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ABSTRACT
Researchers in visualisation and diagnostic imaging for biological applications regard 

water soluble fluorescent dendrimers as potentially useful materials. Described in this 

thesis is research with the aim o f  preparing and investigating a new series o f  

fluorescent polyamidoamine (PAMAM) dendrons with an imidazole naphthalimide 

derivative (i.e. 7//-benz[Je]benzim idazo[2,l-a]isoquinoline-7-one ) as the fluorescent 

core.

After an introduction to the use o f  dendrimers and dendritic compounds in biology 

(Chapter 1), we describe work to prepare and optimise potential fluorophore cores, 

which are based on A-alkylamino, vV-arylamino or imidazole naphthalimide 

derivatives (Chapter 2). The fluorescence intensity o f  most o f these aromatic systems 

is weak due to the efficient intramolecular photoinduced electron transfer process 

(PET). However, derivatives o f  7//-benz[Je]benzim idazo[2,l-a]isoquinoline-7-one 

proved encouraging and it was decided to use this readily modifiable fluorophore as 

the core in the design o f  highly fluorescent dendrons.

In the second experimental part o f the thesis (Chapter 3), we designed and prepared 

several new water soluble fluorescent PAMAM dendrons based on 7H- 

benz[^]benzim idazo[2,l-a]isoquinoline-7-one as fluorescent core and studied their 

photochemical and physicochemical properties. The dendrons are all fluorescent due 

to the core but in some cases this is modulated by the PET process, which increases 

with higher PAMAM dendron generation. For all dendrons the fluorescence is 

linearly correlated with concentration and the pH o f  the aqueous solvent has a 

significant effect for both UV absorbance (ground state) and fluorescent emission 

(excited state). In strong acidic media this is due to protonation o f the core, while in
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basic media the fluorescent emission is quenched due to presence of'the PET process 

involving the tertiary amine groups within the PAMAM units. The strongest 

fluorescent emission o f  all carboxy late-terminated dendrons was pH 6. 

Physicochemical studies using the Pulsed Gradient Spin Echo Nuclear Magnetic 

Resonance (PGSE-NM R) technique indicate that the self-diffusion coefficient and 

hydrodynamic radii are unaffected by concentration suggesting that there is no 

aggregation. The confirmed properties (i.e. water solubility, high fluorescence at near 

neutral pH, and no aggregation) suggest these new dendrons are promising for 

applications in biological studies.

The next part o f  the thesis describes new avenues o f research using these dendrons 

and similar materials are suggested in the final chapter (Chapter 5).

Finally, the appendix part o f the thesis describes experimental work to assess the 

transport o f  the dendrons through biological barriers and their binding to DNA 

(Appendix A). This work was carried out in collaboration with other research groups. 

Initial studies suggest that the permeability o f  fluorescent core PAMAM dendrons 

across MDCK cell monolayers appear to be a function o f  the size o f  the dendrons. 

These studies pave the way for future detailed mechanistic and morphological studies 

to elucidate the nature o f  the interaction o f  fluorescent core PAMAM dendrons with 

epithelial cells. Preliminary studies also show that the fluorescent core binds to DNA, 

presumably by intercalation o f  the aromatic core. Addition o f  negatively charged 

dendrons results in a strong decrease in affinity for DNA. The affinity is not restored 

by esterification, highlighting contributions o f  both electrostatic repulsion but 

particularly steric interactions in blocking interactions. Coupling the fluorescent core
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to positively charged dendrons leads to strong binding accompanied by precipitation 

o f  the DNA complex.
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Abbreviations
Abs. Absorbance

AcOH Acetic acid (CH3COOH)

AcONa Sodium acetate (CH3COONa)

Anal. Analytical

BBB Blood-Brain Barrier

BLQ Below level of quantitatives

C-4 subst. substituent attached to Carbon atom in position number 4

Caco-2 cells Human colonic carcinoma cell line

Calcd calculated

CDCI3 Deuterated chloroform

CHCI3 Chloroform

(CH3COO)2Zn Zinc acetate

Cone. H2SO4 Concentrated sulphuric acid

COOH Carboxylic acid group

COOMe Methyl carboxylate group

COONa Sodium carboxylic acid salt

Ds Self-diffusion Coefficient

DzO Deuterated water

DCM Dichloromethane

DMEM Dulbecco's Modified Eagle's Medium

DMF Dimethylformamide

DMSO-de deuterated dimethyl sulfoxide

DNA Deoxyribonucleic acid

EDA Ethylene diamine

EDTA Ethylenediaminetetraacetic acid,

EI-MS Electron Ionization-Mass Spectroscopy

Em Emission

ESA Excited State Absorption

EtOH Ethanol

EVOM Epithelial voltohmmeter
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FITC

Flu

FT-IR

G

h

HPLC

HRMS

1C

ICT

In-Vitro 

in Vivo

ISC

Lit.

LLQ

LRMS

MALDI-TOF

Max.

MDCK

MeCN

MeOD

MHz

MOPS

mp

MTX

NBD chloride

nm

nM

NMR

fluoresceine isothiocyanate 

Fluorescence

Fourier Transform Infra-Red 

Generation of dendrimers 

Hour

High-performance liquid chromatography 

High Resolution Mass Spectroscopy 

Internal Conversion 

internal charge transfer

Latin for "in glass," the term in vitro refers to experiments that are 
performed outside an organism's body

In vivo (Latin for "within the living") is experimentation using a 
whole, living organism as opposed to a partial or dead organism.
OR Literally = "in life" ie in a living animal or human.

intersystem crossing 

Literature

Low Latency Queuing OR Left lower quadrant

Low Resolution Mass Spectroscopy

M atrix Assisted Laser Desorption/Ionization Time-of-Flight

Maximum

M adin-D arby canine kidney 

Acetonitrile 

Deuterated methanol 

megahertz

3-(N-morpholino)propanesulfonic acid 

Melting Point

m ethotrexate

4-Chloro-7-nitro-2,l,3-benzoxadiazole  

nanom eter

nanomolar, (10'9 molar) of concentration 

Nuclear Magnetic Resonance
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n-TT* An electronic transition described approximately as promotion of

tra n s it io n  an electron from a 'non-bonding' (lone-pair) n orbital to an

'antibonding' n orbital designated as n*.

OG488 Oregon Green 488

Papp apparent permeability coefficients

PAMAM polyamidoamine

Pd/C Palladium on Activated Charcoal also known as Palladium on

Carbon (Pd on C) is a mild hydrogenation catalyst 

PET photoinduced electron transfer process

PETIM poly(propyl ether imine)

P-gp p-glycoprotein

PGSE-NMR Pulsed Gradient Spin Echo Nuclear Magnetic Resonance

PIET Photoinduced Internal Electron Transfer process

PPI poly(propyleneimine)

ppm part per million

RFI Relative Fluorescence Intensity

Rh Hydrodynamic radii

RT Room Temperature

6-TAMRA 6-carboxy tetramethyl rhodamine succinic ester

TEER Transepithelial electrical resistance

TFA Trifluoroacetic acid

TLC Thin Layer Chromatography

TMS tetramethylsilane

UV-vis Ultraviolet-visible

O f Fluorescence Quantum Yield

tt-tt* An electronic transition described approximately as a promotion of

t ra n s it io n  an electron from a 'bonding' n orbital to an 'antibonding' n orbital

designated as n*

Q  The ohm (symbol: Q) is the S[ unit of electrical resistance
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List of molecules

Short name

1,8-naphthalic anhydride

3,6-dinitro-l ,8-naphthalic anhydride

3,6-diam ino-1,8-naphthalic 
anhydride

4-brom o-l,8-naphthalic anhydride

2-( 1 -aminopropan-2-yl)-1H- 
benzo[de]isoquinoline-l ,3(2H)- 
dione.

tert-butyl 2-(2-(2-(l,3-dioxo-lH  
benzo [de] isoquino lin- 
2(3H)yl)ethoxy)ethoxy)- 
ethylcarbamate.

Structure

2 - ( 2 - ( 2- ( 2 -

aminoethoxy)ethoxy)ethyl)-l H- 
benzo[de]isoquinoline-1,3(2H)- 
dione.

4-(l,3 -d ioxo-lH ,3H -
benzo [de] isoquino lin-2 -yl)-benzo ic
acid.

COOH

4-(5,8-dinitro-1,3-dioxo-1 H,3H-
benzo[de]isoquinolin-2-yl)-benzoic
acid.

O-N

COOH

No.

1

2

3

4

CF2

FC3Boc

CF3

A1
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4-(6-brom o-1,3-dioxo-1H- 
benzo[de]isoquinolin-2(3H)- 
yl)benzoic acid.

5-(l,3-dioxo-l H,3H- 
benzo[de]isoquinolin-2-yl)-isophthali 
acid.

COOH

COOH

COOH

A4

B1

5-(5,8-dinitro-l,3-dioxo-lH ,3H- 
benzo[de]isoquinolin-2-yl)- 
isophthalic acid.

5-(6-brom o-1,3-dioxo-1H- 
benzo[de]isoquinolin-2(3H)- 
yl)isophthalic acid.

COOH

COOH
0 ,N

O COOH

COOH

B2

B4

3-amino-5-( 1,3-dioxo-1 H,3H-
benzo[de]isoquinolin-2-yl)-benzoic
acid.

3-am ino-5-(5,8-dinitro-l,3-dioxo- 
1 H,3H-benzo[de]isoquinolin-2-yl)- 
benzoic acid.

COOH

O COOH
0 ,N

0 ,N

C1

C2

3-amino-5-(6-brom o-1,3-dioxo-1H- 
benzo[de]isoquinolin-2(3H)- 
yl)benzoic acid.

3,5-bis-(l ,3-dioxo-1 H,3H- 
benzo[de]isoquinolin-2-yl)- benzoic 
acid.

3,5-bis-(5,8-dinitro-1,3-dioxo-1 H,3H-
benzo[de]isoquinolin-2-yl)-benzoic
acid.

COOH

COOH

:o o h

C4

C11

C22

NO, NO,

XII



Preface

3,5-bis(6-brom o-l,3-dioxo-l H-
benzo[de]isoquinolin-2(3H)-yl)benzo
acid.

4-(5,8-diam ino-l,3-dioxo-lH ,3H -
benzo[de]isoquinolin-2-yl)-benzoic
acid.

5-(5,8-diam ino-l,3-dioxo-lH ,3H - 
benzo[de]isoquinolin-2-yl)- 
isophthalic acid.

3-am ino-5-(5,8-diam ino-1,3-dioxo- 
1 H-benzo[de]isoquinolin-2(3H)- 
yl)benzoic acid.

3,5-bis(5,8-diam ino-1,3-dioxo-lH- 
benzo [de] isoquino lin-2(3 H)- 
yl)benzoic acid.

3-bromo-7H- 
benz[de]benzim idazo[2 ,1 - 
a]isoquinoline-7-one.

3-(2-aminoethylamino)-7H- 
benz[de]benzim idazo[2 ,1 - 
a] isoquinoline- 7-one.

FC - PAMAM Dendron - G1

;o o h

H,N

COOH

COOH

COOH

O COOH
H,N

COOH

HjN.

C44

A3

B3

C3

C33

FC2

FC2G0

FC2G1
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FC - PAMAM Dendron - G2

Ô NH

V
N-N̂NH,

FC - PAMAM Dendron -  G0.5

FC - PAMAM Dendron -  G 1.5

FC - PAMAM Dendron - G2.5

FC - PAM AM  Dendron -  GO.5 salt

FC - PAM AM  Dendron - G 1.5 salt

COOCH

COOCH

OOCH,

COOCH,

HjCOOC

COOCH

COOCH

COOCH

COOCH

H.COOC

COONa

COONa

COONa

N ^ /^ C O O N a

N ^S ^ C O O N a

COONa

FC2G2

FC2G0.5

FC2G1.5

FC2G2.5

FC2G0.5

salt

FC2G1.5
salt
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Chapter One: Introduction

1.1. Dendrimers

1.1.1. Background
Dendrimers can be considered one o f  the more attractive recent discoveries in the 

field o f  organic and polymer synthesis. They are exciting because they have an 

exceptional three-dimensional structure comprising three distinct components: core 

(or focal point), branching point and periphery (Figure 1.1). The story o f  the 

development o f  dendrimers starts in 1978 when V6gtlet,] reported his first steps 

towards an iterative synthesis o f  “cascade molecules” with branched architectures. 

Two distinct synthetic approaches are now established for these three-dimensional 

macromolecules; Tomalia et al. pioneered the divergent synthesis involving an 

“inside-out” approach,[2'3] while Hawker and Fr6chet[4] pioneered convergent 

synthesis involving an “outside-in” approach.

Peripheral Functionality %  S  t  M
%  V - . ‘  v V .

^  2  Branching Units ^  ? # 4 0  t

I I J /
•  — - •

• >  V  > V '  •

^  "  ;  ?  *
*  \ \

| |  *

Core

DENDRON DENDRIMER

Figure [1.1]: Schematic diagram of the structure of a dendron and a dendrimer, 
highlighting the focal point or core (black) surrounded by rings of branching units 

(gray circles) and end-groups (rectangles).151
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Chapter One: Introduction

1.1.2. Variations of dendrimer structure
In 2005, Frechet reported various designs o f  low polydispersity combinations o f  

dendrons and linear polymers 161 such as linear-dendritic hybrids,16'81 bow-tie 

dendrimers,19' 101 and dendronized polymers.16, 11131 Recently these new dendritic 

polymers have been applied in drug delivery and other biomedical applications.1141 In 

2009, El-Sayed and co-workers reviewed the field,1151 cataloging the dendrimer 

families which have been used as carriers in chemotherapeutic applications such as 

biodegradable ester dendrimers,116' 191 amino acid-based dendrimers,120'211 

glycodendrimers,1221 hydrophobic dendrimers,1231 in addition to other, less important 

types.

1.1.2.1. Asymmetric dendrimers

Although the symmetric architecture o f dendrimers has produced polymers with high 

monodispersity, new types o f  dendrimers based on an asymmetric architecture 

provides a series o f  novel structures which have interesting pharmacokinetic 

behaviour in vivo. Asymmetric dendrimers can be prepared by coupling different 

generations o f  dendrons onto a linear core, which produces a non-similar orthogonal 

dendrimer architecture. This asymmetry in the architecture provides exquisite control 

over the number o f  functional groups accessible on each dendron for loading o f  drugs 

in one dendron and targeting moieties, imaging agents, or other therapeutic moieties 

in the other. The “bow-tie” polyester dendrimers (Figure 1.2)l9 l0] are noted 

asymmetric dendrimers first synthesized by Frechet and co-workers. Lee and co

workers also reported another class o f asymmetric dendrimers, using “click” 

chemistry to couple a propargyl G4 dendron to an azide functionalized G3 dendron, 

forming a triazole core.1241
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Figure [1.2]: represent "bow-tie" polyester dendrimer reported by Szoka and 
Frechet/101 The green dendron is functionalized with PEG arms (blue lines) to  

increase the dendrimer's solubility and in-vitro half life, whereas the other red 
dendron can be used for the loading of anticancer drug molecules (yellow ovals).1151

1.1.2.2. D ivergent s y n th e s i s  o f  PAMAM dendrim ers

As well as being the first dendrimers synthesised/ 251 poly(amidoamine) (PAMAM) 

dendrimers are also considered one o f  the best potential drug delivery carriers due to 

their high biocompatibility. They are: hydrophilic, nanostructured, mimics o f  globular 

proteins,[25] are transported across the epithelial barrier o f the gut/ 26'281 inhibit protein- 

protein binding,1291 and have intrinsically fluorescent behaviour under acidic 

conditions/ 301 in addition to their ability to load fluorescent compounds in their core 

and/or peripheries/ 31'391 The synthesis o f  PAMAM dendrimers is mainly dependant 

on iterative steps, initially Michael addition onto an alkyldiamine core (e.g., ethylene 

diamine; EDA) using methyl acrylate monomers to yield a branched intermediate, 

which can be converted to the smallest PAMAM dendrimer generations with N H2, 

COOH or OH terminal groups/ 401 Amidation is the second step, this smallest 

branched intermediate is reacted with excess EDA to produce GO with four NH2 

surface groups. Addition o f  methyl acrylate and then hydrolysis o f  the methyl ester

3
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COOMe group in this intermediate produces the smallest anionic dendrimer (G0.5) 

with four COOH groups.1401 Also, GO with four OH surface groups can be produced 

by replacing EDA with ethanolamine in the reaction with the smallest intermediate.1411 

Higher generations o f  PAMAM dendrimers can be synthesized by repeated Michael 

additions followed by amidation reactions (Figure 1.3).

NH

OMeNHNH NH

N —  N
NH-

(b) H,N NH-Core HN
HN

NH- NH;NH-
H2N

Generation 1
NH;

OMe

H2N NH-NH
NH;

NH;

NH;

NH-

^*^nh2
n h 2

G « 3-10

NH-

Figure [1.3]: Synthesis of tetra-functional poly(amidoamine) (PAMAM) dendrimers: 
exhaustive Michael addition of amino groups with methyl acrylate, followed by 

amidation of the resulting esters with ethylenediam ine.[25)

1.1.2.3. C onvergen t s y n th e s i s

Although convergent synthetic strategy pioneered by Hawker and Frechet overcame 

the problem o f  many divergent side-byproducts, relatively few methods are recorded 

to synthesise PAMAM dendrimer,[42] especially few in the solution phase143-481 where 

the use o f  different dendrons in solution needs large excesses o f  reagent which is 

impracticable. So Lee et al and co-workers (2006) presented the first synthesis o f
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poly(amidoamine) (PAMAM) dendrons in high yields by convergent synthesis1491 and 

by using click chem istry.1501 Furthermore, this method can afford PAMAM 

dendrimers possessing unsymmetrical branches with size-differentiation.t24]

1.1.2.4. M odification o f  pre-m ade PAMAM dendrim ers

A literature survey revealed many reports about synthetic modification o f  PAMAM

dendrimers at their core for use in biomedical applications,151'521 for example to 

conjugate an intercalating fluorescent chromophore as an antitumour compound 

(Figure 1.4).[531 Many recent papers are concerned with poly(amidoamine) dendrimers 

peripherally modified with 1,8-naphthalimide derivatives due to their strong 

fluorescence and good photostability[3,'3?1 Bojinov et al. used 1,8-naphthalimide 

derivatives to design novel PAMAM dendron functionalized at both core and 

peripherally with 1,8-naphthalimide fluorophores to provide a light harvesting 

antenna (Figure 1.5).[54]

Figure [1.4]: PAMAM dendritic polyam ines- Figure [1.5]: PAMAM dendron functionalized at 
(im ide-D N A  intercalator).1531 both core and peripherally with 1,8-

naphthalimide fluorophores.
[54]
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1.1.3. Photophysical properties of PAMAM dendrimers

1.1.3.1. Intrinsically f lu o resce n t  behaviour

Poly(amido amine) (PAMAM) dendrimers with different terminal groups (NH2, OH, 

and COONa) show high fluorescence emission under different parameters and 

conditions. The fluorescent emission increases linearly with dendrimer concentration, 

or is rapidly increased by high temperature or at low pH, which may be attributed to 

the protonation o f  the tertiary amine groups (Figure l .6).t30,55]

Ex: G4-OH 
Ex: G4-NH2 
Ex: G4.5-carboxylate 
Em: G4-OH 
Em: G4-NH2

CO  Em: G4.5-carboxyl ate

£
C Vos

CO§
§  -9
jg <
o
3

250 300 350 400 450 500 550 600

Wavelength (nm)

Figure [1.6]: Fluorescence spectra of G4-OH, G4 -N H2, and G4.5-carboxylate at pH 6, 
the wavelength of excitation and emission was at 385 nm and 450 nm, respectively.

All solutions were 0.7 nM in w ater.[55]

1.1.3.2. PAMAM den d rim ers  con ju gated  with f lu o resce n t  c o m p o u n d s

Fluorescent compounds could be located at the focal point o f  PAMAM dendrons, at

the periphery or at both o f  these positions. For example, fluorophore compounds 

localized at the focal point o f a PAMAM dendron like a fullerene (fiillerodendron)[56' 

57] carbazole or pyrene moiety have been studied and demonstrate self-assembly 

behaviour.t58]
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Many recent papers have concerned PAMAM dendrimers peripherally modified with

1,8-naphthalimide derivatives due to their strong fluorescence.131"371 PAMAM 

dendrons o f  G 1-G3 generations have been modified with naphthyl groups at the 

periphery and a dansyl group at the focal point.1381 Other examples include the 

coupling o f  dansyl chloride, sulforhodamine B2 acid fluoride, coumarin-343, NBD 

chloride, and 5(6)-carboxyfluorescein pentafluorophenyl ester to dendritic PAMAM 

structures for use as new oligomeric fluorescent labelling compounds.1391

In 2008, Bojinov and co-workers localized 1,8-naphthalimide fluorophores at the core 

and periphery o f  PAMAM dendrons to for use as light harvesting antenna.t541

1.1.4. Biomedical Properties and Applications.
The unique features o f  dendrimer structures predispose them to be ideal nanocarriers 

for delivery o f  drugs and imaging agents into cells. The surface modification o f  

dendrimers can allow the loading o f  many functional molecules with specific 

properties to suit particular applications. In addition, attention is being paid to the 

potential use o f  dendrim er carriers to cross biological barriers, especially the blood- 

brain barrier (BBB) or gastrointestinal tract. It is expected that upcoming work in 

biomedical application o f  existing dendrimers will be also concerned with dendrimer 

toxicity and biocom patibility/59"601

1.1.4.1. PAMAM dendrimers as potential drug delivery carriers

The unique properties o f  PAMAM dendrimers are water solubility, nanosize and a

well defined macromolecule structured40, 61"621 The uniform expansion o f  size[621 

during generation increase make PAMAM dendrimers interesting mimics to globular 

proteins (Figure 1.7). There are many applications o f  PAMAM dendrimers in drug
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delivery,1[62] gene delivery,1641 and antisense oligonucleotide delivery.1651 Researchers 

still investigate and seek to understand the relationship between PAMAM dendrimer 

structural properties (size and charge)1271 and their ability to permeate cells that make 

up biological barriers.

 40 A—►
Cytochrome c

55A—►
Hemoglobin Prealbumin Hemerythrin

-30 A

Variable region 
surface area
(-20 k  30 A)

**---- 40 A
G = 4.0

67 A
G = 6.0G = 5.0 G = 7 0

Naked histone 
duster

Immunoglobulin

Lipid biiayer

24A
24/

DNA-histone
complex

Figure [1.7]: A dimensionally scaled comparison of a series of poly(amidoamine) 
(PAMAM) dendrimers (NH3 core; G = 4 -7 )  with a variety of proteins, a typical lipid- 

bilayer membrane and DNA, indicating the closely matched size and contours of 
important proteins and bioassemblies.[25]

1.1 .4 .2 . M ech a n ism s o f  drug load ing on to  dendrim er carriers

1.1.4.2.1. Physical encapsulation of drug molecules

Vogtle and co-workers investigated the trapping o f guest molecules into branched 

polymers1661 by physical encapsulation o f  insoluble drug molecules to improve their 

aqueous solubility and control their release profile (Figure 1.8).[3, ,6 67‘7()l Insertion o f  

hydrophobic molecules into dendrimers is usually achieved by mixing o f  drug
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solutions with the polymer, where the nonpolar core links with the hydrophobic drug 

by hydrophobic interactions.13,16,69'70]

1.1.4.2.2. Chemical conjugation o f drug molecules

On the other hand, different drugs, imaging agents, and/or targeting ligands can be 

covalently conjugated onto the periphery o f  dendrimers by direct coupling115,631 often 

using pH-or enzyme-sensitive linkages (Figure 1.9).*15,711

Figure [1.8]: Drawing of a dendrim er carrier encapsulating Figure [1.9]: Schematic drawing show ing a dendrimer-drug
hydrophobic drug m olecules in the dendrimer's voids to  conjugate w here th e  drug m olecules (red ovals) are either

increase their aqueous solubility and control their release directly coupled (solid line) to dendrimer's surface groups
rate.1151 or via a pH- sensitive linkage(blue rectangle).111

1.1 .4 .3 . D endrim ers a s  im aging a g e n ts

One o f  the first uses o f  dendrimers in vivo was as carriers for magnetic resonance 

imaging contrast reagents*72'731 Another imaging application involves photonic oxygen 

sensing*741. Dendrimers with solubilizing and steric-stabilizing core-shell architecture 

have been developed for new photophysical technology, and offers promise for 

accurate, noninvasive optical imaging.*751

1.1 .4 .4 . P h arm a co k in etics

Investigation o f  dendrimer pharmacokinetics parameter are now essential for any 

further biomedical applications, because toxicity and bioavailability o f  any drug or

9



Chapter One: Introduction

imaging agent loading to dendrimers will depend on their release rates from 

dendrimers and elimination rates.t?6]

1.2. Dendrimers containing Fluorescent Labels.
Recent literature surveys indicate continuing interest in water soluble fluorescent 

dendrimers for visualisation and diagnostic imaging applications.[75, 77-81] As most 

fluorophores are quenched in aqueous media due to aggregation o f  the hydrophobic 

fluorophore, the concept is to use the bulky water-soluble dendritic structure to protect 

the fluorophore and hinder self-association.[8l] Essentially, the location o f  the 

fluorophore(s) has played an important role in both controlling the synthesis o f  the 

dendrimer and its properties. The fluorescence o f  water-soluble dendritic compounds 

can be due to the entire macromolecular structure, or discrete fluorophores could be 

used as peripheral groups, as branch points or as the core. As a result, there are many 

types o f  water soluble fluorescent dendrimers, such as intrinsically fluorescent 

dendrimers, multiply labelled dendritic structures, statistically labelled dendritic 

structures, or dendrimers with fluorescent cores (Figure 1.10)J8I]

i r

&:  fluorescent group

^ : charged and/or 
^  water-solubilizing group

B  Q  : biologically active groups jTV-

Figure [1.10]: Schematic representation of type of fluorescent dendrimers.[81]
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1.2.1. Type
1.2.1.1. Intrinsically fluorescent dendrimers

Until recently, there were no reports o f  fluorescent PAMAM dendrimers.[821 This is 

due to its structure lacking any classical fluorophores but after more than 15 years 

from their first disclosure, the fluorescent properties o f  -CO O H  terminated PAMAM 

were investigated and were attributed to n-7t* transition o f  amido groups.[83J Also blue 

fluorescent emission was noticed due to the oxidation o f  NH2- or OH -terminal 

groups1841 and a well-defined dependancy o f  the fluorescence with the pH especially 

in acidic media,155’851 Recently, all poly(propyleneimine) (PPI),[3°5 poly(propyl ether 

imine) (PETIM) dendrim ers,[ 861 and polylysine NH2-terminated dendrimers were also 

revealed to be intrinsically fluorescent.[87]

1.2.1.2. Multiply labelled dendritic structures

Most fluorescent labelled compounds are water-insoluble due to the presence o f 

aromatic groups in their structure, so the solubility o f  fluorescently-labelled 

dendrimers decreases as the number o f  fluorescent aromatic compounds increase. 

There are two main ways to overcome these disadvantages. The first is to use water- 

soluble compounds as an inner part o f  the dendrimer, or by using water soluble 

compounds as terminal groups in addition to fluorescent compounds.1811

Many types o f  1,8-naphthalimide derivatives have been conjugated to PAMAM 

dendrimers as terminal groups to provide cationic sensors in polar solvents except 

water (Figure 1.11 ).f321 In addition, dansyl, naphthyl, or pyrenyl fluorescent terminal 

groups were loaded onto PAMAM dendrimers o f 0-5 generations but studies indicate 

strong aggregation behaviour in w ater.f881
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Figure [1.11]: 4-Ethylam ino-l,8-naphthalim ide-labeled PAMAM
dendrimers. [32]

Another strategy to achieve a combination o f  water-solubility and fluorescence is to 

have two dissimilar kinds o f  terminal groups, one for water solubility and one for 

fluorescence. This approach can be achieved in two ways: the first by grafting the two 

types o f  groups onto two distinct areas o f the dendritic periphery (so-called “Janus”- 

type dendrim ers),[89] and the second by linking both monomers simultaneously to each 

terminal branching point. Another approach consists o f  having the two different types 

o f functional groups linked to the branching points, leading to “multi-pluri- 

functionalised” compounds.[90] In the case o f  water-soluble fluorescent dendrimers, 

this approach was primary applied to ammonium groups and dansyl derivatives.[9,]
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1.2.1.3. Statistically labelled dendritic structures

In biological trials on water soluble dendrimers; especially PAMAM dendrimers, the 

statistical conjugation o f  a few fluorophores as terminal groups has gained 

prominence. For example, fluoresceine isothiocyanate (FITC) and Oregon Green 488 

(OG488; Figure 1.12) fluorophores two closely related compounds have been 

incorporated by statistical couplings on the terminal groups o f  dendrimers.[811 These

conjugated fluorophores do not appear to alter the biological activity or transport o f 

the dendrimers.[92'931

Figure [1.12]: Types of fluorophores linked statistically (one to a few) to the surface
of dendrim ers.1811

Recently, this concept o f  statistical conjugating has been used as a multifunctional 

platform by introducing up to five different terminal groups on the dendritic structure. 

In most cases these types o f  compounds were synthesised from PAMAM dendrimers 

(except one example based on PPI dendrimers^941) for various biological applications, 

like imaging and tum our treatment.t811 However, the statistical loading o f  fluorophores 

into the periphery o f  dendrimers has problems, like fluorescent quenching, in addition 

to the difficulties o f  controlling stoichiometry,[95%1 and the possibilities o f  changing 

biological function or transport.1971 These potential disadvantages can be addressed by 

loading the fluorophore into the core o f  dendron.

COOH CO O H

.0

OG  488 FITC
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1.2.1.4. Dendrimers with fluorescent cores

Phthalocyanines and porphyrin fluorophores have been used as a fluorescent core in 

many known families o f  dendrimers. It is assumed that the dendrons protect the 

fluorescent core from any outer environmental effects^981 in particular by preventing 

aggregation and protecting it against quenching by water, but by using appropriate 

terminal groups, solubility in water is induced. The first examples o f  water-soluble 

porphyrins embedded in a dendrimer (Figure 1.13) were synthesised with the aim o f  

providing synthetic models o f  natural enzymes, such as cytochrome-c.[99J Dendritic 

water-soluble phthalocyanines have closely related structures and properties to 

dendritic porphyrins.[ 100 1061 Besides porphyrins and phthalocyanines, stilbene 

derivatives have also been used as fluorophores that can be used as the core o f  water- 

soluble dendrimers.fl07’112J

C00R3 / 
R3°°C \  '

COORj

RjOOĈ

RjOOC—^ 9

.0

RjOOC,

NH

\—O
RjOOC x  / — 1— N 

O J  H
RjOOĈ

(Gd

R. ° ° S r ,OOC

n O /COOR3
' Qy  j :oor,

HN P ^--COOR,

O COORj

NH

O

COORg

'0 ^ ,C O O R j

(a): M = Zn; R1 = H; R2 = R3 = H

(b): M = FeCI; R1 = H; R2 = R3 = o

4a-f-Gn

Figure [1.13]: Types o f  water-solubilising branches linked to a porphyrin core.

1.2.1.5. Dendritic wedges with fluorescent ‘cores’.

In this case, the attached dendrons cannot fully protect the fluorophores against any 

environmental effects and aggregation, however, dendrons may be used simply to 

increase the solubility o f  the ‘core’ (or more correctly focal-point) unit in water, for
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example, C(,q fullerene,1113' 1151 which is insoluble in aqueous and most polar media. A 

different kind o f water soluble fullerene dendron was constructed using PAMAM 

dendrons. Due to the protonation o f nitrogen in the internal structure, such compounds 

are water soluble in acidic conditions, even with methyl ester terminal groups (Figure 

1.14).157, 1,61 Other strongly fluorescent probes have been place at the core o f  

PAMAM dendritic wedges including: py rene/117' 1201 carbazole fluorophores1581 and 

dansyl fluorophores.1121' 1221

MeOO'

> NH

CO OMe

O^/NH OOMe

NH
COOMe

, 0 0 0  Me

12-G2
NH

\
COOMe

N'
'COOMe 

MeOOC

Figure [1.14]: Water soluble fullerodendron.

1.2.2. Applications of fluorescent dendrimers
Fluorescent dendrimers can be used for biological imaging. O f particular importance 

is their use in conjuction with novel one-photon[1231 and two-photont124' 1251 fluorescent 

tumor-sensing systems that have been developed to provide high spatial (//M) 

resolution. For example, the two-photon optical fluorescence fibers technique together 

with a G5-PAM AM  dendrimer conjugated to folic acid and the fluorescent probe 6- 

carboxytetramethylrhodamine succinic ester (6-TAMRA) has been used to image 

tumors in-vivo.[ 1261281 Florescent dansyl units have also been incorporated into
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dendrimers and their cellular uptake and localization studied using confocal 

fluorescence microscopy.*1291

1.3. Fluorescent Compounds

1.3.1. Principles of fluorescence spectroscopy

1.3.1.1. Fluorescence

All molecules have internal energy levels, in which an electron can transfer from the 

lower to higher level when the molecule absorbs a photon o f  light o f  equal energy to 

the energy difference between two energy level states (Figure 1.15).*1303

eieuirumu yruunu state

Figure [1.15]: Jablonski diagram of organic dyes: 1C—internal conversion, ESA- 
excited state absorption, ISC—intersystem crossing.*1313

The fluorescence process involves instant emission o f  electromagnetic energy from 

the singlet state, while the related phosphorescence process occurs when the energy 

emission originates from an excited triplet state and is delayed relative to the 

fluorescence emission.*1303

s
excited vibrational states 
(excited rotational states not shown)

n

S -  singlet si 
T = triplet sU 
1C = internal 
ISC -  intersy

A -  photon absorption
F = fluorescence (emission)
P = phosphorescence
S -  singlet state
T = triplet state
1C = internal conversion
ISC -  intersystem crossing
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1.3.1.2. Structural factors that determine fluorescence

Generally, strongly fluorescent molecules possess the ability to easily transfer

between two transitional energy states via a small energy gap. Usually, aromatic 

compounds possess very strong fluorescence due to two reasons: the first is the 

presence o f  71- electrons system in which electrons are more easily transferred to 

higher 7 1 *  antibonding orbitals by light absorbance without affecting bonding. The 

second reason is the allowance o f  7 t-7 t*  transition singlet states that are often involved 

in very strong fluorescence.11305 Fluorescence in an aliphatic compound is often 

insignificant except for carbonyl-containing compounds that can show signs o f  weak 

fluorescence due to n-7c*transitions.[l30] Rigid co-planarity is also a prerequisite for 

strong fluorescence as it favours n- 7t* transitions singlet states. For example, (Figure 

1.16) shows fluorescein which possesses rigid planarity so it strongly fluoresces, 

while phenolphthalein does not and has greater rotational freedom and dissipates its 

energy in solution.l '30̂

O

COO

Phenolphthalein

O

COO

Fluorescein

Figure [1.16]
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1.3.2. PAMAM conjugation to naphthalic anhydride derivatives
1.3.2.1. Synthesis and Photoluminescence properties

There are many references concerned with the synthesis o f  N-aryl- naphthalimide 

derivatives1132' 1371 (Scheme 1.1) and N-alkyl-naphthalimide derivatives (Scheme

j 2 )  [138-145]

COOH

CHgCOOH / CH3COONa 
or

CHgCOOH / (CH3COO)2Zn 
or

DMF

COOH

Reflux
O-^ /NL / O

Scheme [1.1]: Example for synthesis of N-aryl-naphthalimide derivatives

NH.

. cl .O O- L
,NH.

EtOH or H20

CK

heating

Scheme [1.2]: Example for synthesis of N-alkyl-naphthalimide derivatives 

Because o f  their strong fluorescence and good photostability, the 1,8-naphthalimide

derivatives have found application in a number o f  areas including colouration o f

polymers,11461501 laser active m ed ia /151' 1521 photosensitive biological units,111531 

fluorescent markers in b io logy /1541 analgesics in m edicine/1551 light emitting 

d io d es/156' 1581 photo-induced electron transfer senso rs/159' 1631 fluorescence 

sw itchers/164' 1661 and ion p ro b es /1671 Also, some A-alkyl-1,8-naphthalimide

derivatives have been characterised by Lewis et al. as photo-chemotherapeutic

inh ib ito rs/168' 1721

18



Chapter One: Introduction

The colour o f  1,8-naphthalimide derivatives usually depends on the presence and type 

o f  substituent at the 4-position o f the naphthalimide ring. For example, electron- 

donating amino groups1163,173 ,761 cause a red-shift in the visible adsorption band with 

an increase in the quantum yield o f  fluorescence. It has been concluded that the 

fluorescent character o f  1,8-naphthalimides also depends on the polarisation o f  the 

naphthalimide molecule due to the electron-acceptor donor interaction occurring 

between the carbonyl groups and the C-4 substituents o f  the chromophoric system 

(Figure 1.17).‘I77-|78J

Figure [1.17]: intramolecular charge-transfer analogue of 4-am ino-l/8-naphthalimide
derivatives.11771

1.3.2.2. PAMAM conjugates

1.8-Naphthalimide 6 and the dendronized dyes 7 and 8 (Figure 1.18), represent good 

model structures for the concept o f  “fluorophore-spacer-receptor” where the 4-amino-

1.8-naphthalimide moiety is the fluorophore and the terminal ester or amino dendrons 

are the proton receptors, while the ethylenediamine spacer separates the fluorophore 

and dendron unit. The fluorescence emission o f  the 1,8-naphthalimide unit is 

quenched by the PET process (an electron transfer from the amine receptor to the 

excited state o f  the fluorophore), which represent the “off-state” o f  the system.
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£

MeO

MeO-

H2N

Figure [1.18]: compound structures 5, 6, 7 and 8.

In acidic solution, fluorescence emission o f  the compounds is “switched on” due to 

the protonation o f  the amine receptor (Figure 1.19).[174, l79 180] The fluorescence 

quantum yields o f  compound 5 is higher than compounds 6 -8  due to the absence o f  

PET process which quenches the fluorescence emission.1181 183]

energy and electron transfer energy and electron transfer

V Q , OMe V Q ■FV > “ 1■uryty* ry > > N
FI.

y ~OMe
o fiu

V-OMe
O

Fluorophre Spacer Receptor
♦

Fluorophre Spacer Receptor

H
[ s w itc h e d  off] [ s w itc h e d  o n ]

Figure [1.19]: "Fluorophore-spacer-receptor" model with indicating "off -  on" 
switcher for PET process in prescent and absence of acidic media

Bojinov and co-workers used 1,8-naphthalimide derivatives to design, a novel 

PAMAM dendron 9, which was substituted at both core and periphery with 1,8- 

naphthalimide fluorophores. In this new-light harvesting antenna compound 9, the
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periphery is functionalized with “donor” dyes (blue emitting 1,8-naphthalimides) 

which absorbing the light and transfer the energy to a single “acceptor” dye (yellow- 

green emitting 1,8-naphthalimide) at the focal point o f  the dendron (Figure 1.20).[54]

4 3 0  nm

NH5 1 0  nm 3 6 0  nm

3 6 0  nmNH

4 3 0  nm

Figure [1.20]: Compound 9 . [54]

1.3.2.3 Chemotherapeutic applications

In the literature, there are several examples o f  naphthalimide derivatives as DNA 

intercalating agents and anticancer agents.[184-1881 Two important prototypes o f  the 

series are Mitonafide and Amonafide (Figure 1.21) which, although characterized by a 

valuable anticancer profile, did not pass the phase II because o f  their toxicity.1189-1901

M ito n a f id e  A m o n a f id e

Figure [1.21]: Chemical structures of compound Mitonafide and Amonafide.
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Therefore, PAMAM and PPI dendritic wedges, containing an intercalating 1,8- 

naphthalimide derivative at their core, have been employed in gene therapy and act as 

an antitumour agent (Figure 1.22).[l4,]

Figure [1.22]: Compound A: "PPI dendritic polyamines-(imide-DNA intercalator)" 
conjugates, Compound B: "PAMAM dendritic polyamines-(imide-DNA

intercalator)".11415

As noted above, recent literature indicates continuing interest in water-soluble 

fluorescent dendrimers for biological applications including visualisation and 

diagnostic imaging. It is clear that the loading o f  fluorophores onto the periphery o f  

dendrimers is still not trivial, with difficulties o f  stoichiometric control for 

synthesis195'961 and issues in the performance o f  the resulting conjugates such as 

fluorescent quenching. These disadvantages may be avoided by loading the 

fluorophore into the core (or focal point) o f  a dendron.

C o m p o u n d  B C o m p o u n d  A

1.4. Aim of Project
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As well as being the first high-generation dendrimers and one o f the most studied,t25] 

poly(amidoamine) (PAMAM) dendrimers are also considered one o f  the best potential 

drug delivery carriers due to their high biocompatibility. They are: hydrophilic, 

nano structured, mimic globular proteins,[25] readily transported across the epithelial 

barrier o f  the gut,[26'28] and inhibit protein-protein binding.[29] As potential 

fluorophores, 1,8-naphthalimide derivatives are attractive as they possess strong 

fluorescence and good photostability which makes then useful as fluorescent markers 

in biology,[l54] and as intercalating and anticancer agents.[l84' 1881

The objective o f  this research project was the synthesis and study (photophysical and 

physicochemical) o f  novel fluorescent PAMAM dendritic molecules containing 1,8- 

naphthalimide or one o f  its simple derivatives at the core. The project was divided 

into three consecutive stages, the first stage encompassed the chemical synthesis and 

photophysical studies o f  some 1,8-naphthalimide derivatives to investigate the 

fluorescent behaviour o f  these compounds. In the second stage, novel fluorescent 

PAMAM dendritic molecules were to be prepared with the optimised core selected 

from the initial work. Finally, in collaboration with other research groups the 

physicochemical properties, their transport through biological barriers and their 

binding to DNA was to be assessed.
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Chapter Two: Fluorescent Cores

2.1. Synthesis
2.1.1 Synthesis of N-alkyl-1,8-Naphthalic anhydride derivatives

The routes to the synthesis o f  /V-alkylamino- 1,8-naphthalimide derivatives CF1-CF3 

are presented in (Schemes 2.1-2.3). Compound CF1 was prepared according to a 

published procedure.11431

h 2n '
.NH,

QE1

Scheme [2.1]: Synthesis of CF1. Reagents and conditions: EtOH, Reflux 8 h.[143]

Also by the analogue previous published procedure,11431 the reaction o f  1,8-naphthalic 

anhydride 1 with 1,2-propanediamine in boiling ethanol gave the desired CF2 (Scheme 

2 .2 ).

h 2n
NH,

53%

CF2

Scheme [2.2]: Synthesis of CF2. Reagents and conditions: EtOH, Reflux 8 h.

Compound CF3 (Scheme 2.3) was obtained using a similar procedure utilising a Boc- 

terminated diamine (designated BocNH) which was prepared as previously 

report ed.[ 1911 The Boc-group was removed by treatment with TFA/DCM according to 

a standard procedure^ 1921 to give CF3 as a new compound.
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1 BocNH

98%

CF3

Scheme [2.3]: Synthesis of CF3-Boc and CF3. Reagents and conditions: (i) EtOH, 80
°C, 1 h; (ii) TFA/DCM, stirring 2 h.

2.1.2 N-aryl-1,8-Naphthalic anhydride derivatives.
Precursor compounds 3,6-dinitro-l,8-naphthalic anhydride 2 and 3,6-diam ino-1,8- 

naphthalic anhydride 3 were prepared according to published procedures11931 (Scheme 

2.4).

o
ODnc. q S 0 4 + HN03 W /G  q

NCt,
DMF, RT

Nq

1

Scheme [2.4]: Reported synthesis of 2 and 3. Reagents and conditions: (i) Cone. 
H 2SO4/HNO3; (ii) DMF, Pd/C 10%, H2, stirring 16 h, RT.

//-phenyl-1,8-naphthalimide derivatives A l, A2 and A4 were synthesized by refluxing

1,8-naphthalic anhydride derivatives 1, 2 and 4 with 4-aminobenzoic acid in the 

presence o f  glacial acetic acid and sodium acetate. A l, A2 and A4 were all obtained in 

good yield with high purity without any need for further purification (Scheme 2.5).
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R

R

1 2 , 4

+  H„N CO O H COO H

R '

R

1 M R= H,

zIIhe. A l = 92%

r = n o 2, R'= H A2 = 93%

fL M R= H, R'= Br M  = 68%

Scheme [2.5]: Synthesis of A l, A2 and A4. Reagents and conditions: AcOH/AcONa,

Reflux.

Compounds B l, B2, and B4 were obtained using the same procedure by replacing 4- 

aminobenzoic acid with 5-aminoisophthalic acid (Scheme 2.6).

R'

R

C O O H

CO O H

CO O H

R'
COO H

R

L L ± L S I R= H, R'= H

2, B2 R= N 02, R -  H

4, B4 73 II Z R’= Br

B1 = 92% 

B2 = 95% 

B4 = 85%

Scheme [2.6]: Synthesis of Bl, B2 and B4. Reagents and conditions: AcOH/AcONa,
Reflux.

Compounds Cl, C2 and C4 have been prepared by the same procedures as above 

(Scheme 2.7), however, their yields were much lower due to the formation o f  

byproducts. Purification was achieved using flash column chromatography (CHCI3 : 

MeOH : N H3; 9 : 1 :  0.1).
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R'

R

1 2 ,4

C O O H

1 M R= H, R'= H

2, A2 r = n o 2, R -  H

1 M R= H, R'= Br

COO H

R '

R

M  = 92% 

M  = 93% 

M  = 68%

Scheme [2.5]: Synthesis of A l, A2 and A4. Reagents and conditions: AcOH/AcONa,

Reflux.

Compounds Bl, B2, and B4 were obtained using the same procedure by replacing 4- 

aminobenzoic acid with 5-aminoisophthalic acid (Scheme 2.6).

R'

R

C O O H

+ h2n ^

C O O H

1 2 ,4

COO H

R'
COO H

R

I M

z11z z11£

2, B2 R= N 02, R'= H

4, B4 R= H, R -  Br

B1 = 92% 

B2 = 95% 

B4 = 85%

Scheme [2.6]: Synthesis of Bl, B2 and B4. Reagents and conditions: AcOH/AcONa,
Reflux.

Compounds Cl, C2 and C4 have been prepared by the same procedures as above 

(Scheme 2.7), however, their yields were much lower due to the formation o f 

byproducts. Purification was achieved using flash column chromatography (CHCI3 : 

MeOH : NH3; 9 : 1 :  0.1).
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R'

R

C O O H

+  h 2n — ^  ^

NH.

1 2 ,4

C O O H

R'
n h 2

R

1 £ L R= H, R'= H

2, £ 2 R = n o 2> R'= H

4, £ 4 R= H, R'= Br

£1= 43%  

£ 2 = 12% 

£ 4  = 11%

Scheme [2.7]: Synthesis of Cl, C2 and C4. Reagents and conditions: AcOH/AcONa,
Reflux.

The byproducts o f  the previous reaction were found to be C ll, C22 and C44, however, 

these are all desirable and so were prepared using the same procedure but using 

double the amount o f  anhydride over an increased period o f  time. Separation was also 

achieved using flash chromatography (CHCI3 : MeOH : NH 3 ; 9 : 1 : 0.1) (Scheme 

2 .8 ).

C O O H

R'

R ’

1 2 ,4

COO H

+

n h 2h 2n

£11= 75%R=H, R'= H 

R = N 02, R’=H 

R'= Br

£ 2 2 =  71%

£4 4  = 67%4 ,0 4 4 R= H

Scheme [2.8]: Synthesis of C ll, C22 and C44. Reagents and conditions: AcOH/AcONa,
Reflux.

The 3,6-diamino- 1,8-naphthalimide derivatives A3, B3, C3 and C33 were prepared 

according to an analogous reported procedure,[ 1921 with slight modifications, for the 

hydrogenation o f  the nitro groups using Pd/C 10% in DMF solution (Scheme 2.9).
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■COOH

0 ?N

h 2n

COOH

h 2n

0 2N
COOH

COOH
o 2n B2

h 2n

COOH

COOH
h2n 51

Scheme [2.9]: Synthesis of A3 and B3. Reagents and conditions: DMF, Pd/C 10%, H2,
stirring 16 h, RT.

The reaction was monitored by TLC and once complete the catalyst was filtered o ff 

and the filtrate poured into DCM (250 mL). The solid precipitate was then easily 

collected by filtration.

Compounds C3 and C33 were prepared by the same procedure over 24 hours, the final 

products were purified by flash chromatography (CHCI3 : MeOH : AcOH; 8 : 2 :  0.5) 

(Scheme 2.10).

h 2n

n h 2

COOH
h 2n

n h 2

COOH
0 2N

Q2 £ 3

OOH OOH

h 2n .n o 2
n h 2

89%

C 22 n o 2 n h 2

Scheme [2.10]: Synthesis of C3 and C33. Reagents and conditions: DMF, Pd/C 10%,
H2, stirring 24 h, RT.
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2.2 Photophysical studies
2.2.1 UV-vis absorption spectra

As reported, precursor 1 has its longest wavelength UV-vis adsorption band Xmax at 

330 nm; 2 at X m a x = 277 due to the two nitro withdrawing groups in positions C-3 and 

C-6; 3 at Xmax = 439 nm due to presence o f  two amino electron-donating groups in 

positions C-3 and C-6 ; 4 at Xmax = 340 nm with the slight red-shift due to the bromine 

atom at position C-4. As expected due to the similarities o f  their basic chromophore, 

the derivatives o f  N -ary l-l,8-Naphthalic anhydride derivatives A1-A4 (Figure 2.1), 

B1-B4 (Figure 2.2), C1-C4 (Figure 2.3) and C11-C44 (Figure 2.4) have similar spectra 

to those o f  compounds 1-4. The N-alkyleamino- and imidazole-based naphthalimide 

derivatives CF1-CF3 (Figure 2.5) have Xmax at 340 nm.

A1 
A2
A4

0.6

Figure [2.1]: UV absorbance spectra for compounds A l- Figure [2.2]: UV absorbance spectra for compounds 
A4 in DMF solvent. B1-B4 in DMF solvent.
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 Cl
C2

 Cll
C221.1

 C M

0.1

270 3 20 370
W avatongth (nm)

42 0 4 7 0340 4 9 0

W avalangth (nm)

Figure [2.4]: UV absorbance spectra forFigure [2.3]: UV absorbance spectra for
compounds C1-C4 in DMF solvent compounds C11-C44 in DMF solvent.

0.9

0.8

0.7 H

0.6  -  CF1
—  CF2 

 CF3
0.5 j

0.2

0.1

300 320 340
Wavelength (nm)

360 380 400280

Figure [2.5]: UV absorbance spectra for compounds 1, CF1-CF3 in DMF solvent.

2.2.2 Relative fluorescence intensity (RFI)
All the compounds prepared for this study were soluble in DMF and the relative 

fluorescence intensity (RFI) was recorded at constant UV absorbance o f  0.7 (Table 

2 . 1).
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Table [2.1]: Summary of fluorescent wavelengths and relative fluorescence emission 
intensity placed in order of increasing fluorescence intensity.

Compound Wavelength (nm) Fluorescence emission intensity

C22 342 16.19 x 10'3

C1 422 20.20 x 10'3

C4 428 26.50 x 10'3

2 411 27.19 x 10'3

A1 383 27.30 x 10 3

C44 401 27.86 x 10'3

A4 402 29.36 x 10‘3

C11 405 32.60 x 10'3

C2 455 35.80 x 10'3

CF1 425 35.84 x 10‘3

1 380 39.85 x 10'3

A2 341 58.78 x 10‘3

B1 410 71.08 x 10'3

4 455 79.26 x 10'3

B4 408 90.60 x 10'3

CF3 383 97.70 x 10'3

B2 419 1409.4 x 10’3

A3 518 3164.5 x 10‘3

B3 518 3434.9 x 10‘3

C3 521 4785.8 x 10‘3

3 518 6213.1 x 10‘3

C33 518 6489.4 x 10’3

CF2 432 148310.0 x 10'3

As was expected, the RFI order o f  TV-aryl am ino-1,8-naphthalimide derivatives mainly 

depends on the intramolecular charge-transfer in the delocalized structures (Figure 

2.8). This in turn depends on the type o f  functional groups present at the C-3 and C-6 

positions (H, NO2 or NH2), or the functional group on C-4 (e.g. Br) (Figure 2.6). The
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RFI can be summarized by placing the following in ascending order NO2 < H < Br 

« <  NH2.

O. .O

Br

H2N n h 2

III IV

Figure [2.6]: Order of Relative fluorescent intensity of /V-arylamino-l,8-naphthalimide
derivatives

With regards to N -alkylam ino-l,8-naphthalimide derivatives (Figure 2.7), their RFI 

mainly depends on the “fluorophore-spacer-receptor” model and Photoinduced 

Internal Electron Transfer (PIET) process.[I8I I83J

/  \
- 0  0 -

CF3

-NH ,

Figure [2.7]: Order of Relative fluorescent intensity of /V-alkylamino-1,8-
naphthalimide derivatives

The RFI o f  compound CF1 is very low and close to that o f  compound 1 due to PET 

processes which quench the fluorescence o f  the anhydride moiety (Figure 2.8).
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Chapter Two: Fluorescent Cores

energy and electron transfer

Fluorophore Spacer Receptor

CF1

Figure [2.8]: (a) Conjugation process of compound 1, (b) Fluorescent quenching 
process result from PET for compound CF1.

Compound CF3 has a fluorescence intensity three times larger than that o f  CF1 

although it could potentially also suffer from a similar PET process as for CF1. A 

possible explanation for this is the length o f  the spacer in CF3, which is three times 

longer than in FC1. As a result, the possibility o f  CF3 undergoing a PET process is less 

than the probability for CF1 (Figure 2.8).11941

Compound CF2 (Scheme 2.2) possesses the highest RFI value, especially when 

compared to V-alkylamino and V-arylam ino-l,8-naphthalimide derivatives. This high 

intensity o f  fluorescence might be interpreted according to two factors: firstly, there is 

no possibility for PET process, secondly, the nitrogen atom o f  the imidazole ring 

participates in the resonance conjugated anhydride system with a push-pull interaction 

via the n system. (Figure 2.9) shows the difference between the fluorescence o f  

solutions o f  CF1 and CF2 under short-wavelength UV illumination.
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Figure [2.9]: Blue-green emitting for compounds CF1 and CF2 under short UV region.

The high fluorescence o f  compounds A3, B3, C3, 3, C33 (Figure 2.10) might be 

interpreted according to two points: firstly, there is no potential for PET, and 

secondly, the presence o f  the two amines (positions C-3 and C-6), which can interact 

with the imide ring via conjugation through the n system. [l95' 197]

700

<u ^  
V  Q>

600

500

Z  8 400
U c/)
g  £  300
</> <Qj - £ 200O 3
u. 100

•C33

•3

■C3

*B3

•A3

350 450 550 650

Wavelength (nm)

750

Figure [2.10]: Relative fluorescence emission spectra of compounds 3, A3, B3, C3, 
and C33, when excited at wavelength \ max 439 nm.

Figure (2.11) shows the difference between the fluorescence o f  solutions o f  3, A3, B3,

C3, and C33 under short-wavelength UV illumination.
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Figure [2.11]: Green emission for compounds 3, A3, B3, C3, C33 under short UV
region.

2.2.2 Fluorescence quantum yield (OF)
The target compounds were designed as potential fluorescent cores for dendritic 

molecules with amino and carboxylic acid groups that can be functionalised. Hence, 

the fluorescence quantum yields Of, for the compounds possessing high RFI 

emission, were measured (Figure 2.12).

^  0 .7  -r
Li_

& 0.6
2
a)
>  0 .5  
E
|  0 .4  
to
§■ 0.3  
8
5 0.2 +

5 0.1 3

0.63454

0.22939
0.16657  0 .17289

0.07387
0.10342

A3 B3 C3 C33 CF2

Figure [2.12]: Fluorescence quantum yield for compounds A3, B3, 3, C3, C33 and 
CF2, when excited at wavelength Xmax 439 nm.
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2.3. Conclusions
Based upon these photophysical measurements it was 

modifiable derivatives o f  CF2 as the fluorescent core 

fluorescent dendrons for pharmacological use.

decided to use readily 

in the design o f  highly
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C hapter Three: Fluorescent PAMAM Carriers

Recently, water-soluble fluorescent dendrimers have become an increasingly important 

class o f  labelling reagent for biological applications. Fluorescent labelling reagents are 

required to have high sensitivity, appropriate excitation and emission maxima, and 

specific functionality. Therefore, it is important to design and develop new fluorescent 

labelling reagents, which have high detection limits and appropriate fluorescent 

behaviour.fl98]

3.1. Design and synthesis
Herein we report work on PAMAM dendritic wedges (i.e. dendrons) with a fluorescent 

label at their focal point or, to retain conventional dendrimer terminology, their ‘core’. 

Based on the work in the preceding chapter, it was decided to design the dendrons on the 

highly fluorescent unit FC2 because o f its chemical stability and its strong 

fluorescence.1198'204] It should be noted that many similar derivatives o f 1,8-naphthalic 

anhydride have been developed as fluorescent dyes and whitening agents,[205'206] but these 

suffer from being insoluble in aqueous and most polar media. So for our target materials 

the PAMAM dendron is used to enhance their solubility in water and, hopefully, their 

biocompatibility.

3.1.1 Synthesis of fluorophore core (FC2 GO).
The synthesis o f  3-(2-aminoethylamino)-7H-benz[de]benzimidazo[2,l-a]isoquinoline-7- 

one FC2G0 (Scheme 3.1) was achieved by the reaction between o-phenylenediamine 10 

and 4-bromo-l,8-naphthalenedicarboxylic anhydride 4 to give isomers FC2 (3-bromo) and 

FC2* (4-bromo), which were carefully separated by column chromatography.[ 1985 FC2 

reacted with ethylenediamine by two different methods (A, B) to afford the corresponding 

substitution product FC2G0 in low but sufficient yield.
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XL

N H ,

54%

NH2

FC2 GOFC2

Method (A) 14%

Method (B) 19%

FC2*

Scheme [3.1]: Synthesis of FC2 and FC2G0. Reagents and conditions: (i) AcOH, reflux 2 h; 
method (A) MeCN, EDA, reflux 3 days; method (B) EDA, heating 130 °C for 1 h.

Although there is significant literature about the synthesis, characterisation and potential 

applications o f  FC2 and FC2G0 or their derivatives, some o f  these references did not refer 

to the separation o f  the two isomers FC2 and FC2*,[200 ’207'213̂ whereas others discuss this 

in some detail due to the ultimate application o f  the compounds or their derivatives.^198’199, 

204] We found it convenient to react a mixture o f  FC2 and FC2* with ethylene diamine (a 

nucleophilic aromatic substitution) and then separate the products by preparative HPLC as 

shown in (Scheme 3.1). (Figures 3.1-3.4) indicate the purity o f  the resulting product 

FC2G0 and ester PAMAM dendrons FC2G0.5, FC2G1.5, FC2G2.5, respectively.
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WVL: 254 nm
10.53

200
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Figure [3.1]: Prep. HPLC Curve for FC2 GO (10.533 min.)

Figure [3.2]: Analytical HPLC Curve for FC2 G0.5 (7.118 min).
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Figure [3.3]: Prep. HPLC Curve for FC2 G1.5 (11.650 min.)
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Figure [3.4]: Prep. HPLC Curve for FC2 G2.5 (10.633 min.)
14 . 15 10
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3.1.2. Synthesis of fluorescent PAMAM dendritic wedges 

FC2G0.5 -  FC2G2.5 ( COOMe, NH2).
To overcome the necessity for protection, it was decided to initiate a PAMAM synthesis 

from FC2G0 (Scheme 3.2). The lone pairs on aromatic nitrogens are partially delocalised 

within the aromatic ring, resulting in a much reduced nucleophilicity when compared to 

the aliphatic nitrogen whose lone pair is free to react under the Michael conditions 

employed during PAMAM synthesis.[2l4] This means that the reaction between FC2 and 

ethylenediamine addition occurs specifically on the aliphatic nitrogen, rather than the 

aromatic nitrogen. FC2G0 was then further reacted with methyl acrylate by Michael 

addition12151 to yield FC2G0.5, followed by amidation with ethylenediamine to yield 

FC2G1. Repeating Michael additions and amidations resulted in dendrons o f  higher 

generations, FC2G1.5 through FC2G2.5 (Schemes 3.3, 3.4 and 3.5).

FC2 GO

77%

57%

O NHL

0  NH2
FC2 GQ.5 FC2Q1

Schem e [3.2]: Synthesis of FC2G0.5 and FC2G1. Reagents and conditions: (i) Methyl 
acrylate, MeOH, reflux 6 h, stirring 16 h, r.t; (ii) MeOH/DCM, EDA, stirring 2 days/N2.
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For the Michael addition an excess o f  methyl acrylate (75 equiv. per primary amine), was 

used. For the amidation steps, a large excess o f  ethylenediamine (100 equiv. per ester 

function) was required to prevent dendron bridging and gelation. Repeating these two 

steps led to a controlled synthesis o f  the desired dendrons.

Scheme [3.3]: Synthesis of FC2G1.5. Reagents and conditions: Methyl acrylate, MeOH,
reflux 24 h.

The dendrons terminated with methyl esters were easily purified with column 

chromatography (eluent DCM/MeOH) to give moderate or good yields (FC2G0.5 = 77%, 

FC2G1.5 = 70%, FC2G2.5 = 67%). In each case the purity o f  the ester terminated 

dendrons, (i.e. FC2G0.5, FC2G1.5 and FC2G2.5) was confirmed by HPLC (Figures 3.2- 

3.4). However, flash column chromatography could not be used to purify the amine 

species (FC2G1, FC2G2) because o f  their high polarity. Instead, the excess

o t
ethylenediamine (b.p. = 118 C) was removed azeotropically using a toluene:methanol 

mixture (9:1) before the amines (FC2G1, FC2G2) were dried in vacuo. The amines were 

purified by flash column chromatography using a mixture o f DCM and Me0 H/NH40 H as 

eluent. They are then synthetically pure to use further.

n ^ / ^ q d o  c h ,

N -^ S ^ C D O  CH,

FC2G1 FC2G1.5 (D O  CH,
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56%

FC2G1.5 OOOCH,

NH,

°^NH

O

I n̂ nh,

O^NH

Scheme [3.4]: Synthesis of FC2G2. Reagents and conditions: MeOH/DCM, EDA, stirring 5
days/N2.

The structures o f  FC2G0.5, FC2G1.5 and FC2G2.5 were confirmed by FT-IR and NMR 

spectroscopy. The most characteristic IR peak for structure identification is that 

originating from the carbonyl stretch at 1730-1750 cm '1. The IR data showed regular 

alternation o f  the absorbance o f  the carbonyl group in the fluorescent dendrons. In the 

case o f  the half generations (FC2G0.5, FC2G1.5 and FC2G2.5), the ester carbonyl peak 

appeared around 1730-1750 cm '1 and the ester C-O stretching peak appeared at around 

1260 cm '1. For the full generations, methyl ester groups were converted to amide groups 

and the corresponding carbonyl peak shifted to 1640-1660 cm '1. The ’H-NMR data are 

summarized in the experimental section. They corroborated well with the FT-IR data to 

confirm the structure o f  the fluorescent dendrons. For example, the methyl ester proton 

peak (6 3.7) appeared in all the NMR spectra o f  the half generation dendrons but was 

absent in the spectra o f  all the full generations.
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COOCH,

HjCOOC

IOOCH,

COOCH.

COOCH.

COOCH.

NH. (■ '— COOCH. 

H,COOC

Scheme [3.5]: Synthesis of FC2G2.5. Reagents and conditions: Methyl acrylate, MeOH, reflux

All the dendrons o f  interest were characterized and their structures verified by 'H-NMR, 

l3C-NMR, EI-MS, and MALDI-TOF MS with all results agreeing with the proposed 

structures.f2l4]

3.1.3 Synthesis of fluorescent PAMAM dendritic wedge salts 

FC2G0.5, FC2G1.5 and FC2G2.5 ( -COONa).
While PAMAM dendrimers have many biomedical applications, it is anionic PAMAM 

dendrimers which are o f  particular current interest as drug delivery vehicles.[216] This is 

because they have the important advantage o f  being non-cytotoxic compared to the 

cationic dendrimers,[217] whilst also being highly effective in transcellular transport and 

oral delivery applications. For example, previous studies in cancer cells have shown that 

efficacy o f  anionic PAM AM  dendrim er-methotrexate (MTX) conjugates were 

significantly better than cationic PAMAM dendrimer-M TX conjugates.t2l8] This 

difference has been partially attributed to differences in lysosomal residence times and 

intracellular drug release from anionic and cationic dendrimer-*lrug conjugates. Hence 

anionic PAMAM dendrimers may be more effective in-vivo platforms for drug delivery

2 days.
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applications compared to cationic PAMAM dendrimers, because o f  their better 

cytotoxicity profiles, and reduced protein binding.[219] Therefore, conversion o f  FC2G0.5 

diester to the anionic FC2G0.5 salt was attempted, and indeed achieved with very good 

yields (95%) by refluxing in ethanolic NaOH (Scheme 3.6).

H

CDO CHj
95%

(D O  CHj

^CD O N a

N

(D O N a

FC2 QQ,9 FCaSO.Ssalt

Scheme [3.6] Synthesis of FC2G0.5 salt. Reagents and conditions: Ethanolic NaOH, EtOH,
reflux 16 h.

Similarly, the other two anionic salts FC2G1.5 and FC2G1.5 were formed, in quantitative 

yield, by the alkaline hydrolysis o f  polyesters FC2G1.5 and FC2G1.5, respectively, by 

stirring with ethanolic NaOH at room temperature (Schemes 3.7, 3.8). All the compounds 

were fully characterized using by 'H-NMR, 13C-NMR, EI-MS, and MALDI-TOF MS.

IO CH, 10 Na

97%

N -^ V -C D O  CH,

F C 2 G 1 .5  s a l t'O CH, >0 Na

Scheme [3.7]: Synthesis of FC2G1.5 salt. Reagents and conditions: NaOH, EtOH, stirring
24 h, rt.
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h 3c o o c

COONa

COONaCOOCH,

‘COONa‘COOCH,

N
H 93%

V—V H
0  N

COONaCOOCH3

COOCH, NH

FCI ggit

NaOOC

Scheme [3.8]: Synthesis of FC2G2.5 salt. Reagents and conditions: NaOH, EtOH, stirring
24 h, rt.
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3.2. Photophysical characterization
As noted in the introduction, 1,8-naphthalimide derivatives are good candidates for 

fluorescent studies because o f  their intrinsic photophysical and photochemical 

properties,1220* which account for their widespread use as fluorescent dyes*137 2211 and 

fluorescent markers.*151,222'2231

3.2.1. UV-vis absorp tion  properties

The UV/visible absorption spectrum o f  FC2 in methanol at room temperature shows 

absorption in the near UV region at Xmax = 390 nm. Substitution o f  the bromine atom at C- 

3 in FC2 with an electron-donating alky lam ino group (compounds FC2G0 -  FC2G2.5 and 

their salts) results in a large bathochromic shift into the visible region at Xmax = 444-460 

nm (Figure 3.5). This is a typical effect for conjugated organic compounds and agrees 

with the reported literature.*213*

FC2

 FC2G0

 FC2G0.5

 FC2G0.5 salt

 FC2G1

-  FC 2G 15

 FC2G1 5 salt

 FC2G2
 FC2G2.5

 FC2G2.5 salt

0.2

470 490 510370 390 410 430

W avelength  (nm )

450 530 550350

Figure [3.5]: UV absorbance spectra for FC2 and FC2Gs in MeOH solvent.
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3.2.2. F luorescence m easurem ents.

3.2.2.1 Relative intensity o f fluorescence for PAMAM terminated [-COOMe, - 

NH2].

As described earlier, the aminoethyl derivative FC2 GO-NH2 was chosen for study due to its 

suitability as a starting material for building PAMAM dendrons. The RFI characteristics 

o f  the fluorophore 3-aminobenzimidazo[2,l-a]benz[de]isoquinolin-7-one derivatives, FC2 

and FC2G0-FC2G2.5, in methanol are presented in (Figures 3.6, 3.7) and show that the 

fluorescence emissions are in the spectral region 502-516 nm (Table 3.1). The effect o f 

the C-4 alkylamino substituent on the energy of the dyes’ fluorescence maximum 

wavelength is negligible as reportedJ224̂ In all cases the shape and maxima o f  the 

fluorescence band do not depend o f the excitation wavelength, and the excitation spectra 

are identical to the corresponding absorption spectra.

FC2250

FC2 GO«r 200

FC 2G 1r. 150

FC2 G2« 100

FC2 GO.550

F C 2G 1.5

510 560

Wavelength (nm)

610460
FC2 G 2 .5

Figure [3.6]: Fluorescence emission curves of all FC2Gs compounds in MeOH at UV 
absorbance 0.05 x 1 0 "3, when excited at wavelength A.max 455 nm.

Despite the negligible effect on the wavelength o f the fluorescence transitions, the

fluorescence performance o f compounds FC2 and FC2G0-FC2G2.5 is clearly influenced by

the substituent at the C-3 position o f  the molecule (Figure 3.6, 3.7 and Table 3.1). The
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fluorescence intensity o f  core FC2 is very low in comparison with that o f  compounds 

FC2G0, FC2G1 and FC2G1.5, but is stronger than that o f  higher generations FC2G2, 

FC2G2.5.

250

200 -

150

100

FC2G0 FC2G0.5 FC2G1 FC2G1.5 FC2G2 FC2G2.5FC2

Figure [3.7]: Fluorescence Intensity values of all FC2G dendrons in MeOH at UV 
absorbance 0.05 x 10'3, when excited at wavelength \ max 455 nm

It has been explained previously that FC2 has low fluorescent intensity due to the bromine 

derivative on its C-3 position, which affects polarization o f  the 1,8-naphthalimide 

chromophoric system.11771

Table [3.1]: Fluorescence Intensity values of all FC2Gs compounds in MeOH at UV 
absorbance 0.05 x 1 0 3, when excited at wavelength Xmax 455 nm

Compounds FC2 FC2 GO FC2 GO.5 FC2G 1 F C 2G 1 .5 FC 2G 2 FC2 G 2.5

Emission max (nm ) 515.5 508.5 513.5 511.5 510 502 513

Fluorescence Intensity  
(a.u.)

31 224 81 79 65 21 11
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It was found that the fluorescence intensity spectra o f FC2G0 in methanol solution is eight 

times higher than FC2. There are two opposite factors influencing the fluorescent spectra 

o f  FC2G0. The strongest influence, which increases the fluorescence, is the presence o f 

the electron-donating amino group. It is known that the photophysical properties o f  the 

analogous 1,8-naphthalimide system depends mainly on the polarization o f  the molecule

The second and weaker influence is the photoinduced electron transfer (PET) phenomena. 

For this particular case, it was predicted that the PET process (an electron transfer from 

the primary amine receptor to the excited state o f  the fluorophore core) would quench

low due to the receptor being a primary amine rather than a tertiary amine for which the 

PET process is more favoured.12261

[FC2G0]

Figure [3.9]: Weak fluorescent quenching process result from PET in case of primary
amine receptor.

(Figure 3.8).1361

A bs

[FC2G0]

Figure [3.8]: Conjugation process pathways of compound FC2G0

fluorescence emission (Figure 3.9).[2251 However, the possibility ofPET happening is very

energy and electron transfer

Fluorophore Spacer Receptor
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As (Table 3.2) shows, the relative fluorescence intensity decreases from FC2G0 » >  

FC2G0.5 = FC2G1 > FC2G1.5 > FC2G2 > FC2G2.5. This trend is due to the effect o f  the 

tertiary amines within the PAMAM substitutent, which can interact with the fluorophore 

core via the PET mechanism (Figure 3.10)1225* and, as the PAMAM generation increases, 

the number o f  amines also increases, which enhances the PET process (Table 3.2).[181' 183]

energy and electron transfer

Abs

Flu

Fluorophore Spacer Receptor

[FC2G0.5]

Figure [3.10]: Strong fluorescent quenching process resulting from PET in the case of
tertiary amine receptor.

Table [3.2]: Number of primary, tertiary amines in all compounds FC2Gs.

Compounds

Name

Generation

Number

Primary amine 

-NH2

Tertiary amine 

=N-

Total no. of 

amines

FCGO 0 1 0 0

FC2G0.5 0.5 0 1 1

FC2G1 1 2 1 3

FC2G1.5 1.5 0 3 3

FC2G2 2 4 3 7

FC2G2.5 2.5 0 7 7
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3.2.2.2 Relative intensity for fluorescent PAMAM terminated [-COONa].

Figures (3.12 and 3.13) show how the relative fluorescence intensity decreases for the

carboxylate salts FC2G0.5 > FC2G1.5 »  FC2G2.5 due to the previously mentioned PET 

effect. The extra tertiary amine groups in the scaffold quench the fluorescence as the 

generation increases.11941

600

-  500

GO.5 salt
400

 G1.5 salt
£  300 -

 G2.5 salt

200

100

UL

500 550

W a v elen g th  (nm)
400 450 600 650 700

Figure [3.12]: Fluorescence emission curves for all FC2G0.5, FC2G1.5 and FC2G2.5 salts 
in H20  at UV absorbance 0.0379 when excited at wavelength Xmax 447 nm.

The RFI study o f  carboxylate terminated PAMAM dendron salts was carried out in water. 

This solvent was chosen due to its biological compatibility and its potential hydrogen- 

bonding capability with the terminal groups o f  the PAMAM dendrons. These H-bonds 

favour radiation-less transitions, which has previously been noted to cause a decrease o f 

the fluorescence quantum yield o f  the analogous 1,8-naphthalimide fluorophore.51 2271
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> 4°0

t  300 
c

C 200

o 1003

G 0.5salt G 1.5salt G 2.5salt

Figure [3.13]: Fluorescence intensity values of all FC2G0.5, FC2G1.5 and FC2G2.5 salts in 
H2O at UV absorbance = 0.0379 when excited at wavelength Xmax 447 nm.

3.2.3 E ffect o f concen tra tion  on fluorescence em ission intensity

The fluorescent emission intensity was measured for aqueous solutions o f  FC2G0.5, FC2G1.5 

and FC2G2.5 PAMAM dendron carboxylate salts at various concentrations at room 

temperature. It was found that the emission intensity increased almost linearly with 

concentration (Figures 3.15, 3.17, 3.19). This result suggests that there is no effect o f  

intermolecular interaction (i.e. self-quenching within aggregates) on the fluorescence 

properties o f  the dendrons over the concentration range 0.83 x 10'4 - 5.75 x 10"4 mM L '1 ,[226]

400 GO.5 salt Cone.
350

5  300 

§  250
 3.25 0-4 rrtV

200
 1.62 0-4 fi*i

---------1 08

100 ■

50 -

650400 450 500 550
Wavelength (nm)

600

Figure [3.14]: Fluorescence Intensity curves at 
different concentrations of FC2G0.5 salt in H20  at 

emission 500 nm at 25 °C.

400

350

3 300 -

250 -

200  -

150 -

100  -
GO 5 s a l

50 -

Concentration e-4 mM

Figure [3.15]: Fluorescence Intensity at different
concentrations of FC2G0.5 salt in H20  at emission 500 

nm at 25 °C.
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--------3 83 e-4 mM

--------2.87 e-4 mKi
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Figure [3.16]: Fluorescence Intensity curves at 
different concentrations of FC2G1.5 salt in H20  at 

emission 500 nm at 25 °C.
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C o n c e n tra tio n  e -4  mM

Figure [3.17]: Fluorescence Intensity at different
concentrations of FC2G1.5 salt in H20  at emission 500 

nm at 25 °C.
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C o n c e n t r a t i o n  e - 4  m M

Figure [3.19]: Fluorescence Intensity at different 
concentrations of FC2G2.5 salt in H20  at emission 500 

nm at 25 °C.

3.2.4 In fluence o f pH on the absorption and fluorescence  

characteristics

3.2.4.1 UV-Visible Absorption Spectra

As a typical example for all compounds under study, the UV-Vis spectra o f FC2G0.5 salt 

was recorded in alkaline solution at pH 11. An absorption band was observed due to the 

internal charge transfer (ICT) state, with Xmax maximum at 456 nm (Figure 3.20). Upon 

acidification, the band was blue-shifted with small reductions in its maximum intensity at 

pH 5. However, upon further acidification (pH 3.5) the Xmax became red-shifted with very 

small intensity enhancements. These changes can be considered to be only minor in 

comparison to the changes in the fluorescence spectra (see later). As Gunnlaugsson et al.

Figure [3.18]: Fluorescence Intensity curves at 
different concentrations of FC2G2.5 salt in H20  at 

emission 500 nm at 25 °C.

G2.5 sa lt Cone.

 3.33 e-4 mM

 2 5 e 4 n # 4

 166 e-4 mM

 125 e-4 mM

480 530 580 630
Wavelength (nm)
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concluded for the analogous 1,8-naphthalimide fluorophores11641 the reason for the blue 

shift is twofold. First, the protonation o f the amine receptor (compound salts FC2G0.5, 

FC2G1.5, FC2G2.5) will exert some weak charge repulsion on the 4-amino moiety o f the 

fluorophore. Secondly, the major reason is that in strongly acidic conditions the push-pull 

character o f the ICT state is partially reduced due to the protonation o f  the 4-amino 

moiety itself (compound salts FC2G0.5, FC2G1.5, FC2G2.5)J224̂

To conclude, in neutral, weakly acidic and weakly basic solutions, there are only minor 

changes in the spectra o f  the dendrons, but in highly basic solutions there are weak red 

shifts with higher absorbance at pH 11 then weak absorbance at pH 13.5. In highly acidic 

solutions there are red shifts (Figure 3.20). Similar behaviour was observed for solutions 

o f FC2G1.5 and FC2G2.5 (Figures 3.21, 3.22), and simple explanation presented by 

(Figure 3.23).

GO.S salt0.35

0.3

pH = 2 34
0.25

--------------  pH = 3.67

--------------  pH = 7.51
0.15

pH = 8 OB

0.1 • pH =8 31

0.05

pH = 13 57

- 0.1

550350 400

Figure [3.20]: UV absorbance at different pH values for FC2G0.5 salt in H20  at
concentration 16.66 x 10 3 mM.
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pH 0 83 
pH* 1.32 
pH *2.15 
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pH *5.88 
pH -  7.43 
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pH* 11.18 
pH* 12.17 
pH *12.88 
pH *13.50

G 1.5 sa lt

350 4 0 0  4 5 0  500
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Figure [3.21]: UV absorbance at different pH values for FC2G1.5 salt in H20  at
concentration 16.66 x 1 0 3 mM.
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Figure [3.22]: UV absorbance at different pH values for FC2G2.5 salt in H20  at concentratio
16.66 x l0 '3 mM.
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Figure [3.23]
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3.2.4.2 Influence of pH on the fluorescence of FC2G0.5, FC2G1.5 and 

FC2G2.5 salts

The fluorescence o f  the carboxylate-terminated PAMAM dendrons (FC2G0.5, FC2G1.5 

and FC2G2.5) showed significant pH dependence over the pH range 13 to 1 as shown in 

(Figures 3.24-3.29). For FC2G0.5, when the pH decreased from 13 to 7, there was little 

change in the emission intensity. However, as the pH was reduced further, there appeared 

a rapid increase o f fluorescence intensity, which reached a maximum at about pH 6; the 

emission band position scarcely changed during this process. Similarly, the fluorescence 

intensity o f  both FC2G1.5 and FC2G2.5 increased gradually as the pH was lowered from 

13 to 7, where the maximum intensity was achieved at about pH 6. Then the fluorescence 

intensity gradually decreased as pH was decreased further.12261

pH values of 
G0.5 sa lt soln.500

450 ■ 

4 0 0 -3
■i 350-

1 00

 2.61

300
 5 7 2

 7.7.5250

200 -

1 5 0 -

C  100 12.46 

 13.1250 -

660 70C500 550

W avslsngth (nm)

600400 450

Figure [3.24]: Fluorescence Intensity curves at
different pH values of FC2G0.5 salt in H20  when 
excited at wavelength Xmax 447 nm. at 25 °C and 

concentration 2.3 x 1 0 3 mM.
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♦  G O .5  s a l t
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♦  ♦

200
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Figure [3.25]: Fluorescence Intensity at different pH 
values of FC2G0.5 salt in H20  when excited at 

wavelength Xmax 447 nm. at 25 °C and concentration 
2.3 x 10‘3 mM.
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Figure [3.26]: Fluorescence Intensity curves at 
different pH values of FC2G1.5 salt in H20  when 
excited at wavelength A™* 460 nm. at 25 °C and 

concentration 2.3 x 10'3 mM.
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Figure [3.27]: Fluorescence Intensity at different pH
values of FC2G1.5 salt in H20  when excited at 

wavelength Amax 460 nm at 25 °C and concentration 
2.3 x 1 0 3 mM.
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Figure [3.28]: Fluorescence Intensity curves at Figure [3.29]: Fluorescence Intensity at different pH
different pH values of FC2G2.5 salt in H20  when values of FC2G2.5 salt in H20  when excited at
excited at wavelength A™,, 445 nm. at 25 °C and wavelength A,™ 445 nm. at 25 °C and concentration

concentration 2.3 xlO'3 mM. 2.3 x 10‘3 mM.

For all dendrons the changes are o f such magnitude that they can be considered as 

representing two different “states”, where the fluorescence emission is “switched o ff’ in 

alkaline solution or strongly acidic solution and “switched on” in mildly acidic solution 

(Figure 3.30, 3 .3 l).[224] It is worth noting that pH 6 is the critical point in (Figures 3.25, 

3.27, 3.29) which correlates well with the pKa value[228‘229̂ o f tertiary amines in PAMAM 

dendrimers. More acidic solutions (i.e. below pH 3) result in further protonation of the 

imidazole unit causing losses in fluorescence, as has been noted for other imidazole- 

containing fluorophores.[ l99'200’ 203l
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Figure [3.30]: Quenching and enhancement of fluorescenceof FC2G0.5 salt in presence 
of strong acidic and weak acidic media respectively.
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Figure [3.31]: Enhancement and quenching of fluorescenceof FC2G0.5 salt in presence of 
weak acidic and strong basic media respectively.
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3.3. Physicochemical Characterization Studies 
3.3.1. Pulsed Gradient Spin Echo - NMR ((PGSE) -  NMR)
The PAMAM dendrimers have a flexible and loose structure allowing the interior 

hydrophilic branches to fold outward in water J 55, 881 The three fluorescent PAM AM-  

COONa terminated (FC2G0.5, FC2G1.5, FC2G2.5) dendrons can be considered as 

amphiphilic molecules with hydrophobic fluorescent aromatics at the core and hydrophilic 

interior branches at the periphery (COONa). Their potential aggregation behaviour in D 20  

was hence investigated.

3.3.1.1 Self-diffusion Coefficient (Ds).
Using date acquired from pulsed gradient spin echo (PGSE) NMR by PhD student 

Abdulhakim Jangher o f  the group o f  Dr. Peter Griffiths (Cardiff University), the self- 

diffusion coefficient, Ds, are calculated from equation ( l)  using the measured peak 

integral, A (G, 3) as a function o f  field gradient duration (3) and ramp time (a), intensity 

G , and separation A. Where y is the magnetogyric ratio o f  the nucleus under observation, 

in this case, protons.

A(G,S) = A0 e x p [- / G ----------------------------- —-----------------------------  D, \ (1)
V

The Ao term is determined by the number o f  protons in the sample and the first 

exponential term is the attenuation from spin-spin relaxation during the experiments. 

Typically values o f  3, A and a  for the polymer systems studied here are (d/>) = 200 psec, 

(d2) = 400 msec.

Table (3.3) and (Figure 3.32) show the diffusion coefficient (Ds) values for FC2G0.5, 

FC2G1.5 and FC2G2.5 fluorescent dendrons at different concentrations (9.0 - 23 mM L '1). 

In each case a modest decrease o f  the diffusion coefficient (Ds) is observed as the
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concentration increases. In the case o f  FC2G0.5, the values o f  the diffusion coefficient 

(Ds) are relatively large compared to those o f FC2G1.5 and FC2G2.5 which are very 

similar to each other.

Table [3.3]: Self diffusion coefficient (Ds) values of FC2G0.5, FC2G1.5 and FC2G2.5 
fluorescent dendron salts in D20  at 25 °C at different concentrations (9.0 - 23 mM L'1) at

pH (9 .3-9 .8).

FC2G0.5 FC2G1.5 FC2G2.5
Concentration (mM  L’1) I V  m V Concentration(m M  L’1) Ds/ mV Concentration(m M  L'1) D,/ m V 1

9.0 1.92 e'10 9.5 1.40 e 10 9.3 1.38 e 10

14.65 1.85 e*10 14.65 1.37 e 10 14.6 1.27 e 10

18.90 1.76 e 10 19.20 1.36 e 10 18.9 1.25 e 10

23.5 1.69 e 10 22.15 1.31 e 10 23.5 1.15 e 10

2 .2 e -1 0

G 0.5 
G 1.5 
G 2.5

2 .0 e -1 0

1 .8 e -1 0

1 .6 e -1 0

1 .4 e -1 0

1 .2 e -1 0

1 .0 e -1 0  -

8 .0 e -1 1

Concentration I mM

Figure [3.32]: Self diffusion coefficient (Ds) curves of FC2G0.5, FC2G1.5 and FC2G2.5 
fluorescent dendron salts in D20  at 25 °C at different concentrationse (9.0 - 23 Mm L'1).
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3.3.1.2 Hydrodynamic radii (Rh).

The hydrodynamic radius (Rh)  values o f  the three fluorescent PAMAM-COONa 

terminated (FC2G0.5, FC2G1.5, FC2G2.5) dendrons as a function o f  concentration was also 

investigated by diffusion NMR. As a characteristic length, the hydrodynamic radius is 

calculated by Stokes-Einstein equation (2).

Where kg is the Boltzmann constant, T  is the temperature in Kelvin, rj is the viscosity o f  

the solvent and Rh is the hydrodynamic radius o f the fluorescent dendron.

Table [3.4]: Hydrodynamic radii (Rh) values of FC2G0.5, FC2G1.5 and FC2G2.5 fluorescent 
dendrons salt in D2O at 25 °C at different concentrations (9.0 -  23 mM L"1).

F C 2 G 0 .5 F C 2 G 1 .5 F C 2 G 2 .5

Concentration/mM L'1 Rh/A Concentration/ mM L'1 Rh/A Concentration/ mM L"1 Rh/A

9.0 10.1 9.5 13.8 9.3 14.0

14.65 10.4 14.65 14.1 14.6 15.2

18.90 11.0 19.20 14.2 18.9 15.5

23.5 11.4 22.15 14.8 23.5 16.8

Table (3.4) shows the expected increase in the hydrodynamic radius (Rh) o f FC2G2.5 > 

FC2G1.5 > FC2G0.5 studied as a function o f  the dendrimer generation at constant 

concentration (Figure 3.33).
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Figure [3.33]: Hydrodynamic radii (Rh) curves of FC2G0.5, FC2G1.5 and FC2G2.5 
fluorescent dendron salts in D20  at 25 °C at different concentrations (9.0 - 23 mM I 1).

These studies demonstrate that over this relatively high concentration range (as compared 

to those used in the fluorescence studies) the diffusion coefficients o f  FC2G0.5, FC2G1.5 

and FC2G2.5 do not vary significantly so there is no sign o f  aggregation. The 

hydrodynamic radii have been obtained using the Stokes-Einstein equation extrapolated to 

infinite dilution Ds. The size o f  the dendrons were not significantly altered at different 

concentrations.

3.4. Conclusion
In conclusion, we designed and prepared several new water soluble fluorescent dendrons 

and studied their photophysical and physicochemical properties. The dendrons are all 

fluorescent due to the core but this is modulated by PET process which increases with 

higher PAMAM dendron generation.
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For all compounds the fluorescence is linearly correlated with concentration and the pH o f 

the aqueous solvent has a significant effect for both UV absorbance (ground state) and 

fluorescent emission (excited state). In strong acidic media this is due to protonation o f  

the core, while in basic media the fluorescent emission is quenched due to presence o f  the 

PET process involving the tertiary amine groups within the PAMAM units. The strongest 

fluorescent emission o f  all carboxylate-terminated dendrons was in pH 6. Generally 

physicochemical studies indicate that the self diffusion coefficient and hydrodynamic 

radii are unaffected by concentration suggesting that there is no aggregation.

The confirmed properties (i.e. water solubility, high fluorescence at near neutral pH, and 

no aggregation) suggest these new dendron are promising for the collaborative biological 

studies described in (Appendix A).
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Chapter Four: Experimental

4.1 Experimental techniques

4.1.1 Materials
Commercially available chemicals were purchased from Sigma-Aldrich or Acros 

Organics/Fisher Scientific and solvents were used without further purification. 

Anhydrous dichloromethane was obtained by distillation over calcium hydride under 

nitrogen atmosphere. Anhydrous V,V-dirnethylformamide was received from Aldrich. 

All reactions involving air/moisture sensitive reagents were performed in oven-dried, 

under a nitrogen atmosphere. TLC analysis refers to analytical thin layer 

chromatography, using aluminum-backed plates coated with Merck Kieselgel 60 

GF254. Product spots were viewed by the quenching o f  UV fluorescence. Flash 

chromatography was performed on silica gel 60A (35-70 micron) chromatography 

grade (Fisher Scientific).

4.1.2 Instruments 

Melting Point

Melting points were recorded using a Gallenkamp Melting Point Apparatus.

Infra Red spectra (IR)
Infrared spectra were recorded in the range 4000-600 cm' 1 using a Perkin-Elmer 1600 

series FTIR instrument either as a thin film or as a nujol mull between sodium 

chloride plates. All absorptions are quoted in cm '1.

Nuclear Magnetic Resonance (NMR)

]H and 13C NM R spectra were recorded in DMSO-d6 (unless otherwise stated) using 

an Avance Bruker DPX 400 instrument (400 MHz) or an Avance Bruker DPX 500 

(500 MHz). All chemical shifts reported in (<5, ppm) with referenced to (TMS, S 0.0).
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Mass spectrometry

Low-resolution mass spectrometric data were determined using a Fisons VG Platform 

II quadrupole instrument using electrospray ionisation (ES) unless otherwise stated. 

High-resolution mass spectrometric data were obtained in electrospray (ES) mode 

unless otherwise reported, on a Waters Q-TOF micromass spectrometer. Matrix 

Assisted Laser Desorption - time o f  flight Mass Spectrometry (MALDI-TOF) is 

available using a Waters Maldi Micro MX research grade instrument.

Elemental analyses

Elemental analyses were obtained from University o f  Warwick Analytical Service 

facility. CHN Analysis CE440 Elemental Analyser, Bromine is analysed using 

classical oxygen flask methods. The methods have been fully developed to allow for 

interference correction from other elements including mixed halogens.

Ultra Violet (UV)

Absorption spectra were recorded on a JASCO (V-570) UV/Vis/NIR 

spectrophotometer.

Luminescence fluorometer

Fluorescence emission spectra were measured in the range 200-900 cm' 1 with a 

Perkin-Elmer (LS 55 precisely) Luminescence spectrometer.

High Performance Liquid Chromatography (HPLC)

HPLC (UVD 170U) used for separation, column [250 X 10.00 nm, 10 micro -  Silica

c,8].
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Compounds FC2 G0.5, G1.5, G2.5 were purified by preparative HPLC according to 
the following setup programme for Pharmacokinetic studies.

Time %CH3CN TFA (0.02%) H 20
1 0.00 4.0 1.0 95
2 5.00 4.0 1.0 95
3 12.00 98.0 1.0 1.0
4 14.00 98.0 1.0 1.0
5 16.00 4.0 1.0 95

Compounds FC2 GO, G l, G2 were purified by preparative HPLC according to the 
following setup programme for DNA binding studies.

Time %MeOH TFA (0.02%) H 20
1 0.00 4.0 1.0 95
2 5.00 4.0 1.0 95
3 12.00 98.0 1.0 1.0
4 18.00 98.0 1.0 1.0
5 20.00 4.0 1.0 95

4.2. General experimental procedures

4.2.1. Photolumiscence study procedures

4.2.1.1. Quantum yield determination
The compounds under study were prepared as solutions in DMF at concentrations that 

give a UV absorbance value o f  0.7. The fluorescence quantum yields o f  the 

compounds were measured according to the comparative method o f  Williams et 

al.[230] which involves the use o f well characterised standard samples with known 

fluorescence quantum yield (Of) values. Using 2-aminopyridine as the reference 

compound (Op =  60* l O'2 in 0.1 M H2SC>4)[23̂  for compound CF2 and fluorescein as 

the reference compound (OF =  79x 10'2 in 0.1 M NaOH)l232] for compounds 3, A3, B3, 

C3, C33. Standard 10 mm path length fluorescence cuvette was used for running the 

fluorescence measurements with the concentration range never exceeding an effective
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adsorption o f 0.1 at the maximum excitation wavelength. In order to minimise re

absorption effects (Dhami et al.),[233J the fluorescence spectra o f all compounds were 

determined under the same operation conditions and settings with 2.5 slit widths. 

Fluorescence quantum yields were determined by comparing the integral areas o f  the 

fluorescence emission for the different compounds.

4.2.1.2 pH measurements

For the first sample, the pH was lowered blow 1 and fluorescent spectra were 

collected approximately every 1 pH unit until the pH reached around 13. pH 

adjustments were made using NaOH and HC1 0.1M (Merck) to avoid possible 

fluorescent interference from buffers. To decrease the dilution problem, small 

amounts o f  concentrated NaOH and HC1 were spiked. The volume o f  the samples was 

20 mL and the additions never exceeded 100 pL, which represents <1% o f  the initial 

volume.1234̂

4.2.1.3 Fluorescent measurements

The samples were run on a Perkin-Elmer LS50B Luminescence Spectrometer 

connected to a personal computer and fitted with a xenon lamp with 20 kW pulses for 

8 ms duration. The quartz cell can contain 3mL o f sample. Fifty individual emission 

spectra were collected at excitation wavelengths 5 nm apart between 200 and 450 nm, 

and emission wavelengths ranging from 300 to 600 nm. The scanning speed was 

selected at 500 nm m in '1, and band pass widths were 15 nm for excitation and 

emission. Fluorescence emission intensities were done in arbitrary units and always 

automatically corrected by the measurement system for variations in the excitation 

lamp spectral profile and any temporal intensity variation. Fluorescence
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measurements were made at a regulated temperature, 231°C, because fluorescence is 

temperature-dependent.[234]

4.3. Experimental procedures

4.3.1. Organic synthesis procedures

2-(l-aminopropan-2-yl)-lH-benzo[de]isoquinoline-l,3(2H)-dione [CF2J.

d

c

c

1,8-Naphthalic anhydride [1] (4.80 g, 24 mmol) was added in portions to a solution o f 

1,2-propanediamine (2.45 mL, 28.8 mmol) in EtOH (250 mL) and the mixture was 

heated at reflux for 8 h. The mixture was filtered under partial vacuum and the filtrate 

was evaporated under reduced pressure. The residue was purified by flash column 

chromatography [CHCI3, MeOH, (10 : 0.1)] followed by HPLC (eluent: MeOH, H2O; 

90:10) to yield [CF2] as a bright yellow oil (3.27 g, 53%). UV (Xmax, nm): 432 

(DMF); IR  (Neat NaCl, cm '1): 3059, 2968, 2921, 1668, 1629, 1595; ‘H -N M R (500 

MHz; CDCI3): S  8.37 (d, lH a, J  = 7.2 Hz), 8.28 (d, Hb, J =  7.2 Hz), 7.93 (d, 2HC, J  = 

7.2 Hz), 7.51 (t, 2H d), 4.38 (m, 2He), 4.12 (t, lH f), 1.32 (d, 3Hg); 13C-N M R (125 

MHz; CDCI3): S 160.3 (C =0), 153.3 (C), 132.8 (CH), 132.1 (CH), 131.6 (CH), 129.0 

(C), 128.4 (CH), 126.7 (C), 126.5 (CH), 126.4 (CH), 124.3 (CH), 120.9 (C), 61.0 

(CH2), 50.6 (CH), 22.2 (Me); Anal. Calcd for (C i5H ,2N20 ): C, 76.25; H, 5.12; N,
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11.20. Found: C, 75.97; H, 4.83; N, 11.13; HRMS (EI+): m/z = 235.9801 (lvT, 

100%).

tert-butyl 2-(2-(2-(l,3-dioxo-lH  benzo[de]isoquinolin-2(3H)yl)ethoxy)ethoxy)- 
ethylcarbamate [CF3 Boc].

HoC CH

CH.

1,8-Naphthalic anhydride [1] (1.00 g, 5 mmol) was added in portions to a solution o f  

tert-butyl 2-(2-(2-aminoethoxy)ethoxy)ethylcarbamate [Boc NH] (1.55 g, 6.25 mmol) 

in EtOH (30 mL) and the mixture was heated at 80 °C for 1 h. The mixture was 

filtered under vacuum and the filtrate was evaporated under reduced pressure. The 

residue was purified by flash column chromatography [toluene, acetone, (10 : 0.5)] to 

give [CF3 Boc] as a pale yellow oil (1.78 g, 83%). IR (Neat NaCl, cm '1): 3374, 3063, 

2973, 2928, 1701, 1663, 1590, 1236; 'H-NMR (400 MHz; C D C I 3 ): 8 8.39 (d, 2Ha, J  

= 7.3 Hz), 7.98 (d, 2Hb, J =  7.3 Hz), 7.53 (t, 2HC, J =  7.3 Hz), 5.02 (s, 1H), 4.29 (t, 

2Hi), 3.71 (t, 2H2), 3.58 (t, 2H3), 3.49 (t, 2H4), 3.36 (t, 2H5), 3.12 (t, 2H6) 1.30 (s, 

9H7); ,3C-NM R (100 MHz; C D C I 3 ): S 164.1 (C=0), 156.0 (CONH), 133.9 (CH),

131.1 (CH), 129.0 (CH), 128.2 (C), 126.8 (C), 125.3 (C), 79.0 (C), 70.2 (CH2), 68.0 

(CH2), 40.4 (CH2), 39.0 (CH2), 28.4 (Me); Anal. Calcd for (C23H28N20 6): C, 64.47; 

H, 6.59; N, 6.54. Found: C, 64.47; H, 6.64; N, 6.53; HRMS (ES+): m/z = 429.2046 

(M + H+, 100%), 446.2456 (M + NH*+, 43%).
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2-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-1 H-benzo [de] isoquinoline-1,3(2 H)-dione 
[CF3].

A solution o f  [CF3 Bocl (9.50 g, 22.1 mmol) in dichloromethane (15 mL) was added 

dropwise to trifluoroacetic acid (15 mL) at 0 °C. The reaction was allowed to warm to 

room temperature and stirred for 2 h under a nitrogen atmosphere, then the solvent 

was evaporated under reduced pressure. The residue was dissolved in an aqueous 

solution o f  potassium carbonate and extracted with dichloromethane (3 * 200 mL). 

The combined organic layers were dried with magnesium sulfate, filtered and 

evaporated under reduced pressure. The residue was purified by flash column 

chromatography [CHCI3 : MeOH : NH3 (9 : 1 : 0.1)] to afford (CF3] as a pale brown 

oil (7.00 g, 98%). UV (Xmax, nm): 383 (DMF); IR (Neat NaCl, cm '1): 3373, 3313, 

3061, 2869, 1698, 1660, 1587, 1113; 'H-NMR (400 MHz; CDC13): S  8.25 (d, 2Ha, J

= 7.1 Hz), 7.90 (d, 2Hb, J  = 7.1 Hz), 7.42 (t, 2HC, J  = 7.1 Hz), 4.17 (t, 2H,), 3.58 (t, 

2H2), 3.48 (t, 2H 3), 3.32 (t, 2H„), 3.19 (t, 2H5), 2.51 (t, 2H6) 1.06 (s, 2H); l3C-NMR  

(100 MHz; CDC13): 6 164.0 (C O ) , 133.8 (CH), 131.3 (CH), 131.0 (CH), 127.9 (C),

126.8 (C), 122.3 (C), 73.4 (CH2), 70.2 (CH2), 67.8 (CH2), 41.7 (CH2), 38.9 (CH2); 

Anal. Calcd for (C i8H20N2O4): C, 65.84; H, 6.14; N, 8.53. Found: C, 65.73; H, 6.03; 

N, 8.21; HRMS (EI+): m/z = 328.1425 (M \ 81%), 329.1537 (M+H+, 17%).
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General procedure (A) for synthesis of naphthalimide derivatives.

To a stirred solution o f  naphthalic anhydride derivative (1 equiv.) in glacial acetic 

acid was added, under an N 2 atmosphere, the primary amine derivative (1 equiv.) and 

sodium acetate (3 equiv.). The reaction mixture was brought to reflux and the 

reaction’s progress was monitored by TLC (CH3Cl:MeOH:AcOH; 9:1:0.1). The 

resulting precipitate was collected by hot filtration, washed with hot glacial acetic 

acid then with hot distilled water. The final products were dried in vacuum for 24 h.

4-(l,3-dioxo-lH,3H-benzo(de]isoquinoIin-2-yl)-benzoic acid [A1 ].

e
c

d

C O O Hd

ce

Following general procedure (A), 1,8-naphthalic anhydride [1] (1.98 g, 10 mmol), 4- 

aminobenzoic acid (1.37 g, 10 mmol) and AcONa (2.48 g, 30 mmol) were reacted in 

glacial acetic acid (60 mL) to afford [A l| as a off-white solid that was used without 

further purification (2.91 g, 92%). mp: > 300 °C; UV (Xmax, nm): 383 (DMF); IR  

(KBr, cm '): 3404, 3113, 1713, 1675, 1654, 1587, 1237; 'H-NMR (400 MHz; 

DMSO-ds): <5 8.52 (d, 2Ha, J  = 2.7 Hz), 8.50 (d, 2Hb, J =  2.7 Hz), 8.10. (d, 2HC, J  =

7.7 Hz), 7.91 (t, 2Hd, J  = 7.7 Hz), 7.55 (t, 2He); “ C-NM R (100 MHz; DMSO-d6): <5

166.8 (COO), 163.5 (C =0), 140.1(C), 134.5 (CH), 131.4 (CH), 130.7 (CH), 130.6 

(CH), 129.8 (C), 129.5 (C), 127.8 (C), 127.2 (CH), 122.4 (C); Anal. Calcd for 

(C 19H 11NO4): C, 71.92; H, 3.49; N, 4.41. Found: C, 71.48; H, 3.40; N, 4.30; HRMS 

(ES+): m/z = 316.0552 (M -H+, 100%).
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4-(5,8-dinitro-l,3-dioxo-lH,3H-benzo[delisoquinolin-2-yl)-benzoic acid |A2].

a

COOH
a

b

Following general procedure (A), 3,6-dinitro-l,8-naphthalic anhydride [2] (2.88 g, 10 

mmol), 4 -aminobenzoic acid (1.37 g, 10 mmol) and AcONa (2.48 g, 30 mmol) were 

reacted in glacial acetic acid (60 mL) to afford [A2J as a bright yellow solid that was 

used without further purification (3.78 g, 93%). mp: > 300 °C; UV (A,max, nm): 341 

(DMF); IR (KBr, cm '1): 3413, 3075, 1714, 1675, 1663, 1609, 1522, 1342; 'H-NMR 

(400 MHz; DMSO-d6): <5 9.75 (d, 2Ha, J  = 2.0 Hz), 9.06 (d, 2Hb, J  = 2.0 Hz), 8.09 (d, 

2HC, J  = 8.3 Hz), 7.54 (d, 2Hd, J  = 8.3 Hz); “ C-NM R (100 MHz; DMSO-d6): <5 166.7 

(COO), 161.7 (C =0), 147.1 (C-NO2), 147.0 (CH), 139.1 (C), 131.8 (CH), 131.5 (CH),

129.1 (C), 127.6 (C), 125.7 (C), 125.0 (CH); Anal. Calcd for (C19H9N3O8): C, 56.03; 

H, 2.23; N, 10.32. Found: C, 55.98; H, 2.06; N, 10.01; HRMS (E1+): m/z = 407.0391 

(M+, 100%).

4-(6-bromo-l,3-dioxo-lH-benzo(de]isoquinoIin-2(3H)-yl)benzoic acid [A4J.

COOH

Following general procedure (A), 4-bromo-l,8-naphthalic anhydride [4] (2.77 g, 10 

mmol), 4-aminobenzoic acid (1.37 g, 10 mmol) and AcONa (2.48 g, 30 mmol) were
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reacted in glacial acetic acid (60 mL) to afford [A4] as a pale yellow solid that was 

used without further purification (2.69 g, 68%). mp: above 300 °C; UV (A.max, nm): 

402 (DMF); IR (KBr, cm '1): 3418, 3070, 1710, 1681, 1607, 1610, 551; 'H-NMR (500 

MHz; DMSO-d6): S 8.54 (m, 2Ha), 8.30 (d, lHt* J  = 7.8 Hz), 8.20 (d, 1HC, J  = 7.8 

Hz), 8.10 (d, 2Hd, J  = 8.3 Hz), 7.99 (t, 1HC, J =  7.2 Hz), 7.55 (d, 2Hf, J  = 8.3 Hz); ,3C- 

NMR (125 MHz; DMSO-d6): S 166.8 (COO), 162.9 (C=0), 139.7 (C), 132.7 (CH),

131.5 (CH), 131.3 (CH), 130.9 (C-Br), 130.8 (CH), 129.8 (CH), 129.3 (C), 128.7 (C),

128.6 (C), 123.1 (CH), 122.3 (C); Anal. Calcd for (Ci9Hi0BrNO4): C, 57.60; H, 2.54; 

Br, 20.17; N, 3.54. Found: C, 57.33; H, 2.44; Br, 19.80; N, 3.44; HRM S (EI+): m/z = 

393.9583 (M71+, 100%), 395.9583 (M81+, 98%).

5-(l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-isophthalic acid [Bl].

e
a

COOH
d

d

COOH
ae

Following general procedure (A), 1,8-naphthalic anhydride [1] (1.98 g, 10 mmol), 5- 

aminoisophthalic acid (1.81 g, 10 mmol) and AcONa (2.48 g, 30 mmol) were reacted 

in glacial acetic acid (60 mL) to afford [B l] as an off-white solid that was used 

without further purification (2.93 g, 92%). m p: > 300 °C; UV (2max, nm): 410 (DMF); 

IR (KBr, c m 1): 3440, 3071, 1770, 1698, 1626, 1587; 'H-NMR (400 MHz; DMSO- 

d6): S  8.55 (d, 2H„, J  = 6.2 Hz), 8.52 (s, 2Hb), 8.50 (s, 1 Hc), 7.92 (d, 2Hd, J  = 6.2 Hz), 

7.85 (t, 2He); IJC-NM R (100 MHz; DMSO-d6): <5 169.2 (COO), 164.0 (C=0), 140.4 

(CH), 136.9 (CH), 134.8 (C), 132.3 (C), 131.7 (CH), 128.2 (C), 127.5 (CH), 125.1
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(C), 122.9 (CH), 114.6 (C); Anal. Calcd for (C2oH nN 06): C, 66.44; H, 3.07; N, 3.88. 

Found: C, 66.17; H, 3.15; N, 3.43; HRMS (EI+): m/z = 361.0585 (M \ 64%).

5-(5,8-dinitro-l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-isophthalic acid (B2J.

COOH

COOH

Following general procedure (A), 3,6-dinitro-l,8-naphthalic anhydride [2] (2.88 g, 10 

mmol), 5-aminoisophthalic acid (1.81 g, 10 mmol) and AcONa (2.48 g, 30 mmol) 

were reacted in glacial acetic acid (60 mL) to afford [B2] as a pale yellow solid that 

was used without further purification (4.28 g, 95%). mp: > 300 °C; UV (^max, nm): 

419 (DMF); IR (KBr, c m 1): 3439, 3073, 1706, 1680, 1678, 1611, 1539, 1345; !H- 

NMR (400 MHz; D M SO -4): d 9.83 (d, 2Ha, J  = 1.9 Hz), 9.09 (d, 2Hb, J  = 1.9 Hz), 

8.58 (s, 1HC), 8.27 (s, 2Hd); l3C-NMR (100 MHz; DMSO-d*): 6 165.8 (COO), 161.9 

(C=0), 147.0 (C -N 02), 136.0 (CH), 134.1 (CH), 132.3 (C), 131.9 (C), 131.5 (C),

130.7 (C), 130.0 (C), 125.6 (CH), 125.2 (CH); Anal. Calcd for (C2oH9N3Oio): C, 

53.23; H, 2.01; N, 9.31. Found: C, 52.92; H, 2.51; N, 9.14; HRMS (EI+): m/z = 

451.0290 (M4, 6%).
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5-(6-bromo-l,3-dioxo-lH-benzo|de]isoquinolin-2(3H)-yl)isophthalic acid [B4J.

d a

COOH

COOH
b a

Following general procedure (A), 4-bromo-l,8-naphthalic anhydride [4] (2.77 g, 10 

mmol), 5-aminoisophthalic acid (1.81 g, 10 mmol) and AcONa (2.48 g, 30 mmol) 

were reacted in glacial acetic acid (60 mL) to afford [B4] as a pale yellow solid that 

was used without further purification (3.74 g, 85%). mp: > 300 °C, UV (2max, nm): 

408 (DMF), IR  (KBr, cm '1): 3392, 3086, 1713, 1670, 1585, 1610, 688; *H-NM R(400 

MHz; DMSO-d6): 6 8.60 (m, 3Ha), 8.35. (d, lH b, J  = 7.7 Hz), 8.29 (m, 3HC), 8.03 (t, 

lH d, J  = 7.7 Hz); ,3C -N M R  (125 MHz; DMSO-d6): S 166.0 (COO), 163.1 (C=0),

136.5 (C), 134.3 (CH), 132.7 (C), 132.1 (C-Br), 131.5 (CH), 130.8 (C), 129.7 (C),

129.2 (CH), 128.7 (C), 123.4 (CH), 122.6 (C); Anal. Calcd for (C20H,o B rN 06): C, 

54.57; H, 2.29; Br, 18.15; N, 3.18. Found: C, 54.67; H, 2.33; Br, 18.31; N, 3.25; 

H RM S (EI+): m/z = 438.9684 (M 71+, 78%), 440.9741 (M81+, 76%).

3-amino-5-(l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-benzoic acid [Cl].

COOH
a

a

NH,
ad

Following general procedure (A), 1,8-naphthalic anhydride [1] (1.98 g, 10 mmol),

3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (2.48 g, 30 mmol) were 

reacted in glacial acetic acid (60 mL). The residue was purified by flash column
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chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [Cl] as an off-white 

solid (1.42 g, 43%). mp: above 300 °C; UV {Xmax, nm): 422 (DMF); IR (KBr, c m 1): 

3472, 3317, 3125, 1731, 1705, 1663, 1613, 1236; *H-NMR (400 MHz; DMSO-d6): S 

10.31 (s, 1H), 8.52 (m, 4Ha), 8.22 (s, lH b), 7.92 (s, 1HC), 7.85 (t, 2Hd), 7.67 (s, lH e); 

13C-NMR (100 MHz; DMSO-d6): S 166.8 (COO), 166.4 (C=0), 164.1 (C-NH2),

137.2 (CH), 134.9 (C), 134.8 (C), 132.5 (C), 131.8 (C), 131.1 (C), 27.5 (CH), 123.7 

(CH), 123.0 (CH); Anal. Calcd for (Ci9H,2N202): C, 68.67; H, 3.64; N, 8.43. Found: 

C, 68.64; H, 3.60; N, 8.65; HRMS (EI+): m/z = 332.0800 (Mf, 100%).

3-amino-5-(5,8-dinitro-l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-benzoic acid 

[C2[.

COOH

NH,

Following general procedure (A), 3,6-dinitro-l,8-naphthalic anhydride [2] (2.88 g, 10 

mmol), 3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (2.48 g, 30 mmol) 

were reacted in glacial acetic acid (60 mL). The residue was purified by flash column 

chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [C2] as a pale brown 

solid (0.50 g, 12%). mp: > 300 °C; UV (? w , nm): 455 (DMF); IR (KBr, cm '1): 3368, 

3077, 1720, 1676, 1633, 1577, 1413, 1336; 'H-NM R (500 MHz; DMSO-d6): S 10.21 

(s, 1H), 9.81 (d, 2Ha, J  = 2.1 Hz), 9.08 (d, 2Hb, J  = 2.1 Hz), 8.02 (s, 1HC), 7.99 (s, 

lH d), 7.58 (s, lH e), 2.08 (s, 2H); ,3C-NMR (125 MHz; DMSO-d6): 6 171.9 (COO),

168.7 (C O ) ,  166.4 ( C O ) ,  166.0 (C -N 02), 161.8 (C-NH2), 147.0 (C), 146.9 (CH),

140.0 (CH), 133.9(C), 131.9(C), 130.6 (C), 125.7 (C), 124.2 (CH), 123.2(C), 119.6
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(C); Anal. Calcd for (C 19H,oN408): C, 54.04; H, 2.39; N, 13.27. Found: C, 54.37; H, 

2.75; N, 13.57; HRMS (EI+): m/z = 422.0489 (VT, 100%).

3-amino-5-(6-bromo-l,3-dioxo-lH-benzo[de]isoquinolin-2(3H)-yl)benzoic acid 

[C4].

COOH

NH,

Following general procedure (A) 4-bromo-l,8-naphthalic anhydride [4] (2.77 g, 10 

mmol), 3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (2.48 g, 30 mmol) 

were reacted in glacial acetic acid (60 mL). The residue was purified by flash column 

chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [C4J as a deep yellow 

solid (0.45 g, 11%). m p: > 300 °C; UV (A™ax, nm): 428 (DMF); IR  (KBr, cm '1): 3445, 

3337, 3076, 1728, 1707, 1669, 1613, 872; *H-NMR (400 MHz; DMSO-d6): S  10.05 

(s, 1H), 8.60 (m, 2Ha), 8.37 (d, lH b, J  = 7.8 Hz), 8.28 (d, 1HC, J  = 7.8 Hz), 8.09 (s, 

lH d), 8.04 (t, lH e), 7.81 (s, lH f), 7.52 (s, lHg), 2.05 (s, 2H); 13C-NMR (100 MHz; 

DMSO-d6): S 168.7 (COO), 166.5 (C=0), 163.0 (C), 140.0 (CH), 136.2 (CH), 132.7 

(C), 131.95 (CH), 131.5 (C-Br), 131.3 (C), 130.8 (CH), 129.8 (C), 129.1 (C), 128.8 

(C), 124.6 (C), 123.5 (CH), 122.6 (CH), 119.5 (CH); Anal. Calcd for 

(Ci9HiiBrN204): C, 55.50; H, 2.70; Br, 19.43; N, 6.81. Found: C, 55.19; H, 2.93; Br, 

19.31; N, 6.67; HRMS (EI+): m/z = 409.9912 (M7I+, 100%), 411.9868 (M 81+, 98%).
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General procedure (B) for synthesis of naphthalimide derivatives.

To a stirred solution o f  naphthalic anhydride derivative (2 equiv) in glacial acetic acid 

was added, under an N 2 atmosphere, the primary amine derivative (1 equiv.) and 

sodium acetate (6 equiv.). The reaction mixture was heated to reflux and the reaction 

progress was monitored by TLC (CH3CI : MeOH : AcOH; 9 : 1 : 0.1). The resulting 

precipitate was collected by hot filtration, washed with hot glacial acetic acid then 

with hot distilled water. The final products were dried in vacuum for 48 h.

3,5-bis-(l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)- benzoic acid [Cl 1).

COOH

Following general procedure (B), 1,8-naphthalic anhydride [11 (3.96 g, 20 mmol),

3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (4.96 g, 60 mmol) were 

reacted in glacial acetic acid (100 mL). The residue was purified by flash column 

chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [Cl 1] as a pale yellow 

solid (3.84 g, 75%). Mp > 300 °C; UV ().max, nm): 405 (DMF); IR (KBr, c m '): 3460, 

3072, 1695, 1673, 1626, 1587; 'H-NMR (400 MHz; DMSO-d„): 6 10.83 (s, 1H), 8.51 

(m, 8Ha), 8.23 (s, 2Hb), 7.80 (m, 4HC), 7.54 (s, lH d); l3C-NMR (100 MHz; DMSO- 

ds): 6 172.0 (COO), 169.1(C=0), 166.7 (C=0), 140.4 (CH), 137.0 (CH), 134.8 (C),

131.1 (C), 130.6 (CH), 127.6 (C), 125.1 (C), 124.0 (C), 122.9 (CH), 119.8 (CH);

C c
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Anal. Calcd for (C3iHi6N20 6): C, 72.66; H, 3.15; N, 5.47. Found: C, 72.60; H, 3.05; 

N, 5.77; HRMS (EI+): m/z = 512.1020 (M \ 38%).

3,5-bis-(5,8-dinitro-l,3-dioxo-lH,3H-benzo[de]isoquinolm-2-yl)-benzoic acid [C22].

COOH

0 oN NO.

n o 2 n o2

Following general procedure (B), 3,6-dinitro-l,8-naphthalic anhydride [2] (5.76 g, 20 

mmol), 3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (4.96 g, 60 mmol) 

were reacted in glacial acetic acid (100 mL). The residue was purified by flash 

column chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [C22] as a pale 

yellow solid (4.91 g, 71%). m p: > 300 °C; UV ( ? w  nm): 342 (DMF); IR  (KBr, cm' 

'): 3399, 3079, 1725, 1686, 1612, 1535, 1315; ‘H-NMR (400 MHz; DMSO-d6): <5 

9.75 (s, 4Ha), 9.12 (s, 4H„), 8.22 (s, 2HC), 7.82 (s, lH d); IJC-NMR (100 MHz; 

DMSO-d6): <5 172.0 (COO), 166.4 (C O ) , 162.3 (C -N 02), 147.3 (CH), 136.3 (CH),

133.1 (C), 132.3(C), 131.9(C), 131.1 (C), 130.8(C), 126.1 (CH), 125.4 (CH); Anal. 

Calcd for (C31H |2N 6014): C, 53.77; H, 1.75; N, 12.14. Found: C, 53.48; H, 1.76; N, 

11.74; HRMS (EI+): m/z = 692.0405 (M+, 3%).
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3,5-bis(6-bromo-l,3-dioxo-lH-benzo|de]isoquinolin-2(3H)-yl)benzoic acid [C44].

COOH

e  e

Following general procedure (B), 4-bromo-1,8-naphthalic anhydride [4] (5.54 g, 20 

mmol), 3,5-diaminobenzoic acid (1.52 g, 10 mmol) and AcONa (4.96 g, 60 mmol) 

were reacted in glacial acetic acid (100 mL). The residue was purified by flash 

column chromatography (CHCI3 : MeOH : NH3; 9 : 1 : 0.1) to afford [C441 as a 

bright yellow solid (4.49 g, 67%). mp: > 300 °C; UV (Xmax, nm): 401 (DMF); IR 

(KBr, cm '1): 3418, 3094, 1709, 1677, 1586, 672; 'H-NMR (400 MHz; DMSO-d6): 6 

8.61 (m, 4Ha), 8.38. (d, 2Hb, J =  7.9 Hz), 8.28 (d, 2HC, J =  7.9 Hz), 8.14 (s, 2Hd), 8.03 

(dd, 2He, J  = 7.5, J =  0.8 Hz), 7.73 (s, lH f); 13C-NMR (100 MHz; DMSO-d6): 6 168.6 

(COO), 166.5 (C =0), 163.1 (C O ) ,  140.0 (CH), 136.3 (CH), 132.8 (CH), 131.6 (C),

131.3 (CH), 130.9 (C-Br), 130.3 (CH), 129.9 (C), 129.2 (C), 128.8 (C), 124.6 (C),

123.4 (CH), 122.6 (CH); Anal. Calcd for (C3iHi4BrN20 6): C, 55.55; H, 2.11; Br, 

23.84; N, 4.18. Found: C, 54.98; H, 2.01; Br, 23.31; N, 4.19; HRMS (EI+): m/z = 

393.9831 (M79+, 100%), 395.9892 (M81+, 98%), 668.9410 (M 158+, 18%), 669.9470 

(M 160+, 29%), 671.9366 (M 162+, 16%).

General procedure (C) for synthesis of naphthalimide derivatives.

A mixture o f  3,6-dinitro-l,8-naphthalimide derivative (0.339 mmol), Pb/C 10% (0.05 

g) and DMF (30 mL) was hydrogenated using hydrogen contained in a balloon at 

room temperature with vigorous stirring from 16 - 24 h. The progress o f the reaction
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was monitored by TLC (CHC^iMeOHiAcOH; 8:2:0.5). The catalyst was filtered o ff 

and the filtrate was poured into DCM (250 mL) with stirring. The solid precipitate 

was collected by filtration.

4-(5,8-diamino-l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-benzoic acid [A3J.

d

COOH
d

b

Following general procedure (C), [A2] (0.138 g, 0.339 mmol) and Pb/C 10% (0.05 g) 

were hydrogenated in DMF (30 mL) for 16 h to afford [A3] as a deep brown solid 

without further purification (0.10 g, 91%). mp: > 300 °C; UV (Xmax, nm): 518 (DMF); 

IR (KBr, cm '1): 3438, 3349, 3224, 3066, 1703, 1666, 1605; 'H-NMR (400 MHz; 

DMSO-d6): 3 8.09 (d, 2Ha, J =  8.5 Hz), 7.58 (d, 2Hb, J =  2.0 Hz), 7.47 (d, 2HC, J  = 8.5 

Hz), 6.99 (d, 2Hd, J  = 2.0 Hz) 5.72 (br s, 4H); 13C-NM R (100 MHz; DMSO-d6): 3

166.9 (COO), 164.2 (C -O ), 162.2 (C-NH2), 147.6 (C), 140.4 (CH), 135.6 (C), 130.7 

(C), 129.5 (CH), 122.6 (C), 117.0 (CH), 114.9 (CH), 109.9 (C); Anal. Calcd for 

(C ,9H i3N 304): C, 65.70; H, 3.77; N, 12.10. Found: C, 65.34; H, 4.20; N, 11.87; 

HRMS (ES+): m/z = 347.0905 (M +, 100%).
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5-(5,8-diamino-l,3-dioxo-lH,3H-benzo[de]isoquinolin-2-yl)-isophthalic acid [B3|.

COOH

COOH

Following general procedure (C), [B2] (0.153 g, 0.339 mmol) and Pb/C 10% (0.05 g) 

were hydrogenated in DMF (30 mL) for 16 h to afford [B3] as a yellowish brown 

solid that was used without further purification (0.12 g, 92%). Mp > 300 °C; UV 

(A™x, nm): 518 (DMF); IR (KBr, cm '1): 3462, 3382, 3224, 3083, 1694, 1626, 1567; 

'H-NM R (500 MHz; DMSO-d6): S 8.51 (s, lH a), 8.12 (s, 2Hb), 7.60 (d, 2HC, J  = 1.3 

Hz), 6.98 (d, 2Hd, J  = 1.3 Hz) 5.5 (br s, 4H); ,3C-NMR (125 MHz; DMSO-d6): S

166.1 (COO), 164.1 (C=0), 162.2 (C-NH2), 147.5 (C), 140.4 (CH), 135.6 (C), 130.7 

(CH), 129.5 (CH), 122.7 (C), 118.0 (CH), 114.9 (CH), 110.7 (C); Anal. Calcd for 

(C20H 13N3O6): C, 61.38; H, 3.35; N, 10.74. Found: C, 61.17; H, 3.64; N, 11.10; 

LRMS (ES+): m/z = 391.34 (M+, 19%).

3-amino-5-(5,8-diamino-l,3-dioxo-lH-benzo[de]isoquinolin-2(3H)-yl)benzoic 

acid [C3J.

NH
e

e

COOH
H.'2

Following general procedure (C), [C2] (0.143 g, 0.339 mmol) and Pb/C 10% (0.05 g) 

were hydrogenated in DMF (30 mL) for 24 h to afford [C3] as a yellow solid (0.11 g,
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94%), after purification by flash chromatography (CHCl3:MeOH:AcOH; 8:2:0.5). 

mp > 300 °C; UV nm): 521 (DMF); IR  (KBr, c m 1): 3459, 3365, 3228, 3092, 

1697, 1657, 1625; 'H -N M R  (500 MHz; DMSO-d6): 8  8.24 (s, 1H„), 7.78. (s, lH b), 

7.60 (d, 2HC, J  = 1.8 Hz), 7.58 (s, lH d), 6.98 (d, 2He, J  = 1.8 Hz), 5.77 (br s, 6H); 13C- 

N M R (125 MHz; DMSO-d6): 8 168.6 (COO), 164.0 (C =0), 147.6 (C-NH2), 139.9 (C- 

NH2), 136.7 (C), 135.6 (C), 124.6 (C), 123.4 (C), 122.6 (C), 122.6 (CH), 119.3 (CH),

117.0 (CH), 114.9 (C), 109.8 (CH); Anal. Calcd for (C 19H 14N4O4): C, 62.98; H, 3.89; 

N, 15.46. Found: C, 62.65 ; H, 3.95 ; N, 15.72 ; HRM S (EI+): m/z = 362.1026 (M+, 

16%).

3,5-bis(5,8-diamino-l,3-dioxo-lH-benzo[de]isoquinolin-2(3H)-yl)benzoic acid 

[C33].

COOH

NH.

NH, NH,

Following general procedure (C), [C22J (0.234 g, 0.339 mmol) and Pb/C 10% (0.10 

g) were hydrogenated in DMF (60 mL) for 24 h to afford [C33J as a greenish yellow 

solid (0.17 g, 89%), after purification by flash chromatography 

(CHCl3:MeOH:AcOH; 8:2:0.5). mp: above 300 °C; UV (A,max, nm): 518 (DMF); IR 

(KBr, c m 1): 3442, 3361, 3228, 3079, 1698, 1660, 1625; 'H -N M R  (500 MHz; 

DMSO-db): 8  8.01 (s, 2H a), 7.63. (s, lH b), 7.60 (d, 4HC J  = 1.7 Hz), 6.97 (d, 4Hd 7  =

1.7 Hz), 5.78 (s br, 8H); l3C-N M R (125 MHz; DMSO-d6): 8 173.5 (COO), 166.3 

(C =0), 164.0 (C =0), 147.6 (C-NH2), 136.9 (C), 135.6 (CH), 130.0 (C), 129.3 (C),
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122.6 (CH), 120.3 (CH), 116.9 (CH), 114.9 (CH), 109.8 (C); Anal. Calcd for 

(C3iH2oN60 6): C, 65.03; H, 3.52; N, 14.68. Found: C, 64.90; H, 3.74; N, 14.95; 

HRMS (EI+): m/z = 572.3426 (M*, 11%).

3-bromo-7H-benz[de]benzimidazo[2,l-a]isoquinoline-7-one. [FC2J.

c

The mixture o f  4-bromo-l,8-naphthalic anhydride (0.277 g, 0.001 mol) and o- 

phenylenediamine (0.2 g, 0.002 mol) was dissolved in acetic acid (50 mL). The 

resulting solution was allowed to reflux for 2 h, the mixture was cooled to room 

temperature, and then poured into distilled water to precipitate the product as a bright 

yellow powder. About (0.18 g, 54%) o f [FC2] was obtained after twice recrystallised 

from toluen. mp: 253-254 °C according to Lit.;[199] UV (l max, nm): 390 (MeOH); IR 

(KBr, c m 1): 1696 (O O ) , 746 (C-Br); ’H-NMR (500 MHz; CDC13): 6 8.86 (dd,

lH a, J  = 1.4 and 7.2 Hz), 8.68 (dd, lHb, 7 = 1 .4  and 7.2 Hz), 8.56 (m, 2HC), 8.10 (t, 

lH d), 7.91 (d, 2He, J  = 7.2 Hz), 7.49 (t, 2Hf); ,3C-NMR (125 MHz; CDC13): 6 193.3 

(0 = 0 ), 144.0 (C), 143.4(C), 141.3 (CH), 138.4 (C), 133.7 (CH), 133.1 (CH), 131.4 

(C), 131.2 (C), 130.5 (C), 130.2 (CH), 128.9 (CH), 128.6 (C), 127.5 (C-Br), 127.4 

(CH), 123.2 (CH), 115.3 (CH); HRMS (EI+): m/z = 347.9909 (M71+,100%), 351.03 

(M8I++H, 98%).
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3-(2-aminoethylamino)-7H-benz[de]benzimidazo[2,l-a]isoqumoline-7-one.

[FC2G0].

Method TA1

Compound (FC2] (0.6099 g, 1.747 mmol) and ethylenediamine (1.2 mL, 18.02 mmol) 

were stirred in refluxing MeCN (10 mL) for 3 days. The orange precipitate was 

collected by hot filtration and stirred in ether for 16 h, then filtered, and dried. The 

orange solid was recrystallized from toluene to give (0.084 g, 14%) a pale orange 

powder [FC2G01 after flash column chromatography (DCM:MeOH; 10:0 - 8:2).

Method FBI

Compound [FC2] (0.6022 g, 0.002 mol) was suspended in ethylenediamine (6.68 mL, 

0.1 mol) and the resulting suspension was heated to 130 °C for 1 h., the mixture was 

cooled to 95 °C and poured into distilled water at 90 °C. After stirring and cooling to 

room temperature, the deep red suspension was filtered and washed with water. The 

solid was dried and recrystallized from toluene twice to give (0.12 g, 19%) as deep 

red crystals [FC2G01 after flash column chromatography (DCM:MeOH; 10:0 - 8:2), 

It was purified further by HPLC as described in the Section 4.1.2. mp: 212-213 °C;

UV (A/max? nm): 433 (MeOH); IR (KBr, cm '1): 3530(-NH2), 2900 (-CH2-), 1677 

(C =0); 1 H-NMR (500 MHz; MeOD): 8 8.82 (d, lH a, J =  7.3 Hz), 8.66 -  8.54 (m,

3
9 H 2
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2Hb), 8.04 (d, 1HC, J  = 8.3 Hz), 7.90 (d, lH d, J  = 8.3 Hz), 7.67 (t, lH e), 7.47 (t, 2Hf), 

6.71 (d, lH g, J =  8.5 Hz), 6.31 (s , lH h), 3.37 (q, 2Hi), 3.17 (t, 2H2), 1.31 (br s, 2H3); 

,3C-NMR (125 MHz; MeOD): S 142.5 (C), 141.4 (C), 141.1 (C), 135.2 (C), 133.7 

(CH), 130.6 (C), 128.4 (C), 127.6 (CH), 124.5 (CH), 124.0 (CH), 123.9 (C), 123.1 

(CH), 122.0 (CH), 121.8 (C), 116.1 (CH), 111.9 (CH), 45.7 (CH2), 39.5 (CH2); 

HRMS (ES+): m/z = 329.1401 (MH+, 100%).

FC - PAMAM Dendron - G1

O 1 NH2

3 / - N  
/ ----- /  H

N

4 V - N  
o

5 N H 2

A solution o f  [FC2G0.5] (0.5 g, 0.001 mol) in (MeOHrDCM; 5:15 mL) was added 

dropwise over 30 min to a cooled (0 °C) solution o f  ethylenediamine (13.38 mL, 0.2 

mol) (100 equiv/COOMe) in MeOH (30 mL) and a small amount o f  DCM was added 

until the solution cleared. The reaction was stirred for 2 days under nitrogen at room 

temperature. The bulk o f  the solvent and excess ethylenediamine were removed via 

rotary evaporation. Final traces o f  excess ethylenediame were removed azeotropically 

using a mixture o f  toluene and MeOH (9:1) (this was repeated several times until all 

traces o f  ethylenediamine had been removed). The product was dried thoroughly 

under high vacuum (1 mmHg) then was purified by flash column chromatography 

(DCM :MeOH:NH40H; 9: 1: 0.2) to obtain (0.32 g, 57%) o f  [FC2G1J as a pink oil, It

86



Chapter Four: Experimental

was purified further by HPLC as described in the Section 4.1.2. UV (Amax, nm): 445 

(MeOH); IR (Neat, cm '1): 3284 (-NH2), 3075 (Ar-H), 2942 (-CH2-), 1675 (N -C =0), 

1572 (N H -C =0); *H-NMR (500 MHz; MeOD): 8 8.14 (d, lH a, J  = 7.3 Hz), 7.98 (d, 

lHb, J  = 7.3 Hz), 7.76 (d, 1HC, J -  8.6 Hz), 7.70 (d, lH d, J =  8.6 Hz), 7.54 (d, lH e, , J  

= 8.7 Hz), 7.28 (t, 2Hf),7.08 (t, lHg), 6.02 (d, lH h, J  = 8.7 Hz), 3.22 (t, 4H,), 3.03 (t, 

2H2), 2.82 (t, 4H3), 2.69 (m, 6H4), 2.41 (t, 4H5); 13C-NMR (125 MHz; MeOD): 3

173.6 (CONH), 159.5 (C), 150.9 (C), 149.0 (C), 142.5 (C), 134.4 (CH), 131.1 (C),

127.6 (C), 126.3 (CH), 125.1 (CH), 124.6 (CH), 123.8 (C), 123.7 (CH), 119.8 (CH),

118.2 (C), 115.4 (CH), 107.6 (CH), 103.6 (CH), 49.3 (CH2), 48.5 (CH2), 43.3 (CH2),

41.6 (CH2), 40.6 (CH2), 33.3 (CH2); HRMS Calc, for (C30H36N8O3): 556.2983, found 

556.2977 (M+, 100%).

FC - PAMAM Dendron - G2

NH,

°< ^ N H

O 3

O NH

A solution o f  [FC2G1.5] (0.9 g, 0.001 mol) in MeOH (30 mL) was added dropwise 

over 30 min to a cooled (0 °C) solution o f ethylenediamine (26.76 mL, 0.4 mol) (100
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equiv/COOMe) in MeOH (70 mL). The reaction was stirred for 5 days under nitrogen 

at room temperature. The bulk o f the solvent and excess ethylenediamine were 

removed via rotary evaporator. Final traces o f excess ethylenediame were removed 

azeotropically using a mixture o f toluene and MeOH (9:1) (this was repeated several 

times until all traces o f  ethylenediamine had been removed). The product was dried 

thoroughly under high vacuum (1 mmHg) then was purified by flash column 

chromatography (DCM :M e0H:NH40H; 9: 1: 0.2) to obtain (0.57 g, 56%) o f 

polyamine [FC2G2J as a red oil, It was purified further by HPLC as described in the 

Section 4.1.2. UV nm): 433 (MeOH); IR  (Neat, cm '1): 3262 (-NH2), 3075 (Ar- 

H), 2929 (-CH2-), 1675 (N -C =0), 1557 (N H -C O ); 'H -N M R  (500 MHz; MeOD): 

S  8.21 (d, lH a, / =  6.7 Hz), 8.12 (d, lH b,./=  6.7 Hz), 7.92 (d, 1HC, J  = 7.3 Hz), 7.84 

(d, lH d, J  = 6.9 Hz), 7.59 (d, lH e, J  = 6.9 Hz), 7.34 (t, 2Hf), 7.20 (t, lHg), 6.12 (d, 

lH h, J  = 7.3 Hz), 3.22 (t, 12H,), 3.07 (t, 2H2), 2.83 (t, 4H3), 2.70 (t, 18H4), 2.48 (t, 

4H S), 2.41 (t, 4H6), 2.28 (t, 8H7); ,3C-NM R (125 MHz; MeOD): 6 173.5 (CONH),

173.0 (CONH), 164.4 (C), 159.6 (C), 151.1 (C), 149.2 (C), 142.8 (CH), 134.6 (C),

131.3 (C), 127.8 (CH), 126.5 (CH), 126.4 (CH), 124.7 (C), 124.0 (CH), 120.0 (CH),

118.4 (C), 115.5 (CH), 107.8 (CH), 103.8 (CH), 52.1 (CH2), 49.7 (CH2), 49.4 (CH2),

48.6 (CH2), 43.6 (CH2), 41.7 (CH2), 40.8 (CH2), 37.3 (CH2), 33.4 (CH2); M ALDI- 

T O F  [LD+] Calc, for (CsofysN^Or): 1013.6170, found 1013.674 (M*, 100%).
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General procedure (D) for synthesis of polyesters GO.5. G1.5. G2.5

Methyl acrylate (75 equiv/NH2 function) was added to a solution o f  conjugate with 

amine terminal groups and the mixture was heated to reflux. MeOH and the excess o f  

methylacrylate were eliminated to yield the polyester after chromatography using 

silica gel as substrate and a mixture o f  CHCI3 and MeOH (10:0.1) as eluent.

FC - PAMAM Dendron -  G0.5

3 ^COOCH3 1

N

Methyl acrylate (6.75 mL, 0.075 mol) was added to a solution o f [FC2G0J (0.328 g, 

0.001 mol) in MeOH (40 mL) and the mixture was heated to reflux for 6 h, then 

stirred for 16 h at room temperature, filtered, washing with MeOH, and dried. The 

orange solid was recrystallized from MeOH to give (0.084 g, 77%) a bright orange 

solid [FC2G0.5] after flash column chromatography (DCM:MeOH; 10:0 -  10:0.2), It 

was purified further by HPLC as described in the (Section 4.1.2). mp: 170-171 °C; 

UV ( lmax, nm): 445 (MeOH); IR (KBr, cm '1): 3413 (-NH), 3058 (Ar-H), 2950 (-CH2- 

), 2848 (-OCH3), 1734 (-COOCH3), 1681 (N -C =0), 1581 (N H -C =0); 'H-NMR (400 

MHz; CDCI3): S  8.54 (d, lH a, J  = 7.2 Hz), 8.46 (d, lH b, J  = 7.2 Hz), 8.24 (d, 1HC, J  

= 7.2 Hz), 7.93 (d, lH d, J  = 8.4 Hz), 7.74 (d, 1HC, J  = 8.4 Hz), 7.38 (t, lH f), 7.30 (t, 

2Hg), 6.30 (d, 1 Hh, J  = 7.2 Hz), 6.09 (s, 1H), 3.40 (s, 6H,), 3.05 (t, 2H2), 2.61 (t, 4H3),
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2.52 (t, 2H4), 2.29 (t, 4H5); 13C-NM R (100 MHz; CDC13): S 172.7 (COO), 160.5 (C),

150.6 (C), 149.8 (C), 143.7 (C), 134.9 (CH), 131.9 (C), 128.3 (C), 126.8 (CH), 124.9 

(CH), 124.8 (CH), 124.5 (C), 120.5 (CH), 119.9 (CH), 119.3 (C), 115.9 (CH), 109.4 

(CH), 104.3 (CH), 51.5 (Me), 51.4 (CH2), 48.8 (CH2), 40.1 (CH2), 32.4 (CH2); LRM S 

(ES+): m/z = 501.21 (MH+, 100%), 502.22 (33%), 503.22 (6%); HRM S Calc, for 

(C28H28N405): 500.2060, found 500.2139 (M+, 100%).

FC - PAM AM  D endron -  G1.5

?
COOCHj 1

8 N 
H

N

g H 5 V " \ - N

0  4 N'^s^CO O CH ,

6S
CO OCH3

Methyl acrylate (13.5 mL, 0.15 mol) was added to a solution o f [FC2G1] (0.556 g,

0.001 mol) in MeOH (30 mL) and the mixture was heated to reflux for 24 h, then 

stirred for 16 h at room temperature. MeOH and excess o f methylacrylate were 

eliminated by heating under reduced pressure to yield the [FC2G1.5] as a deep orange 

oil (0.63 g, 70%) after purification by flash column chromatography (DCM:MeOH; 

10:0 -  10:0.3), It was purified further by HPLC as described in the (Section 4.1.2). 

UV (Xmax, nm): 445 (MeOH); IR  (KBr, cm '1): 3306 (-NH), 3039 (Ar-H), 2918 (-CH2- 

), 2851 (-OCHj), 1729 (-COOCH3), 1674 ( N O O ) ,  1589 (N H -C =0); 'H -N M R  (400
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MHz; MeOD): <5 8.16 (d, lH a, J =  7.5 Hz), 8.13 (d, lH b, J =  7.5 Hz), 7.93 (d, 1HC, J  = 

0.54 Hz), 7.86 (d, lH d, J  = 8.5 Hz), 7.49 (d, lH e, J  = 8.5 Hz), 7.19 (m, 3Hf), 6.30 (d, 

lH g, J  = 0.54 Hz), 3.40 (s, 12H,), 3.03 (t, 2H2), 2.97 (t, 4H3), 2.67 (t, 4H4), 2.57 (t, 

2H5), 2.42 (t, 8H6), 2.23 (m, 8H7), 2.14 (t, 8H8); ,3C-N M R (100 MHz; MeOD): 3

173.2 (CONH), 173.1 (COO), 159.9 (C), 151.3 (C), 149.4 (C), 142.7 (C), 134.8 (CH),

131.3 (C), 128.0 (C), 126.6 (CH), 125.6 (CH), 124.8 (CH), 124.0 (C), 120.2 (CH),

118.6 (CH), 118.3 (C), 115.5 (CH), 107.9 (CH), 104.0 (CH), 52.2 (CH2), 51.0 (CH2),

50.7 (Me), 49.3 (CH2), 48.9 (CH2), 40.9 (CH2), 37.0 (CH2), 33.3 (CH2), 32.0 (CH2); 

HRM S (EI+) Calc, for ^ H eo N g O ,,) : 900.4454, found 900.4453 (M \ 100%).

FC - PAM AM  D endron - G2.5

1 H3COOC

7 ^  — COOCH3

0

O
O 

8

9
O" 'NH

i l ).N

ii>
H3COOC

COOCH,

COOCK

H \

CO O CK

C O O CK

-COOCK

Methyl acrylate (27 mL, 0.30 mol) was added to a solution o f  [FC2G2] (1.01 g, 0.001 

mol) in MeOH (30 mL) and the mixture was heated to reflux for 2 days. MeOH and 

excess o f  methylacrylate were eliminated by heating under reduced pressure to yield
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the [FC2G2.5] as a deep orange oil (1.3 g, 76%) after flash column chromatography 

(DCM:MeOH; 10:0 - 10:0.3), It was purified further by HPLC as described in the 

(Section 4.1.2). UV ( ? w  nm): 445 (MeOH); IR  (KBr, c m 1): 3422 (-NH), 3043 (Ar- 

H), 2924 (-CH2-), 2850 (-OCH3), 1736 (-COOCH3), 1681 (N -C =0), 1581 (N H- 

C=0); ‘H -N M R (400 MHz; MeOD): S 8.46 (d, lH a, J = 7.2 Hz), 8.40 (d, lHb, 7.2 

Hz), 8.24 (d, lHe, 7 = 8 .5 ) , 8.20 (d, lH d, J =  8.5 Hz), 7.72 (d, lH e, J =  8.8 Hz), 7.49 (t, 

lH f), 7.42 (t, 2Hg), 6.50 (d, lH h, J =  8.8 Hz), 3.62 (s, 24Hi), 3.25 (t, 4H2), 3.20 (t, 

8H3), 2.90 (t, 4H4), 2.83 (t, 2H5), 2.74 (t, 8H6), 2.68 (t, I 6H7), 2.54 (t, 4H8), 2.48 (t, 

14H9), 2.39 (t, I 6H 10), 2.31 (t, 8H n ); ,3C-NM R (100 MHz; MeOD): S 173.2 

(CONH), 173.1 (CONH), 173.0 (COO), 160.0 (C), 151.4 (C), 149.5 (C), 142.8 (C),

135.0 (CH), 131.4 (C), 128.3 (C), 126.8 (CH), 125.8 (CH), 124.9 (CH), 124.4 (C), 

124.2(CH), 120.4 (CH), 118.9 (C), 115.6 (CH), 108.1 (CH), 104.2 (CH), 52.3 (CH2),

52.0 (CH2), 51.1 (Me), 50.8 (CH2), 49.5 (CH2), 49.0 (CH2), 40.6 (CH2), 37.2 (CH2),

37.0 (CH2), 33.4 (CH2), 33.2 (CH2), 32.1 (CH2), 29.5 (CH2); M A LD I-TO F [LD+] 

Calc, for (C82H,24N ,6023): 1701.9554, found 1701.969 (M+, 100%).

FC - PAM AM  D endron -  G0.5 salt

N

4 COONa

COONa
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To NaOH (0.5 g, 12.5 mmol), dissolved in hot EtOH (40 mL), was added a solution of 

the [FC2G0.5] (1.2 g, 2.4 mmol) in EtOH (10 mL). The mixture was heated to reflux 

for 16 h. After cooling, a the precipitate was collected by filtration and recrystallized 

from wet EtOH to yield [FC2G0.5 salt] as a pale yellow solid (0.92 g, 95%). Mp > 

300 °C decomposed at 315 °C (TGA); UV (Xmax, nm): 445 (MeOH); IR (KBr, cm '1): 

3380 (-NH), 3067 (Ar-H), 2956 (-CH2-), 1666 (-COONa), 1681 (N -C O ) , 1571 

(N H -C =0); 'H-NM R (400 MHz; MeOD): 6 8.47 (dd, lH a, 7  = 7.3, 7  = 0.7 Hz), 8.38 

(d, lH b, 7 = 7 .3  Hz), 8.33 (d, 1HC, 7 = 8 .7 ) , 8.28 (d, lH d, 7 =  8.6 Hz), 7.69 (d, lH e,7  =

8.6 Hz), 7.56 (t, lHf), 7.45-7.35 (m, 2Hg), 6.60 (d, lH h, 7 =  8.7 Hz), 3.44 (t, 2H,), 2.95 

(t, 4H2), 2.89 (t, 2H3), 2.48 (t, 4H0; 13C-NMR (100 MHz; MeOD): 3 179.9 (COO),

160.3 (C), 151.9 (C), 149.5 (C), 142.6 (C), 135.2 (CH), 131.3 (C), 128.3 (C), 126.8 

(CH), 126.1 (CH), 124.8 (CH), 124.3 (C), 124.0 (CH), 120.5 (CH), 118.5 (C), 118.2 

(CH), 115.5 (CH), 107.5 (CH), 50.7 (CH2), 50.4 (CH2), 40.5 (CH2), 35.1 (CH2); 

LRMS (ES+): m/z = 473.18 (MH+, 100%); HRMS Calc, for ( C ^ H ^ O s ) :  472.1872, 

found 473.1840 (MH+, 100%).
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FC - PAMAM Dendron - G1.5 salt

COONa
9 d n

g

H
N
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H

5 N ^ /^ C O O N a

2 N \^ -C O O N a

COONa

To NaOH (1.0 g, 25 mmol), dissolved in absolute EtOH (100 mL), was added a 

solution o f [FC2G1.5] (2.23 g, 2.4 mmol) in EtOH (10 mL). The mixture was stirring 

for 24 h. at room temperature, and the precipitate was collected by filtration and 

recrystallized from wet EtOH to yield [FC2G1.5 salt] as a deep orange solid (2.17 g, 

97%). mp: 283 °C; UV (Xmax, nm): 445 (MeOH); IR (KBr, cm-1): 3362 (-NH-), 3079 

(Ar-H), 2968 (-CH2-), 1655 (-COONa), 1681 (N-C=0), 1571 (N H -C O ); ‘H-NMR  

(400 MHz; MeOD): S 8.47 (d, lH a, J  = 7.2 Hz), 8.41 (d, lH b, J  = 7.2 Hz), 8.29 (d, 

1HC, J =  3.5), 8.26 (d, lH d, J  = 8.7 Hz), 7.70 (d, lH e, J =  8.7 Hz), 7.53 (t, lH f), 7.48 

(m, 2Hg), 6.55 (d, lH h, J =  3.5 Hz), 3.40 (t, 2Hi), 3.33 (t, 4H2), 2.95 (t, 4H3), 2.85 (t, 

8H4), 2.62 (t, 4H5), 2.49 (t, 6H6), 2.36 (t, 10H7); 13C-NMR (100 MHz; MeOD): S

181.4 (COO), 174.7 (CONH), 162.7 (C), 153.2 (C), 150.9 (C), 144.1 (C), 142.3 (CH),

137.6 (C), 132.7 (C), 129.7 (CH), 127.3 (CH), 126.3 (CH), 125.7 (C), 123.4 (CH),

120.1 (CH), 119.7 (C), 117.0 (CH), 108.9 (CH), 105.5 (CH), 58.3 (CH2), 53.3 (CH2),

52.4 (CH2), 50.8 (CH2), 41.6 (CH2), 38.5 (CH2), 36.4 (CH2), 34.6 (CH2); MALDI- 

TOF [LD+] Calc, for (C42H 52N8On): 845.3756, found 845.2874 (W t, 100%).
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FC - PAMAM Dendron - G2.5 salt
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To NaOH (3.0 g, 75 mmol), dissolved in absolute EtOH (150 mL), was added a 

solution o f  [FC2G2.5] (4.23 g, 2.4 mmol) in EtOH (10 mL). The mixture was stirring 

for 24 h. at room temperature and the precipitate was collected by filtration and was 

recrystallized from EtOH to yield [FC2G2.5 salt] as a deep orange solid (3.9 g, 93%). 

mp: 269 °C; UV (/U „, nm): 445 (MeOH); IR (KBr, cm '1): 3412 (-NH-), 3091 (Ar-H), 

2956 (-CH2-), 1655 (-COONa), 1681 (N -C O ), 1571 (N H -C O ); 'H-NMR (500 

MHz; MeOD): <5 8.52 (d, lH a, J =  7.2 Hz), 8.43 (d, lHb, J  = 1 2  Hz), 8.33 (m, 2HC), 

7.72 (d, 1H* J = 7 . 5  Hz), 7.56 (t, lH e), 7.42 (m, 2Hf), 6.60 (d, lH g, J  = 7.5 Hz), 3.32 

(m, 14H,), 2.85 (m, 28H2), 2.59 (m, 14H3), 2.37 (m, 28H4); UC-NM R (125 MHz; 

MeOD): 6 181.4 (COO), 174.7 (CONH), 174.6 (CONH), 161.9 (C), 153.4 (C), 151.1 

(C), 144.3 (C), 142.5 (CH), 136.9 (C), 132.9 (C), 128.7 (CH), 127.6 (CH), 126.4 

(CH), 125.6 (C), 122.2 (CH), 120.4 (CH), 119.9 (C), 117.0 (CH), 109.4 (CH), 105.8
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(CH), 58.3 (CH2), 53.3 (CH2), 52.0 (CH2), 50.9 (CH2), 42.2 (CH2), 38.5 (CH2), 38.4 

(CH2), 36.5 (CH2), 34.8 (CHi), 34.5 (CH2); M ALDI-TO F |LD +1 Calc, for 

(C74Hi08Ni6O23): 1588.7773, found 1588.27 (M*, 100%).
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4.4. Experimental Appendix

Table |4.1|: UV maximum absorbance for FC2 and FC2Gs in MeOH solvent.

Compounds FC2 FC2G 0 FC2G0.5 FC 2G 1 FC2G1.5 FC 2G 2 FC2G2.5

UV max (nm) 383 444 447 455 449 460 447

Table [4.2]: Fluorescence Intensity at different concentrations o f FC2G0.5 salt in
H2O at max wavelength 443 nm at 25 °C.

Concentration e-4 mM 1 08 1.62 2.16 3.25 4.33

Fluorescence Intensity 99.86 142.8 192.84 282.21 368.06

Table [4.3]: Fluorescence Intensity at different concentrations o f  FC2G1.5 salt in 
H2O at max wavelength 456 nm at 25 °C.

Concentration e-4 mM 1-43 1.91 2.87 3.83 5.75

Fluorescence Intensity 85.58 112.1 164.91 215.98 313.36

Table [4.4]: Fluorescence Intensity at different concentrations o f  FC2G2.5 salt 
H2O at max wavelength 467 nm at 25 °C.

in

Concentration e-4 mM 0.83 1.25 1.66 2.5 3.33

Fluorescence Intensity 73.33 105 136.74 196.99 255.45

Table [4.5]: UV absorbance at different pH values for FC2G0.5 salt in H2O at 
concentration 16.66 x 10'3 mM.

PH 0.86 1.43 2.34 3 .57 5.05 7.51 8 .09 9.31 11.13 12.86 13.57

^ i ( n m ) 479 474 455 442 443 443 444 445 456 454 455

A b s . 0.22 0.20 0.14 0.11 0.20 0.23 0.23 0.21 0 .27 0 .23 0 .15
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Table |4.6]: UV absorbance at different pH values for FC2G1.5 salt in H20  at 
concentration 16.66 x 10'3 mM.

PH 0.83 1.32 2.15 3.87 5.86 7.43 9.63 10.7 11.16 12.17 12.88 13.56

^MAX
(nm)

482 470 447 443 445 448 457 460 462 459 457 455

A b s . 0.30 0.27 0.28 0.26 0.32 0.33 0.34 0.42 0.40 0.39 0.36 0.27

Table [4.7]: UV absorbance at different pH values for FC2G2.5 salt in H20  at 
concentration 16.66 x 10*3 mM.

pH 0.73 1.29 2.12 2.88 3.73 5.89 7.71 10.52 11.77 12.47 13.46

XMAX( nm) 479 461 447 445 445 448 455 467 468 468 459

Abs. 0.27 0.28 0.28 0.22 0.24 0.26 0.28 0.30 0.34 0.34 0.27

Table [4.8]: Fluorescence Intensity at different pH values o f  FC2G0.5 salt in H20  at 
max wavelength 447 nm at 25 °C and concentration 2.3 xlO'3 mM.

pH values 0.26 1.0 1.96 2.61 4.26 5.72 7.75 8.39 10.03 11.44 12.46 13.12

Flu
Intensity

33.55 34.21 82.58 146.5 349.1 493.6 361.7 361.1 146.6 20.31 16.66 11.45

Flu Em
max

554 549 497 499 501 501 501 501 503 516 516 516

Table [4.9]: Fluorescence Intensity at different pH values o f  FC2G1.5 salt in H20  at 
max wavelength 447 nm at 25 °C and concentration 2.3 x 10'3 mM.

pH values 0.4 0.98 1.62 1.92 2.7 3.72 5.57 7.9 8.24 10.12 11.29 1235 13.11 13.83

Flu Intensity 42.8 42.57 70.19 110.5 113.8 224.5 380.7 246.4 209.3 3727 29.15 28.99 24.94 123

Flu Em max 554. 550.5 502.5 500.5 502.5 503 502.5 503 502.5 516 515 515 513.5 515.5
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Table [4.10]: Fluorescence Intensity at different pH values o f  FC2G2.5 salt in H20  at 
max wavelength 447 nm at 25 °C and concentration 2.3 x 10'3 mM.

pH values 0 .55 1.05 2 .17 4.35 5.41 7.89 8 .1 5 9 .93 11.29 12.24 13.11 13.83

Flu
Intensity

55.04 90 .78 298.6 375.3 464.9 315 .3 211.8 75.49 64.43 63.62 62.56 47.03

Flu Em 
max

553.5 501 500 .5 500 501 503 504 .5 514.5 515 513 513.5 515

Table [4.11]: Extinction Coefficient o f all thesis’ compounds.

C om p.
No. Structure uv

\nax abso(nm)
E x tin c t io n
C o e ff ic ie n t

(L  m ol'1 cm '1)

1 s s 330 13066.83

2
J S L .

277 30865.96

3 J 3 L, 278 33537.6

4 339.5 13029.4

CF1 334 13997.8

CF2 339.5 13946.66

CF3 334 12574.0

A1 g ^ - O 0 0 H 334 14693.6

A2 ^ ^ 1 - Q - cooh 269.5 44050.5
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4.4.1. Relative Fluorescence Intensity by comparison to 
standard Fluorescein salt.
The compounds under study were prepared as solutions in distillate H2O at 

concentrations that give a UV absorbance value o f 0.1 x 10'5. Compounds (FC2G0.5 

salt, FC2G1.5 salt and FC2G2.5 salt) were excited at UV max wavelength 445 nm 

while Fluorescein salt was excited at UV max wavelength 481 nm. Standard 10 mm 

path length fluorescence cuvette was used for running the fluorescence measurements 

with the concentration range never exceeding an effective adsorption o f 0.1 at the 

maximum excitation wavelength. In order to minimise re-absorption effects (Dhami et 

al.),[2331 the fluorescence spectra o f  all compounds were determined under the same 

operation conditions and settings with 7.5 slit widths. Fluorescence quantum yields 

were determined by comparing the integral areas o f  the fluorescence emission for the 

different compounds.
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Figure [4.1]: Fluorescence emission curves for all FC2G0.5, FC2G1.5, FC2G2.5 salts 
(when excited at wavelength Amax 447 nm), and Fluorescein salt (when excited at 

wavelength Amax 481 nm) in H20  at UV absorbance 0.1 x 10 5.

Fluorescine salt

Figure [4.2]: Fluorescence intensity values of all FC2G0.5, FC2G1.5, FC2G2.5 salts 
(when excited at wavelength Xmax 447 nm), and Fluorescein salt (when excited at 

wavelength Xmax 481 nm ) in H20  at UV absorbance 0.1 x 10'5.
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5.1. Design and synthesis

5.1.1. Synthesis of new fluorescent dendritic wedges.
The new fluorescent cores described in this thesis were designed to possess specific 

features including (a) functional groups to build up multi PAMAM dendritic wadges, 

(b) high fluorescence emission and (c) biologically activity especially for DNA 

intercalation, anticancer activity, and/or as special protein binding inhibitor. Further 

examples that could be used for this purpose are given in (Scheme 5.1).

FC3 EC4

-

HOOC

Br

FC4 G2.5

COOH

COOH

COOH

°*^NH

COOH

O nh
COOH

COOH

HOOC

Scheme [5.1]: New fluorescent cores FC3, FC4, FC5 and an example of a new 
fluorescent PAMAM dendritic wedge FC4G2.5.
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5.1.2 Synthesis of fluorescent PAMAM dendritic multi
wedges.
The cores FC3 and FC5 can be used to prepare bow-tie dendrimers. For example, 

FC3G2.5 and FC5G2.5 can be prepared by a divergent pathway. Similarly, compound 

FC5G2.5 can be prepared via a convergent method; this route gives more facility to 

loading different dendritic wedges or different conjugated moieties (Figure 5.1).
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Figure [5.1]: New fluorescent PAMAM dendritic double wedges FC3G2.5, FC5G2.5
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5.1.3 Self assembled core of fluorescent PAMAM Dendritic 
wedges.

Dendron self assembly can result from weak noncovalent interactions (e.g. van der 

Waals, hydrophobic forces, 7C — 7C interactions, hydrogen bonds) as opposed to more

"classical" covalent, ionic or metallic bonds. It would be o f  interest to use 

intermolecular self-assembly to form a supradendrimer assembly (Figure 5.3) with

enhanced fluorescence emission. O f particular interest will be the use o f 71 — 71 

interactions and hydrogen bonding for self-assembly.
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\ COONa 
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Figure [5.2]: Possible structure for self assembly fluorescent core dendrimer.
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For example, melamine-based systems compounds are proven H-bonding units that 

have been used for the self assembly o f fluorescent core derived from naphthalene 

derivatives (Scheme 5.3).[235] We are more interested in n-n interactions because they 

act strongly on flat polycyclic aromatic hydrocarbons such those uses for fluorescent

cores.

R

R

11

H -N

H -N

> = N  R 
N /)—N
y — N R

12

0 - - H - N

N - H  N,

\ 0 — H - N

R = 2- Et-Hexan

Scheme [5.3]: Formation of a hydrogen bonded complex of 1 :1 stoichiometry 
between the monotopic naphthalene bisimide 11 and melamine 12.

5.2 Chemotherapeutic applications
Through new and continued co-operation with other research groups, we would be 

interested in developing the applications o f  our fluorescent dendron in the following 

areas.

5.2.1 Inhibitor of protein aggregation.
Some diseases are related to large insoluble protein aggregates resulting from 

abnormal protein folding and protein binding behaviour. Twyman’s group have 

recently developed a dendrimer-based methodology for studying the various 

contributing factors to protein-protein interactions instead o f  the conventional small 

molecule approach.[236̂ For example it was found that PAMAM dendrimers bind more 

strongly to proteins o f  similar size (e.g. cytochrome-c to G2 and PAMAM
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chymotrypsin to G3 PAMAM) (Figure 5.4) so that the dendrimer that binds best has a 

maximum addressable area o f  similar dimensions to the interfacial area o f  the 

protein.1291

Dend rimers 1

(G o j“~OH)4 ( g ^ C 01̂

1S0A2 800A 2 1200A2

Target^ro fe ins^

22S0A2

Figure [5.4]: Schematic showing the relative size of PAMAM dendrimers and 
proteins used for binding studies. The maximum addressable and interfacial 

areas are shown below each dendrimer and protein respectively.1291

A similar methodology could be applied to the same two proteins but by using 

different generations o f  our fluorescent PAMAM dendritic systems terminated with -  

COOH or NH2 (Figure 5.5) to be used as a protein inhibitor and biosensor 

simultaneously.

3200A2
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Figure [5.5]: Fluorescent poly(amidoamine) (PAMAM) dendrons (FC2G0 - FC2G2.5)
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5.2.2. Anticancer activity studies.
Recently, much effort has been made by researchers to discover and produce new 

anticancer drugs with no undesirable side effects.[23?1 DNA intercalators are new 

potential anticancer agents,tl841 which are mostly described as planar heterocyclic 

molecules with approximately the same size and shape o f  a DNA base pair.[2381 DNA 

intercalators interact with DNA by inserting perpendicularly into DNA and their 

stability depends on van der Waals, hydrophobic, hydrogen bonding, and charge 

transfer forces.12391 The results o f this interaction can cause disfiguration o f  the DNA 

double helix, affecting the process o f  cell replication and leading to cellular passing 

away and special genotoxic effects.[2401

There are very strong interactions between protonated polyamines and DNA 

phosphate residues;t2411 hence there are many examples o f naphthalimmide derivatives 

as anticancer agents^184"1881 These examples are where the aromatic system is inserted 

between the DNA base pairs whilst the protonated amine base interacts with 

grooves.[242] Compounds Mitonafide and Amonafide (Figure 5.6) are the most famous 

trial compounds o f  the naphthalimmide series for anticancer activity, but they are 

highly toxic.[I89' 1901 Hence, the desire for analogues.1243’2451

KjN

N - H

Mitonafide Amonafide

Figure [5.6]: Chemical structures o f compound Mitonafide and Amonafide.
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Derivatives o f  naphthalimide and naphthalimide polyamine conjugates are currently 

under investigation for use as anti-tumor agents.|246] Due to the strong interactions 

between DNA and protonated polyamines, many interesting assemblages o f  

polyamines and DNA intercalators can be employed as linear,[247'248] m acrocyclic/2491 

or dendronic polyamines.[I4I]

Dendritic polyamine-(imide-DNA intercalator) conjugates have been modified to 

conjugate naphthalimide derivatives with the chromophore as antitumour compound 

(Figure 5.7).[14l]

Compound B Compound A

nh2

Figure [5.7]: Compound A: "PAMAM dendritic polyamines-(imide-DNA 
intercalator)" conjugates, Compound B: "PPI dendritic polyamines-(imide-DNA

intercalator)".[141]

The PAMAM dendritic wedges that contain fluorescent cores studied in this project 

have yet to be investigated for this application. Thus, the pharmacological activity o f  

such compounds could be significant, especially they show strong DNA binding.t246]
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Appendix A: Chemotherapeutic Applications

All o f  the following work was accomplished by internal collaborations within Cardiff 

University. The “in-vitro permeability study” was carried out by PhD student Ghaith 

Al-Jayyouss o f  the group o f Dr. Mark Gumbleton (Welsh School o f  Pharmacy), while 

the “DNA binding study” was performed by PhD students Irina Dorin and Ismail 

Althagafi o f  the group o f Dr. Niek Buurma (School o f  Chemistry).

A.1. In-Vitro Permeability Studies 
A .1.1. In troduction

The rate o f  permeability o f positively charged dendrimers o f different generations 

across epithelial cell monolayers depends on their concentration, and on the 

generation; with the order o f  permeability being reported as G4 > G 0  ~ G1 > G3 > 

G2P 1' 250] In addition to the generation size o f  the dendrimer, also the charge o f  

peripheral groups o f  the dendrimer surface effects the efficiency o f  dendrimer 

transport, presumably by modulating the intercellular tight junctions. It is believed 

that adsorptive-mediated endocytosis is the probable mechanism o f  dendrimer 

transport across epithelial cells.[251] Recent studies by D ’Emanuele et al. confirmed 

that conjugation o f  small molecular weight drugs (that are known to be p-glycoprotein 

[P-gp] substrates) to PAMAM dendrimers enhances their transport across P-gp 

expressing cells indicating that dendrimers are themselves not substrates for P-gp and 

that they can carry cargo into cells bypassing the plasma membrane P-gp efflux.

Recently, many reports have verified that the transport o f  PAMAM dendrimers across 

the epithelial barrier o f the gut is influenced by the surface chemistry o f the 

dendrimers. t26'28] Early studies propose that the way in which both cationic[27] and 

anionic[26,28] charged dendrimers leak across epithelial barriers is related to their size. 

In case o f  PAMAM dendrimers terminated with -NH2, transepithelial electrical
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resistance (TEER) readings decreased and l4C-mannitol increased as the generation 

dendrimer increased. In contrast, TEER or 14C-mannitol transport was not influenced 

by PAMAM dendrimers terminated with OH groups; while, in case o f  PAMAM 

dendrimers terminated-COOH, decreased TEER and increased l4C-mannitol 

permeability within dendrimer generation size (G2.5 and G3.5).[27'28] These studies 

point to an optimum size and charge o f  PAMAM dendrimers that can effectively 

translocation drug molecules across the epithelial barrier o f the gut. Conversely, a 

systematic correlation between the effect o f charge, size, and degree o f  surface 

modification o f these dendrimers on their permeability across the intestinal barrier has 

not been assessed.

The main purpose o f our studies is to investigate the transport o f our series o f 

fluorescent poly(amidoamine) (PAMAM) dendrons (FC2G0.5, FC2G1.5 and FC2G2.5) 

all with negatively charged surface groups across cell barriers. A test system for 

measuring membrane permeability has been developed using the MDCK (M adin- 

Darby Canine Kidney) cell line, to mimic the distal renal epithelium o f  a normal male 

cocker spaniel.[252] In case o f inertly absorbed compounds, drug permeability across 

MDCK cells is analogous to permeability across Caco-2 cells.[252] Over 2 -6  days, 

confluent MDCK monolayers form a tight junction network visible by confocal 

microscopy.[253] The cell lines used are similar except that they hold different numbers 

o f tight junctions, such that their intercellular restrictiveness is different. For instance, 

the MDCK I cell line present high restrictiveness, e.g. TEER o f 2000 D.crn2, while 

the MDCK II cell line is more permeable with a TEER o f 200 f lc m 2; therefore, 

MDCK I is frequently used as a permeability model for the Blood Brain Barrier 

(BBB) while the MDCK II a model for the more permeable intestinal barrier.
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A.1.2. Results and Discussions
A .1.2.1. Permeability of fluorescent core PAMAM dendrons across MDCK I, II 

cell monolayers

MDCK I, II cells were seeded at 45,000 cells/cm2 onto polyester 24-well Transwell® 

filters o f  0.8 pm mean pore size, 0.33 cm surface area (Coming Incorporated, 

Coming, NY). MDCK I, II cells were maintained under appropriate incubation 

conditions described above and used for transport experiments after 4 days post- 

seeding. The transport o f fluorescent core PAMAM dendrons was investigated in 

triplicate in the apical-to-basolateral (A-B) direction (Figure A .l) at a donor 

concentration o f l.O mM. Permeability experiments were conducted in a humidified

o

atmosphere o f 37 C. Samples were collected from the receiver chamber at 30, 60, 90 

and 120 min. Permeability samples were analyzed using a Fluostar fluorometer with 

fluorescent-core PAMAM dendron samples being detected with an excitation

Transwell
insert

Apical
chamberCell —  

monolayer

Permeable
membrane

-  Basolateral 
3 chamber

Figure [A.l]: Schematic of a Transwelf insert showing the separation of apical and 
basolateral chambers by a permeable membrane with a confluent cell monolayer on

the apical surface.12541

wavelength o f 460 nm and an emission wavelength o f  540 nm. The apparent 

permeability (Papp) coefficients were calculated as follows:
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Where A is the surface area o f  the membrane filter, Co is the initial concentration in 

the donor chamber, and dQ/dt is the permeability rate.12551

For MDCK I cell line, Papp to flourescent PAMAM dendron FC2G0.5 salt {Vapp 

1.81 ±0.17 xlO-6 cm .sec'1) was significantly higher than the maximum possible ? app 

(based upon LLQ) for FC2G1.5 salt o f  Papp < 0.58 xlO-6 cm .sec'11 and for FC2G2.5 salt 

o f  Paf>P < 0.35 xlO'6 cm.sec’1 (Table 1). Similarly a decrease in Papp with increase in 

molecular size was observed for the MDCK II cell line where Papp o f  flourescent 

PAMAM dendron FC2G0.5 salt (Papp 8.93±2.1 xlO-6 cm.sec'1) was significantly 

greater than FC2G1.5 salt (Papp 1.38±0.24 xlO'6 cm.sec'1) and FC2G2.5 salt where the 

maximum possible PapP (based upon LLQ) was xlO'6 cm .sec'1 (Table A .l; Figure

A.2).

Table [A.l]: Permeability Coefficient (lO -6 cm.s'1) for dendron generations across 
_______________________________ MDCK I, II cell lines._____________________________

Papp (MDCK I) Papp (MDCK II)
D endron xlO’6 cm.s’1 xlO '6 cm .s'1

FC2G0.5 salt 1.81 ±0.17 8.93 ±2.1

FC2G1.5 salt BLQ  < 0.58 1.38 ±0.24

FC2G2.5 salt BLQ  < 0.35 BLQ  <3.48

The correlation between monolayer permeability (Papp) and TEER values with the 

PAMAM dendrons allows us to speculate that these fluorescent dendrons might have 

been transported across the epithelial cells via a paracellular route. The permeabilities 

o f  the dendrons across MDCK II cell line are higher over the permeability across 

MDCK I cell line was attributed to differences in restrictiveness where MDCK I cell 

line is more restrictive than MDCK II cell line due to the existence o f  greater 

concentration o f  tight junctions.[256]
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12 1

BLQ BLQ

■ MDCK I
■ MDCK II

GO. 5 G1.5
Fluorescent PAMAM dendron generation

G2.5

Figure [A.2]: The permeability of Fluorescent PAMAM dendrons across MDCK I, II 
cell monolayer in AB (apical-to-basolateral) directions at concentration Im M .

A .1.2.2. Effect on monolayer integrity by measuring transepithelial electrical 

resistance (TEER)

MDCK I, II cells (passages 5-30) were seeded onto the polystyrene 24-well 

Transwell® filters at a density o f  l x 105 cells/cm2. The cells were grown at 37 °C in an 

atmosphere o f  5% CO2 and 95% relative humidity. Cells were maintained in T-75 

flasks using Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% 

fetal bovine serum, 10,000 units/ml penicillin, 10,000 pg/ml streptomycin. Growth 

medium was changed every 2 days. Cells were passaged at 70-90% confluency using 

0.25% trypsin/ethylenediamine tetraacetic acid (EDTA) solution. Transport medium 

consisted o f DMEM-F12 invetrogen. Mean TEER value across the MDCK cell 

monolayers was found to be 1000±58 Q.cm2. The effect o f modified fluorescent core 

PAMAM dendrons on two MDCK cell lines monolayers was determined by 

measuring o f  the transepithelial electrical resistance across MDCK cells monolayers 

in presence o f  the fluorescent dendrons at donor concentrations o f lpg/mL and 10
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pg/mL upon both apical and basolateral incubation. The cell monolayer integrity was 

monitored using an epithelial voltohmmeter (EVOM™) to measure the TEER (Trans- 

Epithelial Electrical Resistance) at t = 0 and 120 min.

I
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gj 1000
Ui
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GO.5 G 1 .5  G 2 .5

F lu o r e s c e n t  PAMAM d e n d ro n  g e n e r a t io n

■  Omin MDCK I

■  120 min MDCK I

Figure [A.3]: The effect of Im M  fluorescent PAMAM FC2G0.5 salt, FC2G1.5 salt or 
FC2G2.5 salt on (MDCK I) monolayer integrity as exhibited by their effect on the 

trans epithelial electrical resistance (TEER) at 0 ,1 2 0  min.

For both MDCK I and MDCK II cell line, the TEER studies indicate that the presence 

o f  any o f  the three fluorescent PAMAM dendrons does significantly change the TEER 

values. The constant TEER value was independent o f dendrimer concentration and 

duration o f  incubation (Figures A.3, A.4).
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■  0 min MDCK II

■  120 min MDCK II

G0.5 G1.5 G2.5
F lu o r esc en t PAMAM d en d ro n  g e n e ra t io n

Figure [A.4]: The effect of Im M  fluorescent PAMAM FC2G0.5 salt, FC2G1.5 salt or 
FC2G2.5 salt on (MDCK II) monolayer integrity as exhibited by their effect on the 

trans epithelial electrical resistance (TEER) at 0, 120 min.

A .1.3. Sum m ary

In conclusion the results o f this initial study suggest that the permeability o f  

fluorescent core PAMAM dendrons across MDCK cell monolayers appear to be a 

function o f the size o f  the dendrons. These studies pave the way for future detailed 

mechanistic and morphological studies to elucidate the nature o f the interaction o f 

fluorescent core PAMAM dendrons with epithelial cells.
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A.2. DNA binding studies 
A .2.1. Introduction

There is very strong binding between the phosphate groups o f  DNA and protonated 

polyamines in acidic media.[2411 These basic groups can decorate a planar, 

intercalating moiety which conjugates with the aromatic system between the base 

pairs, while the basic groups interact with negatively charged phosphate groups 

decorating the surface o f the DNA grooves.[242] A literature survey indicates that there 

are several examples o f  naphthalimide derivatives as intercalating and anticancer 

agents. [184’188]

Poly(amido amine) PAMAM dendrimers are one o f  the universal cationic polymer 

agents that bind to DNA by electrostatic interactions,t257'258] once bound PAMAM 

dendrimers supply protection against DNase activity and hinder gene expression in 

vitro.[259"260] Dendrimers have been applied in DNA binding and gene therapy[261’262] 

and the modification o f  PAMAM dendrons to incorporate a DNA intercalating 

naphthalimide chromophore within its core as to provide anti-tumour activity has been 

described1141] and an interesting pharmacological profile was discovered.

The aim o f  this study is to evaluate PAMAM dendrons/DNA interaction as a function 

o f generation and charge density (cationic, neutral), in order to interrogate the 

characteristics o f  the binding event. For this purpose we have investigated the binding 

o f  a calf thymus DNA sample, fluorescent -COOH terminated PAMAM dendrons o f  

generation FC2G0.5, FC2G2.5 and FC2G0, and -N H 2 terminated FC2G1, FC2G2 

PAMAM dendrons using UV-visible spectroscopy.
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A.2.2. Results and discussion

The DNA-binding properties o f 3 -bromo- 7//-benz[<7e]benzimidazo[2,1- 

<2]isoquinoline-7-one FC2 and its dendritic derivatives o f  different generations were 

studied using UV-visible titrations. Unfortunately, the aqueous solubility o f  FC2 is 

negligible, which did not allow us to carry out UV-visible titrations. Aqueous 

solubility o f  FC2G0, however, is sufficient for UV-visible titrations (Figure A.5).

15000-

|  10000-

TJ

5000

300 450 600
x / n m

Figure [A.5]: UV-visible spectra for 2.69 x 10' mM FC2G0 upon addition of 0 -  1.29 
mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM EDTA, at 25 °C.

Figure (A.5) shows an increase in extinction coefficient with increasing concentration 

o f DNA, eventually leading to a spectrum with maxima at 446 and 463 nm. A titration 

curve can be extracted from the data (Figure A. 6).
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Figure [A.6]: UV-visible absorbance at 446 and 463 nm for 2.69 x 10'2 mM FC2G0 
upon addition of 0 -  1.29 mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI 
and 1 mM EDTA, at 25 °C. Red lines are fits to a multiple independent binding sites

model.

Figures (A.5) and (A.6) show clear change in the UV-visible spectrum o f FC2G0 upon 

addition o f  calf thymus DNA. Data can be analysed in terms o f  a multiple 

independent binding sites model, but the derived parameters suggest a problem with 

calculated concentrations (the model suggests that 10 ligand molecules bind to every 

base pair, which is unrealistic). In any case, DNA binding o f FC2G0 is relatively 

strong.

To investigate the effect o f covalently-attached negatively-charged dendrimeric 

structures, we studied the interactions with calf thymus DNA o f FC2G0.5 carboxylate 

salt and FC2G2.5 carboxylate salt, again using UV-visible titrations (Figures A.7 and 

A.8).
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Figure [A.7]: UV-visible spectra for 3.76 x 10'2 mM FC2G0.5 salt upon addition of 0 -  
3.03 mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM EDTA, at

25 °C.

Figure (A.7) shows a small increase in the extinction coefficient for FC2G0.5 

carboxylate upon addition o f calf thymus DNA. The increase in extinction coefficient 

does not reach saturation even in the presence o f 3.03 mM calf thymus DNA, 

indicating that the interaction o f FC2G0.5 with calf thymus DNA is considerably 

weaker than the interaction o f FC2G0 with calf thymus DNA. Nevertheless, the 

change in the absorption peak towards a shape reminiscent o f that for fully DNA- 

bound FC2G0 suggests that both molecules bind to DNA in a similar manner, but that 

binding is attenuated by the appended dendron. Both electrostatic and steric repulsion 

will undoubtedly play a role.
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Figure [A.8]: UV-visible spectra for 4.98 x 10'2 mM FC2G2.5 salt upon addition of 0 -  
4.44 mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM EDTA, at

25 °C.
Figure (A.8) does not show increases in extinction coefficients. A small decrease in 

extinction coefficient is observed but this does not reach saturation: binding is weak, 

if any binding occurs at all.

To check whether binding could be switched back on by eliminating electrostatic 

repulsion, the interaction with DNA o f FC2G2.5 ester was studied (Figure A.9)
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Figure [A.9]: UV-visible spectra for 2.49 x 10'2 mM FC2G2.5 ester upon addition of 0 
- 0 .2 6  mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM EDTA, at

25 °C.
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Figure (A.9) again shows a small decrease in extinction coefficients and saturation is 

not reached. This indicates that binding is again weak, if occurring at all. Eliminating 

electrostatic repulsion has not restored DNA binding. We therefore conclude that 

steric repulsion between the dendrons and the DNA contributes to the lack o f 

observable interactions between the fluorescent core and DNA.

To investigate the effect o f covalently-attached positively-charged dendrimeric 

structures, the interactions with calf thymus DNA o f FC2G1 and FC2G2 were studied 

using UV-visible titrations (Figures A. 10 and A .l 1).
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Figure [A.10]: UV-visible spectra for 3.77 x 1 0 2 mM FC2G1 amine upon addition of 0 
-  1.38 mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM EDTA, at

25 °C.

Figure (A. 10) shows an increase in absorbance upon addition o f calf thymus DNA, 

but in this case, addition o f  DNA also leads to precipitation. We attribute this to 

strong binding o f  FC2G1 to calf thymus DNA, eventually resulting in charge 

neutralization in the FC2G1-DNA complex, which result in its precipitation.
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Figure [A.11]: UV-visible spectra for 2.09 x 1 0 2 mM FC2G2 polyamine upon addition 
of 0 - 5 .2  mM calf thymus DNA in 25 mM MOPS pH 7.0, 50 mM NaCI and 1 mM

EDTA, at 25 °C.

Figure (A. 11) similarly shows an increase in absorbance. Precipitation is also 

observed for the FC2G2-DNA complex and is clear from the increase in baseline 

absorbance as a result o f scattering particles.

A .2.3. Sum m ary

The fluorescent core binds to DNA. Although we have not done any experiments to 

elucidate the binding mode, one would expect this type o f  flat aromatic molecule to be 

an intercalator. Addition o f  negatively charged dendrons results in a strong decrease 

in affinity for DNA. The affinity is not restored by esterification, highlighting 

contributions o f  both electrostatic repulsion but particularly steric interactions in 

blocking interactions. Coupling the fluorescent core to positively charged dendrons 

leads to strong binding accompanied by precipitation o f the DNA complex. The latter 

observation is in line with the literature.1141,257'258,261‘262]


