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ABSTRACT

The urban transit routing problem (UTRP) is NP-Hard and involves 

devising routes for public transport systems. It is a highly complex 

multiply constrained problem and the evaluation of candidate route sets 

can prove both time consuming and challenging, with many potential 

solutions rejected on the grounds of infeasibility. Due to the problem 

difficulty, metaheuristic algorithms are highly suitable, yet the success 

of such methods depends heavily on: 1) the quality of the chosen rep

resentation, 2) the effectiveness of the initialization procedures and 3) 

the suitability of the chosen neighbourhood moves.

In our research, we focus on these three issues, and concentrate 

on developing a metaheuristic framework for solving the UTRP. Em

bedding simple metaheuristic algorithms (hill-climbing and simulated 

annealing) within this framework, we have beaten previously best pub

lished results for Mandl’s benchmark problem, which is the only gen

erally available data set. Due to the lack of “standard models” for the 

UTRP, and a shortage of benchmark data it is difficult for researchers 

to compare their approaches. Thus we introduce a simplified model 

and implement a data set generation program to produce realistic test 

data sets much larger than Mandl’s problem. Furthermore, some lower 

bounds and necessary constraints of the UTRP are also researched, 

which we use to help validate the quality of our results, particularly
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Abstract iv

those obtained for our new data sets. Finally, a multi-objective opti

mization algorithm is designed to solve our urban transit routing prob

lem in which the operator’s cost is modelled in addition to passenger 

quality of service.
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Chapter 1

INTRODUCTION

1.1 Background

Today, the urban transportation system is a key component of the 

social, economic and physical framework of an urban area. With the 

development of modern cities, and concerns about pollution and the en

vironment, the design of urban transportation systems has become an 

urgent problem. Urban transportation systems can be divided into two 

sub-systems: the public transportation system and the private trans

portation system [103]. Compared with the public transportation sys

tem, the private transportation system has many advantages [73]:

• The road network is much better developed (more nodes, more 

links) than public transport networks. In particular, fewer nodes 

(representing small areas within a city) mean that people using 

the public transport (e.g., buses) usually have to walk more than 

people using cars.

• Public transport passengers usually have to wait for a vehicle at 

the beginning of their trip, and may also have to change vehicles 

part way through their journey, which involves more waiting.

• Travelling by a public transportation system can be rather incon

1
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venient compared to a comfortable trip in a car.

However, despite the common perception that the private car is the 

faster, more comfortable and convenient option, there are many neg

ative factors that are increasingly challenging this view. The growth 

in the number of private cars on our roads has produced more traffic 

congestion, leading to increased travel times within urban areas. Ad

ditionally, more cars produce more air pollution and noise, and lead to 

higher energy consumption and more accidents. The importance of pro

viding good urban public transport systems is increasingly recognized 

throughout the world.

Generally, the public transportation system may include various 

modes of service, with buses, trains and underground or metro services 

being the best known. Good public transport systems can substantially 

reduce the negative effects of the private car network: more people 

can be carried with fewer vehicles, which can reduce fuel consumption, 

traffic congestion, pollution and accidents. In addition, good public 

transport systems can invigorate city centres, eliminating traffic jams 

in pedestrian shopping areas, reducing the need for inner city parking, 

increasing job opportunities and promoting retail sales. Unfortunately 

public transport in the UK and some other countries has suffered under- 

funding for many years. As a consequence, many people are reluctant 

to give up the comfort and privacy of their own vehicles, and they are 

prepared to tolerate traffic congestion and parking difficulties rather 

than use a service they perceive as inconvenient or unreliable. In order 

to attract more people from their cars, firstly good services need to 

be provided and secondly, the public will need to be told about them. 

According to [47] poor information and marketing was partly to blame
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for poor patronage following bus deregulation in the UK in 1984.

There is no doubt that bus services form a very important well- 

established component of a public transportation system. Essential 

features of good customer service include the operation of frequent re

liable services, that minimize waiting and in-vehicle travel times, and 

avoid the need to change vehicles en route where possible. Ideally, a 

truly efficient service will satisfy customers needs, while keeping the 

operator costs in check, such as the total number of buses, bus running 

distances and operation hours [106].

In the UK, it is usually the bus companies that design the precise 

bus routes and schedules for an area (a notable exception is London, 

where Transport for London determines the routes). However, in some 

other parts of the world (for example China) it is customary for local 

government to determine the routes and schedules. Clearly, the main 

goal for a bus company is to maximize its profits. In contrast, local 

authorities will prioritize the needs of the travelling public. Neverthe

less, local transport policies and regulations must also be observed by 

all [103], and a satisfactory service must be provided, otherwise it will 

not be used. Furthermore, local authorities are usually accountable to 

the local community who provide the funding, and may thus find it hard 

to justify maintaining excessively underutilized routes. In addition, all 

bus operators have to work within their budgets, and this may impose 

certain constraints, such as limiting the number of buses available, or 

the number and lengths of bus routes that can be operated. On the 

other hand, local authorities have a responsibility to ensure an accept

able level of customer service, and at the same time limit the negative 

effects of operating buses, e.g. strictly controlling exhaust emissions
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from buses. In some parts of the world it is customary for public tran

sit systems run by the private sector to be subsidized, and even in the 

UK a local authority will occasionally subsidize a service on a non-profit 

making bus route, to ensure a minimum level of service is maintained 

even if demand is fairly low (for example, in some rural areas) [93]. 

Every so often bus routes and schedules will be reviewed. This may be 

initiated by a bus company or local authority. On occasion, the whole 

public transport system will be reviewed in an area and costly alter

ations made, to facilitate the introduction of a new pedestrian precinct, 

a one way system or to make way for trams or “bendy buses” . Most 

of the time, though, adjustments are likely to be relatively minor, to 

accommodate minor changes in levels of demand, or comply with new 

government policies or regulations.

Through our review of transit route and schedule design, it is clear 

that no common methodology is utilized in practice. As far as we know, 

in the early years, route networks and schedules were entirely “hand 

crafted” , and most of the development procedures were highly depen

dent on the transit planners’ experience, judgment and knowledge of 

existing demand patterns, land use and resource constraints [37]. These 

manual methods cannot solve large network problems efficiently. More 

recently, commercial software packages such as VISUM, Emme2/3, 

SATURN (Simulation and Assignment of Traffic to Urban Road Net

works) and Cube Voyager have been developed and widely used in the 

transporting planning industry, mostly as interactive tools for decision 

support and visualization. Indeed, with the emergence of computing 

technology, various heuristic and metaheuristic approaches such as ge

netic algorithms, simulated annealing and tabu search have been de
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veloped to solve urban routing and scheduling problems [73-75], [19], 

[11-13], [89], [20,21], [107], [38] and [39]. Nevertheless, a good scientific 

framework is lacking, and researchers have developed their own (of

ten very specialized) models to solve specific variations of the problem, 

using data that is not generally available. Thus it is very difficult to 

evaluate the effectiveness of many of the approaches, or make compar

isons between them.

1.2 Problem Statement

The problem of designing urban transit routes and schedules, while 

adhering to practical constraints, is often referred to in the literature 

as the urban transit network design problem (UTNDP). The two ma

jor components of the UTNDP are the urban transit routing problem 

(UTRP) and the urban transit scheduling problem (UTSP) [20]. At 

the same time, the UTNDP is an example of a broader class of op

timization problems: vehicle routing problems (VRPs) (introduced in 

Section 2.1).

Generally, the urban transit routing problem (UTRP) involves the 

development of efficient transit routes (e.g., bus routes) on an ex

isting transit network, with predefined pick-up/drop-off points (e.g., 

bus stops). On the other hand, the urban transit scheduling problem 

(UTSP) is charged with assigning the schedules for the passenger car

rying vehicles. In practice, the two phases are usually implemented 

sequentially, with the routes determined in advance of the schedules.

The UTNDP must optimize many criteria in order to efficiently 

meet the needs of passengers, while at the same time minimizing the 

costs to the service provider. From a passenger’s viewpoint, an ideal
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public transport system will provide frequent services and rapid travel 

times between source and destination, with a minimum of transfers 

between vehicles on the way. Operators, on the other hand, aim to 

minimize their costs, yet a low cost option may provide a poor service 

to the customer. Operator costs usually depend on the fleet size, transit 

vehicle size, transit vehicle miles, and vehicle operation hours required 

for a particular route configuration [108]. In addition, there are other 

stake-holders involved, including national and local government as well 

as taxpayers and local business. While many parties will benefit from 

an efficient public transport service, each one will evaluate its service 

from their own perspective.

1.2.1 Urban Transit Routing Problem (UTRP)

As mentioned above, the urban transit routing problem (UTRP) in

volves developing a set of routes for an existing urban transit network, 

following certain constraints. It can be defined as the physical design of 

the UTNDP [69]. In a transit network, adjacent nodes (e.g., bus stops) 

are linked by an arc or edge, and a route will consist of several nodes 

connected by edges to form a path. One or more such routes can be 

combined to form a route set, and when all the routes in a route set are 

superimposed, this will form a route network. A route network should 

contain all the nodes, but may not contain all the edges present in the 

original transit network - i.e., the route network is a subgraph of the 

original transit network. Ideally, the route network subgraph should 

be connected, so that there is a path in the route network connecting 

every node with every other node, in order to satisfy the travel demand. 

Accurate estimates of travel demand are essential, and a good route set
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will ensure that travel requirements with a heavy demand are satisfied, 

with short travel paths and few vehicle transfers. This will probably 

be at the expense of less popular travel locations, which may be less 

well served. Travel demand can be estimated in several ways: for ex

ample, by examining current ticket sales, carrying out a survey on the 

local population, or undertaking a public and private vehicles analy

sis [14]. On the other hand, such predictions are notoriously difficult in 

practice, not least because demand is dynamic and highly sensitive to 

factors such as pricing and quality of service (see Section 1.2.3 for more 

information). In addition to satisfying customer demand, design guide

lines are determined by many additional factors, including the street 

environment in the local area and the transport management policies 

of the local government [33].

In our research we will concentrate on the transit routing problem, 

and adopt the criteria set out by Chakroborty [20] and Yu et al. [10] 

to define an efficient route set for an urban transit network:

1. The entire transit demand is served, that is, the percentage of 

unsatisfied demand is zero;

2. A large percentage of transit demand is served through direct 

connections, that is, the percentage of demand satisfied with zero 

transfers is high;

3. The average travel time per transit user is as low as possible;

4. High network efficiency, i.e. prioritizing the layout of those transit 

routes with the highest demand.

At the same time, real world constraints have to be satisfied. It is 

usual, for example, for planners to set maximum and minimum route
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lengths, to aid bus schedule adherence [108]. In addition, in order 

to simplify the UTRP we will adopt the following constraints in our 

research:

• A pre-defined number of routes in the route set.

• No cycles or backtracks will be allowed in individual routes.

1.2.2 Urban Transit Scheduling Problem (UTSP)

The urban transit scheduling problem (UTSP) aims to develop sched

ules for public vehicles (e.g., buses), to travel along predefined routes. 

More specifically, it involves defining arrival times and departure times 

at each node on each route in the route set. It can also be defined as the 

operational design of the UTNDP [69]. A good schedule will minimize 

the time that a passenger has to wait at each node (bus stop) within 

the operating resource and service constraints. The total waiting time 

accumulated over all passengers has two components [20]:

1. The total initial waiting time of passengers — the sum of the 

waiting times of all passengers at their points of origin;

2. The total transfer waiting time — the sum of the transfer times 

of all transferring passengers.

In addition, the resource and service constraints may include [20]:

• Limited fleet size — only a fixed number of buses are available 

for operating on the different routes.

• Limited bus capacity — each bus has a finite capacity.

• Maximum and minimum stopping time — buses should not stay 

at stops for very short or very long times.
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• Policy headway — on a given route, a minimum frequency level 

needs to be maintained.

• Maximum and minimum transfer time — no passenger should 

have to wait too long for a transfer.

In addition, transfers play a significant role in the transit operations, 

therefore some research has been carried out on the transit route trans

fer coordination problem. Transit route transfer coordination forms 

part of the transit scheduling problem in the daily transit system. Ba

sically it is a function of two decision variables, namely the common 

headway of the connecting vehicles (i.e., the time between two vehi

cles passing the same point travelling in the same direction on a given 

route), and the slack times (bus holding times at the transfer stops) 

added to their schedule to increase the probability of a successful con

nection [27]. An increase in the common headway, for instance will 

result in longer waiting times for non-transfer passengers waiting at 

the stop and higher passengers volumes and consequently longer stop

page time and longer overall travel time. If the common headway is 

decreased, the waiting time times will be reduced but the operator costs 

will increase due to the increase in the operational fleet size. For the 

slack times, an increase in the slack time will increase the probability of 

a successful connection and will minimize the transfer time but at the 

same time will increase the stopping time and the overall travel time 

of the in-vehicle passengers and will also increase the operator’s costs.

1.2.3 Difficulties in Solving the UTNDP

The urban transit network design problem (UTNDP) is a very chal

lenging problem:
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1. Due to the need to search for optimal solutions from a large num

ber of possible solutions, the UTNDP is an NP-hard problem. 

The term “NP-hard” (nondeterministic polynomial-time hard), 

in computational complexity theory, is a class of problems infor

mally “at least as hard as the hardest problems in NP” [45].

2. There are so many variants on the UTNDP, and no commonly 

agreed “standard models”.

3. Constraints of the UTNDP can be difficult to model and satisfy. 

For example, in the transit routing problem, the feasibility of the 

route set (i.e., whether the route network is connected) needs to 

be ensured, which can involve considerable computation.

4. Different parts of the solution are highly interdependent. For 

instance, in the UTRP, the transit routes cannot be evaluated in 

isolation. The performance of a route is dependent on the other 

routes in the route set. In other words, the entire route set needs 

to be evaluated as a whole.

5. Many important tradeoffs among conflicting objectives need to 

be addressed, making the UTNDP an inherently multi-objective 

problem [37]. For example, minimization of operator costs, max

imization of coverage of transit service area and service hours, 

and minimization of the number of transfers, are objectives that 

can conflict with each other, since increasing the transit service 

coverage area or reducing passengers’ transfers will increase the 

operator costs.

6. Accurate data for designing route sets can be difficult to obtain
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- particularly travel demand, as previously mentioned. For this 

reason, designs will be seriously flawed if the data is of poor qual

ity, no matter how good the optimization techniques. In reality, 

the demand is quite different at every hour of the day, and this 

can make the problem enormously more complex [31]. In addi

tion, passengers could become confused and dissatisfied with too 

many changes to travel routes at different times of day.

Ideally one would like to solve the UTNDP in one go, and produce 

a route network and an associated set of vehicle frequencies simulta

neously. In practice, the nature of a route network means that, once 

established it is much more stable and difficult to change than a vehi

cle schedule. As mentioned above, travel demand varies considerably 

at different times of the day, and it is relatively easy to schedule more 

buses at busy times. According to [10], the level of service require

ment is highly sensitive to factors such as passenger flow, weather and 

road conditions, and needs to be adjusted in accordance with the dif

ferent situations. Therefore, the quality of the network design may be 

adversely influenced if transit route network and frequencies are simul

taneously optimized. We take the same view and tackle the UTRP as 

a strategic problem, dealing with averaged demands.

1.3 Research Statement

Through our review of research on the UTNDP, we note that most 

researchers have focussed on specific real world instances, each one 

requiring a highly specialized model to comply with specific local regu

lations and conditions (for example, see [89], [108], [95], [57] and [38]). 

While good solutions to real-world instances are obviously the ultimate
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goal, more generic (often simplified) models are required to gain in

sight into a problem at a scientific level, and to make it possible to 

compare different methodologies for optimization. These models are 

in short supply in the literature. Furthermore, the data used by most 

researchers is not generally available to others. Only one small network 

of 15 nodes (Mandl’s network, see below) seems have been used by a 

few researchers to make comparisons.

For the reasons stated above, we believe that establishing a more 

generic framework for basic research into the UTNDP is timely. We are 

fortunate that a limited number of researchers, such as Mandl [73-75], 

Baaj and Mahmassani [12], Kidwai [64] and Chakroborty [21], have 

already laid the foundations for a more fundamental approach to the 

problem. In our research we concentrate on the UTRP and build on 

the work of these earlier authors. Our main research contributions are 

summarized below:

• A simplified model of the UTRP, building on the work of Mandl 

etc., but applying a different objective function that explicitly 

penalizes the number of times a passenger changes vehicles in 

addition to minimizing the total travel time.

• A basic metaheuristic framework, focussing on four key compo

nents of the UTRP: 1) representation, 2) initialization 3) neigh

borhood moves and 4) feasibility checks. Further, we have imple

mented hill-climbing and simulated annealing within our frame

work, and applying this to our simple model we have beaten some 

previously best published results for Mandl’s 15 node problem, 

using common assessment criteria to compare our results with
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others. Our results have been published in an international jour

nal [36].

• Software for generating new test instances has been built, match

ing user requirements, and using the principle of minimum span

ning trees to ensure connectedness. From this software, we have 

generated a new suite of test problems, of various sizes, with re

alistic properties (informed by our study of some real bus route 

networks). These have been made available to other researchers 

through the OR-library [81].

• We have demonstrated the scalability of our metaheuristic ap

proach using instances from our test suite.

• We have established good lower bounds to make it possible to ef

fectively assess the quality of the solutions obtained by our meta

heuristic approach on our test suite instances.

• Given the ease with which infeasible solutions are generated by 

“random” methods, especially as the problem size increases, we 

have demonstrated that our procedures “scale up” by recording 

the ratio of feasible/infeasible solutions that are generated by our 

methods.

• In addition, some important relationships are investigated, such 

as the number of routes in a route set, in relation to the maximum 

and minimum numbers of nodes in each route.

• Finally, a prototype multi-objective optimization algorithm is im

plemented, in which the operator’s cost and the passenger quality 

of service are both considered.
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We have noted that many key publications in the literature lack 

important detail regarding vital procedures that they rely on in their 

optimization processes. For example, in Chakroborty’s papers [20,21] 

details of his “external procedure” ensuring the feasibility of route sets 

have not been given. In contrast, we will state the precise details of 

all the processes we use in our research, to ensure our experiments are 

repeatable. A further limitation of many previous works is, in our view, 

their reliance on shortest path algorithms to optimize individual routes 

(for example, see [89], [95] and [57]). We believe (like Chakroborty 

[20,21,82]) that it is better to allow a heuristic or metaheuristic method 

to determine the routes, as a shortest path may be inefficient if there 

is low demand between its terminal vertices.

Throughout our research we will evaluate our work against the fol

lowing criteria:

• Solution quality - using common assessment criteria to compare 

our results with previously published results on Mandl’s bench

mark, and also ensuring that the techniques “scale up” by assess

ing results for larger data sets against lower bounds.

• Efficiency - we will record run times, and address the scalability 

issue and the limitations of our metaheuristic approach in Chapter 

6 .

• Robustness - To demonstrate reliability, we will carry out 10 repli

cate runs per experiment, recording average, best and standard 

deviation. We will also ensure that our main routines “scale 

up” by recording % feasible/infeasible route sets generated for 

instances of various sizes.
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The main purpose of our research is to explore and better under

stand the underlying scientific concepts involved in the URTP. While we 

are able to effectively model road networks and bus stop locations etc., 

by examining city centre bus route maps, accurately modelling travel 

demand is more difficult and has not been attempted. Indeed, measur

ing and predicting travel demand is an enormously complex research 

problem in its own right. Temporal variations in demand are important 

in practice, with busy times and slack times at different times of the 

day. Yet, bus routes tend to result from strategic planning, with varia

tions in demand largely catered for by scheduling more or less vehicles 

at different times of the day, or days of the week. Alternatively, differ

ent routes can operate to handle varying demand. Another important 

practical issue is the consideration of the geographical regions in which 

people live, work and shop, etc.. For example, in some areas city plan

ners stipulate that a bus stop must be positioned where local people 

reach it within 10 minutes by walking [93]. Basing travel demand on 

geographical regions is common practice when undertaking surveys of 

the local population.

One aim of our research is to demonstrate that our methods are 

robust, and will produce a route set appropriate to the demand forecast 

that is input - the more accurate the demand estimate, the better the 

customers will be served. Regarding our various test problems, demand 

values are all provided for Mandl’s instance [73], and in the case of 

our generated instances, we use randomized demand from a uniform 

distribution, imposing upper and lower bounds. It is worth mentioning 

that absolute values for demand are not important for our model - it is 

the only the relative values that influence the quality of the solution.
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1.4 Organization

This thesis is divided into six chapters. In the present chapter, we have 

introduced the UTNDP and described some of the difficulties in solv

ing it. We then outlined our research and summarized the motivation 

for the work. Chapter 2 presents a comprehensive literature review of 

previous approaches to solve the UTNDP, such as manual approaches, 

mathematical approaches, and heuristic and metaheuristic methods. 

Furthermore, we put our research in context with some related prob

lems, including various vehicle routing problems. In addition, we in

troduce the software tools widely used today in transportation plan

ning. Chapter 3 presents our simple model of the UTRP and describes 

our data set generation method and our test set of problem instances. 

Moreover, a lower bound is introduced, against which we later eval

uate the results obtained using our metaheuristic approach. Finally, 

necessary constraints for the UTRP are also discussed. In Chapter 

4 we introduce our metaheuristic framework. Hill-climbing and sim

ulated annealing are each tried within the framework and the results 

compared. Finally, our results are evaluated against state-of-the-art al

gorithms from the literature. Chapter 5 introduces an improved route 

set initialization procedure and a simple multi-objective optimization 

algorithm for the UTRP, including two objectives, namely, passengers’ 

costs and operators’ costs. Finally, Chapter 6 summarizes the general 

conclusions from the study and provides recommendations for future 

work.
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1.5 Summary

This chapter has introduced the background and definition of the urban 

transit network design problem (UTNDP), and the difficulties of solving 

it. Furthermore, our research statement has been presented and the 

structure of the thesis has been described.



Chapter 2

LITERATURE REVIEW

In this chapter we first put the UTNDP in context with other vehi

cle routing problems. Next, many approaches used to solve the urban 

transit network design problem (UTNDP) are summarized, focussing 

particularly on the urban transit routing problem (UTRP). In addi

tion, software tools popularly used in transportation planning are also 

introduced. Therefore, the literature review will be carried out under 

six headings:

1. Vehicle routing problems;

2. Manual approaches using service standards and practical guide

lines;

3. Mathematical approaches;

4. Heuristic approaches;

5. Metaheuristic approaches;

6. Commercial software packages in transport planning.

First we survey vehicle routing problems and put the UTNDP in 

context. For the manual approaches, common guidelines adopted in 

public transport planning are reviewed and summarized. Next, we sur

vey key research on mathematical approaches and heuristic approaches

18
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for the UTNDP, and this is followed by an overview of important meta

heuristic techniques that have been applied to the problem, such as 

genetic algorithms, simulated annealing and tabu search. In addition, 

formulations of the UTNDP, objectives and feasible constraints in these 

works are also reviewed. Finally, commercial software packages pop

ularly used in today’s transport planning industry such as VISUM, 

Emme2/3, SATURN and Cube Voyager are briefly introduced.

2.1 Vehicle Routing Problems

The urban transit routing problem is an example of broader class of 

problems called vehicle routing problems (VRPs). However, it is not 

so clearly defined as most other VRPs, and differs insofar as solutions 

to the UTRP tend to involve long-term strategic planning based on es

timated demand, while most other vehicle routing problems are solved 

on a daily basis to satisfy known demands. Routes for buses and trains 

often remain unchanged for decades. Logistics companies, on the other 

hand, may deliver to different customers every day and thus need to 

travel by different routes. Nevertheless, there is some commonality, 

as all vehicle routing problems involve determining a set of routes for 

a fleet of vehicles based at one or more depots for a number of geo

graphically dispersed cities or customers [86]. The main objective of 

“standard” VRPs is to make deliveries to (or pick ups from) a set of 

customers with known demands on minimum-cost vehicle routes origi

nating and terminating at one or more depots. The VRP is NP-hard, 

and many variations exist. Some of these are summarized below [96]:

• The capacitated Vehicle Routing Problem (with or without Time 

Windows): CVRP or CVRPTW. Goods are delivered to a number
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of customers using homogeneous vehicles with limited carrying 

capacity.

• Multiple Depot Vehicle Routing Problem (MDVRP): The vendor 

uses many depots to supply the customers.

• Vehicle Routing Problem with Pickup and Delivery (with or with

out Time Windows) (VRPPD): A number of goods need to be 

moved from certain pickup locations to other delivery locations. 

The goal is to find optimal routes for a fleet of vehicles to visit 

the pick-up and drop-off locations.

• The Dial-a-Ride Problem (DARP) consists of designing vehicle 

routes and schedules for users who specify pick-up and drop-off 

requests between origins and destinations. The aim is to plan a 

set of minimum cost vehicle routes capable of accommodating as 

many users as possible, under a set of constraints.

• Split Delivery Vehicle Routing Problem (SDVRP): Individual cus

tomers may be served by more than one vehicle.

• Arc Routing Problems (ARPs) are a special kind of vehicle rout

ing problem in which the vehicles are constrained to traverse cer

tain arcs, rather than visit certain nodes as in the standard VRP. 

Typically, the arcs represent streets which require some kind of 

treatment or service. Examples include the Chinese Postman 

Problem, the Rural Postman Problem, garbage collection, winter 

gritting and street cleaning.

• Stochastic Vehicle Routing Problem (SVRP): Some values (like 

the number of customers, theirs demands, or travel time) are
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unpredictable.

Over the years, many techniques have been developed to solve vehi

cle routing problems. For example, exact approaches (e.g., Branch and 

Bound [40] and Branch and Cut [15]), heuristics approaches (e.g., these 

can be seen in the work of Clarke and Wright [23], Gillet and Miller [46] 

and Fisher and Jaikumar [41], etc.), metaheuristics approaches such as 

simulated annealing, genetic algorithms and tabu search (e.g., these 

can be seen in the work of Arbelaitz et al. [79], Czech and Czarnas [26], 

Jih and Hsu [60], Tan et al. [63], Toth and Vigo [97] and Amberg et 

al. [5], etc.) and multi-objective approaches (e.g., these can be seen in 

the work of tan et al. [62] and Saadah and Paechter [88], etc.).

In the current research on the VRPs, large sets of benchmark data 

are available for researchers, these can be seen in some websites, such as 

TSPLIB and the OR-Library. However, for the UTNDP, Mandl’s net

work seems the only benchmark instance popularly used by researchers.

The Dial-a-Ride Problem (DARP) has some similarities with the 

UTNDP, insofar as passengers embark at the start of their journey 

and and alight at the end. However, the DARP operates to fulfil the 

precise needs of individual travellers on a day to day basis. Because of 

the unique nature of the UTNDP, specific algorithms designed for other 

VRPs are not generally useful for UTNDP. However, broad classes of 

approaches, such as mathematical, heuristic and metaheuristic methods 

(described above) have been applied equally to the UTNDP and other 

VRPs, and these are introduced in the following sections.
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2.2 Manual Approaches to the UTNDP

For many years transport planners devised reasonable bus route net

works and schedules entirely manually, relying on past experience, fol

lowing practical guidelines and utilizing local knowledge. Regarding 

service patterns and service levels, important practical guidelines in

clude service area and route coverage, route structure and spacing, 

route directness, route length, service period, policy headway and road 

speeds, etc. [80]. A summary of these planning guidelines is presented 

below:

• Service area and route coverage is usually defined by the local 

authorities, and the public transport system should serve major 

employment concentrations, schools and hospitals. Besides, the 

transit route set has to cover areas of high density population [72].

• For route structure and spacing, the transit routes must fit into 

major streets and comply with the land use patterns in the local 

area. On the other hand, the urban development goals of the 

local government need to be met in the design process [104].

• For route directness, usually routes should avoid circuitous rout

ing and should be not be significantly longer than could be achieved 

by car [80].

• The length of the route should be as short as possible to serve their 

markets; excessively long routes should be avoided. Long routes 

require more travel time because of the difficulty in maintaining 

reliable schedules [80].

• For the service period, different countries have different criteria.
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For example, in the UK buses usually operate between 5 a.m. and 

12 p.m. on weekdays and between 7 a.m. and 10 p.m. at week

ends [29]. However, in the USA buses tend to operate between 6 

a.m. and 12 p.m. on weekdays and between 7 a.m. and 7 p.m. 

at weekends [80].

• Policy headway is the minimum frequency level that needs to be 

maintained on a bus route [20].

• For road speeds, they are determined in different areas accord

ing to different situations. For example, in the UK bus speed is 

usually not allowed to exceed 30 mph in urban areas [29], but 

in the USA bus speed is between 10 mph and 12 mph in urban 

areas [80].

• In addition, all transit routes need to be designed and operated 

in a safe manner [7]. The negative effects on the urban environ

ment such as car pollution emission and noise pollution must be 

controlled [51].

Historically, transit planners have done a reasonable job without the 

aid of scientific tools or systematic procedures, just using their experi

ence and professional judgement, while adhering to planning guidelines. 

However, as pointed out in [108], for a really large network it is almost 

impossible to design an efficient transit route network configuration and 

bus schedules relying only on past experience and guidelines: in a large 

urban area the number of bus routes may be over a hundred and the 

number of bus stops in the thousands, for example. In order to over

come this problem, research efforts have increased in recent decades, 

coinciding with developments in information and computer technology.
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2.3 Mathematical Approaches to the UTNDP

In 1980, Scheele [90] dealt with a variation of the UTNDP using math

ematical resources. A nonlinear model was proposed with the objective 

of minimizing the total passenger travel time, including the passenger 

travel in-vehicle time and the transfer time. At the same time, the 

passenger trip assignment was solved simultaneously with setting the 

frequencies. Furth and Wilson [43] in 1982 presented another mathe

matical method for the UTNDP. The objective was to maximize the 

network social benefit, consisting of the passenger’s benefit (reducing 

the passenger’s travel time) and waiting saving. Constraints were im

posed on the fleet size, maximum headway and total budget. The prob

lem was solved through an algorithm using the Kuhn-Tucker conditions 

on a relaxation of a nonlinear program, where the maximum headway 

and fleet size constraints were relaxed. The result was an optimal al

location of buses to routes. In a later study, in 1985 Koutsopoulos et 

al. [53] also proposed a mathematical modelling and resolution method 

for a simplified UNTDP. Passengers waiting time costs, operating costs 

and vehicle crowding costs constituted the objective function to mini

mize.

More recently, in 1995 Constantin and Florian [25] presented a 

model and resolution method for the UTNDP with the goal to min

imize the passengers total expected travel and waiting time under fleet 

size constraints. A nonlinear nonconvex mixed integer programming 

model was formulated. A projected sub-gradient algorithm was then 

used to find optimal bus route frequencies considering the passenger’s 

route choices. In 1998, Bussieck [18] also proposed mathematical mod

els to create routes and frequencies that can more generally be applied
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to the mass transit system. In the first part, the objective consisted 

of maximizing the number of direct passengers under resource-related 

constraints. In the second part, he sought to minimize the operator’s 

costs with respect to a given level of service and quality. Mathematical 

programming methods such as relaxation and branch-and-bound were 

applied in combination with commercial solvers. In a complementary 

manner, Wan and Lo [100] in 2003 studied the problem of modifying 

the structure of an existing transit network. A mixed integer formu

lation was proposed and linearized so it can be solved by commercial 

solvers on small size instances.

Although some mathematical approaches have been used to solved 

the UTNDP, they tend to be limited in scope. The UTNDP is NP- 

hard [108], thus exact methods can be considered only for small in

stances. Further, as a constrained nonlinear optimization problem, 

traditional mathematical methods have difficulty solving the UTNDP 

and have to rely on successive linearizations, which add significantly 

to the computation burden [20]. In addition, mathematical methods 

cannot incorporate some external procedure-based declarations in the 

optimization process [20].

2.4 Heuristic Developments to the UTNDP

Heuristic methods are based upon intelligent search strategies for com

puter problem solving, using several alternative approaches [61]. Heuris

tics are typically used when there is no known exact method, or when 

it is prudent to give up searching for the optimal solution in favour 

of an improvement in run time [9]. As the UTNDP is an NP-hard 

combinatorial problem, heuristic methods seem appropriate for solving
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it.

Despite the enormous practical importance of the UTNDP, very lit

tle research appears to have been published prior to 1979. A few papers 

studied some operational research approaches to very specific instances. 

For example, Lampkin and Saalmans [68] in 1967 proposed an opti

mization model to design a transit network in an attem pt to transport 

a maximum number of passengers, given a fixed travel demand ma

trix. In their approach, they considered trips without transfers first, 

and then assigned frequencies to the generated set of routes in a second 

stage. In 1974, Silmman el al. [67] also presented a two-staged approach 

to minimize the sum of journey times, accumulated over the total de

mand. However, their model was a little more sophisticated than that 

of Lampkin and Saalmans and included transfer time between vehicles 

and incorporated penalties to take account of passengers who could 

not find seats. Firstly, the candidate route set was established through 

several repetitions of a route addition and deletion process. Secondly, 

the frequencies were decided for the route set, constrained by a given 

number of available buses.

In 1979, the pioneering researcher Christoph Mandl [73-75] started 

to tackle the problem in a more generic form, and implemented his 

optimization techniques on a computer. Indeed, his common-sense ac

count of the UTNDP in [73] makes remarkably contemporary reading, 

despite its early publication date. Mandl concentrated on the UTRP, 

and developed a solution in two stages: first, a feasible set of routes 

was generated, and then heuristics were applied to improve the qual

ity of the initial route set. The route generation phase involved first 

computing shortest paths between all pairs of vertices by Dijkstra’s
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algorithm [30] or Floyd’s algorithm [42], and then seeding the route 

set with those shortest paths that contained the most nodes, respect

ing the position of any nodes designated as terminals. Unserved nodes 

were then iteratively incorporated into routes in the most favourable 

way, or new routes created with unserved nodes as route terminals. In 

this first phase, Mandl considered only in-vehicle travel costs when as

sessing route quality. He went on to suggest several heuristic methods 

whereby improvements could be made to an initial route set, and used 

these in his second phase:

• Obtaining new routes by exchanging parts of routes at an inter

section node;

• Including a node that is close to a route, if travel demand between 

this node and the nodes on the route is high;

• Excluding a node from a route that is already served by another 

route, if the travel demand between this node and the other nodes 

on the route is low.

In this second phase waiting costs were considered, in addition to 

in-vehicle travel costs. Waiting times were fixed at constant values, 

according to specified vehicle frequencies.

The above mentioned shortest path algorithms are very useful com

ponents in solving the UTNDP. Dijkstra’s algorithm [30] works by vis

iting vertices in the graph starting with the object’s starting point. It 

then repeatedly examines the closest not-yet-examined vertex, adding 

it to the set of vertices to be examined. It expands outwards from the 

starting point until it reaches the goal. Dijkstra’s algorithm is guaran

teed to find a shortest path from the starting point to the goal, as long
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as none of the edges have a negative cost. Floyd’s algorithm [42] works 

by looking for all non-direct paths between two vertices that have a 

less-expensive total cost than the best way yet found to move between 

said vertices. If such a path is found, it becomes the value against 

which future indirect paths between these vertices are tested. In the 

end, each element of the matrix represents the lowest-cost traversal be

tween the vertices that its row and column represent. According to 

Van Vliet’s [99]: for networks with more than 75 nodes the algorithm 

of Dijkstra is the fastest for computing shortest paths, while for net

works with less than 75 nodes, Floyd’s algorithm performs better. As 

researchers prefer to use methods that scale to solve large problems, 

Dijkstra’s algorithm would appear to be the more suitable for solving 

the UTNDP.

Furthermore, Dijkstra’s shortest path algorithm has also been im

proved by many researchers and specially tailored for transit route net

works. For example, Wang and Li [102] in 2004 and Wang [101] in 2005 

proposed best-routing algorithms by integrating a routine for finding 

the least transfers between two nodes in the network into Dijkstra’s 

shortest path algorithm, in order to find a best path while considering 

the path length and the number of transfers simultaneously.

In 1981, Hasselstrom [52] tried to design a set of optimal bus routes 

and frequencies simultaneously. Firstly he employed a complex two- 

level optimization model to generate routes by assigning desired trips 

onto a network with all possible transit links, then he used certain crite

ria to form routes. A direct model was also used to estimate a demand 

matrix that could provide a service of high quality throughout the area. 

Note that the disadvantage of the models presented in this work was
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that although the bus routes and frequencies were determined simulta

neously, two different optimization problems had to be formulated.

Ceder and Wilson [19] in 1986 and Israeli and Ceder [56] in 1989 

published models for simultaneously solving the transit route design 

and scheduling problems. Appreciating the enormous complexity of 

real-world problems, they took a modular approach in an attempt to 

break down the problem into manageable and interrelated components. 

They considered multiple constraints and multiple objectives. However, 

their models were not implemented and only the simpler steps were 

tested on very small instances. More details of these models are given 

below.

First, the 1986 model [19] focussed on two routines for generating 

and testing candidate route sets: Level I  considered only the passen

ger’s viewpoint, and was aimed at minimizing the total travel time, 

while Level LI considered both passengers’ and operator’s viewpoint, 

and balanced travel time and waiting time with the number of vehi

cles required. Vehicle frequencies and timetables were also set at Level

II. The general idea of the route construction algorithms was to start 

from the terminal nodes having the largest demand and expand the 

routes incrementally by including more nodes. Ceder with Israeli [56] 

in their 1989 paper, introduced a much more complex seven-stage sys

tem. It included several steps to create routes, identify transfers, and 

calculate frequencies. Finally, various objectives such as travel time, 

waiting time, empty space and fleet size were identified as a set of 

multi-objective tradeoff solutions to be presented to a human decision 

maker.

More recently Baaj and Mahmassani [11-13] described an artificial
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intelligence-based solution approach including three major components. 

Firstly, they implemented a heuristic route generation algorithm for the 

route network design. Generally it determined an initial set of skeletons 

and expanded them to form transit routes, which heavily depend on the 

travel demand matrix. In this algorithm, the designer’s knowledge and 

experience were also used to reduce the search space. Secondly, an 

analytic procedure (TRUST) is used to compute an array of network- 

level, route-level, and node-level descriptors, as well as the frequencies 

of buses on all routes needed to maintain load factors under a predefined 

maximum. Thirdly, a route improvement algorithm is used to obtain 

feasible route networks.

Shih and Mahmassani [77,91] also proposed a similar approach to 

that of Baaj, in which an artificial intelligence-based search approach 

guided by expert knowledge was used to solve the UTNDP. The ap

proach consists of four components: a route generation procedure, a 

network evaluation procedure, a transit centre selection procedure and 

a network improvement procedure. Compared with Baaj’s work, Shih’s 

work incorporated three additional service concepts including route co

ordination, variable vehicle size, and a demand responsive service to 

solve the UTNDP, making the method more practical.

2.5 Metaheuristic Approaches to the UTNDP

A metaheuristic is a heuristic method for solving a very general class 

of computational problems by combining user-given procedures (usu

ally heuristics themselves) in the hope of obtaining a more efficient or 

more robust procedure [49]. Some characteristics of metaheuristics are 

summarized as follows [49]:
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• Metaheuristics are strategies that guide the search process.

• Metaheuristic algorithms are usually non-deterministic.

• The basic concepts of metaheuristics permit an abstract level de

scription.

• Metaheuristics are not problem-specific.

• Metaheuristics make use of domain-specific knowledge controlled 

by the upper level strategy.

Generally, metaheuristics encompass and combine constructive meth

ods (e.g., random, heuristic, adaptive, etc.), local search-based methods 

(e.g., tabu search, simulated annealing, iterated local search, etc.) and 

population-based methods (e.g., evolutionary algorithms, ant colony 

optimization, scatter search, etc.) [16]. At the same time, they have 

been most frequently applied to combinatorial optimization problems 

and constraint satisfaction problems [58]. Hence metaheuristic ap

proaches such as genetic algorithms, simulated annealing, tabu search 

and ant colony algorithms have all played important roles in recent 

research on the UTNDP.

2.5.1 Evolutionary Algorithms for the UTNDP

Genetic algorithms are particularly popular, and several researchers 

have used them to solve the UTNDP. Genetic algorithms are search 

algorithms that are based on concepts of natural selection and genet

ics [54]. A genetic algorithm is a local search algorithm, which starts 

with an initial collection of strings (a population) representing possi

ble solutions to the problem in hand. Each string of the population
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is called a chromosome, and has associated with it a value called a 

fitness function. Offspring are created from members of the initial 

and subsequent populations by processes of selection and reproduc

tion, with genetic operators, such as crossover and mutation, ensuring 

that offspring are similar to yet subtly different from their parents. The 

purpose of the reproduction operator is to make more copies of fitter 

(better) individuals in a new population. In the crossover operation, 

a recombination process creates different individuals in the successive 

generation by combining material from two individuals of the previous 

generation [50]. Mutation adds new information in a random way to 

the genetic search process and ultimately helps to avoid getting trapped 

at local optima [50]. An individual position in a chromosome is called 

a gene. The genetic algorithm method differs from most other search 

methods in that it searches among a population of points and works 

with codings of a parameter set, rather than with the parameter values 

themselves [50]. Because of these features, genetic algorithms are being 

used as general purpose optimization algorithms. The basic structure 

of the genetic algorithm is illustrated as follows (see Algorithm 1):

A lgo rithm  1 A Generic Genetic Algorithm (GA)
Generate N  random strings {A is the population size}
Evaluate and store the fitness of each string 
re p e a t

for 2 — 1 to N /2  do
Select a pair of parents at random (The selection probability is 
in direct proportion to the fitness}
Apply crossover with probability pc to produce two offspring 
if no crossover takes place th en

Form two offspring that are exact copies of their parents 
Mutate the two offspring at a rate of pm at each locus 
Evaluate and store the fitness for the two offspring 

Replace the current population with the new population 
u n til stopping condition satisfied
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Generally, the most important characteristic of genetic algorithms 

is the coding of variables that describe the problem efficiently.

In 1998, Pattnaik et al. [89] formulated the UTNDP with fixed tran

sit demand as an optimization problem for minimizing the overall cost, 

composed of the user cost plus the operator cost. The user cost in

cluded components for the in-vehicle time, waiting time and also a 

transfer penalty, and the operator’s cost was determined from the total 

bus running distance. Feasibility constraints consisted of minimum and 

maximum length of routes and bus frequencies, maximum load factor, 

allowable fleet size, etc. In the paper Pattnaik et al. used a genetic 

algorithm to determine the transit route network and associated fre

quencies simultaneously, based on their model. Firstly, they used a 

candidate route set generation algorithm (CRGA) to produce a set of 

candidate routes. The routes selected by the CRGA were heavily influ

enced by the demand matrix, the constraints for routes and the shortest 

path computations (here the Dijakstra’s shortest path algorithm was 

used). Secondly, these candidate routes were listed and labelled. Next, 

a unique binary number was associated with every route in the list, and 

a predetermined number of the routes was then selected, at random, to 

form each chromosome (or string). On the chromosome binary codes 

for the selected routes were placed end-to-end. Sufficient chromosomes 

were generated in this way to make up the initial population. Following 

the generation of the initial population, the objective function of each 

individual was calculated. Next, the genetic operators - reproduction, 

crossover and mutation - were applied to find the best route set as the 

solution.

In 2002, Fusco et al. [44] combined methods developed by Baaj and
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Mahmassani [13] and Pattnaik et al. [89] and proposed their basic ideas 

to solve the UTNDP. Generally, three steps were included:

1. A heuristic algorithm to generate a set of feasible routes; for ex

ample, composed of the the shortest paths between the node pairs 

with demand flows larger than a given minimum value.

2. A genetic algorithm to find a good sub-set of routes with associ

ated frequencies. Each bus route selected by the genetic algorithm 

can be verified according to the impact of the following actions: 

route extension, route shortening, and route expansion including 

other nodes based on some criteria.

3. Final improvement of the network configuration. The suitable 

route modifications are examined in terms of total demand served, 

network effectiveness and efficiency.

Chakroborty [21] in 2002 introduced his approaches based on a ge

netic algorithm to design an (optimal) route network for a transit sys

tem. First of all, his proposed methodology was presented as follow 

(see Algorithm 2):

A lgo rithm  2 Chakroborty’s Proposed Algorithm
Input road network data, travel time data, and demand matrix 
Determine a group of initial route sets using the procedure IRSG 
re p e a t

Evaluate each route set using the evaluation procedure EVAL 
Modify the group of route sets using the procedure MODIFY in 
order to evolve better route sets 

u n til the optimal route sets are obtained

The initial route set generation procedure (IRSG) was used to gen

erate efficient initial route sets. Three steps were included in the IRSG:

• Procedure to select the first node of a route
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• Procedure to select any other node of route

• Termination of route and route set generation

In the procedure for selecting the first node of a route, firstly the 

activity level for each node was calculated; where the activity level refers 

to the number of transit trips culminating in this node or originating 

from it. Then, all nodes were listed in descending order of activity 

levels. Secondly, the user-defined number of nodes were chosen from 

the list to form the initial node set, INS. Finally, the first node of a 

route was obtained by randomly selecting a node from INS using a 

given probability. Once a node was selected it could be removed from 

the INS.

The procedure to select all other nodes of a route (given the first 

node has been chosen), is based on making a random choice from a node 

set called the vicinity node set VNS. Denote the most recent node to be 

added to a route as the previous node, PN. PN will be initialized as the 

first (and only) node in the route. A node can qualify as a vicinity node 

of PN if a single link joins PN to that node, provided that this node has 

not already been included in the route being currently generated. Then, 

based on a given probability, the next node of the route was obtained by 

randomly selecting a node from the VNS. This new node is then itself 

denoted PN, and the process is repeated. This process will iteratively 

add more nodes until one of the following stopping conditions becomes 

true:

1. the number of nodes in the route equals a pre-defined maximum 

number of nodes;

2. the route length (either in travel time or travel distance units)
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reaches a pre-defined maximum route length;

3. the cardinality of the VNS falls to zero.

In the evaluation procedure, EVAL, Chakroborty proposed some cri

teria to evaluate the route set, including the total travel time summed 

over all passengers, the percentage of satisfied demand with no vehi

cle transfers and with one and two transfers needed. Finally in the 

modification procedure, MODIFY, a genetic algorithm was utilized.

In 2003, Chakroborty [20] in his paper systematically introduced 

the urban transit network design problem, and divided the UTNDP 

into two components: the urban transit routing problem, UTRP and 

the urban transit scheduling problem, UTSP. At the same time, the 

definitions, characteristics, assessment criteria and feasible constraints 

of the UTRP and UTSP were described in detail (see details in Chap

ter 1). He also summarized the approaches for solving the UTRP and 

UTSP respectively based on the genetic algorithm in his previous pub

lication [21,82,83]. Finally, he published the results obtained using 

his methods for the Mandl’s network and compared them with other 

researchers’.

In 2002, Bielli et al. [70] also presented a genetic algorithm to solve 

the UTNDP. Their goal was to design the best bus network and associ

ated frequencies satisfying both the customer demand and the require

ments of operators. In their paper, they used a distinct representation 

which explicitly stored the frequencies of buses along each bus route, 

and also an on/off switch to enable or disable the use of that route in 

the corresponding network.

In papers by Tom and Mohan [95] and Agrawal and Mathew [57], 

a binary encoding scheme was used which identified candidate routes
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rather than individual nodes: i.e., a gene represents an entire route 

(similar to Pattnaik et al. [89]). In this way candidate routes can be 

pre-determined and stored in a list, and it is the job of the genetic algo

rithm to select routes from this list to make up a route set. In general, 

their initial candidate route sets were produced using heuristic proce

dures, applying shortest path calculations moderated by user-defined 

guidelines. The genetic operators, mutation and crossover, produced 

new route set variations for selection, giving the population scope to 

improve over time, provided selection was biased towards saving the 

better solutions over the poorer ones. When the entity for encoding is 

an entire route, it is important that similar routes should be identified 

by similar binary codes, so that a simple mutation to a binary code for 

a particular route, for example, will tend to produce a mutated route 

with many nodes in common with its parent. Frequencies were also 

encoded as part of the chromosome in their methods.

2.5.2 Other Metaheuristic Approaches to the UTNDP

Though genetic algorithms seem to predominate in the literature, other 

metaheuristic approaches have been tried by some researchers. In 2004 

and 2006, Zhao and Ubaka [107,109] attempted the optimization of 

large-scale transit route networks. The objectives they used were to 

minimize the transfers and optimize route directness, while maximiz

ing service coverage. For the constraints, the number of bus routes, 

the route lengths and the number of transit stops on individual routes 

were predetermined. For the solution search schemes, in 2004 Zhao and 

Ubaka [109] utilized a hill-climbing algorithm, and in 2006 they [107] 

used a simulated annealing algorithm. These two approaches are out



Section 2.5. Metaheuristic Approaches to the UTNDP 38

lined below.

Hill-climbing

Hill-climbing is a mathematical optimization technique which be

longs to the family of local search. It is relatively simple to implement, 

making it a popular first choice. Although more advanced algorithms 

may give better results, in some situations hill-climbing works just as 

well [87].

Generally, a hill-climbing algorithm begins with one initial solution 

to the problem at hand, usually chosen at random. This initial solution 

is then subjected to a neighbourhood move (mutation), and if the new 

solution is better than the current one, the new solution is kept; oth

erwise, the previous solution is retained. This process is then repeated 

until no neighbourhood move can be found that will improve the solu

tion quality of the current solution, and this solution is returned as the 

result [59]. Hill-climbing are very good in finding local optima. How

ever, difficulties arise when the global optima is different from the local 

optima. Since all the immediate neighbouring points around a local 

optima are worse than it in the performance value, local search can not 

proceed once trapped in a local optima point. Hence it is necessary to 

find some mechanism that can help us escape the trap of local optima.

Sim ulated Annealing

In contrast to hill-climbing, simulated annealing has the capability 

to escape local optima. The name of simulated annealing origins from 

the simulation of annealing process of heated solids. In simulated an

nealing [92], the concept of “temperature” is added. This is a global 

numerical quantity which gradually decreases over time. At each step 

of the algorithm, a neighbourhood move is used to generate a new so
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lution. The solution quality of the new result is then compared with 

the previous solution; if it is better, the new solution is kept and the 

old one discarded, in the same way as in hill-climbing. Otherwise, the 

algorithm makes a decision whether to keep or discard the new solution 

based on temperature and probability. If the temperature is high, as 

it is initially, even changes that cause significant decreases in solution 

quality may be kept and used as the basis for the next round of the 

algorithm, but as temperature decreases, the algorithm becomes more 

and more inclined to only accept improving changes. Finally, the tem

perature reaches zero and the system “freezes” ; whatever configuration 

it is in at that point becomes the solution. As can be seen, simulated 

annealing consists of:

1. An initial value for the temperature T ;

2. a cooling function (such as T = Xa, 0 < a < 1);

3. a predefined number of iterations to be performed at each tem

perature;

4. a stopping criterion to terminate the algorithm.

The basic structure of simulated annealing will be introduced in Section 

4.2.

In addition to the work of Zhao and Ubaka [107], in 2006, Fan 

and Machemehl [38] also used a simulated annealing algorithm to solve 

their UTNDP. Similar to the work of Pattnaik et al. [89], they firstly 

generated candidate routes by finding all shortest paths for each node 

pair using Dijkstra’s shortest path algorithm and Yen’s k-shortest path 

algorithm [105], and checking them against the constraints, e.g. the
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minimum and maximum permitted route length. Then all candidate 

routes were kept and labelled. Finally the simulated annealing algo

rithm was implemented to find the best route set from these candidate 

routes. On the other hand, in the paper it was claimed that the cost of 

unsatisfied demand is included in an objective function for the first time 

also including the sum of user cost and operator cost for the UTNDP. 

The user costs consisted of four components, including walking cost, 

waiting cost, transfer cost, and in-vehicle travel cost. The operator 

costs referred to the cost of operating the required buses. At the same 

time, some feasibility constraints such as the headway, load factor con

straints, fleet size, trip length constraints, maximum number of routes 

constraint, and maximum allowed unsatisfied demand also needed to 

be satisfied in their model.

T abu Search

A lgorithm  3 Tabu Search Algorithm [6]
Set k = 1 and generate initial solution s 
rep ea t

Identify N(s) (neighborhood set of solution s )
Identify T(s, k) (tabu set of solution s)
Identify A(s, k ) (aspirant set of solution s )
Choose the best solution s* from N (s,k ) = {N (s) - T (s ,k )}  + 
A(s, k)
Memorize 5* if it improves the previous best known solution 
s = s* 
k =  k +  1 

un til a stopping condition is satisfied

In 1986, Glover [48] proposed a new approach, which he called tabu 

search, to allow local search methods to overcome local optima. The 

general ingredients of tabu search include [34]:

• A neighborhood is constructed to identify adjacent solutions that 

can be reached from the current solution.
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• A tabu list records forbidden moves, which are referred to as tabu 

moves.

• Tabu restrictions are subject to an important exception. When a 

tabu move has a sufficiently attractive evaluation where it would 

result in a solution better than any visited so far, then its tabu 

classification may be overridden. A condition that allows such an 

override to occur is called an aspiration criterion .

The basic structure of tabu search is shown in Algorithm 3. Re

cently, in 2008, Fan and Machemehl [39] also implemented a tabu search 

algorithm to solve their UTNDP.

Ant Colony Algorithm

Ant colony optimization, ACO, introduced by Dorigo [32] in 1992, is 

a probabilistic technique for solving computational problems which can 

be reduced to finding good paths through graphs. The principles of this 

algorithm can be illustrated by examining the food searching process of 

an ant colony. Along their way from the food source to the nest, ants 

communicate with each other with pheromone (a chemical substance). 

As the ants move, a certain amount of pheromone is deposited on the 

ground along the path they follow. Then the ants determine their 

movements by judging the density of the chemical substance on a path. 

The process can be described as loop of positive information feedback, 

in which the more ants that follow a given trail, the more pheromone 

is deposited on that trail, and the larger the probability that this trail 

will be followed by other ants.

Some researchers have used this algorithm to solve the UTRP (e.g. 

the work of Yu et al. [10]). In the paper by Yu et al., firstly they 

proposed some criteria to define an efficient transit network, such as
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reachability, low transfer rate, short travel time, and high network ef

ficiency. Secondly, both the length of the route and the corresponding 

travel demand were taken into account as objectives, i.e. minimum 

transfer rate and maximum travel demand per length served. Finally 

their ant colony optimization procedures were introduced.

2.5.3 Limitations and Gaps in Previous Research

From the above literature review, it is clear that most heuristic and 

metaheuristic approaches rely very heavily on the use of standard short

est path algorithms to generate individual candidate routes. Most 

methods then make selections from this initial pool of shortest paths, 

to build their route sets, perhaps iteratively making some minor adjust

ments to some of the routes, to improve the overall solution or to ensure 

connectivity of the route network. We are not convinced, however, that 

building route sets from pre-computed shortest paths produces the best 

route sets in practice, thus we do not use this technique in our work. 

(Indeed we have beaten some best published results in this way). De

pending on the pattern of travel demand, we believe that longer travel 

paths may be appropriate between some sources and destinations where 

travel demand is low, in the interests of efficiency. It is the quality of 

the route set as a whole that is important, rather than that of the 

individual routes.

Another problem is that many papers have not fully described their 

methodology for representation, initialization or neighbourhood moves. 

In particular, authors have skated over the important issue of ensuring 

route set feasibility. Chakroborty’s [21], for example, simply refers to an 

“external procedure” for ensuring feasibility, without giving any details.
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In our work we describe all our routines and data structures in detail, 

to ensure that our experiments are repeatable. Furthermore, we take 

particular care to make sure that route set feasibility is achieved with 

reasonable computation costs.

A lack of standard (simplified) models for the UTRP, is anther weak

ness in current literature. Fundamental research on such models is 

essential to gain a proper scientific understanding of the problem. To 

date, most work has and focussed on particular urban areas with unique 

properties. Although some excellent ideas have been put forward by 

various researchers, it is difficult to properly assess most of this work, 

or compare one approach with another. An absence of benchmark data 

is a related problem. The only data set used by several authors for the 

UTNDP is Mandl’s 15 node network, which can be seen in the work of 

Mandl [73-75], Baaj and Mahmassani [12], Shih and Mahmassani [91], 

Kidwai [64], Chakroborty [20,21] and Zhao and Ubaka [107,109]. We 

initially evaluate our model and metaheuristic approach using Mandl’s 

data, and demonstrate its effectiveness. Furthermore, we create new 

larger instances and make them available to other researchers (from the 

OR-library), developing good lower bound solutions to help researchers 

assess the quality of results they obtain on these new instances.

Finally, little practical work has been done on the potentially very 

fruitful area of multi-objective optimization for the UTRP. As pre

viously discussed, Ceder and Wilson [19] and Israeli and Ceder [56] 

developed sophisticated models involving multiple objectives, however 

their routines were not implemented. Chapter 5 of this thesis covers 

our prototype multi-objective approach. This is a working model that 

can form a basis for further work.
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2.6 Commercial Software Packages of the Transport Planning

In the last three decades, with the development of computer-aided tech

niques, various commercial software packages have been marketed and 

used in the transport planning industry for decision support. These 

tools are aimed broadly at all aspects of transport: cars, roads, traffic 

flows, traffic light positioning etc., and include such tools as VISUM, 

Emme2/3, SATURN and Cube Voyager.

First of all, these software tools allow GIS to be integrated into them 

in order to display the structure of the road network. GIS stands for 

Geographical Information System (e.g. Maplnfo, Arclnfo), which can 

provide a user friendly environment and help the user manage, analyze 

and display geographical information, by connecting database tables 

with geographical objects [17]. In the field of transportation GIS, for 

example is used to build and maintain road databases or determine the 

accessibility of transit stops. Since standard GIS functionality does not 

cover specific transport aspects, transport planners all over the world 

are more or less successfully trying to adapt their GIS according to 

their planning requirements [71].

VISUM is a comprehensive, flexible software system for transporta

tion planning, travel demand modelling and network data management. 

It is used on all continents for metropolitan, regional, statewide and na

tional planning applications [76]. It also integrates all relevant modes of 

transportation (i.e., car, truck, bus, train, pedestrians and cyclists) into 

one consistent network model [76]. Generally, VISUM has a graphical 

user interface (GUI) which makes it easy to learn and relatively sim

ple to use. For example, the user can simply mark the two desired 

terminals for a transit route by a mouse click. At the same time, VI-
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SUM is able to merge GIS-data and transportation data into a common 

database. In addition, it also provides a COM interface based on MS 

Windows technology and can be integrated with other COM-compliant 

Windows products, such as MS Office and ArcGIS. Users can program 

applications using Python, Visual Basic (VBA, VBS, VB) or other pro

gramming languages (C, C++) [76].

In VISUM, methods to generate possible routes incorporate an ob

jective function which minimizes the number of transfers. Using a set 

of predefined terminals for each route it generates and evaluates a set 

of possible routes for the planner. At the same time, the algorithm is 

based on a transit demand matrix and a link network which gives po

tential connections for a route [71]. On the other hand, it also provides 

methods to optimize the timetable, and minimize the transfer waiting 

time of passengers in a route network with a fixed headway. Based on 

the results of a public transport assignment, a genetic algorithm de

velops and evaluates “populations” of possible solutions by varying the 

departure time [71].

Emme2/3 is the powerful industry-standard travel demand forecast

ing software tool [94]. Emme2/3 is a versatile, professional toolkit with 

which planners can build their own planning models. At the same time, 

it provides an extensible, customizable, automated framework for de

veloping transportation models, performing analysis, visualizing data 

and generating reports [94].

SATURN is the Simulation and Assignment of Traffic to Urban 

Road Networks, which is mainly used in designing highway transporta

tion systems [8]. It has been continuously developed since 1976 by 

the Institute for Transport Studies, Leeds University. Its features in-
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elude [8]:

• Combined simulation and assignment for detailed representation 

of traffic behavior.

• Interactive network building and editing.

• Comprehensive graphical display and analysis options.

• Advanced matrix manipulation facilities.

Cube Voyager is designed to forecast personal travel and provides 

an open and user-friendly framework for modelling a wide variety of 

planning policies and improvements at the urban, regional and long

distance level, at the same time, it also provides a transit path-building 

and assignment function for highway design [22].

In addition, some researchers have also developed some auxiliary 

software packages to help them design transportation systems. For 

example, Zhao and Gan [108] in 2003 implemented their methodology 

of optimization of a transit network to minimize transfers in a prototype 

GIS based program called OPTNet (OPTimization Package for transit 

Network).

In general, the above commercial software tools used in real trans

port planning are efficient and useful. However, they are all limited in 

their capabilities, and are used primarily for visualization, simulation 

and decision support. None is able to automate the complete route set 

optimization procedure, which is the aim of our present research.
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2.7 Summary

In this chapter, first vehicle routing problems have been simply intro

duced. Then we have summarized the guidelines and rules for designing 

real route networks for the UTRP, noting that different counties or areas 

have different requirements for route network design. This is followed 

by a review of the literature covering the various techniques for solv

ing the UTRP, including manual methods, mathematical approaches, 

and heuristic and metaheuristic algorithms. Throughout our review we 

have noticed a lack of generic models for the UTRP and an absence of 

benchmark data, making it very difficult to make useful comparisons 

between the different approaches published by researchers in the field. 

Finally, we have presented a brief review on some current software tools 

used for transport planning. According to our findings, current com

mercial software, where applicable to urban transit routing, is used for 

decision support, with only limited optimization functionality. For ex

ample, it may be used to find a shortest path between a source and a 

destination node, or given a set of terminals, it may be used to gen

erate possible routes that minimize the number of transfers. On the 

other hand, some tools provide sophisticated simulation capability and 

are able to model complete transport systems with cars, buses, trucks, 

bicycles, and pedestrians. Other tools provide modelling and analysis 

capability, and some can be used to predict travel demand.



Chapter 3

RESEARCH FOUNDATIONS 

FOR THE UTRP

This chapter introduces our simplified model of the UTRP (published 

in [35]) and our data set generation method, which can produce random 

transit networks based on user-supplied parameters and constraints. 

We also define a lower bound for the urban transit routing problem, 

which is useful for assessing the quality of the route sets produced by our 

metaheuristic algorithms. Finally, we discuss setting some constraints, 

such as the number of routes and the maximum and minimum numbers 

of nodes in each route.

3.1 Our Simple Model of the UTRP

Given the practical importance of the UTRP, it is perhaps rather sur

prising that so little work has been done on extracting generic features, 

formulating simplified models and devising benchmark data sets, to fa

cilitate comparative studies in order to identify which algorithms work 

best. Perhaps the lack of fundamental research can be explained by the 

enormous complexity of the UTRP. It may be difficult for researchers to 

agree which aspects of the problem are most important, and thus decide

48
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which of these should extracted as “generic” to formulate a simplified 

model. Nevertheless, we attempt to do exactly this for the UTRP as 

part of our research.

First of all, different models of the UTRP have been characterized 

by different optimization criteria and special constraints. A set of cri

teria generally accepted by most researchers is outlined in [20]; these 

were discussed in Chapter 1 of this thesis, along with some basic real 

world constraints. On the other hand, the following evaluation param

eters have been adopted to assess the quality of route sets by many 

researchers (e.g. Mandl [74], Baaj and Mahmassani [12], Kidwai [64], 

Chakroborty and Dwivedi [21], etc.):

do - The percentage of demand satisfied without any transfers.

d\ - The percentage of demand satisfied with one transfer.

c?2 - The percentage of demand satisfied with two transfers.

dun - The percentage of demand unsatisfied.

A T T  - Average travel time in minutes per transit user (mpu).

We also use these five parameters to assess the quality of the final 

results produced by our methods, to make it possible to compare our 

route sets with those produced by others. However, please note that 

we do not use these five measures directly in our objective function. 

Instead we use a weighted combination of travel times and transfers, as 

explained below.

For any given route set we can create a corresponding route network, 

simply by fusing together all routes in the route set. For example, in
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the Figure 3.1, the left-hand graph is a transit network, while the right- 

hand graph represents a route network.

F igu re  3.1. Transit Network and Route Network

A particular route network will differ from the original transit net

work from which it is derived, provided some links present in the transit 

network are absent from the route network. As a consequence, shortest 

path distances for travellers between the various node pairs will need to 

be recalculated for each new route set that is evaluated, using a distance 

or time matrix specific to that route network. We will assume that each 

traveller chooses the shortest path (in the route network) from source 

to destination node, without regard to the number of transfers. Wait

ing times are not included in our shortest path calculation. Instead 

transfers are dealt with separately in our objective function.

Our objective function is a weighted sum of two components: the 

total travel distance or time accumulated over all passengers, and the 

total number of transfers for the entire demand. Below, we present the 

key features of our simple model (introduced in [35]):

1. To represent the basic problem information we need:

• An undirected graph, G (V ,A ), consisting of N  vertices (or 

nodes), V  =  {^1 ,^ 2 , . . . ,  Ujv}, and m  arcs, A — {ai, a2 , . . . ,  am}. 

This will store the transit network.
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• A demand matrix, D , where =  travel demand between 

nodes i and j  (with du=0).

• Routes in the current route set, stored as lists.

• A cost matrix, C, where Cy =  the travel cost (i.e., distance 

or time) between nodes i and j ,  where direct links exist in 

the current route network. (Note: travel cost is recorded as 

+ 0 0  between nodes that are not directly connected.)

2. We define the simple objective function:

N  N

M inim ize  : Z = A dijPij +  B  <Ujtij (3.1.1)
i , j = 1 i , j = 1

where:

P i j  is length of the shortest path between i and j  for the current 

route network (calculated using Dijkstra’s algorithm and the cost 

matrix, C);

U j  is the minimum number of transfers required to traverse the 

shortest path for the current route set (obtained from the current 

routes and the cost matrix);

A  and B  are constants used to weight the two components of 

the objective function. (Please note that A  and B  are chosen 

to ensure the two parts of the objective function are of similar 

magnitude. More details are given in Chapter 4)

3. The objective function is subject to the following constraints:

• each route in a given route set is free of cycles and backtracks. 

This is easily checked when generating or modifying a route,
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by ensuring that there are no repeated nodes in the route.

• the route set is connected. The connectivity of the route set 

is checked as part of the Feasibility Check Procedure (see 

details in Section 4.1.3).

• there are exactly r routes in the route set to simplify the 

problem (assume r  is set by the planner or bus company).

• the number of nodes in every route must be greater than 

one, and must not exceed a planner-defined maximum value, 

M A X .

3.2 Data Set Generation Method (DSGM)

From the literature review on the urban transit routing problem (see 

Chapter 2), we saw that much previous work concentrates on specific 

real world problems, which are not in the public domain. Nevertheless, 

research workers need suitable data sets on which to test their algo

rithms and compare their results with those produced by competing 

approaches, and Mandl’s 15 nodes network [73] would appear to be the 

only transit network instance readily available to researchers.

To meet the needs of our research programme, we have designed 

and implemented a data set generation method (DSGM) that will pro

duce realistic transit networks, randomly positioning a given number 

of nodes and links within a rectangular framework. Our software will 

ensure that each transit network it produces is connected, and in addi

tion it will produce demand values (within a given range) between each 

pair of nodes. Finally, both demand and distance or time matrices will 

be stored in a file for further use. In the next section, the principles of
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our data set generation method will be introduced.

3.2.1 Basic Principles of Data Set Generation

Our overall aim is to produce realistic transit networks, according to 

user defined parameters. First of all, we constrain the transit network 

within the boundaries of an enclosing rectangle, and give the user con

trol of its size, through inputs specifying the lengths of its two sides. 

At the same time, other information such as the total number of nodes 

(bus stops) in the transit network and the total number of transit links 

connecting the various nodes, also need to be defined by the user. The 

number of nodes and links gives the user control over the size and the 

complexity of the network, leaving the software to decide exactly where 

the nodes and links will be placed within the enclosing rectangle. Sim

ilarly, the general level of demand is determined by the user, but the 

actual demand values between each pair of nodes is randomly generated 

by our software. The user will supply an upper and a lower bound (i.e., 

a demand range), and this range will apply to every node pair in the 

network. The user may choose this range according to the scale of the 

transit network or the real situation in some areas.

We will assume that our transit networks needs to be connected;

i.e., that at least one path will exist between every pair of nodes in 

the transit network, so that each part of the network is reachable from 

any given starting point. However, in our method the nodes and links 

are randomly generated, and it is not possible to ensure connectedness 

without introducing a specific mechanism to make this happen. Our 

method of choice is to construct a minimum spanning tree (MST), 

according to the Euclidean distances between each pair of nodes. We
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construct our MST immediately following the generation of the nodes. 

It is then an easy matter to add additional links in a random fashion, to 

complete a transit network according to user determined parameters. 

(Note that the weight between each vertex pair in a transit network 

can represent either the distance or the travel time between each node 

pair.)

There are two popular algorithms used to obtain an MST, namely, 

Kruskal’s algorithm [65] and Prim’s algorithm [85]. In our DSGM, we 

choose Prim’s algorithm [85] to generate the minimum spanning tree. 

The reason is that the efficiency of Prim’s algorithm is not directly 

dependent on the total number of links in the network, thus it should 

be more efficient for the large networks of the type we need for testing 

our algorithms.

According to the property of a minimum spanning tree, if there 

are N  nodes in the transit network, the total number of links is iV — 1. 

However, to simulate realistic transit networks, we need more links than 

this. Furthermore, additional links should be added sympathetically, 

so that the network retains a sensible appearance. In our method the 

concrete steps of each adding process are shown as follows:

1. A node is selected at random from the network of the minimum 

spanning tree;

2. The shortest of all the links between this node and any other 

nodes, not including the links already in the minimum spanning 

tree network, is selected;

3. Add this shortest link into the network.

Through repeating the above steps, the number of extra links re-
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quired can be added to form a simulated transit network. Therefore, 

our DSGM can generate a range of realistic transit networks, with re

lated demand, according to user-supplied parameters. In conclusion, 

the data set generation method can be summarized in the pseudocode 

presented in Algorithm 4:

Algorithm  4 Data Set Generation Method
Input Parameters: X, Y, Min-demand, Max-demand, N and
E L I N K S
Initialize a rectangle based on the X and Y values 
Generate and distribute N nodes in the rectangle at random 
Decide the demand for each node pair randomly within the Min- 
demand and Max-demand
Call Prim’s Algorithm to find a minimum spanning tree 
Initialize the transit network with these links 
repeat

Select a node randomly in the subgraph network 
Find the shortest link from the selected node, not currently in
cluded the network, if one exists (if not, choose another node) 
Add this link into the network 

until E L I N K S  is achieved
O utput final transit network and the distance and demand matrix

X and Y are the values of the X  and Y  coordinates measured from 

the origin, (0,0) defining the enclosing rectangle. Min-demand and 

Max-demand are the lower and upper bound demand for each node 

pair. N  is the number of nodes and E L I N K S  is the number of extra 

links required.

3.2.2 Implementation of the DSGM

Our data set generation method is implemented in the Java program

ming language. The user is presented with two application interfaces:

1. the minimum spanning tree generation interface, and

2. an interface for adding extra links.
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In the minimum spanning tree generation interface, users can input 

the required parameters needed for generating their transit network: 

the total number of nodes, the enclosing rectangle dimensions, X  and 

Y,  and the maximum and minimum travel demand required. After the 

parameters are input, the minimum spanning tree can be generated 

and displayed on the interface, e.g. see Figure 3.2.

f  M inim um  S p a n n in g  T ree________________  ( ^ ] ( B l{ 5 ? l |

F igure  3.2. Minimum Spanning Tree

*  F in a l N etw ork

Figure 3.3. Final Network
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After the minimum spanning tree is generated by the application, 

users can add extra links through the “extra links” interface, to create a 

final simulated transit network, e.g. see Figure 3.3. Finally, the transit 

network is generated, and its demand and distance matrix are stored 

in a file.

3.3 Lower Bound for the UTRP

In the practical design process of an urban transit routing problem 

(UTRP), many criteria need to be optimized in order to efficiently 

meet the needs of the passengers, while at the same time minimizing 

the cost to the operators. In addition, there are other stake-holders 

involved: typically national and local government as well as taxpayers 

and local businesses. While all interested parties will benefit from an 

efficient public transport service, each one will be observing from their 

own perspective, and thus may have different notions of what efficiency 

means.

Nevertheless, as mentioned before both a simple model for the UTRP 

and benchmark data sets are currently missing from the literature. One 

of the main goals of the present thesis is to provide a simple framework 

for the UTRP, along similar lines to what has been provided for other 

well-known combinatorial problems. We believe that it is only by doing 

this that we can put the UTRP on a similar footing to, say, the Ca

pacitated Vehicle Routing Problem, the Job-Shop Scheduling Problem, 

the Examination Timetabling Problem and the Quadratic Assignment 

Problem (to name but a few). We will present our solution methods in 

Chapter 4, and deal with the issue of generating benchmark data in the 

present chapter using our DSGM. Firstly though, we will discuss the
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issues that arise when we use benchmark data for the first time - how 

can we use it to assess the quality of our route sets? We do not know 

what the optimum solutions are, and neither do we have any previous 

published results.

Recall the criteria for a good route set [20] (see Chapter 1):

• The entire transit demand is served, that is, the percentage of 

unsatisfied demand is zero;

• A large percentage of transit demand is served through direct 

connections, that is, the percentage of demand satisfied with zero 

transfers is high;

• The average travel time per transit user is as low as possible.

In order to overcome the above mentioned difficulty of evaluating 

route sets when using new benchmark data, we adopt the above criteria 

and propose a lower bound on the passenger’s cost for the UTRP. Our 

lower bound is based on an ideal situation for passengers travelling on 

the transit network: namely, every passenger can travel to their desti

nations by the fastest (or shortest) path without any transfers. If the 

number of nodes, travel distance (or time) and travel demand between 

each node pair are already known, the ideal travelling path, between 

each pair of nodes can easily be found using Dijkstra’s algorithm [30] 

(introduced in Section 2.4) on the entire transit network. Note that 

the network obtained by superimposing all the routes from a particular 

route set will consist of all the nodes but only a subset of the links from 

the entire transit network. Thus, “ideal travel paths” between various 

pairs of nodes may or may not be attainable from a given route set.

In order to evaluate the lower bound, we calculate the Total-Demand,



Section 3.3. Lower Bound for the UTRP 59

Total-Person-(Distance or Time) and Average-Travel-(Distance or Time) 

According to the mathematical formulation of our simple model of 

UTRP (introduced in Section 3.1) these can be mathematically for

mulated as follows:

1. Total-Demand:
N  

i , j = 1

2. Total-Person-(Distance or Time):

N

^   ̂dijPij 
i , j = 1

3. A verage-Travel-(Distance or Time):

N  N

'y  ̂djjPij( ^   ̂djj) (3.3.3)
i , j = 1 i , j = 1

1 1.2km 4

1.7km 1.8 km
0 .6km

1.1km
0

0 .8 km
1.5km 1 .2 km

3 61.0km

F ig u re  3.4. 8 Nodes and 9 Links Network 

We implemented a program in Java to calculate the lower bound, 

and the following simple example is used to illustrate some of the re

sults calculated by our program. Figure 3.4 shows an 8 nodes and 9 

links network from [89], with the distance between each node pair as

(3.3.1)

(3.3.2)
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Table 3.1. Demand Matrix
8 0 1 2 3 4 5 6 7
0 0 95 120 58 112 177 125 184
1 95 0 64 167 59 166 167 144
2 120 64 0 71 173 50 78 166
3 58 167 71 0 59 95 58 119
4 112 59 173 59 0 49 86 84
5 177 166 50 95 49 0 86 135
6 125 167 78 58 86 86 0 93
7 184 144 166 119 84 135 93 0

shown. The travel demand matrix for this instance is presented in Ta

ble 3.1. Finally, the results - every exact shortest distance path for each 

node pair, Total-Demand, Total-Person-Distance and Average-Travel- 

Distance are presented in Table 3.2. It is easy to see in the lower bound 

situation the total number of shortest routes can be obtained by the 

following formulation:

N ( N  — l)/2  (3.3.4)

(N is the total number of nodes in the transit network), at the same 

time, the Total-Transfer-Time is 0.
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 Table 3.2. Lower Bound Results_____
Route Number Route Description
1 0-1
2 0-1-2
3 1-2
4 0-3
5 1-0-3
6 2-5-6-3
7 0-1-4
8 1-4
9 2-1-4
10 3-6-7-4
11 0-3-6-5
12 1-2-5
13 2-5
14 3-6-5
15 4-1-2-5
16 0-3-6
17 1-2-5-6
18 2-5-6
19 3-6
20 4-7-6
21 5-6
22 0-3-6-7
23 1-4-7
24 2-5-6-7
25 3-6-7
26 4-7
27 5-6-7
28 6-7
Total Demand 6080
Total-Person-Distance 14331200 m
Average-Travel-Distance 2357.11 m
Total-Transfer-Time 0

3.4 Constraints for the UTRP

For the urban transit routing problem, many criteria need to be opti

mized, while at the same time, many constraints also need to be sat

isfied. For example, in practical transit network design, the transport
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planners may decide the number of bus routes, based on the practi

cal requirements of passengers and operators in a local area, and con

strained by a limited number of buses. In addition, it is usual to limit 

the maximum length of a route and restrict the number of bus stops on 

a route: for example, to maintain reliability and limit operators’ costs. 

On the other hand, as previously mentioned, a bus route set designed 

by a planner should be a feasible route set, which means every node 

presented in the original transit network must be included in the bus 

route set, and every node needs to be connected either directly or in

directly to every other node. Only on such a bus route network can 

passengers get to any destination point from any start point. In addi

tion, in some areas a bus route is not allowed to backtrack or meander 

excessively. However, it is likely that setting appropriate constraints 

will significantly impact on the overall problem difficulty. For exam

ple, it may prove difficult to find any feasible route set if the problem 

is constrained by too few routes, or by having too few nodes on each 

route. On the other hand, if very many routes are allocated the search 

space increases, making it easy to find a feasible route sets but difficult 

to find an optimal one.

Given the obvious importance of setting constraints for the UTRP, 

it is perhaps strange to find that little attention has been paid to this 

problem in the literature. In an attempt to redress this balance, we will 

consider some of these issues in the remainder of this section, explor

ing the boundaries of feasibility and examining the affects of various 

constraint levels on problem difficulty. We will examine the following 

constraints in turn:

1. number of nodes in a route



Section 3.4. Constraints for the UTRP 63

2. number of routes

3. requirement for a feasible route set

3.4.1 Number of Nodes in A Route Constraint

First of all, it is easy to decide the minimum number of nodes for each 

bus route: a bus route should contain at least two nodes. To a large 

extent the maximum number of nodes will depend upon how close the 

nodes are together. For a long route, the operators’ costs may be high 

if demand is unevenly spread, and a large number of stops can make it 

difficult to maintain schedule. On the other hand, if a bus route is too 

short, passengers may need an increased number of transfers to reach 

their destinations. Hence, it is very important to set this constraint at 

the right level. We propose the following method for determining the 

maximum number of nodes for a route:

• Calculate all the shortest paths between each pair of nodes in the 

transit network for which the demand is greater than zero;

• Locate the “shortest path” with the most nodes, and record the 

number of nodes, M A X ;

• Assign MA X  as the maximum number of nodes for each route;

This number will ensure that the space of possible solutions will 

allow for travel plans that avoid vehicle transfers. If all bus routes are 

shorter than some passengers’ best travel routes, for example, vehi

cle changes will be inevitable. It is appropriate to consider scenarios 

that provide opportunities for passengers to get to their destinations as 

quickly as possible and with as few transfers as possible.
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3.4.2 Number of Routes Constraint

As mentioned above, transport planners will often decide the number of 

bus routes in advance, depending on the practical requirements of both 

passengers and operators in a local area. Operators may be constrained 

by a limited number of buses, and will certainly have a limited budget. 

More routes generally mean more buses and higher operating costs. Of 

course, there is a close interrelationship between the number of routes 

and the number of nodes of those routes, and this has an impact on 

route set feasibility. We will consider this next.

3.4.3 Constraints for Feasible Route Sets

In the design process, it generally makes sense for transport planners 

to develop a feasible route set, which includes every node in the transit 

network, with every node directly or indirectly connected. In order 

to obtain a feasible route set, the relationship between the number of 

nodes of each route and the number of routes in the route set must 

satisfy some conditions.

F igu re  3.5. 8 Nodes and 8 Links Network 

For example, Figure 3.5 illustrates a simple network with 8 nodes.
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If the maximum number of nodes for each route is set to 3, and the 

total number of routes in the route set is set to 2, it is clear that the 

maximum possible number of nodes that can be served by the network 

is 6, which leaves out 2 nodes. In Figure 3.6, two routes, 1-2-4 and 

3-5-7, make up the route set; nodes 8 and 6 can not be included. In 

such situations it is plainly impossible to develop a feasible route set.

F igu re  3.6. 2 Routes and Maximum 3 Nodes Example

Rl:

R2:

R3:

F ig u re  3.7. 3 Routes and Maximum 3 Nodes Example

On the other hand, if the maximum number of nodes for each route 

is set to 3 and the number of routes in the route set is set to 3, then 

this route set can at most contain 9 nodes. If the route set covers
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all 8 nodes of the network, only one extra node position is available. 

However, one available position is not enough to make the route set 

connected (see Figure 3.7). The reason is that, for two routes to be 

directly connected, the routes must have at least one node in common. 

For routes to be indirectly connected, an additional intermediate route 

is required to join them together. This intermediate route must have 

at least one node in common with each of the routes it is connecting. 

Therefore, in this situation at least two available positions left in the 

route set are needed to make the route set feasible, so that an extra 

route is needed (see Figure 3.8).

4

7

4

Figure  3.8. A Feasible Route Set

From the above discussion, we summarize the two necessary condi

tions for a feasible route set as follows:

1. all the nodes in the transit network must be represented in the 

route set

2. the route network (obtained by overlaying all the routes) must be 

connected

We will use the following terminology:
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• The total number of nodes in the network is N ;

• The maximum number of nodes in each route is M A X ;

• The minimum number of nodes in each route is m in  (here the 

m in  is set to 2);

• The minimum number of bus routes needed to make a feasible 

route set is Rmin ;

To satisfy Condition 1, we require each of the N  nodes to appear at 

least once in the route set; to satisfy Condition 2, the route set needs to 

be connected. Without loss of generality, we will assume that all routes 

are connected end-to-end to form a directed path through all N  nodes. 

Given each route is of length M A X , we will start at the beginning 

of the directed path. If N  < MA X ,  we will need only one route. 

Otherwise, the first route will cover M A X  previously uncovered nodes. 

The next path will start with the final node in route one, and discover 

M A X  — 1 previously uncovered nodes (provided there are sufficient 

nodes remaining). Subsequent routes will also discover M A X  — 1 new 

nodes, until we reach the final route, in which there may be less than 

M A X  — 1 remaining nodes to discover. Thus, except for the first and 

last route, all other routes will contain M A X  — 1 discovered nodes. 

From this it follows that the minimum number of routes needed to 

cover all the nodes is given by Equation 3.4.1.

1 i f  N  < M A X
(3.4.1)

\ (N — I ) / ( MA X  — 1)] otherwise
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3.5 Creating Our Data Sets

Due to a lack of published data sets, we generate our own data to 

test our methods and see whether the efficiency of these methods are 

suitable for different sizes of networks.

3.5.1 Research Into Some Properties of Real World Data Sets

First of all, we examined some real world bus route maps, in order to 

extract typical properties such as the total number of nodes (bus stops) 

and links, the number of bus routes and the maximum and minimum 

numbers of nodes in bus routes. In total, four different maps of urban 

areas in China and the UK have been studied, namely the city centre 

of Yubei district [3], which is a major part of Chongqing in China, 

the city centre of Beijing [2], which is the capital of China, the city 

centre of Cardiff [4], which is the capital of Wales, and the city centre 

of Brighton [1], which is a town on the south coast of England. The 

details of the (approximate) properties are shown in Table 3.3.

Table 3.3. Pro]Gerties of Real Data Sets
Location Number of 

Nodes and Links
Number of 

Routes
Route
Nodes

Link
/Node

AFN

Yubei
Beijing
Cardiff

Brighton

70 & 210 
1280 & 3550 

127 & 425 
110 & 385

15
170
60
56

10 - 30 
15 - 45 
12 - 25 
10 - 22

3
2.77
3.35
3.5

4.29
3.98
8.98 
8.15

The route nodes indicates the minimum number of nodes {min) and 

the maximum number of nodes {MAX)  for route map. The AFN is an 

estimate for the Average Frequency of bus routes visiting each Node. If 

the number of nodes {N) and the number of bus routes {B) are known,
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the AFN can be estimated by the following formulation:

\(min +  M A X ) / 2 ] B / N  (3.5.1)

It is interesting to note the link/node ratio is fairly consistent (close 

to 3) for each of the four data sets. The AFN varies between about 4 

and 9.

3.5.2 Our Data Sets

________ Table 3.4. Data Sets Description________
Network Number of 

Nodes
Number of 

Links
Bounds of 
Demand

I 8 9 0 - 184
II (Mandl’s) 15 21 0 - 880

III 70 175 0 - 500
IV 70 245 0 - 500
V 110 275 0 - 600
VI 110 385 0 - 600
VII 130 325 0 - 800
VIII 130 455 0 - 800

Table 3.4 lists features of the 8 different data sets we use for our 

research. Network I is a small instance obtained from Pattnaik et al.’s 

paper [89]; network II is Mandl’s Swiss transit network [73]. Network 

III to network VIII are all new data sets generated by our DSGM 

application, with parameters guided by the real route networks that we 

examined in the previous section. The total number of nodes (70, 110 

and 130) are related to the three places, Yubei, Brighton and Cardiff 

and the total number of links are chosen by using the factors 2.5 and 

3.5 respectively, to obtain 6 new instances. We also generated a large 

network related to the Beijing system (see Chapter 6).
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When generating the data sets, we apply the same range of coor

dinate axes: X coordinate and Y coordinate, to produce sides of an 

enclosing rectangle with lengths ranging between 0 and 500. At the 

same time, the travel time (in minutes) is used to measure the dis

tance between each node pair. For example, if the distance between 

two nodes is “5” , this is considered as 5 minutes travel time in the 

travel time matrix. The demand between every node pair is deter

mined at random between the lower and upper bounds input by the 

user, as specified earlier. The details of these instances, including 

networks, demand matrices and distance matrices, are listed on our 

website (http://users.cs.cf.ac.uk/Li.Fan/), and also published in OR- 

Library [81].

3.6 Summary

In this chapter we have introduced our simplified model of the UTRP, 

which evaluates routes according to the average travel time and the 

number of transfers between vehicles, and a data set generation method, 

which is able to produce random transit networks based on user-supplied 

parameters. In addition, we have explored various constraints and de

fined lower bounds for total transit times and also for the the minimum 

number of routes required to ensure coverage of a transit network. We 

have also explored the properties of four real world urban transit net

works. Guided by our theoretical and practical studies, we have used 

our data set generation method to produce data sets for subsequent 

use.

http://users.cs.cf.ac.uk/Li.Fan/


Chapter 4

A METAHEURISTIC 

APPROACH TO THE UTRP

In this chapter (based on the work published in [36]), we describe our 

basic metaheuristic framework for solving the UTRP. This consists of 

a representation scheme, an initialization procedure, a feasibility check 

procedure and a set of simple neighbourhood moves. Furthermore, 

two simple search algorithms, hill-climbing and simulated annealing, 

are embedded into our metaheuristic framework. In addition, the as

sessment parameters for the bus route set are also discussed in this 

chapter. Finally we present some experimental results which improve 

upon published results for Mandl’s benchmark problem [73], and also 

some further results for larger problem instances.

4.1 Methods of Representing and Improving the Route Set

Success in finding good route sets depends on devising the following: (1) 

a suitable representation scheme, (2) an effective initialization mecha

nism and (3) intelligent route improvement heuristics. In our method 

we use simple arrays to store the routes, and utilize three basic proce

dures, namely Initialization, Feasibility Check and Make-Small-Change.

71
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7

Figure 4.1. A Connected and An Unconnected 8 Nodes Network

4.1.1 Representation

R1 0 1 4 7

R2 0 3 6 *

R3 1 2 5 *

Figure 4.2. Two Dimensional Array

The representation we use to store the route set is a two dimensional 

array. The first location of each row stores the route number, which is 

useful for identification purposes. For example, consider the first graph 

in the Figure 4.1, if we set the maximum number of nodes in each route 

to 4 and the number of routes in the route set to 3 routes, the routes 

(i) 0-1-4-7; (ii) 0-3-6; (iii) 1-2-5 can be stored as shown in Figure 4.2 

(where the * represents an empty array element).

We use a two dimensional array structure to represent the route set 

because it seems a very simple and natural way to represent a set of 

linear structures (the routes). While distance (or time) and demand 

matrices are used to represent the underlying graph structures, it is
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convenient to use simple structures such as arrays, so that the routes are 

easily identifiable for route manipulation and feasibility checks, when 

applying a metaheuristic algorithm.

4.1.2 Initialization

Algorithm  5 Initialization Procedure I
Parameters: number of routes, minimum and maximum number of
nodes for routes
Begin
M ain  loop
repeat

R oute  length selection:
Choose a length for the route between minimum and maximum 
number of nodes at random 
In ner Loop 
repeat

S tar t  node selection:
Choose any node as the start node at random 
label this node as the “previous node”
N ext node selection:
Construct a node set consisting of all nodes directly connected 
to “previous node” that have not been selected for the current 
route, if this node set is not empty, choose a node from this set 
at random
Else invert the order of the route (see Section 4.1.4) and repeat 
the N ex t node selection
If such route can not reach the route length, then  delete this 
route and repeat Start node selection  

until route length is reached 
until number of routes is reached 
Output an initialization route set

The purpose of our Initialization Procedure is to construct an ini

tial route set at random, according to the constraints listed in Section

3.1 and some user-defined parameters. In the initial route set, each 

route is a connected path containing no cycles or backtracks. However, 

the feasibility of the route set is not ensured at this stage. The main
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structure of the initialization procedure is shown in Algorithm 5.

Unlike many researchers, we do not rely on shortest path algorithms 

to produce our initial routes. As we explained in Chapter 2, we do not 

believe that building route sets from pre-computed shortest paths nec

essarily produces the best route sets. The quality of the route set as a 

whole is the important factor, rather than that of the individual routes. 

Longer travel paths may be appropriate between some sources and des

tinations where travel demand is low, for example, in the interests of 

efficiency. In addition, the success of metaheuristic approaches is not 

generally very tightly related to the quality of the initial solution.

4.1.3 Feasibility Check

A lgorithm  6 Feasibility Check Procedure 
Input the route set, S
Input A, the number of nodes in the transit network
Initialize found-node[l...N] = 0 {records nodes that have been
found}
Initialize explored-node [1...N] = 0 {records nodes that have been 
explored}
Select an arbitrary node, i, present in at least one route 
Set feasibility = False
while {feasibility —= False} AND {there are unexplored nodes in 
found-node} do

Set explored-node[i] = found-node[i] =  1 
Find all routes containing node i
Set flags in found-node  to record all the nodes found in those 
routes
Select any node from found-node  that is absent from explored- 
node
That node becomes node i
if all N  nodes have been found and entered in found-node  th en

feasibility = True 
re tu rn  feasibility

The Feasibility Check Procedure is necessary because finding feasible
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route sets (that obey all constraints) using randomized methods is a 

huge challenge. The main purpose of the Feasibility Check routine is 

to ascertain whether candidate route sets are connected and include 

every node present in the original transit network. A connected route 

set means that the passengers can get to any destination point from 

any start point in the route set network. An unconnected route set 

means that some places or nodes in the network are not directly or 

indirectly linked, therefore passengers are not able to reach all points. 

For example, the first graph in Figure 4.1 is connected, but the route 

consisting of nodes 2 and 5 in the second graph is not linked to the rest 

of the route network. In a similar way, demand to and from nodes that 

do not appear in at least one route in the route set, cannot be met. The 

structure of our Feasibility Check Procedure is shown in Algorithm 6.

4.1.4 Make-Small-Change

Successful application of metaheuristic methods to the UTRP depends 

on whether suitable neighbourhood moves can be devised for the prob

lem. It is clear that infeasible route sets may be too easily produced by 

random procedures on the UTRP. Careful reference needs to be made 

to the underlying transit network when adding or deleting nodes from 

a previously constructed route, or when moving a node from one route 

to another. Large random changes are clearly not desirable, as they are 

likely to destroy connectivity or produce solutions in which the routes 

meander excessively. Even a very small change can prove highly dis

ruptive. Our “make small change” strategies cautiously adds or deletes 

nodes from individual routes, one at a time, checking and ensuring fea

sibility as an integral part of the process. Nevertheless, over a period of
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time, we have observed that our approach is able to explore the search 

space thoroughly, accumulating “large changes” in small steps.

Recall that we store the individual routes as ordered lists in an array 

(see Figure 4.2). The Make-Small-Change procedure is responsible for 

making local neighbourhood changes to a route set. There are three 

possibilities:

1. Adding a node to the last position in a route;

ensuring that there is a direct link in the transit network to con

nect the new node, and that no cycles or backtracks are produced.

2. Deleting the first node in a route;

3. Inverting the order of nodes in a route;

i.e., the first node becomes last node and the last node becomes 

the first node. This method is used in place of the “adding a 

node” when no suitable nodes can be added (see below).

The structure of Make-Small-Change procedure is shown in Algo

rithm 7:

The above mentioned “add” and “delete” node operators are key in 

the Make-Small-Change procedure, with “inversion” used occasionally 

in place of “add” , when it is not possible to add a node to the last 

position.

First of all, the procedure randomly selects one of the routes in the 

route set to act as a candidate route for change. Next, this route will 

be checked for its potential, with respect to possible application of the 

Make-Small-Change operators. In general, there are three situations. 

(I) the length of a route is between the maximum number of nodes and 

the minimum number of nodes defined by user. (II) the length of a
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Algorithm  7 Make-Small-Change Procedure 
Operators: “add” , “delete” and “inversion”
Input a route set 
repeat

Randomly select one of routes from the route set, label this route 
as “selected route”
Check the “selected route”
If its length is between the maximum and minimum number of 
nodes
then “add” or “delete” operator is selected at random
in case “add” operator is selected, but no available node that can
be added
then “inversion” is selected
If its length is equal to maximum number of nodes 
then “delete” operator is selected 
If its length is equal to minimum number of nodes 
then only “add” operator is selected 
in case no available node that can be added 
then “inversion” is selected 

until Termination condition is satisfied

route is equal to the maximum number of nodes. (Ill) the length of a 

route is equal to the minimum number of nodes.

If a chosen route is in the (I) situation, the adding or deleting oper

ator is randomly selected as the “small change” to be made. Unfortu

nately, a problem can occasionally arise, when the “add node” operator 

is selected and there is no available node that can be added to the end 

of the route, avoiding cycles and backtracks. For example, in the first 

graph in Figure 4.1, if a route 0-3-6 has been selected to add a node to 

the end, obviously no available node can be added to the route. Hence 

in this situation, the “inversion” operator will be applied instead to 

this route. In our example, the original route becomes 6-3-0 following 

inversion. Next, an alternative route will be selected at random from 

the remaining routes in the route set. This newly selected route will 

be identified as situation (I), (II) or (III), as before, and a Make-Small-
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Change operator applied appropriately. This process will be repeated, 

as necessary, until a “small change” has been effected.

If a chosen route is in the (II) situation, the route cannot be made 

any longer so the deleting method will be applied to the route. In a 

similar way, if a chosen route is in the (III) situation, the route cannot 

be made any shorter so the adding method will be applied. Once again, 

in some circumstances there will be no available node to add, just as we 

saw in situation (I). Like before, this route will be inverted and another 

route selected.

4.2 Framework of Implementing HC and SA Algorithms

Algorithm  8 Route-Hillclimber or Route-Simulated Annealing  
Parameters: D , C , r, M A X , {plus T0 and L  for SA} 
Initialization:
Generate an initial route set of r  routes, S
Outer loop - repeat until the stopping condition is satisfied
Inner loop - repeat L  times {L=l for HC}
Modification:
Call Make-Small-Change {to generate a near neighbourhood route 
set, S"}
Feasibility check: 
repeat

if the new route set is not connected then  
Call Make-Small-Change 

until successful 
Evaluation:
Calculate i dijPij> dijUj, and the objective function, Z
Selection:
Select either S  or S' as new focus of search following rules of Hill-
Climbing or Simulated Annealing
O utput Best route set and Z  for the best route set

In order to validate the above framework, optimization algorithms 

need to be implemented. Two algorithms are chosen in our research, 

namely, hill-climbing and simulated annealing (introduced in Chapter
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2). Due to their similar structure, the framework for the two algorithms 

is summarized in Algorithm 8.

Recall that D is the demand matrix, C  the cost (distance or time) 

matrix for the current route network, r the number of routes in the 

route set and M A X  is the maximum number of nodes per route. T0 

and L are parameters for the SA, to be discussed later.

Initialization: generates an initial route set based on the con

straints and user-defined parameters.

Modification: calls the Make-Small-Change routine to generate a 

new neighbourhood route set.

Feasibility Check: is to check whether the new neighbourhood 

route set is connected, and contains all the demand nodes. If not, the 

Make-Small-Change routine is used iteratively until a feasible route set 

is produced.

Evaluation: Once a feasible route set has been obtained, it needs 

to be evaluated by calculating the objective function in Equation 3.1.1. 

We consider the route network obtained by fusing all the routes from 

a given route set, as explained in Section 3.1. (Recall that a route 

network is a subset of the specified transit network.) We assume that 

all demand is satisfied along the shortest path available (in the route 

network) between a given pair or nodes, regardless of whether or not 

this involves making transfers (no time penalty is added to the objective 

function when a transfer is made). All required shortest paths are 

calculated from the route network using Dijkstra’s algorithm, and the 

first component of Equation 3.1.1, d*jPiji is calculated. This

gives the total travel distance (or time), for the route network, summed 

over all passengers. Note that if there is more than one contender for
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the shortest path between two nodes, the path with the highest demand 

is selected.

The total number of transfers, summed over the entire demand must 

also be calculated. This is done by checking every part of each shortest 

travel path, to identify the routes to which it belongs. In this way, 

the minimum number of transfers required along each shortest path 

is recorded, and this information is used to calculate the second term 

in the Equation 3.1.1, d*jUj- The basic idea can be seen in

Algorithm 9.

Algorithm 9 Finding Minimum Number of Transfers Procedure 
Input a travel path and the current route set
Parameters: the number of nodes in the travel path n, an index for 
nodes in the travel path i and minimum number of transfer j  
Initialize i = 1 and j  = 0
For the i node of the travel path, label j  for these routes that contain 
this node in current route set 
M ain  loop 
repeat

i = i -f 1
If the node i of the travel path does not exist in any marked routes 
in current route set
then clean the label j  for these marked routes, and label j  = j  +  1 
to new routes contain node i
else keep the label j  for these routes still contain node i, and clean 
the label j  for those routes do not contain node i 

until i is equal to n
Output Minimum number of transfers j

(Note: in our research, we consider the minimum number of trans

fers needed to travel on the shortest path in current route set as an 

individual part in the objective function in order to evaluate the qual

ity of the route set. While some researchers, e.g., Mandl [73] and 

Chakroborty [21], consider the transfer as the waiting time and insert 

it into the calculation of the total travel time for passengers.)
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Selection: The selection rules are different for the HC and SA 

search methods. In the hill-climbing algorithm, a route set which has 

the smaller value of the objective function is kept as a current best 

result at each time-step. On termination, the best route set found dur

ing the entire run of the algorithm will be returned. In the simulated 

annealing algorithm a new neighbourhood route set will replace the 

“current” route set at a given time-step if it is better than the exist

ing route set, similar to hill-climbing. However, if the neighbourhood 

route set is “worse” than the current route set, it is still possible that 

it may replace it as the new focus of the search. Acceptance will be de

termined using an “acceptance probability” , and the value of this will 

depend on the current “temperature” , and also on exactly how poor 

the new contender is, in relation to the route set currently occupying 

the focal position. Early in the execution of an SA algorithm the tem

perature is high and most neighbourhood moves will be accepted. As 

the search progresses, the temperature cools and poor solutions are ac

cepted less frequently. As is the case with hill-climbing, the best route 

set found during the entire run of the algorithm will be returned when 

the algorithm terminates.

Values for the acceptance probability (prob) for a minimization 

problem, are evaluated using Equation (4.2.1) and (4.2.2). A repre

sents the difference between the objective functions (or costs) of the 

new solution C(S'),  and the focus solutions C(S).  Note that the value 

of prob depends on the value of A and also on T, the current tempera
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ture, which is determined by the cooling schedule.

A = C(S') -  C(S)  

prob = min( l ,e _Ay/T) 

(4.2.1)

(4.2.2)

The new solution is accepted with probability 1 if A < 0 (in other 

words, if the neighbourhood solution is better than S) and with prob

ability e~A/T if A > 0 (that is, if the neighbourhood solution is worse 

than S). Throughout the execution of an SA algorithm, the tempera

ture T  is progressively lowered.

In the present study we determine the precise annealing schedule 

from user-specified values for the number of cooling steps and the initial 

and final solution acceptance probabilities. We use F  cooling steps 

to correspond to the number of iterations, so that the temperature 

is decreased slightly between each iteration. Thus, knowing F  and 

setting initial and final acceptance probabilities, P$ and Pf, as well as 

an additional parameter M, that signifies an initial number of random 

trials, the starting temperature To, the final temperature T/, and the 

cooling factor a  can be calculated, as indicated below.

A, = C(S') -  C{S) (4.2.3)

-ave (4.2.4)

To = log a (4.2.5)
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ave (4.2.6)
log Pf

a =  exp(
log Tf  -  log  Tq 

F ) (4.2.7)

Note that A ave (Equation (4.2.4)) is obtained by applying the Make- 

Small-Change procedure to construct M  new neighbours (S') to the 

initial route set (S ). In this way M  values for C(S' )—C(S)  are obtained, 

and their magnitude can be averaged to obtain an estimate for A ave. 

We use this estimate to help determine the starting temperature, the 

final temperature and the cooling schedule. The neighbouring solutions 

generated during this parameter initialization phase are subsequently 

discarded.

In this study we use an “inner loop”, with L  iterations per temper

ature, in addition to the “outer loop”. The outer loop implements the 

cooling schedule, while the inner loop gives the SA a chance to search 

the solutions space at each temperature.

4.3 Experimental Results

To the best of our knowledge, Mandl’s network [73] is the only generally 

available benchmark problem instance (see Figure 4.3). In our first set 

of experiments we use Mandl’s network to compare our results against 

those of other researchers. Although our objective function is different 

from those used by other researchers, we are nevertheless able to make 

direct comparisons on the basis of common criteria, discussed below.
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14

Figure 4.3. Mandl’s Swiss Transit Network 

4.3.1 Assessment Parameters

As mentioned before, the following parameters are used to compare the 

quality of our route sets with those obtained by Mandl [74], Baaj and 

Mahmassani [12], Kidwai [64], Chakroborty and Dwivedi [21].

do - The percentage of demand satisfied without any transfers. 

d\ - The percentage of demand satisfied with one transfer. 

g?2 - The percentage of demand satisfied with two transfers. 

dun - The percentage of demand unsatisfied.

A T T  - Average travel time in minutes per transit user (mpu). This 

incorporates transfer waiting times, at 5 minutes per transfer.

The above parameters are quite easily calculated from the best route 

set generated at the end of an optimization run of our HC or SA algo

rithms. Recall that our objective function is composed of two compo

nents: 1) a component concerned with total travel time, accumulated
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over all passengers, and 2) a similar accumulated term for the total 

number of transfers made between vehicles by passengers. An average 

travel time can be obtained simply by dividing the accumulated travel 

time by the total demand. However, unlike other researchers, the travel 

times we use in our optimization process do not make any allowance 

for transfer waiting times.

To obtain values for average travel times (ATT), comparable with 

other researchers, it is necessary to add 5 minutes for each person- 

transfer to our accumulated travel times before dividing by the total 

demand. However, this is not as straightforward as it seems. We have 

discovered that different values for ATT can be obtained, depending 

on whether or not transfer times are included in the shortest path 

calculations when determining the travel paths for passengers on the 

final route network. We tried two different ways of calculating ATT 

from a given route set:

1. Assume passengers ignore transfer waiting times when choosing 

their travel paths.

2. Assume passengers take account of transfer waiting times when 

choosing their travel paths.

Method 1 defines the mode of travel path selection used in our ob

jective function. Evaluating ATT for our best route set at the end of a 

run (to make it comparable with values quoted by other researchers), 

involves adding five minutes for each person-transfer to the total travel 

time, before dividing by the total demand. Method 2, on the other 

hand, effectively gives the passengers fuller information. In these cir

cumstances individuals will surely choose to avoid transfers, where this
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will delay arrival at the final destination. As an added bonus, method 

2 can reduce the total number of transfers. Thus ATT is calculated 

by accumulating all shortest travel paths, with transfer time included 

explicitly in the shortest path calculations.

In any case, our assessment routine will retrace the shortest paths 

from each source to destination node pair, using the distance (time) ma

trix computed for that particular route network, incorporating waiting 

times, or not, depending on the calculation model chosen. As each 

route is retraced, we can record which part of the shortest travel path 

belongs to which route in the best route set. Hence we can discover the 

number of transfers which passengers need to make to travel on their 

shortest path. Finally, with the demand of each path, we can respec

tively calculate the number of passengers who need 0, 1, 2 transfers.

To validate our calculations for the route set quality parameters, we 

examined Mandl’s best route set (4 routes) from [73]. The routes (from 

the network shown in Figure 4.3) are listed below:

0-1-2-5-7-9-10-12

4-3-5-7-14-6

11-3-5-14-8

12-13-9

That we were able to replicate his values for d0, ofi, d2, dun and ATT 

using method 2, is illustrated in Table 4.1. Thus, method 2 will be used 

to evaluate our final route sets in all our experiments. Interestingly (but 

not surprisingly) method 2 gives results that are at least as good (and 

probably better) than method 1, as can been seen in Table 4.1. Method
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Ta pie 4.1. Performance Measures for Mandl’s Best Route Set
Parameters Method 1 Method 2 Mandl’s Results
do 66.67 69.94 69.94
di 26.33 29.93 29.93

7.00 0.13 0.13
dun 0.00 0.00 0.00
A T T 13.29 12.90 12.90

2 produces a smaller value for ATT and a larger percentage of travellers 

reach their destinations with zero transfers.

4.3.2 Weighting Parameters for the Objective Function

As mention in Section 3.1, in our research the A  and B  (constants used 

to weight the two components of the objective function) are chosen to 

ensure the two parts of the objective function are of similar magnitude. 

In order to show the effect on the quality of the route sets by changing 

the A  and B, we use different value of the A  and B  to test Mandl’s 

network by considering the 4 routes and maximum 8 nodes for each 

route situation. At the same time, we evaluate the parameters do, di, 

d2, dun and A T T  on the final results, as previously (see Table 4.2).

Table 4.2. Results of Different Weighting in Objective Function for 
Mandl’s Network

Parameters
Travel time:Transfers contribution ratio 
A = 0 1 :3  1 :1  3 : 1  B = 0

do 92.96 91.43 93.26 88.51 79.44
d\ 7.04 7.99 6.74 11.07 20.23
d2 0.00 0.58 0.00 0.42 0.33

d u n 0.00 0.00 0.00 0.00 0.00
A T T 12.66 11.99 11.37 11.79 12.10

From the above experiments, it is clear that the two factors, better 

results are obtained when A  and B  have equal importance. So we
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adopted this ratio for our remaining experiments.

4.3.3 Results for Mandl’s Swiss Transit Network

In order to establish the viability of our approach we first compare 

the results (published in [36]) obtained by running our algorithms with 

those previously published by Mandl [74], Baaj and Mahmassani [12], 

Kidwai [64] and Chakroborty [20]. For consistency with the existing 

work, the route sets were developed for Mandl’s network (see Figure 

4.3) in four situations: 4 routes, 6 routes, 7 routes and 8 routes in 

each route set. In line with the previous authors, a transfer penalty 

of 5 minutes is added to the travel time of every passenger (on the 

final route set) for each time a transfer is made, as discussed in Section 

4.3.1. We also set a maximum of eight nodes in each route. We carried 

out 10 replicate runs for each algorithm in each situation (i.e., 4, 6, 7, 

and 8 routes). For hill-climbing (HC) we used 100,000 iterations, and 

we performed 1,000 cooling steps, with 100 iterations within the inner 

loop, and Pq = 0.999, Pf = 0.001, M  = F  = 1,000, and L =  100 

for the simulated annealing (SA). In addition, we also compare our 

results with the lower bound result of the average travel time (ATT) 

on Mandl’s network (introduced in Section 3.3). The difference between 

the ATT of our best route sets obtained and the “ideal” ATT (i.e., lower 

bound) is quoted as a percentage of the “ideal” quantity in our results 

called “ATT-error” .

The results in Table 4.3 clearly show that competitive results have 

been found by our algorithms. Our results have better values for d0, d\ 

in 3 out of 4 cases. For the average travel time (ATT) our results beat 

previous researchers’ results for the 4 route and 8 route cases, and they
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are only marginally inferior to those published by Chakroborty [21] for 

the 6 and 7 route cases. Generally average solutions for the SA are 

slightly better than those obtained using the HC. This is perhaps to be 

expected, given the SA is the more sophisticated algorithm. The actual 

routes produced for our best solutions for each situation are presented 

in Table 4.4.

Table 4.5 gives the average run times for our hill-climbing and sim

ulated annealing algorithm. Note: our computer platform is Windows 

XP with Intel(R) Pentium(R) D CPU 3.00GHz and 1GB of RAM. 

Clearly, the HC is slightly faster than the SA .



Table 4.3. Results for MandTs Network
Number of Parameters Mandl Baaj and Mahmassani Kidwai Chakroborty Our ATT HC SA

Routes [74] [12] [64] [20] Best Error% Average Average
4 do 69.94 - 72.95 86.86 93.26 13.59 91.83 92.48

di 29.93 - 26.92 12.00 6.74 8.17 7.52
2̂ 0.13 - 0.13 1.14 0.00 0.00 0.00

dun 0.00 - 0.00 0.00 0.00 0.00 0.00
A TT 12.90 - 12.72 11.90 11.37 11.69 11.55

6 do - 78.61 77.92 86.04 91.52 4.70 90.23 90.87
di - 21.39 19.68 13.96 8.48 9.26 8.74
d2 - 0.00 2.40 0.00 0.00 0.51 0.39
dun - 0.00 0.00 0.00 0.00 0.00 0.00

A T T - 11.86 11.87 10.30 10.48 10.78 10.65
7 do - 80.99 93.91 89.15 93.32 4.10 92.21 92.47

d\ - 19.01 6.09 10.85 6.36 7.13 6.95
d^ - 0.00 0.00 0.00 0.32 0.66 0.58
dun - 0.00 0.00 0.00 0.00 0.00 0.00

A TT - 12.50 10.69 10.15 10.42 10.74 10.62
8 do - 79.96 84.73 90.38 94.54 3.50 93.23 93.65

d\ - 20.04 15.27 9.62 5.46 6.18 5.88
d2 - 0.00 0.00 0.00 0.00 0.59 0.47
dun - 0.00 0.00 0.00 0.00 0.00 0.00

A TT - 11.86 11.22 10.46 10.36 10.69 10.58
CDo
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Table 4.4. Routes Obtained Using Our Methods
Situation Number of Routes Route Description
1 4 9-13-12-10-11-3-1-0 

11-10-9-7-5-2-1-0
10-9-7-5-3-4-1-2 
1-2-5-7-9-6-14-8

2 6 12-13-9-10-11-3-5-7
10-12-9-6-14-5-2-1
8-14-5-2-1-3-11
0-1-2-5-7-9-10-11
4-3-11-10-9-6-14-8
10-9-7-5-3-4-1

3 7 12-13-9-7-5-3-4-1
11-10-12-13-9-6-14-8
8-14-5-2-1-4
3-1-2-5-14-6-9-12
4-3-11-10-9-7-14-6
9-10-11-3-5
12-13-9-7-5-2-1-0

4 8 9-13-12-10-11-3-4
6-9-7-5-3-4-1-0
9-10-11-3-5-14-8
8-14-6-9-10-11-3 
11-3-1-2-5-7-14
9-6-14-5-2-1-3 
9-13-12-10-11-3-1-0 
0-1-2-5-7-9-12-13

Table 4.5. Average Run Times for the HC and SA Algorithms.
Number of Routes HC Time (secs) SA Time (secs)

4 254 315
6 244 302
7 232 289
8 221 267

4.3.4 Scalability Experiments

Because of a lack of published benchmarks, it is necessary to create our 

own data to establish whether the techniques would scale to larger in

stances. For these tests we used the data sets that have been generated



Section 4.3. Experimental Results 92

by the DSGM in Table 4.6 (introduced in Section 3.5).

__________Table 4.6. Test Data Sets_____
Network Number of Nodes Number of Links
I 70 175
II 70 245
III 110 275
IV 110 385
V 130 325
VI 130 455

Firstly, the lower bound and other parameters that we introduced in 

Chapter 3 are very useful in the present context because we are dealing 

with new data. We need to determine various constraints, such as the 

maximum number of nodes for each route in the route set, and also 

provide values against with we can evaluate the quality of the route 

sets generated by our algorithms. The details of the parameters and 

lower bounds for these data sets are shown in Table 4.7 (where “Max 

Nodes” represents the maximum number of nodes in any of the shortest 

paths).

Table 4.7. Lower Bound Parameters
Network Total

Demand
Total Person 
Travel Time

Average 
Travel Time

Max Nodes

Mandl’s 15570 155790 10.01 8
I 1212620 36042456 29.72 17
II 1204596 34911176 28.98 13
III 3603360 121935974 33.84 29
IV 3613416 111143216 30.76 19
V 6695550 190533810 28.46 21
VI 6664344 175991432 26.41 20

Furthermore, it is also necessary to decide the constraints for these 

data sets before undertaking the experiments, such as the number of 

routes, and the minimum and maximum number of nodes for each
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route. We considered these constraints from two separate viewpoints: 

1) an analytical point of view and 2) a practical viewpoint based on the 

examination of the four real situations described in Chapter 3. From 

an analytical point of view, the minimum number of nodes for each 

route was set to 2 and the maximum number was determined by the 

number of nodes of the longest “shortest path” route (introduced in 

Section 3.4). Once the route length constraints had been decided, we 

used the real networks from Chapter 3 to help guide us regarding the 

number of routes to include in a route set. This was done by evaluating 

the average numbers of routes meeting/crossing at each node and using 

Equation 3.5.1 (introduced in Section 3.5). Problems 1, 3, 5, 7, 9 and 

11 in Table 4.8 are guided from an analytical point of view. From a 

practical viewpoint, we simply identified the individual bus routes on 

our four route maps, counted these routes and then counted the nodes 

on each of the routes, registering the maximum and minimum node 

counts (problems 2, 4, 6, 8, 10 and 12 in Table 4.8).

Table 4.8. Experimental Conditions

Problem Network Number of 
Routes

Number of 
Nodes in Route

AFN

1 70 nodes and 175 links 35 2 - 17 5.00
2 70 nodes and 175 links 15 10 - 30 4.29
3 70 nodes and 245 links 44 2 - 13 5.00
4 70 nodes and 245 links 15 10 - 30 4.29
5 110 nodes and 275 links 55 2 - 29 8.00
6 110 nodes and 275 links 56 10 - 22 8.15
7 110 nodes and 385 links 80 2 - 19 8.00
8 110 nodes and 385 links 56 10 - 22 8.15
9 130 nodes and 325 links 98 2 - 21 9.00
10 130 nodes and 325 links 60 12 - 25 8.77
11 130 nodes and 455 links 106 2 - 20 9.00
12 130 nodes and 455 links 60 12 - 25 8.77
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Hill-climbing and Simulated Annealing algorithms were both used 

to test the above problems. Before these experiments were carried out, 

parameters for implementing the two algorithms were determined (see 

Table 4.9). (Please note that the cooling schedule has been chosen to 

ensure an acceptable run time. It may be possible that if the different 

cooling schedule is used, different solutions may be obtained.)

Table 4.9. Experimental Parameters I
Problem Objective

Parameters
HC

Parameters
SA

Parameters
1,2 A = 20000000 

B  =  1800000
100000

Iterations
P0 = 0.999 
Pf  =  0.001 

M  = F  = 1,000 
L = 100

3,4 A  =  19000000 
B  = 1500000

100000
Iterations

P0 = 0.999 
Pf  = 0.001 

M  = F  = 1,000 
L =  100

5,6 A = 80000000 
B  = 8000000

10000
Iterations

P0 -  0.99 
Pf  = 0.01 

M  = F  = 100 
L = 100

7,8 A = 70000000 
B  = 7000000

10000
Iterations

P0 =  0.99 
Pf  = 0.01 

M  =  F  = 100 
L = 100

9,10 A = 90000000 
B  = 10000000

10000
Iterations

P0 =  0.99 
Pf = 0.01 

M  = F  =  100 
L = 100

11,12 A = 90000000 
B  = 12000000

10000
Iterations

P0 =  0.99 
P f  =  0.01 

M  =  F  =  100 
L = 100

As in previous experiments, parameters such as d0, di, d2 and A T T  

were used to assess best route sets found by the hill-climbing or sim

ulated annealing algorithm. At the same time, the average values and
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the standard deviations (SD) of these parameters (10 runs), as well as 

the run time using the HC and SA, were also recorded. In addition, 

a simple method to assess the quality of the best route set found for 

each test problem is to compare the average travel time (ATT) per pas

senger with the lower bound results. The difference between the ATT 

of the best route set obtained and the “ideal” ATT (i.e., lower bound) 

for each problem is quoted as a percentage of the “ideal” quantity in 

our results called “best ATT-error”. Hence the best ATT-error can be 

calculated thus:

(ATTbest — ATTideal) x 100/ATTideal (4.3.1)

Finally all the best route sets for these test problems can be seen 

on our website (http://users.cs.cf.ac.Uk/L.Fan/) and their assessment 

results are shown in Table 4.10, 4.11, 4.12. It is clear that the “best 

ATT-errors” of the best route sets found for test problems have very 

similar values. The percentage errors are between 2.25% and 12.35%. 

On the other hand, comparing hill-climbing with our simulated anneal

ing algorithm, the SA algorithm runs slower but finds better solutions 

for all the instances. In addition, the standard deviations of these pa

rameters for 10 experiments are small, hence it demonstrates that our 

algorithms are robust.

In the final set of experiments we examined the efficiency of the 

Make-Small-Change procedure. Throughout the execution of our algo

rithms, each time a neighbourhood route set is generated, there is a 

chance that it will be infeasible (i.e., not connected). Hence the Make- 

Small-Change procedure will be called iteratively, until a connected

http://users.cs.cf.ac.Uk/L.Fan/


Table 4.10. Results for Network I and II
Problem Assessment

Parameters
Best Results HC

Average
SD 

for HC
SA

Average
SD 

for SA
Best ATT 

Error%
SA Average 

Run Time (secs)
HC Average 

Run Time (secs)
1 do 53.70 50.68 1.07 52.12 1.18 9.72 36598 35344

di 34.86 36.43 1.43 37.34 1.62
^ 2 11.44 12.89 1 . 2 1 10.54 1.35

dun 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

A TT 32.61 35.53 1.16 34.45 1.08
2 do 43.26 40.12 1.56 41.56 1.85 12.35 45442 44379

di 40.22 37.77 1.84 39.32 1.74
^ 2 16.52 2 2 . 1 1 1.43 19.12 1.69

dun 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

A T T 33.39 36.72 1 . 2 2 35.89 1.38
3 d0 53.68 50.44 2.05 52.32 1.94 9.52 24883 23617

di 37.42 35.79 1.89 36.86 2 . 1 2

d2 8.90 13.77 1 . 8 6 10.82 1.72
dun 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

A TT 31.74 33.98 1.64 32.88 1.58
4 do 56.66 53.33 1.87 54.46 2.19 9.25 14296 13029

di 33.02 31.24 2.36 35.01 1.98
6/2 10.32 15.43 1.47 10.53 2.24

dun 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

A TT 31.66 34.55 1.52 33.42 1.32
CO
05
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Table 4.11. Results for Network III and IV
Problem Assessment

Parameters
Best Results HC

Average
SD 

for HC
SA

Average
SD 

for SA
Best ATT 

Error%
SA Average 

Run Time (secs)
HC Average 

Run Time (secs)
5 1 do 72.91 69.98 1.85 70.64 1.56 2.25 15938 13726

di 20.56 21.47 2.36 22.33 1.85
d2 6.54 8.55 1.88 7.03 2.01
dun 0.00 0.00 0.00 0.00 0.00

A TT 34.60 36.65 1.04 35.82 1.36
6 do 71.21 68.49 2.42 69.94 1.45 5.44 19351 17456

di 20.71 21.66 2.16 21.12 1.54
d2 8.08 9.85 1.81 8.94 1.98

dun 0.00 0.00 0.00 0.00 0.00
A TT 35.68 37.43 1.52 37.26 1.23

7 do 74.82 70.21 1.76 72.24 2.33 5.10 14371 12564
di 18.94 16.45 1.82 17.82 2.13
(i2 6.24 13.34 1.92 10.56 1.99
dun 0.00 0.00 0.00 0.00 0.00

A TT 32.33 35.78 1.29 34.12 1.68
8 d0 76.17 71.89 1.78 73.34 1.78 4.71 12018 10878

di 18.77 17.46 1.84 17.32 1.67
d2 5.06 10.65 1.84 9.34 2.31

dun 0.00 0.00 0.00 0.00 0.00
A TT 32.21 36.98 1.61 35.17 1.62
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Table 4 .12. Results for Network V and VI
Problem Assessment Best Results HC SD SA SD Best ATT SA Average HC Average

Parameters Average for HC Average for SA Error% Run Time (secs) Run Time (secs)
9 do 78.35 74.62 1.82 76.51 1.63 4.60 49538 47326

di 16.96 15.33 2.02 17.24 1.44
2̂ 4.69 10.05 1.67 6.25 1.95

dun 0.00 0.00 0.00 0.00 0.00
A TT 29.77 32.15 1.06 31.41 1.22

10 do 73.58 70.64 1.76 71.92 1.43 5.31 15550 13412
di 22.52 20.83 1.84 21.49 1.64
2̂ 3.90 8.53 1.68 6.59 1.48

dun 0.00 0.00 0.00 0.00 0.00
A TT 29.97 33.07 1.24 32.15 1.25

11 do 75.13 71.48 1.72 72.55 1.88 5.72 20058 18193
di 19.43 18.29 1.58 20.34 1.79
d2 5.44 10.23 1.91 7.11 2.13
dun 0.00 0.00 0.00 0.00 0.00

A TT 27.92 31.87 1.11 29.14 1.06
12 do 75.11 71.89 2.14 73.45 1.97 5.45 14656 12318

di 20.96 18.44 2.36 19.56 1.98
2̂ 3.93 9.67 1.89 6.99 1.94

dun 0.00 0.00 0.00 0.00 0.00
A TT 27.85 30.71 1.13 28.97 1.68
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Table 4.13. Make-Small-Change Procedure Tests
Network Route Set Condition Feasible

Fraction
Time

(milliseconds)
Mandl’s Network 4 routes, minimum 2 nodes and maximum 8 nodes per route 

8 routes, minimum 2 nodes and maximum 8 nodes per route
1 / 7
1 / 4

0.020310
0.012255

70 nodes and 175 links 15 routes, minimum 2 nodes and maximum 17 nodes per route 
35 routes, minimum 10 nodes and maximum 30 nodes per route

1 /  22 
1 /  12

0.064868
0.029962

70 nodes and 245 links 15 routes, minimum 2 nodes and maximum 13 nodes per route 
44 routes, minimum 10 nodes and maximum 30 nodes per route

1 /  21 
1 /  10

0.059565
0.025583

110 nodes and 275 links 25 routes, minimum 2 nodes and maximum 29 nodes per route 
56 routes, minimum 10 nodes and maximum 22 nodes per route

1 /  31 
1 /  19

0.096923
0.058643

110 nodes and 385 links 56 routes, minimum 2 nodes and maximum 19 nodes per route 
80 routes, minimum 10 nodes and maximum 22 nodes per route

1 /  24 
1 /  15

0.071132
0.041556

130 nodes and 325 links 60 routes, minimum 2 nodes and maximum 21 nodes per route 
98 routes, minimum 12 nodes and maximum 25 nodes per route

1 /  28 
1 /  18

0.081037
0.044735

130 nodes and 455 links 60 routes, minimum 2 nodes and maximum 20 nodes per route 
106 routes, minimum 12 nodes and maximum 25 nodes per route

1 /  27 
1 /  16

0.079515
0.042464

CD
CD
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route set is produced. Clearly, the efficiency of the Make-Small-Change 

procedure can be assessed by counting the number of iterations required 

before connectivity is achieved. Here we examine the average number 

of iterations needed in order for each new feasible route set to be gen

erated. To do this we examine single runs of the HC algorithm on our 

problem instances. The results are presented in Table 4.13. Column 

seven of the table records the average run time required, per solution, 

for the Make-Small-Change routine to produce a feasible solution.

From the experimental results, we can observe some interesting pat

terns: the efficiency of the Make-Small-Change routine appears to im

prove with increasing numbers of routes in a route set and also when 

the maximum and minimum number of nodes allowed per route is in

creased. This is perhaps not a surprising result. More routes and longer 

routes introduce more scope for redundancy.

______ Table 4.14. Experimental Parameters II_______
Situation Test Problem HC

Parameters
SA

Parameters
I 1 1000

Iterations
P0 = 0.9 
Pf  = 0.1 

M  = F  =  10 
L =  100

II 1 10000
Iterations

P0 = 0.99 
P f  = 0.01 

M  =  F  = 100 
L =  100

III 2 1000
Iterations

P0 =  0.9 
Pf = 0.1 

M  = F  =  10 
L = 100

IV 2 10000
Iterations

P0 = 0.99 
Pf = 0.01 

M  = F  =  100 
L = 100



Table 4.15. Results for Different Cooling Schedu
Situation Assessment

Parameters
Best Results HC

Average
SA

Average
SA Average 

Run Time (secs)
HC Average 

Run Time (secs)
I do 32.41 30.12 31.21 402 378

di 38.33 37.83 38.05
d2 29.26 32.05 30.74
dun 0.00 0.00 0.00

A TT 38.43 40.31 39.89
II do 44.06 42.54 43.27 3969 3777

di 38.11 36.28 37.64
d2 17.83 21.18 19.09
dun 0.00 0.00 0.00

A TT 35.49 37.43 36.54
III do 24.18 22.56 23.33 442 423

di 39.14 37.79 39.02
d2 36.68 39.65 37.65

dun 0.00 0.00 0.00
A TT 39.47 41.34 39.98

IV do
di
d2
dun

A TT

36.78
37.77
25.45
0.00
36.69

34.43
35.45
30.12
0.00
38.09

35.36
36.82
27.82 
0.00 
37.21

4563 4398

e and Temperature Choices
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As mentioned before, the number of iterations for each HC and SA 

experiments and the cooling schedule for the SA was chosen to ensure 

good solutions in reasonable run times. However, it is clear that chang

ing these parameters may effect the quality of the results obtained. In 

particular longer run times and slower cooling schedules are likely to 

produce better results. In order to show the effect, we use different 

parameter choices to test Problems 1 and 2 in Table 4.8. Similar to 

the above experiments, we also use 10 runs and record the values of 

the assessment parameters for the best solutions, average value for HC 

and SA and average run time for each algorithm. The experimental 

parameters and the results can be seen in Table 4.14 and 4.15.

From the the above results obtained by different numbers of itera

tions, cooling schedules and temperature choices, it is clear that longer 

run times and slower cooling schedules produce better results. This 

shows that there is a trade-off between run time and solution quality.

4.4 Summary

In this chapter, we have presented a framework for solving the UTRP, 

consisting of the following components: a representation for the prob

lem, an initialization procedure to construct initial route sets, and 

a Make-Small-Change routine to generate neighbourhood moves. To 

test our techniques, we have implemented two simple algorithms: hill- 

climbing and simulated annealing, and embedded their simple search 

mechanisms into our metaheuristic framework. Furthermore, we have 

demonstrated the effectiveness of our scheme, by beating previously 

published results for the only benchmark problem we have been able to 

locate. In addition, the potential for solving larger problem instances
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has been explored. We have also demonstrated the effectiveness of 

our Make-Small-Change procedure to generate feasible solutions to the 

UTRP. Finally, we have demonstrated the inevitable trade-off that oc

curs between run time and solution quality.



Chapter 5

A SIMPLE 

MULTI-OBJECTIVE 

OPTIMIZATION 

ALGORITHM FOR THE UTRP

The urban transit routing problem is an NP-Hard, highly constrained, 

multi-objective problem. In this chapter (based on the work published 

in [66]), we propose a simple evolutionary multi-objective optimization 

technique to solve the UTRP. Firstly we investigate an improved route 

set initialization procedure, which can be used in our simple multi

objective optimization algorithm instead of the previous one. Sec

ondly we briefly introduce the idea of multi-objective optimization, then 

present our two key objectives, which are to minimize both passenger 

costs and operator costs. Following this, we describe a simple multi

objective optimization algorithm for the UTRP, then present experi

mental results obtained using the Mandl’s benchmark data and some 

larger networks generated by ourselves.

104



Section 5.1. Improving the Route Set Initialization Procedure 105

5.1 Improving the Route Set Initialization Procedure

Our metaheuristic approach (introduced in Chapter 4), requires only a 

single initial route set to seed both hill-climbing and simulated anneal

ing. For this reason even if an efficient initialization procedure is used, 

we would not expect the performance of our metaheuristic approach to 

be improved remarkably. However, in our simple multi-objective opti

mization algorithm (introduced later on), the initialization procedure 

is required to generate many initial feasible route sets. Hence it is clear 

that our multi-objective approach may benefit from a more efficient 

route set initialization procedure. Before considering the improvement 

of the route set initialization procedure, however, we will discuss some 

important issues relating to route set quality. We are particularly in

terested in assessing route sets for their level of infeasibility, i.e., how 

“close” a route set is to being “feasible” . Following this discussion, 

we present a modified initialization routine, and finally we will com

pare it with the previous procedure used. Our comparisons include 

an assessment of the quality of the route sets, in terms of the propor

tion of feasible and “almost feasible” route sets generated by the two 

initialization procedures.

5.1.1 Assessing the Extent of Infeasibility of A Route Set

Recall that a feasible route set must contain every node present in the 

original transit network and provide passengers with travel routes from 

every source to every destination. Infeasible route sets will have one 

or more nodes missing, or some of the routes will not be connected to 

the rest of the framework. For our purposes though, infeasible route 

sets may still be useful, if they are easily made feasible by our Make-



Section 5.1. Improving the Route Set Initialization Procedure 106

Small-Change routine (introduced in Section 4.1.4). For this reason we 

are interested in assessing the level of infeasibility, and we consider this 

issue next.

We use a simple measure to assess the level of infeasibility - we 

count the number of disconnected components in the graph obtained 

by superimposing all the routes in a route set. A feasible route set will 

consist of just one component, containing every node. Infeasible route 

sets will be made up of two or more components, where each component 

consists either of one or more routes, or of an individual node which 

does not occur in any route. The procedure for checking begins by first 

identifying all the individual connected components, then every node 

of in the transit network is checked to see whether it is missing from 

the route set. Finally, the total number of individual components and 

missing nodes is accumulated to give us the number of components for 

the infeasible route set.

For example, Figure 5.1 illustrates a simple 5 nodes and 7 links tran

sit network, and Figures 5.2 and 5.3 show two networks constructed by 

overlaying infeasible route sets based on the transit network. Both net

works are in two components, but Figure 5.2 contains all nodes included 

in the transit network, while Figure 5.3 has a connected component and 

an isolated node, absent from the route network.

F igure  5.1. 5 Nodes and 7 Links Transit Network
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F igure  5.2. 2-component Infeasible Route Set Network I

F igu re  5.3. 2-component Infeasible Route Set Network II

Through the above description, it is clear that the number of com

ponents for a infeasible route set can be used to evaluate the degree 

of the infeasibility of that route set: assuming that the more compo

nents it has, the more difficult it will be to make it feasible. Thus, a 

2-component infeasible route set should be relatively easy to convert. 

We will a call 2-component infeasible route set a “potentially feasible 

route set” .

5.1.2 An Improved Route Set Initialization Procedure

As explained before, once our metaheuristic approach has generated a 

(random) route set, the Feasibility Check procedure is used to check 

the feasibility of the route set. If a route set is not feasible, then the 

Make-Small-Change procedure is utilized repeatedly until a feasible 

route set is obtained. It would appear that the successful generation
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of a feasible route set relies heavily on the two procedures: Feasibil

ity Check and the Make-Small-Change. On the other hand, the initial 

route set construction procedure guarantees that the individual routes 

are connected paths with no cycles or backtracks. Nevertheless, the 

collective feasibility of the route set as a whole is not considered at this 

stage. It is our conjecture that if we use an initial route set construc

tion procedure capable of generating a high proportion of feasible and 

“potentially feasible” route sets, the initialization procedure as a whole 

should be more efficient, with fewer applications of the Feasibility Check 

and Make-Small-Change procedures needed. We will now consider an 

alternative route set construction procedure: Initialization Procedure 

II, based on the original version called Initialization Procedure I  (see 

details in Section 4.1.2.)

In order to consider connectivity explicitly during the construction 

phase, and for the purpose of adding all nodes into the initial route 

set, a new initialization procedure is presented in Algorithm 10. Here, 

routes are constructed one at a time as before. However, this time we 

ensure the connectivity of the route set. Once the first route has been 

constructed, we will choose the start node of subsequent routes from 

the set of nodes present in previously constructed routes. Given that for 

two routes to be connected they must have at least one node in common, 

we can ensure the connectivity of the entire route set in this way. In 

addition, when selecting the next node for a route under construction, 

the new procedure favours nodes that do not already appear in the 

route set.
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Algorithm  10 Initialization Procedure II
Parameters: number of routes, minimum and maximum number of
nodes for routes
Begin
M ain  loop
repeat

Route length selection:
Choose a length for the route between minimum and maximum 
number of nodes at random 
In ner Loop 
repeat

S tar t  node selection:
If this is the first iteration of the loop, then  randomly choose 
any node as the start node,
Else Randomly choose a node from the previous route as a start 
node
label this node as the “previous node”
N ext node selection:
Construct a node set consisting of all nodes directly connected 
to “previous node” that have not been selected so far for any 
route.
If this node set is not empty, choose a node from this set at 
random
Else construct a node set consisting of all nodes directly con
nected to “previous node” that have not been selected for the 
current route.
If this node set is not empty, choose a node from this set at 
random
Else invert the order of the route and repeat the N e x t node 
selection
If such route can not reach the route length, then  delete this 
route and repeat Start node selection  

until route length is reached 
until number of routes is reached 
Output an initialization route set

5.1.3 Comparison Experiments

It is clear that Initialization Procedure I  is a very basic method, likely 

to produce unconnected route sets with missing nodes. We attempt 

to address these issues in Initialization Procedure II, by providing en

hancements to improve the chances of route set connectivity, and reduce
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the likelihood of missing nodes. Nevertheless it is important to estab

lish the relative success of these routines empirically using comparison 

experiments.

For these experiments, seven data sets were used, and for each net

work, the two initialization procedures were each set up to produce 

10,000 route sets under various user-selected constraints. The number 

of feasible route sets (1-component route sets) and “potentially feasible 

route sets” (2-component route sets) were then recorded for compar

ison. The constraints applied when generating the route sets include 

the number of routes and the maximum and minimum number of nodes 

for each route. The experimental conditions are summarized in Table 

5.1. The results of the runs are shown in Figures 5.4, 5.5, 5.6, 5.7, 5.8, 

5.9, 5.10 (IP-I, IP-II represents the Initialization Procedure I, II.)

Table 5.1. Experimental Conditions
Problem Network Number of 

Routes
Number of 

Nodes in Route
I Mandl’s network 8 2-8
II 70 nodes and 175 links 35 2-17
III 70 nodes and 245 links 15 10-30
IV 110 nodes and 275 links 55 2-29
V 110 nodes and 385 links 56 10-22
VI 130 nodes and 325 links 98 2-21
VII 130 nodes and 455 links 60 12-25

For each experimental result, it is clear that Initialization Proce

dure II  can produce more good route sets (feasible route sets plus 

2-component route sets) and feasible route sets than Initialization Pro

cedure I. At the same time, for Initialization Procedure 7, the overall 

percentage of good route sets over all 7 problem instances is 71.80% 

while the the overall percentage of feasible route sets over all 7 problem 

instances is 49.77%. For Initialization Procedure 77, the overall percent-
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age of good route sets over all 7 problem instances is 92.48% while the 

the overall percentage of feasible route sets over all 7 problem instances 

is 65.93%. The running time for generating 10000 route sets for each 

initialization procedure in different situations is also recoded (see Table 

5.2). From Table 5.2 it would appear that the running time for Ini

tialization Procedure II  is slightly shorter than Initialization Procedure

I. To sum up, Initialization Procedure II performs best of all: it can 

produce more feasible route sets with a shorter running time.

T able 5.2. Running Time Results
Problem IP-I (millisecs) IP-II (millisecs)
I 5412 5125
II 358844 274735
III 92782 87125
IV 2700943 2371100
V 1331257 1260163
VI 5065789 4181244
VII 2796938 2568843

In conclusion, we have shown that the improved route set initializa

tion procedure can make a significant difference. Thus we will use the 

improved version for our multi-objective work in this chapter.
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5.2 Introduction to Multi-Objective Optimization

Real-world problems often have multiple conflicting objectives. For 

example, for the UTNDP, the operators would ideally like to satisfy 

every passenger’s requirements, but they also need to scrutinize the cost 

of providing the service. For the UTRP there is no single solution that 

is the best when measured on all objectives. Problems such as these 

are examples of a special class of optimization problem called multi

objective optimization problems. The question is, what is an optimal 

solution for a multi-objective problem? In general, it is called a Pareto 

optimal solution if there exists no other feasible solution which would 

decrease some objectives (assuming a minimization problem) without 

causing a simultaneous increase in at least one other objective [24].

With this definition of optimality, we usually find several trade

off solutions. These solutions are called the Pareto optimal set (after 

Vilfredo Pareto [84]), or the Pareto optimal front for the plot of the 

vectors corresponding to these solutions. Pareto-optimal solutions are 

non-dominated solutions in the sense that it is not possible to improve 

the value of any one of the objectives in such a solution, without simul

taneously degrading the quality of one or more of the other objectives 

in the vector [28]. In that sense, the search for an optimal solution has 

fundamentally changed from what we see in the case of single-objective 

problems. The task of solving multi-objective optimization problems 

is called multi-objective optimization. Since users generally need only 

one solution from the set of optimal trade-off solutions, solving multi

objective optimization problems can be seen as a combination of both 

searching and decision-making [55].

Through the literature review, we have discovered very few research
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papers on the use of multi-objective optimization techniques for the 

UTRP. Among those that exist, Ceder and Israeli [56] introduced a 

complex seven-stage approach, which includes several steps to create 

routes, identify transfers and calculate vehicle frequencies. A number 

of objectives such as travel time, waiting time, empty space and fleet 

size were then identified, and a set of multi-objective tradeoff solutions 

is presented to a human decision maker. Fan and Machemehl [37] also 

proposed a multi-objective decision-making approach to the UTNDP. 

Their basic idea is to experiment with different values for the weights of 

three objective functions, in order to obtain a range of non-dominated 

results from which a human decision maker can select a suitable com

promise solution. Although this multi-objective optimization method 

is able to find some good solutions to the UTNDP, determining suitable 

values for the weights requires a large number of experiments, which can 

be very time consuming. Thus a generic and computationally efficient 

multi-objective optimization method to solve the UTNDP is desirable.

5.3 Our Two Key Objectives

The urban transit routing problem (UTRP) is a multi-objective prob

lem which usually involves several objectives, for example the total 

travel time and the total transfer time from the passenger’s point of 

view, and the number of routes and the total sum of all the bus route 

lengths from the operator’s point of view. In reality, transport plan

ners have to develop transit routes based on the practical requirements 

specified by the various stakeholders, for example bus companies and 

local government. This can involve the simultaneous consideration of 

multiple objectives as well as multiple constraints.
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In this chapter we extend our simple model from Chapter 3, to cover 

operator costs and passenger costs simultaneously. As we have already 

established, passengers normally prefer to travel to their destination 

in the shortest possible time or along the shortest path. At the same 

time, passengers want the number of vehicle transfers kept to a mini

mum, since changing busses or trains involves extra waiting time and 

inconvenience.

From the operators’ perspective, running costs will be an important 

consideration, which include the number of buses and drivers required 

and the total number of miles covered. In the real world, a certain level 

of service frequency will be required on each transit route to guarantee 

a reasonable quality of service for passengers (e.g., to ensure that pas

sengers are not waiting excessive times for transfers). In order to satisfy 

the basic requirements, the operators should have sufficient vehicles and 

drivers to serve passengers on different transit routes. For example, if 

there are two transit routes, on which the required frequencies are the 

same but where one route is longer than the other, the operator will 

need to provide more buses and drivers on the longer route than the 

short route if the same level of service is to be maintained. At the 

same time, the fuel costs for the longer route will be higher than for 

the short route. Furthermore, it is clear that an important aspect of 

the operator’s costs is related to the accumulated lengths of all the 

routes they operate. We will call this accumulated route length the 

“total-route-length” , and use it as the operators’ objective in our sim

ple multi-objective model; passenger costs and operator costs will be 

traded off as dual objectives by our multi-objective evolutionary algo

rithm. At the same time, our problem constraints will ensure that all
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the demand is met and a reasonable quality of service is maintained, 

so that only feasible solutions will be generated (avoiding the solution 

having zero passenger and operator costs for a service with no routes 

in the route set). The objective function for passenger costs, Cp in 

our multi-objective model is the same as that used in our single objec

tive approach (see Section 3.1). The formulation for operators’ costs is 

shown as follows:

• Let r denote the total number of routes in the route set.

• Let Li denote the length of route I

r

Operator s' costs : Co = (5-3.1)
1 = 1

5.4 A Simple Multi-Objective Optimization Algorithm for the 

UTRP

We present the Simple Multi-Objective Optimization (SMO) algorithm 

to solve our UTRP, shown as Algorithm 11. This scheme is based on 

the SEAMO algorithm [78,98], but without the crossover operator.

Our SMO relies on the Route Set Initialization Procedure II  to gen

erate the initial population of route sets (introduced in Section 5.1.2), 

the Make-Small-Change procedure to modify an existing route set and 

the Feasibility-Check procedure to ensure that a feasible route set is 

obtained (introduced in Section 4.1).

In our algorithm, firstly the number of initial feasible route sets de

fined by the user is generated by the Route Set Initialization Procedure

II. At the same time, best route sets for passenger and operator costs
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A lgorithm  11 Simple Multi-Objective Optimization (SMO)
Generate initial population of feasible route sets.
Calculate passenger and operator costs for each route set.
Record the best-route-set-so-far for both objectives, 
repeat

for each route set in the population
Apply the Make-Small-Change procedure and Feasibility-Check 
procedure to produce a feasible offspring 
if offspring is a duplicate 
then  delete offspring
elseif offspring improves on either best-so-far 
then offspring replaces parent and best-so-far updated 
elseif offspring dominates parent 
then offspring replaces parent
elseif offspring and parent are mutually non-dominated
then find an individual in the population that is dominated by the
offspring and replace it with the offspring.
endif
endfor

until the stopping condition is satisfied
print all non-dominated solutions in the final population.

are recorded. Secondly at each iteration of the loop, the Make-Small- 

Change and Feasibility-Check procedures are used to produce a feasible 

offspring. Next, the offspring is checked to see whether it is a duplicate 

(it has the same values for the two objective functions as an existing 

solution), and if so, then it is deleted. Next, if the offspring survives 

the duplicate test, its objective values are tested to see whether either 

improve on the “best-so-far” recorded for either passenger or operator 

costs. If a better value is found for either objective than has previously 

been discovered by the algorithm, the offspring will replace its parent 

regardless of the second objective. In this circumstance, the “best- 

so-far” is updated for the appropriate objective. Next, provided the 

offspring has not been deleted or replaced its parent, it will be tested 

to see whether it dominates its parent. If it does, it will replace the
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parent. Finally, if the offspring has survived but has not passed any of 

the previous tests, the algorithm will check to see whether it and its 

parent are mutually non-dominated. If this is the case, an individual in 

the population dominated by the offspring will be found and replaced 

by the offspring. Offspring will be generated and tested in this way 

until the number of iterations defined by the user is achieved, then all 

non-dominated solutions will be returned as output.

5.5 Experimental Results

First we test the SMO algorithm on Mandl’s Swiss transit network [73], 

then compare the results with those previously published in [36] (intro

duced in Section 4.3.3). Following this, we use the SMO algorithm and 

the metaheuristic approach published in [36] (introduced in Chapter 4) 

on these larger artificial instance of the UTRP (introduced in Section 

4.3.4), where we rely on lower bound costs (see Table 4.7) to evaluate 

the performance of the SMO algorithm.

5.5.1 Experiments on Mandl’s Network

In our experiments, similar to Chapter 4, we considered four separate 

scenarios for Mandl’s network, namely route sets consisting of 4 routes, 

6 routes, 7 routes and 8 routes, with a maximum of 8 nodes in each 

route. For each scenario, we recorded the results from 10 replicate runs 

(each seeded with different random numbers) using a population size 

of 200. The number of iterations of the multi-objective algorithm used 

in each experimental run for 4, 6, 7, 8 routes, was 1000, 3000, 4000, 

5000 respectively. For each set of experimental runs, we accumulated 

the results and isolated the non-dominated solutions, trading off pas
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senger cost Cp against the operator cost Co- Finally, we validated our 

solutions against our recently published results [36].

Table 5.3 shows the best route sets obtained for passengers and op

erators respectively, and compromise route sets (both objective values 

are “in the middle” , which are not best for passengers or operators) for 

each of the 4 scenario on Mandl’s network.

Note that many routes listed in for operators in Table 5.3 consist 

simply of source and destination nodes. Clearly, such short routes 

would probably prove uneconomic, in practice. Nevertheless, these 2 

node routes are efficient in the context of our problem formulation, 

which uses a simplified objective function for the operators cost (the 

sum of the route lengths), and imposes a fixed number of routes in the 

route set (to comply with constraints used by other researchers). The 

present work can be viewed as a simple proof-of-concept study, and a 

more sophisticated formulation from the operators’ viewpoint, would be 

needed to generate routes that comply with the practical requirements 

of bus operators.

As before, the following parameters [20] are used to evaluate our 

best route sets found by the multi-objective optimization algorithm 

from passengers’ perspective:

• do - Percentage demand satisfied without any transfers.

• di - Percentage demand satisfied with one transfer.

• o?2 - Percentage demand satisfied with two transfers.

• A T T  - Average travel time (minutes per passenger), including a

penalty of 5 minutes per transfer.



Table 5.3. Routes Obtained Using the SMO Algorithm on Mandl’s Network
Route No. Best Routes 

for Passengers
Compromise Routes Best Routes 

for Operators
4 13-12-10-9-7-5-3-4

1-3-11-10-9-6-14-8
10-9-7-5-2-1-0
4-1-2-5-14-6-9

4-3-5-14-6
13-12-10-9-7-5-3-4
0-1-2-5-7-9-10-11

9-6-14-8

1-2-5-7-14-6-9-10 
14-8 

13-12-10-11 
4-3-1-0

6 12-10-9-7-5-2-1-0
6-14-5-2-1-3-4

9-7-5-3-4
12-13-9-10-11-3-1-0

9-6-14-8
11-10-12-13

9-7-5-3-4
9-13-12
3-1-2

1-2-5-14-6
8-14-6-9

0-1-2-5-7-9-10-11

1-2-5-7-14-6-9
8-14
1-0

13-12-10-9
1-3-4
10-11

7 6-14-7
13-12-10-11-3-1-2

11-10-9-6-14-8
13-9-6-14-5-3-4
9-7-5-3-4-1-2

0-1-2-5-7-9-10-12
3-1-0

9-7-5-2-1-0
9-7-5-3-4-1-2

11-10-9
7-5-14-8
2-1-3-11

8-14-6-9-10-12-13
2-5-14-6-9

8-14
10-11
3-4

13-12-10
1-3

0-1-2-5-7-14-6-9
10-9

8 I-3-11-10-12-13-9 
11-10-12-13-9-6-14-5

4-1-2-5-7-14-8
0-1-2-5-7-9-10-12

11-10-12-13-9-7-5-3
3-5-14-8

4-3-5-7-9-10-12
II-10-9-6-14-5-2-1

9-13-12
1-4

8-14-7-5-2-1-3-4
12-10-11

14-6-9-10-11
13-12-10-9-7-5-3-11

6-14-7-5-2-1-0
0-1-2-5-7-9-12

3-1
2-1
1-0

12-10
3-4
14-8

11-10-9-6-14-7-5-2
12-13
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In addition, we also use the following parameter to evaluate our best 

route sets from operators’ perspective:

• Co - Operator cost function value (sum of the lengths of all the 

routes in the route set)

The values of these parameters for the route sets from Table 5.3 

are presented in Table 5.4. To validate these results, we compare them 

against our previously published results [36] for the single objective 

situation (minimizing passenger costs). In addition, we also compare 

our results with the lower bound result of the average travel time (ATT) 

on Mandl’s network (introduced in Section 3.3). The difference between 

the ATT of best route sets for passengers obtained and the “ideal” ATT 

(i.e., lower bound) is quoted as a percentage of the “ideal” quantity in 

our results called “ATT-error of best routes for passenger” .

From Table 5.4, it is clear that a number of good route sets has 

been found from the passengers’ point of view. The parameter values 

are very close to our previously published results for the single objec

tive problem. However, the operator’s costs in the “best for passenger” 

column, are consistently better than the corresponding costs obtained 

using our previous single objective approach. For the best route sets 

from the operator’s perspective, it is reasonable that the lowest opera

tor cost will correspond with the highest passenger’s cost. In general, 

our multi-objective optimization algorithm can find good solutions to 

Mandl’s network problem. In particular, assessment parameter val

ues for the best route sets relative to the passenger’s costs (such as do 

and ATT), obtained by the SMO are close to our previously published 

results. We calculated the percentage difference of the SMO results 

relative to the previously published results, and found these values to



Table 5.4. The Best Results Obtained by Our SMO Algorithm on Mandl’s Network (1) from the Passenger’s Point of View 
and (2) from the Operator’s Point of View and Compromise Routes

Routes
No.

Parameters Previously 
Published [36]

Best Routes 
for Passenger

Compromise Routes Best Routes 
for Operator

ATT Error% of 
best routes for passenger

4 d0 93.26 90.88 76.72 61.08 6.39
di 6.74 8.35 10.34 36.61
d2 0.00 0.77 12.94 2.31

A TT 11.37 10.65 12.55 13.88
Co 147 126 101 63

6 do 91.52 93.19 81.43 66.09 4.50
di 8.48 6.23 11.38 30.38
d2 0.00 0.58 7.19 3.53

A TT 10.48 10.46 11.62 13.34
Co 215 148 112 63

7 do 93.32 92.55 80.12 65.64 4.30
di 6.36 6.68 10.83 26.20
d2 0.32 0.77 9.05 8.16

A TT 10.42 10.44 11.89 13.54
Co 231 166 121 63

8 do
di
d2

A TT
Co

94.54
5.46
0.00
10.36
283

91.33
8.67
0.00
10.45
245

78.66
9.45
11.89
12.15
143

59.92
21.97
18.11
13.57

63

4.40

Section 
5.5. 

E
xperim

ental 
R

esults 
123



Section 5.5. Experimental Results 124

lie between 0.83% and 3.40% for do, and between 0.19% and 6.33% for 

ATT. On the other hand, for the best route sets relative to the op

erator’s costs, the total length of these best route sets are the same, 

namely 63 minutes (evaluated by bus travel time). Non-dominated 

trade-off solutions from 10 runs for the 4-route scenario can be seen in 

Figure 5.11.

13.5

-55 12.5

CD

0 0

10.5
120 13080 90 100

Route set total length
11060 70

Figure 5.11. Non-dominated Solutions from 10 Runs for 4-route Sce
nario for Mandl’s Network (route length and travel time both measured 
in minutes)

5.5.2 Scalability Experiments

In our scalability experiments, 6 larger networks (see Table 4.6) were 

tested by 12 experimental conditions (see Table 4.8). For each ex

periment, we recorded the results from 10 replicate runs (each seeded 

with different random numbers) using a population size of 100. The 

number of iterations of the multi-objective algorithm used in each ex

perimental run was set to 100 and 200 respectively. We chose a smaller
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number of iterations than Mandl’s network, because of the long run 

times. The problem of run time for larger networks will be discussed 

in Chapter 6. Furthermore, we compare the results obtained using our 

multi-objective algorithm with those obtained using the single objec

tive approach introduced in Chapter 4. We also assess the quality of 

our results obtained using our multi-objective algorithm by comparing 

the average travel time (ATT) per passenger with the lower bound on 

the ATT (see Table 4.7). The difference between the ATT and the 

lower bound is expressed as a percentage of the lower bound. These 

comparison results can be seen in Table 5.5, 5.6, 5.7 (SMO denotes the 

simple multi-objective optimization algorithm).

From these results, it is clear that our multi-objective optimization 

algorithm can also find good solutions for these larger network prob

lems. For example, considering assessment parameter values (such as 

do and ATT) for the best route sets relative to the passenger’s costs 

for the 12 scenarios, the percentage difference between do obtained by 

our SMO and do obtained by the single objective method are between

0.88% and 2.93%. At the same time, the percentage difference between 

ATT obtained by the SMO and ATT obtained by the single objective 

method are between 0.59% and 5.62%. Note - percentage difference:

|| (parameter sm o—parameter nngieobjecti-oe) IIx 10 0 /p ar ameter singieobjective



Table 5.5. Comparison Results for 70 Nodes Networ c Problem
Network Number of 

Routes
Number of 

Nodes in Route
Parameters Best Single 

Objective
Best SMO 
Passenger

Best SMO 
Operator

Lower Bound 
on ATT

ATT
Error%

70 nodes 35 routes 2 - 17 do 53.70 52.46 36.19 29.72 12.15
and di 34.86 33.52 35.64

175 links G?2 11.44 14.02 28.17
A TT 32.61 33.33 38.86
Co 1828 1551 722

70 nodes 15 routes 10-30 do 43.26 42.18 35.27 29.72 14.37
and di 40.22 40.01 34.61

175 links G?2 16.52 17.81 30.12
A TT 33.39 33.99 39.84
Co 1329 1216 734

70 nodes 44 routes 2 - 13 do 53.68 52.41 36.12 28.98 12.22
and di 37.42 36.82 36.27

245 links ^2 8.90 10.77 27.61
A TT 31.74 32.52 37.24
Co 3476 3324 1675

70 nodes 15 routes 10-30 do 56.66 55.43 37.21 28.98 11.66
and di 33.02 32.14 32.65

245 links f̂ 2 10.32 12.43 30.14 '
A TT 31.66 32.36 37.88
Co 2297 2184 1369



Table 5.6. Comparison Results for 110 Nodes Network Problem
Network Number of 

Routes
Number of 

Nodes in Route
Parameters Best Single 

Objective
Best SMO 
Passenger

Best SMO 
Operator

Lower Bound 
on ATT

ATT
Error%

110 nodes 55 routes 2 - 29 d0 72.91 71.26 48.62 33.84 4.28
and d! 20.56 18.88 32.45

275 links d2 6.54 9.86 18.93
A TT 34.60 35.29 38.36
Co 2986 2823 1077

110 nodes 56 routes 10-22 do 71.21 70.01 46.97 33.84 6.06
and di 20.71 19.21 31.84

275 links d2 8.08 10.78 21.19
A TT 35.68 35.89 38.55
Co 2378 2257 1265

110 nodes 80 routes 2 - 19 do 74.82 72.63 50.44 30.76 9.62
and di 18.94 17.38 35.65

385 links 2̂ 6.24 9.99 13.91
A TT 32.33 33.72 37.84
Co 4399 4317 2921

110 nodes 56 routes 10-22 do 76.17 75.11 51.79 30.76 10.60
and di 18.77 16.98 33.64

385 links d2 5.06 7.91 14.57
A TT 32.21 34.02 37.15
Co 4035 3966 3023
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Table 5.7. Comparison Results for 130 Nodes Network Problem
Network Number of 

Routes
Number of 

Nodes in Route
Parameters Best Single 

Objective
Best SMO 
Passenger

Best SMO 
Operator

Lower Bound 
on ATT

ATT
Error%

130 nodes 98 routes 2- 21 d0 78.35 77.66 52.54 28.46 6.89
and di 16.96 15.79 37.33

325 links d2 4.69 6.55 10.13
A TT 29.77 30.42 35.76
Co 3642 3475 2282

130 nodes 60 routes 12-25 do 73.58 72.48 49.75 28.46 9.94
and di 22.52 21.11 35.41

325 links d2 3.90 6.41 14.84
A TT 29.97 31.29 36.16
Co 3911 3802 2468

130 nodes 106 routes 2 - 20 do 75.13 74.24 50.36 26.41 8.56
and di 19.43 18.52 35.77

455 links d2 5.44 7.24 13.87
A TT 27.92 28.67 34.04
Co 3876 3793 2315

130 nodes 60 routes 12 - 25 do 75.11 74.33 51.47 26.41 7.00
and di 20.96 18.94 14.02

455 links d2 3.93 6.73 35.51
ATT 27.85 28.26 33.85
Co 4548 4518 3038
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5.6 Summary

In this chapter, we have presented an improved initialization procedure 

that produces a much higher proportion of feasible and “potentially 

feasible” route sets than the procedure used previously. Furthermore, 

an evolutionary multi-objective optimization algorithm has been pre

sented to solve the UTRP, with the two key objectives, of minimizing 

both passenger costs and operator costs. Through the experiments on 

Mandl’s benchmark data set, and some artificially generated larger data 

sets, we have demonstrated that our method is able to obtain efficient 

route sets which balance the requirements of passengers with those of 

the operator.



Chapter 6

CONCLUSION AND FUTURE 

RESEARCH

In this chapter, the main contributions of our research to the urban 

transit routing problem are summarized, and some ideas for future 

research are presented.

6.1 Conclusion

Through our research on the UTRP, we have learned much about the 

problem itself, particularly the difficulties involved when attempting 

to model the many constraints and practical difficulties that can arise 

in real-world situations. Nevertheless, we believe that we have made 

considerable progress towards establishing a generic model that incor

porates key features of the problem, yet does not overcomplicate mat

ters. In addition, we have created some basic techniques for solving 

the problem, and improved on previously published results. Finally, we 

have produced a problem generator that will create realistic data sets, 

and established some useful parameters and lower bounds on problem 

instances based on common-sense observations.

In more detail, the major contributions of our research on the UTRP

130
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can be summarized as follows:

• We have devised a simple model of the UTRP, based on the 

generic model presented by some previous researchers but extend

ing it with a highly effective objective function for the passenger 

cost. We believe that our objective function is a key factor in the 

success of our metaheuristic techniques.

• We have constructed a new and simple metaheuristic framework 

for solving the UTRP, consisting of the following:

— a representation of candidate route sets,

— an effective feasibility check procedure, to ensure route sets 

comply with given constraints,

— our Make-Small-Change procedure - for (intelligent) neigh

bourhood moves and efficient repair of infeasible solutions,

— simple hill-climbing and simulated annealing techniques to 

fit into the metaheuristic framework.

• We have written software to generate realistic artificial data sets 

to enable researchers to create test data which reflect their own 

requirements, such as the scale of the transit network, the range 

of the travel demand and the level of connectivity.

• We have established a lower bound on the passenger cost, to 

help assess the quality of route sets obtained for new (previously 

untested) data sets.

• We have established various constraints and other properties of 

transit networks and route sets.
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• We have proposed and tested a prototype multi-objective opti

mization algorithm, which trades off operator’s cost against pas

senger’s cost.

6.2 Future Research

As mentioned previously (see Section 3.5), a larger network having 1200 

nodes and 3600 links based on the Beijing bus network has also been 

investigated using our algorithms. Unfortunately, the run time required 

to obtain a suitable solution is much longer than that we had expected. 

Hence, besides considering the computer’s configuration, the efficiency 

of our algorithm also needs to be reviewed.

In our algorithm, we find that the computational bottle-neck is the 

time required to find the number of transfers for each travel path to 

satisfy the demand at each node pair in the network. To do this the 

algorithm needs to determine which parts of each passenger travel path 

belongs to each transit route, which requires that every node in each 

path is checked, giving a run time complexity of 0 (n 3) (where n is 

the number of nodes in the network) for each route set. In order to 

overcome the problem, we propose some improvements. We can either:

1. develop a new and more efficient method for counting the number 

of transfers using the existing model, or

2. we can use a more sophisticated model for the transit network 

and eliminate the need to compute the number of transfers from 

the objective function.

Method 2) would appear to be the easiest option, and for this we 

favour Mandl’s model [73]. On the other hand, Method 1) would allow
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us to maintain our current objective function (with components for 

travel time and number of transfers). For Method 2) the basic idea is 

to add extra nodes and links to the route network so that transfer times 

are included explicitly in the model, and the shortest path algorithm 

can take account of these, along with the travel times along the various 

transit links. For example, in Figure 6.1, two routes ra and make up 

the route network. There are two common nodes for each route in the 

route network. Therefore, if we add the transfer times, a new transit 

network can be established (see Figure 6.2). Let Uj denote the time 

required to traverse the transport link between node i and node j , and 

r  denote the time required to transfer from route ra to route r&.

F ig u re  6.1. Route Network

Based on this model, we assume that passengers will always choose 

to travel on the shortest-time paths in the transit network. Therefore, 

our objective function can be revised with just the travel time (the 

number of transfers is not needed) as follows:

N

M inim ize  : Z = dijOLij (6.2.1)
i,j=i

Where dij denotes the transit demand from node i to node j  (defined
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.14

3a, 4a

3b

'46

F ig u re  6.2. New Transit Network

in terms of the number of passengers wishing to travel between i and 

j)  and OLij is the shortest journey time from % to j  (including transfer 

times). This is clearly more elegant than our current objective function, 

as it does not require (arbitrary) weighting of travel times versus the 

number of transfers. On the other hand, our current objective function 

has produced excellent results, beating some previously best published.

Other possibilities for future work to extend the present contribu

tions include:

• Improve and enhance our metaheuristic framework. As well as 

making the software run faster, as discussed above, we could ex

periment with new types of neighbourhood move which provide a 

mechanism for creating or destroying routes, so that the number 

of routes will not need to be chosen prior to optimization.

• We could also try alternative metaheuristic optimization algo

rithms such as genetic algorithms [54], tabu search [48] or ant 

colony optimization [32]. Some parts of our current metaheuristic 

framework can be readily used in other metaheuristic algorithms,
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for example, the Feasibility Check procedure can be used as an 

external procedure in genetic algorithms or the tabu search to en

sure the feasibility of the route set. At the same time, the Make- 

Small-Change procedure can be regarded as a good “mutation” 

operator for genetic algorithms, as well as suitable neighbourhood 

moves for tabu search and other local search algorithms. However 

designing an efficient “crossover” operator for a genetic algorithm 

provides rather more of a challenge.

• Improve our prototype multi-objective optimization algorithm and 

experiment with the simultaneous optimization of more sophisti

cated objectives such as the number of buses on the routes or the 

utilization percentage (how full the busses are).

• Refine our simple model, in consultation with transport planners, 

and assess the applicability of our techniques to real-world prob

lems. We could also explore how our problem-solving techniques 

could be integrated into commercial software toolkits such as VI

SUM.

A further direction of new research would be to build a simulator 

(to model a public transport system) for testing the route networks 

generated by our techniques. The simulator would allow the user (or 

our program) to input a route network and bus frequencies and mimic 

a given level of service. The simulator could be used to evaluate route 

sets generated by our route design program (or by any other means). 

We could then use these results to assess the validity of the static 

evaluation process employed by our route design program, which could 

help us improve the static evaluation process.
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