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Abstract

The integration of bioinformatics data sources is one of the most
challenging problems facing bioinformaticians today due to the
increasing number of bioinformatics data sources and the exponential

growth of their content.

In this thesis, we have presented a novel approach to interoperability
based on the use of biological relationships that have used relationship-
based integration to integrate bioinformatics data sources; this refers to
the use of different relationship types with different relationship
closeness values to link gene expression datasets with other information
available in public bioinformatics data sources. These relationships
provide flexible linkage for biologists to discover linked data across the
biological universe. Relationship closeness is a variable used to measure
the closeness of the biological entities in a relationship and is a
characteristic of the relationship. The novelty of this approach is that it
allows a user to link a gene expression dataset with heterogeneous data
sources dynamically and flexibly to facilitate comparative genomics
investigations. Our research has demonstrated that using different
relationships allows biologists to analyze experimental datasets in
different ways, shorten the time needed to analyze the datasets and
provide an easier way to undertake this analysis. Thus, it provides more
power to biologists to do experimentations using changing threshold
values and linkage types. This is achieved in our framework by
introducing the Soft Link Model (SLM) and a Relationship Knowledge
Base (RKB), which is built and used by SLM. Integration and Data
Mining Bioinformatics Data sources system (IDMBD) is implemented as
an 1illustration of concept prototype to demonstrate the technique of

linkages described in the thesis.
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Chapter 1

Introduction

1.1 Synopsis

Bioinformatics data sources are heterogeneous in their representation
and query capabilities across diverse information fields held in
distributed autonomous resources. The volume of data collected and
stored in these distributed and heterogeneous data sources, presents a
major challenge with respect to the efficient and effective accession,
processing, extraction, discovery and integration of this information. In
particular, this occurs when a biologist wants to use data mining tools
linked with information held in existing knowledge and computational
resources in investigations to exploit the exponentially increasing
amount of comparative genomic data. In this chapter, a background to
this problem is provided, followed by the research motivations for the
thesis. Next, the hypothesis, the aims and objectives of the research are
presented. The research methodology used is presented, followed by a
summary of the overall achievements of the research. The chapter ends

by describing the organization of the thesis.

1.2 Background to Integration of bioinformatics sources

The integration of bioinformatics data sources is one of the most

challenging problems facing bioinformaticians today, due to the

increasing number of bioinformatics data sources and the exponential

growth of their content and usage [131, 138]. These sources usually

differ in their structure, scope and contents [139]. Most data sources are

centred on one primary class of objects, such as gene, protein, or DNA
1
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sequences. This means that each data source contains different pieces of
biological information and knowledge reflecting the purpose of the
source, and can answer queries appropriate to its domain, but cannot
help with queries that cross domain boundaries and involve different

data repositories. An area of research that is growing in importance.

In most existing integration systems, joining information held in
different data sources is based on the uniqueness of common fields in
the sources or by linkage through ontology terms. Data entries in some
data sources have relationships expressed as links, or predefined cross-
references. Such cross-references are usually stored as a pair of values,
for example, target-data source and accession number, and are effected
through a hyperlink on a webpage [36, 140]. These links are added to
data entries for many different reasons: for example, data curators insert
them as structural relationships between two data sources, and
biologists insert them when they discover a confident relationship
between items [36]. Yet, these links are not established in collaboration
with the curator of the linked data sources. These static links
(hyperlinks) are problematic, as the hyperlink may change. Thus, if a
curator changes, or withdraws an entry that is related to an entry in
another data source, the link fails [36, 140]. With sources changing
quickly, this leads to inconsistency and continual updating is needed.
Moreover, many bioinformatics data sources do not support explicit
relationships with data held in other data sources, such as ortholog and
other types of relationship. Bioinformatics data sources need linking
using associations between entities that are hard to find, as they are
implicit in the sources and not explicit in the data [3]. Relationships
between data held in such data sources are usually numerous, and only
partially explicit. There is, therefore, a growing need to link these data
sources using dynamic and flexible linking at a higher level through

relationships, particularly if this can be achieved in an efficient manner.
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1.2.1 Experimental Datasets

The emergence of biotechnology has made it possible to study the

expression of thousands of genes or proteins in a single experiment in

the laboratory, which creates an experimental dataset [7, 181]. This

raises many challenges:

In order to mine relevant biological knowledge from an
experimental dataset, it is important not only to analyse the
experimental data, but also to cross-reference and associate the
large volumes of data produced in this way with information
available in external bioinformatics data sources, in order to
conduct comparative genomics investigations and so predict gene

functions and study evolutionary analysis [186].

Due to the complexity of the biological problems under study and
the lack of complete experimental and analytical models, there is
a need to design a knowledge-driven system that assists in the
explanation and validation of the predictive outcomes of

experiments [198].

Researchers have great difficulty in setting up large-scale
experiments, mainly because of a shortage of expertise and
limited resources to recruit appropriate staff [25], so most current
researchers annotate genes one at a time, using online data
sources or a manual literature search [106]. A previous study
[107] has revealed that 40 to 60% of genes found in new genomic

sequences do not have assigned functions.

Many researchers struggle to identify the most appropriate
sources and tools to be used in the analysis of their experimental
datasets [106].

One of the significant challenges is to integrate gene annotation
with the gene expression and sequence information [136, 138,

193, 194], so that biologists can study genes based on their
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function, chromosomal location, and tissue expression, and cross-
reference the data derived from different species across diverse

expression analysis platforms.

e When linking and integrating data presented in an experimental
dataset in a semi-structured form with data held in a
bioinformatics data source, it is essential to determine as much
information about the experimental dataset as possible. This
information can be detected automatically from its metadata, such

as column names and their content descriptions [75].

Thus, instead of overwhelming researchers with long lists of
unannotated data, researchers need a system that allows them to
annotate genes, and microarray' information by linkage to additional
information from various online public data sources. The system should
have the ability to integrate experimental datasets with the rich set of
gene annotation information available within and across species. Such a
system should allow researchers to collect and manage large amounts of

gene expression, gene sequence, and gene annotation data.

In our research, we aim to develop a framework for integrating
bioinformatics data sources that uses relationships across species and
user preferences. It should allow the user to specify constraints and
parameters for the integration, which would allow a biologist to
facilitate flexible usage of different types of comparative genomics

relationships in investigations.

1.3 Rationale

In 2006, over 100,000 individual samples were deposited in public
repositories for gene expression/molecular abundance data. These
submissions represent over 2000 platforms or array types from 60

different species [87]. This body of public data is growing

: Microarray is a high-throughput technology used in molecular biology and in medicine.
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exponentially and is matched by an equal or greater number of studies
in the private domain. Few tools have been developed to compare
directly the results yielded from individual studies. Although,
significant advances have been made in visualizing [22, 38, 47, 88] and
manipulating individual datasets (including data processing [200],
statistical analysis[103], clustering [16, 211] and annotation based over-
representation [73]), these approaches allow only cross-experimental
comparison by subjective analysis of the output. These comparisons
offer an opportunity to reveal conserved disease mechanisms or
common modes of action in cases of toxicosis caused by chemical
exposure. The value of this data to the fundamental understanding of
these processes cannot be underestimated, but new approaches are
needed. The major hurdles to these dataset comparisons include
variations in reported nomenclature, database  versioning,
orthology/paralogy, choice of relationship, and the threshold used to
determine relationship validity. In this research, we set out to develop a
platform that would allow direct comparison between two datasets,
within species, allowing variable gene identifiers to be mapped onto the
species-specific primary data source, which in turn could be used to
yield sequence or gene annotation that would facilitate comparison,

with flexibility in the types used and the thresholds of linkage.

1.4 The hypothesis and the aim of the research

The research hypothesis for this thesis is:

Hidden relationships between biological objects can be used in
integrating bioinformatics data sources, so that a biologist can flexibly
link an experimental dataset with bioinformatics data sources and the
resulting data source can be mined effectively to inform the

investigation.

Thus, the aim of the research is to investigate the use of relationships
between biological objects to link heterogeneous bioinformatics data
sources to annotate genes discovered in experiments and predict gene

functions via comparative genomics analysis.
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1.4.1 Objectives

In order to demonstrate the hypothesis, we aim to meet a number of

objectives:

Objective 1: to extract an experimental dataset’s metadata and to

detect suitable candidate keys for linkage in it

Most experimental datasets are stored in unstructured files that do not
have metadata saved in logical fields. In order to investigate fully the
dataset being generated by a microarray or in a laboratory experiment, it
is essential to detect and use as much information about the
experimental dataset as possible. This information can be found in
headings and content descriptions, and needs to be extracted and
exploited to ensure that the data can be integrated in valid ways and so
increase the scope of the investigations of the experimental dataset.

Thus, a tool is needed to discover and extract this information.

Experimental datasets usually have many elements. Only a few of these
elements can be used as a candidate key for linkage with other data. A
candidate key helps us to join tuples in datasets with other data.
Therefore, we need to try to detect automatically candidate keys that

can be used to link and integrate a dataset with public data sources.

Objective 2: to transform extracted metadata and datasets into a

form that can be used for linkage with other sources

Usually, experimental datasets are not in a form that can be directly
linked to other bioinformatics data sources. The metadata should be
stored in a format that allows its effective use. Also, datasets need to be
analysed and stored so that they can be integrated and linked to other
bioinformatics sources. Once the data has been stored in a suitable
structure, it can be used to link with other appropriate public

bioinformatics sources.
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Objective 3: to show that these relationships can provide flexible

and loosely coupled linkages across heterogeneous data sources

Bioinformatics data sources contain a large variety of objects. These
objects are connected in a variety of ways giving an extensive
interconnected graph of relationships. These relationships are often
many-to-many, and refer to dynamic effects that one object has on
another. Discovering these relationships between biological objects is
important for biologists so that they can investigate whether the links
enrich their knowledge about the genetic structure. Thus, the discovered
relationships provide a means for joining information and linking data
sources dynamically and flexibly, and so provide biologists with rich
information and ahnotation. Thus, the objective is to detect these
semantic relationships and build a relationship knowledge base
containing this information that can be used to join information based
on the GO classification association or homology between sequences,
so that a biologist can assess the significance of the different links used

in an investigation.

Objective 4: to build a knowledge base of discovered relationships
between sources and to exploit this to combine annotation

knowledge from different sources.

Discovered relationships between biological objects will be stored in a
knowledge base that can be used in the integration process to enrich a
query. User queries can be extended using these relationships to obtain
a greater amount of relevant information. The objective is to store these
relationships in an appropriate model so that they can be reused in

future investigations.

Objective 5: to provide users with uniform access to bioinformatics
sources so that they can be queried as if they were a single source,

thus shielding users from the underlying structure of sources.

An integration aim is to provide users with a single interface to access
and query multiple bioinformatics sources. The system should enable
7
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users to submit a single query to multiple bioinformatics data sources,
and return a unified set of results rather than the user having to spend
unnecessary time submitting the same query over and over again to
many data sources and then integrating the results manually. Moreover,
end users of the integration system should not need to be aware of the
underlying structure of sources when accessing or querying
heterogeneous data sources. The system should handle all the
underlying mechanics needed to process a user’s query and return
results. The objective is to hide the internal structure of these sources

from users to simplify the interface for the biologist.

1.5 Research Approach

In this section, we summarise the methodology used in conducting our
research. Firstly, the problem is defined as linking experimental datasets
from biological experiments with heterogeneous bioinformatics data
sources in flexible ways to support knowledge discovery, comparative
genomics, or further investigation. Existing integration systems are
then reviewed to determine the most appropriate approach. The
literature review is split into two tracks; the first concentrates on the
integration of heterogeneous data sources in general and the second is
about bioinformatics data source integration and the mining of
biological data. These tracks are then combined to support the research

aim.

Discussions with professionals in biological science was undertaken, as
it was our targeted application field. Dr. Peter Kille (Bioscience School,
Cardiff University) was frequently consulted to ensure that our research
met a biologist’s needs. Experimental datasets were collected under the
supervision of staff of the School of Bioscience. Different
bioinformatics data sources were selected to be integrated with these
datasets based on the biology under investigation, namely, Wormbase
[46, 210], MGD [33-35, 41, 71] and Gene Ontology (GO) [89].

Based on our investigation of the research problem, we built a model for

capturing and storing relationships between the biological objects to be
8
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used for the integration and linkage of the bioinformatics data sources.

An initial system structure was proposed which provided a user with

uniform access to heterogeneous bioinformatics sources. The final step

in our research was the implementation of our proposed system as a

prototype.

1.6 Overall Achievements of the research

The following is a summary of the main achievements of this research:

a)

b)

Introducing an approach for extracting an experimental
dataset’s metadata and identifying appropriate candidate

keys for linkage with other related data (Chapter 6).

The creation (see Chapter 4) of a novel approach — SLM -
to the integration of bioinformatics data sources which
allows biologists to create easily, different types of linkages
between bioinformatics data sources, drive the integration
process, change the linkage type flexibly, adjust the linkage
easily, so that the investigator can try different linkages, see
the effect of using them and so determine which one if any
matches the purposes of their research and produces
significant results. This allows biologists to analyze
experimental datasets in different ways, shortens the time
needed to analyze the datasets and provides an easier way
to undertake this analysis. Thus, SLM provides biologists
with a tool which supports experimentation by using
different threshold values and linkage types and thereby

supports investigative research (Chapter 8).

The creation of a knowledge base of the discovered
relationships between biological objects (Section 9.4),
which is used to compare and link the experimental datasets
with public sources. This knowledge base improves
comparative approaches to annotate genes, by identifying

possible relationships between objects across species, and

9



CHAPTER 1: INTRODUCTION

d)

predicting protein-function from sequence homology,
orthology and GO-terms. By integrating functional and
sequence data across species, biologist can annotate the
genome of a species using functional data from another.
Comparative genomics provides evidence for close
evolutionary relationships between gene families. Also, this

knowledge can be reused in other investigations.

A flexible mediator architecture for linking (i.e. integrating)
experimental datasets with relevant information held in
heterogeneous data sources (see Chapter 5). This means
that a biologist does not need to directly query individual
data sources or use a variety of Internet search tools for this
purpose. We present a mediator-based integration
architecture that links experimental datasets to relevant
information held in heterogeneous data sources. Our
mediated architecture offers a set of tools for discovering
semantic relationships between Dbiological objects,
browsing these relationships and automating metadata
extraction, and offering a single point of access to a set of
data sources. It enables flexible integration of
heterogeneous data sources. This allows biologists to be
able to create easily, different types of linkages between
bioinformatics data sources, drive the integration process,
change the linkage type flexibly, adjust the linkage easily
so that the investigator can try different linkages to see
which one if any matches the purposes of their research and
determine the effect of different relationships easily and so

identify their biological significance.

The Determination of the optimal threshold for cross-
species orthology relationships. This is demonstrated for

Mouse and C.elegans (see Section 8.5).

10
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Six papers were published on the work reported in this thesis. The full

details of these papers are found in [8-12]. The conferences and the

workshops in which the papers appear are:

1.

1.7

This

21st Annual British National Conference on Databases, BNCOD
21, Edinburgh, UK, 7-9 July 2004.

. Sixth Informatics Workshop for Research Students, University of

Bradford, Bradford, UK, March 2005.

. 22nd British National Conference on Databases, BNCOD 22,

Sunderland, UK, 5-7 July 200S5.

. HIBIT 0S5: International Symposium on Health Informatics and

Bioinformatics, Belek, Antalya, Turkey, 10-12 November 2005

. 4th International Workshop on Biological Data Management -

BIDM '06 in conjunction with DEXA 2006, Krakow, Poland, 3-7
September 2006.

VLDB 2006 on Data Mining in Bioinformatics in conjunction
with VLDB 2006, Seoul, South Korea, 11-15 September 2006.

Thesis organization

section presents an overview of the thesis organization. An

overview of the chapter contents is given.

e Chapter 2: Background
This chapter gives the necessary background information
about the characteristics of biological objects and

bioinformatics data sources.

e Chapter 3: Bioinformatics Data source Integration
This chapter surveys the background areas of research related

to the main ideas presented in the thesis on linking datasets.

11
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e Chapter 4: Soft Link Model
This chapter introduces the proposed Soft Link Model for data

source integration and describes the approach used.

e Chapter 5: System Architecture
This chapter introduces the design of the architecture and the
different components of the IDMBD (Integration and Data

Mining of Bioinformatics Data sources) system.

e Chapter 6: Implementation
This chapter discusses the implementation issues for the

proposed system, and describes the prototype implementation.

e Chapter 7: Extracting Metadata of Experimental Dataset

This chapter presents an approach for extracting the
experimental datasets’ metadata and finding the suitable
linkage keys that can be used for integration based on a
mathematical foundation. Furthermore, it shows how to map a
linkage key with the domain ontology to find related concepts

and semantic relationships.

e Chapter 8: Analysis of “wet laboratory” data

This chapter demonstrates the utility of our prototype system.
We used the tools to analyse datasets generated by wet
laboratory experimentation. The aim was to demonstrate that
the soft link framework would allow us to derive novel
insights into the experimental system by determining the

elements conserved between species.

e Chapter 9: Evaluation
This chapter provides an evaluation of the system in terms of

different dimensions.

e Chapter 10: Conclusions and future work
This chapter summarizes and comments on the contributions
made by the research and discusses the perspectives and

research directions that remain open for future work that could

12
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be carried out to improve the effectiveness of the SLM as a
method of integrating heterogeneous bioinformatics data

sources.

13



CHAPTER 2

Background

2.1 Synopsis

This chapter giveé the background about biological data and
bioinformatics data sources. The necessary background information
about bioinformatics data sources is presented. This covers reasons for
the growth in the number and size of bioinformatics data sources, and
the characteristics of bioinformatics and its data sources. This growth is
often described in the literature as explosive[l13, 187, 214].
Heterogeneity present in bioinformatics data sources is detailed and
types of conflict explained. Data models are defined and described in

detail, and their advantages and disadvantages discussed.

2.2 Introduction

In recent years, there has been a massive increase in the number and
size of bioinformatics data sources, which is expected to continue at the
same, or an even faster pace in the coming years [131]. The growth in
the number of data sources is related to the content of data held in them

[65]. The reasons for this growth can be summarised as follows:

i. Rapid progress of the human genome project and other
sequencing projects [58];
ii.  Easy access to stored data provided by the Internet [13, 131];
iii.  Proliferation of new biodata analysis technologies, bio-statistical
approaches, computational algorithms, knowledge discovery,

data mining and data analysis tools [60, 157];
14
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iv. Design and development of new biotechnology and efficient
(with respect to speed and accuracy) experimental techniques,
primarily DNA sequencing, DNA microarrays and other high
throughput technologies [131]; and

v. Massive investment in genomics by governments and the
pharmaceutical industry [92, 131, 199].

In June 2008, the GenBank database alone held the records of more
than 88,554,578 sequences and over 92,008,611,867 bases [86].
According to a recent survey, more than 1078 bioinformatics data
sources are available online [83]. Table 2.1 and Figure 2.1 show the
increase in the number of bioinformatics data sources from 1999 to the
present day. Figure 2.2 illustrates the development of the international
Nucleotide Sequences database [86]. Figure 2.3 shows the growth of
the GenBank database from 1982 to 2005. In this period, there was an
exponential growth in base pair data from 680K to 56,037 million and
in sequences from 606 to 52 million [85]. Such explosive growth is

expected to continue well into the 21st century [113, 114, 187, 196].

Data sources are maintained by different communities and
organizations [131, 138]; they are autonomous, distributed, disparate,
heterogeneous and often do not provide direct access [29, 138]. A

description of these characteristics can be found in section 2.3.2.

Data sources in general can be classified as primary or secondary. A
primary source holds information from an experiment and is sometimes
called an archival data source. It contains raw data of sequences or
structures. Examples of these primary sources are GenBank [31, 32],
EMBI and DDBJ for Genome sequences and the Protein Databank for
protein structures [21].
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Growth of bioinform atics data sources
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Figure 2.1: Growth ofbioinformatics data sources 1999-2008 based on

statistics published in [79-83]

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007

Number 197 226 281 335 386 548 719 858 968

Table 2.1: Growth o fbioinformatics data sources (1999-2008)[82-85]
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Growth ofthe
International Nucleotide Sequence Database Collaboration

Pars eoolntxjl«d by GfiBarfcg— « EMSL— DOBJ—i

Figure 2.2: Development of the international Nucleotide Sequence

Database [85]

Secondary data source information is derived from primary data source
data; Secondary data sources hold data, such as conserved sequences,
signature sequences and active site residues of the protein families
derived by the multiple sequence alignment of a set of related proteins.
A secondary data source is called a curated data source and examples

include MGD [34] and Wormbase [46].

While the contents of primary data sources are controlled by the
submitter, the contents of secondary data sources are controlled by a
third party. Secondary data sources are derived from the following

procedures [132]:

* Annotating and enriching data, either manually or automatically,
* Cleansing and removing redundant information,

* Collecting data from literature,

* Mining and compiling data from several data sources, and

* Analysing primary data.
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In general, bioinformatics data sources cover a wide range of subjects
and data types, including gene sequences, gene expression data, protein
sequences, protein structure and metabolic pathways. They can be

classified as general purpose or specific purpose data sources [29].

Growth of GenBank
(1982 -2005)
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Figure 2.3: Growth ofGenBank (1982-2005) [85]

2.3 Characteristics of bioinformatics data sources

The characteristics of bioinformatics data sources are presented here to
give the reader an understanding of the field and the challenges it
presents.

18
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2.3.1 Data

Elmasri and Navathe [70] identify several characteristics of biological
data that make it difficult to manage:

Complexity: biological data are questionably the most complex data
known when compared with most other applications [177]. They are
connected to each other in many ways, in a highly interconnected graph
of relationships [174]. Thus, definitions of such biological data must be
able to represent a complex substructure of data as well as relationships
[70, 154]. For example, bioinformatics data sources include not only
the functions of individual genes and proteins, but their complex
interactions within a tissue, cell tissue, and whole organism [70, 154,
159, 177].

Diversity: Biological data have a great diversity of types, such as
sequences, spatial, 3D structures, graphs, string, scalar and vector data.
There may also be overlaps in data types between different species and
different genome sources [70, 154].

Incomplete: Biological data are very often incomplete since some
biological objects are large and full descriptions take time to achieve, or
the limited resources available prevent the collection of relevant data
[177]. For example, most of the genomes are incomplete and not
annotated because the function of some genes is still unknown.

Large size: One of the most notable characteristics of biological data is
their large size on account of the complexity of biological concepts,
data types and structure. Sequences, graphs, protein-protein interactions
all contribute to the complexity and size of biological data [131].

Lack of a standardised nomenclature: Different organisations and
communities use their own terminology to describe biological concepts.
Thus, biological data frequently suffer from ambiguous and unclear
concepts since there is no standardised nomenclature for them [131,
177].

19
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2.3.2 Data sources

Here we discuss the differing characteristics of bioinformatics data
sources [29]:

Heterogeneous in structure and content: each data source has its own
data model and uses its own terminology and ontology. Different
designers, have used several ways to model a particular concept and the
aim of the experiment and project all contribute to this heterogeneity
[98, 154]. Thus, the structure of data sources, and representations of the
same data query results may be different (see section 2.4).

Large in size: in the last few years, the number and size of new
bioinformatics data sources has been growing exponentially, as has the
number of computational tools available for analysing these data. There
is no sign of any deceleration of growth [29].

Dynamic: bioinformatics data sources are dynamic. Their interfaces
alter from time to time and their schemas change at a rapid pace as do
their contents [70].

Autonomous: bioinformatics data sources are autonomously owned
and maintained by different communities and organisations often for
different purposes [138]. Consequently, query types allowed on data
sources and the precise mode of interaction are diverse because of the
different reasons for holding the data [29, 138].

Widely distributed: bioinformatics data sources are widely distributed
across the world, and such data is currently not held in a centralised
location for analytical purposes. This is most likely to continue to be
the case [29, 138].

2.4 Heterogeneity in Bioinformatics Data Sources

This section identifies different types of heterogeneity that affect
bioinformatics data sources with the aim of showing the challenges
they present to making an interoperable system. This heterogeneity may
exist at three levels, namely, syntactic, semantic and data model levels
[26, 69, 84,99, 110, 123, 128, 129, 131].
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2.4.1 Syntactic

Syntactic conflicts, some referred as technical conflict, arise due to the
use of different storage paradigms and formats, platforms, type of
systems and communication protocols [128, 131, 134]. Syntactic
conflicts may also occur due to the use of different query interfaces, for
example, SQL, OQL, Xquery/Xpath, the access method used, for
example, ODBC, JDBC, SOAP, and the storage method [128, 131].

2.4.2 Semantic

The classification of the semantic heterogeneities can be found in [69,
98, 99, 128, 129, 131].
Won Kim [128] describes a schema as
“containing a semantic description of the information in a given
database, which can be represented in many ways in the same
data models. Given such inter- and intra-model variability, it is a
formidable task to integrate many schemas into a homogeneous
schema.”
Thus, semantic conflicts are concerned with differences in the
representation, meaning, interpretation or use of the same or related
data [26, 84, 98, 99]. The most important semantic heterogeneity

affecting bioinformatics data source integrations are:

Schema conflicts: concepts may be represented using different data
structures in different databases, for example, an entity in one schema
may be an attribute in another, different data types are used (string or
integer), different units are used (pound, kilo), and the precision may
vary (two or four decimal places; mark or grade of a metric). Other
causes of conflict include different ways of representing incomplete
information (for example, the meaning of nulls), and different ways of
identifying objects in databases [69, 98, 99, 152]. Another conflict is
data value conflict; this arises when different representations are used
for equivalent data. These conflicts include discrepancies of type, unit,

precision, allowed values, spelling and abbreviations [98, 99, 152]. For
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example, gene number is represented by Arabic numbers in MGI and

Roman numbers in Worm.

Data versus schema conflicts: these conflicts arise when data (values)
in one schema are considered as metadata (type names) in another data
source. For example, a data value in one relational schema may be the

name of an attribute in another relational schema [98, 129, 152].

Entity identification conflicts: entity identification conflicts occur
when there is difficulty determining whether two or more entities
(instances) in different data sources refer to the same real world entity.
For example, a mouse gene identifier in MGI is different from the same

gene accession number in Genbank [152].

Naming conflict: naming conflicts arise when different names are used
for the same concepts in the real world or the same names are used for
different concepts in the real world. This occurs when the designers’
terminology and nomenclatures used to describe a real world concept
lead to synonym and homonym problems. In the first, two different
names are used to describe the same concept; for example, some data
sources use common English species names while others use systematic
species names. In a homonym, the same name is used to describe

different real world concepts [98, 99, 152].

Generalisation/Specialisation Conflict: some protein domains have
functional annotations from different sources. Thus,
generalisation/specialisation conflict may occur. For example, sources
may describe the same gene function using the gene ontology

molecular function but use different hierarchical levels [152].

Linked Conflict: this is caused by the method used to link sources. For
example, MGI links to Swiss-Prot through its marker concept, to
RatMap through orthologs, to PubMed through references, and to
GenBank through their markers (for genes) or molecular probes and

segments (for anonymous DNA segments) [138].
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Scope conflict: this arises when one source clearly encodes the scope
of its data with respect to species, whereas another source refers to the

species implicitly, as it covers only one species [131, 134, 135].

2.4.3 Data models

A data model is an abstract, logical definition of the objects used to
model the structure of data [55-57, 184]. Data model conflicts occur
when databases use different models, for example, relational, object-
oriented, AceDB, hierarchical, to model the data [98, 146].

Flat files: it is estimated that 80% of biological data are in text form
[191]. In the past, bioinformatics data were normally stored in ASCII
text files. Today, many bioinformatics data sources are held in flat files,
which are a single, large table, containing only one record structure and
no links between separate records. This flat file is structured using letter
codes at the beginning of each line [40]. Access to data in flat files is
carried out sequentially, so access is slow because the entire file must
be searched sequentially to find the wanted data. They also suffer from
data redundancy, inconsistent data, inflexibility, limited data sharing,
poor enforcement of standards, low programming productivity, and

excessive program and data maintenance [141].

Currently, there is a shift to hold bioinformatics data sources in
relational, object or object relational database management system
(DBMS) or as XML data. Flat files are no longer considered
appropriate alternatives to DBMSs. However, flat files are the de facto
data exchange standard in the field, since many bioinformatics
applications operate on flat files, for example, BLAST[15] and FASTA
[143].

ACeDB: ACeDB is a database management system developed to store

data of a small worm called C. elegans. In [5] it is described as follows:

“ACeDB was originally developed for the C. elegans genome
project, from which its name is derived (A Caenorhabditis
elegans DataBase). However, the tools in it have been

generalised so as to be much more flexible and the same
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software is now used for many different genomic databases from
bacteria to fungi to plants to man. It is also increasingly used for

databases with non-biological content."”

Thus, ACeDB can refer to a database and data relating to the nematode
C. elegans, or to this database management system. Only a few, but
nevertheless significant, bioinformatics data sources are implemented
using ACeDB [40]. The AceDB model has several advantages —
accommodation of rough data items; easy extension of the schema; and
a powerful and high level query language called AQL; furthermore, it is

an appropriate model for small to medium sized internal databases [40].

Object Oriented Data Model: the Object Oriented Data Model
(OODM) evolved in the mid-to-late 1980s subsequent to the
appearance of object-oriented programming languages, such as C++
[126]. According to Bry and Kroger [40], in 2003, about 7% of all
molecular biological databases are implemented using Object Oriented
Database Management Systems (OODBMSSs). A clear advantage of the
OODRB is its ability to represent the relationships between biological
objects. Moreover, complex data types that can be implemented using

object oriented programming language can be stored by storing objects.

Relational Data Model: the relational data model was first introduced
in 1970 [50]. A relational model represents data as a two-dimensional
table called a relation. It is based on the mathematical theory of
relational algebra and calculus [56]. Since a considerable amount of
bioinformatics data sources are based on proprietary flat file solutions,
relational DBMSs are not as popular for bioinformatics data sources as
in other application domains, for example, business applications.
Recently, many flat file data sources have been converted to relational
DBMSs [40]. Searching, analysing, and comparing sequences is not
possible within relational databases, although some systems have
recently been developed that facilitate sequence analysis. The relational
model does not support all types of relationships between biological

entities in a direct and intuitive way [141, 167].
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Object-Relational Data Model: Stonebraker [184, 185] and Kim [78,
127] developed the object-relational data model (ORDM) in the 1990s.
The ORDM has inherited the robust transaction and performance
management features of the relational model and the flexibility of the
object-oriented data model. According to Bry and Kroger [40], about
3% of all bioinformatics data sources are implemented on Object
Relational Database Management Systems (ORDBMYS).

The issue of the interoperability and integration of bioinformatics data
sources has received considerable attention in bioinformatics. Many
bioinformatics integration systems have been developed (Chapter 3).
Interoperability is required since it is not practical to build a single
database for all biological data. Most of the conflict resolution

techniques used in bioinformatics can be found in [61, 128].

2.5 Summary

This chapter introduced the necessary background about biological data
and bioinformatics. It covered the growth of biological and
bioinformatics data sources. Then it highlighted some characteristics of
biological data and sources and challenges of integration. Finally, it
classifies the heterogeneity present into types of heterogeneity. In the
next chapter, we will discuss different integration approaches and

survey some of the existing bioinformatics integration systems.
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Chapter 3

Bioinformatics Data Source

Integration

3.1 Synopsis

In this chapter, general approaches to integrating heterogeneous
bioinformatics data sources are discussed and each approach is
described briefly. Several bioinformatics data source integration
systems that have been reported in the literature are then surveyed,

leading to the presentation of the framework of our approach.

3.2 Introduction

Bioinformatics data sources are heterogeneous in their representation
and query capabilities across diverse information fields, and are held in
disparate, distributed, autonomous data sources [138, 139]. The volume
of data collected and stored in these distributed and heterogeneous data
sources presents a major challenge with respect to efficient and
effective accession, and the processing, extraction, discovery and
integration of this information [209]. Using existing knowledge,
computational resources and data mining tools, a biologist can exploit
the exponentially increasing amount of comparative genomic data to
formulate novel hypotheses [195], leading to the informed design of
new cycles of laboratory research [138, 209]. There are several ways of
testing such hypotheses, which are effective when data is static and
standard linkage types are to be used, but limited when the data is
dynamic or novel types of linkage are required. These limitations are
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caused by the evolving and changing nature of the data in these data
sources, which means the researchers need to work with the most up-to-
date version of the data and be able to utilise different linkages in the
investigations. These changes in the data sources are due to the
evolving understanding of the field where new gene annotations are
continually being discovered and the findings from new bioinformatics
investigations lead to new knowledge. This means that there is a need
to update the data held in the data sources to reflect the new

understanding [209].

In order to perform a high-throughput analysis of biological data, it is
necessary to access and process information from a variety of data
sources using standard and proprietary query interfaces and analytical
tools. These data sources may be heterogeneous, distributed over
intranets or the Internet, or may exist in a large number of public
biological data repositories and require diverse applications to access,

filter, interpret and combine them.

3.3 Integration approaches

Integration approaches can be classified according to the architecture
and integration strategies used (see Figure 3.1). The linkage can be

achieved using one of the three types of strategy (see Figure 3.2).

3.3.1 Architecture

Data integration and the linkage of bioinformatics data sources have
attracted the attention of researchers for several years [4, 64, 119, 131].
Existing systems for integrating bioinformatics data sources use a
number of different integration approaches. Currently, there are four
basic models: mediation, federation, warehousing and navigation or

link-based integration (see Figure 3.1).
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Architecture

Data warehousing

Federation

Mediation

Link-driven and
Navigation

Figure 3.1: Basic data integration models based on architecture

Field value match

Join Strategy

Ontologies concepts

Cross-reference

Figure 3.2: Basic joining and integration strategies
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3.3.1.1 Data warehousing

Data warehousing brings data from different data sources into a
centralised local system so that they can be integrated and shared [138].
Data warehouses often use wrappers to import data from remote
sources. These data are materialized locally through a global schema
used to process queries. While this simplifies the access and analysis of
data stored in heterogeneous data repositories by bringing them to a
central store with a common structure, the challenge is to keep the data
in the warehouse current when changes are made to the remote sources.
This is a particularly difficult task when the warehouse is large and the
sources being linked are disparate, widely dynamic and autonomous. It
requires a large maintenance effort and an in-depth understanding of
data schema. On the other hand, data can be readily accessed, without
delay or bandwidth limitation, and duplication, errors and semantic
inconsistencies can be removed through applying data warehousing

procedure.

The main advantages of this approach are that system performance
tends to be much improved. Query optimization can be performed
locally and communication latency to access various data sources is
eliminated. System reliability is also improved since there are fewer
dependencies on network connectivity and the availability of the data
sources. Another advantage is that, while the underlying data sources
may contain errors, a separate cleansed copy of correct data can be
kept. Moreover, the researchers can add additional information, or
annotation, to this data, which can be significant. However, because a
warehouse requires a large maintenance effort as the underlying data
sources change, this generates several practical problems, such as how
to detect whether the remote sources have changed, how to automate
the refresh process, and how to track the origins or ‘provenance’ of data
[59]. In addition, the complexity and cost of maintenance can make
large scale data warehousing impractical for large biology laboratories

[131]. This approach might be realistic only at a moderate scale when
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dealing with a limited set of data sources [59]. Thus, the cost of the
maintenance, storage and updating of data are critical issues in data
warehousing. DAVID [63], GUS [95], and AllGenes [138] are

examples of this approach.

3.3.1.2 Federation

In a federation architecture, the database systems are independent and
autonomous [179]. Data are accessed from their original location and
retrieved via a middleware component, which uses a common data
model and a mapping schema to map heterogeneous data source
schemas into the integrated schema. While this approach provides users
with up-to-date data by accessing the local data source, the maintenance
of a target schema can be costly due to frequent changes in data source
schemas. Moreover, complete understanding of all the individual data
sources is required and each source has its own wrapper, which must be
maintained by the federation [96, 179]. Also, since data in data sources
may not be clean, integrating dirty data may generate integrated dirty
data or cause complications in the integration process. Thus, significant
overheads may be needed to connect heterogeneous data sources,
execute a user query, receive data from sources, merge data into a
single result set, and return a result to a user. The main advantages are
that it preserves source autonomy and uses the most recently available
version of data. K2/Biokleisli [58, 59, 138] and DiscoveryLink [97,

138] are examples of this approach.
3.3.1.3 Mediation

In 1992, Wiederhold introduced the mediator-wrapper architecture
[201], which has an intermediate processing layer called the mediator
and decouples the data sources and client layers. This mediator offers
an integrated view of data sources through wrappers. The mediator
provides a virtual view of the integrated sources that is read-only. The
mediator interacts with the autonomous data sources via wrappers, and

handles a user query by splitting it into sub-queries, sending the sub-
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queries to appropriate wrappers, and integrating the results locally to
provide responses to queries. Examples of mediation systems are
covered in [45, 134, 135, 138, 139].

3.3.1.4 Link-driven and Navigation

This architecture is widely used in Web retrieval. Many data sources
provide links to other data sources. Usually, accession numbers or other
global identifiers are used for interlinking, for example, The Life
Science Identifier (LSID)” [48]. Some databases use other attributes for
the interlinking, such as ontology terms [18], EC numbers [2] and CAS
registry numbers [42]. However, as different data sources use different
identifiers for the same entries, it is a labour-intensive approach. For
this reason, most databases provide links only to the most relevant
databases via accession numbers [131, 133-135]. Examples include the
Sequential Retrieval System (SRS) [74, 138], BioNavigator and Entrez
[145, 175]. Since this type of integration system allows users to
navigate from one source to another via predefined static links, there is
a limit on the scope of user queries. Other drawbacks are that links are
static and unidirectional, may not exist between related entries or may
have been broken or have poor scalability; furthermore, usually there
are no common keys to join tables and data sources. As bioinformatics
data sources have different formats, such as flat files, XML, HTML,
unstructured, relational and object-oriented files, cross-referencing does

not always work in a straightforward way [131, 134].

3.3.2 Joining and matching strategies (mechanism)

In this section, we describe methods used to link different data sources
together in different approaches. This linkage can be achieved using

one of the three types of strategy (see Figure 3.2).

ZAnLSID s represented as a Uniform Resource Name (URN) with the following format.

URN:LSID:<Authority>:<Namespace>:<ObjectID>[:<Version>]
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3.3.2.1 Integration based on matching keyword values

(keyword-based)

The most familiar approach for integrating data is to match fields
between data sources. For example, two entries from diverse data
sources may be linked based on the identity of an accession number in
these entries. Identifiers (accession numbers) are often used to join,
interlink and integrate. However, this simple matching strategy may not
give high quality integrated data, due to semantic heterogeneity
between sources. In brief, different sources may use different
terminologies. For example, one source may use scientific names for a
species (Mus musculus or Escherichia coli) while another uses the
common name (mouse or Bacterium coli). In addition, even when data
sources use the same terminology, different lexical variants may be
used for the same term, for example, “B Cell leukaemia”, “Leukaemia,
B Cell” or “B-Cell Leukaemia’s”. Further, the resolution level of the
data may differ across sources. For example, one source may describe a
disease phenotype as “Leukaemia” while another specifies “Leukaemia,
B-Cell, Acute” [44]. Examples of systems using this approach are SRS
[74, 138], and Entrez [172, 175].

Thus, a common approach is to integrate information based on
syntactical equivalence, i.e., two objects with the same name (or two
fields with same value). However, this is not always sufficient because
names of biological objects (proteins, genes, pathways) are sometimes
assigned by different laboratories in different communities and so
differ; thus, other approaches based on the characteristics of objects are
needed [36].

3.3.2.2 Usage of ontology (concept-based)

According to Gruber’s definition [93], “an ontology is a specification of
a conceptualisation”. An ontology is the formal specification of
vocabularies of concepts and the relationships among them in a domain.
Use of an ontology in data source integration has previously been

studied by [51, 62, 162]. An ontology also plays a role in heterogeneous
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data source integration in which the terms are mapped semantically to a
concept on a proprietary ontology [176]. A survey on the use of
ontologies for heterogeneous database integration can be found in
[176]. An ontology can be used to support the integration of data from
different external data sources in a transparent way, capturing the exact
proposed semantics of the data source terms, and removing mistaken
synonyms. The domain ontology of systems like TAMBIS[23, 182] and
SEMEDA [134] allows users to formulate queries without knowledge
of the underlying data source or direct access to the sources [176]. This
means that the users do not need to know the underlying structure of

data sources.

An ontology can heip in solving interoperability problems among
heterogeneous databases, since it establishes a common understanding
of the terminology between different research communities. It provides
definitions for the vocabulary used to represent knowledge and can be
used to create an integrated schema that provides specific and complete

models of particular domains [17].

In recent years, ontologies have been widely used for database
integration and searching [24, 43, 165, 197]. Different ontologies and
approaches have been used in the domain of bioinformatics. Some
integration systems use a single ontology approach and others use
multiple ontologies for integration purposes. A single ontology
approach can be used to support integration when the sources share
nearly similar views on a domain [54]. However, if the bioinformatics
sources have different views on a domain, for example, they have
different levels of granularity or different aggregation levels, finding
the minimal ontology commitment becomes a difficult task [93] due to
the number of heterogeneity conflicts that may arise [197]. Also, a
single ontology approach is subject to changes in the data sources,
which can affect the conceptualization of the domain represented in the
ontology. Since it is not possible to build a common vocabulary that is

general enough to cover all the different bioinformatics sources, and is
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also specific enough to offer translation support, such drawbacks have

led to the use of multiple ontology approaches [197].

Although ontologies can resolve semantic heterogeneity problems,
broaden the scope of searches that need to be carried out on integrated
data sources, and enhance the quality and integrity of data to be
integrated from heterogeneous sources, there are factors that limit their
use. Firstly, ontologies can be incomplete in their representation of a
domain due to incomplete ISA links, Part-Of hierarchies, incomplete
lexicons, or missing concepts. Secondly, computational tools that
compute a mapping between data in sources and ontology concepts are
still immature and may not be easy to apply effectively [44]. Moreover,
the lack of a common Vocabulary makes it difficult to compare different

source ontologies [197], which use different representations.

Furthermore, since the understanding of biological systems keeps
changing, and the technical domains crossed by genomics and
bioinformatics are disparate, there are always difficulties in capturing
all the information in biological systems [194]. Thus, the different

ontologies can become divergent in definition of terms [101].

Because different systems (for example, SEMEDA, TAMBIS, BACIIS)
use different ontologies, there is a clash between them due to
differences in terminology and other types of domain difference.

Wiederhold [201, 202] describes four types of domain difference:

e Terminology: different names are used for the same

concepts.

e Scope: similar categories may not match exactly; their
extensions may intersect, but each may have instances that

cannot be classified under any of the other.

e FEncoding: the valid values for a property can be different,

as different scales could be used.
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e (Context: a term in one domain can have a completely

different meaning in another [101, 102].
In more recent work [153] identify ways to handle these mismatches.

3.3.2.3 Cross-referencing or Hard Links

Another integrating strategy for bioinformatics data sources is through
the use of hard links. Hard links are used to link entries in disparate
data sources. For example, if an MGI entry is about the sequencing of a
specific gene, a hard link is established between the MGI entry and the
corresponding nucleotide entry in GenBank [27], as this provides

additional information about the gene .

In this approach, a user queries a data source and the processing follows
hypertext links to related information in other data sources [27]. Data
entries in different data sources can have relationships expressed as
links, or predefined cross-references. Cross-references between related
entries in heterogeneous sources are stored either in the form of index
files as in SRS [74, 138], or hypertext links as in Entrez [145, 175].
These cross-references are used to achieve interoperability of
heterogeneous bioinformatics data sources. They can be represented
either by an entry in an ontology or by a global unique identifier (e.g.
LSID). Such links or cross-references are determined in several ways,
such as a computation of similarity between sequences using alignment

tools such BLAST, or by mining the literature to discover linkage [140].

Bleiholder et al. [36] discuss how links are added to data entries in
bioinformatics data sources, and identify the following reasons:
e Researchers add them when they discover a confident
relationship between items.
e Data curators add them as a sign of a structural relationship
between two data sources.
e Computational tools, for instance, BLAST, add them when a

similarity is found between two data entries.
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In some existing integration systems, joining information held in
different data sources is based on cross-reference links. For example,
one may want to find all DNA sequences in EMBL [49, 105, 118, 137]
or GenBank [30-32, 85, 86], for a protein found in Swiss-Prot [37]. This
query requires a hard link join using the accession numbers listed as
cross-references in the Swiss-Prot source to the accession numbers in
EMBL and GenBank.

However, cross-references, or hard links, have several drawbacks. They
are subject to naming and value conflicts. For example, if a curator
changes or deletes an entry that is related to an entry in another data
source, the link fails [36, 140]. Moreover, these links are syntactically
poor because they are f)resent only at a high level of granularity, i.e., at
the data entry level. Also, they are semantically weak, because they do
not provide any explicit meaning, and a user only knows the data entries

are related in some way [36].

3.4 Existing systems

Bioinformatics data source integration systems differ from each other in
several dimensions. We will characterise existing systems in terms of
the dimensions in Table 3.1.

From the start of this research, the author kept a list of the
bioinformatics integration systems described in the literature. This list
is not necessary complete but is comprehensive and contains 30
systems at this point in time (March 2008). The most common
architecture used in these systems is based on data warehousing
architecture (30% of the systems). While systems like SEMEDA,
P/FMD and TSIMMIS use a mediation architecture, other systems like
k2/Biokleisli, DiscoveryLink and ISYS use a federation architecture.
Unlike DiscoveryLink, TAMBIS offers a global schema and data

reconciliation. A full comparison is given in Appendix A.
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dimension

description

Integration approach

this is whether the system uses a data warehousing,
federation or mediation approach [189].

Data model

a model describes in an abstract way how data is
held in database management systems. The
commonly used models are Hierarchical, Network,
Relational, Object Oriented, or Object-Relational
[55-57].

Level of
transparency

refers to the degree to which the user is shielded
from the underlying structure and the need to choose
the required source to answer a user’s query [189].

Integration degree

this is either loose or tight. A system is tightly
coupled if all the schemas of the integrated sources
are mapped to one global schema, whereas a system
is loosely coupled if there is no global schema [189].

Materialisation the process of copying data from a primary database
to a replicate database.
Data types types of data the integration system handles.

Query operators

refers to the operators in a user query that the
integration system can handle.

User model

type of users who will use the system.

Data Source how to connect to a data source.

interface

Global schema the common schema describing the data content of a
type data warehouse or federation that holds integrated

data from a number of data sources.

Number of sources

number of data sources involved.

Resolving this refers to whether the integration systems resolve

heterogeneity the heterogeneity between the sources and level of
this resolution [189].

Domain the nature of the data sources involved in the
integration - gene databases, DNA sequences, other
domains.

Ontology this refers to the extent an ontology is used to resolve
heterogeneity between sources.

Query planning how the query execution plan will access different,
autonomous sources and put the results from diverse
data sources together to form the complete result

Query caching a mechanism that allows users to use effectively the
results of prior queries to answer a new query.

Query adaptive a query processing system is designed to be adaptive

if it receives information from its environment and
determines its behaviour according to that
information in an iterative manner.

System platform

the platform in which the integration system runs.

Domain schema

the domain terminology and any other information
that is needed.

User interface

how users interact with the integration system.

Query language

the language in which users of a system can
interactively formulate queries and generate results.
It is based on the contents of the data sources.

API

is there an application program interface to the
integration system.

Output format

the format of the output produced.

Table 3.1: dimensions used in characterising existing system
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We present here a sample of existing bioinformatics integration systems
described in the literature. It includes SRS [74, 138], DAVID [63],
TAMBIS [24, 138, 182], and myGrid [183]. SRS is a link-based
integration system, while TAMBIS is an Object Oriented multiDB
query system and DAVID is a data warehousing system. These samples
are chosen to show specialised solutions through to more general
solutions. These were chosen as they are popular and are representative
of integration systems that use different approaches, namely, Data
warehousing, federation, Mediation and Link-navigation. myGrid and
BioMOBY were chosen as being representatives of the state of the art.
For each of these systems, an overview and discussion of their strong

and weak points is provided.
3.4.1 SRS

The SRS - Sequential Retrieval System - [74] is a Bioscience product
of LION. Initially, SRS was developed at EMBL and extended at the
EBI. In 1999, it was acquired by LION Bioscience. Currently, it is one
of the most widely used bioinformatics data source retrieval systems; it
uses a link-driven approach. The system accesses different
bioinformatics data sources and builds an index to integrate them. Each
data source must be wrapped and indexed by Icarus, which is a special
wrapper programming language within SRS [138]. It uses Icarus-based
meta-data to describe each source [138]. Whilst SRS provides the user
with some transparency regarding the location, connection protocols
and query language of each source, it does not shield its user from the
formats and conventions of the integrated sources. SRS has various

strengths:

Extensibility: since it uses a flat file based indexing mechanism, adding
new sources is easy and straightforward [74, 138, 173].

Flexibility: it has an easy-to-use graphical user interface that acts as a

unified front end to access multiple data sources [74, 138, 173].
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On the other hand, SRS has several weaknesses: firstly, it is a keyword-
based retrieval system, rather than an information integration system, so
it does not provide any transformation or further operability above the
query user result; thus, the user has to use other tools (such as BLAST,
FASTA) for further analysis. Secondly, it works only with flat files,
XML and relational databases and it does not integrate other types of
sources, such as Object-Oriented. Thirdly, it does not enhance the data
semantically nor does it create a global schema over the data [74, 138,
173].

3.4.2 DAVID

DAVID is an acronym for Database for Annotation, Visualisation, and
Integrated Discovery [63]. DAVID is an integration system comprising
bioinformatics tools and data sources developed by the Laboratory of
Immunopathogenesis and Bioinformatics at SAIC-Frederick, Inc. for
the National Institute of Allergy and Infectious Diseases of the National
Institute of Health in Bethesda in the USA. DAVID aims to integrate
information-rich data sources to provide users with a functional
annotation and analysis of large lists of genes including human, mouse,
rat or fly genomes. It also integrates different mining tools with the
system to assist users to discover the biological meaning of the gene
lists that result from the analysis of microarray data or other high
throughput genomic data. It provides excellent graphical reports and
summaries. The data sources integrated in DAVID include GenBank,
UniGene [166], RefSeq [115, 166], LocusLink [166], KEGG [117],
OMIM [151], and Gene Ontology [18]. Its warehouse is an ORACLE
database designed to hold the functional annotation of genes. It uses
LocusLink accession numbers to link to the primary sources of
annotation, which have further gene specific information. With
DAVID, it is the responsibility of users to extract and identify the gene
identifiers manually from the experimental datasets and feed them to

the system.
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DAVID has strengths: firstly, since it is based on data warehousing, its
main advantage is that system performance tends to be much better than
other approaches. Secondly, its access to heterogeneous data sources is
not limited by communication and bandwidth factors. Thirdly, its
reliability tends to be better than that of other systems because there are
no dependencies on network connectivity or the availability of the

underlying data sources.

On the other hand, it has certain weaknesses. Firstly, it is not usually
possible to submit an ad hoc query. Secondly, since it uses a
warehousing approach, it suffers data warehousing approach problems,
such as the large maintenance effort, limited flexibility to accommodate
changing requirement§, which are expensive to implement, and it does
not scale well to a large number of data sources. In addition, adding
new sources may lead to a redesign and repopulation of the data.
Moreover, DAVID does not provide biologists with up-to-date data as
it depends on when the warehouse is updated. Since DAVID uses hard
links as cross-references between sources, there is a problem when
sources change their references. Thus, it uses an inflexible hyperlink
navigation, which does not allow the user to choose a desired link

between sources.
3.4.3 TAMBIS

TAMBIS [90] is an acronym for Transparent Access to Multiple
Bioinformatics Information Sources. It is an integration system that is
built on top of BioKleisli [58, 59] and uses an extensive ontology
expressed in the description logic GRAIL — GALEN Representation
and Integration Language [147, 169]. However, unlike BioKleisli, it
resolves semantic heterogeneities. This system was the first to use an
ontology to support the integration of bioinformatics data sources
[138]. It allows biologists to formulate complex queries over multiple
bioinformatics data sources using a common query interface. In
TAMBIS, data source-specific CPL (Collection Programming

Language) [208] queries are mapped onto a global schema that is an
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ontology. This ontology is also used for query construction and
validation. Whilst the wrapper extracts the user’s query results from
remote sources, the mediator integrates the results and sends them to
the user. TAMBIS provides a graphical user interface to formulate
queries by browsing concepts over its domain ontology [155]. TAMBIS
has more than 300 CPL functions defined by BioKleisli. Each CPL
extracts only one type of data from a single remote data source;
however, the approach fails when the access interface of a data source
changes [28].

The main components of the TAMBIS architecture are [23, 182]:
e The biological concept model,
e The knowledge—driven graphical user interface,
e The source model,
e The query transformation module, and
e The query execution module.
The steps in processing user queries are as follows:
e User expresses a query in GRAIL, which is a declarative source-
independent description logic.
e The GRAIL Query is translated into its GRAIL Internal Form
(GIF).
e The GIF query is transformed into a source-dependent query in
CPL, which is processed against the data sources.
TAMBIS’s strengths are that it supports the transparency of remote
sources and hides the sources from users, and that the domain ontology
allows a user to formulate a query without having any knowledge of the

underlying data source [29].

However, its weaknesses are that, firstly, it is not robust to changes in a
data source since its main component, the mapping model, is
implemented manually. Secondly, adding new sources into the system
is not a straightforward process. Thirdly, its interface is complicated
and requires the user to have TAMBIS expertise. Fourthly, CPL is

hardwired into the system, which makes it difficult to use this query
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language from an external system. Fifthly, there is no API interface.
Sixthly, TAMBIS supports only one input format, namely, a Java
Applet [77].

3.4.4 myGrid

myGrid is a general solution that gives access to remote and disparate
biological systems. It was started in late 2001 in Manchester, England
[183]. It had been noted that biologists were spending time building
applications when what they really wanted to do was to investigate the
biology. myGrid was an attempt to facilitate access to computational
tools, experiments and data sources for these researchers. It has a Web
service-oriented architecture, and allows web access to various
services, utilising its middleware suite of tools for conducting in silico
experiments. A user interacts with myGrid through a toolkit containing
components for managing bioinformatics experiments, which can be
saved. Using a registry built on RDF and OWL ontologies, myGrid
converts investigations into their resource components. An abstraction
layer called Grid Services then handles the communication with each of
these resources to obtain the required information. This hides from the

biologist details of how each component works.

A weakness of myGrid is that it does not have a simple interface; its
users have to interact with its toolkit, making myGrid difficult to use
and preventing biologists from accessing the functionality of the system
[68].

3.4.5 BioMOBY

The BioMOBY is an open source research project initiated to provide
more interoperability between biological data hosts and analytical
services. It began at a retreat of representatives from the model
organism database community in September 2001 [206]. It aims to
provide an architecture for hosts to:

e Exchange common data representation formats.
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e Establish a mechanism to represent meaning or context for
machine-accessible data and services.
e Describe biological services in terms of their input and output
e Support the discovery and distribution of biological data and
bioinformatics services through web services.
The BioMOBY interoperability system consists of the following
primary components [206]:
e MOBY Object and Service hierarchies: An ontology describing
the relationships between Objects and Services.
e MOBY Objects: An ontology describing biological data
structures.
e MOBY Service: An ontology describing bioinformatics services.
e MOBY Central: A Web Service registry that acts as a search
engine which allows biologists to discover resources capable of

executing the task they wish to undertake.

There are several workflow tools that can search and browse the
BioMOBY registry, for example Taverna [109, 124, 158, 190]
workbench and Gbrowse Moby [203].

Although BioMOBY allows greater interoperability between data
sources [207], there are some limitations, for example, Service
discovery is insufficient to describe all aspects of the web services that
it supports [207]. It does not handle the problem of service providers
changing their interfaces without updating the MOBY registry[204].
Cross-references are semantically poor to some extent and are treated
equally under the current API. Moreover, BioMOBY lacks a flexible
query tool that allows rich queries to be executed on the federated data
as it does not support the Boolean operators (AND , OR and NOT) in
queries [205].

3.4.6 Semantic Web for Life Sciences (SWLS)

The mission of the Semantic Web for Life Sciences community is to

improve the ability to conduct hypothesis-driven experiments [91] and
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other bioinformatics analysis by utilization of web-accessible data

sources and analytical tools. This is achieved by use of the Semantic
Web technologies for life science [156, 163]. The W3C-led Semantic
Web initiative has established several of the standards and technologies

needed to achieve SWLS [91]. These include:
e The Life Science Identifier system (LSID): this was designed to

provide a unique global identifier for entities. An LSID is
independent, stable, persistent, and resolvable [48].

The Resource Description Framework (RDF): it is a method for
knowledge representation which provides flexibility and
extensibility of resources description. RDF describes knowledge
by decomposing it into small parts called triples, namely subject,
object and predicate [168] . It can be represented as a graph

using;:
o anode for the subject.
o anode for the object.

o an edge for the predicate, directed from the subject node to
the object node.

The Web Ontology Language (OWL): it provides a language to

specify and define the type of objects and their relations with

each other within ontologies [160].

A lot of work and research has been done in this project and several

tools have been created. However, at the beginning of this PhD project

the tools were immature and suffered from drawbacks so we could not

use them in the PhD project. For example there was:

a lack of semantic information about the relationships,

no a standard RDF(S) data access mechanism,

the cost of storing and querying RDF triples was high, and

the adoption of LSID was in its infancy and is still not universal
[91, 171, 213]. Thus this work was not available for use in this

project.
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SLM in its current form is able to use LSIDs as identifiers if the sources

being analysed use LSIDs. With respect to RDF, SLM can use this

resource framework, provided alterations are made to the code. SLM

can take advantage of the SWLS’s semantic information about a

resource if it is available. This may require some changes in SLM.

3.5 Challenges

The integration challenge is that the existing approaches and strategies

suffer from the following difficulties:

i)

ii)

iii)

iv)

vi)

Linkage types are fixed and difficult to change as they are
determined by wrappers in a data warehouse, the middleware
component in a federation, or the code that executes the

warehouse in mediation.

Breaking of links: when a URL changes, the direct links to it
have to be changed. This primarily affects Link-driven and
navigation systems, but can occur in data warehousing and

federation based systems.

Changes in database contents in the source may not occur in
the data used until a later time, so the results may not reflect
the latest data. This affects data warehousing, but not the other

approaches.

Difficulties in linking to non-bioinformatics data sources:
link-driven and navigation systems can handle this in a limited

manner, while the other types of systems have problems.

Inability to support multiple types of relationship: all four

approaches are subject to this limitation to some extent.

Data sources frequently cannot be joined using simple term-
matching or comparison operators. Even more sophisticated
approaches, which use ontologies to enumerate joinable terms,
are often not sufficient [94]. It is a better to find methods for

flexible linkage that allow users to drive the integration
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process and change the linkages, as this allows the easy

investigation of alternatives theories.

It is often the case that a user needs to be able to change linkages and
experiment with them in different ways as part of an investigation to
see what yields interesting results. Thus, it is important that it is easy
for a bioinformatician to be able to change the linkage type flexibly,
and adjust the linkage so they can try investigating different linkages to
see which one if any matches the purposes of their research. A join
should be undertaken to reflect a semantic relationship between objects,
as semantic relationships between properties of concepts may solve
data integration problems in the bioinformatics domain. This means
that there is a need for a researcher to be able to create different types
of linkages between bioinformatics sources easily so that it is easy to

investigate the effect of different relationships.

3.6 Summary

In this chapter, general approaches to integrating heterogeneous
bioinformatics data sources were discussed. These approaches were
classified into two main categories: architecture and matching
strategies. Each architecture was described briefly in section 3.3.1. The
strategies used to link data across data sources were discussed in
section 3.3.2. Several bioinformatics data source integration systems
that have been reported in the literature were then critiqued to identify
why a more flexible framework is needed in this area of research. In the
next chapter (Chapter 4), we introduce our proposed approach - the Soft
Link Model (SLM).
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Chapter 4

Soft Link Model

4.1 Synopsis

To address the challenges identified in section 3.5, it is proposed that
semantic relationships based on the properties of concepts may solve
many of the data integration problems in the bioinformatics domain.
This chapter starts by introducing comparative genomics, its
importance as a domain, and various types of biological relationships.
The proposed Soft Link Model (SLM) approach is then introduced, in
which integration is based on relationships between concepts, not just
on field-values. A feature of the SLM approach is that the user can
customize the linkage of data sources, by creating his/her own Soft

Link Model, which reflects a linkage to be investigated in the research.
4.2 Comparative genomics

Comparative genomics is the study of relationships between genomes
of different species and the analysis and comparison of these genomes

[100]. It is usually undertaken to discover new properties of genes.

Comparative genomics offers opportunities to draw on information
from historically distinct disciplines, to link disparate biological
kingdoms, and so bridge basic and applied science. Cross-species
comparisons are increasing the understanding of how genes are
structured, and how gene structure relates to gene function, and how

changes in DNA have contributed to the planet’s biological diversity
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[150]. This has led to new computational methods being developed that

investigate chromosomal organisation, structure and homology.

By integrating functional and sequence data across species, biologists
are able to annotate the genome of a species by using functional data
from other species. Furthermore, comparative genomics provides
evidence of close evolutionary relationships between gene families.

According to Adjaye and his collaborators,

The advantages of cross-species comparison are two-fold. First,
cross-species gene-expression comparison is a powerful tool for
the discovery of evolutionarily conserved mechanisms and
pathways of expression control. The advantage of cDNA
microarrays in this context is that broad areas of homology are
compared and hybridization probes are sufficiently large so that
small inter-species differences in nucleotide sequences would not
affect the analytical results. This comparative genomics
approach allows a common set of genes within a specific
developmental, metabolic, or disease-related gene pathway to be
evaluated in experimental models of human diseases. Second, the
use of microarrays in studies of mammalian species other than
human and rodents may advance our understanding of human

health and disease [6].

Currently, 40 to 60% of the genes found in new genomic sequences do
not have assigned functions. Some functions can be deduced by
computational-structure determination and protein folding, but many
research problems remain to be solved in this area [107]. Thus,
computational methods will continue to play a major role in the

functional annotation of genomes in the foreseeable future.
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4.3 Biological relationships

Palakal and his collaborators define object and relationships as

follows:

The term "object” refers to any biological entity such as a
protein, gene, cell cycle, etc. and ‘“relationship” refers to any
dynamic action one object has on another, e.g. protein inhibiting
another protein or one object belonging to another object such

as, the cells composing an organ [161].

A biological relationship can take several forms. In [52], the

following classes of relationship are given:

e Evolutionary (for example, homolog, ortholog or paralog),

¢ Functional Genomic (for example, a biological process, a cellular
component, or a molecular function),

e Structural,

e Phylogenetic,

e Mapping Terminology (Markers, Linkage, or Synteny),

e Genetic or Molecular Concept (for example, Genes,
Polymorphisms),

e Containment, and

e Nomenclature (for example, gene A in species X = gene B in

species Y).

We are concentrating in this thesis on Evolutionary Relationships
(homolog, ortholog, paralog) and some of the Functional Genomic
relationships (biological process, cellular component, molecular
function), as they are used to discover remote evolutionary and
functional similarities between gene products. Since evolutionarily-
related genes are highly likely to share common aspects of function, a
measurement of these relationships, which determines how similar they

are, can be useful for gene functional annotation.
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4.3.1 Homologous sequences

Homology is defined by Hillis as "similarity due to inheritance from a
common ancestor" [104]. Two sequences are homologous if they share
a common evolutionary history, i.e., there existed an ancestral molecule
in the past that was ancestral to both of the sequences. A homolog can
be either within the same organism (a paralog), or among different

species (an ortholog) (see Figure 4.1).

4.3.1.1 Types of Homology

There are many types of homology [104], for instance:

e Orthology

Orthologous genes are homologs that evolved as a result of a
speciation event [104]. In other words, orthology is a homology that
reflects the descent of a species [164]. Orthologous genes may or

may not have the same function.

e Paralogy

This is a homology reflecting the descent of genes. Paralogous genes
are homologs that diverged as a result of a gene duplication event
[104]. Paralogy may be distinguished from orthology by checking

whether or not two homologs are found in the same individual [164].

e Xenology

Xenologous genes are homologs that diverged as a result of a lateral
gene transfer [104]. Antibiotic resistant genes are a classic example

of Xenologs.

e Synology

Synologs are genes that end up in an organism through a fusion of

lineages [104].
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Figure 4.1: Orthologs and paralogs explained graphically [76]

4.3.2 Significance of the types of relationship

In this section, we present the relationship types used in SLM, and

present also their place in the biological domain.

4.3.2.1 Homology

The search for homologous genes within organisms or across species is
undertaken to identify genes that are similar. If a pair of genes is
detected as homologous, and the properties of one are known, and the
other has unknown properties, then the researcher can investigate
whether the second gene has the same properties (i.e., functions,
mechanisms and structure) as the first gene. Investigating the structures
and functions of genes and proteins common to multiple species is an
important focus of comparative genomics research [125], as it allows

prediction of the functions of a new gene.
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4.3.2.2 Orthology and Paralogy

Ortholog and paralog relationships are important for the following

reasons:

e Ortholog relationships are important in determining functional

equivalenée [111].

e Paralog relationships can be used for function prediction.
Paralogous genes are often involved in the same process, but

have different molecular functions, for example, globins.

Thus, the results of orthology and paralogy support functional
predictions and gene clustering. However, due to the complexity of
biological problems and the lack of complete experimental and
analytical models, there is a need to design automated knowledge-
driven techniques to assist in the explanation and validation of

predictive outcomes [198]. This is a driver of bioinformatics research.

4.3.2.3 GO-Based comparison

The automated comparison of complete sets of genes encoded in two
genomes can provide insight into the genetic basis of differences in
biological traits between species. The Gene Ontology (GO) consortium
has created a common vocabulary to explain the relationships of gene
products across species and to annotate genes for comparison purposes
[178]. The inclusion of GO annotations in gene expression studies may
explain why genes in a particular group share similar expression
patterns, and it may help in identifying functionally-enriched clusters of

genes [198]. The GO comprises three main ontologies:

Molecular Function (MF): The functions of a gene product are the
jobs it does [89], for instance, binding. A pair of genes can have the

same function if annotated by an equivalent GO term.

Biological Process (BP): This refers to the processes concerning living
organisms [89], for instance, aging. A pair of genes can have the same
biological process if annotated by an equivalent GO term.
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Cellular Component (CC): This describes locations, at the levels of
subcellular structures and macromolecular complexes [89], for instance,
cell. A pair of genes can have the same cellular component if annotated

by an equivalent GO term.

4.3.3 Calculation of relationship closeness

The techniques used to measure the relationship closeness between a

pair of concepts are presented in this section.

4.3.3.1 Homology closeness

The homolog relationship similarity closeness is expressed as the
percentage of amino acid sequence identity between the protein
sequences of a pair of gene products and is calculated using the BLAST
algorithm. Similarity can be assessed by counting the positions.that are
identical between two sequences. As can be seen in Figure 4.2,
significant information can be extracted from the BLAST output for
each sequence pair. This information includes sequence identifiers, the
score, the e-value and the identity between the two sequences. A high
score at the top of the list indicates a likely relationship. Whilst a low
probability indicates that a match is unlikely to have arisen by chance,
low scores with high probabilities suggest that matches have arisen by

chance.
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BLASTP 2.2.10 [Oct-19-2004]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= Q20655 : CE03389
(248 letters)

Database: wormpep-25-01-05.fasta
2574 sequences; 1,191,147 total letters

A high score at the top of the list
indicates a likely relationship

— Score E
Sequences producing significant alignments: e (bits) Value
Q20655 : CE03389 M 463 e-132
P41932 : CE06200 A low probability indicates thata .- 396 e-112
Q22866 : CE28782 g’ag"h is unlikely to have arisen 32 0.051
P12844 : CE34936 y chance 29  0.26
020060 : CE03287 29 0.33
P52012 : CE01596 . 29 0.33
Q09591 : CE18083 g -ror-'denter 28 0.57
P02567 : CE06253 - v Target identifier 28 0.74
P09446 : CE09682 -~ N . . 28 0.74
e Relationship Closeness v

>| Q20655 | [CE03389 Scor’;e' Low scores with r;igh probabilties

Length = ’2/4,8 i v/, B v E-value ‘s;‘.pgrg‘::: that matches have arisen by

Score = Bits (1192)/, Expect =
Identities = 237/248 , Positives = 237/248 (95%)

Query: 1 MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNVVGARRSS 60
MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNVVGARRSS
Sbjct: 1 MSDGKEELVNRAKLAEQAERYDDMAASMKKVTELGAELSNEERNLLSVAYKNVVGARRSS 60

Query: 61 WRVISSIEQKTEGSEKKQOMAKEYREKVEKELRDICQDVLNLLDKFLIPKAGAAESKVFY 120
WRVISSIEQKTEGSEKKQQMAKEYREKVEKELRDICQDVLNLLDKFLIPKAGAAESKVFY
Sbjct: 61 WRVISSIEQKTEGSEKKQQMAKEYREKVEKELRDICQDVLNLLDKFLIPKAGAAESKVFY 120

Query: 121 LKMKGDYYRYLAEVASGDDRNSVVEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF 180
LKMKGDYYRYLAEVASGDDRNSVVEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF
Sbjct: 121 LKMKGDYYRYLAEVASGDDRNSVVEKSQQSYQEAFDIAKDKMQPTHPIRLGLALNFSVFF 180

Query: 181 YEILNAPDKACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWXXXXXXXXXX 240
YEILNAPDXACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLW
Sbjct: 181 YEILNAPDKACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDAATDDTD 240

Query: 241 XNETEGGN 248
NETEGGN

Figure 4.2: A sample part of a BLAST output showing the pair of
sequence identifiers, score, e-value and identities between each pair of
the sequences. The identity’s percentage can be used as the measure of

relationship closeness.
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4.3.3.2 Orthology closeness

The ortholog relationship closeness is expressed as the percentage of
amino acid sequence identity between the protein sequences of a pair of

gene products in different species and is also calculated using BLAST.

According to Huynen and Bork,

“orthologs then are defined in the following manner: (i) they
have the highest level of pair wise identity when compared with
the identities of either gene to all other genes in the other’s
genome; (ii) the pair wise identity is significant (E, the expected
fraction of false positive, is smaller than 0.01), and (iii) the
similarity extends to at least 60% of one of the genes”’[112].

4.3.3.3 Paralogy closeness

The paralog relationship closeness is expressed as the percentage of
amino acid sequence identity between the protein sequences of a pair of

gene products in the same species and is also calculated using BLAST.

4.3.3.4 GO-Based closeness

To estimate the semantic similarity between two genes g; and g;
annotated with sets of GO terms A; and A; respectively, we calculate
initially the similarity between the two GO terms. In the following
section, we present different approaches for measuring the GO terms
similarity.

4.3.3.4.1 Traditional edge-counting

An edge-counting approach calculates the distance between the nodes
associated with the GO terms in a hierarchy: the shorter the distance

between the terms, the higher the similarity. An example of this

approach is Wu and Palmer’s method [212], which uses the formula:

2N
Ni+Nj+2N

sim(tj,t j) = (1)
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where N; and N; are the number of edges between t; and t; and their
closest common parent in the GO hierarchy, Tj;, and N is the number of

links from Tj; to the GO hierarchy root.

This similarity measure can be transformed into a distance by:
d(t,t;)=1-sim(t,,t;) 2)

This is used to calculate the average inter-set similarity between each

pair of t; and t; using:

d(gk,g,,,) =ayg(d(tki’tmj)) (3)

The GO-based similarity between two gene products gk and g, is

defined as:

2N
d(g,.g,)=avg( )
Eu8p ij Nki+ij+2N (4)

The edge-counting approach is theoretically fairly simple. However,
there are limitations, as it relies heavily on the idea that nodes and links
in the GO are uniformly distributed. Although the approach is intuitive
and direct, it is not sensitive to the depth of the nodes for which a

distance is being calculated.

4.3.3.4.2 Information-theoretic

This measures the similarity between terms, based on the Information
Content (IC) associated with or shared by the terms. The information
content of a term is a value obtained by estimating the probabilities of
occurrence of this term in a large corpus [116]. Thus, the more
information two terms share, the more similar they are. Several

techniques are based on this principle and these are summarised here.

Resnik:

This measure, created by Resnik[170], uses only the IC of the shared

parents.
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sim(t,,t,)=—-In(  min {p(®)}) 6))
teS (t1 , t2)

Where S(tl,tz) is the set of parent terms shared by t; and t;; and p(¢) is

the probability of occurrence of t or its children in the database. The

measure varies in value between infinity (for very similar concepts) to
0.

Lin:
Lin’s technique [142] uses the IC of the shared parent and the IC of the

query terms.

2x[In( min {p(®})]
teS(tl,tz)

(6)

im(t,,t,) =
S = )+ n P,)

Where S(tl,tz) is the set of parent terms shared by t; and t;, and p(¢) is

the probability of finding t or any of its parents in the database [19].

This measure generates a normalized value between 0 and 1.

Jiang:
The Jiang method [116] uses the IC of the shared parent and the IC of

the query terms.

sim(t;,t,)=2In(  min {p()})-(nP()+InP(,))
te S(tl,tz) @)

Where S(tl,tz) is the set of parent terms shared by t;, and tz,and p(¢) is

the probability of finding t or any of its parents in the database [19].
This measure generates a semantic distance that can vary between

infinity and zero. -

Equations 5, 6 and 7 rely on the IC values assigned to the concepts in a

hierarchy, but there are minor differences in the definitions. Lin and
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Jiang use the IC of the shared parent and that of query terms whereas

Resnik uses only the IC of the shared parent.

Once similarity between terms is measured, as above, the gene
similarity is calculated by aggregating the similarity values obtained
from the annotation terms of the genes [144] . Given a pair of gene
products, g« and g», and sets of annotations 4x and A, consisting of m
and n terms respectively, the between-gene similarity, SIM(g g,), may
be defined as the average inter-set similarity between terms from 4: and
Aj

1
SIM(g,,8,)= im(t;,t;
(gk gp) mxnx ZSlm(‘ _})

t.eA,,t. €A €))
i "k D
Where sim(t;,t;)) is the similarity between the terms, which can be

calculated using Equations 5, 6 or 7 [144] .

In our work, we use the average term-term similarity measure [144]
because we are interested in the overall similarity between a pair of
proteins rather than between pairs of ontology terms. Hence, in our
work, the semantic similarity measure created by Lin [142] is used to
determine the relatedness of each gene pair because it generates a
normalized value between 0 and 1. However, all three techniques are
implemented in our system, which allows bioinformatician to choose an
appropriate technique. Given a pair of gene products, Gj, Gj which are
annotated by a set of molecular function terms, T;, T; respectively,
where T; and T;j consist of m and n terms respectively, the relationship
closeness between the genes is calculated using Equation 9 so the

relationship closeness becomes:

1
X sim(t,,t,)
mxn Z e

t, edA.,t €A. &)
k i’p j

RC(G,,G))=

Three measures of relationship closeness, each based on information

individually extracted from each of the GO hierarchies, namely,
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Biological Process (BP), Molecular Function (MF) and Cellular
Compbnent (CC), are implemented in the SLM. The related-biological-
process relationship and the related-cellular-component relationship are
calculated in the same way as is the related-molecular-function

relationship

4.4 Soft Link Model

In this section, we introduce the Soft Link Model (SLM), our novel
way of addressing the challenges. We start by defining the
relationships, concepts and types of linkage implemented in the
prototype of the SLM. These cover the most commonly used linkages
in comparative genomic research. New types of linkage can be added to
the prototype in the future. By following the SLM approach, we are
able to increase the flexibility of linkage, reduce the time needed for the
analysis of several experimental datasets, and eliminate some of the

manual tasks.

4.4.1 Definitions

Definition 1: C = {c;,ca,...... cn} is a set of concepts, where a concept,
ci, represents a class of things in a real-world. Examples of concept are
gene, protein, or species. Each concept has instances. The instance is an
entry in a database that represents a real-world entity. Examples of
instances are Aeyo gene (age of eyelid opening) or Cagelgene (cancer

antigen 1) in the Mouse Genome Database.

Definition 2: Relationship Closeness (RC) measures the closeness of
two instances of concepts, where ‘closeness’ is defined in terms of
different dimensions. It measures the degree of closeness, i.e., how two
instances of concepts are related to each other. It is expressed as a
percentage, with 100% meaning c; is the same as c;. A high value of
RC indicates there is a significant link between the instances of
concepts, and a low value of RC indicates no link or no significant link

between the instances of concepts.
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Definition 3: P = {p1,p2;------ Pn} is a set of concept properties, where a
property is an attribute of a concept, such as the sequence string of a
specific gene or the name of a specific protein. A property pieP is a

unary relation of the form p; (c;), where c¢; € C is a concept associated

with property pi.

Definition 4: R is a set of semantic relationships between the properties
of concepts. Several types of relationship r can belong to R. Six types
of relationship are implemented in SLM (see Table 4.1). New types of
relationships can be added to the prototype in the future.

homolog

ortholog

paralog

molecular function

biological process

cellular component

Table 4.1: types of relationship supported in SLM

Definition 5: G = {gi, 82,...-.. gn} is a set of algorithms. These
algorithms include BLAST, similarity matches and other mining tools,
and are used to calculate the strength of a type relationship between
instances of concepts. These algorithms look at all possible pairs of
specified concepts from the data sources and assign a relationship
closeness score to each pair. If this score is above a cut-off or threshold
value, then the relationship is accepted. This value can be adjusted in an
iterative investigation to increase or decrease the number of matches

and can be set to appropriate values for an investigation.
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4.4.2 Formal Representation

The Soft Link Model (SLM) consists of concepts, instances,
relationships and degrees of linkage. The SLM models the linkage
between data sources in terms of concepts, properties and semantic
relationships, and is formally defined as: SLM = (c;, ¢j, R, RC) where
ci, Cj are concepts, R is a type of relationship, and RC is the relationship
closeness for the linkage between the instances of the concepts. The
relationship between two instances of concepts is determined by
considering the different properties (pi, p;) of the concepts. It can be
formed by the syntax: R = (pi(c1), pj(c2), g, t) where pi(c)) is a property
(for instance, sequence, name) of an instance of the first concept, pj(c2)
is a property of an instance of the second concept, g is an algorithm
used to calculate the.relationship, and t is a cut-off score or threshold

value.

SLM can be modelled as a graph G = (V, E), where V is a set of nodes
and E is a set of edges (Figure 4.3). Concepts are represented by nodes,
and relationship types between concepts are represented by edges
between nodes. Relationship edges indicate that each instance of a
concept (for example Mouse genome) may have a relationship with
instances of the connected concept (for example C. elegans genome), and
vice versa. Homology is a bidirectional relationship. For example if gene
A from Genome B is homologous to gene C from Genome D then gene
A is homologous to gene C. However, the encoded-by relationship is a
unidirectional relationship. For example, If Protein P encoded by Gene
A, it is not true that Gene A is encoded by Protein P. Relationship may be
uni-directional or bidirectional. The relationship types in Table 4.1 are
bidirectional. The closeness is represented by a label under the edge
(Figure 4.3). The label of the node is given by a string, which represents
a concept name. The label on the edge represents any user-defined

relationship.
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Relationship Type label

Relationship Closeness

Figure 4.3: Representation of Soft Link Model. The symbol ( ** )
denotes that the relationship can be a uni-directional or bidirectional
relationship where c; and c; are instances of concepts.

To mine for Evolutionary (homolog, ortholog or paralog) relationships
between two genes, the sequence similarity can be applied. As discussed
in sections 4.3.3.1, 4.3.3.2 and 4.3.3.3 the BLAST algorithm can be used
to compute relationship closeness between two gene products using their

sequences.

For example, if there are two data sources representing the gene
annotation of different species: Mouse and C. elegans. Mouse’s gene
with two properties: Accession and SQ. C. elegans genes with two
properties: ID and Sequence (Table 4.2 and Table 4.3). To mine for a
possible homolog relationship between the different instances in these
data sources, a BLAST algorithm will be used. The properties: Sequence
and SQ will be used by the algorithm. Depending on the nature of the
sequence (DNA or Amino Acid), different BLAST programs for the
database search can be used. They are: blastn, blastp, blastx, tblastn and
tblastx[ref]. The BLAST algorithm identifies homologous sequences by
searching databases using the query sequence of interest. After the
BLAST algorithm completes the search, the biologist will receive a
report specifying found homologous sequences and their alignments to

the query sequence. Figure 4.4 shows an excerpt of the blastp program
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report used to find possible homologue between Mouse gene
MGI:1891917 and C. elegans gene WP:CE06200. From this report, some

useful information can be extracted:

e the identifier of the query sequence (WP: CE06200);

o the identifier of the database sequence (MGI:1891917);

e identities which represent the number and fraction of total
residues which are identical. The identities percentage is used as
the relationship closeness measure, and

e Expect value cutoff (-¢) and Score are used as threshold values.
A high score at the top of the list indicates a likely relationship
(Figure 4.4).

As can be seen from the report, the relationship closeness between
Mouse gene MGI:1891917 and C. elegans WP:CE06200 is 78%. So
homologs, orthologs and paralogs between genome are detected using

BLAST similarity search.

ID SEQUENCE
WP:CE06200§ ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELS........
WPCE24473 [MCLVNEFVSN SNMKPALNVS GDEKELILQL...........

......

Table 4.2: Sample of gene annotation of C. elegans genes

Accession SQ

MGI:1891917[ELVQKAKLAEQAERYDDMAAAMKAVTEQGHELS.......
MGI:891963 [ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELSN.......

........

Table 4.3: Sample of gene annotation of Mouse genes
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BLASTP 2.2.10 [Oct-19-2007)

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
*Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs®, Nucleic Acids Res. 25:3389-3402.

Query= WP:CE06200 ————— C.elegans Identifier
(248 letters)

Database: MGD.fasta
2574 sequences; 1,191,147 total letters

A high score at the top of the list
indicates a likely relationship
Score E

Sequences producing significant alignments\.(bits) Value

MGI:1891917 — Mouse |dentifier 363 e-105
MGI:891963 A low probability indicates that a /ﬁé"' e-100
MGI:108109 match is unlikely to have arisen 342 2e-098
MGI:109194 by chance 338 4e-097
MGI:1891831 308 5e-088
MGI: 894689 306 le-087

Relationship Closeness

>MGI:1891917 .
Length = 245

Score = 363 bits (933), Expect = e-105

Identities = 189/242 , Positives = 210/242 (86%), Gaps = 5/242 (2%)

Query: 7 ELVQRAKLAEQAERYDDMAAAMKKVTEQGQELSNEERNLLSVAYKNVVGARRSSWRVISS 66
ELVQ+AKLAEQAERYDDMAAAMK VTEQG ELSNEERNLLSVAYKNVVGARRSSWRVISS
Sbjct: 6 ELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSWRVISS 65

Query:67 IEQKTEGSEKKQQLAKEYRVKVEQELNDICQDVLKLLDEFLIVKAGAAESKAFYLKMKGD 126
IEQKTE +EKKQQ+ KEYR K+E EL DIC DVL+LLD++LI+ A AESK FYLKMKGD
Sbjct: 66 IEQKTERNEKKQQOMGKEYREKIEAELQDICNDVLELLDKYLILNATQAESKVFYLKMKGD 125

Query: 127 YYRYLAEVAS-EDRAAVVEKSQKAYQEALDIAKDKMQPTHPIRLGLALNFSVFYYEILNT 185
Y+RYL+EVAS E++ V SQ+AYQEA +I+K +MQPTHPIRLGLALNFSVFYYEILN+
Sbjct: 126 YFRYLSEVASGENKQTTVSNSQQAYQEAFEISKKEMQPTHPIRLGLALNFSVFYYEILNS 185

Query: 186 PEHACQLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDVGAEDQEQEGNQE 245
. PE AC LAK AFD+AIAELDTLNE+SYKDSTLIMQLLRDNLTLWTS E+Q EG+
Sbjct: 186 PEKACSLAKTAFDEAIAELDTLNEESYKDSTLIMQLLRDNLTLWTS----ENQGDEGDAG 241

Query: 246 AG 247
G
Sbjct: 242 EG 243

Figure 4.4: an excerpt of the blastp program report used to find
possible homologue between mouse sequences and C.elegans

sequences.
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To mine for Functional Genomic (MF, BP, and CC) relationships
between two genes, the semantic similarity measure can be applied. In
our study, we will compute similarity between pairs of gene products
rather than between pairs of GO terms. As discussed in section 4.3.3.4,
Resnik, Jiang, and Lin’s measures can be used to compute Semantic
Similarity between two gene products. Each gene product may be
annotated by a number of GO terms (Table 4.4 and Table 4.5). For
example, if we had two genes: MGI:99674 and WP:CE38270
respectively, annotated by different Molecular Function GO terms
(GO:0000287, GO:0004016, GO:0004383) and (GO:0000166, GO:0004143,
GO:0000166, GO:0004143, GO:0005515, GO:0008270) respectively, and Lin’s
measures is used. The Lin similarity will be 83.8171023365594 (Table 4.6).
This similarity represents the relationship closeness between Mouse
gene MGI:99674 and WP:CE38270 in SLM model.

ID Molecular Function

WP:CE38270 |GO:0000166, GO:0004143, GO:0000166, GO:0004143,
0:0005515, GO:0008270

WP:CE38130 [G0O:0003700, GO:0003677

Table 4.4: Sample of gene annotation of C. elegans

Accession MF

MGI:99674 |GO:0000287, GO:0004016, GO:0004383

GI:99676 |GO:0003700, GO:0003677

Table 4.5: Sample of gene annotation of Mouse genes
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C. Elegans Identifier | Mouse Identifier Relationship Closeness
WP:CE38270 MGI:99674 83.8171023365594
WP:CE38270 MGI:99676 86.53620688314562
WP:CE38130 MGI:99676 86.81354710951456
WP:CE38130 MGI:99674 84.46357563224241

Table 4.6: The result of applying Lin’s measure to compute semantic
similarity between pairs of gene products using Molecular Function

GO terms annotation of genes in Table 4.4 and Table 4.5.

4.4.3 SLM Operators

This section provides a formal definition of the SLM operators.b

4.4.3.1 DiscoverR

This is a binary operator used to discover relationships between two
instances of a concept. It investigates whether there is a relationship
between a pair of properties (attributes) of the objects based on a
specified algorithm. If the relationship closeness or the similarities
between them pass a threshold value, it will consider there is a
relationship between the concepts and the degree of this relationship is
determined by the value of the relationship closeness, computed by the
algorithm that was used to find the relationship. Thus the relationship

table:
SLM € <pair of properties> R <algorithm,T> (C1,C2) (1)

where

SLM represents the relationship table,

C1 represents the first concept,

C2 represents the second concept,

R represents Discover Relationship operator, DiscoverR,

properties are the properties (attributes) used to discover
relationships ,
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algorithm is algorithm used to calculate the relationship between
the properties (attributes). It computes the relationship
closeness between each pair of properties, and
T is a threshold.
The relationship data are stored in a table as SLM (1st identifier, 2nd

identifier, RC).

44311 Relationship Discovery

The relationship types and how to discover them are covered in this
section.

For the sake of simplicity, we assume concepts Cl and C2 are
represented as two different relation tables (R and S) of data with
several attributes(r and s).

R{I’l,rz,. eosligee .,I’n}
S {SI’SZ" «+3Si,.. -;Sm}

There are two general approaches based on using the sequence or GO
attributes.
In a sequence-attribute approach, an algorithm, for example, BLAST, is
applied to a sequence attribute in R (say r;) and a sequence attribute in S
(say sj). This returns a set of values for each pair in the alignment of
the sequences (rj, s;) in the Cartesian product of R and S, R*S. These
values are

E the e-value of the Homolog (ri, s;),

I the identity of the Homolog (T;, s;), and

S the score of the Homolog (I, s;).
These define several subsets of the Cartesian product of R and S (Table
4)).
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homolog | The e-value of Homolog (R*S) is the subset of R*S
satisfying E(r; , s;) < threshold value. This is a homolog link.

homolog | The identity of Homolog (R*S) is the subset of R*S
satisfying I(r; , s;) > threshold value. This is an alternative
homolog link.

homolog | The score of Homolog (R*S) is the subset of R*S satisfying
S(r; , sj) > threshold value. This is an alternative homolog
link.

ortholog | An Ortholog is created by applying to the e-value set E(R*S)
the identity operator, namely:

The Ortholog((r; , sj)) = I(E(ri , s;)) and it is selected if I(E(r; ,
sj)) > threshold value and the sequences are from different
species.

Paralog | A Paralog is created by applying to the e-value set E(R*S)
the identity operator.

The Paralog((ri , s;)) = I(E(r;, sj)) and it is selected if I(E(r;,
sj)) > threshold value and the sequences are from the same
species.

Table 4.7: Different subsets from the Cartesian product of R and

S of each pair in the alignment of the sequences (7, s;)

When using a GO approach, there is an attribute in each relation, rg in R
and sg in S, that has a set of GO terms as its values. These terms can be

Molecular Function, Biological Process or Cellular Components.

These lists are then compared using a comparison algorithm (Ontology-
driven similarity algorithm), which is based on the GO structure and
techniques described in 4.3.3.4.2, and which calculates the relationship
closeness values for the Ontology-driven similarity (rg, sg). This returns

a set of values for the (rg, sg) in the Cartesian product of R and S, R*S.

If the Ontology-driven similarity (rg, sg) score > threshold then an
appropriate relationship (biological process, molecular function or

cellular component) has been established.

4.4.3.2 SoftJoin

The softJoin is a binary operator that is used to link two concepts. It is

based on the relationship type and relationship closeness value.
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€l ® C2
S (RT,RC>1) 2

where

Cl1 is the first concept,

C2 is the second concept,

RT is relationship table,

RC is the relationship closeness,
t is a threshold, and

® is the softjoin operator.

4.4.3.21 Integration

We assume there is a set of data sources, where a data source has
various types of cdncepts. For the sake of simplicity, we assume the
data sources’ schemas are implemented in a relational model and each
concept in a data source is a relational table, and we use the following

notation:

A schema of Relation R of degree n is denoted by
R(A},A2,...,Ay) Where Ay, A,,..., A, is a list of R’s attributes.
An n-tuple t in a relation R is denoted by t=<v,,v,,...,v,>, where
v; is the value corresponding to attribute A; in the n-tuple.
t.A; refers to the value v; in tuple t of attribute A;
S={ s;,82,...,5n } is a set of data sources
C={ ci1,C2,-..,Cm } is a set of concepts(relations) within a data
source.

Thus,

(si, ¢j) € SxC where s; is a data source and c; is a relation representing a
concept in the data source. To integrate experimental datasets with
public bioinformatics sources to annotate genes using SLM the

following steps are taken.

Stepl: A user feeds the system with the following input - Experimental
dataset, Relationship type, Display fields.
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Step 2: The system links the experimental dataset with public data
sources to annotate a gene list, so the output is gene annotations. To

explain the integration process, we use the following notation:

L is a set of dataset entries (set of experimental data entries)
Within L, a group of dataset entries that satisfy some conditions will be
selected; L. is for instance a list of mouse genes, where the expression
is upregulated in response to aging. The attribute’s name and metadata
will be extracted from this experimental dataset. We define a function
ExtractMetadataOfExperimentalDataSet to extract the experimental
datasets’ metadata. The approach for extracting this metadata is

described in Section 6.1

A is an attribute of the metadata of L,

E is the ExtractMetadataOfExperimentalDataSet function

Ac~=E(L,) = {A1,A2,,,An}
The potential linkage key for the experimental dataset will be
determined, which will be used to link the experimental dataset with the
public data source to enrich the gene annotation. We define a function
getLinkageKey, which determines the potential linkage key of the

experimental dataset. The approach for determining the potential

linkage key is described in Section 6.1.

Ly is the linkage key of the dataset (L.), where Ly € A,
Ly = getLinkageKey(L.,A.)

D, is a display of the attribute list (which the user wants to

retrieve)

SLM: a relation table stores the relationships between the pair of
concepts across the data sources. SLM has the following
attributes: (s1,s2,c1,c2,RT) where

s1, s2 are the pair of sources, cl, c2 are a pair of concepts, RT is

the relationship type.

S, is the primary source.
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Ck is the concept (relation table in the source)

The primary source is selected by an algorithm from registered data
sources with the system based on the experimental data type and the
relationship type. The source selection algorithm is described in section
4.5. It selects the source that has the maximum relationships with the

others sources, having the user concept and relationship type.

Linkage keys are extracted from the experimental dataset L, and stored

in a relation table G. This is done by a projection operation on L.
G« 7, (L) (3)

G is then joined with the related relation in the primary source to get

result.

Result <~ G * S,.Cy 4)

A projection is then made according to the user preference displayed in
the attributes list. The resulting relation is the PrimaryDataSet. It
contains only the attributes specified in D, (the display attribute list)

PrimaryDatSet < 77 (result) 5)

Related sources and concepts, which have the specified relationship
type with the primary concept and source, are then selected from SLM

and stored in a new relation SR.

SR(S,C,RT ) < g (s1=8,nCi=CxnRrT =rt) (SIM ) (6)

The defined operation SoftJoin is then used to link the primary result

data set (PrimaryDataSet) with related data in other data sources.

For each tuple t; € SR, i=0,,,n (number of tuples in SR)
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RelatedDataSet: « 7, (primaryDataSet<ﬁ.v3®;Q CM)(t;.w).(&,v:)) %)

The final result is obtained by the union of the primary dataset with

datasets generated from related sources.

FinalDataSet < PrimaryDataSet U RelatedDataSet; (8)

4.4.3.3 Other operators

SLM also has the following operations:
a) Add a relationship to SLM:

SIM New = SIM o0z U {R}.

b) Remove a relationship to SLM:

c) Add an instance to RKB:

RKB yew = RKB o U {r}.

d) Remove an instance from RKB:
RKB yew = RKB 44 - {1}

A user can suggest a new relationship by providing the System
Administrator with the following information: pair of data sources, pair
of concepts, relationship type, relationship closeness, and pair of

identifiers for the data sources.

4.5 Source selection algorithm

The system selects the sources, which answer the user query based on
the parameters in the query: species, concept and relationships. In

describing the algorithm, we assume the following:
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C= {c1,C2,...,Cn} is a set of concepts
S={s1,82,...,Sm} is a set of sources
(sic))cSxC

R = {R},R,,...,Rx} is a set of relationships. These relationships
are either internal relationships (between concepts in the same
source) or external relationships (between concepts in different

sources).

C, 1s a set of concepts used in the user query CqcC
R, is a set of relationships used in the user query R; cR

The first step is to find the sources that have the user query concepts,
and then find the concepts in those sources that have the user query
relationship. Instances of these are retrieved having the RC defined in

the user query. The algorithm is shown in Figure 4..

4.6 Summary

Since comparative genomic explanations provide a more
comprehensive understanding of both the complex structures and
diverse functions within the genomes of different organisms, this
chapter presented an approach to the integration of data across species
to assess genomic comparison based on similarity knowledge extracted

from the GO-driven functional annotations and sequence similarities.

The approach is based on the calculation of relationship closeness
values, which originate from each of the GO hierarchies and homology
and its types. The advantage of this method lies in the application of
prior biological knowledge to estimate the relationship closeness
between genes. In addition to homology closeness, this chapter
introduced three hierarchy-specific relationship closeness measures,
each based on information individually extracted from each GO
hierarchy (BP, MF and CC).

The next chapter describes the system architecture for the proposed

Soft Link Model introduced in this chapter.
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Algorithm: Source Selection
Input: query q
Output. Sourcés St
1: parse g, (get concepts c,, relationships rq )
2: upload SLM;
3: identify the number of data sources participating in the integration system;
4: for all data source Si do begin
No_of_Relationship =0;
For each concept in Si do
if ¢; in Cq then
for each relationship r in Cj do
if relationship rj in Ry then
No_of Relationship ++;
end if
end for
end for
if No_of Relationship >0
St (targeted sources) = St U {Si}
end if
end for
5: find S € St with maximum No_of_Relationship;

6: return S;

Figure 4.5: source selection algorithm
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System Architecture

5.1 Introduction

This chapter describes the system design for an “illustration-of-
concept” system of the SLM model. In this chapter, we overview the
overall Integration and Data Mining of Bioinformatics Data sources
(IDMBD) system’s architecture, describe its components, and explain
how the components are connected. The architecture is based on the
conceptual model and approach described in Chapter 4. The system
architecture with its phases and components is described. Integration of
data sources utilizing the SLM model is accomplished in two phases:
phase 1 - relationship mining and discovery, and phase 2 — data source
linkage and integration. Each phase and its components are explained in
detail. The current prototype is built to work with two particular
species, but can be easily extended to handle more species and to link
to information in data sources such as disease and pharmaceutical. The
steps the administrator/user has to follow to add linkage for such a data
source to the IDMBD and so enhance the SLLM system are detailed in
section 5.3. The system’s stages are the primary focus of attention in
section 5.4, where the eighteen steps needed to answer a user query and
link experimental datasets are summarised. The interaction between the
mediator and SLM to enhance gene annotation and provide a user with
relevant information from other related sources is detailed in section

5.5. The chapter concludes with a summary of the chapter.
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5.2 System architecture

The components of the system architecture interact and work together
to achieve its design aims. The system operation, the role of its
components and the information exchanged among components are
described here. The architecture is based on mediation as proposed by
Wiederhold [201]. The pragmatic interest in creating this architecture is
to reduce the amount of work required to introduce a new source by the
creation of the corresponding wrapper [25]. Consequently, the mediator
allows extendibility by the addition of new data sources to the
integration system. The mediator architecture preserves data source
autonomy and supports access to up-to-date data as the mediator uses a
wrapper’s that encapsulate the underlying structure of the data sources,
so that wrappers’ access to data sources is transparent to the mediators.
This preserves a data source’s autonomy and gives a biologist easier
access to these sources, while enabling him/her to retrieve the most up-
to-date biological data. Thus the linkage to a new source is achieved by
creating a wrapper for it. This means that the source is unaffected by
the linkage and the IDMBD requires a new wrapper to be written.

Figure 5.1 shows the functional architecture and its main components.

5.2.1 Architecture layers

The system consists of four layers as shown in Figure 5.1: Client
Application, Mediation, Wrappers and Data Sources. A user interacts
with the mediator in the top layer to access indirectly any data sources.
The mediator can be viewed as a bridge between the user/application
and data sources. It performs the processing that is common to data
sources. However, source-specific transformations are done in
individual wrappers.

1. Client Application layer: client/applications reside here and

interact with the IDMBD framework. The client consists of a
graphical user interface (GUI) and is responsible for the generation
of user queries and uploading experimental datasets. It has several

tools that process and analyse an experimental dataset.
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2. Mediation layer: this provides a transparent view of multiple

heterogeneous data sources and coherent views of data in the data
sources by performing semantic reconciliation through the
Common Data Model (CDM) data representations provided by the
wrappers. It merges the results from sources and returns them to
users. Generally, it is responsible for data transformation and
integration, and communicates with the client application layer and
wrapper layer. Further details on its components are provided in
section 5.2.2.2.6.

3. The wrapper layer provides access to the data in the data sources
using the data source’s API, translates user queries into source-
specific queries, extracts data, and maps the results from data
sources into the common data model of the integration system. The
wrappers conceal technical and data model heterogeneities; the
way wrappers access data sources is transparent to the mediator
and this preserves a data source’s autonomy. New wrappers can
be added.

4. Data sources: heterogeneous data sources reside here. They can be

accessed through wrappers. Data sources may be structured or

semi-structured.
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Client Application Layer ]

1 1

Mediation Layer

!

Wrapper Layer J
Data Sources Layer ]

Figure 5.1: the IDMBD Framework: a conceptual view

5.2.2 Integration Phases

Integration of data sources using the SLM model is performed in two
phases: Phase 1 - relationship discovery and data mining, and Phase 2 -

data source linkage and integration.

5.2.2.1 Phase 1: Relationship Discovery and the SLM model

This phase discovers relationships in the data sources attached to the
system. These data sources are varied. In this phase, relationships
between biological objects are identified. Many tools are used to
discover relationships, such as alignment tools, text matching or other
data mining tools (for instance, classification and association rules).
The first step is parsing the data sources to extract the attributes of
interest, which are used to identify relationships. Having identified the
concepts and attributes of a source-pair, the system will invoke the

appropriate algorithm to discover any relationships that might exist
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between concepts. The algorithm being used or other data mining tools
are responsible for calculating the degree of the relationships between a
source-pair. Objects involved in the relationship are then stored in a
knowledge base in triple form (Source id, Target id, Relationship
Closeness). User preference (constraints, parameters, algorithms) are
considered during the discovery of relationships and the building of the
relationship knowiedgc base. The relationships’ metadata will be stored
in a relational table as source, target, relationship type, name of file
containing actual data. The metadata describes the type of relationship,
data sources and objects involved, and refers to the table storing the
actual mapping. The user can adjust the parameters used to discover

relationships and calculate the degree of the relationship.
This subsystem consists of the following components:
e Parser: parses data in the relationship discovery component.

e Relationship Discovery: mines and finds relationships between
objects in different sources using appropriate algorithms, search

tools, and data mining tools.

e Relationship Table Generator: creates a knowledge relationship
base in a triple form (Source id, Target id, Relationship
Closeness). Figure 5.2 shows the algorithm generating this
knowledge.

e Search and Data Mining Tools: describes the features of the tools
and algorithms that are used for relationship discovery, such as
location, syntax, parameters, availability and other relevant
metadata of input/output, resource requirements and constraints.
It is also responsible for the choice of search mechanism and
invoking data mining tools and algorithms. It stores an

algorithm’s metadata for use in relationship discovery.

e SLM builder: an SLM file consists of metadata describing the

relationships between concepts. This component builds the SLM
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metadata for a run and stores the relationship between each pair
of concepts of the data sources, the relationship type and the
actual relationship table name. Figure 5.3 shows the XML
schema definition for the SLM with required and optional

elements.

¢ Relationships Tables: These tables are the knowledge base
storing the relationship instances between data sources in triple
format (Source id, Target id, Relationship Closeness). They

automatically generate database links.
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Algorithm: Relationship Generator

Input: List E, S, cut-off //E, S are a list of entries of a data source; cut-off is a constant
value

Output: RelationTable RT
1: for each ¢ in E do begin
for each sin S do begin
Do match (e,s)
Score = score of match(e,s)
If Score >= cut-off then
RelationCloseness = Score
RT =RT U {(e,s, RelationCloseness)}
end if
end for
end for

2: return: RT;

Figure 5.2: Algorithm to generate a relationship knowledge base
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<?xml version="1.0" encoding="1SO-8859-1" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation xml:lang="en">
XML schema for Soft Link Model metadata.
</xsd:documentation>
</xsd:annotation>
<xs:element name="SLM-knowledge-base">
<xs:attribute name="no" type="integer" use="required"/>
<xs:element name="database" minOccurs=0 maxOccurs="unbounded">
<xs:complexType>
<xs:element name="concept" minOccurs=0 maxQOccurs="unbounded">
<xs:complexType>
<xs:element name="relations" minOccurs=0 maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="SLM" minOccurs=1 maxQOccurs="unbounded">
<xs:attribute name="DBName" type="RC" use="required"/>
<xs:attribute name="concept" type="String" use="required"/>
— 1"
<xs:attribute name="File" type="String" use="required"/>
<xs:attribute name="FileType" type=" String " use="required"/>
</xs:sequence>
</xs:complexType>
</xs:complexType>
</xs:complexType>
<>
<xsd: simpleType name="relationships">
<xsd:restriction base="xs:string">
<xsd:enumeration value="homolog"/>
<xsd:enumeration value="ortholog"/>
<xsd:enumeration value="MolecularFunction"/>
<xsd:enumeration value="BiologicalProcess"/>
<xsd:enumeration value="CellularComponent"/>
</xsd:restriction">
</xsd: simpleType>

<xsd: simpleType name="filetype">
<xsd:restriction base="xs:string">
<xsd:enumeration value="mySQL"/>
<xsd:enumeration value="text"/>
<xsd:enumeration value="0Q0"/>
</xsd:restriction">

</xsd: simpleType>
</xs:schema>

<xs:attribute name="RelationType" type=" relationships " use="required"/>

Figure 5.3: XML schema for SLM metadata
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5.2.2.2 Phase 2: Data source linkage and Integration

This phase enables a user to use the created relationships to integrate
the data. Figure 5.4 overviews its architecture. There are seven

modules.

5.2.2.2.1 User Interface

This provides a single access point for users to query data sources
within the system. It allows a user to upload experimental datasets and
enrich gene annotations. It hides the complexity of the underlying
structure and data schema of data sources. Its goal is to enable the user
to interact easily with the system. There is also a facility in the interface
for the user to register new data sources with the system. This interface
can accept a variety of different types of user query such as a gene

identifier or a table of experiment results.

It allows the user to upload and integrate experimental datasets with the
available data sources. The user can set his/her preference (relationship
type, relationship closeness, and displayed fields). Once the data are
uploaded, the user is prompted to choose the potential linkage key and
required fields as well as the relationship type and relationship
closeness. It facilitates also the creation of an SILM and the relationship

knowledge base.

In brief, this module allows the user to:

e browse discovered relationships between entities/concepts across
heterogeneous data sources using a tree-like display of
relationships.

e create a distinct SLM to discover relationships between concepts
and entities.

e upload experimental datasets and link them with available
bioinformatics data sources to enrich gene annotation from

different species.
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User Interface
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Relationships
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and Data Metadata extraction and
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Table Generator Metadata
SML Builder
Source Selection Mediator
SLM
Wrapper Manager
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Tables Wrapper Loader
Wrapper Source Link

Wrapper selector
SLM metdata

Wrapper Wrapper
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Figure 5.4: Overall Architecture o fIntegration system
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e construct queries.
e select a relationship type from the available types and set the
preferred parameters.
e register new sources into the system.
In general, the interface facilitates a naive end-user’s interaction with
the system by allowing flexible uploading of experimental datasets,

construction of queries and receipt of relevant feedback.

5.2.2.2.2 Data Source Metadata

The Data Source Metadata module consists of two parts: the first gives
information on how to access and retrieve data, and the other contains
information about the logical and physical structure. Figure 5.5 shows
the XML schema of data source. Each data source’s metadata will
contain a name, URL, description, owner, system, database type, and
whether there is direct access to the source and the JDBC driver that is
needed. The data source schema is included in this part. However, the
generation and integration of data source schemas is beyond the scope
of this research. The reader who is interested in schema integration may
refer to [26, 72, 98, 99, 128, 129] or other PhD research completed in
KIS group of Cardiff School of Computer Science [66, 122, 188].

5.2.2.2.3 Ontology

When data sources are to be integrated, an ontology can be used to
drive or assist the investigation of potential matching processes among
their elements. Ontologies can help resolve semantic heterogeneity
between data sources, define a controlled vocabulary, and construct a

query so that the user is unaware of the data source’s structure.

We use a domain ontology in metadata extraction to enhance the
metadata and find possible relationships between experimental datasets

and domains (see Chapter 6).
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<?xml version="1.0" encoding="ISO-8859-1" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>

<xsd:documentation xml:lang="en">

XML schema for data sources.

</xsd:documentation>
</xsd:annotation>
<xs:element name="database" type=" DB _info" minOccurs=1 maxOccurs="unbounded">

<xsd: complexType name=" DB_info">

<xs:sequence>

<xs:element name="ID" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Name" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="Description" type="xs:string" minOccurs="0" maxQOccurs="1"/>
<xs:element name="Owner" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="URL" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="System" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="DataBase" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="Direct_Access" type="xs:boolean" minOccurs="1"
maxQOccurs="1"/>

<xs:element name="Host" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Port" type="xs:integer" minOccurs="1" maxOccurs="1"/>
<xs:element name="User Name" type="xs:string"minOccurs="0" maxOccurs="1" />
<xs:element name="Password" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="JDBC_ DRIVER" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xsd: complexType>

</xs:schema>

Figure 5.5: The XML Schema definition for data sources

5.2.224  Soft Link Module
The Soft Link Module mines and stores the relationships and cross-
references between different objects. It provides a flexible linkage

between data sources using the relationships created in phase 1.

The soft link module uses SLM metadata to find possible related
sources. The module receives requests in XML format from the

mediator. It then collects data from the SLM metadata and relationship
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tables in RKB and stores them in output XML. This XML becomes the

response that is sent to the requesting mediator.

52225 Metadata extraction and Query Handler

This component parses a user query and rewrites it in an appropriate
format. It parses the experimental datasets, extracts metadata, and
detects a suitable linkage key. It uses the domain ontology to enhance

an experimental dataset’s metadata (see Chapter 6 for more detail).

5.2.2.2.6 Mediator

The role of the mediator is to handle all communication to and from
data sources. It also communicates with the soft link module to retrieve

relationships between sources. It has four specific jobs:

e to try to find a suitable primary data source to satisfy a given
query.

e to communicate with SLM, and query for possible related data

sources.

e to invoke data source wrappers to send queries/deliver user

queries to relevant data sources.

e to receive result sets, combine them and send the outcome to the

user.

The mediator has the following modules:

e Source Selection This component selects an appropriate source
to answer a user’s query based on user preferences and query
parameters. This component is responsible for the selection of
suitable sources to answer user queries or annotate experimental
datasets. It uses the algorithm in Figure 5.2 to select a suitable
data source.

e Wrapper Manager: responsible for instantiating the wrappers the
system is configured to use. It manages existing wrappers and
performs many tasks: loading existing wrappers, communicating

with the SLM to retrieve relationships between sources, and
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removing duplicates during result assembly. It provides a basic
service for managing a set of data source wrappers. It has two

components:

= Wrapper loader — dynamically loads all available data
source wrappers registered in the integration system and

ensures they are loaded when the system starts.

= Wrapper selector — chooses and invokes wrappers for the

selected data sources to answer a user query.

e Source links: The mediator interacts with the SLM to request
other related sources for the primary result. This component
handles communication between the mediator and the SLM. It
sends an XML request to the SLM to fetch other related sources.
Source links use a request/response paradigm to interact with the
SLM.

e Duplicate removal: merges results, removes duplicates, and

passes the combined result to the clients/users.

52227 Wrappers

The wrappers provide access to remote data sources and transform the
results into an integrated form. The wrappers conceal technical and data
model heterogeneities. The method of access to wrapped data sources is
transparent to mediators to preserve data source autonomy. The
wrapper shields a user from the structure and complexity of data
sources. There is one wrapper for each data source involved in the
system, which provides access to data of a specific format. If a source
allows direct access to its underlying RDBMS, a JDBC wrapper will
forward an SQL query statement for processing by the source’s
database system. If the data source has a different interface, the wrapper
will use an appropriate query format. For example, to access
Wormbase, it will use the AcePerl, which is an object-oriented Perl

interface for AceDB.
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A Wrapper performs many tasks, including:

e Using JCDB drivers or other standard APIs of the data source to

connect the sources and to receive a result set.

e Submitting queries to the data source through SQL, native query
language of the source, or as a series of source API calls.
e Providing a means to extract data from semi-structured sources

(for example, flat files, HTML, text).

5.3 Building the SLM

The administrator/user builds an SLM by:

a) Identifying the concepts and properties to be used in the model.

b) Identifying appropriate relationship types between concepts
and properties.

¢) Setting the threshold for the relationship closeness measure.

d) Choosing algorithms to compute the soft link. An algorithm is
required for the comparison of two concept properties. The
variable used to measure the closeness of the biological entity’s
relationship should also be specified.

e) Creating RKB tables. This can be done in different ways, e.g.,

offline or on-the-fly at run time.
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5.4 System Sequence

Figure 5.6 shows the steps taken by the system to answer a user query
and annotate and link experimental datasets. The steps are described in
Table 5.1.

Step (1): The mediator receives a user query/experimental dataset, and
selects the primary source to answer the query.

Step (2): The mediator invokes the wrapper of the selected source.

Step (3): The selected source’s wrapper connects to the data source by means
of its API and submits the query to this data source.

Steps (4, 5): The source wrapper receives result sets from the data source and
sends them to the mediator.

Step (6): The mediator extracts identifiers from the result sets then interacts
with the Soft Link Model Adapter. It sends the source name, concept,
identifier and user preference (the relationship which the user wants to use to
link data sources and the relationship closeness threshold). :

Step (7): The Soft Link module loads the SLM’s metadata and determines,
whether there are relationships associated with the concept and data sources
sent to it by the wrapper manager.

Step (8): 1If a relationship specified by the user is found between the selected
concepts of the data source and other concepts in other data sources, the SLM
will pass the relationship table name to the mediator.

Steps (9, 10, and 11): The Soft Link module invokes the relationship wrapper,
which opens a connection to the RKB and fetches instances satisfying user
preferences. Basically, it fetches related concepts, data sources, and identifiers
of the related entries in the related source.

Step (12): The Soft Link Adapter responds to the mediator with a list of
related identifiers and source concepts.

Steps (13, 14): When the mediator receives the response, it invokes the
wrapper of the related source and passes related identifiers to it.

Step (15): The wrapper connects to the related source by the data source
standard API and submits a query.

Step (16): When the wrapper receives related data set results, it passes them to
the mediator

Step (17): The mediator combines related dataset results with previous results
and removes any duplicates. The mediator maps the data set results to the user
view, i.e., when it receives results from individual sources; it integrates the
results and sends them to the user.

Step (18): The mediator sends the datasets to the user.

Table 5.1: steps taken by the system to answer a user query
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5.5 Interaction between the Mediator and SLLM

Interaction between the mediator and the SLM is specified by a set of
protocols. Our system uses request/response operations to pass data

between them (Figure 5.7).

A mediator initiates a request by establishing and passing an XML
request to the SLM; upon receiving this request; the SLM searches its
metadata for possible related sources satisfying the user query. If any
are found, it invokes the relationship wrapper to access the relationship
knowledge base to fetch relationships, and then the SLM sends back a
response message containing related identifiers, concepts and data

sources.

Request

SLM Mediator

Response

Figure 5.7: the mediator interacts with the SLM via a

request/response paradigm
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5.5.1 Request

The mediator sends a request to the SLM as an XML document. The
request operation is used to find related data in other data sources. This
XML document contains the following: the data source, the concepts,

the relationship type, the relationship closeness, and a list of identifiers.

When the SLM receives requests in XML format from the Mediator, it
collects data from the SLM metadata and knowledge relationship base
and transforms them into XML. Figure 5.8 shows the XML schema

definition for a Request operation.

5.5.2 Response

SLM responds to the mediator’s request with an XML document. The
XML is generated by the SLM after receiving and interpreting a request
containing the related data source, concepts and identifiers. Figure 5.9
shows the XML schema definition for the Response operation with the

following required elements:

e Identifiers: list of identifiers of related objects on other species,
e Concept: name of the related concept, and

e Data Source: name of the related data source.
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<?xml version="1.0" encoding="1SO-8859-1" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>

<xsd:documentation xml:lang="en">

XML schema for Request operation.

</xsd:documentation>
</xsd:annotation>
<xs:element name="DataSource" type="xs:string"/>
<xs:element name="Concept" type="xs:string"/>
<xs:element name="relationship"/>
<xs:complexType>
<xs:attribute name="RelationshipType" type=" relationships" use="required”’/>
<xs:attribute name="RelationshipCloseness" type="RC" use="required"/>
</xs:complexType>
<xs:element name="identifier" minOccurs=1 maxOccurs="unbounded">
<-->
<xsd: simpleType name="relationships">
<xsd:restriction base="xs:string">
<xsd:enumeration value="Homolog"/>
<xsd:enumeration value="Ortholog"/>
<xsd:enumeration value="Paralog"/>
<xsd:enumeration value="MolecularFunction"/>
<xsd:enumeration value="BiologicalProcess"/>
<xsd:enumeration value="CellularComponent"/>
</xsd:restriction">
</xsd: simpleType>

<-->

<xsd: simpleType name="RC">
<xsd:restriction base="xs:decimal">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="1"/>
</xs:schema>

Figure 5.8: XML schema definition for the Request operation
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<?xml version="1.0" encoding="1SO-8859-1" 7>
<xsd:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation xml:lang="en">
XML schema for Response operation.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="PrimaryDataSource" type="xsd:DataSets" minOccurs=0
maxOccurs="unbounded”/>
<xsd:element name="comment” type “xsd:string”/>

<-->

<xsd: complexType name="DataSets">

<xsd:sequence>

<xsd:element name="PrimaryDataSource" type="xsd:string"/>

<xsd:element name="PrimaryConcept" type="xsd:string"/>

<xsd:element name=" Primaryldentifier" type="xsd:string"/>

<xsd:element name=" RelatedIdentifier" type="xsd:RealtedData" minOccurs="1"
maxOccurs="unbounded”/>

<xsd:sequence>

</xsd:complexType>

<>
<xsd: simpleType name="relatedData">

<xsd:sequence>

<xsd:element name="RelatedDataSource" type="xsd:string"/>
<xsd:element name="RelatedConcept" type="xsd:string"/>
<xsd:element name="RelatedIdentifier" type="xsd:string"/>
<xsd:sequence>

</xsd: simpleType >
</xsd:schema>

Figure 5.9: XML schema definition for the Response operation
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5.6 Summary

The IDMBD architecture, including its basic phases and components,
was presented in this chapter. The two-phase integration of data sources
utilised by the SLM model was explained, namely, the relationship
discovery and data mining, and source linkage and integration. This
architecture is based on the conceptual model and approach described
in Chapter 4. The steps needed to answer user queries and annotate and
link experimental datasets were described. Interaction between the
mediator and SLM to enhance gene annotation and provide a user with
the required information from other related sources was described in
depth. An overview was given of how the system is built of

components, and their connection
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Chapter 6

Extracting Metadata of

Experimental dataset

6.1 Synopsis

The process of automatically extracting metadata from an experimental
dataset is an important stage in efficiently integrating this dataset with
data available in public bioinformatics data sources. Metadata extracted
from the experimental dataset can be stored in databases and used to
verify data extracted from other experiments’ datasets. Moreover, the
biologist can keep track of the dataset so that it can be easily retrieved
next time. This extracted metadata can be mined to discover useful
knowledge; it can also be integrated with other information using a
domain ontology to reveal hidden relationships. The experimental
dataset may contain several kinds of metadata that can be used to add
semantic value to linked data. This chapter describes an approach to
extract metadata from an experimental dataset. It describes the
metadata extraction phase (query handler component in Figure 5.4) of
the IDMBD system [8-12], which we have developed to link

experimental datasets with externally available data.

6.2 Introduction

Emerging technologies in biotechnology have made it possible to study
thousands of genes or proteins in a single laboratory experiment [7,
181]. However, in order to find relevant biological knowledge from
these experiments, it is important to analyse the experimental datasets
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as well as cross reference and link these large volumes of datasets with
information available in external biological data sources accessible

online to enrich gene annotations.

A significant challenge in this process is integrating gene annotation
with gene expression and sequence information [136, 138, 193, 194].
Thus, biologists can study genes based on their function, chromosomal
location, and tissue expression and also cross-reference this data with
data from different species derived using diverse expression analysis

platforms.

When linking and integrating data held in an experimental dataset in a
semi-structured form with data held in external bioinformatics sources,
it is essential to gather as much information about the experimental
dataset as possible. This information can be found in the experimental
dataset from column names and their contents as well as other types of

metadata held in such a dataset.

6.3 Experimental dataset model

The system uses a three-phase approach: metadata extraction, schema
creation and utilisation of a schema to link the experimental data with
appropriate external data. In this section, we concentrate on the first of

these phases and on how it is achieved.

6.3.1 Metadata extraction

Metadata are data about data that provide descriptive information about
resources for the purpose of finding, managing, and using them more
effectively [53, 149, 180]. Much of an experimental dataset is stored in
an unstructured format, for instance, in a flat file with different data
representations, either comma separated value (CSV) or tab delimited
text, or some similar format. An experimental dataset may contain
several types of metadata that can be utilised to add semantic
significance to data linked with it. Examples of metadata are column
names and row headers, which are usually specified in such files. To

link these datasets with public bioinformatics sources, it is necessary to
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gather as much information about the datasets as possible. This can be
achieved by making more use of metadata. Our approach makes use of
the following types of metadata, which are located and extracted for the
purpose of integrating the experimental dataset with available public

bioinformatics sources.

6.3.1.1 Element name

Column headers are metadata indicating the main concepts that the file
represents. Based on the data representation of the file and specified
separator (tab, comma, space), the header line is converted into tokens.
The number of tokens is then used to determine the number of elements
to be extracted and the token value that contains the column header as
the element name. The column heading is extracted from the

experimental file to represent the element name.

6.3.1.2 Element structure type

Data structure type is detected by analysing the dataset vertically for
each element in the dataset. Data structure types used are integer,
string, date, and double. Each value in the element dataset will be
checked to determine whether it is a string, an integer, a double or a
date. An element is considered a string if at least one of its values
consists of any character between a-z, A-Z, ' () +,-.?7:/= and SPACE, for
example, “bird”. The element is considered an integer if its values are a
string of characters consisting of the digits 0-9, for example, number
20. The element is considered a double if its values can be converted to
double format, i.e., contains a number and decimal point, for example,
56.15. The element is considered a date if its values can be converted to

date format, for example, 01-01-2006. This is limited to a few example

types.

6.3.1.3 Element length
By analysing the value vertically for each column and computing the
maximum length of a representation in a column, the element’s length

can be determined.
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6.3.1.4 Constraints

It is necessary to identify the existing semantics of the data when
possible. Constraints [57, 70] that may apply to the data need to be
detected, for example, whether the “NOT NULL” constraint is
specified for an element or not. Other constraints include whether the
element’s value is positive or negative, as in the case of integer or float
values. In the present project, all element dataset values are scanned to
check whether they could be null or not. An element is considered null
if there is a complete absence of value within the column for at least

one entry.

6.3.1.5 Candidate key for linkage

A candidate key is detected from an experimental dataset by analysing
both extracted metadata and data values. Each candidate key has a
certain set of characteristics that makes it suitable for the role of linkage
key. These characteristics are ‘not null’, ‘unique’, ‘single word’, ‘fixed
length’, and ‘unambiguous’. Moreover, the name of an element that
may be a linkage key should have a meaning and contain keywords
such as key, ID, number, No., accession, identifier. The approach taken

to detect the linkage key is determined by analysing the following:

e Element name: Usually, the creator of an experimental dataset file
intends to use keywords to specify the candidate key in this data. In
a biological experimental dataset, these keywords are “key”,
“number” as in (GenBank Accession Number), “No.”, “identifier”
as in (gene identifier), “accession” as in (Swiss-Prot Accession),
“id” as in (Genbank ID, UniqSeqID, Clone Id), and other similar
terms. Comparing a column name with this keyword list often gives

an indication of the primary or candidate key in the dataset.

e Element value: In this step, the dataset is analysed vertically to
capture the semantic significance and characteristics of each

element. Five factors are taken into consideration:
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i) Uniqueness: The linkage key must be unique within its domain
[57, 70]. A key’s main purpose is to help the user to identify one
single entity in a data source, regardless of how many entities there

are.

ii) Not null: Null is a known value and stands for "value is
unknown" {57, 70]. The linkage key must always, without
exception, hold a value that is NOT NULL.

111) Ambiguous: The linkage key’s value should be unambiguous.
This value must not contain a value like “n/a’ or “unknown” or “not

available” or a special character like “?”’ or “-” or similar values.

iv) Fixed length: In biological sources, the primary key often looks
very much the same in terms of format and length [93], for example,
characters followed by numbers: P0496, DXS231.

v) Brevity / Single word: In most cases, primary keys are single

words.

e Knowledge base: The column name can be used as a keyword to
search for related semantic concepts in sources’ metadata, integrated
schema, and domain ontology. In this stage, an attempt is made to
match elements of the experimental dataset with elements of the
integrated schema and sources’ schema. The column name is used to
extract corresponding concepts from the data source schema and
integrated schema. The column name is also used to extract
corresponding concepts from the domain ontology and a search is
made for the column name and all synonyms; for example, element
“position” in an experimental dataset is a synonym for “location”,
and “species” may be equivalent to ‘“organism” in the domain
ontology. Another approach augments the column name with

synonyms and searches the sources and integrated schema.

The relationship of each element in the experimental dataset with the
integrated or sources’ metadata should be specified to generate

enhanced metadata as described in section 6.4.
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We use a scoring system that assigns a score to each criterion. If more
than one candidate is found, only the one with the highest score is
considered. Table 6.1 shows the scoring system. A negative score is
assigned to null. A difference is made among keywords that may be in
the column’s name. Key-words like “number”, “accession”, “key”, and
“identifier” have a high score since their existence in a column name
suggests they are likely to be keys and suitable for linkage, whereas
keywords like ‘no’ may occur by chance in the column name as part of
a word, like “no” in “synonym” or “id” in “aid”, ‘“said”, “solid”, and

“void”.

Candidate keys will be ranked based on the criteria and semantic
relations with the integrated or sources’ metadata; for example, if the
experimental dataset contains a Gen-bank accession number, gene
identifier, and gene symbol, which is the most appropriate linkage key
among the three for use as a link with the public bioinformatics sources
to be used by the system in the integration process? The aim is to find
the element that has the maximum score. This process can be

represented mathematically as follows:

Let,
n: be the number of elements,
m: be the number of the criterion,
Si;: be the score of the j-th criterion of the i-th element,
T;: sum score for the i-th element, and
MaximumsScore is the maximum score across the element’s
total score.

Therefore:

Ti=Y Sij , forj=1,2,...m (D
J

MaximumScore = max Tj, fori=1,2,...n 2)

The linkage key is the element i which has the maximum T;.
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Criteria Score
Unique 5
Null -10
Column accession 15
name
key 15
identifier 15
number 10
id 8
no 2
Ambiguous -5
Single Value 4 5

Table 6.1: Scoring System

To reduce the effect of heterogeneity between different metadata
elements and to improve integration, potentially similar elements that
are detected must be converted to match each other in representation.
A conversion function that converts the representation of detected

metadata is used.

6.3.2 Schema creation

Once all metadata elements are extracted and all semantic relationships
are detected, a schema for the dataset is constructed. This schema
describes the data structure or type and some of the constraints, for
example, element name, element type, element length, is it unique? is

its value null? is it candidate key?

6.3.3 Schema exploitation

Once the schema of the experimental dataset has been constructed, the
next step is to use this schema to generate a table in a relational form or
as an XML document suitable for use, linkage and integration with

other bioinformatics sources. The unstructured experimental dataset file
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is parsed so that it can be imported into a relational table or an XML

document.
6.4 Metadata Linkages with Domain Ontology

This section discusses how to map metadata elements onto concepts of
a domain ontology to enhance the metadata and discover any semantic

relationships with the concepts in the domain ontology.

6.4.1 Ontology

When data sources are to be integrated, an ontology can be used in the
potential matching processes among their elements [14, 93, 176]. It
helps in discovering implicit and hidden knowledge through
conceptualisation of a domain of interest, and in overcoming the effect
of synonyms. Ontologies describe what the concepts are, and how they
are related. They play an important role in supporting information
exchange, reusing and sharing. In our work, a domain ontology will be
used to facilitate the semantic integration of experimental datasets with
public bioinformatics data sources and to make the data, especially
metadata, machine readable, understandable and more easily linked

according to the requirements of biologists.

An available domain ontology is the TAMBIS Ontology (TaO) [24]. It
contains knowledge about bioinformatics and molecular biology
concepts and their relationships. It does not include any instances. The

stated aim behind designing this ontology is given as being

“to provide an ontology that could help wunderpin the
development of systems that perform at least some of the
Jfunctions of a domain expert. In general terms, these functions
amount to knowing (i) what things are in the domain and (ii)

when and how these things are related.”

6.4.2 Discovering semantic relationships

The relationships between concepts given in an ontology and an

experimental dataset’s metadata allow the flexible linkage of this
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dataset with heterogeneous data across distributed data sources. These
relationships provide more flexibility in linkage by providing different
links.

Once the candidate key is identified, a search is made using this
candidate key or its synonyms from the domain ontology to find
matching concepts/terms. We extract the concepts from the domain
ontology to which the candidate key is related and all relationships
associated with the concept. As the experimental dataset concepts are
mapped onto related concepts in the domain ontology, we mine for
relationships associated with each related concept in the domain
ontology, as well as for concepts linked to concepts of the experimental
datasets. For example, if the candidate key is AccessionNumber, we
may find in the ontology domain relationships associated with this

concept; for example, the following are linked to AccessionNumber:
isAccessionNumberOf, isldentifierOf, isECNumberOf.

The algorithm for this process is shown in Figure 6.1.

Step 1: map the experimental dataset concept (candidate key) into
concepts in a domain ontology. Many terms in the domain ontology may

map into the candidate key.

Step 2: for each related concept in the domain ontology, mine for

semantic relationships and associated concepts.

Step 3: associate the discovered semantic relationships and concepts with

the experimental dataset concept (candidate key) to enhance metadata.

Figure 6.1: Algorithm for mapping experimental dataset elements to
Ontology
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6.4.3 Enhanced metadata

Experimental Dataset metadata will be enhanced with any semantic
relationships discovered from the domain ontology. Enhanced metadata
provides a flexible means for linking the experimental dataset with
other public bioinformatics data sources. The enhanced metadata is

represented as:
EnhancedMetadata=<C, SR>

where C represents the knowledge base concept derived from the
domain ontology that is related to the candidate key and SR represents

the semantic relationships that have been revealed.

For the sake of simplicity in this example, we assume the experimental
dataset concept (candidate key) is mapped to only one concept in the
domain ontology. Consider the domain ontology in Figure 6.2, the
candidate key AccessionNumber is mapped to a similar concept
AccessionNumber in the domain ontology (Figure 6.3 and 6.4). All
relationships and concepts associated with the related domain ontology
concept are extracted. So, the enhanced metadata for the candidate key

1S:

<AccessionNumber, {<gene,isAccessionNumberOf>,<protein,
isAccessionNumberOf>,<DNA ,isAccessionNumberOf>}>

The biologists then determine which concept and relationship are of
interest based on their experimentation and nature of the dataset. If
there is ambiguity because there is more than one possible linkage, the
system will display the alternatives to the user. The user selects the
appropriate linkage; to help in this decision, the user is given additional

information from the ontology.
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Experimental Dataset Concept

isAccessioritjumberOf |

Domain Ontology

isAccessiohNumberOf

isAcoessj,énNumberOf

Figure 6.3: Mapping the experimental dataset concept into the Domain

Ontology
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Figure 6.4: Discovered semantic relationships between the

experimental dataset concept and domain ontology concepts

6.5 System Architecture

The proposed system consists of the following main components (see
Figure 6.5).

Metadata extractor: extracts metadata and has an Application

Programming Interface (API) to facilitate interaction between the
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application and the extractor. It also undertakes the functions of the

extractor component, such as experimental file processing and analysis.

Linkage key detector: computes the score for each column of the
experimental dataset to identify whether the element is suitable for use
as a linkage key to other sources. It uses the column headers and
column entries to calculate the scores of each column using formulae 1

and 2 in section 6.3.1.5, and the scoring system in Table 6.1.

Concept mapper: maps the experimental dataset concepts, mainly the
candidate key, to the domain ontology’s concepts and discovers

relationships between them.

Schema creator: creates a schema for the experimental dataset based

on the extracted metadata as described in section 6.3.

Data transformer: imports data in an unstructured format and
transforms it into a structured format, such as a relational form. It
transforms the experimental dataset using the schema created by the
schema creator. This creates a populated relational database from an

experimental dataset.

Once the experimental dataset is analysed and transformed to a suitable
format, it can be linked and integrated with our IDMBD system [10,
12].
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Experimental Datasets

Metadata Extractor
Sources’ Metadata

Domain Ontology

Linkage key detector

Concept Mapper

Schema Creator

4

Data Transformer

Figure 6.5: Query Handler and Metadata extraction Architecture

6.6 Limitation

Since there is a broad variety of flat file formats, the approach
presented in this chapter is not intended to cover all types of flat file
formats in their entirety. However, it is a starting point for further
enhancements in this direction. The prototype system accepts only
delimited flat files, where the first line contains column names or
headers (Figure 6.6). However, the principles in the approach can be
used also for semi-structured files (e.g. XML) where an element tag can

be treated as a heading name. Moreover, some of the principles
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(candidate key for linkage detection, semantic relationship discovery

and ontology mapping) can be used with any file type.

ID_REF IDENTIFIER GSM12883 GSM12884 GSM12885 GSM12886
5.8.3 C47F8.6 -0.351 -0.402 -0.114 -0.057
3.5.21 Y38H6A.3 -0.054 -0.093 0.504 0.323
16.20.14 C32H11.13 null -1.334 -0.886 -0.935
5.3.4 Y71F9B.2 -0.255 -0.158 0.187 0.011
4.1.1 K10E9.1 -0.598 0.011 0.308 0.2
10.2.16 F48G7.5 0 0.135 0.07 -0.201
22.14.6 T19D12.5 -0.316 -0.598 0.291 0
29.9.13 F08B4.4 -0.007 -0.448 0.343 null
21.11.6 F21D12.5 -0.307 -0.54 0.027 0.29
9.5.12 F49F1.1 -1.503 -1.812 -0.219 -0.845
11.11.20 F36D3.5 null -0.686 0.33 -0.229
2.14.11 Y75B8A.10 -0.053 -0.051 0.199 0.043
14.4.8 Y57A10A.15 N/A null 0 -0.223
16.12.10 C02F5.11 -0.36 -0.483 0.394 0.024
21.12.23 2C373.2 -0.425 -0.38 0.054 -0.221
9.24.8 R10F2.1 -0.103 -0.247 -0.069 -0.054
12.9.20 F35E8.7 -0.257 -1.503 -0.167 0

Figure 6.6: Sample of tab delimited flat file, where the heading names

in the first line

6.7 Summary

The process of automatically extracting the metadata from an
experimental dataset is an important stage in effectively integrating this
dataset with data available in public domain bioinformatics sources.
Metadata extracted from this data file can be stored in databases and
used to verify data extracted from an experimental dataset. This allows
the biologist to keep track of the dataset, and facilitates its future
retrieval. The extracted metadata can also be mined to discover useful

knowledge. The dataset may also be processed and queried with other
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bioinformatics data sources to obtain more information. The
experimental dataset may contain a number of types of metadata that

can be used to add semantic value to the linkage.

This chapter has described an approach for extracting metadata from an
experimental dataset. The approach attempts to extract the following
types of metadata: element name, type, length and constraints, such as
null value allowed and positive value or negative value allowed. The
approach was able to identify a suitable linking element to public

domain bioinformatics sources.

The approach extracts an experimental metadata and identifies the most
suitable linkage key, by a technique based on a mathematical
foundation using a broposed scoring system. A domain ontology is also
used to mine and discover semantic relationships between an
experimental dataset concept and its domain concepts. These
relationships are used to enhance the metadata, which helps in linking
and integrating the experimental dataset with public domain

bioinformatics data sources.
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Implementation

7.1 Synopsis

This chapter describes the implementation of the system presented in
Chapter 5 as an illustration of concept of the SLM model.
Implementation details of the IDMBD prototype and how relationships
between biological objects are used to integrate heterogeneous
bioinformatics data sources across species are presented and explained in
this chapter. There is an implementation overview, followed by a
discussion of the technologies used, and a description of modules. This
chapter does not intend to give full details of implementation or a user
guide of the system, but rather highlight some of the system’s

functionality and implementation.

7.2 Requirement Analysis

There are many factors involved in determining the system design and
implementation of any system, and the following were important for

IDMBD:

e IDMBD should be implemented as an illustration of concept
prototype to demonstrate the technique of linkages described in
Chapter 4. Other features that exist in other systems, like reports,
visualization and integration of bioinformatics analysis tools are

beyond the scope of this project.

e The system architecture should be extendible, i.e., it should be
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= capable of allowing new data sources to be added.
= capable of allowing the addition of new relationships.

e The system should be user driven with respect to the type of
relatioﬁship and algorithms available to establish relationships with
flexibility in setting thresholds.

e The system should be flexible, i.e., it should accept diverse types

of experimental data files and different linkages

e The system should be designed in a modular and generic way so

that its components can be adapted and reused.

e The architecture should preserve data source autonomy and access

up-to-date data.

7.3 Implementation overview

The system framework of IDMBD is composed of a web client layer,
web application layer, database connection layer and data sources layer.
In this implementation, we chose Apache integrated with Tomcat as the
WWW server software, mySql as the database server, and Java language
and Java Server Pages (JSP) technique as the means of development

except for the Worm wrapper, which is implemented in Perl.

Figure 7.1 illustrates the implementation architecture of IDMBD. The
Client GUI interface facilitates user interaction with the other system
components in the architecture. Users access the system through a user
interface, i.e., Web browser, which accepts a user query, uploads the
experimental datasets and displays the results. First, the user sends a
request to the web server. Subsequently, the web server transfers the
request to the IDMBD, which handles the user request through its

modules, which are described in section 7.6.

The IDMBD’s mediator interacts with the data sources’ wrappers to

facilitate the submission of queries and receipt of results. The wrappers
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thus hide the complexity of the data sources from users and other
components. It also interacts with the SLM and Relationships
Knowledge Base (RKB) through the Soft Link Adapter (SLA), which
makes the SLM appear to the external world to be an object with a set of
predefined methods. The web server then returns a response to the
client’s browsers through the web. The main components in the

implementation architecture are:

e Apache Web Server: This server is responsible for the services on
static HTML pages related to the project and passes JSP requests to

the Servlet container, i.e., Tomcat.

e Tomcat Servlet Container: This server accepts the incoming
Servlet as JSP requests and processes, handles, and responds to
them. The JSP pages are simply an interface between the user and
the background system. JSP pages let the user enter his/her query,
upload experimental datasets and set his/her preference parameters.

It then passes this information onto IDMBD.

e IDMBD modules: These consist of the main system modules
(Section 7.5), Java helper classes and wrapper classes. Java helper
classes are responsible for the HTML/XML parsing, processing,
data caching and data processing tasks. Wrappers are responsible
for the creation, maintenance, and closure of actual database
connection classes, the passing of queries to the identified

databases, and the receipt of incoming data from the databases.

e Wrapper Layer: This layer is designed to be extensible so that, in
future, new data sources and connection handlers can be easily and
seamlessly inserted into the system. At present, there are two

different interfaces because of the two data sources.

= JDBC interface: Our Java classes use this interface like a
standard Java Database connection API. We create,

maintain, and close the database connection according to
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JDBC APIs, and follow the same pattern for query

construction and result set processing.

= AcePerl interface: This is used to connect to the AceDB.
We use its library and follow its interface to create, maintain,
and close database connections. Query construction, passing
and result set processing are handled according to the

AcePerl interface.

e Data Source Layer: data sources are invisible to end users and
composed of heterogeneous data sources. Currently, the following

species- specific data sources are used in our implementation:

= MGD: includes information concerning the genetics,

genomics and biology of the mouse.

= WormBase: includes information concerning the genetics,
genomics and biology of C. elegans and some related

nematodes.

e RKB

A Soft Link Model was created between mouse and C. elegans as
described in section 4.3 for the following relationships: Homolog,
Orthology, Molecular Function, Biological Process, and Cellular
Component. First, we parsed all mouse sequences and worm
sequences from Swiss-Prot using the parser. Then we used the
BLAST algorithm to compute the homology between the sequences.
For generating the Molecular Function, Biological Process and
Cellular Component, we used the algorithm described in section
4.3.3.4.2. The relationship instances were then stored in a relational
table as (source-object identifier, target-object identifier, relationship
closeness) in mySql databases. After we had built all relationship
tables, we created our SLM and stored it in an XML file as shown in
Figure 7.2, which describes the relationships between the concepts of

the data sources. The RKB can be used to build protein-protein
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interactions as lines (edges) forming a network between points
(nodes). Data can be visualized as a network graph directly from RKB

using visualization software (Figure 7.3).

7.4 Choice of programming language

In implementing the IDMBD prototype, Java was used for most
components and Perl was used to create wrappers for AceDB data
sources. Java supported object-oriented design, modularity in the system
design, easy integration with other Java, C and C++ components and
availability of APIs. However, the system can be implemented using any
programming language that provides support for developing distributed
applications, such as C, C++ or Java. Java was chosen to implement the
system, due to the following advantages over other programming
languages:

e It is a platform independent language that allows developers to
write software that can be compiled once for execution on different
platforms.

e Due to Java’s current popularity, many developers are familiar
with the language and will therefore be able to use our system.

e Several libraries and classes are implemented in Java.

The technologies used are summarised in Appendix C with reasons for

use.
7.5 Modules

Figure 7.4 shows the modules of the IDMBD system. These modules
were designed to be a generic so they could be adapted and reused.
Samples of Java classes are presented in Appendix D. This section

provides descriptions of these modules.

7.5.1 Soft Link Model

The Soft Link Model is responsible for discovering relationships between
different objects. Six types of relationships are implemented. It also

communicates with the mediator during the integration process to enrich
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query results with additional information from other species based on a

relationship of interest. It receives requests from the mediator and then

collects data from the SLM metadata and RKB to find possible related

data sources and respond to the mediator. Thus, it helps in providing a

flexible linkage between data sources using the relationships created.

SoftLinkAdapter (SLA): This module comprises a set of
application programming interfaces (APIs) to interact with the
mediator. When it receives a request from the mediator to find data
related to entries sent by the mediator, it determines whether the
relationships exist in the Soft Link Model. If they exist, it fetches
them from RKB and returns the related data sources, concepts and
identifiers to the mediator. This module has several primitives for

IDMBD. A brief description of these primitives follows:

getRelatedConcept: the main primitive in SLA, which calls
other methods to fetch all related entries from other data
sources.

getRelation: this gets the relationships for a specific concept
in a specific data source from SLM metadata. It retrieves the
relationship name, concept and the data source name for
related sources.

getRelations: this gets all relationships existing in a specified
Soft Link Model.

GetMatchEntriesInDataSource: returns related entries from
other data sources. It calls the wrapper manager to fetch
records from related data sources, and retrieves a record
from a data source that has relationships with specified

entries.
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Figure 7.1: An overview o fthe implementation architecture
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<7xml version="1,0" encoding="UTF-8" 7>
<SLM-knowledge-base no="2">
- <database name="mgi*>
- <concept Name="Gene_product">
- <relations>
<SLM DBName="worm" concept="Gene_product' RelationType="Homolog" File="homolgy" FileType="mySQL" />
</relations>
- <relations> ’ :
<5LM DBName="worm" concept="Gene_product" RelationType="GO term(Molecular_function)’ File="MF" FileType="mySQL" />
</relationss>
- <relations>
<SLM DBName="worm" concept="Gene_product' RelationType="GO term(Biclogical process)" File="BP" FileType="mySQL" />
</relations>
- <relations>
<SLM DBName="worm" concept="Gene_product’ RelationType="GO term(cellular_component)’ File="cc" FileType="mySQL" />
</relations>
</concept>
</database>
</5LM-knowledge-base>

Figure 7.2: An example of SLM metadata
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MGL:894692

Figure 7.3: A graph represents protein-protein relationships between
mouse and C.elegans. Each rectangle represents a different protein and
each line indicates that the two proteins have relationships. Only a very

small set of RKB is visualized here
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=  GetMatchEntriesInRelationTable: fetches relationship table
entries that match the specified identifier, using the
Relationship wrapper interface, it retrieves all records related

to the specified identifier and data source.

e GenerateSoftLinkTable: is used to create a soft link model to
discover semantic relationships between concepts across data
sources. This generates homology, orthology, paralog, Molecular
Function, Biological Process and Cellular Component relationships
between genes. Different algorithms are used to calculate
relationship closeness between objects. The SLM uses a mySQL
database to store relationship instances whenever there is a

relationship between a pair of entries in a pair of data sources.

e buildSLM: is responsible for creating SLM metadata and storing
relationships in RKB.

7.5.2 Configuration

This module is responsible for registering new data sources to the system
as well as loading configuration files on the system execution. It consists

of two main sub modules:

e Register: registers new data sources within the IDMDB system, by
specifying data source information: name, location, wrapper, and
schema, type of data source and access procedures that can be used

to interact with a data source (Appendix B).

e Config: parses the configuration file and loads all registered data
source wrappers and Soft Link Models on the system execution.
The configuration file “conf.sys” contains registered data sources,

their wrapper classes, and available soft link models.
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7.5.3 Mediator

Mediator plays intermediate roles between users and data sources. It also
communicates with the soft link module to retrieve relationships between

data sources. This module consists of sub modules:

e Wrapper Manager (WM): instantiates the various data sources’
wrappers the system is configured to use. It manages existing
wrappers and performs other tasks: loading existing wrappers,
communicating with the Soft Link Model to retrieve relationships
between objects across sources, and removing duplicates during
result assembly from different sources. It invokes an appropriate
wrapper to get responses from sources. It loads both the Perl and
Java wrapper module on demand dynamically. It uses data sources’
wrappers to access other objects from those data sources. The WM
module consists of an Application Programming Interface (API) to
facilitate interaction between the application and the data sources’

wrappers as well as wrapper loading.

¢ Query Handler: plays a major role in integrating the expression
dataset with the public bioinformatics data sources. It is
responsible for linking the metadata with the domain ontology,
detecting the suitable linkage key and extracting metadata from the
gene expression data set. Query Handler has several API

primitives; a brief description is offered in Table 7.1.

e Source Selection: is responsible for selecting the appropriate data
source to answer a user query. User requests received by the Web
server module are forwarded to the source selection module to
decide which data source is appropriate. The data source is
selected based on the user query and on how many relationships

are associated with the data source.

7.5.4 Wrapper

The wrapper module is a class with specific entry points that provides

access to a class of data sources. The wrapper uses the standard
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connection API of the data sources. For example, it uses the JDBC driver
to connect to a relational database, and retrieves data, and uses AcePerl
to connect to the ACEDB data source. Specific wrappers are necessary
for each data source integrated into the mediator. Several wrappers are

implemented into IDMBD. These wrappers are:

e MGI_Wrapper: is a Java class that implements the Wrapper
interface and is loaded into the WM. It uses the JDBC driver to
connect to the MGI data source, which is a relational database, and

to retrieve data.

e Worm_Wrapper: is a Java class that also implements the
Wrapper interface and is loaded into the WM. It uses the AcePerl

driver to connect to the AceDB and to retrieve data.

e Relationship_Wrapper: The Relationship Wrapper class
implements the wrapper interface, which provides methods to load
JDBC drivers, establish new database connections, and fetch
relationship instances between data sources. This wrapper is
invoked by the SoftLinkAdapter (SLA) to fetch instances from
RKB.

e GO_Wrapper: provides an interface to the Gene Ontology (GO).
It uses JDBC drivers to access GO database.

e UniGene_Wrapper: provides an interface to Unigene. It uses
JDBC drivers to access the UniGene database.

7.5.5 Parser

This module is responsible for parsing BLAST output, XML files and
DNA and amino acid sequences. There are three parsers implemented in

the system:
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SLMParser: parses the SLM file and gets all the relationships
from the Soft Link Model and loads them into a hash table for later

usec.

BlastParser: is used to parse the BLAST output and extract the
sequence similarity score between each pair of sequences and the
identity percentage. This module uses the BioJava Blast-like
parsing framework, which allows direct SAX2-like parsing of the
native output from  Blast-like bioinformatics software
(bioJava.org). It uses BlastLikeSAXParser and
SeqSimilarityAdapter of the biojava project [130].

e SequenceParser: is used to parse sequences.

7.5.6 UserInterfaces

We developed two interfaces:

e End-user interface: a web-based interface for bioinformatics data

source integration based on the built prototype SLM. It facilitates
access to other system components in the system. It is used for data
integration and to link experimental datasets with data available in

public data sources.

Maintenance interface: for the administrator who uses it to reveal
relationships between concepts within data sources, i.e., it is the
main user interface that allows the administrator to register new
data sources in the system and build a Soft Link Model between

concepts in data sources and create RKB.
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Method function

ExtractMetadatq returns a list of elements’ names of an experimental dataset file.

isUnique returns true if the element value is unique across the dataset.

isSingleValue | returns true if the element value across the dataset has a single value.

isKey returns true if the element’s name includes one of the following words: key, accessior
identifier, number, id, and no.

isAmbiguous | returns true if the element has at least an ambiguous value.

isNull returns true if an element has at least one null value otherwise true.

DataType returns the data structure type of an element.

elementLength | returns the maximum length of an element on the dataset.

ComputeScore | returns the score for each element.

isDate checks the selected element to make sure the value contained appears to be a vali
date.
If the value does not appear to be a valid date, then the column type will not consider
a date.

isString tests the selected element to make sure that it contains a string (contains onl
characters
A-Z and a-z.)

isDouble tests the selected element to make sure that it contains a double value (contains only
numbers 0-9 and a decimal point.)

isIntger tests the selected element to make sure that it contains a numeric value. It does this b
passing the string into the parselnt() function.
Table 7.1: Query Handler methods

7.5.6.1 Relationship discovery

When an administrator (who does the relationship discovery) executes

the system, he/she is presented with the GUI main window shown in

Figure 7.5. This has the following functions:

e Registration: This function is used to call the register module to

add a new data source.

e Parser: This function is used to call the parser module.

e Relationship Discovery: This function is used to invoke the

GenerateSoftLinkTable

module to create new relationship

instances and save relationship instances on a RKB.

e Soft Link Model: This function is used to call BuildSLM to create

a New Soft Link Model, builds the SLM metadata and stores it in a
XML file. It is also used to add a new entry to the Soft Link
Model.
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Registeration Parser Relationship Table Sott Link Model

Create » Homology

Save Orthology
Paralog
Same Molecular Function
Same Biological Process
Same Cellular Component
Belongs to the same family
Encoded by
Contained in

Transcribed from

Figure 7.5: GUIMain interfacefor relationship discovery and building
SLM

Building of the RKB is performed through an automatic process. RKB is
generated by using algorithms to calculate relationship closeness of
interest between objects across data sources. Metadata about the
relationships is stored in SLM metadata in XML format. The RKB is
built in a bottom-up fashion by adding and merging incrementally the
instances of objects that have relationships. This is done by choosing the
Relationship Table option from the main menu and choosing the
relationship type to be created between concepts of data sources. The
user will be prompted with an interface as in Figure 7.6. This interface

allows the user to specify:
(1) a pair of data sources to be involved in the relationships discovery.

(2) a pair of concepts of data sources to be involved in the relationships

discovery.

(3) an algorithm to compute the degree of relationships or similarity

between the properties ofthe concepts.
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Once the discovery process is finished, the user can browse discovered
relationship results in a separate window, and save them into the RKB
and SLM metadata.

7.5.6.2 Integration Process

When a user executes the GUI she/he is presented with the GUI main
window shown in Figure 7.5. This has five options:

e Overview: gives a description of the system.

e Search Database: used for single queries.

e Advance Search: used for linking several experimental datasets
and comparative genomes and for integrating with public data

sources.
e Soft Link Model: used for browsing relationships.
e Data Sets Comparisons: used for cross-species comparisons and

comparative genomes.

In the following, we describe briefly, the steps to link experimental

datasets with bioinformatics data sources.
1) User chooses the Advance Search option from the main menu.

2) User uploads experimental datasets from a file in a flat format through

the user interface as shown in Figure 7.8.
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Soft Link Table

DataBase DBI1 v Link to Data Base

Concept Link to Concept

First Property
Upload: Please select a file by click right button Browse

Second Property.

Upload: Please select a file by click Browse button Browse

Algorithm:

tblastn v
tblastn

blastn

blastp

blastx

tblastx

Browse

OK Cancel Show

Figure 7.6: User interface for discovering relationships between
concepts. The user chooses the concepts, data sources and
relationships type and the algorithm to compute relationships

closeness

3) IDMBD is used to parse the file and extract metadata of the file as
described in Chapter 6. The extracted metadata is shown to the user as
illustrated in Figure 7.9 . A candidate key for linkage is highlighted. It
is up to the user to decide whether the key recommended by the

system or another key from the displayed metadata will be used.

4) The user is prompted by the interface (see Figure 7.10) to set his/her

parameters: namely required fields to be retrieved, relationship type to
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be used in linkage with other species, relationship closeness and

species of experimental datasets.

5) The system links and integrates these experimental datasets with
public bioinformatics data sources and provides the user with gene

annotations from other species.

6) The user can browse the existing relationships between data sources in

tabular format or as a tree format.

7.6 Genericity

A requirement for system is that it is designed in a generic fashion. This
is to allow new sources and algorithms to be added easily to the system.
The Mediator, SLM module and Parser are written in a generic fashion,
so that new sources and relationship types can be brought into the

IDMBD system without affecting or needing to write new code.

The IDMBD system’s architecture allows for extendibility by the
addition of new relationship to the system. With little effort, a new

relationship can be added to the system, by:

1) Registering metadata for the new relationship, i.e., name.

ii) Writing or obtaining the necessary algorithm from an internal or
external source.

iii)  Storing the algorithm’s metadata, i.e., name, location, syntax.

iv)  Invoking algorithms to mine the data sources for the
relationship and measure the relationship closeness between
objects in data sources.

V) SLM is built and the relationship tables are generated and added
to the RKB.

7.7 Summary

In this chapter, the design and implementation issues of IDMBD were
looked at. This chapter began by presenting the requirements. Then, the

implementation overview and IDMBD architecture were presented. The
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choice of programming language and technologies used were introduced
also. The description of the modules and components of the IDMBD
were presented including the mediator, Soft Link Model, wrappers,
configuration, parser and user interface. Finally, snap shots of system

menus and interface were presented.

3 IDMBD system - Microsoft Internet Explorer

Fie Ed* View Favorites Tools Help i f

CARDIFF

UNIVERSITY
PRIFYSGOL

O *RP§>
IDMBD system at Cardiff University

| Overview | Search Database | Advanced Search | Soft Link Model | Data Sets Compansons| Comments 03

IDMBD is a system for semantic integration o f Bioinformatics Data sources.
An approach to the integration of diverse bioinformatics data sources,

using a flexible and free linkage, is implemented. Soft Link Models (SLM)
are modeled via concepts that are interrelated, using a rich set of

possible relation types. The proposed model pursues a novel approach

that provides a flexible, free and soft linkage between data sources.

We believe SLM approach allows biologist to access different data

sources efficiency using a single system. It also provides a means oflinking
datasets from other disciplines. Using this approach, user will not need

to be aware of which appropnate data sources to use and how to access

them, thus greatly reducing the time and effort taken to analyze their datasets.

Figure 7.7: snap shot ofmain web-page interface
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3 IDMBD system - Microsoft Internet Explorer

Ejte £d* View Favorites look Help

QR pAED
PRIFYSGOL

O * RpY|V>

IDMBD system at Cardiff University

Overview | Search Database | Advanced Search | Soft Link Model | Data Sets Comparisons | Comments 0

Experiment Data Browse..

S'eperatoi Space

| Next 11 Reset

Figure 7.8: Uploading experimental data setfrom aflatfile
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3 IDMBDsystem Microsoft Internet Explorer

tile Edit Sew  Favorites lools Help

ORPIFF

UNivtRsmr
PHIf-VSGOI
A

CA

IDMBD system at Cardiff University

| Overview | Search Database | Advanced Search! Soft Link Model | Data Sets Comparisons | Comments O

Expeiiment Metadata

Number of Cohimns= 9

Select the search key

Element name Type Maximum length Is null Single Value
fOID_REF String 8 no Yes
:OIDENTIFIER String 10 [no  [Yes
OGSM12883 String 6 [no  [Yes
OGSM12884 String 6 [mo  [Yes
(OGSM 12885 String 6 [no  [Yes
O GSM 12886 String 6 [no Yes
[OGSM 12887 String 6 [no Yes
OGSM 12888 String 6 [no Yes
[OGSM 12889 String 6 [no [Yes

| Next ]| Reset

Figure 7.9: The metadata detected from experimental data set.

candidate linkage key is highlighted
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| Ete
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IDMBD system at Cardiff University

| Overview | Search Database | Advanced Search ISoft Link Model | Data Sets Comparisons! Comments £3
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)
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Source Any Source.
Species mouse

Soft Link Model
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BiologicalProcess_SLMxml

H

v
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Figure 7.10: Schema view and user parametersfor integration process
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Chapter 8

Analysis of data from a wet

laboratory experiment

8.1 Introduction

To demonstrate the utility of our prototype system, we used the tools to
analyse datasets generated by wet laboratory experimentation. A pair
of complementary studies was chosen that represented the analysis of
an identical biological variable studied in two different organisms. The
aim was to demonstrate that the soft link framework would allow us to
derive novel insights into the experimental system by determining the
elements conserved between species. Furthermore, evaluation of the
data generated using distinct modes of linkage and variable thresholds

would illustrate the benefits of this approach in biological research.

8.2 Data from Wet Laboratory experiment

Data were derived from selected datasets accessible through the
MIAME [39] compliant GEO database; this ensured all appropriate
information would be available. The experiments selected represented
a pair of studies that quantified global gene expression changes during
the normal aging of mouse tissue (GEO: GDS40) and the model
nematode, C. elegans. (GEO: GDS 583) (Table 8.1). In each case, the
researchers conducting the primary experiments derived a cohort or set
of genes that showed statistical age-related changes in their expression
pattern. A set of 500 age-related genes were identified in mouse[1],
whilst the nematode experiments yielded approximately seven times
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that number (3534) [148]. This difference may stem from the fact that
the mouse study was targeted at a specific tissue, involved in cardiac

development, whilst the nematode experiment derived changes from the

whole organism.

8.3 Objectives of the SLM Analysis

Through the analysis of these datasets, we aimed to evaluate the
significance of altering both the method and threshold of linkage within
the SLM used when determining cross-species conservation. This
process should have allowed us to determine the optimal threshold for a
cross-species orthology relationship. Also by defining the intersection
between elements conserved by orthology and ontological
classification, this analysis might focus future laboratory studies on key
elements of the aging process. The initial step required to achieve these
objectives was to integrate experimental datasets with the primary data
sources for the two species in question, MGI for mouse and Wormbase
for C. elegans. We reanalyzed the data several times, altering various
parameters (relationship types and threshold) to generate unique groups
of gene objects conserved between the experimental datasets under the
different relationships. In turn, these lists were analysed for
intersections indicating molecular elements closely linked to the
biological variable being studied. The sets generated were analyzed to
demonstrate whether they provided a functional enrichment over the

original base datasets.

138



CHAPTER 8: ANALYSIS OF “WET LABORATORY” DATA

MOUSE NEMATODE
Accession GDS40 GDSS583
Tidl Cardiac development, Aging time course, normal
e

maturation and aging

adult

Data set type

gene expression array-
based (RNA / in situ

oligonucleotide)

gene expression array-
based (RNA / spotted
DNA/cDNA)

Dataset size

Up regulated genes: 500

genes

Up regulated genes: 3534

genes

Species

mouse [Mus musculus]

nematode[C. elegans]

Summary

Benchmark gene
expression profile of heart
ventricle at various ages to
monitor changes in cardiac
development. Examined
embryonic stages through
adolescence and
adulthood.

Examination of normal
adult aging using
synchronized populations
at O - 144 hours. Employed
CF512 fer-15(b26) II; fem-
1 (hc17) IV mutant strain,
which has defective
spermatids thus
eliminating contributions
from embryonic

transcripts.

Table 8.1: Comparison of the experimental metadata describing the

two wet lab experiment used for SLM analysis

8.4 Integration of Wet Laboratory data into “Soft Link

Model Environment”

A high-level schematic overview of query workflow is given in Figure

8.2 and illustrates how the various inputs and outputs are interlinked.

The phases of analysis include the following stages:
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8.4.1 Metadata extraction

The initial stage of the experiment exploits the flat file representation of
the experimental datasets. The system extracts the metadata data from
this file and recommends a key for linkage; in this example, the
recommended linkage key for the mouse data, highlighted in Figure
8.1, is the GenBank ID. User defined, additional metadata can be

extracted from the original data file as shown in Figure 8.1.

8.4.2 Identifier conversion

The system subsequently maps the dataset linkage keys to specific-
species identifiers, MGI ID and WP Protein ID, for the mouse and C.
elegans, respectively. A network of complex relationships may be
utilised to accomplish this mapping. For example, MGD links to
GenBank either through the field “Markers” (in the “genes” table) or
field “molecular probes” or “segments” (for anonymous DNA

segments):

Relationship 1 (R1): GenBank Accession -> Marker (gene).

Relationship 2 (R2): GenBank Accession -> Marker (gene), GenBank
Accession ->probe, Probe-> Marker (gene)

Relationship 3 (R3): GenBank Accession --> Marker (gene), GenBank
Accession->probe/segment, Probe->Marker(gene)->GenBank Accession -

>UniGene identifier, UniGene identifier -> Marker (gene).

8.4.3 Cross species transformations

The system uses specific-species identifiers together with pre-
calculated relationship tables (RKB) to transform the gene lists from
one species to their counterparts, as defined by the function of the
relationship table and the threshold under which it is sampled in another

species. This transformation is central to the SLM processes.

8.4.4 Defining genes conserved between species using specific

functions and thresholds

Calculation of the intersection between species-specific identifiers is
generated by converting the experimental identifiers or by transforming

a complementary list from a second organism using a defined
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transformation function under a defined threshold. This intersection
represents a group of genes conserved across species under the criteria

defined by the transformation function and threshold.

8.4.5 Comparison and validation

To determine the impact of different transformation functions and
thresholds we evaluated the intersection using various transformations.
The aim was to enable us to identify and provide a biological
explanation for the optimal threshold for each transformation and the
elements that re-occur independent of the transformation function. The
biological significance of the transformation process was calculated, for
the mouse genes, by calculating the enrichment of specific biological
processes and pathways against the processes/pathways represented by

the large original list.

All in silico experiments were conducted using a platform equipped
with an Intel Pentium 4 processor working at 2.80 GHz with 1 GByte
of RAM, running Microsoft Windows, Sun Java Development kit 1.4
and Apache server 2.0.48. In the following sections, we present some

of the more significant results from these experiments.
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12 IDMBD system - Microsoft Internet Explorer E Q D®

File Edit View Favorites lools Help
© Back - Favorites *

Address [*} http://localhost:8080/5LM_module/ExperimentWrapper.jsp Q @

Overview | Search Database | Advanced Search| Soft Link Model | Comments Sd

Experiment Metadata

(Number of Columns= 20

Select the search key

Element name Type Maximum length Is null Single Value
O Systematic Name String 10 no Yes
O Common name String 13 no Yes
10 Synonyms String 10 no Yes
© Genebank ID String 8 no Yes
O Description String 101 no no
O Time 1, Tissue Type All normalized”  String 22 no no
O Time 2 , Tissue Type All normalized"  String 22 no no
'O "Time 4 , Tissue Type All normalized"  String 22 no no
O Time 8, Tissue Type All normalized"  String 22 (no no
O Time 12, Tissue Type All normalized" String 22 [no no
O Time 1, Tissue Type CB normalized" String 22 no no
O Time 2, Tissue Type CB normalized"  String 22 no no
O Time 4 , Tissue Type CB normalized" String 22 no no
jO Time 8, Tissue Type CB normalized"  String 22 jno no
O Time 12, Tissue Type CB normalized" String 22 jno no
|O Time 1, Tissue Type Dep normalized" String 22 N0 no
O Time 2 , Tissue Type Dep normalized" String 22 no no
O Time 4 , Tissue Type Dep normalized" String 22 no no
O Time 8, Tissue Type Dep normalized" String 22 no no
n(()m'l'l:::zd}'z , Tissue Type Dep String 22 o o
Next Reset
Done A Local intranet

Figure 8.1: Screen snapshot shows the extracted metadata from the

experimental datasets. The recommended linkage key is highlighted
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|
r~

© = O
Genes

.y
|

C. elegans
Genes

DB= Wormbase DB= MGD
Relationships = Relationships =
(H,MF,BP,CC) (H,MF,BP,CC)

4 )

Soft Link System

. © )

Ola & o~ @ ¥

C. elegans C. elegans Mouse Mouse

Relationships:

M = isHomologyTo

MF =hasSameMolecularFunction

BP = hasSameBiologicalProcess (BP)
CC = hasSameCellularComponent (CC)

Figure 8.2: A schematic overview of query workflow, and how various inputs and
outputs are interlinked. @ represents the mapping of the original experimental
datasets onto their respective primary data sources. @ denotes the soft link
transformation of the data into an output dataset using a defined relationship at a
prescribed threshold. (®) represents the output of the experimental datasets mapped
onto, and annotated by the gene identifier derived from the primary data source for
source species. (@) represents the gene lists generated by transforming the
experimental data using a defined linkage and threshold onto the gene identifier of a
second organism. (®) represents intersections of the output list generated using

various transformations
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8.5 Results from SLM Analysis

In this section, we introduce the significant results obtained using the
IDMBD system.

8.5.1 Orthological and Ontological Data Transformation

Data extracted from the two selected wet laboratory experiments
(available as tab delineated flat files) were presented to the SLM
system. Their metadata data were extracted (see Chapter 6) and
mapped onto specific-species identifiers using the GenBank accession
number as the linkage key. The Relationship Knowledge Base (RKB,
Chapter 4) was then used to transform the datasets to lists of genes from
the counterpart organism (i.e., transforming C. elegans genes onto
mouse and vice versa). This process was performed using variable

relationships and thresholds (see Chapter 5).

The mouse ortholog of the age-responsive C. elegans genes and C.
elegans ortholog of the age-responsive mouse genes were determined
using a BLAST transformation function. The number of orthologs
identified was calculated under various levels of relatedness defined by
varying the threshold for the probability of the sequence match
occurring at random (i.e., the greater the probability, the lower the
relatedness of the sequence) [120, 121]. This could be calculated only
for probabilities <1E-1 (abbreviated to E-1) due to a threshold defined
within the creation of the original RKB. In addition, ontological
transformation of the two datasets onto specific-species identifiers for
the complementary species was performed using the relationships of
molecular function (MF), biological process (BP) and cellular

components (CC).

The intersection between the original datasets, mapped onto their own
specific-species identifiers, with genes representing complementary
data from the other organism was also calculated. These measurements
provide insight into the inter-species conservation of genes under a

single transformation. Analysis considering a further intersection of
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genes transformed using multiple relationships, orthology and ontology,
provides a gene list representing conservation of form (sequence) and

function.

Table 8.2 shows the number of homology pairs between the two
datasets at different thresholds.

Table 8.3 shows the number of MF, BP and CC pairs between the two
datasets at different thresholds. The intersection between a Homology
pair and Molecular Function (MF), and between a Biological Process
(BP) and Cellular Component (CC) are 3278, 1814 and 13714

respectively.

Table 8.4 shows the intersection between a homology pair and a
molecular function pair to homology pair at different thresholds.

(Number of homology-pair m number of similar-MF pair).

Table 8.5 shows the ratio of intersection between a homology pair and a
Molecular Function pair to a homology pair. (Number of homology-

pair N number of similar-MF pair) / (Number of homology-pair).

Table 8.6 shows the number of GO-terms responsible for aging and
growth from the datasets obtained, whereas Table 8.7 shows the ratio of
GO terms responsible for aging and growth to total biological process

GO across the two datasets.

Homology

Threshold 0| E-70 | E-40 | E-30 | E-20 | E-10 | E-1

HM 21 106 224 300 443 862 | 2214

Table 8.2: Number of Intersecting homolog pairs between two datasets
at diﬁ‘erent thresholds
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Relationships Number of pairs
Molecular function (MF) 3278

Biological process (BP) 1814

Cellular component (CC) 13714

Table 8.3: Nitmber of Intersection of MF, BP and CC pairs between

two datasets

Threshold 0| E-70 | E-40 E-30 E-20 E-10 E-1
HM X MF 0 6 9 12 17 29 38
HM X BP 0 14 33 45 56 102 189
HM X CC 0 10 15 16 23 34 67
HM 21 106 224 300 443 862 | 2214

Table 8.4: Intersection between homology pair and MF, BP and CC

Threshold E-70 E-40 E-30 E-20 E-10 E-1

1.MF 0.056604 | 0.040179 0.04 0.038375 | 0.033643 | 0.017164

2.BP 0.075472 | 0.084821 0.07 0.049661 | 0.034803 | 0.01897

3.CC 0.09434 | 0.066964 | 0.053333 | 0.051919 | 0.039443 | 0.030262

Table 8.5: Fraction of MF, BP and CC to homology across mouse and
C. elegans. Mapping mouse age-related genes onto C. elegans
components using different relationships and thresholds. These figures
are calculated by: 1.MF= (HM X MF)/HM, 2.BP= (HM X BP)/HM,
and 3.CC=((HM X CC)/HM
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Threshold E-70 | E-40 | E-30 | E-20 | E-10 | E-1
Number of aging & growth with MF 3 4 5 8 13 20
relationship

Number of aging & growth with BP 3 4 4 4 7 10
relationship

Number of aging & growth with CC 3 3 4 7 8 11
relationship

Total biological process 14 33 45 56 102 189

Table 8.6: The number of genes with GO-terms related to aging and

growth
Threshold E-70 E-40 E-30 E-20 E-10 E-1
MF 0.214286 | 0.121212 | 0.111111 | 0.142857 | 0.127451 0.10582
MP 0.214286 | 0.090909 | 0.088889 0.125 | 0.078431 - 0.058201
CC 0.214286 | 0.121212 | 0.088889 | 0.071429 | 0.068627 0.05291

Table 8.7: The ratio of genes with GO terms related to aging and
growth to the total with conserved ontological classification across two

datasets
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8.5.2 Determining the optimal threshold for cross-species

orthology relationship

C. elegans orthologs were calculated for the cohort of age-regulated
mouse genes at variable levels of relatedness and the intersection of this
group was calculated with a complementary transformation of the
mouse genes using ontological categorization, through direct or parent-
child associétion. This provided us with a profile (Figure 8.3) that
described the relationship between protein sequence conservation (as
expressed by the homology score) and maintenance of the biological
role. A clear optimum, for both Cellular Component (CC) and
Molecular Function (MF) can be identified, where the expected
probability of a match is between E-70 and E-40. This represents a
small group of highly conserved genes displaying significance in their
area of biologicél function. This proportion of genes with matching
MF and CC ontologies drops sharply until it reaches a plateau, 4% for
MF and 6% for CC, between E-40 and E-10. This shows that
decreasing the stringency of orthology identification over a significant
range does not reduce the proportion of genes with matching
ontologies. This implies that the increased number of orthologs
identified is not increasing the proportion of random or non-specific
matches. It is evident that this profile can be used to identify the
optimal threshold at which to perform cross-species data mining.
Approaches employing high or low cut-offs either discard useful data

or include substantiale noise.

Intriguingly, the profile for the proportional intersection for Biological
Process (BP) terms is different and does not show the biphasic
properties of MF and CC. Instead, a smooth curve is seen with a broad
optimum at ~E-40. The percentage of intersection falls off smoothly
until it reaches that attributable to random matches at E-1. This unique
profile may be a property of the highly diverse nature of the biological
processes between these two species or due to the heterogeneity of gene
annotation by the communities. The data generated suggest that

functional interpretation of cross-species using an orthology model
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must be informed by the specific inter-species relationship between

orthology and function.

Threshold E-70 E-40 E-30 E-20 E-10 E-1
MF 0.056604 | 0.040179 0.04 0.038375 | 0.033643 | 0.017164
BP 0.075472 | 0.084821 0.07 0.049661 | 0.034803 | 0.01897
cc 0.09434 | 0.066964 | 0.053333 | 0.051919 | 0.039443 | 0.030262
0.1
7 \ e Biological Process
0.09 + / - - = =Molecular Function
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Figure 8.3: The profile of the relationship between protein sequence
conservation (as expressed by homology score) and maintenance of the
biological role. A clear optimum, for both Cellular Component (CC)
and Molecular Function (MF), could be identified where the expected
probability of match is between E-70 and E-60.
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8.5.3 Investigating the consequence of variable thresholds when
defining the intersection of evolutionary and functional

conservation

The exemplar experimental sets were designed to investigate the
transcript responses to aging; therefore, it was important to establish
whether those genes experimentally determined as aging-related
showed an established ontology relating to "aging" or "growth" that
was conserved across the species boundaries. We explored this overlap
between the homolog of the cohort of mouse genes displaying up-
regulation in response to age with an ontological category in both
mouse and C. elegans defined as "age" and "growth". This intersection
was determined for the three ontological classes BP, MF and CC using
a wide range of orthology thresholds. These data displayed profiles
similar to those determined for the global conservation of all
ontological categories determined previously. There is a clear
maximum on the proportional representation at E-70 with a secondary
feature peak at E-20 (see Figure 8.4). This indicates the presence of a
group of "aging or growth" genes displaying high overall conservation
with a smaller number of genes, which exhibit less conservation; this
latter group may arise from moderate overall conservation or may be
attributed to the conservation of key functional regions. This former
observation is consistent with the recognised functional architecture of
proteins that exploits common and flexible secondary structural motifs
to support key functional residues, whereas the latter explanation
reflects the evolutionary attribute of functional domains being used
within variable protein architectures. What is intriguing is that the
proportion of genes within this group displaying conserved ontology
"aging" or "growth" classification is 10 times higher than that observed
for all ontological categories. This may suggest that the genes involved
in aging and growth are much more highly conserved across the wide
evolutionary gap between mouse and C. elegans. It is clear from the
data that by exploiting the variable threshold, we can define either a

cross species mapping that is extremely conservative, identifying an
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orthology group that has a maximum probability of sharing function

whilst the selection of a lower threshold will permit the maximum

return of related genes and still minimise the noise generated from

random matches.

Threshold E-70 E-40 E-30 E-20 E-10 E-1
MF "0.214286 | 0.121212 | 0.111111 | 0.142857 | 0.127451 | 0.10582
BP 0.214286 | 0.121212 | 0.088889 | 0.071429 | 0.068627 | 0.05291
CcC 0.214286 | 0.090909 | 0.088889 0.125 0.078431 | 0.058201
. 025
|
1 Biological Process
i 0.2 N\ - = = =Molecular Function
\ — == Cellular Component
3 \
g 015 ¢ \ ..
£ ." Ty
5 \ e~ Tl
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Figure 8.4: A graph exploring the overlap between the homolog of the

cohort of mouse genes displaying up-regulation in response to age with

an ontological category in both mouse and C. elegans defined as "age

and

"growth".

”

This intersection was determined for the three

ontological classes BP, MF and CC using a wide range of orthology

thresholds.

151



CHAPTER 8: ANALYSIS OF “WET LABORATORY” DATA

8.5.4 Functional enrichment through cross-experimental

comparison

In the following section, we discuss the outcome of the experiments to
show functional enrichment through cross-experimental comparison

across species. We use the DAVID system to show the enrichments.

The SLM implementation enabled us to compare the molecular
responses detected in an aging experiment performed in mouse and the
model nematode C. elegans. It is illustrative of a major challenge for
genomics studies that these experiments implicate substantive numbers
of genes within the aging process; our analysis yielded 500 mouse and
>3500 C. elegans genes, which increased during aging. It is
impractical to investigate this plethora of possible targets
experimentally. Therefore, techniques that can refine the lists to those
targets that are central to the biological parameter under investigation
are essential to the investigators to enable them to focus on realistic
subsequent wet experimentation. In theory, the ability to identify
elements that respond in the same manner across species should
achieve the goal of identifying evolutionarily and functionally

conserved elements.

In order to characterise the refinement process under varied methods
and thresholds of linkage we analysed the SLM output in relation to the
500 aging-responsive mouse genes, since this species has a higher
degree of annotation than has C. elegans. This initial cohort was used
as a “background” population and the functional enrichment of the
intra-species conserved sub-groups calculated [63, 106]. The use of
orthology to map the C. elegans aging-related genes onto their mouse
counterparts (MGI ID) allowed the inter-section of these two groups to
be calculated. Using an orthology threshold of E-10 (defined by the
BLAST probability score) an intersection of 104 unique gene objects
could be identified whilst an increased stringency of E-70 yielded only
60 gene objects. Significant and subtly different functional enrichment

was observed in both groups (see Figures 8.5 & 8.6). The lower
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stringency orthology displayed enrichment in functional annotation
categories relating to transcriptional control, replication and chromatin
amongst others (see Figure 8.5). Increasing the threshold to consider
only those genes that exhibit extremely high homology (E-70) gives
functional groups related to nucleotide binding, replication, cell cycle
and protein/cellular metabolism (see Figure 8.6). These sets are not
exclusive, but the enrichment scores for each group are subtly different

indicating the impact of altering the threshold.

When mapping the C. elegans aging related genes onto their mouse
counterparts using a “molecular function” ontology the result was a
large, highly repetitive list that yielded a non-redundant set of 289
mouse genes with Ensembl IDs. When this list was used for
enrichment analysis, it yielded far weaker enrichment scores, but the
functional groups generated were associated with the mechanism of
regulation as may be expected from a mapping molecular function.
These groups included those genes involved in phosphylation (kinases),

DNA modification and the regulation of cell processes (Figure 8.7).

The intersection between lists generated by orthology and ontological
linkage provided a focused subset of genes, 16 and 6 under orthology
thresholds of E-10 and E-70 respectively, when analysed for conserved
molecular function. Analysis of the less stringent group identified
overrepresentation of members of pathways including cell cycle and
focal adhesion whilst the higher stringency group indicated only a bias
for elements involved in the cell cycle process. These are processes
known to have a close link to aging and cell maintenance and therefore
the specific genes identified by this process may potentially form high

priority targets for further investigation.

153



CHAPTER 8: ANALYSIS OF “WET LABORATORY” DATA

Ssss*

OA/\>W

Figure 8.5: David Functional annotation clustering using
classification stringency “high ” employing a gene list derived using
the intersection provide full description MC-10 Pair. The use of
orthology to map the C. elegans aging related genes onto their mouse
counterparts (MGI ID) allowed for the intersection of these two
groups to be calculated. Using an orthology threshold of E-10 an

intersection of 104 unique gene objects could be identified. Signifi-
cant and subtly different functional enrichment was observed in the

group. The lower stringency orthology displayed enrichment in

functional annotation categories relating to trasnactional control,

reolication and chromatin amongst others.
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Figure 8.6: David Functional annotation clustering using
classification stringency “high” employing a gene list derived
using the intersection provide full description M C-70 Pair. The
use oforthology to map the C. elegans aging related genes onto
their mouse counterparts (M GI ID) allowed for the intersection
of these two groups to be calculated. Using an orthology
threshold of E-70 it yielded only 60 gene objects. Increasing the
threshold to consider only those genes which exhibit extremely
high homology (E-70) gives functional groups related to
nucleotide binding, replication, cell cycle and protein/cellular
metabolism.
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Figure 8.7: David Functional annotation clustering using
classification stringency “high 7 “employing a gene list derived using
the intersection provide full description MC-MF Pair. When mapping
the C. elegans aging related genes onto their mouse counterparts
using a ‘molecularfunction ” ontology the result was a large highly
repetitive list which yielded a non-redundant set of 289 mouse genes
with Ensembl IDs. When this list was usedfor enrichment analysis it
vielded far weaker enrichment scores but the functional groups
generated were associated with mechanism o f regulation as may be
expectedfrom a mapping molecularfunction. These groups included
those genes involved in phosphylation (kinases), DNA modification
and the regulation o fcellprocesses.
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8.6 Biologist evaluation

A Dbiologist was fully involved in this evaluation. Discussion with
professionals in biological science was undertaken throughout the
project. In particular, Dr. Peter Kille (Bioscience School, Cardiff
University) was frequently consulted to ensure that our research met a
biologist’s needs and the system provides them with new knowledge.
He used the system and was impressed by the findings. In particular, he
gained insight into biological problems. These are described in his
letter, which shows he felt that the system was able to present clear
information which he broadened his knowledge and understanding of
the area of biology he was investigating. For more information see his

evaluation letter'in Appendix E

8.7 Summary

In this chapter, we demonstrated the utility of the prototype system
IDMBD, by exploiting the tools to analyse datasets generated by wet
laboratory experimentation. A pair of complementary studies was
chosen that represent the analysis of an identical biological variable
studied in two different organisms. Evaluation of the data generated
using distinct modes of linkage and variable thresholds illustrated the
benefits of SLM approach to the biological research community as it
enable biologists to identify and provide a biological explanation for
the optimal threshold for each transformation and the elements that re-

occur independent of transformation function.
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Chapter 9

Evaluation

9.1 Synopsis~

We implemented a version of IDMBD as an illustration of concept
prototype, which discovers relationships in heterogeneous bioinformatics
data sources based on biological relationships between biological objects
across species. These were then used to integrate the data sources. In this
chapter, we evaluate our framework and objectives as well as considering
the key issues about IDMBD.

9.2 Introduction

Comparative genomics is the analysis and comparison of genomes from
different species. Its aims are to gain a better understanding of how
species evolved and to determine the function of genes for which no
experimental evidence currently exists. Comparative Genomics provides
a powerful set of tools for leveraging information across species. For
example, the functions of the human genes have been discovered by
examining their counterparts in simpler model organisms such as mouse.
Comparative analysis is hypothesis driven and thus a biologist requires
the ability to ask “what if” questions to test theories on the whole
genome, such as its organization, structure and evolution. Usually,
genome researchers look at many different features when comparing
genomes such as sequence similarity, gene location, and highly

conserved regions in the genetic sequences.

158



CHAPTER 9: EVALUATION

By integrating functional and sequence data across species, we are able
to annotate the genome of one species using known functional data about
another. Thus, comparative genomics provides evidence using close

evolutionary relationships between gene families.

Comparative genomics involves the use of various bioinformatics tools
such as sequence-similarity tools and GO-term similarity. These tools
have different interfaces and often involve transforming the output from
one tool into a format suitable as input to another tool. This means that a
researcher has to do manual tasks, such as cutting and pasting data or
identifying the tool thQat will transform the data appropriately. This is an
error prone process and is time consuming. Thus, what is required is a
system that allows biologists to take the results of one analysis and use
them as the basis for conducting further downstream analysis in a
manageable, flexible, quick, accurate and efficient way by inputting the

data to subsequent tools.

Bearing in mind that the aim is to develop a system that facilitates the
determination of functional annotation and analysis of large sets of genes,
IDMBD aims at automating the process of comparative genomics and

data integration as far as possible.
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Extract identifiers
Convert identifiers
Cut-and-Paste

Save genes
annotation to Disk
Extract Identifiers
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Cut-and-Paste
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Figure 9.1: Typical sequence of steps a biologist performs to drive

series of computational analyses

analyses
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9.3 Current research process

Researchers develop tools that analyze an experimental dataset and
extract its metadata. After analyzing the experimental dataset and
extracting the required data, researchers upload the extracted data to a
central data repository, access specific species sources, and use other
tools to simulate, model, and analyze these results. Usually, this process

involves several manual steps, each of which is a unique process.

Figure 9.1 shows a typical sequence of steps a biologist performs to drive
a computational analysis relating to comparative genomic analyses. To
conduct a genomic comparison across species, the biologist must use a
minimum of four different resources with four different interfaces and
perform several manual tasks, namely, cut-and-paste, save manually to
disk, scan and select, and convert results from one stage into a format
suitable as input to the subsequent stage. For a more complex analysis,
many other resources might be needed. The following text explains this

Pprocess.

Figure 9.1 shows the sequence of stages and manual processes in a
typical analysis. It consists of five stages each of which is linked by a
manual process to the next stage. These manual processes consist of
cutting-and-pasting, manually extracting identifiers, extracting
sequences, pressing a button, scanning and selecting, saving manually to
disk, loading a file, extracting information, converting the result from a
stage into a format suitable as input to the next stage, duplication removal

and the merging of results, and searching for online resources and tools.

Some of these manual processes are not large manual tasks. However,
they are time-consuming processes and error-prone when a researcher is
dealing with a huge number of datasets and performing the same task
hundreds of times. For example, cut-and-paste is not a large manual task
but it is still prone to error, while the scan and select is a much larger
process since a researcher has to scan through output and decide on
parameters to obtain results of interest. The mapping of an accession

number to a specific species identifier is not an easy task and may need
161




CHAPTER 9: EVALUATION

the use of other tools. Converting the result from a tool into a format

suitable as input to a subsequent tool requires time and effort.

During an experiment, a biologist will usually perform a series of

computational analyses on their data (see Figure 9.1), as follows:

1)

2)

3)

4)

When the experimental datasets are in a file, the dataset is parsed
to extract manually the up-regulated gene identifiers and save
them. The biologist then has to map identifiers to species-specific
identifiers, for example, an MGI identifier. He/she may need a
tool to convert the specific species identifiers to standard accession
numbers and vice versa. The biologist then uses his/her past
experience or searches online for resources and tools related to the
species of interest. |

When a web-based resource offering species-specific genomic data
is identified, the biologist uses the interface provided to fill up the
form with identifiers or gene names and query the source to
retrieve gene annotations connected to the gene list.

Upon the conversion of identifiers to appropriate accession
numbers, the biologist accesses, browses and queries sequence
databanks, such as NCBI Entrez. Using the interface provided by
the tool, the biologist pastes accession numbers, sets up his/her
parameters, and submits a query. When the sequence is retrieved,
he/she extracts the corresponding sequences, which can be saved to
disk.

The researcher can perform a similarity search using a public
BLAST resource with the sequences obtained in the previous step,
and filter the results in some way to find similar genes in related
species. He/she then saves the hits, extracts results and looks
manually for sequences from the related species of interest with
required parameters. Then he/she saves the results and manually
extracts accession numbers of sequences above a specified

threshold value using either an identity percentage or an E-value.
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5) The biologist maps accession numbers to species-specific
identifiers and identifies a web site offering related species-specific
genomic data. The interface is used to fill up the form with
identifiers and query the source to retrieve the gene annotations
connected to the gene list identified in previous step.

6) The biologist uses other tools to analyse and map the results
obtained from steps 2, 3 and 5 and to gather results from different
species, remove duplication, and map the gene annotations
obtained from different species to predict gene function or other
features of the experimental genes with similar or related genes
having known functions. The result of analysis and the

comparatives are then saved to disk.

This process is usually repeated for each analysis undertaken and for
each new experiment and new approach of linkage (homology,
orthology, or ortholog). Thus, if a biologist wants to find orthology genes
from other species to identify evolutionary changes, the steps in this
process have to be undertaken again. This also occurs if a comparison
uses the GO terms between different genes to predict gene functions,
when steps 4 to 7 have to be repeated. This is a well known problem; for
instance, Troup [192] stated that to drive the experimental process, the

biologist is hampered by at least four distinct problems:
1- Discovery of Bioinformatics resources

Biologists have to browse, search, and access multiple data sources and
bioinformatics tools before discovering an appropriate solution that can
be used to create and evaluate a new biological hypothesis. To drive this
experimental process and perform the analyses only on datasets of

interest, involves the following steps:

e Searching the internet for primary sources and

bioinformatics tools.

e Selecting relevant bioinformatics data sources and tools.
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e Accessing the selected data sources.
e Retrieving the data or using data analysis tools.

A considerable amount of time and energy is needed to find relevant data
sources and tools and access them. It also involves many manual

transfers, which can be prone to mistakes
2- Data format conversion

As the biological data sources and bioinformatics tools have been
developed over time by different communities, biological data are stored
and distributed in a wide variety of formats, which are often not
consistent or interchangeable. Usually, a researcher takes the results of
one analysis of data as the basis for conducting further downstream
analyses in a manageable and efficient way. With a diverse range of file
formats and representations of bioinformatics data, it has become an
increasingly difficult task for a researcher to deal with the different
formats and analysis tools. Thus, a researcher wishing to perform
multiple analyses of data by feeding the results of one program into
another continually encounters the issue of converting data from one
format into another. This is often a very difficult and time-consuming

process, which is error-prone.
3- Manual transfer of data

Normally, a biologist takes the results of one analysis as the basis for
conducting further downstream analyses. Thus, it is necessary to move
data between very different systems with different representation
formats. Traditional ways of accomplishing this transformation include
the use of copy-and-paste, menu-driven interfaces, and a command line.
These mechanisms are adequate for small tasks; however, they do not
scale to large tasks, as they involve performing the same task hundreds of
times. Thus, these manual mechanisms make the task tedious and time-
consuming as well as error-prone during the transfer of data between

systems.
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4- Understanding how to use the various tools on a variety of platforms

The massive increase in the number of bioinformatics tools that often run
on different platforms means it is not an easy or practical task for a
biologist to learn about each individual tool and how to integrate it with
other tools. To gain benefit from the available tools there is a need to
understand and manage different tool platforms. Thus, learning and
managing these tools is both time-consuming and difficult and needs

expertise in the tool for its effective use.

Thus, biologists spend a lot of time and effort dealing with data sources
and tools. A previous study [4] claimed a biologist spends more than
50% of the analysis time on tasks related to manipulating data from
incompatible data sources and using tools to change them to the required

new formats.

We have shown the process consists of stages with manual processes
between stages, all of which take time. This is the normal way that
biologists conduct this type of research. In recent years automated
approaches have started to appear which automate some of the manual
processes. Most notable of these are systems based on a workflow
approach, for example myGrid [183]. Our approach is an alternative way

of automating the stages to a workflow.

Workflows (for example Taverna in myGrid) automate some of the
process in the flow shown in Figure 9.1. However, workflows can
themselves become complex. As they may involve several stages, each of
which is time-consuming, difficult and needs expertise to successfully
undertake the stages. In order to create an appropriate workflow, the

biologist has to put in place the following stages [109]:

e Service discovery: the biologist has to identify services that
perform the task needed for the experiment. Thus the biologist has
to construct a new workflow each time and often change the
linkage type. However, services can be difficult to find because

they are poorly described and changing linkage type is not always
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a straightforward process as the description can be vague and

menimalistic.

e Service Gluing: the biologist has to identify how services are
compatible and fit together. However, joining services together
into a workflow is frequently problematic, as the inputs and
outputs are not directly compatible. Consequently, many Shim
services [108] are needed to align inputs and outputs in a workflow

and enable services to interoperate.

e Service invocation: the biologist need to know how to invoke the

services, what data and parameters are needed.

As a result, a minority of biologists are likely to construct workflows
[67]. An additional problem may b that every time the analysis changes,
the data may have to be re-transferred from the source, a time consuming

operation.

On the other hand, with IDMBD, a biologist has only to specify the
experimental datasets’ file, the relationships type, the relationship
closeness and the information wanted. Moreover, the biologist can repeat
the experimentation with different relationship and relationship closeness
measures, easily and quickly without the need to construct a new

environment as in workflows or re-transferred data.

If an appropriate workflow is available it may be easy to re-use it thus
saving the time of creating from scratch this element but this is only the
case if the same analysis is required. If the biologist needs to repeat the
same analysis many times then the workflow will be ideal. Also if the
biologist has the skills to build the stage linkages when new stages are
inserted into a workflow then the workflow approach will meet his/her
requirements. Generic workflow systems, such as Taverna, have been
used for some time and are often part of much wider tool set which has a
variety of sophisticated display and analysis tools which can be utilised
in sophisticated analysis and presentation of results, e.g. graphic analysis.

This situation is not present in the IDMBD environment.
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9.4 The IDMBD approach

To alleviate some of these problems, we developed the IDMBD system
(Figure 9.2) to automate entirely the processes of Figure 9.1. Its user has
only to specify the experimental datasets’ file, the species name, the
relationships type, the relationship closeness and the gene annotation

wanted in order to use the system.

9.4.1 SLM

SLM is a novel approach to interoperation that is based on the use of
biological relationships. A relationship that exists between biological
objects is an important factor in linking bioinformatics sources as it can
effect the integration of bioinformatics data sources. Unlike current
integration strategies, which focus on using ontology-based or keyword-
based linkage, we used relationship-based integration to integrate
bioinformatics data sources. This is achieved in our framework by
introducing the Soft Link Model and a relationship knowledge base
(RKB), which is built and used by SLM.

SLM consists of concepts, relationships and degrees of linking. A
concept is an entry in a database that represents a real-world entity. The
SLM models the linkage between data sources in terms of concepts,

properties and semantic relationships (see section 4.4).

The Relationship Knowledge Base (RKB) is a collection of relationship
tables that hold Source id, target_id, RelationshipType, and Relationship
Closeness, which store semantic relationships between biological objects.
These relationships between sources are exploited to combine annotation
knowledge from different sources. RKB is used to link datasets with
other public data sources. There is no need to perform a comparison
between species during the run-time process since this is done as a
separate task and stored in RKB. This saves time and effort as they can

be used in several analyses.

We identified a gene-product concept in two sources. For homolog,

ortholog, and paralog relationships, we chose sequence properties in both
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As explained in section 5.5, the system performs the analysis as follows:

1. The biologist uploads the experimental datasets from delimited flat
files via the user interface through a standard web browser; the
system parses the datasets, extracts the metadata and converts the
dataset into an appropriate format.

2. It detects the suitable linkage key based on the scoring table (Table
6.1 in section 6.3.1) and shows the metadata to the user who can
confirm the recommended linkage key or choose a different key
from this metadata.

3. The user then sets up a query and feeds the system with the species
name to be used in the experiment, the relationship type to be used
for linkagé with the species, the relationship closeness and the
required gene annotation to be retrieved.

4. When the mediator receives a user query and experimental dataset,
it selects the primary species-specific source to answer the query.
Upon selection of the source, it generates a retrieval query to
specific species using accession numbers or identifiers.

5. The mediator invokes the wrapper of the selected source.

6. The selected wrapper connects to the data source by means of its
standard API and submits the query to the data source.

7. On receiving results from the data source, the wrapper passes them
to the mediator.

8. The mediator extracts the gene identifiers from the result set and
then generates a new call to the Soft Link Model to retrieve all
relationships associated with this Gene concept from other species.
It sends the source name, concept, identifiers and user preference -
the relationship that the user wants to use to link data sources and
the relationship closeness cut-off.

9. The Soft Link module loads the SLM metadata and searches
whether any relationships associated with the concept and data
sources have been sent to it by the mediator. If a relationship
specified by the user is found between the selected concept from

the data source and concepts in other data sources, the Soft Link
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module invokes the relationship wrapper, which opens a
connection to the RKB and fetches instances that satisfy user
preferences. Basically, it fetches related concepts, related data
sources, and identifiers of related entries in the related source.

10.The Soft Link Adapter then responds to the mediator with a list of
related identifiers and related source concepts.

11. When the mediator receives the response, it links to other species-
specific sources via wrappers to retrieve all related genes from
those sources that may have relationships with the target source.

12.The mediator recomposes the various responses and formats the

final response to the user.
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Experimental datasets

IDMBD

Genomic comparative
Analysis results

Figure 9.2: Sequence ofsteps a biologistperforms using IDMBD to drive
a series of computational analyses relating to comparative genomic

analyses

9.5 IDMBD evaluation

We have conducted research in computer science and bioinformatics. In
order to evaluate our system’s potential, we need to test how much it
improves the comparison process against the current approaches or
manual execution of the desired tasks. Most importantly, we need to
assess the effectiveness of the system as a tool to help biologists conduct

this type of analysis in a fast, practical and easy way. The evaluation
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metrics will be time, genericity, intervention, transparency, flexibility,
extensibility, heterogeneity and functionality; we consider these issues in

the following section.

9.5.1 Saving time

IDMBD provides a means of linking datasets with public data sources
quickly since the manual tasks identified in section 9.3 have been
automated. Using this approach, a user also need not be aware of the
appropriate data sources to use or how to access them as the system does
it automatically. This reduces the time and effort taken to analyze
datasets. Moreover, there is no need to set up a new environment for each
experiment on the data. Thus, a biologist can save the time and effort
needed to browse several online sources and tools to determine the

appropriate source and tools.

9.5.2 Genericity and Uniform access

IDMBD provides users with uniform access to bioinformatics sources so
that they can be queried as if they were a single source. This is achieved
by supplying the user with a single system to upload and conduct his/her
genomic comparison. As explained in Chapter 5, IDMBD has a
mediation architecture, which unifies the linkage and integration of
experimental datasets with other sources. Thus, the system enables
biologists to submit a single query to multiple bioinformatics sources,
and returns a unified set of results. This means a user does not need to
spend time submitting the same query over and over again to many data
sources. IDMBD is also generic in that it is not designed to answer a
single query. Instead, it offers several alternative linkages for the
integration of sources that can be used by the researcher without further

work.

9.5.3 Reducing human interaction

Wherever possible, IDMBD system automates manual tasks to minimize
human interaction. It permits the automated extraction of the

experimental dataset’s metadata, the analysis of its contents and
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integration with other bioinformatics sources to enrich annotation
without intervention. As can be seen in Figure 9.2, there is a single user
interaction with this approach while Figure 9.1 shows that there are many
interactions. Thus, our system reduces the number of human interactions
from seven interactions (see Figure 9.1) to one interaction (see Figure
9.2). The system automates the entire procedure without human
intervention. Human intervention is required only to supply the
experimental dataset file, decide on parameters, and make the decision to
select the linkage key. There is thus a clear saving in human interaction.
Sometimes, it is not possible to avoid human interaction completely due
to the complexity of an experimental dataset, or the relationship

discovery and integration process.

9.5.4 transparency and autonomy

IDMBD shields users from the underlying structure of sources. The end
user of the integration system does not need to know the underlying
structure of sources when accessing or querying the heterogeneous data
sources. This is achieved by using the mediator/wrapper technology. The
mediator uses wrappers that encapsulate the underlying structure of data
sources, so that wrappers’ access to data sources is transparent to the
mediators. This preserves a data source’s autonomy and gives a biologist
access to these sources, and enables him/her to retrieve the most up-to-

date biological data.

9.5.5 Flexibility

IDMBD makes it easy for a biologist to link and analyse experimental
datasets. It allows easy integration of a dataset, using different biological
relationships with public data sources via different relationships, and
linkage approaches, thus, providing the ability to use different
relationships, linkages and threshold values. It is also flexible in terms of
its ability to link datasets with other datasets, link datasets with public

data sources, or link public data sources with other public data sources.
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9.5.6 Extendibility
The IDMBD system’s architecture allows for extendibility by the

addition of new data sources to the integration system. With little effort,

a new data source can be plugged into the system, by:

vi)  Data registry: this registers a new data source’s information,

i.e., name, location, wrapper, access information.

vil) Schema manipulation: this involves creating a source schema

definition, importing its metadata and then mapping the local
schema to the IDMBD’s global schema.

viii) SLM and RKB: relationships between the new source and
existing sources are discovered to build the SLLM (see section
5.3) and the relationship tables are generated and added to
RKB.

iX)  Wrapper: generates a wrapper for the new source.

9.5.7 Heterogeneity

IDMBD overcomes heterogeneity by using a relationship to integrate
data. This is achieved by SLM, which allows the species-specific data
sources to be linked without problems due to name clashes and
ambiguities. Moreover, experimental dataset concepts are mapped to a
Domain Ontology, which also helps to resolve heterogeneity. The
wrapper handles all other heterogeneity conflicts. For example, Arabic
numbers are used to represent chromosomes in the mouse data source
(MGI) and Roman numerals are used in the C. elegans data source
(Wormbase). A mapping is used to resolve this type of heterogeneity in

the wrapper.

9.5.8 Functionality
IDMBD supports different types of queries, such as single search,

multiple search, and links datasets for a specific species with datasets
from other species as well as linking these datasets with public data
sources. The key to this in IDMBD is the alternative relationships
provided to discover new knowledge across species. Using these

different relationship types for linkage allows a biologist to obtain
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different result sets. This allows different aspects to be investigated, so
providing the biologist with useful information about the genome. These
different result sets provide gene enrichment as illustrated in section 8.5.
The quality of the datasets obtained by the system and the final validation
of a biologist hypothesis has shown the value of this approach to

biologists.

9.5.9 Original Goals Revisited

Based on the problem specification we set out in chapter 1 and 3, we
have achieved the original objectives we sought to address. In particular,

we have achieved the following:

. Developingv the IDMBD system that allows a bioinformatician to
extract an experimental dataset’s metadata, detect suitable candidate
keys for the linkage (Objective 1) in order to link the experimental
dataset with public bioinformatics data sources, and transform the
extracted metadata and datasets into a form that can be used for
linkage with other sources (Objective 2) These tasks have been

successfully undertaken and demonstrated in Chapter 5, 6, and 7.

e Using the biological relationships to provide flexible and loosely
coupled linkages across heterogeneous data sources (Objective 3)
was achieved through the SLM approach as discussed in section
9.4.1.

e Building a knowledge base of discovered relationships between
sources (Objective 4). This has been done successfully by building
RKB (see section 9.4.1).

e The IDMBD system provides users with uniform access to the
bioinformatics sources and shields users from the underlying
structure of sources (Objective 5) as discussed in section 9.5.2 and

9.5.4.
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9.6 Summary

In this chapter, we evaluated the approach with respect to its primary
aims and objectives. We demonstrated the main advantages in terms of

time and genericity, resolving heterogeneity and minimizing human

interactions.

We setup the Relationship Knowledge Base (RKB) to store several
relationships across species. This knowledge base stores the biological
relationship type, and the relationship closeness between biological
objects across species. Once this knowledge base is created, the system
uses it to link and compare datasets across species. This set up overhead
for RKB occurs once when comparing entire genomes across species.
The subsequent experiments are then analyzed, linked and compared
easily and quickly since the system uses the existing stored relationships
in RKB in subsequent investigation; thus, there is no need to perform
these comparisons for each a new experiment. Our system saves user
preparation time by the automation of manual tasks occurring in several
processes. These manual tasks are prone to error particularly if the
researcher is interrupted by the phone or by colleagues. Therefore, the
mistakes and errors will be high. For example, when a researcher
resumes an analysis after a break, he/she may forget which datasets they
were using or mistakenly use different datasets, while this is not a
problem with our automated process. In our system, a user only supplies
experimental datasets and sets up his/her parameters. Thereafter, the
system does the rest of the process: processing experimental datasets,
extracting metadata, converting to a suitable format, linking to public
sources, retrieving data, using relationship knowledge to link to other
species and comparing across species and mapping the result to a unified

format.

In the next chapter, we discuss the overall conclusion of this work and

consider some ways in which the framework can be extended.
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Conclusions and future work

10.1 Synopsis

We draw conclusions about the research and identify future work that
can be undertaken to take this research forward. A summary of the
work reported is given, with a discussion of the extent to which
contributions have been made. In addition, the currently perceived
strengths and limitations of these contributions are outlined, followed

by suggestions about possible areas of future research directions.

10.2 Thesis summary

In this thesis, we have presented a novel approach to interoperability
based on the use of biological relationships that use relationship-based
integration to integrate bioinformatics data sources. This involves
using different relationship types with different relationship closeness
values to link gene expression datasets with other information
available in public bioinformatics data sources. These relationships
provide flexible linkage enabling biologists to discover linked data
across the biological universe. Relationship closeness is a variable
used to measure the closeness of the biological entities in a
relationship and is a characteristic of the relationship. The novelty of
this approach is that it allows a user to link a gene expression dataset
with heterogeneous data sources dynamically and flexibly to facilitate
comparative genomics. Our research has demonstrated that using
different relationships gives the user a better understanding of the
genomic functions of genes as it adds biologically rich information
177




CHAPTER 10: CONCLUSIONS AND FUTURE WORK

derived from different bioinformatics data sources to the gene lists

obtained from experiments.

Our survey of biological and bioinformatics literature found the more
important relationships between biological objects are homolog,
ortholog, paralog, biological process, cellular component and
molecular function, so we developed the system to link information

across species based on these relationship types.

In an experiment, we applied our system to two different sets of data
related to growth and aging in two different species. First, the system
extracted metadata from these experimental datasets, created a schema
and then converted it to a suitable format (relational). Then it
nominated a candidate key to be used for linking these datasets with
public data available to the user. The linkage key was then mapped to
a domain ontology to extract related concepts and relationships.
Finally, the system linked the experimental dataset with public sources
using the soft linkage approach. For each experiment, we used
different types of linkage (relationship type). Then we ran our system
with the same datasets several times with different relationships each
time. This gave different result sets, which reflected how the
biological objects were connected with each other in different ways.
These different results allowed a biologist to analyse the datasets in
different ways and gave insight into the nature of biological objects.
These processes enabled the formulation of novel hypotheses by the
biologist leading to the informed design of new cycles of laboratory
research. Moreover, a measure of relationship closeness should give a
biologist a new tool in their repertoire for analysis. Thus, these
experiments have shown how we can use SLM to link a dataset with
public data sources in different ways using the relationships to provide
data integration within the framework of a data analysis process, and

that:

e The data generated suggests that the functional cross-species

interpretation using an orthology model must be informed by
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the specific inter-species relationship between the orthology and

function.

e It is clear from the data that by exploiting a variable threshold
level we can define a cross species mapping, which is extremely
conservative, either by identifying an orthology group that has a
maximal probability of sharing function or by selecting a lower
threshold whereupon we obtain the maximum return of related
genes and still minimise the noise generated by random

matches.

10.3 Thesis contributions

The following is a summary of the achievements of the research:

e Introduction of a new approach to extracting an experimental
dataset’s metadata and identifying the most appropriate
candidate key for linkage with other related data. The thesis
describes an approach to automatic text extraction, in particular
the identification of biologically-relevant fields in a flat file. The
extraction of this information allows a user to link and integrate
the data parsed from a flat file automatically with public
resources such as Wormbase, Swiss-Prot, Gene Ontology and

others.

e Introduction of a novel approach to the integration of
bioinformatics data sources, which allows a biologist to
investigate easily alternative linkages. This approach allows a
biologist to integrate and link experimental datasets that can be
used for the rapid functional annotation of genomes with
available public specific-genome repositories. Our approach
was a relationship-based query and integration process rather
than a key-based integration and query approach. Thus, the
integration is based on the relationships between properties of
concepts not field-values. In addition, one of the features of our

approach is that the user can customize how the data sources are
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linked by building his/her own SLM. This allows the use of
different relationships with different relationship-closeness
values to link gene expression datasets with other information

available in public bioinformatics data sources.

e An improvement in comparative approaches to annotating
genes, by identifying possible relationships between objects
across species, and predicting protein-function from sequence
homology, orthology and GO-terms. By integrating functional
and sequence data across species, we can annotate the genome
of a species using functional data from another genome.
Comparative genomics provides evidence for close evolutionary
relationships between gene families. This is implemented in our
system by building a knowledge base of the discovered
relationships between biological objects, which is used to
compare and link the experimental datasets with public sources.
This has been verified through the creation of the RKB (see
Chapter 7) to capture the semantic relationships (homology,
related molecular function, related biological process and
related cellular component) between genomic data across

species in a way that allows integration across species.

e Determining the optimal threshold for cross-species orthology
relationships. This is demonstrated for Mouse and C.elegans

(Section 8.5).

10.4 Strengths and Limitations of SLM

The key aspects of the SLM approach are:

e SLM integrates data from remote sources without bringing the
data physically into a central database when the researcher

needs it. Thus, it uses the current version of the data in the

public sources.
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e The biologist can change the linkage type according to the
research agenda. Depending on the research questions being
asked, the biologist can choose appropriate linkage between the
different concepts and objects. They may easily investigate
different linkages to determine what they reveal. This is due to
the system’s flexibility and support for different types of
linkages.

e The SLM provides linkage of genetic databases to other
databases, including non-bioinformatics databases, containing
information about concepts such as drugs, biochemistry, clinical
information and patients. For example, a clinical database may
not have a one-to-one mapping with a genetic database, but
there is a clear relationship, which can be presented in SLM.

This means the system is extendible.

e The SLM stores relationships between sources in a Relationship
Knowledge Base (RKB) and exploits them to combine
annotation knowledge from different data sources. The RKB

can be exchanged and reused.

e The SLM allows a user to browse the discovered relationships
between data sources, and the objects involved in a specific

relationship.

e A user can customise the linkage between an experimental
dataset and one or more public sources by customising the

SLM.

e The IDMBD prototype system was implemented as an
illustration of concept prototype with only two species currently
supported. It can be extended by registering new sources and

building the SLM.

e The prototype system accepts only delimited flat files where the

first line contains column names or headers.
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10.5 Future Work

The research in this thesis has generated many interesting and
promising ideas. Some of these are worth exploring further. In this

section, we describe several directions for future research.

e Consideration of other relationship types like pathways and
synteny. Pathways would give greater insight into how the
protein works and would assist in the discovery of new drugs.
Synteny would help predict the location of new genes by
comparing uncharacterized region with a characterized region in

another genome.

e Insight into the flexibility obtained from this study should be
used to extend the system to enable integration of non-
bioinformatics data sources with bioinformatics sources, for
instance, medical data sources, via different semantic
relationship types. For example, this approach could be used in
medical genetics to find relationships between a specific disease
and genetic structure. This could help scientists to design new

drugs for a disease.

e Future research can look at comparing the outcome of using

different techniques to calculate GO-based similarity.

e Future work can look at the interpretation of the wealth of the

relationships in RKB to predict gene-product (protein) function.

e In this work, we did not consider schema integration; thus, the
global schema is specified by the integrator. It should be
possible to semi-automate the process of constructing a global

unified schema that characterizes the underlying data sources.

e In metadata extraction, we considered only extraction from flat
tab-delimited/comma-delimited types of file. A more general

solution of this problem would be useful because it would allow
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structured databases to be created automatically from various

experimental datasets.

10.6 Conclusion

In conclusion, this thesis covers an approach to the integration of
diverse bioinformatics data sources using a flexible linkage. It is a
novel approach that provides a flexible and soft linkage between data
sources. Soft Links are modelled via concepts that are interrelated,
using a rich set of possible relationship types. Such a flexible
relationship allows biologists to mine effectively the exponentially
increasing amount of comparative genomic information. This can be
used as a basis to enable cross species functional annotation of data
generated by array experiments to inform better the selection of targets
for more detailed analysis based on cross species functional
information. Furthermore, once the SLM are established, secondary
analysis on genomic elements such as the transcription control
elements (transcription factor binding sites) can be analysed to provide
novel insights into the evolutionary conservation of gene expression.
By integrating functional and sequence data across species, we are
able to annotate the genome of a species using functional data from
the other species, as comparative genomics provides evidence of close

evolutionary relationships between gene families.

Finally, the key concept embodied in IDMBD that differentiates it
from other systems is its use of semantic relationships between
biological objects to link data across heterogeneous data sources in a.
flexible manner. To the best of our knowledge, no existing system
integrates gene expression datasets with publicly available
bioinformatics data sources to facilitate comparative genomics in such
a flexible way. This enables a biologist to obtain more understanding

of genes and their functionality.
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System comparison

This appendix provides a comparison of the bioinformatics integration

system according to different dimensions.

System
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K2/Bio-
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EMBL
Harvester

EnsEMBL

GenoMax

OPM

INDUS
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System
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Garlic
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XML documents and Schema

This appendix contains the schema of the data sources and an example

of data sources metadata.

Element description

ID identifier of the data source

Name name of the data source

Description description of data source

Owner data source owner, if supported

URL A specialized form of URL is used by JDBC to
identify databases.

System the system in which data source is running

Database Type

type of the data source management system.

Direct Access flag to indicate whether there id direct access or not
to the data source

Host IP address of the data source.

Port Port number to be used to connect.

User Name

user name to access the data source

Password

password to access the data source

JDBC_DRIVER

A Java class that implements the JDBC driver

interface and is loaded into the JDBC driver manager.

Table B.1: Description of xml schema elements
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Metadata Schema

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="ID" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Name" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="Description" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="Owner" type="xs:string" minOccurs="1" maxQOccurs="1"/>
<xs:element name="URL" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="System" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="DataBase" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="Direct_Access" type="xs:boolean" minOccurs="1"
maxOccurs="1"/>
<xs:element name="Host" type="xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="Port" type="xs:integer" minOccurs="1" maxQOccurs="1"/>
<xs:element name="User Name" type="xs:string" minOccurs="0" maxOccurs="1"
. >
<xs:element name="Password" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="JDBC_DRIVER" type="xs:string" minOccurs="0"
maxOccurs="1"/>
</xs:schema>

Figure B.1: XML schema of metadata of data sources
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Data sources description

<?xml version="1.0" standalone="yes"?>

<Databases>

<Database>
<ID>DB1</ID>
<NAME>Wormbase</NAME>
<DESCRIPTION>WormBase is the repository of mapping, sequencing and

phenotypic information for C. elegans (and some other

nematodes)</DESCRIPTION>
<OWNER>Sanger Institute</OWNER>
<URL>www.wormbase.org</URL>
<SYSTEM>DataBase Managemeny System></SYSTEM>
<DATABASE_TYPE>AceDB</DATABASE_TYPE>
<DIRECT_ACCESS>true</DIRECT ACCESS>
<HOST>aceserver.cshl.org</HOST>
<PORT>2005</PORT>
<USERNAME>anonymous</USERNAME>
<PASSWORD>****</PASSWORD>
<JDBC_DRIVER NAME></JDBC_DRIVER NAME>
</Database>

<Database>
<ID>DB2</ID>
<NAME>Mouse Genome Informatics (MGI)</NAME>
<DESCRIPTION>Mouse Genome Informatics (MGI) provides integrated
access to data on the genetics, genomics, and biology of the laboratory
mouse.</DESCRIPTION>
<OWNER>The Jackson Laboratory</OWNER>
<URL>http://www.informatics.jax.org</URL>
<SYSTEM>DataBase Managemeny System></SYSTEM>
<DATABASE TYPE>Sybase DB</DATABASE_TYPE>
<DIRECT_ACCESS>true</DIRECT_ACCESS>
<HOST>gondor.informatics.jax.org</HOST>
<PORT>4025</PORT>
<USERNAME>badr</USERNAME>
<PASSWORD>****</PASSWORD>
<JDBC_DRIVER NAME>com.sybase.jdbc2.jdbc.SybDriver</JDBC_DRIVE
R NAME>

</Database>

</Databases>

Figure B.2: Metadata description of data sources
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<?xml version="1.0" encoding="ISO-8859-1" 7>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>

<xsd:documentation xml:lang="en">

XML schema for Soft Link Model metadata.

</xsd:documentation>
</xsd:annotation>
<xs:element name="SLM-knowledge-base">
<xs:attribute name="no" type="integer" use="required"/>
<xs:element name="database" minOccurs=0 maxOccurs="unbounded">
<xs:complexType>
<xs:element name="concept" minOccurs=0 maxOccurs="unbounded">
<xs:complexType>
<xs:element name="relations" minOccurs=0 maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="SLM" minOccurs=1 maxOccurs="unbounded">
<xs:attribute name="DBName" type="RC" use="required"/>
<xs:attribute name="concept" type="String" use="required"/>
<xs:attribute name="RelationType" type=" relationships " use="required"/>
<xs:attribute name="File" type="String" use="required"/>
<xs:attribute name="FileType" type=" String " use="required"/>
</xs:sequence>
</xs:complexType>
</xs:complexType>
</xs:complexType>
<>
<xsd: simpleType name="relationships">
<xsd:restriction base="xs:string">
<xsd:enumeration value="homolog"/>
<xsd:enumeration value="ortholog"/>
<xsd:enumeration value="MolecularFunction"/>
<xsd:enumeration value="BiologicalProcess"/>
<xsd:enumeration value="CellularComponent"/>
</xsd:restriction">
</xsd: simpleType>

<xsd: simpleType name="filetype">
<xsd:restriction base="xs:string">
<xsd:enumeration value="mySQL"/>
<xsd:enumeration value="text"/>
<xsd:enumeration value="00"/>
</xsd:restriction">

</xsd: simpleType>

</xs:schema>

Figure B.3: XML schema for SLM metadata
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Technologies

The technologies used in the implementation of IDMBD system are

summarised in Table C.1 with reason for use.

Technology reference reasons
JavaBeans http://java.sun.com/products/ja | JavaBeans are
vabeans/ reusable software

programs that can be
developed and easily
assembled to create
sophisticated
applications.

JavaServer http://java.sun.com/products/js | JSP is a server-side

Pages p/ technology that is an

extension of the
Servlet technology. It
facilitates the
creation of web
applications that have
both static and
dynamic components.
It supports the use of
JavaBeans
components with
standard JSP
language elements.

Java Servlets

http://java.sun.com/products/se
rviet/

Servlets are the
preferred Java
platform technology
for extending and
enhancing the
functionality of a
Web server. They
provide a component-
based, platform-
independent method
for building Web-
based applications
and have access to
the entire family of
Java APIs, including
the JDBC API to
access enterprise
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databases.

BioJava

http://www .biojava.org,
Article: BioJava -- Java
Technology Powers Toolkit for
Deciphering Genomic Codes
By Steven Meloan, June 2004,
BioJava: open source
components for bioinformatics;
Matthew Pocock

BioJava is an open
source Java Library
for bioinformatics
designed for
providing a Java
framework for
processing biological
data.

BioPerl

www.bioperl.org

The Bioperl project is
an international open-
source collaboration
between biologists,
bioinformaticians and
computer scientists
whose aim is to build
bioinformatics
solutions in Perl and
to provide a
comprehensive
library of Perl
modules for
managing, handling
and manipulating life
science data.

AcePerl

http://stein.cshl.org/AcePerl/

AcePerl, written by
Lincoln Stein, is an
excellent object-
oriented Perl
interface module
providing virtually
transparent access to
local or remote
ACeDB databases,
performing queries,
fetching ACE
objects, and updating
databases

Tomcat
Server

(http://tomcat.apache.org/)

The Tomcat server is
an open source, free
to use, Java based
Web Application
container created to
run Servlets and
JavaServer Pages
(JSP) in Web
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applications.

Apache

http://www.apache.org/

The Apache HTTPD
server is a powerful,
flexible, HTTP/1.1
compliant web server
that implements the
latest protocols,
including HTTP/1.1

Java 2 SDK

http://java.sun.com/j2se/1.4.2/d
ocs/index.html

The essential Java 2
SDK provides tools,
runtimes, and APIs
for developers
writing, deploying,
and running applets
and applications in
Java programming
language.

Mod Jk

http://tomcat.apache.org/conne
ctors-doc/

Mod_Jk is the
Tomcat-Apache
plug-in that handles
communication
between Tomcat and
Apache.

Table C.1: technologies used in the implementation of IDMBD

196



http://tomcat.apache.org/conne

APPENDIX D: BIOLOGIST’S EVALUATION

Classes

This appendix provides samples of Java classes used in the

implementation of the IDMBD system.

Public Class SoftLinkAdaptor() {
Public Vector getRelations(String SLM)

Public Vector GetMatchEntriesInDataSource(Sring id, vector matchentry, string db,
string concept)

Public Vector GetMatchEntriesInDataSource(Vector id, vector matchentry, string db,
string concept)

Public Vector GetMatchEntriesInRelationTable(Sring id, String dataSource, String

relationfilename)
Public Vector getRelation(String db, String concept)
Public Vector getOther(Vector result, String db, String concept, String condition)

Public Vector getOther(Vector result, String db, String concept),

Figure D.1: Main SoftLink Interface Class with Primitives for SLM API
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Public Class QueryHandler (
Public ExtractMetadata(String filename)
Public ExtractMetadata(String filename, String delima)
Public double ComputeScore(Vector dataset)
Public Boolean isKey(String tag)
Public Boolean isAmbiguous(Vector dataset)
Public Boolean isNull(Vector dataset)
Public Béolean isSingleValue(Vector dataset)
Public Boolean isUnique(Vector dataset)
Public String DataType(Vector dataset)

Public int elementLength(Vector dataset)

Figure D.2: Query Handler Class with Primitives for SLM API
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public Class RelationshipWrapper {
public Vector getRelationshipId(String key, String tableName) ;
public Vector getRelationshipld(String key, String tableName, double ¢_value,
int score, double rc) ;
public Vector getRelationshipld(String key, String tableName, String condition);

public Vector getRelationship(String key, relationsInfo rl) ;

Figure D.3: RelationshipWrapper Class with Primitives for SLM
API

Public Class GenerateSoftLinkTable {
private Map loadAlgorithms(String algXMLfile)
private void saveRelationshipTable(java.util.List entries)
private void CmdExec(String cmdline)
private Map getAlgorithm()
private Algorithm getAlg(Vector v, String name)
private void run_algorithm(String s1, String s2, String alg, String output)

private String formatPath(String cmd)

Figure D.4: GenerateSoftLinkTable Class
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Public Class BlastParser {
Class BlastLikeSA XParser
Class SeqSimilarityAdapter
Public Vector getblastParser(String filename)

List getBlastParser(String filename)

Figure D.5: BlastParser Class with Primitives for SLM API

public Class Gene {
public class MapPosition {
public String ChromosomeNumber;
public String centimorganPosition;

public String cytogeneticOffset;

public Class DBlinks {
public String UniGene;

public String LocusLink;

Figure D.6: Gene Class
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public Class relationsInfo {
public String rootDbName;
public String rootConceptName;
public String DbName;
public String Concept;
public String RelationType;
public String RelationFile;

public String FileFormat;

}

Figure D.7: relationsInfo Class

public Class Algorithm {
String name;
String location;
String syntax;
private static Algorithm getParameters(String name)

private static Map getAlgorithm()

}

Figure D.8: Algorithm Class with Primitives for SLM API
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public Class UniGeneWrapper {
public void connect();
public void close();
public int getNumberOfRecords();

public String getUniGene(String Accld);

Figure D.9: UniGeneWrapper Class with Primitives for SLM API

Public Class WrapperManager() {

public void getWrapperName()

public Vector getWrappers()

public void links(keys,db,concept)

public void SoftLinkCallBack():

Figure D.10: Wrapper Manager Class
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Public Class Wrapper() {

// returns gene entries for a specific gene using a specified identifier
fetchRecord(String id)

// returns gene entries for multiple genes using a specified identifier.
fetchRecord(Vector ids)

// returns gene entries for multiple genes using a specified identifier.
fetchRecords(Vector ids)

//returns gene entries for multiple genes using a specified search field.

fetchRecords(Vector ids, String SearchKey)

}

Figure D.11: Wrapper Class
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public Class GOWrapper {

//it connects to the data source
public void connect();

/l it closes all connections to the database and releases resources reserved for

the connection.

public void close();

// returns number of records.

public int getNumberOfRecords();

//fetches a GO entry for a specific accession number.

Public String geGO(String Accld);

Figure D.12: GOWrapper Class
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public Class SLMParser{

//parses a SLM and loads relationships in a hash table.
parse(Stringfilename)

//gets all relationships from a hash table.
getAllRelationship(Hashtable slm)

//gets all relationships of a concept from a data source

getRelation(Hashtable slm, String db, String concept)

}

Figure D.13: SLMParser Class
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Biologist’s Evaluation

This appendix includes the evaluation letter from Dr. Peter Kille
(Bioscience School, Cardiff University). He used the system and was

impressed by the findings.
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Cardiff School of Biosciences

Head of School Professor J L Harwood PhD DSc Cardiff University )
Biomedical Sciences Building
Museum Avenue
Cardiff CF10 3US

Ysgol y Biowyddorau, Caengxdd Wales UK
Pennaeth yr Ysgol Yr Athro J L Harwood PhD DSc
Tel +44(0)29 20 874108
Fax +44(0)29 20 874117
Email Harwood@cardiff.ac.uk
UNIVERSITY
Mr Al-Daihani,
School of Computer Science, FY¢
Cardiff University, PR IE SGOL
(AERDYH

30/07/2008

Evaluation of Soft Link Model Performance
Dear Mr Al-Daihani,

| was extremely intrigued to receive the cross species comparison of genes associated with aging
generated by the Soft Link Model (SLM). In my opinion the data provides some biologically
relevant insights both generally, in the context of the relationship between functional conservation
and homology, together with more specific insights realised through identification of evolutionarily
conserved age related genes.

The issue of homology threshold and its relationship to gene function is critical when performing
inter-species comparisons. However, the majority of studies use generic values based on solely of
the statistical probability of a sequence homology occurring by random (Blast E-value) without any
knowledge of the relationship between this statistical value and functional conservation which will
be specific to genetic divergence between the two species being studied. The results generated by
SLM which compares the proportion of genes with conserved functional ontological definitions, for
biological process, molecular function and cell component, under various degrees of homology
shows an extremely interesting relationship. Intriguingly, it revealed a biphasic function justifying
the accepted homology threshold or E-10 as being appropriate to yield an inclusive set of
functionally related genes whilst a probability score >E-40, although yielding substantially fewer
genes, provides a much higher confidence in functional conservation. This analysis is extremely
useful when mining cross disciplinary data sets between these two species and demonstrates the
power of generating similar analysis for other cross-species comparisons a process which would
be substantially stream-lined should the SLM interface be expanded to include primary data
sources for additional species.

The two studies identifying age related transcript changes illustrates a generic challenge facing
many global analysis approaches, that being the shear number of responsive genes identified.
One approach allowing targeting of further experimental work is to identify responses which are
evolutionarily conserved. The SLM analysis of these data sets provides an elegant illustration of
how your implementation facilitates this process. Reassuringly the groups of conserved genes
have substantive evidence to verify there involvement in aging processes. This illustrates the
potential of this tool to aid experimental biologist, realising the full potential of comparative
transcriptomic data analysis, informing and targeting future laboratory experimentation.

In addition to these major findings it has been extremely useful and informative to exploit your
interface to provide extended annotation for mouse and nematode array reporters from there
GeneBank accessions. This has allowed our research to dynamically update the annotations and
reflect the highly dynamic nature of the annotation of these genomes.

Yours sincerely,

e

Dr Peter Kille


mailto:Harwood@cardiff.ac.uk
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