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Abstract

The development of permanent, stable ice sheets in Antarctica happened during the 
middle Miocene, about 14 million years ago (Flower and Kennett, 1995; Zachos et al., 
2001). The middle Miocene therefore represents one o f the distinct phases o f rapid 
change in the transition from the “greenhouse” of the Cretaceous to the “icehouse” o f 
the present day. Accompanying the middle Miocene growth of the Antarctic Ice Sheet 
are major perturbations in the global carbon system, represented by some o f the largest 
fluctuations in marine carbonate 513C values in the Cenozoic (Flower and Kennett, 
1995; Zachos et al., 2001). A broad positive carbon isotope excursion; the “Monterey 
Excursion” (Vincent and Berger, 1985) begins in the early Miocene (approximately 
16.9 Myr ago) and terminates in the middle Miocene ~13.8Myr ago (Holboum et al., 
2007). Within this broad 8 13C excursion, higher frequency fluctuations have been 
recognised with at least 7 carbon isotope maxima (CM) defined (W oodruff and Savin, 
1991).

The Ras il-Pellegrin section, Malta spans the l.IM yrs following the growth o f the ice 
sheet. The simple tectonic history and clay-rich sediments o f the Serravallian Blue 
Clay Formation has led to exceptional preservation o f foraminifera and organic 
biomarkers.

Stable isotope analysis o f bulk carbonate and planktonic foraminifera Globigerinoides 
trilobus at Ras il-Pellegrin show the globally recognised positive carbon isotope 
excursion CM 6  and the final stages o f the ice sheet expansion (“E3”; Miller et al. 
1993). Combined alkenone unsaturation index ( t / f7) and G. trilobus Mg/Ca ratios 
were used to reconstruct sea surface temperature. Over CM 6  temperatures dropped by 
~5°C as the ice sheet expanded, and the temperature contribution to the 5180  record is 
-30% , in agreement with other studies (Billups and Schrag, 2002; Lear et al., 2000; 
Shevenell et al., 2008). Sea surface temperatures estimated from G. trilobus Mg/Ca at 
this Mediterranean site averaged ~30°C.

Atmospheric pC0 2  decreased as the ice sheet expansion progressed, coinciding with 
CM 6 . The magnitude o f the decrease is on order -7 0  ppm, based on alkenone and 
boron palaeobarometry. The absolute magnitude o f atmospheric pCC>2 is relatively low 
(-300 ppm) in general agreement with other Neogene studies (Kiirschner et al., 2008; 
Pagani et al., 1999a; Pearson and Palmer, 2000) in a time o f relatively high 
temperatures.

On the basis o f ocean carbonate system modelling coupled with the records presented 
here, the recently suggested “silicate weathering hypothesis” (Shevenell et al., 2008) 
for CM 6  is untenable. The mechanism preferred here is increased organic carbon 
burial, in agreement with the “Monterey Hypothesis”.

Coupled inorganic-organic carbon isotopes spanning the Monterey Excursion (16.9- 
13.5 Ma) suggest changes in the carbon system consistent with the Monterey 
Hypothesis. Thermal stratification of the oceans is inferred to have increased during 
the middle Miocene climate transition.
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1 Introduction
1.1 Cenozoic Temperature, Ice Volume and pCC>2

On a geological timescale, the climate o f the Earth is never stable; the boundary 

conditions which determine the temperature o f the Earth’s surface (orbital parameters, 

tectonics) are always varying, albeit slowly. The Earth’s climate, therefore, is in a 

constant state o f flux, which is represented in the Cenozoic by long-term quasi-stable 

periods punctuated by relatively short periods o f dramatic and wholesale change 

(Zachos et al. 2001). It is one o f these periods o f profound change, the middle 

Miocene climate transition, which is the focus o f this work.

When describing the climate o f the Earth, three interlinked parameters are key: 

temperature, ice volume and atmospheric pCC>2 . The early work o f Urey (1947), 

Epstein et al. (1951) and Emiliani (1954) allowed for the development o f the oxygen 

isotope palaeothermometer. Early long-term records o f Cenozoic climate change using 

oxygen isotopes o f planktonic and benthic foraminifera record a cooling trend since 

the Cretaceous (Shackleton and Kennett, 1975). Subsequent records, developed 

primarily from high resolution archives from the Deep Sea Drilling Project and Ocean 

Drilling Program, confirmed this but also facilitated our understanding o f more rapid 

or short term Cenozoic climate changes (e.g. Miller and Katz, 1987; Zachos et al., 

2001, 2008; Figure 1).
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Figure 1 Cenozoic climate and atmospheric C 0 2 records. The upper panel shows atmospheric 
C 0 2 reconstructions from alkenone (blue line; (Pagani et al., 2005)) and boron isotopes (green 
line; Pearson and Palmer, 2000). These are shown as maximum and mimimum estimate 
envelopes. The lower panel shows a global, stacked benthic foraminiferal oxygen isotope 
compilation (Zachos et al., 2008). PETM= Paleocene-Eocene therm al maximum. The warmth 
of the MMCO and the M MCT seem to happen during a period of relatively stable atmospheric 
C 0 2, on the basis of the long-term records shown here.
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The development o f foraminiferal Mg/Ca ratios as an independent proxy for 

temperature (Katz, 1973; Numberg et al., 1996; Rosenthal et al., 1997) allowed for the 

separation o f the effects of ice volume and temperature changes from the oxygen 

isotope record, and a clearer picture o f the development of the climate through the 

Cenozoic (Lear et al., 2000). The picture that has emerged is of a development over 65 

Myrs o f the “Icehouse” climate of today with ice at both poles from the “Greenhouse” 

o f the ice-free Cretaceous. This climatic “decline” has taken place as a number o f 

climate steps, with dramatic and relatively rapid expansions if ice sheets, with 

rebounds and warmer periods intervening. The three main steps recognised for the 

Cenozoic are the initial appearance o f permanent ice at the Eocene-Oligocene 

boundary, the middle Miocene expansion o f Antarctic ice, and the development of 

bipolar ice into the Plio-Pleistocene (Lear et al., 2000; Zachos et al. 2001).

The development and application o f methods for reconstructing past atmospheric 

pCCL concentration has been more recent. Modelling approaches (Bemer and 

Kothavala, 2001), palaeosol carbonates (Royer et al., 2004; Yapp, 2004), stomatal 

densities (Royer et al., 2004), boron isotopes (Pearson and Palmer, 2000), alkenone 

isotopes (Pagani et al., 2005a) and sodium carbonate mineral equilibria (Lowenstein 

and Demicco, 2006) have all been used, and in general agree that there has been a 

decline in atmospheric CCL over the Cenozoic as temperatures have decreased. 

Alkenone and boron isotope methods have shown the most promise in terms o f the 

generation o f high resolution, continuous records approaching the fidelity o f the 

oxygen isotope records o f temperature and ice volume, and although there has been

3



some concern about the details of each methods (see for example Pagani et al, 2002, 

2005b), the two methods record similar patterns over the Cenozoic (Figure 1).

1.2 Miocene Climate

The Miocene is an epoch o f climate extremes, from the warmth o f the middle Miocene 

climatic optimum (MMCO), which saw crocodiles in central Europe (Bohme, 2003) 

and deciduous trees in Alaska (Leopold and Liu, 1994), to the dramatic growth of 

Antarctic ice at the middle Miocene climate transition (MMCT) which is the focus o f 

this study (Shackleton and Kennett, 1975). The stepwise transition from the warmth of 

the middle Miocene to the cooler conditions following the growth of permanent ice on 

Antarctica began around 14.5 Ma, with successive events recognisable in the

152foraminiferal 8  O record, known as Mi-3 and Mi-4 in the nomenclature of Miller et al 

(1993). Although there is evidence o f earlier transitory ice in the Miocene (Mi-1, la, 

lb  and 2; Miller et al., 1991), it is not until 14.5 Ma that this transition becomes 

permanent.

The ultimate cause o f the ice growth is unclear. The MMCT took place within the 

broader setting o f cooling through the Cenozoic (Lear et al., 2000; Zachos et al., 

2001), and the Mi-3b event (one o f the larger steps in the 5180  record) coincides with a 

node o f low eccentricity and minimum obliquity and precession amplitudes (Abels et 

al., 2005; Holboum et al., 2005). Long term records o f atmospheric CO2 do not show 

any significant decrease in the run up to the MMCT (Pagani et al., 2005a; Pearson and 

Palmer, 2000), and orbital parameters may have been important in determining the 

timing o f the ice sheet growth, allowing the build-up o f a large, stable ice sheet during 

a period o f low summer insolation (Holboum et al., 2005).
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Figure 2 (previous page): Miocene climate and atmospheric C 0 2 records. Panel a 
shows atmospheric C 0 2 records from alkenone isotopes (blue lines; Pagani et al., 
2005), boron isotopes (green lines; Pearson and Palmer, 2000) and from stomatal 
indices (red squares; Kiirschner et al., 2008). Boron and alkenone isotopes are 
shown as minimum and maximum estimate envelopes. Panel b shows a global 
stacked benthic foraminifera carbon isotope record (Zachos et al., 2008), the blue 
line is a five point running average. Carbon Maxima (CM) events (Woodruff and 
Savin, 1991) and the Monterey excursion (Vincent and Berger, 1985) are 
indicated. Panel c shows a global stacked benthic foraminifera oxygen isotope 
compilation (Zachos et al., 2008) with the middle Miocene climate transition 
(MMCT) and middle Miocene climatic optimum (MMCO) indicated. The grey 
line is a 5 point running average.

Associated with the changes in climate as demonstrated by the oxygen isotope records 

are major perturbations in carbon isotope records. A broad positive excursion, the 

“Monterey Excursion” (Vincent and Berger, 1985) which begins around 16.9 Ma and 

persists until -1 3 .5  Ma is punctuated by shorter positive excursions known as “carbon 

maxima” or “CM” events (W oodruff and Savin, 1991). The 7 CM events are globally 

recognised and, although frequently used as stratigraphic markers, their causes are 

poorly understood. The classical interpretation o f both the broad Monterey and CM 

events is that they represent increased organic burial events (Flower and Kennett, 

1993b; W oodruff and Savin, 1991), initially proposed on the basis o f the high organic 

matter contents o f the Monterey formation in California and similar organic rich 

sediments found around the Pacific rim. However, unequivocal evidence o f significant 

increases in organic carbon burial or primary productivity both within the formation 

and worldwide has not been forthcoming (Coe et al., 2008; Diester-Haass et al., 2009).

A net global increase in organic carbon burial is required for the classical proposition 

o f a causal link between the Monterey event in the carbon isotope record and the 

MMCT in the oxygen isotope record. Under the “Monterey hypothesis”, the 

sequestration o f carbon via increased organic carbon burial would lead to a drawdown

6



o f atmospheric CO2, leading to decreased global temperatures and the ice sheet growth 

(Vincent and Berger, 1985). Long term reconstructions o f atmospheric CO2 based on 

alkenone and boron isotopes do not show a significant decrease over the period 

(Pearson and Palmer 2000; Pagani et al., 2005a), but more recently published work 

based on stomatal indices do show a decrease over the MMCT (Figure 2; Kiirschner et 

al., 2008), higher resolution records o f the atmospheric CO2 are needed to resolve the 

discrepancy.

More recently, an alternative interpretation for the CM events, and specifically the 

largest excursion, CM 6 , has been suggested (Shevenell et al., 2008). The position of 

CM 6  immediately following the increase in the oxygen isotope increase has led to 

suggestions that it may be related to a negative feedback related to the ice sheet 

growth. Under this scenario, the blanketing o f a large area o f silicate basement by the 

expansion o f ice cover could lead to a slowdown in silicate weathering and decrease 

the weathering sink for atmospheric CO2; this would cause atmospheric CO2 

concentrations to increase, and by increasing photosynthetic carbon isotope 

fractionation by marine phytoplankton, drive a positive carbon isotope excursion (Lear 

et al., 2004; Pagani et al., 1999a; Shevenell et al., 2008).

As these two hypotheses would have opposite effects on atmospheric CO2 (organic 

carbon burial driving pCCL down, a reduction in silicate weathering driving pCC>2 up), 

a high resolution reconstruction o f atmospheric CO2 over CM 6  could resolve which is 

most likely, and this one o f the key aims o f this work.
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1.3 Palaeoclimate Proxies
1.3.1 Inorganic Proxies

Stable oxygen and carbon isotopes in carbonates can provide significant information 

about the state o f the climate and carbon systems. There is a fractionation between the 

oxygen isotopic composition o f the seawater in which an organism is calcifying, and 

the calcite it produces. The degree o f fractionation is dependant on the temperature of 

the water in which the organism is living, and vital effects that vary slightly from 

species to species. In order to use this fractionation to determine the temperature at 

the time o f calcification, the oxygen isotopic composition o f the water in which 

calcification takes place (518Osw) needs to be known. 5 18Osw varies depending on the 

local salinity (the balance between evaporation and precipitation at the site) and, via 

Rayleigh fractionation that locks the light isotope in ice, the prevailing ice volume at

the time. In an ice-free world, such as likely prevailed in the greenhouse climate o f the

18Cretaceous, 5 O can be used directly as a palaeothermometer. However, as permanent 

ice has been present for much o f  the Cenozoic, a second proxy is required to 

deconvolve the ice volume and temperature signals from oxygen isotopes. 

Foraminifera Mg/Ca fulfils this role. The uptake o f Mg into the calcite lattice during 

calcification is temperature dependent, and so this can be used as an independent 

proxy for temperature, which allows the ice volume signal from oxygen isotopes to be 

estimated (Lear et al., 2000).

The interpretation o f carbonate carbon isotopes is more complicated. Carbon isotopes, 

like oxygen isotopes, are fractionated by organisms during calcification. However the 

complexity o f the global carbon cycle means that the carbon isotopic composition o f 

the carbon pool from which this fractionation takes place ( 5 13C d ic ) is controlled by a



large number o f factors. These include factors that are linked to the climate system, 

such as weathering, CO2 emissions from volcanism and metamorphism, deposition o f 

carbonate and organic carbon, and terrestrial biomass changes. Within the oceans the

1 9carbon pool varies spatially as the light isotope ( "C) is preferentially taken up in 

surface water by primary production, and the amount of light carbon which is removed 

varies with the productivity of the surface ocean, surface water CO2 concentration 

([C0 2 (aq)]) and surface temperature. Determining what is causing changes in the 513C 

which is ultimately preserved in marine organic carbonates is therefore complex, but 

nevertheless 513C can tell us about when major perturbations o f the carbon system are 

happening (such as the “CM” events and Monterey excursion in the Miocene) and by 

combining a number o f proxies which relate to the carbon system, the cause o f such 

perturbations may be determined.

Boron exists in the oceans in two aqueous species, boric acid (B(OH)3) and borate 

(B(OH ) 4 ). Only the charged species (borate) is incorporated into foraminiferal 

calcium carbonate, and the strong isotopic fractionation in the boron between boric 

acid and borate is pH dependent (Hemming and Hanson 1992; Kakihana et al. 1997) . 

The boron isotopic composition o f boron in foraminifera is pH dependent, and if  one 

other parameter in the ocean carbonate system can be constrained, [C C >2(aq)] can be 

determined. Foraminiferal B/Ca can be used to determine carbonate ion concentration, 

and so a coupled record o f foraminiferal 5n B and B/Ca can be used to calculate 

[CC>2(aq)], and from this atmospheric carbon dioxide concentration can be calculated 

(Foster, 2008).

9



1.3.2 Organic Proxies

Organic carbon is preserved in sediments, and the carbon isotope composition o f the 

preserved organic matter (OM) can provide information about the carbon system. 

Similar to the 513C o f carbonate material, the complexity o f the carbon system means 

that direct interpretation o f OM carbon isotopes is difficult. Further complicating this 

is that the 513C measured from bulk OM preserved at a site comes from a large number 

o f different sources, each with its own 513C and fractionating processes. Nevertheless, 

bulk OM 8 13C can provide a second proxy for changes occurring in the carbon cycle, 

and when combined with carbonate 513C can provide insight into the nature o f the 

changes.

Due to the ambiguity o f the source of the bulk organic matter much work has been 

done on biomarkers. Biomarkers are “molecular fossils”; specific molecules which 

relate exclusively to a single marine species or group. By narrowing down the source

1 3o f the organic carbon being analysed the 5 C o f the carbon can be more useful. 

During photosynthesis there is isotopic fractionation o f carbon, and the degree of 

fractionation is controlled by [C0 2 (aq)] (Hollander and McKenzie, 1991). By 

combining carbonate and biomarker 513C aqueous C 0 2 can be calculated, and from 

that atmospheric C 0 2 can be calculated (Jasper and Hayes, 1990; Jasper et al., 1994)

Biomarkers can also be used to trace changing sources o f organic material to a site, the 

distribution o f «-alkanes varies between terrestrial and marine organisms, and can be 

used to determine whether the relative contributions from the terrestrial and marine 

realm change. Alkenone (long chain biomarkers specific to a restricted group o f algae) 

distribution can also be used to estimate temperatures. The relative proportions o f di-

10



and tri-unsaturated alkenones produced is dependent on the temperature o f the water at 

time o f synthesis (Brassell et al., 1986; Muller et al., 1998).

1.4 Thesis Outline

The aim o f this thesis is to use a multi-proxy approach to answer questions o f middle 

Miocene climate change. The exceptional preservation of the Ras il-Pellegrin section 

in Malta has allowed for both organic and inorganic proxies to be used in the same 

samples. The multi-proxy approach allows questions o f the veracity o f assumptions o f 

individual proxy records to be answered by using multiple independent methods to 

reconstruct the same climate parameter (boron and alkenone reconstructions o f 

atmospheric CO2, Mg/Ca and alkenone unsaturation reconstructions o f temperature 

(Chapter 5)). The aim o f this thesis is to determine the climate conditions following 

the growth o f the major ice sheet at the MMCT, and to explore the likely causes of the

significant perturbations in the carbon system through the middle Miocene, as evident

1 ̂in the “CM” and Monterey events identified in the carbonate 5 C records.

The thesis begins with an explanation o f the method used (Chapter 2) and introduction 

to the Ras il-Pellegrin (Chapter 3) and Moria (Chapter 4) sections. In Chapter 5, I use 

a multi-proxy approach to reconstruct the variations in temperature and atmospheric 

CO2 following the MMCT ice growth. In Chapter 6  the results are coupled with a 

carbon system model to identify likely causes for the perturbations identified.

11



2 Methods
2.1 Carbonate Analysis
2.1.1 Sample Preparation

Sediment samples were split into sub-samples for bulk, foraminiferal and biomarker 

analyses. Bulk samples were dried at 40°C overnight in an oven before being ground 

to a fine powder by hand. Samples for foraminiferal analysis were disaggregated in de­

ionised water (15 M ficm '1) in a vertical plane spinner for 3-5 hours as needed and 

washed over a 63 pm mesh using de-ionised water (15 M flcm '1). The <63 pm fraction 

(fine fraction) was collected in plastic bags, allowed to settle out and supernatant water 

siphoned off, these fractions were combined and dried over a period o f weeks in an 

oven at 40°C and weighed. Coarse fractions (>63 pm) were dried at 40°C and weighed 

to calculate coarse per cent. Globigerinoides trilobus, the most abundant planktonic 

foraminifer throughout the section, was picked from the 250 -  355 pm fraction for 

trace metal and stable isotope analysis.

2.1.2 Sample C leaning

For stable isotope analysis, 8-10 glassy specimens o f G. trilobus were cracked open to 

reveal interiors o f chambers and obvious contaminant phases (pyrite and any infill) 

removed under the microscope. Samples were cleaned by addition of 3% H2O2 for 30 

minutes to oxidise remnant organic material. A drop o f methanol was added, before 

they were ultrasonicated for a few seconds, to aid drying.

For foraminiferal trace metal analysis samples were cleaned using a stepwise method 

adapted from Boyle and Keigwin (1985), detailed in Barker et al. (2003). This utilises
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visual inspection to remove contaminant phases before and after the clay removal step; 

clay removal by ultrasonic suspension and rinses with de-ionised water (18.2 M Qcm '1) 

and methanol, an oxidative step (H2O2 alkali buffered with 0.1M NaOH) to remove 

organic material and a final weak acid leach (0.001M HNO3) to remove adsorbed 

contaminants. The reductive step o f Boyle and Keigwin (1985) was omitted due to 

concerns over dissolution effects on Mg/Ca ratios (Barker et al. 2003; Rosenthal et al. 

2004; Yu et al. 2007). Trace metal cleaning was performed under clean laboratory 

conditions, and all labware acid cleaned before use. Final sample dissolution was 

performed immediately before analysis to prevent leaching from sample tubes. 

Samples were dissolved in 120 pi 0.065M HNO3, centrifuged and the top 100 pi 

transferred to clean tubes to remove non-carbonate fractions. The remaining 20 pi was 

centrifuged again and 10 pi taken to be analysed for Ca concentration.

For boron isotope and B/Ca analysis, 100 glassy specimens o f G. trilobus were picked 

(~2 mg calcium carbonate). Cleaning and analysis were performed by G. Foster at the 

University o f Bristol, cleaning procedures for boron analysis are detailed in Foster, 

(2008) and Ni et al., (2007). Initial sample cleaning was identical to that used for trace 

metal analysis, followed by a further overnight bleaching in sodium hypochlorite 

(NaCIO; 5% Cl). Samples were dissolved in 100 -  300 pi o f Teflon distilled 0.5 M 

HNO3 in acid cleaned Teflon beakers. An aliquot o f the solution was taken at this 

stage for trace metal analysis (to determine B/Ca ratio and to assess efficiency o f 

cleaning). Prior to boron isotope analysis the Ca matrix must be removed. This was 

performed using Amberlite IRA 743 boron specific resin. Samples were dissolved in 

0.5 M HNO3 and buffered to pH 5 using 2 M Na acetate 0.5 M acetic acid buffer. 

Samples were loaded on 25 pi columns and the matrix removed with repeated rinses 

of deionised water (18 MQ cm'1). Boron was washed off the resin using 0.5 M HNO3 .
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Fine fraction (<63 pm) carbonate samples were cleaned using reductive (hydroxyl 

ammonium chloride) and ion exchange (1M ammonia) steps, similar to Delaney and 

Linn (1993).

Coccolith fractions for analysis by analytical scanning electron microscopy were 

separated from sieved fine fractions (<63 pm) by settling in methanol following the 

procedure o f Stoll and Schrag (2000).

2.1.3 Sam ple Analysis

Bulk and G. trilobus stable isotope analyses were performed on a ThermoFinnigan 

MAT252 mass spectrometer with online sample dissolution using an automated Kiel II 

carbonate device at the School of Earth and Ocean Sciences, Cardiff University. Long 

term uncertainties based on repeat analysis o f NBS-19 are ±0.08%o and ±0.05%o for

18 13
6  O and 6  C respectively (2o). Fine fraction stable isotope analyses were performed 

on a VG Optima duel inlet gas source mass spectrometer at the NERC Isotope 

Geosciences Laboratory, Keyworth. Sample dissolution was performed offline. 

Samples were placed in reaction tubes within a reaction chamber to which 4 ml o f 

anhydrous phosphoric acid was added (samples and acid were initially isolated from 

one another within the reaction chambers). Reaction chambers were then evacuated to 

better that 1.0‘4 mb, removing atmospheric CO2 and moisture. Reaction chambers were 

then equilibrated in a water bath to 25.2 °C before acid and samples were combined 

within the chambers and allowed to go to completion for at least 16 hrs. Resultant CO2 

was cleaned cryogenically on a high-pressure manifold by way o f an acetone trap, and 

collected in dry sample chambers using liquid nitrogen. Isotope values are reported as 

per mille on the Vienna Pedee belemnite (VPDB) scale using an in-run internal 

laboratory standard (KCM) with known composition with respect to NBS-19. Internal

14



precision was monitored using two further in-run laboratory standards (MCS-18 and 

CCS-3). Values were corrected for small levels o f 170  using Craig’s correction (Craig, 

1957) and to the solid carbonate value using a fractionation factor of 1.01025 (Sharma 

and Clayton, 1965). Analytical errors are typically better than ±0.3%o for 6 180  and 

±0.1 %o for 6 13C (2a).

Trace metal analyses (excluding fine fraction Sr/Ca and foraminiferal B/Ca) were 

performed on a ThermoFinnigan ELEMENT-XR high resolution inductively coupled 

plasma mass spectrometer (ICP-MS) at the School o f Earth and Ocean Sciences, 

Cardiff University. To avoid matrix effects due to variable Ca concentration upon 

analysis, samples were run with standards o f matched Ca concentration. To determine 

the Ca concentration aliquots o f samples were diluted using 0.5M HNO3 and run in 

batches o f 4 bracketed by 0.5 M Ca standards and Ca concentration o f the samples 

calculated. To determine trace metal ratios sample specific standards o f known trace 

metal composition were diluted to the Ca concentration o f the samples and run 

immediately following the sample. Samples were run in batches o f 2 sample-standard 

pairs, bracketed by a consistency standard and blank, and were run in order o f 

increasing Ca concentration to minimise cross-contamination. Mean analytical 

precision o f the consistency standards was 0.7% relative standard deviation (r.s.d., 

n=12). Uptake time was ~47s and one minute washes were performed after each 

sample analysis.

Boron isotope and B/Ca analyses were carried out by G. Foster at the University o f 

Bristol. B/Ca analyses were carried out on a ThermoFinnigan ELEMENT 2 ICP-MS 

(Ni et al., 2007). The long-term reproducibility o f the in house consistency standards 

for B/Ca is ± 2% (2o) and the accuracy is better than 5% (Foster, 2008; Ni et al.,
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2007). Boron isotope analyses were carried out on a ThermoFinnigan NEPTUNE 

multi-collector ICP-MS following the methodology o f Foster (2008). The analytical 

precision o f the boron isotope analyses is ± 0.22%o (2 o) based on long-term 

reproducibility o f full procedural replicates o f an in house coral standard.

Fine fraction (<63 pm) carbonate samples analyses were carried out on a JY Horiba 

Ultima 2 inductively coupled plasma optical emission spectrometer at the School of 

Earth and Ocean Sciences, Cardiff University, long term precision is 4-10% (r.s.d.). 

Sr/Ca ratios were corrected for changing Sr/Ca of seawater using the long-term record 

o f Lear et al. (2003).

A single coccolith sample (M T31/10.50) was analysed by analytical electron 

microscopy using wavelength dispersive spectrometry (WDS) on a Cambridge 

Instruments (LEO) S360 fitted with an INCA WAVE (WDX). Samples were splutter 

coated with carbon prior to analysis and optimisation was performed at the start o f the 

analytical session using an in-house cobalt standard. Precision, based on repeat 

measurements was poor (±0.9 mmol/mol; 2o). Accuracy was assessed by analysis o f a 

cultured coccolith sample o f for which Sr/Ca had been measured by inductively 

coupled plasma mass spectrometry (ICP-MS), and the ICP-MS measurement was 

within the error o f the WDS analysis (P. Halloran pers. comm., 2006).

2.2 Biomarker Analysis
2.2.1 Reagents and Glassware

To prevent contamination high purity HPLC grade reagents (supplied by Rathbum 

Chemical Ltd., W alkerbum, Scotland) were used throughout sample preparation, all 

glassware was heated to 450 °C for a minimum of 3 hours and PTFE bottles were 

solvent rinsed before use.

16



2.2.2 Biom arker extraction

Extraction was performed in randomised batches o f 7 samples with a procedural blank 

in each batch. 5 g samples were gently washed with methanol to remove surface 

handling and environmental contamination and ground using a mortar and pestle. 

Powdered samples were saponified at 70°C for 2 hours (ultrasonicated for 5 minutes at 

the beginning, midpoint, and end) using methanoic 0.1M potassium hydroxide (5% 

H2O) and ultrasonically extracted with methanol and dichloromethane 

(DCM):methanol 3:1 azeotrope (v:v).

Table 1 Biomarker extraction batches

Batch
Number

1 2 3 4 5 6

Start
Date

6/3/07 15/3/07 2/4/07 11/4/07 8/5/07 28/4/07

Samples MT1
MT6

MT10
MT12
MT15
MT23
MT30

BLANK
6/3/07

MT28
MT25
MT20
MT11
MT8

MT4
MT3

BLANK
15/3/07

MT2 
MT5 

MT13 
MT16 
MT17 
MT22 
MT19 

BLANK 
11/4/07

MT29 
MT26 
MT24 
MT27 
MT21 
MT18 
MT7 

BLANK 
11/4/07

MT14
MT9

MT98
MT53
MT6 6

MT124
MT32

BLANK
8/5/07

M T11

MT2
MT3

MT14
BLANK
28/4/08

Combined extracts were reduced by rotary evaporation and remaining solvent 

evaporated under a stream of nitrogen with gentle heating (~40°C). Neutral fractions 

were isolated from the total extract using a liquid-liquid procedure in «-hexane:DCM 

9:1 from double-distilled, DCM extracted water. Remnant total extract was acidified 

using 5M HC1 and acid fractions isolated using DCM. Fractions were reduced by 

rotary evaporation under vacuum and evaporated to dryness at 30°C under a flow of 

nitrogen. Neutral fractions were re-dissolved in «-hexane and silica gel column

1 Double (repeat) extracted to increase alkenone yield and combined before liquid-liquid separation
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chromatography was used to divide samples into four further fractions (Kawamura and 

Gagosian, 1987), loaded in w-hexane and eluted in «-hexane (4 ml, Fraction 1), n- 

hexane:DCM (2:1 v:v; 2 ml, F2), DCM (5 ml, F3) and DCM:methanol (95:5 v:v; 5 ml, 

F4) alkenones were eluted in F3, /7-alkanes eluted in F I. Columns were custom built 

from 150 mm Pasteur pipettes and packed with 40 mm of DCM and methanol 

extracted silica gel on top o f phosphoric acid and DCM extracted glass wool plugs, 

capillary length was 60 mm. All fractions were evaporated to dryness under a flow of 

nitrogen with gentle heating (~40°C) and stored below 0°C until analysis.

2.2.3 Biom arker Quantification

Alkenone (F3) quantifications were performed on a Carlo Erba Instruments 

HRGC5300 gas chromatograph fitted with a flame ionisation detector at the Organic 

Geochemistry Unit, University of Bristol. The GC was fitted with a Chrompack fused 

silica capillary column (50 m x 0.32 mm internal diameter) coated with a CP Sil-5CB 

stationary phase (dimethylpolysiloxane equivalent, 0 . 1 2  pm film thickness). FC was 

used as the mobile phase (carrier gas). Samples were dissolved in ethyl acetate and 1 

pi injected on-column at 70°C (samples were typically dissolved in 50 pi solvent but 

this varied with sample concentration), and the oven programmed to increase in 

temperature to 200°C at 20°Cmin ' 1 then to 305°C at 6 °Cmin'1, remaining isothermal at 

305°C for 25 minutes. As the tetra-unsaturated alkenone (C37:4) is not present, 

alkenone unsaturation indices were calculated using equation ( 1 ) (Prahl and 

Wakeham, 1987).

= [Cm] ( 1 )
[C,7:2 + C 37:3] 1 ;
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Alkane analyses were performed on the same instrument but with a different 

temperature program: samples were injected at 70°C and the oven programmed to 

increase in temperature to 130°C at 20°Cmin ' 1 then to 300°C at 4°Cmin'1, remaining 

isothermal at 300°C for 25 minutes. The odd-over-even predominance (Scalan and 

Smith, 1970) ratios were calculated using equation ( 2 ).

c = carbon number
n = C3i

2.2.4 Alkenone Carbon Isotopic Determinations

Alkenone carbon isotope analyses were performed on a Finnigan MAT Delta S isotope 

ratio monitoring mass spectrometer at the Organic Geochemistry Unit, University o f 

Bristol. This was coupled to a Varian 3400 gas chromatograph via a modified 

Finnigan Type I combustion interface with copped oxide and platinum catalyst (0.1 

mm diameter) maintained at 850°C within an alumina reactor (0.5 mm internal 

diameter). An internal standard o f n-heptatriacontane was added to samples (2 pg per 

sample) before injection and a fatty acid methyl ester mixture was run periodically to 

monitor instrument performance. Samples were dissolved in ethyl acetate and injected 

at 70°C using an on column injector and the oven programmed to increase from an 

initial temperature o f 70°C to 200°C at 20°Cmin ' 1 then to 300°C at 6 °Cmin ' 1 and 

remain isothermal for 25 minutes. Water was removed using a Nafion membrane and 

the GC was fitted with a silica capillary column (50 m x 0.32 mm internal diameter) 

with a ZB1 stationary phase (dimethylpolysiloxane equivalent, 0.12 pm film
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thickness). The GC carrier gas was He. Samples were calibrated against reference CO2 

of known isotopic composition introduced directly into the ion source at the start and 

end o f each run. Sample concentrations and injection volumes were optimised to 

maximise signal strength, and no evidence o f a concentration effect on isotopic ratio 

was seen for the co-injected standard (Figure 3).
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Figure 3: Carbon isotope ratio of co-injected /f-alkane standard vs. peak response 
(area) for all isotopes.

Isotopic values were normalised by comparison to a gas standard o f known isotopic 

value bracketing sample analyses, and are reported in delta notation (513C) with 

respect to the Vienna Pee Dee belemnite (VPDB).
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Figure 4: Repeat analysis of the co-injected /t-alkane standard shows instrument 
stability over the length of the run. Mean 813C was -30.05 (solid line) and 
lcr=±0.574 (dashed lines).

The long-term stability and precision o f the GC-C-IRMS based on repeat runs o f an in 

house standard mix is ±0.3%o. The stability o f the instrument over the 2 weeks 

(30/5/08 -  15/6/08) o f data collection was monitored using the co-injected n-alkane 

standard (Figure 4). Instrument drift was corrected by oxidising the combustion 

reactor as needed, and external precision monitored by periodic injection of an in- 

house fatter acid methyl ester mix (FAMES). The accuracy o f the alkenone 

measurements was ±0.3%o based on repeat measurements.

2.2.5 Bulk O rganic Matter preparation and analysis

Carbonate was removed from ~1.5 g o f sediment using 3 treatments with <1M HC1, 

which removes >99.8% of the carbonate. Samples were then rinsed with DCM-
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extracted water and dried at 40°C. These were then ground, and samples weighed to 

give 1 - 2  mg carbon loaded into tin capsules.

Bulk organic isotope analysis were carried out using a Carlo Erba NA 1500 

nitrogen/carbon analyser connected to a VG Optima isotope ratio monitoring mass 

spectrometer via a VG triple trap at the NERC Isotope Geosciences Laboratory, 

Keyworth. Values were corrected for small levels o f 170  using Craig’s correction 

(Craig, 1957) and were converted to the VPDB scale by reference to an internal 

laboratory standard (BROC1) calibrated against NBS-19. Internal precision was 

monitored by repeat measurements o f BROC1 and was ±0.2%o (2a).
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3 The Ras il-Pellegrin Section, Malta
The Ras il-Pellegrin section is a coastal exposure of the middle Miocene Blue Clay 

Formation on the island o f Malta in the central Mediterranean sea. The section was 

chosen as it is clay rich and so preservation o f foraminifera is exceptional. The aim o f 

this chapter is to demonstrate that the proxy records generated from the site represent a 

global, rather than local signal.

3.1 Sampling Site

The Ras il-Pellegrin section is a 46 m (vertical) coastal exposure to the north o f 

Fomm Ir-Rih Bay, Malta at 55°4.93’N 14° 20.06’E (Figure 5) and it is the Global 

Boundary Stratotype Section and Point (GSSP) for the base o f the Serravallian stage 

(at the base o f the Blue Clay Formation; Hilgen et al. 2009). The Blue Clay Formation 

has been studied in the Maltese archipelago at a number o f other locations (Jacobs et 

al., 1996; John et al., 2003), however the Ras il-Pellegrin section was chosen due to its 

thickness and apparent completeness (other sites show some evidence o f slumping or 

dissolution events). Weathering rates here are high -  the ~1 m deep sampling trenches 

dug by Abels et al. (2005) in 2002 were barely visible by 2005. The surface is loose 

and friable, however ~0.5 m into the cliff there is a clear transition into harder material 

and a colour change from grey to darker blue-grey. Sampling took place from the 7th to 

the 11th November 2005. Sampling trenches of -0.75 m deep were dug, and samples 

taken at 0.35 m (vertical) intervals. 33 samples taken over the lower 12 m (the location 

o f the CM 6  excursion (Abels et al., 2005)) were wrapped in aluminium foil to prevent 

handling contamination in preparation for biomarker analysis, and a total of 130 

samples were taken over 6  sub-sections, aligned using the clear banded strata (Figure
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5). The top 3.85 m (samples MT119A-130) were sampled at a sub-section further to 

the north (35°55.09’N 14°20.02’E) to avoid any minor movements and more intense 

weathering at the top of the section. The base of the sampled section lies in the 

“transitional bed” o f Abels et al. (2005), approximately 0.5 m below their 0 m mark.

MALTA
V MALTA

Ras-ll-PeHegrin 
Section

Figure 5: Sampling site at (a) The Ras il-Pellegrin section, with positions of 
sampling trenches (sub-sections) shown in white on (b) the north-eastern side of 
the Fomm Ir-Rih Bay (55°4.93’N 14° 20.06’E), located on the island of M alta (c) 
in the central M editerranean (d).

24



3.1.1 G eological Setting

The islands o f Malta and Gozo lie in the central Mediterranean and as part of the 

Ragusa platform were effectively attached to the African continent in the Oligocene- 

Miocene (Dart et al., 1993). As such these islands formed the edge of the Tunisian 

carbonate shelf, recording a cycle of shallow-deep-shallow seas from the late 

Oligocene to the earliest upper Miocene (Felix, 1973). The progressive change in 

water depth led to 5 distinct formations within the stratigraphic sequence; the Lower 

Coralline Limestone Formation, Globigerina Limestone Formation, Blue Clay 

Formation, Greensand Formation and Upper Coralline Formation (Felix, 1973). These 

formations are flat lying or dip slightly to the east, with 5 major and numerous minor 

normal faults trending E-W/NW-SE (Figure 6 ). Good exposure can be found across 

the islands, in high cliffs along the coast and inland on the side of low hills.

Figure 6  Geological sketch map of M alta, adapted from Jacobs et al. (1996). For 
simplicity the G reensand Formation is treated as the lowermost member of the 
Upper Corraline Formation (after Felix (1973)).
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The base o f the exposed Maltese sequence is the Lower Coralline Limestone 

Formation reaching a maximum thickness o f 140 m. It is a massive shallow water 

limestone, principally made up o f skeletal remains o f various marine organisms 

including calcareous algae, foraminifera, corals, bryozoans, brachiopods, serpulids, 

molluscs and echinoderms. This lowermost formation is Oligocene in age, and 

represents the shallow ramp phase o f deposition.

Above the Lower Coralline Formation lies the Globigerina Limestone Formation, 

which was deposited from the Chattian to the late middle Miocene. The limestone here 

represents water depths o f 40-150 m (Felix, 1973) and consists o f 3 members (lower, 

middle and upper) separated by two phosphatic beds, the lower o f which is a 

hardground with molluscs, phosphatic pebble clasts and shark teeth (which can by 

found throughout the Globigerina Formation), the upper phosphate bed is more o f a 

pebble bed. The limestone is a biomicrite with sparse macrofossils o f pectenids (which 

sometimes occur in distinct layers) the echinoid Schizaster and the gastropod 

Epitonium.

The transition to the Blue Clay Formation is marked by a 1.5 m thick transitional bed 

over which the carbonate content gradually decreases from >60% in the Globigerina 

Limestone to <25% in the Blue Clay Formation. This formation consists o f distinctly 

light and dark banded clay-marls, with gradational changes in colour and carbonate 

content on a metre scale. The total thickness o f the Blue Clay Formation is up to 65 m, 

and contains gastropods and pectinids. The foraminiferal abundance of the clay varies 

and generally increases towards the top. The Blue Clay Formation marks the greatest 

water depths in the sequence, with estimates from benthic foraminifera varying from 

150-200 m at the base o f the formation, decreasing to 100 m at the top (Jacobs et al.,
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1996; Pedley et al., 1976) whereas ostracod analysis and multivariable analysis of 

benthic foraminifera suggested depths of 500 -  700 m (Bellanca et al., 2002; 

Bonaduce and Barra, 2002). A gradual increase in glauconite is reported towards the 

top o f the Blue Clay Formation where it is uncomformably overlain by the Greensand 

Formation. The boundary between the Greensand and the Blue Clay Formations is a 

slight angular unconformity and significant hiatus, varying in length across the 

archipelago.

The Greensand Formation is a clayey to calcereous glauconitic poorly cemented 

limestone, up to 1 2  m thick, although as the upper and lower boundaries are marked 

by clay rich layers not seen at all locations the true thickness o f the formation may be 

greater. Large echinoids, as well as the fauna present in the Blue Clay Formation are 

abundant, and the appearance o f the benthic foraminifera Heterostegina in this 

formation indicates a return to waters shallower than 70 m (Jacobs et al., 1996).

Further shallowing is marked by the transition to the Upper Coralline Formation, 

which, with a maximum preserved thickness o f 27 m is the uppermost unit in the 

Maltese sequence. Palaeo-water depths are less than 50 m representing a back reef 

environment (Jacobs et al., 1996).

3.1.2 Tectonic History

The Maltese archipelago lies in the 600 km Pantelleria/Strait o f Sicily rift system in 

the foreland o f the Apennine-Maghebien thrust and fold belt (Dart et al., 1993). The 

islands are divided by three major normal faults, forming the North Gozo Graben, the 

Gozo Horst, the North Malta Graben and the Malta Horst. Three broad models for the 

basin wide structural evolution have been proposed: (1) That the basin is part of a
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large pull-apart strutcture within and E-W/NW-SE trending dextral wrench (Jongsma 

et al., 1985); (2) That it lies in a pull-apart associated with differential rates of 

underthrusting beneath the Apennine-Maghebian thrust in the Sicily wrench zone 

(Grasso and Reuther, 1988); (3) Compression in the Appenine-Maghrebian thrust belt 

led to N-S trending foreland extension in which the Maltese system formed a back-arc 

basin. O f these three, field mapping by Dart et al. (1993) found evidence which 

supports (3) and discounts both (1) and (2).

Rifting was active during the deposition of all the Neogene sequences except the 

Lower Coralline Formation and Lower Globigerina Limestone member which are pre­

rift. Significant thickness variation is therefore found throughout the archipelago. O f 

the onshore exposure, the Blue Clay is thickest (30-82 m) on the North Malta Horst, 

and thicker still (up to ~96 m) in the offshore Pantelleria Rift. The sequence thins 

significantly across southern Gozo (10-60 m) and on the Malta Horst. The middle 

limestone member also thins significantly to the south on Gozo, and is absent in the 

south east o f the island.

The sedimentary sequence can be divided into 4 tectono-stratigraphic sequences across 

the islands; Pre-rift, early syn-rift, late syn-rift and post rift. These are synchronous, 

demonstrating the coeval nature of both the ENE-WSW and NW-SE trending fault 

sets which are present. The pre-rift phase is dated as >21 Ma and encompasses the 

Lower Coralline Formation and lower Globigerina Limestone member, the early syn- 

rift phase from 21-6 Ma includes the Middle and Upper Globigerina Limestone 

members, Blue Clay Formation, Greensand and depositional sequences 1 and 2 o f the 

Upper Coralline Formation. The final third depositional sequence of the Upper 

Coralline Formation falls within the Late syn-rift phase, with the late/early syn rift
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boundary at -5  Ma. Offshore Plio-Quatemary sequences within the Pantelleria Rift 

also form part o f the late-syn rift phase and were deposited during the re-flooding of 

the Mediterranean. Rifting was complete by ~1.5 Ma, with post-rift hemi-pelagic and 

turbiditic sediments deposited in the Pantelleria rift from the late Quaternary to present 

with sedimentation rates of 0.20-0.25 m Kyr'1.

The onset o f rifting is marked by neptunian dykes cross-cutting the lowermost 

hardground capping the Lower Globigerina Limestone (Dart et al., 1993). Neptunian 

dykes are also found throughout syn-rift phases, growing up to 3 m thick in the 

Globigerina Limestone. Syn-rift sediments are marked by thickness variations across 

faults, with minimal fault related bathymetric relief.

The main faults lie in ENE-WSW and NE-SE trends, the maximum displacement on 

which is 195 m, found on the Victoria Lines Fault (VLF). Some faults, including the 

VLF, show hanging wall deformation including minor synclines, roll-over anticlines 

and footwall tilting (up to 20°). Fault blocks are full grabens and horsts, bounded by 

planar faults o f opposite polarity. The tilt o f fault blocks is generally less than 10°.

Extension of the basin is in NW-SE and NE-SW directions, which show coeval 

evolution and homogenous fault kinematics throughout. The broad direction of 

extension in the larger basin area is N-S and is up to 40% over the full evolution of the 

basin (Dart et al., 1993).

3.1.3 Previous Palaeonvironm ental W ork

Work in earnest on the geology of the Maltese archipelago began in the 1970s with 

detailed stratigraphic investigation and identification o f the Blue Clay Formation 

within an Oligo-Miocene framework (Felix, 1973; Pedley, 1975; Pedley et al., 1976).
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Release o f commercially acquired seismic lines and exploration well data was 

integrated with detailed onshore structural mapping to place the Blue Clay Formation 

in a regional structural setting (Dart et al., 1993; see section 3.1.2 above).

Ostracod analysis at RIP suggested that the Blue Clay Formation represented a drop in 

oxygenation levels from the Globigerina Limestone Formation below, with a further 

drop in oxygenation within the top 20 m of the section (Bonaduce and Barra, 2002). 

The estimated paleo-water depth for the Blue Clay was also increased by this study to 

a maximum of 500-700 m (Bonaduce and Barra, 2002). An integrated oceanographic 

investigation o f the section using multivariate analysis o f benthic foraminifera 

assemblages, stable oxygen and carbon isotopes and barium concentration confirmed 

an upper bathyal environment for the Blue Clay Formation with a depth estimation of 

500 -  600 m (Bellanca et al., 2002). Foraminiferal assemblage analysis also confirmed 

the poor oxygenation interpretation, although not extreme anoxia (Bellanca et al., 

2002). Ba and benthic carbon isotope records suggest periods o f enhanced surface 

water productivity at the base and top of the section, possibly linked to upwelling or 

enhanced continental runoff (Bellanca et al., 2002). Negative correlation between the 

CaCC>3 % and oxygen isotope records in the Blue Clay Formation has been linked to 

variations in rates o f continentally derived material linked to rainfall increasing during 

cooler periods (John et al., 2003).

Clay mineral analysis was performed for the Blue Clay Formation (at the Xatt- 

L ’Ahmar section to the north of RIP on the island o f Gozo) by John et al. (2003). The 

assemblage o f clay minerals is dominated by kaolinite throughout the Blue Clay 

Formation (-60% ) with minor contributions from illite (-15% ) chlorite (-10% ), 

smectite (-10% ), and palygorskite (-5% ). This is a significant departure from the
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assemblage found in the Globigerina Formation below, where smectite dominates, 

with higher contributions from palygorskite and illite and limited kaolinite and chlorite 

present.

Detrital kaolinite is indicative o f a continental weathering regime dominated by a 

warm and humid environment, and is generally formed in well drained conditions 

under high precipitation where bedrock degradation is accelerated, typical of present 

day tropical soils (Robert and Chamley, 1991). Detrital smectite is indicative of a 

warm climate where seasonal variations between humid and dry seasons dominate 

(Chamley, 1989). The shift from an assemblage dominated by smectite to one where 

kaolinite dominates is indicative o f a shift in climate regime from warm arid to warm 

humid, and the coincidence o f this shift with the transition from the Globigerina 

Limestone Formation to the Blue Clay Formation suggests this was linked to the wider 

global climate changes associated with the expansion o f the Antarctic ice sheet. This 

shift in clay assemblage is not limited to the Miocene sediments in Malta, but found 

throughout the Mediterranean basin, suggesting that this shift was a major regional 

change in weathering regime (Visser, 1991).

Dating o f the Maltese successions with strontium isotopes and bulk sediment and 

foraminiferal stable oxygen and carbon isotope analysis identified the Monterey event, 

CM events 3, 6  and 7 and the Antarctic cooling as recorded in the Maltese sediments 

(Jacobs et al., 1996). The astronomical tuning of the age model for the Ras il-Pellegrin 

section to the La90ii using a record o f CaCC>3% and Globigeriniodes sp. improved the 

age model for the Blue Clay Formation (Jacobs et al., 1996; Laskar et al., 1993). This 

age model was improved further by an integrated stratigraphy (magnetostratigraphy, 

biostratigraphy and astronomical tuning o f Ca/K to the ATNTS2004 (Lourens et al.,
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2004) and CK95 (Cande and Kent, 1995) timescales; (Abels et al., 2005)) for the Ras 

il-Pellegrin section to which the age model o f this study is tied, and which is detailed 

further below (section 3.2.1). The work of Abels et al. (2005) also recognised the 

coincidence of the step in the oxygen isotope record (“Mi-3” from the nomenclature of 

Miller et al (1991) or “E3” using the nomenclature o f Flower and Kennett (1993)) at 

Ras il-Pellegrin with minima in eccentricity and obliquity.

The formation boundary between the Globigerina and Blue Clay Formations has been 

proposed (Abels et al., 2005) and ratified by the International Commission of 

Stratigraphy as the Global Boundary Stratotype Section and Point (GSSP) for the 

boundary between the Langhian and Serravallian stages (Hilgen et al., 2009).

3.2 Lithostratigraphy

3.2.1 Age M odel (for this study)

The age model for Ras il-Pellegrin is based on the astronomically tuned intergrated 

stratigraphy of Abels et al. (2005). In order to develop the age model for this work the 

bulk carbon isotope curve was tuned to the bulk carbon isotope curve of Abels et al. 

(2005), which is a higher resolution record (average sample spacing was 9 cm) from 

the same section. The tuning was achieved by graphical correlation of 7 prominent 

peaks in the carbon isotope curves using Analyseries 2.0.3 (Paillard et al. 1996), and 

one physical tie point in the field (the zero point of the Abels et al. (2005) record lies 

at 0.5m on the scale presented here). Tie points are shown in Table 2 and Figure 7.
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Table 2: Tie points based on carbon isotope stratigraphy used to construct the 
age model for this work.

Height in 
Section (m)

Age (Ma)

0.35 13.860
3.50 13.789
7.70 13.642
17.50 13.408
24.50 13.245
34.30 13.034
44.50 12.762

The starting point for the age model of Abels et al. (2005) was a detailed magneto- and 

calcareous plankton biostratigraphy, which provides first order age control for the 

astronomical tuning. Fully independent orbital tuning is not possible as the cyclicity at 

RIP does not provide enough characteristic detail to provide a unique solution. The 

calcareous plankton biostratigaphy allowed for 4 astronomically dated tie points to be 

imported from the astronomically dated Tremiti section in the central Mediterranean 

(Figure 8 ; Hilgen et al. 2003; Abels et al. 2005). These bioevents, combined with the 

position o f chondrite trace fossils at the RIP and Tremiti sections allow the phase 

relationship between cycles seen at RIP and precession to be understood (Abels et al. 

2005). 44 small scale cycles were recognised in the field, and in Ca% and Ca/K ratio 

records and were tuned to precession (Abels et al., 2005).
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Figure 7 (previous page): The age model for the Ras il-Pellegrin section is based 
on 7 tie points between the high resolution bulk carbon isotope record of Abels et 
al. (2005) (panel a; red line) and the lower resolution generated here (panel a; 
blue line). Tie points are shown in panel a in black. The resulting age-depth 
profile and sedim entation rates are shown in panels b and c respectively.
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Figure 8  (adapted from  Hilgen et al. 2009): Lithologic column with position and 
ages of the calcareous plankton bioevents and calibration of m agnetostratigraphy 
to the ATNTS2004 and CK95 timescales for RIP. The bioevents, 
m agnetostratigraphy and chondrite trace fossils (show as “C” in the lithology) 
provide the first o rder age control for the astronom ical tuning of the section.
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Stable isotope records for the middle Miocene are characterised by a series of globally 

recognised events in both the carbonate oxygen and carbon isotope records (W oodruff 

and Savin, 1991). To ascertain whether local or global controls dominate the isotope 

records at RIP they can be compared to geographically distant sites. Abels et al. 

(2005) showed that there was a striking similarity (Figure 9) between events in the 

carbonate oxygen and carbon isotope records at RIP and DSDP 588A (southwest 

Pacific; Flower and Kennett, 1993) and ODP 747 (Kerguelen Plateau, southern Indian 

Ocean; Wright and Miller, 1992). Recent work independently astronomically tuned 

records from two further distant sites (ODP sites 1146 and 1237; Holboum et al., 

2005, 2007) and used tie points in the oxygen isotope curve between these two records 

and the DSDP 588A record to produce a revised, astronomically tuned age model for 

DSDP 588A. These records also show striking similarity to the record from RIP (

Figure 10). The similarity in timing and structure o f key, globally recognised events in 

the oxygen and carbon carbonate isotope record such as CM 6  in the carbon isotope

Figure 9 (next page, taken from Abels et al. 2005): The magnetic polarity 
timescale of ATNTS2004 with precession and amplitude modulator eccentricity, 
and obliquity and its amplitude modulator and EOA target curve which 
combines the amplitude modulators of precession and obliquity. The 
magnetostratigraphy of the RIP section along with the bulk carbonate oxygen 
and carbon isotope records is shown with benthic isotope records from DSDP site 
588A and ODP site 747. These records are plotted in the depth domain, with age 
scales on the left of each record derived from linear interpolation and 
extrapolation of sedimentation rates between magnetic reversals. ATNTS2004 
ages of the selected reversals are indicated next to the magentostratigraphy. 
Isotope events are labelled following the nomenclature of Flower and Kennett 
(1993) and Miller et al. (1996).
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Figure 10 (previous page): High resolution bulk carbonate carbon isotope records 
from RIP (panel a; grey line is the record of Abels et al. (2005), blue line is this 
study) with benthic foraminiferal carbon isotope records from ODP 1146 (panel 
b; Holbourn et al. 2007), ODP 1237 (panel c; Holbourn et al., 2007) and DSDP 
588 (panel d; Flower and Kennett, 1993 age model revised by Holbourn et al., 
2007). Also shown are bulk carbonate oxygen isotope records from RIP (panel e; 
grey line is the record of Abels et al. (2005), orange line is this study), with 
benthic foraminiferal oxygen isotopes from ODP 1146 (panel f; Holbourn et al. 
2007), ODP 1237 (panel g; Holbourn et al., 2007) and DSDP 588 (panel h; Flower 
and Kennett, 1993 age model revised by Holbourn et al., 2007). Isotope events are 
labelled following the nomenclature of Flower and Kennett (1993).

record and the E3 event in the oxygen isotope record suggests a global rather than 

local control of the major features of these records at RIP. This does not neccersarily 

imply that all records from RIP will be globally controlled, and given the continental 

margin setting of the site it would be unlikely that this would be the case. However, 

that clearly global events are recorded at RIP indicates that it is possible for global 

signals to be preserved at the site.

3.2.2 Grain size by weight

Coarse percent (by mass not passing a 63 pm mesh, wet sieved, see section 2.1.1) 

varies between 35% and 2%, and broadly corresponds to the carbonate percent record 

for the section (Figure 11; Data Table 1). Higher percent coarse fraction is found in the 

horizons with lower clay content, and foraminifera are generally more poorly 

preserved, the highest quality o f preservation is correspondingly found at horizons 

where foraminifera are most scarce.
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Figure 11 (previous page): Coarse weight percent from the Ras il-Pellegrin 
section from this study (panel b; red filled squares and line) shown with 
carbonate percent (grey line). Carbonate percent is calculated by multiplying 
the Ca% of Abels et al. (2005) by 2.496 (which assumes that all Ca is derived 
from carbonate which appears reasonable at the RIP section (Abels et al.,
2005)). After the initial drop in values marking the “transitional bed” from the 
Globigerina Limestone Formation to the Blue Clay Formation, coarse weight 
% averages ~5%. The bulk carbonate oxygen curve is shown for comparison 
from this study (orange open triangles and line) and Abels et al. (2005; panel a; 
grey inverted triangles and line). Crossplots between carbonate % and oxygen 
isotopes and coarse weight % and oxygen isotopes from Abels et al. (2005) and 
this study are shown in panels c and d respectively. Data from the Globigerina 
Limestone Fm are shown as yellow open symbols, and the Blue Clay Fm are 
shown as blue closed symbols. The boundary between the two formations, and 
the position of the transitional bed, are indicated above panel b (after Abels et 
al. 2005).

The high values for both carbonate and coarse percent at the start o f the record mark 

samples in the “transitional bed” from the Globigerina Limestone Formation, before 

dropping significantly (-13.8 Ma) entering the Blue Clay Formation. The peaks in 

coarse percent centred at -13.45 Ma, -13.30 Ma and -13.17 Ma which correspond to 

peaks in the carbonate percent (and are at carbonate rich intervals III, IV and V of 

Abels et al. (2005)) are concurrent with minima in eccentricity (Abels et al., 2005) 

(Figure 1 lb)

A negative correlation between carbonate content and oxygen isotopes has been used 

to suggest that climate control o f continentally derived material is responsible for the 

banding o f the Blue Clay Fm (John et al., 2003). However the correlation o f John et al. 

(2003) is dominated by the shift in oxygen isotopes at Mi-3 coinciding with the 

transition from the high carbonate Globigerina Limstone Formation to the Blue Clay 

Formation (Figure lib ) . If the whole of the record o f Abels et al. (2005) is 

considerered (which includes the transition from the Globigerina Limestone Fm to the 

Blue Clay Fm) then there is significant correlation between carbonate percent and 

oxygen isotopes (Figure 1 lc; r=-0.52, n=496, p<0.05). However there is no significant
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correlation between the bulk oxygen isotopes and carbonate content within to Blue 

Clay Fm itself at RIP (Figure 11c; blue filled squares; r=0.03, n=496, p>0.05). 

Therefore although there may be a connection between the isotope shift at Mi-3 and 

the transition from the Globigerina Fm to the Blue Clay Fm, a connection between

1 o
climate shifts as evident in the 5 O record and carbonate percent for the smaller 

changes within the Blue Clay Fm is not evident.

For coarse percent there is significant correlation with oxygen isotopes throughout the 

the record (Figure l id ;  r=-0.43, n=130, p<0.05) whether the transitional bed is 

included or not, suggesting that there may be climate may be controlling the variations 

in this parameter in the Blue Clay Fm at RIP.

3.3 Organic Analysis

3.3.1 Total Organic Carbon

Total organic carbon (TOC) weight percent was measured at full resolution over CM6  

and at half resolution for the remainder o f the record (section 2.2.4). Organic carbon is 

present throughout the Ras il-Pellegrin section, with a mean content o f 0.25 wt%, 

ranging between a minimum of 0.11% and a maximum of 0.57% (Figure 12; Data 

Table 2). TOC increases at the base (oldest part) o f the section from low values in the 

carbonate rich transitional bed to higher levels at the start o f the Blue Clay Formation. 

TOC decreases again to a minimum value o f 0.11% at 13.64 Ma before gradually 

increasing until 12.9 Ma when levels again drop to similar to those present in the 

transitional bed. Apart from the low TOC in the carbonate rich transitional bed from 

the Globigerina Limestone to the Blue Clay, there is no overall correlation between 

carbonate % and TOC (r=-0.11, n=79, p>0.05). TOC increases at the start o f CM 6  (at
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the base of the section) which would be consistent with hypotheses which suggest 

greater organic matter burial could be responsible for CM 6 , however the levels of 

organic matter over CM 6  are not significantly higher than any other point later in the 

record, and the increase does happen over a change in lithology (from the limestone to 

the clay). The TOC record does not therefore suggest significantly increased organic 

matter burial at this site over CM6 .
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Figure 12: Total Organic Carbon % from Ras il-Pellegrin section. The initial 
increase in TOC coincides with the transition from the Globigerina Limestone 
Formation to the Blue Clay Formation, the position of CM6 is indicated.

3.3.2 Organic M atter Provenance: C/N Ratio

Identifying the source o f organic matter reaching Ras il-Pellegrin is essential if  correct 

interpretations of the bulk organic carbon isotope record are to be reached. The ratio of 

organic carbon to organic nitrogen (C/N ratio) in sediments has been used in various
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settings to estimate the proportion o f terrestrial and marine sourced organic matter 

reaching a deposition site (Lazerte, 1983; Matson and Brinson, 1990; Prahl et al., 

1994; Schubert and Calvert, 2001; Tan and Strain, 1979) and was measured for 

samples from RIP (section 2.2.4). Although variable, terrestrial plants have much 

higher proportions o f carbon to nitrogen compared to marine organisms, leading to a 

much greater C/N ratio for terrigenous organic matter (Hedges et al., 1986; Hedges et 

al., 1997). The C/N ratio for organic matter at RIP is variable (Figure 13; Data Table 

3) ranging from a maximum of 7.8 to a minimum of 1.7. A steady decline in C/N from 

a high point early in the record to the lowest value at 13.65 Ma is followed by a more 

gradual increase over the following 800 Kyrs before dropping back to lower levels at 

the end o f the record.
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Figure 13: Carbon to nitrogen ratio for organic m atter from the Ras il-Pellegrin 
section. Traditionally this is interpreted as higher C/N ratio suggesting a greater 
contribution of terrestrial organic m atter.
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Estimates o f absolute levels of terrigenous organic matter (OM) from C/N ratios are 

complicated by variations in the source of terrestrial organic material (plant, soil etc.) 

to the site and by degradation of the organic matter in transit (see discussion in 

Weigers et al. (2009)). However a C/N ratio of < 10 such as that found at RIP is 

typical of a distribution dominated by marine organic matter but with some 

contribution from terrestrial sources. This sort o f distribution would be typical of a 

marine setting on the continental margin, which is consistent with the 

sedimentological evidence of the palaeoenvironmental setting o f RIP (Tan and Strain, 

1979; Weigers et al., 2009).

Although the variations in C/N must be considered with some caution, they are quite 

sizable and would suggest that there are changes in the distribution o f organic matter 

delivered to and preserved at the site. This could be either changes in the size o f the 

terrestrial component (possibly through changes in run-off or weathering regimes), or 

changes in the distribution o f material on land. The simplest way to interpret the 

changes in C/N would be the former, and the decrease in C/N over the first 220 Kyrs 

o f the record would suggest a decrease in terrestrial contribution, and then the steady 

increase which follows would represent a gradually increasing proportion o f the 

terrestrial OM. Local minima in terrestrial contributions are found at both CM6 a and 

CM 6 b, with the minimum for the entire record coinciding with CM 6 b.

3.3.3 Organic M atter Provenance: Odd-Even Predominance

Higher plants produce «-alkanes with a distinctive odd over even predominance 

(Figure 14) in the number of carbons in the chain (i.e. chain length; Eglinton and 

Hamilton, (1967)). Marine organisms do not share this feature, and so the degree of 

odd-even predominance (OEP) in the «-alkanes found at a marine site can be used as a
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tracer for changing contribution of terrestrial plant derived organic matter (Scalan and 

Smith, 1970). Samples were analysed for w-alkanes from selected horizons from RIP 

(section 2.2.3; equation ( 2 ); Data Table 5)
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Figure 14: A typical extract from a gas chromatogram trace of an aliphatic 
hydrocarbon fraction from Ras il-Pellegrin, showing odd over even 
predominance in the /i-alkanes.

The OEP evidence from «-alkanes at RIP (Figure 15) shows that there is a definite 

odd-even predominance in the organic matter found at the site. This suggests two 

things. Firstly that material derived from higher plants is preserved at the site. 

Although there is evidence that this contribution varies with time, there does not seem 

to be variation which changes systematically in concert with any of the other proxy 

evidence which could be influenced by changing terrigenous OM such as C/N ratio or 

organic 513C (although it is interesting that the two lowest values co-incide with the 

peaks o f CM6 a and b). Secondly, the preservation o f an odd over even predominance 

suggests that the OM at the site is thermally immature (Scalan and Smith, 1970), and 

has not been degraded by diagenetic processes, further increasing confidence in the 

excellent preservation o f material at RIP.
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Figure 15: w-alkane Odd-Even predominance for Ras il-Pellegrin. Although 
variable, the OEP record shows no trends which would suggest that the organic 
carbon isotope record for RIP is driven by a changing contribution of terrestrial 
organic material.

3.3.4 B ulk O rg an ic  C arb o n  Isotopes

Samples were analysed for bulk organic carbon isotopes at full resolution across CM6 

(~9 Kyrs), and at half resolution for the remainder of the section (see section 2.2.4; 

Data Table 4). The bulk organic 513C record from the Ras il-Pellegrin section ranges 

from a maximum value o f -20.0%o towards the start o f the record at 13.85 Ma and 

drops to a minimum o f -23.3%o at 13.57 Ma. Following this initial decrease there is a 

gradual increase until the end o f the record at 12.75 Ma. Within this long term pattern 

are fluctuations o f ~l%o on a timescale on the order o f 10s o f Kyrs. These smaller 

scale fluctuations in bulk organic 513C are negatively correlated with fine fraction

4 7



carbonate 813C over CM6 between 13.867 and 13.570 Ma (r=-0.49, n=32, p<0.05; 

Figure 16; Data Table 4) and between 13.101 and 12.949 Ma (r=-0.83, n=10, p<0.05).
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Figure 16: Fine fraction (<63 pm) carbonate 513C (blue open squares and line) 
and organic m atter 513C (green filled circles and line) from the Ras il-Pellegrin 
section. Considered as a whole, there is no correlation between these two records 
(panel d, all points; r=-0.17, n=75, p>0.15), however there are two periods with 
negative correlation, one spanning CM6 between 13.867 and 13.570 Ma (panel d 
and filled diamonds in panel c; r=-0.49, n-32, p<0.05, shown as the grey shading 
in to the right of panel a) and a second between 13.101 and 12.949 Ma (panel b 
and red open diamonds in panel c; r=-0.83, n=10, p<0.05; shown as the grey 
shading to the left of panel a).
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The interpretation of bulk organic carbon isotope records is complicated by variations 

in the source organism for the organic matter which is preserved in the sedimentary 

record. The contributions of OM produced in the water column above the site will be 

mixed with secondary marine material transported to the deposition site, as well as 

terrestrial material. All of these sources will likely have different isotopic 

compositions, and the bulk organic isotopic record will be the weighted average of all 

these contributions (Fry and Sherr, 1984). Furthermore, the isotopic composition of 

marine organic matter is dependant on multiple factors including cell geometry (Popp 

et al., 1998; Rau et al., 1989), growth rate (Bidigare et al., 1997; Laws et al., 1995) and 

the manner in which carbon is fixed (Goericke et al., 1994). Also, as marine organic 

carbon is derived ultimately from the oceanic carbon reservoir some part of the 

organic 813C record will be determined by the isotopic composition o f that carbon 

pool.

This carbon pool can vary as CCL is removed during photosynthesis, organic matter is 

remineralised, C 0 2 is exchanged with the atmosphere and during vertical and lateral 

transport o f water masses (although changes in this dissolved inorganic carbon (DIC) 

reservoir 5 13C are thought to be only on the order o f 1 -  1.5%o throughout the photic 

zone).

As noted above, interpretation of a bulk organic isotope record is complicated by the 

multiple possible causes o f variations in the isotopic composition o f the bulk organic 

matter. Possible interpretations are:

( 1 ) That the organic matter preserved represents material from a single 

photosynthetic species o f marine organism which is living in near
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surface waters. Under these circumstances the variations may represent 

changes in the isotopic fractionation imparted by marine organisms 

during photosynthesis (sp) which could be related to atmospheric CO2 

(Hollander and McKenzie, 1991) or variations in growth rate or cell 

size (Laws et al., 1997; Laws et al., 1995).

( 2 ) Changes in the distribution o f organic material to the site; although still

from a primarily marine source (and the 513C values are what you 

would expect from a predominantly marine source), variations in 

transport of material to the site from throughout the basin could affect 

the isotopic composition o f what is preserved at the site. Similarly 

changing populations o f species present in the water column above the 

site could affect the isotopic composition of the bulk organic material 

preserved.

( 3 ) Changes in the proportion or distribution o f terrestrial derived organic

matter are responsible for the variations in 513C, even if the material is 

predominantly marine. Further complicating this possibility is the fact

that there are two end-member possibilities for the terrestrial organic

11
matter reaching the site. This could have higher 8 C (C4 plants are 

around -10  -  -16%o) or lower 513C (C3 plants are around -25 -  -30%o) 

than the marine organic matter being deposited (typically - 2 0  to -28%o; 

Fogel and Cifuentes, 1993; Kuypers et al., 1999). Further information

would still be needed to determine whether increases in bulk organic

1 ̂5 C represent increased or decreased terrestrial input, or possibly 

changing distribution o f plant type on land draining to the site.
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( 4 )  Changes in ocean thermal stratification could lead to variations in 

organic matter isotopes. The organic matter sampled by the bulk 

organic 513C presented here is sourced from the whole water column, 

and contains contributions from phytoplankton, zooplankton and 

bacteria. In a more thermally stratified ocean, greater temperature 

gradients could lead to variations in [C02(aq)] with depth. In a more 

stratified ocean, colder, more CO2 rich waters deeper in the photic zone 

would lead to organic matter production with lower 513C. As this would 

change the isotopic balance of carbon being removed from the DIC

13reservoir this could conceivably alter carbonate 8 C as well.

O f the above models, ( 1 ) is not supported by the alkenone and boron based isotopic 

reconstructions o f CO2 discussed in Chapter 5; this suggests that the organic matter 

may not be predominantly from photosynthetic organisms.

51



r C, plants
-10to-16%o
(grasses, expand ~ 8Ma)

19 - a

- 2 0  -i

-2 1  -

O '
O -22

-23 -

-2 4  - 1

|CM6a| |CM6b|

12.7 12.8 12.9 13.0 13.1
C3 plants 
-25 to -30%o 
(mostly higher plants)

— i--------------------------------|—

13.2 1 3 3  13.4
Age (Ma)

13.5 13.6 13.7 13.8 13.9

9

8

7
o

6

2

1

0
- 2 4 .0  -2 3 .0  -2 2 .0  -2 1 .0  -2 0 .0  -1 9 .0

More
-  10 Terrestrial 

OM

-  9

-  7

O 6 to

1 5 C

- 4 o '

-  3

-  2

- 1

-2 2 .5 -2 1 .5 -2 0 .5 -1 9 .5

Less
Terrestrial
OM

Organic 6,JC (%o) Organic 6,3C (%o)

Figure 17: Bulk organic carbon isotopes (panel a; blue triangles and line) and 
organic C/N ratio (panel a; pink diamonds and line) from the Ras il-Pellegrin 
section. The tem poral positions of CM6 a and b are indicated. Crossplots for the 
whole record (panel b; all symbols) and for between 13.867-13.570 Ma (panel c 
and filled squares in panel b) show that there is correlation between the two 
param eters over CM6 (r=0.87, n=32, p<0.05) but not for the entire record 
(r=0.09, n=77, p>0.05). The location of the open vs. filled symbols in panel b is 
indicated by the filled and open bar at the bottom of panel a.

The influence o f changing the terrestrial OM contribution (option 3) is supported by 

the C/N ratios presented in section 3.3.2, although the direction of the C/N variations
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are not necessarily consistent with the trends seen in the organic 513C record. There is 

correlation between the bulk organic 513C and C/N between 13.867 and 13.570 Ma 

(Figure 17; r=0.87, n=32, p<0.05) which coincides with CM6 , but not for the rest of 

the record (r=0.09, n=45, p>0.05) or if  the whole record is considered (r=0.09, n=77, 

p>0.05). There are also decreases at the start o f the record (from 13.9 -  13.5 Ma) in 

both records. If the C/N ratio truly represents changing flux of terrestrial OM, then the 

only way this could be reconciled with the 513C record would be if the principle 

component (or principal component which is varying) is OM from C4 plants. A 

positive shift in C/N should be interpreted as an increase in terrestrial OM, if  this leads

1 Tto an increase in 8 C, then the organic matter being delivered must be primarily from 

plants with C 4  photosynthetic pathway, as these plants produce OM with a 8 13C of -10 

to -16%o (higher than the typical marine OM 513C o f -20 to -28%o (Fogel and 

Cifuentes, 1993) whereas C3 plants produce OM with a 513C of -25 to -30%o (Kuypers 

et al. 1999). Variations in the terrestrial vegetative regime have been suggested for this 

period (Diester-Haass et al., 2009) although the influence of this on the 513C organic 

record is uncertain. A major expansion of C4 plants has been suggested for the late 

Miocene (Cerling et al., 1997; Pagani et al., 1999b), and although they may only have 

been a minor contributor to terrestrial organic matter before then, evidence o f the C4 

photosynthetic pathway stretches back to the Cretaceous (Kuypers et al., 1999). The 

large difference in the carbon isotopic composition of C 3 and C 4  plants means that 

even a small change in the proportion of plants utilising each pathway could cause a 

shift in the 513Corg record if terrestrial oganic matter made a significant contribution to 

organic matter buried at the site. The C4 photosynthetic pathway is favoured in lower 

atmospheric CO2 concentrations as plants using this pathway are capable o f internally 

concentrating C 0 2 before fixation (Hatch, 1987). The balance between C3 and C4
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plants is therefore influenced by the prevailing atmospheric CO2 (Pearcy and 

Ehleringer, 1983). A reduction in CO2 at the expansion o f the EAIS would potentially 

be a driver o f a shift towards more C4 plants, however as OM produced via this 

pathway has a higher 5 13C, this would not explain the reduction in organic 513C shown 

in the record.

The pronounced thermocline present in todays ocean first developed during the 

Miocene (plausibly related to the growth o f an Antarctic ice sheet and related 

formation o f cold deep waters transported from the southern ocean) (Savin et al., 

1975). There is some support for the onset o f thermal stratification at the time o f the 

middle Miocene growth of an Antarctic ice sheet from molecular organic carbon 

isotope analysis, which also supports the formation o f organic material with different 

carbon isotopic composition at different water depths (Schoell et al., 1994). The 

periods of negative correlation between the organic and carbonate carbon isotope 

records may therefore represent changing intensity in stratification (option ( 4 ) ) ,  with 

times o f greater stratification recorded as negative shifts in the organic 513C record 

(and matched by positive shifts in the carbonate record) as the difference between 

surface and lower photic zone temperature increases. Such an increase in stratification 

would lead to lower temperatures at the base of the photic zone, and corresponding 

higher [C0 2 (aq)] and lower OM 8 13C. The change in carbonate 513C could, in turn, be 

caused by the removal o f more highly 13C depleted organic matter from the DIC pool.

The above discussion highlights the uncertainty surrounding the use o f bulk organic 

carbon isotopes, where multiple possible sources o f variation are possible. Much o f the 

difficulty is due to uncertainty surrounding the source o f the material being analysed, 

and it is for this reason that compound specific carbon isotope analysis of biomarkers
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from a restricted group o f organisms is used to elucidate changes in atmospheric CO2 

(see Chapter 5). On the basis o f the bulk organic carbon isotope record, and given the 

lack o f conclusive evidence for changing terrestrial input varying with the isotope 

record, it is option ( 4 ); changing thermal stratification, which is the preferred option 

here.
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4 Moria Section, Italy
The Moria section in central Italy has undergone significantly more tectonic 

disturbance that the Ras il-Pellegrin section, and therefore the preservation of 

foraminifera is significantly poorer, and does not allow for the same number o f proxies 

to be utilised as is the case at RIP. Nevertheless, the excellent exposure of the 

Burdigalian and Langhian material at Moria affords an opportunity to develop a high- 

resolution coupled organic-inorganic isotope record o f the start o f the Monterey 

excursion.

4.1 Sampling Site

The Moria section lies in the foothills of the northern Apennine mountains in the 

Marche region o f Italy, as a 100 m thick exposure beside the mountain road between 

the villages o f Palcano and Moria (43° 30.23’ N 12° 35.65’ E; Figure 18).

Exposed within the Moria section is the top 20 m of the Bisciaro Formation and the 

contact between this and the Schlier Formation, covering the uppermost Burdigalian 

stage and the transition to the Langhian (Deino et al., 1997), steeply dipping to the 

northwest. The section contains 3 volcaniclastic ash layers allowing direct radiometric 

dating and is a candidate section for the Global Stratotype Section and Point for the 

base o f the Langhian (Subcommision for Stratigraphic Information, 2009). The Lower 

marly member o f the Schlier Formation consists o f dark, friable marls, which make 

way to interbedded marls and siliceous marly limestones in the Siliceous Calcareous 

member.
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Figure 18: The M oria section, showing a; the location of the M oria section 
(indicated by red star) in the Apennine mountains of central Italy and b; view of 
the section (looking north) showing the location of the three dated ash layers 
(arrowed).

Sampling o f the Schlier Formation took place on the 13th September 2006, with a 

sampling resolution o f  lm  between 20 m and 45 m (the Lower marly member o f the 

Schlier Formation), increasing to 0.25 m resolution between 45 m and 81 m (the 

Siliceous-calcareous member o f the Schlier Formation and lowermost part of the 

Upper marly member) except where vegetation cover made 0.25 m sample spacing 

impossible (between 49 m and 52 m).

4.1.1 G eological Setting

The marls o f the Moria section represents a hemi-pelagic open sea setting, rare 

amongst Tethyan basin deposits o f this time in that it lacks the flysch and mollasse
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type deposits common closer to the centre of the Alpine-Himalayan orogenisis to the 

north. The marls, planktonic foraminifera and nannoplankton suggest a pelagic or 

hemi-pelagic setting and Sr isotopes suggest some connection between the waters o f 

the proto-Mediterranean and the open ocean (Deino et al., 1997). Low-resolution 

oxygen and carbon isotope curves also show features similar to the global curves for 

the middle Miocene. This supports an interpretation that has the Moria section 

recording a global ocean signature, and that digenesis has not significantly altered 

these signals. The rhythmic marl-limestone couplets o f the siliceous-calcareous 

member o f the Schlier formation suggests astronomical pacing of depositional regime 

with astronomically induced climate variations evident (De Boer and Wonders, 1984).

4.1.2 Tectonic History

The Northern Apennine mountains, within which the Moria section lies, have been 

exposed to major tectonic disturbance during the Alpine orogeny, evident from the 

steep dip o f the Moria sediments and the present day elevation of -600 m (Vrielynck 

et al., 1997). Underlying the Apennine range the crust has been thickened by thrusting, 

with extensional and transtensive processes in the upper 15 km, whilst compressional 

processes are active at depth. The thickening o f the Northern Apennine crust took 

place as the lithospheric base o f the northern Tyrrhenian Sea and Tuscany to the west 

o f the Apennines was thrusted and then sank beneath the Apennine ridge. The Moria 

section lies within the Mamosa-Arenacea foredeep basin, the second o f three major 

foreland basins which developed as a tectonic nappe pile and peripheral bulge which 

migrated progressively towards the Adriatic foreland during the Neogene (Pialli and 

Alvarez, 1997). The hemipelagic sediments of the Schlier Formation overlie pre-flysch 

sediments and are overlain by distal and then proximal turbidites o f Serravallian age as 

the deformation front progressed towards the site (Deino et al., 1997; Pialli and
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Alvarez, 1997). The main stage deformation of the basin took place in the late 

Tortonian -  early Messinian, although synsedimentary tectonics are evident during the 

Langhian-Serravallian, with late stage Tortonian thrusting refolding parts of the area 

(Pialli and Alvarez, 1997). Miocene -  Pliocene activity in adjacent nappe system 

translated the stress regime in the Apennine system to extensional, and although the 

exact age o f initiation of extensional tectonics in the Apennines in uncertain it was 

likely initiated in the late Tortonian (Pialli and Alvarez, 1997).

4.2 Lithostratigraphy
4.2.1 Isotope Stratigraphy

The bulk carbonate stable isotope record generated for the Moria section allows 

correlation o f the proto-Mediterranean record to the global ocean record, by way of 

clearly identifiable isotope events (Figure 19; Data Table 6).

Although there are limited clear oxygen isotope events in the period that the Moria 

event spans (like the E3/Mi-3 event at Ras il-Pellegrin), there are three “Carbon 

Maxima” (CM) events within the timespan o f the Moria section (Deino et al., 1997; 

Woodruff and Savin, 1991). These are CM1, CM2 and CM3, and are recognisable in 

the Moria carbonate carbon isotope record (Figure 19). Also present is the start o f the 

more gradual increase in 813C that marks the start o f the “Monterey excursion” 

(Vincent and Berger, 1985).
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Figure 19: Stable oxygen (green line, panel a) and carbon (blue line, panel b) bulk 
carbonate isotope analyses from Moria, shown with a representative low 
resolution ocean record from ODP site 761 (Holbourn et al., 2004). Carbon 
maximum (CM) events are shown, following the definitions of Holbourn et al. 
(2004) and W oodruff and Savin (1991). Orange vertical lines in panel b show tie 
points between the two records used to construct the age model, and thin grey 
lines in both panels show alternative age models constructed using only 
foraminifera datums.

4.2.2 Age M odel

An initial age model was developed for the Moria section based on the timing o f the 3 

well-dated ash layers which are distributed through the section (Figure 20; Table 3;
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Deino et al. 1997), allowing for a simple linear calibration o f height in section to age 

(equation (3  )).

Age (Ma) = 17.703-0.0279A  ( 3 )
/z=stratigraphic height in section (m)
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Figure 20: S tratigraphy of the M oria section, showing formation boundaries, 
metres height scale, lithology, position of dated as layers and main foraminiferal 
events. Adapted from  Deino et al., (1997).
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Table 3: Stratigraphic position and Age of dated ash layers (Deino et al., 1997)

Horizon (m) Age
(Ma; with 2a 

__________________uncertainties)

76.5 15.50 (±0.16)

58.4 16.18 (±0.16)

20.4 17.1 (±0.20)

This initial age model was then tuned to the age model o f ODP site 761 using 6 tie 

points at prominent peaks in the carbon isotope records which represent characteristic 

peaks which are the globally recognised CM events (Holbourn et al., 2004; W oodruff 

and Savin, 1991). Tie points are shown in Table 4 and Figure 19.

Table 4: Tie points based on carbon isotope stratigraphy between the Moria 
section and the age model of Holbourn et al., (2004)

Horizon (m) Age
(Ma)

79.00 15.49

73.00 15.74

64.75 15.91

58.75 16.13

54.75 16.42

52.75 16.55

This approach reveals a significant discrepancy between the apparent ages o f 

foraminifera datums at Moria and at ODP 761 (Figure 21). Deino et al. (1997) 

recognise the first occurrences (FO) o f Praeorbulina sicana, Praeorbulina curva, and 

Praeorbulina glomerosa sensu stricto at 66.2 m, 71.69 m and 94.00 m respectively in 

the Schlier Formation (Figure 20 and Figure 21). The ages for these bioevents based 

on the integrated ash layer and carbon isotope stratigraphy presented here vary by 520
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kyrs, 530 kyrs and 650 kyrs respectively from their apparent ages at Site 761. As the 

two age models have been tied using carbon isotope stratigraphy this suggests 

significant diachrony between the appearances o f these species at the two sites. 

Diachrony o f similar magnitude has been recognised for other bioevents in the 

Miocene (Shackleton et al. 1999).
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Figure 21: Height vs. age plot for the datum  events at Moria. Foraminiferal 
datum s (red filled squares and 2o uncertainties) are shown with ages of Berggren 
et al. (1995a,b) with stratigraphic heights from Deino et al (1995). Revised 
magnetic reversals (orange filled circles) are shown with ages of Cande and Kent 
(1995). Ages of and definitions of CM events (blue filled circles) follow W oodruff 
and Savin, (1991), Flower and Kennett (1993) and Holbourn et al., (2004), with 
heights taken shown as the midpoints of the events at Moria (this work), age 
uncertainties follow the definitions of Holbourn et al. (2004). Dated ash layers 
(green filled triangles) are from Deino et al. (1997) with 2o uncertainties. The 
purple line is the p referred  age model for the Moria section (see text) with tie 
points shown as purp le  crosses.
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An alternative age model was constructed based purely on the foraminiferal datums 

(Figure 22), which results in a carbon isotope curve which departs significantly from 

the ODP 761 carbon isotope curve (grey line in panel b; Figure 19) and on this basis 

the age model shown in Figure 21 is preferred.
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Figure 22: A lternative age model (black line) for the Moria section based on only 
the planktonic foram iniferal datum s (after Berger et al. 1995). Symbols and

colours are as in Figure 21.

Deino et al. (1997) recognise one clear magnetic reversal at 10 m, and infer a second 

between 21 and 46 m (Figure 23), and tentatively assign these to the bases of chrons 

5Cn and 5Br.2r respectively. However Deino et al. (1997) note that this interpretation 

results in significant discrepancy between the dated ash layers at the Moria section and 

the geomagnetic timescale of Cande and Kent (1992). On the basis of the age model 

presented here, and given the possible uncertainty of timings of the biostratigraphy 

(which guided Deino et al. (1997) in their identification of the chrons) it seems is
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plausible that these reversals are in fact the bases of chrons 5Cr and 5Dn, and that the 

reversed interval at the base o f the section is 5Dr. lr  (Figure 23).
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5 Middle Miocene Temperature and 
Atmospheric pC02

Past tem perature and atmospheric CO: concentrations are the two key climate 

parameters that are essential in describing the past climate. The growth of the 

Antarctic ice sheet in the middle Miocene follows the warmth of the Middle Miocene 

Climatic Optim um  (M MCO), and it is important to understand how temperatures 

changed around the grow th o f this ice sheet. Previous estimates o f temperature change 

have been low resolution or based on foraminifera that, owing to the deep ocean sites 

at which they are preserved, may have had their geochemical signals altered by 

dissolution (Billups and Schrag, 2003; Shevenell et al., 2004). The RIP section offers 

an opportunity to reconstruct the changes in temperature following the main phase o f 

the ice expansion (M i-3) using foraminifera which show excellent preservation, and 

using the alkenone unsaturation index as a second, independent temperature proxy.

The w armth o f the middle Miocene and the dramatic increase in ice volume at the 

MMCT have led to suggestions o f major changes in atmospheric CO: (it is a 

fundamental requirem ent o f the Monterey hypothesis (Vincent and Berger, 1985)). 

More recent work have suggested the opposite; that CM6 is related to an increase in 

atmospheric CO: resulting from a negative feedback due to ice sheet blanketing o f 

silicate basem ent (see section 1.2; Lear et al., 2004; Pagani et al., 1999a; Shevenell et 

al., 2008). To resolve these two hypotheses, it is essential to have an accurate 

knowledge o f  how atmospheric CO: evolved over CM6, and through a combination o f 

alkenone and boron palaeobarometers, the RIP section offers an opportunity to 

determine this behaviour.
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5.1 Palaeotemperature Proxies
5.1.1 A lkenone U nsaturation Index

Alkenones are “m olecular fossils' -  organic molecules produced by organisms and 

preserved in marine sediments. Alkenones are long chained (37-39 carbon atoms) 

unsaturated methyl and ethyl ketones (Figure 24) produced within the mixed layer by 

a restricted group o f photosynthetic haptophyte algae (Conte et al., 1994). In the 

modem ocean alkenone production is dominated by the coccolithophores Emiliania 

hiLx/eyi, and alkenones have been isolated in Eocene (Marlowe et al., 1984) and 

Cretaceous sediments (Brassell et al., 2004; Farrimond et al., 1986), which 

demonstrates both their extensive fossil records and their resistance to diagenetic 

degradation.

Long-chain di-, tri- and tetraunsaturated C37 methyl ketones (alkenones)

o

C37 2 (heptatriaconta-15£,22£-trien-2-one)

O

C 3 7 . 3  (heptatriaconta-8£,15£,22£-trien-2-one)

O

C 3 7 4  (heptatriaconta-8£, 15£,22£,29£-tetraen-2-one)

Figure 24: C37 Alkenones in di-, tri- and tetra-unsaturated form.

Temperature reconstruction based on alkenones are based on the capability o f the 

Prymensiphyceae class o f  marine algae to synthesis alkenones o f varying degrees o f
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unsaturation dependant upon the prevailing sea temperature at the time o f growth 

(Brassell et al., 1986; Marlowe, 1984; Prahl and Wakeham, 1987). The development 

and tem perature calibration o f first the U*7 index (equation ( 4 ); Brassell et al., 1986) 

and later the U t  index (equation ( 5 ) Brassell, 1993; Prahl and Wakeham, 1987) for 

situations where the tetra-unsaturated alkenone (C 3 7  4 ) is not present has led to a robust 

proxy for sea surface temperature (Brassell, 1993).

The U* proxy can reconstruct temperatures ranging from 0 to 29°C (Muller et al.,

1998), at temperatures higher than 29°C only the di-unsaturated alkenone remains and 

the index reaches 1. The temperature calibration used here is based on a global 

core top calibration to annual mean sea surface temperature (equation ( 6 ); (Muller et 

al., 1998) and is widely used in palaeotemperature estimation.

The analytical uncertainty based on 4 full procedural replicates ±1.5°C, which is 

similar to the uncertainty found by others (M uller et al., 1998).

( 4 )

( 5 )

U* = 0 .0337  + 0.044 ( 6 )
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Figure 25: Alkenone unsaturation index results from RIP and resulting 
tem peratu re  reconstruction using calibration of Muller et al. (1998). Note that as 
at tem peratures exceeding 28.9°C U* is 1, so points which lie on the upper limit 
of the plot (with U ^= 1) should be read as 28.9°C or higher.

The nine samples from the base o f  the section at 13.86 Ma to 13.77 Ma have a U£  of 

1, with only the di-unsaturated alkenone (C3 73) present, which translates to a sea 

surface temperature o f  28.9°C or higher (Figure 25). Between 13.74 Ma and and 13.66 

Ma temperatures range between the lowest recorded temperature o f 26.2°C at 13.74 

Ma and 28.9°C, where only the C373 is present. Within this period there are also 

horizons where the tri-unsaturated alkenone is present but only at very low 

concentrations, suggesting temperatures close to the 28.9°C maximum. From 13.61 

Ma to the end o f  the section at 12.81 Ma the € 37:3 alkenone is present, with 

temperatures ranging from 27.8 -  28.6°C.
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5.1.2 P lanktonic Foram iniferal M g/Ca, M n/Ca and Fe/Ca

Foraminiferal M g/Ca is a well-established proxy for temperature reconstruction, and 

Mg/Ca analysis was performed for 22 age horizons using the planktonic foraminifera 

G. trilobus (Figure 29; Table 5; see section 2.1.3).

Effective cleaning procedures are essential in the production o f palaeotemperature 

estimates from M g/Ca, as measured Mg/Ca may also be influenced by contaminant 

phases such as clays and silicates, adhering organic material and adsorbed coatings. 

There was no correlation between Fe/Ca and Mg/Ca (Figure 26; r=0.1, n=22, p>0.05) 

nor between M n/Ca and M g/Ca (Figure 26; r=-0.3, n=22, p>0.05), suggesting that 

cleaning had effectively removed sources o f contaminant Mg. Although Fe/Ca and 

Mn/Ca are relatively high, the absence o f correlation between these elemental ratios 

and Mg/Ca, suggests that they are not influencing the measured Mg/Ca.
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Figure 26: Fe/Ca (panel a; blue diamonds), Mn/Ca (panel b; orange circles) and 
shell weight (panel c; pink open circles) plotted versus Mg/Ca in G. trilobus.

Recrystallisation is unlikely at Ras il-Pellegrin, as the maximum estimate of palaeo- 

depth is only 700 m (Bellanca et al., 2002), well above the CCD, and post depositional 

recrystallisation is less likely in clay rich lithologies such as the Blue Clay. SEM 

micrographs (Figure 27) show no evidence of recrystalisation. However there is 

variability in shell weight at RIP and a weak correlation exists between shell weight 

and Mg/Ca (Figure 26; r=0.41, n=22, p=0.057) suggesting that some minor dissolution 

may be influencing Mg/Ca measurements, and this is corrected for within the Mg/Ca 

SST calibration (equation ( 7 )).

71



72



Figure 27 (previous page): SEM m icrograph of a typical G. trilobus from RIP 
(panel a), w ith image of the same species of similar age from a deepwater site 
which has been close to or below the lysocline since the Miocene for comparison 
(panel b; DSDP 92-598*-4H-6,l-5; Rea and Leinen (1984); Ravizza et al. in prep.)
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Figure 28: T race  m etal records from G. trilobus. Shown are Mg/Ca (panel b; 
black filled squares), Fe/Ca (panel c; blue open triangles) and Mn/Ca (panel d; 
orange filled circles) shown with bulk carbonate 51 O (panel a; orange open 
diam onds) and bulk  carbonate S,3C (panel e; blue open squares) for comparison. 
E rro r bars are  analytical and represent 2o.
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G. trilobus M g/Ca declines at the same time as the increase in carbonate 5 lsO from 

-1 3 .9  to -1 3 .7  M a (Figure 28), representing a cooling o f sea surface temperatures as 

the ice sheet expanded (see section 5.1.3 below). Fe/Ca ratios show no clear trends 

over the period, and does not show a similar structure to either oxygen or carbon 

isotopes (Figure 28) and is not considered further. Mn/Ca ratios increases at both 

peaks o f  CM 6 (Figure 28), although there is not a clear correlation between Mn/Ca 

and 5 13C (r=0.32, n=22, p>0.14). Planktonic foraminiferal Mn/Ca has recently been 

proposed as a potential proxy for basin-wide input o f terrestrial material to the oceans, 

as the M n/Ca ratio o f seawater is controlled by supply from terrestrial input and 

removal by rapid scavenging by oxidation-reduction reactions (Klinkhammer et al., 

2009). G iven the short residence time o f Mn (-50  years; Klinkhammer et al., 2009), 

M n/Ca should be, all else being equal, a sensitive indicator o f large scale terrestrial 

supply to an ocean basin. The increases coinciding with the two peaks o f CM6 could 

therefore represent increased terrestrial supply to the oceans. Klinkhammer et al. 

(2009) speculate that as Mn will have a similar source as Fe and other limiting 

nutrients, increased M n/Ca could potentially indicate increased productivity as well, 

and it is possible that this is the case for the two peaks in Mn/Ca at CM6.

5.1.3 <7. Trilobus M g/C a palaeotherm om etry

No Mg/Ca tem perature calibration exists for G. trilobus however in the modem ocean 

G. trilobus is considered to be the same species as Globigerinoides sacculifer 

(although the peculiar sack like form o f  the final chamber o f G. sacculifer did not 

develop until the Pliocene (Flemleben et al., 1989)). It is a calibration for G. sacculifer 

that is used here (Rosenthal and Lohmann, 2002). A value o f 4.2 is used for Miocene 

seawater M g/Ca (M g/Casw; W ilkinson and Algeo, 1989) to correct for the effect o f a 

changing seaw ater ratio over time. In order to correct for the effects o f dissolution a
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term is included in the calibration based on dissolution related variations o f Mg/Ca in 

G. sacculifer (Rosenthal and Lohmann, 2002), this removes the weak correlation seen 

between M g/Ca and shell weight (r=0.19, n=22, p>0.05).

Foraminiferal shell weight has been proposed as a proxy for atmospheric CO2, on the 

basis o f culture and core-top studies (Bijma et al., 1999; Barker and Elderfield, 2002; 

Bijma et al. 2002). I f  applied to the foraminiferal weight data presented here (Figure 

29; Table 5) then it would suggest a decrease in [CO32 ] and an increase in 

atmospheric CO 2 from 13.87 to 13.78 Ma as shell weights declined and the SST record 

shows a cooling, and then a slight decrease in CO2 from 13.78 to 13.63 Ma. However 

more recently it has been suggested that [CO32 ] may not be the primary control on 

foraminiferal weight (Beer et al. 2010). Furthermore the proxy relies on surface water 

processes being the dom inant control o f foraminiferal weights, the control preferred 

here is m inor post-depositional dissolution, and as such it is used to correct for 

dissolution effects in the M g/Ca SST calibration.

The pre-exponential term is adjusted slightly to cross calibrate with the ketone 

unsaturation index ( U^ )  presented below (Figure 29; Table 5) to account for 

M iocene-Recent changes to G. trilobus vital effects. This is achieved by altering the 

pre-exponential term so that the mean calculated SST from Mg/Ca matches the mean 

SST calculated from £/* for the two younger points in the U*7 record where both 

Mg/Ca and alkenone data is available (at 13.286 and 13.041 Ma), and where f/f7 is 

well below 1. It is possible that the ketone unsaturation index based temperatures 

relate to a slightly different part o f the water column, but as one of the key uses for the 

temperature record produced here is to correct for temperature dependent effects in 

alkenone fractionation, it is more appropriate here to use temperatures which more
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closely relates to the temperatures at which the alkenones are being synthesised. The 

cross calibration does not affect the sensitivity o f the changes in Mg/Ca to 

temperature, and so conclusions based on the relative change in temperature recorded 

by the M g/Ca record are not affected. The full calibration is shown in equation ( 7 ).

Mg / Ca =
Mg/Ca(l)

• (0.0032w/ + 0.27) • e 0.0957- ( 7 )
Mg/Cam

Mg/Ca^) = M iocene seawater concentration = 4.2 (Wilkinson and Algeo, 1989) 
Mg/Ca<0)= M odem  ocean seawater concentration = 5.2 
wt = Shell weight (pg)

Table 5: Ketone unsaturation index SST, Mg/Ca ratios, Mg/Ca SST and mean 
foraminifera weight for G. trilobus from RIP.

Height
in

section
(m)

Age
(Ma) UK37

C/f7 SST 
(Muller 

et al. 
1998)

Mg/Ca
ratio

(mmol/mol)
Mg/Ca 

SST (°C)
Mean foram. 
weight (pg)

0 .00 13.867 1 29.0* 6.56 33.1 24.4
0.35 13.860 1 29.0* 5.74 31.7 24.2
0.70 13.852 1 29.0* 5.03 30.4 23.6
1.05 13.844 1 29.0* 5.17 31.2 18.0
1.75 13.829 1 29.0* 5.43 30.9 26.6
2.45 13.813 1 29.0* 4.22 28.5 23.6
2.80 13.805 4.79 30.5 17.6
3.15 13.798 1 29.0* 5.00 30.7 19.4
3.50 13.780 1 29.0* 4.13 29.2 14.4
3.85 13.780 1 29.0* 4.78 30.2 20.1
4.90 13.751 0.909 26.2 4.97 31.0 16.5
5.25 13.742 0.985 28.5 4.38 29.3 19.5
5.60 13.732 0.987 28.6 4.72 30.2 18.4
6.65 13.703 1 29.0* 3.71 27.3 22.0
7.35 13.684 0.981 28.4 4.29 29.2 19.0
7.70 13.674 1 29.0* 4.39 29.4 18.6
8.05 13.665 1 29.0* 4.36 29.0 22.1
9.10 13.636 1 29.0* 4.36 29.2 19.8
9.45 13.627 1 29.0* 4.09 28.5 20.3

10.15 13.607 0.979 28.3
10.50 13.598 4.52 29.6 19.9
22.75 13.286 0.964 27.9 3.92 28.0 21.1
33.95 13.041 0.978 28.3 3.86 28.1 18.5
43.05 12.800 0.987 28.6

’ At tem peratures greater man c  omy 
these tem peratures should be considered

the di-unsaturated alkenone remains, and so 
minimum estimates.
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Figure 29: G. trilobus M g/Ca ratio (panel a; black filled squares) and mean shell 
weight (panel b; open pink circles). Panel c shows the sea surface tem perature 
reconstructions based on (purple open diamonds) and the Mg/Ca calibration 
from this w ork (green open triangles; equation ( 7 ) )  and the multi-species 
calibration of Anand et al. (2003). E rro r bars represent analytical errors and are 
2o.

Analytical errors (based on repeat measurement of consistency standards) for Mg/Ca 

and foraminiferal weight are shown in Figure 29 and are propagated through to 

analytical error in T using equations ( 8 ) to ( 11 ). Equation ( 7 ) is first rearranged to 

the form of equation ( 8 )
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7 = — !— -in (M g /C a )-  1
0.095 0.095

In 0.0032
M glCa{( 0 )

M g/CaU)
wt + 0.27

MglCa{
( 0 )

Mg/Ca(l) ( 8 )

The analytical error in calculated temperature ( o T) can then be calculated by 

combining the contribution due to the analytical error in measured shell weight (<JT(wt)) 

with the contribution due to the analytical error in measured Mg/Ca ( o T{MglCa)) using 

equation ( 9 )

On T( wt) + OnT V 7'( h t ) T(Mg/Ca)

o T = Analytical error in calculated temperature
o T(M,) = Contribution to analytical error in T due to analytical error in measured shell 

weight.
°T(Mg ca)= Contribution to analytical error in T due to analytical error in measured 

G. trilobus Mg/Ca.

( 9 )

where

o T(wt)
dT
dw't

0.027
0.0026 * W/ + 0.23

• o.
( 1 0 )

o
dT

T(MgiCa) dMg/Ca
10.53

Mg/Ca

• o Mg /CaM g/Ca
o Hl= Analytical error in measured shell weight
o Mi, Ca= Analytical error in measured G. trilobus Mg/Ca

( 1 1 )

This results in an analytical uncertainty in Mg/Ca SST o f ~0.2°C (2o). It is important 

to note that this only represents the analytical uncertainty, and does not account for 

uncertainty relating to the calibration, nor arising due to the value chosen for Miocene 

Mg/Casw Uncertainty from scatter in Mg/Ca calibrations are reported to be equivalent 

to ±1.1 -  1.4°C (Dekens et al., 2002; Anand et al., 2003), and although models of
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Mg/Ca** agree that this parameter was lower in the Miocene than the present, the 

exact value is model dependent and varies from 3.5 -  4.2 mmol/mol (Wilkinson and 

Algeo, 1989; Stanley and Hardie, 1998). This range in Mg/CasW is equivalent to a 

~2°C range in absolute temperature and given the long residence time of Ca and Mg 

(13 and 1 M yrs respectively; Broecker and Peng, 1982) Mg/CasW is not expected to 

change significantly over the period which RIP covers (1.1 Myrs). Therefore the 

uncertainty surrounding Mg/Ca** only effects the absolute temperature, not the 

relative change over the period covered. This uncertainty is, in effect, removed by the 

cross-calibration between M g/Ca and f/f7 described above, as U3* is unaffected by 

changes in Mg/Ca**. However the U*7 reconstruction has an uncertainty of 

approximately ±1.5°C, but again, this only affects the absolute temperature, not the 

dramatic change in temperature seen here.

Reconstructed temperatures are high (Figure 30 and Table 5), ranging from 27.3°C to 

a maximum o f  33.1°C (compared to a modem day mean zonal average for 35°N of 

~20°C; Locam ini et al., 2006) in agreement with temperature estimates from 

elsewhere suggest that the M iocene ocean was significantly warmer than today (Lear 

et al., 2000; Shevenell et al., 2004).

79



0.5 91X 
n 2  

0.0 #*§I
o
00

X
^  0.53m

1.0

-  25

T
12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9

Age (Ma)

Figure 30: Sea surface tem perature reconstruction from Mg/Ca ratios in the 
planktonic foram inifera G. trilobus (c; green open squares and line), shown with 
bulk carbonate oxygen isotopes (b; yellow open triangles and line) and fine 
fraction carbonate carbon isotopes (a; blue open squares and line). The 
reconstruction shows a dram atic drop in sea surface tem perature as the ice sheet 
expansion progressed. The position of CM6 is indicated, with the individual 
peaks of CM 6 a and b shown by the dashed lines.

The Mg/Ca SST record also shows a significant drop in temperature during and 

following the ice sheet expansion at Mi-3/E3, (a drop of around 5°C). Large drops in 

sea surface temperature have also been recorded at this time at other sites, including a 

7°C (point to point) drop in sea surface temperatures in the southwest Pacific and 2- 

3°C of bottom water temperature decrease (Shevenell et al., 2004; Shevenell et al., 

2008). The dramatic drop in temperature also matches a similar steep increase in 

oxygen isotopes. Using the oxygen isotope temperature sensitivity of Erez and Luz
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(1983), -3 0 %  o f  the oxygen isotope shift measured at RIP is due to the decrease in 

temperature. The M g/Ca SST record from RIP also shows local temperature minima 

immediately preceding CM6a and CM6b (Figure 30).

Although cross-calibrating the G. sacculifer calibration o f Rosenthal and Lohmann 

(2002) with the alkenone unsaturation index temperature record does increase the 

reconstructed temperature, it has no effect on the sensitivity. Alternative calibrations 

also result in high temperatures and significant temperature drop. Using a multi­

species calibration (Anand et al., 2003) results in a maximum temperature range of 

25.3 -  31.6°C, suggesting that it is not the treatment o f the calibration which leads to a 

high temperature and large range result. The bias towards higher temperatures by 

using an alkenone temperature component may also be related to the production 

depths o f  foraminiferal calcite and alkenones. Although G. trilobus is a shallow 

surface dw eller (Pearson and Shackleton, 1995) alkenone calibrations achieve closest 

fit with temperatures for the top 10 m o f  the sea surface (Muller et al., 1998), most 

likely shallower than the habitat o f G. trilobus. Similarly, although sediment studies 

show best fit with mean annual temperature, it is possible that the alkenones preserved 

at RIP could be dominated by a more seasonal signal biased towards warmer 

temperatures, as has been observed at some sites (Conte et al., 2006). In general this 

bias is not a drawback o f  using this calibration in this study, as one o f the principle 

uses o f the temperature record here is to control temperature effects within the 

calculation o f  pCC>2 from alkenones (see 5.2 below) and so a near surface and 

alkenone production temperature is what is required. However, this does mean that the 

temperature record presented here may not be directly comparable with other 

foraminiferal M g/Ca SST estimates.
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5.2 pC 02 proxies: Alkenone Palaeobarometry
5.2.1 Introduction

The degree o f  carbon isotopic fractionation that takes place during photosynthesis (ep) 

is controlled by the concentration o f dissolved CO2, and it is this effect that is the basis 

o f the alkenone palaeobarom eter (Freeman and Hayes, 1992; Jasper and Hayes, 1990; 

Jasper et al., 1994). Culture experiments have demonstrated that the aqueous CO2 

concentration ([C 0 2 (aq)]) is a control on the carbon isotopic composition o f the di­

unsaturated alkenone with 37 carbon atoms (C 37 2) that is produced (513C37:2) (Bidigare 

et al., 1997; Laws et al., 1995; Popp et al., 1998; Riebesell et al., 2000a). The proxy 

has been used to reconstruct atmospheric CO 2 over the Pleistocene (Andersen et al., 

1999; Jasper and Hayes, 1990; Jasper et al., 1994) and Neogene (Henderiks and 

Pagani, 2007; Pagani et al., 1999a; Pagani et al., 1999b; Pagani et al., 2005a), and 

critical appraisals o f the proxy have suggested that it is a robust indicator o f 

atmospheric CO 2 so long as variations from secondary controls (e.g. growth rate, cell 

size) are m inor (Pagani, 2002; Pagani et al., 2002).

Although produced by both coccolith and non-coccolith bearing haptophytes, alkenone 

production appears to be restricted to the family Noelaerhabdaceae (Marlowe et al., 

1990; Volkman, 2000). This restriction to a small group o f  organisms reduces the 

likely effects o f  interspecific offsets, and also reduces the opportunity for ecological 

changes to significantly affect the isotopic composition o f the alkenones preserved in 

the fossil record.

The basis o f  the barom eter is to first reconstruct ep and then use an empirical 

relationship between ep and [C 0 2(aq)] to estimate [C 02(aq)] before calculating 

atmospheric pCC>2 . In order to calculate ep the first step is to adjust the analysed
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alkenone result for the fractionation between the alkenone molecules and haptophyte 

biomass (£aikenone; equation ( 12 ); Bidigare et al., 1997; Popp et al., 1998).

^alkenone
6 ,3C37:2 + 1000
6 ' 3C org + 1 0 0 0

-1 • 10' ( 12 )

d -r,7;, = Carbon isotopic composition o f di-unsaturated C 3 7  alkenone 
<5I 3C = Carbon isotopic composition o f haptophyte biomass

Assuming an e value o f 4.2 (Bidigare et al., 1997; Popp et al., 1998), the haptophyte 

biomass com position can then be calculated using equation ( 13 ) (Pagani et al 

1999a).

<5I3C  = & C ”  2 + 1 0 0 0  - 1 0 0 0  ( 1 3 )
" *  0 .9 9 5 8

In order to calculate the fractionation between the haptophyte biomass and [CO^aqJ,

the carbon isotopic composition o f the aqueous carbon dioxide ( 5 13C c o 2 (a q )) needs to

1 ̂be known. This is calculated by determining the 5 C of carbonate from planktonic 

foraminifera and then using an empirical relationship for the fractionation between 

calcite and CO 2 (Romanek et al., 1992) .

c r<ifav-co,u> =  1 l - 9 8 - 0 . 1 2 r  ( 1 4 )

T = Tem perature in degrees Celsius (derived from planktonic foraminiferal Mg/Cal 
see section 5.1.1)

From equation ( 14 ) the carbon isotopic value o f gaseous carbon dioxide can be 

calculated using equation ( 15 ).

6 '3cco,,s , -  6 C— t 1000 -1000  ( ! 5 )
^calc i t e -COi (g) /  , i

"  /1 0 0 0  + 1
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Using the empirical relationship o f (Mook et al., 1974; equation ( 16 )) from this the 

carbon isotopic composition o f aqueous carbon dioxide can be calculated (equation ( 

17)).

e COAaq} -C02(g) ( 16)

<513C £ CO: (<*7)-C0,(g)

1000 +
1 | s l3Cco,u l + 100o]-1000

Finally from this ep can be calculated (equation ( 18 )).

e p
( 18)

this calculated ep value, and assuming a value o f 25 for the isotopic fractionation 

imparted during carbon fixation (£f) the concentration o f carbon dioxide can be 

calculated (Bidigaire et al., 1997; Laws et al., 1997).

[ c a w ]=  — —  ( i 9 )
ef - £p

b = the summation o f all physiological factors (see text for discussion and definition)

The empirically derived “b” relates to the summation o f all physiological factors that 

can further affect the isotopic composition o f the alkenones. For reconstructions o f 

ancient atmospheric carbon dioxide b is generally estimated by relating it to the 

concentration o f  nutrients in the water column (Pagani et al., 1999a; Pagani et al., 

1999b; Pagani et al., 2005a), and for convenience an empirical relationship between b 

and the dissolved concentration o f phosphate ( [ P 0 43~]) is used (Pagani et al., 2005a). 

Flere a m odem  day M editerranean value for [PO 3-] (Garcia et al., 2006) is assumed.

b = 118.52 - [ P 0 3']  + 84.07 ( 2 0 )

84



Equilibrium between the atmosphere and surface ocean is assumed. Using a 

temperature dependent relationship (equation ( 21 )) for Henry’s constant and the 

solubility constants listed in Table 6 (Weiss, 1970; Weiss, 1974), atmospheric CCb can 

be calculated (equation ( 22 )).

5.2.2 A ssum ptions and uncertainty m odelling

In order to calculate the carbon isotopic composition o f  dissolved carbon dioxide as 

shown above, carbonate carbon isotope measurements are used. Previous pCC>2 

reconstructions (Henderiks and Pagani, 2007, 2008; Pagani et al., 1999a; Pagani et al., 

1999b; Pagani et al., 2005a) have used foraminiferal calcite to perform this role, but 

inherent in this are two potential problems. Firstly, as few individuals go into each 

analysis, the inter-test variability means that the signal to noise ratio for foraminiferal

lnAT^ = A, + A2(100/T )+  A3ln(77100)

+S[£, + £,(771000 + B3(T /100)2]
( 2 1 )

K h = H enry’s constant 
T=  Tem perature in Kelvin 
S  =Salinity

Table 6  Solubility Constants (m ol.L 1; Weiss, 1970; Weiss, 1974)

A i -58.0931
A2 90.5069
A3 22.2940
B / 0.027766
B2 -0.025888
Bs________0.0050578

( 2 2 )
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analysis is greater than for bulk or fine fraction carbonate analysis, which samples a 

large num ber o f  individuals and has contributions from coccolith and other carbonate 

debris. This effect can be seen in the much smoother records produced and replicated 

in shape by the fine fraction and bulk carbonate isotope records compared to the 

foraminiferal records. The approach here therefore is to take the fine fraction 813C 

record, and estim ate the foraminiferal isotopic composition by simply adding the mean 

offset betw een the fine fraction and foraminiferal calcite records over CM6 (Pagani et 

al., 2005a). Secondly, in deriving the value o f 513Cco2(g) an empirical relationship is 

used (equation ( 14 )) which is based upon experiments performed on abiotic calcite 

(Romanek et al., 1992). This may introduce error into the calculation if  foraminiferal 

calcite fractionation differs from abiotic calcite. The effect o f this is likely to be fairly 

minor, and will only affect the validity o f  absolute estimates, not any trends that are 

recognised. Continued use o f this relationship (equation ( 14 )) also means that the 

data produced here are directly comparable with previously published longer term and 

lower resolution records o f  Miocene pCC>2 (Pagani et al., 1999a).

The alkenone palaeobarom etry proxy outlined above assumes that [C02(aq)] is the only 

factor controlling alkenone 813C. However other factors have also been shown to exert 

a controlling influence. Culture experiments have demonstrated that further factors are 

important to the eventual 8 13C o f the alkenones produced; growth rate (Bidigare et al., 

1997; Laws et al., 1997; Laws et al., 1995) cell size and cell carbon content relative to 

surface area (Burkhardt et al., 1999; Popp et al., 1998) and light intensity (Cassar et 

al., 2006; Rost et al., 2002). These factors combined are included in the factor “b” 

(equation ( 1 9 ) )  which is determined through culture experiments
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Attempts have been made recently to estimate the effects o f changing cell size on CO2 

records generated using the alkenone palaeobarometer (Henderiks and Pagani, 2007, 

2008). These records have demonstrated that changes in cell size likely do occur, and 

that they can occur quite rapidly (over less than 1 Myrs). However, the magnitude of 

the changes in cell sizes did not have a significant effect on the CO2 records studied by 

Henderiks and Pagani (2007) and the corrected records they produced were generally 

within the error o f  the original CO2 reconstructions. These records show that although 

there may be cases where rapid and dramatic changes in cell size (such as a major 

evolutionary event) could be responsible for changes in the alkenone 5,3C record 

rather than changes in CO2, generally speaking the required adjustment to pCC>2 

records is small (Henderiks and Pagani, 2007). Furthermore, Popp et al. (1998) 

demonstrate that the relationship with between 513C37 2 and cell geometry is controlled 

by the cell volume to surface area ratio. Modem haptophyte producing 

coccolithophores have close to perfect spherical cell geometry, and so changes in the 

cell diam eter would have a small effect on the volume to surface area ratio. The large 

variation in ep seen in cell geometry culture experiments have been performed using 

diatoms, and the shapes o f  these organisms mean that variation in cell diameter 

changes the volume to surface area ratio more dramatically than is the case for 

coccolithophores (Laws et al., 1997)

5.2.3 G row th rate estim ation using Sr/Ca ratios in calcite

Growth rate reconstructions have been attempted using coccolithophores Sr/Ca ratios 

(Rickaby et al., 2002; Stoll et al., 2002a; Stoll et al., 2001; Stoll and Schrag, 2000; 

Stoll et al., 2002b). Sr/Ca ratios can be used with a record o f seawater Sr/Ca to 

estimate the Sr distribution coefficient (Dsr) that has been used to reconstruct growth 

rates (Billups et al., 2004). There is no correlation between growth rate as recorded by
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Dsr and the sp record generated from alkenone 513C (r=0.08, n=20, p>0.05, Figure 31) 

at RIP.

11 
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Fine fraction (<63 pm) carbonate Dsr

Figure 31: No correlation is observed between Dsr (a potential indicator of 
growth rate) and £p as reconstructed from alkenone dl3C.

This suggests that either Dsr is not indicating growth rates, or that growth rates are not 

a significant influence on ep. It is possible that growth rate was not an important factor 

for carbon fractionation in organic matter production in the species producing 

alkenones in the middle Miocene, as it has been found that not all algal species show a 

correlation between growth rates and ep (Burkhardt et al., 1999).

5.2.4 U ncertainty M odelling

Uncertainty in the CO 2 calculation detailed above was modelled using the Monte 

Carlo method (e.g. Anderson (1976)). The Monte Carlo method has advantages over
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classical propagation or regression analysis in that the nature o f uncertainties o f the 

different input parameters can be treated differently. For example for input parameters, 

which are not m easured but have been estimated (for example the phosphate 

concentration and salinity, both o f which are effectively educated guesses based upon 

modem day parameters in the Mediterranean near to RIP; Garcia et al., 2006; 

Locamini et al., 2006) a probability distribution function (PDF) which take this into 

account can be selected. For these two parameters square functions were chosen, 

which gives equal likelihood for any value within the given range. For the remaining 

parameters where values are based upon analysis, a normal PDF was used, with 

standard deviations derived from analytical uncertainty. An 11% uncertainty in the 

slope and intersect o f  the regression o f equation ( 20 ) was included in the model and 

represents a 95% confidence interval about the correlation (Pagani et al., 1999a).

The output o f  the Monte Carlo calculation is an array o f data representing an 

approximation o f the probability density function o f the CCb calculation given the 

input variables. As variables for each m n within the Monte Carlo calculation are 

randomly selected (on the basis o f the PDF o f each variable) the approximation o f the 

PDF o f the C O 2 calculation approaches the true PDF as a greater number o f runs are 

included.
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Figure 32: A topical output histogram  of a Monte Carlo model of uncertainty 
within the calculation of p C 0 2. Mean C 0 2 is 357 ppm, with a 2o value of 60 ppm 
from a model with n=25,000 and a bin size of 0.5 ppm.

With modem computer hardware each mn takes a fraction of a second to calculate 

using appropriate software (MATLAB was used throughout the Monte Carlo 

modelling) and so a large number o f runs can easily be included. The degree to which 

the approximation fits the true PDF can be estimated on the basis of the shape of the 

spread o f the data array (which can be estimated by the shape of a histogram), the 

closeness o f the mean value of the data array to the calculated value of C 0 2 using 

actual parameters, and the “stability” o f the mean and standard deviation upon 

repeated application o f the Monte Carlo model. A model with 25,000 runs was found 

to be a good balance between stability o f the standard deviation and computational
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time. As each horizon had a unique combination o f uncertainties for each parameter, 

Monte Carlo m odels were run for each data point.

Calculating an absolute value for salinity (for example using 5180 )  is difficult, and 

requires knowledge of:

i. Planktonic foraminiferal 5lsO.

ii. Sea surface temperature.

iii. Ice volum e estimate (which must be independent o f (i) and (ii) e.g. from sea 
level reconstruction).

iv. Freshwater input to site.

Although data to reconstruct (i) and (ii) is available, (iii) and (iv) are lacking, and so 

therefore any estimation o f absolute salinity would include significant uncertainty. We 

therefore estimate salinity on the basis o f  modem day salinity at the site. It is possible 

however to quantitatively estimate variability in salinity during the period o f interest, 

and use this to inform the uncertainty modelling. It is possible to estimate salinity 

variations using the oxygen isotope composition o f seawater (518Osw). §l8Osw can be 

estimated if  an independent reconstruction o f seawater temperature is available (Erez 

and Boaz, 1983; equation ( 23 )) .

SST  = 17.0 -  4.52 • (d'*Occ -  d'*On.) + 0.03 • (5'*Occ -  d^O^)2 ( 23 )

S18Occ =planktonic foraminiferal oxygen isotopic composition 
SST = Sea surface temperature

Using the SST reconstruction from foraminiferal Mg/Ca and 518Occfrom G. trilobus it 

is therefore possible to estimate 518Osw (Figure 33, Data Table 7).
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Figure 33: Reconstruction of 6 ,8Osw from G. trilobus 8 loO and Mg/Ca SST 
reconstructions.

■18.

1 8To calculate the analytical error in 5 Osw equation ( 23 ) must first be rearranged into 

the form of equation ( 24 ).

<5,8CL = <5,8£> -
4.52± -\/4.522 -  0.12- (17- T)

0.06
(2 4 )

The analytical error is then calculated by considering the contribution of error due to 

the analytical error in T (see section 5.1.1) and the contribution of error due to 

analytical error in 518Occ using equations ( 25 ) to ( 27 ).

18a w = Analytical error in 5 Osw.
a w(rc) = Contribution to error in 5l8Osw from analytical error in G. trilobus 5lsO.

°sw \cc) +<W) (2 5 )

•18. ■18 /
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°w<r> ~ Contribution to error in 818Osw from analytical error in sea surface 
tem perature estimate.

where

( 2 6 )

( 2 7 )0.12
2 - V 1 8 . 3 9  +  0 . 1 2 7

(T = Analytical error in G. trilobus 8 lsO.
o T = Analytical error in sea surface temperature estimate (see section 5.1.1)

This gives a maximum variability o f S18Osw o f 1.54 ±0.08%o (2o). Seawater salinity 

can be estimated using equation ( 28 ) (Duplessy et al., 1991; Maslin et al., 1995) .

S = Salinity ( % o )

Sm = Present mean ocean salinity
Sv = Mean ocean changes due to changing ice volume
5** = 818Osw anomaly

So using the sensitivity from equation ( 28 ) it can be calculated that the maximum 

possible variability in surface water salinity is ± 1 . 3 % o .  This is a maximum estimate as 

in reality most o f  this variability is likely due to changing ice volume. This treatment

I n . . .  1C
o f 8 O assumes that the sensitivity o f 8 Osw to salinity has remained constant over 

time, which may not be a valid assumption (Rohling and Bigg, 1998; Schmidt, 1999).

However given that the use here is to estimate a maximum change in salinity, and that

1 8
much o f the variability in 8 Osw will be due to ice volume rather than salinity, it

S - S . +  $ ,  +  1 . 7 3 5 6 , ( 2 8 )
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seems a useful exercise to apply such a relationship to gain some insight into 

maximum variability in salinity in this way.

5.2.5 R esults

The alkenone isotopes show a slight positive trend over CM6 from 13.85 -  13.61 Ma, 

before a return to more negative values at 12.8 Ma (based on a single horizon) (Figure 

34, Data Table 8). The positive carbonate 813C excursion recognised as CM6 in the 

carbonate records is not matched by a similar excursion in the alkenone record, and 

the twin peaks CM6a and CM6b are not evident either. The accuracy o f alkenone 

isotope data means caution should be taken when interpreting finer scale variations in 

the record, however in closer detail it appears that the positive peaks o f CM6a and 

CM6b in the carbonate record are mirrored by slight negative shifts in the alkenone 

records. The magnitude o f  variation in alkenone 813C is greater than that shown in the 

carbonate isotope record over the same period, which is similar to other records of 

alkenone and carbonate 813C (e.g. Pagani et al., 1999a) -  even though CM6 is one of 

the largest short term fluctuations in carbonate 813C of the Cenozoic. The 8p record

produced from these records will therefore be dominated by the alkenone results (as

1 ̂has been seen in other ep records generated from alkenone 8 C (Jasper and Hayes, 

1990; Jasper et al., 1994; Pagani et al., 1999a)). The mean value o f the alkenone 813C 

(-21.1%o) is sim ilar to the values recorded in the longer-term records for this point in 

the Miocene from ODP Sites 608 and 730 (north Atlantic and Arabian sea 

respectively), and slightly lower than those seen at Site 588 (south-west Pacific; 

Pagani et al., 1999a). Using the procedure detailed in section 5.2.1, these data are 

converted into ep, shown in Figure 35 (Data Table 8).
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Figure 34 (previous page): Alkenone carbon isotope results from the Ras il- 
Pellegrin section (red diamonds; panels b and d erro r bars are ±lo). Also shown 
in panels a and c are bulk carbonate carbon isotope results from RIP from this 
study (black open squares and line) and the higher resolution records from Abels 
et al. (2005) (grey filled squares). Panels a and b show the data from the whole of 
the RIP section, w hilst panels c and d show a detail of the 300Kyrs around CM6.
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Figure 35: Photosvnthetic isotopic fractionation derived from alkenone and 
carbonate carbon isotopes. E rro r bars are uncertainties based upon the Monte 
Carlo method (see text for details) and are ±2o.

The positive trend in the alkenone isotopes over CM6 is represented in the £p records 

as a slight negative trend from 13.85 to 13.61 Ma, and then a return to higher values 

by 12.8 Ma. CM6b is identifiable in the ep record as a peak at 13.68 Ma. There is also 

a peak in £p that precedes CM6a, at 13.82Ma. The average value o f the ep record 

(10.4%o) is almost identical to the longer term (lower resolution records) from ODP 

sites 608, 730 and 588; (Pagani et al., 1999a)) which were determined from 

oligotrophic regions. This similarity increases the confidence that growth rate effects 

were minimal at the RIP section, and that the reconstructed pC 02 represents a global
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atmospheric, rather than local ([C0 2 (aq)] out of equilibrium with the atmosphere) 

signal.

1 6 -

1 4 -

1 2 - RIP

O . 1 0 -

6 -
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2 -

15.012.5 13.0 13.5 14.0 14.5Age (Ma)

Figure 36: £p m easurem ents from this study from the Ras il-Pellegrin site (RIP; 
open pink circles with 2o e rro r bars) and ODP sites 588 (triangles), 608 (squares) 
and 730 (crosses) from Pagani et al. (1999a). Note that the age model of Pagani et 
al. (1999a) has been shifted back by 130 Kyrs to match the age model for RIP, 
based on the positions of CM6 in the two records.

The CO2 reconstruction shows fairly low levels of CO2, with an average value of 302 

ppm over the 1.1 Myrs represented by the RIP section (Figure 37, Data Table 8). This 

is higher than the previously published estimate for this period in the Miocene (Pagani 

et al., 1999a). The CO2 record shows a slight (but significant) decrease in atmospheric 

CO2 over the period o f CM6, dropping from 328 ppm at 13.82 Ma to 275 ppm at 13.6 

Ma, with a single analysis at 12.8 Ma showing similarly low levels.
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Figure 37: Atm ospheric p C 0 2 reconstruction (red open circles and line) 
generated from alkenone carbon isotope measurements, shown with 2o 
uncertainty' envelope (thin red lines) calculated using the Monte Carlo method 
(see section 5.2.4 for details).

The uncertainties discussed above mean that interpreting the finer scale variations in 

the C 0 2 records should be done with caution. The 1 0 - 2 0  ppm variations are within 

the uncertainty of the reconstruction, however there is a possible peak in C 0 2 

following CM6b.

5.2.6 D iscussion

The alkenone based C 0 2 reconstruction is best interpreted in the full context of the 

multi-proxy records generated from the Ras Il-Pellegrin section. A compilation figure 

o f climate proxy records is shown in Figure 38. The figure shows that both the 

decrease in temperature as recorded by the Mg/Ca proxy and the decrease in 

atmospheric C 0 2 as shown by the alkenone proxy happen concurrent with the oxygen 

isotope increase, recorded at both RIP and globally, which represents the combination 

o f ice sheet expansion and temperature drop.
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Reconstructions o f  ice sheet growth using paired 5180  and Mg/Ca records suggest that 

70-85% o f the M iddle Miocene oxygen isotope record represents ice sheet growth 

(Billups and Schrag, 2002; Lear et al., 2000; Shevenell et al., 2008), in agreement with 

the value o f -7 0 %  based on the Mg/Ca reconstruction presented here (section 5.1.1). 

The CO 2 , temperature and 5180  records shown in Figure 38 show that temperatures 

and CO 2 dropped as the ice sheet expansion took place. Interpreting cause and effect 

in relation to CO 2 decrease and ice sheet expansion is compromised by the extent of 

the Blue Clay at Ras il-Pellegrin. The transition from the Blue Clay to the Globigerina 

Limestone Formation happens on the boundary between the Serravallian and the 

Langhian and the ice sheet expansion (E3/Mi-3) coincides with the boundary. The 

record from the Blue Clay at RIP is therefore limited to the period immediately 

following the ice sheet growth, and indeed the sea level and temperature variations 

were most likely important in determining the transition from the Globigerina 

Limestone to the Blue Clay. The Globigerina Limestone Formation is not as suitable 

for alkenone and other proxy records. The lowermost (oldest) samples from the RIP 

records presented here are from the transitional bed into the Globigerina Limestone 

Formation where the carbonate content increases significantly.
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Figure 38 (previous page): Multi-proxy climate records from the middle Miocene 
growth of the Antarctic Ice sheet. Panel a; bulk carbonate oxygen isotope records 
from Ras il-Pellegrin from this study (orange open triangles and line) and the 
higher resolution record of Abels et al. (2005) (grey filled inverted triangles), 
shown with the benthic oxygen isotope record from IODP site 1146 in the South 
China Sea (Holbourn et al., 2005) for context. Shown below is the bulk carbon 
isotope record from this study (blue open squares and line) and from Abels et al., 
(2005) (grey filled squares). Panel b shows an enlargement of the first 300 Kyrs of 
the section, with oxygen and carbon isotopes (colouring as in panel a) along with 
the Mg/Ca sea surface temperature record (green open squares and line) and the 
alkenone p C 0 2 reconstruction (red open circles and line), shown with ±2o 
uncertainty envelopes based on the Monte Carlo method (thin red line; see text 
for details).

Alkenone concentrations are much lower than in the transitional bed and suggests that 

in the Globigerina Limestone alkenone concentrations would be very low also. 

Foraminiferal preservation also begins to degrade in the transitional bed and as 

preservation was expected to be poor in the Globigerina Limestone Formation, it was 

not sampled. The record o f Abels et al. (2005) extended further into the transitional 

bed and the oxygen isotopes plateau prior to the positive shift at 13.86 Ma does 

represent the bulk o f the ice sheet expansion at E3/Mi-3 when compared to the timing 

o f the record o f Holbourn et al. (2005), however the lack o f data preceding the ice 

sheet expansion precludes discussion o f leads and lags and cause and effect.

The decrease in temperature, C 0 2 and increase in ice volume happen across the carbon 

isotope excursion CM6 (Figure 38). The fact that a drawdown o f atmospheric C 0 2 is 

recorded across the carbon maximum has implications for the likely cause o f the 

excursion itself (this is discussed further in Chapter 6).

5.2.7 A bsolute p C 0 2

The p C 0 2 levels recorded here are relatively low, although the pre-CM6 values which 

are greater than 300 ppm represent levels o f atmospheric C 0 2 higher than levels 

recorded in EPIC A ice cores for the past 800 Kyrs (Luthi et al., 2008). However these
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values are close to the threshold required for sustained bipolar glaciation (DeConto et 

al., 2008) although the onset o f northern hemisphere glaciation is not thought to be 

widespread before 11 Ma (Holbourn et al., 2005; Lea et al., 2000; Miller et al., 1991; 

Zachos et al., 2001).

Although low, the p C 0 2 record presented here is not as low as that of Pagani et al. 

(1999a) (Figure 39). This record is also based on alkenones, from multiple sites, and 

as is discussed above, the sp record generated by Pagani et al. (1999a) is nearly 

identical in average value to the record presented here (Figure 36). The likely reason 

for the offset between the two p C 0 2 records is due to the different temperature models 

used in each reconstruction. The temperature record is used to reconstruct the air-sea 

equilibrium, and using higher temperatures as reconstructed here results in a different 

air-sea equilibria which in turn results in higher absolute estimates o f atmospheric 

p C 0 2.

• 1 RPagani et al. (1999a) use a foraminiferal 5 O approach to reconstruct the sea surface 

temperatures for their calculations. Post-depositional preservation effects at the type of 

deep-sea carbonate rich sites such as those used by Pagani et al. (1999a) can produce 

artificially cool temperature estimates if using foraminiferal oxygen isotopes for sea 

surface temperature reconstruction (Pearson et al., 2001). The clay-rich lithology at the 

Blue Clay o f  the Ras il-Pellegrin section has resulted in excellent preservation of the 

foraminifera used for our sea surface temperature reconstruction, suggesting that the 

temperature estimates presented here are more likely to be accurate. The p C 0 2 

estimates presented here are also very similar to other estimates for this point in the 

Miocene (Figure 39) from two independent proxy methods; boron isotopes (Pearson 

and Palmer, 2000) and stomatal indices from fossilised leaves (Kurschner et al., 2008).
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The use o f foraminiferal 8 13C to reconstruct 813C co2(aq) assumes that the foraminiferal 

calcite 813C is produced in equilibrium with seawater. However, the effect of algal 

symbionts in a species such as G. trilobus used here potentially results in calcite 

enriched in 13C by up to 1.5%o (Spero and Lea, 1993). To put this into context, a 

disequilibrium offset o f +1.5%o in 5 13Ccarbonate would result in an overestimate in 

reconstructed atmospheric CCL by about 10% (e.g. within the uncertainty envelope 

shown in Figure 37). As the number o f symbionts increases with test size, the size of 

any potential offset 5 13C also varies with test size (Spero and Lea, 1993), which could 

potentially affect the reconstructed trends in atmospheric CO2 as well as the absolute 

levels. However the approach used here to determine 513Cco2(aq) uses fine fraction 

carbonate 813C to reconstruct the trends in 813C over time, which should remove the 

potential for a foraminiferal size effect to influence reconstructed 513Cco2(aqv

Similarly, diagenetic alteration can effect the preservation o f original 813C in 

planktonic foraminiferal calcite (Pearson et al. 2001). This was part o f the motivation 

o f using the RIP section, as preservation effects are thought to be far less likely in the 

type o f shallow water depth, clay rich sediments found at RIP (Pearson et al. 2001), 

and as expected the foraminiferal shells show exceptional preservation and diagenetic 

alteration o f the 8 13C signal is not expected to have occurred.
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Figure 39: Atm ospheric carbon dioxide reconstructions over the time period 
covered by the Ras il-Pellegrin section. The alkenone reconstruction of this study 
is shown along with published studies based on alkenone isotopes (Pagani et al., 
1999a), boron isotopes (Pearson and Palmer, 2000) and the stomatal indices of 
fossilised leaves (K urschner et al., 2008).
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The similarity o f  these lower resolution, long term records based on very different 

proxies to the data presented here supports the validity o f the alkenone method and the 

veracity o f our pCO^ reconstruction.
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5.3 pC 02 proxies: Coupled boron isotope and B/Ca 
ratios

5.3.1 Introduction

The ocean carbonate system can be described by six co-varying parameters; pH, 

[C0 2 (aq)], [HCO 3 ], [CO32 ], Total Alkalinity (TA) and Dissolved Inorganic Carbon 

(DIC). To fully constrain the system, two o f these six parameters must be known, 

allowing [CC>2(aq)] to be calculated, and through Henry’s law (assuming surface water- 

atmosphere equilibrium) atmospheric pCC>2 can be calculated (see equation ( 2 2  )).

The boron isotopic composition (8 n B) and boron to calcium ratio (B/Ca) o f planktonic 

foraminifera allow reconstruction o f pH and [CO32] respectively (Foster, 2008) which 

allows full reconstruction o f all carbonate system parameters, and so calculation of 

[C0 2 (aq)] and atmospheric pCC>2 .

Boron exists in the ocean principally as two aqueous species; boric acid (B(OH)3) and 

borate (B(OH)4 ). The relative concentrations o f boric acid and borate vary under the 

dissociation equilibrium shown in equation ( 29 ) which is strongly controlled by 

oceanic pH.

B(OH ), + H20  — B(OHY4 + H + ( 29 )

on has two isotopes, n B and 10B with natural abundances o f 19.9% and 80.1% 

respectively. Boron isotope variations are expressed in the standard delta notation (see 

equation ( 30 )) relative to the National Institute o f Standards and Technology 

Standard Reference Material 951 (NIST951).
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There is a strong isotopic fractionation between the species o f -19.5%o which is largely 

independent o f  temperature and boron concentration (Kakihana et al., 1977; Klochko 

et al., 2 0 0 6 )  and therefore the isotopic composition o f the two species in seawater is 

pH controlled (see Figure 4 0 )) .

Only the charged borate species is incorporated into the calcite o f foraminifera with

HBCV' substituting for CO 32' (equation (3 1 ) ;  (Hemming and Hanson, 1992))

CaCOy + B(OH)~ — Ca(HBO,) + HCO; + H 20 ( 3 1 )

If the boron isotopic composition o f foraminifera can be accurately determined, then 

past pH can be reconstructed using equation ( 32 ).

pH  = pK'h -  log foram

«nB „ -  (1.0272- d"Bprtm<) -2 7 .2
( 3 2 )

pK \ = log o f the stochiometric dissociation constant for boric acid/borate equilibria

Boron isotopes from foraminifera have been used to reconstruct pH and, through 

estimation o f  a second carbonate system parameter such as carbonate ion 

concentration or alkalinity, atmospheric pCC>2 in the Pleistocene (Sanyal et al., 1997; 

Sanyal et al., 1 9 9 5 ) and over the Cenozoic (Palmer et al., 1998; Pearson and Palmer, 

1999; 2 0 0 0 ).
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Figure 40: Boron speciation (top panel) and isotopic fractionation (bottom panel) 
as a function of seawater pH (adapted from Yu et al. (2007))

Under the equilibrium substitution conditions for boron into calcite expressed in 

equation ( 3 1 )  the distribution coefficient for the equilibrium can be expressed as in 

equation ( 33 ).
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Inspection o f  this relationship reveals that the B/Ca ratio in foraminifera is dependant 

on the ratio o f borate to bicarbonate in seawater, which is itself pH dependant. By 

using the pH information gained from boron isotopes (equation ( 32 )) the carbonate 

system can be fully constrained. The [CO32 ] is estimated from the measured B/Ca 

ratio o f G. trilobus using a relationship between [CO32 ] and KD based on core top data 

for G. sacculifer (Foster, 2008), and corrected for an offset (11.6 pmol m o l1) 

between the two species observed in core tops (Foster, 2008). The boron 

concentration o f  seawater was assumed to be the same as today (416 pmol K g '1) and 

there was assumed to be no offset between the 6 n B o f G. trilobus and the 5n B o f 

borate in seawater. These two assumptions may have an effect on a reconstruction o f 

absolute pCCb, but no significant effect on the magnitude o f change, and due to our 

treatment o f  8 1 !BSW (see below) these assumptions do not affect our conclusions.

A complicating factor is the need for an accurate knowledge o f the boron isotopic 

composition o f  Miocene seawater (5UBSW) in order to calculate pH from 6 n B 

(equation ( 32 )). Attempts have been made to estimate past 5n Bsw through modelling 

approaches (Lemarchand et al., 2000, 2002; Simon et al., 2006) and through the 

reconstruction o f  5n B depth profiles (Palmer et al., 1998; Pearson and Palmer, 1999; 

2 0 0 0 ) and there is general agreement that 5n Bsw was lower in the past, but there is 

little consensus as to the magnitude o f change and the likely value during the Miocene. 

The approach taken here is to use the boron palaeobarometer principally as a tool for 

the reconstruction o f  relative change, rather than attempt to estimate absolute pCC>2 

values. To this end, the oldest point o f the boron record is tuned to the oldest point of 

the alkenone record (they lie on the same horizon, at 0.00m; 13.86 Ma) so the 

pCC>2(boron)=pC 0 2 (alkenone), using 8 n Bsw as the free variable. 5n Bsw is then 

assumed to have remained constant over the period o f the remaining record. Fixing the
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seawater value is valid, given the long residence time o f boron in the oceans, which is 

in excess o f  10 Myrs (estimates vary between 14 Myrs (Lemarchand et al., 2000) and 

20 Myrs (Spivack and Edmond, 1987; Taylor and McLennan, 1985)).

T ab le  7: Estim ates of S erravallian  seaw ater 6n B

Source S erravallian  5n Bsw
(%«)

Pearson and Palmer (2000) 37.7
Lemarchand et al. (2002) 3 7 .5 -3 9 .5

Simon et al. (2006) 3 2 .5 -3 7 .5
This study 35.6

The value o f  8 n B sw that this method yields is 35.6 %o, which is within the range 

deemed reasonable on the basis o f modelling studies (32 - 40%o; Table 7; Lemarchand 

et al., 2002; Simon et al., 2006) and close to the value estimated by Pearson and 

Palmer (2000) based on reconstructed water column profiles. The value of 5 n B Sw does 

affect the maximum change in pCC>2 measured by foraminiferal calcite 5 n B . Figure 41 

shows the influence o f  changing 5n Bsw on the maximum change in pCC>2 estimated in 

the reconstruction presented below, and suggests that the effect o f unknown 5 n B sw is 

an uncertainty o f  ±25 ppm pCC>2.
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Figure 41: The influence of changing the 5n B of seawater (blue diamonds and 
line) on the m agnitude of maximum pH and p C 0 2 change (red squares and line) 
suggested by the maximum change in G. trilobus 6 n B (from 16.53%o to 15.83%o) 
over a range of seaw ater Sn B deemed reasonable from modelling studies (32 -  40 
%o; Lem archand et al., 2002; Simon et al., 2006). p C 0 2 was calculated at a 
constant [CC>32'1 concentration of 300 pmol kg'1.

5.3.2 R esults

The boron record, which covers the period o f CM6a, shows an increase in 6n B from 

15.8%o at the start o f  the record, to 16.2%o by 13.72 Ma (Figure 42). The peak value o f  

16.53%o at 13.79 Ma occurs one sample (~9 Kyrs) before the peak of CM6a in the 

carbonate carbon isotope record. The B/Ca record also shows an increase over CM6a, 

starting at 79.5 pmol mol'1 and increasing to 88.2 pmol mol'1 by 13.72 Ma, with a 

maximum value o f  96.5 pmol mol'1 at 13.78 Ma, coinciding with the peak value o f  

513C o f CM6a in the carbonate carbon isotope record.
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Figure 42: Bulk carbonate carbon isotope record for context showing data from 
this study (top; blue open squares and line) and data from Abels et al. (2005) 
(grey filled squares), boron isotope (middle; open circles and line) and B/Ca 
(bottom; open diamonds and line) results from measurements of G. trilobus. 
Error bars are ±2<r analytical uncertainties.

The boron pCO: reconstruction (Figure 43, Data Table 9) shows a decline in CO2 o f 

~60 ppm over -1 4 0  Kyrs, from 328 ppm (which is the value tuned to the alkenone 

record) to 270 ppm, and reaches a minimum value o f 250 ppm at 13.79 Ma (A=~80 

ppm). The minimum point is immediately before the peak o f CM6 a, and the 

atmospheric C 0 2 at this point is -260  ppm (A=~70 ppm).
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Figure 43: Boron based atmospheric C 0 2 reconstruction (panel b; black crosses 
and line) shown with 2o analytical error. Panel a; bulk carbonate carbon isotope 
record for context showing data from this study (blue open squares and line) and 
data from Abels et al. (2005) (grey filled squares).

The reconstructed C 0 2 is driven principally by the increase in 8 n B and not by the 

measured B/Ca. In fact the B/Ca increase and the changes in [CO32 ] that is 

reconstructed from it only plays a minor role in the C 0 2 reconstruction, as can be seen 

from Figure 44. Similarly the decrease in temperature which recorded from Mg/Ca at 

RIP, although included in the calculation of pC 0 2 from boron, plays a minor role in 

comparison to 8 n B, and the pC 0 2 drop reconstructed from boron is fairly insensitive 

to the temperature change.
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Figure 44: Boron based pCC>2 estimates with [CO32 ] determined by B/Ca 
m easurem ents (blue open diamonds and line) with analytical uncertainty (blue 
dashed lines) and by assuming total alkalinity (TA) remains constant (red filled 
circles) ±5%  TA (red dashed lines).

5.3.3 Discussion

Seen in the context o f the other proxy data (Figure 45) the boron CO2 reconstruction 

shows general agreement. Although recording a larger and more rapid drop in CO2 

than the alkenone record, the boron record is largely within error of the alkenone 

record. It is also important to note the direction of the trend of the boron record; both 

the boron and the alkenone record show declining CO2 following/concurrent with the 

growth of the ice sheet. The two proxies are independent recorders of the CO2 trend, 

and that both record a decrease of similar magnitude lends confidence to the 

conclusion, given the number of assumptions and parameters which are included in
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each CO2 proxy. It also supports the fidelity o f both proxies to some degree, and 

confirms the importance o f the multi-proxy approach.

The trend in CO 2 and the magnitude o f change have implications for the likely cause 

o f CM 6  and this, along with possible causes o f the pCC>2 drawdown, is further 

discussed in Chapter 6 .
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Figure 45 (previous page): Multi-proxy climate records from the middle Miocene 
growth of the Antarctic Ice sheet. Panel a; bulk carbonate oxygen isotope records 
from Ras il-Pellegrin from this study (orange open triangles and line) and the 
higher resolution record of Abels et al. (2005) (grey filled inverted triangles), 
shown with the benthic oxygen isotope record from ODP site 1146 in the South 
China Sea (Holbourn et al., 2005) for context. Shown below is the bulk carbon 
isotope record from this study (blue open squares and line) and from Abels et al., 
(2005) (grey filled squares). Error bars are 2<r analytical errors. Panel b shows an 
enlargement of the first 300 Kyrs of the section, with oxygen and carbon isotopes 
(colouring as in panel a), Mg/Ca SST (green open squares and line with 2o 
analytical errors), alkenone p C 02 reconstruction (red open circles and line), 
shown with ±2o uncertainty envelopes based on the Monte Carlo method (thin 
red lines; see text for details) and boron based CO2 estimate (black crosses and 
line) shown with ±2o uncertainty envelope based on analytical uncertainty (thin 
grey lines).

5.3.4 C lim ate Sensitivity

Climate sensitivity (or Earth-system sensitivity) is broadly defined as the equilibrium 

change in global mean surface temperature in response to a doubling o f atmospheric 

CO 2, with present day estimates ranging from 1.5 -  4.5°C (Solomon et al. 2007). The 

temperature and CO 2 records presented here should allow estimates o f climate 

sensitivity in two ways; by either ( 1 ) using the change in atmospheric C 0 2 and 

temperature from Miocene to present day or ( 2  ) using the drop in C 0 2 and 

temperature recorded over CM 6  at RIP. Neither these are without difficulty. Although 

it is generally accepted that the middle Miocene was much warmer than today (Lear et 

al., 2000; Zachos et al., 2001; Ivanov et al., 2002; Shevenell et al., 2004; Akgun et al., 

2007 Syabryaj et al., 2007) there is not yet a consensus as to how much warmer -  i.e. 

what the global mean surface temperature was in the Miocene. It is therefore difficult 

to estimate climate sensitivity from the small apparent decrease in C 0 2 from the 

middle M iocene to the pre-industrial. To estimate climate sensitivity from the drop on 

CO2 recorded at RIP an estimate o f mean global surface temperature is required. The 

SST temperature record presented here is unlikely to represent a good estimate o f
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mean global surface temperature, and would imply a very large climate sensitivity. 

From the -6 0  ppm decrease in CO2 recorded by the alkenone record from RIP over 

CM 6  the change in radiative forcing can be estimated using equation ( 34 ) (Myhre et 

al., 1998).

&Fco 2 = 5.35 ■ In
( 3 4 )

&FCoi = Change in radiative forcing due to CO2 

C = CO2 after perturbation 
Co = Unperturbed CO 2

This results in a radiative forcing change o f -1.1 W m‘ . The climate sensitivity can 

then be estimated using equation (3 5  ) (Chylek and Lohman, 2008).

a AT
a  = ( 3 5 )CQ2

A = Climate sensitivity 
AT = Change in temperature

If the change in temperature from the SST reconstruction from RIP over CM 6  is used 

(~5°C), this implies a climate sensitivity o f -4 .6  K/Wm"2, which would mean a 17.2°C 

change in temperature for a doubling o f atmospheric CO2 . This is much higher than 

the estimated climate sensitivity for the present day (1.5 -  4.5°C; Solomon et al. 2007) 

or recent estimates o f climate sensitivity from the Pliocene (7.1-9.6°C; Pagani et al. 

2010). The boron isotope based CO2 record from RIP suggests a similar decrease in 

atmospheric CO 2,, but over a shorter period o f time and a smaller decrease in 

temperature (~3°C) if  this record is used climate sensitivity is estimated at -2 .8  

K/Wm ' 2 or a 10.3°C temperature change per doubling o f CO2, which is again much 

higher than estimates from the present day, but close to the higher end o f estimates 

from the Pliocene.
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These estimates assume that CO 2 is the only factor controlling the change in radiative 

forcing (AF), whereas in truth large contributions will come from other factors, 

including other greenhouse gasses such as methane, surface albedo, and aerosols 

which are likely to have changed, and the estimation o f which are outside the scope of 

this work. Surface albedo is likely to be a significant influence given the large ice 

sheet growth. These influences, combined with the uncertainty about the true global 

mean surface temperature changes at the time, mean that the climate sensitivities 

presented here are likely to be overestimates.

5.4 Conclusions

The proxy based reconstructions presented here show decreasing CO2 and temperature 

following the middle Miocene growth of a major ice sheet, and co-incident with one of 

the largest carbonate carbon isotope excursions in the Cenozoic. The decrease in CO2 

is estimated at approximately 60 ppm, and the drop in temperature is estimated at 

approximately 5°C. The absolute level o f CO2 is seemingly very low (-300 ppm; 

roughly equivalent to pre-industrial levels) given the much higher absolute 

temperatures for the M iocene recorded in this and other studies. This may suggest that 

parameters other than CO 2 are important in controlling the global temperatures in the 

Miocene, the smaller polar ice caps would result in lower global albedo than during 

the Pleistocene, and there have been suggestions that levels o f water vapour in the 

atmosphere may have been important in controlling the Miocene warmth (Lyle et al., 

2008).

None o f the proxy records presented here show a cause for the decrease in CO2, 

although the position o f  the CO2 drop directly following the growth o f the ice sheet
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may suggest that a positive feedback is involved, and the presence o f CM6  suggests 

that there are m ajor changes happening in the carbon cycle. The use o f carbon system 

models, coupled with the proxy records presented here, may shed light on the possible 

cause o f the CO 2 drop, and CM 6 , and this approach is attempted in Chapter 6 .
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6 Miocene Carbon Cycle Dynamics
6.1 Carbon Maximum 6
6.1.1 Introduction

As a tool, computational modelling allows for testing o f hypotheses relating to 

complex systems, in which interactions between system parameters mean that often 

unexpected and counterintuitive outcomes result. Choosing the complexity o f the 

model for a specific problem is an important part o f the process, models o f limited 

complexity may fail to account for all interactions, whereas an over complex model 

requires both greater computation expenditure and more assumptions to be made, 

which can m ean that, although seemingly more robust, results can deviate significantly 

from real-world situations.

The use o f computational models allows for hypotheses to be tested against data, and 

this is the approach used here. Comparing the magnitude and direction o f change in 

parameters can give greater confidence o f causative mechanisms, especially given that 

different causative mechanisms can generate similar perturbations in certain 

parameters such as carbonate S13C (Kump and Arthur, 1999). The first model used 

here was developed specifically to improve the interpretation o f carbonate 513C 

records which have often been interpreted without enough emphasis on the inherent 

ambiguity o f  the proxy (Kump and Arthur, 1999). The aim o f this chapter is to test 

various causative mechanisms for CM 6  against data. The models used in this chapter 

are both fairly simple, single box ocean models, and as such cannot encompass all 

possible scenarios. However, since atmospheric CO2 and carbonate 8 13C appear to be 

representative o f global changes over CM 6  at least it is plausible that it is a global 

scale driver which forces the changes, and as such simplifying to single box model can
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be useful. The simplicity o f the model also allows for rapid runs which are not 

computationally intensive, and so multiple scenarios can be easily tested. Due to the 

simplicity o f the models the aim o f this chapter is not and cannot be to determine the 

definite cause o f CM 6 , but it should be possible to rule out as implausible certain 

scenarios.

CM 6  (nomenclature o f W oodruff and Savin (1991)) is the largest individual “carbon 

maximum” in the broader Monterey Excursion, immediately following the major ice 

sheet expansion event o f the middle Miocene (“E3”; (Flower and Kennett, 1993a) or 

“M i-3”; (M iller et al., 1991)). The size o f the excursion, rapidity and relation to the ice 

growth make CM 6  o f interest. The possibility that the excursion represents an 

important feedback related to the ice sheet growth makes understanding what it 

represents for global carbon cycle dynamics o f particular interest.

Three hypotheses for the cause o f CM 6  will be examined in this chapter, along with 

two subsidiary mechanisms which could be o f some importance. The hypotheses 

which have been suggested for CM 6  are the “Burial Hypothesis” (Flower and Kennett, 

1993b; Vincent and Berger, 1985); “Silicate Weathering Hypothesis” (Lear et al., 

2004; Pagani et al., 1999a; Shevenell et al., 2008) and “Methane Hypothesis” (Berger, 

2007). Also investigated here are the influences o f changing global temperatures and 

volcanic carbon flux on the carbon isotope record.

6.1.2 Burial H ypothesis

The Burial hypothesis draws on the most common interpretation o f carbonate carbon 

isotope records which states that variations in 5 13Ccarb are the result o f changes in the 

organic matter burial rate, usually due to changes in primary productivity or bottom 

water conditions which favour organic matter preservation and burial (e.g. anoxia). In

122



the Miocene this is a main component o f the “Monterey hypothesis” which states that 

increased burial o f  organic matter on shelf areas around the Pacific led to the 

drawdown o f atmospheric CO2 and resulted in global cooling, ice sheet growth, and 

the “M onterey excursion’ in the carbon isotope record from 17.5 -  13.5Ma (Vincent 

and Berger, 1985). CM 6  is part of the Monterey excursion, and its timing after the ice 

sheet growth at Mi-3 could reflect a positive feedback. Such a feedback could involve 

ice sheet growth and cooling encouraging even greater organic matter burial. Cooling 

and ice sheet growth would have led to increased meridional thermal gradients, which 

could have in turn led to increased ocean circulation vigour, higher wind speeds and 

greater nutrient upwelling. This, in turn could increase biological productivity further, 

leading to greater organic matter burial and therefore even greater CO2 drawdown 

(Flower and Kennett, 1993b; Vincent and Berger, 1985). The Monterey hypothesis 

was based prim arily on evidence from the stable oxygen and carbon isotope records. 

Apart from one recent exception (Kurschner et al., 2008), long term records o f CO2 

have failed to record a substantial drop in atmospheric CO2 over the Monterey 

excursion (Pagani et al., 1999a; Pearson and Palmer, 2000). However the resolution 

and precision o f  these records are not great enough to recognise individual CO2 

drawdown events associated with “CM” events. Neither the degree o f CO2 drawdown 

associated with positive isotope excursions o f this size, nor the sensitivity o f the 

climate system to CO2 drawdown during the Miocene are well known. Whether the 

expected CO 2 drawdown under the burial hypothesis would be large enough to detect 

with available proxies is therefore not known. By modelling a burial scenario the size 

o f CO2 drawdown expected from the 1.6 %o magnitude o f CM 6  can be estimated, and 

compared with both the uncertainty envelopes o f published proxy records, and
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compared to the higher resolution proxy records presented here, which are 

concentrated over o f  timeframe of CM 6 .

6.1.3 Silicate W eathering Hypothesis

Weathering o f  silicate rocks is a net sink for atmospheric CO2, which is drawn down 

as a result o f  the weathering reaction. Over long timescales this sink acts as an 

important balance to the input of CO 2 from volcanism and carbonate deposition (e.g.. 

Berner et al., 1983). Any rapid changes in either the input from volcanism or the 

extent and intensity of silicate weathering will lead to a temporary imbalance in this 

equilibrium, and therefore has the potential to change PCO2 and climate. One 

mechanism for changing the drawdown o f  CO2 due to weathering would be to change 

the exposure area o f silicate basement (Bluth and Kump, 1991) another would be by 

uplifting and exposing silicate material during mountain building (Raymo and 

Ruddiman, 1992).

A decrease in silicate weathering also has the ability to affect the carbon cycle, and to 

be potentially recognised through the carbon isotope record in marine carbonates. Any 

mechanism which increases PCO2 in the atmosphere, and through equilibrium with the 

oceans, [CC>2(aq)] has the potential to change the photosynthetic fractionation o f carbon 

isotopes in marine organisms (ep). With increased [ C 0 2(aq )] ,  £P would also increase, 

leading to the burial and removal from the ocean carbon reservoir o f organic matter 

with lower 5 13C  values. This process would leave the ocean carbon reservoir relatively 

enriched in 13C and therefore any carbonate produced and deposited would also 

become 13C enriched, leading to a positive S13C shift over time.

This process has been suggested for various times in the geologic past. For example 

this mechanism is proposed as a negative feedback during the Late Ordovician
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glaciation (Kump et al., 1999). At this time it is suggested that the expansion of an ice 

sheet blanketed continental terrains of silicate basement, leading to reduced CO2 

drawdown, pCCL increase, and ultimately to the end o f the glaciation.

The silicate weathering feedback mechanism is also proposed for the glaciations 

during the earliest Oligocene and Miocene (Oi-1 and Mi-1 using the nomenclature of 

Miller et al. (1991)). For these glaciations deep and intermediate ocean temperature 

records show warming immediately following ice sheet expansion (Lear et al., 2004). 

The rising temperatures are seen as evidence o f increased greenhouse warming due to 

higher pC (>2  caused by a similar ice-sheet expansion negative feedback. This 

suggestion is supported by the positive carbonate carbon isotope excursion is also 

recorded following both these glaciation events (Lear et al., 2004; Paul et al., 2000).

The silicate weathering feedback mechanism may also be at work during the middle 

Miocene. It has been suggested as a possible causative mechanism for the carbon 

isotope excursion CM 6  (Shevenell et al., 2008), again on the basis o f rising 

temperatures following the expansion o f an ice sheet. The carbon isotope excursion at 

CM 6  shares this temporal relation to the expansion o f an ice sheet with Oi-1 and Mi-1, 

and so it may be reasonable to expect a similar causal mechanism (if the causal 

mechanism is in fact related to the ice sheet expansion and is not coincidental). 

However, none o f these records show direct and unequivocal evidence for silicate 

weathering to be the ultimate driver o f the changes observed in the carbonate carbon 

isotope record. As has been stated above, many factors combine to ultimately 

determine the 513C value o f the carbonate which makes it into the geological record.

More direct evidence for changing CO2 following an ice sheet growth are available 

following the EAIS expansion from published alkenone based reconstructions (Pagani
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et al., 1999a). Pagani et al. (1999a) suggest that a 60ppm rise in atmospheric CO2 from 

14 to lOMa is due to the silicate weathering mechanism, and although this apparent 

CO: rise is concurrent with a rise in temperature, the major positive 8 13C rise of the 

middle Miocene has abated by this point, and the 8 13C record is fairly flat.

The above examples show that although the silicate weathering hypothesis has been 

proposed for several stages in the Cenozoic, the evidence for it is not wholly 

convincing, and so care needs to be taken when applying it to CM6 . The approach 

here is to investigate using models how large a change in silicate weathering would be 

required to drive the observed increase in the carbonate 8 13C values recorded at CM 6 , 

and what are the implications for other climate system parameters such as atmospheric 

CO2 and organic matter 8 13C .

6.1.4 M ethane

The role methane plays in the global carbon cycle, and its influence on carbon 

isotopes, is an area o f active research, with much focus concentrated on the likelihood, 

effects and recognition o f rapid release events o f methane from clathrates (such as its 

possible influence at the PETM (e.g. Dickens et al., 1995). The influence o f smaller 

scale and less dramatic methane cycling have not been overly focused on, but due to 

the extreme 8 l3C signature o f methane released from clatharate sources (~ -60%o) the 

possibility o f methane influencing the 8 13Ccarb record should not be ignored. The 

stability field for the formation of methane clatharates in ocean basins is delicate, and 

rapid changes in ocean temperature and depth could quickly change the extent of 

ocean floor available for their formation from methane produced in the sediment pile 

(e.g. Reagan and Moridis, 2008). As such, temperature and sea level variations could 

have a profound effect on the amount o f methane released from the sea floor. If
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temperatures were to drop, the area o f seafloor within the stability field for the 

formation o f methane ice could expand rapidly, reducing from the ocean-atmosphere 

system a source o f carbon, and through oxidation o f the methane, CO2. The reduction 

o f the input o f methane to the carbon system would also have an effect on the 513C of 

the ocean reservoir, by reducing a source o f carbon with a very negative 513C. This 

could then in turn cause an increase in 5 13Ccarb.

6.1.5 Tem perature

1 *>
Global ocean temperature change could also have a more direct influence on 5 Ccarb. 

At lower ocean temperatures, both isotopic fractionations between CO2 in water in the 

gaseous and aqueous phases ( e c o 2 ( g)-co2(aq )), and between aqueous CO2 and carbonate 

(eco2(aq)-carb) will be greater (Hayes et al., 1999; Mook et al., 1974; Romanek et al., 

1992). Also affected by temperature is the capacity of the oceans to uptake CO2 (i.e. 

the Henry’s law constant, Kh (Weiss, 1974)), so at lower temperatures, all with 

atmospheric CO 2 held constant, sp will be greater. The combined effect o f this is that 

as temperature decreases 8 13Ccarb will increase. As there are changes in ocean 

temperatures over CM 6 , as recorded both at our site and at sites spread globally, it is 

important to quantify the size o f the temperature effect on the 8 13Ccarb when trying to 

interpret CM 6 .

6.1.6 V olcanic and M etamorphic C 0 2 Flux

The global input o f CO2 from volcanoes is an important boundary condition to the 

carbon system, and the effect o f this parameter changing should also be considered. As 

the carbon isotopic signature of the incoming carbon from volcanism is comparable to 

that derived from riverine flux, changes in the 8 13C o f carbonate and organic carbon
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deposited would be due to the effect o f changing sp as atmospheric CO2 changes. The 

direction and magnitude o f changes in the carbon isotope signature o f carbonate 

leaving the system can be tested, and is briefly considered at the end of this chapter.

6.1.7 M odel D escription: KA1

Model KA1 is adapted from Kump and Arthur (1999) and is a one box model o f the 

ocean/atmosphere system with each carbon flux carrying an appropriate 513C 

signature. The workings o f the model can be described by two principle equations 

describing the movement o f carbon through the carbon cycle (equation ( 36 )) and the 

513C of the carbonate and organic carbon being buried (equation (3 7 ) ) .

d̂ L =  K . o r g  +  K , l .  ~ F b.org  ~ F . ,s i !  ( 36 )

M 0 = The amount o f inorganic carbon in the ocean and atmosphere.

F  = Input flux from weathering o f organic matter.

Fvolc = Input flux from volcanic activity 
Fb.org = Output flux o f buried organic matter.

FWJfl = Output flux from weathering o f silicate rocks

<lb<a,h K  (< j ~  ) ~  F b.orSA  B

dt M .
( 3 7 )

dcarb = Isotopic composition o f carbonate sediments.

F m = Combined volcanic and weathering flux.

d w = Average carbon isotopic composition o f riverine flux into the ocean.

A5 = Isotopic difference between organic matter and deposited carbonate (expressed 
as a negative).

The model assumes that the atmosphere is fully equilibrated with the ocean, and that 

the ocean is saturated with respect to CO2, on the timescales under investigation here 

(thousands to tens o f thousands o f years) this is most likely reasonable (Broecker and 

Peng, 1987). Atmospheric pCC>2 is then calculated by scaling it to the change in the 

amount o f inorganic carbon in the ocean/atmosphere with time (equation ( 38 )).
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pC 02(t) = pC 02(0) ( 3 8 )

One potentially problematic assumption inherent with this treatment of pCOo is that 

there are no large changes in temperature.

The effect o f changing photosynthetic isotopic fractionation is dealt with using 

equation ( 39 ), which assumes equilibration according to Henry’s law at a fixed 

temperature o f 25 °C and constant [PO4] o f 0.25 pmol k g 1.

(159.s[PQ4)  + 38.39 
0.034p C 0 2

-3 3  ( 39 )

model includes a simple negative feedback on in increases in PCO2 , relying on 

changing the silicate-carbonate weathering balance as PCO2 changes to attempt to 

return CO2 to steady state values after perturbation o f the carbon cycle has been 

removed (i.e. Berner et al. (1983)).

rr _  r 0  p C 0 2(t )

pC 02{ 0)

Kump and Arthur (1999) applied this feedback (equation ( 40 )) for some o f their 

model runs, however as silicate weathering has been proposed as key in understanding 

CM 6  (see below) and is an area o f interest in the models run here, the feedback is 

active in all model runs.

Initial conditions for model runs are shown in Table 8 . All model runs were allowed to 

equilibrate for 1000 time steps (1 Myrs) before being perturbed, and runs were 

typically 2000 time steps long. Simulations were compiled and run using MATLAB 

Simulink using solver ode45 (Dormand-Prince).
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Variable Initial Condition

Fw 5 x 10l5mol C kyr ' 1

F1 w.org 10 x 10l5mol C kyr' 1

F  w.sil 6  x 1015mol C kyr ' 1

F  vole 6  x 1015mol C kyr ' 1

F  b.org 10 x 1015mol C kyr' 1

M0(0) 3.8 x 1018mol C kyr' 1

[POT3] 0.25 pmol Kg ' 1

5w -5%o

PCO2(0) 328 ppm

Table 8 Model KA1 initial conditions.

6.1.8 M odel Description: LS3

Model LS3 is adapted from Louis-Schmid et al., (2007) and is a mass-balance model 

similar to KA1. However LS3 includes more complexity, including treatments o f sea 

surface temperature and the ability to add emissions from methane clathrates. The 

model is based on two differential equations, describing the change in dissolved 

inorganic carbon (DIC) in the system (equation ( 41 )) and the change in 513C of the 

DIC with time (equation ( 42 )).

^  ^ w .c a r b  ^ w .o r g  ^ 'meth ^ d ,c a r b  ^ d .o r g  (  )

Fvolc = Input flux from volcanic outgassing 
Fw carb = Input flux from weathering o f carbonate rocks 
Fw org = Input flux from weathering o f organic matter 
Fmelh = Input flux from methane hydrate dissociation 
Fd carb = Output flux from deposition o f carbonate sediments 
Fd flrg = Output flux from deposition o f organic matter
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j t (6DIC(r)DIC(t)) ,)f + 8ŵ „ f „ carb

+6 F + d Fvt ,org  ’ w .org  melh nieth 

.carb (»-Fd.carb ^d .org  (O-F, .org

dDic = Carbon isotopic composition of DIC reservoir
&voic= Carbon isotopic composition o f volcanic input
&w.carb= Carbon isotopic composition of weathered carbonate
<5W Org= Carbon isotopic composition o f weathered organic matter
<5meth= Carbon isotopic composition o f methane input
<5d.carb= Carbon isotopic composition o f deposited carbonate
&d.org = Carbon isotopic composition o f deposited organic matter

The effect o f  changing photosynthetic isotopic fractionation is handled in a similar 

way to KA1, however rather than assuming fixed Henry’s constant calculated using 

stationary temperature and phosphate concentration, both are treated as variables and 

Henry’s constant calculated using equation ( 21 ) with A and B constants in Table 6  

(Weiss, 1970; Weiss, 1974).

\nK H = A, + A2 (100/T) + A3ln(77100) (43)

+S[B, + #,(771000 + £ 3(77100)2]
K h = Henry’s constant 
T=  Temperature in Kelvin 
S  =Salinity

This treatment o f KH is a slight departure from the model presented in Louis-Schmid et 

al. (2007), which uses a routine from Zeebe and Wolf-Gladrow (2001), but results in 

model data which are more closely comparable to the results o f our CO2 

reconstructions as it is the same treatment used in the proxy reconstructions in Chapter 

5.
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Table 9 Solubility Constants (m ol.L1)

A i -58.0931
A 2 90.5069
A3 22.2940
B 1 0.027766
B2 -0.025888
Bs_______ 0.0050578

A weathering feedback is included within the model, using a similar concept to KA1 

but a slightly different application (equation ( 44 )). Model derived atmospheric CO2 

drives changes in the intensity o f weathering ( f w e a t h e r i n g )  which is then applied to the 

initial programmed weathering fluxes ( F W)Carb  and F w .o rg )  to give a time varying 

weathering flux. In order to balance the time varying weathering fluxes the carbonate 

burial rate (F^carb) is also modified from initial conditions by multiplying through by 

fweathering on the basis that increased delivery o f Ca ions to the ocean derived from more 

intense weathering would encourage carbonate burial (and vice versa).

•fweathering

Organic matter deposition (Fd,org) is also modified by fweathering via the phosphate term 

(equation ( 45 )), on the basis that increased delivery o f nutrients to the ocean would 

increase primary productivity.

F  F ,^ (0 ) - [ P Q 4-3](r) fw e a th e r in g  , .

d.org [PO~±]{steady state)

Further definitions o f variables and initial conditions are shown in Table 10. Models 

were allowed to equilibrate for 1000 time steps (1 Myrs) before being perturbed, and 

runs were typically 2000 time steps long (in total). Simulations were compiled and run 

using MATLAB Simulink using solver ode45 (Dormand-Prince).

pCP2(t) 
p C 0 2(steady state)

( 4 4 )
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Parameter Initial Conditions
b \ o l c -5%o
6  w . c a rb 2.9%o
b w .o r g -2 2 %o
b m e th -60%o
T(steady state) 31°C
[p c v 3] 0.5 pmol K g'1
pCC>2(steady state) 328 ppm
DIC(steady state) 3.8 x 1018 mol C K yr'1
F w . c a r b ( O ) 3.4 x 1016mol C K yr'1
F  d ,c a r b ( 0 ) 4.0 x 1016mol C K yr'1
F  w .o r g ( O ) 1.0 x 1016mol C K yr'1
F d . o r g ( O ) 1.0 x 1016mol C Kyr'1
F v o . c ( 0 ) 6.0 x 1016mol C K y r1
F  m e t h ( O ) 0 (conditions for methane runs defined

below)
b d . c a r b ( t ) = 5Dic(t) + 1.2
A d .o r g 8 p  “I- A c a r b  1 * 5

A c a r b = 11.98 -  0.12T

Table 10 Model LS3 initial conditions.

6.1.9 M odel Results

6.1.9.1 Experiment 1: Silicate Weathering Crash

Kump and Arthur (1999) model a scenario whereby silicate weathering is reduced by 

50% for 500 Kyrs which results in only a modest rise in carbonate 813C. Here, using 

KA1 (which is an adaptation o f the model used by Kump and Arthur (1999) with 

Miocene starting pCOz) the model is driven by a 50% reduction which continues for 2 

Myrs, and the results are shown in Figure 46. As expected, the reduction in silicate 

weathering flux drives a steady increase in atmospheric CO2 (upper panel, Figure 46).
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Figure 46. The response of model KA1 to a 50% reduction in silicate weathering 
(Fw.sii) which persists for 2 Myrs. Panel a; modelled atmospheric CO2 (solid line). 
Panel b; modelled e p (solid line). Panel c; modelled carbonate §13C (solid line) and 
organic matter 8I3C (dashed line).

This increase in atmospheric CO2 in turn affects ep and drives a decrease in organic 

5 l3C and an increase in carbonate 513C. The effect is gradual, as although the reduction 

in weathering flux occurs instantaneously at timestep 1000 it takes time for CO2 to 

build up and affect the 6 13C o f the buried material. After 500 Kyrs (almost double the
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time span of CM 6) pCC>2 has almost doubled (636ppm at 1492 time steps2) whilst 

carbonate 5 13C has increased only 0.58%c, from a steady state value of 0.2%c, to 

0.78%o (at 1492 time steps). Over the full run of 2 Myrs of reduced weathering, CO2 

reached 2280 ppm, whilst carbonate 513C increased to 1.37%c (at 3062 time steps).

6.1.9.2 Experiment 2: Organic Matter Burial Fluxes

Initial model runs (i.e. green line, Figure 47) suggested that organic matter burial 

could explain both the carbonate isotope record and the CO2 proxy reconstructions 

presented in Chapter 5. Therefore a suite o f model runs were undertaken to attempt to 

fit different aspects of the multi-proxy data records. The runs are summarised in Table 

11 and presented in Figure 47.

Table 11: Details of organic burial experiment model runs, see text and Figure 
47. One timestep is equivalent to 1 kyr.
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Green 19 1000 1247 - - 273 0.93
Dark
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65 1030 1071 1150 1191 259 1.68

Red 50 1000 1071 1122 1191 242 1,71
Light
Blue

50 1000 1071 - - 275 1.67

Yellow 25 1000 1140 - - 281 1.14
Pink 70 1000 1071 - - 255 2.24

2The dynamic timestepping interval of the ode solver results in uneven datapoint 
spacing, which is designed to capture the important details of curves without 
oversampling in order to reduce processing needs. Data from model runs is therefore 
reported at timesteps for which there is outputted data, rather than interpolating between 
datapoints
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Figure 47 (previous page): Results of organic matter burial experiment from 
model KA1. Panel a; model output atmospheric CO2 with proxy based results 
from boron proxy (black crosses) with 2o error envelopes (thin grey line; see 
Chapter 5 for details). Panel b; model output atmospheric CO2 as in panel a, with 
proxy based results from alkenone proxy (open black diamonds and line) with 2o 
error envelopes (thin grey line; see Chapter 5 for details). Panel c; model output 
carbonate 513C with fine fraction 813C data (black open squares and line). Panel 
d; organic burial rate used in model runs. For details of colour coding of model 
runs see Table 11.

6.1.9.3 Experiment 3: Methane fluxes

To model the influence o f methane on the carbon isotope system a model must first be 

set up with a steady state methane input which can then be perturbed. For this model 

LS3 is used, which allows the methane parameter to be varied. The global methane 

budget for the present day is not well known, however modem day estimates suggest 3 

- 6*1014 mol C Kyr*1 is released from the ocean floor (Fung et al., 1991; Lelieveld et 

al., 1998). As this is a relatively small carbon flux, it would be impossible to generate 

an excursion the size o f CM6. The model results above support organic carbon burial 

as the main cause o f CM6, and so in the following models it is assumed that an 

organic matter burial pulse is present. Investigated here is whether it is viable for 

methane to be driving the longer term orbital scale variations in the carbonate carbon 

isotope record, and whether this longer term variation, superimposed on a burial pulse 

o f organic matter, could be responsible for the twin peaks of CM6a and CM6b.

As a starting point the higher estimate o f methane flux is taken and the model run with 

this initial condition. To investigate whether reducing methane input on an 

astronomical timescale could be responsible for the longer term variations in the 

carbonate 513C record, once equilibrated the model is forced by a sawtooth halving of 

the methane input with a period o f 100 Kyrs (Figure 48 panel d). This is combined
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with a pulsed increase in organic carbon burial similar to experiment 2 above. The 

results are shown in Figure 48.
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Figure 48 (previous page): Results from methane experiment. Panel a; model 
output carbonate 513C (blue) and fine fraction 5I3C data (grey). Panel b; model 
output atmospheric CO2 (blue) and boron proxy CO2 reconstruction. Panel c; 
model output atmospheric CO2 (blue) and alkenone proxy CO2 reconstruction 
(grey). Panel d; model forcings from increased organic matter burial (blue line) 
and methane input (blue dashed line).

In this experiment, the effect on carbonate 813C is minor, causing only a 0.06%o 

oscillation in the carbonate carbon isotopes, the effect on atmospheric CO2 is also very 

small. It is possible that present day estimates o f methane cycling are not appropriate 

for the Miocene, so a second model was run with a significantly larger degree of 

methane input, with 4 times the present day methane contribution used (2.4X1015 mol 

C K yr'1). Also under this model the organic matter burial is increased by a single 25% 

increase lasting 200 Kyrs, to investigate whether methane variations may be 

responsible for the 2 peaks o f CM6, superimposed upon an organic matter burial 

increase. The results o f this model run are shown in Figure 49. In this scenario, the 

methane variations lead to a greater carbonate 513C oscillation o f 0.25%o, which is still 

less than the approximately 0.8%o seen in the data. Again, the effect on atmospheric 

CO: is small.
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Figure 49: (previous page) Results from a second methane experiment. Panel a; 
model output carbonate 813C (pink) and fine fraction 513C data (grey). Panel b; 
model output atmospheric C 0 2 (pink) and boron proxy C 0 2 reconstruction. 
Panel c; model output atmospheric C 0 2 (pink) and alkenone proxy C 0 2 
reconstruction (grey). Panel d; model forcings from increased organic matter 
burial (pink line) and methane input (pink dashed line).

6.1.9.4 Experiment 4: Changing Temperatures

The significant drop in temperature which is recorded by the Mg/Ca sea surface 

temperature proxy (see section 5.1.1) has the potential to affect the carbonate isotopes 

by changing ep (both directly (Hayes et al., 1999) and by increasing the amount of C 0 2 

which can be dissolved in surface water). In order to model this using model LS3 a 

simplified temperature reconstruction was constructed (Table 12) based on the Mg/Ca 

SST proxy data presented in section 5.1.1 This temperature model is used to drive a 

model run, with all other parameters held constant. This model run is shown in Figure 

50.

Table 12: Simplified temperature reconstruction used for model run. See also
Figure 50.

Age (Ma) Time steps (Kyrs) Temperature (°C)

13.86 1000 33.0
13.84 1020 30.0
13.60 1260 28.5
13.30 1560 28.0
13.00 1860 28.0

The temperature effect drives a 0.4%o increase in carbonate 513C, and a 1.8%o decrease 

in organic 513C. The effect is rapid, with the change in carbonate carbon isotopes 

occurring on the same timescale as the drop in temperature, however as the
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temperature change is unidirectional, so is the isotope effect, driving an increase which

reaches a new steady state, rather than causing an excursion which recovers.
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Figure 50: Results from modelling carbon isotope changes driven by the 
temperature variation reconstructed using Mg/Ca proxy. Panel a; temperature 
profile used to drive model (dashed line) and observed Mg/Ca SST (crosses). 
Panel b; the effect of temperature changes on £p. Panel c; the effect of 
temperature changes on carbonate SI3C (solid line) and organic 513C (dashed 
line).
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6.1.9.5 Experiment 5: Volcanic input variations

In the final experiment the effects of varying volcanic inputs on the carbonate carbon 

isotope system are investigated. The effect o f volcanic input changing is two-fold. 

Firstly it varies the atmospheric concentration o f atmospheric CO2 directly, which can 

then influence ep and the isotopic composition o f the material being buried, which in 

turn affects the composition o f the ocean carbon reservoir (as has been shown for 

silicate weathering, above). Secondly, it has a direct influence on the isotopic 

composition o f the ocean reservoir, as the isotopic composition o f the carbon output 

due to volcanism is -5%o, different to the 0%o input from weathering runoff (Kump and 

Arthur 1999). The approach in this experiment is to try and drive the changes in 

carbonate 813C and CO2 which is shown in the data record from RIP. The first model 

run involved a 50%  increase in volcanism which lasted for 25 0  Kyrs. The results are 

shown in Figure 51. The modelled C 0 2 increases to over 4 0 0  ppm rapidly, but the 

carbonate isotope record shows an initial decrease as the effect o f the more negative 

volcanic carbon is felt, and then increases as the effects of higher CO2 overcomes the 

more negative isotopic inputs. An increase in volcanism can, therefore, drive a 

positive carbonate 813C isotope excursion, but the effect is moderate (only a 0.2%o 

with a 50%  increase for 2 5 0  Kyrs) and is led by a negative excursion. Even with a 

1000%  increase in volcanic CO2 lasting for 2 5 0  Kyrs the ability to create a large 

positive carbon isotope excursion is confined to a 0.6%o excursion, as shown in Figure 

52 , and again is preceded by a large negative isotope excursion.
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Figure 51: Results from model KA1 showing an increase in volcanism of 50% 
over 250 Kyrs. Upper panel; Modelled atmospheric CO 2, with volcanic input 
param eter shown inset, units of F_vol are mol C K yr'1. Middle panel; modelled 
carbonate S13C output. Lower panel; modelled £p.
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Figure 52: The results of an order of magnitude increase in volcanic input (inset, 
upper panel; F_vol in mol C K yr'1), as modelled by KA1. The large two-stage 
carbon isotope effect is shown in the middle panel, with the effects of the 
increased C 0 2 on isotopic fractionation in the lower panel.
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In Chapter 5 the proxy CO 2 data recorded a reduction in atmospheric CO2 over CM6. 

In a final experiment the possibility that this decrease is driven by reduced volcanic 

activity in investigated. The two CO2 proxies indicated slightly different degrees of 

C 0 2 reduction, and so both these reconstructions are targeted, and the results shown in 

Figure 53. In order to match the reduction to 270 ppm over 250 Kyrs, as shown by the 

alkenone reconstruction, volcanic input was reduced by 25%. However, in order to 

approach the rapid decline o f 63 ppm over just 71 Kyrs suggested by the boron 

reconstruction, it was necessary to shutdown volcanism entirely.
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Figure 53: Modelling the proxy data C 0 2 reconstructions from Chapter 6, as if 
all the recorded C 0 2 reduction is driven by volcanism. The blue model was the 
attem pt to model the boron reconstruction (shown as black crosses in the top 
panel) and the red dashed line is the attem pt to reconstruct the alkenone C 0 2 
data (shown in the middle panel by the black open diamonds).
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6.1.10 Discussion

The models above demonstrate that although there are many mechanisms available 

which can lead to a positive carbon isotope excursion, not all can drive the type of 

excursion seen at CM6.

A shutdown o f silicate weathering on a continental scale could cause changes which 

could be seen in both carbonate carbon isotope and atmospheric carbon dioxide 

records. However, in order to even approach the 1.6%o carbonate 513C increase 

recorded at CM6, a reduction in silicate weathering would have to persist for 

significantly longer than the < 1 0 0  Kyrs which it takes to reach the first peak in 

carbonate 513C; CM6a. In fact, even after 2 million years of reduced silicate 

weathering, only a 1.15%o increase in carbonate 513C is reached, and there does not 

appear to be the capacity in the carbonate system to push carbonate 8 l3C to the 1.6%o 

seen at CM6 via a silicate weathering mechanism. Concurrent with the rise in 

modelled carbonate 513C is a significant increase in atmospheric CO2 (upper panel; 

Figure 4 6 ), and even after only 5 0 0  Kyrs o f reduced drawdown from silicate 

weathering, CO 2 has almost doubled. The increase in ep also drives down organic 513C, 

which drops 2.8%o in the first 5 0 0  Kyrs and 4.75%o after 2 Myrs.

None o f these results are consistent with the data from RIP. The modelled rise in CO2 

is dramatic, and although it is true that the uncertainty envelopes for the alkenone and 

boron datasets presented in Chapter 5 are quite large, a doubling of C 0 2 in 500 Kyrs 

should certainly be measurable by these methods. Instead the data show a decline in 

atmospheric CO2 in both records. Even if  it could be accepted that our CO2 proxy 

results were unreliable -  such a dramatic rise in atmospheric CO2 would certainly lead 

to an increased greenhouse effect and a rise in temperatures, and again the temperature

149



proxy data presented in Chapter 5 show a decline rather than rise in temperature. The 

rapid rise in carbonate 5 ljC values seen over CM6 are at odds with the more gradual 

rise which would be observed if  silicate weathering were the driver.

On the basis o f these model results, it seems that a silicate weathering reduction is 

untenable as a driver o f the changes seen over CM6.

The success o f the organic burial experiments to match both the carbonate carbon 

isotope and atmospheric carbon dioxide records suggest that organic carbon burial 

may be the main driver o f CM6. The suite o f models produced have varying degrees 

o f success in matching each o f the three records. The models which match most 

closely the carbonate carbon isotope record (which has the highest degree of analytical 

accuracy and the fewest underlying uncertainties), are within the uncertainties of the 

CO2 records. The consistency between the model and two independent carbon system 

proxies is strong evidence that organic matter burial could drive the observed changes. 

The models which most closely match the data are those which are driven by twin 

pulses o f organic matter burial, which may not be surprising given the twin peaks of 

CM6. These models were driven with instantaneous increases of organic matter burial 

o f 50%. This is a high figure, and whether this is a value which is plausible is beyond 

the scope o f this work, however the size o f CM6 does suggest a major shift in the 

carbon isotope system at the time, and so large and perhaps unique events in the 

reorganisation o f carbon burial may not be out o f the question. It should also be noted 

that although the fit between model and data is very good, the model itself and the 

driving perturbations are very simplistic, and, as discussed further below, there may 

not be only one mechanism at work driving the changes seen at CM6. It may be that 

further feedbacks and magnifying effects not dealt with in KA1 (such as methane and
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temperature variations) could also be important. Nonetheless, the close fit between the 

data and model, unique amongst all scenarios tested here, should be seen as strong 

evidence that the two proxy records (CO 2 and carbonate 513C) are pointing towards 

what has become the traditional explanation for this and many other shifts in carbon 

isotope records; that organic matter burial changes drive what is seen in the carbonate 

carbon isotope records. It should be noted, however, that it is the combination of CO2 

and carbon isotope records at CM6 which point strongly to organic matter burial, and 

this does not strengthen the case for suggesting that all carbon isotope excursions can 

be directly interpreted as organic matter burial indicators without further secondary 

proxy evidence.

Secondary effects which may be important when interpreting the records could include 

methane cycling and the effect o f changing ocean temperatures. The methane models 

presented above suggest that although methane can have a effect on the global carbon 

isotope reservoir, the effect is likely to be minor. Although methane fluxes are not well 

known now or in the past, it is unlikely that they were large enough to have a 

significant effect. Although the second methane experiment was able to demonstrate 

that rapid changes in carbon isotopes can be driven by methane flux changes, the size 

o f methane flux required to come close to even the background changes in carbonate 

813C is unlikely to be reasonable in a real world scenario, and the size o f flux required 

to cause the large excursions o f the Monterey excursion as envisioned by Berger 

(2007) make methane an unlikely driver o f the CM events.

Temperature change should also be considered. As shown above, a global change in 

ocean temperature can have a significant effect on the carbonate record. Whether the 

large temperature drop demonstrated by our records is reasonable (see discussion in
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Chapter 5) and whether similar temperature changes happened globally (which would 

be required to cause the modelled change in 513C) is uncertain, but the model does 

demonstrate that simple temperature changes need to be considered when interpreting 

carbonate 513C records.

The final volcanic flux experiments demonstrated that although changes in volcanism 

can potentially lead to perturbations in the carbon isotope system, it is unlikely that 

this mechanism could lead to an excursion similar in nature to CM6. Both the size and 

rapidity o f change in both the carbon isotope and carbon dioxide proxy records are 

inconsistent with the variations which could be reasonably caused by variations in 

global volcanism.
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6.2 Palaeoproductivity records across CM6
6.2.1 Introduction and Assum ptions

The modelling results discussed in section 6.1.10 suggest that the most likely cause of 

CM6 is an increase in the burial o f organic matter. One mechanism to increase the 

burial o f organic carbon would be increasing the primary productivity o f the ocean, 

driving increased export productivity and likely greater burial o f organic matter. It is 

therefore necessary to look for any evidence o f increased productivity over CM6.

The recently published multi-site record o f Miocene productivity in the Atlantic of 

Diester-Haass et al. (2009) is reproduced in Figure 54 (Site 1265 is not reproduced 

here as it does not show a clearly defined CM6). This record, produced from benthic 

foraminiferal accumulation rates (BFAR) does not show a long term increase over the 

longer-term Monterey carbon isotope excursion, and the authors conclude that there is 

little evidence o f increased productivity over the whole o f the excursion. However 

closer inspection of the record does reveal some correlation between the productivity 

and carbon isotope records at CM6, and hints that perhaps there is increased 

productivity during this particular carbon maximum event.
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Figure 54: Benthic foraminiferal carbon isotopes and palaeoproductivity records 
(in gC cm'2 k y r'1) derived from benthic foram iniferal mass accumulation rates 
from (Diester-Haass et al., 2009). Records are from ODP sites 608 in the North 
Atlantic and 925 in the equatorial pacific.



An alternative productivity proxy to the BFAR used by Diester-Haass et al. (2009) is 

the use o f carbonate Sr/Ca ratios. Coccolith carbonate Sr/Ca has been suggested as a 

productivity proxy on the basis o f down-core, core-top and culture studies (Rickaby et 

al., 2002; Stoll and Bains, 2003; Stoll et al., 2002a; Stoll et al., 2001; Stoll and Schrag, 

2000; Stoll et al., 2002b). Sr2+ substitutes for Ca2+ ions within the calcite lattice, and 

inorganic experiments have shown this to be dependent on precipitation rates and 

temperature (Lorens, 1981; Malone and Baker, 1999; Mucci and Morse, 1983). The 

precipitation rate effect comes about by a kinetic effect, the larger ionic radius o f Sr 

causes it to be forced out o f the crystal lattice as precipitation proceeds in order to 

lower the lattice energy. At higher precipitation rates, there is less time for equilibrium 

to be reached at each lattice point, and so more strontium is trapped (Lorens, 1981). So 

long as carbonate ion concentration and pH remains fairly constant, calcification rates 

in coccolithophores is closely linked to productivity (Riebesell et al., 2000b). 

Therefore on timescales shorter than the residence times of Sr (5 Myrs) and Ca (1 

Myrs) Sr/Ca ratios can be used to reconstruct past productivity changes. On longer 

timescales the Sr/Ca ratio o f the ocean has changed, and so when used for productivity 

reconstruction ratios are usually reported as distribution coefficients; Dsr (equation ( 

46)).

D _  ̂C c i  carbonate , A  ̂ „
Sr = c ( 46 )

seawater

Seawater Sr/Ca has been reconstructed using depth-corrected records from benthic 

foraminifera (Lear et al., 2003), and so a mean value o f the timescale o f the Ras II- 

Pellegrin section can be estimated (Figure 55)
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Figure 55 Cenozoic seawater Sr/Ca reconstructed from benthic foraminiferal 
records replotted from (Lear et al., 2003). The values corresponding to the 
timespan of the RIP section are highlighted in red, and give an average value of 
8.9 mmol/mol over the period studied here.

The separation o f a monospecific sample o f coccoliths from a sediment sample is, 

although technically possible, a difficult and involved process (Stoll and Ziveri, 2002). 

Investigations into the derivation o f  a productivity signal from bulk and fine fraction 

sediment have therefore been undertaken, where the dominant source o f analysed 

calcite is from coccoliths (Billups et al., 2004). These authors propose “that
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productivity is a plausible explanation for the observed temporal [over the Cenozoic] 

Sr/Ca pattern in bulk and fine fraction sediment”.

6.2.2 R esu lts

Fine fraction (<63 pm) Sr/Ca records are shown in Figure 57 (Data Table 10). 

Scanning Electron Microscope investigation o f the fine fraction samples showed that a 

significant proportion o f the calcite material was composed o f fairly large (~10 pm) 

coccoliths (Figure 56). Microprobe analysis performed on one sample using 

Wavelength Dispersive Spectrometry (WDS) suggested that the fine fraction value 

was consistent with values o f individual coccoliths (although the analytical precision 

o f the WDS method is poor for thin coccoliths).

Figure 56: A typical SEM view of fine fraction (<63 pm) material (this from 
sample MT4) showing multiple large coccoliths. Note that the aggregate material 
in the top of the figure also contains multiple coccoliths.
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Figure 57: Carbonate carbon isotope records from RIP upper panel (black open 
squares and line are from this study, grey closed squares are the higher 
resolution work of Abels et al. (2005)) with CM6 highlighted in grey. Lower 
panel; fine fraction (< 63 pm) Sr/Ca records (mmol/mol, also shown as DSr using 
reconstructed Miocene seaw ater Sr/Ca (see text)), black closed diamonds with 
mean line in blue. Coccolith fraction as measured by analytical SEM (WDS) is 
shown as the red square with 2a e rro r  bar.

Observed Sr/Ca increases from the start o f the record from 1.1 mmol/mol to 2.2 

mmol/mol over just 100 kyrs, reaching a peak coinciding with CM6a. The values then 

decrease over before and across CM6b, dropping to 1.5 mmol/mol over the next 200 

kyrs, reaching a local minimum at 13.6 Ma before increasing again to 2.0 mmol/mol 

and stabilising.
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6.2.3 Discussion and Implications

If the Sr/Ca signal were interpreted as a productivity signal it would suggest that, 

similar to the BFAR records from the Atlantic, there was an increase in primary 

productivity over CM6 at the site o f the Ras Il-Pellegrin section. If an increase in 

primary productivity then led to increased export productivity and greater burial of 

organic matter, then this would further support the organic burial hypothesis for CM6.

However, direct interpretation o f the fine fraction Sr/Ca data needs to be done with 

some caveats. The principle assumption within this interpretation is that the fine 

fraction signal represents a true changing coccolith signal. However different coccolith 

species have been shown to have different Sr/Ca signatures (Stoll et al., 2002a), and so 

a similar signal could be produced by changing to proportion o f species living at the 

sample site. As temperature has also been observed to affect the uptake o f Sr into the 

calcite lattice this should also be considered (Malone and Baker, 1999). The decrease 

in temperature observed across the E3 ice growth event could also produce an increase 

in Sr/Ca ratios, although the proportion o f the signal which could be explained by this 

mechanism is difficult to ascertain.

Beyond the difficulties o f Sr/Ca ratios in coccoliths themselves, an underlying 

assumption here is that the fine fraction material is predominantly coccolith and 

coccolith debris, and that the observed signal is representative of coccolith material. 

Variations in the Dsr o f planktonic foraminifera have been shown to result from test 

size, growth rate and temperature (Elderfield et al., 2000), and benthic foraminifera 

Dsr has been shown to vary with water depth (McCorkle et al., 1995). Addition of 

calcitic material from these sources could have the potential to severely limit the 

potential of fine fraction Sr/Ca as a productivity indicator.
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Nevertheless, the agreement in the positive trends o f BFAR and fine fraction Sr/Ca 

productivity indicators over CM6 should be taken into account when considering the 

evidence for the various hypotheses for CM6.
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6.3 The Monterey Excursion

The Monterey excursion is a long term positive carbon isotope excursion which spans 

from -13.5 to -16.9 Ma. The excursion coincides with a period of global warmth and 

high sea levels and the cause of the isotope excursion remains unclear (Vincent et al., 

1985; Vincent and Berger, 1985; Kennett, 1986; Woodruff and Savin, 1991; Flower 

and Kennett, 1993, 1994; Holboum et al., 2004, 2007). To span the entire excursion, 

records from the Ras il-Pellegrin and Moria sections detailed elsewhere (Chapters 3 

and 4) are combined with a record from ODP Site 761B. ODP Site 761B lies on the 

Wombat Plateau, north west o f Australia (16° 44.23’ S, 115° 32.10’ E; Figure 58). 

Samples from this site were analysed for bulk carbonate carbon and bulk organic 

carbon stable isotopes (Figure 59; Data Table 11 and Data Table 12; sections 2.1 and 

2.2). The long term bulk organic and carbonate carbon isotope records show a long 

term positive excursion in both the carbonate and bulk organic carbon isotope records 

(Figure 59).

110'E 170‘E

4

ODP 761B
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Figure 58 (previous page): ODP Site 761B lies on the W ombat Plateau, northwest 
of Australia (Leg 122; 16° 44.23’ S, 115° 32.10’ E) at a water depth of 2168 m. 
DSDP Site 588 lies on the Lord Howe Rise, east of Australia (Leg 90; 26° 6.7’ S 
161° 13.6’ E).

To better visualise the relationship between carbonate and organic carbon isotope 

records, A613C can be defined as the difference between the two records (equation ( 47 

))

A d”C - d " C ^ - 6 ”Corg ( 4 7 )

CM:

2

1

0
Site 761

r  -20
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r- -24

r -25
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Figure 59: Records of middle Miocene carbon isotopes from carbonate and bulk 
organic carbon from Ras il-Pellegrin, ODP site 761 and Moria. Bulk organic 
records are shown in orange and purple (this study). Bulk carbonate records 
from Moria and RIP are shown in blue (this study) along with records from ODP 
site 761 from Holbourn et al. (2004; black line) and Lear (pers. comm. 2009; grey 
line). The position of CM events is indicated by the boxes above follow the 
definitions of Holbourn et al. (2004) and W oodruff and Savin (1991), see Table 
13.
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Figure 60: ASI3C records over the middle Miocene from the Moria and RIP 
sections in the M editerranean and ODP Site 761B NW of Australia (orange and 
purple lines, lower panel), shown here with the carbonate oxygen isotope record 
from Site 761B (dark green; Holbourn et al. 2004; light green; C. Lear pers. 
comm., 2009) and carbonate carbon isotope records from Site 761B (black line; 
Holbourn et al., 2004; grey line; C. Lear pers. comm., 2009) and from RIP and 
Moria (blue lines). The positions of CM events are marked by shading and follow 
the definitions of Holbourn et al., (2004) and W oodruff and Savin (1991). Due to 
slight differences in the age models of RIP and Site 761B the RIP record has been 
shifted by 0.09Myrs based on the position of CM6 in the S13C record for each site. 
A6,3C records have been normalised to their individual means.
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To construct the composite record shown in Figure 60 the A813C records for each site 

are normalised to their means. The A813C record (Figure 60) shows that both the site 

76IB and RIP records have increased A813C across CM6. At RIP this increase is 

caused by increases in the carbonate 513C which are coincident with decreases in bulk 

organic 813C at CM6a and CM6b, whereas at site 76IB this increase is driven 

primarily by the increase in carbonate 813C at CM6. The Site 76IB record shows 

increasing A813C coinciding with the increase in 8lsO which marks the growth of ice 

at the MMCT, this trend is supported by the Mediterranean sites, with Moria showing 

generally lower A813C than at RIP.

Table 13: Timings of CM events used throughout.

Start End Start End
Event (Holbourn et al., 2004; W oodruff and Savin, 1991) (Abels et al., 2005)

CM1 16.583 16.389

CM2 16.131 15.906

CM3 15.841 15.357

CM4 15.228 14.938

CM5 14.616 14.241

CM6 14.003 13.713 13.844 13.636

The interpretation o f bulk organic carbon isotopes is complicated by uncertainty with 

regard to the source of the organic matter. The possible interpretations are covered in 

greater detail in section 3.3 but are briefly: (1) A single marine source, allowing 

interpretation o f changes in ep in concert with carbonate 813C, (2) changes in source 

organism but predominantly a marine source, (3) changes in the contribution of 

terrestrial OM reaching the site, (4) changes in ocean stratification.
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Figure 61: The bulk organic carbon isotope record (purple line; this study) and 
carbonate carbon isotope record (grey line; C. Lear pers. comm., 2009; black 
line; Holbourn et al., 2004) from ODP Site 761. The positions of Carbon 
Maximum events are indicated by shading and follow the definitions of Holbourn 
et al. (2004) and W oodruff and Savin (1991).

As (2) and (3) are variations which will be specific to a single site, the addition of a 

second record can go some way to determining whether these are plausible 

interpretations. This is possible for CM6 with the addition of a record from ODP Site 

761 (Figure 61) to the records from Ras il-Pellegrin (Figure 62). Both records do show 

increases in A513C over CM6, however for the Site 76IB record this is primarily 

driven by the increase in carbonate 813C and, unlike at RIP there is no statistically 

significant correlation (positive or negative) between carbonate and organic 513C over 

CM6 at 76IB (r=0.2, n=10, p>0.05) it is therefore not possible to rule out local 

variations as the cause of the negative correlation between carbonate and organic 513C 

over CM6 at RIP.

At the start of the M onterrey Excursion, between 16.9 and 15.5 Ma, carbonate 
and organic 8 °C  track each other closely, resulting in essentially flat A813C (

Figure 59; Figure 60). As whatever is driving the increase in 513C is affecting both 

organic and carbonate 813C equally, is seems plausible that it is the 513C of the whole
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ocean carbonate reservoir (8DIC) which is changing. The “Monterey Hypothesis” 

invokes an increase in burial of organic matter as a driver for the increase in carbonate 

813C (Vincent and Berger, 1985) and an increase in organic burial would drive 8DIC 

more positive as more 12C enriched OM is removed from the system and it is possible 

that the stable A813C reflects that. However if an increase in burial was accompanied

by a drawdown o f atmospheric CO2 (a second tenet o f the Monterey Hypothesis;

1 ̂Vincent and Berger, 1985) and bulk organic 8 C reflects a surface water which is in 

equilibrium with the atmosphere, then A813C would be expected to decrease as

13atmospheric CO2 and therefore sp decreased. The evidence from RIP is that A8 C is 

not reflecting such a reservoir, as the CO2 reconstructions presented in Chapter 5

13 13record stable or decreasing CO2 as A8 C increased, it is possible therefore that A8 C 

represents a broader organic matter reservoir and not just that in equilibrium with 

atmospheric CO2. It is therefore plausible that the main driver for the 813C of this 

reservoir at the start o f the Monterey Excursion is changing 8DIC driven by an 

increase in OM burial, and that the A813C presented here supports the Monterey 

Hypothesis.
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Figure 62: The bulk organic carbon isotope record (orange line) and carbonate 
carbon isotope record (blue line) from Ras il-Pellegrin. The position of the CM6 
event is indicated by shading.

Following the period at the start of the Monterey Excursion where A513C is stable is an 

increase in A513C from -15.5 to 13.5 Ma. If A513C is being driven by changes in ep 

forced by atmospheric CO2, then the increase in A513C from -15 to 13.5 Ma would 

suggest an increase in CO2 . An increase in CO2 is supported by neither the boron nor 

alkenone CO2 reconstructions presented in Chapter 5 for the period over CM6, nor is it 

supported by longer term, lower resolution records which show either stable or 

decreasing CO2 over this period (Pagani et al., 1999; Pearson and Palmer, 2000; 

Kiirschner et al., 2008) and so is not the preferred interpretation. As the bulk organic 

513C more likely incorporates material from throughout the whole of the photic zone, 

rather than purely the near surface (as alkenone 513C does), it is plausible that data 

would seem to support the hypothesis that there were changes in ocean stratification in 

the Miocene record, and that it is this which leads to the increase in A813C .
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Under this scenario, increased temperature stratification allows a thermocline to 

develop, with cooler waters in the deeper part o f the photic zone. These cooler waters 

have a greater ability to hold dissolved CO2, and so the [C 02(aq)] is higher. This 

increases the isotopic fractionation during formation o f organic matter, driving the 

813C of organic matter lower. Although only the deeper photic zone is affected, this is 

still capable o f pushing the 813C of bulk OM preserved at the sea floor to lower values. 

The potential magnitude o f a deep photic zone cooling can be investigated by a simple 

mass balance (equation ( 48 )).

dA Fs + f d ) = dsFs + dDFD (  4 8  )

dx = 813C o f organic matter exported to the sea floor.
<5S= 813C of organic matter exported from the shallow photic zone. 
dD = 813C of organic matter exported from the deep photic zone.
Fs = Proportion o f exported organic matter sourced from the shallow photic zone.
Fd= Proportion o f exported organic matter sourced from the deep photic zone.

The sensitivity o f the 813C of organic matter exported from the deep photic zone to 

temperature can be calculated using equations ( 12 ) -  ( 22 ) and is ~0.4% o/°C for an 

atmospheric C 0 2 level o f ~300ppm. Coupling this sensitivity with the mass balance 

shown in equation ( 48 ) allows estimation o f the proportion of OM export from the 

photic zone which is affected by a decrease in temperature in order to drive a specific 

change in A813C (Figure 63). This model assumes that all organic matter reaching the 

sediment record is effected by [C 0 2(aq)] in the same way, and assumes that this 

sensitivity is constant, this seems unlikely, and so the FD predicted for a given 

temperature and 813C are likely to be an underestimate.
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Figure 63: Relationship between changes in deep photic zone tem perature (AT) 
and the proportion of the photic zone affected (FD) in order to drive a specified 
change in the 5 ,3C of exported organic m atter (5X; labelled lines). The 
tem perature dependent sensitivity of 0.4%o/°C used to construct this plot is valid 
for an atmospheric CO 2 of ~300 ppm , which is the mean CO 2 estimated over 
CM6. For example, to drive a l%o reduction in 5X driven by a 4°C drop in 
tem perature requires 63%  of the photic zone to undergo such a change in 
tem perature (see grey lines).

If the changes in the A8I3C record do represent global changes in ocean stratification 

then it should be possible to identify these trends in other records from other sites. 

Flower and Kennett (1993a) generated high resolution stable isotope records from 

Globoquadrina dehiscens and Globerigerinoides quadrilobatus from DSDP Site 588 

(S. Pacific; 26° 6.7’S, 116° 13.6’E; Figure 58). These two planktonic foraminifera
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inhabit surface (G. quadrilobatus) and deep surface (G. dehiscens) waters, which 

allow for reconstruction o f the temperature difference between the surface and deep 

surface waters. To identify changes in thermal stratification A5lsO can be defined as 

the difference between the records from the two species (equation ( 49 )).

A d " 0  = dnOG vM ba,us -  Mscmsil8, (4 9 )
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Figure 64 previous page: The carbon isotope record from benthic foraminifera 
(Cibicidoides sp.) from DSDP Site 588 shows the familiar pattern of CM events 
(panel a; black line), with the stepped transition of the MMCT visible in the 
oxygen isotope record (panel b; red line). By using shallow dwelling foraminifera 
Globigerinoides quadrilobatus (panel c; green line) and deep surface dweller 
Globoquadrina dehiscens (panel d; blue line) a record of A8lsO can be constructed 
(panel e; pink line). Also shown here is a equivalent ASST axis generated from 
the A5lsO using the temperature sensitivity of Erez and Luz (1983) for 
Globigerinoides sacculifer. All data are from Flower and Kennett 1993a, plotted 
on an age model updated by Holbourn et al. 2007.

The A5lsO record from Site 588 (Figure 64) shows patterns similar to that seen in the 

A513C record (Figure 65). There is a long term increase in A5lsO over the MMCT, 

from -1 5  to 13.75 Ma, which can be interpreted as an increase in thermal stratification 

as the ice sheet grew (Figure 65). The individual isotope records show that this is 

driven by a greater cooling o f the deeper surface waters (Figure 64), which is 

consistent with the interpretation o f the A8l3C record presented above.

It is plausible that the development o f increased Southern Component Water 

developed during these phases o f ice sheet growth, and that the increase in this cool, 

deep water mass led to increased thermal stratification throughout ocean basins 

(Flower and Kennet 1993a). The A5lsO suggests that the deep photic zone represented 

by G. dehiscens cooled by ~3.5°C more than the surface. Using the mass balance 

above (Figure 63; equation ( 48 )), in order to drive the ~l%o increase in A513C by an 

average cooling o f the deep photic zone by ~3.5°C over 80% of the photic zone would 

have to be affected. This assumes that the temperature change represented by G. 

dehiscens at Site 588 is representative o f broad water mass changes which would also 

be occurring at Site 761, and that the temperature recorded represents some average of 

some large part o f the deeper photic zone. Nevertheless it is plausible this mechanism 

is possible for at least some o f the change in A513C.
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Figure 65: AS,3C records from Site 761B (panel a; purple line) and RIP (panel a; 
orange line) increase at the same time as the increase A5,80  seen at Site 588 
(panel b; pink line; Flower and Kennett, 1993a). The timing CM events are 
shown as grey bars, and follow the definitions of Holbourn et al. (2004) and 
W oodruff and Savin (1991).
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7 Conclusions

The Monterey excursion is the one o f the largest carbon cycle perturbations recorded 

in the Cenozoic, as evidenced by a large positive carbonate 513C which spans from 

-16 .9  to 13.5 Ma in the middle Miocene. Superimposed upon the broader 513C 

excursion are at least seven shorter fluctuations which are recognised worldwide 

(CM 1-7; Vincent and Berger, 1985). In this thesis new palaeoclimate records are 

presented which cover the interval from -17.75 to 12.75 Ma, spanning the Monterey 

excursion.

Records from the Moria section, Italy, and ODP Site 761 cover the initiation and core 

o f the M onterey excursion, and span the interval o f growth o f the East Antarctic Ice 

Sheet (EAIS) which is represented by the Middle Miocene Climate Transition 

(MMCT). Coupled records o f bulk organic and carbonate carbon from these sites 

suggest that the central tenet o f the Monterey Hypothesis, that the carbonate 8,3C 

excursion is driven by increased OM burial, is correct. Furthermore, these records 

show tentative evidence o f enhanced oceanic temperature stratification as the MMCT 

progressed.

The Ras il-Pellegrin (RIP) section, Malta affords a unique opportunity to study the 

largest o f the CM events; CM6, at a site where a simple tectonic history and high 

sedimentation rate have resulted in exceptional preservation of both carbonate 

microfossils and organic biomarkers. The multi-proxy approach followed here allowed 

for multiple records o f p C 0 2, temperature and other climate parameters to be 

reconstructed at an unprecedented temporal resolution over the event. Both alkenone 

and boron palaeobarometry records show a -5 0  ppm CO2 decrease during CM6. The
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p C 0 2 decrease, coupled with the magnitude o f the carbon isotope excursion and results 

from carbon system models, are consistent with an increase in organic carbon burial, 

implying that the recently proposed silicate weathering hypothesis (Shevenell et al., 

2008) is untenable. Mg/Ca and U*7 based temperature reconstructions at RIP show 

high sea surface temperatures (SST, ~30°C) throughout the study interval, with the 

highest SSTs recorded immediately prior to CM6 declining rapidly at the start of the 

record coincident with the last phase o f EAIS growth (“E3”).

Atmospheric p C 0 2 was near 300 ppm throughout the interval covered by RIP, 

somewhat higher than estimates from previous lower resolution alkenone- (Pagani et 

al., 1999) and boron-based (Pearson and Palmer, 2000) studies. These differences are 

attributed to the use o f more accurate (and higher) sea surface temperatures in the case 

o f the alkenone estimates and a combination o f more accurate 6UB measurements and 

better foraminiferal preservation at RIP in the case o f the 6UB estimates. Crucially, the 

p C 0 2 estimates presented here suggest an emerging consensus for Miocene p C 0 2 

between these latest alkenone, boron isotope and leaf stomatal (Kiirschner et al., 2008) 

approaches. The large SST decrease associated with CM6 is coincident with only a 

moderate drop in p C 0 2 and the generally higher temperatures for atmospheric p C 0 2 

levels only slightly higher than pre-industrial values hint towards a higher than modem 

climate sensitivity in the middle Miocene. However, this conclusion requires further 

work to ascertain the true global mean average temperature of the middle Miocene. 

The results presented here do however, reaffirm the enigma of a warmer would with 

less ice than today but with comparable levels o f atmospheric p C 0 2.

174



8 Further Work
The Ras il-Pellegrin section is a superb geological archive for the 1.1 Myrs o f the 

middle Miocene which it spans. Although there has already been significant work 

done on the Blue Clay Formation the full potential o f the site has not yet been tapped. 

The exceptional preservation o f foraminifera make it an ideal location for geochemical 

studies beyond the scope o f this work. The high sedimentation rates make the site 

suitable for high resolution work beyond what has been studied here (the ~8 kyr 

resolution o f this work was achieved with a 35 cm sampling interval). Fluctuations in 

oxygen isotopes have already demonstrated that orbitally paced climate fluctuations 

are present throughout the period which the site covers (Abels et al., 2005) the 

preservation quality o f RIP would make the site ideal for multi-proxy investigation of 

these cycles at the glacial-interglacial timescale. The presence o f alkenones at a site 

with such exceptional preservation would allow high resolution alkenone isotope 

analysis to be coupled with foraminiferal boron isotopes over a substantial period of 

time at high resolution at a period where these two proxies are the best method of 

reconstructing past atmospheric CO2 . A study of this sort would greatly increase 

knowledge o f both proxies, as well as elucidating the interplay between CO2 and 

climate on glacial-interglacial timescales deep into the Cenozoic. The preservation of 

alkenones also increases the likelihood o f glycerol dialkyl glycerol tetraether (GDGT) 

preservation at the site, making possible temperature reconstruction using the TEXg6, 

alkenone unsaturation and M g/Ca palaeothermometers.

Although the Blue Clay Formation does not cross the Langhian-Serravallian boundary, 

the presence o f a clay rich interval within the Globigerina Limestone Formation (the 

“CRI” o f John et al. (2003)) would allow investigation of changes in conditions across
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the ice sheet growth should alkenone and foraminiferal preservation prove to be as 

good in that interval as in the rest o f the Blue Clay.

The apparent high temperatures prevailing at RIP during the Serravallian meant that 

the alkenone unsaturation index was unable to fully reconstruct the pattern of 

temperature change at this site. Although through the use o f Mg/Ca this problem was 

largely averted, use o f the TEXg6 palaeothermometer (Schouten et al., 2002) which is 

capable o f reconstructing temperatures higher than the limit o f the alkenone 

unsaturation index, would allow confirmation o f the absolute temperatures and pattern 

for this site. As temperatures play an important role in the estimation o f absolute 

atmospheric pCO^ from alkenone isotopes, it would also help to confirm the relatively 

low levels o f CO2 at a time o f high global temperatures. The excellent preservation of 

organic material at RIP would suggest that the glycerol dialkyl glycerol tetraethers 

necessary for TEXg6 would be present at the site.

Although there can be significant confidence that the records determined from the Ras 

il-Pellegrin signal reflect a global signal, there is still uncertainty about variations in 

the contributions o f terrestrial organic material to the site. One possibility to shed 

further light on this problem is the branched and isoprenoid tetraether index (BIT) 

(Kim et al., 2006) which has been shown to record changing terrestrial contributions to 

marine sites.

The thermal stratification suggested by the A513C records could be further investigated 

by the addition o f further records o f  shallow and deep surface foraminifera in order to 

assess whether the variability recorded is truly global. There is potential for the use of 

Mg/Ca ratios in such foraminifera to directly determine the thermal gradient. This, 

coupled with the use o f more complex ocean carbonate models with the ability to
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model multiple layers o f an ocean would allow for testing of whether thermal 

stratification is a valid explanation for the A513C records presented here.

The Moria section offers a site which is well exposed and the high sedimentation rate 

(which averages 35.8 m M yr'1 over the section) allows for high resolution sampling, 

however the position o f the section in the Apennine forehills means the section has 

undergone significant disturbance. This is demonstrated by the poor preservation of 

foraminifera, which have undergone recrystalisation. The site is therefore not suitable 

for detailed inorganic geochemical study. Organic matter contents are not high, but it 

is possible that there is preservation o f biomarkers and this deserves investigation. 

Also, the high sedimentation rate, along with the preservation o f a globally correlative 

isotope signal, would make this site a good candidate for astronomical tuning o f the 

Burdigalian-Langhian boundary, and makes it a good candidate for the basal 

Burdigalian GSSP.
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10 Appendix I: Data Tables

Data Table 1: Coarse Percent, RIP section

Height in section 
(m)

Age
(Ma) Coarse %

0.00 13.867 35.1
0.35 13.860 27.0
0.70 13.852 23.3
1.05 13.844 15.3
1.40 13.836 20.0
1.75 13.829 35.9
2.10 13.821 19.0
2.45 13.813 3.6
2.80 13.805 7.4
3.15 13.798 8.7
3.50 13.790 1.7
3.85 13.780 2.1
4.20 13.771 1.7
4.55 13.761 3.8
4.90 13.751 1.7
5.25 13.742 5.1
5.60 13.732 6.6
5.95 13.722 3.7
6.30 13.713 4.8
6.65 13.703 24.1
7.00 13.694 4.2
7.35 13.684 1.8
7.70 13.674 2.7
8.05 13.665 6.6
8.40 13.655 2.0
8.75 13.646 1.7
9.10 13.636 12.0
9.45 13.627 12.8
9.80 13.617 2.0
10.15 13.608 1.8
10.50 13.598 7.5
10.85 13.589 2.0
11.20 13.579 2.1
11.55 13.570 3.7
11.90 13.560 5.0
12.25 13.551 6.4
12.60 13.541 3.6
12.95 13.532 4.9
13.30 13.522 2.2
13.65 13.513 3.2
14.00 13.503 2.3
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Height in section 
(m)

Age
(Ma) Coarse %

14.35 13.494 3.1
14.70 13.484 5.1
15.05 13.475 10.9
15.40 13.465 6.6
15.75 13.456 8.6
16.10 13.446 8.7
16.45 13.437 7.0
16.80 13.427 3.8
17.15 13.418 5.8
17.50 13.408 7.4
17.85 13.400 5.3
18.20 13.392 1.7
18.55 13.384 6.8
18.90 13.375 4.8
19.60 13.359 4.0
19.95 13.351 2.5
20.30 13.343 3.9
20.65 13.335 5.2
21.00 13.326 5.0
21.35 13.318 5.5
21.70 13.310 5.7
22.05 13.302 6.4
22.40 13.294 3.7
22.75 13.286 9.4
23.10 13.277 7.4
23.45 13.269 4.8
23.80 13.261 3.4
24.15 13.253 3.4
24.50 13.245 2.1
24.85 13.237 6.1
25.20 13.230 2.3
25.55 13.222 1.5
25.90 13.215 3.3
26.25 13.207 2.6
26.60 13.199 4.3
26.95 13.192 2.4
27.30 13.184 5.5
27.65 13.177 2.9
28.00 13.169 10.2
28.35 13.162 6.8
28.70 13.154 3.4
29.05 13.147 3.5
29.40 13.139 4.1
29.75 13.132 2.2
30.10 13.124 4.0
30.45 13.117 3.0
30.80 13.109 2.2
31.15 13.101 2.1
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Height in section 
(m)

Age
(Ma) Coarse %

31.50 13.094 1.9
31.85 13.086 4.4
32.20 13.079 7.2
32.55 13.071 3.1
32.90 13.064 3.8
33.25 13.056 3.9
33.60 13.049 4.7
33.95 13.041 4.1
34.30 13.034 6.2
34.65 13.024 5.5
35.00 13.015 2.0
35.35 13.006 2.9
35.70 12.996 3.6
36.05 12.987 4.9
36.40 12.977 1.7
36.75 12.968 2.7
37.10 12.959 2.2
37.45 12.949 6.4
37.80 12.940 2.7
38.15 12.931 2.7
38.50 12.921 6.6
38.85 12.912 4.2
39.20 12.903 6.1
39.55 12.893 2.3
39.90 12.884 3.1
40.25 12.875 4.8
40.60 12.865 4.4
40.95 12.856 2.9
41.30 12.846 1.8
41.30 12.846 7.3
41.65 12.837 4.4
42.00 12.828 19.9
42.35 12.818 7.1
42.70 12.809 3.4
43.05 12.800 3.4
43.40 12.790 7.7
43.75 12.781 7.8
44.10 12.772 2.8
44.45 12.762 6.6
44.80 12.753 4.6
45.15 12.744 7.6
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Data Table 2: Total Organic Carbon percent for RIP

Height in Section 
(m)

Age
(Ma)

Total 
Organic 

Carbon (%)
0.00 13.867 0.13
0.35 13.860 0.26
0.70 13.852 0.30
1.05 13.844 0.36
1.40 13.836 0.25
1.75 13.829 0.26
2.10 13.821 0.38
2.45 13.813 0.23
2.80 13.805 0.35
3.15 13.798 0.38
3.50 13.790 0.18
3.85 13.780 0.17
4.20 13.771 0.17
4.55 13.761 0.20
4.90 13.751 0.20
5.25 13.742 0.21
5.60 13.732 0.13
5.95 13.722 0.19
6.30 13.713 0.24
6.65 13.703 0.15
7.00 13.694 0.15
7.35 13.684 0.17
7.70 13.674 0.16
8.05 13.665 0.16
8.40 13.655 0.13
8.75 13.646 0.11
9.10 13.636 0.15
9.45 13.627 0.17
9.80 13.617 0.18
10.15 13.608 0.24
10.85 13.589 0.25
11.55 13.570 0.19
12.25 13.551 0.22
12.95 13.532 0.20
13.65 13.513 0.29
14.35 13.494 0.26
15.05 13.475 0.22
15.75 13.456 0.14
16.45 13.437 0.22
17.15 13.418 0.21
17.85 13.400 0.45
18.55 13.384 0.23
19.95 13.351 0.20
20.65 13.335 0.21
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Height in Section 
(m)

Age
(Ma)

Total 
Organic 

Carbon (%)
21.35 13.318 0.24
22.05 13.302 0.26
22.75 13.286 0.20
23.45 13.269 0.20
24.15 13.253 0.25
24.85 13.237 0.26
25.55 13.222 0.35
26.25 13.207 0.46
26.95 13.192 0.28
27.65 13.177 0.23
28.35 13.162 0.20
29.05 13.147 0.35
29.75 13.132 0.30
30.45 13.117 0.27
31.15 13.101 0.46
31.85 13.086 0.41
32.55 13.071 0.46
33.25 13.056 0.27
33.95 13.041 0.28
34.65 13.024 0.57
35.35 13.006 0.32
36.05 12.987 0.28
36.75 12.968 0.32
37.45 12.949 0.38
38.15 12.931 0.38
38.85 12.912 0.39
39.55 12.893 0.33
40.25 12.875 0.17
40.95 12.856 0.15
41.65 12.837 0.25
42.35 12.818 0.17
43.05 12.800 0.19
43.75 12.781 0.16
44.45 12.762 0.15
45.15 12.744 0.18
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Data Table 3: Organic C/N ratio from RIP.

Height in Section 
(m)

Age
(Ma)

Organic C/N

0.00 13.867 4.7
0.35 13.860 6.4
0.70 13.852 6.9
1.05 13.844 6.8
1.40 13.836 6.1
1.75 13.829 5.4
2.10 13.821 5.3
2.45 13.813 3.9
2.80 13.805 5.0
3.15 13.798 5.1
3.50 13.790 2.5
3.85 13.780 2.8
4.20 13.771 2.8
4.55 13.761 3.3
4.90 13.751 4.2
5.25 13.742 3.7
5.60 13.732 3.0
5.95 13.722 3.5
6.30 13.713 5.0
6.65 13.703 3.3
7.00 13.694 2.8
7.35 13.684 2.6
7.70 13.674 2.4
8.05 13.665 2.6
8.40 13.655 2.0
8.75 13.646 1.7
9.10 13.636 3.2
9.45 13.627 3.4
9.80 13.617 2.7
10.15 13.608 4.1
10.50 13.598 2.2
10.85 13.589 4.0
11.20 13.579 2.5
11.55 13.570 3.1
12.25 13.551 4.0
12.95 13.532 3.3
13.65 13.513 4.6
14.35 13.494 4.3
15.05 13.475 4.6
15.75 13.456 4.1
16.45 13.437 4.6
17.15 13.418 4.3
17.85 13.400 6.3
18.55 13.384 4.4
19.95 13.351 4.2
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Height in Section 
(m)

Age
(Ma)

Organic C/N

20.65 13.335 4.5
21.35 13.318 5.0
22.05 13.302 5.2
22.75 13.286 4.7
23.45 13.269 4.1
24.15 13.253 4.4
24.85 13.237 4.9
25.55 13.222 5.2
26.25 13.207 7.0
26.95 13.192 5.5
27.65 13.177 4.8
28.35 13.162 4.6
29.05 13.147 5.8
29.75 13.132 5.1
30.45 13.117 4.7
31.15 13.101 6.0
31.85 13.086 6.1
32.55 13.071 6.1
33.25 13.056 4.8
33.95 13.041 5.5
34.65 13.024 7.8
35.35 13.006 5.4
36.05 12.987 5.4
36.75 12.968 5.3
37.45 12.949 5.8
38.15 12.931 5.5
38.85 12.912 6.1
39.55 12.893 5.1
40.25 12.875 3.6
40.95 12.856 2.8
41.65 12.837 3.8
42.35 12.818 3.7
43.05 12.800 4.2
43.75 12.781 4.0
44.45 12.762 3.7
45.15 12.744 3.6
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Data Table 4: Bulk organic and carbonate fine fraction carbon isotopes from RIP

Height in Section 
(m)

Age
(Ma)

Bulk Organic 813C 
(°/oo)

Fine Fraction 
(<63 pm) 513C 

(°/oo)
0.00 13.867 -20.07 0.09
0.35 13.860 -20.09 0.32
0.70 13.852 -20.02 0.09
1.05 13.844 -20.04 0.37
1.40 13.836 -20.62 0.30
1.75 13.829 -20.96 0.19
2.10 13.821 -20.62 0.38
2.45 13.813 -21.24 0.98
2.80 13.805 -20.79 0.77
3.15 13.798 -21.10 0.72
3.50 13.790 -22.16 1.59
3.85 13.780 -21.78 0.85
4.20 13.771 -21.24 0.37
4.55 13.761 -21.05 0.39
4.90 13.751 -20.69 0.47
5.25 13.742 -20.99 0.28
5.60 13.732 -21.23 0.75
5.95 13.722 -21.38 0.92
6.30 13.713 -20.73 0.47
6.65 13.703 -20.96 0.68
7.00 13.694 -22.09 1.01
7.35 13.684 -22.05 1.28
7.70 13.674 -22.03 0.95
8.05 13.665 -22.25 1.56
9.10 13.636 -21.70 0.29
9.45 13.627 -21.50 0.51
9.80 13.617 -21.75 0.27
10.15 13.608 -21.20 0.14
10.50 13.598 -22.03 0.22
10.85 13.589 -21.66 -0.16
11.20 13.579 -21.56 -0.17
11.55 13.570 -22.24 0.62
12.25 13.551 -23.28 0.77
12.95 13.532 -22.12 0.35
13.65 13.513 -23.28 0.02
14.35 13.494 -22.66 0.52
15.05 13.475 -22.66 0.26
15.75 13.456 -22.46 0.34
16.45 13.437 -22.26 0.45
17.15 13.418 -22.97 1.08
17.85 13.400 -21.99 1.24
18.55 13.384 -23.00 0.40
19.95 13.351 -23.10 0.72
20.65 13.335 -22.70 0.88
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Height in Section 
(m)

Age
(Ma)

Bulk Organic 513C
(%o)

Fine Fraction 
(<63 gm) 8I3C 

(%o)
21.35 13.318 -22.19 0.62
22.05 13.302 -22.50 0.42
22.75 13.286 -21.83 0.48
23.45 13.269 -22.69 0.79
24.15 13.253 -22.49 0.60
24.85 13.237 -22.77 0.62
25.55 13.222 -21.96 -0.06
26.25 13.207 -22.14 0.82
26.95 13.192 -22.20 0.60
27.65 13.177 -22.02 0.62
28.35 13.162 -22.71 0.31
29.05 13.147 -22.50 0.20
29.75 13.132 -22.29 0.31
30.45 13.117 -22.35 0.07
31.15 13.101 -22.07 0.05
31.85 13.086 -22.32 0.31
32.55 13.071 -21.84 0.05
33.25 13.056 -22.95 0.76
33.95 13.041 -22.81 0.52
34.65 13.024 -22.42 0.29
35.35 13.006 -22.62 0.35
36.05 12.987 -22.47 0.30
36.75 12.968 -22.00 0.47
37.45 12.949 -21.79 -0.14
38.15 12.931 -21.40 0.49
38.85 12.912 -21.55 0.33
39.55 12.893 -21.75 0.80
40.25 12.875 -21.71 0.54
41.65 12.837 -21.82 -0.12
42.35 12.818 -21.77 0.44
43.05 12.800 -21.80 0.25
43.75 12.781 -21.33 0.67
44.45 12.762 -21.40 0.87
45.15 12.744 -21.51
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Data Table 5: //-alkane odd over even predominance (OEP) for samples from RIP

Height in section 
(m)

Age
(Ma)

OEP ratio

0.00 13.867 4.7
0.70 13.852 3.6
1.05 13.844 5.0
1.40 13.836 7.1
1.75 13.829 2.8
2.10 13.821 6.3
2.45 13.813 2.2
3.15 13.798 4.5
3.50 13.790 4.6
3.85 13.780 6.8
4.20 13.771 6.8
4.90 13.751 4.7
5.25 13.742 6.8
5.60 13.732 5.8
5.95 13.722 6.0
6.30 13.713 7.0
6.65 13.703 6.9
7.00 13.694 4.4
7.35 13.684 5.5
7.70 13.674 4.6
8.05 13.665 3.6
8.40 13.655 4.2
8.75 13.646 5.2
9.10 13.636 5.9
9.45 13.627 7.7
9.80 13.617 4.5
10.15 13.608 4.4
18.20 13.392 4.8
22.75 13.286 5.2
33.95 13.041 5.0
43.05 12.800 4.3
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Data Table 6: Carbonate stable isotopes from the Moria section

Height in Section 
(m)

Age
(Ma)

Carbonate
513C
(%o)

Carbonate
S180
(%o)

20.00 17.111 0.48 -1.46
20.40 17.105 0.55 -2.49
21.00 17.094 0.59 -1.57
22.00 17.077 0.68 -1.63
23.00 17.060 0.83 -1.62
24.00 17.043 0.66 -1.48
25.00 17.026 0.52 -1.63
26.00 17.009 0.29 -2.20
27.00 16.992 0.37 -1.90
28.00 16.975 0.01 -2.21
29.00 16.957 -0.14 -2.50
30.00 16.940 -0.12 -2.16
31.00 16.923 -0.23 -2.22
32.00 16.906 -0.14 -1.94
33.00 16.889 -0.18 -2.18
34.00 16.871 -0.18 -1.75
35.00 16.855 -0.14 -2.24
36.00 16.838 -0.14 -2.16
37.00 16.820 -0.48 -2.32
38.00 16.803 -0.56 -2.39
39.00 16.786 -0.39 -2.34
40.00 16.769 -0.59 -2.42
41.00 16.752 -0.26 -2.11
42.00 16.735 -0.26 -2.10
43.00 16.717 -0.38 -2.55
44.00 16.700 -0.51 -2.30
45.00 16.684 -0.31 -2.89
45.25 16.679 -0.33 -2.41
45.50 16.675 -0.26 -2.26
45.75 16.671 -0.39 -1.87
46.00 16.666 -0.18 -2.66
46.25 16.662 -0.25 -2.35
46.50 16.658 -0.37 -2.17
46.75 16.654 -0.07 -1.84
47.00 16.649 -0.10 -2.08
47.25 16.645 -0.11 -2.21
47.50 16.641 -0.03 -2.08
47.75 16.636 0.12 -1.84
48.00 16.632 0.11 -1.90
48.25 16.628 0.03 -1.38
48.50 16.624 -0.08 -1.86
48.75 16.619 -0.21 -1.94
49.00 16.615 -0.06 -2.04
50.00 16.598 -0.05 -2.53
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Height in Section 
(m)

Age
(Ma)

Carbonate
513C
(%o)

Carbonate
5180
(%o)

51.00 16.581 0.08 -2.34
52.00 16.563 -0.56 -1.11
52.25 16.559 -0.09 -2.07
52.50 16.555 -0.05 -2.34
52.75 16.551 0.31 -2.40
53.00 16.534 0.04 -2.59
53.25 16.518 0.21 -2.46
53.50 16.502 0.15 -2.39
53.75 16.486 -0.16 -2.17
54.00 16.470 -0.10 -2.16
54.25 16.454 0.15 -2.90
54.50 16.438 0.16 -2.61
54.75 16.422 0.34 -2.18
55.00 16.406 -0.23 -0.95
55.25 16.388 0.12 -2.40
55.50 16.369 0.07 -2.18
55.75 16.351 -0.03 -2.22
56.00 16.333 -0.14 -2.81
56.25 16.314 -0.08 -1.95
56.50 16.296 -0.04 -1.67
56.75 16.278 0.02 -2.31
57.00 16.259 0.04 -2.42
57.25 16.241 0.02 -2.34
57.50 16.223 0.07 -1.87
57.75 16.204 -0.06 -2.44
58.00 16.186 -0.14 -1.86
58.25 16.168 0.01 -2.17
58.50 16.150 -0.03 -2.22
58.75 16.131 0.29 -1.85
59.00 16.122 0.24 -1.93
59.25 16.112 0.15 -2.35
59.50 16.103 0.26 -1.98
59.75 16.094 0.16 -2.26
60.00 16.084 0.01 -2.35
60.25 16.075 0.02 -2.46
60.50 16.065 0.10 -1.76
61.00 16.047 -0.02 -2.48
61.25 16.037 0.16 -2.44
61.50 16.028 0.00 -2.37
61.75 16.018 0.07 -2.87
62.00 16.009 -0.17 -2.08
62.25 16.000 -0.03 -2.29
62.50 15.990 0.22 -2.08
62.75 15.981 -0.04 -2.02
63.00 15.971 0.20 -2.46
63.25 15.962 0.06 -1.65
63.50 15.953 0.33 -2.15
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Height in Section 
(m)

Age
(Ma)

Carbonate
513C
(%o)

Carbonate
5180
(°/oo)

63.75 15.943 0.22 -2.15
64.00 15.934 0.22 -2.32
64.25 15.924 0.29 -2.22
64.75 15.906 0.35 -2.31
65.00 15.901 0.15 -2.97
65.25 15.896 0.24 -2.33
65.50 15.891 0.29 -1.88
65.75 15.887 -0.26 -2.65
66.00 15.882 -0.18 -2.20
66.25 15.877 -0.26 -2.26
66.75 15.867 -0.45 -2.40
67.00 15.862 0.13 -1.74
67.25 15.857 0.30 -2.42
67.50 15.852 0.41 -2.22
67.75 15.847 0.31 -2.56
68.00 15.842 0.05 -2.11
68.25 15.837 0.13 -2.32
68.50 15.833 0.27 -2.05
68.75 15.828 0.33 -2.16
69.00 15.823 0.37 -2.23
69.25 15.818 0.35 -2.43
69.50 15.813 0.11 -1.92
69.75 15.808 -0.01 -2.24
70.00 15.803 0.02 -2.23
70.20 15.799 0.11 -2.02
70.40 15.795 0.19 -1.88
70.60 15.791 0.16 -2.11
70.80 15.788 0.23 -1.82
71.00 15.784 0.25 -2.27
71.25 15.779 0.14 -2.40
71.50 15.774 0.23 -2.09
71.75 15.769 0.25 -1.78
72.00 15.764 0.35 -2.09
72.25 15.759 0.23 -2.14
72.50 15.754 0.33 -2.22
72.75 15.749 0.16 -2.66
73.00 15.744 0.61 -2.11
73.25 15.733 0.55 -2.30
73.50 15.723 0.03 -2.30
73.75 15.712 0.48 -2.76
74.00 15.701 0.57 -2.19
74.25 15.690 0.44 -2.14
74.50 15.679 0.48 -1.88
74.75 15.669 0.45 -2.37
75.00 15.659 0.40 -2.13
75.25 15.648 0.39 -2.10
75.50 15.638 0.24 -2.27
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Height in Section 
(m)

Age
(Ma)

Carbonate
513C
(%o)

Carbonate
5180
(%o)

75.75 15.627 0.30 -2.50
76.00 15.616 0.51 -1.90
76.25 15.605 0.37 -2.23
76.50 15.594 0.37 -3.24
76.75 15.584 0.41 -2.18
77.00 15.573 0.24 -2.37
77.25 15.562 0.48 -2.17
77.50 15.551 0.45 -2.27
77.75 15.540 0.36 -2.12
78.00 15.530 0.56 -1.94
78.25 15.519 0.44 -2.33
78.50 15.508 0.46 -2.28
78.75 15.497 0.37 -2.28
79.00 15.486 0.64 -1.73
79.25 15.475 0.55 -1.83
79.50 15.465 0.36 -2.22
79.75 15.454 0.32 -2.05
80.00 15.443 0.57 -1.84
80.25 15.432 0.42 -0.87
80.50 15.421 0.35 -1.29
80.75 15.411 0.39 -1.03
81.00 15.400 0.48 -1.81
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Data Table 7: Seawater oxygen isotopes calculated from G. trilobus oxygen 
isotopes and Mg/Ca SST from RIP using the temperature sensitivity of Erez and

Luz (1983).

Height in Section 
(m)

Age
(Ma)

Seawater 5180  
(%o)

0.00 13.867 2.17
0.35 13.860 1.38
0.70 13.852 1.27
1.05 13.844 1.51
1.75 13.829 2.00
2.45 13.813 1.09
2.80 13.805 0.86
3.15 13.798 1.05
3.50 13.790 0.76
3.85 13.780 2.11
4.20 13.771 1.84
4.90 13.751 1.35
5.25 13.742 1.82
5.60 13.732 1.22
5.95 13.722 1.31
6.30 13.713 1.22
6.65 13.703 0.63
7.35 13.684 0.82
7.70 13.674 0.92
8.05 13.665 0.82
8.40 13.655 1.45
8.75 13.646 1.80
9.10 13.636 0.84
9.45 13.627 1.12
10.50 13.598 1.02
22.75 13.286 1.18
33.95 13.041 0.91
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Data Table 8: Alkenone carbon isotopes, isotopic fractionation and calculated 
atmospheric C 0 2 based on samples from the RIP section.

Height in 
section (m)

Age
(Ma)

5 13C 37-2

(%o)
£ p

(%o)
2o c o 2

(ppm) 2 a

0.00 13.867 -21.39 10.54 0.50 328.1 46.8
0.35 13.860 -21.14 10.36 1.63 315.1 56.5
0.70 13.852 -21.03 9.85 0.78 294.6 44.2
1.05 13.844 -21.47 10.68 1.26 318.3 52.8
1.40 13.836 -21.45 10.57 0.58 313.9 45.9
1.75 13.829 -22.58 11.61 0.94 337.4 53.9
2.10 13.821 -20.91 9.93 0.56 291.5 43.0
2.45 13.813 -21.49 11.04 1.18 306.6 51.9
2.80 13.805 -21.01 10.50 0.54 310.2 45.6
4.55 13.761 -20.79 9.93 0.61 298.4 43.5
4.90 13.751 -20.64 9.89 1.57 300.4 52.6
5.25 13.742 -20.31 9.15 1.33 275.2 45.5
5.95 13.722 -20.87 10.38 0.64 297.5 44.8
6.65 13.703 -20.27 9.27 0.93 264.0 41.6
7.00 13.694 -21.04 10.52 0.68 293.0 44.6
7.35 13.684 -21.27 11.14 0.50 313.0 46.6
7.70 13.674 -21.37 10.94 0.51 310.7 46.1
8.05 13.665 -20.85 10.96 0.74 308.2 47.6
8.40 13.655 -21.12 10.83 0.59 305.6 46.1
9.45 13.627 -24.09 13.18 4.35 375.5 207.9
10.15 13.608 -20.47 9.17 0.86 274.7 42.0
43.05 12.800 -21.68 10.39 0.70 289.4 44.5
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Data Table 9: G. trilobus boron isotopic composition, B/Ca ratio and calculated 
pH and atmospheric p C 02

Height in 
section (m)

Age
(Ma)

5n B
(%o)

B/Ca
(mmol/mol) pH

pC 02
(PPm)

0.00 13.867 15.83 79.46 8.103 328.0
0.70 13.852 15.85 88.18 8.136 301.7
1.75 13.829 15.75 83.46 8.122 313.6
3.15 13.798 16.53 93.82 8.184 260.3
3.50 13.790 15.98 96.50 8.158 283.5
5.60 13.732 16.17 88.20 8.162 278.7
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Data Table 10: Fine fraction carbonate Sr/Ca and Dsr from RIP

Height in Section 
(m)

Age
(Ma)

Sr/Ca
(mmol/mol) DSr

0.00 13.867 1.16 0.13
0.35 13.860 1.18 0.13
0.70 13.852 1.46 0.16
1.05 13.844 1.30 0.15
1.40 13.836 1.58 0.18
1.75 13.829 1.39 0.16
2.10 13.821 1.70 0.19
2.80 13.805 1.75 0.20
3.15 13.798 1.53 0.17
3.50 13.790 2.12 0.24
3.85 13.780 1.93 0.22
4.20 13.771 1.82 0.20
4.55 13.761 1.92 0.21
4.90 13.751 2.01 0.22
5.25 13.742 1.45 0.16
5.60 13.732 1.76 0.20
5.95 13.722 1.91 0.21
6.30 13.713 1.54 0.17
6.65 13.703 1.32 0.15
7.00 13.694 1.80 0.20
7.35 13.684 1.74 0.20
7.70 13.674 1.88 0.21
8.05 13.665 1.69 0.19
8.40 13.655 1.63 0.18
8.75 13.646 1.82 0.20
9.10 13.636 1.44 0.16
9.45 13.627 1.49 0.17
9.80 13.617 1.52 0.17
10.15 13.608 1.41 0.16
10.50 13.598 1.47 0.16
10.85 13.589 1.49 0.17
11.20 13.579 1.42 0.16
11.55 13.570 1.76 0.20
11.90 13.560 1.67 0.19
12.25 13.551 1.88 0.21
13.65 13.513 1.94 0.22
18.20 13.392 2.01 0.22
33.95 13.041 1.92 0.21
43.05 12.800 1.78 0.20
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Data Table 11: Bulk organic carbon isotopes from the Moria section

Height in Section Age Bulk Organic 5 l3C 
______ (m)____________(Ma)___________ (% o )_________

20.00 17.111 -21.47
21.00 17.094 -21.00
23.00 17.060 -20.43
25.00 17.026 -20.92
27.00 16.992 -21.02
29.00 16.957 -22.23
31.00 16.923 -22.24
33.00 16.889 -22.60
35.00 16.855 -21.08
37.00 16.820 -21.66
39.00 16.786 -22.06
41.00 16.752 -21.40
43.00 16.717 -21.73
45.00 16.684 -22.45
45.50 16.675 -22.33
46.00 16.666 -22.22
46.50 16.658 -21.87
47.00 16.649 -20.93
47.50 16.641 -21.59
48.00 16.632 -21.68
48.50 16.624 -21.23
49.00 16.615 -21.48
51.00 16.581 -21.62
52.25 16.559 -22.02
52.75 16.551 -21.18
53.25 16.518 -21.86
53.75 16.486 -22.06
54.25 16.454 -22.31
54.75 16.422 -21.64
55.25 16.388 -22.17
55.75 16.351 -21.32
56.25 16.314 -21.34
56.75 16.278 -21.96
57.25 16.241 -22.31
57.75 16.204 -21.97
58.25 16.168 -22.38
58.75 16.131 -22.05
59.25 16.112 -21.65
59.75 16.094 -21.65
60.25 16.075 -21.32
61.00 16.047 -21.86
61.50 16.028 -21.37
62.00 16.009 -21.15
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Height in Section 
(m)

Age
(Ma)

Bulk Organic 513C 
(°/oo)

62.50 15.990 -20.94
63.00 15.971 -21.40
63.50 15.953 -21.52
64.00 15.934 -20.88
64.75 15.906 -22.04
65.25 15.896 -21.28
65.75 15.887 -20.53
66.25 15.877 -20.42
67.00 15.862 -21.92
67.50 15.852 -21.49
68.00 15.842 -21.26
68.50 15.833 -20.11
69.00 15.823 -20.46
69.50 15.813 -21.40
70.00 15.803 -21.07
70.40 15.795 -21.70
70.80 15.788 -21.49
71.25 15.779 -20.64
71.75 15.769 -21.24
72.25 15.759 -21.03
72.75 15.749 -21.60
73.25 15.733 -20.58
73.75 15.712 -21.18
74.25 15.690 -21.14
74.75 15.669 -21.79
75.25 15.648 -20.10
75.75 15.627 -21.41
76.25 15.605 -20.76
76.75 15.584 -20.73
77.25 15.562 -20.39
77.75 15.540 -21.04
78.25 15.519 -21.45
78.75 15.497 -21.81
79.25 15.475 -21.63
79.75 15.454 -22.36
80.25 15.432 -21.83
80.75 15.411 -21.74

211



Data Table 12: Bulk organic carbon isotopes from ODP site 761b

Depth
(Mbsf)

Age
(Ma)

Bulk organic 513C 
(°/oo)

40.580 13.656 -23.52
40.740 13.726 -22.78
40.820 13.760 -24.81
40.920 13.803 -24.12
41.020 13.846 -23.23
41.120 13.889 -24.35
41.220 14.010 -25.30
41.320 14.040 -25.31
41.520 14.100 -24.46
41.620 14.130 -24.36
41.720 14.160 -23.21
41.820 14.190 -24.31
41.920 14.220 -24.41
42.120 14.279 -24.42
42.360 14.351 -23.27
42.200 14.423 -24.09
42.400 14.483 -22.66
42.600 14.543 -22.26
42.800 14.603 -22.69
43.000 14.663 -22.82
43.200 14.723 -22.36
43.400 14.783 -22.19
43.600 14.843 -22.18
43.820 14.909 -23.11
44.020 14.969 -23.99
44.220 15.028 -21.67
44.420 15.088 -22.34
44.620 15.148 -23.57
44.820 15.208 -22.83
44.940 15.244 -23.32

212


