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A bstract

Regge poles—the name given to poles of the scattering amplitude in the complex angular 
momentum plane—are of utmost importance in atomic and molecular scattering. We 
investigate various aspects of non-relativistic Regge pole theory, namely, their behaviour 
at low energy, cardinality, and sensitivity to boundary conditions. Upon investigation of 
the former, we find the long-standing conjecture that Regge poles become stable bound 
states for ultra low energy to be true; the proof is achieved for a potential satisfying the 
first moment condition at infinity and whose product with the radial variable is bounded 
near the origin, with the proviso that singular behaviour of the Regge poles may occur. 
It is known that for an analytic potential V  with r2\V(r)\ bounded at the origin and at 
infinity, there are finitely many Regge poles; we demonstrate that this is still the case 
for a compactly supported potential which is not as singular as the Coulomb interaction 
at the origin. This begs the question of whether or not it is possible to explicitly count 
Regge poles. Not only is this a difficult and interesting mathematical problem, but it also 
has implications in atomic physics where total cross-sections are often calculated using 
summations over Regge pole contributions. The author’s attempt at counting Regge poles 
has revealed an unexpected effect on the Regge poles due to boundary conditions: we 
show tha t infinitely many Regge poles go to infinity under nothing more than a change of 
boundary condition, at least for the free particle case.

This work was supported financially by the Engineering and Physical Sciences Research 
Council (EPSRC) between October 2007 and April 2011.
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CHAPTER 1

Introduction

In quantum field theory, quantum chromodynamics (QCD) describes precisely all 
particle interactions at sufficiently short separation distances, whilst Regge (pole) theory 
continues to highlight our lack of dynamical understanding of the strong nuclear force at 
long distances [Cox, 1998, p. 9]. However, it is of fundamental importance to be able 
to derive Regge behaviour within the QCD framework, since the theory of Regge poles 
illuminates the deep connection between very energetic scattering and the spectrum of 
particles and resonances [Kaidalov, 2001]. Despite this, the topic of Regge theory has 
largely been abandoned in high energy particle physics; however, various phenomena in 
atomic and molecular physics have generated substantial interest in the (non-relativistic) 
Regge pole method [Felfli et al., 2008a,b, Sokolovski et al., 2007]. In particular, there has 
been a surge in research into low energy scattering, which has probably been instigated 
by certain physical processes such as cold electron collisions occurring in terrestrial and 
stellar atmospheres [Msezane et al., 2008]; the discovery of superconductivity in several 
of the heavy fermion compounds; and the appearance of a Bose-Einstein condensation 
of Ytterbium [Msezane et al., 2009]. Although this list is certainly incomplete, the 
fact remains tha t an understanding of these processes requires a complete kinematical 
knowledge of very low energy elastic scattering.

The theoretical aspects of low energy elastic scattering are best studied using Regge 
poles since they provide a rigorous definition of resonances. The Regge pole methodology is 
particularly suited to gaining insights into the formation of temporary anion states during 
electron attachment, and this is fundamental to the mechanism by which the scattering 
process deposits energy [Felfli et al., 2008b]. Moreover, the imaginary part of the orbital 
angular momentum can be used to distinguish between the shape resonances and the 
stable bound states of the anions formed as Regge poles in the electron-atom scattering, 
whereby this imaginary part is vastly smaller for the stable bound states [Msezane et al.,
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CHAPTER 1. INTRODUCTION 4

2009]. We will show that low energy bound state formation of the Regge poles found in 
experiment is theoretically consistent by proving that as the energy tends to zero, the 
Regge poles approach the angular momentum eigenvalues of the associated self-adjoint 
Schrodinger operator with zero energy. Original work on the low energy behaviour of 
Regge trajectories was carried out by Macek et al. [2004] and Ovchinnikov et al. [2006], 
in which oscillations in the total cross-sections for proton scattering are studied.

More precisely, we demonstrate this low energy behaviour of Regge poles described 
above for a radial potential with finite first moment at infinity, whose product with the 
radial variable is bounded near the origin. The proof, which uses a re-characterization 
of Regge poles in terms of the zeros of a Wronskian determinant, will be achieved in 
stages since each new case yields results which are used in subsequent generalizations. In 
presenting the theory this way, it becomes clear where the difficulties lie and what methods 
we are to use. Therefore, we initially consider the finite spherical well and then generalize 
to a compactly supported potential. The proof of the former merely uses various standard 
small energy asymptotics, whilst the latter implements an argument involving resolvent 
operators. Consequently, we will be in a position to prove our most general result regarding 
potentials for which r\V(r)\ is bounded in a neighbourhood of the origin and integrable 
at infinity. To do this we employ an integral equation method inspired by Shubova [1989], 
which allows us to write down recursive relations for the solutions; it is then possible to 
study the small energy limit of these solutions and their first derivative. Finally, with a 
diagonal sequence argument, the existence of such limits is established and we conclude 
th a t for our general potential, the associated Regge poles will either approach the angular 
momentum eigenvalues of the zero energy self-adjoint problem, or tend to infinity.

We also consider the issue addressed by Barut and Dilley [1963] of counting Regge 
poles. It was found that for a potential which can be analytically continued into the 
right-half radial plane, with the property tha t r 2\V(r)\ is bounded for r  =  0 and r = oo, 
there are only finitely many Regge poles. An example of such a potential is the so-called 
rational Thomas-Fermi potential, which is given by

- 2 Z
RTF̂  ̂ r ( l  +  a Z 1/3r ) ( l  +  bZ2̂ r 2)  ̂ ^

where Z  is the nuclear charge and a, b are physical constants. The analytic properties of 
the exact Thomas-Fermi potential are notoriously complicated, and so VrTf is most often 
used in practice [Belov et al., 2004]. The Thomas-Fermi model was among the earliest 
attem pts to study the behaviour of atoms with multiple electrons; it made the electron 
density, not the wavefunction, play the central role in atomic theory. This approach is 
important because it underpins the description of all neutral atoms [Spruch, 1991] and 
yields good predictions, even under the most blunt approximations [Broyles, 1961].

We investigate whether there are finitely many or infinitely many Regge poles 
associated with a compactly supported potential, whose absolute value has finite integral. 
In short, we find that for large complex angular momentum (CAM) there are no Regge
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poles, from which we can deduce that in total, there are only finitely many. The idea of the 
proof is to show that the solution with potential is well approximated by the free solution 
for sufficently large CAM; as we shall see, this will suffice only if the asymptotics are locally 
uniform in spatial variable. To achieve this we recycle the idea of using a recursive formula 
for the solution on the support of the potential, and we again take limits. However, we 
will now require fixed energy large CAM asymptotics, and this is not a straightforward 
problem. The complications will essentially arise from Bessel function theory, namely, 
their bounds and asymptotics for complex order.

W ith the various cardinality results in mind, it is desirable to be able to actually count 
Regge poles. Work has been done to this end, see, for example, the excellent book by 
Newton [1964]. In particular, estimates of Regge poles is discussed for analytic potentials 
and for potentials of Yukawa (or screened Coulomb, see bottom of p. 19) type. For our 
‘non-analytic’ purposes, the candidate method for achieving an estimate is as follows: let 
us introduce a parameter 7  E [0,1] into the boundary condition at infintity such that the 
Regge pole problem corresponds to setting 7 = 1. The idea is to establish a correspondence 
between the Regge poles (7 = 1) and the eigenvalues of the self-adjoint problem associated 
with 7  =  0, and hence count the Regge poles by counting these eigenvalues. However, it 
will transpire that there axe infinitely many eigenvalues when 7  E [0,1), which is bad 
news for our proposed approach to counting Regge poles. We do, however, discover 
the remarkable sensitivity of Regge poles to boundary conditions: we prove that for the 
identically zero potential, infinitely many Regge poles come from infinity when the value 
of 7  is changed, by any amount, away from unity. This boundary condition phenomenon 
serves as a good illustration of just how ‘non-self-adjoint’ the Regge pole problem is.

Let us describe the organization of this thesis. Chapter 2 provides an in-depth review 
of non-relativistic Regge theory; this begins with a discussion of the radial Schrodinger 
equation, and continues with the following topics: the scattering amplitude, partial wave 
analysis, the 5-matrix, complex angular momentum, Coulomb scattering, the integral 
form of the scattering amplitude, and a re-characterization of Regge poles in terms of 
a Wronskian determinant alluded to above. In Chapter 3, we provide a more detailed 
account of the paper Hiscox et al. [2010] in which we study the behaviour of Regge 
poles in the very low energy limit. Chapter 4 is concerned with the cardinality of 
Regge poles associated with a compactly supported potential, and Chapter 5 details 
the sensitivity of Regge poles to boundary conditions. Finally, Chapter 6 provides a 
summary of the work and discusses possible directions for future research; in particular, 
we consider the importance of acquiring explicit estimates on the number of Regge poles 
for a given potential energy function. In addition, certain non-standard—at least in the 
case of complex analysis—results used in this thesis are discussed at length in the various 
Appendices; these are results which I believe are important to expatiate, but their inclusion 
in the main body of text would only break the flow.



CHAPTER 2

Regge Theory

The emergence of quantum physics is typically placed in 1900 with the discovery by 
Max Planck that the energy absorbed or em itted by matter is quantized. More precisely, 
Planck observed that the radiation an object emits is proportional to the vibrational 
frequency of that object, with constant of proportionality being a new fundamental 
quantity called Planck’s constant, wdiich is denoted by h. It was subsequently found 
tha t this ‘lumpy’ nature of energy is not constrained to the absorption and emission by 
m atter, but is a much more general law of nature. In 1905 Albert Einstein proposed 
tha t electromagnetic energy also comes in discrete packets—or quanta—of energy, called 
photons. Using Planck’s results he was able to explain the photoelectric effect, namely, 
tha t the energy of the electrons knocked off a metal surface is proportional to the frequency 
v of the incident light, i.e. E  =  hu = huj where h =  h/2ir and uj = 27n/. The most 
persuasive evidence that light is indeed corpuscular emerges from the investigations of 
Arthur Compton (1922). It was found tha t x-rays scattered off a block of paraffin by 
less than 7 r / 2  radians possessed a greater wavelength than the incident radiation; this 
phenomenon is called the Compton effect and is readily explained in terms of an elastic 
collision between two particles, namely, a photon and an electron [Born, 1969, p. 87].

The quantized nature of light is not the only reason for the development of quantum 
theory, there were problems with Rutherford’s picture of the atom in which the negatively 
charged electrons orbit, at any distance, the positively charged nucleus. If the electrons 
were orbiting a central nucleus then they would be accelerating, and thus according to 
classical electrodynamics they would radiate energy. The result of this loss of energy would 
be electrons that spiral into the nucleus in a time of the order 10~ 10 seconds [Bransden and 
Joachain, 1983, p. 27]. From common experience, this is clearly not the case and so classical 
electrodynamics cannot account for the stability of matter. Furthermore, this model does 
not account for the discrete frequencies of radiation emitted by atoms codified in their

6
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so-called spectral lines [Davies and Betts, 2002, p. 4]. These problems were partially 
solved in 1912 by Niels Bohr. With a blend of classical and quantum reasoning, Bohr 
proposed that electrons in an atom can only occupy certain ‘allowed’ orbits at discrete 
distances from the nucleus with specific energies. Moreover, Bohr conjectured that there 
is no continuous radiation of energy from the electrons, but only transitions between these 
discrete orbits can give rise to radiation. If a photon of frequency v is absorbed by an 
atom, then by Einstein’s formula and the conservation of energy we have Bohr’s frequency 
relation hv — E f  — E{, where E{ and E f  are the initial and final energies of the atom 
respectively and clearly, E{ < Ef .  On the other hand, if the atom changes its state from 
an energy E f  to an energy Ei , then a photon is emitted with frequency determined by 
Bohr’s frequency relation [Bransden and Joachain, 1983, p. 30].

However, there is still the question of how and why this occurs. To answer this a 
new mechanics is required—quantum mechanics. Quantum mechanics stems from the 
inescapable fact that all particles have wavelike properties. In 1924 Louis de Broglie 
suggested that all matter has an associated wave, a de Broglie wave with wavelength 
X = h/p  where p is the magnitude of the momentum vector. This was essentially taken 
from the formulae concerning light: from classical electrodynamics we have E  = pc wrhere 
c is the speed of light, but since we also have from Einstein that E  = hv, then p — h j A. 
Furthermore, a particle’s wavelike propagation induces an intrinsic uncertainty in the 
behaviour of the particle, namely, if the particle is restricted to some region in space then 
it has an ill-defined momentum; this is a consequence of the fact that a confined classical 
wave cannot have a unique wavelength—the connection to the momentum of a particle 
being provided by de Broglie’s formula A =  h/p.  The precise statement is called the 
position-momentum uncertainty relation, and was first enunciated by Werner Heisenberg 
in 1927 [French and Taylor, 1978, p. 327]. It states that

A x A p x > h (2.1)

where we write px to specify the direction; in words, the product of the uncertainty in the 
position and the uncertainty in the momentum is greater than or approximately equal to h. 
This is summarized in the famous book by Garnow [1993]: ‘any body in an enclosed space 
possesses a certain motion, we physicists call it zero-point motion, such as, for example, 
the motion of electrons in any atom’. For instance, in a Hydrogen atom the electron 
is constrained to a region of (Bohr) radius ~  10-10 metres, and since h ~  10-34 joule- 
seconds, then by equation (2.1) we have A p  = m eiectronAu > 10~24 kilogram-metres per 
second, where r a eiectron ~  10~30 kilograms and A v  is the uncertainty in the velocity. The 
velocity of the electron in a Hydrogen atom is thus undetermined by an amount A v  > 106 

metres per second, which is about 0.3% of the speed of light. Hence, the electron has 
motion solely because of the fact that it is confined. To be clear, the concept of exact 
position and exact momentum together has no meaning in nature.
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2.1 T he Radial Schrodinger Equation

The central postulate in the theory of quantum mechanics is that the associated de 
Broglie wave—or wavefunction—of a quantum-mechanical particle of mass m, satisfies the 
following wave equation proposed by Erwin Schrodinger in 1926:

- j r - V 2*  + V V  = i h ^ -  (2.2)
2m dt K '

where the potential energy V  and the wavefunction \I> are functions of r  =  (x, y , z )  E M3

and t 6  R. Equation (2.2) is called the time-dependent Schrodinger equation. Although
there is still much philosophical debate over how should be interpreted, the statistical 
interpretation due to Max Born is of fundamental importance in the application of 
quantum mechanics. In short, this statistical interpretation of Born says that the de 
Broglie waves are not waves of substance but are probability waves, and |\I>(r,£ )|2 is 
proportional to the probability density for the particle to have position r  at time t. Hence, 
C |^ ( r ,  t) |2dfi is the probability that the particle will be inside the infinitesimal volume dQ 
at time t, where C  is some constant independent of Q. This is a postulate and cannot be 
derived, but it relates the uncertainty in our knowledge of the particle and the existence 
of the associated de Broglie wave [Davies and Betts, 2002, p. 12]. Since the particle must 
be somewhere in space we have

c f  |* ( r , t ) |2d3r  =  l, (2.3)
JR 3

and we call ^  a normalizable state if the integral on the left side of equation (2.3) is 
finite for some time t E R. A normalizable state  'F can always be multiplied by some 
non-zero constant to obtain a normalized state—and once normalized for some time £, it 
remains normalized for all time since the Schrodinger equation has the property of being 
normalization preserving; we do not need to renormalize [Griffiths, 2005, p. 13]—meaning

[  |^ ( r ,  £)|2d3r  =  1.
J  K3

For a normalized quantum state f Q |^ ( r ,  t)\2d3r  is the probability that the particle 
will be inside the volume ft at time t. The value of this integral will clearly change with 
time since some of the wave associated with the particle flows in and out of fi, along with 
the probability [Davies and Betts, 2002, p. 13]. Thus, taking the time derivative of the 
integral leads to the definition of probability current density

ih
j (r ,  t) =  -  W ) ,  (2.4)

which is the total flux into Q.
If the potential is independent of time t , then by using the method of separation of
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variables on (2 .2) there will be a general solution of the form

oo

*(r, t) =  cnM r ) e - iE' t/h, (2.5)
n = l

where E  is the separation constant, chosen since every measurement of the total energy 
is certain to return the value E. The spatial wavefunction tpn (strictly speaking this is 
not true; the wavefunction always has the time-dependent exponential factor but we shall 
continue to use such language) satisfies the time-independent Schrodinger equation

h2
V V  +  Vip = Eip. (2.6)

2m

In many situations the potential energy function is radial, i.e. depends only upon the 
distance from the origin. Under these circumstances it is an obvious choice to use spherical 
polar coordinates (r, i?, 0). Spherical polar coordinates give a one-to-one description of
points in R3 \  {(0,0, z) : z € R}, and in this system (2 .6) becomes

2m
1 d o dip 1 d . dip 1 d2ip r —-  -I---------------- sin -̂----------------—

r 2 dr dr r 2 sin d dd dd r2 sin2 d dp2
+  V(r)ip = Eip. (2.7)

To separate out r  we put ip(r, i9,0) =  R { r ) Y (i9, <p) into (2.7), which results in the following 
two equations:

and

=  ( 2 - 9 )

where we have labelled the separation constant by £(£ +  1); there is no loss of generality
here since at this point t  could be any number. We again separate variables and look for
solutions Y  such that Y(d, (f>) = 0(t9)<I>(0). Thus, equation (2.8) splits into

i  s in tf - i  [ s i n t ? ^  | +  £(£ +  1) sin2 i9 =  m 2 (2 .10)
0  av V av I

and
l d 2$  2
¥ d ^  =  “ m ’ (2'n )

where m 2 is the separation constant (again, no loss of generality). The solution to (2.11) 
is clearly $(0) =  e ( b o t h  solutions axe included by letting m  be negative). Notice that 
in spherical coordinates 0  +  27r is the same point in space as 0 , and so etm^ +27r) =  etm(^
or e2mm =  1. It follows that m  6  Z. For (2.10), the physically acceptable solution is
famously given by

©($) =  AP™ (cos'd) (2 .12)
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where P™ is the associated Legendre function

( dp ? ( x )  =  (1 -  x2)H /2  I ) pt{x)< (2.13)

and Pe(x) is the ^-th Legendre polynomial defined by the Rodrigues formula

e

¥ h \  dxPtix) = 4 r ,  4 -  I ( X 2 -  1)*. (2.14)

It is important to note that Pe{x) is a polynomial of degree £ in x but P™(x) is, in general, 
not. However, we require P™(costf) and since y/l — cos2 d = sin i9, Pp(cosd)  is always 
a polynomial in cos$, multiplied by suit? when m  is odd. In view of (2.14), £ must be a 
non-negative integer. In addition, since Pi is of degree £, equation (2.13) stipulates that 
if \m\ > £ then P™ = 0. Thus, for a given value of £ there are 2 ^ + 1  possible values for 
m, namely, —£, — £ + 1 , . . . ,  — 1 ,0 ,1 , . . . ,  £ — 1, £. The normalized angular wavefunctions are 
called spherical harmonics and are given by [Griffiths, 2005, p. 139]

V7 r i

where

( 2 ' 1 5 )

if m  > 0 , 
1 if m  < 0 .

It is customary to call m  the magnetic quantum  number and £ the orbital angular 
momentum quantum number. These quantum numbers are related to the orbital angular 
momentum L—henceforth we drop the word orbital since we will not need to distinguish 
from spin angular momentum, which is not to be discussed in this thesis. In particular, 
Y™ is an eigenfunction, or determinate state, of the square of the total orbital angular 
momentum L2, with eigenvalue h2£(£ + 1 ). In other words, a measurement of L 2 in such 
a state is certain to yield the ‘allowed’ values h2£(£ +  l ) .1

The potential V(r)  affects only the radial part of the wave equation. On putting 
u(r) =  r R (r ) in the /^-equation (2.9), we acquire the radial equation

h2 d 2u 
2m d r2

v i r n f S i p i
2m

u = Eu. (2-16)

This equation is nearly identical to the one-dimensional time-independent equation (2.6), 
except that the effective potential VeR =  V  +  h2£(£ +  l)/2 m r2 now entails the so-called

^ o r  a particle in state the expectation of an observable Q is (Q) =  f  and since
the outcome of a measurement must be real: (Q) — (Q)*\ in other words, observables are represented by 
Hermitian operators. In a determinate state, i.e. a state in which (Q) =  q, the standard deviation A Q of 
an observable Q has to be zero. Thus, (A Q)2 =  ((Q — (Q ))2) =  (^ |(Q — q)2^) =  ((Q — q)^\{Q — q)7̂ )  =  0, 
which implies that Qty =  q [Griffiths, 2005, p. 99].
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centrifugal term. This extra term tends to force the particle radially outward.
In order to express the normalization condition in spherical polar coordinates, we 

require the volume element d3r  in spherical coordinates. An infinitesimal displacement in 
the r  direction is dr and an infinitesimal element of length in the & direction is rdf?, whilst 
an infinitesimal element of length in the <fi direction is r  sin dd(p. Thus, the volume element 
in these coordinates is given by d3r  =  r 2 sin ddrd'ddtf), which means that the normalization 
condition in spherical coordinates is

12J11 = I |z/>| r  sinf?drdf?d0

'27T  r  7T

/ l * f
r2n rn  roo

= /  l̂ | 2 sin ddddcf) = /  |i?|2r 2dr,
Jo Jo Jo

which in turn means that the normalization condition for u ( r ) is

roo
/ |u |2d r =  1. (2-17)

Jo

2.2 T he Scattering A m plitude

Classically, a particle incident on some scattering centre arrives with an energy E  and
leaves at some angle f?. Particles incident within some infinitesimal area da will scatter
into a corresponding infinitesimal solid angle df2.2 Clearly, the larger dcr, the larger df2; 
this leads to the definition of a quantity called the differential cross-section D{d) =  dcr/df2, 
which is just the proportionality factor. Moreover, the total cross-section a is defined as 
the integral of the differential cross-section over all solid angles, i.e.

J  D{d)dQ (2.18)

and is the total area of incident beam scattered by the target. In a typical scattering 
experiment, a uniform beam of particles with flux of J  particles per unit area per second 
is incident onto a scattering centre. Let d N  be the number of particles per second that 
are scattered into an element of solid angle dQ about the polar angles f? and <ft. We expect 
that dN  will be proportional to J  and to the size of dcr. This is summarized by

=S =)£• ( 2 - i 9 )

In quantum scattering, an incident beam traveling in the z-direction, represented by a 
plane wave încC-z) — Aelkz where k = y j2mE/h  is the quantum wave number, encounters 
a force at the scattering centre; this results in a distortion of ^inc, which we describe in

2The solid angle is the generalization of the planar angle to three dimensions. Just as planar angles 
correspond to sectors of a circle, solid angles correspond to cone-shaped segments of a sphere. More 
precisely, planar angles are measured by dividing the axe length by the radius. Similarly, solid angles are 
given by the surface area dA  of a projection of an object onto the inside of a sphere centred at that point, 
divided by the square of the sphere’s radius R.
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terms of a perturbation. This perturbation takes the form of an additional scattered wave 
rpsc (Figure 2.1), whose amplitude depends upon the angle through a quantity /($,</>) 
called the scattering amplitude [Davies and Betts, 2002, p. 55]. We study this problem by

sc

inc

Figure 2.1: The scattering of a plane wave incident on a scattering centre x.

solving the time-independent Schrodinger equation (2.6), and we do this for a spherically 
symmetric potential. As a consequence of the spherical symmetry, we will not need the 
azimuthal angle </> corresponding to rotations about the path of the incident beam, we 
only need to describe the post-collision trajectory. Therefore, we search for solutions 
satisfying ip(r, $) =  -0inc(z) + 'ipsc(r, $)• Although the exact details of t/’sc depend upon the 
potential, we know that for a localized potential3, ^sc satisfies [Mandl, 1992, p. 235]

V>sc ( r , t f ) ~ / ( t f ) - — , r —► 00. (2 .20)r

Localization of the potential is natural if we expect the beam to be scattered—an 
assumption that we uphold throughout this chapter, unless stated otherwise. Although 
this form of ipse is true only for large r, it is satisfactory since we are interested in the 
wavefunction after the scattering event. Therefore, we have

■0 (r, i9) ~  elkz +  / ( # ) ——, r —► 00 . (2 .21)r

By using (2.4) for the scattered wave defined by (2.20), we find that the number of particles 
scattered into dD per second is (/iA;/m)|/(i?)|2d n . Similarly for ip-mc we find that the 
number of particles incident per unit area per second is hk/m.  Hence, by using the 
definition of the differential cross-section (2.19) it follows that

D{d) = \ m \ 2. (2.22)

3A localized potential is a potential with a relatively short range, more precisely, it has the property 
that rV{r)  —> 0 as r —» 00. Note that this rules out the Coulomb potential, but the following analysis can 
be applied to the so-called ‘screened’ Coulomb (or Yukawa) potential—this is defined in §2.5.
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The fundamental problem in scattering theory then, is to calculate the scattering 
amplitude, since this quantity gives the probability of scattering in any given direction d. 
We now describe a particular method for determining the scattering amplitude, which is 
especially useful when the incident particle has a low speed.

2.3 Partial W ave A nalysis

The Schrodinger equation for a spherically symmetric potential admits solutions of the 
form 0(r, 0) =  R(r)Y™{d, 0), where u{r) = rR(r)  satisfies (2.16). Due to the azimuthal
symmetry we may take the magnetic quantum number to be zero in equation (2.15)—this 
is a common ‘approximation’ in the literature; see, for example, Taylor [1970] p. 183. 
Therefore, the wavefunction reduces to (for a particular £)

I OP _i_ 1
0(r,tf) =  R { r ) y  ^  Pi (cos#).

This also means that the scattering amplitude /  depends only upon d (the explicit 
dependence on the energy is traditionally om itted). Since the Legendre polynomials form 
a complete orthogonal set on [—1,1], we may write [Arfken and Weber, 2005, p. 757]

oo

f(t i) = ^ 2 a e(k)Pe(c osi?) (2.23)
^=0

where ae is called the ^-th partial wave amplitude. The problem with which we are faced is 
as follows: given a potential V(r),  we need to determine the partial wave amplitudes ae(k). 
Firstly, consider the free particle. On writing the incident wave elkz as a Fourier-Legendre 
series we have [Taylor, 1970, p. 183]

oo
eikz =  gitrcostf =  beP((cOsti). (2.24)

To find be, multiply equation (2.24) by Pm(cos'd) and integrate:

J  Pm(costf)etfcrcos,?dcos$  =  bm J  Pm (cosi?)Pm(cos$)dcost?.

A standard result [Arfken and Weber, 2005, p. 757] states that

J   ̂Pe(x)Pm(x)dx = J r p y ,

whence

be =  J \  Pe(x)eikr*dx. (2.25)
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We may evaluate the integral in equation (2.25) simply by parts: since Pe(l) = 1 and 
Pe(—x) =  (—1 YP((x ), £ = 0 ,1 ,2 ,. . .  [Arfken and Weber, 2005, pp. 752-753], the boundary 
terms of the integration are given by

For large r the integral remaining after integration by parts goes to zero, and thus

In summary, this means that at each angular momentum quantum number, we have 
incoming and outgoing waves of the same amplitude but with different phases. Their 
phases differ by in  due to the centrifugal term, which is present for all £ ^  0 , even for a 
free particle [Shankar, 1994, p. 546].

Let us now turn on a localized potential. For large r, we must have R(r)  asymptotically 
equal to the free radial wavefunction, although we may encounter a phase shift (appearing 
in the scattering amplitude) due to the potential [Shankar, 1994, p. 546]. Therefore, we 
have as r  —> oo that

where Se is called the phase shift of the £-th partial wave, and eg is some constant yet to 
be determined. Therefore, the total wavefunction as r —> oo is

The potential produces an outgoing wave only, and so the incoming waves must be the 
same for elkz and tft; on comparing coefficients of e~lkr/k r  in (2.27) and (2.28), we get that 
eg = (2£ +  l)et^ 7r̂ 2+Se^/2i [Shankar, 1994, p. 547]. Whence,

g i ( k r —£7r/2)  ^ —i ( k r —£-K/2)

=  -— sin (kr — i n /2). 
kr

(2.26)

for large r. Hence, as r  —»• oo,

1 r teikz ~  —yp y ^ ( 2£ +  1) eikr -  e-i(kr-e*) p f (costf).
*=0

(2.27)

R(r) ~  sin (kr — in /2  +  Sg(k))
kr

oo
ip(r, 1?) ~  V  U(kr-e*n+st ) _  e-i(*r-f»/2+«,)l p ^ cos^ _  (2.28)

At i L

xP(r, 'em eikr _  e-i(*r-Ar)l
k r ' 2i L J

£=o
(2.29)

P^(cos$) (2.30)
L ^=o
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in the limit r  —>■ oo. Comparing equations (2.30) and (2.21) we have

e 2iSe _  i

ae = (2e + 1)^ w T '  (2'31)

and so to calculate ag we must first find Sg. Thus, the effect of a potential is to attach a
phase factor e2tS* to the outgoing wave; this phase factor is denoted by Sg(k), and we call
Sg(k) the S'-matrix for angular momentum t —or P-matrix. Moreover, in putting (2.31) 
into (2.23) we have the following partial wave representation of the scattering amplitude:

l)Pg(cos,d)el5e sindg. (2.32)
l

The phase shift approach is elegant since it illuminates the physics: the conservation of 
probability4 means that the potential can only shift the phase of the outgoing wave. Using 
equation (2.22), we have from (2.32) that D(d) = k ~21 X^(2^ -f l)P ^(cos^ )e^  s in ^ |2; so

a = i J dn + l)Pf(cos^)et^  s in jJ
t

=  ^  J +  l)(2m  +  l)P£(cos'i9)Pm(cosi9)e_t5£ sin<^et5m sin£r
£,m

A  0 0

=  1)2s in2^ -
^=0

Therefore, a = ag where
Air _

<rt = - p ( 2 l + V )  sin2 St . (2.33)

The ag are called the partial cross-sections at each angular momentum t.
It is instructive to consider an exactly soluble example; for this purpose we take the 

case of the so-called hard sphere [Shankar, 1994, p. 549]

V (r) =  /  00 if r ^ r° ’
 ̂ 0 if r > ro-

We need to solve (2.9) and from the solution’s large r  asymptotics, identify the phase shift 
Sg. For r  < ro we must have R(r) = 0, since the probability of finding the particle in this 
region is zero. When r  > ro we require the solution to the free particle P-equation

I d /  o d P \  2m r2 . . .  ..
R T r ( r ^ ) + - W - E  = e i e + V- (2-34)

‘in elastic scattering the incoming and outgoing flow of probability must be equal.
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To solve this we digress and consider Bessel’s differential equation (BDE)

x2^ - |  +  x ^  +  [x2 -  v 2]y = 0. (2.35)
ax1 ax

The general solution of BDE is [Abramowitz and Stegun, 1965, p. 358]

y(x) = A J u{x) +  B N u(x) (2.36)

where Jv{x) is the Bessel function of order v  and N u{x) is the Neumann function of order
v. If we let x  =  kr in (2.35), then BDE reads

r 2T"f +  +  Î 2r2 “  ^21 y = ® (2.37)d rz dr

where y = y(kr). The R-equation (2.34) in which the potential is identically zero can be 
written in the following form:

j 2d J D
r 2— r  +  2 r—  + [k2r 2 -  i ( t  + \) \R  = Q (2.38)

dr^ dr

where k is the quantum wave number. Let us define a new function

w(kr) =  y/krR(r) (2.39)

in which case, (2.38) becomes

r2p »  dW + 2j_2 _  +  2 =  0
dr-̂  dr

By comparing (2.35) and (2.40) and recalling (2.36), it is clear that

w{kr) =  A J u{kr) +  B N v{kr). (2.41)

We note that here, the order of the Bessel and Neumann functions is v =  i  +  1/2. Now, 
from equation (2.39), R(r) =  w(kr)/ y/kr and thus

R(r) = - 4 = M k r )  + -f=JV„(*x). (2.42)
Vkr  Vkr

It is convenient to recast R(r) in terms of the spherical Bessel functions j £ and n£, which 
are defined as follows [Arfken and Weber, 2005, p. 726]:

3 e(x) = 1/2 (*) and n£(x) = 1/ 2(®)-

Hence, R(r) = A £j £{kr) +  B£n£{kr)\ we have made the addition of t  subscripts in order 
to emphasize the dependence of the normalization constants on the angular momentum 
quantum number. Matching the solutions continuously at ro stipulates that R(ro) = 0, or
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equivalently
Bt_ _  je(krp) 
At nt(kro)' (2.43)

By standard large argument asymptotics for the spherical Bessel functions [Arfken and 
Weber, 2005, p. 729], the radial part of the wavefunction for large r  satisfies

R(r) -f—[At sin(kr — £tt/2)  — Btcos(kr — ^7r /2)]. 
kr

We digress further in order to express R  in a cleaner form. To achieve this, it would be 
useful to find an expression for sin(arctan(x)): let y = arctan(x) so that tan (y) = x. Then 
we have sin2(y) =  x2 cos2(y) or

sin2 (arctan (:r)) =
x

(2.44)

which yields sin(arctan(—Bt/At))  = —B t ( A 2 +  B 2) 1/2. Similar calculations for cosine 
show that cos(aictan(Bt / At)) =  At (A2 +  B 2)_1//2. Moreover,

sin (kr — ^7r/2  +  arctan(—Bt/At))  =  sin(fcr — ^7r / 2 ) cos(arctan(—Bt/At))

+  cos (kr — iTr/2) sin(arctan(—Bt/At))

[At sin (kr — ^7r /2) — Bt cos(kr — £n/2)].
\JA \  +  B e

Therefore, far from the scattering centre we have

*/A 2 +  B 2
R(r) ~  —— ------   sin (kr — tTi/2 +  St(k)),

kr

where

5t(k) =  arctan — arctan
je(kr0)

A i nt{kr0)

(2.45)

(2.46)

Note that we have used the matching condition (2.43) for the second equality in (2.46). 
For i  = 0 we have s-wave scattering, so-called because of the sharp or s-orbitals of an 
atom, whose shape is dictated by the spherical harmonics. In our hard sphere example, 
we have [Arfken and Weber, 2005, p. 728]

Sq = arctan
sin(kro)/kro 
cos (kro )/kro

■kr0.

The interpretation of this is that the hard sphere pushes out the wavefunction, imposing 
sinusoidal oscillations at r = ro rather than at r  =  0 .
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2.4 T he 5-M atrix

The partial cross-sections &£ are usually small for low energy; for example, in the case 
of the hard sphere potential we have

angular momentum states [Shankar, 1994, p. 550]. However, the partial cross-section is 
capable of a myriad of behaviours as a function of the energy; in particular, we have the 
appearance of a sharp peak against a smooth background as the phase shift passes through 
7r/2  [Ballentine, 1998, p. 458]. In order for Si to achieve the value of 7r /2 , the denominator 
inside the arctan must vanish, and so for energies E  «  Eres we write

where T is a constant which depends on the energy. From equations (2.33) and (2.44), the 
associated partial cross-section for E  «  Eres is

Hence, (j£ is given by a bell-shaped curve called the Breit-Wigner form; it has a maximum 
height cr™8-* =  47t(2£+1  ) / k2 and half-width T/2 [Shankar, 1994, p. 551]. When this occurs, 
we say that we have a resonance. As we will soon appreciate, it is most helpful to study 
resonances from the 5-matrix perspective. Near a resonance, the 5-matrix takes on a 
particularly simple form [Shankar, 1994, p. 551]:

tan<^ ~  8t ~  (const.) (kro)2e+1

for small k, which follows from the standard small argument asymptotics for the spherical 
Bessel and Neumann functions, i.e. [Arfken and Weber, 2005, p. 729]

This is to be expected. At low energies there should be negligible scattering for high

Si =  arctan (2.47)

— £2 (2i +  1) (F/2)2
(£ re s - E )2 + (r/2)2'

Se(k) = e2i6‘
cos Si +  i sin Si
cos Si — i sin Si 
1 +  i tan Si
1 — i tan Si
1 + z(r/2)/(£res -  E) 
1 -  z(r/2)/(£res -  E)
E  — E res — «T/2 
E  — Eres +  ? r /  2 (2.48)
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If we analytically continue the wavefunction to complex energy, and in particular to the 
energy E  = Eres — iT/2, then we find from equation (2.48) that a resonance corresponds 
to a pole of the 5-matrix near the positive real axis of the complex E-plane. For real and 
positive energy we know that

R(r)  ~  l( .4 e ifcr +  Be~ ikr) 
r

for sufficiently large r, and so from equation (2.29) we have

Si(k)  =  |  (2.49)

up to multiplication by i2i. Thus, we may define the 5-matrix for any complex k as follows: 
first solve the R-equation for k € C, find the large r asymptotics, and then compute the 
ratio of the outgoing and incoming wave amplitudes [Shankar, 1994, p. 552]. If k = in, 
which corresponds to E  = h2k2/2m  being negative, then

R(r)  ~  - ( A e ~ Kr + BeKT). r

Hence, for k such that B = 0, or equivalently Se(iK,) = oo, we have a bound state. 
Therefore, we may characterize bound states as poles of the 5-matrix on the negative real 
energy axis [Taylor, 1970, p. 193]. This means that a resonance, which is a pole near the 
positive real axis, must be some kind of bound state. To appreciate this, consider the 
time dependence of the wavefunction: from equation (2.5), the time dependence for such 
a particle is given by Q~lEr^t/he-vt/2h where we see that p must be positive. This also 
shows tha t the particle has a lifetime of order h/T,  and so a resonance describes some kind 
of semi-bound state with energy Eres—but not exactly this energy due to the uncertainty 
principle5. A large T describes a short-lived particle which is associated with a broad peak 
in the energy variation of the total cross-section; whilst a pole near the positive real axis, 
i.e. with a small T, describes a long-lived more stable particle with a corresponding sharp 
peak in the energy variation of the total cross-section [Taylor, 1970, pp. 194-195].

2.5 C om plex Angular M om entum  (CA M )

The notion of CAM was conceived by Watson [1918] in order to study the diffraction 
and scattering of short-length electromagnetic waves [Connor, 1990]. This CAM approach 
was resurrected with vigour when in 1959, Italian physicist Tullio Regge used the theory 
in the context of quantum mechanics. Regge showed that when considering solutions of 
the Schrodinger equation for non-relativistic scattering by a screened Coulomb (Yukawa) 
potential, V(r) = —g2e~mr/ r  [Eden, 1971], it is useful to regard the angular momentum 
quantum number £, as a complex valued parameter [Collins, 1977].

5We refer here to the energy-time uncertainty principle A t A E  > H where A t  is the amount of time it 
takes the expectation of some observable Q to change by one standard deviation [Griffiths, 2005, p. 114].
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To discuss Regge’s considerations we rewrite the radial Schrodinger equation (2.16) for 
a quantum-mechanical particle of mass m  in a potential field V  as

—u" +  + U{r) — k2 ĵ u =  0, r  6  (0, oo) (2.50)

where U(r) =  (2m / h 2)V(r)  is the so-called reduced potential energy function and, of 
course, k = \/2m E / h  is the quantum wave number. Let us make clear the properties we 
wish the solutions to have: we look for the solution satisfying

u(r) ~  r Q, r —» 0, (2-51)

and so according to equation (2.50), where we assume that r~2 dominates U(r) for small 
r, we must have a = t  +  1 or a = — £ in (2.51). We choose the regular solution at the 
origin by taking a  =  £ +  1, thus we obtain the asymptotic behaviour

u(r) ~  r^+1, r —> 0. (2.52)

This choice bestows a restriction on the values that £ can take. The general solution for 
small r  is c ir +̂1 +  C2r ~^.6 To eliminate the second term, r~i must dominate r ^+1 as r  —» 0; 
this implies that Re(£) > —1/2 [Landau and Lifshitz, 1977, p. 589]. Moreover, we look for 
a purely outgoing wave at large distances (we assume that the potential is such that such 
solutions exist):

u(r) ~  elfcr, r  —>■ oo. (2.53)

Consider the summand—ignoring the Legendre polynomial since we are only interested 
in the radial part—in (2.29), which gives the total wavefunction’s asymptotics; with some 
rearrangment, this is equal to (2£+ l)(2f)- 1et7r̂ 2[e- 17r̂ 2e2l5felfcr — et7te/ 2e~lkr]. Therefore, 
above threshold (k2 > 0), the radial wavefunction u has asymptotic behaviour

u ~  Ng g —i ( k r —Tc£/2)   ^ ^ { k r —irt /2) r —y oo (2.54)

where S  = e2lSi^  and Ng is a normalization constant. At a pole of S,  the second term 
in equation (2.54) receives an infinite boost and a purely outgoing wave results. Below 
threshold (A:2 < 0), at k =  i\k\  say, we have

u ~  Ng U k\r+i^ 2 -  S e- ^ r~M /2\ , r oo. (2.55)

In this case, a pole of S  yields a normalizable bound state. Out of interest we mention that 
below threshold we can also have a bound state at k  =  —«|fc|, which is provided by a zero 
of S; for each bound state, both the zero and the pole occur since the radial Schrodinger

6By letting r =  e * and constructing a first order system, the Levinson Theorem tells us that 
fo° r (y (r) -  k2)dr <  oo, ro > 0 is sufficient for the existence of solutions with these asymptotics.
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equation is invariant under the mapping k i—> —k [Frautschi, 1963, p. 4]. Therefore, the 
5-m atrix for £ =  0 has a pole as a function of the energy; in general, a family of bound

However, there is no a priori reason why £ has to be a non-negative integer in the radial 
Schrodinger equation, this requirement stems from properties of the spherical harmonics.

interested in the poles of 5  here—defines a whole family of solutions, where, as £ increases 
continuously, these solutions interpolate smoothly between the bound states at physical 
values of angular momentum £ [Frautschi, 1963, p. 103]. Thus, the whole family of solutions 
satisfying the bound state condition can be described by the continuous movement of an

E  € K. The physical bound states then correspond to this moving pole passing through 
non-negative integer values of £ [Frautschi, 1963, p. 103]. Therefore, regarding £ as being 
complex is certainly not just a mathematical frivolity.

resonances as properties of a so-called trajectory function oc(E). The trajectory function 
is defined such that if an energy E  forces oc(E) to equal a non-negative integer, L say, 
then a bound state will exist at that energy E  with angular momentum L. Thus, instead 
of considering bound states at a given angular momentum £ = 0 with energy E $, and 
then at £ =  1 with energy E\  and so on (as described above), we now simply look at a 
single entity a ( E ) [Leader, 1978]. Therefore, making £ complex achieved what making 
the energy complex achieved. Namely, just as the scattering amplitude / l ( E )  has a pole 
at the energy E  for which a bound state of angular momentum £ = L  exists, f {£, E ) 
has a pole whenever E  is such that ot(E) equals £ [Leader, 1978]. The Regge trajectory 
function indicates the existence of bound states and resonances on the occasion that it 
passes through integer values; an illustrative example—assuming that the potential is such 
that there are no embedded eigenvalues—is shown in Figure 2.2.

It is possible to ascertain the location of the ^-plane poles of 5  using quite a general 
argument found in Frautschi [1963] pp. 103-104. For real energy and real potential 
function, consider the radial Schrodinger equation (2.50) and its complex conjugate

states with increasing £ € Z+ is represented by a family of energy poles of 5.

Below threshold, the so-called bound state condition u ~  e Mr for large r —we are only

^-plane pole of the 5-matrix; the motion of the pole being a result of varying the energy

In other words, the notion of CAM provides a way of unifying bound states and

(2.56)

Subtracting u multiplied by (2.56) from (2.50) multiplied by u* gives
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a(E)

■— 1

Figure 2.2: Bound states at Eq , and a resonance at E 2 . 

Integrating (2.57) yields

du* du „u -------------u
dr dr

•OO l̂ |2
7i

/*c~ 17/1
+  2 ^ / ( 2 ^ +  1) /  ^-dr =  0. (2.58)

0 Jo

Below threshold, u ~  re+1 as r —> 0 and u ~  e ~ ^ r as r  —> 00, which means that the first 
term in (2.58) vanishes for Re(^) > —1/2. Moreover, the integral is positive and thus for 
a bound state (and pole of 5), Im(£) must vanish. Above threshold, the outgoing wave 
condition for a pole of S  gives u ~  elkr and u* ~  e~lkr as r —> 00. Since the small r 
asymptotics are unchanged, equation (2.58) becomes

f°° Id 2
—2ik +  2i£I (2£R +  1) /  ^ - d r  =  0 ,

Jo  r

which implies tha t Im(^) is positive. To summarize: below threshold, the poles of S  at 
Re(^) > —1/2 lie on the real axis; whereas above threshold, the poles are situated above 
the real axis. Therefore, there are no poles in the forth quadrant of the CAM plane—this 
is true more generally [Bottino et al., 1962]. Regge proved that for a variety of potentials, 
including the screened Coulomb potential, the only singularities of the scattering amplitude 
at Re(£) > —1 /2  are poles [Regge, 1959] or as they are now called, Regge poles.

2 .5 .1  C ou lom b  S ca tter in g

As an example, let us consider the attractive Coulomb potential, V (r ) =  — e2/ r  where 
e2 is the coupling constant of the Coulomb field. In order to find <$£, we need to calculate
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the large r  asymptotics of the solution to  the R-equation (2.9); to begin with, we rewrite 
the R-equation in the more tractable form

R" +  - R / +  
r rz

R  = 0.

We wish to use atomic units, this is formally obtained by putting e = m  = h = 1 [Landau 
and Lifshitz, 1977, p. 118, footnote]. Thus, the equation we must solve is

R"  +  - R '  +  r
2 E + * - W + l l

R  = 0. (2.59)

Introducing the new notation [Landau and Lifshitz, 1977, p. 118] n = (—2E) 1/ 2 and 
p = 2r /n  into equation (2.59) yields

4 d2R  8 dR+n2 dp2 n2p dp + J_  _4_ _  41(1+1)
n 2 np n2p2

R  = 0,

or
d2R 2 dR 
dp2 p dp

1 n £(€ + 1) R =  0. (2.60)

Requiring regularity at the origin means we must stipulate that R ~  pe as p —> 0. On the 
other hand, for large p we acquire the equation [Landau and Lifshitz, 1977, p. 118]

R" =  -R ,
4

from which we get R =  e±p/2; but, since we seek the physically acceptable solution7 we 
take R ~  e~p/2 as our large p asymptotic condition. Thus, peeling off the asymptotic 
behaviour we introduce the function y(p) such tha t R =  pee~p/2y(p). We must now find 
the equation satisfied by y. So,

dR
dp

= {tpi xe P//2 — p£e pl 2/2)y  +  pee p̂ 2y' 

= pee~p/2y' +  pe~1e~p/ 2y(£ -  p /2)

7Corresponding to the classical notions of bound states and scattering states (and assuming that the 
potential has definite limits at ±oo), there are two kinds of solution to the Schrodinger equation. Due to 
quantum tunneling—the phenomenon in which there is a non-zero probability that a particle will ‘tunnel’ 
through any finite potential barrier—all that counts is the behaviour of the potential at infinity: if the 
total energy is less than the potential at —oo and +oo then we have a bound state, whilst if the total 
energy is greater than the potential at —oo or +oo then we have a scattering state. However, since in 
practice most potentials decay at infinity, we have that E  <  0 corresponds to bound states whereas E  >  0 
yields scattering states [Griffiths, 2005, p. 68]. Therefore, for the physically acceptable solution here, we 
require E  < 0 which makes p positive.
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and thus the second derivative is given by

^  =  / e - ' / y  +  p ' - ' e - o / y y  -  p/2)

+  [pe~1e~p/2y' +  pe~2e~p/2y( i  -  1 -  p/2)](£ -  p/2) -  pe~1e~p/2y / 2 .

Hence, putting R = p(e~p/2y(p) into equation (2.60) yields

{pey" +  £pe~1y* -  p V / 2 +  £pl~l y -  p V /2  +  £(£ -  1 )pe~2y - ( £ -  l)p^_1y/2  -  £pe~1y / 2 

+ / y / 4  -  / / - 1t//2} +  {2pt~ly +  2£pe~2y -  pe~xy} +  [-1 /4  +  n /p  -  ^  +  l ) /p2]pey = 0

or
p V ' +  (2fy> -  p2 +  2p)t/ +  [ ^  -  1) -  ip  +  2£ — p +  np -  £(£ +  1 )]y = 0 .

This results in the equation

py" +  (2£ +  2 -  p ) y ' - ( £ + l - n ) y  = 0, (2.61)

which is the confluent hypergeometric equation. The solution of (2.61) satisfying the
requirements of regularity at the origin, with an acceptable rate of divergence at infinity
is given by the confluent hypergeometric function [Arfken and Weber, 2005, p. 864]

y(p) =F{£ + l - n ; 2 £  + 2; p). (2.62)

The confluent hypergeometric series

_ ^ r ( a  +  j)r(/3) *

j =o
Pi z) — /  |-</ o i -iT(a)T(^ +  j )  j\

is well-defined for any a and 0 Z~ U {0} [Messiah, 1999, p. 480]. Here, T(z) is Euler’s 
gamma function, which is the generalization of the factorial function.

For scattering, as we have already discussed, we are required to consider positive 
energies E  > 0; this means that our adopted notation becomes n = —i/y/2E  =  — i / k  and 
p =  2ikr. Therefore, by equation (2.62) we obtain

R ke(r) =  Ckt(2ikr)ee - ikrF(e  +  1 +  i/k;  2i +  2; 2ikr) (2.63)

where Ckt  is a normalization factor. For large r, the solutions R^t  defined by (2.63) take 
the following asymptotic form [Landau and Lifshitz, 1977, pp. 122 and 662]:

2 f e-i(kr-n(£+l)/2+log(kr)/k) 'j
Rki(r) = - \ W  +  1 -  i/fc)|Re I  — + i _ — -------G(i  +  1 +  i /k,  i / k  - 1, - 2  ikr) \

(2.64)
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where for G we have the asymptotic series

r ,n a . - ; - , ,  a P . a(a  + 1)0(0+ 1)G ( c c , 0 , z ) - \  + —  + ---------— 2--------- +

Taking the first term in (2.64) (with T(£ +  1 — i /k)*/T(£  +  1 — i/k)* in the braces) gives

Rke(r) ~ I |r(< +  i-ifk)Ite{e-t{kT-̂e+l)l2Môkr)lk)ni + 1 -  </*)*},

and from the calculations leading to equations (2.45) and (2.46) we have

Re{ze~^r(^ +  1 -  i/k)*} = sin(£)Re{r(£ +  1 -  i /k)*} - cos(01m {r(£ +  1 -  i/k)*}

lm{T{e + l - i / k ) * }= |T(^ +  1 — i/k)* | sin +  arctan 

=  |r(^  +  1 — i /k)\  sin I £ +  arctan

R e { T ( £ + l - i / k ) * }

l m { r ( t + l - i / k ) }  
Re{T(^ +  1 — i /k )}

where £ = kr — n t /2  +  log(kr)/k.  Therefore,

2
Rki(r) ~  -  sin(fcr — ir£/2 +  log(kr)/k  +  <y (2.65)r

where
Se = arg{T(^ +  1 -  i /k )} .  (2 .66)

Equation (2.65) illustrates the stark difference between the Coulomb interaction and 
shorter range potentials: the logarithmic term  means that even at the largest distances, 
the radial part of the scattered wave never tends to elkr/ r  [Messiah, 1999, p. 423].

In terms of the 5-matrix Si(k) = e2lSe = elSe/e~ tSe, we have from the polar form 
definition of complex numbers and equation (2 .66) th a t8

q /ix _  +  1 -  i /k)
d  ) T (£* + l + i / k ) '   ̂ ^

To arrive at the formula (2.67) we used the well-known conjugation formula T(z)* =  r(z*) 
found in, for example, Abramowitz and Stegun [1965] p. 256. For our purposes, the 
appearance of T(^* +  1 -f i /k)  in the denominator of equation (2.67) is of no consequence 
since r(z) is without zeros [Olver, 1974, p. 35]. This means that the ^-plane singularities of 
the 5-matrix occur at the singularites of the numerator. However, the only singularities of 
T(z) are simple poles at z = 0, —1, —2, —3 , . . .  [Olver, 1974, p. 32]. Therefore, for Coulomb 
scattering the j -th Regge pole position is given by

£j + 1 — — = —j , j  = 0 , 1, 2 , . . . ,

8Equation (2.67) is obtained for E > 0 and Re(£) >  —1/2, i.e. where the wavefunction is normalizable, 
and then continued for E  <  0 and Re(^) < —1/2 [Frautschi, 1963, p. 120].
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or in the language of trajectories

a j (E) = - j -  1 +  (2-68)

since, in atomic units, the quantum wave number becomes simply k = y/2E- The Coulomb 
trajectory described by equation (2.68) is the result reported in Frautschi [1963] p. 121, 
which is where we will also take its interpretation from. Consider varying the energy. As 
E  —> — oo, the j- th  Regge pole tends to £ =  — j  — 1. Let e > 0 be small; as the energy winds 
up to — e from —oo, the poles reside on the real f-axis and move incrementally toward the 
point Re(^) =  +oo, Im(£) =  0. Equating <*j{E) to a non-negative integer £ = 0 ,1 ,2 ,3 ,...  
yields the famous formula for the bound states of a Bohr atom:

F 1
31 2 (j + e + 1)2'

Hence, at this energy Eje, the j-th  Regge pole crosses the physically meaningful values of 
£. For E  —> -K, the j - th Regge pole jumps to the straight line described by Re(^) =  —j  — 1 
and tends to £ =  — j  — 1 as E  —» + 00. The Coulomb trajectory described here is illustrated 
in Figure 2.3. It is a peculiarity of the Coulomb attraction tha t states of arbitrarily

Im(£)

E  =  - e

Threshold

Figure 2.3: Regge trajectory moving to the right from —j  — 1 for the attractive Coulomb 
potential; schematic taken from Frautschi [1963] p. 127.
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high angular momentum quantum number can be bound. Compare this to shorter range 
potentials e-/ir/ r ,  fx ^  0 ; in these cases the centrifugal term dominates for all r when £ is 
sufficiently large, and so the Regge trajectories do not normally extend all of the way to 
the right [Frautschi, 1963, p. 122]. We also notice the jump in the Coulomb trajectory at 
threshold; for shorter range potentials it is expected that the trajectories are continuous 
at threshold. In fact, mathematical proof of this expectation is the topic of Chapter 3.

2 .5 .2  R eg g e  R ep resen ta tio n  o f  th e  S c a tte r in g  A m p litu d e

Recall the partial wave representation of the scattering amplitude (2.32); rewriting the 
sin 8e in terms of exponentials we have

1 oo

/ ( M )  = ^ E ^ + 1KS< -  IW c o srf) . (2.69)
1 '  £=0

By using the Sommerfeld-Watson transformation [Connor, 1990], Regge rewrote the partial 
wave sum given in (2.69) as a contour integral where each term in the partial wave sum is 
the residue of a pole in the integrand. In this section, we will derive this contour integral 
but first, let us adopt in the spirit of Regge [1959], the notion of generalized CAM, which 
is denoted by A =  £-{-1/2. Define the function F ( A) =  —7r /(A ) / c o s ( 7 t A ) ,  where we assume 
that /  (not the /  of (2.69)) is an analytic function of A in a region close to the real A-axis. 
Then F  has simple poles at A = 1 /2 ,3 /2 ,5 /2 ,.. .  where its residue is

Res(F-A) =  i U )  =  (- 1)A_1/2/(A)-
/(A )
in(7rA

Hence, through the Sommerfeld-Watson method we have the relation

£ ( - ! / / ( « + 1 / 2 )  =  i j f ^ d A  (2.70)
£ = 0  7  V '

where the contour 7  encloses the physical angular momentum quantum numbers—-the 
positive half-integers—in a clockwise sense (Figure 2.4). Assuming that the 5-matrix 
is an analytic function of £, and hence of the generalized CAM A in the vicinity of the 
positive real A-axis, we have by applying equation (2.70) to the partial wave series form 
of the scattering amplitude (2.69) that

1 00 .. 00

-  £ ( 2 £  +  1)(5< -  l X - l ^ f c o s t f )  =  Yp-l +  1)(5< -  1 )Pt(-cost?)
£=0

1 r  2 A (5a_ 1/2 -  1 ) P A- i / 2 ( -  c o s  # )

[ k L  cos(ttA) [ }

2ik ' 2ik
£=0  £=0

where we have used, for the second time, the formula (—l)^P^(cos^) =  Pe(— cos'd). For 
this analysis to work, it is important to note that Pe(-cos'd) is free from singularities
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Im(A)

5/2 7/2 9/23/2

Figure 2.4: The contour 7  used in the Sommerfeld-Wat son transformation.

at any finite t  [Frautschi, 1963, p. 109], and thus only the Regge pole singularities of S  
remain. We also note that P \ - i / 2 (~ cos $)> which appears in equation (2.71), is no longer a 
polynomial, but a Legendre function of complex degree A — 1/2 [Connor, 1990]. Therefore, 
by (2.69) and (2.71) we have (with z = cos'd) the integral form of (2.69):

m - ~ h i ‘Mffix—1/2 ~  1)P \- \ /2 (~ z)
c o s (7tA )

dA. (2.72)

Assuming the integrand in (2.72) is well-behaved for large |A|, we may deform the 
contour 7  away from the real axis into a new contour, 7  say. Deforming 7  this way results 
in /  picking up contributions from poles of the 5-matrix in the first quadrant; this yields 
the Regge representation of the scattering amplitude [Connor, 1990]:

K^X-1/2 ~ 1)P \- \ /2{~z )
cos(7rA)

dA
I TT

T  2 ^
A nrn

Pxn- i / 2 ( - z ) ,  (2.73)

where An and rn are the Regge pole positions and residues respectively. The Regge 
representation of the scattering amplitude (2.73) is very important, for if we knew of 
a class of potentials in which there were a relatively small number of associated Regge 
poles, then the sum over the contributions from a small number of Regge poles would 
offer significant simplicity compared to the sum over a large number of partial waves. In 
§2.5.1 we learned that there are infinitely many Regge poles of the Coulomb scattering 
matrix (2.67), and therefore the Regge representation of the scattering amplitude offers 
little advantage in this case. However, even if there are many poles for a particular class 
of potentials, the residues may decrease rapidly thus negating the need to use them all.
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2.6 The W ronskian C haracterization of R egge Poles

The Wronskian condition for Regge poles was derived and used by Regge himself; it is 
the characterization that is adopted in this thesis. Suppose uo(r, fc, A) is the well-behaved 
solution at the origin of the radial Schrodinger equation

—u" +  —r 2 ^~ +  b^(r) — u = 0, r  6  (0, oo). (2.74)

Since (2.74) is a second order equation we must have a relation of the form

u0(r, k , A) =  A(X)u00(r, k , A) +  B(X)uoo(r, fc, A) (2.75)

where Uoo and u00 are linearly independent solutions of (2.74) with Uoo{r, k , A) elkr and 
Uoo{r, k, X) e tkr far from the origin. We can write (2.75) as

uo(r, k, A) =  4(A)[uoo(r, k,  A) +  ( A( X ) / B ( X ) ) ~ 1u x ,(r, k,  A)] 

=  ^l(A)[uoo(r, k,  A) +  S(A )-1 Uoo(r, k,  A)]

where 5(A) =  yl(A)/5(A) is the scattering matrix. The Wronskian of uo(r,k,X)  and 
t/oo(r, k , A), denoted W(uo(r, k, A), u00(f', k , A)), is defined by

W (uo(r, k, A), Uoo(r, k , A)) =
u0{r,k, A) Uoo(r, fc, A) 
u'0(r,k, A) u j^ r , /c, A)

(2.76)

The Wronskian can be used to determine whether a set of differentiable functions are 
linearly independent over a given interval. More precisely, if the Wronskian of two 
differentiable functions is non-zero at some point on the interval, then those two functions 
are linearly independent over that interval. Relaxing the dependency on r, k , and A for 
the moment, and introducing (2.75) into (2.76), we have

W (U0, Uoo) = A{X)W(Uqo, Uoo) +  B(X)W (lloo, Uoo)

= B{X)W (Uqo, Uqo).

Since Uoo and u0o are linearly independent, their Wronskian >^(uoo(r , k, A), fioo(r, k, A)) 
is non-zero for some r  > 0; in fact, it is non-zero for all r > 0 since the Wronskian of 
two solutions of a homogeneous second order ordinary differential equation is independent 
of r [Simmons, 1972, p. 78]. Therefore, W(uo(r, k, A), Uoo(r, fc, A)) is zero if and only if 
B{A) =  0, i.e. when the scattering matrix 5(A) has a pole.
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Low Energy

3.1 N otation  and Introduction

Consider the radial Schrodinger equation in the generalized CAM form with reduced 
potential given by (2.74), and suppose ro > 0 is some finite and fixed number; our notation 
for the present chapter is as follows: denote by uo(r, A;, A) the solution for r < ro, which is 
well-behaved in a neighbourhood of the origin, i.e. the solution satisfying

uo(r, k, A) ~  r'A_h1/ 2, r  —* 0. (3.1)

Let Uoo(r, fc, A) be the solution for r > ro satisfying the usual scattering condition of an 
outgoing wave at distances far from the origin, i.e.

Woo(r> fcj A) ~  elkr, r  —► oo. (3.2)

Recall that e~tkr does not represent an outgoing wave, which is the reason for (3.2). 
Moreover, we will let Uoo(r, 0, A) identify the unique (up to multiplication by a non-zero 
constant) k = 0 solution in £ 2(ro, oo; r~ 2)—this will become clear in due course.

We note at the outset that it is difficult—but not impossible—to solve the low energy 
Regge pole problem using operator theoretic methods; this is because the scattering 
condition required at infinity depends upon the very parameter that we are sending to 
zero, namely, k. Hence, the domain of any operator that we define in order to analyse 
the problem will also change. Therefore, we will take a different, arguably more direct, 
approach to studying the threshold continuity of Regge trajectories. The approach we 
take is to study the small k pointwise limit of the Regge pole condition, which we will now 
discuss. In view of the Wronskian characterization of Regge poles introduced in §2.6, the

30
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condition on A to be a Regge pole can be written as

u'o(r, k , A) _  u 'n fak ,  A) 
uo(r, k, A) Uoc(r, k, A) (3-3)

where r  =  ro > 0 is fixed. For the remainder of this chapter, and indeed for the next 
chapter, r  will always be identified with some fixed ro > 0 unless stated otherwise. We are 
interested in what happens to the Regge poles as k —> 0, and thus we study the equation

fc-K) I uo(r, k, A) I fc-j-0 I Uoo(r, k , A) J

locally uniformly in A.
The local uniform convergence in A for this problem is very important: suppose we 

have a sequence (&n)neN with kn -> 0 as n  —>• oo, and /„(•) =  /(•, kn) such that / n(An) =  0 
for all n € N (where An =  \ ( k n)). Also assume that f n —> f  as n  —» oo. Then denoting 
by (Anj) a convergent subsequence of (An) with limit Aqo, it may not be the case that 
/(Aoo) = o. This is only guaranteed if the convergence f n —> f  is locally uniform in A.

We illustrate this with a simple example. Let us construct a sequence of functions 
(/n)neN with the following properties:

1. fn{0) =  —1 for all n G N,

2- fn (A) —> — 1 as n —> oo for all A ^  0,

3- fni^n) — 0 where An —> 0 as n —> oo.

The sequence of functions given by

— (A +  £n)
fn (A) = (1 +  l /n )A  4- £n

where en —> 0 as n —> oo, satisfies the properties 1-3 if we have An =  — En. Retaining the 
above notation, we do not have f(\oo)  =  0. In this example /„  has a pole at

c*
A = -

(1 4- 1/n ) ’

and consequently f n is not uniformly bounded in A violating the hypotheses of Montel’s 
Theorem .1 We will invoke this extremely useful result in due course to ensure that the 
convergence in the low energy Regge pole problem is locally uniform in A.

As we discussed in Chapter 1, our strategy for proving the expected continuity of 
Regge trajectories at threshold begins with the finite spherical well. This is a relatively 
simple spherically symmetric potential—unencumbered by obfuscating details, it will be 
an invaluable example which brings out the core of the argument.

xThis is proved in Appendix C, the result can be found in Conway [1978] p. 153, for example.
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3.2 F in ite Spherical W ell

Consider the soft sphere scattering problem, i.e. we must solve equation (2.74) in which 
the potential is given by

U(r) =  J ~ Uo if r  S r °’ (3.5)
u  I  0 if r > r 0

and Uo,ro > 0. The well-behaved solution at the origin uo(r, Ac, A) may be found using the 
Frobenius method, and so we are able to rewrite equation (3.4) as

(3.6)
uo{r, 0, A) k-+o Uoo(r, k , A) J

where we choose the matching point to be at r  =  ro- Therefore, we only need to calculate 
the limit of the ratio concerning Uqq. We have already encountered the free il-solutions: 
they are given by equation (2.42) and since u(r) =  rR(r ),

u ^ r ,  k, A) =  A ^ J x(kr) + B ^ N x(kr) (3.7)

where we have used the established notation A =  i  +  1/2. However, neither J \{kr ) nor
N\(kr)  represents an outgoing (or incoming for that matter) wave. For this purpose, we 
introduce the Hankel functions of the first and second kind, and H ^  respectively; 
these are defined as follows [Arfken and Weber, 2005, p. 707]:

H ^ \ x )  = J\(x)  +  iN\(x)  and H ^ \ x )  = J\(x) — iN \(x) .

For large r, H ^ \ k r )  is asymptotically proportional to elkr/yjr, whilst H ^ \ k r )  behaves 
like e~lkr/y /r  [Abramowitz and Stegun, 1965, p. 364]. They are linearly independent 
solutions but we only require the former, and so absorbing the normalization constant we 
have from equation (3.7) that

uoc( r ,k , \ )  = J ^ H ^ ( k r ) .  (3.8)

This means that since r = ro is fixed, the problem of calculating the limit

{39)
fc—>0 Uoo(r, Ac, A) J

simplifies to calculating small argument asymptotics of the Hankel function of the first 
kind and its first derivative with respect to spatial variable. These are quite standard, and 
we perform the necessary calculations in the next section; upon applying these asymptotics 
in order to compute the limit (3.9), it is straightforward to establish the required result.
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3 .2 .1  H ank el F u n ction  A sy m p to tic s

We need to compute the small argument asymptotics of ifj^(fcr), but also of its first 
derivative with respect to r, evaluated at r  =  ro—this can be taken as the definition of 
the notation ' for the remainder of this chapter. First of all, we have from Abramowitz 
and Stegun [1965] p. 360 the standard series definition of the Bessel function

where r(z )  is Euler’s gamma function. Equation (3.10) yields

^ )  = ( |) -Ag ^ f S ^ y  (s-u)

and

r j I M y  x  / 'fc' V AV ‘ ( - ( fcr)2/4 )J 2 / k r y * ^  j ( - ( k r f / i y
{J_x{Kr)} = - - ( - )  L ^ r O - A  +  D + r l y )  L / . V l j  A + l)'  (3’12)

Moreover, from the well-known recurrence formula for differentiating Hankel functions, 
namely, 2H fu(r) = H ^ _ ^ ( r )  — H ^ +^(r)  [Arfken and Weber, 2005, p. 708], we have

{ H ^ ( k r ) Y  = ^ ( H U l ^ k r )  -  H $ +1){kr)). (3.13)

It follows from standard relations in Bessel function theory, all readily found in the book 
of Arfken and Weber [2005], that

H l t y i k r )  -  H $ +l)(kr) = J ^ k r )  + i N ^ k r )  -  {J (a+i)(* t) +  *1V(a+1)(At)}

=  J ( \ - i ) (k r ) +  *(cot(A -  1 )nJ(\-i)(kr)  -  csc(A -  1)ttJ{_x+l)(kr)) -  { J (A+1)(/cr)

+  «(cot(A +  l ) 7rJ(A+1)(/cr) -  csc(A +  l ) 7rJ (_A_ 1)(/cr))}
2

= %{Jx(kr)}'  + ico t( \  -  1)tt(J(A_i)(At) -  J(\+i)(kr)) +  *csc(A -  1)tt( J (_A_ 1}(/;r)

J (_A+i)(/cr))

=  ^(1 +  zcot(A -  1)7r){J\(kr)Y  +  ^  csc(A -  l ) 7r{ J_ A(fcr)}'.

Therefore, by equations (3.12) and (3.13) the dominant part of { H ^ \ k r ) Y ,  for small k , 
is i csc(A — 1)7T{J—\(kv )}/. Also, H ^ \ k r )  = J\(kr)  +  z(cot XirJ\(kr) — cscA7rJ_A(fcr)), 
of which the dominant part is — icsc A7rJ_A(/cr), as can be seen from (3.11). Performing
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( 2 )analogous calculations for H  ̂ (k r ) yields tha t

H 1 ,(*T) -  ^ h ) ( * r )  =  J(A-I)(fer) -  iN(x-i)(kr) -  {J ( M ) (kr) -  iN {x+1)(kr)}

= | ( 1  -  tcot(A -  l ) 7r){JA (tr)}' -  ^ r csc(A -  I M ^ - a M } ',

/Q\
and therefore the dominant part of {H^ (hr)}' is —zcsc(A — l ) 7r{ J-\(kr)} ' .  Finally, we

( 2 )also have that the dominant part of H^ (kr), for small argument, is icsc\7rJ-\(kr).  
Taking only the leading terms in (3.11) and (3.12) gives

and { ^ i)( ^ ) } ' - ~ Azcŝ (: A1); (1fc)r/2)"A (3-i4)

for small k. From (3.8) it follows that

< 4> M , A) =  ^ { H ^ ( k r ) y  + - ± = H ™ ( k r )  (3.15)

whence
u'oo ( r , k ,  A) _  { H ^ j k r ) } '  1

Uoc( r ,k ,X)  H ^ i k r )  +  2 r ’ ^ * 16^

Consequently, for fixed r  = ro equation (3.14) yields

u'nr>(r,k, A) —A 1 .
°°v ’ ’ '  - —  +  — , k->  0. (3.17)

Uoo ( r , k , \ )  r  2 r

If we write ujim(r, A) = lim ^ o  '̂oo(r > k, A) and itiim(r, A) =  l im ^ o  Uoo(r, k, A), then 
from (3.17) we have

nL ( r  \ \  — \  1 / 9
(3.18)Wl i m ( r ’ A ) _  — A +  I / 2 ,

u\im(r,X) r

a consequence of the fact that only the irregular part of Uqq should be taken into account 
when calculating the logarithmic derivative. Recall that uo(r, 0, A) satisfies the equation

-ug (r, 0, A) + ^ -  U0 +  ^  ~ 1/4  j  uo(r, 0, A) =  0 (3.19)

and furthermore, the function uiim(r, A) =  r _A+1/ 2 satisfies the limiting equation (3.18) at 
r  =  ro- It also satisfies

- « L ( r ,A ) + ( h _ V l j UBm(r, A) =  o, (3.20)

which means that unm(r, A) =  Uoo(r, 0, A). Rewriting (3.20) as

~u'^(r,  0, A) +  ( - — 2“^“  ) uoo(r, 0, A) =  0, (3.21)
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we can combine equations (3.19) and (3.21) to get

(3.22)

which is precisely equation (2.74) with finite spherical well potential (3.5) and k set to 
zero. Equation (3.22) is self-adjoint since there is at most one square integrable solution 
at each singular endpoint.2 Equivalently, we have shown the equations

uo(r, 0; A) 
u0(r,0, A)

(3.23)

and

fc->o | Uoo(r, fc, A) Uoo(r, 0, A)
Hm I < ,(r,fc ,A ) u'oJr.O, A)

(3.24)

to be true, which by the Regge pole condition (3.4) means that we have

u'o(r, 0, A) =  i4)(r,0,A )
«o(r,0,A) Uoo(r,0,A)’

and (3.25) is the condition on the wavefunctions in order to have an eigenvalue.

(3.25)

An alternative viewpoint on the Regge pole condition is to consider, for example, the 
time-independent Schrodinger equation in which the potential is attractive and decays 
sufficiently fast as x  —> ±oo. If we restrict our consideration to bound states then we

x  and by 2 the region in which E > V(x).  In region 2, ip(x) oscillates whilst in regions 1 
and 3 there are two linearly independent solutions—one physical and one unphysical. We 
must take the physically acceptable solution in both regions 1 and 3, which is possible only 
for certain ‘allowed’ energies. The technique for finding these energies E  is the so-called 
shooting method. The idea of the shooting method is to start in region 1 and integrate into 
region 2, which results in some function ,0ieft(x ). Similarly, we acquire a function bright ix ) 
by starting in region 3 and integrating backwards into region 2. The wavefunction and 
its first derivative must be continuous, and thus we stipulate V;ieft(^) =  bright (%) and 
^leftM  =  bright (x ) regi°n 2. This can be combined into a single matching condition by 
multiplying by an appropriate constant, which is valid since the Schrodinger equation is 
linear. Therefore, we could take the condition to be ip[eft(x)/'tp\eft (x) = bright (x)/bright 0*05 
and this can be tested at a given value of x. Adjustments of the energy E  are then done 
until this condition is satisfied. In any case, we have shown the following:

T h eo rem  1. In the limit as the energy tends to zero, the Regge poles associated with a 
finite spherical well tend to the angular momentum eigenvalues of the self-adjoint problem 
formed when the energy is identically zero.

2This result—Theorem A. 12—is developed in detail in Appendix A.3.

require that the solution ip(x) —> 0 as x  —> ± 00 , which we know is possible only for certain 
discrete values of the energy E. Let us label by 1 and 3 the regions where E  < V(x)  for all
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The finite spherical well may not be the most realistic model—although it is quite useful 
for the scattering of sub-nuclear particles [Taylor, 1970, p. 187]—but it usually proves, as 
in many quantum mechanical problems, to be an instructive example. Naturally, the 
sequel will be concerned with a compactly supported integrable potential, for which it will 
be shown that Theorem 1 still holds. The integrability condition on the potential just 
ensures that the differential equation has solutions.

3.3 C om pactly Supported P otentia l

Suppose that U is any integrable potential such that U(r) = 0 for r  > tq. Guided 
by the method used in §3.2 for the finite spherical well, we need to demonstrate that 
equations (3.23) and (3.24) still hold. It is clear that equation (3.24) is satisfied since the 
potential is identically zero for r  > ro; however, it is unclear whether equation (3.23) is 
true. We certainly know that tio(r, k, A) satisfies

-Uo(r, k , A) +  ^C7(r) +  r 2 ^  ~  uo(ri A) =  0, r < r 0. (3.26)

Suppose we choose the well-behaved solution uo(r, k , \ )  at the origin, i.e. the solution 
for r < ro such that uo(r, k , A) ~  r A+!/2 as r  0, then we have uo(r, k, A) —>• 0 as r  —>• 0 
provided Re(A) > 0. Thus, wre are free to use the normalization uo(ro, k, A) =  1. Define

0(r, k, A) =  uo(r, fc, A) -  u0(r, 0, A) (3.27)

so that (j) satisfies

-(f)"(r, k, A) +  (r) +  fc, A) =  fc2u0(r, 0, A), r  < r 0 (3.28)

and (/>(r,k, A) —> 0 as r  —>• 0. Also, by our normalization of uo(ro,fc, A), 0(ro,/c, A) = 0. 
Furthermore, define an operator

T  = - & + ( u { r )  + ^ ^ )  (a29 )

with domain given by

®(T) = { f €  £ 2(0 ,ro) : T f  6  £ 2(0, r0), f ( r 0) = 0}. (3.30)

Then
0(r, fe, A) =  (T — k 2)~l k2uo(r, 0, A), (3.31)

where ( T —k2)~l uo is analytic in k. Therefore, (f) —» 0 as k —► 0, i.e. uo(r, fc, A) —> uo(r, 0, A) 
as k —>• 0 in C2. With regard to (3.23), we also need to consider the first derivative of <fi
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with respect to r, <(/. Multiplying (3.28) by (p* and integrating by parts we have

rro rro (“To | i 2 I t r°
J  \(p'\2dr +  j  U(r)\(p\2dr +  (A2 — 1/4) J  j- 0  d r =  fc2 y  |</>|2dr

rro
+  /  u0(r, 0, A)0*dr

Jo
(3.32)

For small fc, <f> = T ~ l k2UQ{r, 0, A) (since (T -fc2) " 1- ^ 1 =  ^ T ^ T - A : 2) - 1 by the Hilbert 
identity and T -1 is bounded, as we shall see). Thus, for <p’ —» 0 as k —> 0 in the £ 2 norm, 
we require that the operator ( l / r )T -1 be bounded in £ 2(0, ro) and the term involving the 
potential vanishes as k —> 0. For the former, consider the operator Tq = T  — U and write

1 T - i  =  I (T 0 +  UTZ'To)-1

= ^ T o ' O  + U T g1) - 1. (3.33)

In order to demonstrate the boundedness of the operator ( l / r ) T _1 we need only consider 
the boundedness of (1 / t)Tq 1 and UTq 1; we will see that the boundedness of the latter 
implies that the term in (3.32) involving the potential is also bounded. To obtain an 
explicit expression for Tq 1, we must solve the inhomogeneous problem

- y "  +  (A -  l /4 ) r  y = g, g € £  (0, r0).

The solution y\(r, A) =  rx+l/‘2 satisfies the boundary condition at zero, whilst the second 
solution y 2( r , X )  = r 2 Ar - A + i / 2  _  r A + i / 2  satisfies the boundary condition at ro- Moreover, 
their Wronskian is given by 2 \ vqX. Therefore,

P S -^ X r)  =
^ ( y  1, 2/2)

r r  rro
y2 (r)yi(s)g(s)ds + j  yi{r)y2(s)g(s)di

g { s ) d s + i °  -  ( ^ T ) g (s)dt- ' x - &
(3.34)

Consequently, we have from equation (3.34) that

(3) \g(s)ds

/ ■ " © " ■ " ( - ( a ” ) * ' -
(3.35)

The first integral in equation (3.35) is clearly bounded: note tha t s < r  and so each term 
involving s / r  can be bounded by 1, then the Cauchy-Schwarz inequality gives the result 
since g 6 £ 2(0, ro) and our range of intergration is finite; but, the boundedness of the 
second integral is not so clear and thus it will require further work. For convenience, let



CHAPTER 3. LOW  ENERG Y 38

us denote the second integral in equation (3.35) by J^(r). Since the Lebesgue space C2 is 
its own dual, we can use for bounding J  the norm given by3

l l ^ l l £ 2 ( o , r 0 ) =  S U P
heC2(0,ro) l l ^ | | £ 2 ( 0 , r o )

(3.36)

By first changing the order of integration and then twice applying the Cauchy-Schwarz 
inequality, we have

ds

.-A+1/2
“  ( “ ) \\9(s)\ f  r 2X ldrI Jo

f
<  l l ^ l l £ 2 ( 0 , r 0 )

JO

=  I W l £ 2 ( 0 , r o ) S~Re{X)Vs  1  ~

=^ ll'i|l£2<o-)i° '/ih K ) 21 l5(s)|di

Jo  I Vr0/

1/2

ds

,2A|l/2

\ / 2 |A|

v f l

1

%/2 |Al
l l^ ll£2(0 ,ro) l l p | l £ 2(0,ro)

-ds

1/2

ds

On dividing by ||h||£2(o,r0) (which is finite and positive) and taking the supremum over all 
h € £ 2(0,ro), we find from (3.36) that

l^ ll£ 2(o,ro) < l|p||£2(0,ro)
rro / S \ 2A2
/ s i - ( - ) ds

Jo \ r 0 J

1/2

<  OO.

Therefore, ( l /r )T 0-1  is a bounded operator in £ 2(0, ro). Recall that we also require UTq 1 

to be bounded in £ 2(0 , ro); this follows if we add a further restriction to the potential. 
The extra condition that we need is illuminated when we write UTq 1 =  rC /(l/r)T j"1, 
namely, we must also make sure that the potential is such that rU (r) is supremum-norm 
bounded in a neighbourhood of the origin. This neither strengthens nor weakens the 
integrability condition, but it does allow Coulombic behaviour of the potential at the 
origin. Note that as soon as we are away from the origin, integrabililty of the potential 
alone will suffice. Concerning the term in (3.32) involving the potential, we write U\(f>\2 
as UT~l k2uo{T~lk 2uo)*• To see that this will vanish as k —> 0 we notice that since Tq 1 

is bounded from (3.34) then T ~ l is bounded from (3.33). Equation (3.33) also yields that

ZC2 is a Hilbert space and every Hilbert space is self-dual. More precisely, there is an antilinear bijection 
between and its dual 3t£* which is norm preserving, and so it is usual to identify 3^  with 3#?* in the sense 
of correspondence under the isometric anti-isomorphism described by the Riesz representation Theorem 
[Weidmann, 1980, p. 61]. Moreover, when a norm ||p|| in £  is given so that £  becomes a normed space, 
£* is also a normed space with norm defined by ||/ || =  sup0^s€(g. |(/|<?)|/||si| [Kato, 1966, p. 13].
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U T~l is bounded since we have already noted that UTq 1 is bounded. We conclude that 
( l / r ) T -1  is a bounded operator in £ 2(0,ro) and thus 0 /r  —> 0 as k —> 0 in the C2 norm. 
Finally, the right side of (3.32) tends to zero since uo(r,0 , A) £ £ 2(0,ro), and as we know 
T ~ l is bounded. Thus, it must be the case tha t f t  —> 0 as k —> 0 in the C2 norm.

In light of (3.23) we actually require pointwise convergence of the wavefunctions, whilst 
we have convergence in £ 2(0,ro). However, recycling the arguments just made, it is clear 
from the differential equation (3.28) that ft '  will also go to zero in the C2 norm. Therefore, 
we have shown that / or°(|0 |2 +  \ f t \2 +  |0 /,|2)dr —> 0 as k —> 0 , i.e. that 0  —y 0 as k —> 0 
in the Sobolev space H2 norm. Hence, by a Sobolev Embedding Theorem4, both 0 and 
f t  vanish pointwise as k —>■ 0. The convergence is locally uniform in A £ i f  by Montel’s 
Theorem, where i f  is a compact set in the first quadrant bounded away from zero: Tq 1 / r  
is uniformly bounded in A £ i f , and this means tha t 0 is uniformly bounded in A £ i f  
because r <r$.  We can state what wre have found as follows:

T h eo rem  2. In the limit as the energy tends to zero, the Regge poles associated with a 
compactly supported integrable potential U in which r\U(r)\ is bounded in a neighbourhood 
of the origin, tend to the angular momentum eigenvalues of the self-adjoint problem formed 
when the energy is identically zero.

We will now see that losing the compactly supported property produces a number 
of complications, of which, the most fundamental is how to formulate the right side of 
equation (3.4). In §3.2 we were able to explicitly calculate this limit simply because we 
could write down the solution and its derivative. To compensate for this, we will be 
reduced to expressing the solution recursively using integral equations [Shubova, 1989].

3.4 The General Potential

For the left-hand solution, we have already seen that for an integrable potential which 
forms a bounded product with the spatial variable near the origin, (3.23) holds. Thus, for
the general potential (with finite first moment for r  > ro) we need only prove (3.24):

lim J  ^oo(r »fc>A) 1  =  ^oo(r > °» A) 
o |  Uoo(r, k, A) J Uoo(r, 0, A)

for some fixed r  =  ro > 0. We reiterate tha t Uoo(r,k,\) is the solution of (2.74) for 
r > ro such that u ' ^ r ,  k, \)/uoo(r, k, A) ~  ik  as r  —> oo, Uoo(r,0, A) is the unique (up to 
a scalar multiple) £ 2(ro, oo;r-2 ) solution of (2.74) with k = 0, and the symbol ' denotes 
differentiation with respect to r  evaluated at r  =  ro- Also, we know from §3.2 that the 
functions Uoo(r,k,X) = f t r / k H ^ \ k r )  and Uoo(r,k,\) = f t r / k H ^ \ k r )  are two linearly 
independent free solutions. As alluded to above, the idea is to formulate an integral

4See, for example, Sobolev [1963] p. 56. The required result is essentially given by the following line of 
reasoning: | f (x)  -  f(y)\  =  \ f *  f'(s)ds\ < \x -  y\1/2( f* \f'(s)\2ds)1/2 < \ x -  2/[1/21|/|| H2 (R), where the first 
inequality is just an application of Cauchy-Schwarz.
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equation for the solution u ^ r ,  k, A). More precisely, we claim that any solution of5

1 7°°
Uoc(r,k, A) =  Uoc(r,k, A) +  —  /  0(r ,s,k)U(s)uoo(s,k, \)ds,  (3.37)

oo J  r

where is the Wronskian of u^o and u0c, and

0 (r , s, A:) =  tioo(r, /c, A){too(s, A:, A) -  £ioo(r, k , A)uoo(s, A:, A)

(3.38)k

is a solution of (2.74). To justify this claim we compute

i f  f°°u'x (r ,k1\ )  = u,QO(r ,k , \ )  + —  u'oofak, A ) /  u00(s,k ,X)U(s)u00(s1k,X)ds
^oo Jr

Uoo(r, k, \)uoo(r, k, A)C7(r)ii00(r, A;, A) +  ftoo(t*j A;, A)uoo{r, A:, A)C/(r)u00(r, fc, A)

/ oo
Woo(s, A;, A)C/ (s)itoo(s, A:, A)d;

=  M^(r, A:, A) +  jw '^ r, A:, A) J  Uoc(s, k , A)C/(s)woo(s, fc, A)d;

/oo
Uoo(s, A:, A)C7(s)tioo(s, A;, A)ds

which means that

fc, A) =  u;4 (r , fc, A) +
ryOQ /

OO

Uoo(s, A;, A)f7(s)woo(s, fc, A)ds 

+  m'oô A;, A)WooO”, A:, A)C/(r)WoO (̂ 5 fc, -M “  *4>(r > fc> A)Uoc(r, fc, A)f7(r)itoo(r, fc, A)

(3.39)/oo
Woo(s, fc, A)C/(s)uoo(s, A;, A)d 

Using the definition of Uoo(r, fc, A) and equation (3.37), it follows from (3.39) that

WooU(r)uoo(r, fc, A)w'4(r, fc, A) = ( - — I ^oo(r, fc, A) +

+
A2 - 1 / 4

-  k2 ) (uoo(r, fc, A) -  Uoo(r, fc, A ) ) ^

- — 2~~~ -  A:2 J Uoo(r, A:, A) +  U (r)uoo(r, A;, A).

5For a potential with finite first moment and bounded kernel this integral equation makes sense, but as 
we shall see this kernel is in fact unbounded, and so the equation will have to be modified.
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In view of equation (3.24), we also require the first derivative of u ^ r ,  fc, A). This was 
calculated above and so is given by

1 f°°
*4>(r, fc, A) =  u '^ r , k , A) +  —  /  ©'(r, s, fc)t/(s)uqo(s, fc, A)ds (3.40)

*oo Jr

where
©'(r, s, fc) =  ^ ( r ,  fc, X)uoo(s, fc, A) -  u '^ r ,  fc, A)uoo(s, fc, A). (3.41)

Since we are under the very small energy regime, it is useful to note the following small 
argument asymptotics calculated in §3.2.1:

Uoo(r, fc, A) ~  -fc~ 1/2 f ^ i y ^ j y r ~A+1/2’ k 0 (3*42)

and

iioo(r, fc, A) ~  fc~ 1/2 r_A+1/2’ k °- (3-43)

Moreover, we have

It i
u'oo (r, fc, A) ~  -  esc (A -  1)tt{ J _ A(fcr)}' -  j-^== esc A?rJ_A(fcr)

=  esc X n ^ { J - x ( k r ) Y  +  ^ J A(fcr))

- - 1/2© 'ArS ? I)— (- 1}- (344)
and similarly

^oo(r , fc, A) ~  —fc~1/2( ^ )  r ( —T  + 1) r ~(A+1/2)(A ~  1), f c - ^ 0 . (3.45)

We also need fixed r, small fc asymptotics for ©, which is given by (3.38). The only 
difference between Hankel functions of the first and second kind is the sign of the Neumann 
function N u(z), in the linear combination that defines the Hankel functions. Thus, in the 
kernel, only the mixed terms survive:

e ( r , s , k )  = 2i ^ - [ J x (ks)Nx(kr) -  Jx(kr)Nx(ks)}. (3.46)

Let r  =  ro be fixed and consider © for a chosen small fc. Putting s = 1/fc we find that 
© is not, in general, bounded. This follows from the asymptotics given at the beginning 
of §2.4—J A(1) is bounded, N\(kr)  will blow up, J\(kr)  is bounded at the origin and so 
is iVA(l). In light of this difficulty we consider the integral equation defining the solution 
Uoo(r, 0, A) of the fc =  0 radial Schrodinger equation, i.e.

- u "  +  |  U(r) + A2 ~  1 /4  )  u = 0. (3.47)
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3 .4 .1  T h e  Zero E nergy  C ase

Denote by Uoo(r, 0, A) and noo(r, 0, A) the two linearly independent free solutions of 
(3.47), i.e. Woo(r, 0, A) =  r _A+1/ 2 and Uoo(r, 0, A) =  r A+1/2. Then any solution of

1 f°°
u<x>(r, 0, A) =  noo(r, 0, A) +  —------- /  S(r, s)U (s)uoo(s, 0, A)ds, (3.48)

"  oo,k= 0  J r

where T̂ ootk=o = W (^oo(r, 0, A), Uoo(r, 0, A)) and

E(r, s) =  iioo(r, 0, A)iioo(s, 0, A) -  Uoo{s, 0, \)v,oo(r, 0, A), 

is a solution of (3.47). Now, >^o,fc=o =  2A and the kernel is given by

E(r, s) =  y/rs

Thus, (3.48) becomes

U r U (s)iioo(s, 0, A)ds. (3.49)

We prove that there is a bounded solution—with respect to an appropriate norm, 
which is yet to be introduced—of equation (3.49). The arguments used to achieve this will 
subsequently be applied to the non-zero energy case in order to address the unboundedness 
of the kernel ©. Multiplying both sides of (3.49) by r A_1/ 2 we obtain

1 f°°
r A_1/2Uoo(r, 0, A) =  1 +  —  j  sU (s)(sx~1/2u00(s, 0, A))ds

„2A r o o
J  s _2A+1C/(s)(sA_1/2uoo(s ,0 , A))ds

1 f°°
= 1 +  —  j  sU (s)(sA_1//2'n00(s, 0, A))ds

~ ^ \ f r ( s )  sC/(s)(sA_1/2w°o(s,0, A))ds.

Let us define the weighted Chebyshev norm

(3.50)

l l / ( ’)IU =  s u p | w / ( r ) |
r>  0

(3.51)

where the weight is given by w = 1/noo. We note that in general, w depends on r, fc, 
and A; moreover, we may on occasion refer to the norm (3.51) as the tc-norm. Let us also 
make the identification

Uoo,w(r, •, A) =  wUoo(r, •, A) (3.52)

where, in this case, we have the weight w = r A_1/2. For absolute clarity, the weight is just
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the reciprocal of the associated U = 0 solution; this is the meaning of the above notation 
where w is defined initially. Hence, we write instead of (3.50) the following new integral 
equation, which is to be analysed for a bounded solution:

1 T f°° f°° / r \ 2 A
Woo,™(r*,0 , A) =  1 +  —  \ j  $UUoo,w(s, 0, A)ds J  sC/uooiU)(s, 0, A)ds . (3.53)

We apply the method of successive approximations6 to (3.53): to begin with, define 
the sequence {u^]w(r, 0, A)}, n € N by u ^ w(r, 0, A) =  1 and

1 Z*00 1 r°° /r*\2A
“ & l)M ,A )  =  l  +  —  J  sUu£]a ( s , 0 , \ ) d s - — j  ( - )  sUu£]w(s ,0,\)ds .  (3.54)

Firstly, we demonstrate that u£^w(r,0, A) is bounded by induction on n. Assume that 
|u6o;u;(r, 0, A)| < Cn where Cn is some constant (which could depend on A). By (3.54),

1 roo roo 2A
l ^ ^ i 1)(7' ,0, A)| < 1 +  —  j  \sU(s)\\u£]w\ds + j  -  |s £ /( s ) ||u g jd s

< 1 +
Cn_

2|A| /oo
|sC/(s)|d^

since |r / s |2A < 1 for Re(A) > 0. By definition we have u ^ w(r, 0, A) =  1, and therefore the 
boundedness of u ^ w(r, 0, A) for each n follows if we suppose that sU(s) is integrable on 
(r, oo) for fixed r  =  ro- We now prove that u ^ w(r, 0, A) converges to a limit UooiW(r, 0, A). 
By noticing the following series of equations:

i r°°
|u £ + ‘V ,0,A )-u<2>ro(r,0,A)| < 2j ^ y  |sC7(s)||u(S)m(s ,0 ,A )-u (S -1)(s,0,A)|ds,

i r°°
l“ cS?ti;(r,0,A) - ^ " ^ ( r ^ A ) !  ^  2| a|  7  “  w& 2)(s ’ ° ’ A)ld s ’

1 f
|uS},u;(r ;0 ;A) “  0, A) | < —  j  |sC /(s) ||u ^w(s, 0, A) -  0, A)|ds,

1  r oo
A) - u ^ ( r , 0 , A ) |  < —  j  |sC/(s)|ds, 

we have by back substitution that

^ ’(r .O .A J -u W jr .O .A )!^  [ J L  J ”  \sU(s)\ds\  .

6This is completely analagous to the method used in the book of Eastham [1989] pp. 8-15 to prove
Levinson’s Theorem.
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For a fixed r = ro let us suppose that

(3.55)

Then by comparison with a geometric series, 0, A) — u^]w(r, 0, A)} converges
for a fixed r = ro- Hence, we define

oo

j = 1

and so 0, A) is bounded for a fixed r = ro- Therefore, we conclude that if sU (s) is
integrable, then for a fixed r  =  ro > 0 satisfying the condition (3.55), there is a solution 
of (3.49) bounded in the norm II • I U - a  well-defined norm in this case since r  =  ro > 0.

3 .4 .2  N o rm aliz in g  th e  N on -Z ero  E n erg y  E quation

Returning to the difficulty of unboundedness in the kernel 0 , we expect that control 
of this term will be achieved under the norm || • Û , with weight w = l/«oo; we first need 
to ensure that this norm is well-defined. Now, the Hankel function of the first kind has 
infinitely many zeros as a function of its order [Magnus and Kotin, 1960], i.e. infinitely 
many A-zeros; however, we also need to consider the r-zeros for Re(A) > 0. When A is real, 
it suffices to note that the positive zeros of any two real cylinder functions of the same 
order are interlaced [Abramowitz and Stegun, 1965, p. 360]. On the other hand, when A 
is such that arg(A) E (0, n/2)  the argument is as follows: let x denote any one of J\,  N \ ,  

or and consider Bessel’s differential equation (BDE)

r2y" + ry + ( r2 — A 2)y = 0

with y(ri) = 0 and y(r2) =  0, where 0 < r\ < 7*2 are two r-zeros of x- Rewriting BDE in 
so-called self-adjoint form (r > 0) yields

where v =  A2. Multiplying (3.56) by x* and multiplying the conjugate of (3.56) by x,

(ry'Y +  (r — v / r ) y  = 0 (3.56)

then taking the difference of the resultant equations and integrating yields

i y - i / * )  f (  [x*(r x ')/ — x(r (x*)T] dr.
Jr\ T Jr\r

We may integrate the right side of this equation and this gives

O' “  »*) ^T -dr =  [ r x V  ~  rx (x*)']^  =  0 ,
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and since r -1 > 0 in [ r i ,r2], it must be that v* =  v  or A2 is real. Hence, for A in the strict 
first quadrant, \  has at most one r-zero. Thus, for each fixed r, H ^ \ r )  has infinitely 
many A-zeros, but if you fix A to be one of those zeros and vary r, we find that r — f  is 
the only r-zero. We may therefore avoid any zeros by a suitable choice of A and r.

To proceed we will also need an explicit expression for the Wronskian appearing 
in our integral equation (3.37). It is useful to notice that

^co =  \ (Ĥ(kr){Ĥ(kr)y - Ĥ(kr){Ĥ(kr)}')
can be simplified by an application of the Wronskian formula for the Hankel functions 
given in Arfken and Weber [2005] p. 711; it follows that = z7rfc/4 , and so along with
utilizing (3.46), (3.37) becomes

7r
Uoo (r, k , A) =  Uoo(r, fc, A) — — /oo

y/rsJx(ks)N\(kr)U(s)uoc(s, k, A)cl

. (3.57)/
OO

\ / r sJ \ (kr )N \(ks )U (s)uoo(s, k, A)d 

Recall the notation (3.52), then multiplying (3.57) by w = u^  results in the equation

J  V r s w ( r ) N \ ( k r ) U (s)uooiW(s, fc, A))ds^oo,ty(^fc?A) — 1 ^

w(s) -w(r)J\(kr)U(s)u00̂w(s, fc, A))ds (3.58)

Equation (3.58) can be written in the more succinct form

roo
Uoo,w(r, fc, A) =  1 -  -  J  & (r, s, k)sU(s)u00̂w(s, fc, A)ds 

J \ ( k s ) H ^  (ks)N\(kr)  Jx (kr)Hî )(ks)Nx(ks)
where

5"(r,s,fc)

(3.59)

(3.60)
Jx(kr) + iNx (kr) Jx (kr) + iN x (kr) '

We have accounted for the possibility of the denominator of 3F vanishing, but we should 
also note that since Jx(z) and N x(z) are analytic functions of 2 throughout the 2-plane 
cut along the negative real axis, &  is analytic in r, 5, and fc. In light of what is to come, it 
would be prudent to list the small and large argument asymptotics of the Bessel functions, 
holding the order fixed: for small x  we have [Abramowitz and Stegun, 1965, p. 360]
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Whilst for large x  we have [Abramowitz and Stegun, 1965, p. 364]

J\(x)  ~ —  cos(a: — 7rA/2  — 7r /4) and N\(x) —  sin(a: — 7rA/2  — 7r /4 ). (3.62)

Recall that we are to take k —> 0. Thus, we show uniform boundedness in k of SF in 
order to use Lebesgue dominated convergence and interchange limit and integration. So, 
let a = ks and p = kr such that o > p, then consider the first term in (3.60):

In a neighbourhood of the origin, the first term in square brackets is bounded since JX(cr)

in square brackets is bounded at the origin. In principle, cr could be large but since we are 
interested in a finite fixed r, it will suffice to show that (3.63) is uniformly bounded for 
large a  and small p, which is obvious since both the Bessel and Neumann functions tend 
to zero at infinity. Similarly, for the second term  in (3.60)

we have boundedness at the origin of the first term in square brackets since a > p implies 
that J\(p) vanishes faster than N x(a) blows up. The second square bracket term is 
bounded at the origin since a > p implies tha t N x(p) blows up faster than N x(a). The 
argument for uniform boundedness when a becomes large is unchanged from above. Thus, 
we can see heuristically that 3? is bounded for small a and p, but for our purposes we 
require uniform boundedness in k and A. So, to be more precise, write

and consider small a and p. We have from Arfken and Weber [2005] p. 709 that

equation (3.66) converge.
This particular choice of contour is justified as follows: let us rewrite the contour 

integral (3.66) into two contour integrals, namely,

Nx(p) (3.63)
(Jx(p) + iN x (p)) '

vanishes at the precise same rate as N x (cr) blows up. Also, it is clear tha t the second term

[•MpXACcO +iNx(cr))}
Nx(a)

(3.64)
(Jx (p ) + iN x(p)) ’

3?(r,s,k) =
H ^ ( a ) J x (a)Nx(p) -  H ^ ( a ) J x(p)Nx(a) 

Jx(p) +  iNx(p)
(3.65)

Re(A) > 0 (3.66)

where the contour 7  =  71 U 72 (Figure 3.1) is chosen so as to have the integral given in

z \ + i '
(3.67)

For convergence of the first integral in (3.67) we would like Re(z — l / z )  < 0, where z = pe^
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-1 +1

Figure 3.1: The contour 7  =  71 U 72 chosen for (3.66).

with d G [0,7r/2] and p > 0; thus, pcos'd — (1 /p) cosd  < 0. This is equivalent to requiring 
(p2 — 1) cosd < 0, which implies that p e l .  Similarly, to gain convergence of the second 
integral in equation (3.67), we must have Re(z — 1 / z) < 0  where z = p e d  G [7t / 2, 7r]. It 
follows that (p2 — 1) cos d < 0 and so we need p > 1.

By making a change of variable z = cr£ in equation (3.66), we may rewrite the defining 
contour integral for the Hankel function as

H ^\cr )  =  f
7rz £A+1

Referring to equation (3.10) it is clear tha t H \(a )J \ ( x )  is uniformly bounded in k and 
A £ K ,  with the stipulation that a > x. In particular, this means that both H\(a)J \ (a )  
and H\(cr)J\(p) are uniformly bounded in k and A G K.  Recall that p is fixed but can 
be arbitrarily small since we are interested in small k\ thus, let p be such that 0 < p < 6 
where S is small, then we have that [Abramowitz and Stegun, 1965, p. 360]

J\ (p)  +  i Nx(p)  ~  iNx(p) ,

A fixed with Re(A) >  0. Hence, in considering the term

(3.68)

Jx(p) + iNx(p)

we find that (3.69) is uniformly bounded in k  and A € K.  With regard to the term

g A(q)JA(p)WA(cr)
Jx(p)-\-iNx (p)

(3.69)

(3.70)

we use equation (3.68), and since we know Hx(cr)Jx{p) is uniformly bounded in k and
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A E K,  it only remains to show the boundedness of \N\(cr)/N\(p)\. However, for the 
particular values of p being considered here (i.e., small) we have that

Nx(c7)
Nx(p) < Nx(a)Nx(cr)= 1 (3.71)

for A E K  since 0 < p < a. Hence, (3.70) is uniformly bounded in k and A E K.  Piecing 
together equations (3.69) and (3.70), we see that J^(r , s ,h ) is uniformly bounded with 
respect to k and A E K.  Thus, the proof that there is a bounded solution of (3.49) 
can readily be applied to (3.59); the only difference being in the explicit bounds on the 
respective kernels. Therefore, there is a uniformly bounded solution with respect to k and 
A E K  of (3.57) in the w-norm. Let us define

«iim(r, A) =  lim Uoo,w(r, k, A), k—>0 (3.72)

where we suppose for now that this limit exists—the existence of such a limiting function 
will be discussed in §3.4.3. This means that for a fixed r  defined by an analogous condition 
to (3.55) and k 0, we have by using Lebesgue dominated convergence on (3.59) that

, ( i n \  I f ° °  J 1  f k s } *  |  J  —cscA7t
\ r ( A  + i ) V y J  j | r ( - A  + i ) V y y  j  

- { ^  ( ! ) “} { ^  ^

- L
T(-A  +  1)V 2 )

00 1 — esc A7r /  ks \ -A 1 f
r ( - A  + l) v y j  j |  r ( - A  +  l) V 2 )

cscA7t / k s \  -A

iT ( -X  +  1) / k r \ xk r \
y J

1 //cr\A

=  1 +

j CSC A7T \ 

7r /(2 sin 7rA)
r ( l - A ) T ( A  + l)

(y) A)dsj (r(A + i)
f°° [ ° °  / r \ 2 A

J  sU (s)uiim(s, A)ds — J  sU(s)unm(s ,\ )ds

where we have used the asymptotics (3.14). This can be simplified using standard formulae 
for the gamma function; see, for example, Olver [1974] pp. 32-35:

1 sin7rA
r ( i - A ) r ( A  + i) =  r ( i  -  a)t (a)a =  ttA '

Therefore, from equation (3.73) we have

(3.73)

2A
f°° f°° f r \ 2A

J  sU(s)uyim(s, A)ds — J  sU(s)u\im(s,\)di (3.74)

which is precisely the integral equation (3.53) in the k = 0 case. In summary, we have 
formally shown that if unm exists, then it will have the exact form (3.53) that is required.
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3 .4 .3  E x isten ce  o f  th e  L im itin g  W avefu n ction

To show the existence of u\im we will implement the following argument involving a 
diagonal sequence: take an increasing sequence (rj)j2=1 with r j > r  = ro for all j  € N and 
rj —> oo as j  —> oo. Choose another sequence (kp)'£L1 with kp —> 0 as p —> oo such that 
the sequence of functions defined by

converges uniformly on [r, r*i]. This sequence is uniformly bounded with the same bound 
as the original family of functions Uoo,w('i k), k > 0 , and (as we will show) equicontinuous 
on [r, oo). Thus, by the Arzela-Ascoli Theorem [Kato, 1966, p. 157] we can extract 
a subsequence from (/p,i) which converges uniformly on [r,r2]; denote it by (fp,2)%Li- 
In general, we have (fpj)^Li  uniformly convergent on [r, r^], and uniformly bounded 
and equicontinuous on [r, oo). Hence, we can extract a subsequence (fp,j+i)£!Li from 
(fpj)  which converges uniformly on [r, rj+i]. Thus, on each fixed interval [r, r n], the 
diagonal sequence / i ,i ,  / 2,2> / 3,3, • • • is a subsequence of the original uniformly convergent 
and uniformly bounded sequence defined in (3.75). It follows that the diagonal sequence 
is uniformly convergent on any compact subset of [r, oo), and is uniformly bounded. This 
means that provided we can show equicontinuity of the family of functions Uoo,w(', k), 
k > 0 , the limiting wavefunction u\\m exists along a subsequence, namely, the diagonal 
sequence (fn,n)<SLi- However, on [r,rn] with p > n, f pp(-) = Uoo,w(-,kp) does not depend 
on n. Furthermore, limp_).0o / pp(*) depends only upon (kp), which is an arbitrary sequence 
with limit zero. Therefore, any convergent subsequence converges to uiim.

A standard result states that if the family of functions u00)U;(-, k), k > 0 has a bounded 
first derivative, then the family is equicontinuous by the Mean Value Theorem. Consider 
the first derivative of Uoo,w(r, fc, A), which by the notation in (3.52) and the integral 
equations (3.37) and (3.40) is

f P,i(") — kp), p £ N, (3.75)

u'oo,w(ri A) =  ™(rWoo(ri k, A) +  vj'{r)uoo(r, k, A)

1

+ w{r) Uoo(r, k, A) +  — 0 (r , 5, k)U (s)itoo(s, k , A)ds
1

^oo
11 f°° tc(r)0 '(r, s, k) +  u /( r )0 (r, s, k)
oo Jr [

+  [^Wwoo(r,A:, A)]'

f [ U ( s ) w ( s ) u o q ( s , k, A)ds

^oo
1

f [
f°° w(r)0'(r,  s, k) +  tt/( r )0 (r, s, k)

Jr U{s)uoojW(s ,k , \ )ds
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by definition (3.51) of w(r). Whence

1 f c [w(r)©(r, s, fc)]' 
w(s )

U (s)iiooi'u;(s, fc, A)ds. (3.76)

We need to show that this is uniformly bounded in fc. Now, by (3.38) we have

1
[w(r)0 (r, s, fc)]' =

H x \ k r )

M 2 ) , . .  _  H j l \ k s ) ( J x ( k r ) - i N x(kr)) 
x J \ ( k r ) +  iN\(kr)

= - J l H ^ ( k s ) [ ( M k r )  + iNx(kr))({Jx(kr)}'  -  i{Nx(kr)}') 

- ( J x ( k r ) - i N x( k r ) ) ( { M k r ) } '  + i{Nx( k r ) Y ) ] / (H ^ (k r ) )2

= k (* r ){ iV A(fcr)}' -  {J \ (kr)YN\(kr)
V K [Hx (kr)Y  L J

=  2ikS  m ^ L  k(fcr)7v;(fcr) -  j'x (kr)Nx(kr)]. (3.77)
V K (Hx '( k r)Y  L J

If we use the Wronskian formula Jl/( z )N ,l/(z) — J l ( z )N u(z) =  2/ 7tz for the Bessel and 
Neumann functions [Arfken and Weber, 2005, p. 705] in equation (3.77), then on dividing 
by w(s) we obtain

[w(r)©(r, s, fc)]7 _  s
w(s) fc

1-se

T
sl

1 2
2 4 i s

T
t?

i

t v fcr 7rfc r H{1\kr)_

Using our calculation for 1 /v ^ ,  the derivative is thus given by

H j 'H k s ) ' 2 

n [ l)(kr)
sU (s)uqo ,u;( ,̂ fc? A)ds,/ I 1

u oo,w  ( U  I
J r r

and hence it follows from (3.71) that (modulo a constant)

1 f°°
Koo,w(r > M )| < “  /  s|C/(s)||Uoo,W(5,fc, A)|d5.

T Jr

(3.78)

(3.79)

Since r  is defined by (3.55) and an analogous condition for the fc ^  0 case—we can just 
take r  to be the maximum of each value satisfying each integral condition—it is clearly 
finite. Also, sU{s) is integrable and we know from §3.4.2 that Uoo)U,(r, fc, A) is uniformly 
bounded. Thus, the family ttoo,u;('>fc)j fc > 0 is equicontinuous. This therefore means that 
Woo(u fc, A) —>• Uoo(r, 0, A) as fc —>• 0 in the w-norm.

Recall that we also require ^ ( r ,  fc, A) —> u ' ^ r ,  0, A) as fc —» 0 in the norm || • n -  We see 
from (3.79) that u '^ r ,  fc, A) is uniformly bounded with respect to fc in the in-norm; thus,
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if we had equicontinuity of the family u ' ^ r ,  fc, A), fc > 0, then by the diagonal sequence 
argument described in §3.4.3, the limit l im ^ o  u 'oo(r i k ,  A) would exist. Therefore, we only 
need to prove that u ' ^ r ,  k, A) is uniformly bounded with respect to k in the ic-norm. 
However, we notice that this is given by the differential equation (2.74), and indeed we 
see that u ^ (r , k , A) is uniformly bounded with respect to k in the norm || • i i -  Finally, to 
show that limfc_>o t f c (r> k, A) is of the required form, we first calculate u'^ w(r, 0, A). Since 
sU(s) is integrable, we have from equation (3.53) that

On the other hand, defining the notation u[im(r , A) =  lim ^ o  ifc  w(r, fc, A), the formal limit 
of equation (3.78) as fc —> 0 is given by

where we have used the asymptotics given by (3.14) and the small energy convergence 
result limfc_^o^oo,u;(^? fc, A) =  uijm(r, A) established earlier. Note that we can interchange 
limit and integration, as we have done before, using Lebesgue dominated convergence 
since the integrand in equation (3.78) is uniformly bounded in fc. We conclude that 
u'<x>(r-> k, A) —> ^ ( r ,  0, A) as fc —► 0 in the u>-norm.

Note that convergence of the fc > 0 Wronksian to the fc =  0 Wronskian is along any 
convergent subsequence (see §3.4.3). A general fact about analytic functions is that if 
fn(z) tends to f ( z )  as n —>• oo, and if the convergence is uniform on compact sets, then 
the zeros of f n can only either: escape from any compact set, i.e. tend to infinity, or tend 
to the zeros of / .  Since these Wronskians (whose zeros are the Regge poles) are analytic 
as functions of A, and the convergence is locally uniform in A (as guaranteed by Montel’s 
Theorem), we cannot rule out the possibility of Regge poles tending to infinity.

Under the hypothesis that the potential has finite first moment for r  > ro, we have 
shown equation (3.24) to be true. Amalgamating this with the compactly supported result, 
we have a two-part condition on the potential; namely, that it is integrable for r < ro with 
r|J7(r)| bounded in a neighbourhood of the origin, and has finite first moment for r > ro. 
We combine these hypotheses and state that we have shown the following result:

T heo rem  3. In the limit as the energy goes to zero, the Regge poles associated with a 
potential U such that (1 +  r)U(r) is integrable and r\U(r)\ is bounded in a neighbourhood 
of the origin, tend either to the angular momentum eigenvalues of the self-adjoint problem 
formed when the energy is identically zero, or they diverge to infinity.

(3.80)
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Regge Pole Cardinality

In this chapter we consider Regge poles residing far out in the first quadrant of the 
CAM plane; in particular, we demonstrate that outside some compact set there are no 
Regge poles associated with a compactly supported potential. To achieve this, we use 
the integral equation strategy of Chapter 3. This approach has the advantage of not 
requiring analyticity of the potential, which has hitherto been a central assumption; see, 
for example, Barut and Dilley [1963]. We must first return to the Regge pole condition; we 
will find it enormously helpful to think of this condition in a way tha t avoids derivatives.

4.1 Yet A nother Characterization o f R egge Poles

The Regge pole condition (3.3) may be expressed in an equivalent manner without 
derivatives. The reason for doing this was touched upon in Chapter 1: for a potential 
which vanishes when r  > ro we wish to study the regular solution of (2.74) for large JAJ, 
and so in contrast to the previous chapter, A is no longer a fixed parameter—or bounded 
to a compact set, as the case may be. This presents several complications on taking the 
limit as |A| —> oo of the solution; chief among these is gaining uniform bounds in order to 
swap limit and integration in the integral equation which defines the solution recursively. 
As we have already encountered, the kernel in the integral equation is built out of the free 
solutions of (2.74), which in this case are Bessel functions. It is difficult enough to get 
bounds for the kernel itself, let alone its derivative. Thus motivated, consider the ideal 
matching condition (3.3); this is equivalent to requiring that

u0(r +  h , A) _ Uqo (r +  h, A) 
u0(r,A) Uoo(r,A)

for fixed r = rp > 0 and for all small h.

52
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Recall our notation from §3.1. Let us set k = 1 so that from equation (3.8) and the 
notation given at the start of §3.4, Uoo(r,\) =  itoo(r,X) =  y / rH ^ \ r ) .  Moreover, let us 
denote by uo{r, X) and fio(r ? X) two linearly independent free solutions for r < ro, which 
in this case are proportional to yJrJ\{r) and y/rN\(r) respectively. Observing that there 
are no Regge poles for a free particle—if there is no potential then there is no phase shift 
Si and hence no Regge poles—we need only show that for large |A|, tio(r, A) uo{r, A) 
locally uniformly in r. The stipulation th a t these large |A| asymptotics should be locally 
uniform in spatial variable ensures that the condition (4.1) is satisfied.

4.2 The Integral Equation for th e  Left-Hand Solution

As we have seen from Chapter 3, it is possible to formulate an implicit expression for 
the solutions of the radial Schrodinger equation (2.74). In this case, we have

u0(r, X) = u0(r, \ )  + f  K(r ,  s, X)U(r)u0(s, X)ds, (4.2)
Jo

where
K (r, s, A) =  — [uo(r, A)u0(s, A) -  w0(s, A)wo(r, A)] (4.3)

with W  denoting the Wronskian of xlq and uo, and U(r) is an integrable potential which 
vanishes for r  > ro- The kernel K  is unbounded in A and thus equation (4.2) fails to define 
a bounded solution, which is bad news if we are to take the limit as |A| —¥ oo. We deal 
with this as before and divide the integral equation by a suitable normalizer, the obvious 
candidate being uo(r, A). However, we must ensure that division by zero is avoided.

4 .2 .1  T h e  Zeros o f  th e  B essel F u n c tio n

Firstly, J\{r)  is an entire function of A [Abramowitz and Stegun, 1965, p. 358], and 
for all sufficiently large A in a cone excluding the negative real axis, it has no zeros; 
this is because uo(r, A) is asymptotically r A+1/ 2—perhaps easiest to see from the radial 
Schrodinger equation. Thus, J\(r) has finitely many A-zeros by Theorem D.2 in Appendix 
D .l. In the situation where A is real, we have the bound [Neuman, 2004]

n T + T ) cos { ^ f ( T + T ) } -  A > “ 1/2’ N - * /2 ’ (4'4)

from which we conclude that J\(r) is non-zero for A > 0 and 0 < r  < 7r /2 . Moreover, if A is 
on the imaginary axis, J\(r)* =  J\* (r) is also a solution of Bessel’s equation since the order 
appears squared; this of course means that Re{JA(r)} and Im {J\(r )} are also solutions. 
Hence, there are no r-zeros (r > 0, which is always the case) of the Bessel function for 
purely imaginary order since the real and imaginary parts of J\(r)  are solutions of the 
same Sturm-Liouville equation, and so they cannot share any zeros. In addition, if there 
are no r-zeros then there can be no A-zeros also: if there were a A-zero, say at A =  A, then
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we could legitimately view this as an r-zero for the fixed A =  A.
It is also apparent from §3.4.2 tha t J \(r )  has at most one r-zero for A such that 

arg(A) € (0,7r /2); we can, however, say more than this. Observe from (3.61) that

=  ^  r ^ 0 i  

«o(r,A) N\(r )

which shows u q  to be a principal solution [Hartman, 2002, p. 355] since both the Bessel and 
Neumann functions have finitely many zeros for r  <  7r /2—recall that uq and uq are free 
solutions and so in particular, the potential is real (being zero). Hence, by the machinery 
of the so-called Niessen-Zettl transformation [Niessen and Zettl, 1992] we may transform 
our singular problem into a regular one. The transformed equation is the Friedrichs 
extension whose domain entails a boundary condition at the singular endpoint (s). In 
our situation, we bestow on uq the Friedrichs boundary condition uo(0, A) =  0, or more 
precisely, limr_̂ .o ^o(^, A) =  0. If we assume th a t we have an r-zero of uo, say at r  =  r > 0, 
then we could place a Dirichlet boundary condition on ilq at f  and show, in parallel with 
the argument from §3.4.2, that A2 must be real. This reduces the number of r-zeros of 
the Bessel function from one down to zero. As we have already mentioned before, if there 
are no r-zeros then there can be no A-zeros, or more succinctly: J\(r)  has no zeros for 
0 < r  < 7t/2  and A in the first quadrant. Thus, we may use uq(v, A) as a normalizer.

4 .2 .2  T w o E q u iva len t K ernels

Let r  < 7t / 2 , then on dividing the integral equation (4.2) by uo(r, A) we acquire the 
following normalized (in the sense that the leading term  is unity) equation:

uo,w(r, A) =  1 +  [  s, \ ) U ( s ) u q , w ( s ,  A)ds, (4.5)
Jo

where
JT(r, s, A) =  ^ £ i ^ K (r, s , A) (4.6)

u0(r, A)

and recycling the notation (3.52) from the previous chapter, i.e.

U0)u;(-, A) =  ura0(-, A), w =  u0(-, A)-1 .

Note that J t ' is entire in A and analytic in r  and s; this is because each of the Bessel 
functions are entire functions of their order for non-zero argument and analytic as functions 
of their argument z throughout the 2-plane, cut along the negative real axis [Abramowitz 
and Stegun, 1965, p. 358]. Hence, in order to take the limit as |A| —> oo inside the integral 
in (4.5), we only need to check boundedness of for small r  and s, and for |A| small and 
large; the boundedness of also ensures tha t there is a bounded solution of (4.5).

We will use the Phragmen-Lindelof Principle to show the boundedness of in A. The 
Phragmen-Lindelof Principle [Markushevich, 1965, p. 214] states that if a function /  is
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analytic inside some sector of 'yn radians (0 < 7  < 2) with the following properties: /  is 
bounded by some constant for every point on the boundary of the sector, and /  has growth 
order1 less than I / 7  in the sector; then /  is bounded by that same constant for all points 
in the sector. Roughly speaking, the maximum occurs on the boundary. For our purposes, 
the sector is defined by 7  =  1/2  and we will need to show that the kernel is bounded on 
the real and imaginary A-axes. We will find it convenient to switch between N\(r)  and 
J~ \ (r ) for the second solution fio; however, this presents the following complication: when 
A is integral, J\(r)  and J~ \ (r ) are not linearly independent [Arfken and Weber, 2005, p. 
677], thus we must use the Neumann function on the real axis. We justify the switching 
of the second solution by showing that in fact, they yield the same kernel. Firstly,

Wj  =  W(y/r J\(r), \ fr  J - \ (r ) )

= VfJ\(r)[y/fJ-x(r)] '  -  y / f J - X(r)[y/rJx (r)]'

-  v /rJ_ A(r) V F * (r) +  J\(r)

= r[Jx(r)J'_x(r) -  J'x {r) J-x(r)] 

—2sin(7rA)=  r
7r r

=  sin(7rA)
7r (4.7)

where the penultimate line is given by a standard Wronskian formula [Arfken and Weber, 
2005, p. 702]. Similarly,

WN =  V rN \(r ) )

= r[J\(r)N'x (r) -  J'x (r)Nx(r)] 

=  2/ t t (4.8)

where again we have used a Wronskian formula [Arfken and Weber, 2005, p. 703]. If 
we continue the notation started here and write subscript N  to refer to the kernel with 
Cto(r, A) =  N x(r), and subscript J  when uo(r, A) =  J_^(r), then from the definition of the 
Neumann function [Arfken and Weber, 2005, p. 699] and (4.3), we have

(rs) 1/2K n  = ^ [J a W ^ a W  -  Jx{s)Nx (r)}

J ~ ^ S)

7r
2 sin(7rA) 

=  (rs)~1/2K j ,

sin(7rA sin(7rA)

[JA(r)J_A(s) -  J A(s)J_A(r)]

I sin(7rA sin(7rA)

^ h e  growth order of an entire function is the subject of Appendix D.2.
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which implies that the normalized kernels coincide, i.e. = Wj.  For convenience, the 
normalized kernels (see (4.6)) are given by

=  Jx(s)Nx (s) -  j x (a)Nx( r ) ^ \  (4.9)
s Jx(r)

and
=  Jx( s )J -X(s) -  J ^ s ) J . x ( r ) ^ f \ .  (4.10)

s J\{r)

4.3 Boundedness o f the N orm alized  Kernel

For ease of reading we will consider each case of real axis, imaginary axis and interior 
growth order separately. Let us first consider bounding the kernel for real A.

4 .3 .1  T h e R ea l A x is

To emphasize that A is real, let us write A =  cj, uj > 0. On the real axis we will no 
doubt encounter a; as a non-negative integer, say n, and thus, as anticipated, we need to 
take the second solution to be the Neumann function. Moreover, because of the way in 
which the Neumann function is defined [Arfken and Weber, 2005, p. 699], it is imperative
that this distinction between integer and non-integer order be sustained. Consider each
term in equation (4.9) separately: observe th a t [Olver, 1974, p. 59]

lJu,(x)|< r (.X/^ , , u j  > —1/2, x > 0. (4.11)
r(cj + 1)

It is prudent to note that the inequality (4.11) applies whether the order u j  is integral or 
not. From Abramowitz and Stegun [1965] p. 360, we have

n —1

Nn(x) = - - ( x / 2 )-"  V (W i  1)!(*2/4 )j  +  -  log(x/2)Jn(x)
7T z '  7! 7Tj =0 J

1 ^  (- x 2 /4V
-  -(*/2)bE[®W + 1) + *(n + i  + 1)])t (4-12)

where ^ ( z )  = T'(z)/T{z) is the digamma function. In absolute value, the first term of 
equation (4.12) may be bounded as follows:

l ( x / 2 ) - " „ . g  ^ l z L l ix2/4 y  <  I ( x / 2 ) - n n ! g

j=0 W 3=0 J -

< — (x /2 )- n exp(x2/4),
7r

whilst the second term in absolute value is bounded by (2/ 7r) log(:r/2); note that we have 
used the inequality \ Jn(z)\ < exp{Im(z)}, n  G Z [Olver, 1974, p. 59]. Consider bounding
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the third term of N n(x). Since j  and n  are non-negative integers, we may make use of the 
identity ^ ( j  +  1) +  9/(n +  j  +  1) =  — C  +  ^2p= lV p  +  J2q=i V ? where C is some positive 
constant [Olver, 1974, p. 39]. This yields the bound '&(j + 1) + '&(n + j  + 1) < 21og(j +  1), 
from which we find that the third term in modulus is bounded by

\  f > g t )  +  1) Z *  V < ~~ (x/2 )” exp(x2/4 ).
^ J-Kn +  jy-  7T

Combining the estimates for these three term s yields the bound

|-Nn(z)| < — (x/2)- n exp(x2/4) -I- — log(x/2) +  - ( x / 2 ) n exp(x2/4). (4.13)
7T 7T 7T

Looking at (4.9), we also need to bound the ratio Ju (s)/  Jw(r) for s < r < ir/2. Prom the 
inequalities (4.4) and (4.11) we have

«7cj(s)
Ju{r)

< { s / r r s e c ) . ^ + l < 2> r < 1. (4.14)

We need not have placed the further restriction of r <  1, it has no effect in the greater 
scheme; however, it is cleaner and more transparent to work with, and so it is the 
assumption on the spatial variable for the remainder of this chapter. Therefore, for integer 
order we have from (4.11), (4.13), and (4.14) th a t

^  exp(s2/4) 21og(s/2) 2exp(s2/4) 2„
S 7r + ,rr(n + l ) W ^  +  7rr(n + l ) W  J

+  ^ % / r ) "  +  )", (4.15)7r 7rl (n +  1) 7rl [n +  1 j

which is fine given that s < r < 1. Note th a t to acquire the bound (4.15), we have used 
the fact that the gamma function is the generalization of the factorial, i.e. T(n) =  (n — 1)! 
for any natural number n [Olver, 1974, p. 32]. Also observe that when multiplication by 
s is performed to bound the logarithmic terms will be dealt with.

We now turn our attention to w, which is not in general integral. The biggest issue 
will be getting an expression for Nu (x) so tha t we may bound it; this will be achieved 
using the following standard definitions [Abramowitz and Stegun, 1965, p. 360]:

cos(7ra;) 1
Nu (x) = — z rJu (x) -  —  r J - u (x)sin(7ru;) sm(7ru;)

cos( ™ h x >2r V   l— (x /2 ) -“ V  ( - * 2/ 4)j
sin(7ro;) j'L(uJ +  j  +  1) sin(7ro;) j \T (—u  +  j  +  1) *

We aim to derive an expression for the Neumann function of real order which reduces to 
the integer order representation (4.12) as u j  —> n. So, let u j  = n +  e where n € Z+ and 
e £ [—1/2,1/2). Now, T(—n + j  +  1) blows up for j  =  0 ,1 ,. . .  ,n  — 1 since T(z) has simple
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poles at 2 =  0 ,-1 , —2 ,. . .  [Olver, 1974, p. 32]; also recall that T(z) has no zeros [Olver, 
1974, p. 35]. Hence, we will regroup the terms in Nu (x) accordingly to get

Nu
1 n_1 ( -

(*) =  - - r -7 —t(® /2 )"w Y "sin(7ra;) 2-—' ̂ V ( —
(—x 2/4  y  cos(7ru;)

+  j  +  1) sin(7ru;) j=Q

( - x 2/4  y +n

(~x2/4  y  
U  +  j  +  1)

sin -w + j  + n +  1)

r ( l  - u ) ( - x 2/4,y= ____ 1______ I___ (x/2)~u Y '  111^
sin(7rw) r ( l  -  w) “  +  j  +  1)

c o s ( t w )  (.- x 2 / i ) j

sin(7rw) ' Z j j ! r ( u ,  +  j  +  l)

r h r W r f p  ( - * 7 4 ) " *
ini'TTY.II I 'Jsin(7ra;) j=o (j +  n ) ! r (—a; +  j  +  n +  1) ’

Using the well-known formula T(1 — z) = 7r /[ r (z )  sin(7rz)] given by (3.73), we have 

r ( l  -  u )  _  r(w -  j )  sin{7r(w -  j')} _  i )
(4.16)

T(1 — ( u j  — j))  r(a;) sin(7ro;) v T(a;)

Furthermore, since w « n w e  may write {x/2)u {x2/4 y  s=a (x /2)-a;(x2/4  )J+n, or

(x/2)~w(x2/ 4 y +n = (x /2 )UJ(x2/4)i  +  R ( u , j , x )  (4.17)

where R (u , j ,  x) is some remainder term. If we notice that cos(7ru;) =  (—l)n cos(7T£) and 
sin(7ru;) =  (—l)n sin(7re:), then using equations (4.16) and (4.17) we get

*„<*) = _l(at/2r + t
3=0 3=0

(x/2)u cos(7Te)(—x 2/ 4 y  
j\T(uj + j  -I-1)

- E
j=o

(- ! ) J [(x/2)u;(x2/4)J +  R (u , j ,x ) ]  
(j -I- n )!r(-w  +  j  +  n  +  1)

=  - I ( x / 2 ) - g l E z i ) ( x 7 4 F7r L '  7j =0 J

+  ^ ( x / 2 ) “ ( - x 2/4 F
3=0

cos(7re:)/ sin(7T£:) 1/ sin(7re:)
j!T (j +  1 +  n +  e) (j +  n)!T(j +  1 -  e) 

R (v , j ,  x ) / sin(7re:)

j =o ( j  +  n )!r(j +  1 - e )

(4.18)

(4.19)

(4.20)

We need to check that this is the correct function, i.e. that this representation of iV^x) 
gives N n(x) in the limit as e —> 0. The first term (4.18) tends to
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3=0
as £ —» 0 since T(z) is analytic save for poles at the non-positive integers; this is consistent 
with the corresponding term in N n(x). As for bounding this term we have

I(4.i8)| =  -  j)  (*V4y
7r '  I (u) +  1) v.&  +  D

< nr(o; +  l ) ( x /2 )~ UJ exp(x2/4 ) (4.21)

for some constant a; this is essentially a consequence of T(2:) being monotone increasing 
for z > 1.46 [Olver, 1974, p. 36, Fig. 1.1]—it is a property of the gamma function that we 
will use extensively in this chapter.

The second term (4.19) is not so straightforward. Let us begin with rewriting the 
contents of the square bracket in (4.19) as follows:

[C0S(7T£) — 1 ] /  S in (7 T £ ) 1

j T ( u  + j  +  1) sin(7T£)
1 1

j \T (j  +  1 -I- n  +  e )  (j + n)lT(j +  1 -  £)
(4.22)

It is clear that the first term in equation (4.22) vanishes as £ —> 0 by L’Hopital’s rule, 
since [cos(7T£) — l]'|e=o = 0 and [sin(7T£)]'|£=o =  tt- The second term of (4.22) is

1
sin(7T£)

T(j  +  1 -  e)(j  +  n)! -  T(j  +  1 +  n +  £)j! 
j \ ( j  +  n)\T(j  +  1 -  e)T(j  +  1 +  n +  e) (4.23)

of which we concentrate on the numerator divided by sin(7T£), i.e.

j \T(j  +  ! — £)< -
sin(7T£)

r ( j  -1- 1 +  n) r ( i  +  1 +  n +  £)
r ( i  + 1) T(j  +  1 -  £)

(4.24)

We apply L’Hopital’s rule to the contents of the braces in (4.24). So,

d T(j  +  1 +  n) T(j  + 1 +  n +  £)
de [ T(j  +  1) T(j  +  1 -  £)

- T ' ( j  +  1 -  e)T(j + 1 + n + e )  — T(j  +  1 -  e)T'(j +  1 +  n +  e)

T(j  +  1 + n +  e)
ry + i -£)

r ( j  +  1 +  n + e)
r ( j  +  i -  £)

r  (j  + 1 -  £)2

r ' ( j  +  1 +  n +  £) T'(j  +  1 -  e)
T(j +  1 +  n +  e) T(j  +  1 -  e)

[tf (j +  1 +  n +  e )  +  ^ { j  +  1 -  £ ) ] ,

which yields
1 ^f(j +  1 +  n) +  +  1)



CHAPTER 4. REGGE POLE C AR D IN A LITY 60

Therefore, the second term (4.19) tends to

as s —> 0, and this coincides with the corresponding term in Nn(x). To bound (4.19) 
consider part of the summand given by equation (4.22): firstly,

COS(7T£) — 1

sin(7T£:) < h =  h \ e \ (4.25)

for some constant b\. Furthermore, |l / s in ( 7T£)| <  |l /e | since e G [—1/2,1/2), and hence 
let us consider bounding the numerator of (4.23) divided by e, i.e. bounding

T(j  +  1 +  n +  e)T(j +  1) -  T (j +  1 +  n)T(j  +  1 -  e)

T(j +  1 +  n +  e) -  r  (j  +  1 +  n)

r ( j  +  i  -  e) -  r (j + 1)
r ( j  + 1  +  n)

< r ( j  +  i) sup |r'(z)|
z  G [ j+ 1  /  2 + n , j + 3 / 2 + n]

+  r ( j  +  i +  n) sup |r ' (z) |
z & \ j + l / 2 , j + 3 / 2 ]

by the Mean Value Theorem. Now, Binet’s formula states [Olver, 1974, p. 295]

arctan(y/z)

(4.26)

log T(z) =  (z  -  log 2: -  2: +  i  log(27r) +  2 exp(27vy) — 1
d y, (4.27)

where | arg(z)| < 7r /2 . Differentiating Binet’s formula with respect to 2 yields the following 
formula for the logarithmic derivative of the gamma function:

r'(z) , z - 1 /2  , o_ J _ i = l o g z + _ ^ _ 1 +  2

=  log z 2 z J0

f°° 1

Jo 1 +  y2/*2/  z2 exp(2ny) — 1 

d y.

d y

(y2 +  z2)(exp(27n/) -  1)

Since

and for z > 0

we have

y
exp(2iry) — 1

1< —  
2n

I 9- r ~ n  = ~ arctan(j//z) z

r ( 2)

y‘ +  z* z 

| r ' ( z ) l< r ( z ) | i o g z| +

y = ° o  7T

y = 0 2z ’

, Z > 0. (4.28)
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Thus, by applying the bound (4.28) to equation (4.26), and using the monotone increasing 
nature of the gamma function mentioned above, we get

sup |r'(*)| < 62r 0 ‘ +  l +  n +  l / 2)
[j-\-1+7i— 1 /2,j+1+n+ 1 / 2]

and

sup ir7(z) | < b^r(j  +  i + 1/ 2)
ze\j+1-1/2,j+1+1/2)

log (j +  l +  n +  l / 2) +  -7j  A n  A  1/2

log(j +  1 +  1/ 2) +  —

for some constants 62, 63. These two inequalities give the bound 

T(j A  1 +  n +  e ) r ( j  +  1) -  T(j A  1 +  n)T(j  A  1 -  e)

< b2T(j A l)T(j  A I A n  A 1/2) log(i +  1 A n  A 1/2) +  -
1

+  63T(j +  1 +  n)T(j  +  1 +  1/ 2) log 0  + 1 +  1/ 2) +  -

j  A n A  1/2 

1

j  +  1 /2
(4.29)

and so

\(a oo\i ^  A  1 +  n +  1/2) [log(j +  1 A n  A 1/2) +  1 / { j A n A  1/2)]
l(4-23)1 -  62 (j +  n )!r(j  +  1 — £ )r( /  + 1 +  n +  e)----------------

r  (j +  1 +  1/ 2) [log (j +  1 + 1/2) +  1 / 0  +  1/ 2)]
+  63-

j \T(j  A 1 -  e)T(j  A  1 +  n +  e)

The fundamental recurrence formula T(1 +  z) =  zT(z) [Olver, 1974, p. 32] (this identity 
has been used previously, see equation (3.73) in the previous chapter) can be iterated to 
show that T(j A z) = (j — 1 +  z)(j  - 2 A z ) - - - ( 2 A  z ) (  1 +  ^ )r ( l +  z), from which we have

T(J +  1 +  n A  1/2) ^  T(j  A  1 +  n A  1/2)
r O  +  l +  n +  e) “  4r ( j  +  1 + n -  1/ 2)

= b U A n  A  1/2) (j  A n -  1/2) • ■ • (5/2) (3/2)T(3/2)
4 (j A n -  l /2 ) ( i  + n -  3/2) • • • (3 /2 )(l/2 )F (l/2 )

=  64 0  A n  A  1/2)

for some constant 6 4 . Similarly, T(j  A  1 +  1/2) /T ( j  +  1 -  e) < b5(j +  1/2) where 6 5  is a 
constant. Hence, the bound becomes

l(4.23)| < 6e j A n A  1/2
+ 6e

(j A n  -  l)\T(j  +  1 -  e) (j A n)\T(j A  1 -  e)

+ b 7„  , J , +  1 /2 . . , + 67
0  -  1)!T0 +  1 +  n +  e) j \T ( j  A  1 +  n +  e) 

for 6 6 , 6 7  constants. This can be simplified with the following string of observations: there
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is a constant bs such that | l / r ( j7 + 1 +  n +  £)| <  b$ for all n > 0 and e € [—1/ 2 , 1/ 2), which 
deals with the forth term. For the third term, we merely note that there is a constant 
69 such that |j ( j  +  l / 2 ) / r ( j  +  1 +  n +  e)| <  bg for all n > 0 and e € [—1/2,1/2). The 
second term is clearly bounded by some constant divided by j\. For the first term, the 
cases where n =  0 ,1  are clear since they have already been dealt with; however, the cases 
n > 2 require investigation: let us expand the denominator as follows:

j  + n + 1/2 j  +  n +  1/2
(j + n -  l) 'T{j +  1 -  e) j \ ( j  +  1) • • • (j  +  n -  1)F (j +  1 -  e) 

and observe that
P +  1/2

P ~  1

whence the first term is bounded by a constant over j\. Our bound on (4.23) therefore 
simplifies to

T(j  +  1 -  e)(j +  n)\ -  T{j  +  1 +  n  +  e)j\
sin(7r£)j!(j +  n ) ! r (.7 +  1 -  e ) r ( j  +  1 +  n  +  e)

Using (4.25) and (4.30) to bound (4.22), we find tha t

|(4.19)| < b(x/2)u exp(x2/4)

(const.)<
J'- (4.30)

(4.31)

for some constant b.
Finally, we consider the third term (4.20) of N uj(x ). Again, we calculate the limit as 

e —» 0 of (4.20); to do this we apply L’Hopital’s rule to the ratio

R ( u , j , x) 1
sin(7T£) sin(7re:)

= (*74 )J'(z/2)-

=  (x 2/ i ) i ( x /2 y

(x/2)~u>(x2/ 4 y +n -  (x /2 )“ (x2/4)^ 

(x 2/4 )"  — (x2/4)"
sin(7re)

> / ( g) 
sin(7T£) *

On taking the derivative of /  we find f ' (e)  — — {x2/ 4)n{x2/ 4)£ log(x2/4), which gives 
/'(0 ) =  — (x2/4 )n log(a;2/4). Thus,

R(n + e , j ,x )  ——(x /2)w log(x /2)(x2/ 4 )̂  as £->-0 , 
sin(7T£‘) 7r

which yields (4.20) tending to

2 ^ 2. 2 
-  log(x/2)(x/2)n ^  .- - f  = -  log(x/2)J„(x)
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as e —> 0; again, this equals the corresponding term in Nn(x). To bound (4.20), write

R{u, j ,  x )
sin(7re)

(x2/ i y { x / 2 r

(x /2) - " - £(x /2)2n -  (x /2)\n+ e

sin(7T£:) 
(x/2)2e -  1

sin(7t e )

Since | exp(p) —1| < |p| for p < 0, we have \{x/2)2e —1 | < |2elog(;c/2)|, where x < 1. Also, 
as e G [—1/2,1/2) we know that | sin(7rer)| >  \e\. Putting these together gives

(x / 2  r
(x/2)2e -  1

sin(7rg:)
< 2 (x /2)n-£| log(:r/2)|,

whence
|(4.20)| < c{x/2)n E\ log(x/2)|exp(x2/4) (4.32)

for some constant c. Combining the inequalities (4.21), (4.31), and (4.32) results in

|Ao;(:e)| < aT(o; +  l)(x/2) u exp(x2/4) +  b(x/2)u exp(x2/4) 

+  c(x/2)n~£\ log(a:/2)| exp(x2/4).

Therefore, for real order we have from (4.11), (4.33), and (4.14) that

bs

(4.33)

\Wn <Xn \ < asexp(s2/4) +  r  +  1

c s  /  <~\2n+
r(w + 1)

( s / 2 ) 2u} exp(s2/4) 

(s/2)'zn\ log(s/2)| exp(s2/4)

+  as(s/r)u} exp(r2/4) +
bs

r(w  +  l)
(sr/4)^ exp(r2/4)

+ cs
T{u +  1)

(sr/ 4)n(s/ r)£ \ log(r/2)| exp(r2/4), (4.34)

which is uniformly bounded for u  > 0 and s < r < 1. Regarding the last term in (4.34), 
e must belong to [0,1/ 2) when n = 0 but for n > 1, e 6  [—1/2,0) poses no problem. As 
with (4.15), the s saves us from the logarithmic divergences at the origin.

4 .3 .2  T h e  Im aginary A xis

Let A =  iuj with w > 0, and recall that on the imaginary axis we are free to use J - \ (r )  
as the second solution. Taking the lead from the previous section, let us consider each 
term in equation (4.10) separately. From Abramowitz and Stegun [1965] p. 360 we have

r (2  j  + 1) ( - s2/4  y

i=o
(4.35)
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Also from Abramowitz and Stegun [1965] p. 256 is the formula

64

which gives

r(2z) =  i j r ^ r t z j r o z  +1 /2 ),

F l?j.+ .1) =  2J r (2J) _  n - i / t y ’r ( j  + 1 /2 )  
rCi +  i) jT O ) 4 1 0  + 1 /^ . (4.36)

Putting (4.36) into equation (4.35) and recognizing that T(z*) =  T(z)* [Abramowitz and 
Stegun, 1965, p. 256], gives the identity

J iU s ) J - U s )  =  n - 1' 2 E  -^  | r o  +  i +  *w)|2 j\

To bound this product of Bessel functions, we will use the inequality

|T(a +  i(3)\ > v /sech(7r^ )r(a ) , a > 1/2 

found in the book by Carlson [1977] p. 51. This means that

(4.37)

(4.38)

1 yj  COsh(7TC<j)
| r ( j  +  i +  ^ ) | -  r ( j  +  i) ’

and so from (4.37)

< (const.) cosh(7ra;) exp(s2).

Referring to (3.10), equation (4.38) also shows that

|^iu;(s)|2 < cosh(7ro;) exp(s2).

Moreover, Jiu (r) and J-iu (r) are complex conjugates of one another, which means

J—iuiX )

(4.39)

(4.40)

=  i . (4.41)

Piecing together (4.39), (4.40), and (4.41) yields

Wj X j
< (const.) cosh(7ra;) exp(s ). (4.42)

This is not a terribly helpful bound for large |A|; however, it is not a disaster: W'j was 
calculated to be — (2 /7r) sin(z7ru;) =  — «[exp(7ru;) — exp(—7ru;)]/7r (see (4.7)). Hence,

c o s h ( 7 r u ; ) 7T e 2™  -  1

W j 2 q 2ttu> _ ^
< tt / e* +  1

2 I e* -  1
(4.43)
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if u j  > 1/2. That we must stay clear of the origin to get a usable bound was to be expected, 
it merely reflects the linear dependence of the solutions at u j  = 0. Therefore, in coalescing 
equations (4.42) and (4.43) we acquire the inequality

\JZj\ < (const.)sexp(s2), uj > 1/ 2 . (4.44)

The task now is to patch in the boundedness of the kernel on the imaginary axis for 
uj 6  (0,1/2). We will find it useful to revert to using the Neumann function for the second 
solution: recall the expression for N ^ x )  given by (4.18) to (4.20), but with the difference 
that n = 0 and e = id where $ 6  (0 , 1/ 2), i.e.

Ari4(x) =  ( x / 2 ) « ^ ( - x 2/4 y
j = 0

c o s (2 7 r $ )  /  s in (2 7 r $ ) 1 /  s in (2 7 r $ )

j \T ( j  +  l+ i£ )  j\T{j  +  1 -2 $ )

£ ( - +  
J= o

: R(i8, j, x ) /  sin(i7r$)
j \T(j  +  1 - 2$)

(4.45)

where R( i8 , j , x ) =  (x2/4)J [(x/2 ) -t<5 — (x /2)l<5]. The method by which we bound Nis(x) 
will be quite similar to the one used in the case of real order—in fact, it will be simpler 
to estimate Nis(x). Let us consider the first term  in (4.45); in particular, we concentrate 
on the contents of the square brackets. Rewrite these contents in the form

[cosh(7r$) — l]/i sinh(7r$) 
j \T{j  +  l  +  z$)

1
2sinh(7r$)jf! r ( j  +  l - z $ )  T(j  +  1 +  2$) (4.46)

and denote the first and second term of equation (4.46) by (I) and (II) respectively. By 
an application of L’Hopital’s rule, we find tha t the numerator of (I) is such that

cosh(7r$) — 1 
lim ----—r-;—^—  =  0 ,(5-*o sinh(7r$)

and so

im i <
(const.)$

j!|r(j + l + i<5)|
-\/cosh(7r$)

< (const.)
j ! r ( j  + 1)

< (const.)
(4.47)

This follows from the facts sinh(7r$) > $ and cosh(7r$) — 1 < (const.)$2 for $ 6  (0,1/2), 
and the inequality (4.38). Let us rewrite the second term (II) as

j!(n ) =
[T(j +  1 +  2$ )  — r ( j  +  1 — 2 $ )] /2 S in h (7 T $ )  

T O  +  1 + 2 $ )  I2



CHAPTER 4. REGGE POLE CARDINALITY 66

from which, L’Hopital yields

lim (II) = 1 7t[*t'0 ' +  i) +  ir'(j + 1)] =  2 r ( -? +  1)
S-¥  o inT(j  +  1 )2j\

For a bound, we again use the inequality (4.38) to give 

cosh(7r£)

7rr(j +  1 )2jV

<

<

<

r o  + 1) ^

cosh(7r<5)
r o  + 1)2

(const.) 
T(j  + 1)2

(const.)

|r(j + i  + M)-r( j  + i - i « ) |

f r ( j  +  i +  it) -  r a  + 1) \  ( v ( j  +  i +  is) -  r ( j  + 1)

im-
rc? + 1 +  i8) -  r  (j + 1)

r ( j  +  i )2 - g
sup|Im{r'(z)}|

(const.) , .
<  ■ i \2 SUP r WF(j +  l ) zen

where Q  = {j  +  1 +  « C / 2  : C  £ [0 , 1]}; the penultimate line of this calculation is given by 
the Mean Value Theorem. We require a more general bound from Binet’s formula than 
that of (4.28): let 2  =  p e tl9 with 6E (—7t/2, 7t/2), then

dy [
Jo \y2 +  z 2\ Jo

d y
\y2 + z2\ J0 \y2 +  p2 cos(2$) +  ip2 sin(2t?)|

dy- L
d

y V  +  2y2p2 cos(2tf) +  p4 
00 dy

\ / y A+ p A
only if arg(z) 6  [0, tt/4]. Now, we have the inequality y4 + p4 > (y2 + p2)2/ 2 since it is 
true that y4 +  p4 > 2y2p2. Thus, \Jy4 +  p4 > (y2 +  p2)/\ /2  and so

fJo
dy

y / y A + P A
<

rc
V 2

Jo
dy 7r

y +  * 2 i* r

whence

|r'(2)| < \T{z)\ ( \ \ogz\  +  1 1 , arg(2) <E [0, t t /4]. (4.48)

Since aig(j +  1 +  «C/2) € [0 , 7r /4), we may use the bound (4.48) to get

With the implementation of yet another inequality |T(a +  i(3)\ < | r(a) | ,  found in, for
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example, Carlson [1977] p. 51, this bound becomes

\ ( |l°gO +  1 +  «'/2)| 1 \
*  (const-}  T c J T T j —  +  ( j  +  i ) r ( j  + 1) J '

Thus,
(const.)

and therefore by (4.47) and (4.49),

|(4.46)| <  |(I)| +  |(II)| <

(4.49)

(4.50)

To estimate the second term in (4.45), we consider \(x/2)~l* — (x/2)t<5] /is in h (7r<5). By 
L’Hopital’s rule, this tends to —21og(x/2) / 7r in the limit as <5 —>• 0. Acquiring a bound is 
very similar to that involving R ( u , j , x )  for N u (x) in §4.3.1, i.e. we have

( x /2 ) - «  -  ( x / 2 ) iS
< - \2 8 log(x/2)|,

sinh(7r^)

but we need to check that | exp (ip) — 1| < |p|. Well,

f p d
exp(ip) — 1 =  / — [exp(zt)]dt =  i / exp(it)dt 

Jo dt J0

and this implies the required inequality. Therefore,

(x/2)~iS -  (x / 2 f 6
sinh(7r<5) r ( j  +  1 — iS)

< 2 -\/cosh(7r<S)| log(x/2)|
r x J T i j

< (const.)| log(x/2)|.

Applying the bounds (4.50) and (4.51) to (4.45) yields

|N «(x)| < exp(x2/4){di +  d2\ log(x/2)|}

(4.51)

(4.52)

where di, g?2 are constants.
In view of equation (4.9), we also need estimates on |«/i<5(s)| and |Jia(s)|2, as well as 

on the ratio |A^ (̂r*)/ ^^(r) |. Notice that the first two bounds have already been achieved 
by (4.40) since 8 € (0,1/2); however, the latter requires further thought. Let us write out 
the Neumann function as it is usually defined [Abramowitz and Stegun, 1965, p. 358]:

i sinh(7r<$) isinh(-7n$)

from which we get
N i t ( r ) cosh(7r£) -  J - i s ( r ) / J i s ( r )

Jis(0 sinh(7rd)
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Yet another application of L’Hopital’s rule shows that iV^(r)/  Ji$(r) -* 0 as <5 —» 0; this is 
a result of cancellation of terms when 8 is set to zero in the derivative with respect to 8 
of J~is{r)/Jis(r). Using their conjugate properties, it is possible to write

^ = e * p { - 2 « l o g ( r / 2 ) } ^ g l

where /  is analytic jointly in 8  and r in a neighbourhood of the origin, with / ( 0 , r) = 1. 
Hence, define F( 8 ,r) = f ( —8 , r ) / f ( 8 ,r)  and consider

cosh(7r£) — ^  =  cosh(7rJ) — (1 +  exp{—2i8 log(r/2)} — 1)(1 +  LF(5,r) — 11)
JiS{r)

= (cosh(7n$) — 1) — (F( 8 , r) — 1) — (exp{—2i8 log(r/2)} — 1)

— (F( 8 , r ) — l)(exp{—2z<Hog(r/2)} — 1).

Now, we clearly have |F( 8 ,r) — 1| < ei|<5| uniformly in a neighbourhood of the origin in 
the ((5,r)-plane, and |cosh(7r<S) — 1 | < e2 \8 \ 2 and |exp{—2z<Hog(r/2)} — 1 | < 2 |J lo g (r/2)| 
for e i,e 2 constants; whence

N iS(r)
< e28  +  ei +  2 | lo g (r/2)| +  2ei8\ log(r/2)|

< e3 +  e4 |log (r/2 )| (4.53)

for some constants e3,e4. The inequalities (4.40), (4.52), and (4.53) yield

W n <%n \ < aexp(s2){di +  d2|log(s/2)|}  +  ^ ex p (s2){e3 +  e4\log(r/2)|} (4.54)

for some constants a and (3, with A =  za;, u j  6  (0 ,1/ 2 ) and s < r < 1.
We conclude from (4.34), (4.44), and (4.54) tha t the normalized kernel JF(r,s,  A) is 

bounded by some constant on the boundary comprising the real and imaginary A-axes. 
Recall that our ‘Phragmen-Lindelof sector’ is given by 7  =  1/2, and since the kernel is 
analytic inside this sector, we need only show tha t its growth order is less than I/7 =  2 . 
In fact, we will demonstrate that the normalized kernel has growth order at most 1.

4 .3 .3  G row th  Order

It is most convenient to calculate the order of the normalized kernel in the form JXfj] 
let us write this version of the kernel in full, i.e. from (4.10) and (4.7) we have

2sin(7rA) U s )  J s { s )  -  | ^ y A ( s )2 (4.55)

In this section, A /  0 with arg(A) € (0 , 7r /2) and, as usual, s < r < 1. Moreover, we will 
often denote by Ar  and A/ the real and imaginary parts of A respectively.

Applying the inequality (4.38) to the gamma function in the series definition (3.10) of
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the Bessel function, and using the fact th a t |(s /2 )A| =  (s /2 )Ar, we have

“ TO +  l  +  Afl) j\

-  f ( ^ r + 1) exp(7r̂ / 2)(s / 2)AR’

from which we get

I^a(s) |2 < exp(7rA /)(s/2)2A«. (4.56)

Recall the identity (4.37); in this case we have

t / \ t / \ - 1/2 ^ ________F (j  +  1/ 2)______ (~s2)j
"  §  r (J +  1 +  W  +  1 -  A) j i  ■

As we have seen, we may decompose gamma functions as follows:

r ( j  +  1 +  X)T(j +  1 — A) =  (j  +  X)(j  — 1 +  A) • • • (1 +  A)AT(A) 

x (j  — A)(j — 1 — A) • • • (1 — A)r(l — A),

which implies that

| r u  + 1 + A)r(j + 1 -  A)| >  ^dis t (A ,N ) | r (A)r( i  -  A)|

./X tntX n= ^d ist(A ,N ) —
2 |sin(7rA)|

where dist(A, N) is the distance from A to the nearest natural number. Furthermore, we 
assert the validity of the following inequality:

-  (const-)exP (~ 7r̂ /)- (4-57)| sin(7rA)|

To prove this inequality, notice that we have periodicity in Xr  and thus we may restrict 
our attention to the case 0 < Xr  < 1. Let us first consider 1/2 < Xr  < 1: we are required 
to show that

| sin(7rA)|

y/(XR -  l )2 +  A?

for A/ > 0. Well,

<  (const.) exp(7rA/) (4.58)

|sin(7rA)| =  | sin(7rA#) cosh(7rA/) +  i cosh^A#) sinh(7rA/)|;

we can immediately bound three of the four terms here: we clearly have | sin(y)/ y| < 1 

and so |sin(7rA#)| < 7r|A/j -  1 |. Also, |cos(7tA/?)| < 1 and |cosh(7rA/)| < exp(7rA/). Hence,



CHAPTER 4. REGGE POLE C A R D IN A LIT Y 70

if we knew the inequality

to be true, then

sinh(7rA/)
7tA/ <  exp(7rAi )

| sin(7rA)| < (7t|A.r — 1| +  7r|A/|) exp(7rA/)

<  27TyJ( Xr  -  l )2 +  Ajexp(7rA/)

=  27rdist(A, l)exp(7rA/) .

It remains to prove | sinh(y)/y| < exp(?/) or equivalently sinh(?/) — yexp(y)  < 0 for y > 0. 
This is an inequality on the real line, it is true for y —> oo and for y —> 0; moreover, the 
Taylor series shows the validity of this inequality:

(y + y3/ 3! +  yb/ 5! H ) -  (y +  y2 +  y3/ 2 ! +  y4/ 3! +  y5/ 4! H ) < 0 .

On the other hand, when 0 < Xr  < 1/2 the denominator in (4.58) is larger, whilst by 
symmetry, the same bound holds for the numerator. This proves (4.57), and thus we may 
use it to show

|T(j  +  1 +  X)T(j  +  1 -  A)| >  (co n st.)jlex p (-7tA/),

whence
I^aW J - a (s)| <  (const.)exp(7rA/). (4.59)

Lastly, we need to consider J_ \ ( r ) /J \{ r ) .  Since we do not have any phase method at 
our disposal, we will need to write the last term  in square brackets of (4.55) in a more 
transparent way. Before doing this, however, let us consider acquiring a lower bound for 
the denominator: we have on expanding the Bessel series

( _ r 2/4 )j

= (r /2 )A r(A +  l)  T(A +  2) T(A +  3)2!

(r/2 )A 
r(A +  i)

+
(r2/4 )J

and so

I^A(r)| >

r 2/4
A +  2 ' 2!(A +  2)(A +  3) 

l(r/2)A

+

2 |r(A  +  i) |

for all sufficiently large |A|. Another application of |T(A +  1)| < T(A# +  1) gives

I r ( (r / 2)XR
I (r )l -  2T(A/2 +  1)*

(4.60)
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Therefore, writing the last term in square brackets of (4.55) as

J x ( s ) J - X( r ) Jx (s)  _  J x (s )2 
M r ) J \ ( r ) 2

we find from (4.56), (4.59), and (4.60) tha t

[ J a M J - a M ]

J x ( s ) J - x ( r ) J x ( s )
M r )

< (const.) exp(TA,)2| f ^ L ^ .

=  (const.) ( s /r )2Xft exp(27rA/)

=  (const.) exp{2A/? log(s/r)} exp(27rA/) 

< (const.) exp(27r|A|),

and consequently
< (const.) exp(27r|A|).

In other words, the product Wj JCj is of order 1. Moreover, Wj oc sin(7rA) and so it is 
also of order 1 [Markushevich, 1965, p. 252]. We may thus conclude that the normalized

Principle then shows that the normalized kernel is bounded by some constant in the first 
quadrant for s < r < 1; this means that there is a bounded solution uo,w of equation (4.5) 
for integrable U. This also means that on taking the limit as |A| —> oo of uô w(r, A), we can 
interchange limit and integration. However, it is not terribly straightforward to calculate 
large |A| asymptotics of the kernel in its current form; in the next section we express the 
kernel in a different way and compute its asymptotics.

4.4 The D ’Alem bert R eform ulation

For what follows, we consider the second solution uq to be given by the Neumann

kernel is of order at most 1 from Lemma 1 in Appendix D.2. The Phragmen-Lindelof

function—since it is valid to do so in the whole of the first quadrant. Recall from (4.8) 
that WN = 2/ 7r; however, we may rescale such th a t W ( uo, uq) = 1. Then

U q U q  -  U q U Q  _  1 (4.61)

Now,
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Observe that (4.61) can be written as

d f u0(t, A) 1 _  1
d * |w 0(£, A) J u0(t, A)2’

whence
„  f r u0(s, A)2 f ’ M s )

M t ) d£. (4.62)

In order to take the limit as |A| —» oo of (4.62) we require that the integrand be 
bounded. Firstly, since s < t we have s / t  <  1. When A > 0, the bound (4.14) applies. 
Furthermore, from the inequalities (4.56) and (4.60) we have

M s )
M t )

< (const.) ( s / t )2XR exp(7rA/) < (const.) exp(7rjA|),

which implies that the integrand is of order 1 in the strict first quadrant. If we could 
demonstrate boundedness on the imaginary axis, then Phragmen-Lindelof would give 
the boundedness of the integrand in the first quadrant. To achieve boundedness on the 
imaginary axis let us define the quotient

v oc r(l+iu;) (~s2/4)J 
2-̂ >j=0 r(j+l+iu;) j\

r(l+ih;) { - t 2 / 4)3 ’Eoo
j =o

cu >  0
r(j+ i+ iu;)

which corresponds to the ratio Jiu(s)/ Jiu (t) modulo factors of unit absolute value. 
Suppose that this is not bounded, then there exists a sequence (sn, t n,ujn) such that 
|Q(sn,£n,^n)| 00 as n —> oo. Now, LJn —» oo necessarily on this sequence, whilst (sn)
and (tn) are bounded sequences—without loss of generality assume sn —> Sqo < oo and 
rn —> Too < oo, exctracting convergent subsequences if need be. Letting x  stand for either 
s or t, we claim that

_2L FM _l '}/■.)  ̂ ( — ̂ 2 /A\j
(4.63)lim V" r(l + iujn) (~^n/4y  _ J

+ 1 + iujn) j\

We can justify taking the limit inside the sum by noting the following inequalities:

|T(2 +  icon)| =  |1 +  |jr(1 +  iuJn)\ ^  |r ( l  +  iu n)\,

|F(3 +  iu n)| =  |2 +  iu)n 111 +  tu;n | |r ( l  +  iu>n )\ > 2|F(1 +  iujn)|,

|T(4 ibJn)| =  |3 +  i(jn||2 +  iu)n111 +  zcjn | | r ( l  +  ioJn)| ^  3! |r(l +  iwn)|

and so on; at the general step we have

r ( i  + 1 +  iwn)
>j'-r(i + icjn)

and thus the summand is bounded. Swapping limit and summation shows (4.63) to be
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true, contradicting our assumption tha t |Q (sn, tn, u>n)\ —» oo. The only logical conclusion 
is that Jiu (s)/ Jiu(t) is bounded. Thus, we are justified in taking the limit |A| —> oo 
inside the integral defining in (4.62). As yet, however, we have no large complex order 
asymptotics of the Bessel function; these can be found in a seminal paper by Langer [1932].

4 .4 .1  L anger A sy m p to tic s  for th e  B e s se l F u n ction

In his paper, Langer [1932] studied the asymptotic properties of solutions of the second 
order ordinary differential equation

and is important in the final asymptotic formulae. As an application, Langer considered 
the special case of <fi2(z) = exp(2z) — 1 and x ( z ) — 0 since this gives rise to the equation 
satisfied by the general cylinder function. This means that

2The variable x was the independent variable of the differential equation from which the Liouville

y”{x) +  [u2(f)2(z) -  x{z)]y(z) = 0 (4.64)

for large complex values of the parameter i/2, with the following hypotheses: x  = vexp(z)  
is real2 and <f>2(x) is real, continuous, and non-negative. In the construction of the theory, 
the complex variable £ (Langer’s variable) was introduced. It is defined as

where we choose the square root such th a t (exp(2£) — l }1/ 2 =  —i{ 1 — exp(2i)}1/2. To 
evaluate this integral let t =  In yfx, then

£ =  v f  (exp(2£) — l j ^ d i  

Next, let x = cos2 $ so that

r  -| x —e2z
= —iv  sin d — log(sec $ +  tan $)

normal form (4.64) originated; the Louville transformation is discussed in §5.1.1 of Chapter 5.
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whence
f  =  —iv( A — log(A +  1) +  z) (4.65)

where A =  {1 — exp(2z)}1/ 2 =  (1 — re2/!/2)1/ 2. Moreover, we will require the identification

1/2

which for our specific function 4>(z) is g =  y / 2  /  tt(x 2 — v2)~l/A. W ith the necessary notation 
introduced, we can now give the asymptotic form of Ju(x) for large \v\ in the first quadrant; 
however, we must choose the correct region 2 ^) in Langer [1932] p. 471 table (50). Since 
2 =  \og{x/v) = logx — log |v | — ia rg i/, 2 lies in region 2 -̂2  ̂ or 2 (-1) for v in the first 
quadrant [Langer, 1932, p. 472, Fig. 3]. In any case [Langer, 1932, p. 471, table (50)],

Jv{x) ~  |exp{z(£  — 7t / 4 )}, \v \ —>■ 00. (4.66)

From equation (4.65), £ ~  — ii/{a +  logx — log*;} as \v\ —>• 00, where a  =  1 — log(2). 
Combining these asymptotics with (4.66) yields

Ja(s) ( <2 — A2 ^ 1/4 exp{A(a +  log s — log A)}
~  ( j r i *  J  exp{A(a +  log t — log A)} ~  CXp{- X ‘° g (t/s)} ’

which means that the integrand in (4.62) goes to zero as A goes to infinity along any ray 
non-parallel to the imaginary axis, and thus the kernel J f ( r ,s ,  A) also tends to zero as A 
tends to infinity along non-vertical rays. On a ray tha t is parallel to the imaginary axis, 
the integrand becomes more and more oscillatory; thus, the kernel still tends to zero as 
A —> 00 vertically by the Riemann-Lebesgue Lemma [Bender and Orszag, 1999, p. 277].

Combining these cases, the kernel J f ( r , s ,  A) —> 0 as |A| —> 00 in the first quadrant 
and thus from (4.5), uô w(r, A) ~  1 or equivalently, uo(r, A) ~  uo(r, A) for large |A| locally 
uniformly in r—the entire analysis has been locally uniform in spatial variable. This 
shows that the condition (4.1) becomes the free Regge pole condition as |A| —» 00 , for 
which there are no solutions (to be clear, there are no Regge poles for the free problem; in 
fact, the Wronskian is a constant—see (4.8) and note that the Hankel function is a linear 
combiniation of the Bessel and Neumann functions), i.e. there are no Regge poles for large 
|A|. Moreover, the Wronskian W(uo,Uoo) is an entire function of A, which has no zeros 
for sufficiently large |A| since its A-zeros are precisely the Regge poles. Therefore, it can 
only have finitely many zeros by Theorem D.2 in Appendix D .l. These facts have been 
demonstrated for k =  1 and r < 1; but, as long as k < 1/ tq for some finite tq > 0 then 
r  < ro would suffice. Consequently, we have proved the following result:

Theorem  4. For a potential which is identically zero fo r r  > ro and integrable for r < ro, 
there are finitely many associated Regge poles when the energy k < 1/ro-
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Boundary Conditions

It is known that there are finitely many Regge poles for an analytic potential with 
r2U{r) bounded [Barut and Dilley, 1963], and thus it would be prudent to try and count 
them. As was described—albeit vaguely—in Chapter 1, the idea for achieving this is as 
follows: consider (2.74) with boundary condition1 u ~  cos(kr) +  i j s in f t r )  for large r  and 
7  6  [0,1], where the Regge pole problem corresponds to setting 7  =  1. We do this in order 
to establish a one-to-one correspondence between the Regge poles and the eigenvalues of 
the self-adjoint problem associated with 7  =  0 ; an attem pt could then be made to count 
the Regge poles by counting these eigenvalues, since the technology is already in place to 
do so. However, as we shall see, there are infinitely many eigenvalues when 7  € [0,1); 
this is bad news for our proposed approach to counting Regge poles. We do, however, 
discover a remarkable sensitivity of Regge poles to boundary conditions. In this chapter, 
we demonstrate that when only the centrifugal term  is present, infinitely many ‘Regge 
poles’ come from infinity when the value of the coupling constant 7  is changed, by any 
amount, away from unity. Strictly speaking, Regge poles correspond only to 7  =  1; this 
is the reason for the inverted commas—maybe generalized Regge poles is better.

5.1 The Free Problem

For a localized potential, the boundary condition for distances far from the scattering 
centre is u ~  cos (kr) + isin(kr). In accordance with our outline above, we introduce a 
coupling constant 7  to acquire the following perturbed boundary condition at infinity:

u ~  cos (kr) +  27sin(A:r), r  —* 00. (5.1)

^ o t e  that we have the limit circle case at infinity. To emphasize that this is a boundary condition 
perhaps we should write it as limr-too W(u,cos(kr)  +  i7 sin(fcr)) =  0 .

75
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In the free case, the solution of (2.74) satisfying (5.1) for 7  =  1 is proportional to H ^ \ k r ) ,  
which is a special linear combination of the Bessel and Neumann functions. We require the 
combination of J \{k r ) and N \(kr)  which satisfies (5.1) for 7  7  ̂ 1. Modulo some constants, 
we have for large r  that

/ J \ ( k r ) \  ^ r _ i / 2 (  cos(z) s in (z )\ /cos(fcr)\
\ N \ { k r ) J  y — sin(z) cos(z)J ysin ( k r ) J

where 2 =  (A +  l / 2)7r /2 , since for small argument the Hankel function of the first kind 
satisfies [Abramowitz and Stegun, 1965, p. 364]

H P ( x )  ~  x ~ U 2 e ~ i { u + l / 2 ) n / 2 e ix^

The 2 x 2  matrix in (5.2) is unitary and thus (5.2) can easily be inverted to give

cos(/cr)\ i / 2 ( cos(^) — sin (z)\ I  J \ ( k r )^ r i/2 - v - v  - v - v  (53)
\ sin (kr) J  ysin(2:) cos(z) J  \N \ ( k r )  J

Therefore, the required combination of the Bessel and Neumann functions is

y/r[(cos(z) +  i 'ysm(z))J\(kr)  +  (— sin(z) +  i7 cos(2:))iV\(fcr)].

Thus, we have a ‘Regge pole’ when — sin(.z) +  27 cos(z) =  0 for N\ entails the singular 
behaviour of the wavefunction. It is helpful to rewrite this condition as tan(z) =  i'y where 
2 =  (7r/2)(A +  1 /2) so that, using Euler’s formulae, it becomes e2tz — 1 =  —̂ {e2lz +  1) or 
e2tz =  (1 -  7 ) / ( l  +  7 ). Hence, z = {if 2) log[(l +  7 ) / ( l  -  7 )] +  n j  where j  is an integer, 
and thus we finally get

A =  2 j - l  +  - l o g ( l i ^ ) ,  j € Z ,  7 € [0 ,1 ) . (5.4)2 7r \ 1  — 7 /

5.1 .1  L iou ville  N orm al Form

It will be convenient to write the radial Schrodinger equation (2.74) in Liouville normal 
form, where we think of 1/4 -  A2 as being the spectral parameter; this suggests that we 
work in the weighted space £ 2(R+ ; r -2 ). The general classical Sturm-Liouville problem

+  =dr dr

can be converted to Liouville normal form

d2<7
“ v  +  /i7 =  w

using Liouville’s transformation. This transformation makes /  =  mg and p = f  (w /p )^ 2dr 
where m =  (pic)-1/4, provided p, q, and w are sufficiently well-behaved so that / ,  which
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can be written as
q d2 (  1/(p ) =  X +  m “ _  1
w dpz \ m J

is well-defined [Pryce, 1993]. Consider the independent variable first:

p =  J (w /p)l^2dr =  J  r _1d r =  logr +  (const.),

i.e. r  =  (const.)ep. Without loss of generality we can take this constant to be 1, and thus 
we have r  =  ep. The differential dr =  epdp, which means that

— = (—y 1 A = e - ? —
dr \ d  p j  dp dp

and so (2.74) becomes

~ e~PTp ( e“' S )  +  (C/(eP) "  fc2)“ =  -(A * “ (5.5)

Secondly, u(r) = r l/2p{p) =  ep/2<p(p). In order to apply this change of variable, it is useful 
to make some preliminary computations; we have

—  =  +  e'’/2—  -  ( e - & )  = + e~»/2^dp 2 dp' dpV  d p )  4 dp2 '

which means that (5.5) is now of the form

r 3p/2^ V  +  Ig-Sp/2^  +  (TJ^P) _  k 2)eP/2ip =  -(A 2 -  l/4 )e~ 3p/V
dp^ 4

(5.6)

Multiplying equation (5.6) by e3p/ 2 yields

-<p"(p) +  (U(e?) -  k 2)e2ptp(p) = T)<p(p), p € R (5.7)

where 77 =  —A2. In light of Liouville’s transformation, we also need to calculate the
asymptotics (3.1) and (3.2) for the transformed solutions. These are given by the following
few equations: the large negative p asymptotics for the regular left-hand solution is

< P o(p ) = e~P//2uo(ep) ~  eAp, p —► —00.

For the right-hand solution (the ‘Hankel-like’ solution defined by its behaviour at infinity) 
we must have

V o o ( p )  ~  e“ Ap, p - 00.

Moreover, the boundary condition at infinity becomes

Vooip) rsj 0 p/2[cos(/cep) +  i sin(A;ep)], p —> 00.
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Consider again the free case. Let C1 = ( I / 7r) log[(l +  7 ) / ( l  — 7 )] with 7  € [0,1), and 
note that C7 > 0 which is large for 7  close to 1. In the 77-plane we have from (5.4) that

n =  - [ ( 2 j  -  1 /2 )2 -  C 2 +  2i(2j -  1/2)C 7]

=  - 4 j 2 +  (2 -  4iC 7)j  +  C7 (C7 -M) -  1 /4 . (5.8)

We note that since Xr  = Re(A) > 0 then by equation (5.4) we must have j  > 1. This places 
the right-most eigenvalue to be at the point 77r  = Re(r)) = C2 — 9/4, 77/ =  Im(77) =  —3C7. 
Hence, in terms of 77 we have the following picture of the spectrum: since we are in the 
limit circle2 oscillatory case at infinity there are infintely many eigenvalues (77) tending to 
negative infinity along some parabola descibed by (5.8) [Pryce, 1993, p. 153]. Moreover, 
in (5.7) where U =  0, all the hypotheses of Proposition B .2 in Appendix B.5 are satisfied. 
Therefore, the essential spectrum is given by [0, 00) in the 77-plane.

5 .1 .2  B ou n d ed n ess o f  th e  R e so lv e n t

We wish to show that in the limit as 7  —>• 1, infinitely many eigenvalues go to infinity. 
However, to achieve this we must rule out the possibility of eigenvalues plunging into the 
essential spectrum. Let us introduce the formal differential operator

L =  —- j L - f c V ' ’, p € ® .
d pz

Define an operator A7 by A ^p  =  Lp, p  E f^(Ay) where

f^(Ay) = { /  6 £ 2(K) : A7/  E £ 2(R) and /  ~  e_P//2[cos(/cep) +  Z7 sin(fcep)], p —> 00}

and 7  E [0,1]. In light of what we want to accomplish, we need to show that the norm of 
the resolvent ||(Ay — 77)” 11| is bounded with respect to 77 in some region which separates the 
eigenvalues from the essential spectrum. Firstly, in order to acquire an explicit expression 
for this resolvent, we must apply Liouville’s transformation to the inhomogeneous free 
problem associated with equation (2.74), i.e.

- ^ " + f A2~ 1 / 4 - f c 2V = ^ g ,  g e £ 2(R+ ; r - 2). (5.9)

Recalling the transformation calculations in §5.1.1, we need only consider the final step of 
multiplication by e3p/2 to get

-p"(p ) -  (fc2e2p +  ri)ip(p) = g(p) (5.10)

where g is defined by g(p) = e~p/2g(ep). Observe that g E £ 2(R) since we clearly have 
J r  l^|2dp =  / 0°° \g\2/ r 2dr < oo. Hence, g is an isometry and we may continue to work with

2This is given by Weyl’s alternative—Theorem A .10—which is described briefly in Appendix A.3.
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the new differential equation for p, namely, (5.10).
We use the method of variation of parameters on the inhomogeneous equation (5.10); 

this is the standard method for acquiring an explicit expression for the resolvent. Suppose 
that (po and y?oo constitute a fundamental system for the associated homogeneous U = 0 
equation (5.7), or equivalently for the following first order system:

ip(p) = ci(po(p) + c2poo{p) ~ Voo{p) ^ ° ^ ^ ds +  ^o(p) J  - ° ° ^ ^ ds. (5.11)

To solve the inhomogeneous first order system

we write

where F  is as yet undetermined. Then

which implies that F' =  $  1 ( _?̂ ). Now,

< A x >  OO

-<Po ^0

where W  =  W(po, Poo) is the Wronskian of ipo and <£>oo- Hence

which gives

Since ( ^ ) =  $ F , it follows that

Using the fact that cnpo(p) +  C2 (Poo(p) is the general solution to equation (5.7) with zero 
potential, we are free to choose c\ = C2 = 0. Let </?oo)7 € f^(Ay), then on absorbing the
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non-zero constant W  into y?oo,7 we have

{(A1 -  r i)~l g ) ( p )  =  - V o o ,7 (p) [  p 0 { s ) g ( s ) d s  +  </?0(p) [  <Poo,^(s)g(s)ds.  (5.12)
J —oo J P

By the same reasoning that led to the utilization of the norm (3.36) in Chapter 3, we 
may use the norm given by

II • llc*(R) =  sup ^ (5.13)
/ie£2(R) ll'dl£2(R)

in order to estimate ||(Ay -  rj)~lg ||. Suppose h e  £ 2(R). Therefore, for the first term in 
equation (5.12) we consider the quantity

[  h ( p ) poo,7 (/o) /  <p0(s)<?(s)dsdp < [  |h(p)lboo,7 (p)l [  bo(s)||p(s)|dsdp
•/R J —oo J R J —oo

=  [  IMp)II<Poo,7 (p)| f  \(po(p + t)\\g(p + t)\dtdp
J R J —oo

= [  dt (  \h(p)\\(poon(p)\\(po(p -(- t)\\g(p +  t)\dp,
J —oo J R

(5.14)

where on the second line of equation (5.14) we have made the substituation s = p +  t. 
To bound |</?o(p)|> the solution defined by its good behaviour at negative infinity, for 
p E (0, oo), we need a second solution. Let (f>oo{p) ~  e~p/2 cos(kep) as p —> oo be this 
second solution. Since <poo and poo are linearly independent3, we must have a relation of 
the kind p o ( p )  =  ci<^00(p) +  C 2 p o o {p ) where poo  is the solution that blows up at negative
infinity. Moreover, it follows from the behaviour of p o  that C2 must be zero and so
p o ( p )  ~  e~p/2 cos(kep) as p —> oo. From the asymptotic behaviour of the solutions we may 
summarize their bounds as follows:

{g ®/2 j£ -v> 0

A*x -r n’ (5-15>
eAfiX x < 0 ,

and
i / m / (1 +  7 )e- x / 2 if x  > 0 ,
b o o , < (const.)< _A (5.16)

I e ARX if x  < 0 .

On splitting up the integral over the whole real line in equation (5.14), we must 
concentrate on bounding the first integral for which p € (—oo, 0). If p € (—oo, 0) then 
necessarily p +  t < 0, and so by (5.15) and (5.16) we have

bcxvy(p)lbo(p +  *)| <  (const.)eAflt.
3T o see this, suppose they axe linearly dependent. In this case they must have the same asymptotic

behaviour, and so we have an eigenfunction. Thus, 77 is an eigenvalue, which cannot be.
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Thus, for p G (—00,0) we have

*0 r0
f  dt f  \h{p)\\(poo,'r(p)\\(Po(p +  t ) \ \g (p  +  £)|dp < f  eXRtd t (  \h{p)\\g(p +  t ) \dp

J —00 J —00 J —00 J —00

I N I I s l l< (const.)
AR

(5.17)

For p  G (0 ,00) there is an ambiguity in the sign of p +  t  and thus we need to split up the 
second integral in (5 .14) once more, i.e.

/0 roo
dt /  \h(p)\\ipoo,'1{ p ) \ W o { p d - t ) \ \ g ( p ^ t ) \ d p

-00 Jo

=  [  d t  f  \h(p)\\(poo,7 (p) \ \po(p  +  t ) \ \g(p  +  t)|dp 
J —00 Jo

/ oo
 ̂ I h (p)  11 v?oo,7 (p) 11 <Po (p + 1) I \g (p + 1) I dp

Now, from equations (5.15) and (5.16) we have the bounds

i /m i r . . i  , (1 +  7 )e~^/2e~(p+*)/2 if p + t >  0 ,
\tPoo,i(p)\\‘Po(p + 1)\ <  (const. (1 +  7 )e_p/VB(p+() ,f p + t< Q  

Thus, from (5.18) we have

[  dt [  |Mp)IIPoo,7 (p)IIPo(p +  *)||p(p +  *)|dp
J —00 0

/0 r —t
dt / |/i(p)||p(p +  t) |e_p/2eAidp+^dp

-00 Jo  
r 00 f —p

=  (const.)(l +  7 ) I dp \h{p)\\g{p + t)\e-<,l2eXR(~i,+t)dt 
Jo J —00

ro
< (const.)(1 +  7 )

Jo

(5 .18)

1—p
1/2 r —p 1/2

p/2 \h(p) \dp / l<HP +  *)|2d*
J —00

/  e2Afl(p+f)dt
J — OO

< (const.)(I +  7)(2Aj*) 1/2||<?||

< (const.)(l +  7)(2A/?)“1/2||h||||^||

rOO 1/2
f°°

/  e_pdp /  H p )\ dp
J o Jo

1/2

(5.19)

Again from equation (5 .18) we have

/ 0 roo
d t  /  \h(p)\\(foo,7(p)\\vo(p +  t ) \ \g (p  +  t ) \ dp

00 J —t

/0 roo
d t  /  \h(p) \ \g(p  +  t ) \e~p/ 2e~(p+t^ 2dp

-00 J —t
roo rO

=  (const.)(1 +  7) / e~p|h(p)|dp / \g(p +  t ) \ e ~ ^ 2d t  
Jo  J - p
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< Jroo rO
f e~p\h(p)\dp /  e_td t 
0 J - p
roo

(const.)(1+  7)11̂ 11 /  e~py/ep -  l\h(p)\dp 
Jo

roo
/  (e-p — e~2p) dp 

J o

1/2

=  2 1/2(const.)(l +  7)ll^lll|p||.

Combining equations (5.19) and (5.20) yields

/ 0 roo
dt /  IHp^lipoonMWvoip + t)\\g(p + t)\dp

■oo Jo

(5.20)

< (const.)(1 +  7)11̂ 11 IlfiHI (2Xr )~1/2 +  2~1/2 (5.21)

whence from (5.17), (5.21), and (5.14)

[  h ^ p o o ^ p )  f  p0(s)g(s)dsdp 
J  R J —oo

< (const.)||h||||p|| ±  + i± l ( !  + - ± -
A R  \ [ 2  \  a / A r

(5.22)
Finding a bound for the second term  in equation (5.12) is very similar, but we shall 

derive the result anyway. Suppose h € £ 2(R). For the second term consider

r  ro o  r o o  r

/  Hp)Po(p) /  <Poo,7 (s)<?Mdsdp < /  dt \h(p)\\<poot̂p + t)\\p0(p)\\g{p + t)\dp.
Jr  Jp Jo J r

(5.23)
Writing the integral over the whole real line in equation (5.23) as two integrals, we need 
to consider bounding the second integral for which p 6  (0, oo). If p G (0, oo) then p + t >  0 
always and so by (5.15) and (5.16)

Woo,1{pd-t)\\pQ(p)\ < (const.)(1 +  7 )e_pe_</2.

Thus, for p G (0, oo) we have

ro o  roo

/  dt / |Mp)l|Poc,7(p + OIIPo(p)||<?(p + *)|dp 
Jo Jo

ro o  r o o

< (const.)(1 +  7 ) /  dt /  \h(p)\\g(p + t)\e~pe~t/2dp
Jo Jo

r o o  ro o

(const.)(1 + 7 ) /  \h(p)\e~Pdp \g(p + t)\e~t/2dt 
Jo Jo

<

< (const.)(1 +  7 )||h ||||p ||
roo

/  e-2pdp
Jo

1/2

=  2 1/2(const.)(l +  7 )M ll5 ll- (5.24)
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For p € (—oo,0) we must split up the first integral in (5.23) as follows

roo  rO

/  dt \h(p)\\<Poo,'r(P + t )\\iPo(p)\\g(p + t)\dp 
JO J —oo

r o o  r —t

= dt l^(p)Mv?oo,'y(p +  *)ll^o(p)||p(p +  *)|dp
Jo J —oo

+  J  + t)\\tp0(p)\\g(p + t)\dp

and consider the sign of p + 1. We observe from equations (5.15) and (5.16) that we have
the following bounds:

{f 1 —l— '■yig- if o -L f 0
_ A t 'f ,  n 5̂'25^

e ARZ if p +  t < 0 .

Hence, from (5.25) we have

ro o  r —t

/  dt \h{p)\\poon (p + t)\\ip0(p)\\g(p + t)\dp
Jo J —oo

ro o  r —t

< (const.) /  dt \h(p)\\g(p +  t)\e~Xntdp
JO  J —oo

ro o

< (const.)||h||||<7|| J  e~XRtdt

=  ( c o n s t . ) ^ |M  (5.26)
A R

and

ro o  rO

Jo d t  J + t)\dp
ro o  rO

< (const.)(1 +  7 ) /  dt \h(p)\\g(p +  t)\e~(p+t^ 2eXRpdp
Jo J - t

/0 ro o
\h(p)\eXnpdp / \g(p + t)\e~(p+t^ 2dt

-00 J —p

/0 ro o
|/i(p)|eAHpdp e~p / e_tdt

-0 0  J - p

< (const.)(1 +  7)l|/t||||flll \ f _ J 2XRPAP 

= (const.) (1 +  7 )(2Afl) - 1/ 2 ||ft||||s||. (5.27)

n 1/2

Combining equations (5.26) and (5.27) gives

• o o  r Oroo r u
/ dt \h(p)\\(poon(p-\-t)\\(po(p)\\9(pd-^)\dp < (const.)||h||||^|| 

Jo J —oo
J _ +  l +  7
A R y/2XR_

, (5.28)
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and so from (5.24), (5.28), and (5.23)

[  h(p)<p0(p) [  (pOQ̂ (s)g(s)dsdp
*/R */

< (const.)||/i||||p||
.'Vr y/2 \  \/Ar

Therefore, we finally have from equations (5.12), (5.22), and (5.29) that

II(Ay - r j )  ^11 < (const.)Il^ll

(5.29)

(5.30)

5 .1 .3  F in d in g  an E igen valu e F ree  R e g io n

In terms of the generalized CAM we have Ar  = Re^Z^r/; we choose the branch of 
square root such that its real part is greater than zero, since X r  > 0 is the regularity 
condition on the solutions at the origin—this is discussed on p. 20 in Chapter 2.

Recall that we need to find a region in the //-plane in which there are no eigenvalues, 
or better, a region for which the resolvent (A 1 — is bounded with respect to 77. Let us 
first consider the right-half plane, this is where —77 =  — a 2 + ifi with a , (3 > 0. On choosing 
-M for the square root in order to gain the correct sign for the real part of A, we have

y / —rj — icx.\J 1 — i f i / a 2 

i a (  1 — i f i / 2 a 2)

=  (3/ 2 a  +  i a .

For 1/Ar  to be bounded we must have a  =  0 ((3) or y/rfR =  0 (rjj). Therefore, we 
require tjr <  rj2. A parabola could give the desired region in the right-half plane. To 
check this, consider the problem of never allowing the point (ga, ha) inside some parabola 
y = f a{x — b)2 where x > b: to solve this we require x  — b < ga where y > ha. As a 
consequence, f a(x — b)2 > ha or f a > ha/ ( x  — b)2. However, x  — b < ga and so we need

fa > (5-31)
9i

In our case we require the right-most eigenvalue (77/, t ]r )  =  (—3 C7, C2 — 9/4) to always lie 
outside the parabola rjR =  -  f3)2, 7)1 >  (3 (see p. 78 for the definitions of 77 and C7).
The solution is provided by (5.31), i.e.

/ 7 > 1/9 -  1/4C l

Thus, the region enclosed by the two parabolas — /1/2) and t}r  = fy(r}i — /?)
deals with the case C7 > 3/2. On the other hand, for C7 such that 0 < C7 < 3/2 we are 
to consider computing the desired ‘eigenvalue-less’ region in the left-half plane. For this 
purpose, let us now write —77 =  a 2 +  z/3  with a ,/3 >  0, and in a similar fashion to above 
we can show that >/—77 «  a  +  i p / 2a .  Since t j r  =  —a 2 and —77/ =  /?, it follows that
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j _  _  v ~ vr  
a#  - m  -  y j/^VR

=  - = =  y  = = .  (5.32)y -m  -  Ti^m y-m
For A^1 in equation (5 .32) to be bounded, we require 77# —► — 00 and 77/ y  0 . An infinite 
strip in the fourth quadrant formed by the lines 77/ =  — p /2  and 77/ =  —/3 with (3 satisfying 
0 < (3 <  3C7 would certainly suffice.

These calculations culminate in a region of boundedness for the resolvent (Ay — 77)""1; 
this region is depicted in Figure 5 .1, and it separates the eigenvalues from the essential 
spectrum as desired. Note that the boundedness of 1/\/X r  in this region is a direct 
consequence of the boundedness of 1/A#.

- [0, oc)

Figure 5 .1: The eigenvalues lie on the dotted parabola, whilst the region bounded between 
the thick dashed lines forms the eigenvalue-free region.

By construction, the Regge pole problem (2 .74) corresponds to setting the coupling 
constant 7 to unity. However, if the potential is identically zero then as we know there 
are no associated Regge poles; this observation, together with Figure 5 .1, yields the result

Theorem  5 . For the free particle Regge pole problem,  every  generalized Regge pole 777(7) 
is such that lim ^ i |77j (7) | =  +00.



CHAPTER 6

Conclusion and Future Work

For many decades it has been believed on physical grounds that the Regge trajectory 
describing resonances (positive energy) should connect continuously at threshold to the 
Regge trajectory describing bound states (negative energy). We have seen in §2.5.1 that 
for the Coulomb attraction, this is certainly not the case; however, it is expected to be 
true for shorter range potentials—such as the screened Coulomb potentials. In Chapter 3 
we were able to resolve this long-standing conjecture: for potentials with r\V(r)\ bounded 
at the origin, which satisfy the moment-type condition

oo
1(1 +  r)V (r)\dr  <  +oo, (6.1)

each Regge trajectory is either continuous a t E  = 0 or else goes to infinity as E  approaches 
zero from above; moreover, every bound state  trajectory (E  < 0) has a corresponding 
Regge trajectory (E > 0) to which it connects continuously at zero energy. Apart from 
the Coulomb interaction, are Regge trajectories which go to infinity really possible? This 
remains an open question. There are some (unreliable) numerical experiments to indicate 
that singular behaviour of the trajectories may be possible for rational approximations to 
Thomas-Fermi potentials; as yet, however, there are no proofs or counter-examples. On 
the other hand, it has been known for half a century that Regge trajectories extend to 
infinity in the CAM plane as the energy k  —> oo [Barut and Calogero, 1962].

In the sequel chapter we proved tha t for a compactly supported integrable potential, 
the associated scattering problem has only finitely many Regge poles in the right-half 
generalized CAM plane. In terms of analyticity, this significantly weakens the assumptions 
made in Barut and Dilley [1963]; for example, the result (Theorem 4) of Chapter 4 enables 
us to deal with the finite spherical well. However, it is desirable to extend these results 
to non-analytic potentials without compact support. We have made several unsuccessful
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attempts to achieve this generalization, their failure was essentially due to the lack of 
suitable normalization of the integral equation definining the right-hand solution when A 
is not fixed—a consequence of the Hankel function of the first kind possessing infintely 
many A-zeros in the first quadrant. The next best candidate for a normalizer would be 
the Hankel function of the second kind. This was a promising idea, largely because it has 
its infinitely many A-zeros in the second quadrant [Cochran, 1965]; but, the large CAM 
asymptotics could not be handled. There were similar issues with using any normalizer 
concocted from Hankel functions. However, there was encouraging numerical evidence 
that using e~l7rXH ^ \ r )  as a normalizer could work, the problem was in seeing this from 
an analytic perspective; there seemed to  be some conflict between the numerical outputs 
and what could be calculated explicitly.

We conjecture that there are finitely many Regge poles associated with a potential 
satisfying the moment-type condition (6.1). This result would allow treatment of a much 
larger class of potential functions; for example, potentials such as

V(r) = --------------- ----------------
W  (1 +  o r)2(l +  b(r — l ) 2)

which is rather similar to a rational Thomas-Fermi potential (see (1.1)) but has 
singularities at r  =  1 ±  i/y/b. Furthermore, what we believe would be of considerable 
interest, is an estimate of the number of Regge poles in terms of the potential, in the spirit 
of the Cwikel-Lieb-Rosenblum estimates for the number of bound states. This would be 
the focal point for future work, the reason being the following. Knowledge that there 
are only finitely many pole contributions to the sum in the Regge representation of the 
scattering amplitude (2.73) is not terribly helpful, since in principle there could still be ‘too 
many’; i.e. the number of Regge poles could still be very large and so for practical purposes, 
infinite. We therefore justify the need for knowledge of the explicit numbers of Regge poles. 
However, compared with counting bound states, the counting of Regge poles is an order 
of magnitude more difficult. Moreover, it is at least as difficult as counting resonances. 
The attem pt made in this thesis to achieve Regge pole estimates was unsuccessful; but, it 
did reveal an almost pathological sensitivity of Regge poles toward boundary conditions, 
and this illustrates well the richness of the theory.



APPENDIX A

Self-Adjointness

A .l  Closed Operators

Definition A .I. I f  X  is a subset of a metric space 3E, then the closure of X  in 9E is the 
set of all x  € 3E such that x  is adherent to X ;  it is denoted by X .  In other words, x  E X  
if  and only if there is a sequence (x n) in X  such that x n —>• x.

We make the following remarks: if X  =  3E then X  is called dense in EE. X  is a closed 
if and only if X  — X .  If X  C Y then X  C Y for suppose x  6  X  and x n —> x  where 
x n 6  X ,  then since xn 6  Y, x  is adherent to Y. A  is the smallest closed subset of EE 
which contains X  for if X  C Y and Y is closed, then X  C Y = Y.

Definition A .2 (Kato [1966] p. 164). Let T  : 3E\ ->• 3E2 be an operator. A sequence (xn) 
in the domain @(T) is called T-convergent to x  € 9E\ if  both (xn) and (Txn) are Cauchy 
sequences and x n —> x. In this case, we write x n —> u. Moreover, T  is called closed if 
x n —> x implies x  € @(T) and T x  = lim T x n .

It is useful in the study of closed operators to introduce the notion of the graph of an 
operator [Kato, 1966, pp. 164-165]: the cartesian product space SE\ x EE2 is a vector 
space with linear operation defined by o (x i, X2 ) +  /3(x 1, ^ 2) =  (axi  +  (dx'^ax2 +  fix'2) and 
becomes a normed space when equipped with the norm ||(xi,X 2)|| =  ( ||^ i ||2 +  Ilx2||2)1//2, 
which is complete making 3E\ x 3E2 a Banach space. The graph G(T) is the subset of 
3E\ x EE2 consisting of all elements (x ,T x )  with x  € @(T), and is a linear subspace of 
EE\ x EE2. Moreover, G'(T) is a linear subspace of 3E\ x EE2 consisting of all pairs (Tx, x) 
with x  6  ^ (T ), and is the inverse graph of the operator T  : ^ 2  —> ^ l -

A sequence (xn) in 3E\ is T-convergent if and only if (xn,T x n) is a Cauchy sequence 
in 3E\ x EE2 - Therefore, T  is closed if and only if G (T ) is a closed subspace of EE\ x EE2.
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D efin ition  A .3 (Kato [1966] p. 165). An operator T  : St\ —> St2 is called closable if  T  
has a closed extension. Equivalently, T  is closable if  and only if  the closure G(T ) of G(T) 
is a graph. In this case, there is a closed operator T  with graph G(T) = G(T) and T  is 
called the closure o fT .  Moreover, T  is the smallest closed extension o fT .

In view of this, if T  is closable then 3>{T) is the set of all x e Sti such that there exists 
a sequence (xn) in @(T) with x n —> x , where (T x n) also converges. Furthermore, we also 
have T x  =  lim T x n for x  E @(T). W ith this information, we have

T h eo rem  A .l  (Weidmann [1980] p. 58). Suppose we have a bounded linear operator 
T  E Sf{&,SB) where & is any normed space and SB is a Banach space. Then there exists 
a unique bounded extension T  of T  satisfying f^(T) =  @(T).

Proof. Assume T  is a bounded extension of T  such that @(T) = @(T). If x  E @(T) 
then there is a sequence (xn) from @(T) such tha t x n —>• x. Since T  is continuous, 
T x  = lim T x n = lim T x n and so T  is determined uniquely by T, if it exists.

To show existence, let x  E @(T) and (x n) be a sequence in @(T) such that xn —> x , 
which means (x n) is a Cauchy sequence. Since T  is bounded, (T x n) is also Cauchy as 
||T x n — T x m || <  I ll’ll Ikn — -Cm ||* Hence, there exists a y E SB such that T x n —» y and y is 
independent of the choice of (xn). So, we can define T x  = y.

To demonstrate the linearity of T  suppose x , x' E f^(T) and (xn), (x'n) are sequences 
in SftiT) with x n —> x  and x'n —> x'. Then for all a, (3 E C, we have

T (ax  -f fix') = lim T (a £ n +  fix'n)

= lim (a T x n +  f3Tx'n)

=  a T x  +  (3Txr.

In addition, if x  E $ (T )  and (xn) in @(T) such that x n -> x, then their norms also 
converge, i.e. ||xn || —» HxH-1 Hence, we have

HfxH =  lim ||T xn || < lim ||T ||||xn || =  ||T ||||x ||,

which shows that T  is bounded. □

A .2 The Adjoint O perator

D efin ition  A .4. An operator T  : StS —)• M 3 on Hilbert space J4? is called Hermitian if 
it is a formal adjoint of itself, i.e. (T f \ g ) = (f \T g ) for all / , g E @(T). Moreover, an 
operator T  on StS is called symmetric i f  it is Hermitian and densely defined, where by 
densely defined we mean @(T) = Jjf.

1This is a consequence of the standard inequality |||x|| — ||y||| <  ||x — y||. To derive this inequality,
we use |d(x,z)  — d(y,z)\  < d(x,y),  which in turn is the result of interchanging x and y  in the triangle
inequality d(x, z) <  d(x, y) +  d(y, z).
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We now discuss the notion of self-adjointness and to do so we cite the description given 
in Weidmann [1980] pp. 67-68. If S  is a formal adjoint of an operator T  : 3tf\ —> M then 
for each g G @(S) the linear functional L g defined by Lgf  = (g \T f ) with @{Lg) = @(T) 
is continuous. This is because for all /  G @(Lg), we have Lgf  = (g\Tf) = (S g \ f ), which 
means that Lg is the restriction to @(T) of the continuous linear functional Tsg. If @(T) 
is dense, then by Theorem A .l, Lg can be uniquely extended to 3%\ =  @(T). Hence, there 
exists a hg e 3tf\, uniquely determined by g and T  via (g\Tf) = Lgf  = (hg\ f ) for all 
/  G @(T). Moreover, if S' is a formal adjoint of T  and g G @{S) then we have hg = Sg. 
Therefore, every formally adjoint operator of T  is a restriction of the adjoint operator T^, 
which we now describe: suppose T  : 3#?\ —> 3%2 is densely defined and

&  = {g G c# 2  : there exists a hg G 3tf{ such th a t (hg\ f ) = (g \T f ) for all /  € @(T)}.

The element hg is unique for if (h \\f)  = (/12I/) =  (g \T f)  for all /  G @(T), then clearly 
(h\ — /12I/) =  0 for all /  G @(T), which means th a t h\ — h<i G T )"L. Now, @(T) = 
since $ (T )  is dense and 3tf{ =  @(T) © @ (T)± since @(T) is closed. Hence, f^(T)"L =  {0}. 
Furthermore, =  (^ (T )_LJ') since both  !3(T) and @(T)A~i~ are the smallest closed
linear subspaces of 3%[ containing @(T). Finally, as (^ (T )_L_L) =  ^(T )"1, we have that
^ ( T ) 1- =  {0} and thus hi =  /i2- Also, &  is a subspace of 3^2 and &  —> 3%i, g i-> hg is 
linear since for <71,<72 G &  and a , (3 G C, hQ5l+/#52 =  othgi +  f3hg2.

Hence, by @(T^) = T^g = hg for g G @(T^) a linear operator : 3 t2 —> 341 

is defined. is a formal adjoint of T  and is the extension of all formal adjoints of T. 
Since a densely defined operator T  is Hermitian if and only if it is a restriction of T^, we 
have that an operator T  is symmetric if and only if T  is densely defined and T c l ^ .  An 
operator T  on 34? is self-adjoint if T  is densely defined and T  = T*.

T heo rem  A .2. I f  J? is any subspace of 34?, then J ? 1- is a closed linear subspace of 34?.

Proof Firstly, we clearly have 0 G Z 1 . If /  _L gj for all j  and g = 1 ^jgji then
(f \g ) = Y^=  1 ^j(f\g j) = 0 ancl so c / ± is a hnear subspace of 34?. Suppose ( fn) G af ± 
and f n —> /  G 34?, then for any g G ^  we have (/|<7) =  lim (/n |<7) =  0. Hence /  G £/ ri‘. □

T heorem  A .3 (Hutson and Pym [1980] pp. 171-172). The adjoint operator is closed.

Proof. We first demonstrate that G,(—T*) = G {T)± . By definition of the inner product 
in 3 ^  x 34?, ( ( f ,T f ) \ ( -T 'g ,g ) }  = (f\ -  T^g) +  (Tf\g)=0, f  G 0 (T ), g G Thus,
G '(-T^)  C G(T)1 . On the other hand, take an element (h,g) G Gr(T)i’. Then we have 
the equation (f\h) +  (Tf\g) = ((/, T f) \(h ,  g)) = 0, which means tha t g G @(T^) and 
h = -T ^g ,  i.e. C G '(-T^).

Now, G(T')'L is closed by Theorem A.2 and therefore G '(-T ^ )  is also closed, which 
means that T* is a closed operator. □

T h eo rem  A .4 (Weidmann [1980] p. 91). Every symmetric operator T  on 34? is closable 
and T  is also symmetric.
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Proof. It follows immediately from Theorem A.3 tha t T  is closable since we have T C T+ 
where T t is closed.

Since T  is closable we can take any f , g €  0 (T )  such that there are sequences ( /n), (9n) 
in 0 (T ) with f n —» / ,  gn —> 9-, T f n —* T / ,  and Tgn —> Tg. Therefore, since we assume 
that T  is symmetric, (Tf\g) = ]im(Tfn \gn) = lim (fn \Tgn) =  (f\Tg). It only remains to 
demonstrate the density of 0 (T ). We note tha t if / j C  ^ 2, then C ^ 2  for suppose 
/  E and (f n) 6  with f n —> / ,  then also (/„) 6  ^ 2 and so /  is adherent to ^ 2- 
Now, the inclusion T  C T  means tha t 0 (T )  C 0 (T )  C Furthermore, 0 (T ) = J4? by 
hypothesis and so 0 (T ) = J f .  □

T heorem  A .5. I f T  is a symmetric operator on Jtf, then T  = and T * = .

Proof It is clear that T  is closable by Theorem A.4. Thus, from the proof of Theorem A.3 
we have G(T) = G{T) = G(T)±L = G ' ( - T t)-1 . We also have that G (T ^)  = G ' { - T ^  
since ( ( / , r t t / ) | ( - r t p ,  <?)) =  (f\ — T^g) +  ( T ^ f \g )  =  0 for /  E 0 ( 1 %  g e  0 (2*). Hence, 
G(Ttt) C G,(—T^)± . Conversely, suppose we have an element (h,g) E G,(—T^)± . Then, 
(—T*f\h) +  (f \g ) = ((—T *f,f) \(h ,g ))  = 0, which means that h E 0 (T tt)  and g =  T ^ h ,
i.e. G'(—T^)± c  G(T’tt). This justifies the claim that C?(T^) =  G'{—T^)± and hence 
Ttt =  T. Moreover, T* =  Tt =  (T t)ft =  (7%  =  T f . □

D efinition  A .5. A symmetric operator T  on J i f  is called essentially self-adjoint if  T  is 
self-adjoint.

T heorem  A .6 . Let T  be a symmetric operator on Ji?, then T  is essentially self-adjoint 
if and only i f T t is symmetric. In this case, we have T  = .

Proof. If T  is essentially self-adjoint then = T  = T1̂  by Theorem A.5, the
hypothesis and Theorem A.5 respectively. Thus, T t is self-adjoint and so is also symmetric.

If, on the other hand, is symmetric then as T  is symmetric by Theorem A.4 and 
T * = T \  we have T  C = T^. Also, T t C = T  by Theorem A.5 and so T  = = t \
which means that T  is essentially self-adjoint. □

A .3 The Sturm -Liouville O perator

Our task for this section is to study the self-adjointness of the Sturm-Liouville operator; 
we give the account due to Weidmann [1980] pp. 248-250. Before embarking on this, let 
us first present a result which will be of great use in the study of the Sturm-Liouville 
operator. This result concerning finite linear combinations of (complex) linear functionals 
can be found, for example, in the book of Weidmann [1980] p. 53; for our purpose we will 
only make the statement, but it may be proved by mathematical induction. Setting our 
notation for the null space, ^V(T) =  { /  E 0 (T )  : T  f  = 0}, we have

T heo rem  A .7. Suppose Fi, F2 , . . .  Fn are linear functionals on a complex Hilbert space 
Jtf with @(Fj) = 0 (F )  = Jif for j  E {1,2, . . . n} .  I f  flj= i ^ ( F j )  c  then there
exists aj E C such that F  = ajFj-
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We now describe the Sturm-Liouville operator, and also introduce some concepts and 
notation to be used throughout. Consider the formal differential operator

L f = ^ ( - ( p f ' Y  +  qf )

on (a, b), with p ,w  > 0 and p, q, w real-valued and continuous functions defined on (a, b). 
The maximal operator T  corresponding to L  is defined by T f  =  L f ,  with @(T) consisting 
of all /  G C2(a,b;w) such that /  is continuously differentiable in (a, b), f  is absolutely 
continuous in (a, b), and L f  G C2(a, b; w). The minimal operator To corresponding to L  is 
defined by To/ =  L f  with @{To) =  Co°(a, b). Both T  and To are densely defined.

If z G C and g is locally integrable, then /  is a solution of the equation (L — z ) f  — g if /  
is continuously differentiable, f  is absolutely continuous, and (L —z ) f ( x ) =  g(x) for almost 
all x € (a, b). Two solutions f \  and / 2 of the homogeneous equation (L —z ) f  = 0 constitute 
a fundamental system if their weighted Wronskian W  = W ( /i , / 2) =  p ( / i / 2 ~  / 2/ 1) i=- 0 
for some (and hence for all) x  G (a, b). In this instance, solutions /  of the equation 
(L — z ) f  = g are given by the variation of param eters formula

/
X

f 2(s)g(s)w(s)ds

rX
- / 2 ( x )  j  W ~ 1fi(s)g(s)w (s)ds

where c G (a, b) and ci ,c2 G C. Suppose /  and g are continuously differentiable, then we 
define the Liouville bracket to be

[/,p]z =  p (x )( f (x )* g {x)  -  f(x)*g'(x)).

Furthermore, for f  and g' absolutely continuous we have by integration by parts that

[  (f*Lg -  (L f)*g)w dx = [/, g]p -  [/, g]a 
J a

for [a,/?] C (a ,6). Therefore, for / , g G ^ (T )  we have

(f\Tg) -  (T f\g ) = [f,g]b -[ f ,g ]a .

T h eo rem  A .8 . Let £o(a» w) be ^ ie subspace of those functions in C2(a, 6; w ) that vanish 
for almost all x  near a and b. Then, the range & (T q) = &  consists of those functions 
v G £q(g, b\ w) such that <j)*vwdx = 0 for every solution <f> of L(p = 0.

Proof. For /  G $>(TQ) (so T0f  G ^ ( T 0)) and for every such that L(p = 0, we have by 
integration by parts that (f>*(Tof)wdx =  (L<j>)* fw d x  = 0, which means that To/ G &
or «^(T0) C Now, take v G £% and [a,{3\ C (a,b) with v vanishing outside [a,/3]. For 
c G (a, b) and c\ = c2 =  0, let h be such tha t Lh = v given by the variation of parameters 
formula met earlier for z = 0. Then, hf is absolutely continuous and h(x) = 0 for x  G (a, a).
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For each solution <f> of the equation L</> = 0 and for each x0 E (a, a), x  E (/3,6), we have

[0? =  [0? h]x — [0, /i]Xo
rx

= I {4>*v — (L<f))*h)wdx 
J x  0

=  0 .

This holds for every (j) with the property th a t L(f> = 0 and so it must be that h(x) = 0 for 
all x  E (/3, b). Therefore, h E @(T0) and T0h = v e  &(Tq) or equivalently, &  C @(Tq). □

T h eo rem  A .9. To* =  T.

Proof. Integration by parts shows th a t (T0f\g) = (f\Tg)  for all /  € ^ (T 0), g E @(T), i.e. 
that they are formal adjoints of each other. This means that T  C To* since every formally 
adjoint operator of To is a restriction of Tb^.

To show that Tô  C T, take /  E @(T(ff). Then, g =  ToV is locally integrable. Suppose 
h is such that Lh = g, then

[  ( f  ~  h)*(Tov)wdx =  f  [(ToV) — (Lh)]*vwdx =  0 
J a J  a

for all v E f^(To). Defining the functional

rb

F  : £o(a, b\ w) —>• C, I ( f  — h)*lwdx,
J  a

we see that ^(T o) C c/K(T). By Theorem A.8 , .^(To) consists of all I E £o (a 5 such 
that (f)*lwdx = 0 for every solution 4> of L(f) = 0. Moreover, &(To) = jV (Fj)  where 
Fj : Cl(a,b;w) —> C, / •—> <t>j*lwdx, j  = 1,2  and <pi,<j>2 constitute a fundamental 
system for L<p — 0. Therefore, by Theorem A.7 we can write F  = a \F \  +  012F2 for some 
<*1, oc2 E C. Defining p(x) = a\(pi(x) +  we have j * ( /  — h — fi)*lwdx =  0, which
means /  — h = +  »202 for almost all x  E (a, b). Hence, /  is a solution of L f  = g and
since /  E C2(a,b]w) it follows that /  E ^ (T ) ,  i.e. To  ̂ C T. □

T h eo rem  A. 10 (Weidmann [1980] p. 254). Let L be a Sturm-Liouville formal differential 
operator on (a, 6) and let c E (a, b). Either every solution u of the equation (L — z)u = 0 
lies in C2(c,b;w) for every z E C, or for each z E C \  R there exists (up to multiplication 
by a constant) exactly one solution u of the equation (L — z)u = 0 with u E C2(c,b;w). 
The exact analogue holds for the boundary point a. This is known as Weyl’s alternative.

The original analysis of Hermann Weyl refers to the first case in Theorem A. 10 as the limit 
circle case at b (or at a), whilst the second is referred to as the limit point case at b (or 
at a). These are not merely semantics, but are accurate descriptions of the possible cases 
that can arise in solving the Sturm-Liouville equation with a singular boundary point, by 
letting b —> 00 and approximating the singular problem by a sequence of regular ones.
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T heorem  A. 11 (Weidmann [1980] p. 255).

(a) [f,9]a =  0 for f  e  @{%) and g G @(T),

(b) In the limit circle case at a; i f  0 is a solution of (L — z)(f> =  0 for some z  G C, 0o is 
twice continuously differentiable on (a,b), 0 o(x) =  <f>(x) near a, and <j>o(x) =  0 near 
b, then we have 0o G @(T) \  3>(To),

(c) In the limit point case at a, [f,g]a = 0 for all f , g  G @(T). Similarly for b.

Proof

(a) Let /  6 i^(To) and g G i^(T), then there is a <70 £ @(T) with the property that 
9o(x ) =  9(x ) near a and <70 (^) =  0 near b. This can be seen by multiplying g by 
a mollifier \  the property th a t x ( x ) = 1 n^ar a and \ ( x ) = 0 near he. let 
9o = X9 then g'0 = \g '  +  x'9  exists and is absolutely continuous. So,

[f,g]a = lf,go]a ~  [f ,9o]b = - { ( f \ T g a) -  <7b/|S0 »  =  U W o 9 o )  -  < /|T So) =  0

since T  is closed by Theorems A.9 and A.3, and so To =  by Theorem A.5.

(b) Now, <j>Q G @(T). If v is such th a t (L  — z)v  =  0 with >^(0, v) ^  0 and vq is defined 
analogously to 0O, then u0* € @(T) and [0O, u0*]a =  [0, ^*]a =  -W {u ,v )*  ^  0. Thus, 
it follows from (a) that 0o 0  f^(To).

(c) We are free to suppose tha t L  is regular at 6, then the defect indicies of To are 
(1,1) by Weyl’s alternative—for our purposes we take as our definition of the defect 
indicies (7+ ,7 _) of To to be as follows: 7 + (7 - )  is equal to the number of linearly 
independent solutions of the equation (L +  i)u = 0 ((L  — i)u = 0) that belong to 
C \a ,  b\w). Let 0 i ,02  be linearly independent solutions of L0 =  0, and let V\,V2 

be twice continuously differentiable functions such that Vj{x) = (f>j(x) near b and 
yj (x) =  0 near a. By part (b), V\,V2 € @(T) and are linearly independent modulo 
^(To). Thus, 3>(T) = @(To) +  span(i>i,U2). Hence, any f , g  G f^(T) have elements 
/o>Po € 0 (T O) tha t agree with /  and g in a neighbourhood of a respectively. It 
follows from part (a) that [f,g]a = [fo,9o]a =  0 .

□
T heo rem  A .12. I f  we have the limit point case at both singular endpoints, then it follows 
that T  is self-adjoint.

Proof In this case we have for f , g  G 0 (T )  tha t (f\Tg) -  (Tf\g) =  [f,g]b -  [f,g]a = 0 by 
Theorem A. 11 (c). Thus T  is symmetric. We also know that To is symmetric since we have 
that To C T =  To  ̂ by Theorem A.9. Consequently, as both To and To* are symmetric, 
To is essentially self-adjoint by Theorem A.6. Another application of Theorem A.6 yields 
that To =  Tq^ = T  and so by definition of essential self-adjointness, T  is self-adjoint. □
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The Spectrum

B .l  Spectral T heory in F in ite  D im ensions

Let S  denote the space Cn with any appropriate norm, and suppose that A  is a linear 
operator on S  corresponding to a m atrix A  =  (ay-)JL. A non-zero vector v 6  S  is called 
an eigenvector of the operator A, belonging to eigenvalue A, if we have

A v = Xv. (B.l)

The collection of all eigenvalues of A  is called the spectrum of A. Clearly, the spectrum of 
A  coincides with the set of all roots {Ai , . . . ,  Am}, m  < n, of the characteristic equation

det

/  a\\ — A a2

021 a22 ~  ^

Oin

Q>2 n

\

\  ®nl

=  0 .

- V

This is justified by the fact tha t all matrices representing a given operator on a finite 
dimensional normed space S —relative to various bases for S —have the same eigenvalues. 
Therefore, if A € {A1?. . . ,  An} then the corresponding operator A  -  Al is not invertible, 
where 1 denotes the identity operator.

Before we continue our brief introduction to spectral theory let us, in anticipation of 
what is to come in the next section, note the following fundamental result concerning 
linear operators and their inverses on general vector spaces [Kreyszig, 1978, p. 88]:

T h eo rem  B .l .  Let and %  be complex vector spaces, and let T  : @(T) —> 3%(T) be 
a linear operator with domain @(T) C and range 3$(T) C Then, the i n v e r ^ ^ U N t ^  
T ~ l : & (T)  —» ^ (T )  exists i f  and only i f T v  = 0 implies v = 0, and is a linear operat

95
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Proof. Suppose T v = 0 implies v = 0. If T v i =  T v2, then T(v  1 -  v2) =  0 which implies 
v\ = V2 by assumption. Conversely, if the inverse of T  exists then Tv  1 =  T v2 implies
v\ =  u2; setting V2 =  0 shows tha t T v  1 =  0 implies v\ = 0. We now show that if it exists,
T _1 is a linear operator: let v\, V2 € @(T), w\ =  T v  1, and w2 = Tu2. Then, ui =  T ~ lw\ 
and V2 = T ~ lW2 - Since T is linear we have for any a, b € C that aici +  bw2 = T{av\ +  6u2), 
which means that T ~ 1(aw 1 +  6tc2) =  aui +  bv2 =  aT _ 1u;i +  bT~lW2 • □

B .2 The R esolvent

Thus motivated, we now consider spaces of arbitrary dimension; in particular, we are no 
longer restricted (as we were in the previous section) to finite dimensional spaces. Spectral 
theory is a much richer subject in infinite dimensions since in general, the spectrum will 
no longer comprise of isolated points only. Let £  denote some complex normed space and 
let T  : @(T) —> §  be a linear operator. We may associate with T  the linear operator

( T - A l ) - 1 =  ( T - A ) -1  (B.2)

called the resolvent of T —we know tha t it is linear because of Theorem B.l. The resolvent 
provides the solution to equations such as (T — X)v = w , i.e. v = (T  — X)~1w provided, of 
course, that (T — A) -1  exists. The resolvent clearly depends upon A and, in fact, spectral 
theory revolves around this dependence. The existence, boundedness, and density of the 
domain of (T — A) -1 are of particular interest, since these properties of the resolvent give 
rise to the different types of spectrum associated with infinite dimensional spaces. We now 
give the standard classification of the spectrum  of an operator: the definition to follow 
can be found in, for example, Kreyszig [1978] p. 371.

D efin ition  B .l .  A regular value X of the operator T  is a complex number such that

1 . (T — A)-1  exists,

2. (T — A)-1  is bounded,

3. @((T — A)-1 ) is dense in £ .

The resolvent set p(T) is the set of all regular values o fT .  The complement of p(T) in the 
complex plane is called the spectrum of T , denoted by cr(T). The spectrum is partitioned 
into three disjoint sets, corresponding to the properties of (T  — A) -1 listed above:

• The point spectrum, denoted by crp(T), is the set of X such that the resolvent does 
not exist; members of the point spectrum are called eigenvalues,

• The continuous spectrum, denoted by crc(T), is the set of X such that the resolvent 
exists and has dense domain, but is not bounded,

• The residual spectrum, denoted by crr(T), is the set of X such that the resolvent exists 
but is not densely defined—it may or may not be bounded.
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Theorem B .l shows that the resolvent (T — A) -1  : 3#{T — A) —> @(T -  A) exists if and 
only if (T -  X)v = 0 implies v = 0. Thus, if (T -  X)v = 0 but v ±  0 then A € crp(T) 
by Definition B .l. The element v is called an eigenvector of T —or an eigenfunction if we 
are working in a function space—belonging to eigenvalue A. This demonstrates that the 
current definition of an eigenvalue is consistent with our previous one involving (B.l).

B .3 The E ssential S pectrum

We have seen in section B .l tha t the spectum of a linear operator T  can be decomposed 
as follows: &{T) =  crP(T) U crc(T ) U crr(T). However, we may define yet another subset of 
the spectrum called the essential spectrum, which is denoted by cre(T). The reason for 
introducing the essential spectrum is th a t it is a more general concept with many useful 
properties. There are various definitions of the essential spectrum in the literature, and 
they are not generally equivalent, except when T is a self-adjoint operator—on a Hilbert 
space of course [Edmunds and Evans, 1987, p. 417]. Furthermore, in the case where T  
is a bounded self-adjoint operator, we have a simple decomposition of the spectrum into 
two disjoint subsets given by cr(T) = crp(T) U cre(T) [Reed and Simon, 1980, p. 236]. In 
order to introduce the notion of essential spectrum, we must first make some preliminary 
definitions; we take these from Edmunds and Evans [1987] pp. 7 and 39.

D efin ition  B .2. Let W  be a subspace o f the vector space V . The coset of v G V  with 
respect to VF is denoted by v +  W , and is defined as

v + W  =  {y w ,w  £ 'W}.

The cosets constitute the elements o f a vector space; this space is called the quotient space, 
which is denoted by V  j W .

D efin ition  B .3. Suppose that 38 \ and 3 8 2  are two Banach spaces, then a closed linear 
operator T  € (£ (38 i,3 8 2 ) is said to be semi-Fredholm if  38{T) is closed and at least one of 
the nullity, nul(T) =  dim(«yK(T)) and deficiency, def(T) =  d im (^ 2/«^(T)) is finite.

Now that we have introduced the notion of a semi-Fredholm operator, we are in a 
position to define the essential spectrum of a closed linear operator ae(T); this is given, 
for example, by the following [Edmunds and Evans, 1987, p. 40]:

D efin ition  B .4. Let 38 be a complex Banach space and let T  e ‘io (38). Then the essential 
spectrum o fT  is given by the set

cre(T) =  C \ { A € C : T  — A is semi-Fredholm (^V(T) < 00)}.

As we have already mentioned there are several different definitions of <Je(T); we favour 
this particular definition because it yields an equivalent definition which is usually more 
convenient to work with in practice. In fact, this equivalent characterization will be useful
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imminently. To be able to recharacterize the essential spectrum, we must first introduce 
singular sequences; these are defined as follows [Edmunds and Evans, 1987, p. 415]:

D efin ition  B .5. A sequence (x n) in @(T) is called a singular sequence o fT  corresponding 
to A G C if it contains no convergent subsequence in a complex Banach space , and is 
such that ||xn ||^  =  1 and (T  — X)xn —̂ 0 as n  oo.

With this in mind, we have [Edmunds and Evans, 1987, p. 415]

T h eo rem  B .2. F orT  G <̂’( ^ )  densely defined, X G cre(T ) if  and only if  there is a singular 
sequence o fT  corresponding to A.

In spectral theory, the numerical range of an operator in Hilbert space is a most 
important tool; in our case, we will require it for the purpose of calculating the essential 
spectrum, by means of a well-used argum ent. The importance of the numerical range is 
due to the fact that it contains the essential spectrum  (and also the point spectrum). The 
proof of this is given after the following definition [Edmunds and Evans, 1987, p. 99]:

D efin ition  B .6 . The numerical range <I>(T) of a linear operator T  in Hilbert space Jif, 
is the set of complex numbers

<3>(T) =  {{Tx\x)  : x e @ ( T ) , \ \ x \ \  = l } .

T h eo rem  B .3. ae(T ) C 4>(T).

Proof Let A G cre(T). Then, by Theorem B.2 there exists a sequence (x n) in @(T),  with 
||xn || =  1 such that \\Txn — Axn || —» 0 or ( T xn \xn) — X(xn \xn) -> 0. This means that 
(Txn\xn) — X —> 0 and so A € 4>(T). Hence, ae(T ) C 4?(T). □

Aided by the following definition from K ato [1966] p. 194 concerning the relative 
compactness of operators, we give a generalization of the seminal result due to Weyl [1909] 
on self-adjoint operators in a Hilbert space; it describes the invariance of the essential 
spectrum under a relatively compact perturbation [Kato, 1966, p. 244].

D efin ition  B .7. Let S  and T  be linear operators satisfying @(S) C $ ( T ) .  Assume 
that for any sequence (vn) G @(S) with both (vn) and (Svn) bounded, (Tvn) contains a 
convergent subsequence. Then T  is said to be relatively compact with respect to S , or 
simply, S-compact.

T h eo rem  B .4. Let &  be a complex Banach space. Suppose S  G and let the linear
operator T  be S-compact. Then, ae(S ) =  cre(S  +  T).

The next theorem is the core of this section; it is indispensable in the development 
of the proposition which we are to use in the main body of the thesis—in Chapter 5. In 
essence, the following is an application of Theorem B.4, but we will require the machinery 
of an intermediate result in order to present its proof satisfactorily.
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Theorem  B .5. Consider the following operator:

°n £ 2W -

I f V  is bounded and decays at ± 00 , then cre(T) = [0, 00).

Proof. To prove this we trace Kato [1966] p. 304. For the operator T0 =  -d /d a ;2 on £ 2 ( R ) ,  

cr(To) =  cre(To) = [0, 00). Thus, in view of Theorem B.3 it suffices to prove that T  — To 
is relatively compact with respect to T0. Let ( /n) be a bounded sequence in £ 2 ( R )  such 
that (To/n) is also bounded. We have to show th a t ((X — To)/n) contains a convergent 
subsequence. To continue we require the following proposition [Kato, 1966, p. 301]:

Proposition B .l .  Let f ( x ) € £ 2(R )  be such that \k\2 f ( k )  G £ 2 ( R ) ,  k e  R, where we 
define f (k)  = Ff {x )  to be the Fourier transform of f ( x ) .  Then f  is a bounded function 
which is Holder continuous with exponent smaller than 1/2.

Proof. Firstly, observe that by an application of the Holder inequality the Fourier 
transform of /  is integrable:

( i l/(fc)|dfc) 2 i  w w L l/(fe)|2(w2+a2)2dk < 00

for some arbitrary a > 0. Now, the Riemann-Lebesgue Theorem states that a function /  
whose Fourier transform f ( k )  G £ J ( R )  is bounded and continuous. To see this, we have

/(* )  =  - L =  f  eikxf ( k )d k  (B.3)

and so
|/(x ) | <  - 1 = /  |/> ) |d fc  <  OO 

V^7T JR
for almost all x  G R, i.e. /  is essentially bounded. The continuity of /  follows directly 
from the continuity of the integral in (B.3). Hence, /  is bounded and continuous.

Next, we need to show that for all 7  G (0 ,1/2) there exists a non-negative constant C  
such that for all x, y G R ,

\ f { x ) - f ( y ) \ < C \ x - y \ ' .

To this end, we have

1 / w  -  m  1 =  - 4 =  /  \e'kx -  eiky\ \ m \ d k .V 27T Jr

Now,
eikx -  eiky = ik  f  eiktdt,

Jy
which implies that

\eikx - e iky\ < \ k \ \ x - y \ .



APPENDIX B. THE SPECTRU M 100

We note that |et/c;E — etky\ does not exceed 2, and thus

|e ifcx _  e i k y  j _  |e iA:x _  Qi k y  | 7 | e ^ z  _  Qi k y  | l - 7

< 2 l~^\k\1\x -  y\^.

Hence,

f  \W\ f (k) \dk.  
J R

1/0*0 -  f ( y )  I <  21 ^
\x  ~  2/|7 v ^ t t  j r

By the Holder inequality

which implies

( I  i f c n /w id * )  < ( I  ( I  m m 2+ « 2)2dfc)  (b.4)

for some arbitrary a > 0. Looking at (B.4), the second integral is finite by hypothesis.
Denote the integrand in the first integral by / 7 , then if 7  6  (0,1/2) we have

j  f \k\2l a ~ A as k —> 0 ,
7 \  |&|27-4 as k —> ±00

and so in both cases I1  is integrable. Therefore,

1/0*0 -  f ( y )  1 < c
\x -  y\7 ~

□
In order to make use of Proposition B .l, we need to show that \k\2 f (k)  € £ 2(R) since 

we already have by hypothesis tha t our sequence of bounded functions lives in the Lebesgue 
space £ 2(R). To do this we first note th a t — d2/ / d x 2 is the inverse Fourier transform of 
\k\2 f (k) ,  as the following straight-forward calculation demonstrates:

F - 1|fc|2/(fc) =  - L =  [  \k\2eik*f (k)dk  
V 27r JR

,  ' /
V 2tt Jr &x

d2 f 1 r ~ 1
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But, by assumption we know that F -1 \k\2f  =  To/ € £ 2(R), and thus by Parseval’s 
Theorem [Boas, 2006, p. 383] we get \k\2f ( k )  6  £ 2(R). Therefore, applying Proposition 
B.l to our sequence ( /n), we find that the f n (x)  are uniformly bounded in x  and n, and 
equicontinuous. By the famous Arzela-Ascoli Theorem [Kato, 1966, p. 157], (f n) contains 
a subsequence, ( f Uj) say, that converges uniformly on any bounded interval of R. Let /  
be the limit of this subsequence, then /  is bounded, continuous, and resides in £ 2(R). All 
that remains is to show that V f nj —> V f  in £ 2(R).

Let e > 0 and suppose R  is sufficiently large as to ensure that |^(a:)| < e for \x\ > R, 
which can be done since V  decays for large |:r| by assumption. Then,

f  \Vfn3 - V f \ 2d x < 2s 2(\ \fn j \\2 +  ll/ll2)
J\x\>R

< 4 (su p ||/n i | |) V

for all n, and

[  \Vfnj  — V / |2dx —> 0 as n  oo
J\x\<R

by the assumed boundedness of V  and the uniform convergence f nj —>• /  on |x| < R. It 
follows that V f Uj —> V f  in T2(R). □

W hat we actually want to prove is slightly different from Theorem B.5, namely, the 
hypotheses on the function V  are more complicated. To cope with such modifications, we 
must consider the Glazman decomposition; this is the topic of the next section.

B .4 The Glazman D ecom position

The Glazman decomposition is a strategy for calculating the essential spectrum under 
the special circumstances in which the operator can be split up in some helpful way. The 
method is described in the book of Akhiezer and Glazman [1993]. We study the operator

T = ~ i  +  V{ x )  on £2(R)

and consider the equation
( T - z ) u  =  f ,  f  € £ 2(R).

Let L be the differential expression associated with the operator T  and define

^  *^l(—00,0]’ I [0,oo)

Thus, we need
( L - z ) u i  = f i ,  { L - z ) U 2 = f 2
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with ui(0) =  1/2(0 ) := h, h e  C and 1̂ ( 0 ) =  1*2 (0). We attempt to solve

( L - z ) u 1 = f 1, m(0) = h,

in £ 2(( —00, 0]). This is only possible provided 2 ^  cr(Ti), where

9(Ti )  =  {w e  £ 2( ( - oo,0]) : Lui 6 £ 2((-oo , 0]), w(0) =  0}.

Let K\ h  € £ 2((—oo, 0]), which depends on z, be such that

(L -  z ) (K!h)  = 0, (Kih)(0)  =  h

and note that K \ : C —>■ £  ((—oo, 0]) is rank 1 since @{K{) has dimension one. Let 
v\ = u\ — K \h  and apply the operator (L  — z) to both sides to get

(L -  z )v i =  f i  -  (L -  z)(K\h)

=  / i .

Also, i’i(O) =  h — h = 0, which implies v\ e  T \ ) and hence =  (Tj — z)~l f \ .  Therefore,

ui = v\ +  K \h

=  (Ti —  z )_1/ i  +  K \h . (B.5)

Similarly, we solve in £ 2([0, oo)), the problem (L — z)u 2 ~  f 2 , ̂ 2(0) — h. Again, this
is possible only when z is not in cr(T2), where

9 (T 2) =  {w € £ 2([0,00)) : Im  € £ 2([0, oo)),w(0) =  0}.

Suppose K'ih € £ 2([0, oo)) is such that

(L -  z ) (K 2 h) = 0, (K 2 h)(0) = h

and note once again that K 2 : C —> £ 2([0, oo)) is rank 1. Let v2 =  u2 — K 2h, then applying 
the operator (L — z) to both sides yields

U2 = (T2 — z) 1 f 2 +  K 2 h. (B.6)

We need to eliminate h. To achieve this we take derivatives at the origin. Let dj for
j  e  {1, 2} be defined by
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From our initial data, we want 8 \U\ = 82112 , i.e.

di(Ti -  z )~l f 1 +  d iK ,h  = d2 (T2 -  z )~lh  + d2 K 2h. (B.7)

It is important to notice that the operators 8 \ K \  = M\  and 8 2 X 2 = M 2 are so-called 
Titchmarsh-Weyl M-functions. To see this, consider the following for K 2 (the same 
argument applies to K\).  By definition the function

& =  K 2h

solves the problem

( L - z ) £ h  = 0 on [0 , 00), &  € £ 2([0 ,oo)), £h(0 ) = h.

Therefore,

6 2 X 2  =  \ d 2 K 2 h

fl(Q+)
, (0) 
n-U

(B.8)

6. (0)
€'(0+)

«(0)

where £ is such that

( L - z ) i  = 0 on [0,00), £ € £ 2([0 ,oo)), £(0) =  1.

Equation (B.8) is the definition of the Titchmarsh-Weyl M-function. Therefore, assuming 
the same has been done for K\,  we have

Ml(z) =  « | ± )  and M2(z) =  ^ .

It is well-known that the functions M\(z)  and M 2 (z) have poles at the eigenvalues of T\ 
and T2 respectively [Coddington and Levinson, 1955, Ch. 9]. Hence, equation (B.7) gives

di(Ti -  z ) ~ ' h  + M i h  = d2 (T2 -  z ) - ' f 2 +  M 2h,

which implies

h =  M ^ W 2 [~ dl(T l ~  Z)' l f l  + d 2 ( T 2  ~  Z)~l M ■
Therefore, from equations (B.5) and (B.6) we have

m  =  (T, -  z)~ V i +  M l M l ~ K i d  i(T,  -  z ) ~ ' h  + * i& ( r 2 ~

U2 =  (T2 -  z)~1f 2 + ]_ M  l - K *di(Ti ~  z)-1 / i  +  K 2 U T 2 ~
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We may write these equations in the more succinct form

3 - « • > ( £
where

and

R { z ) = ( Z  X  ’ ( B - 9 )

fluW = m  -  z) - 1 -  J i — w K ldl{Tl -  z ) - \

Rn{z )  =  M ^ W 2K ld 2 { n  -  z)_1>

=  ~ m ~ W 2k ^  -  *)_1-

R22(z) =  (T2 -  z )" 1 +  M J _  M 2 K2d2( T2 -  z ) - K

In a finite dimensional normed space <f, the Bolzano-Weierstrass Theorem holds true, 
namely, we can extract from each bounded sequence (x n) in & a subsequence (xUj) that 
converges to some element x  € $■ In this case, the normed space & is said to be locally 
compact [Kato, 1966, p. 7]. This means th a t a bounded operator with finite rank is 
compact. The justification for this is as follows: an operator having finite rank means 
that the range of that operator is finite dimensional. Moreover, by definition an operator 
T  is compact if the sequence (T x n) contains a Cauchy subsequence for any bounded 
sequence (xn) [Kato, 1966, p. 157]; but, since the range is finite dimensional it is locally 
compact, and so the result follows. As a corollary, the rank 1 operators

M ^ W 2 K l M T l - Z) 

M ~ r W 2K ^ - z)

1 K 2 d2 {T2 -  z ) - 1

-1

M \ -  M 2

are all compact. By Theorem B.4, the essential spectrum does not ‘see’ these compact 
operators and so from equation (B.9) we have

(?i -  z ) - 1 0
0 (T2 - z ) '

=  <re ((Ti -  z)_1) U <re ((T2 -  z ) - 1)

1 U — 7^7-----  (B.10)cre(Ti) -  z ae(T2) -  z
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by the Spectral Mapping Theorem [Edmunds and Evans, 1987, p. 419]. Applying the 
Spectral Mapping Theorem once again to  cre(R ) on the left side of equation (B.10) yields 
the well-known result cre(T) =  cre(Ti) U cre{T2 ).

B .5 Chasing A way th e  E ssentia l Spectrum

We now have the necessary information to present the result that we require. The proof 
of the following proposition involves chasing away the essential spectrum to infinity; this is 
quite standard and is often used in circumstances in which the function V  is unbounded.

P ro p o sitio n  B .2. Consider the following operator:

T  = - ~  + V(x)  on £ 2(R),

where the function V  is such that it is bounded on (—oo, 0] and tends to zero as x —¥ —oo, 
but V  T o o  as x  —► Too. Then, cre(T ) =  [0, oo).

Proof Allow us to decouple T  into the two operators

Tl =  _ 5?  +  V̂  on ;C2((_oo’0l)

and
r 2 =  - ^  +  K (x) on £ 2([0, + oo)),

with some (Dirichlet) boundary condition at zero. By Theorem B.5, cre(Ti) =  [0, oo). For 
the essential spectrum of T2 we have the following lemma:

L em m a B .l .  Given some Y  >  0, and assuming X  > 0 is large enough as to ensure that 
V(x)  > Y  for all x  > X ,  then cre(T2 ) == 0-

Proof. Decouple T2 into a further two operators, say

r3 /  = + t'M/- / e £ 2([0,*D

and

T i f  = ' %  + v ( 'x ) f ’ f  € £ 2 ([x ’+oo)) 
with, for example, f ( X )  =  0. The operator T3 has only eigenvalues, being a regular 
problem. Hence, in terms of finding the essential spectrum of T2, we need only consider 
a e(T4); we will find that the essential spectrum of T4 is also empty. The idea for showing 
this is simple: take an element of the numerical range $ (74) and show that the real part 
of this complex number exceeds Y . Since Y  > 0 was arbitrary and ae{T^) C $ (74) by 
Theorem B.3, we chase away <Je(74). Suppose (j> E Q>ifT/f) such that ||0|| =  1, where

®(T4) =  { /  € £ 2(pc,+oo)) : T iJ  € C2 ([X,+ oo)),/(X ) =  0}.



APPENDIX B. THE SPECTRU M 106

It follows from integration by parts tha t

roo roo
(T40|^> =  -  /  <t>"4>+ V<j>2

J x  J x
roo roo

=  /  (4>'f + /  v * 2 ,
J x  J x

and thus taking real parts we obtain

roo roo
Re(T44>\4>) =  /  (4>'f +  /  Re(V)<t>2 >  Y.

J x  J x

This implies that cre(T±) = 0. Hence, by the Glazman decomposition, cre(T2 ) =  0. □

Therefore, we conclude by another application of the Glazman decomposition that the 
essential spectrum of T  is indeed [0, oo), as required. □



APPENDIX C

Montel’s Theorem

We begin with some fundamental results in complex analysis and in particular, the 
Analytic Convergence Theorem due to Weierstrass. We then give a proof of Montel’s 
Theorem, in which the Analytic Convergence Theorem plays a central role.

T h eo rem  C .l  (Morera’s Theorem). Suppose f  is continuous in a region G C C and 
f r f  = 0 for every closed curve T in G. Then f  is analytic on G.

Proof. Let zo e G and define for each z0 the function F(z)  = f*Q f{w)dw.  Since we know 
that f r f  = 0 for all closed curves T, the function F  is well-defined because the integral 
is path independent. To see this, let To and Ti be paths joining zq and z, and Jr f  =  0 

for all closed curves T. Then we have th a t f r f  =  f Fi f  by To and —Ti to form a closed 
curve in G (the path — Ti is just the reversal of Ti).

We show that F  is differentiable on G with F'  = / ;  in this case, we would conclude that 
F  is analytic along with all its derivatives on G , which would mean that f  is analytic on 
G. So, supposed 6  C such tha t z f / i E G ,  then (F(z  + h) — F(z ) ) /h  = (1/h) f* +h f(w)dw.  
By writing f ( z )  = (1 /h)  f* +h f{z)dw,  we find tha t

F(z  + h ) - F ( z )
h - / ( * )

j  r z + h

h j z '( / W  -  f i z ) )d w

Since /  is continuous at z, f {w)  —> f ( z )  as w —> z, i.e. f (w)  —> /(z )  as h 0. More 
precisely, given any e > 0 there exists a 5 > 0 such that |f (w)  — /(z )  | < £ whenever 
|h| < 6 . Hence, for any e > 0 there exists a S > 0 such that

F{z + h ) - F ( z )
h - m <

£

W \

rz-\-h
=  £

whenever \h\ < 6 . Therefore, F'(z) = /(z ). □
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P ro p o sitio n  C . l  (Marsden and Hoffman [2003] p. 188). Suppose ( fn) is a sequence of 
continuous functions defined on G and f n —> /  uniformly, then f  is continuous on G.

Proof. Suppose we choose N  such th a t \ fw(z)  — f (z) \  < e/3 for all 2 € G, which poses no 
problem since f n —» /  uniformly. Since //v is continuous, there exists a 8  > 0 such that 
I/jv(«) -  o)| < e/3  whenever \z -  z0\ < S. Hence,

I / t o  -  / t o ) I  < I / t o  -  f N (z )| +  |f N (z) -  f N (z0)\ +  |/ iv to )  -  / t o ) l  
< e /3  +  e/3  +  e /3  =  e

and /  is continuous on G. □

P ro p o sitio n  C .2  (Marsden and Hoffman [2003] p. 191). Let T : [a,b] -» G be a curve and 
suppose ( fn) is a sequence of continuous functions defined on T([a, 6]), which converges 
uniformly to f  on T([a, 6]). Then, Jr  / n —>• Jr  f .

Proof. We know /  is continuous and thus it is integrable. For each e > 0 we may choose 
n > N  such that | f n(z) — / t o I  <  £ f°r 2 on T. By the aptly named M L  Theorem, we 
have | f r f n -  f r f  | — fr  I f n ~  f  I ^  where L  is the length of T. The result follows. □

T h eo rem  C.2 (Marsden and Hoffman [2003] p. 191). Let G C C be an open set and 
suppose that (f n) is a sequence of analytic functions defined on G. I f  fn f  uniformly 
on every closed disk in G, then f  is analytic. This is the Analytic Convergence Theorem.

Proof. Let z q  6  G and let D(^o;r) =  {z 6  G : \z — z q \  < r}  be a closed disk around z q  

contained in G—as G is open. Since f n —> f  uniformly in D(zoto» f n ~ * f  uniformly 
in the open disk D(^o;r) = {z E G : \z — z q \ < r}. By Propostion C .l, /  is continuous 
on D to to -  ^  r  is any closed curve in D(zo;r )> then since f n is analytic, f r f n = 0 by 
Cauchy’s Theorem. By Proposition C.2, f r f n —> f r f  and hence f r f  = 0. Therefore, by 
Morera’s Theorem (Theorem C .l), /  is analytic on D (zoto- ^

D efin ition  C .l .  A family &  of analytic functions defined on an open set in C is called 
normal if each sequence of functions in ^  has a subsequence which converges uniformly 
on compacta to an analytic function.

T heorem  C.3 (Conway [1978] p. 153). I f  &  is a locally bounded family of analytic 
functions on G, then &  is a normal family in G. This is known as M ontel’s Theorem.

Proof. Take any sequence ( /n) from &  and consider the sequence ( fn(z 1)). We know 
l/n to )l < M  for some M  and n e  N. This bounded sequence has a convergent subsequence 
by the Bolzano-Weierstrass Theorem, say (/n^ ) converging at z\. Similarly, at Z2 the 
sequence ( /n ^ to ) )  is bounded and so we can extract a convergent subsequence ( fnj )  
which converges at Z2 and z\. Thus, we have subsequences which converge at z\, Z2 , • • • zp 
for each p e  N. On extracting the diagonal sequence ( fnj )  we find that this sequence



APPENDIX C. M O N TE L’S TH EOREM 109

converges at every zn . Let us define (gj) =  (fn^)', we now show that the sequence (gj) 
converges uniformly on compact sets.

Let K  C G be compact. We prove th a t &  is equicontinuous on K.  Let T be the 
boundary of a closed disk of radius r  contained in G. If 2 , z q  G T, then by Cauchy’s 
integral formula we have

/(* ) -  /(*>) =  ^

=  Z -  Z q  r  f ( Q d C

Jr  ( C  — Z){C -  zo)'

If we restrict z and zq to the smaller concentric disk of radius r/2 , then since |/ |  <  M  on 
r  we have the following inequality:

\ f ( z ) -  f ( z 0)\ < 4M\z  -  z0 \/r. (C.l)

Equation (C.l) shows equicontinuity on the smaller disk. Now, each point in K  is the 
centre of a disk with radius r  as described. The open disks of radius r /4  form an open 
covering of K.  We may choose a finite subcovering and denote the centres, radii, and 
bounds by Q,  rj, and Mj  respectively. Let r  be the smallest of the rj and M  the largest 
of the Mj.  For each e > 0 let 8  be the smaller of r /4  and s r /4M.  If |z — zo\ < 8  and 
\zo — < 7j / 4 , then \z — Cj| =  \z — z q  +  z q  — < 8  +  r j j 4 < rj/2.  Hence, (C.l) applies
and we find that |f ( z )  — /(zo)| < 4M j6 /r: j <  4M 8 / r  <  e as required.

Since &  is equicontinuous on K , there exists a 8  >  0 such that \gn (z ) — gn(z')\ < e/3, 
n £ N, whenever z ,z ' € K  with \z — z'\ < 8 . Additionally, we know that K  C Uj=i ^ ( zj'i ^)- 
Therefore, there is an N  € N such th a t n ,m  > N  implies |g n (zj )  — 9 m(zj)\ < s /3  for 
j  = 1,2, . .  .jo. Finally, for any z G K , z  £ D (z*; 8 ) for some i 6  [1, jo] and s°

19n(z ) ~  9m(z)| 19n(z ) ~  9n(z i)\ T  \9n(z i) 9m(z i)\ T  19m(z i) ~  9m(z )\

< e/3 +  e/3 +  e /3  =  e.

We conclude that (gn) converges uniformly on AT to a function which is analytic by 
the Analytic Convergence Theorem (Theorem C.2). □



A P P E N D IX  D

Some Results on Entire Functions

D .l  The Zeros o f an E ntire Function

The fact that an entire function has finitely many zeros in any compact set may be 
demonstrated with the aid of the following preliminary result [Holland, 1973, p. 16]:

T h eo rem  D .l .  Suppose f ( z )  is a non-zero entire function, then for all z = zq 6  C there 
exists a disk centred at z q  in which f ( z )  has no zeros, except possibly at z = zo itself.

Proof Suppose f(zo) ±  0, then \ f ( z0)\ > 0. Since /  is continuous, there exists a disk
centred at z q  such that \ f ( z ) — f{zo)\  <  £ f°r all £ > 0. Thus,

l / WI  =  l/(*o) +  [ /(* )- /(* > )]!
> \ f ( z o ) \ - \ f ( z ) - f ( z o ) \

> l/(*o)| - e -

Taking e = |/(^o)|, we get l / (2)l > 0? which means that |/(^ ) | ^  0. Therefore, for 
f(zo)  /  0 there exists a disk centred at z0 containing no zeros of / .  Furthermore, suppose 
f(zo) = 0 and m is the order of the zero at z = z q . Then f {z)  = (z — zo)mg(z) where g is 
entire and g(z0) ±  0. Thus, there exists a disk centred at z0 such that g(z) ±  0. Therefore,
/  has no zeros other than zq inside this disk. D

T heorem  D .2 (Holland [1973] p. 17). A n entire function f  cannot have infinitely many 
zeros in any closed disk of finite radius.

Proof. Assume to the contrary, namely, th a t /  has infinitely many zeros in the closed disk 
D (0;r). By the Bolzano-Weierstrass Theorem, there exists a z0 in this disk which is a 
point of accumulation of the set of zeros of f .  Thus, in an any disk centred at z0 there are 
infinitely many zeros of / ;  this is at odds with Theorem D .l. O
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D .2 A Lem m a on th e  G row th  Order

This section provides a brief study of the growth order of an entire function with the 
aim of proving a lemma required in C hapter 4; since the majority of the results leading 
up to this lemma are well-known, they are presented without proof.

Our discussion begins with the basic notion of the upper limit (limit superior) of a real 
sequence (xn), denoted by lim s u p y ^ ^  xn . It is defined as follows: if (xn) is unbounded 
above, then we set lim supn_>00 x n = +00; otherwise, define = supn>Nx n, which 
means (xjy) is a non-increasing sequence so th a t the limit \imN^,0 0 x'^ exists. We then 
set lim supyj^oo x n = lim7v->.c>o An alternative and perhaps more practical definition 
is as follows: lim supn^ .00 xn =  +00 if (x n) is unbounded above; lim supn_>00 xn =  —00 if 
x n —¥ —00 as n -> 00; or lim supn_>00 = x  (x  finite) if, given any e > 0 , we have x n < x  + e 
for all sufficiently large n and x n < x  — e for some arbitrarily large n.

In anticipation of the language used in the theory of entire functions, we introduce the 
concepts of genus and canonical products. The following definition is quite standard in 
complex analysis and can be found in, for example, Holland [1973].

D efin ition  D .l .  Given an infinite sequence o f complex numbers (zn) with zn ^  0 fo r all 
n > \zn\ 00 as n —> 00 and XmLi ^-/\zn \h + 1  converges for some integer h, its genus is 
defined as the smallest non-negative integer k such that Xm^=i l / \ zn \k + 1  converges. I f  the 
zn arise as the zeros of an entire function, then k is referred to as the genus of the entire 
function. Given such a sequence (zn) o f genus k, the corresponding product

is called the canonical product corresponding to the sequence.

An important theorem linking genus, canonical products, and entire functions is the 
following, which is a stronger version of W eierstrass’s Factorization Theorem.

T h eo rem  D .3 (Markushevich [1965] p. 287). I f  f  is an entire function of genus k with 
the sequence (zn) as its non-zero zeros, and a zero of order m  at the origin (set m  = 0 if 
z =  0 is not a zero), then

00 /  \  /  2' z \  I z  2
/ W = ^ n ( i - ^ j exp ^ + 2 i i +

where the right side is called the canonical product corresponding to f .

Probably the most fundamental property associated with a transcendental entire 
function f ( z )—we refer to an entire function as being transcendental in order to emphasize 
that we are considering entire functions th a t are not polynomials—is the maximum
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modulus function. It is defined for r >  0 by

M (r) =  max \f(z)\.
\z\=r

Unless f ( z ) is a constant function, M { r ) is a strictly increasing function of r which, by 
Liouville’s Theorem on bounded entire functions, is such that M (r) oo as r  oo. 
Moreover, the maximum modulus function satisfies [Markushevich, 1965, p. 250]

M i r )
-> oo, r —> oor /x ’

for every p > 0. Thus, whilst it is natural to compare M ( r ) with rn for polynomials, 
we clearly require more rapid growth for use with transcendental entire functions. Since 
exp(z), exp(z2), exp(23) , . . .  are relatively simple entire functions with maximum modulus 
functions exp(r), exp(r2), exp(r3) , . . . ,  it is natural to use exp(rp) for comparison with 
transcendental entire functions. Loosely speaking, a function will be called of order p if 
its maximum modulus function grows like exp(rp). To make this more precise we have the 
following definition [Markushevich, 1965, pp. 250-251]:

D efin ition  D .2. I f  f ( z )  is entire with maximum modulus M(r)  and there exists a number 
p > 0 such that, given any s > 0, we have M{r)  < exp{rp+£} for all sufficiently large r 
and M{r)  > exp{rp_£} for some arbitrarily large r. Then we say that f  is of finite order, 
namely, p; if  no such p exists then f  is said to be of infinite order.

If the maximum modulus function is given by M(r)  = exp(rp), then log M(r)  = rp 
and so log log M (r) =  p log r, which implies th a t

=  log log M j r )  ^ ^  Q 
^  log r

provided M(r) > 1. An equivalent definition is thus

log log M (r) , ^
p = lim s u p   ----------- . (D.IJ

r_,oo log r

Equation (D.l) is not quite equivalent to Definition D.2; this is because of the restriction 
on M{r)  to be greater than 1. However, since M{r)  —> oo as r  —>■ oo unless we have a 
constant function, the only exceptions are the constant functions f ( z )  = C  with \C\ < 1. 
We assume that we are dealing with entire functions a little more complicated than these. 
A result which will be most useful in the development of the lemma we require is the 
following, which can be found in Boas [1954] p. 9.

T h eo rem  D .4. Suppose f \  and f i  are entire functions of orders pi and p2 respectively, 
and p is the order of their product f i f 2- Then p < m ax{pi,p2}-

We require the introduction of one more quantity: the exponent of convergence. This 
is also a standard concept and we take its definition from [Markushevich, 1965, p. 285].
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D efinition D .3. Let (zn) be an infinite sequence with zn ^  0 for all n and \zn\ —> oo as 
n —> oo. Suppose there exists a number pc >  0 such that Xm^=i ^-/\zn\PcJr£ converges for 
all £ > 0, but X ^= i l / k n |Pc-£ diverges fo r  all e > 0. Then we call pc the exponent of 
convergence of the sequence (zn). I f  (zn) is the sequence of non-zero zeros of an entire 
function f ,  then pc is called the exponent of convergence of the zeros of f . For a finite 
sequence, convention dictates that pc = 0 .

Every sequence of finite genus has an exponent of convergence and conversely, every infinite 
sequence for which an exponent of convergence exists is of finite genus. In one sense, the 
exponent of convergence is a more precise measure of the growth of \zn \ than its genus, 
for it need not be an integer. For example, the sequence 12,2 2,32, . . .  has exponent of 
convergence 1/ 2 , this is because Y2  l / ( n 2)1/ 2+e converges but Y2  l/Cn2) 1/ 2-6 diverges for 
all e > 0; however, this sequence has genus zero since ^  1/ n 2 converges. On the other 
hand, we have no information about the convergence of Y2 ^/ \ zn\Pc, whilst we do know 
that ]T) V lzn |fc+1 converges. A useful characterization of the exponent of convergence is 
given by the following result [Markushevich, 1965, p. 285]:

T h eo rem  D.5. Let (zn) be an infinite sequence with zn ^  0, \zn \ < |zn+i| for all n, and 
\zn \ —>• oo as n —» oo. Then, if  (zn) has exponent o f convergence pc, we have

log n
pc =  lim sup

n —>oo l o g  | z n I

and conversely.

A direct consequence of Theorem D.5 is

T heo rem  D .6 . Defining n(r) to be the zero counting function, i.e. n(r) gives the number 
of zeros of an entire function f  in \z\ < r , we have

log n(r) 
pc =  lim sup .

r-+oo njg r

Let us now exhibit two famous theorems due to J S Hadamard [Markushevich, 1965, 
pp. 288-289]; they will be of utmost importance in the proof of our lemma.

T heorem  D .7 (Hadamard’s First Theorem). I f  an entire function is of order p and pc 
is the exponent of convergence of its zeros, then pc < P-

T heorem  D .8  (Hadamard’s Factorization Theorem). Let f  be an entire function of order 
p with an infinite number of zeros. Then we have

f ( z )  = zm exp{Q(z)}P(z)

where P(z) is the canonical product formed using the non-zero zeros o f f ,  and Q(z) is a 
polynomial of degree at most p.
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In the Hadamard factorization f ( z ) =  zm exp{Q(z)}P(z),  suppose /  is of order p with 
exponent of convergence of its zeros pc, and Q to be of degree q. By Borel’s Theorem on 
the order of canonical products [Holland, 1973, p. 71] we find that P  is of order pc; we also 
know that the order of exp{Q} is q [Markushevich, 1965, pp. 253-254]. As a consequence, 
p < max{<7, pc} by Theorem D.4. However, Hadamard’s First Theorem says that pc < p, 
whilst Hadamard’s Factorization Theorem says that q < p, whence p > max{q,pc}. We 
must conclude that p =  max{q, pc}. These observations will be indispensable when proving 
the next theorem1, which in turn  is used to  prove the subsequent desired lemma.

Theorem  D .9. I f  f \  and f 2 are entire functions of orders p\ and p2 respectively with 
Pi >  P2 , then the order o f their product / 1 /2  is p\.

Proof Suppose the Hadamard’s factorizations to be f i ( z)  = zmi exp{Qi(z)}Pi(z)  and 
f 2 (z) =  zm 2 exp{Q2 (z)}P2 (z), where the Pi(z)  are canonical products. Then,

f \ ( z ) f 2 {z) = z m i+ m 2  exp{Q i(2:) +  Q2 (z)}Pi(z)P2 {z). (D.2)

Let p be the order of / 1/ 2, then there are two cases to consider: either the order of P\{z) 
is pi or else it is less than p\. Suppose P\(z)  is of order p\ so that p\ is the exponent 
of convergence of its zeros. Adding in the zeros of P2 (z) cannot decrease the exponent 
of convergence of the zeros—as can be seen from Theorem D.6 . Thus, the exponent of 
convergence of the zeros of / 1/ 2, say p, is a t least p\. Hadamard’s First Theorem tells us 
that pi < P < P , but we already know th a t p <  pi and so p = p i .

Alternatively, suppose Pi(z)  is of order less than  pi. Now, pi is equal to the maximum 
of the degree of Qi{z) and the order of Pi(z) ,  which implies tha t pi is the degree of Qi(z)  
and is an integer. Since the degree of Q2 (z) is smaller than pi, the degree of Qi{z) -\-Q2 (z) 
is pi. Note that Pi(z)P2 (z) is of order less than  pi and again use Hadamard to write 
-Pi(z)P2 (z) = exp{Q3 (z)}P3 (z), where Ps(z)  is the canonical product associated with the 
zeros of both Pi(z) and ^ 2(2) and is of order less than pi, and Qz(z) is a polynomial of 
degree less than pi. The product factorization (D.2) therefore becomes

f i { z ) f 2 (z) = zm'+m* exp{Qi(z)  +  Q2 {z) +  Q3 (z)}P3 (z) (D.3)

where Qi(z)  +  Q2 (z) +  Qs(z)  is of degree pi, whilst Pz(z) is a canonical product of order 
less than pi. Now, equation (D.3) is the Hadamard factorization of / 1/ 2, which implies 
that pi < p but also p < pi by Theorem D.4, whence p =  pi. □

Lemma 1. Suppose that f i  is entire, f 2 is entire with order 1 and f i f 2 is of order 1, then 
f i  is of order at most 1.

Proof. Assume to the contrary, namely th a t f i  is of order p > 1. Then by Theorem D.9, 
/ 1/2 would be of order p, which is impossible. □

1This result was found in Edinburgh lecture notes from 1986, the lecturer was Stanley Richardson. 
Attempts to find an official citation for this theorem and its proof were in vain.
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