
Ca r d i f f
U N I V E R S I T Y

P R I F Y S G O L
CAf RDv^>

Publish/Subscribe Scientific Workflow
Interoperability Framework (PS-SWIF)

Ahmed Alqaoud

School of Computer Science & Informatics
Cardiff University

January 2010

UMI Number: U570956

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U570956
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A cknowledgements

Praise to Allah (God) Almighty for providing me with faith, patience and the
commitment to complete this research.

My special admiration and gratitude to my parents, sister, brothers, aunts and
uncles whose prayers, love, care, patience, support and encouragement have
always enabled me to perform to the best of my abilities.

I must thank my supervisors, Dr Ian Taylor and Dr Andrew Jones, for their
expert guidance and support throughout this research. I am grateful for their
careful reading and constructive comments on this thesis and our joint papers;
without their constant advice and help this thesis could not have been completed.

I acknowledge, with grateful thanks, the Saudi government, represented by the
Higher Education Ministry, for sponsoring me throughout the research period.

Special thanks are due to the members of the school for their help, especially
Helen Williams for her help on administrative issues, Robert Evans for his
technical assistance, and Andrew Harrison for help with coding at the beginning
of this project.

To my special friends Dr. Badr Aldaihani, Dr Hassan Khayt Dr. Abdullah
Althyab, Dr. Fahad Alwasl, Dr. Mohammad Alkarawi, Raied Alamri, Dr.
Mohammad Alymi, Homoud Aldossari, Ahmed Alazzawi, Sultan Alyahya,
Waleed Alnuwaiser, and Yasser Alosefer, my thanks for their support,
encouragement and, most importantly, for their friendship.

My sincere gratitude to my friends in Saudi Arabia, and especially to my brother
Faisal Alqaoud for his unconditional support, encouragement and help, Osama
Aldosary for his support and advice, and Abdularhman AlMunief for taking care
of my personal issues in Saudi Arabia, for his true friendship and keeping in touch
at all times.

Last, but certainly not least, I am indebted to my wife Maram for her endurance
and unconditional love which provided vital encouragement during my PhD
study. Finally, my love to my adored child Saad; bom while I completed this
thesis.

II

Dedication

For my aunts; Noura and Aljohara Alqaoud

I dedicate this thesis to my aunts, Noura Alqaoud and Aljohara Alqaoud for their
love, affection, prayers and support; not only during this research period but

throughout my life. Without them I could never have reached this stage in my
life.

Ill

Abstract

Scientific workflow is a special type of workflow for scientists to formalize and

structure complex e-Science applications. Many workflow systems have been

released to solve problems in special domains. In large collaborative projects, it

is often necessary to recognize the heterogeneous workflow systems already in

use by various partners and any potential collaboration between these systems

requires workflow interoperability. Workflow interoperability has received

much interest from the distributed computing community and many workshops

and meetings have been organized to discuss, from different perspectives, how

interoperability can be achieved among scientific Workflow Systems.

In this thesis, a general approach to achieving interoperability among workflow

systems, based on a WS-based notification messaging system, is proposed. This

approach presents a Publish/Subscribe Scientific Workflow Interoperability

Framework (PS-SWIF) and for validation, it is implemented in multiple

workflow systems to demonstrate run-time interoperability. The

Publish/Subscribe paradigm provides a loosely-coupled communication pattern

for large scale distributed computing and the resulting asynchronous messaging

exchange between workflow systems promises scalability and flexibility for

distributed applications.

The PS-SWIF system is based on Web Services that enable scientists to use a

Publish/Subscribe mechanism to publish a topic, and enables different workflow

systems to subscribe to this topic and receive notification messages when an

event is executed in the first workflow. The second workflow system can further

process results and send to further systems, if applicable, in a similar way.

Different or similar workflow systems, hosted anywhere on a network, written in

any language and running on different operating systems, can easily use the full

range of PS-SWIF tools to interoperate with each other. The PS-SWIF approach

provides interoperability among a wide range of scientific workflow systems.

IV

Contents

D e c la r a t io n .. I
A c k n o w le d g e m e n ts ... II
A b s tr a c t ...IV
C o n te n ts .. V
T a b le s ..IX
F ig u r e s ... IX

CHAPTER 1 INTRODUCTION ...1

1.1 O v e r v ie w ... 1
1.2 B a c k g r o u n d ..1
1.3 S ig nificant o f th e In t er o per a b ility .. 3

1.3.1 S1MDAT Project.. 3
1.3.1.1 Interoperability between 5 Workflow Engines in the Aerospace... 4

1.3.2 SH1WAT Project.. 6
1.3.2.1 Interoperable Workflows for Neuroimaging... 7
1.3.2.2 Creating and running meta-workflows - Quantitative evaluation of medical imaging
algorithms...8
1.3.2.3 Running workflows on multiple DCIs - Access to computing resources for medical
simulation...8

1.4 D efinition and Scope o f In t e r o pe r a b il it y ...9
1.5 M o t iv a t io n ...10
1.6 H y po th esis , A ims a n d O b je c t iv e s ..11
1.7 R esea rch M e t h o d o l o g y ..12
1.8 C ontributions and A ch iev em en ts ...14
1.9 O rganizatio n of T h e s is .. 17

CHAPTER 2 BACKGROUND ...19

2.1 O v e r v ie w ... 19
2.1.1 Scientific Workflow Definition...19
2.1.2 Workflow Classifications.. 19
2.1.3 Workflow Design and Definition..20

2.1.3.1 Workflow Structure...20
2.1.3.2 Workflow Model.. 21
2.1.3.3 Workflow composition system .. 21

2.1.4 Workflow Mapping and Execution...22
2.1.4.1 Information Retrieval...22
2.1.4.2 Workflow QoS Constraints... 23
2.1.4.3 Workflow Scheduling..23
2.1.4.4 Fault Tolerance...23
2.1.4.5 Data Provenance...24

2.2 W orkflow Intero pera bility Sta n d a r d s ... 24
2.2.1 Wor/flow Standard-Interoperability A bstract Specification................................. 24
2.2.2 Standard-Interoperability Internet e-mail MIME Binding....................................27
2.2.3 Workflow Standard-Interoperability Wf- XML Binding.. 27
2.2.4 ASAP/Wf-XML 2.0..28
2.2.5 XML Process Definition Language... 28
2.2.6 Workshop on Scientific and Scholarly Wor/flow.. 28
2.2.7 Open Grid Forum (OGF)...29

2.3 Su m m a r y ... 30

CHAPTER 3 MESSAGING SYSTEMS.. 31

3.1 Publish /S ubscribe A ppr o a c h ... 31
3.2 T he Java M essage Se r v ic e .. 32
3.3 CORBA Event Service and N otifica tio n Service Spec ific a tio n 33
3.4 O pen G rid Services In fra stru ctu re (OG SI) spe c if ic a t io n 34
3.5 W S-N o t if ic a t io n ..35

V

3.6 W S-Ev en tin g ... 36
3.7 Su m m a r y ..37

C H A P T E R 4 S C IE N T IF IC W O R K F L O W S Y S T E M S .. 39

4.1 Scientific W o rk flo w Sy s t e m s ... 39
4.1.1 Triana Workflow...39
4.1.2 Tavema Workflow...44
4.1.3 Kepler Workflow...47

4.2 O th er W o rkflow Projects Suppo rting W eb Se r v ic e s ...49
4.2.1 The GEOD1SE System...50
4.2.2 The OM1I-BPEL Workflow..50
4.2.3 The SODIUM Workflow..50
4.2.4 The VisTrails Workflow...50
4.2.5 The Discovery Net System...51
4.2.6 MOTEUR... 51
4.2.7 The Worlflow Enactment Engine..51

4.3 Rela ted W o r k .. 51
4.3.1 P-GRADE/GEMLCA...52
4.3.2 VLE-WFBus...52
4.3.3 Intermediate Worlflow Representation...53
4.3.4 SIMDAT... 54
4.3.5 Kepler/Pegasus Integration...56

4.4 Com parison o f W o r k flo w Interoperability A ppr o a c h es57
4.5 Su m m a r y ... 56

C H A P T E R 5 P S -S W IF R E Q U IR E M E N T S , A R C H IT E C T U R E AND D E S IG N 59

5.1 PS-SW IF A p pr o a c h ... 59
5.2 PS-SW IF Re q u ir e m e n t s ..59
5.3 Alter n a te D e s ig n s ..61

5.3.1 Direct Communication Design... 61
5.3.1 Distributed Storages Design..62

5.4 PS-SW IF A r ch itec tu r e ...63
5.4.1 Workflow Layer...63
5.4.2 Web Services Layer...64
5.4.3 Publish/Subscribe Layer..65

5.5 Publish /S u bscribe Mo d el w ith P S-SW IF ...65
5.6 Pr oposed PS-SW IF Fr a m e w o r k ..66

5.6.1 Application Web Services..67
5.6.1.1 The Publish Topic Web Service..68
5.6.1.2 The Event Source Web Service...68
5.6.1.3 The Publish Information Web Service...68
5.6.1.4 The Subscriber Web Service... 69
5.6.1.5 The Subscription Manager Web Service..70
5.6.1.6 The Event Sink Web Service..70

5.6.2 PS-SWIF Server... 72
5.6.2.1 Internal Subscription Management Component... 73
5.6.2.2 PS-SWIF Databases... 73

5.6.3 PS-SWIF GUI.. 73
5.6.4 Workflow Publisher and Workflow Subscriber...73

5.7 Interactio n betw een Co m po n en ts in the A r c h it e c t u r e .. 74
5.8 W orkflow In ter o per a b ility ...75

5.8.1 Workflow Interoperability Strategies..75
5.8.2 Workflow Interoperability Level..75
5.8.3 Workflow Interoperability Model..76

5.8.3.1 Chained Process Model..76
5.8.3.2 Nested Synchronous Sub-Process.. 77
5.8.3.3 Event Synchronized Sub-Process... 78
5.8.3.4 Nested Sub-Process (Polling/Deferred Synchronous)... 78

5.9 Design D is c u ss io n ... 79

VI

5.10 Su m m a r y .. 81

C H A P T E R 6 P S -S W IF IM P L E M E N T A IO N ...82

6.1 Im plem entation O v er v iew ..82
6.2 PS-SW IF W eb Se r v ic e s ... 83

6.2.1 Publish Topic Web Services...83
6.2.2 Source Web Service.. 84
6.2.3 Publish Information Web Service...85
6.2.4 Subscriber Web Service.. 86
6.2.5 Subscription Manager Web Service...90
6.2.6 Sink Web Services... 90

6.3 PS-SW IF D a t a b a s e s ... 91
6.4 T he In terna l Subscription M a n a g e r .. 92
6.5 Synchronizatio n O b jec t ..94
6.6 Fault Ex c e p t io n s .. 96
6.7 PS-SW IF Fram ew ork In t e r f a c e ... 96
6.8 A v a il a b il it y ..98
6.9 Su m m a r y .. 99

C H A P T E R 7 C A SE S T U D Y .. 101

7.1 O v e r v ie w ...101
7.2 Publish T o pic s ... 102
7.3 C reate Su b sc r iptio n ..102
7.4 Ta verna W o r k flo w ... 103
7.5 Kepler W o r k flo w ...104
7.6 T riana W o r k fl o w ...105
7.7 O utput Re s u l t ..106
7.8 Su m m a r y ..108

C H A P T E R 8 E V A L U A T IO N ...110

8.1 W orkflow In teroperability Ev a l u a t io n ... 111
8.1.1 Experimental Hypotheses... I l l
8.1.2 Experiment design.. 114
8.1.3 Test-bed...116
8.1.4 Triana Workflow (Ml)...116
8.1.5 Taverna Workflow (M2)..117
8.1.6 Triana Workflow (M3)...119
8.1.7 Kepler Workflow M l ...120
8.1.8 Experiment Process.. 122
8.1.9 Experiment Observation... 123
8.1.10 Experiment Achievements... 124

8.2 Perfo rm an ce Ev a lu a tio n .. 125
8.2.1 Test-bed... 126
8.2.2 Experiment Setup...126
8.2.3 Create Topic and Subscriptions..127
8.2.4 Taverna Wor/flow... 127
8.2.5 Kepler Workflow... 128
8.2.6 Experiment Execution... 128
8.2.7 Experiment A nalysis... 128

8.3 Su m m a r y .. 133

C H A P T E R 9 C O N C L U S T IO N AND F U T U R E W O R K .. 135

9.1 Research Su m m a r y ...135
9.2 A dvantages of PS-SW IF Sy stem ...139
9.3 Future W o r k ...141

A PPE N D IX A F IR S T V E R S IO N O F P S -S W IF .. 144

A. 1 Integration W S-Eventing w ithin T riana W o r k f l o w ..144

VII

A.2 W orkflow T averna La u n c h e r ...144
A.3 W orkflow K epler La u n c h e r .. 145

APPENDIX B PS-SWIF API .. 146

APPENDIX C PS-SWIF WEB SERVICES (WSDL).. 148

C. 1 Publish T opic W eb Service (W SD L).. 148
C.2 So u r c e W eb Service(W SD L)...151
C.3 Pu blish Inform ation W eb Service (W S D L)...152
C.4 Subscriber W eb Service (W S D L)... 154
C.5 Subscription M a na ger W eb Service (W S D L).. 157
C.6 S in k W eb Service (W SD L)..161

APPENDIX D DATABASE (SQL).. 163

D. 1 Subscription Da t a b a s e ...163
D.2 T opic D ata ba se ... 163
D.3 U ser Da t a b a s e ..163
D.4 SQL M anipulating St a t e m e n t s .. 164

INDEX.. 165

BIBLIOGRAPHY...169

VIII

Tables

Table 8.1: Triana Units Description on M l ... 117
Table 8.2: Taverna Components...118
Table 8.3: Triana Unit Description...120
Table 8.4: Kepler Actors Description...122
Table 8.5: Home Directory Description..127
Table 8.6: Average Delivery Times.. 130
Table 8.7: Average Delivery Time without Overhead Tim e..............................132
Table 9.1: Comparison of Workflow Interoperability Approaches................... 139

Figures

Figure 4.1: Distributed Components within Triana ... 41
Figure 4.2: Taverna Layers... 45
Figure 5.1: PS-SWIF High Level Architecture..63
Figure 5.2: PS-SWIF Architecture Components... 67
Figure 5.3: The Source Side Services Interaction... 69
Figure 5.4: Synchronous Subscription... 71
Figure 5.5: Asynchronous Subscription... 72
Figure 5.6: Interaction between Components..75
Figure 5.7: Chained Process Model... 77
Figure 5.8: Nested Synchronous Sub-Process...78
Figure 5.9: Event Synchronized Sub-Process..78
Figure 5.10: Nested Sub-Process (Polling/Deferred Synchronous).....................79
Figure 6.1: Implementation Architecture... 83
Figure 6.2: Subscribe Request SOAP Message...87
Figure 6.3: The Subscribe Response SOAP Message... 89
Figure 6.4: Internal Subscription Manager Methods.. 92
Figure 6.5: The PS-SWIF Framework Interface..97
Figure 7.1: Taverna Workflow.. 104
Figure 7.2: Kepler Workflow.. 105
Figure 7.3: Triana Workflow.. 106
Figure 7.4: The Taverna Output Result... 107
Figure 7.5: The Kepler Output Result...108
Figure 7.6: The Triana Output Result...108
Figure 8.1: Experiment Scenario.. 115
Figure 8.2: Triana Workflow on M l...117
Figure 8.3: Taverna Workflow on M 2..118
Figure 8.4: Triana Workflow on M3...119

IX

Figure 8.5: Kepler Workflow.. 121
Figure 8.6: Experiment Observation... 121
Figure 8.7: Performance of 10 Machines.. 129
Figure 8.8: Performance of 20 Machines.. 129
Figure 8.9: Performance of 29 Machines.. 130
Figure 8.10: Average Delivery Time..130
Figure 8.11: Average Data Transfer...131
Figure B1: PS-SWIF GUI..147

X

Glossary

ASAP Asynchronous Service Access Protocol
BPEL4WS Business Process Execution Language for Web Services
CFD Computational Fluid Dynamics
CIPRES Cyberinfrastructure for Phylogenetic Research
CORBA Common Object Requesting Broker Architecture
DAG Directed Acyclic Graph
DART Distributed Audio Retrieval Using Triana
DDBJ DNA Data Bank of Japan
DIPSO Environment for Industrial Design Optimization
EDGeS Enabling Desktop Grids for e-Science
EMBL-EBI European Molecular Biology Laboratory-European

Bioinformatics Institute
FAEHIM Federated Analysis Environment for Heterogeneous Intelligent

Mining
GAP Grid Application Prototype
GAT Grid Application Tool
GEMLCA Grid Execution Management for Legacy Code Architecture
GEMSS Grid-Enabled Medical Simulation Services
GENIUS Grid Enabled Web eNvironment for site Independent User job

Submission
GEO600 Gravitational Wave Project
GEON Geosciences Network
GGF Global Grid Forum
GRAM Grid Resource Allocation Management
GRMS GridLab Resource Management System
ICENI Imperial College e-Science Network Infrastructure
IWR Intermediate Workflow Representation
JMS Java Message Service
MOTEUR hoMe-made OpTimisEd scUfl enactoR
NATs Network Address Translations
NCBI National Center for Biotechnology Information
OGF Open Grid Forum
OGSI Open Grid Services Infrastructure
OMG Object Management Group

XI

PS-SWIF Publish/Subscribe Scientific Workflow Interoperability
Framework

QoS Quality of Services
ROADNet Real-time Observatories, Applications, and Data Management

Network
Scufl Simple conceptual unifled flow language
SEEK Science Environment for Ecological Knowledge
SOAP Simple Object Access Protocol
SODIUM Service Oriented Development In a Unified framework
SPA Scientific Process Automation
TRIACS Triana Advanced Clinical Support
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
USCL Unified Service Composition Language
UUID Universally Unique Identifier
WDLs Workflow Definition Languages
WFEE Workflow Enactment Engine
WfMC Workflow Management Coalition
WHIP Workflows Hosted In Portals
WS Web Services
WSDL Web Service Description Language
WS-RF Web Services Resource Framework
XML extensible Markup Language
XPDL XML Process Definition Language

XII

CHAPTER 1

Introduction

1.1 Overview

This Chapter presents an outline of the research thesis and opens with a

background to provide an overview of the project and the motivation behind the

research. The aim, objectives, research questions and hypothesis are then

described, which define the scope of this project. The research methodology for

the project is described, and the contributions and achievement section lists

papers emerging from the project. Finally, the organisation of the thesis is

presented.

1.2 Background

Workflow systems have become attractive for scientific computing projects,

especially for their ability to describe experimental processes in a way that

makes it easy to create, manage and execute such projects over a distributed set

of resources. Workflow in the business community is defined by the Workflow

Management Coalition (WfMC) as ‘ The automation o f a business process, in

whole or parts, where documents, information or tasks are passed from one

participant to another to be processed, according to a set o f procedural rules'

[2] . This definition unfortunately does not accurately capture current needs for

scientific applications in Grid environments. In Grid environments, e-Science

applications become more complex in the context of managing and

processing large data sets and executing scientific experiments on widely spread

1

Chapter 1 ~ Introduction

computing resources. Fox and Gannon [3] define workflow in a grid context as

‘The automation o f the processes, which involves the orchestration o f a set o f

Grid services, agents and actors that must be combined together to solve a

problem or to define a new service’.

There are various workflow systems to resolve problems in special domains,

such as gravitational-wave physics, geophysics, bioinformatics and astronomy.

In each of these domains, a variety of tools and functions are available to

scientists. In large collaborative projects, it is often necessary to recognize the

heterogeneous workflow systems already in use by various partners and any

potential collaboration between these systems requires workflow

interoperability.

Workflow interoperability was officially addressed for the first time in 1996 by

the Workflow Management Coalition (WfMC) [4], with the WfMC defining

Workflow interoperability as: ‘the ability o f two or more workflow engines to

communicate and interoperate in order to coordinate and execute workflow

process instances across those engines'. The WfMC has published different

standards and specifications [4-6] to achieve workflow interoperability at

different levels and using various models. Since that time there has been little

research in this area.

Over the last five years, a variety of workflow systems have been released and a

diversity of e-Science projects have made scientific workflow interoperability an

important subject for researchers. Many workshops and meetings [7-10] have

been organized by distributed computing committees to discuss, from different

perspectives, how interoperability can be achieved among scientific Workflow

Systems. Workflow interoperability can be classified at different levels

according to the workflow lifecycle presented by Deelman [11]

In this thesis, a general approach to achieving interoperability among workflow

systems, based on a WS-based notification messaging system, is proposed. This

2

Chapter 1 ~ Introduction

approach presents a Publish/Subscribe Scientific Workflow Interoperability

Framework (PS-SWIF) and for validation, it is implemented in multiple

workflow systems to provide run-time interoperability. The Publish/Subscribe

paradigm provides a loosely-coupled communication pattern for large scale

distributed computing and the resulting asynchronous messaging exchange

between workflow systems promises scalability and flexibility for distributed

applications.

Communication using an asynchronous messaging paradigm is characterized by

a decoupling of participants in both time and space [12]. The PS-SWIF system

is based on Web Services that enable scientists to use a Publish/Subscribe

mechanism to publish a topic, and enables different workflow systems to

subscribe to this topic and receive notification messages when an event is

executed in the first workflow. The second workflow system can further process

results and send to further systems, if applicable, in the similar way.

1.3 Significant of the Interoperability

For collaboration between different systems and tools, interoperability is

essential. Within large collaborative projects combinations of workflow systems

are already in use. Workflow interoperability is a significant problem that can

determine if collaboration between e-Science projects, using heterogeneous

workflow systems, can be successfully conducted. This section discusses the

significance of interoperability when it is applied to real world projects in the

science and industry field.

1.3.1 SIMDAT Project

SIMDAT [13] Data grids for process and product development, using numerical

simulation and knowledge discovery, started in 2004. The SIMDAT project is

funded by the European Commission under the Information Society

Technologies Programme (1ST). There are several applications with SIMDAT,

four of which address interoperability challenges in the Grid for industrial

3

Chapter I ~ Introduction

applications, namely: the aerospace industry [14], automotive application [15],

meteorology [16], and pharmaceuticals [17]. The author will discuss the

aerospace industry project and more about other projects can be found in these

literatures.

13.1.1 Interoperability between 5 Workflow Engines in the Aerospace

This is a joint programme between the SIMDAT partners BAE Systems, EADS

Innovation Works, IT Innovation and the School of Engineering Sciences at the

University of Southampton.

Within the aerospace industry highly complex products that have data creation,

management and curation requirements are expanded over hundreds of

collaborating organizations. The aerospace activity project focuses on

demonstrating how to deploy Grid technologies in order to aid complex

collaborative engineering tasks. The majority of product developments within

the aerospace industry take place in a collaborative fashion and these

collaborations span organization and international boundaries. ‘ The goal o f this

phase o f the project was to demonstrate interoperability in the Grid system and

produce a prototype showing this interoperability in action * [14].

The system was built from different workflows, from a top level view to the

individual analysis Service workflows. The responsibility for each workflow

belonged to a different company which used different workflows system to

construct these workflows.

‘The original Aerospace scenario was based just on the Taverna workflow tool

For the interoperability phase o f the project, the aim o f the aerospace scenario

was to demonstrate interoperability between the workflow tools. This is

necessary as each organisation will has its own favoured processes and

workflow tools and as outlined in the SIMDAT Workflow Interoperability

Framework, organisations should not have to be tied to migrate to another

workflow system. Within the aerospace sector, 4 problem solving environments

4

Chapter 1 ~ Introduction

were identified to be integrated into the scenario; ModelCenter, FIPER,

MA TLAB and Optimus* [18].

ModelCenter [19] is a graphical problem solving environment provided by

Phoenix Integration. It is used heavily within the aerospace industry for product

optimisation and integration within BAE Systems. ModelCenter was integrated

with GRIA (Grid Resources for Industrial Applications). GRIA provides the

core job Services, the ability to upload and download data to data stagers. GRIA

Service is provided by SIMDAT to allow engineers to access distributed

Services and workflows from applications using a workflow system they are

familiar with.

FIPER [20] is a system engineering framework that allows organizations to

deploy their integrated applications to more users and run them on a powerful

computing framework. FIPER is integrated with GRIA to provide more flexible

way to integrate distributed business Services.

MATLAB [21] is a high-level language and environment that enables a user to

perform computational tasks faster than with traditional programming languages.

MATLAB is used widely in the aerospace industry.

The OPTIMUS [22] workflow tool is provided by LMS/NOESIS as a multi­

disciplinary program that automates simulation tasks across multiple engineering

disciplines.

In this scenario, interoperability is said to be achieved when a workflow

published by a workflow system can be accessed from another workflow system

through the GRIA 5 job Service interface [18]. Therefore, the level of

interoperability is through a third party job Service interface and therefore

differs to that provided by PS-SWIF. In the aerodynamics analysis Service the

interaction is more complex and requires different workflow tools interacting.

Optimus provides the response surface modelling (RSM) techniques used in the

5

Chapter 1 ~ Introduction

aerodynamic workflows as surrogate data models. These tools are accessible

through GRIA Services, and also the Optimus workflow engine is available as a

Service. This means that the RSM workflows can be constructed in the Optimus

engine and then published as a GRIA job Service. In a similar way this can be

achieved with Taverna. The ModelCenter workflow tool is also used to tie the

published workflows together into a third workflow and enact this published

workflow using both the Optimus and Freefluo Services. Figure 1.1 shows these

interactions.

GRIA 5

Pul

Enacts

Enacts"

Freefluo
y

Optimus

Taverna

ModelCenter

Optimus

Figure 1.1 Interactions between Tavema/Freefluo, Optimus and ModelCenter

The prototypes successfully demonstrated runtime workflow interoperability,

showing how experts in a specific domain can publish their workflows and be

available to be called from any o f the other workflow environments.

1.3.2 SHIWA Project

SHIWA [23] SHaring Interoperable Workflows for large-scale scientific

simulations on Available DCIs (Distributed Computing Infrastructures) is a

project submitted to the EU; the 7th Research Framework Programme (FP7). The

primary goal o f the project is to design Services that provide workflow

interoperability between five leading scientific workflow systems: ASKALON

[24], MOTEUR [25], P-GRADE [26], Pegasus [11] and Triana [27], using

coarse-grained and fine-grained interoperability approaches.

6

Chapter I ~ Introduction

Coarse-grained interoperability is defined as one workflow system that can be

invoked or embedded by another workflow system as a local or distributed

Service. The fine-grained interoperability acts at the workflow language level

and enables the execution of an arbitrary workflow through the invocation of

any workflow engine into which the workflow description can be converted.

Three use cases have been proposed to be supported by the Services operated by

SHIWA.

1.3.2.1 Interoperable Workflows for Neuroimaging

Neuroscience is an interdisciplinary science that involves other disciplines such

as medicine, psychology, computer science, and physics. Within Neuroscience,

several data and compute-intensive methods of data-acquisition, analysis and

simulation are used frequently.

In practice, existing workflow implementations are always limited to a specific

workflow system. For example, the AMC (Academic Medical Center of the

University of Amsterdam) and Charity (University of Berlin) have both

developed a variety of workflows for analysis of functional MRI data.

These implementations/workflows could be exchanged between various groups

and implemented by different workflow systems in different organizations.

Unfortunately the workflows available at Charite and AMC (and the other

groups) are not compatible because they were built for specific workflow

systems and Grid infrastructures. As a result, great effort is needed to

interoperate between different workflows and combine them.

The primary goal of this scenario is to facilitate researchers in neuroscience to

access and integrate the different methods into their data processing. Depending

on the requirements, coarse-grained or fine-grained interoperability can be

applied to provide the most effective and appropriate solution.

7

Chapter 1 ~ Introduction

1.3.2.2 Creating and running meta-workflows - Quantitative evaluation of

medical imaging algorithms

The quantitative evaluation of medical image algorithms is an important part of

the scientific process. It is a difficult process due to the variety of considered

problems and the variability among images.

Evaluation methods such as image segmentation and registration are typical

image processing problems. The goal of this project is to enable the sharing of

quantitative evaluation methods among users of various workflows with various

workflow systems.

Interoperability approaches provided by the SHIWA project will provide a

solution to integrate statistical evaluation methods developed in various

workflow systems into a single evaluation pipeline by enabling the integration of

multiple workflows hosted on different systems into a single master workflow

[23].

1.3.2.3 Running workflows on multiple DCIs - Access to computing

resources for medical simulation

In the medical sector, simulation has become a major tool and deals with a

variety of phenomena (for instance, image acquisition in different modalities,

cancer therapy, etc.) and is multi-scale regarding the simulated objects and the

corresponding computing challenges. Several simulators have been integrated

with a Virtual Imaging Platform and provide access to DCIs. This platform is

dependent on workflows, described with the Scufl language and enacted on the

MOTEUR engine through the GASW backend (Generic Application Service

Wrapper).

However, MOTEUR can only access the computing resources of the EGEE

infrastructure (Enabling Grids for e-Science), which not only suffers from

periodical resource shortage but also is suitable only for some simulation

8

Chapter 1 ~ Introduction

experiments. For example, wide-scale Monte-Carlo simulations require the

provision of a few thousand computing nodes over a very limited time-period,

which is difficult to achieve on a single DCI. Besides, experiments requiring

capacity infrastructures (e.g. MPI ‘Message Passing Interface’ applications) are

known to suffer from limitations on capability DCIs such as EGEE.

Interoperability solutions provided by SHIWA will enable access to the target

DCIs and technical issues such as data sharing between DCIs, the management

of credentials, and error handling could be addressed. Also, it will be used to

benefit from the capabilities of the various workflow engines on the targeted

DCIs.

1.4 Definition and Scope of Interoperability

Interoperability can be defined and classified at three different levels: workflow

design, workflow mapping and execution, and data provenance. Workflow

design describes a selection of application components and defines their

dependencies. The application components could be tasks, jobs, services or any

executable units. Workflow mapping and execution refers to turning the

components application in the workflow design into an executable state.

Workflow mapping refers to the process that maps an abstract workflow to

appropriate resources. Mapping a workflow onto resources requires certain

issues to be considered, namely information retrieval, workflow QoS constraints,

workflow scheduling, fault tolerance and data provenance. Data provenance

refers to the ability to obtain the history of data products.

The author presents an interoperability solution that will be applied at workflow

mapping and execution level. Specifically, the scope of interoperability

presented in this thesis is concerned with a mechanism for transferring and

managing data to and from workflow systems. However, error and exception

handling and transactions are out of the scope of this thesis. The author defines

managing data as the ability of the user to issue different types of requests.

These requests are: (1) subscribe request to allow a user to receive data for a

9

Chapter 1 ~ Introduction

period of time; (2) unsubscribe request to show that a user has no interest in

receiving data; and (3) renew the subscription which allows the user to receive

the data for another time period. Further, the author provides additional

flexibility by providing multiple communications mechanisms, “asynchronous

and synchronous”, which are required to support different models used within

the different workflow systems. The ability to perform both blocking and non-

blocking communication provides multiple critical configurable and

programmatical options for workflow systems, including the ability to parallel

process third party workflow systems and expose a workflow system itself as a

third party service. The author therefore defines interoperability as:

'‘The ability to exchange and manage data and control the communication

between two or more workflow engines at run time during their execution’.

1.5 Motivation

The thesis is motivated by the desire and need to achieve interoperability

between workflow systems; particularly for scientific applications. Scientists

need to repeat their experiments across different workflow systems to get

consistent results. Scientists also need to invoke and use different tools from

other systems which are not available on their own workflow system to complete

their experiments or improve performance results. For collaboration between

different systems and tools, interoperability is essential. Within large

collaborative projects [28-30] combinations of workflow systems are already in

use. Workflow interoperability is a significant problem that can determine if

collaboration between e-Science projects, using heterogeneous workflow

systems, can be successfully conducted.

This thesis proposes a system to be utilized in such architectures to provide

interoperability between workflow systems at message passing levels, using

asynchronous notification messaging methods.

10

Chapter 1 ~ Introduction

1.6 Hypothesis, Aims and Objectives

Research Hypothesis

7f is possible to achieve interoperability between workflow systems, by

using a generic approach that leverages asynchronous notification

messaging and Web Services standards. Such an approach will enable the

movement and management o f data and will control the communication

between different workflow systems to provide maximum flexibility and

simplicity fo r scientists, in terms o f the variety o f workflow systems

supported and their execution in both local and remote environments ’.

The aim of the thesis is thus to investigate the best approaches for achieving

interoperability among scientific workflow systems and to develop a system to

extend and transition abstract theories to solve a practical problem. To guide the

development of such a system, a number of research objectives are defined:

1) Identify Workflow Interoperability Levels and Models

This objective intends to answer the questions:

How interoperability levels and models are classified and identified?

What level and models for workflow interoperability will be achieved

by conducting this research?

♦ How workflow interoperability is achieved in current projects?

2) Identify the Appropriate Publish/Subscribe Model for Workflow Systems

Investigate existing publish/subscribe models and determine the appropriate

candidate for workflow systems. This objective intends to answer the questions:

♦ What type of functions from the publish/subscribe paradigm should be

investigated?

♦ How should a notification message be delivered to subscribers?

♦ What requirements and specifications must be supported to adapt a

publish/subscribe system?

♦ What should the architecture for a workflow interoperability framework

look like?

11

Chapter 1 ~ Introduction

3) Design and Develop a System that Uses the Publish/Subscribe Paradigm

to Achieve Workflow Interoperability.

To achieve interoperability among workflow systems, the possible architecture

for a system that facilitates passing asynchronous notification messages among

the workflow systems must be investigated. This objective addresses the

questions:

♦ How can a publish/subscribe model be utilised by the different

workflow systems?

♦ How a workflow system sends and receives notification messages?

♦ How can different interoperability models among different workflow

systems using a publish/subscribe model be achieved?

4) Develop a Framework that Allows Scientists to Run their Experiments

among Different Workflow Systems

This objective intends to answer the questions:

♦ What are the requirements needed for a framework to provide tools and

services for workflow interoperability, without the need for

programming or a deep technical computer background?

♦ How can the framework provide run-time interoperability among

different workflow systems in different environments?

♦ How can workflow interoperability be achieved remotely?

♦ How can systems expose experiments for re-use without major

modifications to their workflow?

1.7 Research Methodology

The scientific workflow system is chosen as a research domain because of a high

demand by e-Science applications. The literature review determines the current

state of existing workflow systems and defines the most important problems that

need be addressed. Workflow interoperability is a significant problem that can

even affect whether if collaboration between e-Science projects that use

heterogeneous workflow systems can be successfully conducted.

12

Chapter 1 ~ Introduction

The research methodology adopted for this research is based on a process

iteration model, especially the spiral development model, as defined by

Sommerville [31]:

‘Rather than represent the software process as a sequence o f

activities with some backtracking from one activity to another, the

process is represented as a spiral Each loop in the spiral represents

a phase o f the software processes.

Figure 1.2 overleaf shows the spiral model with each loop split into four sectors:

1. Objective. Setting of the research objectives and hypothesis are defined at

this stage. These research objectives and the hypothesis are revised at each

loop of the spiral. At an early stage the hypothesis normally becomes

clearer and less changeable. Only the objectives evolve throughout the

research.

2. Risk Assessment and Reduction. For each identified objective a risk

analysis is carried out. The time allocated to each objective was considered

to be a major risk in this project.

3. Development and Validation. The design and development of the

prototype is based on a set of requirements and specifications to achieve

the objectives.

4. Planning. The project is reviewed to determine whether to proceed with a

further loop of the spiral.

13

Chapter 1 ~ Introduction

Progress

1- Determine Objectives 2- Identify and resolve risk

SWIF
PS-SWIF

REVIEW I

Requirements,

3- Develop, verify, test4- Plan next phase

Figure 1.2: Boehm’s Spiral Model

1.8 C o n trib u tio n s an d A chievem ents

The novel aspect o f this thesis is the research proposal and subsequent

implementation o f workflow interoperability tools, called PS-SWIF, to provide

interoperability among different scientific workflow systems. The PS-SWIF

prototype is designed and implemented in the context o f a publish/subscribe

model as Web Services based on WS-Eventing specifications [32]. PS-SWIF

achieves true workflow interoperability, regardless o f workflow systems, written

in any language and running on different operating systems, by employing Web

Services and asynchronous standards. PS-SWIF is validated using performance

and scalability measurements that show PS-SWIF is scalable and reliable when

used with a variety o f workflow systems in various numbers.

14

Chapter 1 ~ Introduction

The contributions achieved by this research are as follows:

1. The PS-SWIF approach achieves true workflow interoperability,

regardless of workflow system, programming language or operating

system, by employing Web Services and messaging standards.

2. The PS-SWIF approach supports the workflow interoperability models

provided by WfMC, namely Chained processes, Nested synchronous

sub-process, Event synchronized sub-process, and Nested sub-process

(Polling/Deferred Synchronous), which covers all the defined

possibilities of data communication between two systems and proves the

flexibility of the PS-SWIF approach when applied to different workflow

systems in different environments.

3. Simplicity: Easy to use, and scientists do not need any programming or

deep technical computer backgrounds to use the approach. Scientific

users simply use the PS-SWIF Web interface to wire multi-workflows

scenarios. Further workflow developers do not need to integrate PS-

SWIF into their workflow engines as long as their workflow system

already implements Web Services, which most do. Other approaches

discussed in this thesis require an expert to install the software and to

first set up the environments to enable their use by scientists.

4. Deployment Platform: PS-SWIF can provide run-time interoperability

among different workflow systems in both local and remote

environments, providing flexibility on the distributed execution of multi­

workflow systems.

5. Reusability: Experiments can be repeated with the same topic and

subscription but use different data. Since the wiring is applied at a topic

level, the multi-workflow PS-SWIF experiment can be saved for later use

and ran multiple times using different data sets.

Achievements on this research written by the author include:

/ . Interoperability between Scientific Workflows

15

Chapter I ~ Introduction

A.Alqaoud, I. Taylor, A. Jones, “Interoperability between Scientific

Workflows”, UK e-Science Programme All Hands Meeting 2008

(AHM2008), Edinburgh, UK.

In this paper, a generic approach was proposed for achieving interoperability

among workflow systems, based on asynchronous notification. The basic

concept of PS-SWIF was presented using a direct interaction between Triana

[27] and Tavema [33] workflow systems.

2. Workflow Interoperability among Different Scientific Workflow

Systems, focusing on Triana, Tavema and Kepler

(2008 not published).

A lull implementation of WS-Eventing was integrated with the Triana workflow

system that allows Triana to easily send and receive notification messages. A

mechanism was developed using a WSPeer Framework to allow Tavema and

Kepler [34] to act as Web Services to send and receive notification messages.

The current design of Tavema and Kepler workflows do not have the capability

of deploying a workflow as a Web Service. Appendix A provides more detail on

this approach. (The novelty of this work was not published as the author found

an improved method to provide a generic approach.)

3. Publish/Subscribe Scientific Workflow Interoperability Framework

A.Alqaoud, I. Taylor, A. Jones, “Publish/Subscribe Scientific Workflow

Interoperability Framework', Workflows in Support o f Large-Scale Science

(WORK 09), Portland Oregon, USA: ACM, 2009

In this paper a comprehensive approach to achieving interoperability among

workflow systems, based on a WS-Eventing standard, is proposed. An API was

developed that can be installed and easily configured by any workflow system

that supports the invocation of Web Services. Different models of

interoperability provided by WfMC are supported. More about the PS-SWIF

API is in Appendix B.

4. Scientific Workflow Interoperability Framework

16

Chapter 1 ~ Introduction

A. Alqaoud, I. Taylor, A. Jones, “Scientific Workflow Interoperability

Frameworkf\ International Journal o f Business Process Integration

and Management, Special Issue on Scientific Workflows 2010.

In this journal paper a comprehensive approach to achieving interoperability

among workflow systems, based on a WS-Eventing standard, is presented. In

addition, a new framework through Web interfaces was designed and developed

to provide Workflow Interoperability tools and functions. The new application

provides run-time interoperability among different workflow systems in remote

environments. The reusability of experiments is supported by the system and a

qualitative analysis was performed.

1.9 Organization of Thesis

Chapter 1 ~ Introduction presents the background to the research undertaken,

the hypothesis to be tested and highlights the aims and objectives of the

research, the research methodology and the contributions of the thesis.

Chapter 2 ~ Background surveys the background of research related to

workflow systems and the scientific workflow systems presented in the thesis.

The levels and models of workflow system interoperability provided by the

Workflow Management Coalition (WfMC)are discussed in some detail in this

Chapter.

Chapter 3 ~ Messaging Systems this Chapter provides an overview of

publish/subscribe models in general and focuses on the WS-based

Publish/Subscribe systems in distributed applications.

Chapter 4 ~ Scientific Workflow Systems discusses different workflow systems,

such as Triana, Tavema and Kepler, in more detail. A brief summary of other

scientific workflow systems that support Web Services is also presented.

Workflow interoperability projects in this area are presented with strengths and

weaknesses highlighted.

17

Chapter 1 ~ Introduction

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design describes the

core architecture design for the system. This Chapter also provides the main

concept proposed by the thesis: to employ the use of asynchronous notification

systems to achieve interoperability between different workflow systems. The

notification system to be used is identified and the level of interoperability

which can be achieved by adapting the proposed system is considered. The

workflow interoperability model is presented and the main components of the

model are discussed.

Chapter 6 ~ PS-SWIF Implementation covers these issues for the proposed

system. It presents the implementation of the WS-Eventing specification and

discusses how this can be integrated with the WSPeer framework and how the

system can be applied to different workflow systems thereby conducting a

qualitative study of this work. The PS-SWIF Web application with tools and

function for workflow interoperability is presented in this Chapter.

Chapter 7 ~ Case Study in this case study we use Triana, Tavema, and Kepler

workflow systems to shows how interoperability can be achieved among

different workflow systems.

Chapter 8 ~ Evaluation presents a quantitative and further qualitative evaluation

of the PS-SWIF system. Several experiments are conducted to determine

scalability of the system when applied with different numbers of machines and a

large volume of data; another experiment is conducted which proves the

workflow interoperability models and also proves the flexibility of the SWIF

system.

Chapter 9 ~ Conclusion and future work concludes the thesis with summary

comparison between the PS-SWIF approach and other approaches in the same

area. Extensions possible to the PS-SWIF system and future research directions

are discussed.

18

CHAPTER 2

Background

2.1 Overview

This Chapter presents the background of research related to scientific workflow

systems. In addition a brief summary of Workflow Management System

classification is presented. The levels, models and standards of workflow system

interoperability provided by the Workflow Management Coalition (WfMC) are

discussed in some detail in this Chapter.

2.1.1 Scientific Workflow Definition

Scientific workflow is a new evolution of workflow that emerged for scientists

to formalize and structure complex e-Science applications, such as gravitational-

wave physics, geophysics, bioinformatics, astronomy, climate modelling,

structural biology and chemistry. A scientific workflow management system is a

system that supports the modelling, composition, execution, failure recovery,

and data provenance of a scientific workflow using the workflow logic to

execute tasks within scientific workflows.

2.1.2 Workflow Classifications

There are several workflow classifications proposed in the literature. The

workflow classification defined by Deelman and Yu [35, 36] focuses on the

scientist's and developer's view to describe scientific applications within the

Workflow Management System. The workflow classification presented in this

19

Chapter 2 ~ Background

thesis is based on these publications. Workilow classification is divided as two

categories: Workflow design and definition; and Workflow mapping and

execution.

2.1.3 Workflow Design and Definition

Workflow design involves three key factors, namely: workflow structure,

workflow model and workflow composition system.

2.1.3.1 Workflow Structure

In general, a workflow representation can be achieved in a number of formats

and the most common ones are the Directed Acyclic Graph (DAG) [37] or non

DAG.

The workflow representation structure based on DAG is classified to sequence,

parallelism, and choice representations. In the Sequence representation, tasks are

defined as an ordered series. The next tasks will not start until the first one is

fully completed. In the Parallelism representation, multiple tasks can be

performed concurrently. In choice representation a task can only be performed if

its related conditions are true. Condor [38], DAGMan [39], Pegasus [40], and

Tavema are examples of the workflow systems that use directed Acyclic Graph

(DAG) as their representation format.

A non-DAG workflow supports all the representation structure provided by a

DAG-based workflow. In addition, an iteration representation known as ‘loop or

cycle* is added. The iteration representation structure allows tasks to be repeated

several times based on associated conditions. Triana, ICENI (Imperial College e-

Science Network Infrastructure) [41], and Unicore (Uniform Interface to

Computing Resources) [42] are example of the workflow system that use non

DAG as the representation format.

20

Chapter 2 ~ Background

2.1.3.2 Workflow Model

Workflow Model defines a workflow in terms of task definition and structure

definition. In general, two types of workflow models are defined, namely

abstract and concrete (executable) models. The abstract workflow model

describes workflow activities without referring to particular Grid resources for

task execution. Describing a workflow in the abstract model provides users a

flexible way to map their workflow onto suitable resources within different

workflow systems. This level of abstraction provides an easy way for sharing

workflow descriptions between VO (virtual organisation) participants [40].

In the concrete workflow model workflow tasks are mapped to specific Grid

resources. The concrete workflow may include data movement to stage data in

and out of the computations [36].

2.13.3 Workflow composition system

Workflow composition systems allow workflow users to specify the steps and

dependencies to build components into workflows. They provide a high level

representation for construction of Grid resource and hide the complexity of the

Grid environment. The composition of workflow is categorised into two broad

categories: User-directed and automatic compositions. In the user directed

method users directly indicate computational steps and the data that flows

through them. In the automatic composition method workflows are

automatically generated for users.

Within the User-directed model, users either use language-based modelling or

graph-based modelling to compose workflows. In language-based modelling,

many workflow systems can be represented using a specific language, such as

GridAnt [43], BPEL4WS [44], Gridbus Workflow [45], and Condor DAGMan

[46], which have a specific syntax that can be written by hand using a text editor.

However, whereas Language-based modelling works well with highly skilled

users for some systems, it is extremely difficult for users to express a complex

and large workflow by scripting workflow components by hand.

21

Chapter 2 ~ Background

In Graph-based modelling users use a graphical tool for composing workflows.

Most e-Science workflow systems are designed to support Graph-based

modelling such as Triana, Kepler, and Vistrails [47]. In those systems, users can

easily compose a workflow by dragging and dropping the components of

interest. The most popular approaches to represent the Graph-based modelling

are Petri Nets [48] and UML (Unified Modeling Language) [49].

Petri Nets are a specialized class of directed graphs that can represent sequence,

parallel, loops and condition models for the execution of tasks [50]. They have

been adapted by different workflow systems, such as Grid Workflow Description

Language (GWorkflowDL) [51], and FlowManager [52].

The Unified Modeling Language (UML) is a standardized language which has

emerged for the modelling language, particularly for object-oriented software.

The activity diagram provided by UML is used to represent the dependencies

between different tasks within workflow applications. Askalon [24] is an

example of a workflow system that uses UML activity diagrams.

2.1.4 Workflow Mapping and Execution

Workflow mapping refers to the process that maps an abstract workflow to

appropriate resources. When mapping workflow tasks onto suitable resources,

information about the resources has to be obtained from appropriate sources

[53]. Mapping workflow onto resources requires certain issues to be considered,

namely information retrieval, Workflow QoS Constraints, workflow scheduling,

fault tolerance and data provenance.

2.1.4.1 Information Retrieval

The information retrieved about computational resources can be static, dynamic

or historical. The static information is information that can not change with time,

such as operating system and number of processors. The dynamic information is

related to status of the Grid resource such as availability of the resource and

22

Chapter 2 ~ Background

CPU usage. Historical information refers to previous events that have occurred,

such as performance history [36].

2.1.4.2 Workflow QoS Constraints

There are a large number of similar resources and so mapping workflow to

appropriate resource requires finding out, not only the functionality of resources,

but also how the resources respond. Quality of services (QoS) requirements are

important issues that must be considered when mapping workflow onto

resources. According to Cardoso [54], QoS requirements for workflow and Web

Services include five dimensions: time, cost, fidelity, reliability and security.

Time represents the total time taken to finish the execution of a workflow. Cost

refers to the charge associated with Grid resources for execution of workflow

tasks. Fidelity represents the quality of the results of workflow execution.

Reliability refers to the measurement related to the number of failures for

execution of workflows. Security relates to trust worthiness of resources and

confidentiality of the execution of workflows.

2.1.4.3 Workflow Scheduling

Scheduling tasks within a workflow is related to managing the execution of

dependent tasks on shared resources that are not directly under one’s control

[36]. The workflow schedule needs to be defined according to scheduling

decisions applied to all tasks in the workflow or tasks to be scheduled by

multiple schedulers. The best decision is based on numbers of tasks managed by

schedulers, whereas one central scheduler is more scalable with a limited

number of workflow tasks and multiple schedulers are more suitable for large

numbers of tasks. More about Workflow scheduling can be found in [36].

2.1.4.4 Fault Tolerance

Failure within workflow execution can be caused by several factors: non­

availability of resources, running out of memory and faults with network

connections. Workflow management systems should be able to identify and

handle failures and support recovery techniques for execution. Fault tolerance

23

Chapter 2 ~ Background

can be defined by the types of workflows being executed, namely job level and

service level. At the job level, there are a number of mechanisms, such as level

check-pointing which can be applied at the operating system level for saving the

state of an execution and resuming after a failure. At service-based level, fault

tolerance might involve re-executing the same service on the same resource or

trying to execute the same service on another equivalent resource that may be

running elsewhere [35].

2.1.4.5 Data Provenance

Data Provenance refers to using the history of the creation of data objects to get

the original or source data to initialize the workflow. Provenance is defined by

Moreau [55] as The provenance o f a piece o f data is the process that led to that

piece o f data. The broadness of this definition does not only include the data

derivation, libraries, hardware and run-time information but also considers the

provenance of services and workflow [55]. There are various ways to record

the history of the creation data. Some workflow systems, such as Triana, adopt

an internal structure to handle provenance data while other workflow systems,

such as The Karma [56], apply external services to manage provenance data

[35].

2.2 Workflow Interoperability Standards

Workflow interoperability has received much interest from the distributed

computing community, as can be seen from a number of current workshops [7-

10]. Different workflow interoperability specifications have emerged and the

most important ones are discussed here.

2.2.1 Workflow Standard-Interoperability Abstract Specification

In 1996 WfMC defined the Workflow Interoperability Abstract Specification,

which presents an abstract specification defining the functionality required to

support interoperability between two or more workflow engines [4].

24

Chapter 2 ~ Background

Different strategies can be used to achieve workflow interoperability:

1. Direct Interaction: workflow systems use a common API to allow direct

interaction.

2. Message Passing: workflow systems exchange information by sending

packets of data messages through a communication network.

3. Bridging Strategy: workflow systems apply a bridging mechanism using

a gateway technique to move data and tasks between workflow systems

via protocol converters.

4. Shared Data Store: the transfer of data and tasks between workflow

products is achieved through a shared database.

The Workflow Management Coalition classifies workflow interoperability into

four models:

1. Chained Processes: Assumes a process instance enacted on workflow

Engine A initiates a sub-process instance on workflow Engine B. Engine

A may proceed with its own process instance or be terminated. Engine A

shows no interest in any result from Engine B.

2. Nested Synchronous Sub-process: Assumes a process instance enacted

on Engine A triggers a sub-process on Engine B as in the Chained

Processes model. In addition Engine A in this model waits until it gets

the result back from Engine B. Engine B carries on with its own process

instance until completed and then forwards the result back to Engine A .

3. Event Synchronized Sub-process: Assumes the sub-process on Engine B,

initiated by Engine A , may fire a trigger to activate an instance process in

workflow Engine A due to a sub-process having aborted or as part of a

defined check-point logic between two process instances enacted on

separate workflow engines [4].

4. Nested Sub-process (Polling/Deferred Synchronous): Assumes workflow

Engine A initiates a sub-process instance on Engine B. Engine A carries

on with its own process instance until it reaches a stage which needs

feed-back from Engine B. At this stage, it polls the enacting workflow

engine to find if the sub-process has finished. If the sub-process instance

25

Chapter 2 ~ Background

has finished before the invoking process is ready to deal with the event,

the termination of the workflow on Engine B is queued until the event is

required by Engine A. If the process instance in the first workflow engine

requests the outcome of the enacted sub-process before it has finished,

the request is queued by Engine B until the sub-process is completed.

The Workflow Management Coalition classifies workflow interoperability to

eight levels:

1. No Interoperability Level: No communication between workflow

products and interoperability cannot be applied at this level.

2. Coexistence Level: No standard approach to interoperability between

workflow products at this level. Workflow products share the same run

time environment such as operating system and network. There is no

direct interaction between different workflow products. Interoperability

can be achieved at this level when an application implements different

parts of a complete process, using different workflow products.

3. Unique Gateways Level: Workflow products at this level use a bridging

mechanism to work together to perform routing operations among

engines. One possibility is to use a common Gateway API among

workflow products.

4. Limited Common API Subset Levels: Workflow products can

interoperate directly using a common standard API. A multiple API may

be needed for a given workflow product to interoperate with different

workflow products.

5. Complete Workflow API Level: A single standard API is shared by all

workflow products to allow access to the entire range of potential

functions.

6. Shared Definition Formats Level: This level requires a shared format for

process definitions implemented by workflow products. Each process

supported on the workflow system must have a single definition by an

organization and guarantee the behaviour of the process regardless of the

workflow system used.

26

Chapter 2 ~ Background

7. Protocol Compatibility Level: This level requires that all API client and

server communication must be standardized.

8. Common Look and Feel Utilities Level: In addition to the earlier levels,

this level requires that all workflow products maintain the same, or at

least a similar, interface. This level may not be achieved for commercial

and practical reasons [4].

Since the introduction of Workflow Standard-Interoperability Abstract

Specification in 1996, a number of workflow interoperability proposals and

standards have emerged, which are discussed in the following sections.

2.2.2 Standard-Interoperability Internet e-mail MIME Binding

This standard maps to the Workflow Management Coalition Workflow

Standard-Interoperability Abstract Specification. It provides a concrete

definition for a message that transfers between two workflow engines to achieve

interoperability as defined in WfMC. Abstract messages defined in WfMC are

mapped to a simple text interface that uses Internet e-mail with MIME

(Multipurpose Internet Mail Extension) encoding as the transport method [5].

Two models of interoperability defined by this standard are supported, namely

chained processes and nested sub-process models.

2.2.3 Workflow Standard-Interoperability Wf- XML Binding

The goal of this standard is to produce a specification based on an XML

language to model the data transfer requirements set in the Workflow

Management Coalition Interoperability Abstract specification [6]. This language

is the implementation language used as a basis for the functionality provided in

the Interoperability Abstract. Three models of interoperability defined by WfMC

are supported by Wf-XML, namely chained workflows, nested workflows and

parallel synchronized workflows.

27

Chapter 2 ~ Background

2.2.4 ASAPAVf-XML 2.0

ASAP/Wf-XML [57] is an updated version of the Wf-XML that aims to link

workflow engines together to achieve interoperability. It is based on the

Asynchronous Service Access Protocol (ASAP) that integrates asynchronous

services across the Internet and transfers structured information encoded in

XML using the Simple Object Access Protocol (SOAP) [58]. Wf-XML extends

the ASAP protocol and adds some additional capabilities between business

process management systems [59]. Using the ASAPAVf-XML standard, one can

achieve interoperability at protocol compatibility level.

2.2.5 XML Process Definition Language

XML Process Definition Language (XPDL) [60] is the language proposed by the

Workflow Management Coalition to interchange process models between

different workflow systems. XPDL is implemented in most traditional workflow

systems. XPDL language is classified as a graph-structured language. Defining

processes in a workflow using XPDL language can achieve interoperability at

shared definition format level regardless of the workflow system used.

2.2.6 Workshop on Scientific and Scholarly Workflow

In October 2007, a workshop focusing on scientific workflow and improving

interoperability took place in Baltimore [8]. Different organizations and

committees participated in this workshop, and a technical report, with

recommendations, discusses workflow interoperability levels and provides

different opportunities to achieve workflow interoperability. These levels

include workflow design, workflow mapping and execution, and workflow and

data provenance.

In this model, designing a workflow involves first creating a description of the

workflow at an abstract level. Abstract Workflow describes a selection of

application components and defines their dependencies. The application

components could be tasks, jobs, services or any executable units. Dependencies

between these components define the order in which components can be

28

Chapter 2 ~ Background

executed [8]. It recommends the use of a common high level specification to

describe what the workflow does to achieve the interoperability at workflow

design level, regardless of the workflow language used. Using the common high

level specification can lead to several advantages:

1. If a workflow system no longer exists, it is possible to re-render

workflows that used the old workflow system to a different language.

2. Using such specification enhances the ability of existing workflows to be

published, discovered and be more understandable.

3. The specification could be used as a standard metadata language or

annotation language for describing workflows.

Workflow execution refers to turning the components application in the abstract

workflow into an executable state. Workflow execution interoperability is

essential when an instance in a workflow system needs to invoke an instance in

another system.

In general, the data provenance refers to the ability to obtain the history of data

products. In scientific workflow systems this not only includes reproducing the

data, but also includes troubleshooting and optimizing efficiency. For example,

when data product X generated from a workflow system A is then used by

another workflow system B to generate new data Y. The significant advantages

of workflow interoperability and data provenance here is when provenance

record Y is used to trace back to original data X

2.2.7 Open Grid Forum (OGF)

Workflow interoperability has recently received much interest from the

distributed-computing community, for example, in the Open Grid Forum (OGF)

[7, 9, 10]. In the OGF [9], three levels for interoperability are identified: (1)

workflow embedding (allowing workflows to run within their own environment,

but invoked from another); (2) the development of a meta-language (allowing

different proprietary languages to be mapped to a single standard one); and (3)

29

Chapter 2 ~ Background

semantic annotation /description/ classification, (particularly important for

sharing information).

2.3 Summary

In this Chapter, the author has presented a classification for workflow system.

Workflow classification is divided into two categories: Workflow Design and

Definition; and Workflow mapping and execution.

Workflow Design and Definition involves workflow structure, workflow

model/specification and workflow composition systems. A workflow structure

can be presented as directed Acyclic Graph or non DAG. Workflow Model is

defined in terms of abstract workflow or concrete workflow. Workflow

composition systems allow workflow users to specify the steps and

dependencies to build components into workflows.

Workflow mapping and execution refers to the process that maps an abstract

workflow to appropriate resources. Several steps are required to execute a

workflow and these involve information retrieval, Workflow QoS Constraints,

and workflow scheduling, fault tolerance and data provenance.

In this Chapter, workflow interoperability standards presented by the Workflow

Management Coalition (WfMC) and numerous workshops and research group

focusing on workflow interoperability are discussed in some detail.

30

CHAPTER 3

Messaging Systems

In this Chapter, an overview of the publish/subscribe approach is provided. The

main WS-based publish/subscribe models are discussed in more detail, including

the Java Message Service, CORBA Event and Notification service

specifications, WS-Notification and WS-Eventing.

3.1 Publish/Subscribe Approach

The Publish/Subscribe paradigm has emerged to provide a loosely coupled

communication pattern in large scale distributed computing. It is an

asynchronous messaging system that provides more scalability and flexibility for

distributed applications. Communication using an asynchronous messaging

paradigm is characterized by a decoupling of participants in both time and space

[12]. In the Publish/Subscribe paradigm, an application can send event

notifications to other applications about its executing status, monitoring and

complete results. Such events are called Event Notifications or Notification

Messages. A notification consumer registers interest in a specific event as a

subscriber, and a notification producer sends notification messages to one or

more notification consumers, depending on the previous registration.

The emergence of Web Service technologies, such as Web Service Description

Language (WSDL) [61] and SOAP, allow distributed heterogeneous applications

written in several languages and running on different operating

31

Chapter 3 ~ Messaging Systems

system to be integrated.

WS-based notification messaging systems are becoming widely supported by

Web Service based applications and especially by Grid projects. WS-based

notification messaging systems provide a combination of the characteristics of

both the event notification model and Web Service technologies. In WS-based

notification messaging systems, notification messages are in XML format and

interaction operations, such as subscribe, publish and message transfer, are

performed using Web Service technologies. Most present event notification

models depend on a particular vendor implementation. In contrast, WS-based

notification messaging systems provide interoperability even when implemented

by different vendors. This is of significant benefit as it is difficult to force

numerous vendors to use a specific, or similar, notification messaging system in

their applications. WS-Notification specification [62] and WS-Eventing

specification are the most common examples of WS-based notification

messaging systems. WS-based notification messaging systems are used by

different scientific workflow systems, for example, WS-Notification is

implemented by the Triana workflow system [63].

3.2 The Java Message Service

The Java Message Service (JMS) [64] is an API messaging specification that

allows an application program based on J2EE enterprise applications to create,

send, receive and read messages. The JMS provides reliable, loosely coupled,

asynchronous interactions between enterprise applications in a distributed

computing environment. The JMS API defines two messaging models; (1) point-

to-point or queuing model; senders posts messages to a specific receiver through

a message queue. The point-to-point messaging model is equivalent to the e-mail

messaging system. Senders post messages to a particular mailbox (queue), and

the owner of the mailbox (queue) receives the messages in the same order they

were sent. In the point-to-point messaging model, only one receiver gets the

message. (2) The publish/subscribe messaging model allows a producer (also

called a publisher) to publish messages to single or more consumers (called

32

Chapter 3 ~ Messaging Systems

subscribers) through a particular topic. A topic is a destination where publishers

can publish messages, and subscribers can consume them. Publishers and

subscribers are independent and they do not have to know anything about each

other. Multiple subscribers can receive a message produced by one publisher.

The disadvantage of using the JMS messaging system is that it just applies to

applications using Java platforms.

3.3 CORBA Event Service and Notification Service Specification

The Common Object Requesting Broker Architecture (CORBA) [65] is a

number of specifications for middleware defined by the Object Management

Group (OMG) that allow a large range of application programs written in

different languages and running on different operating systems to integrate

together through an Object Request Broker (ORB). Event services specification

[66] and Notification services specification [67] have been defined to support

communication between CORBA objects. Both specifications are based on the

publish/subscribe model.

In the Event services specification, two main objects are defined: the Event

supplier and the Event consumer. Event suppliers generate event data and event

consumers receive event data. Event consumers issue a standard CORBA

request to an Event supplier. A Push model and a Pull model are two approaches

defined to establish communication between event suppliers and event

consumers. In the push model, an event supplier initiates the delivery of the data

to event consumers. In the pull model, the event consumer initiates the request

for the data from an event supplier. The communication between the event

suppliers and event consumers occur through event channels by issuing standard

CORBA requests. An event channel is a standard CORBA object that enables

multiple event suppliers and numerous event consumers to communicate with

each other asynchronously. However, the CORBA Event Service Specification

comes with two main limitations. It does not address event filtering capability

and does not support configuration for Quality of Service (QoS) [67].

33

Chapter 3 ~ Messaging Systems

The CORBA Notification service specification is considered to be an extension

to the CORBA Event service specification. The primary goal for the CORBA

Notification service specification is to overcome the limitations of the CORBA

Event Service Specification. It supports filtering type and capability of

configuring various QoS properties. This specification also presents a new type

of message “Structured Events” which defines a well-known data structure to

optimize event filtering. However, CORBA has been implemented on different

platforms and different language, but it depends on a single vendor

implementation. CORBA does not provide interoperability when it is

implemented by different vendors, especially when one considers extending it

into higher-level services, such as security or transaction management [68].

3.4 Open Grid Services Infrastructure (OGSI) specification

Open Grid Services Infrastructure (OGSI) specification [69] was released by

Global Grid Forum (GGF). It defines approaches for creating, representing and

managing information among grid services. A Grid Service is a Web Service

with additional properties such as stateful resources and lifetime management. A

Notification messages system is an important part of OGSI specification. The

notification message in OGSI is also implemented using a publish/subscribe

model. In OGSI a notification producer or publisher is called a notification

source and a notification consumer is called a notification sink. The notification

source is a Grid services instance that implements NotificationSource portType

to send notification messages to multiple notification sinks. The notification sink

is a Grid service instance that implements NotificationSink portType to receive

notification messages from notification sources. The subscriber is also a Grid

service instance that is implemented separately from Notification Sink. The

subscriber sends a subscription expression request to notification source. The

subscription expression request includes XML elements that describe when and

where Notification messages should be sent to any Notification Sink. Designing

of Notification roles; Notification Source, Notification Sink and Subscriber in

the OGSI as Grid Service, allow them to be managed like any other Grid

34

Chapter 3 ~ Messaging Systems

Service. OGSI Notification was the earliest attempt toward a WS-based

notification messaging system. The Web Services Resource Framework (WS-

RF) [70] standard was produced to re-factor and evolve the OGSI. WS-RF

divides the OGSI functionality to different specifications and the OGSI

Notification was replaced by a new specification called WS-Notification.

3.5 WS-Notification

WS-Notification includes a number of specifications produced in January 2004

by IBM and Globus Alliance. It is based on a publish/subscribe model. In March

2004 the WS-Notification specification was re-factored into three separate

specifications: WS-BaseNotification [71], WS-BrokeredNotification [72], and

WS-Topics [73]. WS-BaseNotification specification provides the essential

functionality and fundamental interactions between notification producers and

notification consumers. WS-BrokeredNotification specification describes

intermediary services to decouple Notification Consumers from Notification

Producers. WS-Topic specifications define a number of topic expression used in

a subscribe request as a subscription expression. WS-Notification has been

implemented by various vendors and projects such as Triana Workflow system

and OGSA-DAI [74].

The following description describes the key entities in the WS-Notification

specification: A Notification Producer is a Web Service entity that supports one

or more topics. It maintains a listing of subscription requests and distributes

Notification Messages to Notification Consumers. A Publisher is an entity (may

be a Web Service) that generates Notification messages. The publisher Web

Service is different from the Notification Producer Web Service. A Notification

Consumer is a Web Service entity that subscribed with a Notification Producer

through a Subscriber Web Service in order to receive Notification Messages. A

Subscriber is an entity (usually a Web Service) that used to send a subscription

request message to Notification Producer. The Subscriber Web Service might be

different from Notification Consumers. A Subscription is a resource created

when a message request is sent by a subscriber to Notification Producer, which

35

Chapter 3 ~ Messaging Systems

follow the implied resource pattern WS-Resource and a Subscription Manager is

a Web Service entity to manage subscription resources. Although WS-

Notification provides a wide variety of publish/subscribe functionality, an

application needs to implement different standards to adopt WS-Notification

specifications.

3.6 WS-Eventing

The WS-Eventing specification was produced in January 2004 by Microsoft

[32]. It defines a Source Web Service responsible for accepting requests to

create subscriptions and send notification messages. The WS-Eventing

specification defines a Sink Web Service that receives notification messages. A

Subscriber Web Service is also used by the WS-Eventing specification to send

subscribe requests to Source Web Services, and delegates other requests, such as

renew, getStatus and unsubscribe, to the Subscription Manager Web Service.

The WS-Eventing specification uses WS-Addressing [75] to address Web

Services and messages. WS-Addressing defines two constructs, namely endpoint

references and message information headers, to convey addressing information

between Web Services. The subscribe request contains a number of properties in

the request message that follow the WS-Addressing standard. There are various

elements that must be defined in the message header:

1. Subscription action URL must be specified to a value that conforms to

WS-Eventing syntax.

2. Hypothetical event source that specifies where message should be sent.

3. Reply element that specifies where response message should be sent.

4. Message ID that uses a unique identifier for the request message.

In the message body of the subscribe request, the following elements should be

defined:

1. SubscriptionEnd address: specifies where to send a subscription end

notification if the subscription is unexpectedly terminated by the source

Web Service.

2. Delivery Mode: specifies how and where to send notification messages.

36

Chapter 3 ~ Messaging Systems

By default, WS-Eventing uses the push mode as the delivery mode which

provides simple asynchronous messaging and provides delivery

extension elements in the subscription request to support other types of

delivery modes such as the synchronous mode.

3. Subscription Expiry: This expiration time specifies the Sink Web Service

is not interested in receiving any notification messages after the time has

expired.

When the subscribe request is successfully handled by the Source Web Service,

it will generate a response message that states the subscription request has been

successful. This response includes the EndpointReference of a subscription

manager which may be used later by the Subscriber to manage the subscription.

Requests by a Subscriber Web Service, such as renew or getStatus must be

targeted to the Subscription Manager by including the subscription ID.

WS-Notification standard and WS-Eventing specifications are the main

competing standards in this area. WS-Eventing is simpler, used by several

software vendors to provide basic functions for the Publish/Subscribe paradigm.

3.7 Summary

In this Chapter an overview of the publish/subscribe approach is presented and

discussed, with the most popular publish/subscribe systems, such as JMS,

CORBA Event, CORBA Notification, WS-Notification, and WS-Eventing.

JMS defines two models to deliver messages to consumers: Point-to-Point that

posts messages to a specific receiver through a message queue and

publish/subscribe models that allow a producer to publish messages to single or

more consumers through a particular topic.

CORBA Event specification is based on the publish/subscribe approach. Event

suppliers generate event data and event consumers receive event data. The

specification support push and pull models to establish communication between

37

Chapter 3 ~ Messaging Systems

event suppliers and event consumers. The CORBA Notification specification is

similar to the CORBA Event specification but with more functions and features.

It supports filtering type and capability of configuring various QoS properties.

WS-Notification is based on the publish/subscribe model. The main entities,

such as Notification Consumers, Notification Producers, and Subscriber are

implemented as Web Services. Although, WS-Notification provides more

functionality than other systems, it needs to use different specifications, such as

WS-ResourceProperties, WS-ResourceLifetime to be implemented.

The WS-Eventing specification uses a similar concept as the WS-Notification

specifications where all the entities are implemented in Web Service pattern.

WS-Eventing implement the basic functionality of a publish/subscribe model

such as subscribe and renew and does not therefore need to implement other

specifications, such as WS-Notification and therefore WS-Eventing is used in

the PS-SWIF approach.

38

CHAPTER 4

Scientific Workflow Systems

In this Chapter, scientific workflow systems, such as Triana, Tavema and

Kepler, are presented in more detail. A brief summary of other scientific

workflow systems that support Web Services are presented followed by an

overview of workflow interoperability projects in this area; with strengths and

weaknesses highlighted.

4.1 Scientific Workflow Systems

There is wide range of scientific workflow systems today, each one designed to

resolve problems at a specific level. In this section the author focuses on Triana,

Tavema, and Kepler workflow systems because these systems are good

representatives of scientific workflow systems at the service level where the

approach in this thesis is applied. Different experiments to construct various

workflows using Triana, Tavema, and Kepler workflow systems are conducted

for proof of the concept and hypothesis.

4.1.1 Triana Workflow

Triana [27] is an open source problem-solving environment designed at Cardiff

University in 1991. Triana combines a number of different libraries of pre­

defined analysis tools developed for a wide variety of application scenarios and

environments. Triana can be used for many applications, including use as a

dataflow system, a distributed workflow system, choreographing Web or WS-RF

39

Chapter 4 ~ Scientific Workflow Systems

services, a workflow management system and an automated scripting tool [76].

Triana has the ability to work in Grid Computing and P2P environments and can

dynamically discover and run distributed resources, such as Web Services. An

advantageous feature of Triana is its graphical user interface. The current

version of Triana has been developed using Java technology and utilises lessons

learned from its previous C++ counterpart.

Triana provides a wide variety of built-in tools, which can be used for numerical

data, audio data, images and text files. Most of the tools in Triana display a

parameter window so users can add, or delete, parameters as required. If an

appropriate tool is not available Triana provides a wizard that allows one to

create a suitable tool with a parameter window. If other tools are available

outside of Triana, Triana allows one to use these directly over the Internet

without downloading to one’s computer.

Tools in Triana are called units and are found in the Toolbox Window. Units are

represented on the Main Triana Window by boxes with input and output nodes

and connected by ‘cables’. Each unit specifies the data type for the input and

output nodes and a cable between two units represents the data type being passed

between these units. To connect two units, a user drags a cable from the output

node of the first unit to the input node of the second unit. Triana’s underlying

type-checking system inspects whether the data type sent by the first unit is

compatible with the data type of the receiving unit. If so, the cable is connected

between these units indicating that the data type matches; if not, an error

message is displayed stating the data type between these units is not compatible.

Triana was originally designed to support collaboration between scientists for

the GEO600 Gravitational Wave Project [77]. The GEO600 will normally

produce numerous terabytes of numerical data every year, and Triana was used

to automatically examine and run data analysis algorithms on this data at its

source. Although Triana was designed for use by scientists in GE0600, it can be

40

Chapter 4 ~ Scientific Workflow Systems

used in many other ways and some 500 tools exist to cover a large range of

applications.

Triana has been used in many different projects and domains, such as Triana

Advanced Clinical Support (TRIACS) [78], Gravitational Wave Project

(GEO600), Enabling Desktop Grids for e-Science (EDGeS) [79], Workflows

Hosted In Portals (WHIP) [80], Distributed Audio Retrieval Using Triana

(DART) [81], Biodiversity World [82], Environment for Industrial Design

Optimization (DIPSO) [83], The Data Mining Tools and Services for Grid

Computing Environments (DataMiningGrid) [84], Grid Enabled Web

eNvironment for site Independent User job Submission (GENIUS) [85], Grid-

Enabled Medical Simulation Services (GEMSS) [86], and Federated Analysis

Environment for Heterogeneous Intelligent Mining (FAEHIM) [87].

In Triana two types o f distributed components are used to interact with Grid

components via the Grid Application Tool kit (GAT) [88] and with Service

components via the Grid Application Prototype (GAP) [89, 90] interface. Figure

4.1 shows the distributed components within Triana.

T riana
Service-Oriented Grid-Oriented

GridLab GATGAP Interface

W Serve
WSPeer

GRAM
Adaptor

Local
Adaptor

GRMS
AdaptorP2PS

UDOt

Figure 4.1: Distributed Components within Triana [91]

❖ GAT was developed through the GridLab project [92], and aims to

Chapter 4 ~ Scientific Workflow Systems

insulate Grid workflows from the underlying Grid middleware allowing

Triana components to execute applications on the Grid via a resource

manager, such as GRAM (Grid Resource Allocation Management) [93]

and GRMS (GridLab Resource Management System) [94], and to

perform Grid operations, such as file transfer and job submission [89].

❖ The GAP interface provides generic service functionalities for publishing

and discovering services within dynamic service-oriented networks. GAP

uses a P2P-based distributed mechanism [95] for communication. This

mechanism allows different protocols to be implemented for binding to

the GAP Interface as they follow a service-oriented approach. Four

different infrastructures bindings are provided by the GAP Interface:

1. P2PS [96] (Peer-to-Peer Simplified) is a lightweight

infrastructure for P2P technology with the ability for

advertisement, discovery and pipe-based communication. P2PS

was designed to provide a simple platform to develop P2P style

applications, to overcome the complexity of other similar designs

such as JXTA [97] and JINI [98].

2. JXTA is a set of open protocols that allows any connected node

on the network to be discovered and communicated through a

P2P network. This node could be any device from cell phones

and wireless PDAs to PCs and servers. The JXTA peers can

communicate with each other behind firewalls and network

address translations (NATs).

3. Web Services allow applications to be discovered, invoked,

hosted and exposed as Web Services using UDDI [99] or a P2P

infrastructure as the discovery protocol.

4. WS-RF is stateful resource Web Service. Invoking a resource

within Web Service, is being referred to be identified by the

inclusion of an endpoint reference (WS-Address) in the message

header [100]. Within Triana, an endpoint reference is defined as a

context, and this context can be applied to multiple Web Service

interactions. WS-RF resource is invoked into Triana in the same

42

Chapter 4 ~ Scientific Workflow Systems

way as a standard Web Services.

Triana uses WSPeer to implement the GAP Web Service binding, discussed in

detail in Chapter 6.

In Triana, user workflows can be deployed as fully functional Web Services.

The workflow in Triana can be either one or more tasks (a group). If a workflow

consisting of more than one task is deployed in Triana, then the tasks must first

be created in a group before the workflow is deployed. Group tasks in Triana act

as an individual task which, receives data from input nodes, processes this data

and the result is then passed to their output nodes. A user then selects the Web

Service binding as the service host to run the Group task, and the GAP Interface

automatically launches the workflow as a Web Service. Once Web Services

have been deployed, they replace the equivalent group tasks in the user’s

workflow to a new Web Service task with a different colour. Data is delivered

to, and from, the new Web Services through their input and output pipes.

A key advantage is the capability to advertise Web Services launched as remote

Triana services using the Universal Description, Discovery and Integration

(UDDI) for the GAP Web Service bindings. Once the Web Service Workflow is

advertised, other instances of Triana and non-Triana related applications can

discover and invoke these Web Services. This is a powerful feature that allows

users to quickly create and launch a wide range of composed Triana algorithms

and tools as Web Services.

Whenever Triana is started, the GAP interface automatically searches for

existing published Web Services, which, when located, are inserted into the

Triana toolbox window with existing local tools. Triana uses a Discover

Services option to issue a GAP discover services call. When a remote service is

found, it is loaded into the Triana Toolbox Window, and the remote services can

be dragged and connected into the Main Triana Window in the same way as

43

Chapter 4 ~ Scientific Workflow Systems

local Triana tools, although Triana uses an input/output GAP pipe to connect the

remote services instead of a local cable.

Triana workflow supports a notification message model using the WS-

Notification specification. Since WS-Notification is based on Web Services and

Triana supports deployment of a workflow as a Web Service, the workflow in

Triana can be driven as a WS-Notification component. Each instance of this

component can be invoked with the context of a WS-Resource and bind with one

of the topics available in this resource. When the value of this topic is changed a

notification message is sent to workflow components and the workflow then

continues with further processing based on the new result received. This is not

straightforward, Triana needs to expose a list of topics for each resource, which

is modelled as a resource property (WS-ResouceProperty [98]). Each of these

properties is defined in the WSDL description and Triana needs to construct a

separate component for each in the Triana tool tree. When the Web Service that

involves resources is invoked, users can drag the appropriate property resource

from a Triana tool and construct a workflow [63].

In terms of interoperability, the ability of a workflow in Triana to be deployed as

a Web Service makes it easy to interoperate Triana workflows at run time with

other engines that support the invoking of the Web Service. Interoperability with

the Triana Workflow has been addressed by different projects, including: VLE-

WFBus [101] and P-GRADE/GEMLCA [102], and later sections give more

detail.

4.1.2 Taverna Workflow

The Tavema Workflow system [33] is an open source that aims to provide a

workflow language and graphical interface tools to enable scientific users to

build, run and edit workflows via distributed computer technology. Tavema has

been developed by the myGrid [103] project for designing and executing

workflows for e-Science experiments. Tavema allows scientists to build

complex analysis workflows from different components, located on local and

remote machines, and then execute these workflows and visualize the results.

44

Chapter 4 ~ Scientific Workflow Systems

Tavema has been used in a wide range o f different domains, from music to

chemistry to biology [104]. Many different software tools, including Web

Services, have been integrated into the Tavema Workflow. These include

example, services provided by the European Bioinformatics Institute (EMBL-

EBI) [105], which is part o f the European Molecular Biology

Laboratory(EMBL) [106] by the National Center for Biotechnology Information

(NCBI) [107], and the DNA Data Bank of Japan (DDBJ) [108].

The design architecture o f the Tavema in Figure 4.2 has three major layers,

namely The Application Data Flow layer, The Execution Flow layer and The

Processor Invocation layer.

Tavema
Workbench

Sctfl+WofWtaw
Object Model

Application data flow layer

Worktow Execution Execution flow layer

Freefluo Workflow enactor

Web
Service

Soap
lab

Bio
MOBY

Local
App

Processor
invocation layer

Enactor

Figure 4.2: Tavema Layers [109]

Application Data Flow Layer: a new language called the Simple conceptual

unified flow language (Scufl) is used to construct a workflow as a graph of

processors with input and output nodes. The aim is to allow scientists to be

45

Chapter 4 ~ Scientific Workflow Systems

familiar with the service-orientated architecture concepts and hide the

complexity of the implementation styles of the services.

The components of a Scufl workflow consist of:

♦ A set of inputs, which act as entry points for a processor.

♦ A set of outputs, which act as exit points from a processor.

♦ A set of processors; each one of which represents a logical service. From

the user’s perspective a processor is an entity that receives data,

processes the data and then produces the data on its output ports.

♦ A set of data links, which mediate the flow of data between two

processors.

♦ A set of coordination constraints, which apply constraints to control the

execution of processors. For example, if two coordination links are

applied, one processor will not process its data until the second processor

has completed, even though these are not directly connected.

The Execution Flow Layer: The purpose of this layer is to hide the complexity

of workflow design when the user needs to deal with details of the workflow,

such as iterations and error handling. The Scufl language is used to deal with

these requirements implicitly. This layer manages list and tree data structures

that pass from the Application Data Flow Layer and apply fault recovery

strategies on behalf of the user.

The Processor Invocation Layer: There are different styles of service

interactions to enable the data flow of the workflow. Some services are

presented using a simple query/answer interface and other services are presented

using standard toolkits, such as Soaplab services [110]. It is difficult for the

Scufl language to describe the interaction for all these kinds of services. Instead,

the Scufl language can be extended to add different types of processor. This is

accomplished through a set of processor plug-ins, provided by the Tavema

workflow, such as a WSDL Scufl processor, a local Java function processor, a

Soaplab processor, a nested workflow processor, and a Styx processor.

46

Chapter 4 ~ Scientific Workflow Systems

A major advantage of using Tavema is the ability to access a wide range of

services, over 3,500, accessible to a myGrid user [35]. These services are not in

Tavema by default, but can easily be added to the Tavema workbench. However

the current state of the Tavema workflow does not support the deployment of a

workflow as a Web Service. Moreover the notification messages model is not

supported by Tavema.

In terms of interoperability, Tavema has been used with Triana and Kepler

through different projects such as P-GRADE/GEMLCA and VLE-WFBus

project; more details are given in later sections. In addition, Tavema is the main

workflow for the myExperiment social Web site, which is a Virtual Research

Environment where scientists can find, and share, workflows. The

MyExperiment Tavema Plugin created by WHIP (Workflow Hosted In Portal)

allows Tavema users to seamlessly move between their locally installed version

of Tavema and the MyExperiment Website [111].

4.1.3 Kepler Workflow

The Kepler Workflow system [34] is an open source that aims to provide

analysis and modelling of scientific data for research scientists in different

domains. Kepler is supported by the National Science Foundation Kepler/ CORE

team [112], which includes a number of institutions that created the Kepler

project: UC Davis, UC Santa Barbara and UC San Diego.

The Kepler Workflow has been used in different scientific projects; in Chemistry

with the RESearch sURGe ENabled by CyberinfrastructurE (RESURGENCE)

project [113], in Ecology with the Science Environment for Ecological

Knowledge (SEEK) project [114], in Geology with the Geosciences Network

(GEON) Project [115], in Molecular Biology with the Scientific Process

Automation (SPA) project [116] , in Oceanography with the Real-time

Observatories, Applications, and Data Management Network (ROADNet)

project [117] and in Phylogeny with the Cyberinfrastructure for Phylogenetic

Research (CIPRES) project [118].

47

Chapter 4 ~ Scientific Workflow Systems

Kepler provides a graphical interface for scientists with no experience in

computer science to create and execute the scientific data, such as streaming

sensor data, medical and satellite images, simulation output and observational

data using a visual representation.

The Kepler design is based on Ptolemy II framework [119] developed by the

University of California, Berkeley. Ptolemy II is a Java-based component

assembly framework with a visual interface called Vergil. The Ptolemy II

framework supports modelling, designing and simulation of real-time embedded

systems. Ptolemy provides a new feature called directors to control the execution

model of a workflow. Workflow components are represented using reusable

units called actors that represent the scientific data. An actor can take several

input and output ports.

The Kepler workflow adapts, and extends, features provided by the Ptolemy II

framework, adding more advanced features ‘through specific actors’ needed by

scientific workflows, such as access to remote data, Database Access and

Querying, Distributed Execution (Web and Grid-Services) and provenance

tracking.

Like Triana and Tavema version 2.0 [104], a user can easily construct, or

prototype, a workflow in Kepler by dragging and dropping the components onto

a Workflow canvas. Prototyping a workflow requires the identification of a

number of steps, from reading data to transforming and processing it, and

visualizing or saving the output results in a specific format. The first step is to

identify and select a director that controls the execution of the workflow. There

are numerous directors provided by the Kepler workflow and a user can select

one of these, depending on the types of processes the workflow will perform.

For example, there are directors that specify whether the workflow can be

executed synchronously in parallel. The user can then select the appropriate

actors from the Kepler library and connect them on the workflow canvas to

48

Chapter 4 ~ Scientific Workflow Systems

create a special data workflow. The workflow can then be saved in XML format

and executed.

A Web Service is invoked through a Web Service actor, by specifying the URL

of a WSDL file. Normally a WSDL file provides a description for methods and

data types the service can execute. If the service uses complex types, a

WSWithComplexType actor must be used instead of the Web Service actor.

When a user specifies the URL of a WSDL file in the Web Service

WSWithComplexType actor, available methods will be automatically populated

in a drop-down menu. Once the user selects and commits to a desired method,

the necessary input and output ports are automatically created.

A major advantage of using a Kepler workflow is that it provides more tools and

functions than provided by other workflow systems that cover different scientific

domains. The Kepler library provides a wide range of useful actors that can

easily be used to access the powerful statistical and data processing of R and/or

MATLAB for image processing functionality [120]. R [121] is free software

which is part of the GNU project [122] used for statistical computing, data

manipulation and graphics. However the current state of the Kepler workflow

does not support the deployment of a workflow as a Web Service. Moreover the

notification messages model is not supported by Kepler; instead Email actors are

used to send email notifications from a workflow to a specified address.

In terms of interoperability Kepler has been integrated with different systems

such as Pegasus, Triana and Tavema in the P-GRADE/GEMLCA and VLE-

WFBus projects.

4.2 Other Workflow Projects Supporting Web Services

Here, the author outlines some of the workflow projects that use Web Services

standards, using a Web Service to compose a workflow. Any potential

collaboration between these systems requires workflow interoperability. The

49

Chapter 4 ~ Scientific Workflow Systems

approach presented in this thesis is based on Web Service standards and can be

used with these systems to achieve workflow interoperability.

4.2.1 The GEODISE System

GEODISE [123] is designed to support engineers and provide a seamless access

to an intelligent knowledge repository in the Grid environment. GEODISE is

integrated to provide Design Optimization Tools for Computational Fluid

Dynamics (CFD) for industrial application. The GEODISE project supports a

number of toolboxes used to integrate Grid client functionality into problem­

solving environments. A Web Service toolbox is provided through the .Net Web

Service-enabled interface to the Condor system.

4.2.2 The OMII-BPEL Workflow

OMI-BPEL [124] aims to provide process modelling and process execution for

scientific workflows expressed in Business Process Execution Language

(BPEL); officially a Web Service standard for business process modelling and

execution.

4.2.3 The SODIUM Workflow

SODIUM (Service Oriented Development In a Unified framework) [125],

consists of a set of languages and tools, with corresponding middleware, used

for modelling and execution of scientific workflows composed of heterogeneous

services. The SODIUM ‘execute’ engine is written in Unified Service

Composition Language (USCL) [126]. SODIUM provides a Web Service Plug­

in to invoke Web Services by dynamically assembling a SOAP message and

sending it to the service provider [127].

4.2.4 The VisTrails Workflow

VisTrails [128] is a scientific workflow and provenance management system

developed at the University of Utah, and provides a useful tool to manage data

and the data exploration process [129]. The VisTrails workflow is written in

50

Chapter 4 ~ Scientific Workflow Systems

Python. A Web Service is supported in the VisTrails through a Web Service

Package.

4.2.5 The Discovery Net System

Discovery Net [130] is middleware that allows scientists to create and manage

complex data analysis on Grid technologies, such as Web Services, without

needing much background on computer science. Discovery Net provides a

different range of bio-informatic tools to compose a workflow using grid

services. The Web Service is managed through a component service layer

provided by Discovery Net.

4.2.6 MOTEUR

MOTEUR (hoMe-made OpTimisEd scUfl enactoR) [25] is a service-based

workflow which provides maximal flexibility to make the description and

enactment of data-intensive easier from the application point of view. MOTEUR

provides enactment of a workflow of Web- Services described with the Scufl

language used by Tavema workbench [131].

4.2.7 The Workflow Enactment Engine

The Workflow Enactment Engine (WFEE) [132] developed at the University of

Melbourne, Australia, uses a just in-time scheduling system and decentralized

event-driven scheduling architecture which provides a more flexible and loosely-

coupled control. The WFEE defines a XML-based workflow language (xWFL)

to allow describing tasks and dependencies. WFEE uses a dispatcher to interact

with Web Service resources.

4.3 Related Work

To date, only limited or ad-hoc solutions have been attempted to achieve

scientific workflow interoperability between e-Science workflow systems. In

this section the author presents the most popular approaches that have tried to

achieve interoperability within Scientific Workflow Systems.

51

Chapter 4 ~ Scientific Workflow Systems

43.1 P-GRADE/GEMLCA

This approach is based on integration of GEMLCA [133] with P-GRADE [26]

to achieve workflow interoperability [102]. GEMLCA (Grid Execution

Management for Legacy Code Architecture) is produced by Westminster

University as an application repository for deploying legacy code applications as

Grid services. The P-GRADE Portal (Parallel Grid Run-time and Application

Development Environment) is a workflow-oriented grid portal which supports

applications at all stages of grid workflow development and manages how Web-

based Grid portals can be executed on top of Globus middleware [134].

GEMLCA is integrated with the P-GRADE Grid portal [135] to introduce a

user-friendly Web interface that deploys legacy code as Grid services, and to

build, execute and visualize the execution of complex Grid workflows built from

legacy code and Grid services. To achieve workflow interoperability in the

GEMLCA/P-GRADE approach, it is required that a home workflow must first

integrate with GEMLCA. The home workflow can be any workflow, such as

Triana, Tavema or Kepler, while other workflow systems can execute as nodes.

Because the P-GRADE was integrated with GEMLCA, the P-GRADE is used as

the default home workflow. Three workflow systems, Triana, Tavema and

Kepler, have been installed in a cluster at Westminster University. The P-

GRADE portal is used to enable scientists to select one of these workflow

systems, upload the input parameters and input files and then execute using the

GEMLCA. Although this approach introduces a type of workflow

interoperability, it is a requirement to integrate one’s own workflow system with

GEMLCA if one needs to use a different workflow as the home workflow

because the default home workflow is the P-GRADE one. So the P-

GRADE/GEMLCA approach is limited to specific types of workflow systems.

Also data is not transferred between workflow systems directly, but is

transferred through a stored file.

4.3.2 VLE-WFBus

VLE-WFBus [101] is a workflow bus based solution developed by Dutch

Virtual Laboratory for the e-Science (VL-e) project [136] to achieve workflow

52

Chapter 4 ~ Scientific Workflow Systems

interoperability. The VLE-WFBus combines different scientific workflow

systems as federated components on one workflow system using a software bus.

This workflow is called a workflow bus and any workflow wrapped to a

workflow bus is called a sub-workflow. The VLE-WFBus wraps four popular

workflow systems, namely Triana, Tavema, Kepler and VLAM-G workflow

systems [137] as the sub-workflow. In a workflow bus, the data and control

dependencies among sub-workflows is achieved through data objects. The data

object can be any type of data entities such as input/output files and a set of

parameters. However, the VLE-WFBus approach only provides workflow

interoperability for certain scientific workflow systems, and is limited to these

workflow systems. It is, moreover, required that the workflow systems should

provide flexible engine level API for integration.

Beside the disadvantages mentioned in this section for workflow

interoperability approaches, the P-GRADE/GEMLCA and VLE-WFBus

approaches need to install an API on a user machine which requires an expert or

developer to set up the environment and apply the configuration for the system.

These approaches do not support interoperability among workflow systems

running remotely, as does the PS-SWIF approach presented in this thesis.

4.3.3 Intermediate Workflow Representation

The Intermediate Workflow Representation (IWR) [138] framework proposal by

Oxford University Computing Laboratory is for build time interoperability of

workflow definition languages. Since there are varieties of different workflow

definition languages (WDLs) emerging from different workflow systems, IWR

aims to provide interoperability among workflow system by creating a mediator

to carry out language-to-language conversions. IWR [138] classifies the

different workflows that exist across different systems to three categories: an

atomic workflow that allows users to use an interface to algorithm or tool with

input data; a partial workflow that does some of the desired functionality within

the workflow itself. Users can incorporate the partial workflow to build the

whole workflow. The partial workflow can be used as a ‘sub-process’ which

53

Chapter 4 ~ Scientific Workflow Systems

allows a calling workflow to invoke it and when it is finished returns a control to

the caller; and a composite workflow which combines atomic workflows and/or

partial workflows. Users can download a composite workflow and directly use it

without any modification.

The IWR framework composes two logical units: Workflow Library Services

and Workflow Translation Services. The user is enabled to use their workbench

to search for existing workflows and services. The Workflow Library Services

represents a repository of the three types of the workflow classifications defined

earlier and the user may use them to create a workflow. Users would use the

Workflow Translation Services with a specific WDL to transform workflow

scripts to the IWR format. The transformation is performed through a syntax

analyzer which uses some algorithm to parse the original workflow and produce

the IWR format.

The IWR format is going to support a superset of control flow constructs such as

sequence, parallelism, conditional routing and structured iteration. In terms of

data flow, it is going to support wide ranges of data types such application

specific data, and process control data.

The solution proposed by the IWR Framework tried to achieve interoperability

at an abstract workflow level, which is undoubtedly useful, but interoperability

at run-time or execution level is still needed. Moreover the IWR framework is

required to install a plug-in to the user’s existing Workflow Management System

which requires an expert or developer to set up the environment and apply the

configuration for the system.

43.4 SIMDAT

SIMDAT [13] Data grids for process and product development using numerical

simulation and knowledge discovery, started in 2004. The SIMDAT is funded by

the European Commission under the Information Society Technologies

Programme (1ST). There are numerous publications on the SIMDAT project and

54

Chapter 4 ~ Scientific Workflow Systems

the one most related to this thesis is Design Document for Workflow

Interoperability and Management [139, 140]. SIMDAT provides two models to

achieve workflow interoperability: Web Service model and Grid Service model.

In the Web Service model three types of workflow interoperability are

supported: Deployed Server; Deployed Service and Language Translation.

The deployed server approach involves deploying a workflow engine as a Web

Service through its API. Because the workflow engine is represented here as a

Web Service, this requires any workflow description or data to be submitted as

inputs. Then users use an interface to construct a workflow visually using a

workflow language that the server understands to describe the composition of

each component. Each component is mapped onto a concrete Web Service.

Information of the Web Service is then called from the server side (the workflow

engine).

The deployed service approach involves only deploying an actual workflow as a

Web Service. This approach requires that all the workflow systems within

SIMDAT must have the capability to deploy their workflows as a Web Service.

The disadvantages of both the deploying service and deploying server approach

are that it is required to use a special API to deploy the workflow engine or

actual workflow as a Web Service; the user must construct a workflow using a

language that the workflow engine understands. Moreover it is limited to

workflow systems supported by SIMDAT (OPTIMUS, InforSense’s KDE, and

Freefluo/Tavema) [141]. These approaches present a solution to achieve

interoperability at Limited Common API Subset level according to the WfMC

classification.

The language translation approach has tried to achieve interoperability when the

workflow engine is able to support other workflow languages. This approach has

been attempted by InforSense’s KDE (Knowledge Discovery Environment)

55

Chapter 4 ~ Scientific Workflow Systems

[142] where XPDL (XML Process Definition Language) and BPEL (Business

Process Execution Language for Web Services) languages were used to describe

workflows and then executed using the InforSense engine. This approach does

not provide interoperability between workflow systems. This approach is a

simple workflow language, which mimics the behaviour and uses the syntax of

other workflow languages. The proposed approach tries to present a solution for

workflow interoperability at Shared Definition Formats level according to the

WfMC classification.

In the Grid Service model two types of workflow interoperability are supported:

Deployed Server and Deployed Service. This model wraps workflow engines or

workflows as a Grid Service using the GRIA (Grid Resources for Industrial

Applications) system. Although the Grid Service model GRIA provides support

for security, authentication and quality of service, it has similar disadvantages to

those of the Web Service model.

4.3.5 Kepler/Pegasus Integration

Pegasus [40] is a workflow that provides mapping and planning for resources in

distributed systems at an abstract level. In Pegasus a workflow is described in

resource-independent ways and Pegasus finds appropriate resource to execute

them. Kepler/Pegasus integration [143] provides an integration of Kepler

workflow with Pegasus that aims to allow Kepler users to construct a workflow

in resource-independent ways and benefits of the advantage provided by

Pegasus. In the other direction Pegasus users can benefit from the Kepler

workflow to visualize a workflow composition and monitoring. Composition of

a workflow in Pegasus based on Transformation Catalog contains all

information about the workflow components and also their resource

requirements. The Transformation Catalog is integrated as a director for Kepler.

To support Pegasus users, a capability of importing existing DAX workflows

into Kepler is developed for modification and visualization of Pegasus

workflow. However integrating the Kepler workflow with Pegasus does not

56

Chapter 4 ~ Scientific Workflow Systems

provide full interoperability between them; instead of only a partial integration

between these systems that might be useful for some scientists.

4.4 Comparison of Workflow Interoperability Approaches

The other approaches discussed in this section (GEMLCA/P-GRADE, VLE-

WFBus, IWR, SIMDAT, and Kepler/Pegasus Integration) are limited to specific

types of workflow systems, whereas the PS-SWIF approach presented in thesis

is general and can be applied to different workflow systems.

In general, the other approaches discussed in this section require the installation

of an environment exposing an API on a user’s machine, which requires an

expert or developer to set up the environment and apply the configuration for the

system. In contrast, the PS-SWIF approach presented by the author is simple and

based on standardized messaging Web Services standards and as long as a

workflow environment already provides access to Web Services, it does not

require any further installation or configuration on a user’s machine or

modification of the workflow engine.

The other approaches also require more modifications in the constructed

workflow in order to repeat the experiment and support reusability. Within the

PS-SWIF approach the reusability of the same experiment or a similar

experiment with different data input and parameters can be achieved without

major modifications to the system.

The other approaches, except the SIMDAT approach, do not support

interoperability among workflow systems running remotely, unlike the PS-SWIF

approach presented in this thesis.

4.5 Summary

In this Chapter, a number of different examples of scientific workflow systems

are discussed, focusing specifically on Triana, Tavema and Kepler, being both

popular and representative of the area. The author discusses how Web Services

57

Chapter 4 ~ Scientific Workflow Systems

are discovered and configured by these systems within the context of this work

and how they can be used, depending on the Web Services standard. These

workflow systems are used as the main workflow systems to test and evaluate

the PS-SWIF approach and system. Other scientific workflow systems that

support Web Services, such as GEODISE, OMII-BPEL SODIUM, VisTrails,

Discovery Net, Moteur, WFEE Workflow systems, are also presented in this

Chapter. These workflows are not used or tested with the PS-SWIF system.

However, the Web Services of the PS-SWIF system are simple and can easily be

configured by any workflow systems supporting Web Services, while no special

toolkit or API is needed.

Other related approaches that tried to achieve workflow interoperability are

discussed. The disadvantages of these approaches are that they are limited to

specific workflow systems, require hard coding or implementation of specific

APIs and are complex.

58

CHAPTER 5

PS-SWIF, Requirements, Architecture and Design

This Chapter describes the PS-SWIF architecture and its components that

collectively provide interoperability between heterogeneous scientific workflow

systems. Requirements to achieve interoperability are identified. This Chapter

also provides a detailed investigation and design of models and solutions for

system requirements, and considers how workflow interoperability models

provided in Chapter 2 can be achieved using the PS-SWIF system.

5.1 PS-SWIF Approach

The PS-SWIF model (Publish/Subscribe for Scientific Workflow

Interoperability Framework) presented in this thesis aims to achieve

interoperability among scientific workflow systems using the publish/subscribe

model. PS-SWIF uses asynchronous messaging exchanges between participants

which provides a loosely coupled communication pattern in large scale

distributed computing. In some situations, it may be more convenient for a

notification consumer to use synchronous messaging in order to control the flow

and timing of message arrival and therefore the PS-SWIF approach also supports

synchronous communication for this reason.

5.2 PS-SWIF Requirements

During the initial stage of this research, looking for a solution to present

interoperability among different workflow systems, a number of requirements

59

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

that should be included in the design and implementations were identified.

Although, as is the case with most research projects, it was difficult to identify a

complete set of requirements at the beginning, so a number of the requirements

were changed or modified throughout the research.

1. There are various workflow systems developed by different partners to

resolve problems in special domains using specific workflow languages.

The system should provide interoperability among a wide range of

systems and not be limited to any special type of workflow system.

2. There are different types of workflow systems in terms of invoking and

deploying a workflow as a Web Service. Some of the existing workflow

systems have the ability to deploy a workflow as a Web Service, such as

Triana workflow. Others do not support the deployment of a workflow as

a Web Service, such as the Tavema and Kepler workflow systems. The

system presented in this thesis should provide interoperability for both

these types of workflow systems.

3. The system should achieve interoperability among different workflow

systems without the need for integration or modification of the source

code of the workflow systems. The system should be a stand-alone

framework and not be dependent on other systems. Advantages of this

requirement are:

❖ It allows users to extend the system without affecting other

workflow systems.

❖ It avoids the integration of the system with each workflow

system, which is time and cost effective.

❖ It avoids the modification of a workflow system once a new

version of a workflow system is released (future proof).

❖ Some source codes for the workflow system can be private. This

requirement ensures that modifications to the implementation of

individual Services of the system will not disrupt the workflow

system infrastructure as a whole. This is essential for developing

and the usage of the system and allows non-public workflow

60

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

implementations to be used without compromising an internal

private licence of the source code.

4. The system should achieve workflow interoperability that covers

different types of communication between workflow systems. The

advantage here is that different scenarios of interoperability can be

applied among e-science projects.

5. The system must provide a user-friendly interface that allows users to

easily interact with the system components. This requirement provides

the advantage of allowing scientists to focus on their experiments and not

spend time on learning technical computer skills or APIs.

6. The system should provide reusability of experiments without major

modifications to the experiment. Scientists might need to repeat their

experiments to get consistent results.

7. The system should be able to protect the data published by a user, such as

topic and subscription details, and should not allow unauthorized users to

remove and update this information.

8. The system should be able to recover the data when the system

unexpectedly shuts down or Services are not available for any reason.

9. The system should be able to run on different platforms and in different

environments. This allows different workflow systems running remotely

to interoperate with each other.

5.3 Alternate Designs

In this section, other alternate designs are discussed; namely, direct

communication and distributed storage, such as replica location service (RLS)

[144].

5.3.1 Direct Communication Design

Direct communication design requires that all participants (producer and

receiver) involved in the communication are present at the same time, which is

why it is called a synchronous communication or real time communication. On

the other hand, communication using an asynchronous messaging approach

61

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

provides a decoupling of participants in both space and time domains. In the

space domain, the notification messages are delivered between participants

without the need to know about each other. The producer sends notification

messages through a mediator and the receiver receives these notifications

indirectly through the mediator. In the time domain, the asynchronous

communication allows the producer and receiver to communicate with each

other, even if they are not active at the same time. Specifically, the producer can

send notification messages while the receivers are disconnected, and, in the

opposite direction, the receiver can receive notification messages while the

producer that generates these messages is disconnected.

For these reasons, it is clear that providing a system using a direct

communication approach is not fulfilling the requirements of the system

presented in this thesis.

5.3.1 Distributed Storages Design

The replica location service (RLS) maintains and provides access to mapping

information from logical names for data items to target names [144]. It allows

data to be put onto a distributed storage system and then retrieved later. This is

overkill and heavyweight, especially for passing data between two workflow

systems. Moreover, there are similar systems that provide similar functionality

such as Freenet [145], and Ocean Store [146]. There are multiple storage

systems that could also be used but they have several disadvantages:

❖ They require administration on setting up, hosting, and port permissions,

etc.

♦ Management: how do you manage the data when it populates the system?

i.e. do you delete when data is consumed? Or after a period? Or when it

is told to by the workflow. I think inevitably such an approach would be

hard to manage transparently so you would end up having to incorporate

garbage collection routines into the Client API, which would result is a

far more complicated approach.

62

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

For these reasons, it is clear that providing a system using a distributed storage is

not fulfilling the requirements o f the system presented in this thesis.

5.4 PS-SW IF Architecture

Figure 5.1 shows the high level architecture for the PS-SWIF approach. The

system consists o f three layers: Workflow layer, Web Service layer and

publish/subscribe layer.

Pub li s h/S ub s cr ib e

Source Sink
—

X M L

SOAP

W eb Service (W SDL)

Workflow A Workflow B W orkflow C

Figure 5.1: PS-SWIF High Level Architecture

5.4.1 Workflow Layer

The Workflow Layer represents different workflow systems. Each o f these

systems uses their proprietary language, which allows users to construct

workflows, and has its own enactment engine to execute these workflows. Each

programming language and engine thus has implicit assumptions and constraints

about what types o f applications should be developed and also about what types

o f workflows can be constructed. The only assumption made in using the PS-

63

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

SWIF approach is that the workflow engines must have a capability to invoke

the Web Services standard. The PS-SWIF approach supports workflow systems

written in any language and running on different operating systems. Each of the

available workflow systems used for the various domains can leverage this

architecture. The workflow system can act as a workflow publisher and/or a

workflow subscriber. The workflow publisher represents an entity that generates

notification messages, whereas the workflow subscriber represents an entity that

receives and consumes the notification messages.

5.4.2 Web Services Layer

The emergence of Web Services standards, such as WSDL and SOAP, allows

distributed heterogeneous applications, written in several languages and running

on different operating systems, to be integrated. WSDL is an XML [147] format

used for describing detailed information about Web Services, and provides a

simple interface to SOAP. A WSDL file allows users to understand how to

invoke the service and what parameters are required. Applications using Web

Services standard, are becoming easier and better integrated through wide-area

networks (WAN) [148].

There are many Scientific Workflow systems that support the invoking of Web

Services. Publishing, discovering and availability of services are considered to

be part of the composition process. Workflow systems provide a registry to add

descriptions of services once added to their applications. Some workflow

systems use a search mechanism to find a special service or provide direct

invocation for WSDL files. Some Workflow systems use Web Services

standards to invoke a remote service or resource or to send jobs to be executed

on remote resources.

The PS-SWIF components are implemented as Web Services components. The

PS-SWIF Web Services operate in a workflow system environment.

64

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

5.43 Publish/Subscribe Layer

Within Notification messaging systems, there are two main distinct roles

involved in a notification: source and sink. The notification is a message that

encapsulates information about a situation (topic) that might be of interest to

other entities. The source is an entity responsible for generating the notification

message. The sink is an entity that wishes to receive the notification message.

The sink first needs to register its interest with the source entity, which is

normally to referred as a subscription request. The source then checks to find

whether the message fulfils the constraints specified in the previous request; if

so, the source sends the message to the registered sink, normally referred as a

notification.

5.5 Publish/Subscribe Model with PS-SWIF

In Chapter 3, several publish/subscribe paradigms are presented. The WS-

Notification standard and WS-Eventing specifications are the main competing

standards in this area. They use Web Services standard to allow distributed

heterogeneous applications, such as workflow systems, written in several

languages and running on different operating system, to be integrated.

WS-Notification relies on the WS-Resource Framework (WS-RF). WS-RF

defines the relationship between a Web Service and a stateful resource; pairing

of a Web Service with a resource is called a WS-Resource or just resource. WS-

RF is a set of five separate specification documents that provide the standard

definition of the framework: WS-ResourceProperties, WS-ResourceLifetime,

WS-RenewableReferences, WS ServiceGroup and WS-BaseFaults.

WS-Notification must use WS-ResourceProperties and WSResourceLifetime to

provide asynchronous notification, as well as third party specification, such as

WS-Addressing. WS-ResourceProperties provides a set of interfaces that allow

user to access, modify, and query resource properties. Topics are modelled as

resource properties with the WS-Notification specification. WS-

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

ResourceLifetime provides mechanisms to manage the lifecycle of the resource,

such as destroy, to finish the resource. Any application or service that wishes to

communicate with a service that implements WS-Notification must be presented

as a stateful service (WS-RF). In contrast, WS-Eventing does not depend on

many specifications and the only specification required is WS-Addressing. In

addition, the WS-Eventing service is represented as stateless service. Most

workflow systems that support the invoking of Web Services only deal with

standard Web Services (stateless) and most existing services are in the standard

Web Service form. Workflow systems that support deploying a workflow as a

Web Service also expose it as a standard Web Service, such as InforSense’s

KDE and Triana workflow systems. Even the Triana workflow system which

supports the WS-RF and WS-Notification standard, the Web Service

deployment is accomplished using standard Web Services.

In terms of delivery of notification messages to subscribers, WS-Notification

does not support a synchronous notification mode (only supporting

asynchronous notifications), whereas WS-Eventing supports both asynchronous

and synchronous modes to deliver the message. The synchronous notification

mode is especially needed with workflow systems that do not have the ability to

deploy a workflow as a Web Service.

WS-Eventing provides the required functions for the Publish/Subscribe

paradigm, such as subscribe, renew, unsubscribe and getStatus. For the above

reasons and its simplicity and features, the WS-Eventing specification is used

with some modification in the PS-SWIF approach. Since the WS-Eventing

specification uses a Web Service standard to implement their entities, the PS-

SWIF components also implement a Web Services standard.

5.6 Proposed PS-SWIF Framework

This section provides a deeper investigation into the design of the general

architecture. Figure 5.2 shows the components of the system architecture that

interact and work together to achieve its design aims. The system operation, the

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

role o f its components and the information exchanged between components are

described here.

Workflow Publisher

Subscription
Viewer

Subs c ription
Management

Utilities

PS-SWIF GUI

Publish
Topic

Publish
Information (Data)

To Topic
Source

Subscriber Subscription
Manger

Sink
(Blocking)

Web Services Application

Subscription, Topic, Internal Subscription
Users Database Manager

PS-SWIF Server

Workflow Subscriber

Workflow Web Service Database GUI Key

Figure 5.2: PS-SWIF Architecture Components

5.6.1 Application Web Services

The Web Service Application represents all the interfaces needed by users to

interact with the system. Users may interact with the service from their

application without needing to use PS-SWIF GUI. Full descriptions for each of

these services are presented here.

In WS-Eventing, there is only one source Web Service called Event Source,

which is responsible for receiving requests from subscribers, generating the

notification messages, and sending the notification message to the subscriber. In

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

the PS-SWIF design, the Event Source responsibility is divided into three Web

Services: Publish Topic, Source, and Publish Information Web Service.

5.6.1.1 The Publish Topic Web Service

A topic is the concept used as a subject where Event Sinks can register their

interests in this activity through a Subscriber entity. Every notification message

instance generated by a Source Event is associated with a topic. The topic also

must be specified with each notification message consumed by Sink Event.

Within the PS-SWIF model, the publish component is a Web Service that allows

a user to create a topic.

5.6.1.2 The Event Source Web Service

In the WS-Eventing specification, the publish entity is called an Event Source.

The Event Source is responsible for receiving a subscription request message

from an Event Sink and creating a response message. Moreover, the Event

Source is responsible for delivering the notification messages to the Event Sink.

In the PS-SWIF model, it is more efficient to separate these responsibilities into

two components. The Event Source Component is responsible for receiving the

request message and creating a response message to the Event Sink and the

delivery of the notification message is delegated to the Publish Information

Component.

5.6.1.3 The Publish Information Web Service

The Publish Information Web Service is responsible for delivering notification

messages to the Event Sinks. This service is created to act at the workflow

system level. In this service, a notification message is associated with a specific

topic and then sent to a subscriber client’s ‘Event Sink’.

Figure 5.3 illustrates how the source side services interact with each other within

the PS-SWIF framework. The Publisher component represents the workflow

system user who publishes a specific topic for the first time and, at the later

stage, as a publisher for data for this topic, which represents a notification

message that will be sent to event sink. The Publish Topic Component is

68

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

responsible for generating the Event Source Web Service. The Topic and Web

Service which represent the topic are registered with the Subscription Manager

component. The Source Component represents the both Source Web Service and

the URL that represents this Web Service, made available to users through a PS-

SWIF GUI. Anyone who wants to subscribe to this topic should use this URL.

At the final stage, the Publisher sends the data for processing by other workflow

engines through the Publish Information component. The Publish Information

component ties the data with the specific topic and then sends it to interested

sinks, representing a workflow subscriber.

Publish Topic

PublishPublisher

Source URL

Source

Publish
Data

Register Topic
And Web service that
Represents Topic

Create Source
W eb Service

Get WS forr ■> Publish Data Topic
Publisher For Topic Publish Subscription

----------------------+ Information Source WS Manager
^ ■ ■ ^ U R L

Figure 5.3: The Source Side Services Interaction

5.6.1.4 The Subscriber Web Service

The Subscriber Web Service is used to allow a client to issue different message

requests to the Event Source Web Service and Subscription Manager Web

Service. The message requests in the PS-SWIF model are similar to the message

requests defined in the WS-Eventing. A subscription request is sent to Event

Source and other requests, such as renew, unsubscribe, and getStatus, are sent to

the Subscription Manager Component. Each request must be associated with a

specific topic and the recipients o f the messages, either Event Source or

69

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

Subscription Manager Web Service, will reply to the subscriber with an

appropriate message.

5.6.1.5 The Subscription Manager Web Service

In the PS-SWIF model, the Subscription Manager Web Service is used to

manage the subscription created by the Subscriber Web Service. The

Subscription Manager Web Service therefore handles requests, such as renew,

unsubscribe, and getStatus. These requests are supported by WS-Eventing and

give flexible options to users to manage their subscriptions. The renew request is

used to extend an existing subscription with new data. The unsubscribe request

is used to unsubscribe an existing subscription for a specific topic. The getStatus

request is used to obtain the current status of an existing subscription. Each

request must be accompanied with a specific topic and the Subscription Manager

replies with an appropriate message.

5.6.1.6 The Event Sink Web Service

The Event Sink Web Service allows for both blocking and non-blocking modes

for receiving notification messages. The Event Sink Web Service could be a pre­

defined Sink Web Service, referred to as a synchronous notification approach, or

a standard Web Service, where the workflow engine has the ability to deploy a

workflow as a Web Service (referred to as an asynchronous notification

approach).

Within a synchronous approach, users issue a request on a service which blocks

their processing while they wait for a response. The synchronous approach is

preferred when the service can perform the request within a short time. The

synchronous approach is also preferred when the calling application requires a

fast response to a request.

The predefined Sink Web Service (synchronous approach) supports workflow

systems that do not have the ability to deploy a workflow as a Web Service, such

as the Tavema and Kepler workflows. The predefined Sink Web Service

70

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

methods are invoked by the workflow systems to allow them to receive

notification messages synchronously.

Figure 5.4 shows how a subscription is made in the case of the synchronous

approach. The Subscriber Workflow subscribes a sink service with a specific

topic through the Subscriber Web Service. Then, the Subscription Manager

looks up the topic and returns the Web Service that represents this topic. If the

subscription is handled successfully, a subscription ID with UUID (Universally

Unique Identifier) format that represents a unique ID, will be registered with the

topic and also returned to the workflow subscriber. The sink service is blocked

and waits for notification data. When the event is sent, the Source will notify the

sink component and data will be returned to the subscriber workflow.

Subscriber
Workflow

Subscribe To
Topic

Unique ID

• Pass Unique ID and
wart (block for data

• Data is returned when
available

Subscriber

Lookup Topic and
WS for Topic

Return

1 Register Unique ID

>
Workflow

bource Publisher

Notify
Data Get WS for i f

Topic j C

Subscription
M anager

Figure 5.4: Synchronous Subscription

Within the asynchronous approach, users issue a request on a service and then

continue their processing without waiting for an immediate response. The

service receives the user request and returns a response at some later stage, at

which time the users retrieves the response and continues with their processing.

71

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

If the workflow systems support deployment of a workflow as a Web Service,

such as the Triana workflow, then the workflow Web Service (asynchronous

approach) represents the Sink Web Service and receives notification messages

instead o f using the predefined Sink Web Services.

Figure 5.5 shows how the subscription is made using the asynchronous

approach. This approach is valid only for a workflow system that has the ability

to deploy a workflow as a Web Service. The subscriber workflow here acts as a

sink service and does not need to use the predefined sink as in the synchronous

approach. The subscriber workflow subscribes with a specific topic through the

Subscriber Web Service, using a URL that represents the subscriber workflow

Web Service. The subscriber workflow is notified with data when available

through a direct invocation o f its deployment Web Service.

URL to
Subscribe to
Source WS

Register
Subscription

Register At
Source

Data is notified directly
when made available

W orkflow
Publisher

Source

Subscriber

Subscription
Manager

Subscriber
W orkflow

Figure 5.5: Asynchronous Subscription

5.6.2 PS-SWIF Server

The PS-SWIF Server represents a back end implementation for PS-SWIF Web

Services and is responsible to save the topics and subscriptions created in the

PS-SWIF GUI in a database.

72

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

5.6.2.1 Internal Subscription Management Component

The Internal Subscription Management Component presented by the PS-SWIF

model provides management for subscriptions, and delivery for notification

messages. Such a Subscription Management component represents a neutral

mediator and controls all the components in the PS-SWIF model. The

component provides a backend housekeeping implementation for all the features

and operations provided by other components in the PS-SWIF.

5.6.2.2 PS-SWIF Databases

The system should store the information on topics, subscriptions and user

information in a database. The author has designed three databases to handle the

different information sets: the Subscription database; Published Topic database;

and Users database. The Subscription database is used to store all information

related to subscriptions made by users. The Publish Topic database stores the

data related to topics created by the Publish Web Service and the User database

stores user information when registering for the first time with the PS-SWIF

framework. Section 6.3 gives more detail about these databases.

5.6.3 PS-SWIF GUI

The PS-SWIF GUI interface facilitates user interaction with the other system

components in the architecture. The Subscription Management utilities

publishing and subscription tools, such as publish, subscribe and renew, to create

topics and manage the subscriptions. Once the subscription is successful the

Subscription Viewer allows users to view detail, such as topic, subscription ID

and sink. Section 6.7 gives more detail about PS-SWIF GUI.

5.6.4 Workflow Publisher and Workflow Subscriber

The workflow publisher represents an entity that generates notification

messages. The workflow publisher must invoke the Publish Information Web

Service to send data/notification messages to Workflow Subscribers. The

workflow subscriber represents an entity that subscribes and receives the

notification messages. The subscription is made through the Subscriber Web

73

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

Service using PS-SWIF GUI. The Workflow Subscriber needs only to invoke

the Sink Web Service for synchronous notification or use its own workflow Web

Service for asynchronous notification to receive the notification message.

5.7 Interaction between Components in the Architecture

The UML sequence diagram in Figure 5.6 on the following page, illustrates the

sequence of activities undertaken by the PS-SWIF system. The sequence

diagram simplifies all the interactions with the system from the point of view of

the user and does not give full details of how the system works.

1) The scientist creates a topic using the Publish Topic Web Service.

2) A source Web Service with the topic name will be generated automatically to

receive a subscription request and create the response message.

3) The scientist creates a subscription request through the subscriber Web

Service specifying the sink value which is interested to receive a notification

message on this topic and also to identifying the expiry date for this

subscription. If the sink value is inserted as URL, the system automatically

recognizes this as an asynchronous subscription. If the sink value represented

a string, the system considers this as a synchronous subscription and will use

the predefined sink Web Service.

4) If the subscription is handled successfully by the system, the reply message

will contain a subscription ID and reference point of the Subscription

Manager for further interaction regarding to this subscription.

5) The scientist can create other requests such as renew, unsubscribe, and

getStatus and send them to Subscription Manager Web Service using the

subscription ID.

6) The Subscribe Manager will replies with an appropriate message if the

request is handled successfully by the system.

7) When the event is fired, all sink Web Services subscribed to this topic will

receive a notification message.

74

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

$ c Topic Source

11

create

generate

CSubscription
Manger

Publish
Irfontutioei

subscribe

subscription Id

renew

respons

Subscriber

getStatus

notify

IT

Sink

-D

Figure 5.6: Interaction between Components

5.8 W orkflow In te ro p e rab ility

In Chapter 2, interoperability strategies, levels and models are discussed based

on WfMC specifications. In this section we identify the PS-SWIF approach

according to these classifications.

5.8.1 W orkflow Interoperability Strategies

According to the WfMC specification, interoperability within PS-SWIF can be

classified as a Message Passing strategy where Workflow Systems exchange

information by sending packets of data messages through a communication

network. This is represented by notification messages sent by one workflow

system to another using PS-SWIF Web Services.

5.8.2 W orkflow Interoperability Level

Workflow Interoperability can be achieved at different levels according to

WfMC. One o f these levels is a complete workflow API Level which shares a

75

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

single standard API among workflow systems. There is no API used directly the

in PS-SWIF approach. Rather a framework based on a simple Web interface is

made available and shared by different workflow system. This framework uses a

Web Service standard to provide interoperability among workflow systems. The

author believes that the Web Services standard used in the PS-SWIF approach

provides an competitive method to using single standard API shared by

workflow systems.

5.8.3 Workflow Interoperability Model

Different interoperability models are achieved by using the PS-SWIF model.

These include: Chained processes, Nested synchronous sub-process, Event

synchronized sub-process, and Nested sub-process (Polling/Deferred

Synchronous). The author describes these different models of interoperability

between heterogeneous workflow systems and how they can be supported in a

generic way.

5.83.1 Chained Process Model

In the following descriptions the term Workflow System A is used to present the

workflow system that uses a process instance to send separate data to a process

instance on another workflow system, called Workflow Consumer B. The

process instance on Workflow System A is represented by a Publish Information

Web Service, which is responsible to send the data or messages that need to be

processed on other workflow systems. The process instance on Workflow

System B is represented by the Sink Web Services. The Sink Web Service

receives the messages and forwards them to another process in the workflow to

do further processing. Figure 5.7 shows the model.

76

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

Initiate Enactm ent |
1
1

W orkflow Engine A

*
>

----------» ►

>

W orkflow Engine B

Figure 5.7: Chained Process Model

5.8.3.2 Nested Synchronous Sub-Process

This model assumes a process instance in Workflow System A sends data to

Workflow System B and Workflow System A waits at the same stage until the

data is processed by System B and a result is sent back to Workflow System A

for another process with the data. The PS-SWIF model satisfies the requirements

o f this model by allowing Workflow System A to construct a workflow that

includes two process instances next to each other. The first process uses the

Publish Information Web Services to send data to System B. The second process

uses the Sink Web Service to receive the result back from Workflow System B.

In addition, Workflow System B constructs a workflow using a process instance

that invokes the Sink Web Service to receive the data from Workflow System A

and uses other process instances to do more processing with data, and, at some

stage, the Sink Web Service is invoked by one process instance to send the final

result to Workflow System A. This model is showed in Figure 5.8.

77

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

N

----H ►

J
1
1

1 W orkflow Engine A

1
1

1
1

♦ l

-

>

W orkflow Engine B

Figure 5.8: Nested Synchronous Sub-Process

5.8.3.3 Event Synchronized Sub-Process

This model is similar to the Nested synchronous sub-process except that the

result received from the workflow system B should be received at a different

stage o f processing. The PS-SWIF model achieves this type of interoperability

by adopting the similar scenario in the previous model with a little modification.

The invocation o f the Sink Web Service would be constructed at a later stage o f

the workflow by an instance process. This model is shown in Figure 5.9.

v . ■ ■ i ■ ■ »
W orkflow Engine A • 1

I I
I I

W orkflow Engine B

Figure 5.9: Event Synchronized Sub-Process

5.8.3.4 Nested Sub-Process (Polling/Deferred Synchronous)

This model is similar to the Event synchronized sub-process model except that

Workflow System B might complete its process before the invoking process in

Workflow System A is ready to deal with the event. The PS-SWIF model saves

78

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

the event in a queue until required by Workflow System A. This model is shown

in Figure 5.10.

W orkflow Engine A
\

\
\

▼ ♦

--------- * ------► ----- ►

- J

W orkflow Engine B

Figure 5.10: Nested Sub-Process (Polling/Deferred Synchronous)

5.9 Design D iscussion

This section presents the justification for design against requirements presented

in the section in the same numerical order.

1. Many scientific workflow systems use Web Service standards to

invoke a remote resource or to send a job to be executed on remote

resources. Publishing, discovering and the availability o f Services are

considered to be part o f the composition process. A solution for

workflow interoperability at the Web Service layer discussed in the

section 5.4.2 will facilitate the interaction between workflow systems

and also cover a wide range o f workflow systems because Web

Services are a widely accepted standard and are already integrated in

most workflow systems.

2. Workflow interoperability is achieved through two types of

subscriptions: asynchronous and synchronous subscription. The

asynchronous subscription provided by a subscriber Web Service

presented in the section 5.6.1.4 maintains a level o f decoupling that

can allow the coexistence o f multiple workflows without the

79

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

necessity of tight integration or dependency. The advantage of this

approach is that a workflow user can extract workflows for each

system that exhibit their best features and create enriched multi­

workflow environments that encourage the broad reuse of software,

developed within specific workflow systems, by the wider

community. Synchronous subscription provided by subscriber Web

Services in the same section is useful in the case of a workflow

system that does not support the deployment of a workflow as a Web

Service. In this case, the workflow system can use the event Web

Service presented in the section 5.6.1.6 to invoke a Service that

blocks until a notification is received.

3. The PS-SWIF application is based on a set of Web Services presented

on the section 5.6.1 and those Web Services are available online,

making the application easy to use, and scientists do not need to

integrate or modify the source code for any workflow systems. The

communication between the workflow systems occurs through these

Web Services.

4. Workflow interoperability is achieved using different scenarios of

communications between workflow systems supported by different

interoperability models presented in the section 5.8.3.

5. The PS-SWIF GUI interface presented in the section 5.6.3 facilitates

user interaction with the other system components in the architecture.

6. The design that separates the responsibilities of the event source

component to Publish Information Web Service and Event Source

Web Service presented in the sections 5.6.1.2 and 5.6.1.1 respectively

allows scientists to repeat their experiments with the same topics and

subscriptions.

7. The user database presented in the section 5.6.2.2 allows scientists to

store user details when registering for the first time on the PS-SWIF

system. This information is used to authenticate the users when they

want to remove a topic or subscription.

80

Chapter 5 ~ PS-SWIF Architecture, Requirements and Design

8. The PS-SWIF subscription and published topic database presented in

the section 5.6.2.2 preserves the data used for interoperability, such

as subscription and published topic.

9. The PS-SWIF components presented in the section 5.6.1 are

implemented as Web Services and these Services are available online

and access to these Services can be carried out remotely.

5.10 Summary

In this Chapter, the PS-SWIF architecture has been presented as a means to

achieve workflow interoperability. The architecture is based on service-oriented

architecture (SOA) technologies such as Web Services, WSDL and SOAP,

which can be used with Workflow Systems to achieve workflow interoperability.

The publish/subscribe system WS-Eventing is used to provide a synchronous

and an asynchronous notification among various workflow systems. PS-SWIF

provides a mechanism to transfer data as notification messages among remote

workflow system for further processing. The PS-SWIF approach can fit with any

workflow system written in any language and running on different operating

systems that have the capability to invoke Web Services. The flexibility of the

PS-SWIF approach allows construction of a workflow with a number of PS-

SWIF Web Services leading to different interoperability models provided by

WfMC.

81

CHAPTER 6

PS-SWIF Implementation

This Chapter presents an overview of the implementation of the PS-SWIF system.

PS-SWIF Web Services are discussed in terms of creation and deployment using a

WSPeer framework. How these services are implemented by different workflow

system is also discussed. A PS-SWIF framework user interface is presented with

functions and tools that can be used to achieve workflow interoperability. This

Chapter does not give full details of implementation or a user guide of the system,

but rather highlights the system’s functionality and implementation.

6.1 Implementation Overview

The implementation of the PS-SWIF system uses Java as programming

language. The WSPeer framework is used to host PS-SWIF Web Services, and

provides a hosting and invocation environment for such services. WSPeer has

several advantages, with a key advantage that it allows the creation, deployment

and handling of a Web Service without using a container. WSPeer acts as a Web

server engine that uses Apache's Axis 1.2 [149] as a SOAP processor. In

addition to the main capabilities provided by Axis, such as deployment and

message handling, WSPeer supports publishing and discovery mechanisms. The

WSPeer deployment interface is used to deploy all PS-SWIF services. Once the

deployment is successful, WSDL files are generated to describe the PS-SWIF

services. Appendix C shows the WSDL file for all PS-SWIF services. Figure 6.1

presents an overview of the implementation architecture, showing how the PS-

SWIF system components and application are implemented.

82

Chapter 6 ~ PS-SWIF Implementation

6.2 P S -S W IF W eb Services

Because PS-SWIF is based on WS-Eventing, most of the important entities are

implemented as Web Services, and the system implements all the Web Services

provided by WS-Eventing, including a Source Web Service, Subscriber Web

Service, Subscription Manager Web Service and Sink Web Service. In addition

two Web Services, namely Publish Topic Web Service and Publish Information

Web Service, which are not covered by WS-Eventing, are implemented by the

PS-SWIF system to add additional flexibility to the system.

Application

Sink

Web Services
Subscriber Topic

Manager Source Publish Information

Internal Subscription Manager

Synchronization Object

Subscription
Database

User
Database

Topic
Database

Figure 6.1: Implementation Architecture

6.2.1 Publish Topic W eb Services

WS-Eventing does not define how a topic should be created, and so the author

has created a Web Service called Publish Topic Web Service to allow users to

83

Chapter 6 ~ PS-SWIF Implementation

create and manage topics. When a topic is created, a Source Web Service is

dynamically generated with the topic name. Topics are created through a publish

operation and leave the management of the topic to other operations, such as

remove, getPublishedServices and isPublished.

The Publish Topic Web Service has the following operations:

1. The publish method has three string input parameters; service Name, user

and password. The serviceName allows a user to define a title for a

published topic (service) to be used as a Source Web Service. The user

specifies who published the topic and the password. Only the

administrator or topic creator is allowed to delete this topic.

2. The remove method supports the ability to remove the published service

from the Server and from the published topic database. The remove

method has similar input parameters to the publish method.

3. The getPublishedServices method is responsible for getting all the

published services on the published topic database when the server is

restarted.

4. The isPublished method has a one string input parameter serviceName

and this method is used to check if the topic has previously been

published.

6.2.2 Source Web Service

The Source Web Service represents the event source service provided by WS-

Eventing and is dynamically generated through the Publish Topic Web Service,

using the GAP library provided by WSPeer [150]. To receive a subscription

request on the Source Web Service, a subscription pipe is created using the

InputPipes to receive messages. The createControlPipe method creates a service

control pipe with the subscriber name, and attaches the specified message

listener to listen for messages received. When the control pipe receives a

message, the input objects are passed to the messageReceived method as an

Object, which results in the creation of a subscription response. Control pipes

84

Chapter 6 ~ PS-SWIF Implementation

and subscription responses are only guaranteed to be active when the Source

Web Service has been called.

The Source Web Service is responsible for the following operations to:

❖ Receive the subscription requests from the subscriber, and check if the

request is compatible with WS-Eventing syntax;

❖ Create a response message to the subscription request, including a unique

subscription ID;

❖ Delegate the adding of subscription information to the internal

subscription manager service;

❖ Delegate the Subscription Manager to handle future requests.

6.2.3 Publish Information Web Service

A Publish Information Web Service is used to send notification messages from a

workflow client, such as Triana, Kepler and Tavema, on behalf of the Source

Web Service, to Sink Web Services. The workflow client invokes the Publish

Information Web Service, then constructs a workflow instance, using one of the

operations provided by this service, and then executes the workflow. The

Publish Information Web Service has the following operations: (1)

sendNotification, and (2) sendNotificationValues. Both operations have two

input parameters. The first parameter is used to enable the workflow client to

choose a topic previously published. The second parameter represents data that

should be sent as a notification message to the registered Sink Web Service as a

single value in the sendNotification operation and as an array of values attached

in the sendNotificationValues.

The Publish Information Web Service uses an asynchronous notification

mechanism because the sendNotification operation returns immediately and the

server then notifies the subscribers, which means that the notifier does not need

to wait until all subscribers are notified, as the server is responsible to deliver the

notification. In a workflow publisher that invokes the sendNotification method, a

85

Chapter 6 ~ PS-SWIF Implementation

process that comes after the sendNotification process will execute immediately

and not affect whether the subscribers receives the notification.

The delivery of notification messages is delegated to the internal subscription

manager, more fully discussed in Section 6.4.

6.2.4 Subscriber Web Service

A Subscriber Web Service acts as a service requester, sending request messages

to a Source Web Service, on behalf of the Sink Web Service, to perform a

particular operation. There are four operations provided by this service:

subscribe, renew, unsubscribe and getStatus.

The subscribe operation is used to send a subscribe request to register a Sink

Web Service with the Source Web Service. The Sink Web Service represents a

workflow consumer and the Source Web Service represents a workflow

producer. The subscriber request is created through a SubscriberClient Class.

The SubscriberClient sends a SOAP message to a Source Web Service, and if

the subscription is successfully generated a SOAP response message will be sent

to the subscriber.

A valid subscribe request should include the following elements in the header of

the SOAP message:

1. Event Source Endpoint references: This specifies a Source Web Service

that the Event Sink wishes to subscribe to and from which it also gets

notification messages. The Endpoint reference here is provided by the WS-

Addressing which is supported by WS-Eventing. The Endpoint reference

must have a To element in the header of the SOAP message that identifies

the receiver of the message.

2. Message ID: This is presented by a Universally Unique Identifier (UUID)

which is a unique identifier for a message. Any response to this message

must include the messageld of the request in the RelatesTo element.

Figure 6.2 shows the SOAP message for the subscribe request.

86

Chapter 6 ~ PS-SWIF Implementation

<?xml version="1.0" ©ncoding="UTF-8"?>
<soap©nv: Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/enveloper
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">

<soapenv:Header>
<wsa:MessagelD soapenv:mustUnderstand="0">
uuid:a01c5bbO-8293-11de-be03-bcc58378b077
</wsa:MessagelD>
<wsa:To soapenv:mustUnderstandss"0">
http://alqaoud:4804/wspeer/PublishTwoT est
</wsa:To>
<wsa:From soapenv:mustUnderstand="0">
<wsa:Address>
http^/schemas jcmlsoap.org/ws/2004/03/addressing/role/anonymous
</wsa:Address>
</wsa:From>
</soapenv:Header>

<soapenv:Body>
<wsewf:Subscribe_PublishTwoT est xmlns:wsewf=
"http://alqaoud:4804/wspeer/PublishTwoT est">
<ns3:Subscribe
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:ns3="http://schemas.xmlsoap.org/ws/2004/08/eventing"
xmlns:ns4="http://www.wseventing.workflow.com"
ns4:UserName="alqaoud" ns4:Password="****">

<ns3:Dellvery>
<ns3:NotifyTo>
<ns2:Address
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing">
http://alqaoud:4802/wspeer/T rianalmage
</ns2:Address>
<ns4:operationName>Trianalmage</ns4:operationName>
</ns3:NotifyTo>
</ns3:Dellvefy>

<ns3:Expires>2009-10-22T15:15:00.000+01:00</ns3:Explres>
</ns3:Subscribe>
</wsewf:Subscribe_PublishTwoT est>
</soapenv:Body>
</soapenv:Envelope>

Figure 6.2: Subscribe Request SOAP Message

In the body of the SOAP message the following elements should be defined:

1. Request Type Element: This specifies the action type; subscribe,

unsubscribe, renew or getStatus request. Within this element, two

attributes are defined, namely username and password to identify the user

identity and combine these with each subscription.

87

http://schemas.xmlsoap.org/soap/enveloper
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/ws/2004/03/addressing
http://alqaoud:4804/wspeer/PublishTwoT
http://alqaoud:4804/wspeer/PublishTwoT
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://www.wseventing.workflow.com
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://alqaoud:4802/wspeer/T

Chapter 6 ~ PS-SWIF Implementation

2. Event Sink Endpoint references: This enables the Event source to send

notification messages that match the subscription constraint to the event

sink. The address of the event sink is defined with Delivery and NotifyTo

elements supported by the WS-Eventing specification.

3. Expires At: The expiry element provides date and time which define when

this subscription should no longer be valid.

The Source Web Service then creates a Subscribe Response and sends it back to

the subscriber through SubscriberClient. This response includes an Endpoint

reference (EPR) for a subscription manager which the subscriber may interact

with to manage the subscription. The EPR contains a subscription identifier

generated by the Source Web Service to uniquely represent the subscription.

This subscription identifier is essential for all other communications (renew,

getStatus and unsubscribe) pertaining to the subscription. Figure 6.3 overleaf

shows a subscription response received by the subscriber from the Source Web

Service. The Subscription ID contained within this response message is

‘5ba94273-f449-4fc4-8ca4-6a300b93aa6a\ The response message also includes

the expiry element that specifies the expiry time for this subscription.

The getStatus operation performs a check request for the status of an existing

subscription. The SOAP encoded getStatus request will be sent to the

Subscription Manager address with the subscribe ID generated by the Source

Web Service in the response message. The Subscription Manager replies with

the status of the subscription; whether the subscription is still valid or has

expired.

The renew operation allows the subscriber to extend a valid subscription with a

new date and time. The renew request SOAP message also contains the

subscription ID generated by the Source Web Service in the response message.

Once the request is successfully updated, a new response message is sent to the

subscriber with a new date and time.

88

Chapter 6 ~ PS-SW1F Implementation

The unsubscribe operation allows the users to cancel the registered subscription

with the Source Web Service so the Sink Web Service will not receive any

further notification messages. The request is sent to the Subscription Manager

Web Service with subscription ID. If the request is handled successfully by the

system, there is no reply to this message sent to the subscriber, as stated by the

WS-Eventing standard; the system will instead delete the subscription from the

subscription database.

<soapenv: Envelope xmlns:soapenv=
“http://schemas.xmlsoap.org/soap/enveloper
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">

<soapenv:Header>
<wsa: M essage ID soapenv:mustllnderstand=M0M>
uuid:a081 ad30-8293-11 de-be03-bcc58378b077
</wsa: M essage I D>
<wsa:To soapenv:mustllnderstand=M0">
http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
</wsa:To>
</soapenv:Header>

<soapenv:Body>
<ns1 :subscribeResponse soapenv:encodingStyle=
"http://schemas.xmlsoap.org/soap/encodingr
xmlns:ns1="http://alqaoud:4804/wspeer/WseRpcSubscriberService">
<ns3:SubscribeResponse xsi:type="ns3:SubscribeResponse"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:ns3=Hhttp://schemas.xmlsoap.org/ws/2004/08/eventing">

<ns3:SubscriptionManager>
<ns2:Address>
http://alqaoud:4804/wspeer/WseRpcSubscriptionManagerService
</ns2:Address>
<ns2:ReferenceParameters>
<ns3: Identifier
uuid:5ba94273-f449-4fc4-8ca4-6a300b93aa6a
</ns3: Identifier
</ns2:ReferenceParameters>
</ns3:SubscriptionManager>

<ns3:Expires>2009-10-22T15:15:00.000+01:00</ns3:Expires>
</ns3:SubscribeResponse>
</ns1 :subscribeResponse>
</soapenv:Body>
</soapenv:Envelope>

Figure 6.3: The Subscribe Response SOAP Message

89

http://schemas.xmlsoap.org/soap/enveloper
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/ws/2004/03/addressing
http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
http://schemas.xmlsoap.org/soap/encodingr
http://alqaoud:4804/wspeer/WseRpcSubscriberService
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://alqaoud:4804/wspeer/WseRpcSubscriptionManagerService

Chapter 6 ~ PS-SWIF Implementation

6.2.5 Subscription Manager Web Service

The Subscription Manager Web Service manages the subscriptions created. The

WS-Eventing standard notes it is more flexible to delegate the subscription

management to a separate Web Service. The EndpointReference of the

Subscription Manager Web Service is included in the response message to a

subscription request to the Source Web Service. Interactions, such as renew,

unsubscribe and getStatus requests are handled by the Subscription Manager

Web Service. It also implements a new operation get A USubscriptions, not

provided for in the WS-Eventing standard. The getAllSubscriptions operation is

used to populate the list of subscriptions in the PS-SWIF application.

6.2.6 Sink Web Services

The Sink Web Service represents the workflow needed to receive notification

messages. The Sink Web Service has only one operation receiveNotification.

The receiveNotification is a blocking operation that blocks until a notification is

received for the specified source ID. The receiveNotification has two input

parameters both Strings: source ID, and workflow subscriber. The source ID

represents the Source Web Service. The workflow subscriber is specified by the

user when the subscription is made. The user who makes this subscription can

use the receiveNotification operation to receive notification messages. In the

Triana Workflow, or any standard Web Service that needs to receive notification

messages, using the Sink Web Service is not essential. Because the workflow

instance in Triana can be deployed as a Web Service, once the instance in Triana

makes a subscription to a Source Web Service, it is notified when the event

occurs. The Sink Web Service provides support to workflow products that do not

have the capability to deploy a workflow as a Web Service. The Sink Web

Services act as a listener for a notification message and when a notification

message is received, the dependent processes will carry on with their execution

and if the workflow supports parallel execution; other processes will not be

affected by the Sink Web Service while waiting for a notification message.

90

Chapter 6 ~ PS-SWIF Implementation

6.3 PS-SWIF Databases

The system uses ‘Apache Derby’ as a relational database to implement the PS-

SWIF database. The PS-SWIF database includes three tables which represent the

Subscription Database, Published Topic Database and Users Database. The

connections to these databases are made through JDBC, and follow the same

pattern for query construction and result set processing.

The Subscription database is used to store all information related to

subscriptions, and Table 6.1 gives brief details on information saved in this

database.

Column Name Description
SUBSCRIPTION ID A unique subscription ID for each subscription is created
SUBSCRIPTION TS A timestamp is registered when the subscription is created
SOURCE ID Represents a workflow publisher
EXPIRATION The expiry data specified by user
SUBSCRIBE Represent a workflow subscriber
OWNER The user who creates the subscription

Table 6.1: Description of the Subscription Database

Different SQL statements are used to manipulate the data in the Subscription

database and Appendix D gives more detail of all the SQL statements used to

manipulate this database.

The Publish Topic database stores the data related to topics created by the

Publish Web Service. There are only two columns with this database: topic and

owner. The topic represents the Source Web Service and the owner represents

the user who creates the topic. The topic combines with the owner in this

database to allow the owner to remove the topic, if needed.

The User database stores user detail when registering for the first time on the

PS-SWIF Web application. This information is used to authenticate the users

when logging in to the system, for example, to remove a topic or subscription.

91

Chapter 6 ~ ~ PS-SWIF Implementation

6.4 T he In te rn a l S u b sc rip tio n M an ag er

The internal subscription manager plays a major role in the PS-SWIF system. It

implements all the functions provided by PS-SWIF Web Services, and manages

everything related to a subscription and the persistence o f the published services

that allows for receiving subscriptions and notifications from many sources.

There is only a single instance o f the internal service, which holds some

information in memory, such as published services and subscriptions, to avoid

reading the database every time.

The internal subscription manager uses a synchronous method to protect the

published topic, just in case two concurrent invocations o f the publish Service

method o f the Publish Topic Web Service are received.

The internal subscription manager uses a sendNotification operation called by

the Publish Information Web Service to protect the publish topic by a

synchronized method and calls a SendNotification synchronized method

implemented by a Synchronization object. Figure 6.4 describes the main functions

supported by the Internal Subscription Manager.

public void setPublishListener(PublishListener listener) [1]
public synchronized AddSubscriptionResult addSubscription [1]
public synchronized void publishService [1]
public synchronized void removePublishedService [1]
public PublishedServiceEntry[] getPublishedServices [1]
public boolean isPublishedService(String serviceName) [1]
public List<SubscriptionInfo> getAllSubscriptions [1]
public boolean isSubscribed [1]
public void removeSubscription [1]
private void expireEntry(Subscriptionlnfo entry) [1]
public String renewSubscription [1]
private boolean authenticate [1]
public String getSubscriptionExpiration [1]
public static EndpointReferenceType
createSubscriptionManagerEPR [1]
public void notifySubscribers [1]
public Object[1 receiveNotification[1]

Figure 6.4: Internal Subscription Manager Methods

92

Chapter 6 ~ PS-SWIF Implementation

❖ The setPublishListener method sets the publish listeners that will receive

notifications when a service is published or removed.

❖ The addSubscription method adds a new subscription for the given

source and returns the assigned subscription ID. The source ID represents

the Source Web Service which must be previously published using the

publish Service operation.

❖ The publishService method uses a synchronous clause to protect the

published topic, just in case two concurrent invocations of the publish

Service method are received. This method is used to implement the

publish operation used by Publish Web Services.

❖ The removePublishedService method implements the remove operation

provided by Publish Web Service to remove the published service with a

specific username from the publish topic database.

❖ The getPublishedServices method retrieves all published topics from the

topic database and makes them available on the PS-SWIF application.

❖ The isPublishedService method checks if a new topic has been published

before, to prevent the duplication of the same topic.

❖ The getAllSubscriptions method retrieves all current subscription from

the subscription database and makes them available on the PS-SWIF

application.

❖ The isSubscribed method checks if the same workflow subscriber is

subscribed with the same producer to prevent duplication of the

subscription.

❖ The removeSubscription method allows authorized users to delete a

subscription from the subscription database.

❖ The expireEntry method automatically checks whether the subscription

has expired and, if so, the subscription is deleted from the subscription

database using the removeSubscription method.

❖ The renewSubscription method is used to renew an expired subscription

93

Chapter 6 ~ PS-SWIF Implementation

or extend a valid subscription with new data.

❖ The authenticate method authenticates the received user name and

password and returns ‘true’ if the authentication succeeds.

❖ The getSubscriptionExpiration obtains subscription expiry data and

time.

❖ The createSubscriptionManagerEPR creates the EPR for the subscription

manager which are the returns to the subscriber in the response message

of the subscribe request.

❖ The notifySubscribers method implements the sendNotification

operation used by Publish Information Web Services to send notification

messages to the subscribers.

❖ The receiveNotification method implements the receiveNotification

operation used by Sink Web Services for notification messages by a

consumer.

6.5 Synchronization Object

This object manages the synchronization associated with the sendNotfication and

receiveNotification methods invoked by the Publish Information Web Service

and the Sink Web Service. This object’s class has four variables; data: the data

that should be sent in the notification message, sourceld: represents the name of

the published service, waitingThreads: the number of threads waiting for a

notification messages and queue; the queue with pending notification messages.

The SendNotification method is indirectly invoked by the Publish Information

Web Service through the Internal Subscription Manager and checks if there are

any subscribers (workflow subscribers) waiting for this notification, by

implementing a thread. If so all subscribers are notified through a notifyall

operation that wakes up all waiting threads, otherwise the notification is held in

a queue until required by a subscriber.

94

Chapter 6 ~ PS-SWIF Implementation

The receiveNotification method is also invoked by the Sink Web Service

through the Internal Subscription Manager and checks if there are any pending

messages in the queue. If so the subscribers (workflow subscribers) will be

notified, otherwise it waits until the thread is released by the sendNotification

method and a notification is received for the specified source ID.

The Internal Subscription Manager and Synchronization Object provide a

decoupling mechanism between workflow provider and workflow subscribers in

three different domains:

❖ Space decoupling domain: The notification messages are delivered

between the workflow publisher and workflow subscriber without the need

to know about each other. The workflow publisher sends notification

messages through the Internal Subscription Manager and the workflow

subscriber receives these notifications indirectly through the Internal

Subscription Manager. The workflow publisher does not normally have

references to workflow subscribers and also does not know how many of

these workflow subscribers are subscribed to this topic. In a similar

manner workflow subscribers do not normally have references to the

workflow publisher. Both workflow publisher and workflow subscriber are

connecting through the Internal Subscription Manager.

❖ Time decoupling domain: The methods provided by the Synchronization

Object allows the workflow publisher and workflow subscriber to

communicate with each other even if they are not active at the same time.

Specifically the workflow publisher can send notification messages while

the workflow subscribers are disconnected, and, in the opposite direction,

the workflow subscribers can receive notification messages while the

workflow publisher that generates these messages is disconnected.

❖ Synchronization decoupling domain: The workflow publisher is not

blocked while generating notification messages and workflow subscribers

Chapter 6 ~ PS-SWIF Implementation

can asynchronously receive notification messages while performing some

concurrent activity.

6.6 Fault Exceptions

The main fault messages provided by the WS-Eventing specification are

supported by the PS-SWIF system. The description of the fault uses the

following parameters:

1. Code: to describe the fault code,

2. Reason: to describe the fault reason in English, and

3. Detail: to provide more detail about the fault.

Other fault messages supported by the PS-SWIF system:

1. InvalidMessage: Generated when a request message, such as subscribe,

unsubscribe or renew, is not valid or does not comply with the WS-

Eventing specification.

2. InvalidExpirationTime: Generated when a Subscribe request specifies an

expiration time that is in the past or is invalid.

3. WseAuthenticationException: Generated when the authentication

information in the message provided by user is invalid.

4. WsePermissionException: Generated when a user does not have

sufficient permissions to perform the required operation.

6.7 PS-SWIF Framework Interface

The PS-SWIF Web interface is developed using Java Server Pages (JSP) [151]

that pass requests to the Servlet container, i.e. Tomcat. This server accepts the

incoming Servlet as JSP requests and processes handles and responds to these

requests. The JSP pages are simply an interface between the user and the

background system. A JSP page lets the user enter topics and subscription detail

and then passes this information on to the PS-SWIF system.

The PS-SWIF GUI interface facilitates user interaction with the other system

components in the architecture. Users access the system through a user interface;

96

Chapter 6 ~ PS-SWIF Implementation

Web Services interfaces. The user must register first to be allowed to use the PS-

SWIF system. Once the user logs in to the system, the available topics and

subscriptions are uploaded.

Figure 6.5 shows the PS-SWIF framework interface which provides publishing

and subscription tools to achieve Workflow Interoperability. A set o f graphical

components is included in the system to make access to interoperability

functions easier for non-technical users. The application interface is divided into

three panels: The Publish Topic panel, the Create Subscription panel and the

Manage Subscriptions panel.

I Console M anila firrfoa E.*k
F#e Ed* Vmw Go Soc* m arts Tools H*P

2 http//localhost 808(Wr s e n d e r)s p [» O C o C .

| B n d m ■ IBM itevcfcpcfWcrts ■ OGSA-OAI A look « . . . god data { P i M c n m b y P * i S Developnq with Apac

• IS*

Welcome to Workflow Interoperability Tools

W ortSM ww opan Mn Took ■ a M O a o o K a m M a sac * a a b a s n c s s toacam s MsKsm a M t i among a o H d te m a n

I a t w • o M m a c a m a * id ■ » • < » ■ aaa a c t * «m* w t m a d fc

WS-F.yenling Console

aaaqnao3u0ac 'vcaa uuoSctaase'C itaSX aacfcinO eftTO fcie

T s * t S uM ao ttan D W titflM CwMumtr

T au eraM g ss u s iw M to E a io is s a o a fc f ra tta s s a B S c ' **“
heetnftoetew gaa use S«2i Ssas-cltfr«S4-ad>i aOOSneCa)« asp atjaoua 4102 •* peer T>«iulmao« 3X6*06

Done

il 3*T !
Publish Topic

3 N a m ' G « Status ‘ Umuoacrte
CiMte Subscription ----------

Figure 6.5: The PS-SWIF Framework Interface

1. The Publish Topic panel allows the user to publish a new topic to be used

as a Source Web Service. Users need only enter a title for this topic. The

97

Chapter 6 ~ PS-SWIF Implementation

system checks whether the topic exists in the topic database to prevent any

duplication of the topic. Once published the topic is saved in the published

topic database, a WSDL file is generated that represents the Source Web

Service and the WSDL file can be access through

http://swif.cs.cf.ac.uk:8080/. The topic will be available for use in the Topic

combo box in the create subscription panel. Only the administrator or the

topic publisher can remove this topic by selecting the remove button in the

publish panel. The system also then deletes the topic from the topic

published database.

2. The Create Subscription panel allows the user to select a topic from the

Topic combo box and enter a value for the workflow consumer. The value

could be a standard Web Service link that will receive notification

messages, such as a Triana workflow, or even a string name that will be

used as a parameter for receiveNotification operations where the Sink Web

Service is used to receive notification messages. The user can also specify

an expiry date for the subscription by selecting the desired date on the

‘Expires On’ file. When a user selects a subscribe button a subscribe request

is sent to the Source Web Service.

3. On the Manage Subscriptions panel; once the subscription is successful

details, such as topic, subscription ID and workflow consumers are shown.

Only the administrator or the subscription creator can renew or delete the

subscription by choosing the appropriate button on the panel.

Useful links are included on the sidebar of the application to give the user more

detail about the PS-SWIF system, such as a user's guide, PS-SWIF Web

Services, an example and ‘contact us’ links. The user can navigate between these

links and can learn more about the PS-SWIF system.

6.8 Availability

PS-SWIF Web Services are hosted at Cardiff University at

http://swif.cs.cf.ac.uk:8080/. Information on how to use and invoke these

services is available at [152]. Users should have their own workflow systems

98

http://swif.cs.cf.ac.uk:8080/
http://swif.cs.cf.ac.uk:8080/

Chapter 6 ~ PS-SWIF Implementation

installed on their machines and should be familiar with how to invoke a Web

Service on their workflow systems.

6.9 Summary

In this Chapter, the key PS-SWIF services implemented by WSPeer, to provide

workflow interoperability among different workflow systems are discussed.

These include:

❖ Publish Topic Web Services, which is used by a system to create a topic

for workflow publishers.

❖ The Source Web Service that represents the event source service

provided by WS-Eventing to receive subscription requests, to create

response messages and, to delegate the delivery of the notification of

publish Information.

❖ A Publish Information Web Service is used to send notification messages

from a workflow publisher to workflow subscribers.

❖ The Subscriber Web Service, which acts as a service requester, sends

messages to a Source Web Service on behalf of the Sink Web Service,

with subscribe, renew, unsubscribe and getStatus requests.

❖ The Subscription Manager Web Service manages the subscription

requests, such as renew, unsubscribe and getStatus requests.

❖ The Sink Web Service is used to receive notification message for

workflow products that do not have the capability of deploying a

workflow as a Web Service.

Also in this Chapter descriptions for databases used by the PS-SWIF system are

discussed. The system uses the Publish Topic database to store publish topics

generated by the Publish Web Services. The system also uses the subscription

database to store subscription details made by users for specific topics. The user

database is created to store user details when first logged into the system to

specify the user identity wanting to remove topics or subscriptions.

99

Chapter 6 ~ PS-SWIF Implementation

Lastly the PS-SWIF framework interface and the user-friendly interface are

presented in this Chapter. The application provides functions and tools that

allow users to publish topics and subscribe for receiving notification messages in

their workflow system.

100

CHAPTER 7

Case Study

In this Chapter, the author applied some scenarios that used real workflow

examples to validate the PS-SWIF approach and system. In this Example we use

Triana, Tavema, and Kepler workflow systems to show how interoperability can

be achieved among different workflow systems.

7.1 Overview

A Tavema workflow is used as a Source Web Service generating notification

messages. The Workflow example used in Tavema is taken from the

myExperiment Web site [153]. This example was originally designed for

Tavema workflow to show the use of The European Molecular Biology Open

Software Suite (EMBOSS) [154] based Soaplab services [110]. This workflow

involves a set of services provided by Soaplab and all these services take a

special string as input values and then process to produce a result. We modified

this workflow to adapt it to a multi-workflow example that linked Kepler to

Tavema, then finally to Triana. At a certain stage of the Tavema workflow we

linked in our sendNotification service to notify (send) the output data of one of

the soaplab services to another subscribed workflow (Kepler workflow in this

case). Then, the remainder of the Tavema workflow is executed, which results in

the generation of a PNG file. This file is then passed to a listening Triana

workflow, using asynchronous notification, and then further post-processed

before being presented to the user.

101

Chapter 7 ~ Case Study

This example, although fictitious, is highly representative of the type of

environment that a multi-workflow scenario can create, taking pre-existing

Workflows and connecting these together to make the most of the features of

each system and encouraging their reuse, whilst decoupling processes and

promoting collaboration. In our example, the Kepler workflow can act as Sink

Web Services and Source Web Services. It acts as a Sink Web Service when the

Kepler workflow is subscribed to the Tavema workflow and invokes a Sink Web

Service. The Notification message is received by the Sink Web Service in the

Kepler workflow and then passes it to other Soaplab services invoked by the

Kepler workflow to produce a PNG Image. Moreover, the Kepler workflow acts

as a Source Web Service when invoking the Publish Information Web Service

and uses the SendNotification operation to send the PNG images to any

subscribed workflow (Triana workflow in this case). The Triana workflow is

used as a Sink Web Service that subscribes to the Kepler workflow, and then

when an event has occurred in the Kepler workflow, the PNG image is received

by the Triana workflow, which performs image post-processing and displays the

results to the user. The following Sections describe how to use the system in

more detail.

7.2 Publish Topics

A new service for Tavema workflow, called SequenceProvider, is published

using the Publish Topic panel. A new Source Web Service is then automatically

generated and will be available in the Topic list in the Create Subscription panel.

In a similar way another service is created for the Kepler workflow and called

Kepler.

7.3 Create Subscription

The first subscription is to subscribe the Kepler workflow to the Tavema

workflow. The Create Subscription panel is used to create the subscriptions. To

make the first subscription, the SequenceProvider topic is selected as the source

services to represent the Tavema workflow and a new value, called kepler, is

102

Chapter 7 ~ Case Study

inserted as the Workflow Consumer field to represents the Kepler workflow.

This value {kepler) must be used as the second parameter for the

receiveNotification operation of the Sink Web Service to receive notification

messages. The second subscription is to subscribe the Triana workflow to the

Kepler workflow. The Kepler topic is selected as source service to represent the

Kepler workflow and a new value, http://localhost:4802/wspeer/trianalmage is

inserted as the Workflow Consumer field to represent the constructed workflow

in Triana. See Triana Workflow in Section 7.6.

7.4 Taverna Workflow

Figure 7.1 shows the Tavema workflow which involved invocation of the

Publish Information Web Service available at [155] and uses a number of

services provided by Soaplab (seqret, emma, and prophet). This Figure shows a

sequence set being fetched using the seqret tool, then simultaneously scanned

for predicted transmembrane regions and subjected to a multiple alignment using

the emma service (calculates the multiple alignment of nucleic acid or protein

sequences). This alignment is then plotted to a set of PNG images and also used

to build a profile using prophet tools.

The SendNotification operation of the Publish Information Web Service is used

to send the notification messages to any subscribed workflow. The

sendNotification operation takes two parameters and SequenceProvider is

specified for the first parameter that represents the Tavema workflow, with the

second parameter representing the notification message that must be sent to all

subscribers. Any services subscribed (Kepler workflow in this case) to

SequenceProvider will receive the PNG image once the Tavema workflow is

executed.

103

http://localhost:4802/wspeer/trianalmage

Chapter 7 ~ Case Study

] | Topic.l prophtcyType 11 prophecyName | | send |[tbegmm sfF orm at tran se q S e q u en ce lD

form al Sequences

prophettm ap

Figure 7.1: Tavema Workflow

7.5 Kepler Workflow

Figure 7.2 shows the Kepler workflow for the invocation o f the Sink Web

Service and Publish Information Web Service. The receiveNotification operation

o f the Sink Web Service receives notification messages from the Tavema

Workflow. The message is the output o f the emma service in the Tavema

Workflow.

Two parameters for this operation must be specified. The first parameter

represents the Source Web Service that messages come from, and, in this case,

SequenceProvider is specified. The second parameter represents the workflow

consumer that was specified when the subscription was made, and, in this case,

kepler was specified. Moreover, this workflow involves invocation o f a number

o f Soaplab service namely: (1) SoaplabChooseOperation\ (2) Soaplab-

ServiceStarter; (3) SoaplabAnalysis; and (4) SoaplabChooseResultType. The

SoaplabChooseOperation takes the output result from the receiveNotification

operation and passes it to other soaplab services, which use the Prettyplot

service to draw a plot of the input sequence alignment. The sequences are

rendered and formatted for the specified graphics device and a PNG image is

created and presented to the user.

The sendNotification operation of the Publish Information Web Service is used

to send the PNG image to the Triana workflow for another process with the

104

Chapter 7 ~ Case Study

image. Two parameters must be identified for this operation and Kepler is

specified for the first parameter that represents the Kepler workflow and the

second parameter represents the notification message (PNG image) that must be

sent to all subscribers.

Senna Constants
i SequenceProvider

String C onstan t*
ijTkepteTi

royider ^ ^

Web Service Actor2

IV* Motif IcationRetum

SoapUbChoose Operation(SoaptabChoc

W ;
SoapiabServKeSurter

I SoaplabAnalysis

n »
SoapiabCbooseResultTypeI SoaplabOt

m

SOf Director

String Constant
Kepler 4~|

ndNotlficationlteturn

C onvent ncodedStriogT olmage

Image Display

hesi
Figure 7.2: Kepler Workflow

7.6 Triana Workflow

Figure 7.3 shows the Triana workflow which includes four tasks used to

construct the workflow: 1. ImageDecoder, to allow a Web Service to receive

encoding images and convert to a standard image; 2. RotateLeft, to rotate the

received image by 90° to the left; 3. Snb, to set the value o f a pixel to the value

o f the smallest 8 way connected pixel; and 4. ImageListView, to display any

images in a separate window. Because the Triana workflow system provides a

facility to deploy a user workflow as a fully-functional Web Service, one does

not need to invoke the predefined Sink Web Service here. Instead, these tasks

I

105

Chapter 7 ~ Case Study

are grouped by a Triana tool, called trianalmages and then deployed as a Sink

Web Service, which is subsequently invoked directly by Kepler.

□ im ageTriana _ n X

Snb

ImageDecoder

RotateLeft

□ Untitledl _ □ x

im ageT riana ■

Figure 7.3: Triana Workflow

The link for this service was made available on the user’s machine at

http://localhost:4802/wspeer/trianalmages and this link is used to subscribe the

Triana workflow with the Kepler workflow. See Create Subscription in Section

7.3.

7.7 Output Result

Finally, the Kepler and Tavema workflows must be executed to obtain the result.

Figure 7.4 shows the output results from the execution o f the Tavema workflow

especially from the tmap processor which predicts transmembrane segments for

an aligned set o f protein sequences. A plot o f propensities to form the middle

(solid line) and the end (dashed line) o f transmembrane regions is given as

output. Bars are displayed in the plot above the regions predicted as being most

likely to form transmembrane regions.

106

http://localhost:4802/wspeer/trianalmages

Chapter 7 ~ Case Study

Figure 7.5 shows the result images from the Kepler workflow. The result is the

output of the prettyplot service which draws a plot of the input sequence

alignment. The sequences are rendered in pretty formatting on the specified

graphics device.

Figure 7.6 shows the output images from the Triana workflow which rotated the

received image by 90° to the left and set the value of a pixel to the value of the

smallest 8 way connected pixel.

T m a p

cm

o

C D
o

300100 2000
Residue number

Figure 7.4: The Tavema Output Result

107

Chapter 7 ~ Case Study

£•»« Tools a«»p

P re tty p lot of /e b i /e x ts e r v / s o a p la b - w o r k / s o a p la b 2 e m b o s s . . .
Mon 6 Jul 2009 00:3&29

ass n Ej

-p lu ra lity 1.5 —collision —box —noboxcol —c o lb v co n se n su s

Figure 7.5: The Kepler Output Result

Figure 7.6: The Triana Output Result

7.8 S u m m ary

In this Chapter, the author showed a real example that can be conducted using

the PS-SWIF system to achieved workflow interoperability among different

108
i

Chapter 7 ~ Case Study

workflow systems. The workflow example used in this experiment was

originally designed for Tavema workflow to show the use of The European

Molecular Biology Open Software Suite (EMBOSS) based Soaplab services. We

modified this workflow to adapt it to a multi-workflow example that linked

Kepler to Tavema, then finally to Triana. The PS-SWIF GUI is used to create

topics and subscription requests that required for this example. This experiment

showed that interoperability can be achieved among different workflow systems

using the PS-SWIF system.

109

CHAPTER 8

Evaluation

This Chapter evaluates the PS-SWIF approach and its system to achieve workflow

interoperability among workflow systems.

Evaluation can normally be conducted in two ways; a qualitative approach or a

quantitative approach. The qualitative approach requires technical and

professional expertise to judge products, while the quantitative approach requires

a statistical and numerical analysis to judge the product.

To evaluate the PS-SWIF system, which presents a novel approach in this thesis,

it is more appropriate to use a quantitative approach. This is because, the PS-

SWIF approach enables a new paradigm for cross-workflow scenarios and

therefore contributes in a qualitative way to the community. Moreover, for this

to be conclusively proved this requires that the PS-SWIF approach should be

recognized by a specialized organization in this field, such as OASIS [156] or

OGF for standardization , or used in a number of real life projects. Both options

are not possible due to a time limitation on this project.

Therefore, in this thesis, the author has taken a two pronged strategies for

evaluation. First, the author has provide in the previous Chapter that different

workflow engines can use the PS-SWIF approach to qualitatively improve their

capabilities by accessing different workflows from third party systems without

internal modification. This result shows the PS-SWIF proof of concept facilitates

110

Chapter 8 ~ Evaluation

a qualitative difference, which could form the basis for futures standardization of

the approach in OGF or similar.

Second, the author presents quantitative measurements that show that PS-SWIF

can scale in a workflow heterogeneous distributed environment.

The PS-SWIF system therefore is evaluated here using a quantitative approach as

follows:

❖ Assessing the scalability of the system in terms of notification message

loads using large number of machines and different sizes of datasets the

system can manage;

❖ Assessing its ability to satisfy all interoperability models provided by

WfMC, which shows the flexibility of the PS-SWIF system in terms of

variety of workflow systems, supported using different environments.

8.1 Workflow Interoperability Evaluation

This section evaluates the PS-SWIF system to achieve workflow interoperability

using Web Services with asynchronous notification messages represented by

WS-Eventing standard. This experiment covers different types of

communication models provided by WfMC presented in Chapter 5. These

models are: Chained processes, Nested synchronous sub-processes, Event

synchronous sub-processes, and Nested sub-processes (Polling/Deferred

Synchronous). Also, this experiment shows the flexibility and simplicity of the

PS-SWIF approach when applied to a variety of workflow systems (Triana,

Tavema, Kepler) in local and remote environments.

8.1.1 Experimental Hypotheses

This section presents and explains the experiment hypotheses and how these

hypotheses meet the overall hypotheses of this thesis.

I l l

Chapter 8 ~ Evaluation

1- The experiment involves three different workflow systems, namely

Triana, Kepler, and Tavema that run in three different machines to show

that the PS-SWIF approach can be applied to different workflow systems

that run in remote environments. Moreover, the experiment also involves

two different workflow systems, namely Triana and Kepler, to show that

the PS-SWIF approach can be applied to different workflow systems that

run in a local environment. Choosing the order of running these

workflow systems is arbitrary and the experiment can be run in any

order.

2- The Experiment uses the PS-SWIF application to mange the exchanging

of data between different workflow systems. Four topics are created,

namely Test3M for Triana workflow run on machine M l,

Test3M_Tavem for Tavema workflow run on machine M2,

Test3M_Kepler for Kepler workflow run on machine M l, and

Test3M_Triana for Triana workflow run on machine M3. Six

subscription requests are made: Tavern workflow on M2, Kepler

workflow on Ml and Triana workflow on M3 are subscribed to Test3M

topic which represents the Triana workflow on M l. The Kepler

workflow on Ml subscribed to Test3M_Tavema topic which represents

the Tavema workflow on M2. The Triana workflow on M3 subscribed to

the Test3M_Kepler topic which represents the Kepler workflow on Ml.

The Tavema workflow on M2 subscribed to the Test3M_Triana topic

which represents the Triana workflow on M3. The experiment shows the

ability of the system to mange the data through using the PS-SWIF

application. The exchange of data depends on these subscriptions and

without these subscriptions their data cannot be exchanged between these

workflow systems. Moreover, the PS-SWIF allows users to unsubscribe

or renew the subscription. These options are considered to be part of

managing the data.

112

Chapter 8 ~ Evaluation

3- To prove the ability of the system to control communication between

different workflow systems the experiment involves invoking the PS-

SWIF Web Services 8 times:

1. The sendNotification operation of the Publish Information Web

Service is invoked on Triana workflow on Ml to send

notification messages to Tavern workflow on M2, Kepler

workflow on Ml and Triana workflow on M3.

2. The receiveNotification operation the Sink Web Service receives

is invoked on Tavema workflow on M2 to receive the notification

message from Triana workflow on Ml.

3. The sendNotification operation of the Publish Information Web

Service is invoked on Tavema workflow on M2 to send a

notification message to Kepler workflow on M l.

4. The receiveNotification operation the Sink Web Service receives

is invoked on Tavema workflow on M2 to receive the notification

message from Triana workflow on M3.

5. The sendNotification operation of the Publish Information Web

Service is invoked on Triana workflow on M3 to send a

notification message to Tavema workflow on M2. The Triana

workflow system support deploys a workflow as a web service,

so the Triana workflow will receive the notification message once

a subscription is made without the need to invoke the Receive

Notification operation of the Sink Web Service.

6. The receiveNotification operation the Sink Web Service receives

is invoked on Kepler workflow on Ml to receive the notification

message from Triana workflow on Ml.

7. The receiveNotification operation the Sink Web Service receives

is invoked on Kepler workflow on Ml to receive the notification

message from Tavema workflow on M2.

113

Chapter 8 ~ Evaluation

8. The sendNotification operation of the Publish Information Web

Service is invoked on Kepler workflow on Ml to send a

notification message to Triana workflow on M3.

The control communication between these workflow systems is achieved

through invoking the PS-SWIF Web Services at the appropriate stage.

Moreover, the invoking of these web services is not arbitrary. They are invoked

in order to satisfy and fitful the requirements to achieve the workflow

interoperability models provided by WfMC, as explained in section 8.1.8.

8.1.2 Experiment design

Figure 8.1 shows the experiment scenario. Four workflow systems are used: two

workflows (Triana and Kepler) are installed on M l, Tavema installed on M2,

and Triana installed on M3.

114

Chapter 8 ~ Evaluation

remote machine

remote machine

receive from Triana(Ml)

receive from Triana(M3)

send to Itepler (M1)

receive froniT*verrw(M2)

receive from Triana (MI)

receive from Triana(M 1)

send toTriana(M3)

receive from Kepler (Ml)

send to Tavema (M2)

tend Notification to
Tavema (M2),
Kepler (Ml), and
Triana (M3)

M (2) Tavema

M (3) Triana

M (l) Kepler

M (l)T riana

local machine

Figure 8.1: Experiment Scenario

The scenario explained:

1. Triana workflow in Ml sends a message to all subscribed workflows,

namely; Kepler workflow on M l, Tavema workflow on M2 and Triana

workflow on M3.

2. The Tavema workflow on M2 receives a notification message from the

Triana workflow on Ml. The Tavema workflow does some processing with

the message received and sends it to the Kepler workflow on Ml. At a later

115

Chapter 8 ~ Evaluation

stage, the Tavema workflow (M2) receives a message from the M3 Triana

workflow.

3. The Triana workflow on M3 receives a notification message from Triana

workflow on Ml. The Triana workflow does some processing with the

message received and sends it to Tavema workflow on M2. At a later stage,

the Triana workflow on M3 receives a message from Kepler workflow on

Ml.

4. The Kepler workflow on Ml receives a notification message from Triana

workflow on M l. The Kepler workflow does some processing with the

received message. At a later stage the Kepler workflow on Ml receives a

message from the Tavema workflow on M2 and also does more processing

with the received message and then sends it to the Triana workflow on M3.

8.1.3 Test-bed

The test-bed for the experiments includes three machines: the first machine Ml

is the same machine M(S) used for the performance experiment section. The

other two machines M2 and M3 have similar specifications with a 3.2 Ghz

Intel(R) Pentium(R) processor and 1 GB of memory, Fedora 7 as operating

system, and Java version 1.6.0.14. All machines were connected through a

private Ethernet network which was not shared by other users. Ml installed

Triana and Kepler workflow systems, M2 installed a Tavema workflow system

and M3 installed the Triana workflow system.

8.1.4 Triana Workflow (Ml)

Figure 8.2 shows the Triana workflow that runs on M l, as used to send a

message to other workflows. Five tools are used to construct this workflow and

Table 8.1 provides a description for each tool. The main tool in this workflow is

the sendNotification tool which represents the operation of the Publish

Information Web Service. The Publish Information Web Service is invoked in

Triana using service tools to send message to any subscribed workflows.

116

Chapter 8 ~ Evaluation

Topic

scn O N o tlflcu io n

Message

S in n g C e n

Figure 8.2: Triana Workflow on M l

Triana Tool Description

sendNotification An operation of Publish Information Web Service used to send
m essages to subscribed workflows.

Topic A tool used to specify the topic name for sendNotification tool
Message A string value that should be sent by sendNotification tool
Exec A tool used to execute storetime.sh scrip to store the time.
StringGen A string unit required to execute the Exec unit.

Table 8.1: Triana Units Description on M l

8.1.5 Taverna Workflow (M2)

Figure 8.3 shows the Tavema workflow on remote machine M2. There are 14

components used to construct this workflow and Table 8.2 gives a brief

description for each component. The main components o f this workflow are

receiveNotification, sendNotification, and receiveTrianaNotifi cation

components. The receiveNotification is an operation o f the Sink Web Service

and used to receive a notification message from Triana Workflow on M l. The

sendNotification is an operation o f the Publish Information Web Service and

used to send a message to the Kepler workflow on M l. The

receiveTrianaNotification is an operation o f the Sink Web Service to receive a

notification message from the Triana workflow on M3. (The original name for

this operation is receiveNotification but changed here to distinguish it from the

previous operation used earlier in this workflow).

117

Chapter 8 ~ Evaluation

G <4»I»kaI \m m 4<ii\ 9 (rx f f fM M M a l

| , S i v f d l i q u m v - C ««tt«W f tfUffUH

Topic Consum er

S leep_5_secs

receiveNotification

StoreTim eTaverna3 1

StoreTim eTavem ai _ 3_3 |

receiveT riana Notification

TopicTriana S leep_5_secs_2

StoreTim eTavem a3 2 TopicNotify R ead Text File

. | R rn d fiin u don*.

Figure 8.3: Tavema Workflow on M2

Tavema Component Description

Topic A component used to specify the topic name for
receiveNotification component

Consumer A component to specify a consum er workflow

receiveNotification An operation of Sink Web Service used to receive a notification
m essage

StoreTimeT a verna3_1 Store time when the notification m essage is received
Sleep_5_secs Used for a process, sleep 5 second thereafter
StoreTimeT a verna3_2 Store time when m essage is sent by sendNotification operation

TopicNotify Component used to specify the topic name for sendNotification
component

Read_Text_File Component is used to read a text file

sendNotification An operation of Publish Information Web Service used to send a
notification m essage

TopicTriana Component used to specify the topic name for
receiveT rianaNotification component

Sleep_5_secs_2 Used for a process, sleep 5 seconds thereafter

receiveT rianaNotification An operation of Sink Web Service that used to receive a
notification m essage

StoreTimeT averna_3_3 Store time when the m essage is received by
receiveT rianaNotification components

Table 8.2: Taverna Components

118

Chapter 8 ~ Evaluation

8.1.6 Triana Workflow (M3)

Figure 8.4 shows the Triana workflow that runs on remote machine M3. The

Triana workflow is constructed from several tools and Table 8.3 presents

descriptions for each tool. The primary tools in this workflow are

receiveNotification to receive a notification message from Triana workflow on

M l, sendNotification to send a message to the Tavema workflow on M2 and

receiveNotification 1 to receive a notification message from the Kepler workflow

on M l.

O x

Topic

T o p ic R e c tiv e F ro m M p ltr

Figure 8.4: Triana Workflow on M3

119

Chapter 8 ~ Evaluation

Triana Unit Description
TopicReceive A unit used to specify the topic name for receiveNotification tool

receiveNotification Operation of Sink Web Service used to receive notification
message

Consumer A unit to specify a consumer workflow
StoretimeT riana3_1 Store time when the message is received by receiveNotification unit
TriggerOelay Used to do some process, sleep 5 second

ExecTrigger String unit is used to execute the storetime.sh in the
StoreT rianaTime3_2

StoreT rianaTime3_2 Store time when the message is sent by sendNotification operation
Message String value that should be sent by sendNotification tool
Topic Unit used to specify the topic name for sendNotification tool

sendNotification Operation of Publish Information Web Service used to send a
notification message

TriggerDelay2 Used to do some process, sleep 5 second
ConsumerTriana Unit to specify a consumer workflow
TopicReceiveFromKepler Unit to specify the topic name for receiveNotification 1 tool

receviceNotificationl Operation of Sink Web Service used to receive notification
message

StoreT rianaTime3_2 Store time when message received by receiveNotification 1
operation

Table 8.3: Triana Unit Description

8.1.7 Kepler Workflow Ml

Figure 8.5 shows the Kepler workflow run on local machine M l. Various actors

are used to build the Kepler workflow and Table 8.4 gives a brief description for

each actor. The primary actors in this workflow are Web Service Actor2 which

represents the receiveNotification operation used to receive a notification

message from the Triana workflow on M l, Web Service Actor represents

another receiveNotification operation used to receive a notification message

from the Tavema workflow on M2, and Web Service Actor3 which represents

the sendNotification operation used to send a message to the Kepler workflow

on Ml.

120

Chapter 8 ~ Evaluation

Service Actor 2

T est

S O ^ ir e c t o r

Q >
n o t i f ic a t io n Ret u rn

comma
input

StoreKeplerTime3_l
^output
. TW
t utCod*

Taverna Topic

Test3M_Taverna 4
Sleep. 5 .secs

b Service Actor

W orkflow C

StoreKeplerTime3.2

cumnvinJK̂ ^B
" « ' '-Cole

tionReturn
comma

input

Sleep.5.secs2
.output

Cod*

Store.Kepler.Time.3.3
.output________

comma
input

.error
txitCode

NotifyTopic

Test3M.Kepler 4

Web Service Actor 3

ndNotificationReturn

File Read r

Figure 8.5: Kepler Workflow

121

Chapter 8 ~ Evaluation

Kepler Actor Description

Test3M A topic name that used to specify the topic for receiveNotification
operation

Kepler A consumer name that used to specify the consumer workflow

Web Service Actor2 An operation of Sink Web Service that used to receive a notification
message

StoreKeplerTime3_1 Store time when the message is received by receiveNotification
operation

Sleep_5_secs This is used to do some process, sleep 5 second

Test3M_Tavema A topic name that used to specify the topic for receiveNotification
operation

kepler A consumer name that used to specify the consumer workflow

Web Service Actor An operation of Sink Web Service that used to receive a notification
message

StoreKeplerTime3_2 Store time when the message is received by receiveNotification
operation

Sleep_5_secs2 This is used to do some process, sleep 5 second
Store_Kepler_time_3_3 Store time when the message is sent by sendNotification operation

Test3M_Kepler A topic name that used to specify the topic for sendNotification
operation

File Reader A message that should be send by sendNotification operation

Web Service Actor3 An operation of Publish Information Web Service that used to send a
notification message

Table 8.4: Kepler Actors Description

8.1.8 Experiment Process

The experiment can be run in any order, no matter which workflow runs first. If

the message is sent by the workflow publisher and there is no one to receive it,

the message will be held in a queue until pulled by a workflow subscriber. If the

workflow subscriber executes first and there is no notification message at this

time, the workflow subscriber keeps listening until the notification message

arrives.

The only aspect affected by the execution order is the time calculated between

the message sent tool of workflow publisher and message tool of workflow

subscriber. Tavema workflow on M2 was executed first and then Triana

workflow on M3 second and Kepler workflow on Ml third, and the Triana

workflow on Ml last, because the Triana workflows on Ml was the initiator of

the interactions between these workflow.

122

Chapter 8 ~ Evaluation

The following description explains how the workflow interoperability models

provided by WfMC are achieved:

1. The chained processes model is achieved when the Triana workflow on

Ml use Publish Information Service to send the notification message to

the other workflows.

2. The Nested synchronous sub-process and Event synchronous sub-process

models are achieved when the Triana workflow uses the Publish

Information Web Service on Ml to send the message to the Tavema

workflow on M2. The Tavema workflow receives it through the Sink

Web Service and then simulates some processing of the receive message,

using the sleep 5 second component, and sends to the Kepler workflow

on Ml.

The Nested synchronous sub-process and Event synchronous sub­

process models assume that the notification message should be sent back

to the first workflow that initiates the communication; which is the

Triana workflow on Ml in this case. The PS-SWIF approach can handle

this assumption easily but to avoid implementing each model in separate

experiments, one experiment that covers all primary aspects of each

model is used.

3. The Nested sub-process (Polling/Deferred Synchronous) model is

achieved when the Triana workflow on M3 complete their processes

except the receiveNotification 1 tool which waits until all other

workflows Tavema’ and ‘Kepler' finish the entire workflow processes

and send the notification message to the Triana workflow on M3 which

explains why the Triana workflow on M3 is the last to finish execution.

8.1.9 Experiment Observation

To observe the experiment, the PS-SWIF application is used to monitor the

published topic and the subscription. Figure 8.6 shows that all topics are

successfully published, and all the subscriptions are successfully made. The

details of these subscriptions are also shown in the same figure. Triana workflow on

Ml, Tavema workflow on M2, Triana workflow on M3, and Kepler workflow on

123

Chapter 8 ~ Evaluation

M l successfully invoked the PS-SWIF Web Services and this is shown in Figures

8.2, 8.3, 8.4, and 8.5. The experiment was successfully executed and the data was

moved among these workflow systems.

Scientific Workflow Interoperability Framework
Tnana,Tavema.Kepler.etc.

- woiud»
©
0 t i m y *

©
©
©
© laooul

W elcome to SW IF

Scenlic WockJbw IntetoperabWy F ra n a w r t .SWIFi t l «eb appfcalDti taxed on Web Servces thal enable scientists to apply

* FubtahSubscnbe ntBchansm to achieve nleiapeoM ty among aorM bo systems The SWIF appfcatcn a lm s aofkltoa

scenhsti to move a n a and eiecu te the* appfcaim t n <MereM aorfclba systems

SW IF Application

r TetUU twtSdBI9«»l36l «31 tcM 1SdS4e04edS1 Tavema a

- TesOU vucKSelKlo elZD-Ste+xO oasocl Wtld Kepler
r T«*t3M2 a»*t1Cl26775-al1+«*3-tB31 29oBden3232 Trona
r TestSM *o*J5a«a»7»-»r'4ba-«TB-aS3cOre7-i*o Trane
r T«et3M Tavema waax3MM-Ctfa4e<r-a]rK'3E»3«4beo< Kepler 1
r Test3U Trnna vaillctMcal a£to4bcO-a10b-U6«e0aC6H Tavema

T«I3U heptei vuttcC5*6cr aCb̂ «! »»20-5c 3B9o«.WOI 1 Trana

Done

Figure 8.6: Experiment Observation

8.1.10 Experiment Achievements

1. The experiment showed how the Web Services with asynchronous

notification messages can be invoked and deployed by different

workflow systems, namely Triana, Tavema, and Kepler, to move and

mange data between these workflow systems without modification to

those systems.

2. The experiment proved that different types o f communications between

workflow systems can be achieved by satisfying the requirements of

workflow interoperability models provided by WfMC.

124

Chapter 8 ~ Evaluation

3. The experiment proved the flexibility and simplicity of the PS-SWIF

approach when applied to a variety of workflow systems (Triana, Tavema,

Kepler) in local and remote environments.

4. This experiment provides a sophisticated example of how the system can

handle different models of interoperability using different types of workflow

systems. Moreover, other experiments that cover the following scenario

have been conducted and are available on http://swif.cs.cf.ac.uk:8080 to

prove that all possibilities of communication between different workflow

systems (Tirana, Kepler, and Tavema) can occur.

a) Tirana, Tavema, and Kepler

b) Triana, Kepler, and Tavema

c) Tavema, Triana, and Kepler

d) Tavema, Kepler, and Triana

e) Kepler, Tavema, and Triana

f) Kepler, Triana, and Tavema

8.2 Performance Evaluation

An experiment was conducted to evaluate the performance of the PS-SWIF

system with various numbers of machines and using different ranges of data size.

A total of 30 tests were undertaken: for each set of machines and sets of data sizes,

three tests were undertaken. Measurements of the average value for each machine

with a specific data size were taken.

During such experiments, results need to be archived in a log file for each

machine. The format of these file must include:

❖ Test ID;

❖ A unique identifier for each test performed;

❖ Total number of machines used in the test;

❖ Message size sent by a workflow producer to workflow subscriber;

❖ Duration (sec), of delivery time to transfer the notification message to the

workflow subscriber.

125

http://swif.cs.cf.ac.uk:8080

Chapter 8 ~ Evaluation

Log files and data were then moved to the main machine for analysis. Results are

gathered and presented in a meaningful, human readable form. Time is

synchronized on each machine by time server “ntpO.cf.ac.uk” using network time

protocol (ntp) to guarantee the notification times, between notification sender and

notification receiver, are measurable in a standard way.

8.2.1 Test-bed

The test-bed for the experiments includes 30 Linux-based machines. The first

machine M(S) with a 1.80 GHz Intel(R) Pentium(R) M processor, 1.5 GB of

memory, Fedora 3 as Operating System, and Java version 1.6.0 07. The M(S)

machine represents the host machine for the PS-SWIF Server, using a WSPeer

framework, and provides deployment for all the PS-SWIF Web Services. The

M(S) machine also hosts the PS-SWIF application using Apache Tomcat

Version 6.0.10.

The remaining 29 machines (Ml to M29) have a 2.8 GHz Intel(R) Pentium(R) 4

CPU processor and 1.0 GB of memory, Fedora 7 as operating system, and Java

version 1.6.0.14. All machines were connected through an Ethernet local-area-

network with 100 Mbps.

8.2.2 Experiment Setup

A NTS (Network File System) mounted Home directory was created that can be

accessed from each machine in the University laboratory. The content of the

Home directory is described in Table 8.5. The test is based on the remote

execution of processes using SSH, and, as this is an automated process, SSH setup

is configured to skip the password prompt for each laboratory machine using the

ssh -keyg en command to generate private/public key pair. The public key is

copied onto remote machines. After the SSH configuration, the remote machines

can be accessed without password prompt, and the remote machines can access

the centralized Home directory where the data and workflow are installed.

126

Chapter 8 ~ Evaluation

File or Directory Description
Data folder Store data files with different size
lib Present a library for java classes
Workflows Store Tavema and Kepler workflows
createsubscriptions.sh A script file to create a subscription
generatefile.sh A script file to create a file with different size
machines.txt Store the Linux lab machines name
processlogs.sh A script file to generate logs files
runmachinetestsh A script file used to run the Kepler workflow on lab machines
executeworkfiow.sh A script file used to run the Tavema workflow
runtestsh A script file used to run the experiment

Table 8.5: Home Directory Description

8.2.3 Create Topic and Subscriptions

The experiment uses Tavema Workflow and Kepler Workflow as the workflow

publisher and workflow subscriber, respectively. A TestSuite topic is published

manually using the PS-SWIF application. A new Source Web Service is

automatically generated and available on M(S) machine and is also available

through http://alqaoud:4804/wspeer/TestSuite?wsdl.

Subscriptions are made through the createsubscriptions.sh script file. This file

subscribes all machine names specified in the machines.txt file with the

TestSuite topic. The machine’s name represents the Kepler workflow and the

TestSuite topic represents the Tavema workflow. Once subscriptions are

successfully made, subscription detail is shown on the PS-SWIF application.

8.2.4 Taverna Workflow

The Tavema workflow is constructed using a key component which involves the

invocation of the Publish Information Web Service available at

http://alqaoud:4804/wspeer/NotifvService?wsdl. The SendNotification operation

of the Publish Information Web Service is used to send notification messages to

any subscribed workflow. The sendNotification operation takes two parameters

and TestSuite is specified for the first parameter representing the target topic,

with the second parameter representing the message to be sent to all subscribers

to this topic. The message is read from a file specified when the experiment is

later run using runme.sh from the command line.

127

http://alqaoud:4804/wspeer/TestSuite?wsdl
http://alqaoud:4804/wspeer/NotifvService?wsdl

Chapter 8 ~ Evaluation

8.2.5 Kepler Workflow

The Kepler workflow is constructed using only one Web Service instance, which

invokes the Sink Web Service at http://alaaoud:4804/wspeer/SinkService?wsdl. The

receiveNotification operation of the Sink Web Service receives a message from

the Tavema Workflow. Two parameters are specified for this operation. The first

parameter represents the Source Web Service the message comes from, and

TestSuite is specified. The second parameter, the workflow subscriber, specifies

when the subscription is made, and, in this case, machine name will be reserved

for the parameter. The received massage will be saving in an external file.

8.2.6 Experiment Execution

Every time a test is executed, a unique ID is assigned for this test in the teseid.txt

file. The test is executed using the runtest.sh script file that takes two arguments:

runtes.sh datafile numberofrnachines

The datafile represents the data size that will be passed to the workflow

consumer as a notification message. The numberofinachines defines how many

machines must be used on the test; if specified the first n machines defined in the

machines.txt file will be used in the test, if not specified all machines will be

used. The runtest.sh executes all Kepler workflows specified by machines and

executes the Tavema workflow that sends notification messages to Kepler

workflows.

After any number of tests with any number of machines a CSV (Comma-

Separated Value) file [157] is generated with the integrated information from all

the machines using the process logs.sh script file. The output date is stored in a

log file that can be opened with Microsoft Excel or an OpenOffice Spreadsheet

for further analysis.

8.2.7 Experiment Analysis

Three sets of runs are conducted; each set representing a specific number of

machines representing workflow subscribers, Kepler in this case. Limited to 29

128

http://alaaoud:4804/wspeer/SinkService?wsdl

Chapter 8 ~ Evaluation

machines available at the University laboratory at the time o f the experiment, the

three sets are divided into 10 machines, 20 machines and 29 machines. Each set

consisted o f three groups o f three runs each for observation and analysis

purposes. The three groups contained 100 Kb, 1 Mb and 10 Mb which represent

a message size to be sent to the workflow subscribers. Other experiments are

conducted with different message sizes, such as 0 Kb and 25 Mb, to find the

overhead time and the limitation o f the system respectively. Figures 8.7, 8.8 and

8.9 show performance results for three sets o f experiments.

Performance of 10 Machines

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M achine ID

Figure 8.7: Performance o f 10 Machines

Performance of 20 Machines

M achine ID

Figure 8.8: Performance o f 20 Machines

129

Chapter 8 ~ Evaluation

Performance of 29 Machines

350
300

_ 250
f 200
.§ 150

100
50

0

^ ^ ^ ^ ** 4?
M achine ID

100 KB
1MB

10 MB

Figure 8.9: Performance o f 29 Machines

Experimental results in Table 8.6 show the total average delivery time for 10

machines, 20 machines and 29 machines.

---------- 100 Kb 1 Mb 10 Mb
10 Machines 53 72 157

20 Machines 55 72 224

29 Machines 57 77 254

Table 8.6: Average Delivery Times

The total average delivery time (obtained from Table 8.6) for various numbers o f

machines is calculated with 100 Kb as a baseline, with results in Figure 8.10.

s
8

Average delivery time for various num ber of
machines based on 100 Kb

60
cnou
*rU
30
on -£\J
1 nI u
n -u

100 Kb

10 M achines
20 M achines
29 M achines

1 Mb 10 Mb

Message Size

Figure 8.10: Average Delivery Time

130

Chapter 8 ~ Evaluation

All three set of machines; 10, 20, 29 machines have similar behaviour with

different sets of data size. This is expected, since the message is not delivered to

the machines in sequential order but is delivered to all machines in parallel.

Figure 8.10 shows interesting results for delivery time compared to message

size. For example, for 29 machines, the time taken to deliver 100 Kb when the

original message size is 100 Kb is 57s and the time taken to delivery the same

volume of data, (100 Kb), if the original message size of 10 Mb is 2.5s. The

delivery time for a specific volume of data decreases when a larger message size

is used.

Figure 8.11 shows the average data transferred for the different numbers of

machines. To get the throughput in Kb/s, these values of 100, 1,000 and 10,000

are divided by the values in the columns of 100 Kb, 1 Mb and 10 Mb in Table

8.6. Figure 8.11 shows the volumes transferred increases when a large message

size is used. For example, the transfer rate for 29 machines is 1.75 Kb/s when

100 Kb is used as message size, whereas the transfer rate for the same number of

machines is 39 Kb/s.

Average data trasferred for various num ber of m achines

10 M achines

20 M achines

29 M achines

Figure 8.11: Average Data Transfer

■Si 30 o>
o 20

H 10

100 Kb 1 Mb 10 Mb

Massage Size

131

Chapter 8 ~ Evaluation

Another experiment was conducted to find the fixed overhead time taken to

deliver a message to workflow subscribers. The best way to do this is to send a

message with a 0 Kb size. To measure this overhead, an empty file is created and

a notification message is read from this file. This message is sent to the three

different sets of machines 10,20 and 29. The overhead average results are 52, 52

and 55 for 10,20 and 29 machines respectively.

A further analysis subtracted the overhead times from the values presented in

Table 8.6, with new values displayed in Table 8.7.

100 Kb 1 Mb 10 Mb
10 Machines 1 20 105
20 Machines 3 20 172
29 Machines 2 22 199

Table 8.7: Average Delivery Time without Overhead Time

The expected result should be if a message with 100 Kb takes 1 second to be

delivered, then a message with 1 Mb and 10 Mb should take 10 seconds and 100

seconds respectively.

In Table 8.7 the delivery time for 100 Kb ranges from Is to 3s, for 1 Mb from

20s to 22s and for 10 Mb ranges from 105 to 199. The delivery times for 100 Kb

shows a short period of time which indicates any extra second will make a

significant change with this value taken as the base for further calculation of

results on higher measurable units. For example if one has two results for 100

Kb which show delivery times of Is and 2s, as in this case, the delivery time for

a message size of 10 Mb would be 100s and 200s. The variations in time with a

message size of 10 Mb is significant, whereas the variation in the time with a

message size of 100 Kb is quite small. A reasonable explanation for variation

values in Table 8.7 for 100 Kb is that the delivery time is recorded in second as

the measurable unit. At the analysis stage it was recognized that if the delivery

time is recorded in milliseconds, one would get more accurate results. The

132

Chapter 8 ~ Evaluation

results in Table 8.7 for messages 1 Mb and 10 Mb show more reliable consistent

values.

To further evaluate the PS-SWIF system, another experiment is conducted to

find the system limitation in terms of the maximum load of message size with

maximum number of machines the system can handle before failure; essentially

to find the system scalability. System limitation is defined when a message is not

delivered successfully or takes a very long time to deliver. As shown in Figure

8.9 the system cannot deliver a message size of 10 Mb to more than 26

machines. Moreover, the system manages to deliver a message size of 20 Mb to

only 5 machines in 204s. With a message size of 25 Mb, the system was not able

to deliver the message to any machines. The reason for these failures was the

memory size allocated to the PS-SWIF server that hosts the service. The

maximum memory allocated to this server was 1,500 Mb as the total memory

available to the machine running this experiment is 1.5 GB. Further investigating

of this failure by debugging the PS-SWIF code showed that the problem is

caused by WSPeer and/or Axis and not the PS-SWIF code. The current

implementation of WSPeer based on the old version of Apache’s Axis (1.2)

which does not support the delivery of a large message. This can be solved by

looking for ways to improve the handling of large messages in Axis and/or

WSPeer such as SOAP MTOM (Message Transmission Optimization

Mechanism) [158].

8.3 Summary

This Chapter evaluates the PS-SWIF system and approach in a number of ways.

Several experiments are conducted to determine scalability of the system when

applied with different numbers of machines and a large volume of data that

transfers between different scientific workflow systems. The PS-SWIF system is

shown to be scalable and reliable with different numbers of machines and large

sizes of messages. The PS-SWIF system was not able to delivery a message to

more than 26 machines with 10 Mb or any message with a size of 25 Mb. This

133

Chapter 8 ~ Evaluation

failure is not caused by the PS-SWIF system itself but by the current

implementation of WSPeer with Axis that does not support the delivery of a

large message.

Another experiment proves that the workflow interoperability models provided by

WfMC can be achieved using the SWIF approach, which proves the flexibility of

the PS-SWIF approach when applied to different workflow systems in different

environments.

134

CHAPTER 9

Conclusion and Future Work

9.1 Research Summary

Scientific workflow is a special type of workflow that emerged for scientists to

formalize and structure complex e-Science applications. Many workflow systems

have been released to resolve problems in particular domains. In large collaborative

projects, it is often necessary to recognize the heterogeneous workflow systems

already in use by various partners and any potential collaboration between these

systems requires workflow interoperability.

Workflow interoperability was officially addressed for the first time in 1996 by the

Workflow Management Coalition (WfMC). Recently workflow interoperability has

received much interest from the distributed computing community and many

workshops and meetings have been organized to discuss, from different perspectives,

how interoperability can be achieved among scientific Workflow Systems. Workflow

interoperability is classified on different levels according to the WfMC and other

community. In this research, all these classifications and specifications were

considered in designing the PS-SWIF model.

Only limited or ad-hoc solutions have been attempted to achieve scientific workflow

interoperability between e-Science workflow systems. A general approach not

limited to specific types of workflow systems is needed.

135

Chapter 9 ~ Conclusion andfuture work

Many Scientific Workflow systems use Web Service standards to invoke a remote

resource or to send a job to be executed on remote resources. Publishing, discovering

and availability of services are considered to be part of the composition process. A

solution for workflow interoperability at the Web Service layer will facilitate the

interaction between workflow systems and also cover a wide range of workflow

systems.

In this thesis, the author has presented a novel approach “PS-SWIF” to achieve

workflow interoperability. The PS-SWIF approach depends on a Web Service based

notification messaging system to provide run-time interoperability. The PS-SWIF

approach supports workflow systems written in any languages and running on

different operating system.

Most workflow systems do not support the publish/subscribe model directly. The

Triana workflow system, being the exception, supports publish/subscribe models by

implementing a WS-Notification. The research in this thesis shows WS-Notification

is not an appropriate standard to be used as a model within workflow systems to

achieve workflow interoperability. WS-Notification is based on the WS-RF

specification to deliver the notification messages and most current workflow systems

do not support the invocation of Web Services with stateful resources via WS-RF.

Some Workflow systems have the ability to deploy a workflow as a Web Service, for

example, the Triana workflow. In contrast, some other workflow systems do support

deploying a workflow as a Web Service, for example, the Tavema and Kepler

workflow system. In the former case, an asynchronous notification mechanism is

applied with the PS-SWIF system. The advantage of this approach is that it maintains

a level of decoupling that can allow the coexistence of multiple workflows without

the necessity of tight integration or dependency. In the second case where the

workflow system does not have the ability to deploy a workflow as a Web Service, a

synchronous notification mechanism that blocks and waits for the notification

message is applied with PS-SWIF.

136

Chapter 9 ~ Conclusion andfuture work

WS-Eventing supports both asynchronous and synchronous modes to deliver

messages. WS-Eventing provides required functions for the Publish/Subscribe

paradigm, such as subscribe, renew, unsubscribe and getStatus. WS-Eventing does

not depend on as many specifications as WS-Notification and the only specification

required is WS-Addressing, which is also required by WS-Notification. In addition,

the WS-Eventing service is represented as a stateless service, so it can be invoked by

any workflow system as a normal Web Service. Due to these reasons and its

simplicity and features, the WS-Eventing specification is used with some

modification in the PS-SWIF approach. WS-Eventing uses Web Service standards to

implement their entities and so does the PS-SWIF components.

The advantages of the current design and implementation of PS-SWIF is that it

provides decoupling between workflow publisher and workflow subscriber in three

domains:

❖ Space decoupling domain: The notification messages are delivered between

the workflow publisher and workflow subscriber without the need to know

each other. The workflow publisher sends notification messages through the

Internal Subscription Manager and the workflow subscriber receive these

notifications indirectly through the Internal Subscription Manager.

❖ Time decoupling domain: The workflow publisher and workflow subscriber

can communicate with each other even if they are not active at the same time.

Specifically the workflow publisher can send notification messages while the

workflow subscribers are disconnected, and, in the opposite direction, the

workflow subscribers can receive notification messages while the workflow

publisher that generates these messages is disconnected.

❖ Synchronization decoupling domain: The workflow publisher is not blocked

while generating notification messages and the workflow subscriber can

asynchronously receive notification messages while performing some

concurrent activity.

To validate the PS-SWIF approach, a prototype is designed and implemented based

on the several requirements, gathered through the research period. The PS-SWIF

137

Chapter 9 ~ Conclusion andfuture work

framework is designed with consideration of scientists that do not have a very strong

background in computer science.

The PS-SWIF framework, through suitable, Web interface facilitates user interaction

with the other system components in the architecture. It utilizes publishing and

subscription tools, such as publish, subscribe and renew, to create topics and manage

subscriptions. Moreover, it allows users to view details of subscriptions such as

topic, subscription ID and sink.

Different experiments to construct various workflows using Triana, Tavema and

Kepler workflow systems have been conducted for proof of the concept of the PS-

SWIF system. The author focuses on Triana, Tavema and Kepler workflow systems

because these systems are good representatives for a scientific workflow at service

level where this approach is applied.

The PS-SWIF system and approach is evaluated in a number of ways. Several

experiments are conducted to determine scalability of the system when applied with

different numbers of machines and a large volume of data that transfers between

different scientific workflow systems. The PS-SWIF system is shown scalable and

reliable with different numbers of machines and large sizes of messages. The PS-SWIF

system was not able to deliver a large message; not caused by the PS-SWIF code itself

but by the current implementation of WSPeer with Axis that does not support the

delivery of a large message.

Another experiment conducted proved that the workflow interoperability models

provided by WfMC namely, Chained processes, Nested synchronous sub-process,

Event synchronized sub-process, and Nested sub-process (Polling/Deferred

Synchronous) can be achieved using the PS-SWIF approach, which proves the

flexibility of the PS-SWIF approach when applied to different workflow systems in

different environments.

138

Chapter 9 ~ Conclusion and future work

9.2 Advantages of PS-SW IF System

In this section, the advantages o f using the PS-SWIF approach against other similar

related system in the research domain are concluded. Table 9.1 presents a brief

comparison of different approaches to scientific workflow interoperability systems.

These vary in terms of their strategies and levels o f interoperability according to

WfMC and workflow lifecycles, their generality, (either limited to specific workflow

systems or could be used in any workflow systems), their simplicity o f usage - does

it need an expert or developer to use it or can it be used by normal scientists - their

deployment platform - is the workflow system hosted remotely or locally - and

whether or not the approaches support the reusability o f the experiments.

Interoperability
Approach Strategy Levels

Workflow
Lifecycle

Level
Generality Simplicity

Usage
Deployment

Platform Reusability

PS-SWIF Message
Passing

Complete
API Execution General Simple Remotely Yes

GEMLCA/P-
GRADE

Direct
Interaction

Limited
API Execution Limited Complex Locally No

VLE-WFBus Direct
Interaction

Limited
API Execution Limited Complex Locally No

IWR Direct
Interaction

Shared
Formats

workflow
design Limited Complex Locally No

SIMDAT(Server,
Service)

Direct
Interaction

Limited
API Execution Limited Complex Remotely No

SIMDAT
(Language)

Direct
Interaction

Shared
Formats

workflow
design Limited Complex Remotely No

Kepler/Pegasus Direct
Interaction

Limited
API

workflow
design Limited Complex Locally No

Table 9.1: Comparison o f Workflow Interoperability Approaches

Table 9.1 notes the PS-SWIF approach uses a message passing strategy among

different workflow systems to achieve interoperability, whereas the GEMLCA/P-

GRADE, VLE-WFBus, IWR, SIMDAT (server, service and language), and

Kepler/Pegasus approaches use direct interaction strategies to achieve Workflow

Interoperability.

Interoperability is achieved at a Limited Common API Subset Level for

GEMLCA/P-GRADE, VLE-WFBus, SIMDAT (server, service), and Kepler/Pegasus

139

Chapter 9 ~ Conclusion andfuture work

approaches. In the IWR and SIMDAT (language translation) approaches the

interoperability is achieved at Shared Definition Format Level. In the PS-SWIF

approach, interoperability is achieved at a complete workflow API Level which

shares a single standard API among workflow systems. Although there is no API

used directly in workflow systems using the PS-SWIF approach, the Web Service

technology used in the PS-SWIF approach represents the single standard API shared

by workflow systems.

For interoperability, according to workflow lifecycle classification, the PS-SWIF,

GEMLCA/P-GRADE, VLE-WFBus, and SIMDAT (server, service) approaches

provide a solution at workflow execution level. IWR, SIMDAT (Language

translation), and Kepler/Pegasus approaches present a solution at workflow design

level.

PS-SWIF provides a general approach and its application can be applied to any

workflow system, whereas the other approaches are limited to specific types of

workflow systems. However, some approaches can support more general workflow

systems, but they need some modifications to their API.

In terms of simplicity, the PS-SWIF application based on a set of Web Services

makes the application easy to use, and scientists do not need any programming or

deep technical computer background to use the approach, whereas the other

approaches require an expert to install the software and to first set up the

environments to enable use by scientists. As they implement their approaches using

APIs, there are going to be a number of requirements, such as operating system and

programming language, which must be satisfied before using the software. These

requirements will make it more difficult to use the relevant APIs in many workflow

systems.

Since the PS-SWIF, SIMDAT (server, service, and language) approaches are based

on Web Services, interoperability can be achieved among workflow systems that run

140

Chapter 9 ~ Conclusion and future work

remotely. In contrast, the other approaches are limited to the workflow systems

which run on the users’ machines.

Within the PS-SWIF approach the reusability of the same experiment or a similar

experiment with different data input and parameters can be achieved without major

modifications to the system, and only needs changes to the input parameters. In the

other approaches more modifications are needed in the constructed workflow and in

the system to allow reusability.

In general, the PS-SWIF approach is not limited to any workflow system. The PS-

SWIF approach and tools can be applied to any workflow system that has the

capability of invoking a Web Service. Currently, most scientific workflow systems

are designed to support Web Service invocation.

As the PS-SWIF application is based on a set of Web Services available for access

on the World Wide Web, interoperability can be achieved among workflow systems

remotely hosted. Different or similar workflow systems, hosted anywhere on a

network and using any operating system, can easily use the full range of PS-SWIF

tools to interoperate with others. The PS-SWIF approach is easier for scientists and

provides interoperability among a wide range of scientific workflow systems.

9.3 Future Work

This thesis has focused on interoperability among Scientific Workflow Systems at

execution level. There are several more extensions possible to the PS-SWIF system.

Some of these are worth exploring further. In this section, the author outlines future

research directions.

❖ Future research can look at integrating the PS-SWIF system with the

myExperiment project. myExperiment is a social Web site where scientists

can safely upload their workflows and experiment plans, share them with

groups and find those of others. The myExperiment project is making good

progress on sharing Workflows. Most of the workflows uploaded to

myExperiment are constructed by a Tavema workflow system. The

141

Chapter 9 ~ Conclusion andfuture work

myExperiment Web site is well known in this area and has over 2,700 users,

160 groups and 850 workflows [111]. If a tool such as PS-SWIF is integrated

with myExperiment, this is going to provide a complete solution for

interoperability and sharing workflows. More scientists and users of different

workflow systems will be encouraged to participate and publish their

workflows and share with others. The users of PS-SWIF should be allowed to

add a description for a topic when wanting to publish a new topic. This

description should include workflow system type that should participate on

this topic and also datatype to be published to this topic. Moreover, users of

PS-SWIF should be allowed to upload their workflows into myExperiment,

so other users can use and run these workflows in their environment. This

feature also provides enhancement for reusability and sharing workflow

systems.

❖ The approach presented in this thesis aims to achieve workflow

interoperability at execution level. Future research can consider achieving

interoperability at workflow and data provenance level. The PS-SWIF system

can be leveraged by adapting the technique provided by the Open Provenance

Vision. The Open Provenance Vision is an approach that consists o f

controlled vocabulary, serialization formats and APIs (Application

Programming Interfaces) that allow provenance from individual systems to

be expressed, connected in a coherent fashion, and queried seamlessly [55].

The Open Provenance Vision introduces an interoperability layer that allows

provenance data stored by individual systems to be exposed and uniform

queries across these stores transmitted. The Open Provenance Vision is based

on the Open Provenance Model [159], which provides a provenance mode to

allow different systems to exchange provenance data. More about OPM can

be found in these papers [160, 55, 161, 162, 159].

❖ In this research, the PS-SWIF Web Services do not operate behind a firewall.

One possibility to extend is to leverage the current design of PS-SWIF with

the Styx protocol. The Styx [163] is a protocol that allows resources to be

142

Chapter 9 ~ Conclusion and future work

exposed as a namespace, such as the UNIX file system. WSPeer framework

supports several bindings such as JXTA, P2PS, Styx, and WSKPeer.

Combination of P2PS and Styx allows a client behind a NAT to join the P2PS

network, and then contact the rendezvous service and queries for resolver

services. Then register its logical address with the resolver service .The

resolver then creates a virtual file mapped to the logical address of the client

and returns the location of this file, which has a Styx address, to the client.

The client then initiates a read on the newly created file. Client then

subscribes to a topic provided by another service. The combination of P2PS

and Styx, allows clients behind NATs and firewalls to receive notification

messages.

❖ PS-SWIF does not presently provide secure message between services. For

integrity and confidentiality, public key technologies might be sufficient. For

high-frequency notification other mechanisms such as WS-Trust and WS-

SecureConversion might be more appropriate. Different security mechanisms

should be considered to prevent different message attacks, such as Message

Alteration Message disclosure.

143

APPENDIX A

First Version of PS-SWIF

A. 1 Integration WS-Eventing within Triana Workflow

The author implements the WS-Eventing specification within Triana Workflow in

the first version of PS-SWIF, to achieve workflow interoperability among different

workflow system. WS-Eventing binds to Triana through the GAP interface. Triana

has been used to construct a workflow that act as a Source and/or Sink Web Service

that generates, or consumes, the notification message.

A Triana workflow is used as a Web Service source generating notification messages

and managing subscription requests. The WS-Eventing services in Triana can be

either one or more tasks (a group) as a standard Web Service within Triana. A user

may select the Web Service binding as the service host to run the Group task, and,

selecting the WS-Eventing option, the GAP Interface automatically launches the

workflow as a WS-Eventing service. Once WS-Eventing services have been

deployed, they replace the equivalent group tasks in the users’ workflow to a new

WE-Eventing Service task with a different colour.

A.2 Workflow Taverna Launcher

The current state of the Tavema workflow does not support deploying a workflow as

a Web Service. The author creates a Tavema Workflow launcher tool that allows

user to deploy a workflow in Tavema as a Web Service in order or to send a

notification message from Tavema workflow. In Tavema Workflow Launcher a

144

Appendix A

Web Server is created using WSPeer framework as server on specific p o rt, and

reads workflows from configuration file and creates a new Web Service endpoint

for each declared workflow in the configuration file. The Web Services are generated

dynamically by using the GAP library, an invocation pipe is created with an

operation that receives string and returns also string. The workflow is executed using

the WorkflowLuncherWrapper API that provided by Tavema to run workflows

without popping up the Tavema GUI.

A.3 Workflow Kepler Launcher

Moreover the current state of the Kepler workflow does not support the deployment

of a workflow as a Web Service. The Workflow Kepler Launcher is similar to

Workflow Tavema Launcher WSPeer and GAP library is used to create a Web

Service within Kepler Workflow in order to send a notification message from Kepler

Workflow. The Kepler workflow is executed through a command line that allow user

to load the workflow manually and specify the values of workflow parameters.

145

APPENDIX B

PS-SWIF API

This approach exposes an API called Publish/Subscribe Scientific Workflow

Interoperability Framework (PS-SWIF) that can be implemented in multiple

workflow systems to provide run time interoperability. The PS-SWIF application is

based on Web Services that enable scientists to apply a Publish/Subscribe

mechanism to publish a topic using a workflow system, and enables different

workflow systems to subscribe to this topic and receive notification messages when

an event is executed. The PS-SWIF API was the basis for the PS-SWIF framework

through Web interfaces approach presented in this thesis.

Figure B1 shows the PS-SWIF GUI which provides publish and subscribe tools to

achieve workflow interoperability. The main interface is the Subscription

Management Console which allows users to access the Manage Subscriptions and

Manage Published Services windows. There are two buttons in the Manage

Published Services window, namely (1) Publish New Service and (2) Remove

Service. The Publish New Service button allows the user to publish a new topic that

will be used as a Source Web Service. The Remove Service button allows the user to

remove the selected service from the available published services. Once the services

are published, users can use the Manage Subscription window to create a new

subscription or manage some previous subscription. There are four buttons in the

Manage Subscription Window: (1) Create Subscription; (2) Get Status; (3) Renew

and (4) Unsubscribe. When the Create Subscription button is selected, a new window

is displayed that allows the user to specify Source Event, Sink Event and Expiry Date

146

Appendix B ~ PS-SWIF API

and then press the Subscribe button to make a subscription. Once the subscription

successfully made, the subscription details, such as Event Source, Event Sink and

Expiry Date are shown in the M anage Subscriptions window. Later the user can

renew or delete the subscription by selecting the subscription and then choose the

appropriate button and inserting the required data.

b l Subscription M anagement Console . B « 1

File

^ Manage Subscnptions o‘ Ef S

Event Source Event Sink Expires O ea te Subscription
Kepler h»tp / /localhost 4802/wspeer/tnanalm age 20 0 9 -1 1 -0 4 T 12 49.32.0002
SequenceProwler kepier 2009-11-04T 12 50 20.0002 &et Stains

Renew

Unsubscribe

Manage Published Services a 0

Kepler Publish New Service
S e q u e n c e P i o v i d e i ■■ 1

i t move Service

Figure B l: PS-SWIF GUI

Li
Target Service http: alqaoutM SW w speei, Kepler

SmK Service

I Expires OS 11 0 9 - l i 4 5 -

Subsciibe

147

APPENDIX C

PS-SWIF WEB SERVICES (WSDL)

C.l Publish Topic Web Service (WSDL)

<?xml version="l.0" encoding="UTF-8" ?>
<wsdl:definitions

targetNamespace="http://swif.cs.cf.ac.uk:4804/wspeer/PublishService"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns : impl="http: //swif .cs.cf.ac.uk:4804/wspeer/PublishService”
xmlns:intf="http://swif.cs.cf.ac.uk:4804/wspeer/PublishService"
xmlns : soapenc="http: //schemas .xmlsoap.org/soap/encoding/"
xmlns:tns2="http://www.wseventing.workflow.com"
xmlns: wsa="http: //schemas .xmlsoap.org/ws/2004/03/addressing"
xmln s:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<! —
WSDL created by Apache Axis version: 1.4
Built on Apr 2 2 , 2006 (06:55:48 PDT)

— >

<wsdl:message name="getPublishedServicesResponse">
<wsdl:part name="getPublishedServicesReturn"

type="tns2:PublishedServices" />
</wsdl:message>

<wsdl:message name="getPublishedServicesRequest" />
<wsdl .‘message name="publishResponse">
<wsdl:part name="publishRetura" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="removeResponse">
<wsdl:part name="removeReturn" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="isPublishedRequest">
<wsdl:part name="serviceName" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="publishRequest">
<wsdl:part name="serviceName" type="soapenc:string" />
<wsdl:part name="user" type="soapenc:string" />
<wsdl:part name="password" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="isPublishedResponse">
<wsdl:part name="isPublishedReturn" type="xsd:boolean" />

</wsdl:message>
<wsdl:message name="removeRequest"

148

http://swif.cs.cf.ac.uk:4804/wspeer/PublishService
http://xml.apache.org/xml-soap
http://swif.cs.cf.ac.uk:4804/wspeer/PublishService
http://www.wseventing.workflow.com
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdl:part name="serviceName" type="soapenc:string" />
<wsdl:part name="user" type="soapenc:string" />
<wsdl:part name*"password" type*"soapenc:string" />

</wsdl:message>
<wsdl:portType name*"PublishService">
<wsdl:operation name*"remove" parameterOrder="serviceName user
password">

<wsdl:input message="impl:removeRequest" name="removeRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/remov
e" />

<wsdl: output message="impl:removeResponse" name*”removeResponse"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/remov
eResponse" />
</wsdl:operation>

<wsdl:operation name="getPublishedServices">
<wsdl: input message="impl :getPublishedServicesRequest"

name* "getPublishedServicesReques t"
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/getPu
blishedServices" />

<wsdl: output message="impl:getPublishedServicesResponse"
name* " getPublishedServicesResponse "
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/getPu
blishedServicesResponse" />
</wsdl:operation>

<wsdl: operation name="isPublished" parameterOrder="serviceName">
<wsdl: input message="impl:isPublishedRequest"

name*" isPublishedRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/isPub
lished" />

<wsdl: output message*"impl: isPublishedResponse"
name*"isPublishedResponse"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/isPub
lishedResponse" />
</wsdl:operation>

<wsdl: operation name*"publish" parameterOrder="serviceName user
password">

<wsdl: input mess age*" impl :publishRequest" name="publishRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/publi
sh" />

<wsdl: output message="impl :publishResponse" name="publishResponse"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/publi
shResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl .'binding name*"PublishServiceSoapBinding"
type*"impl:PublishService">

<wsdlsoap:binding style="rpc"
transport="http: //schemas.xmlsoap. org/soap/http" />

<wsdl:operation name="remove">
<wsdlsoap:operation

soapAct ion* "http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/remov
e" />

<wsdl:input name*"removeRequest">
<wsdlsoap:body

encodings tyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http://swif.cs.cf.ac.uk:4804/wspeer/PublishService"
use="encoded" />
</wsdl:input>

<wsdl .'output name="removeResponse">

149

http://swif.cs.cf.ac.uk:4804/wspeer/PublishService

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdlsoap:body
encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getPublishedServices">
<wsdlsoap:operation

soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/getPu
blishedServices" />

<wsdl:input name="getPublishedServicesRequest">
<wsdlsoap:body

encodings tyle="http: //schemas .xmlsoap.org/soap/encoding/"
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:input>

<wsdl:output name="getPublishedServicesResponse">
<wsdlsoap:body

encodingStyle="http: //schemas .xmlsoap.org/soap/encoding/ "
namespace=”http: //swif. cs. cf. ac. uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="isPublished">
<wsdlsoap:operation

soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/isPub
lished" />

<wsdl: input name="isPublishedRequest">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:input>

<wsdl: output name="isPublishedResponse">
<wsdlsoap:body

encodingStyle="http: //schemas .xmlsoap.org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="publish">
<wsdlsoap:operation

soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/PublishService/publi
sh" />

<wsdl:input name="publishRequest">
<wsdlsoap:body

encodingstyle="http: / /schemas.xmlsoap. org/soap/encoding/"
namespace="http://swif.cs.cf.ac.uk:4804/wspeer/PublishService"
use="encoded" />
</wsdl:input>

<wsdl:output name="publishResponse">
<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http: //swif. cs. cf. ac. uk: 4804/wspeer/PublishService"
use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="PublishServiceService">

150

http://schemas.xmlsoap.org/soap/encoding/
http://swif.cs.cf.ac.uk:4804/wspeer/PublishService
http://schemas.xmlsoap.org/soap/encoding/

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdl:port binding="impl:PublishServiceSoapBinding"
name="PublishService">

<wsdlsoap:address
location="http://swif .cs.cf.ac.uk: 4804/wspeer/PublishService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

C.2 Source Web Service(WSDL)

The following WSDL document represent an example of Source Web Service called
Triana

<?xml version="l.0" encoding="UTF-8" ?>
<wsdl:definitions

targetNamespace="http: //swif .cs.cf.ac.uk: 4 804/wspeer/Triana"
xmlns: apachesoap="http: //xml. apache. org/xml-soap"
xmlns: impl="http: //swif.cs.cf.ac.uk: 4804/wspeer/Triana"
xmlns: intf="http: //swif .cs.cf.ac.uk: 4804/wspeer/Triana"
xmlns: soapenc="http: //schemas .xmlsoap. org/soap/encoding/ "
xmlns: tns2="http: //schemas .xmlsoap. org/ws/2004/08/eventing"
xmlns: wsa="http: //schemas. xmlsoap. org/ws/2004/03/addressing"
xmlns: wsdl="http: //schemas. xmlsoap. org/wsdl/"
xmlns: wsdlsoap="http: //schemas .xmlsoap.org/wsdl/soap/"
xmlns : xsd="http: //www.w3. org/2001/XMLSchema">

<! —
WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

— >

<wsdl:message name="subscribe_TrianaResponse">
<wsdl: part name="subscribe__TrianaReturn" type="tns2: SubscribeResponse"

/>
</wsdl:message>

<wsdl:message name="subscribe_TrianaRequest">
<wsdl:part name="inO" type="tns2:Subscribe" />

</wsdl:message>
<wsdl:portType name="Triana">
<wsdl:operation name="subscribe_Triana" parameterOrder="inO">
<wsdl: input message="impl: subscribe__TrianaRequest"

name="subscribe_TrianaRequest"
wsa: Action="http: //swif. cs . cf. ac .uk: 4804/wspeer/Triana/subscribe__Tri
ana" />

<wsdl :output message="ispl: subscribe_TrianaResponse"
name=" subscribe_TrianaResponse "
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/Triana/subscribe__Tri
anaResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="TrianaSoapBinding" type="impl:Triana">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="subscribe__Triana">

151

http://swif
http://www.w3
http://schemas.xmlsoap.org/soap/http

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdlsoap:operation
soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/Triana/subscribe_Tri
ana" />

<wsdl: input name="subscribe_JTrianaRequest">
<wsdlsoap:body

encodingSty le="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif. cs. cf. ac.uk: 4804/wspeer/Triana" use="encoded"
/>
</wsdl:input>

<wsdl: output name~"subscribe_TrianaResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/ soap/encoding/ "
namespace="http: //swif.cs. cf.ac.uk: 4804/wspeer/Triana” use="encoded"
/ >
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="TrianaService">
<wsdl:port binding="impl :TrianaSoapBinding" name= "Triana">
<wsdlsoap:address

location="http://swif.cs.cf.ac.uk:4804/wspeer/Triana" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

C.3 Publish Information Web Service (WSDL)

<?xml version="l. 0" encoding="UTF-8" ?>
<wsdl:definitions

targetNamespace="http: //swif. cs. cf.ac.uk: 4 804/wspeer /NotifyService"
xmlns: apachesoap-"http: //xml. apache. org/xml-soap"
xmlns: impl="http: //swif.cs .cf.ac.uk:4804/wspeer/NotifyService"
xmlns: int f ="http: //swif .cs.cf.ac.uk: 4804/wspeer /NotifyService"
xmlns: soapenc="http: //schemas .xmlsoap. org/soap/encoding/ "
xmlns: wsa="http: //schemas. xmlsoap. org/ws/2004/03/addressing"
xmlns: wsdl="http: //schemas .xmlsoap. org/wsdl/"
xmlns: wsdl soap= "http: //schemas. xmlsoap.org/wsdl/soap/"
xmlns: xsd="http: //www. w3. org/2001/XMLSchema">

<! —
WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

— >

<wsdl:types>
<schema

targetNamespace="http: //swif. cs. cf.ac.uk: 4804/wspeer/NotifyService"
xmlns="http: //www.w3. org/2001/XMLSchema">

<import namespace-"http://schemas.xmlsoap.org/soap/encoding/" />
<complexType name="ArrayOf__soapenc__string">
<complexContent>
<restriction base*"soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="soapenc:string[]"

/>
</restriction>
</complexContent>
</complexType>
</schema>

152

http://swif.cs.cf.ac.uk:4804/wspeer/Triana
http://www.w3
http://schemas.xmlsoap.org/soap/encoding/

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:types>
<wsdl:message name*"sendNotificationRequest">
<wsdl:part name="sourceId" type="soapenc:string" />
<wsdl:part name*"param" type="soapenc:string" />

</wsdl:message>
<wsdl:message name*"sendNotificationValuesResponse">
<wsdl:part name="sendNotificationValuesReturn" type="soapenc:string"

/>
</wsdl:message>

<wsdl:message name*"sendNotificatioriValuesRequest">
<wsdl:part name="sourceId" type="soapenc:string" />
<wsdl:part name="params" type="impl: ArrayOf__soapenc__string" />

</wsdl:message>
<wsdl:message name*"sendNotificationResponse">
<wsdl:part name="sendNotificationReturn" type="soapenc:string" />

</wsdl:message>
<wsdl:portType name="NotifyService">
<wsdl:operation name="sendNotification" parameter0rder="sourceld
param" >

<wsdl:input message="iinpl:sendNotificationRequest"
n ame="sendNotificationRequest"
wsa:Action="http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
tification" />

<wsdl:output message="impl:sendNotificationResponse"
name="sendNotificationResponse"
wsa: Action*"http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
tificationResponse" />
</wsdl:operation>

<wsdl:operation name="sendNotificationValues" parameter0rder="sourceld
params">

<wsdl:input message="impl:sendNotificationValuesRequest"
name= "sendNo tif ica tionValuesRequest"
wsa: Action="http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
tificationValues" />

<wsdl:output message="iinpl:sendNotificationValuesResponse"
name-" sendNotif icationValuesResponse"
wsa: Action*"http: //swif. cs. cf. ac. uk: 4804/wspeer/NotifyService/sendNo
tificationValuesResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="NotifyServiceSoapBinding"
t ype="impl:NotifyService">

<wsdlsoap:binding style="rpc"
transport="http: //schemas. xmlsoap.org/soap/http" />

<wsdl:operation name="sendNotification">
<wsdlsoap:operation

soapAct ion* "http: //swif .cs.cf.ac.uk: 4804/wspeer/NotifyService/sendNo
tification" />

<wsdl:input name*"sendNotificationRequest">
<wsdlsoap:body

encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace*"http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService"
use*"encoded" />
</wsdl:input>

<wsdl:output name*"sendNotificationResponse">
<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace* "http: //swif .cs.cf.ac.uk: 4804/wspeer/NotifyService"
use="encoded" />

153

http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService/sendNo
http://schemas.xmlsoap.org/soap/encoding/
http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService
http://schemas.xmlsoap.org/soap/encoding/

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="sendNotificationValues">
<wsdlsoap:operation

soapAction*"http: / / swif. cs. cf. ac. uk: 4804/wspeer/NotifyService/sendNo
tificationValues" />

<wsdl: input name="sendNotificationValuesReque3tl,>
<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService"
use="encoded" />
</wsdl:input>

<wsdl:output name="sendNotificationValuesResponse">
<wsdlsoap:body

encodingSt yle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/NotifyService"
use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="NotifyServiceService">
<wsdl :port binding="impl:NotifyServiceSoapBinding"

name="NotifyService">
<wsdlsoap:address

location=»"http: //swif. cs. cf. ac.uk: 4804/wspeer/NotifyService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

C.4 Subscriber Web Service (WSDL)

<?xml version="l.0" encoding="UTF-8" ?>
<wsdldefinitions

targetNamespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscribe
rService" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:imp1="http://swif.cs.cf.ac.uk:4804/wspeer/WseRpcSubscriberServ
ice"
xmlns:intf="http://swif.cs.cf.ac.uk:4804/wspeer/WseRpcSubscriberServ
ice" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns2="http://www.wseventing.workflow.com"
xmlns:tns3-"http://schemas.xmlsoap.org/ws/2004/08/eventing"
xmlns : wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:wsdl-"http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

< ! —

WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

— >

<wsdl:message name="unsubscribeResponse" />
<wsdl:message name="subscribeResponse">
<wsdl:part name="subscribeReturn" type="tns3:SubscribeResponse" />

</wsdl:message>
<wsdl:message name="subscribeRequest">
<wsdl:part name="subscribeRequest" type="tns2:SubscribeRequest" />

154

http://schemas.xmlsoap.org/soap/encoding/
http://swif.cs.cf.ac.uk:4804/wspeer/NotifyService
http://xml.apache.org/xml-soap
http://swif.cs.cf.ac.uk:4804/wspeer/WseRpcSubscriberServ
http://swif.cs.cf.ac.uk:4804/wspeer/WseRpcSubscriberServ
http://schemas.xmlsoap.org/soap/encoding/
http://www.wseventing.workflow.com
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://schemas.xmlsoap.org/ws/2004/03/addressing
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:message>
<wsdl.‘message name="unsubscribeRequest">
<wsdl:part name*"unsubscribeRequest" type="tns2:UnsubscribeRequest" />

</wsdl:message>
<wsdl:message name*"renewResponse">
<wsdl:part name="renewReturn" type="tns3:RenewResponse" />

</wsdl:message>
<wsdl :message name*"getStatusResponse">
<wsdl:part name*"getStatusReturn" type="tns3:GetStatusResponse" />

</wsdl:message>
<wsdl:message name*"getStatusRequest”>
<wsdl:part name*"getStatusRequest" type="tns3:GetStatusRequest" />

</wsdl:message>
<wsdlcmessage name="renewRequest">
<wsdl:part name="renewRequest" type="tns2:RenewRequest" />

</wsdl:message>
<wsdl :portType name="WseRpcSubscriberService">
<wsdl:operation name*"subscribe" parameterOrder="subscribeRequest">
<wsdl:input message*" impl: subscribeRequest" name="subscribeRequest"

wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/subscribe" />

<wsdl: output message="iinpl: subscribeResponse" name="subscribeResponse"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/subscribeResponse" />
</wsdl:operation>

<wsdl:operation name="renew" parameterOrder="renewRequest">
<wsdl: input message*"impl: renewRequest" name="renewRequest"

wsa: Act ion*"http: / /swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/renew" />

<wsdl:output message*"impl:renewResponse" name="renewResponse"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/renewResponse" />
</wsdl:operation>

<wsdl:operation name*"unsubscribe"
parameterOrder="unsubscribeRequest">

<wsdl: input mess age* "impl :unsubscribeRequest"
n ame* " unsubscr ibeReques t"
wsa: Act ion* "http: / /swif .cs.cf.ac.uk: 4 80 4/wspeer/WseRpcSubscriberServ
ice/unsubscribe" />

<wsdl .‘output mess age* "impl :unsubscribeResponse"
name* "unsubscr ibeResponse "
wsa: Action="http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriberServ
ice/unsubscribeResponse" />
</wsdl:operation>

<wsdl:operation name*"getstatus" parameterOrder="getStatusRequest">
<wsdl:input message="inqpl:getStatusRequest" name="getStatusRequest"

wsa: Action="http: //swif. cs. cf. ac. uk: 4804/wspeer/WseRpcSubscriberServ
ice/getStatus" />

<wsdl: output message="impl :getStatusResponse" name="getStatusResponse"
wsa: Act ion*"http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/getStatusResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl .‘binding name*"WseRpcSubscriberServiceSoapBinding"
t ype* " impl: WseRpcSubscr iberService " >

<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name*"subscribe">

155

http://schemas.xmlsoap.org/soap/http

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdlsoap:operation
soapAction="http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriberServ
ice/subscribe" />

<wsdl:input name-"subscribeRequest">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:input>

<wsdl:output names"subscribeResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif. cs. cf. ac. uk: 4 8 04/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="renew">
<wsdlsoap:operation

soapAction="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/renew” />

<wsdl:input name="renewRequest">
<wsdlsoap:body

encodings tyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:input>

<wsdl:output name="renewResponse">
<wsdlsoap:body

encodingStyle="http: //schemas .xmlsoap.org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="unsubscribe">
<wsdlsoap:operation

soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/unsubscribe" />

<wsdl: input name="unsubscribeRequest">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:input>

<wsdl:output name="unsubscribeResponse">
<wsdlsoap:body

encodings tyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getStatus">
<wsdlsoap:operation

soapAct ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServ
ice/getStatus" />

<wsdl:input name="getStatusRequest">
<wsdlsoap:body

encodingStyle="http: //schemas.xmlsoap.org/soap/encoding/"
namespace="http: //swif .cs.cf.ac.uk: 4 804/wspeer /WseRpcSubscriberServi
ce" use="encoded" />

156

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:input>
<wsdl:output name="getStatusResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServi
ce" use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl: service names"WseRpcSubscriberServiceService">
<wsdl :port binding="impl:WseRpcSubscriberServiceSoapBinding"

name="WseRpcSubscriberService">
<wsdlsoap:address

location="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriberServic
e" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

C.5 Subscription Manager Web Service (WSDL)

<?xml version="l.0" encoding="UTF-8" ?>
<wsdl:definitions

targetNamespace-"http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscript
ionManagerService" xmlns : apachesoap="http: //xml. apache. org/xml-soap"
xmlns: impl="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService"
xmlns: intf="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService"
xmlns: soapenc="http: //schemas .xmlsoap.org/soap/encoding/ "
xmlns: tns2="http: //schemas .xmlsoap. org/ws/2004/08/even ting"
xmlns: t ns 3="http: //www.wseven ting, workflow, com"
xmlns: wsa="http: //schemas. xmlsoap. org/ws/2004/03/addressing"
xmlns :wsdl="http: //schemas .xmlsoap.org/wsdl/"
xmlns: wsdlsoap="http: //schemas .xmlsoap.org/wsdl/soap/"
xmlns : xsd="http: //www. w3 .org/2001/XMLSchema">

< ! —
WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

— >

<wsdl .-message name="renewRequest">
<wsdl:part name="renew" type="tns2:Renew" />

</wsdl:message>
<wsdl:message name="i8SubscribedRequest">
<wsdl:part name="sinkService" type="soapenc:string" />
<wsdl:part name="targetService" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="getAllSubscriptionsResponse">
<wsdl :part name="getAllSubscriptionsReturn" type="tns3: Subscriptions"

/>
</wsdl:message>

<wsdl:message name="getStatusResponse">
<wsdl:part name="getStatusReturn" type="tns2:GetStatusResponse" />

</wsdl:message>
<wsdl:message name="getStatusRequest">

157

http://www.wseven

Appendix C ~ PS-SWIF Web Services (WSDL)

<wsdl:part name="statusRequest" type="tns2:GetStatus" />
</wsdl:message>

<wsdlrmessage name="clearAllSubscriptionsRequest" />
<wsdl:message name*"isSubscribedResponse">
<wsdl:part name="isSubscribedReturn" type="xsd:boolean" />

</wsdl:message>
<wsdl:message name*"clearAllSubscriptionsResponse">
<wsdl:part name*"clearAllSubscriptionsReturn" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="renewResponse">
<wsdl:part name="renewReturn" type="tns2:RenewResponse" />

</wsdl:message>
<wsdl rmessage name="unsubscribeRequest">
<wsdl:part name="unsubscribe" type="tns2:Unsubscribe" />

</wsdl:message>
<wsdl rmessage name= "unsubscribeResponse" />
<wsdlrmessage name="getAllSubscriptionsRequest">
<wsdl:part name="user" type="soapenc:string" />
<wsdl:part name="password" type="soapenc:string" />

</wsdl:message>
<wsdlrportType name="WseRpcSubscriptionManagerService">
<wsdl:operation name="renew" parameterOrder="renew">
<wsdl:input message="implrrenewRequest" name="renewRequest"

wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/renew" />

<wsdl:output mess age* "impl:renewResponse" name="renewResponse"
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/renewResponse" />
</wsdl:operation>

<wsdl:operation name="getAllSubscriptions" parameterOrder="user
password">

<wsdl: input message="inpl rgetAllSubscriptionsRequest"
name="getAllSubscriptionsRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/getAllSubscriptions " / >

<wsdl:output message="iinpl:getAllSubscriptionsResponse"
name="getAllSubscriptionsResponse"
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/getAllSubscriptionsResponse" />
</wsdl:operation>

<wsdl:operation name="isSubscribed" parameterOrder="sinkService
targetService">

<wsdl:input message="impl:isSubscribedRequest"
name* " isSubscribedRequest"
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSiibscriptionMa
nagerService/isSubscribed" />

<wsdl:output message*"impl:isSubscribedResponse"
name*"isSubscribedResponse"
wsa: Act ion* "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/isSubscribedResponse" />
</wsdl:operation>

<wsdl:operation name*"unsubscribe" parameterOrder="unsubscribe">
<wsdl: input message="inqpl :unsubscribeRequest"

name* "unsubscr ibeRequest"
wsa: Act ion* "http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriptionMa
nagerService/unsubscribe" />

<wsdl:output message*"impl:unsubscribeResponse"
name*"unsubscribeResponse"

158

Appendix C ~ PS-SWIF Web Services (WSDL)

wsa: Action^ "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/unsubscribeResponse" />
</wsdl:operation>

<wsdl:operation names"getStatus" parameterOrder=”statusRequest">
<wsdl: input messages"impl :getStatusRequest" name="getStatusRequest"

wsa: Act ions "http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriptionMa
nagerService/getStatus" />

<wsdl:output messages"iinpl;getStatusResponse" name="getStatusResponse"
wsa: Action=”http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/getStatusResponse " / >
</wsdl:operation>

<wsdl:operation names"clearAllSubscriptions">
<wsdl:input messages”i]npl:clearAllSubscriptionsRequest"

name="clearAllSubscriptionsRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/clearAllSubscriptions " / >

<wsdl:output messages"iinpl:clearAllSubscriptionsResponse”
name=” clearAllSubscriptionsResponse "
wsa: Act ions" http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/clearAllSubscriptionsResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="WseRpcSubscriptionManagerServiceSoapBinding"
type= •• impl; WseRpcSubscr iptionManagerService " >

<wsdlsoap:binding style="rpc"
transport="http: //schemas.xmlsoap. org/soap/http" />

<wsdl:operation name="renew">
<wsdlsoap:operation

soapAct ion="http: //swif. cs. cf. ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/renew" />

<wsdl:input name="renewRequest">
<wsdlsoap:body

encodingStyles"http: //schemas. xmlsoap. org/soap/encoding/ "
namespaces"http: //swif .cs.cf.ac.uk: 48 04/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:input>

<wsdl:output name="renewResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespaces "http: //swif. cs. cf. ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation names"getAllSubscriptions">
<wsdlsoap:operation

soapActions"http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/getAllSubscriptions" />

<wsdl:input names"getAllSubscriptionsRequest">
<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace* "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" uses"encoded" />
</wsdl:input>

<wsdl:output name="getAllSubscriptionsResponse">
<wsdlsoap:body

encodingStyle="http: //schemas .xmlsoap.org/soap/encoding/ "
namespace= "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:output>

159

http://schemas.xmlsoap.org/soap/encoding/

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:operation>
<wsdl: operation name="isSubscribed">
<wsdlsoap:operation

soapAction="http: I t swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/isSubscribed" />

<wsdl: input name="isSubscribedRequest">
<wsdlsoap:body

encodings tyle="http: //schemas. xmlsoap. org/ soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:input>

<wsdl:output name®"isSubscribedResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace® "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name®"unsubscribe">
<wsdlsoap:operation

soapAction="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/unsubscribe" />

<wsdl:input name="unsubscribeRequest">
<wsdlsoap:body

encodingStyle="http: //schemas .xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:input>

<wsdl:output name="unsubscribeResponse">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name®"getStatus">
<wsdlsoap:operation

soapAction="http: //swif .cs.cf.ac.uk: 4 804/wspeer/WseRpcSubscriptionMa
nagerService/getStatus" />

<wsdl:input name="getStatusRequest">
<wsdlsoap:body

encodingStyle="http: //schemas. xmlsoap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:input>

<wsdl:output name="getStatusResponse">
<wsdlsoap:body

encodings tyle="http: //schemas .xmlsoap.org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:output>
</wsdl:operation>

<wsdl:operation name="clearAllSubscriptions">
<wsdlsoap:operation

soapAct ion® "http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMa
nagerService/clearAllSubscriptions " / >

<wsdl:input name="clearAllSubscriptionsRequest">
<wsdlsoap:body

encodings tyle="http: //schemas. xmlsoap. org/soap/encoding/ "

160

Appendix C ~ PS-SWIF Web Services (WSDL)

namespace="http: / / swif. cs. cf. ac. uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use="encoded" />
</wsdl:input>

<wsdl:output name="clearAllSubscriptionsResponse">
<wsdlsoap:body

encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http: / / swif. cs. cf .ac .uk: 4804/wspeer/WseRpcSubscriptionMan
agerService" use»"encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl: service names"WseRpcSubscriptionManagerServiceService">
<wsdl :port binding®"impl:WseRpcSubscriptionManagerServiceSoapBinding"

name® "WseRpcSubscriptionManagerService " >
<wsdlsoap:address

location="http: //swif .cs.cf.ac.uk: 4804/wspeer/WseRpcSubscriptionMana
gerService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

C.6 Sink Web Service (WSDL)

<?xml version="l.0" encoding="UTF-8" ?>
<wsdl:definitions

targetNamespace-"http: //swif. cs. cf. ac.uk: 4 804/wspeer/SinkService"
xmlns: apachesoap="http: //xml. apache. org/xml-soap"
xmlns: impl="http: //swif. cs.cf.ac.uk: 4804/wspeer/SinkService"
xmlns: intf="http://swif.cs.cf.ac.uk:4804/wspeer/SinkService"
xmlns: soapenc-"http: //schemas .xmlsoap.org/soap/encoding/"
xmlns: wsa=”http: //schemas .xmlsoap. org/ws/2004/03/addressing”
xmlns :wsdl="http: //schemas .xmlsoap.org/wsdl/"
xmlns: wsdl soap= "http: //schemas. xmlsoap. org/wsdl/soap/"
xmlns :xsd= "http: //www. w3 .org/2001/XMLSchema">

< ! —

WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

— >

<wsdl:message name="receiveNotificationResponse">
<wsdl:part name="receiveNotificationReturn" type="soapenc:string" />

</wsdl:message>
<wsdl:message name="receiveNotificationRequest">
<wsdl:part name="sourceId" type="soapenc:string" />
<wsdl:part name®"token" type="soapenc:string" />

</wsdl:message>
<wsdl:portType name="SinkService">
<wsdl:operation name="receiveNotification" parameter0rder="sourceld

token">
<wsdl:input message="impl:receiveNotificationRequest"

name="receiveNotificationRequest"
wsa: Act ion="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService/receiveN
otification" />

<wsdl:output message="inqpl:receiveNotificationResponse"
name="receiveNotificationResponse"
wsa: Action="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService/receiveN
otificationResponse" />

161

http://schemas.xmlsoap.org/soap/encoding/
http://swif.cs.cf.ac.uk:4804/wspeer/SinkService

Appendix C ~ PS-SWIF Web Services (WSDL)

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="SinkServiceSoapBinding" type="impl:SinkService">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="receiveNoti£ication">
<wsdlsoap:operation

soapAction="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService/receiveN
otification" />

<wsdl:input name="receiveNotificationRequest">
<wsdlsoap:body

encodingStyle="http: //schemas. xml soap. org/soap/encoding/ "
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService"
use="encoded" />
</wsdl:input>

<wsdl:output name="receiveNotificationResponse">
<wsdlsoap:body

encodingStyle="ht^>: //schemas. xml soap. org/soap/encoding/ ”
namespace="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService"
use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="SinkServiceService">
<wsdl:port binding="impl:SinkServiceSoapBinding" name="SinkService">
<wsdlsoap:address

location="http: //swif .cs.cf.ac.uk: 4804/wspeer/SinkService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

162

http://schemas.xmlsoap.org/soap/http

APPENDIX D

DATABASE (SQL)

D.l Subscription Database

CREATE TABLE SUBSCRIPTIONS (
SUBSCRIPTION_ID VARCHAR(50) NOT NULL,
SUBSCRIPTION_TS TIMESTAMP NOT NULL,
SOURCE_ID VARCHAR(100) NOT NULL,
EXPIRATION TIMESTAMP,
SUBSCRIBE VARCHAR(4000) NOT NULL,
OWNER VARCHAR(50) NOT NULL,
PRIMARY KEY(SUBSCRIPTION ID));

D.2 Topic Database

CREATE TABLE TOPICS(
TOPIC_NAME VARCHAR(100) NOT NULL,
OWNER VARCHAR(50) NOT NULL,
PRIMARY KEY(TOPIC NAME);

D.3 User Database

CREATE TABLE USERS (
USER_LOGIN VARCHAR(50) NOT NULL,
FULL_NAME VARCHAR(300) NOT NULL,
IS_ADMIN INT NOT NULL,
USER_PASSWORD VARCHAR (50),
PRIMARY KEY(USER LOGIN))

163

Database (SQL)

D.4 SQL Manipulating Statements

The following SQL statements are used to manipulate the
tables above.

INSERT INTO USERS(USER_LOGIN, FULL_NAME, IS_ADMIN,
USER_PASSWORD) VALUES('alqaoud', 'Administrator',
1 ” * * * * * * .

INSERT INTO SUBSCRIPTIONS(SUBSCRIPTION_ID,
SUBSCRIPTION_TS, SOURCE_ID, EXPIRATION, SUBSCRIBE, OWNER)
VALUES (?, ?, ?, ?, ?, ?)";

DELETE FROM SUBSCRIPTIONS WHERE SUBSCRIPTION_ID=?;

DELETE FROM SUBSCRIPTIONS

"UPDATE SUBSCRIPTIONS SET EXPIRATION=? WHERE
SUBSCRIPTION_ID=?"

SELECT EXPIRATION FROM SUBSCRIPTIONS WHERE
SUBSCRIPTION_ID=?";

"SELECT * FROM SUBSCRIPTIONS WHERE SOURCE_ID=?";

"SELECT * FROM SUBSCRIPTIONS";

"SELECT * FROM SUBSCRIPTIONS WHERE EXPIRATION IS NOT NULL
AND EXPIRATION <= ?";

"SELECT * FROM SUBSCRIPTIONS WHERE SUBSCRIPTION ID=?";

164

Index

Index

A
ASAP.. 21
astronomy...2 , 1 2

B
Biodiversity... 34
bioinformatics.. 2 , 1 2
biology..12,38
BPEL4WS..14

c
CFD..43
chemistry..12, 38
CIPRES... 40
climate.. 12
Condor... 13, 14, 43
CORBA..24, 26, 27, 30,31

D
DAG... 13, 23
DAGMan..13, 14
DART...34
DataMiningGrid..34
DDBJ..38
DIPSO..34
Discovery Net.. 44, 50

E
EDGeS..34
EMBL-EBI...XI, 38

F
FAEHIM...34
Fault.. 16, 85

G
GAP... 34, 35,36,73, 129,130
GAT.. 34
GEMLCA...37, 40, 42,45,46, 124, 125

165

Index

GEMSS...34
GENIUS.. 34
GE0600.. 3 3 , 3 4
GEODISE..43, 50
GEON...40
geophysics..2 , 1 2
GGF..27
GNU...42
GRADE...37,40,42,45,46,124,125
GridAnt... 14
Gridbus... 14
GWorkflowDL... 15

I
IBM ..28
ICENI... 13
IWR 46,47, 124,125

J
JMS...25, 30
JXTA 35, 128

K
Karma... 17
Kepler..8 , 9, 10, 15, 32,40, 41,42,45, 46, 49, 50, 61, 74, 90, 91, 92, 93, 94, 95, 97, 102, 103, 109, 110, 111, 113,

114,116, 117,118, 121, 123, 124, 125, 130

M
MATLAB.. 42
MOTEUR.. 44
myExperiment.. 40, 90, 126
myGrid.. 37, 39

N
NATs 35, 128
NCBI..38

o
OGF... 22, 99
OGSA-DAI.. 28
OGSI...27
OMG...26
OMI-BPEL.. 43

P
P2P.. 33, 35
P2PS..35,128
Pegasus 13,42,49, 124, 125
Petri Nets... 15
physics...2, 12
Provenance.. 17
PS-SWIF... 1, IV, 3, 7, 8, 9, 10, 31,46, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

79, 80, 81, 82, 85, 86, 87, 88, 89, 99, 100, 101, 102, 108, 111, 118, 119, 120, 121,122, 123, 124,125, 126,
127, 128, 129, 131, 132, 133

Ptolemy... 41

166

Index

Publish.. 1, IV, XI, 3 ,4 , 5, 8 , 9, 24, 30, 51, 53, 56, 57, 58, 59,64, 65,67,68, 72, 73, 74, 80, 81, 82, 83, 8 6 , 8 8 , 91,
92, 93, 102, 112, 113, 114, 115, 117, 118, 122, 131, 133, 137

Q
QoS...15,16,23,26,27,31

R
Reliability..16
RESURGENCE... 40
ROADNet... 40

s
Scufl... 38, 39,44
Security.. 16
SEEK...40
SIMDAT..47,48, 124, 125
SOAP 21, 24, 43, 53, 70, 71, 75, 76, 77, 78, 108
SODIUM..43, 50
SPA..40
Styx 39, 127
Subscribe...................................1, IV, XI, 3, 4, 5, 8 , 9, 24, 30, 51, 53, 56, 57, 65, 76, 77, 78, 85, 122, 131, 132, 136
Synchronous... 18, 54, 62, 67, 6 8 , 69, 70, 108, 118, 123

T
Tavema 8 , 9, 10, 13, 32, 37, 38, 39, 40, 41, 42, 44, 45, 46,48, 50, 61, 74, 90, 91, 92, 93, 95, 96, 102, 103, 109,

110, 111, 112, 113, 114, 116, 117, 118, 121, 123, 126, 129, 130
TRIACS...34
Triana ..8 ,9 ,10 ,13 ,15 ,17 ,25 ,28 , 32, 33, 34, 35,36, 37 ,40 ,41 ,42 ,45 ,46 , 50, 57, 62, 74,79, 87,90,91, 92, 93,

94, 95, 96, 97,109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 121, 123, 129, 136, 137

u
UDDI.. 35, 36
UML..15, 65
USCL...43

V
Vistrails...15
VisTrails...43, 50
VLE-WFBus.. 37, 40,42,45, 46, 124, 125

w
WDLs... 46
wf- XML.. 20
WFEE..44, 50
WfMC..1,2, 9, 12, 17, 20, 23, 48, 49,55,66, 70, 100, 108, 118, 119, 120, 123, 124
WHIP...34, 40
WS-Address..35
WS-BaseNotification.. 28
WS-BrokeredNotification...28
WSDL... 24, 37, 39,42, 53, 70, 71, 87, 133, 136, 137, 139, 142, 146
WS-Eventing 7, 8, 9, 10, 24, 25,29, 30, 31, 56, 57, 58, 59, 60,61, 70, 72, 73, 74, 75, 77, 78, 79, 85, 88,122, 129
WS-Notification...24, 25, 28, 30, 31, 37, 56, 57, 121, 122
WSPeer...8, 10, 36, 71, 73, 88,101,108,119, 123, 128, 130
WS-ResourceLifetime...31, 56
WS-ResourceProperties...31, 56
WS-RF 28, 32,35, 56, 57, 121

167

Index

WS-Topics...28

X
XML... XII, 20, 21, 25,27, 41,44,48, 53, 71
XPDL.. 21,48
xW FL...44

168

Bibliography

Bibliography

[1] A.Alqaoud, I.Taylor, A.Jones,2010, Scientific Workflow Interoperability
Framework. International Journal of Business Process Integration and
Management. (Scientific Workflows).

[2] WfMC, 1995, Workflow Management Coalition The Workflow Reference
Model

[3] Fox, G. C. and Gannon, D.,2006, Workflow in grid systems. CONCURRENCY
AND COMPUTATION:PRACTICE AND EXPERIENCE. 18(10): p. 1009-
1019.

[4] WfMC, 1996, Workflow Management Coalition Workflow Standard -
Interoperability Abstract Specification,

[5] WfMC, 2000, Workflow Management Coalition Workflow Standard -
Interoperability Internet e-m MIME Binding,

[6] WfMC,2001, Workflow Management Coalition Workflow Standard -
Interoperability Wf-XML Binding.

[7] Harrison, Andrew, October, 2007, Workflow sharing and Interoperability,

[8] Klingenstein, K and Gannon, D, October, 2007, Improving Interoperability,
Sustainability and Platform Convergence in Scientific And Scholarly
Workflow, University of Colorado and Indiana University.

[9] Taylor, Ian, February 2008, Workflow Management Research Group - WFM-
RG,

[10] Toth, Adrian, May 2007, Levels of the Grid Workflow Interoperability,

[11] Livny, Ewa Deelman and Miron, The Pegasus Approach to Building a
Workflow Management System,

[12] Son, H and Li, X,September 2007, PARMI: A Publish/Subscribe Based
Asynchronous RMI Framework fo r Cluster Computings in High Performance
Computing and Communications, Springer Berlin / Heidelberg, p. 19-29.

[13] The SIMDAT Projec/. 2004.[cited: Available from: http://www.simdat.Org/1.

[14] Turner, M, 2007, Aerospace prototype for Interoperability with updated
validation results, SIMDAT, Information Society Technologies

169

http://www.simdat.Org/1

Bibliography

[15] W, Wirch, 2006, Documentation of software design, initial implementation
and underlying technologies for SIMDAT Automotive Demonstrators for
Interoperability Phase, Information Society Technologies

[16] G, Aubert, 2007, SIMDAT Meteorology Application: Evaluation/Validation
report and statement of requirements for project phase III, Information
Society Technologies

[17] F, Zimmermann, 2007, Documentation of advanced implementation of
SIMDAT Pharma Prototypes for Interoperability Phase including evaluation
of underlying technologies, Information Society Technologies

[18] Azam, N, 2007, Consolidated Report on Implementation of Workflow
Management Infrastructure, on Workflow Interoperability and Business
Processes and on Meta-Scheduling Design, Information Society Technologies

[19] Integration, Phoenix, 1995, ModelCenter Graphical Problem Solving
Environment cited; Available from: http://www.phoenix-
int.com/software/phx modelcenter.phpl .

[20] SIMULIA, 2004, FIPER. [cited; Available from:
http://www.simulia.com/about/about.htmll.

[21] MathWorks, 1994, MATLAB - The Language O f Technical Computing, [cited;
Available from: http://www.mathworks.eom/products/matlab/l.

[22] Noesis, 2003, OPTIMUS [cited; Available from:
http://www.noesissolutions.com/index.php?col=/products&doc=optimusl.

[23] Kacsuk, P, 2010, SHaring Interoperable Workflows for large-scale scientific
simulations on Available DCIs (SHIWA), EUROPEAN COMMISSION,
7TH RESEARCH FRAMEWORK PROGRAMME (FP7)

[24] Fahringer, T., Prodan, R., Duan, R., et al.,2005, ASKALON: A grid application
development and computing environment, in 6th International Workshop on
Grid Computing. New York,: IEEE Computer Society Press.

[25] Moteur Workflow Enactor.[cited 2009; Available from: http://www.aci-
a&|r,orfi/l.

[26] Nemeth, C, Dozsa, G, Lovas, R, et al.,2004, The p-grade grid portal, in
Computational Science and Its Applications — ICCSA Springer: Berlin /
Heidelberg, p. 10-19.

[27] Cardiff, University, 1998, The Triana Project, [cited; Available from:
http://www.trianac0de.0rg/l.

[28] Foundation, The National Science, Linked Environments for Atmospheric
Discovery (LEAD). 2003.

170

http://www.phoenix-
http://www.simulia.com/about/about.htmll
http://www.mathworks.eom/products/matlab/l
http://www.noesissolutions.com/index.php?col=/products&doc=optimusl
http://www.aci-
http://www.trianac0de.0rg/l

Bibliography

[29] Koranda, Scott,2007, LIGO Inspiral Analysis Workflow.

[30] Maechling, Philip,2007, SCEC Earthquake Wave Propagation and Source
Validation Workflow.

[31] Sommerville, Ian,2001, Software Engineering. Sixth ed., Essex: Addison-
Wesley Publishers Limited.

[32] Box, D., Cabrera, L. F., Critchley, C., et al., Web Services Eventing (WS-
Eventing). 2004.

[33] Qinn, T, Addis, M, and Ferris, J, Tavema: a tool fo r the composition and
enactment o f bioinformatics workflows, in Bioinformatics. 2004, Oxford Univ
Press.

[34] Foundation, National Science, 2002, The Kepler Project,

[35] Deelman, E., Gannon, D., Shields, M., et al., Workflows and e-Science: An
overview o f workflow system features and capabilities. 2009, Elsevier, p.
528-540.

[36] Yu, J. and Buyya, R., A taxonomy o f workflow management systems fo r grid
computing. 2005, Springer, p. 171-200.

[37] Sakellariou, R. and Zhao, H., A low-cost rescheduling policy fo r efficient
mapping o f workflows on grid systems. 2004, IOS Press, p. 253-262.

[38] Berman, F., Fox, G., and Hey, A. J. G.,2003, Grid computing: making the
global infrastructure a reality: John Wiley & Sons Inc.

[39] DAGMan Application, December 2004],

[40] Deelman, E., Blythe, J., Gil, Y., et al., Pegasus: Mapping scientific workflows
onto the grid. 2004, Springer, p. 11-20.

[41] McGough, S., Young, L., Afzal, A., et al., Workflow enactment in ICENI.
2004. p. 894-900.

[42] Almond, J. and Snelling, D., UNICORE: Secure and uniform access to
distributed resources via the world wide web. 1999.

[43] Von Laszewski, G., Amin, K., and Hategan, M.,2004, Gridant: A client-
controllable grid workflow system, in 37th Annual Hawaii International
Conference on System Science (HICSS'04),. Big Island, Hawaii: IEEE CS
Press,.

[44] Andrews, T., Curbera, F., Dholakia, H., et al., Business process execution
language fo r web services, version 1.1. 2003.

171

Bibliography

[45] Yu, J. and Buyya, R., A novel architecture for realizing grid workflow using
tuple spaces. 2004, IEEE Computer Society, p. 128.

[46] Tannenbaum, T., Wright, D., Miller, K., et al., Condor: a distributed job
scheduler. 2001, MIT Press Cambridge, MA, USA.

[47] Callahan, S., Freire, J., Santos, E., et al.,2006, Managing the evolution o f
dataflows with vistrails. in IEEE Workshop on Workflow and Data Flow for
Scientific Applications. SciFlow.

[48] Petri, C. A., 1962, Kommunikation mit automates. Rhein.-Westfl. Inst. f.
Instrumentelle Mathematik an der Univ. Bonn.

[49] Group., Object Management, Unified Modeling Language (UML).[cited 2009;
Available from: http://www.uml.org/1.

[50] Hoheisel, A,March 9, 2004, User tools and languages fo r graph-based Grid
workflows, in Grid Workflow Workshop, GGF10. Berlin, Germany.

[51] Dinda, P.2002, Online prediction o f the running time o f tasks, in Cluster
Computing. Netherlands: Kluwer Academic Publishers.

[52] Aversano, L, Cimitile, A, Gallucci, P, et al.,2002, FlowManager: a workflow
management system based on Petri nets, in 26th Annual International
Computer Software and Applications Conference. Oxford, England: IEEE CS
Press.

[53] Yahyapour, R., Wieder, P., Pugliese, A., et al., 2004, Grid scheduling use
cases, Paper, Global Grid Forum

[54] Cardoso, J., Sheth, A., Miller, J., et al.,2004, Quality o f service fo r workflows
and web service processes. Web Semantics Journal: Science, Services and
Agents on the World Wide Web,. 1(3): p. 281-308.

[55] Moreau, L, 2009, The Foundations for Provenance on the Web, University of
Southamption

[56] Simmhan, Y. L., Plale, B., Gannon, D., et al.,2006, Performance evaluation o f
the karma provenance framework fo r scientific workflows, in International
Provenance and Annotation Workshop, IP A W. Berlin: Springer.

[57] Swenson, K. D., ASAP/Wf-XML 2.0 Cookbook. 2005.

[58] W3C, 2000, Simple Object Access Protocol (SOAP), DevelopMentor,
International Business Machines Corporation, Lotus Development
Corporation, Microsoft, UserLand Software

172

http://www.uml.org/1

Bibliography

[59] Swenson, K. D., Gilger, M. D., and Predhan, S., Wf-XML 2.0-XML Based
Protocol fo r Run-Time Integration o f Process Engines. 2004.

[60] Marin, M., Norm, R., and Shapiro, R., 2001, Workflow Process Definition
Interface—XML Process Definition Language, Workflow Management
Coalition Workflow Standard

[61] W3C, 2001, Web Services Description Language (WSDL), Ariba,
International Business Machines Corporation, Microsoft

[62] IBM, 2004, Web Services Notification (WS-Notification),

[63] Harrison, A, Taylor, I, Wang, I, et al.,2008, WS-RF Workflow in Triana.
International Journal of High Performance Computing Applications. 22(3): p.
268.

[64] Hapner, M, Burridge, R, Sharma, R, et al., Java message service specification.
2000.

[65] Dec, H. P. and HyperDesk, N. C. R., The common object request broker:
architecture and specification. 1991, Object Management Group

[66] OMG, 2004, Event Service Specification, Object Management Group

[67] BEA, Systems,2004, Notification Service Specification, in.: Object
Management Group.

[68] Gisolfi, D., 2001, Web services architect, Part 3: Is Web Services the
reincarnation o f CORBA.[cited; Available from: URL
http://www.ibm.com/developerworks/librarv/ws-arc3/index.htmn.

[69] Tuecke, S., Czajkowski, K., Foster, I., et al., Open grid services infrastructure
(ogsi) version 1.0. 2003. p. 27.

[70] Czajkowski, K., Ferguson, F, Foster, I, et al., The WS-resource framework
version (WS-RF). 2004, Globus Alliance , IBM

[71] Graham, S. and Niblett, P., Web Services Base Notification (WS-
BaseNotification). Technical Specification. 2004,

[72] Graham, S., Niblett, P., Chappell, D., et al., Web services brokered
notification (ws-brokerednotification). 2004. p. 2006.

[73] Graham, S., Niblett, P., Chappell, D., et al., Web Services Topics (WS-Topics).
2004.

[74] The University of Edinburgh, 2002, The OGSA-DAI Project,

173

http://www.ibm.com/developerworks/librarv/ws-arc3/index.htmn

Bibliography

[75] Bosworth, A., Box, D., Christensen, E., et al., Web Services Addressing (WS-
Addressing). 2003.

[76] Taylor, 1.2006, Triana generations. in Proceedings o f the Second IEEE
International Conference on e-Science and Grid Computing: IEEE.

[77] Gravitational Wave Project GEO600 [cited; Available from:
http://www.geo600.Org/l.

[78] Riposan, A., Taylor, I. J., Rana, O., et al., The TRIACS Analytical Workflows
Platform For Distributed Clinical Decision Support.

[79] Enabling Desktop Grids for e-Science. 2007,[cited 2009; Available from:
http://www.edges-grid.eu/l.

[80] OMII, 2007, Workflows Hosted In Portals.[cited 2008; Available from:
http://www.trianacode.org/whipplugin/l.

[81] Taylor, I., Al-Shakarchi, E., and Beck, S. D., Distributed Audio Retrieval
using Triana (DART). 2006. p. 6-11.

[82] Pahwa, J. S., Brewer, P., Sutton, T., et al.,2006, Biodiversity World: A
problem-solving environment fo r analysing biodiversity patterns, in Sixth
IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06). Singapore IEEE Computer society.

[83] Rana, O, Environment fo r Industrial Design Optimisation (DIPSO).[cited
2008; Available from: http.7/www.wesc.ac.uk/proiects/dipso/index.htmll.

[84] Stankovski, V and Swain, M, 2008, The Data Mining Tools and Services for
Grid Computing Environments.[cited 2008; Available from:
http://www.datamininggrid.Org/1.

[85] Grid Enabled web eNvironment for site Independent User job Submission
[cited; Available from: https://genius.ct.infn.it/].

[86] 1ST, Grid-Enabled Medical Simulation Services, [cited; Available from:
http://www.it.neclab.eu/gemss/index.htmll.

[87] Shaikh, Ali, 2005, Federated Analysis Environment for Heterogeneous
Intelligent Mining, [cited 2007; Available from:
http://users.cs.cf.ac.uk/Ali.Shaikhali/faehim/index.html.

[88] Taylor, I, Wang, I, Shields, M, et al.,2004, Distributed computing with Triana
on the Grid, in concurrency and computation: practice and experience.
Wiley InterScience.

[89] Taylor, I, Shields, M, Wang, I, et al.,2005, Visual grid workflow in Triana.
Journal of Grid Computing. 3(3): p. 153-169.

174

http://www.geo600.Org/l
http://www.edges-grid.eu/l
http://www.trianacode.org/whipplugin/l
http://www.wesc.ac.uk/proiects/dipso/index.htmll
http://www.datamininggrid.Org/1
https://genius.ct.infn.it/
http://www.it.neclab.eu/gemss/index.htmll
http://users.cs.cf.ac.uk/Ali.Shaikhali/faehim/index.html

Bibliography

[90] Taylor, I, Shields, M, Wang, I, et al.,2003, Triana applications within Grid
computing and peer to peer environments. Journal of Grid Computing. 1(2):
p. 199-217.

[91] Taylor, I, Wang, I, Shields, M, et al., Triana User Guide, Cardiff University

[92] Seidel, E, Allen, G, Merzky, A, et al.,2002, GridLab—a grid application
toolkit and testbed. Future Generation Computer Systems. 18(8): p. 1143-
1153.

[93] Ananthakrishnan, R, Bester, J, Czajkowski, K, et al., Grid Resource
Allocation Management [cited 2008; Available from:
http:// dev, globus, or g/wi ki/GRAMl.

[94] Nabrzyski, J, Schopf, J, and Weqlarz, J, eds.,2004, Grid Resource
Management. Kluwer Acadmic Publishers: Norwell, Massachusetts, USA.

[95] Oram, A., Peer-to-peer: Harnessing the power o f disruptive technologies.
2001, O'Reilly & Associates, Inc. Sebastopol, CA, USA.

[96] Andrew, Harrison and Ian, Taylor,2006, Service-oriented middleware for
hybrid environments, in Proceedings o f the 1st international workshop on
Advanced data processing in ubiquitous computing (ADPUC 2006).
Melbourne, Australia: ACM.

[97] Gong, L, 2001, JXTA: A network programming environment,

[98] Arnold, K., Scheifler, R., Waldo, J., et al.,1999, Jini Specification: Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA.

[99] Systinet and IBM, 2000, Universal Description, Discovery and Integration
(UDDI), OASIS

[100] Wang, I, 2006, WSRF and Triana, Cardiff University

[101] Zhao, Z, Booms, S, Belloum, A, et al.,2006, Vle-wfbus: a scientific workflow
bus for multi e-science domains, in Second IEEE International Conference on
e-Science and Grid Computing: IEEE Computer Society.

[102] Kukla, T, Kiss, T, Terstyanszky, G, et al.,2008, A general and scalable
solution fo r heterogeneous workflow invocation and nesting, in The 3rd
Workshop on Workflows in Support o f Large-scale Science (WORKS08).
Austin, TX: IEEE.

[103] OMII, myGrid.[cited 2008; Available from: http://www.mygrid.org.uk/].

[104] The Tavema Project. 2004,[cited 2009; Available from:
http: //tavema. sourcefor ge. net/1.

175

http://www.mygrid.org.uk/

Bibliography

105] European Bioinformatics Institute.[cited 2008; Available from:
http://www.ebi.ac.uk/!.

106] European Molecular Biology Laboratory, [cited 2008; Available from:
http://www.embl.de/].

107] National Center for Biotechnology Information [cited 2008; Available from:
http://www.ncbi.nlm.nih. gov/1.

108] DNA Data Bank of Japan DDBJ. [cited 2009; Available from:
http://www.ddbi.nig.ac.ip/1.

109] Owen, S, 2004, Tavema Workbench Presentaion, University of Manchester

110] The European Bioinformatics Institute, Ebi soaplab Web Services.[cited 2008;
Available from: http://www.ebi.ac.uk/Tools/webservices/soaplab/overview1.

111] myExperiment. 2007,[cited2008; Available from:
http://www.mvexperiment.org/1.

112] The National Science Foundation.[cited 2009; Available from:
http://www.nsf. gov/].

113] RESearch sURGe ENabled by CyberinfrastructurE. 2005,[cited 2009;
Available from: http://ocikbws.uzh.ch/resurgence/1.

114] Science Environment for Ecological Knowledge 2004,[cited 2009; Available
from: http://seek.ecoinformatics.Org/1.

115] Keller, R, Seber, D, Sinha, A, et al., 2004, The Geosciences Network
(GEON): one step towards building cyberinfrastructure for the geosciences
European Geophysical Union

116] Ludaescher, B, Altintas, I, and Moore, R, 2005, Scientific Process Automation
(SPA), San Diego Supercomputer Center: University of California and UC
DAVIS Genome Center

117] ROADNet - Real-Time Observatories, Applications, and Data Management
Network.[cited 2009; Available from: http://roadnet.ucsd.edu/rtd.htmn.

118] Cyberinfrastructure for Phylogenetic Research (CIPRES) project 2003,[cited
2009; Available from: http://www.phvl0.0rg/l.

119] Liu, X, Xiong, Y, and Lee, A,2001, The Ptolemy II framework for visual
languages. Human-Centric Computing Languages and Environments, IEEE
CS International Symposium, p. 50.

120] Kepler User Manual, 2008,

176

http://www.ebi.ac.uk/
http://www.embl.de/
http://www.ncbi.nlm.nih
http://www.ddbi.nig.ac.ip/1
http://www.ebi.ac.uk/Tools/webservices/soaplab/overview1
http://www.mvexperiment.org/1
http://www.nsf
http://ocikbws.uzh.ch/resurgence/1
http://seek.ecoinformatics.Org/1
http://roadnet.ucsd.edu/rtd.htmn
http://www.phvl0.0rg/l

Bibliography

121] The R Project for Statistical Computing.[cited 2008; Available from:
http://www.r-Droiect.org/1.

122] GNU Operating Systme, 1984, Free Software Foundation, Inc

123] Cox, S, Chen, L, and Campobasso, S, 2001, Grid enabled optimisation and
design search fo r Engineering (geodise).[cited 2008; Available from:
http://www.geodise.org/1.

124] OMII-BPEL (Business Process Execution Language).[cited 2009; Available
from: http://www.omii.ac.uk/wiki/BPEL1.

125] Service-Oriented Development In a Unified framework (SODIUM).
2004,[cited 2008; Available from: http://www.ate.gr/sodium/1.

126] Pautasso, C., Heinis, T., and Alonso, G.,2005, Unified Service Composition
Language (USCL) Service Oriented Development In a Unified fraMework,
SODIUM, p. 93.

127] Tsalgatidou, A, Athanasopoulos, G, and Pantazoglou, M,2006, Developing
scientific workflows from heterogeneous services. Special Interest Group on
Management of Data. 35(2): p. 22—28.

128] VisTrails Provenance for a DIGTAL WORLD. 2007,[cited 2009; Available
from: http://www.vistrails.eom/1.

129] VisTrails User's Guide, 2009, University of Utah

130] Rowe, A, Kalaitzopoulos, D, Osmond, M, et al.,2003, The discovery net
system for high throughput bioinformatics. Bioinformatics. 19: p. 225—231.

131] Alberto, F, Maurizio, M, Ivan, P, et al., A Grid infrastructure for managing
workflows in bioinformatics applications,

132] Yu, J. and Buyya, R.,2004, A novel architecture fo r realizing grid workflow
using tuple spaces, in 5th International Workshop on Grid Computing IEEE
Computer Society.

133] Delaitre, T, Kiss, T, and Goyeneche, A,2005, GEMLCA: Running legacy
code applications as grid services. Journal of Grid Computing. 3(1): p. 75-
90.

134] Kertesz, A., Sipos, G., and Kacsuk, P.,2007, Brokering multi-grid workflows
in the P-GRADE portal, in Euro-Par 2006: Parallel Processing Springer:
Berlin / Heidelberg, p. 138-149.

[135] Kacsuk, P and Sipos, G,2005, Multi-grid, multi-user workflows in the P-
GRADE grid portal. Journal of Grid Computing. 3(3): p. 221-238.

177

http://www.r-Droiect.org/1
http://www.geodise.org/1
http://www.omii.ac.uk/wiki/BPEL1
http://www.ate.gr/sodium/1
http://www.vistrails.eom/1

Bibliography

[136] The Virtual laboratory for e-science. 2004,[cited 2008; Available from:
http://www.vl-e.n1/l.

[137] Afsarmanesha, H, Bellemana, R, and Bellouma, A, VLAM-G: A Grid-based
virtual laboratory. 2002, IOS Press, p. 173-181.

[138] Fernando, S. D. I., Creager, D. A., and Simpson, A. C.,2007, Towards build­
time interoperability o f workflow definition languages, in Ninth International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
Timisoara, Romania: IEEE Computer Society.

[139] Ghanem, M and Azam, N, 2006, Consolidated Report on Workflow
Interopreability and Business Processes, Information Society Technologies

[140] Ghanem, M and Azam, N, 2007, Report on Grid infrastructure interoperability
challenges, Information Society Technologies

[141] Ghanem, M and Azam, N, 2007, SIMDAT Getting Started (SIMDAT
Roadmap), Information Society Technologies

[142] InforSense’s KDE (Knowledge Discovery Environment). 1999,[cited;
Available from: Error! Hyperlink reference not valid..

[143] Mandal, N, Deelman, E, and Mehta, G.2007, Integrating existing scientific
workflow systems: the Kepler/Pegasus example, in The 2nd Workshop on
Workflows in Support o f Large-Scale Science. Monterey, California, USA:
ACM.

[144] Globus, 2002, The Replica Location Service (RLS). [cited; Available from:
http://www. isi.edu/-annc/RLS .htmll.

[145] Clarke, I., Sandberg, O., Wiley, B., et al.,2001, Freenet: A distributed
anonymous information storage and retrieval system, p. 46-66.

[146] Kubiatowicz, J., Bindel, D., Chen, Y., et al., Oceanstore: An architecture for
global-scale persistent storage. 2000, ACM. p. 190-201.

[147] W3C, Extensible Markup Language (XML), [cited; Available from:
http://www.w3 .org/XML/1.

[148] Huang, Y and Gannon, D.2006, A flexible and efficient approach to reconcile
different web services-based event notification specifications, in Proceedings
o f the IEEE International Conference on Web Services.
Washington,DC,US A: IEEE Computer Society.

[149] Web Services Axis. 2006,[cited; Available from: http://ws.apache.org/axis/].

[150] Harrison, A, 2006, The WSPeer Project, [cited 2006; Available from:
http://www.wspeer.Org/l.

178

http://www.vl-e.n1/l
http://www
http://www.w3
http://ws.apache.org/axis/
http://www.wspeer.Org/l

Bibliography

151] SunMicrosystems, JavaServer Pages Technology, [cited; Available from:
http://iava.sun.eom/products/isp/l.

152] Alqaoud, A, 2009, Scientific Workflow Interoperability Framework.[died;
Available from: http://swif.cs.cf.ac.uk:8080/l.

153] Williams, A, 2008, A workflow version o f the EMBOSS tutorial, [cited 2008;
Available from: http://www.mvexperiment.org/workflows/1591.

154] Rice, I, Longden, P, and Bleasby, A, 2003, The European Molecular Biology
Open Software Suite (EMBOSS).[died 2008; Available from:
http://emboss.sourceforge.net/what/.].

155] Alqaoud, A, 2009, PS-SWIF Web Services.[died 2009; Available from:
http://swif.cs.cf.ac.uk:4804/wspeer/l.

156] OASIS, 1993, Advancing open standards fo r the information society.[died
2009; Available from: http://www.oasis-open.Org/1.

157] Repici, D, The Comma Separated Value (CSV) File Format [cited 2009;
Available from: http://www.creatiwst.com/Doc/Articles/CSV/CSVQ 1 .html.

158] W3C, 2005, SOAP Message Transmission Optimization Mechanism.[died;
Available from: http://www.w3.org/TR/soap 12-mtom/l.

159] Moreau, L, Plale, B, Miles, S, et al., 2008, The open provenance model,
University of Southampton

160] Provenance Challenge, [cited; Available from:
http://twiki.ipaw.info/bin/view/Challenge/WebHomel.

161] Moreau, L., Freire, J., Futrelle, J., et al.,2008, The open provenance model:
An overview, in Provenance and Annotation o f Data and Processes, Springer:
Berlin,Heidelberg, p. 326.

162] Moreau, L, Ludaescher, B, Altintas, I, et al., Special Issue: The First
Provenance Challenge. 2008. p. 409-418.

163] Pike, R and Ritchie, M, 1999, The Styx® architecture fo r distributed systems.
Bell Labs Technical Journal. 4(2): p. 146-152.

http://iava.sun.eom/products/isp/l
http://swif.cs.cf.ac.uk:8080/l
http://www.mvexperiment.org/workflows/1591
http://emboss.sourceforge.net/what/
http://swif.cs.cf.ac.uk:4804/wspeer/l
http://www.oasis-open.Org/1
http://www.creatiwst.com/Doc/Articles/CSV/CSVQ
http://www.w3.org/TR/soap
http://twiki.ipaw.info/bin/view/Challenge/WebHomel

