concerning living 

organism s [89], for instance, aging. A  pa ir o f  genes can have the sam e 

biological process i f  annotated  by  an equivalen t GO  term .
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C ellu lar C om ponent (CC ): T his describes locations, at the levels o f  

subcellular structures and m acrom olecu lar com plexes [89], for instance, 

cell. A  pair o f  genes can have the  sam e cellu lar com ponent i f  annotated 

by  an equivalent GO term .

4.3.3 Calculation of relationship c lo se n e ss

The techniques used to m easure the  rela tionsh ip  closeness betw een a 

pair o f  concepts are presented in th is section.

4.3.3.1 H om ology closeness

The hom olog relationship sim ilarity  c losen ess is expressed as the 

percentage o f  am ino acid sequence iden tity  betw een  the protein 

sequences o f  a pair o f  gene products and  is calcu lated  using  the BLA ST 

algorithm . Sim ilarity can be assessed  by  coun ting  the  positions that are 

identical betw een tw o sequences. A s can be  seen  in Figure 4.2, 

significant inform ation can be extracted  from  the B L A S T  output for 

each sequence pair. This inform ation includes sequence  identifiers, the 

score, the e-value and the identity  betw een the tw o sequences. A  high 

score at the top o f  the list indicates a likely  re la tionsh ip . W hilst a low 

probability  indicates that a m atch is unlikely  to have  arisen  by  chance, 

low  scores w ith  high  probabilities suggest that m atches have arisen by 

chance.
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BLASTP 2.2.10 [Oct-19-2004]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, 
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), 
"Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs", Nucleic Acids Res. 25:3389-3402.

Query= Q20655 : CE03389 
(248 letters)

Database: wormpep-25-01-05.fasta
2574 sequences; 1,191,147 total letters

A high score at the top of the list 
indicates a likely relationship

Sequences producing significant alignments:

Q20655
P41932
Q22866
P12844
Q20060
P52012
Q09591
P02567
P09446

CE03389 
CE06200 
CE28782 
CE34936 
CE03287 
CE01596 
CE18083 
CEO6253 
CEOS682

Score E 
(bits) Value

463 ► e-132
A low probability indicates that a 
match is unlikely to have arisen 
by chance

Q20655 CE03389

Sourcejdentifier
r

T TargetJdentifier

Relationship Closeness 
4

Score'

396
32
29
29
29
28
28
28

e-112
0.051
0.26
0.33
0.33
0.57
0.74
0.74
*

E-value
Low sco res  with high probabilities 
suggest that m atches have arisen by 
chanceLength = 24 3

Score = (463}faits (1192)/, Expect =[ e-132

Identities = 237/248 ((95%^, Positives = 237/248 (95%)

Query: 1 MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNWGARRSS 60 
MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNWGARRSS 

Sbjct: 1 MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNWGARRSS 60

Query: 61 WRVISSIEQKTEGSEKKQQMAKEYREKVEKELRDICQDVLNLLDKFLIPKAGAAESKVFY 120 
WRVISSIEQKTEGSEKKQQMAKEYREKVEKELRDICQDVLNLLDKFLI PKAGAAESKVFY 

Sbjct: 61 WRVI SSI EQKTEGSEKKQQMAKEYREKVEKELRDICQDVLNLLDKFLI PKAGAAESKVFY 120

Query: 121 LKMKGDYYRYLAEVASGDDRNSWEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF 180 
LKMKGDYYRYLAEVASGDDENSWEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF 

Sbjct: 121 LKMKGDYYRYLAEVASGDDRNSWEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF 180

Query: 181 YEILNAPDKACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWXXXXXXXXXX 240 
YEILNAPDKACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLW 

Sbjct: 181 YEILNAPDKACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDAATDDTD 240

Query: 241 XNETEGGN 248 
NETEGGN

F igure 4.2: A  sam ple  p a r t o f  a B L A S T  ou tpu t show ing  the p a ir  o f  

sequence identifiers, score, e-va lue a n d  identities betw een each p a ir  o f  

the sequences. The id en tity ’s p ercen ta g e  can be used  as the m easure o f  

relationship  closeness.
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4.3.3.2 O rthology closeness

The ortholog relationship closen ess is expressed as the percentage o f  

am ino acid sequence identity  be tw een  the protein  sequences o f  a pa ir o f  

gene products in different species and  is also calculated using BLA ST.

A ccording to H uynen and B ork,

“orthologs then are defined in the follow ing manner: (i) they 
have the highest level o f  pair wise identity when compared with 
the identities o f  either gene to all other genes in the other’s 
genome; (ii) the pair wise identity is significant (E, the expected 
fraction o f  fa lse positive, is smaller than 0.01), and (iii) the 
similarity extends to at least 60% o f  one o f  the genes ”[112].

4.3.3.3 P aralogy closeness

The paralog relationship closeness is expressed  as the percentage o f  

am ino acid sequence identity betw een the p ro te in  sequences o f  a pair o f  

gene products in the sam e species and is also calcu lated  using  BLA ST.

4.3 .3 .4  G O -B ased closeness

To estim ate the sem antic sim ilarity  betw een  tw o genes gi and gj 

annotated w ith  sets o f  GO  term s Aj and Aj respective ly , w e calculate 

in itially  the sim ilarity  betw een the tw o G O  term s. In  the follow ing 

section, w e present different approaches fo r m easu ring  the GO term s 

sim ilarity.

4 .3 .3 .4 .1  Traditional edge-counting

A n edge-counting approach calculates the d istance betw een  the nodes 

associated w ith  the GO  term s in a h ierarchy: the  shorter the distance 

betw een the term s, the h igher the sim ilarity . A n exam ple o f  this 

approach is W u and P alm er’s m ethod  [212], w hich  uses the formula:
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w here Nj and Nj are the num ber o f  edges betw een ti and tj and their 

closest com m on parent in the G O  hierarchy, Tjj, and N  is the num ber o f  

links from  Tij to the GO hierarchy  root.

This sim ilarity  m easure can be transfo rm ed  into a distance by:

^ M /)  = (2)

T his is used to calculate the average in ter-se t sim ilarity  betw een each 

pair o f  ti and tj using:

d(gk,g m) = avg(d{tkntmj)) (3)

The G O -based sim ilarity  betw een tw o gene p roducts gk and gp, is 

defined as:

d (g t , g p) = avg( 2 ) (4)
‘J N f t  + A/ mj + 2Af

The edge-counting  approach is theoretically  fairly  sim ple. H ow ever, 

there are lim itations, as it relies heavily  on the idea tha t nodes and links 

in the G O  are uniform ly  distributed. A lthough the approach  is intuitive 

and direct, it is not sensitive to the depth o f  the  nodes fo r w hich a 

d istance is being  calculated.

4 .3 .3 .4 .2  Information-theoretic

This m easures the sim ilarity  betw een term s, based  on the Inform ation 

C ontent (IC) associated w ith  or shared  by  the  term s. T he inform ation 

content o f  a term  is a value ob tained  by  estim ating  the probabilities o f  

occurrence o f  this term  in a large corpus [116]. Thus, the m ore 

inform ation tw o term s share, the m ore sim ilar they  are. Several 

techniques are based on this princip le  and these are sum m arised here.

Resnik:

This m easure, created by  Resnik[170], uses only  the IC o f  the shared 

parents.
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sim(tl,t2) = - \n (  min {p(t)Y) (5)
t e S ( t y t 2 )

W here Si tyt^)  is the set o f  paren t term s shared by ti and t2 ; a n d p(t) is

the probability  o f  occurrence o f  t o r its ch ildren  in the database. The 

m easure varies in value betw een in fin ity  (fo r very  sim ilar concepts) to 

0.

Lin:

L in ’s technique [142] uses the IC o f  the shared  paren t and the IC o f  the 

query term s.

2x[ln( min {p(0})]

In P(t,) + In P(t2)

W here is the set o f  parent term s shared  by  ti and  t2 , and p(t) is

the probability  o f  finding t or any o f  its paren ts in the  database [19]. 

This m easure generates a norm alized  value betw een  0 and  1.

Jians:

The Jiang m ethod [116] uses the IC  o f  the shared  paren t and the IC o f  

the query term s.

sim{tx, t2) = 2 ln( min {p(0}) -  (in P{tx) + In P(t2))
teS(tv t2) (7)

W here is the set o f  paren t term s shared  by  ti, and t2 ,and p{t) is

the probability  o f  finding t o r any o f  its paren ts in the database [19]. 

This m easure generates a sem antic  d istance that can vary betw een 

infinity and zero. •

Equations 5, 6 and 7 rely  on the IC  values assigned to the concepts in a 

hierarchy, but there are m inor d ifferences in the definitions. L in and
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Jiang use the IC o f  the shared  paren t and that o f  query term s w hereas 

R esnik uses only the IC o f  the shared  parent.

O nce sim ilarity betw een term s is m easured, as above, the gene

from  the annotation term s o f  the genes [144] . G iven a pair o f  gene 

products, gk and gP, and sets o f  anno ta tions Ak and AP consisting o f  m  

and n term s respectively, the be tw een-gene  sim ilarity , SIM (gh gP) ,  m ay 

be defined as the average in ter-set s im ila rity  be tw een  term s from  At and

Aj

W here sim(tj,tj) is the sim ilarity  be tw een  the  term s, w hich can be 

calculated using Equations 5, 6 o r 7 [144] .

In our w ork, w e use the average term -term  sim ilarity  m easure [144] 

because w e are interested in the overall sim ilarity  be tw een  a pair o f  

proteins rather than betw een pairs o f  on to logy  term s. H ence, in our 

w ork, the sem antic sim ilarity m easure  created  b y  L in  [142] is used to 

determ ine the relatedness o f  each  gene p a ir because  it generates a 

norm alized value betw een 0 and  1. H ow ever, all th ree  techniques are 

im plem ented in our system , w hich  allow s b io in fo rm atic ian  to choose an 

appropriate technique. G iven a p a ir o f  gene products, Gi, Gj w hich are 

annotated by a set o f  m olecu lar function  term s, Ti, Tj respectively, 

w here Tj and Tj consist o f  m  and n  term s respective ly , the relationship 

closeness betw een the genes is calcu lated  using  E quation 9 so the 

relationship closeness becom es:

Three m easures o f  rela tionship  c loseness, each based on inform ation 

individually  extracted from  each  o f  the GO hierarchies, nam ely,

sim ilarity is calculated by  aggregating  the sim ilarity values obtained
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Biological Process (BP), M olecu lar Function (M F) and C ellular 

C om ponent (CC), are im plem ented  in  the SLM . The related-biological- 

process relationship and the related-cellu lar-com ponent relationship are 

calculated in the sam e w ay as is the related-m olecular-fim ction 

relationship

4.4 Soft L ink M odel

In this section, w e introduce the Soft L ink  M odel (SLM ), our novel 

w ay o f  addressing the challenges. W e start by  defining the 

relationships, concepts and types o f  linkage im plem ented in the 

prototype o f  the SLM . These cover the m ost com m only  used linkages 

in com parative genom ic research. N ew  types o f  linkage can be added to 

the prototype in the future. B y fo llow ing  the SLM  approach, w e are 

able to increase the flexibility o f  linkage, reduce  the  tim e needed for the 

analysis o f  several experim ental datasets, and  elim inate  som e o f  the 

m anual tasks.

4.4.1 Definitions

D efinition 1: C =  (ci,C2 ,  cn} is a set o f  concep ts, w here  a concept,

Ci, represents a class o f  things in a real-w orld . E xam ples o f  concept are 

gene, protein, or species. Each concept has instances. T he instance is an 

entry in a database that represents a  rea l-w orld  entity . E xam ples o f  

instances are A eyo  gene (age o f  eyelid  opening) o r C age 1 gene (cancer 

antigen 1) in the M ouse G enom e D atabase.

D efinition 2 : R e la tio n sh ip  C loseness (R C ) m easures the closeness o f  

tw o instances o f  concepts, w here ‘c lo seness’ is defined  in term s o f  

different dim ensions. It m easures the degree o f  closeness, i.e., how  two 

instances o f  concepts are rela ted  to each  other. It is expressed as a 

percentage, w ith 100% m eaning ci is the sam e as C2 . A  high value o f  

RC indicates there is a sign ifican t link  betw een  the instances o f  

concepts, and a low  value o f  R C  indicates no link or no significant link 

betw een the instances o f  concepts.
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D efinition 3: P =  {pi,p2 ,  pn} is a set o f  concept properties, w here a

property  is an attribute o f  a concept, such as the sequence string o f  a 

specific gene or the nam e o f  a specific  protein. A  property pi e  P is a 

unary relation o f  the form  pi (ci), w here  Cj g C is a concept associated 

w ith  property  p^

D efinition  4: R  is a set o f  sem antic  re la tionsh ips betw een the properties 

o f  concepts. Several types o f  re la tionsh ip  r  can belong to R. Six types 

o f  relationship are im plem ented in  SL M  (see T able 4.1). N ew  types o f  

relationships can be added to the p ro to type  in the future.

h o m o lo g

o r th o lo g

p a ra lo g

m o le c u la r  fu n c tio n

b io lo g ic a l  p ro c e s s

c e llu la r  c o m p o n e n t

Table 4.1: types o f  relationship  su p p o rted  in S L M

D efinition 5: G  =  {gi, g2 ,  gn} is a set o f  algorithm s. These

algorithm s include BLA ST, sim ilarity  m atches and  o ther m ining tools, 

and are used to calculate the strength  o f  a type rela tionsh ip  betw een 

instances o f  concepts. These algorithm s look  at all possib le  pairs o f  

specified concepts from  the data  sources and assign  a relationship 

closeness score to each pair. I f  th is score is above a cu t-o ff or threshold 

value, then the relationship is accepted. T his value can be adjusted in an 

iterative investigation to increase o r decrease  the num ber o f  m atches 

and can be set to appropriate values for an investigation.
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4.4.2 Formal Representation

The Soft L ink M odel (SL M ) consists o f  concepts, instances, 

relationships and degrees o f  linkage. The SLM  m odels the linkage 

betw een data sources in term s o f  concepts, properties and sem antic 

relationships, and is form ally defined  as: SLM  = (Ci, Cj, R, RC) w here 

Ci, Cj are concepts, R  is a type o f  re la tionsh ip , and RC is the relationship 

closeness for the linkage betw een  the  instances o f  the concepts. The 

relationship betw een tw o instances o f  concepts is determ ined by 

considering the different p roperties (pi, pj) o f  the concepts. It can be 

form ed by the syntax: R  =  (pi(ci), pj(c2 ), g, t) w here  pi(ci) is a property 

(for instance, sequence, nam e) o f  an instance  o f  the first concept, pj(c2 ) 

is a property o f  an instance o f  the second  concept, g is an algorithm  

used to calculate the relationship, and t is a c u t-o ff  score or threshold 

value.

SLM  can be m odelled as a graph G  =  (V , E), w here  V  is a set o f  nodes 

and E  is a set o f  edges (Figure 4.3). C oncepts are rep resen ted  by  nodes, 

and relationship  types betw een concepts are rep resen ted  by  edges 

betw een nodes. R elationship edges indicate that each  instance o f  a 

concept (for exam ple M ouse genom e) m ay have a relationship  w ith 

instances o f  the connected concept (for exam ple C. e legans genom e), and 

vice versa. H om ology is a bidirectional rela tionsh ip . F o r exam ple i f  gene 

A from  G enom e B is hom ologous to gene C from  G enom e D then gene 

A  is hom ologous to gene C. H ow ever, the encoded-by  relationship is a 

unidirectional relationship. For exam ple, I f  P ro te in  P encoded by Gene 

A, it is not true that G ene A  is encoded by  P ro te in  P. R elationship  m ay be 

uni-directional or bidirectional. T he rela tionsh ip  types in Table 4.1 are 

bidirectional. The closeness is rep resen ted  by  a label under the edge 

(Figure 4.3). The label o f  the node is g iven  by  a string, w hich represents 

a concept nam e. The label on  the edge represents any user-defined 

relationship.
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Relationship T y p e  label

Instance 02

Relationship Closeness

I nstance Ci

F igure 4.3: Representation o f  So ft L in k  M odel. The sym bol (  ** )  
denotes that the relationship can be a un i-d irec tiona l or bidirectional 
relationship where cj and  C2 are instances o f  concepts.

To m ine for Evolutionary (hom olog, o rtholog  o r paralog) relationships 

betw een tw o genes, the sequence sim ilarity  can  be applied . A s discussed 

in sections 4.3.3.1, 4.3.3.2 and 4.3.3.3 the B L A ST  algorithm  can be used 

to com pute relationship closeness betw een tw o gene p roducts using their 

sequences.

For exam ple, i f  there are tw o data sources represen ting  the gene 

annotation o f  different species: M ouse and C. elegans. M ouse’s gene 

w ith  two properties: Accession and  SQ. C. e legans genes w ith two 

properties: ID  and  Sequence  (Table 4.2 and T able  4 .3). To m ine for a 

possible hom olog relationship betw een  the d ifferen t instances in these 

data sources, a BLA ST algorithm  w ill be used. T he properties: Sequence  

and SQ  w ill be used by the algorithm . D epend ing  on the nature o f  the 

sequence (D N A  or A m ino A cid), d ifferen t B L A ST  program s for the 

database search can be used. T hey are: b lastn , b lastp , blastx, tblastn and 

tblastx[ref]. The BLA ST algorithm  identifies hom ologous sequences by 

searching databases using the query sequence o f  interest. A fter the 

B LA ST algorithm  com pletes the search, the biologist w ill receive a 

report specifying found hom ologous sequences and their alignm ents to 

the query sequence. F igure 4.4 show s an excerpt o f  the blastp program
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report used to find possib le  hom ologue betw een M ouse gene 

M G I: 1891917  and C. elegans gene W P:CE06200. From  this report, som e 

useful inform ation can be extracted:

•  the identifier o f  the query  sequence ( W P: CE06200);

•  the identifier o f  the database sequence (M GI: 1891917);

•  identities w hich represent the num ber and fraction o f  total 

residues w hich are identical. T he iden tities percentage is used as 

the relationship closeness m easure , and

• Expect value cu to ff (-e) and Score are used  as threshold values. 

A  high score at the top o f  the list ind icates a likely relationship 

(Figure 4.4).

A s can be seen from  the report, the re la tionsh ip  closeness betw een 

M ouse gene M G I: 1891917  and C. elegans W P :C E 06200  is 78%. So 

hom ologs, orthologs and paralogs betw een genom e are detected using 

B LA ST sim ilarity search.

ID SEQUENCE

WP:CE06200 ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELS ,

WPCE24473 MCLVNEFVSN SNMKPALNVS GDEKELILQL.............

Table 4.2: Sam ple o f  gene  annotation  o f  C. elegans genes

Accession SQ

MGL1891917 ELVQKAKLAEQAERYDDMAAAMKAVTEQGHELS .

MGI: 891963 ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELSN.......

Table 4.3: Sam ple o f  g ene  annotation  o f  M ouse genes
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BLASTP 2.2.10 [Oct-19-2007]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, 
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), 
"Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs", Nucleic Acids Res. 25:3389-3402.
Query= W P:C E 06200  -----------------► C.elegans Identifier

(248 letters)

Database: MGD.fasta
2574 sequences; 1,191,147 total letters

A high score at the top of the list 
indicates a likely relationship Score E

Sequences producing significant alignments: (bits) Value

e-105 
e-100 
2e-098 
4e-097 
5e-088 
le-087

Score = 363 bits (933), Expect = e-105

Identities = 189/242 (78%), Positives = 210/242 (86%), Gaps = 5/242 (2%)

Query: 7 ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELSNEERNLLSVAYKNWGARRS SWRVIS S 
ELVQ+AKLAEQAERYDDMAAAMK VTEQG ELSNEERNLLSVAYKNWGARRS SWRVI SS

66

Sbjct: 6 ELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNWGARRS SWRVI S S 65

Query:67 IEQKTEGSEKKQQLAKEYRVKVEQELNDICQDVLKLLDEFLIVKAGAAESKAFYLKMKGD 
IEQKTE +EKKQQ+ KEYR K+E EL DIC DVL+LLD++LI+ A AESK FYLKMKGD

126

Sbjct: 66 IEQKTERNEKKQQMGKE YREKIEAELQDICNDVLELLDKYLILNATQAE SKVF YLKMKGD 125

Query: 127 YYRYLAEVAS - EDRAAWEKSQKAYQEALDIAKDKMQPTHPIRLGLALNF S VF YYEILNT 
Y+RYL+EVAS E++ V SQ+AYQEA +I+K +MQPTHPIRLGLALNFSVFYYEILN+

185

Sbjct: 126 YFRYLSEVASGENKQTTVSNSQQAYQEAFEISKKEMQPTHPIRLGLALNFSVFYYEILNS 185

Query: 186 PEHACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDVGAEDQEQEGNQE 
PE AC LAK AFD+AIAELDTLNE+SYKDSTLIMQLLRDNLTLWT S E+Q EG+

245

Sbjct: 186 PEKACSLAKTAFDEAIAELDTLNEESYKDSTLIMQLLRDNLTLWTS----ENQGDEGDAG 241

Query: 246 AG 247
r*

Sbjct: 242 EG 243

F igure 4.4: an excerpt o f  the b lastp  p ro g ra m  report used to f in d  

possib le  hom ologue betw een m ouse sequences and C.elegans 

sequences.

MGI:1891917
MGI .-891963 
MGI:108109 
MGI:109194 
MGI:1891831 
MGI:894689
>MGI:1891917

Length = 245

Mouse Identifier
A low probability indicates that a 
match is unlikely to have arisen 
by chance

Relationship Closeness
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To m ine for Functional G enom ic (M F, BP, and CC) relationships 

betw een tw o genes, the sem antic sim ilarity  m easure can be applied. In 

our study, w e w ill com pute sim ilarity  betw een pairs o f  gene products 

rather than betw een pairs o f  G O  term s. A s discussed in section 4.3.3.4, 

Resnik, Jiang, and L in ’s m easures can  be used  to com pute Sem antic 

Sim ilarity betw een tw o gene products . E ach gene product m ay be 

annotated by  a num ber o f  G O  term s (T able  4 .4  and Table 4.5). For 

exam ple, i f  we had tw o genes: M G I:99674  and W P:CE38270  

respectively, annotated by d ifferen t M olecu lar Function GO term s 

{GO:0000287, G0:0004016, G0:0004383) and {G0:0000166, G0:0004143, 

G0.0000166, G0.0004J43, G0:0005515, G0:0008270) respectively , and L in ’s 

m easures is used. The L in sim ilarity  w ill be  83.8171023365594 (Table 4.6). 

This sim ilarity represents the rela tionsh ip  c loseness betw een M ouse 

gene M G L 99674  and W P:C E38270  in SLM  m odel.

ID Molecular Function

WP.CE38270 G0:0000166, G0:0004143, G0:0000166, G0:0004143, 
G0:0005515, G0:0008270

WP:CE38130 G0:0003700, G0:0003677

. . . .

Table 4.4: Sam ple o f  gene  annotation  o f  C. elegans

Accession MF

MGI:99674 G0:0000287, G0:0004016, G0:0004383

MGL99676 G0:0003700, G0:0003677

Table 4.5: Sam ple o f  g en e  annotation o f  M ouse genes
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C. Elegans Identifier Mouse Identifier Relationship Closeness
WP:CE38270 MGI:99674 83.8171023365594
WP:CE38270 MGL99676 86.53620688314562
WP:CE38130 MGI:99676 86.81354710951456
WP:CE38130 MGI:99674 84.46357563224241

Table 4.6: The result o f  app lying  L i n ’s m easure to com pute sem antic  

sim ilarity between pa irs o f  gene  p ro d u c ts  using  M olecular Function  

GO terms annotation o f  genes in Table 4 .4  a n d  Table 4.5.

4.4.3 SLM Operators

This section provides a form al defin ition  o f  the SLM  operators.

4.4.3.1 D iscoverR

This is a binary operator used to d iscover re la tionsh ips betw een tw o 

instances o f  a concept. It investigates w hether there  is a relationship 

betw een a pa ir o f  properties (attributes) o f  the ob jects based  on a 

specified algorithm . I f  the relationship c loseness o r the sim ilarities 

betw een them  pass a threshold value, it w ill consider there is a 

relationship betw een the concepts and the degree o f  th is relationship is 

determ ined by the value o f  the rela tionsh ip  c loseness, com puted by the 

algorithm  that w as used to find the rela tionsh ip . T hus the relationship 

table:

S L M ^ -< p a ir  o f  properties>  SR < algorithm ,T >  (C 1,C 2) (1)

where

SLM  represents the rela tionsh ip  table,
C 1 represents the first concept,
C2 represents the second concept,
SR represents D iscover R elationsh ip  operator, DiscoverR,
properties are the properties (attributes) used to discover 

relationships ,
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algorithm  is algorithm  used  to  calculate the relationship betw een 
the properties (attributes). It com putes the relationship 
closeness betw een  each  pa ir o f  properties, and 

T is a threshold.
The relationship data are stored in a  tab le  as SLM  (1st identifier, 2nd

identifier, RC).

4 .4 .3 .1 .1  Relationship D iscovery

The relationship types and how  to d iscover them  are covered in this 

section.

For the sake o f  sim plicity, w e assum e concepts C l and C2 are 

represented as two different re la tion  tab les (R  and S) o f  data w ith 

several attributes(r and s).

R {ri,r2, . . . ,r i , . . . ,rn}

S { S i ,S 2 , . . * ,S i , . . . ,S m }

There are tw o general approaches based  on using  the sequence or GO 

attributes.

In a sequence-attribute approach, an a lgorithm , fo r exam ple, BLA ST, is 

applied to a sequence attribute in R  (say  rj) and a sequence attribute in S 

(say S j). This returns a set o f  values for each p a ir in the  alignm ent o f  

the sequences (r j , S j) in the C artesian  p roduct o f  R  and  S, R*S. These 

values are

E the e-value o f  the H om olog ( r j ,  S j ) ,

I the identity o f  the H om olog (rj, S j) ,  and 

S the score o f  the H om olog ( r j ,  S j ) .

These define several subsets o f  the C artesian  p roduct o f  R  and S (Table

4.)*
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homolog The e-value o f Homolog (R*S) is the subset o f R*S 
satisfying E (rj, sj) < threshold value. This is a homolog link.

homolog The identity o f Homolog (R*S) is the subset o f R*S 
satisfying I(r* , S j)  > threshold value. This is an alternative 
homolog link.

homolog The score o f Homolog (R*S) is the subset of R*S satisfying 
S(r{ , S j) > threshold value. This is an alternative homolog 
link.

ortholog An Ortholog is created by applying to the e-value set E(R*S) 
the identity operator, namely:
The Ortholog((ri , S j ) )  = I(E(ri , S j ) )  and it is selected if I(E(rj , 
S j) )  > threshold value and the sequences are from different 
species.

Paralog A Paralog is created by applying to the e-value set E(R*S) 
the identity operator.
The Paralog((rj , S j ) )  =  I(E(ri ,  S j ) )  and it is selected if I(E(ri , 
S j) )  > threshold value and the sequences are from the same 
species.

Table 4.7: D ifferent subsets fro m  the C artesian p ro d u c t o f  R  and  

S  o f  each p a ir  in the a lignm ent o f  the sequences (r» sj)

W hen using a GO approach, there is an attribute  in each  relation, rg in R  

and sg in S, that has a set o f  GO  term s as its values. T hese term s can be 

M olecular Function, B iological Process o r C ellu lar C om ponents.

These lists are then com pared using a com parison  a lgorithm  (O ntology- 

driven sim ilarity  algorithm), w hich is based  on  the G O  structure and 

techniques described in 4.3.3.4.2, and w hich  calcu lates the relationship 

closeness values for the O ntology-driven sim ilarity  (rg, sg). This returns 

a set o f  values for the (rg, sg) in the C artesian p roduct o f  R  and S, R*S.

I f  the Ontology-driven sim ilarity  (rg, sg) score >  threshold  then an 

appropriate relationship (biological process, m olecu lar function or 

cellular com ponent) has been established.

4.4.3.2 SoftJoin

The softJoin is a binary operator that is used  to link  tw o concepts. It is 

based on the relationship type and rela tionsh ip  closeness value.
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S ^ C l  0  C2)
(R T ,R C > t)  w

w here

C l is the first concept,
C2 is the second concept,
RT  is relationship table,
RC is the relationship closeness, 
t is a threshold, and 
0  is the softjoin operator.

4.4 .3 .2 .1  Integration

W e assum e there is a set o f  data sources, w here a data source has

various types o f  concepts. For the sake o f  sim plicity, w e assum e the

data sources’ schem as are im plem ented in a relational m odel and  each  

concept in a data source is a relational table, and w e use the fo llow ing  

notation:

A schema of Relation R of degree n is denoted by
R(Ai,A2,...,A n) where Ai, A2,..., An is a list o f R ’s attributes.
An n-tuple t in a relation R is denoted by t=<vi,v2,...,vn>, where 
vj is the value corresponding to attribute Aj in the n-tuple. 
t.Aj refers to the value Vj in tuple t o f attribute Aj 
S={ si,s2, . . .,sn } is a set of data sources
C={ Ci,c2, . . . ,c m } is a set o f concepts(relations) within a data 

source.

Thus,

( s j ,  Cj) e  SxC w here Si is a data source and Cj is a  re la tion  representing a 

concept in the data source. To integrate experim ental datasets w ith  

public bioinform atics sources to annotate  genes using SLM  the 

follow ing steps are taken.

S tep l: A  user feeds the system  w ith  the fo llow ing input - Experim ental 

dataset, R elationship type, D isplay fields.
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Step 2: The system  links the experim ental dataset w ith  public data 

sources to annotate a gene list, so the output is gene annotations. To 

explain the integration process, w e use  the follow ing notation:

L is a set of dataset entries (set o f experimental data entries) 

W ithin L, a group o f  dataset en tries that satisfy  som e conditions w ill be 

selected; Lc is for instance a list o f  m ouse  genes, w here the expression 

is upregulated in response to aging. T he a ttribu te ’s nam e and m etadata 

will be extracted from  this experim ental dataset. W e define a function 

E xtractM etadataO fE xperim entalD ataSet to  ex tract the experim ental 

datasets’ m etadata. The approach for ex tracting  this m etadata is 

described in Section 6.1

Ac is an attribute o f the metadata o f Lc

E is the ExtractMetadataOfExperimentalDataSet function

AC=E(LC)=  {Al,A2,„An}

The potential linkage key for the experim ental dataset w ill be 

determ ined, w hich will be used to link  the experim ental dataset w ith the 

public data source to enrich the gene annotation . W e define a function 

getLinkageKey, w hich determ ines the po ten tial linkage key o f  the 

experim ental dataset. The approach for determ in ing  the potential 

linkage key is described in Section 6.1.

Lk is the linkage key o f the dataset (Lc), where Lk e  Ac 

Lk = getLinkageKey(Lc,Ac)

Da is a display o f the attribute list (which the user wants to 
retrieve)

SLM: a relation table stores the relationships between the pair of 
concepts across the data sources. SLM has the following 
attributes: (sl,s2,cl,c2,R T) where

s i, s2 are the pair o f sources, c l, c2 are a pair o f concepts, RT is 
the relationship type.

Sp is the primary source.
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Ck is the concept (relation table in the source)

The prim ary source is selected  by  an algorithm  from  registered data 

sources w ith the system  based  on  the experim ental data type and the 

relationship type. The source selection  algorithm  is described in section

4.5. It selects the source that has the m axim um  relationships w ith  the 

others sources, having the user concept and  relationship  type.

L inkage keys are extracted from  the experim ental dataset Lc and stored 

in a relation table G. This is done by  a p ro jec tion  operation on Lc.

G < _ / T l . ( l c )  ( 3 )

G is then jo ined  w ith the related relation  in the p rim ary  source to get 

result.

Result <— G * Sp.Ck (4)

A  projection is then m ade according to the user p reference  displayed in 

the attributes list. The resulting relation is the P rim aryD ataSet. It 

contains only the attributes specified in D a (the d isp lay  attribute list)

PrimaryDataSet < - j i Da (result) (5)

R elated sources and concepts, w hich have the specified  relationship 

type w ith the prim ary concept and source, are then  selected  from  SLM  

and stored in a new  relation SR.

SR ( S , C , R T  ) <- (J (Sl = SpACl = CkA/?7’ = r t ) ( SLM ) (6)

The defined operation SoftJoin  is then  used  to link  the prim ary result 

data set (.Prim aryD ataSet) w ith rela ted  data  in o ther data sources.

For each tuple tj e  SR, i= 0„ ,n  (num ber o f  tuples in SR)
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RelatedDataSet. <- „ Da (prim aiyDataSet^ ( ? )

The final result is obtained by  the un ion  o f  the prim ary dataset w ith  

datasets generated from  related sources.

FinalD ataSet <— Prim aryD ataSet RelatedD ataSetj (8)

4.4.3.3 O ther operators

SLM  also has the follow ing operations:

a) A dd a relationship to SLM :

SLM  New = SLM  oid U  {R}.

b) Rem ove a relationship to SLM :

SLM  N e w  — SLM  old - {R}.

c) A dd an instance to RKB:

RKB New =  RKB 0id U  {r}.

d) Rem ove an instance from  RKB:

RKB New = RKB old - {r}

A user can suggest a new  rela tionship  by  prov id ing  the System  

A dm inistrator w ith the follow ing inform ation: pa ir o f  data sources, pair 

o f  concepts, relationship type, re la tionsh ip  closeness, and pair o f  

identifiers for the data sources.

4.5 Source selection algorithm

The system  selects the sources, w hich  answ er the user query based on 

the param eters in the query: species, concept and relationships. In 

describing the algorithm , w e assum e the follow ing:
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C= {ci,C2,...,cn} is a set o f concepts 

S={si,s2 ,...,sm} is a set o f sources 

(Sj,Cj) c S x C

R = {Ri,R2,...,Rk} is a set o f relationships. These relationships 
are either internal relationships (between concepts in the same 
source) or external relationships (between concepts in different 
sources).

Cq is a set o f concepts used in the user query Cq c C

Rq is a set o f relationships used in the user query Rq czR

The first step is to find the sources that have the user query concepts, 

and then find the concepts in those sources that have the user query 

relationship. Instances o f  these are retrieved  hav ing  the R C  defined in 

the user query. The algorithm  is show n in F igure  4..

4.6 Sum m ary

Since com parative genom ic explanations p rov ide  a m ore 

com prehensive understanding o f  both the com plex  structures and 

diverse functions w ithin the genom es o f  d ifferen t organism s, this 

chapter presented an approach to the in tegration  o f  data  across species 

to assess genom ic com parison based on sim ilarity  know ledge extracted 

from  the G O -driven functional annotations and sequence sim ilarities.

The approach is based on the calculation  o f  rela tionship  closeness 

values, w hich originate from  each o f  the G O  h ierarch ies and hom ology 

and its types. The advantage o f  th is m ethod  lies in the application o f  

prior biological know ledge to estim ate the relationship  closeness 

betw een genes. In addition to hom ology  closeness, this chapter 

introduced three hierarchy-specific rela tionsh ip  closeness m easures, 

each based on inform ation indiv idually  extracted  from  each GO 

hierarchy (BP, M F and CC).

The next chapter describes the system  architecture for the proposed 

Soft L ink M odel introduced in th is chapter.
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Algorithm'. Source Selection 

Input: query q 

Output'. Sources St

1: parse q; (get concepts cq, relationships rq )

2: upload SLM;

3: identify the number of data sources participating in the integration system; 

4: for all data source Si do begin

No_of__Relationship =0;

For each concept in Si do 

if ci in Cq then

for each relationship r in Cj do

if relationship q in Rq then

NoofRelationship ++;

end if 

end for 

end for

if No of Relationship > 0

St (targeted sources) = St U {Si}

end if 

end for

5: find S e St with maximum No_of_Relationship;

6: return S;

F igure 4.5: source  selection algorithm
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Chapter 5 

System Architecture

5.1 Introduction

This chapter describes the system  design  fo r an “ illustration-of- 

concept” system  o f  the SLM  m odel. In  th is chapter, w e overview  the 

overall Integration and D ata M ining  o f  B io in form atics D ata sources 

(ID M BD ) system ’s architecture, describe its com ponents, and explain 

how  the com ponents are connected. The arch itectu re  is based on the 

conceptual m odel and approach described in C hap ter 4. The system  

architecture w ith its phases and com ponents is described . Integration o f  

data sources u tilizing the SLM  m odel is accom plished  in tw o phases: 

phase 1 - relationship m ining and discovery, and  phase  2 — data source 

linkage and integration. Each phase and its com ponen ts are explained in 

detail. The current prototype is built to w ork  w ith  tw o particular 

species, but can be easily extended to handle m ore species and to link 

to inform ation in data sources such as d isease and pharm aceutical. The 

steps the adm inistrator/user has to follow  to add  linkage for such a data 

source to the IDM BD and so enhance the SL M  system  are detailed in 

section 5.3. The system ’s stages are the p rim ary  focus o f  attention in 

section 5.4, w here the eighteen steps needed  to answ er a user query and 

link experim ental datasets are sum m arised. T he interaction betw een the 

m ediator and SLM  to enhance gene annotation  and provide a user w ith 

relevant inform ation from  other re la ted  sources is detailed in section

5.5. The chapter concludes w ith  a sum m ary o f  the chapter.
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5.2 System  architecture

The com ponents o f  the system  architecture interact and w ork together 

to achieve its design aim s. T he system  operation, the role o f  its 

com ponents and the inform ation exchanged am ong com ponents are 

described here. The architecture is based  on m ediation as proposed by  

W iederhold [201]. The pragm atic in terest in creating this architecture is 

to reduce the am ount o f  w ork requ ired  to in troduce a new  source by  the 

creation o f  the corresponding w rapper [25]. C onsequently , the m ediator 

allow s extendibility by the addition  o f  new  data sources to the 

integration system . The m ediator arch itectu re  preserves data source 

autonom y and supports access to up-to-date  da ta  as the m ediator uses a 

w rapper’s that encapsulate the underly ing  structure  o f  the data sources, 

so that w rappers’ access to data sources is transparen t to the m ediators. 

This preserves a data source’s autonom y and g ives a b iologist easier 

access to these sources, while enabling h im /her to  retrieve the m ost up- 

to-date biological data. Thus the linkage to  a  new  source is achieved by  

creating a w rapper for it. This m eans that the source is unaffected by 

the linkage and the IDM BD requires a new  w rapper to be  w ritten.

Figure 5.1 show s the functional architecture and its m ain  com ponents.

5.2.1 Architecture layers

The system  consists o f  four layers as show n in F igure 5.1: Client 

A pplication, M ediation, W rappers and D ata  Sources. A  user interacts 

w ith the m ediator in the top layer to access ind irectly  any data sources. 

The m ediator can be view ed as a  b ridge betw een  the user/application 

and data sources. It perform s the p rocessing  that is com m on to data 

sources. H ow ever, source-specific transform ations are done in 

individual wrappers.

1. C lient A pplication laver: c lien t/app lications reside here and 

interact w ith the ID M B D  fram ew ork. The client consists o f  a 

graphical user interface (G U I) and is responsible for the generation 

o f  user queries and up loading  experim ental datasets. It has several 

tools that process and analyse an experim ental dataset.

76



CHAPTER 5: SYSTEM ARCHITECTURE

2. M ediation layer: this prov ides a transparent view  o f  m ultiple 

heterogeneous data sources and  coherent view s o f  data in the data 

sources by perform ing sem antic  reconciliation through the 

Com m on D ata M odel (C D M ) data  representations provided by the 

wrappers. It m erges the resu lts from  sources and returns them  to 

users. Generally, it is responsib le  fo r data transform ation and 

integration, and com m unicates w ith  the client application layer and 

w rapper layer. Further details on  its com ponents are provided in 

section 5.2.2.2.6.

3. The w rapper layer provides access to the  data  in the data sources 

using the data source’s A PI, transla tes u se r queries into source- 

specific queries, extracts data, and m aps the  results from  data 

sources into the com m on data m odel o f  the in tegration  system . The 

w rappers conceal technical and data m odel heterogeneities; the 

w ay w rappers access data sources is transparen t to the m ediator 

and this preserves a data source’s autonom y. N ew  w rappers can 

be added.

4. D ata sources: heterogeneous data sources reside  here. They can be 

accessed through wrappers. D ata sources m ay  be structured or 

sem i-structured.
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W r a p p e r  L a y e r

Client Application L a y e r

D a t a  S o u r c e s  L a y e r

M e d i a t i o n  L a y e r

Figure 5.1: the ID M B D  F ram ew ork: a conceptual view  

5.2.2 Integration P h ases

Integration o f  data sources using the SLM  m odel is perform ed in two 

phases: Phase 1 - relationship d iscovery  and data  m ining , and Phase 2 - 

data source linkage and integration.

5.2.2.1 Phase 1: R elationship  D iscovery  and the S L M  m odel

This phase discovers relationships in the data  sources attached to the 

system . These data sources are varied. In th is phase, relationships 

betw een biological objects are identified . M any tools are used to 

discover relationships, such as a lignm ent tools, text m atching or other 

data m ining tools (for instance, c lassification  and association rules). 

The first step is parsing the data  sources to extract the attributes o f  

interest, w hich are used to identify  relationships. H aving identified the 

concepts and attributes o f  a source-pair, the system  will invoke the 

appropriate algorithm  to d iscover any relationships that m ight exist
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betw een concepts. The a lgorithm  being  used or other data m ining tools 

are responsible for calculating the degree o f  the relationships betw een a 

source-pair. Objects involved in  the  relationship  are then stored in a 

know ledge base in triple form  (Source id, Target id, Relationship 

C loseness). U ser preference (constra in ts, param eters, algorithm s) are 

considered during the discovery o f  rela tionsh ips and the building o f  the 

relationship know ledge base. T he re la tio n sh ip s’ m etadata will be stored 

in a relational table as source, target, re la tionsh ip  type, nam e o f  file 

containing actual data. The m etadata  describes the type o f  relationship, 

data sources and objects involved, and  refers to the table storing the 

actual m apping. The user can ad just the param eters used to discover 

relationships and calculate the degree o f  the relationship .

This subsystem  consists o f  the fo llow ing com ponents:

•  Parser: parses data in the rela tionsh ip  d iscovery  com ponent.

•  Relationship Discovery: m ines and finds re la tionsh ips betw een 

objects in different sources using  appropria te  algorithm s, search 

tools, and data m ining tools.

•  Relationship Table Generator: creates a know ledge relationship 

base in a triple form  (Source id, T arge t id, Relationship 

Closeness). Figure 5.2 show s the a lgorithm  generating this 

knowledge.

•  Search and Data Mining Tools: describes the features o f  the tools 

and algorithm s that are used  fo r rela tionsh ip  discovery, such as 

location, syntax, param eters, availab ility  and other relevant 

m etadata o f  input/output, resource requ irem ents and constraints. 

It is also responsible for the choice o f  search m echanism  and 

invoking data m ining too ls and algorithm s. It stores an 

algorithm ’s m etadata for use in rela tionship  discovery.

• SLM builder: an SLM  file consists o f  m etadata describing the 

relationships betw een concepts. This com ponent builds the SLM
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m etadata for a run and stores the relationship betw een each pair 

o f  concepts o f  the data  sources, the relationship type and the 

actual relationship table nam e. F igure 5.3 shows the X M L 

schem a definition for the  SLM  w ith  required and optional 

elements.

• Relationships Tables: T hese tab les are the know ledge base 

storing the relationship instances betw een  data sources in triple 

form at (Source id, T arget id, R elationsh ip  Closeness). They 

autom atically generate database links.
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Algorithm: Relationship G enerato r

Input: List E, S, cut-off // E, S are a list o f  entries o f a data source; cut-off is a constant

value

Output: RelationTable RT 

1: for each e in E do begin

for each s in S do begin

Do match (e,s)

Score = score o f match(e,s)

I f  Score >= cut-off then

RelationCloseness = Score

RT = RT U {(e,s, RelationCloseness)}

end if 

end for 

end for 

2: return: RT;

Figure 5.2: A lgorithm  to genera te  a rela tionsh ip  know ledge base
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<?xml version=" 1.0” encoding="ISO-8859-l" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
<xsd:annotation>

<xsd:documentation xml:lang=''en”>
XML schema for Soft Link Model metadata.

</xsd:documentation>
</xsd:annotation>
<xs:element name="SLM-knowledge-base">
<xs:attribute nam e-’no" type=" integer" use="required"/>
<xs:element name="database" minOccurs=0 maxOccurs="unbounded"> 
<xs:complexType>
<xs:element name="concept" minOccurs=0 maxOccurs="unbounded"> 
<xs:complexType>

<xs:element name="relations” minOccurs=0 maxOccurs=”unbounded”> 
<xs:complexType>
<xs:sequence>
<xs:element name=”SLM” minOccurs=l maxOccurs="unbounded"> 
<xs:attribute name-'DBName” type=”RC" use=”required"/>
<xs:attribute name=”concept” type="String" use="required"/>

<xs:attribute name="RelationType” ty p e-' relationships ” use=”required"/> 
<xs:attribute name="File" type=”String" use="required"/>
<xs:attribute name=”FileType" ty p e - ' String " use="required"/> 
</xs:sequence>
</xs:complexType>
</xs:complexType>
</xs:complexType>
< -  - >

<xsd: simpleType name="relationships">
<xsd:restrictionbase=”xs:string”>
<xsd:enumeration value="homolog"/>
<xsd:enumeration value="ortholog"/>
<xsd:enumeration value=”MolecularFunction"/>
<xsd:enumeration value="BiologicalProcess”/>
<xsd:enumeration value=”CellularComponent”/>
</xsd:restriction”>
</xsd: simpleType>

<xsd: simpleType name=”filetype">
<xsd:restriction base="xs:string”>
<xsd:enumeration value="mySQL”/>
<xsd: enumeration value="text"/>
<xsd:enumeration value="00"/>
</xsd:restriction”>
</xsd: simpleType>
</xs:schema>

Figure 5.3: X M L schem a f o r  S L M  m etadata
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5.2.2.2 Phase 2: D ata source linkage and Integration

This phase enables a user to use  the created relationships to in tegrate 

the data. Figure 5.4 overv iew s its architecture. There are seven 

m odules.

5.2.2.2.1 U ser Interface

This provides a single access p o in t fo r users to query data sources 

w ithin the system. It allows a u se r to up load  experim ental datasets and 

enrich gene annotations. It h ides the com plex ity  o f  the underlying 

structure and data schem a o f  data  sources. Its goal is to enable the user 

to interact easily w ith the system . T here  is also a facility  in the interface 

for the user to register new  data sources w ith  the system . This interface 

can accept a variety o f  different types o f  u se r query  such as a gene 

identifier or a table o f  experim ent results.

It allows the user to upload and in tegrate  experim ental datasets w ith  the 

available data sources. The user can set h is/her p reference  (relationship 

type, relationship closeness, and  d isp layed  fields). O nce the data are 

uploaded, the user is prom pted to choose the po ten tial linkage key  and 

required fields as well as the re la tionsh ip  type and relationship 

closeness. It facilitates also the creation  o f  an SL M  and the relationship 

know ledge base.

In brief, this m odule allows the u se r to:

•  brow se discovered relationsh ips betw een  entities/concepts across 

heterogeneous data sources using  a tree-like display o f  

relationships.

•  create a distinct SLM  to d iscover rela tionsh ips betw een concepts 

and entities.

•  upload experim ental datasets and link  them  w ith available 

bioinform atics data sources to enrich  gene annotation from  

different species.
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User Interface

Ontology

Parser

Relationships
discovery

Searching 
and Data 

Mining Tools
M etadata extraction and 

Query HandlerData Sources 
M etadata

Relationships 
Table Generator

SML Builder

Source Selection Mediator

SLM

Wrapper Manager

Relationships
Tables W rapper Loader

W rapper Source Link

W rapper selector
SLM metdata

WrapperWrapper

I t  I t
JDBC Interface AcePerl Interface

Data source 1

i k

[CZ- ___

Data source 2

Figure 5.4: O verall A rch itec ture  o f  In tegration  system
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•  construct queries.

•  select a rela tionship  type from  the available types and set the 

preferred  param eters.

•  register new  sources in to  the  system .

In general, the in terface fac ilita tes a na ive  end -user’s interaction w ith  

the system  by  allow ing flex ib le  up load ing  o f  experim ental datasets, 

construction o f  queries and receip t o f  re levan t feedback.

5 .2 .2 .2 .2  Data S ou rce M etadata

The D ata Source M etadata m odu le  consists o f  tw o parts: the first gives 

inform ation on how  to access and  re trieve  data, and  the o ther contains 

inform ation about the logical and  physical structure. F igure 5.5 show s 

the X M L schem a o f  data  source. E ach  data  so u rce ’s m etadata w ill 

contain a nam e, U R L, descrip tion , ow ner, system , database type, and 

w hether there is direct access to  the  source and  the JD B C  driver that is 

needed. The data source schem a is included  in th is part. H ow ever, the 

generation and integration o f  da ta  source schem as is beyond  the scope 

o f  this research. The reader w ho  is in terested  in schem a in tegration  m ay 

refer to [26, 72, 98, 99, 128, 129] o r o ther PhD  resea rch  com pleted  in 

K IS group o f  C ard iff School o f  C om puter Science [66, 122, 188].

5 .2 .2 .2 .3  O ntology

W hen data sources are to be  in tegrated , an on to logy  can be used  to 

drive or assist the investigation  o f  po ten tial m atch ing  processes am ong 

their elem ents. O ntologies can  help  reso lve sem antic  heterogeneity  

betw een data sources, define a con tro lled  vocabu lary , and construct a 

query so that the user is unaw are  o f  the data  so u rce ’s structure.

W e use a dom ain on to logy  in  m etada ta  ex traction  to enhance the 

m etadata and find possib le  re la tionsh ips betw een  experim ental datasets 

and dom ains (see C hapter 6).
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<?xml version-'1.0" encoding='TSO-8859-r' ?>
<xs:schema xmlns:xs="http://www. w3 .org/2001/XMLSchema">
<xsd:annotation>
<xsd: documentation xml: lang=" en">

XML schema for data sources.
</xsd:documentation>

</xsd:annotation>
<xs:element name="database" type=" DBinfo" minOccurs=l maxOccurs="unbounded">

<xsd: complexType nam e-' DB_info">
<xs:sequence>
<xs:element name-'ID" type="xs:string" minOccurs="l" maxOccurs="l"/>
<xs:element name-'Name" type="xs:string" minOccurs="0" max0ccurs='T7> 
<xs:elementname-'Description" type="xs:string" minOccurs="0" maxOccurs='T"/> 
<xs:element name-'Owner" type="xs:string" minOccurs-T " maxOccurs='T"/> 
<xs:element name="URL" type="xs:integer" minOccurs="0" maxOccurs='T"/> 
<xs:element name="System" type="xs:string" minOccurs="0" maxOccurs-T7> 
<xs:element name-'DataBase" type="xs:string" minOccurs="0" maxOccurs='T"/> 
<xs:element name="Direct_Access" type="xs:boolean" minOccurs="l" 
maxOccurs=" 1 "/>
<xs:elementname="Host" type="xs:string" minOccurs-T" maxOccurs='T"/> 
<xs:elementname="Port" type="xs:integer" minOccurs-' 1" maxOccurs='T"/> 
<xs:element name="User Name" type="xs:string"minOccurs="0" maxOccurs="l" /> 
<xs:element name="Password" type="xs:string" minOccurs="0" maxOccurs-'1 "/> 
<xs:element name="JDBC_DRIVER" type="xs:string" minOccurs="0" maxOccurs=" 1 "/> 
</xs:sequence>
</xsd: complexType>
</xs:schema>

F igure 5.5: The X M L  Schem a  defin ition  f o r  da ta  sources

5 .2 .2 .2 .4  Soft Link M odule

The Soft L ink M odule m ines and  stores the re la tionsh ips and cross- 

references betw een d ifferen t objects. It p rov ides a flexible linkage 

betw een data sources using  the re la tionsh ips created  in phase 1.

The soft link  m odule uses SL M  m etadata  to find possible related 

sources. The m odule receives requests in X M L  form at from  the 

m ediator. It then  collects da ta  from  the SLM  m etadata and relationship
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tables in RK B and stores them  in ou tpu t X M L. T his X M L  becom es the 

response that is sent to the requesting  m ediator.

5 .2 .2 .2 .5  M etadata extraction and Q uery Handler

This com ponent parses a u se r query  and  rew rites it in an appropriate 

form at. It parses the experim en tal datasets, extracts m etadata, and 

detects a suitable linkage key. It u ses the dom ain  ontology to enhance 

an experim ental da tase t’s m etada ta  (see  C hap ter 6 fo r m ore detail).

5 .2 .2 .2 .6  Mediator

The role o f  the m ediator is to hand le  all com m unication  to and from  

data sources. It also com m unicates w ith  the soft link  m odule to retrieve 

relationships betw een sources. It has four specific  jo b s:

• to try  to find a suitable p rim ary  da ta  source to satisfy  a given 

query.

• to com m unicate w ith  SL M , and  query  fo r possib le  related  data 

sources.

• to invoke data source w rappers to  send  queries/deliver user 

queries to relevant data  sources.

• to receive result sets, com bine  them  and send  the outcom e to the 

user.

The m ediator has the fo llow ing m odules:

•  Sou rce S election  This com ponen t selects an  appropriate  source 

to answ er a u se r’s query  based  on  u se r p references and query 

param eters. This com ponen t is responsib le  fo r the selection o f  

suitable sources to answ er u se r queries o r annotate  experim ental 

datasets. It uses the a lgorithm  in F igure  5.2 to  select a suitable 

data source.

•  W rapper M anager: responsib le  for instan tiating  the w rappers the 

system  is configured  to use. It m anages existing w rappers and 

perform s m any tasks: load ing  existing  w rappers, com m unicating 

w ith the SLM  to retrieve  rela tionsh ips betw een sources, and
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rem oving duplicates du ring  resu lt assem bly. It provides a basic 

service fo r m anaging  a se t o f  da ta  source w rappers. It has two 

com ponents:

■ Wrapper loader — dynam ica lly  loads all available data 

source w rappers reg is te red  in the in tegration system  and 

ensures they  are loaded  w hen  the system  starts.

■ Wrapper selector — chooses and  invokes w rappers for the 

selected data sources to an sw er a u se r query.

•  Source links: T he m ed ia to r in terac ts w ith  the  SLM  to request 

other related  sources fo r the  p rim ary  resu lt. T his com ponent 

handles com m unication  be tw een  the m ed ia to r and  the SLM . It 

sends an X M L request to  the SL M  to fe tch  o ther rela ted  sources. 

Source links use a request/response  parad igm  to in teract w ith  the 

SLM .

•  Duplicate removal: m erges resu lts, rem oves duplicates, and 

passes the com bined resu lt to  the clien ts/users.

5 .2 .2 .2 .7  W rappers

The w rappers provide access to rem ote  data  sources and transform  the 

results into an integrated form . T he w rappers conceal technical and data 

m odel heterogeneities. T he m ethod  o f  access to w rapped  data  sources is 

transparent to m ediators to p reserve  data  source autonom y. The 

w rapper shields a  user from  the structure  and  com plexity  o f  data 

sources. There is one w rapper fo r each data  source involved in the 

system , w hich provides access to da ta  o f  a specific  form at. I f  a source 

allow s direct access to  its underly ing  R D B M S, a JD B C  w rapper will 

forw ard an SQ L query  sta tem ent fo r p rocessing  by the source’s 

database system . I f  the data  source has a d ifferen t interface, the w rapper 

w ill use an appropriate  query  form at. For exam ple, to access 

W orm base, it w ill use the A ce P e rl , w h ich  is an object-oriented Perl 

interface for A ceD B .
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A w rapper perform s m any tasks, including:

• U sing JC D B  drivers o r o ther standard  A PIs o f  the data source to 

connect the sources and  to  receive  a resu lt set.

• Subm itting queries to the da ta  source th rough  SQ L, native query 

language o f  the source, o r as a  series o f  source A PI calls.

• Providing a m eans to ex tract da ta  from  sem i-structured sources

(for exam ple, flat files, H T M L , text).

5.3 B uild ing the SLM

The adm inistrator/user builds an SL M  by:

a) Identifying the concepts and properties to be  used  in the model.

b) Identifying appropriate rela tionsh ip  typ es  betw een concepts 

and properties.

c) Setting the threshold fo r the relationship  closeness m easure.

d) C hoosing algorithm s to com pute the soft link. A n algorithm  is 

required for the com parison  o f  tw o concept properties. The 

variable used to m easure the closeness o f  the biological en tity ’s 

relationship should also be specified.

e) C reating RK B tables. T his can be done in d ifferent w ays, e.g., 

offline or on-the-fly at run  tim e.
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5.4 System  Sequence

Figure 5.6 show s the steps taken  by  the  system  to answ er a user query 

and annotate and link experim en tal datasets. The steps are described in 

Table 5.1.

Step (1): The mediator receives a user query/experimental dataset, and 
selects the primary source to answer the query.
Step (2): The mediator invokes the wrapper o f the selected source.
Step (3): The selected source’s wrapper connects to the data source by means 
o f its API and submits the query to this data source.
Steps (4, 5): The source wrapper receives result sets from the data source and 
sends them to the mediator.
Step (6): The mediator extracts identifiers from the result sets then interacts 
with the Soft Link Model Adapter. It sends the source name, concept, 
identifier and user preference (the relationship which the user wants to use to 
link data sources and the relationship closeness threshold).
Step (7): The Soft Link module loads the SLM ’s metadata and determines, 
whether there are relationships associated with the concept and data sources 
sent to it by the wrapper manager.
Step (8): If  a relationship specified by the user is found between the selected 
concepts o f the data source and other concepts in other data sources, the SLM 
will pass the relationship table name to the mediator.
Steps (9, 10, and 11): The Soft Link module invokes the relationship wrapper, 
which opens a connection to the RKB and fetches instances satisfying user 
preferences. Basically, it fetches related concepts, data sources, and identifiers 
o f the related entries in the related source.
Step (12): The Soft Link Adapter responds to the mediator with a list o f 
related identifiers and source concepts.
Steps (13, 14): When the mediator receives the response, it invokes the 
wrapper o f the related source and passes related identifiers to it.
Step (15): The wrapper connects to the related source by the data source 
standard API and submits a query.
Step (16): When the wrapper receives related data set results, it passes them to 
the mediator
Step (17): The mediator combines related dataset results with previous results 
and removes any duplicates. The mediator maps the data set results to the user 
view, i.e., when it receives results from individual sources; it integrates the 
results and sends them to the user.
Step (18): The mediator sends the datasets to the user.______________________

Table 5.1: steps taken by the  system  to answ er a user query
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F igure 5.6: Sequence D iagram
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5.5 In tera c tio n  b e tw e e n  th e  M e d ia to r  and  S L M

Interaction betw een the m ed iato r and the SLM  is specified by a set o f  

protocols. O ur system  uses request/response operations to pass data 

betw een them  (Figure 5.7).

A m ediator initiates a request by  establish ing  and passing an XM L 

request to the SLM; upon receiv ing  this request; the SLM  searches its 

m etadata for possible related sources sa tisfy ing  the user query. If  any 

are found, it invokes the rela tionship  w rapper to access the relationship 

know ledge base to fetch relationships, and then the SLM  sends back a 

response m essage containing related  identifiers, concepts and data 

sources.

Request

SLM Mediator

Response

Figure 5.7: the m ed ia tor interacts with the SL M  via a

request/response parad igm
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5.5.1 Request

The m ediator sends a request to  the  SLM  as an X M L  docum ent. The 

request operation is used  to find  re la ted  data  in o ther data sources. This 

X M L docum ent contains the fo llow ing: the data  source, the concepts, 

the relationship type, the re la tionsh ip  closeness, and  a list o f  identifiers.

W hen the SLM  receives requests in  X M L  form at from  the M ediator, it 

collects data from  the SLM  m etada ta  and  know ledge relationship  base 

and transform s them  into X M L . F igu re  5.8 show s the X M L schem a 

definition for a R equest operation.

5.5.2 R esponse

SLM  responds to the m ed ia to r’s request w ith  an X M L  docum ent. The 

X M L is generated by  the SLM  afte r rece iv ing  and  in terpreting  a request 

containing the related  data source, concep ts and  identifiers. F igure 5.9 

show s the X M L schem a defin ition  for the R esponse  operation  w ith  the 

follow ing required elem ents:

•  Identifiers: list o f  identifiers o f  re la ted  ob jec ts on  o ther species,

•  Concept: nam e o f  the re la ted  concept, and

•  D ata Source: nam e o f  the re la ted  data  source.
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<?xml version='T .0" encoding="ISO-8859-r' ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
<xsd:annotation>
<xsd: documentation xml:lang="en">

XML schema for Request operation.
</xsd: documentation>

</xsd:annotation>
<xs:element name="DataSource" type="xs:string'7>
<xs:element name-'Concept" type=f,xs:string"/>
<xs: element name="relationship'7>
<xs: complexType>
<xs:attribute name="RelationshipType" type=" relationships” use=”required’7> 
<xs:attribute name="RelationshipCloseness" type-'RC" use-'required'7> 
</xs:complexType>
<xs:element name-'identifier" minOccurs=l maxOccurs="unbounded">
< -  - >

<xsd: simpleType name-'relationships'^
<xsd:restriction base="xs:string">
<xsd:enumeration value="Homolog"/>
<xsd:enumeration value-'Ortholog'7>
<xsd:enumeration value="Paralog"/>
<xsd: enumeration value="MolecularFunction"/>
<xsd:enumeration value=”BiologicalProcess"/>
<xsd:enumeration value=''CelIularComponent'7>
</xsd:restriction''>
</xsd: simpleType>

< -  - >

<xsd: simpleType name="RC">
<xsd:restriction base="xs:decimal">
<xsd:minlnclusive value="0''/>
<xsd:maxlnclusive value-'1'7>
</xs:schema>

Figure 5.8: X M L  schem a defin ition  f o r  the R equest operation
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<?xml version-'l.0" encoding='TSO-8859-l" ?>
<xsd:schema xmlns:xs="http://www.w3 .org/200l/XMLSchema"> 
<xsd:annotation>

<xsd:documentation xml:lang=,len">
XML schema for Response operation.

</xsd: documentation>
</xsd:annotation>

<xsd:element name="PrimaryDataSource" type="xsd: DataSets" minOccurs=0 
maxOccurs=”unbounded”/>
<xsd:element name=”comment” type “xsd:string”/>

< -  - >

<xsd: complexType name="DataSets">
<xsd:sequence>
<xsd:element name="PrimaryDataSource" type="xsd:string"/>
<xsd:element name?="PrimaryConcept" type="xsd:string"/>
<xsd:element name=" Primaryldentifier" type="xsd:string"/>
<xsd:element name=" Relatedldentifier" type="xsd:RealtedData" minOccurs^T’ 
maxOccurs=”unbounded”/>
<xsd:sequence>
</xsd:complexType>

< -  - >

<xsd: simpleType name="relatedData">
<xsd:sequence>
<xsd:element name-'RelatedDataSource" type="xsd:string"/>
<xsd:element name="RelatedConcept" type="xsd:string"/>
<xsd:e!ement name="RelatedIdentifier" type="xsd:string"/>
<xsd:sequence>

</xsd: simpleType >
</xsd:schema>

Figure 5.9: X M L  schem a defin ition  f o r  the R esponse  operation

http://www.w3
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5.6 Sum m ary

The ID M BD  architecture, inc lud ing  its basic  phases and com ponents, 

w as presented in this chapter. T he tw o-phase  in tegration o f  data sources 

utilised by  the SLM  m odel w as exp lained , nam ely, the relationship  

discovery and data m ining, and  source linkage and integration. This 

architecture is based  on the concep tua l m odel and  approach described 

in C hapter 4. The steps needed  to  answ er u se r queries and annotate and 

link experim ental datasets w ere  described . In teraction  betw een the 

m ediator and SLM  to enhance gene  anno ta tion  and provide a user w ith 

the required inform ation from  o ther re la ted  sources w as described in 

depth. A n overview  w as g iven  o f  how  the system  is built o f  

com ponents, and their connection

96



Chapter 6 

Extracting Metadata of 
Experimental dataset

6.1 Synopsis

The process o f  autom atically  ex tracting  m etada ta  from  an experim ental 

dataset is an im portant stage in  effic ien tly  in tegrating  th is dataset w ith  

data available in public b io in fo rm atics data  sources. M etadata  extracted 

from  the experim ental dataset can  be sto red  in databases and used  to 

verify  data extracted from  o ther experim en ts’ datasets. M oreover, the 

biologist can keep track o f  the datase t so that it can  be easily  retrieved  

next tim e. This extracted m etada ta  can be m ined  to d iscover useful 

know ledge; it can also be in teg rated  w ith  o ther in fo rm ation  using  a 

dom ain ontology to reveal h idden  rela tionsh ips. T he experim ental 

dataset m ay contain several k inds o f  m etadata  that can be used to add 

sem antic value to linked data. T h is chap ter describes an approach to 

extract m etadata from  an experim ental dataset. It describes the 

m etadata extraction phase (query  hand ler com ponen t in F igure 5.4) o f  

the ID M BD  system  [8-12], w h ich  w e have developed to link 

experim ental datasets w ith  ex ternally  availab le  data.

6.2 Introduction

Em erging technologies in b io techno logy  have m ade it possible to study 

thousands o f  genes or p ro teins in a single laboratory  experim ent [7, 

181]. H ow ever, in order to  find  re levan t b io logical know ledge from  

these experim ents, it is im portan t to analyse the experim ental datasets
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as well as cross reference and  lin k  these large volum es o f  datasets w ith  

inform ation available in ex ternal b io logical data sources accessible 

online to enrich gene annotations.

A  significant challenge in th is p rocess is in tegrating gene annotation 

w ith gene expression and sequence  in form ation  [136, 138, 193, 194]. 

Thus, b iologists can study genes based  on  the ir function, chrom osom al 

location, and tissue expression  and  also  cross-reference this data w ith  

data from  different species derived  using  d iverse  expression  analysis 

platform s.

W hen linking and in tegrating data  he ld  in an  experim ental dataset in a 

sem i-structured form  w ith  data  he ld  in ex ternal b io inform atics sources, 

it is essential to gather as m uch  in fo rm ation  abou t the experim ental 

dataset as possible. This in fo rm ation  can  be found  in the experim ental 

dataset from  colum n nam es and  the ir con ten ts as w ell as o ther types o f  

m etadata held in  such a dataset.

6.3 E xperim ental dataset m odel

The system  uses a th ree-phase approach: m etada ta  extraction , schem a 

creation and utilisation o f  a schem a to link  the experim ental data  w ith  

appropriate external data. In  th is section, w e concen tra te  on the first o f  

these phases and on how  it is achieved.

6.3.1 Metadata extraction

M etadata are data about data  tha t p rov ide  descrip tive  inform ation about 

resources for the purpose o f  find ing , m anaging , and  using  them  m ore 

effectively [53, 149, 180]. M uch  o f  an experim ental dataset is stored in 

an unstructured form at, fo r instance, in a flat file w ith  different data 

representations, e ither com m a separa ted  value (C SV ) or tab delim ited 

text, or som e sim ilar form at. A n  experim ental dataset m ay contain 

several types o f  m etadata  th a t can be u tilised  to add sem antic 

significance to data linked  w ith  it. E xam ples o f  m etadata are colum n 

nam es and row  headers, w h ich  are usually  specified  in such files. To 

link these datasets w ith  public  b io in fo rm atics sources, it is necessary to
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gather as m uch inform ation  abou t the datasets as possible. This can be 

achieved by  m aking  m ore use  o f  m etadata. O ur approach m akes use o f  

the follow ing types o f  m etadata , w h ich  are located and extracted for the 

purpose o f  in tegrating the experim en ta l dataset w ith  available public 

bioinform atics sources.

6.3.1.1 E lem ent nam e

C olum n headers are m etadata  ind ica ting  the m ain  concepts that the file 

represents. B ased on the data  rep resen ta tion  o f  the file and specified 

separator (tab, com m a, space), the  h eader line is converted  into tokens. 

The num ber o f  tokens is then  used  to  determ ine  the  num ber o f  elem ents 

to be extracted and the token  value  tha t con ta ins the colum n header as 

the elem ent nam e. T he co lum n  head ing  is ex tracted  from  the 

experim ental file to represen t the  e lem en t nam e.

6.3.1.2 E lem ent structure type

D ata structure type is detected  b y  analysing  the datase t vertically  for 

each elem ent in the dataset. D ata  structure types u sed  are integer, 

string, date, and double. E ach  value  in the e lem ent dataset w ill be 

checked to determ ine w hether it is a string, an in teger, a double o r a 

date. A n elem ent is considered  a string  i f  at least one o f  its values 

consists o f  any character b e tw een  a-z, A -Z , ' () + ,-.? :/=  and SPA CE, for 

exam ple, “b ird” . The e lem ent is considered  an in teger i f  its values are a 

string o f  characters consisting  o f  the d ig its 0-9, fo r exam ple, num ber 

20. The elem ent is considered  a  double  i f  its values can be converted to 

double form at, i.e., contains a n um ber and decim al po in t, for exam ple, 

56.15. The elem ent is considered  a date i f  its values can  be converted to 

date form at, for exam ple, 01-01-2006 . T his is lim ited  to a  few  exam ple 

types.

6.3.1.3 E lem ent length

By analysing the value vertica lly  for each  co lum n and com puting the 

m axim um  length  o f  a rep resen ta tion  in a colum n, the elem ent’s length 

can be determ ined.
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6.3.1.4 C onstraints

It is necessary  to identify  the  ex isting  sem antics o f  the data w hen 

possible. C onstraints [57, 70] th a t m ay  apply  to the data need to be 

detected, for exam ple, w h e th er the  “N O T  N U L L ” constraint is 

specified for an elem ent o r not. O ther constrain ts include w hether the 

elem ent’s value is positive o r negative , as in  the case o f  in teger o r float 

values. In the present p ro ject, all e lem en t dataset values are scanned to 

check w hether they could  be nu ll o r not. A n  e lem ent is considered null 

i f  there is a com plete absence o f  va lue  w ith in  the  colum n for at least 

one entry.

6.3.1.5 C andidate key for lin kage

A  candidate key is detected  from  an experim ental dataset by  analysing 

both  extracted m etadata and da ta  values. E ach  candidate  key has a 

certain  set o f  characteristics tha t m akes it su itab le  fo r the role o f  linkage 

key. These characteristics are ‘n o t n u ll’, ‘u n iq u e ’, ‘single w o rd ’, ‘fixed 

leng th ’, and ‘unam biguous’. M oreover, the nam e o f  an elem ent that 

m ay be a linkage key should  have  a m eaning  and  contain  keyw ords 

such as key, ID, number, No., accession, identifier. T he approach taken 

to detect the linkage key is de te rm ined  by  analysing  the  follow ing:

• E lem ent nam e: U sually , the  c rea to r o f  an experim ental dataset file 

intends to use keyw ords to  specify  the candidate  key  in  this data. In 

a b iological experim ental dataset, these keyw ords are “key” , 

“num ber” as in (G enB ank A ccession  N um ber), “N o .” , “ identifier” 

as in (gene identifier), “ accession” as in (Sw iss-P ro t A ccession), 

“ id” as in (G enbank ID , U niqS eqID , C lone Id), and o ther sim ilar 

term s. C om paring  a co lum n nam e w ith  th is keyw ord  list often gives 

an indication o f  the p rim ary  o r candidate  key  in the dataset.

•  E lem ent value: In th is step, the dataset is analysed vertically to 

capture the sem antic sign ificance  and  characteristics o f  each 

elem ent. F ive factors are taken  in to  consideration:
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i) U niqueness: T he linkage key  m ust be  unique w ith in  its dom ain 

[57, 70]. A  k e y ’s m ain  pu rp o se  is to  help  the user to identify  one 

single entity  in a data  source, regard less o f  how  m any entities there 

are.

ii) N ot null: N ull is a  kn o w n  value  and stands for "value is 

unknow n" [57, 70]. T he linkage key  m ust alw ays, w ithout 

exception, hold  a value that is N O T  N U L L .

iii) A m biguous:  T he linkage k e y ’s va lue  should  be unam biguous. 

This value m ust no t con tain  a  va lue  like  “n /a” o r “unknow n” or “not 

available” or a special charac ter like “ ?” o r o r sim ilar values.

iv) F ixed  length: In b io log ical sources, the  p rim ary  key  often  looks 

very  m uch the sam e in term s o f  fo rm at and  leng th  [93], for exam ple, 

characters fo llow ed by  num bers: P0496 , D X S 2 3 1.

v) B revity  /  S ingle w o rd : In  m ost cases, p rim ary  keys are single 

w ords.

•  K now ledge base: T he co lum n  nam e can be u sed  as a keyw ord  to 

search for related sem antic  concep ts in so u rces’ m etadata, in tegrated 

schem a, and dom ain on to logy . In  th is stage, an a ttem pt is m ade to 

m atch elem ents o f  the experim ental da tase t w ith  elem ents o f  the 

in tegrated schem a and so u rces’ schem a. T he co lum n nam e is used  to 

extract corresponding concep ts from  the data  source schem a and 

in tegrated schem a. T he co lum n  nam e is also  used  to extract 

corresponding concepts from  the  dom ain  on to logy  and a search is 

m ade for the colum n nam e and  all synonym s; fo r exam ple, elem ent 

“position” in an experim ental da tase t is a synonym  for “ location”, 

and “species” m ay be equ iva len t to “organ ism ” in the dom ain 

ontology. A nother app roach  augm ents the colum n nam e w ith 

synonym s and searches the sources and in tegrated  schem a.

The relationship  o f  each  e lem en t in  the  experim ental dataset w ith the 

in tegrated or sou rces’ m etada ta  should  be specified  to generate 

enhanced m etadata  as described  in  section  6.4.
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W e use a scoring system  that assigns a score to each criterion. I f  m ore 

than one candidate is found, on ly  the one w ith  the highest score is

considered. Table 6.1 show s the  scoring  system . A  negative score is

assigned to  null. A  d ifference is m ade am ong keyw ords that m ay be in 

the co lum n’s nam e. K ey-w ords like “num ber” , “accession” , “key” , and 

“ identifier” have a h igh  score since th e ir ex istence in a colum n nam e 

suggests they are likely  to be keys and  su itab le  fo r linkage, w hereas 

keyw ords like ‘n o ’ m ay occur by  chance  in the co lum n nam e as part o f  

a w ord, like “no” in “synonym ” o r “ id” in “a id” , “said” , “ solid” , and 

“void” .

Candidate keys w ill be ranked  based  on  the  criteria  and sem antic 

relations w ith  the in tegrated  o r so u rces’ m etadata; fo r exam ple, i f  the 

experim ental dataset contains a G en-bank  accession  num ber, gene 

identifier, and gene sym bol, w h ich  is the  m ost appropria te  linkage key 

am ong the three for use as a link  w ith  the  pub lic  b io in fo rm atics sources 

to  be used by  the system  in the  in tegration  p rocess?  T he aim  is to find 

the elem ent that has the m ax im um  score. T his p rocess can be 

represented m athem atically  as fo llow s:

Let,

n: be  the num ber o f  elem ents, 

m: be the num ber o f  the  criterion,

Si j : be the score o f  the  j- th  c riterion  o f  the i-th  elem ent,

Tj: sum  score fo r the  i-th  elem ent, and

M axim um Score is the  m ax im um  score across the e lem ent’s 

total score.

Therefore:

Ti= Z  Sij , f o r j= l ,2 , . . .m  (1)
j

M axim um Score =  m ax  Tj, fo r i = 1 ,2 ,.. .n  (2)

The linkage key is the e lem ent i w h ich  has the m axim um  Tj.
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C r i te r ia S co re

U nique 5

N ull -10

C olum n
nam e

accession 15

key 15

iden tifier 15

num ber 10

id 8

no 2

A m biguous -5

Single V alue 5

Table 6.1: S co rin g  System

To reduce the effect o f  he te rogeneity  be tw een  d ifferen t m etadata  

elem ents and to im prove in teg ration , po ten tia lly  sim ila r e lem ents that 

are detected m ust be converted  to  m atch  each  o th er in representation . 

A conversion function that converts the  rep resen ta tion  o f  detected  

m etadata is used.

6.3.2 Schem a creation

O nce all m etadata elem ents are  ex tracted  and  all sem antic  relationships 

are detected, a schem a for the  datase t is constructed . T his schem a 

describes the data structure o r type and som e o f  the constraints, for 

exam ple, elem ent nam e, e lem en t type, e lem ent leng th , is it unique? is 

its value null? is it candidate  key?

6.3.3 Schem a exploitation
Once the schem a o f  the experim en tal da tase t has been  constructed, the 

next step is to use th is schem a to  generate  a tab le  in a relational form  or 

as an X M L docum ent su itab le  fo r use , linkage and integration w ith 

other b io inform atics sources. T he unstruc tu red  experim ental dataset file
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is parsed  so that it can be im ported  in to  a relational table  or an X M L 

docum ent.

6.4 M etadata L inkages w ith  D om ain  O ntology

This section d iscusses how  to m ap  m etada ta  elem ents onto concepts o f  

a dom ain onto logy to enhance the  m etada ta  and d iscover any sem antic 

relationships w ith  the concepts in  the  dom ain  ontology.

6.4.1 Ontology

W hen data sources are to be  in tegrated , an  on to logy  can be used in the 

potential m atching  p rocesses am ong  th e ir e lem ents [14, 93, 176]. It 

helps in d iscovering  im p lic it and  h idden  know ledge through 

conceptualisation o f  a dom ain  o f  in terest, and  in overcom ing  the effect 

o f  synonym s. O ntologies describe  w ha t the  concep ts are, and how  they 

are related. They p lay an im portan t ro le  in supporting  inform ation 

exchange, reusing and sharing. In  ou r w ork , a  dom ain  on to logy w ill be 

used to facilitate the sem antic  in teg ration  o f  experim en tal datasets w ith  

public b ioinform atics data  sources and  to m ake the  data, especially  

m etadata, m achine readable, understandab le  and  m ore easily  linked 

according to the requirem ents o f  b io logists.

A n available dom ain on to logy  is the  T A M B IS  O nto logy  (TaO ) [24]. It 

contains know ledge about b io in fo rm atics and  m olecu lar b io logy 

concepts and their rela tionsh ips. It does no t include any instances. The 

stated aim  behind  design ing  th is on to logy  is g iven  as be ing

“to provide an ontology that could help underpin the 
development o f  systems that perform at least some o f  the 
functions o f  a domain expert. In general terms, these functions 
amount to knowing (i) what things are in the domain and (ii) 
when and how these things are related. ”

6.4.2 Discovering sem antic relationships

The relationships betw een  concep ts g iven  in an ontology and an 

experim ental d a tase t’s m etada ta  a llow  the flexible linkage o f  this
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dataset w ith  heterogeneous d a ta  across d istributed  data  sources. These 

relationships provide m ore flex ib ility  in  linkage by  provid ing  different 

links.

O nce the candidate key  is iden tified , a search is m ade using this 

candidate key  or its synonym s from  the dom ain  ontology to find 

m atching concepts/term s. W e ex trac t the concepts from  the dom ain 

ontology to w hich the cand idate  key  is re la ted  and all relationships 

associated w ith  the concept. A s the experim ental dataset concepts are 

m apped onto related  concepts in  the dom ain  onto logy , w e m ine for 

relationships associated w ith  each  re la ted  concep t in the dom ain 

ontology, as w ell as for concep ts linked  to concep ts o f  the experim ental 

datasets. For exam ple, i f  the  cand idate  key  is A ccessionN um ber, w e 

m ay find in the ontology dom ain  re la tionsh ips associated  w ith  this 

concept; for exam ple, the fo llow ing  are linked  to  A ccessionN um ber:

isA ccessionN um berO f, isIden tifierO f, isE C N um berO f.

The algorithm  for this process is show n in F igure  6.1.

Step 1: map the experimental dataset concept (candidate key) into 
concepts in a domain ontology. Many terms in the domain ontology may 
map into the candidate key.

Step 2: for each related concept in the domain ontology, mine for 
semantic relationships and associated concepts.

Step 3: associate the discovered semantic relationships and concepts with 
the experimental dataset concept (candidate key) to enhance metadata.

F igure 6.1: A lgorithm  f o r  m a p p in g  experim en ta l dataset elem ents to 

O ntology
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6.4.3 Enhanced metadata

E xperim ental D ataset m etada ta  w ill be  enhanced w ith  any sem antic 

relationships d iscovered  from  the dom ain  ontology. E nhanced m etadata 

provides a flexible m eans fo r link ing  the  experim ental dataset w ith  

other public b io inform atics da ta  sources. T he enhanced  m etadata is 

represented as:

EnhancedM etadata=<C , SR >

w here C represents the know ledge  base  concep t derived  from  the 

dom ain ontology that is rela ted  to  the  cand idate  key  and SR  represents 

the sem antic relationships tha t have  been  revealed .

For the sake o f  sim plicity  in th is exam ple , w e assum e the experim ental 

dataset concept (candidate key) is m apped  to  on ly  one concept in the 

dom ain ontology. C onsider the  dom ain  on to logy  in F igure 6.2, the 

candidate key A ccessionN um ber  is m apped  to  a sim ilar concept 

A ccessionN um ber  in the dom ain  on to logy  (F igure  6.3 and  6.4). A ll 

relationships and concepts assoc ia ted  w ith  the re la ted  dom ain  onto logy 

concept are extracted. So, the enhanced  m etada ta  fo r the  candidate key 

is:

<A ccessionN um ber,{< gene,isA ccessionN um berO f> ,< pro te in ,

isA ccessionN um berO f> ,< D N A ,isA ccessionN um berO f> }>

The biologists then  determ ine w h ich  concep t and  rela tionsh ip  are o f  

interest based on their experim en tation  and  na tu re  o f  the dataset. I f  

there is am biguity  because there  is m ore than  one possib le  linkage, the 

system  w ill d isp lay  the a lternatives to the user. T he user selects the 

appropriate linkage; to  help  in  th is  decision , the  u se r is g iven additional 

inform ation from  the onto logy.
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Gene

T ~ \

isNamfeOf

Name

Protein

isAccessi NumberOf

isECNumberOf

isAccessfonNumberOf

ECNumber

AccessionNumber

isAccessionNumberOf

F igure  6.2: D om ain  O nto logy
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Experimental Dataset Concept Domain Ontology

DNA

Protein
Gene

isAccessionNumberOf
isECNumberOfisNai

isAccessiorrNumberOfAccessionNumber sAccessibnNumberOf

Nam e
ECNumber

A ccessionN um ber

F igure 6.3: M apping  the experim en ta l da tase t concep t into the D om ain  

O ntology
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Experimental Dataset Concept Domain Ontology

Protein

isAccessionNumberOf
isECNlimberOf

isAccessionNumberOfAccessionNumber sAccessionNumberOf

Name
ECNumber

AccessionNumber

Gene

DNA

Protein

isAccessionNumberOf

isAccessionNumberOf /
isAccessionNumberOf

AccessionN um ber

F igure 6.4: D iscovered  sem an tic  re la tionsh ips betw een the

experim ental da taset concept a n d  dom ain  on to logy  concepts

6.5 System  A rch itectu re

The proposed system  consists o f  the fo llow ing  m ain  com ponents (see 

Figure 6.5).

M e ta d a ta  e x tra c to r :  ex tracts m etadata  and has an A pplication 

Program m ing Interface (A PI) to facilitate  interaction betw een the
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application and the extractor. It also undertakes the functions o f  the 

extractor com ponent, such as experim ental file processing and analysis.

Linkage key detector: com putes the score for each colum n o f  the 

experim ental dataset to iden tify  w he ther the elem ent is suitable for use 

as a linkage key to o ther sources. It uses the colum n headers and 

colum n entries to calculate the scores o f  each  colum n using form ulae 1 

and 2 in section 6.3.1.5, and the scoring  system  in Table 6.1.

C oncept m apper: m aps the experim en tal dataset concepts, m ainly the 

candidate key, to the dom ain  o n to lo g y ’s concepts and discovers 

relationships betw een them .

Schem a creator: creates a schem a for the experim ental dataset based 

on the extracted m etadata as described  in section  6.3.

D ata transform er: im ports da ta  in an unstruc tu red  form at and 

transform s it into a structured form at, such as a rela tional form . It 

transform s the experim ental da tase t using  the schem a created  by  the 

schem a creator. This creates a popu lated  rela tional database from  an 

experim ental dataset.

Once the experim ental dataset is analysed  and transfo rm ed  to a suitable 

form at, it can be linked and in tegrated  w ith  ou r ID M B D  system  [10, 

12].
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Schema Creator

Data Transformer

Concept Mapper

Linkage key detector

Metadata Extractor
Sources’ Metadata Domain Ontology

Experimental Datasets

Mediator

F igure 6.5: Q uery H andler a n d  M etada ta  extraction  A rch itec ture

6.6 L im itation

Since there is a b road  varie ty  o f  flat file form ats, the approach 

presented in this chapter is no t in tended  to cover all types o f  flat file 

form ats in their entirety. H ow ever, it is a starting  po in t for further 

enhancem ents in this d irection . T he p ro to type system  accepts only 

delim ited flat files, w here the first line contains colum n nam es or 

headers (Figure 6.6). H ow ever, the princip les in the approach can be 

used also for sem i-structured  files (e.g. X M L ) w here an elem ent tag  can 

be treated as a  heading  nam e. M oreover, som e o f  the principles
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(candidate key for linkage detection , sem antic relationship discovery 

and ontology m apping) can be used  w ith  any file type.

ID_REF IDENTIFIER GSM12883 GSM12884 GSM12885 GSM12886
5 . 8 . 3 C 4 7 F 8 . 6 - 0 . 3 5 1 - 0 . 4 0 2 - 0 . 1 1 4 - 0 . 0 5 7
3 . 5 . 2 1 Y 3 8 H 6 A . 3 - 0 . 0 5 4 - 0 . 0 9 3 0 . 5 0 4 0 . 3 2 3
1 6 . 2 0 . 1 4 C 3 2 H 1 1 . 1 3 n u l l - 1 . 3 3 4 - 0 . 8 8 6 - 0 . 9 3 5
5 . 3 . 4 Y 7 1 F 9 B . 2 - 0 . 2 5 5 - 0 . 1 5 8 0 . 1 8 7 0 . 0 1 1
4 . 1 . 1 K 1 0 E 9 . 1 - 0 . 5 9 8 0 . 0 1 1 0 . 3 0 8 0 . 2
1 0 . 2 . 1 6 F 4 8 G 7 . 5 0 0 . 1 3 5 0 . 0 7 - 0 . 2 0 1
2 2 . 1 4 . 6 T 1 9 D 1 2 . 5 - 0 . 3 1 6 - 0 . 5 9 8 0 . 2 9 1 0
2 9 . 9 . 1 3 F 0 8 B 4 . 4 - 0 . 0 0 7 - 0 . 4 4 8 0 . 3 4 3 n u l l
2 1 . 1 1 . 6 F 2 1 D 1 2 . 5 - 0 . 3 0 7 - 0 . 5 4 0 . 0 2 7 0 . 2 9
9 . 5 . 1 2 F 4 9 F 1 . 1 - 1 . 5 0 3 - 1 . 8 1 2 - 0 . 2 1 9 - 0 . 8 4 5
1 1 . 1 1 . 2 0 F 3 6 D 3 . 5 n u l l - 0 . 6 8 6 0 . 3 3 - 0 . 2 2 9
2 . 1 4 . 1 1 Y 7 5 B 8 A . 1 0 - 0 . 0 5 3 - 0 . 0 5 1 0 . 1 9 9 0 . 0 4 3
1 4 . 4 . 8 Y 5 7 A 1 0 A . 1 5 N / A n u l l 0 - 0 . 2 2 3
1 6 . 1 2 . 1 0 C 0 2 F 5 . 1 1 - 0 . 3 6 - 0 . 4 8 3 0 . 3 9 4 0 . 0 2 4
2 1 . 1 2 . 2 3 Z C 3 7 3 . 2 - 0 . 4 2 5 - 0 . 3 8 0 . 0 5 4 - 0 . 2 2 1
9 . 2 4 . 8 R 1 0 F 2 . 1 - 0 . 1 0 3 - 0 . 2 4 7 - 0 . 0 6 9 - 0 . 0 5 4

1 2 . 9 . 2 0 F 3 5 E 8 . 7 - 0 . 2 5 7 -1.503 -0.167 0

F igure 6.6: Sam ple o f  tab de lim ited  f la t  file , w here  the heading nam es

in the f ir s t  line

6.7 Sum m ary

The process o f  au tom atically  extracting  the m etadata  from  an 

experim ental dataset is an im portan t stage in  effectively  integrating this 

dataset w ith data available in public  dom ain  b io inform atics sources. 

M etadata extracted from  th is da ta  file can be stored  in databases and 

used to verify  data ex tracted  from  an experim ental dataset. This allow s 

the biologist to keep track  o f  the dataset, and facilitates its future 

retrieval. The extracted  m etadata  can also be m ined to discover useful 

know ledge. The dataset m ay also  be processed  and queried w ith other
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bioinform atics data sources to obtain  m ore inform ation. The 

experim ental dataset m ay con ta in  a  num ber o f  types o f  m etadata that 

can be used to add sem antic va lue  to the  linkage.

This chapter has described  an approach  for ex tracting  m etadata from  an 

experim ental dataset. The app roach  a ttem pts to extract the follow ing 

types o f  m etadata: elem ent nam e, type, leng th  and  constraints, such as 

null value allow ed and positive  va lue  o r negative  value allow ed. The 

approach w as able to iden tify  a  su itab le  link ing  elem ent to public 

dom ain bioinform atics sources.

The approach extracts an experim ental m etada ta  and  identifies the m ost 

suitable linkage key, by  a techn ique based  on  a m athem atical 

foundation using a p roposed  scoring  system . A  dom ain  ontology is also 

used to m ine and d iscover sem antic  re la tionsh ips betw een an 

experim ental dataset concept and  its dom ain  concepts. These 

relationships are used to enhance the  m etadata, w h ich  helps in linking 

and integrating the experim en tal dataset w ith  public  dom ain 

bioinform atics data sources.

113



Chapter 7 

Implementation

7.1 Synopsis

This chapter describes the im p lem en ta tion  o f  the system  presented in 

Chapter 5 as an illustration  o f  concep t o f  the SLM  m odel. 

Im plem entation details o f  the ID M B D  pro to type  and  how  relationships 

betw een biological objects are u sed  to in tegrate  heterogeneous 

bioinform atics data sources across species are p resen ted  and explained in 

this chapter. There is an im plem enta tion  overv iew , fo llow ed by  a 

discussion o f  the technologies used , and  a descrip tion  o f  m odules. This 

chapter does not intend to  g ive full details o f  im plem enta tion  or a user 

guide o f  the system , bu t ra th e r h igh ligh t som e o f  the sy stem ’s 

functionality and im plem entation.

7.2 R equirem ent A nalysis

There are m any factors invo lved  in determ in ing  the system  design and 

im plem entation o f  any system , and  the fo llow ing  w ere im portant for 

IDM BD:

• ID M BD  should be im plem ented  as an  illustra tion  o f  concept 

prototype to dem onstra te  the technique o f  linkages described in 

C hapter 4. O ther features that ex ist in o ther system s, like reports, 

v isualization and in tegration  o f  b io inform atics analysis tools are 

beyond the scope o f  th is pro ject.

•  The system  architecture shou ld  be extendible, i.e., it should be
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■ capable o f  a llow ing  new  data  sources to be added.

■ capable o f  allow ing  the  addition  o f  new  relationships.

•  The system  should be  u se r driven  w ith  respect to the type o f  

relationship and algorithm s availab le  to establish relationships w ith 

flexibility in setting thresholds.

•  The system  should be flex ib le , i.e., it should  accept diverse types 

o f  experim ental data files and  d ifferen t linkages

•  The system  should be designed  in a  m odular and generic w ay so 

that its com ponents can be adap ted  and  reused.

•  The architecture should  preserve  data  source autonom y and access 

up-to-date data.

7.3 Im plem entation overview

The system  fram ew ork o f  ID M B D  is com posed  o f  a w eb clien t layer, 

w eb application layer, database connection  layer and data sources layer. 

In this im plem entation, w e chose A pache in tegrated  w ith  T om cat as the 

W W W  server softw are, m ySql as the  database server, and  Java language 

and Java Server Pages (JSP) technique as the m eans o f  developm ent 

except for the W orm  w rapper, w h ich  is im plem ented  in Perl.

Figure 7.1 illustrates the im plem enta tion  arch itecture  o f  ID M BD . The 

C lient GUI interface facilitates u ser in teraction  w ith  the o ther system  

com ponents in the architecture. U sers access the system  through a user 

interface, i.e., W eb brow ser, w h ich  accepts a user query, uploads the 

experim ental datasets and d isp lays the results. F irst, the user sends a 

request to the w eb server. Subsequently , the w eb server transfers the 

request to the ID M B D , w hich  handles the user request through its 

m odules, w hich are described  in section  7.6.

The ID M B D ’s m ediator in teracts w ith  the data sources’ w rappers to 

facilitate the subm ission o f  queries and receip t o f  results. The w rappers
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thus hide the com plexity  o f  the  data  sources from  users and other 

com ponents. It also in teracts w ith  the SLM  and R elationships 

K now ledge B ase (R K B ) th rough  the Soft L ink  A dapter (SL A ), w hich 

m akes the SLM  appear to the  ex ternal w orld  to be an object w ith  a set o f  

predefined m ethods. T he w eb  server then  returns a response to the 

c lien t’s brow sers through the  w eb. T he m ain  com ponents in the 

im plem entation architecture are:

•  A pache W eb Server: T his server is responsib le  for the services on 

static H TM L pages rela ted  to the p ro jec t and  passes JSP requests to 

the Servlet container, i.e., T om cat.

•  Tom cat Servlet C ontainer: T his server accepts the incom ing 

Servlet as JSP requests and  p rocesses, handles, and responds to 

them . The JSP pages are sim ply  an in terface betw een  the user and 

the background system . JSP  pages let the u se r en ter h is/her query, 

upload experim ental datasets and set h is/her p reference  param eters. 

It then passes this inform ation  onto ID M B D .

•  ID M BD  m odules: T hese consist o f  the m ain  system  m odules 

(Section 7.5), Java helper c lasses and w rapper classes. Java helper 

classes are responsible fo r the H T M L /X M L  parsing , processing, 

data caching and data p rocessing  tasks. W rappers are responsible 

for the creation, m ain tenance, and closure  o f  actual database 

connection classes, the passing  o f  queries to the identified 

databases, and the receip t o f  incom ing data  from  the databases.

•  W rapper Layer: T his layer is designed  to be  extensible so that, in 

future, new  data sources and  connection  handlers can be easily and 

seam lessly inserted into the system . A t present, there are two 

different in terfaces because  o f  the tw o data  sources.

■ JD BC  interface: O u r Java classes use th is interface like a 

standard Java D atabase  connection  API. W e create, 

m aintain, and c lose the database connection according to
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JD BC A PIs, and  follow  the sam e pattern  for query  

construction and resu lt set processing.

■ A cePerl interface: T his is used  to connect to the A ceD B . 

W e use its library and  fo llow  its interface to create, m aintain, 

and close database connections. Q uery construction, passing 

and result set p rocessing  are handled according to the 

A cePerl interface.

•  Data Source Layer: data sources are invisib le  to end users and 

com posed o f  heterogeneous data sources. C urrently , the follow ing 

species- specific data sources are used  in ou r im plem entation:

■ M G D : includes inform ation  concern ing  the genetics,

genom ics and bio logy o f  the m ouse.

■ W orm Base: includes inform ation  concern ing  the genetics, 

genom ics and b io logy  o f  C. elegans and som e related  

nem atodes.

•  R K B

A Soft L ink M odel w as created  betw een m ouse and C. elegans as 

described in section 4.3 for the fo llow ing relationships: H om olog, 

O rthology, M olecular Function , B io logical P rocess, and C ellular 

Com ponent. First, we parsed  all m ouse sequences and w orm  

sequences from  Sw iss-Prot using  the parser. T hen w e used the 

B LA ST algorithm  to com pute the hom ology  betw een the sequences. 

For generating the M olecu lar Function, B io logical Process and 

C ellular C om ponent, w e used  the algorithm  described in section 

4.3.3.4.2. The relationship instances w ere then  stored in a relational 

table as (source-object identifier, target-object identifier, relationship 

closeness) in m ySql databases. A fter w e had  built all relationship 

tables, we created our SLM  and stored it in an X M L file as show n in 

Figure 7.2, w hich describes the relationships betw een the concepts o f  

the data sources. The R K B  can be used to build  protein-protein
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interactions as lines (edges) form ing a netw ork betw een poin ts 

(nodes). D ata can be v isualized  as a  netw ork  graph directly  from  R K B  

using  visualization softw are (F igure  7.3).

7.4 C hoice o f  program m ing language

In im plem enting the ID M B D  pro to type , Java w as used for m ost 

com ponents and Perl w as u sed  to  create  w rappers for AceD B data 

sources. Java supported ob jec t-o rien ted  design, m odularity  in the system  

design, easy integration w ith  o ther Java, C  and C ++ com ponents and 

availability  o f  A PIs. H ow ever, the system  can  be im plem ented using any 

program m ing language that p rov ides support fo r developing  distributed 

applications, such as C, C ++ or Java. Java  w as chosen  to im plem ent the 

system , due to the follow ing advantages over o ther program m ing 

languages:

•  It is a p latform  independent language that a llow s developers to 

w rite softw are that can be com piled  once fo r execu tion  on different 

platform s.

•  D ue to Jav a’s current popularity , m any  developers are fam iliar 

w ith  the language and w ill therefore  be able  to use  our system .

•  Several libraries and classes are im plem ented  in  Java.

The technologies used are sum m arised  in A ppend ix  C w ith  reasons for 

use.

7.5 M odules

Figure 7.4 show s the m odules o f  the ID M B D  system . These m odules 

w ere designed to be a generic  so they  could  be adapted  and reused. 

Sam ples o f  Java classes are p resen ted  in A ppend ix  D. This section 

provides descriptions o f  these m odules.

7.5.1 Soft L ink M odel

The Soft L ink M odel is responsib le  for d iscovering  relationships betw een 

different objects. Six types o f  re la tionsh ips are im plem ented. It also 

com m unicates w ith  the m ediato r during  the integration process to enrich
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query results w ith additional inform ation  from  other species based  on a 

relationship o f  interest. It receives requests from  the m ediator and then  

collects data from  the SLM  m etada ta  and RK B to find possible rela ted  

data  sources and respond to the m ediator. Thus, it helps in providing a 

flexible linkage betw een data sources using  the relationships created.

•  S o ftL in k A d a p te r  (SL A ): T his m odule  com prises a set o f

application program m ing in terfaces (A PIs) to interact w ith the 

m ediator. W hen it receives a request from  the m ediator to find data 

related to entries sent by  the m ediator, it determ ines w hether the 

relationships exist in the Soft L ink  M odel. I f  they  exist, it fetches 

them  from  RK B and returns the re la ted  data  sources, concepts and 

identifiers to the m ediator. This m odule  has several prim itives for 

ID M BD . A  b rie f  descrip tion o f  these p rim itives follow s:

■ getR elatedC oncept: the m ain  prim itive  in SLA , w hich calls 

o ther m ethods to fetch all rela ted  en tries from  other data 

sources.

■ getR elation: this gets the relationsh ips fo r a specific concept 

in a specific data source from  SLM  m etadata. It retrieves the 

relationship  nam e, concept and the da ta  source nam e for 

related  sources.

■ getRelations: this gets all relationsh ips existing  in a specified 

Soft L ink M odel.

■ G etM atchEntriesInD ataSource: returns rela ted  entries from  

other data sources. It calls the w rapper m anager to fetch 

records from  rela ted  data sources, and  retrieves a record 

from  a data source that has re la tionsh ips w ith  specified 

entries.
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Figure 7.1: An overview o f  the implem entation architecture
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<?xml version="1.0“ encoding="UTF-8" ?>
<SLM -knowledge-base no="2">
-  < da tab ase  name="mgi">

- cco n ce p t Name="Gene_product">
-  <relations>

<SLM DBName="worm" concept="Gene_product" RelationType="Homolog" File="homolgy" FileType="mySQL" />
</relations>

-  <relations>
<SLM DBName=*worm" concept="Gene_product" R elationT ype='G O terrn(M olecular_function)" File="MF" FileType="mySQL" />

</relations>
-  <relations>

<SLM DBName="worm" concept="Gene_product" RelationType="G Oterm (Biological p ro ce ss)"  File="BP" FileType=*mySQL“ />
</relations>

-  <relations>
<SLM DBName="worm" concept="G ene.product" R elationT ype="G O term (cellu lar_com ponent)"  File="cc" FileType="mySQL" />

</relations>
< /con cep t>

< /d a ta b ase >
</SLM -knowledge-base>

F igure 7.2: A n exam ple o f  S L M  m etadata
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MGI:1890480 ]M GI894693
MGI:2444664

MG11918935
MGI:2137594

M G I1 349449

JM G I2446239

M G I.894695

MGI894692

WP:CE1883o
WP:CE2964£ WP:CE16642

MG):1917754
M G I2444392

MGI:2139447

M GI1891640

MGI1915159 IMGI894694
| MGI2179403 |

F igure 7.3: A  graph represents pro tein-pro tein  rela tionships between  

m ouse and  C. elegans. Each rectangle represents a d ifferen t pro te in  and  

each line indicates that the two pro te ins have relationships. Only a very  

sm all se t o f  R K B  is visualized here
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■ G etM atchE ntriesInR elationT able: fetches relationship  table 

entries that m atch  the specified  identifier, using  the 

R elationship  w rapper in terface, it retrieves all records rela ted  

to the specified  iden tifie r and  data  source.

•  G e n e ra te S o ftL in k T a b le : is u sed  to create a soft link m odel to 

discover sem antic re la tionsh ips betw een  concepts across data 

sources. This generates hom ology , o rthology, paralog, M olecular 

Function, B iological P rocess and  C ellu lar C om ponent relationships 

betw een genes. D ifferen t a lgorithm s are used  to calculate 

relationship  closeness betw een  objects. T he SLM  uses a m y SQL 

database to store rela tionsh ip  instances w henever there is a 

relationship betw een a p a ir o f  en tries in  a p a ir o f  data  sources.

•  b u ild  SL M : is responsible fo r c reating  SL M  m etadata  and storing 

relationships in RKB.

7.5.2 C o n fig u ra tio n

This m odule is responsible fo r reg istering  new  da ta  sources to the system  

as w ell as loading configuration files on the system  execution . It consists 

o f  tw o m ain sub m odules:

•  R eg is te r: registers new  da ta  sources w ith in  the ID M D B  system , by 

specifying data source inform ation: nam e, location , w rapper, and 

schem a, type o f  data source and  access p rocedures that can be used  

to in teract w ith a data  source (A ppendix  B).

•  C onfig : parses the configura tion  file and loads all registered data 

source w rappers and Soft L ink  M odels on the system  execution. 

The configuration file “conf.sys” contains registered  data sources, 

their w rapper classes, and  availab le  soft link  m odels.
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7.5.3 M e d ia to r

M ediator plays in term ediate ro les be tw een  users and data sources. It also 

com m unicates w ith  the soft link  m odule  to retrieve relationships betw een  

data  sources. This m odule consists o f  sub m odules:

•  W ra p p e r  M a n a g e r  (W M ): instan tiates the various data sources’ 

w rappers the system  is con figu red  to use. It m anages existing 

w rappers and perform s o ther tasks: loading existing w rappers, 

com m unicating w ith the Soft L ink  M odel to retrieve relationships 

betw een objects across sources, and  rem oving  duplicates during 

result assem bly from  d ifferen t sources. It invokes an appropriate 

w rapper to get responses from  sources. It loads both  the Perl and 

Java w rapper m odule on dem and  dynam ically . It uses data sources’ 

w rappers to access o ther ob jects from  those da ta  sources. The W M  

m odule consists o f  an A pplica tion  P rog ram m ing  Interface (A PI) to 

facilitate interaction betw een  the app lica tion  and  the data sou rces’ 

w rappers as w ell as w rapper loading.

•  Q u e ry  H a n d le r :  p lays a m ajo r ro le  in in teg rating  the expression 

dataset w ith  the public  b io inform atics da ta  sources. It is 

responsible for linking the m etadata  w ith  the  dom ain  ontology, 

detecting the suitable linkage key  and ex tracting  m etadata  from  the 

gene expression data  set. Q uery H and ler has several A PI 

prim itives; a b rie f  descrip tion  is offered  in T ab le  7.1.

•  S o u rce  Selection : is responsib le  fo r se lecting  the appropriate data 

source to answ er a u ser query. U ser requests received  by the W eb 

server m odule are fo rw arded  to the source selection m odule to 

decide w hich data source is appropriate . T he data source is 

selected based  on the u se r query  and on how  m any relationships 

are associated w ith the data  source.

7.5.4 W ra p p e r

The w rapper m odule is a class w ith  specific entry points that provides 

access to a class o f  data  sources. T he w rapper uses the standard
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connection A PI o f  the data  sources. F or exam ple, it uses the JD B C  driver 

to connect to a relational database, and  retrieves data, and uses A cePerl 

to connect to the A C ED B  data  source. Specific w rappers are necessary  

for each data source in tegrated  in to  the m ediator. Several w rappers are 

im plem ented into ID M BD . T hese w rappers are:

•  M G I_W rapper: is a  Java  class that im plem ents the W rapper 

interface and is loaded in to  the  W M . It uses the JD BC driver to 

connect to the M G I data source, w h ich  is a relational database, and 

to retrieve data.

•  W orm _W rapper: is a Java  class tha t also im plem ents the 

W rapper interface and is loaded  in to  the  W M . It uses the A cePerl 

driver to connect to the A ceD B  and to re trieve  data.

•  R e la tion sh ip W rap p er: T he R ela tionsh ip  W rapper class 

im plem ents the w rapper in terface, w h ich  p rov ides m ethods to  load 

JD BC drivers, establish  new  database connections, and fetch  

relationship instances betw een  data  sources. T his w rapper is 

invoked by the SoftL inkA dapter (SL A ) to fetch  instances from  

RKB.

•  G O _W rapper: provides an in terface to the G ene O ntology (GO). 

It uses JD B C  drivers to access G O  database.

•  U niG ene_W rapper: prov ides an in terface to U nigene. It uses 

JD BC drivers to access the  U niG ene database.

7.5.5 Parser

This m odule is responsible fo r parsing  B L A ST  output, X M L files and 

D N A  and am ino acid sequences. T here are three parsers im plem ented in 

the system :
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•  S L M P a rse r: parses the SLM  file and gets all the relationships 

from  the Soft L ink M odel and  loads them  into a hash table for later 

use.

•  B la s tP a rse r: is used to  parse  the B L A ST  output and extract the 

sequence sim ilarity score be tw een  each pair o f  sequences and the 

identity percentage. T his m odule  uses the B ioJava B last-like 

parsing fram ew ork, w hich  allow s d irect SA X 2-like parsing o f  the 

native output from  B last-like  bioinform atics softw are 

(bioJava.org). It u ses B lastL ikeSA X P arser  and 

SeqSim ilarityA dapter  o f  the b io java  p ro jec t [130].

•  S eq u e n ce P a rse r: is used to parse  sequences.

7.5.6 U se rln te rfa c e s

W e developed tw o interfaces:

•  E n d -u se r  in te rface : a w eb-based  in terface fo r b io inform atics data 

source integration based on  the bu ilt p ro to type  SLM . It facilitates 

access to o ther system  com ponents in the system . It is used  for data 

integration and to link experim ental datasets w ith  data available in 

public data sources.

•  M a in te n an c e  in te rfac e : fo r the adm in istrato r w ho uses it to reveal 

relationships betw een concepts w ith in  data  sources, i.e., it is the 

m ain user interface that a llow s the adm in istra to r to register new  

data sources in the system  and bu ild  a  Soft L ink  M odel betw een 

concepts in data sources and  create  R K B.
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Method function
ExtractMetadafc returns a list of elements’ names of an experimental dataset file.
isUnique returns true if the element value is unique across the dataset.
isSingleValue returns true if the element value across the dataset has a single value.
isKey returns true if the element’s name includes one of the following words: key, accessior 

identifier, number, id, and no.
isAmbiguous returns true if the element has at least an ambiguous value.
isNull returns true if an element has at least one null value otherwise true.
DataType returns the data structure type of an element.
elementLength returns the maximum length of an element on the dataset.
ComputeScore returns the score for each element.
isDate checks the selected element to make sure the value contained appears to be a vali 

date.
If the value does not appear to be a valid date, then the column type will not consider 
a date.

isString tests the selected element to make sure that it contains a string (contains onl
characters
A-Z and a-z.)

isDouble tests the selected element to make sure that it contains a double value (contains only 
numbers 0-9 and a decimal point.)

islntger tests the selected element to make sure that it contains a numeric value. It does this b> 
passing the string into the parselntQ function.

Table 7.1: Query Handler methods 

7.5.6.1 R elationship d iscovery

W hen an adm inistrator (w ho does the re la tionsh ip  d iscovery) executes 

the system , he/she is presented  w ith  the G U I m ain  w indow  show n in 

Figure 7.5. This has the follow ing functions:

•  Registration : This function is used to call the  reg is te r m odule to 

add a new  data source.

•  Parser: This function is used  to call the parser m odule.

•  Relationship Discovery: This function is u sed  to invoke the 

GenerateSoftLinkTable m odule to create  new  relationship  

instances and save relationship  instances on a RK B .

•  Soft Link Modeli This function is used  to call BuildSLM  to create 

a N ew  Soft L ink M odel, builds the SLM  m etadata  and stores it in a 

X M L file. It is also used to add a new  entry  to the Soft L ink  

M odel.
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Registeration Parser Relationship Table

Create ►
Save

Sott Link Model

Homology
Orthology
Paralog

Sam e Molecular Function 
Sam e Biological P rocess 
Sam e Cellular Component 
Belongs to the sam e family 
Encoded by 

Contained in 
T ranscribed  from

F igure 7.5: G U I M ain interface f o r  re la tionship  discovery and building  

SL M

Building o f  the RKB is perform ed through an autom atic  process. RKB is 

generated by using algorithm s to calculate rela tionsh ip  closeness o f  

interest betw een objects across data sources. M etadata about the 

relationships is stored in SLM  m etadata in X M L  form at. The RKB is 

built in a bottom -up fashion by adding and m erg ing  increm entally  the 

instances o f  objects that have relationships. This is done by choosing the 

Relationship Table  option from  the m ain m enu and choosing the 

relationship type to be created betw een concepts o f  data sources. The 

user will be prom pted w ith an interface as in F igure 7.6. This interface 

allow s the user to specify:

(1) a pair o f  data sources to be involved in the relationships discovery.

(2) a pair o f  concepts o f  data sources to be involved in the relationships 

discovery.

(3) an algorithm  to com pute the degree o f  relationships or sim ilarity 

betw een the properties o f  the concepts.
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O nce the d iscovery  p rocess is fin ished , the user can brow se discovered 

relationship  results in  a separa te  w indow , and save them  into the RK B 

and SLM  m etadata.

7.5.6.2 In tegration  P rocess

W hen a user executes the G U I she/he  is p resen ted  w ith  the GU I m ain 

w indow  show n in F igure 7.5. T h is has five options:

•  Overview: gives a descrip tion  o f  the system .

•  Search Database: u sed  fo r s ing le  queries.

•  Advance Search: used  fo r link ing  severa l experim ental datasets 

and com parative genom es and  fo r in teg ra ting  w ith  public data 

sources.

•  Soft Link Model: used  fo r b row sing  re la tionsh ips.

•  Data Sets Comparisons: u sed  fo r c ro ss-spec ies com parisons and 

com parative genom es.

In the follow ing, w e describe b riefly , the steps to lin k  experim ental 

datasets w ith  b io inform atics da ta  sources.

1) U ser chooses the A dvance Search  op tion  from  the  m ain  m enu.

2) U ser uploads experim ental da tase ts from  a file  in  a fla t form at through 

the user in terface as show n in F igure  7.8.
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U
Soft Link Table

D ataB ase DB1 •v Link to Data Base

Concept Link to Concept

First P roperty

Upload: P lease se lect a file by click right button

Second Property.

Upload: P lease se lect a file by click Brow se button

Algorithm:
tblastn ▼

tblastn
blastn
blastp
blastx
tblastx

Browse

Brow se

Brow se

OK Cancel Show

Figure 7.6: User interface f o r  d iscovering  rela tionships between  

concepts. The user chooses the concepts, data  sources and  

relationships type and the algorithm  to com pute  relationships  ’  

closeness

3) IDM BD is used to parse the file and extract m etadata o f  the file as 

described in C hapter 6. T he extracted  m etadata  is show n to the user as 

illustrated in Figure 7.9 . A candidate  key for linkage is highlighted. It 

is up to the user to decide w hether the key recom m ended by the 

system  or another key from  the d isp layed m etadata will be used.

4) The user is prom pted by the in terface (see Figure 7.10) to set his/her 

param eters: nam ely required fields to be retrieved, relationship type to
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be used in linkage w ith  o ther species, relationship  closeness and 

species o f  experim ental datasets.

5) T he system  links and in teg ra tes these  experim ental datasets w ith  

public  b io inform atics da ta  sou rces and  provides the user w ith  gene 

annotations from  o ther species.

6) T he user can  brow se the ex is ting  re la tionsh ips betw een  data sources in 

tabu lar form at o r as a  tree form at.

7.6 G enericity

A requirem ent fo r system  is tha t it is designed  in  a generic  fashion. This 

is to allow  new  sources and  a lgo rithm s to  be  added  easily  to the system . 

The M ediator, SLM  m odule  and P a rse r are  w ritten  in a generic  fashion, 

so that new  sources and re la tionsh ip  types can  be b rough t into the 

ID M B D  system  w ithout affecting  o r need ing  to  w rite  new  code.

T he ID M B D  system ’s arch itectu re  a llow s fo r ex tend ib ility  by  the 

addition  o f  new  rela tionsh ip  to  the  system . W ith  little  effort, a new  

rela tionship  can be added to the  system , by:

i) R egistering  m etadata  fo r the  new  re la tionsh ip , i.e., nam e.

ii) W riting  o r ob tain ing  the  necessary  a lgo rithm  from  an in ternal or 

external source.

iii) S toring the a lgo rithm ’s m etadata , i.e., nam e, location , syntax.

iv) Invoking algorithm s to m ine  the  da ta  sources fo r the 

relationship  and m easu re  the  re la tionsh ip  c loseness betw een 

objects in data sources.

v) SLM  is bu ilt and  the re la tionsh ip  tab les are  generated  and added 

to the RK B.

7.7 Sum m ary

In th is chapter, the design  and  im plem en ta tion  issues o f  ID M B D  w ere 

looked at. This chap ter began  by  p resen ting  the requirem ents. Then, the 

im plem entation overv iew  and ID M B D  arch itectu re  w ere presented. The
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choice o f  program m ing language and technologies used were introduced 

also. The description o f  the m odules and com ponents o f  the ID M BD  

w ere presented including the m ediator, Soft L ink M odel, w rappers, 

configuration, parser and user in terface. Finally, snap shots o f system  

m enus and interface w ere p resented .

| Overview | Search Database | Advanced Search | Soft Link Model | Data Sets Compansons| Comments 03

IDMBD is a system for semantic integration o f Bioinformatics Data sources. 
An approach to the integration of diverse bioinformatics data sources, 
using a flexible and free linkage, is implemented. Soft Link Models (SLM) 
are modeled via concepts that are interrelated, using a rich set o f 
possible relation types. The proposed model pursues a novel approach 
that provides a flexible, free and soft linkage between data sources.
We believe SLM approach allows biologist to access different data 
sources efficiency using a single system. It also provides a means o f linking 
datasets from other disciplines. Using this approach, user will not need 
to be aware of which appropnate data sources to use and how to access 
them, thus greatly reducing the time and effort taken to analyze their datasets.

F igure 7.7: snap sh o t o f  m ain w eb-page in terface

3  IDMBD system - Microsoft In ternet Explorer
Fie Ed* View Favorites Tools Help i f

Ca rdiff
UNIVERSITY

P R IF Y S G O L

O* RP*t§>

IDMBD system at Cardiff University
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3  IDMBD system - Microsoft Internet Explorer

Ejte £d* View Favorites lo o k  Help f t

O R p iF p
U N IV E R S IT Y

P R I F Y S G O L
O *  RpY|V>

IDMBD system at Cardiff University
Overview | Search Database | Advanced Search | Soft Link Model | Data Sets Comparisons | Comments 0

Experiment Data

S'eperatoi Space

Browse..

| Next 11 Reset

F igure 7.8: U ploading experim enta l data se t fro m  a f la t  f i le
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3  IDMBD system Microsoft Internet Explorer

tile Edit Sew Favorites lools Help

O R P IFFUNivtRsmr
P H I  f - V S G O l
Ca^RP

IDMBD system at C ardiff University
| Overview | Search Database | Advanced Search! Soft Link Model | Data Sets Comparisons | Comments □

Expeiiment M etadata

Number of Cohimns= 9

Select the search key

Element name Type Maximum length Is null Single Value

fOID_REF String 8 no Yes

: ©IDENTIFIER String 10 [no [Yes

OGSM12883 String 6 [no [Yes

OGSM12884 String 6 [no [Yes

(OGSM 12885 String 6 [no [Yes

O  GSM12886 String 6 [no Yes

[OGSM 12887 String 6 [no Yes

OGSM12888 String 6 [no Yes

[OGSM 12889 String 6 [no [Yes

| Next ] | Reset

F igure 7.9: The m etadata  de tec ted  fro m  experim en ta l data set. The 

candidate linkage key is h igh ligh ted
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H i ■■■■ ■STaBI
|  Ete £d* View Favorites Tools Help ^11 1

CARP'Ff
U N IV E R S IT Y

P R I P V S C O L

Q *R PnP

IDMBD system at C ardiff University
| Overview | Search Database | Advanced Search I Soft Link Model | Data Sets Comparisons! Comments £3

Display Fields ^ Identifier  ' J

Ij'IpenB ankAc c es sionNumb er 

B^mbol . .

ffiName
q ^ s s s h h h h
EH<*enDomak

0-GO term

ecies

|^lj^!hromo s ome , .

£]G eneticPosition ,

Searck Key 

Search Key Value 

Source 

Species

Soft Link Model

□  E Value

□  Score

M GIID

Any Source. -
mouse

BiologicalProcess_SLMxml v

K

EZj
□  Relationship Closeness j 70 ]

Search databases Reset

F igure 7.10: Schem a view  a n d  user param eters f o r  integration process
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C hapter 8 

Analysis o f data from  a wet 
laboratory experim ent

8.1 In troduction

To dem onstra te  the u tility  o f  ou r p ro to type  system , w e u sed  the too ls to 

analyse  datasets generated  by  w e t labo ra to ry  experim en ta tion . A  pair 

o f  com plem entary  studies w as chosen  tha t rep resen ted  the  analysis o f  

an iden tical b io log ical va riab le  s tud ied  in  tw o  d iffe ren t organ ism s. T he 

aim  w as to dem onstra te  tha t the  so ft link  fram ew o rk  w ou ld  allow  us to 

derive novel insights in to  the  experim en ta l system  b y  determ in ing  the 

elem ents conserved  betw een  species. F u rtherm ore , evaluation  o f  the 

data  generated  using  d istinc t m odes o f  linkage and  variab le  thresho lds 

w ould  illustra te  the benefits  o f  th is  app roach  in  b io log ica l research.

8.2 D ata  from  W et L ab ora tory  exp er im en t

D ata w ere derived  from  se lec ted  da tase ts  accessib le  th rough  the 

M IA M E  [39] com plian t G E O  database; th is en su red  all appropria te  

inform ation  w ou ld  be availab le. T he experim en ts se lec ted  represen ted  

a pa ir o f  studies that quan tified  g lobal gene  exp ression  changes during 

the norm al ag ing  o f  m ouse  tissue  (G E O : G D S 40) and the m odel 

nem atode, C. elegans. (G E O : G D S 583) (T ab le  8.1). In  each case, the 

researchers conducting  the p rim ary  experim en ts derived  a cohort o r set 

o f  genes that show ed sta tistica l ag e-re la ted  changes in their expression  

pattern . A  set o f  500 age-re la ted  genes w ere  iden tified  in m o u se fl] , 

w hilst the nem atode experim en ts y ie ld ed  approx im ate ly  seven tim es
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that num ber (3534) [148]. T h is d ifference  m ay stem  from  the fact that 

the m ouse study w as targe ted  a t a  specific  tissue, involved in cardiac 

developm ent, w h ilst the  n em ato d e  experim en t derived  changes from  the 

w hole organism .

8.3 O bjectives o f  th e S L M  A n a lysis

T hrough  the analysis o f  these  da tase ts , w e a im ed  to evaluate the 

sign ificance o f  altering  bo th  the  m eth o d  and  th resho ld  o f  linkage w ithin  

the SLM  used  w hen  de te rm in ing  cro ss-sp ec ies  conservation. This 

p rocess should  have a llow ed  us to  d e te rm in e  the  op tim al threshold  for a 

cross-species o rtho logy  re la tionsh ip . A lso  b y  defin ing  the intersection 

betw een  elem ents conserved  by  o rth o lo g y  and  ontological 

c lassification , th is analysis m igh t focus fu tu re  labo ra to ry  studies on key 

elem ents o f  the ag ing  process. T he in itia l step  req u ired  to  achieve these 

ob jectives w as to in tegrate  experim en ta l da tase ts  w ith  the  p rim ary  data  

sources for the tw o species in  question , M G I fo r m ouse  and  W orm base 

fo r C. elegans. W e reanalyzed  the  da ta  severa l tim es, a ltering  various 

param eters (re la tionsh ip  types and  th resho ld ) to  genera te  un ique  groups 

o f  gene ob jec ts conserved  b e tw een  the  experim en ta l da tase ts  under the 

d ifferen t rela tionsh ips. In  tu rn , these  lists w ere  analysed  for 

in tersections ind icating  m o lecu la r e lem ents c lo se ly  linked  to the 

b io log ical variab le  be ing  stud ied . T he sets g enera ted  w ere  analyzed  to 

dem onstra te  w he ther they  p ro v id ed  a functional en richm en t over the 

orig inal base  datasets.
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I M O U SE  |  NEM ATO DE |

Accession 1 G D S 40 G D S583

Title
C ard iac  d ev e lo p m en t, 

m atu ra tio n  an d  ag in g
A g ing  tim e course, norm al 

adu lt

Data set type
gene e x p ress io n  a rray - 

b ased  (R N A  /  in situ  

o lig o n u c leo tid e )

gene expression  array- 

b ased  (R N A  /  spotted  

D N A /cD N A )

Dataset size
U p reg u la ted  genes: 500  

genes

U p  regu la ted  genes: 3534 

genes

Species m ouse [M us m uscu lus] nem atode[C . elegans]

Sum mary

B en ch m ark  gene  

exp ression  p ro file  o f  h ea rt 

v en tric le  a t va rious  ages to  

m o n ito r ch an g es  in  card iac  

d ev e lo p m en t. E xam ined  

e m bryon ic  s tages  th rough  

a d o lescen ce  and  

adu lthood .

E x am in a tio n  o f  norm al 

ad u lt ag ing  using  

sy n ch ro n ized  popu lations 

a t 0 - 144 hours. E m ployed  

C F 5 1 2  fer-15 (b26) II; fem - 

1 (he  17) IV  m utan t strain , 

w h ich  has defec tive  

sp e rm atid s  thus 

e lim in a tin g  con tribu tions 

from  em bryon ic  

tran scrip ts .

Table 8.1: C om parison  o f  the  e xp erim en ta l m e ta d a ta  d escr ib in g  the  

tw o w et lab experim en t u sed  f o r  S L M  ana lys is

8.4 In tegration  o f  W et L a b o ra to ry  d ata  in to  “ S oft L ink  

M odel E n v iron m en t”

A  high-level schem atic  overv iew  o f  q u e ry  w o rk flo w  is g iven  in F igure

8.2 and illustrates how  the v a rio u s  inpu ts  and  ou tpu ts are in terlinked. 

T he phases o f  analysis include the  fo llo w in g  stages:
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8.4.1 M etadata extraction

The initial stage o f  the experim ent explo its the flat file representation  o f  

the experim ental datasets. T he system  extracts the m etadata data  from  

this file and recom m ends a  key  fo r linkage; in this exam ple, the 

recom m ended linkage key for the  m ouse data, highlighted in F igure 

8.1, is the G enBank ID. U ser defined , additional m etadata can be 

extracted from  the original data file  as show n in F igure 8.1.

8.4.2 Identifier conversion

The system  subsequently m aps the dataset linkage keys to specific- 

species identifiers, M G I ID  and W P Protein  ID , fo r the m ouse and C. 

elegans, respectively. A  netw ork o f  com plex  relationships m ay be 

utilised to accom plish this m apping. F or exam ple, M G D  links to 

G enB ank either through the field “M arkers” (in the “genes” table) or 

field “m olecular probes” or “segm ents” (fo r anonym ous D N A  

segm ents):

R ela tion sh ip  1 (R l):  G enB ank A ccession ->  M arker (gene).

R ela tion sh ip  2  (R 2): G enB ank A ccession ->  M arker (gene), G enB ank 

A ccession ->probe, Probe->  M arker (gene)

R ela tion sh ip  3 (R 3): G enB ank A ccession -->  M arker (gene), G enB ank 

A ccession->probe/segm ent, P robe->M arker(gene)->G enB ank A ccession - 

>U niG ene identifier, U niG ene identifier -> M arker (gene).

8.4.3 Cross species transform ations

The system  uses specific-species identifiers together w ith  p re ­

calculated relationship tables (RJKB) to transform  the gene lists from  

one species to their counterparts, as defined by  the function o f  the 

relationship table and the threshold  under w hich it is sam pled in ano ther 

species. This transform ation is central to the SLM  processes.

8.4.4 D efin ing genes conserved betw een species using specific  

functions and thresholds

Calculation o f  the intersection betw een species-specific identifiers is 

generated by converting the experim ental identifiers o r by  transform ing  

a com plem entary list from  a second organism  using  a defined
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transform ation function under a defined  threshold. This intersection 

represents a group o f  genes conserved  across species under the criteria 

defined by the transform ation function  and  threshold.

8.4.5 C om parison and valid ation

To determ ine the im pact o f  d ifferen t transform ation  functions and 

thresholds w e evaluated the in tersection  using  various transform ations. 

The aim  w as to enable us to  iden tify  and provide a biological 

explanation for the optim al th resho ld  fo r each  transform ation  and the 

elem ents that re-occur independent o f  the transfo rm ation  function. The 

biological significance o f  the transfo rm ation  process w as calculated, for 

the m ouse genes, by  calculating the en richm ent o f  specific biological 

processes and pathw ays against the p rocesses/pathw ays represented by 

the large original list.

A ll in silico  experim ents w ere conducted  using  a p latfo rm  equipped 

w ith  an Intel Pentium  4 processor w orking at 2 .80  G H z w ith  1 G Byte 

o f  R A M , running  M icrosoft W indow s, Sun Java  D evelopm ent k it 1.4 

and A pache server 2.0.48. In the fo llow ing sections, w e present som e 

o f  the m ore significant results from  these experim ents.
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!2 IDMBD system  - M icrosoft In te rn e t Explorer

File Edit View Favorites lools Help

©  Back -  Favorites

Address [ ^ }  http://localhost:8080/5LM_module/ExperimentWrapper. jsp

E Q D ®

*
Q go

Overview | Search Database | Advanced Search| Soft Link M odel | Comments Sd

Experiment M etadata

(Number of Columns= 20

Select the search key

Element name Type Maximum length Is null Single Value

O  Systematic Name String 10 no Yes

O  Common name String 13 no Yes

1 O  Synonyms String 10 no Yes

©  Genebank ID String 8 no Yes

O  Description String 101 no no

O  Time 1 , Tissue Type All normalized” String 22 no no

O  Time 2 , Tissue Type All normalized" String 22 no no

! O  "Time 4 , Tissue Type All normalized" String 22 no no

O  Time 8 , Tissue Type All normalized" String 22 (no no

O  Time 12 , Tissue Type All normalized" String 22 [no no

O  Time 1 , Tissue Type CB normalized" String 22 no no

O  Time 2 , Tissue Type CB normalized" String 22 no no

O  Time 4 , Tissue Type CB normalized" String 22 no no

j O  Time 8 , Tissue Type CB normalized" String 22 jno no

O  Time 12 , Tissue Type CB normalized" String 22 jno no

| O  Time 1 , Tissue Type Dep normalized" String 22 ;no no

O  Time 2 , Tissue Type Dep normalized" String 22 no no

O  Time 4 , Tissue Type Dep normalized" String 22 no no

O  Time 8 , Tissue Type Dep normalized" String 22 no no

O  "Time 12 , Tissue Type Dep 
normalized" String 22 no no

Next Reset

Done ^  Local intranet ---

Figure 8.1: Screen snapshot show s the extracted  m etadata fro m  the  

experim ental datasets. The recom m ended linkage key is h ighlighted
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Mouse
GenesC. elegans 

Genes

D B =  M G DD B =  W orm base

Relationships = 
(H,MF,BP,CC)

Relationships = 
(H,MF,BP,CC)

y f

Soft Link System

PairPair

C. elegans C. elegans MouseMouse

Relationships: [ ( I  I
M = isHomologyTo V V J  J
MF =hasSameMolecularFunction ______ __________
BP = hasSameBiologicalProcess (BP)
CC = hasSameCellularComponent (CC)

Figure 8.2: A schem atic overview  o f  query w orkflow , and how  various inputs and

outputs are interlinked. CD represents the m apping o f  the original experim ental 

datasets onto their respective prim ary  data sources. ©  denotes the soft link 

transform ation o f  the data into an output dataset using a defined relationship  at a 

prescribed threshold. (CD) represents the output o f  the experim ental datasets m apped 

onto, and annotated by the gene identifier derived from  the prim ary data source for 

source species. (© ) represents the gene lists generated by transform ing  the 

experim ental data using a defined linkage and threshold onto the gene identifier o f  a 

second organism . (CD) represents intersections o f  the output list generated  using  

various transform ations

143



CHAPTER 8: ANALYSIS OF “WET LABORATORY” DATA

8.5 R esults from  SLM  A nalysis

In this section, w e introduce the significant results obtained using  the 

ID M BD  system .

8.5.1 O rthological and O ntological D ata T ransform ation

D ata extracted from  the tw o selected w et laboratory experim ents 

(available as tab delineated flat files) w ere presented to the SLM  

system . Their m etadata data w ere extracted (see C hapter 6) and 

m apped onto specific-species identifiers using the G enB ank accession 

num ber as the linkage key. The R elationship K now ledge Base (R K B , 

Chapter 4) w as then used to transform  the datasets to lists o f  genes from  

the counterpart organism  (i.e., transform ing C. elegans genes onto 

m ouse and vice versa). This process w as perform ed using variable 

relationships and thresholds (see C hapter 5).

The m ouse ortholog o f  the age-responsive C. elegans  genes and C. 

elegans ortholog o f  the age-responsive m ouse genes w ere determ ined 

using a B L A ST  transform ation function. The num ber o f  orthologs 

identified w as calculated under various levels o f  relatedness defined by  

varying the threshold for the probability  o f  the sequence m atch 

occurring at random  (i.e., the greater the probability , the low er the 

relatedness o f  the sequence) [120, 121]. This could be calculated only  

for probabilities <1E-1 (abbreviated to E - l)  due to a threshold defined 

w ithin the creation o f  the original RKB. In addition, ontological 

transform ation o f  the two datasets onto specific-species identifiers for 

the com plem entary species w as perform ed using the relationships o f  

m olecular function (M F), biological process (BP) and cellu lar 

com ponents (CC).

The intersection betw een the original datasets, m apped onto their ow n 

specific-species identifiers, w ith  genes representing com plem entary  

data from  the other organism  w as also calculated. These m easurem ents 

provide insight into the inter-species conservation o f  genes under a 

single transform ation. A nalysis considering a further in tersection  o f
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genes transform ed using m ultip le relationships, orthology and ontology, 

provides a gene list representing conservation o f  form  (sequence) and 

function.

Table 8.2 show s the num ber o f  hom ology pairs betw een the tw o 

datasets at different thresholds.

Table 8.3 show s the num ber o f  M F, B P and CC pairs betw een the tw o 

datasets at different thresholds. The intersection betw een a H om ology 

pair and M olecular Function (M F), and betw een a B iological Process 

(BP) and C ellular C om ponent (CC) are 3278, 1814 and 13714 

respectively.

Table 8.4 show s the intersection betw een a hom ology pair and a 

m olecular function pair to hom ology pair at different thresholds. 

(N um ber o f  hom ology-pair o  num ber o f  sim ilar-M F pair).

Table 8.5 show s the ratio o f  intersection betw een a hom ology pair and a 

M olecular Function pair to a hom ology pair. (N um ber o f  hom ology- 

pair o  num ber o f  sim ilar-M F pair) /  (N um ber o f  hom ology-pair).

Table 8.6 show s the num ber o f  G O -term s responsible for aging and 

grow th from  the datasets obtained, w hereas Table 8.7 show s the ratio o f  

GO term s responsible for aging and grow th to total biological process 

GO across the tw o datasets.

Homology

Threshold 0 E-70 E-40 E-30 E-20 E-10 E-l

HM 21 106 224 300 443 862 2214

Table 8.2: N um ber o f  In tersecting  hom olog pa irs  between two da tasets  

at d ifferent thresholds
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Relationships Number of pairs

Molecular function (MF) 3278

Biological process (BP) 1814

Cellular component (CC) 13714

Table 8.3: N um ber o f  In tersection  o f  M F, B P  and  C C  p a irs  between  

two datasets

Threshold 0 E-70 E-40 E-30 E-20 E-10 E-l
HM X MF 0 6 9 12 17 29 38
HM X BP 0 14 33 45 56 102 189
HM X CC 0 10 15 16 23 34 67
HM 21 106 224 300 443 862 2214

Table 8.4: Intersection between hom ology p a ir  a n d  M F, B P  and  C C

Threshold E-70 E-40 E-30 E-20 E-10 E -l

l.MF 0.056604 0.040179 0.04 0.038375 0.033643 0.017164

2.BP 0.075472 0.084821 0.07 0.049661 0.034803 0.01897

3.CC 0.09434 0.066964 0.053333 0.051919 0.039443 0.030262

Table 8.5: F raction o f  M F, B P  a n d  C C  to hom ology across m ouse and  

C. elegans. M apping m ouse age-rela ted  genes onto C. elegans 

com ponents using d ifferent re la tionsh ips and  thresholds. These fig u res  

are calculated by: l.M F =  (H M  X  M F )/H M , 2 .B P=  (H M  X  BP)/HM , 

and 3. C C = ((H M  X  C C )/H M
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Threshold E-70 E-40 E-30 E-20 E-10 E -l
Number o f aging & growth with MF 
relationship

3 4 5 8 13 20

Number of aging & growth with BP 
relationship

3 4 4 4 7 10

Number of aging & growth with CC 
relationship

3 3 4 7 8 11

Total biological process 14 33 45 56 102 189

Table 8.6: The n um ber o f  g en es w ith  G O -term s re la ted  to aging  and  

grow th

Threshold E-70 E-40 E-30 E-20 E-10 E -l
MF 0.214286 0.121212 0.111111 0.142857 0.127451 0.10582
MP 0.214286 0.090909 0.088889 0.125 0.078431 0.058201
CC 0.214286 0.121212 0.088889 0.071429 0.068627 0.05291

Table 8.7: The ra tio  o f  genes w ith G O  term s re la ted  to ag ing  and

grow th  to the to ta l w ith  conserved  on to log ica l c lassifica tion  across two  

datasets
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8.5.2 D eterm ining the optim al threshold for cross-species 

orthology relationship

C. elegans orthologs w ere calcu lated  fo r the cohort o f  age-regulated 

m ouse genes at variable levels o f  rela tedness and the intersection o f  this 

group w as calculated w ith  a  com plem entary  transform ation o f  the 

m ouse genes using ontological categorization , th rough  direct or parent- 

child  association. This prov ided  us w ith  a profile  (Figure 8.3) that 

described the relationship betw een  p ro te in  sequence conservation (as 

expressed by the hom ology score) and  m ain tenance  o f  the biological 

role. A  clear optim um , for bo th  C ellu lar C om ponent (CC) and 

M olecular Function (M F) can be identified , w here  the expected 

probability  o f  a m atch is betw een E -70 and E -40. This represents a 

sm all group o f  highly conserved genes d isp lay ing  significance in their 

area o f  biological function. T his p roportion  o f  genes w ith  m atching 

M F and CC ontologies drops sharply until it reaches a p lateau , 4%  for 

M F and 6%  for CC, betw een E-40 and E -10. T his show s that 

decreasing the stringency o f  orthology iden tification  over a  significant 

range does not reduce the proportion o f  genes w ith  m atching 

ontologies. This im plies that the increased  n um ber o f  orthologs 

identified is not increasing the p roportion  o f  random  or non-specific 

m atches. It is evident that this profile can be used  to identify  the 

optim al threshold at w hich to perform  cross-species data  m ining. 

A pproaches em ploying high o r low  cut-offs e ither d iscard  useful data 

or include su b s ta n tia l  noise.

Intriguingly, the profile for the proportional in tersection  for B iological 

Process (BP) term s is d ifferen t and does n o t show  the biphasic 

properties o f  M F and CC. Instead , a sm ooth  curve is seen w ith  a broad 

optim um  at ~E-40. The percen tage o f  in tersection  falls o f f  sm oothly 

until it reaches that attributable to  random  m atches at E -1. This unique 

profile m ay be a property  o f  the  h igh ly  diverse nature o f  the biological 

processes betw een these tw o species o r due to the heterogeneity  o f  gene 

annotation by the com m unities. T he data  generated suggest that 

functional interpretation o f  cross-species using an orthology m odel
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m ust be inform ed by the specific  in ter-species relationship betw een 

orthology and function.

T hreshold E-70 E-40 E-30 E-20 E-10 E-1

MF 0.056604 0.040179 0.04 0.038375 0.033643 0.017164

BP 0.075472 0.084821 0.07 0.049661 0.034803 0.01897

CC 0.09434 0.066964 0.053333 0.051919 0.039443 0.030262

Biological P rocess 
Molecular Function 

Cellular Component

0.09

0.08

0.07

0.06o
JZ
0 0.05<o
E
o 0.04 
o
CO

0.03

0.02

0.01

E-1E-70 E-40 E-30 E-20 E-100
E e x p e c te d  v a lu e

Figure 8.3: The p ro file  o f  the rela tionsh ip  betw een pro te in  sequence  

conservation (as expressed by hom ology score) and  m aintenance o f  the  

biological role. A clear optim um , f o r  both C ellu lar C om ponent (CC) 

and M olecular Function (MF), cou ld  be identified  w here the expected  

probability  o f  match is betw een E -7 0  and  E-60.
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8.5.3 Investigating the consequ en ce o f  variable thresholds w hen  

defining the intersection o f  evolutionary and functional 

conservation

The exem plar experim ental sets w ere  designed to investigate the 

transcript responses to aging; therefore , it w as im portant to establish 

w hether those genes experim entally  determ ined  as aging-related 

show ed an established onto logy rela ting  to "ag ing” or "growth" that 

w as conserved across the species boundaries. W e explored  this overlap 

betw een the hom olog o f  the cohort o f  m ouse  genes displaying up- 

regulation in response to age w ith  an on to log ical category in both 

m ouse and C. elegans defined as "age" and  "grow th". T his intersection 

was determ ined for the three onto logical c lasses B P, M F and CC using 

a w ide range o f  orthology thresholds. T hese da ta  d isp layed profiles 

sim ilar to those determ ined for the global conservation  o f  all 

ontological categories determ ined  previously . T here  is a clear 

m axim um  on the proportional rep resen tation  at E -70  w ith  a secondary 

feature peak at E-20 (see F igure 8.4). T his ind icates the presence o f  a 

group o f  "aging or growth" genes d isp lay ing  h igh  overall conservation 

w ith a sm aller num ber o f  genes, w hich  exhib it less conservation; this 

latter group m ay arise from  m oderate  overall conservation  or m ay be 

attributed to the conservation o f  key  functional reg ions. This form er 

observation is consistent w ith  the recognised  functional architecture o f  

proteins that exploits com m on and flexible secondary  structural m otifs 

to support key functional residues, w hereas the  latter explanation 

reflects the evolutionary attribu te  o f  functional dom ains being used 

w ithin variable protein architectures. W hat is in triguing  is that the 

proportion o f  genes w ithin th is group d isp lay ing  conserved ontology 

"aging" or "growth" c lassification  is 10 tim es h igher than that observed 

for all ontological categories. T his m ay suggest that the genes involved 

in aging and grow th are m uch  m ore  h igh ly  conserved  across the w ide 

evolutionary gap betw een m ouse and C. elegans. It is clear from  the 

data that by exploiting the variab le  threshold , w e can define either a 

cross species m apping that is ex trem ely  conservative, identifying an
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orthology group that has a  m axim um  probability  o f  sharing function 

w hilst the selection o f  a  low er th resho ld  w ill perm it the m axim um  

return o f  related genes and still m in im ise the noise generated from  

random  m atches.

T hresho ld E-70 E-40 E-30 E-20 E-10 E-1

MF 0.214286 0.121212 0.111111 0.142857 0.127451 0.10582

BP 0.214286 0.121212 0.088889 0.071429 0.068627 0.05291

CC 0.214286 0.090909 0.088889 0.125 0.078431 0.058201

0.25

Biological Process 

- - - Molecular Function
0.2

 Cellular Component

! o  0.15j
l

I

0.05
I

0 E-70 E-10 E-1E-40 E-30 E-20

E e x p e c te d  value

Figure 8.4: A  graph exp loring  the overlap  betw een the hom olog o f  the 

cohort o f  m ouse genes d isp laying  up-regula tion  in response to age with  

an ontological category in both m ouse  a n d  C. e legans defined  as "age" 

and  "growth". This in tersection  w as de term ined  f o r  the three  

ontological classes BP, M F  a n d  C C  using  a w ide range o f  orthology  

thresholds.
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8.5.4 Functional en rich m en t through cross-experim ental 

com parison

In the follow ing section, w e d iscuss the outcom e o f  the experim ents to 

show  functional enrichm ent th rough  cross-experim ental com parison 

across species. W e use the D A V ID  system  to show  the enrichm ents.

The SLM  im plem entation enab led  us to com pare the m olecular 

responses detected in an aging experim en t perfo rm ed  in m ouse and the 

m odel nem atode C. elegans. It is illu stra tive  o f  a m ajor challenge for 

genom ics studies that these experim en ts im plicate  substantive num bers 

o f  genes w ithin the aging process; ou r analysis y ie lded  500 m ouse and 

>3500 C. elegans genes, w hich  increased  during  aging. It is 

im practical to investigate th is p le tho ra  o f  possib le  targets 

experim entally. Therefore, techniques that can refine  the lists to those 

targets that are central to the b io log ical pa ram eter under investigation 

are essential to the investigators to enable them  to focus on realistic 

subsequent w et experim entation. In  theory , the  ability  to identify  

elem ents that respond in the sam e m anner across species should 

achieve the goal o f  iden tify ing  evo lu tionarily  and functionally  

conserved elem ents.

In order to characterise the refinem en t p rocess u n d er varied  m ethods 

and thresholds o f  linkage w e analysed  the SLM  ou tpu t in relation  to the 

500 aging-responsive m ouse genes, since th is species has a h igher 

degree o f  annotation than has C. elegans. T his in itial cohort w as used 

as a “background” population  and  the functional enrichm ent o f  the 

intra-species conserved sub-groups calcu lated  [63, 106]. The use o f  

orthology to m ap the C. e legans  ag ing-rela ted  genes onto their m ouse 

counterparts (M G I ID) allow ed the in ter-section  o f  these tw o groups to 

be calculated. U sing an o rtho logy  th resho ld  o f  E -10 (defined by the 

BLA ST probability  score) an in tersection  o f  104 unique gene objects 

could be identified w hilst an increased  stringency o f  E-70 yielded only 

60 gene objects. S ignificant and  subtly  d ifferent functional enrichm ent 

w as observed in both  groups (see F igures 8.5 &  8.6). The low er
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stringency orthology d isp layed enrichm ent in functional annotation 

categories relating to transcrip tional control, replication and chrom atin 

am ongst others (see Figure 8.5). Increasing  the threshold  to consider 

only those genes that exhibit ex trem ely  high  hom ology (E-70) gives 

functional groups related to nucleo tide  b inding , replication, cell cycle 

and protein/cellular m etabolism  (see F igure  8.6). These sets are not 

exclusive, but the enrichm ent scores for each  group are subtly different 

indicating the im pact o f  altering the threshold .

W hen m apping the C. elegans ag ing  re la ted  genes onto their m ouse 

counterparts using a “m olecular function” on to logy  the result w as a 

large, highly repetitive list that y ie lded  a non-redundan t set o f  289 

m ouse genes w ith  Ensem bl IDs. W hen  th is list w as used for 

enrichm ent analysis, it y ielded far w eaker enrichm ent scores, but the 

functional groups generated w ere associated  w ith  the m echanism  o f  

regulation as m ay be expected from  a m app ing  m olecu lar function. 

These groups included those genes involved in phosphy la tion  (kinases), 

DN A  m odification and the regulation o f  cell p rocesses (F igure 8.7).

The intersection betw een lists generated  by  o rtho logy  and ontological 

linkage provided a focused subset o f  genes, 16 and  6 under orthology 

thresholds o f  E-10 and E-70 respectively , w hen analysed  for conserved 

m olecular function. A nalysis o f  the less stringen t group identified 

overrepresentation o f  m em bers o f  pathw ays includ ing  cell cycle and 

focal adhesion w hilst the h igher stringency group indicated  only a bias 

for elem ents involved in the cell cycle process. T hese are processes 

know n to have a close link to ag ing  and cell m ain tenance and therefore 

the specific genes identified by  th is process m ay poten tially  form  high 

priority targets for further investigation.
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Figure 8.5: D avid  F unctiona l annotation clustering using
classification stringency “high ” em ploying  a gene  list derived using  
the intersection provide  fu l l  description M C -10  Pair. The use o f  
orthology to map the C. elegans aging rela ted  genes onto their mouse 
counterparts (M G I ID ) a llow ed  fo r  the in te rsec tio n  o f  these two 
groups to be calculated. U sing an orthology threshold  o f  E -10 an 
intersection o f  104 unique gene  objects could  be identified. Signifi­
cant and subtly d ifferent fu n c tio n a l enrichm ent was observed in the 
group. The low er stringency orthology d isp layed enrichm ent in 
functiona l annotation categories rela ting  to trasnactional control, 
reolication and chrom atin am ongst others.

154



CHAPTER 8: ANALYSIS OF “WET LABORATORY” DATA

s o , .  j ^ r e -  u h v -  u\P**

fis& s.

!p r^
e^'-es*

i\o°'
i*C

g^5r-
5 - * ^

Figure 8.6: D avid  F unctiona l annotation clustering using
classification stringency “high  ” em ploying a gene  list derived  
using the intersection p ro v id e  fu l l  description M C -70  Pair. The 
use o f  orthology to map the C. elegans aging rela ted  genes onto  
their mouse counterparts (M G I ID ) a llow ed fo r  the in tersec tion  
o f  these two groups to be calculated. Using an orthology  
threshold o f  E -70 it y ie ld ed  only 60 gene objects. Increasing the 
threshold to consider only those genes which exhibit extrem ely  
high hom ology (E-70) g ives fu n c tio n a l groups related to 
nucleotide binding, replication, cell cycle and  protein/cellu lar  
metabolism.
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Figure 8.7: D avid  F unctiona l annotation clustering using
classification stringency “high ” “em ploying  a gene  list derived using  
the intersection provide  fu l l  description M C -M F  Pair. When m apping  
the C. elegans aging re la ted  genes onto their m ouse counterparts 
using a “m olecular fu n c tio n  ” ontology the result was a large highly  
repetitive list which y ie ld ed  a non-redundant se t o f  289 mouse genes 
with Ensem bl IDs. When this list was used fo r  enrichm ent analysis it 
yielded  fa r  w eaker enrichm ent scores but the functiona l groups 
generated were associa ted  with m echanism  o f  regulation as m ay be 
expected fro m  a m apping m olecu lar function . These groups included  
those genes involved in phosphyla tion  (kinases), DNA modification  
and the regulation o f  cell processes.
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8.6 B iologist evaluation

A biologist w as fully  invo lved  in th is evaluation. D iscussion w ith  

professionals in biological sc ience  w as undertaken throughout the 

project. In particular, Dr. P e te r K ille  (B ioscience School, C a rd iff  

University) w as frequently  consu lted  to ensure that our research m et a 

b io log ist’s needs and the system  p rov ides them  w ith  new  know ledge. 

H e used the system  and w as im pressed  by  the  findings. In particular, he 

gained insight into biological p rob lem s. T hese are described in his 

letter, w hich show s he felt that the system  w as able to present clear 

inform ation w hich he broadened  his know ledge and understanding o f  

the area o f  biology he w as investigating . F o r m ore inform ation  see his 

evaluation letter in A ppendix  E

8.7 Sum m ary

In this chapter, w e dem onstra ted  the u tility  o f  the p ro to type system  

ID M BD , by exploiting the too ls to analyse datase ts generated  by  w et 

laboratory experim entation. A  pa ir o f  com plem entary  studies w as 

chosen that represent the analysis o f  an  iden tical b io log ical variable 

studied in tw o different organism s. E valuation  o f  the data  generated 

using distinct m odes o f  linkage and  variab le  th resho lds illustrated the 

benefits o f  SLM  approach to the  b io logical research  com m unity  as it 

enable biologists to identify  and  p rov ide a b io log ical explanation for 

the optim al threshold for each transfo rm ation  and  the elem ents that re­

occur independent o f  transform ation  function.
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Chapter 9 

Evaluation

9.1 Synopsis*

W e im plem ented a version o f  ID M B D  as an  illustration  o f  concept 

prototype, w hich discovers rela tionsh ips in he terogeneous bioinform atics 

data sources based on b iological re la tionsh ips betw een  biological objects 

across species. These w ere then  used  to in tegrate  the  data  sources. In this 

chapter, w e evaluate our fram ew ork  and ob jectives as w ell as considering 

the key issues about ID M BD .

9.2 Introduction

Com parative genom ics is the analysis and com parison  o f  genom es from  

different species. Its aim s are to gain a be tter understanding  o f  how  

species evolved and to determ ine the function  o f  genes for w hich no 

experim ental evidence curren tly  exists. C om parative  G enom ics provides 

a pow erful set o f  tools for leverag ing  inform ation  across species. For 

exam ple, the functions o f  the hum an  genes have  been  discovered by 

exam ining their counterparts in sim pler m odel organism s such as m ouse. 

Com parative analysis is hypo thesis driven and thus a b io logist requires 

the ability to ask “w hat i f ’ questions to test theories on the w hole 

genom e, such as its o rganization , structure and  evolution. Usually, 

genom e researchers look  at m any  d ifferent features w hen com paring 

genom es such as sequence sim ilarity , gene location, and highly 

conserved regions in the genetic  sequences.
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B y in tegrating  functional and  sequence  data  across species, w e are able 

to annotate the  genom e o f  o ne  species u sing  know n functional data  about 

another. T hus, com parative  g enom ics p rov ides evidence using  close 

evolutionary re la tionsh ips b e tw een  gene  fam ilies.

C om parative genom ics invo lves the  u se  o f  various b io inform atics tools 

such as sequence-sim ilarity  to o ls  and  G O -term  sim ilarity . These tools 

have d ifferent in terfaces and  o ften  invo lve  transfo rm ing  the output from  

one tool into a fo rm at su itab le  as inpu t to  ano ther tool. T his m eans that a 

researcher has to do m anual tasks, such  as cu tting  and pasting  data or 

identify ing the tool tlj^t w ill tran sfo rm  the  da ta  appropria te ly . This is an 

error prone p rocess and  is tim e  consum ing . T hus, w ha t is required  is a 

system  that a llow s b io log ists  to  take  the  resu lts  o f  one analysis and use 

them  as the basis fo r conducting  fu rther dow nstream  analysis in a 

m anageable, flexible, qu ick , accu ra te  and  e ffic ien t w ay  by  inputting  the 

data  to subsequent tools.

B earing  in m ind  tha t the  a im  is to  develop  a sy stem  that facilitates the 

determ ination  o f  functional ann o ta tio n  and  analysis  o f  large sets o f  genes, 

ID M B D  aim s at au tom ating  the  p rocess o f  com parative  genom ics and 

data in tegration  as far as possib le .
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•  Extract sequence
• Cut-and-Paste

• Save genes
annotation to Disk

Searching for online 
resources and tools 
Extract identifiers 
Convert identifiers 
Cut-and-Paste

• Save genes 
annotation to Disk

• Extract Identifiers
• Convert
• Cut-and-Paste

Scan and Select 
Extract identifier 
Convert identifiers to 
appropriate identifiers 
Cut-and-Paste

Manual Process

Experimental D atasets

G e n B a n k __

Query

BLAST

^  Query

I  W orm B ase

Query

Query

Genomic 
Comparative Results

F igure 9.1: Typical sequence  o f  steps a b io logist perform s to drive a 

series o f  com puta tional ana lyses re la ting  to com parative genom ic  

analyses
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9.3 C urrent research process

R esearchers develop too ls that analyze an experim ental dataset and 

extract its m etadata. A fter analyzing  the experim ental dataset and 

extracting the required data, researchers up load  the extracted data to a 

central data repository , access specific  species sources, and use other 

tools to sim ulate, m odel, and  analyze  these  results. U sually , this process 

involves several m anual steps, each  o f  w h ich  is a  unique process.

Figure 9.1 show s a typical sequence o f  steps a b io log ist perform s to drive 

a com putational analysis re la ting  to com parative  genom ic analyses. To 

conduct a genom ic corqparison across species, the b io log ist m ust use a 

m inim um  o f  four d ifferent resources w ith  fou r d ifferen t interfaces and 

perform  several m anual tasks, nam ely , cu t-and-paste , save m anually  to 

disk, scan and select, and convert resu lts from  one stage into a form at 

suitable as input to the subsequent stage. F o r a m ore com plex  analysis, 

m any other resources m ight be  needed. T he fo llow ing  tex t explains this 

process.

Figure 9.1 show s the sequence o f  stages and  m anual p rocesses in a 

typical analysis. It consists o f  five stages each  o f  w h ich  is linked by  a 

m anual process to the nex t stage. T hese m anual p rocesses consist o f  

cutting-and-pasting, m anually  extracting  identifiers, extracting 

sequences, pressing a button, scanning  and selecting , saving m anually  to 

disk, loading a file, ex tracting  in form ation , converting  the result from  a 

stage into a form at suitable as inpu t to the nex t stage, duplication  rem oval 

and the m erging o f  results, and  searching  for online resources and tools.

Som e o f  these m anual p rocesses are no t large m anual tasks. H ow ever, 

they are tim e-consum ing p rocesses and error-prone w hen a researcher is 

dealing w ith a huge num ber o f  datasets and perfo rm ing  the sam e task 

hundreds o f  tim es. For exam ple, cu t-and-paste  is no t a large m anual task 

but it is still prone to error, w hile  the scan and select is a m uch larger 

process since a researcher has to scan through output and decide on 

param eters to obtain  results o f  interest. The m apping o f  an accession 

num ber to a specific species iden tifie r is not an easy task and m ay need
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the use o f  o ther tools. C onverting  the resu lt from  a tool into a form at 

suitable as input to a subsequent too l requires tim e and effort.

D uring an experim ent, a b io log ist w ill usually  perform  a series o f  

com putational analyses on th e ir da ta  (see F igure 9.1), as follows:

1) W hen the experim ental da tase ts are in a file, the dataset is parsed 

to extract m anually  the  up -regu la ted  gene identifiers and save 

them . The b iologist then  has to m ap  iden tifiers to species-specific 

identifiers, for exam ple, an  M G I identifier. H e/she m ay need a 

tool to convert the specific  species iden tifiers to  standard accession 

num bers and vice versa. T he b io log ist then  uses h is/her past 

experience or searches on line  fo r resources and  tools related  to the 

species o f  interest.

2) W hen a w eb-based resource  o ffering  species-specific  genom ic data 

is identified, the b io log ist uses the in terface p rov ided  to fill up the 

form  w ith identifiers o r gene nam es and  query  the source to 

retrieve gene annotations connected  to the  gene  list.

3) U pon the conversion o f  identifiers to  appropria te  accession 

num bers, the b io log ist accesses, b row ses and queries sequence 

databanks, such as N C B I E ntrez. U sing  the in terface provided by 

the tool, the b io log ist pastes accession  num bers, sets up his/her 

param eters, and subm its a  query. W hen  the sequence is retrieved, 

he/she extracts the co rrespond ing  sequences, w h ich  can be saved to 

disk.

4) The researcher can p e rfo rm  a sim ilarity  search  using a public 

B LA ST resource w ith  the  sequences ob tained  in the previous step, 

and filter the results in  som e w ay to  find  sim ilar genes in related 

species. H e/she then  saves the h its, ex tracts results and looks 

m anually for sequences from  the rela ted  species o f  interest w ith 

required param eters. T hen  he/she saves the results and m anually 

extracts accession  num bers o f  sequences above a specified 

threshold value using  e ither an identity  percentage or an E-value.
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5) The bio logist m aps accession  num bers to species-specific 

identifiers and identifies a w eb  site offering related species-specific 

genom ic data. The in terface is used  to  fill up the form  w ith 

identifiers and query  the source to retrieve the gene annotations 

connected to the gene lis t iden tified  in  previous step.

6) The biologist uses o ther tools to analyse and m ap the results 

obtained from  steps 2, 3 and  5 and to gather results from  different 

species, rem ove duplication , and  m ap the gene annotations 

obtained from  different species to p red ic t gene function or other 

features o f  the experim ental genes w ith  sim ilar o r related genes 

having know n functions. T he resu lt o f  analysis and the 

com paratives are then saved to  disk.

This process is usually repeated  fo r each analysis undertaken and for 

each new  experim ent and new  approach o f  linkage (hom ology, 

orthology, or ortholog). Thus, i f  a  b io log ist w ants to  find orthology genes 

from  other species to identify  evolu tionary  changes, the steps in this 

process have to be undertaken again. T his also occurs i f  a com parison 

uses the GO term s betw een d ifferen t genes to p red ic t gene functions, 

w hen steps 4 to 7 have to be repeated . T his is a  w ell know n problem ; for 

instance, Troup [192] stated tha t to drive the experim ental process, the 

biologist is ham pered by at least four d istinct p roblem s:

1 -D iscovery o f  B ioinform atics resources

Biologists have to brow se, search , and access m ultip le  data sources and 

bioinform atics tools before d iscovering  an appropria te  solution that can 

be used to create and evaluate  a  new  b io logical hypothesis. To drive this 

experim ental process and perfo rm  the analyses only  on datasets o f  

interest, involves the fo llow ing steps:

•  Searching the in ternet for p rim ary  sources and 

bioinform atics tools.

•  Selecting relevant b io inform atics data sources and tools.
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•  A ccessing  the se lec ted  data  sources.

•  R etriev ing  the da ta  o r using  data  analysis tools.

A  considerable am ount o f  tim e and  energy  is needed to find relevant data 

sources and tools and access them . It also involves m any m anual 

transfers, w hich can be prone  to  m istakes

2- D ata form at conversion

A s the biological data  sources and  b io in fo rm atics tools have been 

developed over tim e by  d ifferen t com m unities, b io log ical data are stored 

and distributed in a w ide v arie ty  o f  form ats, w h ich  are often not 

consistent o r in terchangeable. U sually , a  researcher takes the results o f  

one analysis o f  data as the basis fo r conducting  fu rther dow nstream  

analyses in a m anageable and effic ien t w ay. W ith  a  d iverse range o f  file 

form ats and representations o f  b io in fo rm atics data, it has becom e an 

increasingly difficult task  fo r a  researcher to deal w ith  the d ifferent 

form ats and analysis tools. T hus, a researcher w ish ing  to perform  

m ultiple analyses o f  data by  feed ing  the resu lts o f  one p rogram  into 

another continually  encounters the  issue o f  converting  data  from  one 

form at into another. T his is o ften  a very  d ifficu lt and  tim e-consum ing 

process, w hich is error-prone.

3- M anual transfer o f  data

N orm ally, a b io logist takes the  resu lts o f  one analysis as the basis for 

conducting further dow nstream  analyses. T hus, it is necessary  to m ove 

data betw een very  d ifferen t system s w ith  d ifferen t representation 

form ats. T raditional w ays o f  accom plish ing  th is transform ation  include 

the use o f  copy-and-paste , m enu-d riven  in terfaces, and a com m and line. 

These m echanism s are adequate  fo r sm all tasks; how ever, they do not 

scale to large tasks, as they  invo lve  perfo rm ing  the sam e task hundreds o f  

tim es. Thus, these m anual m echan ism s m ake the task  tedious and tim e- 

consum ing as w ell as erro r-p rone during  the transfer o f  data betw een 

system s.
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4- U nderstanding how  to use  the various tools on a variety  o f  platform s

The m assive increase in the  n u m b er o f  b io inform atics tools that often run 

on different p latform s m eans it is no t an easy or practical task  for a 

biologist to learn about each  ind iv idual tool and how  to integrate it w ith  

other tools. To gain benefit from  the availab le  tools there is a need  to 

understand and m anage d ifferen t too l p latfo rm s. Thus, learning and 

m anaging these tools is bo th  tim e-consum in g  and d ifficu lt and needs 

expertise in the tool for its e ffective  use.

Thus, biologists spend a lot o f  tim e and  effo rt dealing  w ith  data sources 

and tools. A  previous study [4] c la im ed  a b io log ist spends m ore than 

50%  o f  the analysis tim e on  tasks re la ted  to m anipu lating  data from  

incom patible data sources and using  too ls to change them  to the required 

new  form ats.

W e have show n the process consists o f  stages w ith  m anual processes 

betw een stages, all o f  w hich  take  tim e. T his is the  norm al w ay that 

biologists conduct th is type o f  research. In  recen t years autom ated 

approaches have started to appear w hich  au tom ate  som e o f  the m anual 

processes. M ost notable o f  these  are system s based  on a w orkflow  

approach, for exam ple m yG rid  [183]. O ur approach  is an alternative w ay 

o f  autom ating the stages to a w orkflow .

W orkflow s (for exam ple T av em a  in m yG rid) au tom ate  som e o f  the 

process in the flow  show n in  F igure 9.1. H ow ever, w orkflow s can 

them selves becom e com plex. A s they  m ay involve several stages, each o f  

w hich is tim e-consum ing, d ifficu lt and needs expertise  to successfully  

undertake the stages. In o rder to create  an appropria te  w orkflow , the 

biologist has to put in p lace the fo llow ing  stages [ 109]:

•  Service discovery: the  b io log ist has to identify  services that 

perform  the task  needed  fo r the experim ent. T hus the b iologist has 

to construct a new  w ork flow  each  tim e and often change the 

linkage type. H ow ever, serv ices can be d ifficu lt to find because 

they are poorly  described  and  changing  linkage type is not alw ays
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a straightforw ard p rocess as the descrip tion can be vague and 

m enim alistic.

•  Service G luing: the b io log ist has to identify  how  services are 

com patible and fit together. H ow ever, jo in in g  services together 

into a w orkflow  is frequen tly  p rob lem atic, as the inputs and 

outputs are not d irectly  com patib le . C onsequently , m any Shim  

services [108] are needed  to  align  inputs and  outputs in a w orkflow  

and enable services to in teroperate .

•  Service invocation: the b io log ist need  to know  how  to invoke the 

services, w hat data and param eters are needed.

As a result, a m inority  o f  b io log ists are likely  to  construct w orkflow s 

[67]. A n additional problem  m ay  b tha t every  tim e the analysis changes, 

the data m ay have to be re-transferred  from  the source, a tim e consum ing 

operation.

O n the other hand, w ith  ID M B D , a b io log ist has on ly  to specify the 

experim ental datasets’ file, the  re la tionsh ips type, the relationship  

closeness and the inform ation w anted . M oreover, the b io log ist can repeat 

the experim entation w ith  d ifferen t rela tionsh ip  and  rela tionsh ip  closeness 

m easures, easily and qu ick ly  w ithou t the need  to construct a new  

environm ent as in w orkflow s o r re-transferred  data.

I f  an appropriate w orkflow  is availab le  it m ay be easy  to re-use it thus 

saving the tim e o f  creating from  scratch  th is e lem ent bu t this is only the 

case i f  the sam e analysis is requ ired . I f  the b io log ist needs to repeat the 

sam e analysis m any tim es then  the w orkflow  w ill be  ideal. A lso i f  the 

biologist has the skills to bu ild  the stage linkages w hen  new  stages are 

inserted into a w orkflow  then  the  w orkflow  approach  w ill m eet his/her 

requirem ents. G eneric w ork flow  system s, such as T avem a, have been 

used for som e tim e and are o ften  part o f  m uch w ider tool set w hich has a 

variety o f  sophisticated d isp lay  and  analysis tools w hich can be utilised 

in sophisticated analysis and  p resen ta tion  o f  results, e.g. graphic analysis. 

This situation is no t p resen t in  the  ID M B D  environm ent.
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9.4 The ID M B D  approach

To alleviate som e o f  these p rob lem s, w e developed the ID M BD  system  

(Figure 9.2) to autom ate en tire ly  the  p rocesses o f  Figure 9.1. Its user has 

only to specify the experim ental d a ta se ts’ file, the species nam e, the 

relationships type, the re la tionsh ip  closeness and the gene annotation 

w anted in order to use the system .

9.4.1 SLM

SLM  is a novel approach to  in te ropera tion  that is based  on the use o f  

biological relationships. A  rela tionsh ip  tha t ex ists betw een biological 

objects is an im portant factor in link ing  b io in fo rm atics sources as it can 

effect the integration o f  b io in fo rm atics da ta  sources. U nlike current 

integration strategies, w hich  focus on using  on to logy-based  or keyw ord- 

based  linkage, w e used re la tionsh ip -based  in teg ration  to integrate 

bioinform atics data sources. T h is is ach ieved  in  ou r fram ew ork by 

introducing the Soft L ink  M odel and  a re la tionsh ip  know ledge base 

(RK B), w hich is built and used  b y  SLM .

SLM  consists o f  concepts, re la tionsh ips and  degrees o f  linking. A  

concept is an entry in a da tabase that represen ts a  rea l-w orld  entity. The 

SLM  m odels the linkage be tw een  data  sources in term s o f  concepts, 

properties and sem antic re la tionsh ips (see section  4 .4).

The R elationship K now ledge B ase  (R K B ) is a  co llec tion  o f  relationship 

tables that hold Source_id, target_ id , R elationsh ipT ype, and R elationship 

Closeness, w hich store sem antic  rela tionsh ips betw een  b iological objects. 

These relationships betw een  sources are explo ited  to com bine annotation 

know ledge from  different sources. R K B  is u sed  to link datasets w ith 

other public data sources. T here  is no need  to perform  a com parison 

betw een species during the run-tim e process since this is done as a 

separate task and stored in R K B . T his saves tim e and effort as they can 

be used in several analyses.

W e identified a gene-product concept in tw o sources. For hom olog, 

ortholog, and paralog  re la tionsh ips, w e chose sequence properties in both
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A s explained in section 5.5, the  system  perform s the analysis as follow s:

1. The b io logist up loads the  experim ental datasets from  delim ited flat 

files via the user in terface th rough  a standard w eb brow ser; the 

system  parses the datasets, ex tracts the m etadata and converts the 

dataset into an appropria te  form at.

2. It detects the suitable linkage key  based  on  the scoring table (Table

6.1 in section 6.3.1) and  show s the  m etadata  to the user w ho can 

confirm  the recom m ended  linkage key  or choose a d ifferent key 

from  this m etadata.

3. The user then sets up  a query  and  feeds the system  w ith  the species 

nam e to be used in the experim ent, the rela tionsh ip  type to be used 

for linkage w ith the species, the re la tionsh ip  c loseness and the 

required gene annotation  to  be retrieved .

4. W hen the m ediator receives a u se r query  and  experim ental dataset, 

it selects the prim ary  species-specific  source to  answ er the query. 

U pon selection o f  the source, it generates a retrieval query  to 

specific species using  accession  num bers o r identifiers.

5. The m ediator invokes the  w rapper o f  the se lec ted  source.

6. The selected w rapper connects to  the data  source by  m eans o f  its 

standard A PI and subm its the  query to the data  source.

7. On receiving results from  the data  source, the w rapper passes them  

to the m ediator.

8. The m ediator extracts the  gene identifiers from  the resu lt set and 

then generates a new  call to  the Soft L ink  M odel to retrieve all 

relationships associated  w ith  th is G ene concept from  other species. 

It sends the source nam e, concept, identifiers and  user preference - 

the relationship that the u se r w ants to use to link  data sources and 

the relationship c loseness cut-off.

9. The Soft L ink  m odule  loads the SLM  m etadata  and searches 

w hether any rela tionsh ips associated  w ith  the concept and data 

sources have been  sen t to  it by  the m ediator. I f  a relationship 

specified by  the u se r is found  betw een the selected concept from  

the data source and  concepts in o ther data sources, the Soft L ink
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m odule invokes the rela tionship  w rapper, w hich opens a 

connection to the R K B  and  fetches instances that satisfy user 

preferences. B asically , it fetches related  concepts, related data 

sources, and identifiers o f  re la ted  entries in the related source.

10.The Soft L ink A dapter then  responds to the m ediator w ith a list o f  

related identifiers and re la ted  source concepts.

11. W hen the m ediator receives the response, it links to other species- 

specific sources v ia  w rappers to  retrieve all related genes from  

those sources that m ay have rela tionsh ips w ith  the target source.

12.The m ediator recom poses the various responses and form ats the 

final response to the user.
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Experimental datasets

IDMBD

Genomic comparative 
Analysis results

Figure 9.2: Sequence o f  steps a b io log ist perform s using  ID M B D  to drive  

a series o f  com putational analyses re la ting  to com parative genom ic  

analyses

9 .5  I D M B D  e v a l u a t i o n

W e have conducted research in com puter science and bioinform atics. In 

order to evaluate our sy stem ’s potential, w e need to test how m uch it 

improves the com parison process against the current approaches or 

manual execution o f  the desired  tasks. M ost im portantly, we need to 

assess the effectiveness o f  the system  as a tool to help biologists conduct 

this type o f  analysis in a fast, practical and easy way. The evaluation
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m etrics w ill be tim e, genericity , intervention, transparency, flexibility, 

extensibility, heterogeneity  and  functionality ; w e consider these issues in 

the follow ing section.

9.5.1 Saving time

IDM BD provides a m eans o f  link ing  datasets w ith  public data sources 

quickly since the m anual tasks iden tified  in section 9.3 have been 

autom ated. U sing this approach, a  u se r also need  not be aware o f  the 

appropriate data sources to use o r how  to access them  as the system  does 

it autom atically. This reduces the tim e and effort taken to analyze 

datasets. M oreover, there is no need  to  set up  a new  environm ent for each 

experim ent on the data. Thus, a b io log ist can  save the tim e and effort 

needed to brow se several online sources and too ls to determ ine the 

appropriate source and tools.

9.5.2 Genericity and Uniform a c c e s s

IDM BD provides users w ith un ifo rm  access to b io inform atics sources so 

that they can be queried as i f  they  w ere a single source. This is achieved 

by supplying the user w ith  a single system  to up load  and conduct h is/her 

genom ic com parison. A s exp la ined  in C hap ter 5, ID M B D  has a 

m ediation architecture, w hich  unifies the linkage and integration o f  

experim ental datasets w ith  o ther sources. T hus, the system  enables 

biologists to subm it a single query  to m ultip le  b io inform atics sources, 

and returns a unified set o f  resu lts. T his m eans a  u ser does not need to 

spend tim e subm itting the sam e query over and over again  to m any data 

sources. ID M BD  is also generic  in that it is no t designed  to answ er a 

single query. Instead, it o ffers several a lternative linkages for the 

integration o f  sources that can  be used by  the researcher w ithout further 

work.

9.5.3 Reducing human interaction

W herever possible, ID M B D  system  autom ates m anual tasks to m inim ize 

hum an interaction. It perm its the autom ated extraction o f  the 

experim ental da tase t’s m etadata, the analysis o f  its contents and
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integration w ith  o ther b io in fo rm atics sources to enrich annotation 

w ithout intervention. A s can  be  seen  in F igure 9.2, there is a single user 

in teraction w ith  th is approach  w h ile  F igure  9.1 show s that there are m any 

interactions. Thus, ou r system  reduces the  num ber o f  hum an interactions 

from  seven in teractions (see F igu re  9 .1) to one in teraction  (see F igure

9.2). The system  au tom ates the  en tire  p rocedure  w ithout hum an 

intervention. H um an in terven tion  is requ ired  only  to supply the 

experim ental dataset file, decide  on  param eters , and  m ake the decision to 

select the linkage key. T here is thus a  c lear sav ing  in hum an interaction. 

Som etim es, it is no t possib le  to  avo id  hum an  in terac tion  com pletely  due 

to the com plexity  o f  an experim en ta l dataset, o r the relationship  

discovery and in tegration process.

9.5.4 transparency and autonom y

ID M B D  shields users from  the underly ing  structu re  o f  sources. T he end 

user o f  the in tegration system  does n o t need  to  know  the underly ing  

structure o f  sources w hen  accessing  or query ing  the  heterogeneous data  

sources. This is achieved by  u sin g  the m ed ia to r/w rapper technology. The 

m ediator uses w rappers tha t encapsu late  the underly ing  structure o f  data 

sources, so that w rappers’ access to  data  sources is transparen t to the 

m ediators. This preserves a d a ta  so u rce ’s au tonom y and  g ives a b io log ist 

access to these sources, and  enab les h im /her to  re trieve  the m ost up-to- 

date biological data.

9.5.5 Flexibility

ID M B D  m akes it easy for a b io lo g is t to  link  and  analyse experim ental 

datasets. It allow s easy in teg ra tion  o f  a dataset, u sing  d ifferen t biological 

relationships w ith  pub lic  da ta  sources v ia  d ifferen t relationships, and 

linkage approaches, thus, p rov id ing  the ab ility  to use different 

relationships, linkages and  th resho ld  values. It is a lso  flex ib le  in term s o f  

its ability to link  datasets w ith  o ther datasets, link  datasets w ith  public 

data sources, or link  public  da ta  sources w ith  o ther public  data sources.
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9.5.6 Extendibility

The ID M BD  system ’s arch itectu re  allow s for extendibility  by the 

addition o f  new  data sources to  the  in tegration system . W ith  little effort, 

a new data source can be p lugged  in to  the system , by:

vi) D ata reg is try : th is reg isters a new  data source’s inform ation, 

i.e., nam e, location, w rapper, access inform ation.

vii) Schem a m anipulation: th is involves creating  a source schem a 

definition, im porting  its m etada ta  and then  m apping the local 

schem a to the ID M B D ’s g lobal schem a.

viii) SLM  and RK B: re la tionsh ips betw een  the new  source and 

existing sources are d iscovered  to bu ild  the SLM  (see section

5.3) and the rela tionsh ip  tab les are generated  and added to 

RKB.

ix) W rapper: generates a w rapper fo r the new  source.

9.5.7 Heterogeneity

ID M BD  overcom es heterogeneity  by  using  a rela tionsh ip  to integrate 

data. This is achieved by  SL M , w hich  allow s the species-specific  data 

sources to be linked w ithou t prob lem s due to  nam e clashes and 

am biguities. M oreover, experim ental dataset concep ts are m apped to a 

D om ain Ontology, w hich  a lso  helps to reso lve  heterogeneity . The 

w rapper handles all o ther he terogeneity  conflicts. F o r exam ple, A rabic 

num bers are used to rep resen t chrom osom es in the m ouse data source 

(M G I) and Rom an num erals are used  in the C. elegans  data source 

(W orm base). A  m apping is u sed  to  resolve th is type o f  heterogeneity  in 

the wrapper.

9.5.8 Functionality

IDM BD supports d ifferen t types o f  queries, such as single search, 

m ultiple search, and links datase ts for a specific species w ith datasets 

from  other species as w ell as link ing  these datasets w ith  public data 

sources. The key  to th is in ID M B D  is the alternative relationships 

provided to d iscover new  know ledge across species. U sing these 

different relationship  types fo r linkage allow s a b iologist to obtain
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different resu lt sets. T his a llow s d iffe ren t aspects to be  investigated, so 

p rovid ing  the b io log ist w ith  u se fu l in fo rm ation  abou t the genom e. T hese 

d ifferent resu lt sets p rov ide  gene  en rich m en t as illustra ted  in section 8.5. 

The quality  o f  the  datase ts o b ta in ed  b y  the system  and  the final validation  

o f  a  b io log ist hypo thesis  has sh o w n  the value  o f  th is approach  to 

biologists.

9.5.9 Original G oals R evisited

B ased on the p rob lem  sp ec ifica tio n  w e  se t ou t in chap ter 1 and 3, w e 

have achieved the o rig inal o b jec tiv es  w e  sou g h t to  address. In particu lar, 

w e have achieved the  fo llow ing:

• D eveloping  the ID M B D  system  th a t a llow s a  b io in fo rm atic ian  to 

ex tract an experim en tal d a ta se t’s m etada ta , d e tec t su itab le  candidate  

keys for the linkage (O b jec tiv e  1) in  o rd er to  link  the experim ental 

dataset w ith  pub lic  b io in fo rm atics  da ta  sou rces, and  transfo rm  the 

extracted  m etadata  and  d a tase ts  in to  a fo rm  th a t can  be u sed  for 

linkage w ith  o ther sou rces (O b jec tive  2) T hese  tasks have been  

successfu lly  undertaken  and  d em o n stra ted  in  C h ap te r 5, 6, and  7.

• U sing  the b io log ical re la tio n sh ip s to  p ro v id e  flex ib le  and loosely  

coupled  linkages across h e te ro g en eo u s da ta  sou rces (O bjective  3) 

w as achieved  th rough  the  S L M  app roach  as d iscussed  in section  

9.4.1.

• B uild ing  a know ledge b ase  o f  d iscovered  re la tionsh ip s betw een  

sources (O bjective  4). T h is has been  done successfu lly  by  build ing  

RK B (see section  9 .4 .1).

• The ID M B D  system  p ro v id es  u sers w ith  un ifo rm  access to the 

b io inform atics sources an d  sh ie lds u se rs from  the underly ing  

structure o f  sources (O b jec tiv e  5) as d iscussed  in  section  9.5.2 and 

9.5.4.
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9.6 S um m ary

In th is chapter, w e ev a lu a ted  th e  app roach  w ith  respect to its prim ary  

aim s and ob jectives. W e d em o n stra ted  the  m ain  advantages in term s o f  

tim e and generic ity , re so lv in g  h e te ro g en e ity  and  m in im izing  hum an 

interactions.

W e setup the R e la tionsh ip  K n o w led g e  B ase  (R K B ) to store several 

relationsh ips across species. T h is  kn o w led g e  base  stores the b iological 

rela tionship  type, and  the  re la tio n sh ip  c loseness be tw een  b iological 

objects across species. O nce th is  k n o w led g e  base  is created , the system  

uses it to link  and  com pare  da tase ts  acro ss species. T his set up overhead 

for R K B  occurs once  w hen  co m p arin g  en tire  genom es across species. 

T he subsequent experim en ts are  then  analyzed , linked  and com pared  

easily  and qu ick ly  since the  sy stem  uses the  ex is ting  sto red  rela tionsh ips 

in RK B  in subsequen t investiga tion ; thus, there  is no  need  to  perform  

these com parisons fo r each  a  n ew  experim en t. O u r system  saves user 

preparation  tim e b y  the  au to m atio n  o f  m anual task s occu rring  in several 

processes. T hese m anual ta sk s are p rone  to e rro r pa rticu larly  i f  the 

researcher is in te rrup ted  b y  the  phone  o r by  co lleagues. T herefore , the 

m istakes and  erro rs w ill be  h igh . F o r exam ple , w hen  a researcher 

resum es an analysis a fte r a b reak , he /she  m ay  fo rg e t w h ich  datase ts they  

w ere using  o r m is taken ly  u se  d iffe ren t da tase ts , w h ile  th is is no t a 

problem  w ith  ou r au tom ated  p rocess . In  ou r system , a  u se r only  supplies 

experim ental da tase ts and  se ts u p  h is /h er param eters . T hereafter, the 

system  does the res t o f  the  p rocess: p rocess ing  experim ental datasets, 

ex tracting  m etadata , co n v ertin g  to  a  su itab le  fo rm at, link ing  to public 

sources, re triev ing  data , u s in g  re la tionsh ip  know ledge  to  link  to o ther 

species and com paring  acro ss species and  m app ing  the  resu lt to a unified  

form at.

In the nex t chap ter, w e d iscu ss  the  overa ll conclusion  o f  th is w ork  and 

consider som e w ays in w h ich  the  fram ew ork  can be extended.
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C hapter 10 

Conclusions and future work

10.1 Synopsis

W e draw  conclusions abou t the  resea rch  and  iden tify  fu ture w ork  that 

can be undertaken  to  take  th is  resea rch  fo rw ard . A  sum m ary  o f  the 

w ork  reported  is g iven , w ith  a d iscu ssio n  o f  the  ex ten t to w hich  

contributions have  been  m ade . In  add ition , the  cu rren tly  perceived  

strengths and  lim ita tions o f  these  co n tribu tions are  ou tlined , fo llow ed 

by  suggestions abou t p o ss ib le  areas o f  fu tu re  resea rch  d irections.

10.2 T hesis su m m ary

In th is thesis, w e have  p resen ted  a  novel ap p ro ach  to  in teroperab ility  

based  on the  use  o f  b io log ica l re la tionsh ip s th a t u se  re la tionsh ip -based  

in tegration  to in teg rate  b io in fo rm atics  da ta  sources. T his invo lves 

using  d ifferen t re la tionsh ip  ty p es w ith  d iffe ren t re la tionsh ip  c loseness 

values to  link  gene  ex p ress io n  datase ts w ith  o ther inform ation  

available  in  pub lic  b io in fo rm atics  da ta  sources. T hese  re la tionsh ips 

prov ide flex ib le  linkage en ab lin g  b io log ists  to  d iscover linked  data 

across the b io log ica l un iv erse . R ela tionsh ip  c loseness is a variable  

used  to m easure  the  c lo sen ess  o f  the  b io log ica l en tities in a 

rela tionsh ip  and  is a  ch arac te ris tic  o f  the  re la tionsh ip . The novelty  o f  

th is approach  is that it a llow s a u se r to link  a  gene expression  dataset 

w ith  he terogeneous da ta  sou rces d y nam ica lly  and  flex ib ly  to facilitate 

com parative  genom ics. O u r research  has dem onstra ted  that using 

d ifferent re la tionsh ips g ives the  u se r a  b e tte r understand ing  o f  the 

genom ic functions o f  genes as it adds b io log ica lly  rich  inform ation
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derived  from  d ifferen t b io in fo rm atics  da ta  sources to the gene lists 
obtained  from  experim ents.

O ur survey o f  b io log ica l and  b io in fo rm atics  litera ture  found the m ore 

im portan t re la tionsh ip s b e tw ee n  b io lo g ica l ob jec ts are hom olog , 

ortholog, para log , b io lo g ica l p rocess , ce llu la r com ponent and 

m olecu lar function , so w e d ev e lo p ed  the  system  to link  inform ation 

across species based  on  these  re la tio n sh ip  types.

In an experim ent, w e ap p lied  o u r sy stem  to tw o  d ifferen t sets o f  data 

related  to g row th  and  ag ing  in  tw o  d iffe ren t species. F irst, the system  

extracted  m etada ta  from  these  ex p erim en ta l da tase ts , c reated  a schem a 

and then  converted  it to  a  su itab le  fo rm at (rela tional). T hen  it 

nom inated  a cand idate  key  to  be  u sed  fo r link ing  these  datasets w ith  

public  data  availab le  to  the  user. T he  linkage  k ey  w as then  m apped  to 

a dom ain  on to logy  to  ex trac t re la ted  co n cep ts  and  relationsh ips. 

F inally , the system  linked  the  experim en ta l da ta se t w ith  pub lic  sources 

using  the soft linkage approach . F o r each  experim en t, w e used  

d ifferent types o f  linkage (re la tionsh ip  type). T h en  w e ran  ou r system  

w ith  the sam e datase ts severa l tim es w ith  d iffe ren t re la tionsh ips each 

tim e. T his gave d iffe ren t resu lt sets, w h ich  reflec ted  how  the 

b io logical ob jec ts w ere  co n n ec ted  w ith  each  o th e r in  d ifferen t w ays. 

T hese d ifferen t resu lts a llo w ed  a b io log ist to  analyse  the datasets in 

d ifferent w ays and gave in sig h t in to  the n a tu re  o f  b io log ical objects. 

T hese processes enab led  the  fo rm ula tion  o f  novel hypo theses by  the 

b io log ist lead ing  to the  in fo rm ed  design  o f  n ew  cycles o f  laboratory  

research. M oreover, a  m easu re  o f  re la tionsh ip  c loseness should  g ive a 

b io log ist a new  too l in  th e ir  reperto ire  fo r analysis. T hus, these 

experim ents have show n  h o w  w e can  use  SL M  to link  a dataset w ith  

public  data  sources in d iffe ren t w ays u sin g  the  re la tionsh ips to  provide 

data  in tegration  w ith in  the  fram ew o rk  o f  a da ta  analysis process, and 

that:

•  T he da ta  genera ted  su ggests  th a t the functional cross-species 

in terp reta tion  u sin g  an  o rth o lo g y  m odel m ust be inform ed by
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the specific  in te r-sp ec ies  re la tionsh ip  betw een  the o rthology and 
function.

•  It is c lear from  the  d a ta  th a t b y  exp lo iting  a variable  th resho ld  

level w e can  define  a  c ro ss  species m app ing , w hich  is ex trem ely  

conservative , e ither b y  id en tify in g  an o rtho logy  group that has a 

m ax im al p ro b ab ility  o f  sharing  function  o r by  selecting a low er 

th resho ld  w h ereupon  w e  ob ta in  the  m ax im um  retu rn  o f  related  

genes and  still m in im ise  the  no ise  generated  by  random  

m atches.

10.3 T hesis con tr ib u tion s

The fo llow ing  is a  sum m ary  o f  the  ach iev em en ts  o f  the  research:

•  In troduction  o f  a n ew  app roach  to  ex trac ting  an experim ental 

da tase t’s m etad a ta  and  iden tify ing  the  m ost appropria te  

candidate  key  fo r linkage  w ith  o th er re la ted  data. T he thesis 

describes an ap p roach  to  au tom atic  tex t ex traction , in particu lar 

the id en tifica tion  o f  b io lo g ica lly -re lev an t fie lds in a flat file. The 

ex traction  o f  th is in fo rm atio n  a llow s a u se r  to  link  and in tegrate  

the data  parsed  from  a fla t file  au tom atica lly  w ith  public  

resources such  as W orm base , S w iss-P ro t, G ene O nto logy  and 

others.

•  In troduction  o f  a  no v e l app roach  to  the  in tegration  o f  

b io in fo rm atics da ta  sou rces, w h ich  a llow s a b io log ist to 

investigate  easily  a lte rn a tiv e  linkages. T h is approach  allow s a 

b io log ist to in teg ra te  and  link  experim en ta l da tase ts that can be 

used  fo r the  rap id  functional anno ta tion  o f  genom es w ith 

availab le  pub lic  sp ec iflc -g en o m e reposito ries. O ur approach 

w as a re la tio n sh ip -b ased  q uery  and  in tegration  process rather 

than  a k ey -based  in teg ra tio n  and  query  approach. Thus, the 

in tegration  is b ased  on  the  re la tionsh ip s betw een  p roperties o f  

concep ts no t fle ld -values. In  add ition , one o f  the features o f  our 

approach  is that the  u se r  can  custom ize  how  the data sources are
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linked  b y  bu ild in g  h is /h e r ow n SLM . T his allow s the use  o f  

d ifferen t re la tio n sh ip s w ith  d ifferen t rela tionsh ip-closeness 

values to  link  gene  ex p ress io n  datase ts w ith  o ther inform ation  

availab le  in pub lic  b io in fo rm atics  da ta  sources.

•  A n im provem en t in  co m p ara tiv e  approaches to annotating  

genes, by  iden tify ing  p o ss ib le  re la tionsh ips betw een  objects 

across species, and  p red ic tin g  p ro te in -fu n c tio n  from  sequence 

hom ology , o rtho logy  and  G O -term s. B y  in tegrating  functional 

and sequence  da ta  acro ss species, w e can  anno ta te  the genom e 

o f  a  species u sing  functional da ta  from  ano ther genom e. 

C om parative  genom ics p ro v id es ev idence  fo r close  evolu tionary  

rela tionsh ips be tw een  gene  fam ilies. T h is is im plem ented  in our 

system  by  bu ild in g  a  kn o w led g e  base  o f  the d iscovered  

rela tionsh ips b e tw een  b io lo g ica l ob jec ts , w h ich  is u sed  to 

com pare and  lin k  the  experim en ta l da tase ts  w ith  pub lic  sources. 

T his has been  v e rified  th ro u g h  the  c rea tio n  o f  the R K B  (see 

C hapter 7) to cap tu re  the  sem antic  re la tionsh ip s (hom ology, 

rela ted  m o lecu la r function , re la ted  b io log ica l p rocess and 

rela ted  ce llu la r co m p o n en t) b e tw een  genom ic  data  across 

species in a w ay  th a t a llow s in teg ra tion  across species.

•  D eterm in ing  the  op tim al th resh o ld  fo r cross-spec ies o rtho logy  

rela tionsh ips. T h is is d em o n stra ted  fo r M ouse  and C .elegans 

(Section  8.5).

10.4 S trength s and  L im ita tio n s o f  S L M

T he key  aspects o f  the  S L M  app roach  are:

•  SLM  in tegrates da ta  from  rem o te  sources w ithou t bring ing  the 

data  physica lly  in to  a cen tra l da tabase  w hen  the researcher 

needs it. T hus, it u ses  the  cu rren t version  o f  the data in the 

pub lic  sources.
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•  T he b io lo g is t can  ch an g e  the  linkage type according  to the 

research  agenda. D e p en d in g  on  the research  questions being  

asked, the  b io lo g is t can  choose  appropria te  linkage betw een  the 

d ifferen t concep ts and  ob jec ts . T hey  m ay easily  investigate 

d ifferen t linkages to  d e te rm in e  w h a t they  reveal. T his is due to 

the sy s tem ’s f lex ib ility  and  suppo rt fo r d ifferent types o f  

linkages.

•  The SL M  p rov ides linkage  o f  genetic  databases to o ther 

databases, includ ing  n o n -b io in fo rm atics  da tabases, containing 

in fo rm ation  abou t co n cep ts  such  as d rugs, b iochem istry , clinical 

in fo rm ation  and  pa tien ts . F o r exam p le , a  c lin ical database m ay 

no t have  a one-to -one  m ap p in g  w ith  a  genetic  database, but 

there is a  c lear re la tio n sh ip , w h ich  can  be  p resen ted  in  SLM . 

This m eans the  sy stem  is ex tend ib le .

•  T he SL M  stores re la tio n sh ip s b e tw een  sou rces in a R elationsh ip  

K now ledge B ase  (R K B ) and  exp lo its  them  to com bine 

anno ta tion  kn o w led g e  from  d iffe ren t d a ta  sources. T he R K B  

can be exchanged  and  reused .

•  T he SL M  allow s a u se r  to  b row se  the  d iscovered  re la tionsh ips 

betw een  da ta  sou rces, and  the  ob jec ts invo lved  in a specific 

rela tionsh ip .

•  A  u se r can  cu sto m ise  the linkage b e tw een  an experim ental 

da tase t and  one o r m o re  pub lic  sou rces by  custom ising  the 

SLM .

•  T he ID M B D  p ro to ty p e  system  w as im plem ented  as an 

illu stra tion  o f  co n cep t p ro to ty p e  w ith  on ly  tw o species currently  

supported . It can  be  ex ten d ed  b y  reg is te ring  new  sources and 

bu ild ing  the  SLM .

•  T he p ro to type  sy stem  accep ts on ly  delim ited  flat files w here  the 

first line con ta ins co lu m n  nam es o r headers.
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10.5 F u tu re W ork

T he research  in th is th es is  has generated  m any  in teresting  and 

prom ising  ideas. Som e o f  th ese  are  w orth  exp loring  further. In  th is 

section, w e describe  severa l d irec tio n s fo r fixture research.

•  C onsideration  o f  o th e r re la tio n sh ip  types like pathw ays and 

synteny. P a thw ays w o u ld  g ive  g rea te r insigh t into how  the 

p ro tein  w orks and  w o u ld  a ssis t in  the  d iscovery  o f  new  drugs. 

Synteny w ou ld  help  p red ic t the  loca tion  o f  new  genes by 

com paring  u n ch arac te rized  reg io n  w ith  a characterized  reg ion  in 

ano ther genom e.

•  Insigh t in to  the  flex ib ility  ob ta in ed  from  th is study should  be 

used  to  ex tend  the  sy stem  to  enab le  in teg ration  o f  non­

bio in fo rm atics da ta  sou rces w ith  b io in fo rm atics  sources, for 

instance, m ed ica l d a ta  sources, v ia  d ifferen t sem antic  

rela tionsh ip  types. F o r exam ple , th is ap p roach  cou ld  be used  in 

m edical genetics to  fin d  re la tionsh ip s b e tw een  a specific  d isease 

and genetic  structure . T h is cou ld  help  sc ien tis ts  to design  new  

drugs fo r a  d isease.

•  Fu ture  research  can  lo o k  at com paring  the  ou tcom e o f  using  

d ifferen t techn iques to  ca lcu la te  G O -b ased  sim ilarity .

•  Future w ork  can  lo o k  a t the  in te rp re ta tion  o f  the w ealth  o f  the 

re la tionsh ips in  R K B  to  p red ic t gen e-p ro d u ct (pro tein ) function.

•  In th is w ork , w e  d id  n o t consider schem a in tegration ; thus, the 

global schem a is sp ec ified  b y  the  in tegrator. It should  be 

possib le  to sem i-au to m ate  the  p rocess o f  constructing  a global 

un ified  schem a th a t ch arac te rizes  the  underly ing  data sources.

•  In m etada ta  ex trac tion , w e  considered  on ly  ex traction  from  flat 

tab -d e lim ited /co m m a-d elim ited  types o f  file. A  m ore general 

so lu tion  o f  th is p ro b lem  w o u ld  be  usefu l because  it w ould  allow
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structu red  da tabases to  be  crea ted  au tom atica lly  from  various 

experim ental da tase ts .

10.6 C on clu sion

In conclusion , th is thesis  co v ers  an  approach  to  the in tegration  o f  

diverse b io in fo rm atics d a ta  so u rces u sing  a flex ib le  linkage. It is a 

novel app roach  that p ro v id es a  flex ib le  and  soft linkage betw een  data 

sources. Soft L inks are m o d e lled  v ia  concep ts th a t are in terrelated, 

using  a rich  set o f  p o ss ib le  re la tio n sh ip  types. Such a flexible 

rela tionship  a llow s b io lo g ists  to  m ine  e ffec tiv e ly  the exponentially  

increasing am ount o f  co m p ara tiv e  g enom ic  in fo rm ation . T his can be 

used as a basis to enab le  c ro ss  species functional anno ta tion  o f  data 

generated  by  array  experim en ts to  in fo rm  b e tte r  the  selec tion  o f  targets 

for m ore de ta iled  analy sis  b ased  on  cross species functional 

inform ation. F u rtherm ore , once  the  SL M  are estab lished , secondary  

analysis on genom ic  e lem en ts  such  as the  transcrip tion  control 

elem ents (transcrip tion  fac to r b in d in g  sites) can  be  analysed  to p rov ide 

novel insights in to  the  ev o lu tio n ary  co nserva tion  o f  gene expression . 

B y  in tegrating  functional and  sequence  da ta  across species, w e are 

able to annotate  the  genom e o f  a species u sing  functional da ta  from  

the o ther species, as co m p ara tiv e  genom ics p ro v id es ev idence o f  close 

evolu tionary  re la tionsh ip s b e tw een  gene fam ilies.

Finally , the key  concep t em b o d ied  in ID M B D  tha t d ifferen tiates it 

from  o ther system s is its u se  o f  sem antic  re la tionsh ips betw een  

b io logical ob jec ts to  link  d a ta  across h e te rogeneous da ta  sources in a 

flexible m anner. T o the  b est o f  ou r know ledge, no  existing  system  

integrates gene  ex p ress io n  da tase ts  w ith  pub lic ly  available 

b io in fo rm atics da ta  sou rces to  fac ilita te  com parative  genom ics in such 

a flex ib le  w ay. T h is enab les a  b io lo g ist to ob ta in  m ore understanding  

o f  genes and  th e ir functionality .

183



APPENDIX A: SYSTEM COMPARISON

System  com parison

This appendix provides a com parison  o f  the bioinform atics integration 

system  according to d ifferen t d im ensions.

S y s te m I n te g r a t i o n
A p p r o a c h

D a ta  m o d e l L e v e l  o f  
t r a n s p a r e n c y

I n t e g r a t i o n
D e g re e

m a te r i a l i z a t i o n D a ta
ty p e s

Q u e r y
o p e r a t o r s

S R S D ata
w a re h o u s in g

Ic a ru s
N /A

S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e c o m p le te ly
materialized

S tr in g s , N A , 
A A  seq .

B o o le an  
p re d ., reg . 
ex p ,
h o m o lo g y
search

K 2 /B io -
K le is li

F e d e ra t io n c o m p le x  
v a lu e  m o d e l;  
O b je c t-  
O r ie n te d

S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g S Q L

B A C IIS M e d ia tio n X M L S o u rc e s  
s e le c te d  b y  
s y s te m

L o o se v ie w s S tr in g s N /A

K IN D M e d ia tio n X M L (d a ta )  
F -L o g ic  (C M )

S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g B o o le an
p red .,
h o m o lo g y
sea rch

B io D a ta S e rv e r M e d ia tio n R e la tio n a l S o u rc e s  
s p e c i f ie d  b y  
u s e r

T ig h t c o m p le te ly
m a te r ia l iz e d

S tr in g ,
in te g e r ,p a r t ia l l  
y  N A , A A  seq .

S Q L

D is c o v e ry -L in k F e d e ra t io n R e la tio n a l S o u rc e s  
s e le c te d  b y  
s y s te m

T ig h t v ie w s S tr in g s R ea d  o n ly  
S Q L

G U S D ata
w a re h o u s in g

R e la tio n a l N /A L o o s e V ie w s S tr in g s , N A , 
A  A  seq .

B o o le a n
p re d .,
h o m o lo g y
s ea rch

B io -N a v ig a to r D a ta
w a re h o u s in g

U n s tru c tu re d  
te x t  m o d e l

S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e V ie w s S tr in g s , N A , 
A A  seq .

B o o le a n
p re d .,
h o m o lo g y
se a rc h

E n trez D a ta
w a re h o u s in g /w e
b -b a s e d
n a v ig a tio n a l

A N S .l S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g s , N A , 
A A  seq .

B o o le an
p re d .,
h o m o lo g y
se a rc h

T A M B IS M u lti D B  
q u e r ie s

D e s c r ip t iv e  
lo g ic . G R A IL

S o u r c e s  h a rd ­
w ir e d  b y  s y s te m

L o o s e v ie w s S tr in g s C a s e  b a se d  
q rs.
o n to lo g ie s

IS Y S F e d e ra t io n O b je c t-
O r ie n te d

P a r tia l T ig h t v ie w s S tr in g s R ea d  o n ly  
S Q L

L IM B O D ata
w a re h o u s in g

R e la tio n a l S o u r c e s  h a r d ­
w ir e d  b y  s y s te m

T ig h t v ie w s S tr in g s B o o le a n
p re d .,
h o m o lo g y
s e a rc h

G e n M a p p e r D a ta
w a re h o u s in g

R e la tio n a l(G
A M )

S o u r c e  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g B o o le an  
p re d .,re g . 
e x p

S E M E D A M e d ia tio n R e la tio n a l S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g B o o le an
p red

P /F M D M e d ia tio n f u n c t io n a l 
d a ta  m o d e l, 
o b je c t-  
o r ie n te d

S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g B o o le an
p red

T IN e t M u lti D B  
q u e r ie s

O b je c t-  
R e la tio n a l 
(O P M  m o d e l)

S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g , 
N A ,A A  seq .

B o o le an  
p re d .,re g . 
ex p ,
h o m o lo g y
s ea rch

A L A D IN D a ta
w a re h o u s in g

R e la tio n a l L o w L o o se m a te r ia liz e d S tr in g A ll S Q L  
o p e ra to rs

B IS m e d ia t io n R e la tio n a l L o w L o o s e v ie w s tr in g A ll S Q L  
o p e ra to rs
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E M B L
H a rv e s te r

D a ta
w a re h o u s in g

O O L o w L o o se v ie w s S tr in g B o o le a n  
p re d .,re g . 
ex p ,
h o m o lo g y
s ea rch

E n s E M B L D ata
w a re h o u s in g

O O S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g s , N A , 
A A  seq .

B o o le an  
p re d .,re g . 
e x p ,
h o m o lo g y
s ea rch

G e n o M a x D a ta
w a re h o u s in g

R e la tio n a l S o u rc e s  
s p e c i f ie d  b y  
u s e r

T ig h t v ie w S tr in g B o o le an  
p red .,reg . 
e x p ,
h o m o lo g y
sea rch

O P M m u ltiD B  q u e ry R e la tio n a l;
O O

S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g s , N A , 
A A  seq .

IN D U S F e d e ra t io n R e la tio n a l F u lly
tr a n s p a re n t  to  
th e  e n d -u s e r

L o o s e v ie w s A  h ie ra rc h ic a l 
ty p e  sy s te m  
b a s e d  o n  u s e r  
a n d  d a ta  
s o u rc e  
o n to lo g ie s

R e la tio n a l,
s ta tis tic a l

B io M e d ia to r M e d ia tio n R D F S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w S tr in g s  an d  
U R L s

R e g u la r
e x p re ss io n s ,
C o n ju n c tiv e
q u e rie s

C O L U M B A D ata
w a re h o u s in g

R e la tio n a l S o u rc e s  
s p e c i f ie d  b y  
u s e r

L o o s e m a te r ia liz e d S tr in g s B o o le an  
p red .,reg . 
ex p ,

P e g a s u s F e d e ra tio n I r is  O b je c t-
O r ie n te d
M o d e l

S o u rc e s  
s p e c i f ie d  b y  
s y s te m

L o o s e v ie w s S tr in g s B o o le an
p red .

T S IM M IS M e d ia tio n O E M  
O b je c t  
E x c h a n g e  
M o d e l ( in  
O O )

P a r tia l
t r a n s p a re n t

L o o s e v ie w s S tr in g s B o o le an
p red .

S IM S M e d ia tio n D e s c r ip t io n
lo g ic
( L O O M )

S o u r c e s  
s p e c i f ie d  b y  
s y s te m

L o o s e v ie w s S tr in g s B o o le an
p red .

G a rlic M e d ia tio n O O - l ik e S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w s S tr in g ,
m u l tim e d ia

A ll S Q L  
o p e ra to rs

D A V ID D ata
w a re h o u s in g

R e la tio n a l S o u r c e s  
s p e c i f ie d  b y  
u s e r

L o o s e v ie w S tr in g
B o o le a n  
p re d .,re g . 
e x p ,
h o m o lo g y
se a rc h
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S y s te m U s e r  m o d e l D a ta  S o u r c e  
in t e r f a c e

G lo b a l
S c h e m
a

N u m b e r  o f  
s o u r c e s

R e s o lv in g
h e t e r o g e n e i ty

D o m a in O n to lo g y Q u e r y  p la n n in g

S R S N o  c r i t ic a l  
e x p e r t is e . 
S im p le  to  
u se  v is u a l 
in te r fa c e

D e c la ra tiv e
la n g u a g e ( I c a r
u s )

N o 4 3 N o B io lo g ic a l
D a ta

N o N /A

K 2 /B io -
K le is li

R e q u ire  
k n o w le d g e  
o f  S Q L

W ra p p in g
m e c h a n is m =
C P L

Y e s 6 0 N o B io lo g ic a l
D a ta

N o Q u e ry  o p tim iz e r , 
C o s t-b a s e d

B A C IIS In te ra c tiv e
q u e ry
fo rm u la tio n

W ra p p e rs ,
j a v a

Y e s 7 Y e s B io lo g ic a l a n d  
c h e m ic a l

B A O A d a p tiv e , S Q L  
b a s e d , s e r ia lly  
o rd e re d  s u b ­
q u e rie s . 
(G ra p h P la n )

K IN D E x p e r tis e  in
q u e ry
la n g u a g e

w ra p p e rs Y e s N /A Y e s N e u ro s c ie n c e Y es Q u e ry
d e c o m p o s itio n  
u s in g  D o m ain  
O n to lo g y

B io D a ta S e rv e r N o  c r i tic a l 
e x p e rt is e

w ra p p e rs Y e s 3 Y e s G e n o m e ,
p a th w a y s

N o m e c h a n is m s  fo r  
q u e ry
d e c o m p o s itio n  
a n d  d a ta  so u rc e  
lo c a liz a tio n

D is c o v e ry -
L in k

E x p e r tis e  in
q u e ry
la n g u a g e

W ra p p e rs  
u s in g  C + +

Y e s a rb i tr a ry Y e s L ife  s c ie n c e s N o Q u e ry  o p tim iz e r

G U S E x p e r tis e  in
q u e ry
la n g u a g e

w ra p p e rs Y e s 5 Y e s G e n o m ic s  d a ta Y e s N /A

B io -N a v ig a to r N o  c r i tic a l 
e x p e rt is e

w ra p p e r s a rb i tr a ry N o S e q u e n c e  a n d
S tru c tu re
a n a ly s is

N o P re d e f in e d  
ex e c u tio n  p a th

E n tre z N o  c r i tic a l 
e x p e rt is e

w ra p p e rs Y e s > 2 0 N o M o le c u la r
b io lo g y

N o N /A

T A M B IS In te ra c tiv e
q u e ry
fo rm u la tio n

W ra p p in g
m e c h a n is m =
C P L

N o > 6 Y e s B io lo g y , fo c u s  
o n  p ro te in  a n d  
n u c le ic  a c id s

T a O •s e a rc h
a lg o r ith m
+ m a p p in g
c o lle c t io n .
* o rd e re d  q u e ry  
c o m p o n e n ts  lis t
* m a p  q u e ry  
co m p o n e n ts  to  
fu n c tio n s

IS Y S In te ra c tiv e
d is c o v e ry

w ra p p e rs N o a rb i tr a ry Y e s G e n o m e N o C o m p le x  q u e ry

L IM B O In te ra c tiv e
q u e ry

w ra p p e rs N o 3  ( a rb i tr a ry ) N o G e n e t ic s N o N o

G e n e M a p p e r S im p le  to  
u se  v isu a l 
in te r fa c e

w ra p p e rs N o 7 N o G e n e t ic s G O N /A

S E M E D A S im p le  to  
u s e  v is u a l 
in te r fa c e

w ra p p e rs Y e s A rb itr a ry Y es B io lo g y Y e s N /A

P /F M D S im p le  to  
u se  v isu a l 
in te r fa c e

W ra p p e r Y e s A rb itr a ry N o P ro te in N o N /A

T IN e t S im p le  to  
u se  v is u a l 
in te r fa c e

W ra p p e r  
u s in g  S D K

N o 6 N o g e n o m ic
s e q u e n c e s

N o N /A

A L A D IN N o  c r i t ic a l  
e x p e rt is e

W ra p p e rs -  a  
r e la tio n a l 
re p re s e n ta t io n  
o f  th e  s o u rc e  
d a ta b a s e

N o 15 F in d  o b je c ts  
lin k s  b e tw e e n  
d if f e re n t  
so u rc e s : 
e x p l ic i t
c o n ta in e d  lin k s  
( s o u rc e s  th a t  
r e fe re n c e  o th e r  
o n e s )  a n d  
im p lic it  
c o n ta in e d  lin k s  
(b y  lo o k in g  fo r  
s im i la r  v a lu e s )

L ife  s c ie n c e s N o U tiliz e  th e  
d a ta b a s e  sy s te m
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a n d  d u p lic a te  
o b je c ts  b e tw e e n  
s o u rc e s

B IS N o  c r i t ic a l  
e x p e r t is e

w ra p p e rs Y e s 3 N o B io lo g ic a l d a ta N o o p tim iz e r

E M B L
H a rv e s te r

S im p le  to  
u s e  v is u a l 
in te r fa c e

w ra p p e rs N o 10 N o h u m a n
p ro te in s

N o N /A

E n s E M B L S im p le  to  
u se  v is u a l 
in te r fa c e

w ra p p e rs Y e s 3 N o E u k a ry o tic
g e n o m ic
s e q u e n c e

Y e s  (G O ) N /A

G e n o M a x N e e d
e x p e rt is e

w ra p p e rs Y e s N /A Y e s b io lo g ic a l 
s e q u e n c e  d a ta , 
g e n e
e x p re s s io n  
d a ta , 3 D  
p ro te in
s tru c tu re s , an d  
p ro te in -p ro te in  
in te ra c t io n  
d a ta

Y e s  w ith  a 
p ro p r ie ta ry  
s c r ip t in g  
la n g u a g e

O P M N o  c r i t ic a l  
e x p e rt is e ; 
e x p e rt  u s e r  
u se
O P M * Q L

C /C + +  A P I Y e s 3 Y e s b io m e d ic a l

IN D U S Y es  (u s e r  
o n to lo g y  a n d  
u se r-  
s p e c if ie d  
m a p p in g s )

w ra p p e rs N o A s  m a n y  a s  
o n e  l ik e s

Y e s -u s in g  
m a p p in g s  f ro m  
u s e r  o n to lo g y  
to  d a ta  s o u rc e  
o n to lo g ie s

Y e s Y es Y es

B io M e d ia to r S im p le w ra p p e rs Y e s 2 0 S y n ta c t ic  a n d  
s e m a n tic

G e n e t ic s , 
m o le c u la r  
b io lo g y , 
a n a to m y  a n d  
n e u ro ­
in fo rm a tic s

Y es . F o r
d a ta ,
m e d ia te d
s c h e m a
a n d  fo r
s o u rc e
a n n o ta tio n

O n ly  fo r  p a th  
g e n e ra tio n

C O L U M B A S im p le w ra p p e rs Y e s 7 Y e s  to  s o m e  
e x te n t

G e n e
a n n o ta tio n ,
P ro te in
S tru c tu re
A n n o ta t io n

G O N /a

P e g a s u s U s e r  s h o u ld  
b e  a b le  to  
u s e  s ta n d a rd  
te rm in o lo g y  
to  c o m p o s e  
H O S Q L  
q u e ry

w ra p p e rs Y e s a rb i tr a ry Y e s  - re s o lv e  
c o n f l ic t s  in  
n a m in g , 
s t ru c tu re s ,  a n d  
d a ta  d o m a in

a rb i tr a ry N o C o s t-b a s e d
o p tim iz a tio n

T S IM M IS sim p le W ra p p e rs  
w ith  h ig h  
le v e l
d e s c r ip t io n
la n g u a g e

N o A rb itr a ry N o In d e p e n d e n t N o V ie w s  
te m p la te s , 
c o m b in e s  
se v e ra l v ie w s  to  
a n s w e r  co m p le x  
q u e ry

S IM S U s e r  s h o u ld  
b e  a b le  to  
u s e  s ta n d a rd  
te rm in o lo g y  
to  c o m p o se  
L O O M  
q u e ry

w ra p p e rs Y e s A rb itr a ry Y e s In d e p e n d e n t Y es AJ p la n n e r  
U C P O P  2 .0 , 
p a r t ia l-o rd e r  
p la n n in g .
T h e  q u e ry  
p ro c e s s in g  
m e c h a n is m  
b a se d  o n  
p la n n in g  can  
d e te rm in e  a  v e ry  
co m p le x  
re la tio n sh ip  
b e tw e e n  th e  
c o l le c t io n  o f  
in fo rm a tio n  
re q u e s te d  b y  th e  
u s e r  a n d  th e  d a ta  
a v a ila b le  fro m  
th e  v a r io u s
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so u rces , 
p la n n in g  b y  
re w rit in g  (P b R ) 
a p p ro a c h

G a rlic S im p le D B  w ra p p e rs Y e s a rb i tr a ry Y es L a rg e -sc a le
m u ltim e d ia
in fo rm a tio n
sy s te m

N o P a rs in g , 
s e m a n tic  
c h e c k in g , q u e ry  
re w rite  an d  
q u e ry
o p tim iz a tio n

D A V ID S im p le W ra p p e rs  
= ja v a  &  p e ri

Y e s 9 N o F u n c tio n a l
g e n o m ic
an n o ta tio n

N o P a rs in g , 
s e m a n tic  
c h e c k in g , q u e ry  
re w rite  a n d  
q u e ry
o p tim iz a tio n

S y s te m Q u e r y
c a c h in g

Q u e r y
a d a p t iv e

S y s te m
p l a t f o r
m

D o m a in
s c h e m a

U s e r
i n t e r f a c e

Q u e r y
la n g u a g e

A P I O u tp u t  f o r m a t

S R S Y es N o W e b Ic a ru s W e b -
b a s e d ,
H T M L

N /A C - A P I H T M L , A S C II

K 2 /B io -
K le is li

Y es Y e s J a v a O D L T e x t-
b a s e d ,
R M I

O Q L R M I, J D B C v a rio u s

B A C IIS U se r
q u e rie s ,
q u e ry
p la n s ,
s e le c te d
re su lts

M u ltip le  
q u e ry  
c y c le s  w ith  
a d a p tiv e  
p la n n in g

C + + /J a v  
a  w ith  
C O B R A  
in te r fa c e  
o n
U N IX

O n to lo g y  
u s in g  
C L A S S IC , 
d a ta  m o d e l 
a n d  s c h e m a  
u s in g  X M L

W e b -
b a s e d ,
H T M L ,X
M L ,J S P

N /A N /A H T M L

K IN D Y es Q u e ry  
o p tim iz a tio  
n  u s in g  
d o m a in  
k n o w le d g e

J a v a X M L  D T D W e b -
b a s e d

F -L o g ic N /A H T M L

B io D a ta S e r
v e r

N /A N /A J a v a J a v a C C
g ra m m a r

W e b -
b a s e d , ja v a  
a p p le t

S Q L O D B C ,J D B
C

V a r io u s

D is c o v e ry -
L in k

Y es In d e p e n
d e n t

R e la tio n a l S Q L J D B C V a rio u s

G U S N /A N /A U n ix R e la tio n a l J S P .P H P S Q L P E R L  A P I H T M L

B io -
N a v ig a to r

Y es Y e s W e b -
b a s e d

N /A N /A H T M L

E n tre z Y es W e b -
b a s e d

- N /A H T M L , A S C II , 
X M L , A S N .l

T A M B IS Y es N o J a v a O n to lo g y  in  
G R A IL , 
B io C o n  K B

J a v a  a p p le t C P L N /A T E X T

IS Y S J a v a R e la tio n a l S Q L J D B C .
O D B C .C O R
B A

V a rio u s

L IM B O N o N o J a v a R e la tio n a l W e b -
b a s e d

S Q L N /A H T M L

G e n e M a p p e
r

N o N o R e la tio n a l W e b -
b a s e d

N /A N /A H T M L

S E M E D A N o N o W e b R e la tio n a l W e b -
b a s e d

S Q L N /A H T M L

P /F M D N /A N /A J a v a P ro lo g  a n d
th e  D a p le x
in te r fa c e s ,
w e b -
b a s e d ,
J a v a -b a s e d

D A P L E X
q u e ry

N /A T e x t, H T M L

T IN e t N /A N /A J a v a W e b -
b a s e d ,
H T M L ,

S Q L -lik e C + + A P I .C O
R B A

N /A

......
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c o m m a n d -
l in e

A L A D IN U til iz e  th e
d a ta b a s e
s y s te m

N /A A ll
R D B M S

A ll s c h e m a s
re m a in
in d e p e n d e n t
-  th e r e  is  n o
s p e c i f ic
d o m a in
s c h e m a

W e b -
b a s e d ,
H T M L

S Q L N /A H T M L

B IS W e b -
b a s e d

N /A N /A N /A

E M B L
H a rv e s te r

N /A N /A W e b W e b -
b a s e d

N o n e N o n e H T M L , E X C E L

E n sE M B L N /A N /A W e b W e b -
b a s e d

N /A N /A V a rio u s

G e n o M a x Y e s  w ith  a  
p ro p r ie ta ry  
s c r ip t in g  
la n g u a g e

w ith  th e  
c re a t iv e  
s c r ip t in g

S u n  15K  
w ith
S o la r i s  9
u s in g
O ra c le ,
W in d o w
s

J a v a - b a s e d
G ra p h ic a l
U s e r
In te r fa c e

N /A N /A H T M L  o r  ( ta b -  
te x t p la in  te x t 
fo r  .X L S )

O P M Y es N /A In d e p e n
d e n t

W e b -
b a s e d

S Q L C O R B A V ario u s

IN D U S N o N o a n y
p la tfo rm  
su p p o r t i  
n g  J D K  
1 .4 o r  
a b o v e .

Y e s  th ro u g h
d o m a in
o n to lo g ie s

S ta n d  
a lo n e  J a v a  
a p p l ic a t io n

O n to lo g y -
b a s e d
re la t io n a l ,
e x te n d e d  w ith
s ta t is t ic a l
o p e ra to r s

N /A fle x ib le

B io M e d ia to
r

A t th e  
m e ta w ra p p  
e r  lev e l

U s in g
T u k w ila

j a v a V a r io u s  b y  
a p p l ic a t io n  
d e v e lo p e r

P Q L ( v l ) ,
a t t r ib u te /v a lu e
p a r i s (v 2 )

P O L  o n  
s o c k e ts  ( v l )  
a n d  J a v a  
m e th o d s (v 2 )

X M L ,
R D F ,H T M L

C O L U M B
A

N /A N /a W e b R e la t io n a l W e b -
b a s e d

S Q L N /A X M L , te x t, 
H T M L

P e g a s u s Y es Q u e ry
o p tim iz e r

In d e p e n
d e n t

O b je c t
O r ie n te d

V a r io u s H O S Q L N /A T e x t

T S IM M IS N o O E M
D B (L O R E )
c a c h e  O E M
o b je c ts .
L O R E L
w a s  u s e d  to
q u e ry
L O R E

In d e p e n
d e n t

N o M O B IE
W W W
p a g e ,
q u e ry
m e n u ,
h y p e r te x t
a n s w e r

O E M -Q L
(L O R E L )

N /A H T M L

S IM S Y es S e le c t iv e ly  
m a te r ia l is m  
g  d a ta  b y  
a n a ly z in g  
q u e ry
d is tr ib u t io n ,
s o u rc e
s tru c tu re
a n d
m a in te n a n c  
e  c o s t

In d e p e n
d e n t

O b je c ts  a n d
o b je c t iv e s
L O O M

W e b -
b a s e d ,
fo rm -
b a s e d

L O O M N /A C L IM

G a rlic N o Q u e ry -
o p tim iz e r ,
c o s t-b a s e d

C + +
A P I

O O -L ik e P E S T O ;
in te r fa c e ,
f r ie n d ly ,
b ro w s in g ,
n a v ig a t io n

S Q L C + + A P I H T M L

D A V ID N o J a v a re la t io n a l W e b -
b a s e d
in te r fa c e

N /A N /A H T M L ,T E X T
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X M L  docum ents  and Schem a

T his appendix  con ta ins the  sch em a  o f  the  data  sources and an exam ple 

o f  data sources m etadata.

E le m e n t d e sc r ip tio n

ID id en tifie r o f  the  da ta  source

N am e nam e o f  the  d a ta  source

D escription descrip tion  o f  da ta  source

O w ner data  source  ow ner, i f  suppo rted

URL A  specia lized  fo rm  o f  U R L  is u sed  by  JD B C  to 

iden tify  databases.

System the  sy stem  in  w h ich  da ta  sou rce  is runn ing

D atabase Type type  o f  the  d a ta  source  m an ag em en t system .

D irec t A ccess flag  to  ind ica te  w h e th er there  id  d irec t access o r no t 

to the  da ta  sou rce

H ost IP  address o f  the  da ta  source.

P ort P ort n u m b er to  be  used  to  connect.

U ser N am e u se r nam e to  access the  da ta  source

P assw ord p assw ord  to  access the data  source

JD B C JD R IV E R A  Java  c lass th a t im p lem en ts the  JD B C  driver 

in terface  an d  is loaded  in to  the  JD B C  d river m anager.

Table B.l: D escrip tio n  o f  x m l schem a  elem ents
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M etadata Schem a

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="ID" type="xs:string" minOccurs-' 1" maxOccurs-T7> 
<xs:element name="Name" type="xs:string" minOccurs="0" maxOccurs="l "/> 
<xs:element name="Description" type="xs:string" minOccurs="0" 

maxOccurs=" 1 "/>
<xs:element name="Owner" type="xs:string" minOccurs-T" maxOccurs-'1 "/> 
<xs:elementname="URL" type="xs:integer" minOccurs="0" maxOccurs-''1 "/> 
<xs:element name="System" type="xs:string" minOccurs="0" maxOccurs="l "/> 
<xs:element name="DataBase" type="xs:string" minOccurs="0" maxOccurs="l"/> 
<xs:element name="Direct_Access" type="xs:boolean" minOccurs='T" 

maxOccurs=" 1 "/>
<xs:element name="Host" type="xs:string" minOccurs='T " maxOccurs-'1 "/> 
<xs:element name="Port" type="xs:integer" m inO ccurs-'I" maxOccurs='T"/> 
<xs:element name="User Name" type="xs:string" minOccurs="0" maxOccurs='T"

/>
<xs:element name="Password" type="xs:string" minOccurs="0" maxOccurs="l "/> 
<xs:element name="JDBC_DRIVER" type="xs:string" minOccurs="0" 

maxOccurs=" 1 "/>
</xs:schema>

F igure B . l : X M L  sch em a  o f  m etada ta  o f  da ta  sources
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D ata sources descrip tion

<?xml version-'1.0" standalone="yes"?>
<Databases>
<Database>

<ID>DB1</ID>
<NAME>Wormbase</NAME>
<DESCRIPTION>WormBase is the repository of mapping, sequencing and 

phenotypic information for C. elegans (and some other 
nematodes)</DESCRIPTION>
<OWNER>Sanger Institute</OWNER>
<URL>www.wormbase.org</URL>
<SYSTEM>DataBase Managemeny System></SYSTEM> 
<DATABASE_TYPE>AceDB</DATABASE_TYPE> 
<DIRECT_ACCESS>true</DIRECT_ACCESS> 
<HOST>aceserver.cshl.org</HOST>
<PORT>2005</PORT>
<U SERN AME>anonymous</U SERN AME>
<PASSWORD>****</PASSWORD>
<JDBC_DRIVER_NAMEx/JDBC_DRIVER_NAME>
</Database>

<Database>
<ID>DB2</ID>
<NAME>Mouse Genome Informatics (MGI)</NAME> 
<DESCRIPTION>Mouse Genome Informatics (MGI) provides integrated 
access to data on the genetics, genomics, and biology of the laboratory 
mouse.</DESCRIPTION>
<OWNER>The Jackson Laboratory</OWNER> 
<URL>http://www.informatics.jax.org</URL>
<SYSTEM>DataBase Managemeny System></SYSTEM> 
<DATABASE_TYPE>Sybase DB</DATABASE TYPE> 
<DIRECT_ACCESS>true</DIRECT_ACCESS> 
<HOST>gondor.informatics.jax.org</HOST>
<PORT>4025</PORT>
<USERNAME>badK/USERNAME>
<PASSWORD>****</PASSWORD>
<JDBC DRIVER NAME>com.sybase.jdbc2.jdbc.SybDriver</JDBC_DRIVE 
R_NAME>

</Database>
</Databases>

F igure  B .2: M eta d a ta  descrip tion  o f  da ta  sources
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<?xml version-'1.0" encoding="ISO-8859-r' ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
<xsd:annotation>

<xsd:documentation xml:lang="en">
XML schema for Soft Link Model metadata.

</xsd:documentation>
</xsd:annotation>
<xs:element name="SLM-knowledge-base">
<xs:attribute name="no" type="integer" use="required7>
<xs:element name="database" minOccurs=0 maxOccurs="unbounded"> 
<xs:complexType>
<xs:element name-'concept" minOccurs=0 maxOccurs="unbounded"> 
<xs:complexType>

<xs:element name-'relations" minOccurs=0 maxOccurs-'unbounded"> 
<xs: complexType>
<xs:sequence>
<xs:element name="SLM" minOccurs=l maxOccurs="unbounded"> 
<xs:attribute name="DBName" type-'RC" use-'required7>
<xs:attribute name="concept" ty p e -’String" use="required"/>
<xs:attribute name="RelationType" type=" relationships " use="required"/> 
<xs:attribute name="File" type="String" use="required’7>
<xs:attributename-'FileType" type=" String " use="required"/> 
</xs:sequence>
</xs:complexType>
</xs:complexType>
</xs:complexType>
< -  - >

<xsd: simpleType name="relationships">
<xsd:restriction base="xs:string">
<xsd:enumeration value="homolog"/>
<xsd:enumeration value="ortholog"/>
<xsd:enumeration value="MolecularFunction"/>
<xsd:enumeration value=”BiologicalProcess'7>
<xsd:enumeration value="CellularComponent'7>
</xsd:restriction">
</xsd: simpleType>

<xsd: simpleType name="filetype">
<xsd:restriction base="xs:string">
<xsd:enumeration value="mySQL'7>
<xsd:enumeration value="text"/>
<xsd:enumeration value="00'7>
</xsd:restriction">
</xsd: simpleType>
</xs:schema>______________________________

F igure  B .3: X M L  sch em a  f o r  S L M  m etada ta
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Technologies

The techno log ies u sed  in the  im p lem en ta tion  o f  ID M B D  system  are 

sum m arised  in T ab le  C .l  w ith  reaso n  fo r use.

T echnology reference reasons

JavaB eans http  ://j ava. sun .com /p roducts /j a 
vabeans/

JavaB eans are 
reusab le  softw are 
p rog ram s that can be 
developed  and easily  
assem bled  to  create 
soph istica ted  
app lications.

JavaServer
Pages

h ttp : //j ava. su n . com /p roducts/j s
p /

JS P  is a  server-side  
techno logy  that is an 
ex tension  o f  the 
S erv let technology . It 
fac ilita tes the 
crea tion  o f  w eb  
app lica tions that have 
b o th  static  and 
dynam ic  com ponents. 
It supports the use o f  
JavaB eans 
com ponen ts w ith  
s tandard  JSP 
language  elem ents.

Java  Servlets h ttp ://java .sun .com /p roduc ts/se
rv let/

S erv lets are the 
p refe rred  Java 
p la tfo rm  techno logy  
fo r ex tend ing  and 
enhancing  the 
functionality  o f  a 
W eb  server. T hey 
p rov ide  a com ponent- 
based , p latform - 
independen t m ethod 
fo r bu ild ing  W eb- 
based  applications 
and  have access to 
the  entire fam ily  o f  
Java  A PIs, including  
the JD B C  A PI to 
access enterprise
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databases.

B ioJava h ttp ://w w w .b io jav a .o rg ,
A rticle: B io Jav a  — Java  
T echno logy  P o w ers  T oo lk it fo r 
D eciphering  G enom ic  C odes 
B y  S teven  M eloan , J u n e  2004, 
B ioJava: open  source 
com ponen ts fo r b io in fo rm atics; 
M atthew  P o co ck

B ioJava  is an open 
source Java L ibrary  
fo r b io inform atics 
designed  for 
p rov id ing  a  Java 
fram ew ork  for 
p rocessing  b io logical 
data.

B ioPerl w w w .b ioperl.o rg T he B ioperl p ro ject is 
an  in ternational open- 
source co llaboration  
be tw een  b io logists, 
b io in fo rm atic ians and 
com pu ter scientists 
w hose  aim  is to bu ild  
b io in fo rm atics 
so lu tions in Perl and 
to  p rov ide  a 
com prehensive  
lib rary  o f  Perl 
m odu les for 
m anag ing , hand ling  
an d  m an ipu lating  life 
sc ience  data.

A cePerl h ttp ://s te in .csh l.o rg /A ceP erl/ A ceP erl, w ritten  by  
L inco ln  S tein , is an 
exce llen t object- 
o rien ted  Perl 
in terface  m odule  
p ro v id in g  v irtua lly  
tran sparen t access to 
local o r rem ote 
A C eD B  databases, 
pe rfo rm ing  queries, 
fe tch ing  A C E  
ob jec ts , and  updating  
databases

T om cat
Server

(h ttp ://to m ca t.ap ach e .o rg /) T he T om cat server is 
an open source, free 
to  use, Java based 
W eb A pplication  
con ta iner created  to 
run  Servlets and 
JavaS erver Pages 
(JSP) in W eb
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applications.

A pache h ttp  ://w w w . apache, o rg / T he A pache H T T PD  
server is a pow erfu l, 
flex ib le, H T T P /1.1 
com plian t w eb server 
that im plem ents the 
latest p ro tocols, 
includ ing  H T T P /1.1

Java 2 SD K http  ://j ava. sun .com /j 2 s e /1.4 .2 /d  
ocs/index .h tm l

T he essential Java 2 
SD K  prov ides tools, 
run tim es, and A PIs 
fo r developers 
w riting , deploying, 
and  runn ing  applets 
and  app lica tions in 
Java  p rogram m ing  
language.

M od_Jk h ttp ://tom ca t.apache .o rg /conne
cto rs-doc/

M od  Jk  is the 
T  om cat-A pache 
p lu g -in  that handles 
com m unica tion  
b e tw een  T om cat and 
A pache.

Table C. J : technolog ies u sed  in the  im p lem en ta tion  o f  ID M B D
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C lasses

This appendix  p rov ides sam p les o f  Java  classes used  in  the 

im plem entation  o f  the ID M B D  system .

Public Class SoftLinkAdaptorO {

Public Vector getRelations(String SLM)

Public Vector GetMatchEntriesInDataSource(Sring id, vector matchentiy, string db, 

string concept)

Public Vector GetMatchEntriesInDataSource(Vector id, vector matchentry, string db, 

string concept)

Public Vector GetMatchEntriesInRelationTable(Sring id, String dataSource, String 

relationfilename)

Public Vector getRelation(String db, String concept)

Public Vector getOther(Vector result, String db, String concept, String condition) 

Public Vector getOther(Vector result, String db, String concept);

}

F igure D. 1: M ain  S o ftL in k  In te r fa ce  C lass w ith  P rim itives  f o r  S L M  A P I
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Public Class QueryHandler (

Public ExtractMetadata(String filename)

Public ExtractMetadata(String filename, String delima)

Public double ComputeScore(Vector dataset)

Public Boolean isKey(String tag)

Public Boolean isAmbiguous(Vector dataset)

Public Boolean isNull(Vector dataset)

Public Boolean isSingleValue(Vector dataset)

Public Boolean isUnique(Vector dataset)

Public String DataType(Vector dataset)

}

Public int elementLength(Vector dataset)

F igure D .2: Q uery H a n d le r  C lass w ith  P rim itives  f o r  S L M  A P I
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public Class RelationshipWrapper {

public Vector getRelationshipId(String key, String tableName) ; 

public Vector getRelationshipId(String key, String tableName, double e value, 

int score, double rc) ; 

public Vector getRelationshipId(String key, String tableName, String condition); 

public Vector getRelationship(String key, relationslnfo rl) ;

F igure D .3 : R e la tio n sh ip W ra p p er C lass w ith  P rim itives f o r  S L M  

A P I

Public Class GenerateSoftLinkTable {

private Map loadAlgorithms(String algXMLfile)

private void saveRelationshipTable(java.util.List entries)

private void CmdExec(String cmdline)

private Map getAlgorithm()

private Algorithm getAlg(Vector v, String name)

private void run_algorithm(String si, String s2, String alg, String output) 

private String formatPath(String cmd)

F igure  D. 4: G enera teSo ftL inkT ab le  C lass
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Public Class BlastParser {

Class BlastLikeSAXParser

Class SeqSimilarityAdapter

Public Vector getblastParser(String filename)

List getBlastParser(String filename)

}

F igure D .5: B la s tP a rser  C lass w ith  P rim itives  f o r  S L M  A P I

public Class Gene {

public class MapPosition { 

public String ChromosomeNumber; 

public String centimorganPosition; 

public String cytogeneticOffset;

}

public Class DBlinks {

public String UniGene; 

public String LocusLink;

}

F ig u re  D . 6: G ene C lass
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public Class relationslnfo {

public String rootDbName; 

public String rootConceptName; 

public String DbName; 

public String Concept; 

public String RelationType; 

public String RelationFile; 

public String FileFormat;

}

F ig u re  D . 7: re la tio n sln fo  C lass

public Class Algorithm {

String name;

String location;

String syntax;

private static Algorithm getParameters(String name) 

private static Map getAlgorithm()

}

F igure  D .8: A lg o rith m  C lass w ith  P rim itives f o r  S L M  A P I
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public Class UniGeneW rapper {

public void connect();

public void close();

public int getNumberOfRecords();

}

public String getUniGene(String Accld);

F igure D .9: U n iG eneW rapper C lass w ith  P rim itives  f o r  S L M  A P I

Public Class W rapperManagerO {

public void ge tW rapperN am e()

public Vector ge tW rappers() 

public void links(keys,db ,concep t) 

public void S oftL inkC allB ack():

F igure  D .10: W rapper M a n a g er  C lass
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Public Class WrapperO {

// returns gene entries for a specific gene using a specified identifier 

fetchRecord(String id)

// returns gene entries for multiple genes using a specified identifier. 

fetchRecord(Vector ids)

// returns gene entries for multiple genes using a specified identifier. 

fetchRecords(Vector ids)

//returns gene entries for multiple genes using a specified search field. 

fetchRecords(Vector ids, String SearchKey)

}

F ig u re  £>.11: W rapper C lass
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public Class GOW rapper {

//it connects to the data source

public void connectQ;

// it closes all connections to the database and releases resources reserved for

the connection.

public void close();

// returns number of records.

public int getNumberOfRecords();

//fetches a GO entry for a specific accession number.

Public String geGO(String Accld);

}

F ig u re  D .1 2 : G O W rapper C lass
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public Class SLMParserj

//parses a SLM and loads relationships in a hash table. 

parse(Stringfilename)

//gets all relationships from a hash table. 

getAllRelationship(Hashtable slm)

//gets all relationships of a concept from a data source 

getRelation(Hashtable slm, String db, String concept)

}

F ig u re  D .1 3 : S L M P a rser C lass
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B io log ist’s Evaluation

This appendix  includes the  eva lua tion  letter from  Dr. Peter K ille  

(B ioscience School, C a rd if f  U niversity). H e used  the system  and w as 

im pressed by  the  findings.
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Cardiff School of B iosciences
Head of School Professor J L Harwood PhD DSc

Ysgol y Biowyddorau, Caerdydd
Pennaeth yr Ysgol Yr Athro J L Harwood PhD DSc

Mr Al-Daihani,
School of C om puter S cience, 
Cardiff University,

Cardiff University 
Biomedical Sciences Building 
Museum Avenue 
Cardiff CF10 3US 
W ales UK

Tel +44(0)29 20 874108
Fax +44(0)29 20 874117
EmaB Harwood@cardiff.ac.uk

Ca r d if f
UNIVERSITY

PRI FYS GOL
CaeRDY|§>

Evaluation of Soft Link Model Performance
30/07/2008

Dear Mr Al-Daihani,

I w as extremely intrigued to receive th e  c ro ss  sp ec ie s  com parison of g e n e s  assoc ia ted  with aging 
generated by the Soft Link Model (SLM). In my opinion the  d a ta  provides som e biologically 
relevant insights both generally, in th e  contex t of th e  relationship betw een  functional conservation 
and homology, together with m ore specific insights realised  through identification of evolutionarily 
conserved ag e  related g en es .

The issue of homology threshold an d  its relationship to g e n e  function is critical w hen performing 
inter-species com parisons. However, th e  majority of stud ies u se  generic  values b ased  on solely of 
the  statistical probability of a  s e q u e n c e  hom ology occurring by random  (B last E-value) without any 
knowledge of the relationship betw een  this statistical value an d  functional conservation which will 
be specific to genetic d ivergence b e tw een  th e  two sp ec ie s  being studied. T he resu lts g en e ra ted  by 
SLM which com pares the proportion of g e n e s  with conserved  functional ontological definitions, for 
biological process, m olecular function an d  cell com ponent, under various d eg rees  of homology 
show s an  extremely interesting relationship. Intriguingly, it rev ea led  a  biphasic function justifying 
the accepted homology threshold o r E-10 a s  being appropriate to  yield an  inclusive se t of 
functionally related g e n e s  whilst a  probability sco re  >E-40, although yielding substantially few er 
g en es , provides a  m uch higher confidence in functional conservation . This analysis is extrem ely 
useful when mining cro ss  disciplinary d a ta  s e ts  betw een  th e se  two sp ec ie s  and d em onstra tes  the 
power of generating similar analysis for o th er c ro ss-sp ec ies  com parisons a  p ro cess  which would 
be substantially stream -lined should  th e  SLM interface be expanded  to include prim ary data  
so u rces  for additional sp ec ies.

T he two studies identifying a g e  re la ted  transcrip t c h a n g es  illustrates a  generic  challenge facing 
m any global analysis app ro ach es, th a t being th e  sh e a r  num ber of responsive g en e s  identified. 
O ne approach allowing targeting of further experim ental work is to identify re sp o n se s  which are  
evolutionarily conserved. T he SLM an a ly sis  of th e s e  d a ta  s e ts  provides an  e legan t illustration of 
how your implementation facilitates this p rocess. R eassuringly th e  groups of conserved g en es  
have substantive ev idence to verify th e re  involvem ent in aging p ro cesses . This illustrates the 
potential of this tool to aid experim ental biologist, realising th e  full potential of com parative 
transcriptomic data  analysis, informing and  targeting future laboratory experim entation.

In addition to th e se  m ajor findings it h a s  b een  extrem ely useful and  informative to exploit your 
interface to provide ex tended  annotation for m o u se  and  n em atode array reporters from there 
G eneBank accessio n s. This h a s  allowed our re search  to dynam ically update  the  annotations and 
reflect the highly dynam ic natu re of th e  annotation  of th e se  gen o m es.

Yours sincerely,

Dr P eter Kille

mailto:Harwood@cardiff.ac.uk
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