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Summary

Recovery of the continuous relaxation spectrum of a viscoelastic mate­
rial from experimental data is an exponentially ill-posed inverse problem. 
Different methods have been used to deal with the inherent ill-posedness of 
the problem. Most methods use a discrete relaxation spectrum, but this as­
sociates no physical meaning to the spectrum. Empirical models exist for 
recovering the continuous relaxation spectrum, but there is no theoretical 
foundation for relating these models directly to the mathematical theory of 
linear viscoelasticity.

The linchpin of this thesis is in showing that wavelet analysis establishes 
natural models for the continuous relaxation spectrum. It is shown that 
there exist wavelet transforms which are intrinsic to the theory of linear 
viscoelasticity, which give rise to these natural models. In particular, it is 
shown that the loss modulus is a father wavelet transform of the continuous 
relaxation spectrum at unit scaling.

A modified version of Calderon-Mallat decomposition is introduced, to 
express the continuous relaxation spectrum as a sum of continuous wavelets. 
Atoms are selected from a transformed dictionary of wavelets to fit the stor­
age and loss moduli data, and subsequently form an approximation for the 
spectrum. Several search and pursuit algorithms are introduced, to select 
the atoms of the transformed dictionary.

An in-depth account of the wavelet regularization mechanisms acting in 
this method of continuous relaxation spectrum recovery is given. It is shown 
that the scaling parameter of the wavelets controls the resolution of the 
spectrum, whilst the number of basis functions controls the sparsity of the 
approximation.
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Chapter 1

Introduction

1.1 Viscoelastic materials.

Most materials which are encountered every day are viscoelastic in nature. 
Examples include polymers, plastics, foods, oils and paints. Viscous and 
elastic properties simultaneously exist in these materials. Viscoelasticity is 
a combination of elastic response and viscous response to applied forces.

Viscoelastic flow is a branch of rheology, which is the science of the defor­
mation and flow of matter. The aim of a rheologist is to obtain constitutive 
relations linking the stresses to the deformation of a material, which cou­
pled with the kinetics of the flow and conservation laws, provide a complete 
description of the flow of that material and may then be applied to the solu­
tion of engineering problems such as those involved in the manufacturing of 
products mentioned above.

A large amount of rheological study has been conducted in the area of 
polymeric materials, encouraged by the significant use of these materials 
in engineering and manufacturing. The viscoelastic behaviour of polymers 
arises from the movement of thread-like, flexible long-chain macromolecules 
which occupy a volume considerably greater than atomic dimensions. As

7



8 CHAPTER 1.

the material undergoes deformation, internal forces develop as a result of 
molecular changes in configuration, involving rearrangements on different 
scales [79]:

1. Long-range contour rearrangements (slow).

2. Local level rearrangements, e.g. kinks (more rapid).

3. Reorientation of bonds on the chain backbone on the atomic scale.

Consequently, the stresses are influenced on several timescales, which leads to 
complex behaviour as the rearrangements take place at different time scales.

The area of viscoelastic theory that is studied in this thesis is the linear 
viscoelastic regime. This linear study is helpful in clarifying the molecular 
structure of materials, and the molecular weight distribution can be calcu­
lated from linear viscoelastic data. Methods are connected with reptation 
based mixing rules (Mead [56], Honerkamp et al. [72], Bailly et al. [75]). It 
is also a useful basis to proceed to the theory of non-linear viscoelasticity. In 
fact the memory function of the linear regime can be used in the modelling 
of non-linear deformations.

The theory of linear viscoelasticity is concerned with a restricted class of 
flows which have very small strains and strain rates. This theory characterizes 
the materials by describing how they flow, or deform over time, under a given 
stress or by the force needed to produce a certain strain. For example, in a 
shear flow, stress is the force per unit area in the direction of shear, while 
the strain is a measure of deformation of the material.

The field of rheometry (Walters [78]) is the area of rheology concerned 
with measurement of the characteristic functions of viscoelastic materials, 
which relate the stress and strain within the sample material, by experimen­
tal methods. The behaviour of viscoelastic materials in simple (rheometrical) 
flow geometries, such as steady shear flow or small amplitude oscillatory shear
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is obtained with the intention of utilizing this information to predict the flow 
in more complex situations. Often it is necessary to ensure the deformations 
are sufficiently small that a linear approximation can be employed; the linear 
viscoelastic functions being thus determined can be used in non-linear consti­
tutive equations combined with the stress equations of motion and continuity 
conditions to model industrial processes involving viscoelastic materials by 
computational methods. Another motivation of rheometry is to relate the 
molecular structure to the material behaviour, interpreting the motion of the 
polymer chains in terms of the relaxation spectrum. More details on linear 
viscoelasticity can be found in Ferry [33], Barnes et al. [11] and Gross [39].

1.2 The continuous relaxation spectrum.

An important quantity in the characterization of linear viscoelastic mate­
rials is the relaxation spectrum. The most fundamental use in determining 
a materials relaxation spectrum is to gain some deeper insight in to the re­
laxation mechanisms of the material. It reflects the molecular processes oc­
curring at a certain time scale. These depend on temperature and pressure, 
but in this thesis I shall assume that all data sets used have been measured 
at constant temperature and pressure. Among the processes being reflected 
in the spectrum is the molecular structure in a broad sense, characterized by 
molar mass distribution and long-chain branching architecture. A rheological 
measurement can be understood as the response of the structure, represented 
by the spectrum, to the mechanical stimulation [70].

The response of a lineax viscoelastic material to small strain excitation 
is determined completely by its relaxation spectrum. In an incompressible 
shear deformation, Boltzmann’s general linear integral model for viscoelastic
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materials [17] relates the stress cr(t) to the strain 7 (t) in the form

a (t)=  f  (1.2 .1)
J  — OO

where G(t) is a monotonically decreasing relaxation function. The principle 
of fading memory [66] demands that the first derivative is monotonically 
increasing, where the memory function M (t) is related to the relaxation 
function G(t) by

M (t) =  (1.2 .2)

Bernstein’s theorem [15] states that G(t) is completely monotone (i.e. suc­
cessive derivatives of all orders are alternately monotonically increasing and 
decreasing):

" - 0, t > 0 ’ (L2-3) 

if and only if G(t) is the Laplace transform of a positive measure // on (0 ,00),
i.e.

fOO
G (t)=  /  e~tsdfi(s), (1.2.4)

Jo

where the integral converges for all t > 0. Under this constraint G(t) may 
be written in the form

roo »
G(t) = Ge + H{T)e~LT— , (1.2.5)

Jo T

[11], where Ge is a material constant, given by

Ge — lim G(t), (1.2 .6)t—* 00

and H  (r) is an un-normalized non-negative density function associated with 
a continuous range of relaxation times r .  H (r)dr  is defined as the viscosity
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associated with the relaxation time between r  and r  +  dr. H (r) is known as

The term Ge is included to incorporate viscoelastic solid behaviour. This 
represents the fact that, for a viscoelastic solid under constant strain, the 
stress will never relax to zero. Conversely, Ge = 0 for viscoelastic fluids.

1.3 Inverse problems

Relaxation spectra can only be determined indirectly, that is by perform­
ing an experiment, and solving one or more inverse problems using measured 
data from the experiment. Inverse problems arise in a variety of important 
applications in science and industry. Many examples are given by Wing and 
Zahrt [80], Groetsch [38] and Engl et al. [32]. Unfortunately, a small amount 
of noise in the data can lead to enormous errors in the estimates. This in­
stability phenomenon is a result of ill-posedness. Mathematical techniques 
that can cope with this type of problem are called regularization methods

An inverse problem does not necessarily have a solution or even a unique 
solution. Furthermore, if a solution exists, it does not continuously depend 
on the data, i.e. it is unstable. This leads to the following definition of well- 
posedness for identification problems, which was first given by Hadamard

D efinition 1.2.1 Let X  and Y  be two topological spaces and K  : X  —*■ Y  
be a mapping from X  into Y . According to Hadamard the operator equation

the continuous relaxation spectrum and the total viscosity rj of the material 
is given by

(1.2.7)

(see [32]).

[40]:

K x = y, x € D c X , y E Y , (1.3.1)
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is said to be well-posed, if the following three conditions hold:

1. For every y G Y  there exists at least one x G D satisfying K x  =  y 
(existence).

2. The element x  satisfying that K x  = y is uniquely determined in D 
(uniqueness).

3. The solution x  depends continuously on the right hand side y (stabil­

ity).

If one of these conditions is not satisfied, then the problem (1.3.1) is called 
ill-posed in the sense of Hadamard.

If equation (1.3.1) is well-posed, then K  has a well-defined, continuous 
inverse operator K ~l . Direct problems are usually well-posed whereas the 
nature of inverse problems often (but not always) lead to ill-posedness as 
a characteristic property. Further explanations, theories and examples on 
inverse and ill-posed problems can be found in [38].

1.3.1 Oscillatory shear experim ent

Despite the abundance of new techniques proposed in recent times, the 
simple small-amplitude oscillatory shear experiment is still one of the popular 
techniques performed for determining the linear viscoelastic functions [71,78]. 
This experiment enables the measurement of the real and imaginary parts 
of a complex modulus G*(ui) as a function of angular frequency u. In the 
experiment, the viscoelastic material is positioned between two plates, with 
one plate rotating relative to the other (Fig. 1.1). An oscillatory strain is 
induced in the material under investigation at a specific, fixed frequency u 
and the resulting stress is measured, which is also of the same frequency, from 
which the phase angle 6 and amplitude ratio can be used to calculate G'(uJk) 
and G"(u>k) at that particular frequency. The experiment is then repeated
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at the next frequency, and so on until the desired range of frequencies has 
been covered. Such experiments are termed dynamic since the excitation is 
a continually varying function of time.

Angular frequency

Figure 1.1: Oscillatory shear flow. 

For an angular frequency u  and an applied strain

70eihrt if t > 0 ;
7W =

0 if t < 0 ,
(1.3.2)

where 70 is a strain amplitude small enough for the linearity assumption to 
be justified, equation (1.2 .1) can be expressed as

cr(t) = j  (Ge +  [G(t — t') — Ge]) ,y{t,)dt>
J  — OO

=  Ge f  7 (t')dt' +  f  [G(t -  t') -  G e] 7 (t')dt'
J—OO J — OO

=  Ge7 ( t )  +  iuĵ o j  [G(t — t') — G e] e ^ d t '
J  — OO

roo

= Gty(t) + iw [G(s) -  G eje-^’ds 70e " ‘
Jo

= g*M 7(0 , (1.3.3)
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where G* (cu) is a complex shear modulus given by
roc

= Ge + iu  /  [G(t') -  Ge] e - ^ d t ' .  (1.3.4)
Jo

Substituting equation (1.2.5) into (1.3.4) allows G*(lj) to be related to the 
continuous relaxation spectrum by

roo poo , j_
G*(w) = Ge + iui /  H ^ e - r — e - ^ d t f  

Jo Jo T
_  . f ° °  H ( t ) f ° °  r f l  +  iLJT\ .1

= Ge +  iw / ------  / exp — ( ---------- j t  dt dr

iujr H (r) /i o c\= Ge + — — ------- K-J-dr. 1.3.5J0 1 + IUT T

From equation (1.3.5), G*(uj) can be split into real and imaginary parts as 
follows

*°° uj2t 2 H ( t ) ,  . f ° °  uJT H { t ) ̂ ^  r  u2t2 h(t),  . r
G (cj) — Ge + I T— —2 2  “*"* /  I- , 2 2Jo 1 +  lj2t 2 t Jo 1 +  uj2t 2 t

= G'(uj)+iG"(uj),

■dr

where

G{ u> )  =  Ge +  r  2 g ( r ) dr, (1.3.6)
7 0 1 +  aj2t 2 t

and

-  f i w ^ '
are known respectively as the storage and loss moduli. The storage modulus 
is often thought of characterizing the elastic component of the response and 
hence the amount of energy stored per cycle of deformation, and the loss 
modulus as describing the amount of energy dissipated per cycle by the 
viscous component.

For the rest of this thesis it will be assumed that Ge = 0.
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Fig. 1.2 is an example of complex data quoted by Honerkamp [43] from an 
oscillatory shear experiment performed on a polybutadiene polymer blend, 
where Ge = 0. The storage moduli is plotted in red, the loss moduli is plotted 
in blue and x = ln(u;). This data will be referred to in this thesis as PB1 
data.

l .x  io‘

6. x io

l 2 3 4 5 6 7
x

Figure 1.2: G'(uj) data (red) and G"(cj) data (blue), obtained from an oscil­
latory shear experiment performed on a polybutadiene polymer blend, where 
x  = In uj.
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1.4 Complex integral transform relationships 

between G*(u) and H(r)

1.4.1 Fredholm linear integral equation of the first 

kind

Definition 1.4.1. The general form of Fredholm linear integral equation of 
the first kind is

where the functions g(x) and K{x, y)  are given, and are called the data- 
function and the kernel of the equation, respectively. f (y)  needs to be de­
termined on the interval a < y < b. The theory concerning integrals of the 
form (1-4.1) is discussed by Groetsch [38] and Wing and Zahrt [80]. For 
viscoelastic liquids, G*(u) can be expressed from equation (1.3.5) as

Hence, the complex modulus is related to the relaxation spectrum H(r)  by 
a complex Fredholm integral equation of the first kind, of product type, with 
kernel 1̂ T. In real measure this kernel is dilationally invariant; in the loga­
rithmic measure the kernel is translationally invariant, and is a convolution 
kernel.

f  K(x , y) f ( y )dy  = g(x) 
J a

b
c < x < d (1.4.1)

iujr H( t )
1 +  icJT T

(1.4.2)

1.4.2 Stieltjes Transform

Under the transformation z = iuj 1, we obtain

(1.4.3)
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which relates the complex modulus to the continuous relaxation spectrum by 
a complex Stieltjes transform. Under simple regularity conditions on H ( t ),  

for complex values of z,  g(z) is analytic in the upper and lower half planes, 
and exists as a Cauchy principal value integral when z is real. Furthermore, 
the Stieltjes-Perron inversion formula [42] for (1.4.3) is

H { t ) = - i -  limi[g{r  + ie) -  g(r -  ie)] (1.4.4)
2iri e->o+

=  ^  iim 3f[p(r +  ze)] (1.4.5)7T e->0+

= — lim S[G*(«r-1 +  e)]. (1.4.6)7T e—>0+

When z is real valued, g(z) is a Hilbert transform of H(r),  and its inverse is 
given by

H{r)  =  - g( r )  =  (1-4.7)
7T 7r

where g(r) and G*(ir~l ) are defined in terms of principle value integrals. 
The inversion here is well-posed. However, it is impossible to calculate the 
values of G* on the imaginary axis knowing only sampled values on the real 
axis.

An alternative inversion formula is given by the Stieltjes-Perron formula 
(1.4.6). The inversion here is equivalent to finding the limit on the imaginary 
axis of a function which is analytic in the right-hand half plane. This problem 
is ill-posed. In fact, when z  is pure imaginary, it will be shown in Chapter 2 
that Stieltjes transform inversion is exponentially ill-posed.

1.5 Fourier analysis and Dirac delta func­
tions

Some knowledge of Fourier analysis and Dirac delta functions will be 
required throughout this thesis. In this section I will collect together the



18 CHAPTER 1.

definitions which axe needed.
Definition 1.5.1. (The Fourier transform) The Fourier transform 

f (p)  of f ( x ) in L 2(M) is defined by (see [53])

/ OO

f ( x ) e ~ ^ d x .  (1.5.1)
-OO

The inverse Fourier transform is then given by

f ( x )  = J  f (p)e lpxdp (= [/(p)]v(z)). (1.5.2)

If /  G L 2(M) then so is / .  If both /  and /  belong to L 1(R) then both (1.5.1) 
and (1.5.2) are valid. An important attribute of the Fourier transform is that 
the total area of the graph of a function f ( x )  is equal to its Fourier transform 
evaluated at p  =  0:

/J  — (

f ( x ) d x  = /(0). (1.5.3)

Definition 1.5.2. If f i  G L 2(R) and / 2 G T2(R), then the convolution 
of the two functions f i ( x)  and /^(a?) is defined by

/ OO

f i ( x  -  y ) f2(y)dy. (1.5.4)
-OO

Theorem 1.5.1. (Convolution theorem ) The Fourier transform of 
the convolution of two functions is the product of their Fourier transforms, 
i.e.

/ i  */2(p) =  fi(p)?2(p)- (1.5.5)

Table 1.1 gives a list of some of the important properties of the Fourier 
transform that will be used throughout this thesis [53].

Definition 1.5.3. (The Dirac delta function) The Dirac delta func­
tion S(t) can be obtained by scaling an integrable function g which satisfies

/J  — (

g(t)dt  -  1. (1.5.6)
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Property Function Fourier transform

m f (p)
Inverse m 2  tt/ ( - p )

Convolution (/i * / 1W /2W
Multiplication hit) hit) ^ r(/l* /2 )(p )

Translation fit -  to) e~it°pf ( p )

Modulation e“ ipo7(<) f (P ~  Po)
Scaling /  (1) \s\f(sp)

Time derivatives / <n)(<) (ip)nf(p)
Frequency derivatives { - a r m /in)(p)

Complex conjugate nt) f'i-p)
Hermitian symmetry fit) e R f {~P)  = I* {P)

Table 1.1: Properties of the Fourier transform [51].

Let

9, it) =  ^5 U )  - (1-5.7)

A Dirac delta function can then be defined as the limit

6(t) = \im gs(t), (1.5.8)
s—►0

with the property that for any continuous function /  at the origin

/ OO

S(t) f ( t )dt  =  /(0 ), (1.5.9)
-OO

since

/ OO poo

gs(t) f ( t )dt  — lim / g(u)f (su)du.  (1.5.10)
-oo s >0 J —oo

The property (1.5.9) is only a symbolic notation of the fact that when a Dirac 
delta is applied to a continuous function / ,  it returns its value at t — 0. The
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symbolic integral over a Dirac is useful notation because it has the same 
properties as a usual integral, including change of variables and integration 
by parts.

A translated Dirac ST = S(t — r)  has a mass centred at r  and

1.6 Previous Work

For a one mode Maxwell model the relaxation spectrum is discrete and 
is given by

where (5 is a Dirac measure. The stress is then related to the strain-rate by

A Maxwell element is a model for primitive viscoelastic behaviour, where a 
spring and dashpot are placed in series. A generalized Maxwell model with 
a discrete spectrum of viscosities and relaxation times can be obtained by 
placing simple Maxwell elements in parallel. Each element corresponds to a 
different relaxation mechanism in the fluid.

(1.5.11)

This means that

f * 6  = f (u) . (1.5.12)

The Fourier transform of 8 takes the value 1 for all p, i.e.

(1.5.13)

H ( t ) =  T)i 6 ( t  -  T i) (1.6 .1)

( 1.6 .2)
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Most previous work in relaxation spectrum recovery involves determining 
discrete spectra, by fitting discrete models to data. The n mode Maxwell 
model has a discrete relaxation spectrum

of the problem. Methods for determining discrete spectra include the use of 
nonlinear regression [13,61], Tikhonov regularisation [43], maximum entropy 
regularisation [30], sampling localisation [5,49] and Prony series [20].

Different methods can give rise to different discrete spectra. There is no 
unique discrete spectrum for any given material. As quoted by A. Ya Malkin 
[50]: “The discrete relaxation spectrum is just a convenient way of repre­
senting experimental data... It has no basic physical meaning”. A further 
quote from Chow and Zukoski [23,24] states: “No line spectrum - produced by 
whatever method - is ever the true spectrum” . Also, from Dealy and Larson 
[29]: “ Whenever an empirical expression is fitted to experimental data, infor­
mation is lost and/or error is introduced. Every such manipulation of data 
therefore involves a degradation of the information contained in the original 
data. ... the use of a discrete spectrum involves the use of an empirical equa­
tion to fit data. The resulting constants have no physical significance, and 
the resulting function will have local features that are artifacts of the model 
and do not reflect the structure of the polymer. This can cause trouble, for 
example if this function is used to infer the molecular weight distribution. For 
such a purpose, it may thus be preferable to work with a continuous spectrum 
function such as H (t )” .

(1.6.3)
n

The corresponding storage and loss moduli are given by

Vn u 2r l Vn UTn (1.6.4)

Different ways have been chosen to deal with the inherent ill-posedness
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It is an inherent premise in Boltzmann formulation of linear viscoelasticity 
that, for shear deformations at fixed temperature and pressure, a viscoelastic 
material has a unique continuous relaxation spectrum associated with it. Em­
pirical models for representing the continuous spectrum have been suggested 
by Winter [14] (who attempts to derive an approximate relation between 
continuous and discrete relaxation time spectra), Anderssen [7] (who uses 
Kohlrausch (stretched exponential) functions), Bailly and Stadler [70] (who 
use piecewise cubic Hermite splines) and Malkin [52] (whose central idea is 
that the parameters of the continuous spectrum can be unambiguously de­
termined from the experimentally found integral characteristics (moments) 
of the viscoelastic behavior of the material: the viscosity, normal stress co­
efficient, and area under the relaxation curve after the cessation of steady 
flow).

All the above continuous relaxation spectrum models fall into the class of 
parametric curve fitting models. There is no theoretical foundation for relat­
ing these models directly to the mathematical theory of linear viscoelasticity. 
The aim of this thesis is to show that wavelet analysis establishes natural 
models for the continuous relaxation spectrum. In particular, in Chapter 2 it 
is shown that there exist wavelet transforms which are intrinsic to the theory 
of linear viscoelasticity, which give rise to these natural models.

1.7 Natural m odels for the continuous relax­
ation spectrum

Recently, the subject of wavelet analysis has drawn much attention from 
both mathematicians and engineers alike. Some view wavelets as a new basis 
for representing functions, some consider it as a technique for time-frequency 
analysis, and others think of it as a new mathematical subject. In fact, all of
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them are right, since wavelets is a versatile tool with very rich mathematical 
content and great potential for applications. Analogous to Fourier analysis, 
there are also two important mathematical entities in wavelet analysis: the 
integral wavelet transform and the wavelet series [25].

This thesis is concerned with continuous wavelets. The mother wavelet 
ip has zero area

Equation (1.7.2) means that ip admits a scaling function. The father wavelet 
(or scaling function), (p, was introduced by Mallat [53]. <p has non-zero area 
and is defined by its Fourier transform

At different time locations, and different time scales (resolution with respect

(1.7.1)

and satisfies strict admissability and regularity criteria

(1.7.2)

(1.7.3)

to time) the mother and father wavelets generate a family of wavelets

The (continuous) wavelet transform of h G L2(R) at the time t and scale 
s is defined by the convolution product

[Wh](s,t) = (h*ip3){t), 

where ip9(x)

(1.7.5)

(1.7.6)

I define a father wavelet transform of h € L2(R) by

[Vh](s,t) = (h*<t>a)(t), 

where (p8(x)

(1.7.7)

(1.7.8)
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It will be shown in Chapter 3 that, under a transformation of variables, 
the loss modulus is a special type of wavelet transform. Recovery of the 
continuous relaxation spectrum consequently involves the inversion of wavelet 
transforms and it will be shown that the continuous relaxation spectrum can 
be expressed as a sum of mother and father wavelets.

1.8 Summary of thesis

In this first chapter I have introduced some of the concepts involved in 
materials characterization. One of the ways of characterizing a viscoelas­
tic material is through its relaxation spectrum and it has been explained 
that recovery of the continuous relaxation spectrum is an ill-posed inverse 
problem.

In Chapter 2 it is proved that recovery of the continuous relaxation spec­
trum is exponentially ill-posed. Several double integral inversion formulae 
are derived for relating moments of the relaxation spectrum to data involv­
ing ujmG*( u).

The concept that wavelet transforms occur naturally in the theory of 
linear viscoelasticity is introduced in Chapter 3. The Calderon-Mallat de­
composition of the identity [53] is introduced, which gives an inversion for­
mula for reconstructing the continuous relaxation spectrum from its wavelet 
transforms, and the spectrum is expressed as a wavelet series. I introduce a 
modified version of Calderon-Mallat decomposition, using father and mother 
wavelets from different families, and show that these cross-paired wavelets 
form an essential multiresolution analysis.

In Chapter 4, the concept of real-time integrability is introduced. Natural 
models for G'(u) and G"(u>) are derived analytically, using residue calculus. 
In this chapter, I illustrate how well my models can recover a Gaussian 
spectrum, from a direct method and from using synthetic data.
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In Chapter 5, I introduce wavelet dictionaries and the regularization 
mechanisms acting in my method of continuous relaxation spectrum recovery. 
The continuous relaxation spectrum is predicted from two sets of real data, 
obtained from an oscillatory shear experiment performed on two polybutadi­
ene polymer blends. In both cases a simple search algorithm is implemented, 
which is also introduced in this chapter.

Chapter 6 introduces other dictionaries that can be used to construct 
the continuous relaxation spectrum. The main purpose of this chapter is to 
give consistency of results. Also in this chapter I explore families of wavelet 
transforms that occur naturally in the theory of linear viscoelasticity, and I 
give possible mother and father wavelet pairs that can be used in the recovery 
process. Furthermore, error terms in the delta sequence method of relaxation 
spectrum recovery are derived in this chapter.

Chapter 7 explores other more advanced search and pursuit algorithms, 
for fitting the dynamic data to the models. Orthogonal Matching Pursuit 
(OMP), parity reduction, density estimation and residual bisection are all 
introduced in this chapter.



CHAPTER 1.



Chapter 2 

Fourier Analysis and Stieltjes 
Transform Inversion.

2.1 Stieltjes transform inversion.

In Chapter 1 it was shown that the complex shear modulus is related 
to the continuous relaxation spectrum by the following complex Stieltjes 
transform

n * t  ^  f ° °  iu J T  z t (  \ d r  • - 1  / o  1  i  \G (cj) = I------ :— H (t )—  =  I  dr, z = iuj . (2.1.1)
v J J0 1 +  i u t  w  r  J0 r  -  z

I will now show that recovery of the continuous relaxation spectrum is an 
exponentially ill-posed inverse problem.

The real part of the kernel of (2.1.1) can be written as

2 2 i

U T = -  [1 +  tanh(ln(a;r))], (2.1.2)
1 +  uj2t 2 2  

while the imaginary part of the kernel of (2 .1.1) is

UT = isech(ln(u;r)). (2.1.3)
1 +  lj2t 2 2

27
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Consequently, we obtain the following expressions for the real and imagi­
nary parts of the complex modulus, known as the storage and loss moduli 
respectively

G ' M  — \  f  [1 +  tanh(ln(a;r))] -dr, (2.1.4)
2 J 0 r

G"(<jS) =  i  f  sech(\n(ur))^ ^ dr. (2.1.5)
2 Jo T

Using the substitutions

H(r) = h(t), G'{u) = \ gi{x), G"(u) = \g2(x) (2.1.6)

with

x = In a;, t = — ln r, (2-1.7)

the storage and loss moduli may then be written in the form

/ OO

[1 +  tanh(x — t )] h(t)dt, (2.1.8)
•oo

/ OO

sech(a: — t)h(t)dt. (2.1.9)
•oo

From definition (1.5.2), we note that these are a pair of convolution equations. 
Consequently, the real and imaginary parts of the complex modulus can be 
expressed in convolution form as

gi(x) = [1 +  tanh(x)] ★ h{x) (2.1.10)

92(e) =  sech (x)*h(x ).  (2.1.11)

I will assume throughout this thesis that h(x) G L2(R ), which then implies
that its Fourier transform h(p) exists.

Since sech(x) G L2(R), it follows from the convolution theorem for Fourier 
transforms (1.5.5) that

g2(p) = [sech(:r)]A(p)%). (2.1.12)
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The Fourier transform of sech(x) is calculated via residue calculus, in section 
2.3, where it is found that

[sech(x)]A(p) =

92(p) =

where <72 (p) G L2(R) if h G L2(R).
The function tanh(a;) is in neither L1(R) or L2(R), but has a derivative

gz(x) = sech2(x) (2.1.15)

which is in both L 1(R) and L2(R). The Fourier transform of tanh(x) does
not exist in the classical sense, but can be defined in a distributional sense 
(see Kanwal [46]) by

[tanh(ar)]A(p) =  (;ip)_1<fe(p). (2.1.16)

Let Sz  be a space of test functions defined as follows. If <f) G then

1. (f>(x) e  C°°(R).

2. Vn > 0, 4>(n\ x )  decays faster than sech(|rc) as x  —> ± 00.

3. There exists a null sequence of test functions (f>m(x) 6 Sz  such that

lim <pm(x) =  0. (2.1.17)
m—*00

Two examples of sequences of test functions that satisfy the above properties 
are the sequence of Gaussian functions

1 (m»)̂
</>m(x) = —e 2 } 771=1,2,..., (2.1.18)

771

and the sequence of sech functions

1 7r
(Pm(x) =  —sech(77iArr) A > - ,  771 =  1,2,... (2.1.19)

7rsech y^P)  (2.1.13)

7rsech (J^pj h(p), (2.1.14)
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Consider the inner product

/
OO / 7T \

•  <p(p) tanh ( - p j  dp. (2.1.20)

I then obtain

([tanh (x)]A(p),<f>(p)) = ((■ip)~lgz{jp)Aip))

/ oo
cosech

■oo
(2 .1.21)

where I have used the fact that

[sech2(x)]A(p) =  7rp cosech ( t̂ P̂ ) > (2.1.22)

which is proved later in this chapter in section 2.4. The weight tanh ( | p)
introduced into the inner product means that the integral in (2.1.20) exists. 
Consequently, I can define the Fourier transform of tanh(rc) in a distributional 
sense as

[tanh(x)]A(p) =  —mcosech • (2.1.23)

I then obtain, in the same sense, the Fourier transform of gi(x), namely

g[(p) = G'(oo)8(p) — 7ricosech (rjP^j h{jp). (2.1.24)

From equations (2.1.24) and (2.1.14) respectively, I obtain

h(p) = ^  sinh ( ^ p )  [<fi(p) -  G'(oo)£(p)] (2.1.25)

=  ^  cosh ( | p )  g2{p). (2.1.26)

My assumption that h(x) G L2(R) means that g2{p) must tend to zero 
faster than sech(|p), and |pi(p)| must tend to zero faster than cosech (fp ), 
as p —> ±oo.

( £ P)  <t>{p) t a n h  ( ? p )  dp V0 G S i ,
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The factors multiplying gl(p) and g2(p) in (2.1.25) and (2.1.26) have ex­
ponential growth (with index | )  as \p\ —► 00. Any noise present in gi and g2 
will have its Fourier transform amplified by a factor as |p| —>00, which 
proves that the problem of determining the continuous relaxation spectrum 
from the storage and loss moduli is exponentially ill-posed with index | .

Since k\ (x) * 1 =  0 ,1 may also formally write the solutions of (2.1.10) and
(2 .1.11) as convolutions in the form

h(x) = k\ (a:) ★ g\ (x) (2.1.27)

=  k2( x )* g 2{x), (2.1.28)

where the distributions

h ( x )  = ^ 2  J  sinh ( ^ p ) eipxdp, (2.1.29)

k2{pc) = 2^2 y  cosh eipxdp, (2.1.30)

are defined through the inner products

(fci(x), <t>(x)) = ^ 2  J  J  sinh ( f p) e%px<i>(x)dp dx V0 € 5 | V,

(2.1.31)
1 roo poo . _ .

(k2(x),tf>(x)) = —  J  J  cosh [ - p ) e ipx<f)(x)dpdx V ^ 5 | V,

(2.1.32)

where S'* v is the set of all test functions whose Fourier transform lie in the2
space S i . An example of such functions is the sequence of Gaussian functions 
of the form

m =  1,2,..., (2.1.33)

whose Fourier transform
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is an element of S*, from (2.1.17). A further example is the sequence of sech 
functions

M X )  = 2 ^ * *  ( 2^ )  X > 1 ’ m = 1>2- -  (21-35>
whose Fourier transform

  1 71"
0m(p) =  —sech(mAp) A > —, m  = 1,2,..., (2.1.36)m  2

is an element of S'*, from (2.1.18).

2.2 Double integral inversion formulae

The formulations (2.1.27) and (2.1.28) were previously used by Davies and 
Anderssen (1997) [28] and Loy, Davies and Anderssen (2009) [48] in present­
ing the concept of sampling localization. Equations (2.1.27) and (2.1.28) also 
enable me to write double integral inversion formulae for H(r)  in terms of 
G'(uj) and G"(u). Returning to the physical variables lj and r , we have

H ( t )  =  \  f ° °  [  G'(u>) sinh eipln("T*(ip d l n u  (2 .2.1)
^  J —oo J —oo /-j roo poo . .

= —  /  G"(lj) cosh f — p j  etpln̂ T̂ dp d ln u  (2.2.2)
^  J —oo J —oo ^

The first of these two equations was discovered by Fuoss and Kirkwood (1941) 
[36]. The second was derived by Hussein (1997) [45] in a PhD thesis. It turns 
out that these two equations are two examples of several possible double 
integral inversion formulae relating functions of the form r nH(r) to data 
involving u mG*(uj). In this section I will develop a more expansive list, where 
I will show that there exist two separate double integral inversion formulae 
for r nH{r ), for each value of n € Z.

For n G Z , I define the moments
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In particular, for n = 0 and n =  —1, I obtain the physical quantities
roo

Mo = Vo = H(r)dr,  (2.2.4)
Jo

M. =  G'(oo) =  r  (2.2.5)
Jo T

The moments Mn exist for a particular n € Z if H(r)  has the following 
properties:

(1) H { t ) ~  r a~n as t  —► 0 (a > —1), (2 .2 .6)

(2) H ( t )  ~  Ta~n as r - t o o  (0 < -1 ) . (2.2.7)

Using the substitution

x = lot, (2 .2 .8 )

I can express the storage and loss moduli in the following form

g ' m  =  (2-2-9)

G"M  = jf (2-2-10)
Starting with the relationships

r 2x 2 2 u  2x 2
= r  ~  (2 .2 .11)

1 +  X2 1 +  X

T *X  =  (2 .2 .12)
1 +  X2 1 +  X2 ’

T 2nX2 T 2n+1X

1 +  X2 1 +  X2 ’

it can be proved by induction that

=  a;— — , (2.2.13)

I °° r 2 H t

[t2nff(r)]—  =  M2„_! -  w~2M2n_3 +  ... +  ( - l ) " - 1a;-2(n- 1>M1
o 1 + r 2L v' /J r

+ ( - l ) nu r 2nG'(u;) Vn > 0, (2.2.14)

/  r — ^ [r2"ff(r)]—  =  w- 1M2n_2 — ui~3M 2n- i  +  — +  (—l)"- 1a>- 2n+1Af0
JO 1+37 T

+ ( - l ) nuT2n“1G"(a;) Vn > 0. (2.2.15)
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From (2.2.13), it follows that

u i  i f ^ [T2"H{T)]T  Vn€Z
(2.2.16)

W_1 /  T T x ^ ^ 2"H ^ ^ r  v"  e  z '7o 1+ X z T

(2.2.17)

I can similarly use the relationships

—  1 *1T  UJX

1 +  X 2 T  1 +  x 2 ’
T- 2 # 2 2-------  = L J -----------,1 + X 2 1 + X 2

to prove by induction that Vn >  0,

t 2 Hr
/  — [r_(2n+1)i / ( r )] —  =  u>2M -2n-u>i M-2r,+2 +  ... +  ( - i r - W ' M - 2

Jo 1 + X 2 T

+ (-1  )ntj2n+1G"(u;), (2.2.21)
r®® s/t*
/  - ^ [ r - 2" t f ( r ) ] -  =  u;2M_2n+1 — uj4M-2n+3 + ••• + (—l ) n_1u;2nM_iJo l + X 2 T

+ (—\)nJ lnG'(u). (2.2.22)

Formulae for / 0°° y ^ [ r ~ (2n+1)i7(r )]T  and / 0°° i^ y [ r _2n/f ( r ) ] ^  can be de­
rived from equations (2.2.16) and (2.2.17). Double integral inversion formu­
lae exist for each of (2.2.14)-(2.2.17) and (2.2.21)-(2.2.22). The following list 
contains the first twelve of these formulae.

(2.2.18)

(2.2.19)

(2 .2.20)

1

oo s/t*
, iT?*’ H(’«V



2.2. DOUBLE INTEGRAL INVERSION FORMULAE 35

t 3H ( t )  =  

r 2H  (t ) =

t H ( t ) =

H (t ) = 

=

t ~ 2H ( t )  =  

t ~ 3H { t )  =

~2 J  J  u  1 [Mi — u 2G'( a;)] cosh (t^p) etpln̂ d p  din a;,

(2.2.23)

—2 / (  [Mi — u~2G'(u)\ sinh etpln̂ d p  dlnu
^  J —oo J —oo '

(2.2.24)
I roo roc

~2 I I u~l [rjo — lj~1G"(u>)] cosh \̂ —pj etphl(u;T)dp dlnu,

(2.2.25)
-j roc poo . .

—  I I u ^ G ' ^ c o s h l —p j e ^ ^ d p d l n u  (2.2.26)
A” J - o o  d -o o  '  ^ '

~2 J  J  [vo — u~lG"(u)\ sinh (t^P^ e%pln̂ d p  d lnu,
(2.2.27)w:/: G'(u) sinh ( t̂ p )  eipln^ d p  din a; (2.2.28)

i££ G"(a;) cosh ( t̂ p )  etpln^ d p  din a;, (2.2.29)
1 roo poo .

— I u [G'(oo) — G'(u)\ cosh p j etpln̂ d p  dlnu

(2.2.30)* ££ wG"(ui) sinh ( | p )  ei’>ln(“T)<ip dlna>, (2.2.31)

i £ £  a;2 [G'(oo) — (^'(u;)] sinh (t^p) etpln^ d p  din a;

(2.2.32)
1 poo poo .

I I w \M--2 — <jjG'f(cd)] cosh [ elpln(lJJridp dlnu,

(2.2.33)n:r b? [M_ 2 — wG"(u)| sinh ( ^ p )  e‘pl“("T,dp din a).

(2.2.34)
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2.2.1 Existence o f M om ents

From equation (1.2.5) (for viscoelastic liquids), the relaxation function 
G(t) can be expressed as

roo j
G ( t ) =  /  H(r)e~r— . (2.2.35)

Jo T
Comparing the above equation with my definition of the n-th moment of 
H ( t )  (2.2.3), I derive that

d r
Gn(0) =  ( - l ) n /  T~nH{r)—

Jo T
= ( - 1  )nM_(n+1). (2.2.36)

Furthermore, by using equation (1.3.4), with Ge =  0, the complex shear mod­
ulus G*(u) can be expressed as the half Fourier transform of the relaxation 
function, i.e.

roo
G"(oj) = iu> G(t)e~iutdt. (2.2.37)

Jo
Also, the Laplace transform of G(t) is defined as

roo
C { G { t ) } =  /  G(t)e~3tdt. (2.2.38)

Jo
If G(t) has a Maclaurin series, then the Laplace transform of G(t) has an 
asymptotic expansion (as s —> oo) of the form

£{G(<)} ~  — +  ^  ^  +  ..., (2.2.39)
S Sz S'-0 >̂2 o3

where

i-G(n)(0) = —  
n\ n

Consequently, a sufficient condition for all negative moments of H(r)  to 
exist is that the relaxation function G(t) has a Maclaurin series. However,

*  =  r i G(n) (°) =  »tD • (2 .2 .4°)
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in general, not all continuous relaxation spectra lead to a relaxation function 
with a Maclaurin series. I now give an example of a relaxation function that 
does not have a Maclaurin series, yet I can adjust a scaling parameter a to 
get as many moments of H(r)  as I like.
Theorem 2.1. If

H(r) = sech

then for ^  < o < £ (b G Z+), there will exist 2 6 + 1  moments of H(t ).

The reason for the above choice of hyperbolic wavelets in the representa­
tion of H ( t ) will become apparent over the next few chapters. In Chapter 5, 
I will use a sum of translated sech functions, scaled by <7, in which I will show 
that for a particular set of real data (known as PB1 data), the optimal value 
of a is in the range i  < a  < i. Using the above theorem, this means that 
the five moments M_3, M_2, M_x, Mo and M\  exist. For this range of values 
for cr, all twelve of the double integral inversion formulae in (2.2.23)-(2.2.34) 
become relevant.

Using equations (2.2.35) and (2.2.41), the relaxation function can be writ­
ten as

(2.2.41)

G(t) = r°° , / I n r \  _LdTI sech I   I e  ̂—
J0 \  °  )  T= J  -sech ^ln e~stds

- i *

s =

(2.2.42)

Since 7n oc M_(n+X), if not all of the negative moments of H(r)  exist, then 
G{t) does not have a Maclaurin series. Indeed, the moments of H ( t ) are of
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the form

Mn

J°° e-<B+1)‘sech (Pj
J —  OO

' ■ 1 • -)t' ■ 1 • -)t
(2.2.43)

Let 6 < £ < 6 +  1 (i.e. < cr < J). Then, for Mn to exist, we require
—( 6 + 1 )  < n < 6 —1. This gives us 26 +  1 moments of H{r ), namely 
M_b_i, M_b,..., M0, ..., Mb—2i M b- 1. Since 7n oc M_(n+i), only 6 +  1 of the 7„ 
exist, namely 7o, 7 i, •••) 76- I have now shown an example of a well behaved 
relaxation function that does not have a Maclaurin series, since only finitely 
many of the 7„ exist.

2.3 The Fourier transform of sech(x)

To obtain the Fourier transform of sech(x), I use the same method as 
shown by Priestley [64], where the integral sech(x)eaxdx was determined. 
I have exchanged — ip for a.

(2.3.1)

Let

(2.3.2)

where

g(z) =  e~ip* (2.3.3)
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and

h(z) = cosh(z). (2.3.4)

The function f (z )  has simple poles a,t z  — \{2n +  T)m, n  G N. The function
/  is holomorphic inside and on the contour 7  shown in the Fig. 2.1 below,
except for a simple pole inside 7  at z =  - i ,  of residue

9(f0  
ft' (10

By Cauchy’s residue theorem [64],

eaip
sinh ( f t )  
- i e i p. (2.3.5)

-s

Tfi %

/
IT i/2

/

------- s

Figure 2 .1: Contour 7 .

e-*i" r71- ie-ip(R+iy) r~dX̂ Jo cosh(R + iy )dy + JR eHpe
cosh (R  +  iy) cosh(:r +  m)L 5 cosh(x)

=  2m  Res ( / ,

=  27reip.

Denote the second integral by I  and the fourth by J. Then

^  I je-ip('R+iy)

—dx + /«/7T cosh(—5 +  iy )d^ 

(2.3.6)

cosh(R +  2i/) 
2e™

M < /Jo

~ J0 \eR+iv + e“ (*+*») |% (2.3.7)
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So /  —> 0 as .R —> oc. Similarly,

/*7r OpPv
\J\ <  /  -j— 57- — 5-r-ydy. (2.3.8)

Jo  \e~s +lv +  es ~%y\

S o J —►OasS—►00. Letting R  and S  tend to 00 independently, we obtain

27re2p = /oo g —zpx r — 0 0  g7rpg—ipx

oo cosh (a:) ^  +  cosh(x +  7ri) ^

f  CHP. f  _ J _________ £ ____ \  ^
y.oo \cosh(a:) cosh(rc +  7ri) J

/oo g -ip x
_ _ ( l  +  c^)da:, (2.3.9)

.oo cosh(x)
since

cosh(x +  7ri) = — cosh(x). (2.3.10)

Consequently, the Fourier transform of sech(x) is given by

roo e - ipx 2 7re%p
/  — —\ d x  =   ---------y.oo cosh(x) 1 +  enp

2ir
ef p +  e"tP

=  7r sech • (2.3.11)

2.4 The Fourier transform of sech2(x)

To obtain the Fourier transform of sech2(a:), I use the same method (and 
the same contour) as I used to obtain the Fourier transform of sech(a;) above.
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Let

/(*) =
,- ip z

cosh2(2)
(2.4.2)

The function f (z )  has double poles at 2 =  |( 2 n  +  l ) 7rz, n € N. Since there 
exists a double pole at 2 =  | i, I consider a Laurent expansion of f( z )  at 
2 =  The Taylor expansion of e~ipz at 2 =  is

j  _  ip  + . . . ]

The Taylor expansion of cosh(2) at 2 =  \ i  is

+ . . .

Hence, the Taylor expansion of cosh2(2) at 2 =  \% is

The Laurent expansion of f ( z )  at 2 =  is therefore 

e$p [l - i p ( z  — | i) +  ...]

(z ~ ¥ )  i1 + U Z - ¥ ) *  + ■ j

e i p [1 - i p ( z -  !*) +  ...] f l  -  5 (2 -  f i f  -  ...

(2.4.3)

(2.4.4)

(2.4.5)

. (2.4.6)
(* -  ¥)

The residue of f( z )  at the double pole 2 =  \ i  is equal to the coefficient of 
(2 — 11) 1 in the Laurent expansion. Consequently,

ReS fO  = ipe^P' (2-4-7)



42 CHAPTER 2.

By Cauchy’s residue theorem, as R, S  —> oo independently, we find that

/oo e -ipx roo e -ip(x+ni) , ^  v
 5T r dx — I ----- 5--------- -dx  =  27riRes ( / , —*)

.oo cosh (x) J-00 cosh (x + 7T«) V 2 /
00 g—ipx2-r~rdx = —2npe*p 

00 cosh (x)(1 _ e'P)/
Xoo cosh2(x) e5p — e_^p 

sech2 (p) =  7rp cosech • (2.4.8)

00 e~ipx J 2trp
dx =

2.5 Conclusion

I have shown in this chapter that recovery of the continuous relaxation 
spectrum is an exponentially ill-posed inverse problem. To enable me to do 
this, I have introduced aspects of the theory of distributions. I also required 
the Fourier transforms of sech(x) and sech2(x), for which I have provided 
rigorous derivations.

I introduced generalized formulae for double integral inversion formulae 
relating moments of the relaxation spectrum to data involving u mG* (ui). I 
have also given a specific example of a well-behaved relaxation spectrum that 
does not have a Maclaurin series.



Chapter 3

Wavelets Transforms in the  
Theory of Linear V iscoelasticity

The convolution equations (2.1.10) and (2.1.11) are intimately linked 
to continuous wavelet transforms, where the wavelets are constructed from

representation of the continuous spectrum as a wavelet series.

3.1 Continuous wavelets

The wavelets that will be encountered in this thesis are real valued func­
tions, which satisfy strict admissibility and regularity criteria. They are 
localized in time. Wavelets replace the non-localized trigonometric functions 
in the Fourier transform to provide a much more powerful analytic tool. 
D efinition 3.1. I define a mother wavelet as a function ^  € L2(R) which 
has zero average

simple hyperbolic functions. It will be shown that this link leads to a natural

43
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and has the property that there exists a constant such that

r  _  r i ^ ) i 2„ „ ,  ~ Jo \p\ P (3.1.2)

This property means that ip can be paired with a scaling function (p. For 
each ip there exists a unique real valued function (p G L2(M) whose Fourier 
transform is defined by

ip is often called a mother wavelet with corresponding scaling function (p. <p 
is also called the corresponding father wavelet for ip.

At different time locations t, and different time scales s (resolution with

If the continuous spectrum is represented as a wavelet series, each term in 
the series will be centred at a relaxation time determined by a reciprocal 
frequency, i.e. r  =  cj-1, and the resolution obtainable from each term will 
depend on the scale s associated with that term, small s implying high res­
olution and large s implying low resolution.

(3.1.3)

(p is an even function which has non-zero area given by

0 (0 ) =  ( C ^ . (3.1.4)

respect to time) the mother and father wavelets generate a family of wavelets

(3.1.5)

In terms of the original variables u  and r

(3.1.6)
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3.1.1 Continuous wavelet transform s

The (continuous) wavelet transform of h G L2(M) at the time t and scale 
s is defined by the convolution product

\Wh](8,t) = (3.1.7)

where ip8(x) = ips,o(x) = ( - )  . (3.1.8)
y / S  \ S /

I define a father wavelet transform of h G L2(R) by

[Vh](s,t) = (fc *&)(*), (3.1.9)

where (f>8{x) =  <f>a,o(x ) = ( “ )» (3.1.10)

and (f> G L 2(M) is the scaling function associated with a wavelet 'ip.
The next statement is a fundamental observation which motivates the

main results of this thesis. Equation (2.1.11) shows that, in terms of log-
frequency x, th e  loss m odulus is a  fa th e r w avelet tran sfo rm  of th e
continuous re laxation  spec trum , a t  u n it scaling s = 1, i.e.

g2(x) = (h*<f>){x) = [Vh](l,x) (3.1.11)

where <f>(x) = sech(x). (3.1.12)

In physical variables,

=  l[W t](l,lnai). (3.1.13)z

3.1.2 Autoconvoluted wavelets

I now introduce autoconvoluted wavelets, because the inversion formulae 
that I am about to use to reconstruct the continuous relaxation spectrum, 
makes use of the autoconvoluted wavelets rather than the wavelets them­
selves. Throughout this thesis I will use the convenient property of the
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Fourier transform of a convolution, which gives

(rf) *  ip)A{p) =  $ ( p ) } 2, (<f> *  <j>)A(p) =  [? (p )]2.

The autoconvolution of the mother wavelet is also a mother wavelet since it 
has zero area, shown by

W > * ^ ) A( o )  =  [V>(0) ]2 =  o ,

and as long as it satisfies the condition

/Jo
dp - /Jo

iv>wr dp < oo.

(3.1.14)

(3.1.15)
\P\ Jo \P\

The autoconvolution of the father wavelet is also a father wavelet since it has 
constant area given by

(< W )A(0) =  $ (0 )]2 =  CV (3.1.16)

By manipulating equation (3.1.3), using properties of the Fourier transform 
given in Table 1.1, I derive the following relationship between the autocon­
voluted mother wavelet and the autoconvoluted father wavelet

l&OI2
\ m v  =

[0 * 0 ]A(P) =  

^ [ 0 * 0 ]A(P) =  

.-. h/>*^]A(p) =

/  " T *
r  h

JP z
[^★ ^]a(p )

P
d

=  ip[x{(t>-k(j)){x)]A{p) 

. \ ( ' i p * i p ) ( x )  =  4 - ( x (<I>*<!>)(x ))

(p )

d x
d

(3.1.17)

(3.1.18)
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This proves that the autoconvoluted mother wavelet is equal to the autocon­
voluted father wavelet plus its homogeneous derivative.

3.2 Inversion Formulae

Calderon in 1964 laid the ground for a theory of continuous wavelet 
transforms and their inversion by publishing his famous “decomposition of 
the identity” .
T heorem  3.1 [19]. Every function h £ L 2(M) can be decomposed into a 
sum over all scales of its wavelet transforms

1 r°°  -  d s
h(t) = —  /  (h*ips rtps)(t)— , (3.2.1)

W  Jo sz

where (t ) = • (3.2.2)

R em ark: The integral in (3.2.1) converges in the L2-norm to h(t). The 
integral with respect to t of the function on the right of (3.2.1) vanishes, 
while the integral of h(t) on the left does not vanish. So the right-hand side 
of (3.2.1) does not converge pointwise to h(t). We shall see how to overcome 
this difficulty below using scaling functions.

In this thesis, unless stated otherwise, I will use even functions ip(t). 
Therefore

(t) = 'tpsit) (3.2.3)

and I may consequently re-write equation (3.2.1) as

1 f °°  ds
h(t) =  t t  (h*ip3* i/)s)(t) — .

'-'V' Jo ^
(3.2.4)
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I can assert that this is a valid decomposition of the identity as follows

1 f°° ds
h{t) = TT

Jo s

= J o  ®

w= ^ h(t) *{[Io (p)j
= [(V’»*V'8)(t)]A(p )^ | (<)

=  * j r M 2j}vw 
■ ^ ' { r M ’TFw’

since

= (s) ^  =

and consequently

$a(p) = s $(sp)

Using the transformation £ =  sp, p ^  0, I obtain

2 \  V

■ « >  w

1
h(t) = /Jo

0

7i(t) ★ { C ^ Y  (t ) (using(3.1.2))

=  (h*£)(t) ,  since <5(p) =  1.

(3.2.5)

(3.2.6)

Given that the wavelet transforms h-k'tps of h at all scales s > 0, (3.2.4) 
gives an inversion formula for reconstructing h{t) from its wavelet transforms.
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Since the areas of the graphs hkips and hkips kips vanish for all s > 0, then 
the restriction of (3.2.4) to any finite scale a

MO =  7 T  (3-2.7)
W  Jo s

has a graph of zero area, i.e.

ha(t)dkt = 0, for all 0 < a < oo. (3.2.8)

This means that although the integral in (3.2.4) converges to h(t) in the
L2-norm, it will not in general reproduce the area under the graph of h(t),
i.e.

'OO

h(t)dt. (3.2.9)lima—* oo rJ  — c
ha(t)dt ^

In 1989, Mallat showed how to overcome this problem by splitting the 
integral into two parts [53]

h(t) = [  (hkip,s kip8) ( t ) ^  + -J— i h k f a k $„)(€) (3.2.10)
Jo s* Crpcr

where (p8(t) = • (3.2.11)

The sum over all scales s > a can be incorporated into one term, by means of 
the scaling function <p„. This term has the same area as h(t), since <pa(0) =
C^cr. Furthermore, if a is sufficiently small, high resolution terms (small 
scales) are confined to the integral term in (3.2.10), while the second term 
constitutes a low-pass filter applied to h.

I can confirm that (3.2.10) is a valid decomposition of the identity by first



50 CHAPTER 3.

using equation (3.2.5), with 0 < s < a
1 t*(X j *i

h(t) = —  /  {h* * if>8) (t) +  —— ( h * ^ a * ^ ) ( t )
x̂f) Jo ® 0 ,̂0"

(3.2.12)

Using properties of the Fourier transform (see Table 1.1), I can manipulate 
equation (3.1.3) to obtain

.’. f t i s p )  =  -p-^(j?(sp)  (3.2.13)

Therefore, using (3.2.13) and the transformation £ =  ps, (3.2.12) becomes

r)(t)

{ L   ̂+
=  - r h ( t ) *{<£*0(0) -  4>*<i)((jp)\ (t) +  — {h'k(f>a 'k(f>i 

=  t t H*)*  \ CxP~ fi + H v p ) ]  (t) +  77— (h*<j>a*M(t)L>ip y. J {sipcr
1 1 

=  (h*<5)(t) — —— (h*<f>a *(/>„)(t) +  —— {h *(}>„* 4>a){t)
Uipcr

=  (h*S)(t). (3.2.14)

3.3 An illustrative exam ple

To illustrate what the effect of changing a is in the Calderon-Mallat 
decomposition, I shall give a numerical example in which h(t) is chosen to 
be a Gaussian. Let

h(t) = e "£ ,  (3.3.1)

= ~ sech • (3.3.2)
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I have plotted the Gaussian against its Calderon and Mallat parts for various 
values of a in Figs. 3.1 and 3.2. The Gaussian is plotted in black, the 
Calderon part in pink and the Mallat part in blue. We see that (Fig. 3.1) 
the Mallat term always captures the area under h but if a > |  then both 
terms are needed to give an accurate representation of h. The Calderon 
term is small when a < * •  When a  =  ^  (Fig. 3.2) the Mallat term alone 
represents h with a maximum error of 5 x 10-3 . This clearly illustrates the 
fact that if h(t) is a smooth function then high accuracy can be obtained 
even though high resolution terms (i.e. small scales) are excluded.

3.4 FK approximation

Ferry [33] attributes the simplest approximation to the continuous relax­
ation spectrum to Fuoss and Kirkwood [36]. This approximation takes the 
form

H ( t ) »  —G "(r_1). (3.4.1)
7r

It was derived by Fuoss and Kirkwood in the context of dielectric media, but 
is equally relevant in the case of linear viscoelasticity. I shall call approxima­
tion (3.4.1) the FK approximation.

Equation (3.2.10) enables me to derive, in integral form, an expression 
for the error in the FK approximation. I believe that no such error term has 
so far been available. Let a = 1, and choose

(cf) ★ <j>) (t ) =  sech(t). (3.4.2)

It then follows from (3.1.17), (3.1.16) and (2.1.13) that

(^ * if>)(t) = sech (t) [1 — t tanh(t)] (3 .4 .3)

and Crp = 7r. (3.4.4)
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10 5 50 10
x

(c) O = \  (d) a = I

Figure 3.1: Gaussian decomposition.



3.4. FK APPROXIMATION 53

0 00

0.00!

0 .0 (1

-10

-10 5 0 s 10

(a) a  =  ^  (b) Negligible Calderon part (cr =  ^ ) .

Figure 3.2: Gaussian decomposition.

The functions ((pk(p)(x) and (ip ★ ip)(x) are displayed together in Fig 3.3. 
From (3.2.10) and (2.1.11) I obtain

h(t) = - g 2(t) + -  [  (h'kips'kips) (t) (3.4.5)
7T 7T J 0  S 1

which, in physical variables, reads

H ( t )  = ! g " ( t ~  (3.4.6)
7r

where E(t ) is the error in the FK approximation. Therefore
*1 /*1 i

e (t ) = -  (hk ip akips)( t) - | .  (3.4.7)
*  Jo  s 2

I now form a representation for E ( t )  in terms of the physical variables u  and 
r. Using equations (3.1.5) and (1.5.4), I find that

0’s *  4>s) ( t )  =  i  J  4’ ( “~ 7 ~ )  ^  ( s )  dx 3̂ '4 '8 ^

= W * ^ ) ( " Y  (3-4-9)
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1.0 -

-1 0

0.2

Figure 3.3: (^ * ^ )(z )  (red), ( 0 * 4>){x) (blue). 

From (3.4.3), I obtain

(fa * fa) (t ) =  sech - 1 — -  tanh (  -
s \ s

(3.4.10)

By using (3.4.10), (1.5.4) and uj = r  *, I can now express the error term as

E{t ) =  — J  h(t)* sech 1 — -  tanh (  -  
s \ s

ds

t — x  . ( t  — x  1 ----------tanh , ds 
dx—sz

— J  J  H(uj 1)sech ^ln |̂ (a;r)®

x |̂ 1 +  In ([u;t]7  ̂ tanh ^ln [(^r)]~7  ̂j ^d(lnu;). (3.4.11)

Writing

sech (x) =
2x 

1 + x :
(3.4.12)
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and

tanh (x) =
1 — x 4
1 + z 2’

I can express the error term in the FK approximation as

ln(a;r) f 1 — (wr)'
n Jo Jo 1 +  (ur)

1 +
1 +  (u r)‘

I note that equation (3.4.7) tells me that

/oo
E(r)dt = 0,

•oo

which proves that

I

00 dr 
E (r)—  = 0.

This result is consistent with equation (3.4.6), since 

Jo T 7T Jo T

(3.4.13)

ds dw
s2 OJ

(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

3.5 Autoconvolutions and cross-pairings.

It is conventional to interpret formula (3.2.10) as a means of reconstruct­
ing h from its wavelet transforms h * ^  (0 < s < a) and h *  <$>a. In this 
interpretation and (j> are mother-father pairs related through (3.1.17). The 
transforms are “coefficients” in the inversion formula, i.e. (3.2.10) may be 
written as

(3.5.1)
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Each of the two terms in (3.5.1) represents a projection of h into subspaces 
of L2(M). If the scaling function <f> is chosen appropriately then these two 
subspaces are complementary, i.e. non-overlapping. Discretizations of (3.5.1) 
then exist which lead to a multiresolution analysis (see Chui [25], Mallat [53]).

Since the storage and loss moduli give information at one scale only, 
namely a = 1, and the inversion formula (3.4.5) requires additional infor­
mation at the smaller scales 0 < s < 1, the formula cannot be used in a 
conventional way to recover h(t). In this thesis I choose to interpret equa­
tion (3.2.10) in an alternative manner. This alternative approach involves 
pairing a mother wavelet from one family with a father wavelet from a dif­
ferent family. I shall call this approach cross-pairing. In particular I shall 
cross-pair the autoconvoluted mother wavelet ip kip with the autoconvoluted 
father wavelet <pk(p. The autoconvolutions ip kip and (pk<p are not conventional 
mother-father pairs in general, since

d
(ip k ip k ip k ip)(x) ^  —  [x((p * (p * (p * (p)(x)\. (3.5.2)

The non-conventional relationship between ip-kip and (pk(p is illustrated 
below.

mother father

conventional pair.Ip*----------^<P

. conventional pairip-kip ■<------- ► A

Bconventional A * *

A(x) is the father wavelet conventionally paired to the mother wavelet ip ★ 
ip, whereas B(x) is the mother wavelet conventionally paired to the father
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wavelet 0 * 0 . A (x) is defined through its Fourier transform as

i
l r°° r°° 2 .

Therefore A(x) =  —— /  /  —-— etpxdp. (3.5.3)
2 7 T  j  — o o  J p  SJ —oo J p

B{x) can be derived as follows

2tt y .o o  [ dp

In this alternative setting, I view equation (3.2.10) as a decomposition of 
h(t) into constituent parts:

[W*h](s,t) = (h ★ 0 S* 0 S) (t) and [V*h](a,t) = (h * 0 <r *(f>a)(t).

The terms again represent projection of h into L 2(R), but the subspaces, in 
general, will overlap. In the context of this thesis an element of redundancy 
in the representation of h(t) is not a m atter for concern, given the low­
dimensional nature of the approximations I shall use. Given the sensitivity 
of h(t) to the choice of cr, an element of redundancy is actually an advantage, 
since it does not confine me to a rigid choice of orthogonal subspaces in the 
representation of h.

^  + (3-5-5)

where

(3.5.6)
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I no longer insist that <7 =  1, but rather, choose <7 as a regularization 
parameter in the recovery process. In other words, a controls the strength 
of the low pass filter which provides me with a smoothed recovery of h(t). 
High resolution terms will be confined to the first term in (3.5.5).

For ease of notation, I define

4>*(x) =  (3.5.7)

ip*(x) = (ip*ip)(x). (3.5.8)

The cross-pairing I shall predominantly use is

(p*(x) = sech ( x ) , (3.5.9)

ip*(x) =  sech (x) [1 — x  tanh (x)]. (3.5.10)

I can now compare the mother wavelet pairings for <p*(x) — sech(a;) formed 
from the cross-pairing sense (3.5.10) with its mother wavelet pairing derived 
from the conventional Calderon-Mallat sense (B(x)), when <7 =  1. In the 
conventional sense,

B (x ) 'kB (x ) =  -^-[x(<p* * (p*)(x)\ 
ax

= — \x (sech ★sech) (#)] (3.5.11)
ax

In Chapter 4, it is proved that

sech(a:) ★ sech(rr) =  2axosech(:r), (3.5.12)

which is displayed in Table 4.2 for j  = 0. Therefore, we obtain

d
B(x) 'kB (x) = —  [2x2cosech(x)l 

ax
= 2xcosech(a:)[2 — rrcoth(a:)]. (3.5.13)

A closed form does not exist for B(x), only for its auto-convolution, so I 
cannot directly compare B(x)  with ip*(x). I can, however, compare them in



3.5. AUTOCONVOLUTIONS AND CROSS-PAIRINGS. 59

the Fourier domain. Taking the Fourier transform of both sides of equation
(3.5.11), by using (2.1.13) and properties of the Fourier transform displayed 
in Table 1 ,1 find that

S 2(p) =
dx

(x[sech(x) ★ sech(x)]) (p )

d
—P~r [sech(x) ★sech(x)]A (p) dp

( p f r ) ] 2)

- * 2p |  [sech2 ( I p ) ]

7r3p sech2 (t^p) tanh (t^p) 

?r5sech ( I p )  J p  tanh ( |p ) -

(3.5.14)

(3.5.15)

Using the relationship (3.1.17), the Fourier transform of ip*(x) can be derived 
as follows

V>*(p) =
d_

dx
(xsech(x)) (P)

d
= — p— sech(p) 

dp

= - ^ | sech ( fp)
= y P  sech (Ip) tanh (Ip) (3.5.16)

The two functions (3.5.15) and (3.5.16) are plotted against each other in Fig. 
3.4, where they have both been normalized in the sense that they have unit 
area. The two mother wavelets, when plotted in Fourier space have a very 
similar shape, but have their maxima at slightly different locations.
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p

Figure 3.4: B(p) (blue) against ^>*(p) (red).

3.6 W avelet frames and Riesz bases.

3.6.1 Frames

Consider discrete values of the scale a  given by a =  2-J (j E Z), and 
translations which are integer multiples of a sampling rate a E M. This gives 
rise to the set of vectors

iplk(x) = 2 ^ * (2 j x - k a ) ,  (3.6.1)

where the sampling rate a is a free parameter.
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The set {i>jyk}(j,k)ez2 1S called a (wavelet) frame of L2(R) if

(i) any function h £ L2(R) can be expressed as a series
o o  o o

h ( x ) = E E (3.6.2)

and (ii) there exist two constants A > 0 and B  > 0 such that
o o  o o

ÎW|2<E E \ M l k)\2 < B\\h \\\  (3-6.3)
j — — o o  k = —oo

If A = B  the frame is said to be tight.
In general, the set {^ jtk}(j^)ez2 is not linearly independent, even if the 

frame is tight. The following observations are made by Daubechies [26] and 
Mallat [53]. To be linearly independent, the set must define a Riesz basis in 
L 2(R). I shall consider Riesz bases in the next section. A set which is not 
linearly independent is said to be redundant. A measure of redundancy is 
given by the size of the frame bounds A  and B. The frame is redundant if 
A > 1. The frame is orthonormal if and only if A = B  = 1. If the set is a 
normalised Riesz basis then the frame bounds satisfy A  < 1 <  B.

Daubechies [26] has given a sufficient condition for {^fc}(j,fc)ez2 to be a 
frame. Let

o o

/3(f) =  sup V  \-4>*(21ui)\\i(>*(Z’l> + Z)\ (3.6.4)

and A (3.6.5)

kjtO

If the sampling rate a and scale (2-J ) are such that

> 0 (3.6.6)
j = —OO

1 < M < 2
< oo, (3.6.7)



62 CHAPTER 3.

then {'0*fc}(j-,fc)€Z2 is a frame of L2(R).
The constants Aq and B 0 are respectively lower and upper bounds of 

the frame bounds A  and B. If B 0/A 0 «  1 then it follows that the frame 
is almost tight. If we work with a redundant frame (1 < A < B) then the 
representation (3.6.2) is not unique, and the representation will depend upon 
the choice of algorithm used to compute the coefficients.

3.6.2 Hyperbolic and G aussian wavelet frames

One of the benchmark wavelets which defines a frame is the well known 
Mexican hat wavelet M(x), defined as the second derivative of a Gaussian 
with unit standard deviation, i.e.

On the other hand, I have found nothing in the literature concerning whether

Motivated by the important links with linear viscoelasticity that I have al­
ready demonstrated, I shall in this section establish some key results on which 
the work in this thesis depends.

D efinitions. Let denote the set where

=  (x 2 — l)e  *a . (3.6.8)

hyperbolic wavelets of the form 0 * and ip* can be used to generate frames.

ip*(x) =  sech (x) [1 — £ tanh(a;)]. (3.6.9)

Let B denote the set {Bj}k}(j,k)ez2> where

B(x) 'kB (x) = [2x2cosech(a:)] dx
= 2rccosech(x)[2 — £coth(:r)]. (3.6.10)
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Let M  denote the set {Mjtk}(j,k)ez2 where M (x)  is given by (3.6.8). The 
basic wavelets and their corresponding Fourier transforms, which generate 
the sets ’J', B and M are shown in Fig. 3.5, with normalizations \\i>*\\2 =  
||B ||2 = ||M||2 =  1.

Theorem 3.2. The sets \F, B and M each define frames of L2(R) for a 
sampling rate a < 2 .

Theorem 3.3. With a sampling rate a < 1, frame B is tighter than 
frame \£, which is tighter than frame M.
Remark: Theorem 3.2 is also true for certain sample rates a > 2. In 
particular, there exist threshold values of a, namely > 2 , as > 2 and 
om > 2 , for which
(i) is a frame for all 0 < a <
(ii) B is a frame for all 0 < a < a#;
(iii) M  is a frame for all 0 < a < clm-

We have used Daubechies’ necessary and sufficient conditions (equations 
(3.64)-(3.67)) to calculate the frame bounds for \F, B and M, for certain 
values of the sampling rates, and with normalisations ||^*||2 =  ||-B||2 =  
||M ||2 =  1. These are shown in Tables 3.1, 3.2 and 3.3. Theorems 3.2 and 
3.3 are now easily established by viewing the frame bounds shown in these 
tables.
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sampling rate (a) Ao B0 -Bo Mo
2 1.363 3.298 2.421

3/2 2.718 3.497 1.289
1 4.616 4.706 1.020

1/2 9.313 9.331 1.002

1/4 18.626 18.662 1.002

Table 3.1: Estimated frame bounds for the hyperbolic wavelet t y k(x).

sampling rate (a) Ao Bo B q/A q

2 5.551 8.688 1.565
3/2 8.974 10.011 1.116

1 14.194 14.283 1.006
1/2 28.471 28.485 1.0005
1/4 56.941 56.969 1.0005

Table 3.2: Estimated frame bounds for the hyperbolic wavelet 

3.6.3 Riesz bases.

Let Vo =  clos£,2(R)span{05 k : k € Z}. (3.6.11)

The set {0q k(x )} said to be a Riesz basis of Vo if it is linearly independent 
and there exist constants C > 0 and D > 0 such that for any y G Vo there is 
an unique series representation

oo

h(X) = H  bk<t>*0,k(x ),
k=—oo

(3.6.12)
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sampling rate (a) ^0 Bo B o/A q

2 1.248 2.162 1.733
3/2 2.133 2.413 1.131

1 3.273 3.546 1.084
1/2 6.545 7.092 1.084
1/4 13.091 14.183 1.084

Table 3.3: Estimated frame bounds for the Mexican hat wavelet M{x). 

which satisfies
oo

C\\y\\2 < \h \2 < D \\y \ \ \  (3.6.13)
k = — o o

Mallat [53] shows that the inequalities (3.6.13) are equivalent to the following 
inequalities on the Fourier transform of </)*

1 00 -  1 
Vo; e  [—7T, tt], — < \<i>*(LJ -  2&7t) |2 < —.

D
k = —oo

T heorem  3.4. The set {^o/Jfcez, where

(f>*(x) = sech (x) , 

is a Riesz basis of the space Vq it generates, since

(3.6.14)

(3.6.15)

Vw e [-jt, jt], 0.000414 <  \$'(w -  2tor) |2 <  1.00000003. (3.6.16)
k ——oo

The basis has been normalised in the sense that ||$),fcll — 1- 
Similarly, I define

Vj = closL2(R)span{0 j fe : k e  Z}, J  6  Z, (3.6.17)

where <j>jtk(x) = x  — ka). (3.6.18)
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-10 10

10 5 0 s 10

(a) Mexican Hat wavelet (blue) (b) Fourier space comparison. B ( p )  
against ip*{x) (red). (blue), ^*(p) (red) and M ( p )  (black).

Figure 3.5: Wavelet comparison.

The set {(f>jk}kez is a Riesz basis of the space Vj  C L 2(R). Furthermore, I 
define

Wj = clos£,2(R)span{^*fc : k £ Z}, j  £ Z, (3.6.19)

where =  2 ^ *  (2* a? — ka). (3.6.20)

The set is also a Riesz basis of the space Wj C L2(R).

It is now clear that a discrete representation of the Calderon-Mallat de­
composition exists in the form

AM-EE + ^ 2  b  •>*<!> j,kix )- (3.6.21)
j k k

Given J, the coefficient set is uniquely determined, whereas the double 
series constituting the first term is not uniquely determined.
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3.7 Multiresolution analysis (MRA) and two- 

scale relations.

A scaling function <f> and its sequence of associated subspaces

Vj = closL2(R)span{0J)fc : k G Z}, j  G Z, (3.7.1)

are said to generate a multiresolution analysis if

f ( x ) e V j ^ f ( 2 x ) e V j+1, j e  z, (3.7.2)

and

1. the subspaces are nested, i.e. Vj C VJ+i;

2 . the union of the subspaces is dense in L2(R);

3.

j e  z

4. there can be found a wavelet ^  and a corresponding sequence of
subspaces Wj = clos^^span-f^j.fc : k £ Z}, j  G Z, such that
V}+i =  Vj © W j , where © denotes a direct sum.

This means that a first approximation f j  to a function /  G L 2(M) may be
found by projecting /  onto the subspace Vj, and improved approximations 
may then be found by adding to the f j  suitable contributions at finer scales 
from the subspaces Wj, Wj+1, Wj+2, ..., i.e.

/  — f j  + 9j +  9j +i +  9j +2 +  ••• • (3.7.3)

If the subspaces W j  are orthogonal then the decomposition (3.7.3) is unique,
otherwise the functions g j  are not uniquely defined. This means that I can
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modify equation (3.6.21) to cut off all scales a > 2~J in the mother wavelet 
part. I then obtain a representation for h(t) which more closely resembles a 
discrete form of the Calderon-Mallat decomposition

aj,k*Pj,k(x ) +  ^ 2  bj^ J ,k ( x )- (3.7.4)
j k k

3>J

In a multiresolution analysis it is clear that <j) C Vo, $  C Wq, Vo C V\ and 
Wo C V\. Consequently there exist relationships between <f){x) and <j>(2x), 
and between ip(x) and <t>(2x), of the form

4>{x) =  £ a * 0 ( 2 x - f c ) ,  (3.7.5)
k

^ (X) =  ^ r ,b k<t>(2x -  k). (3.7.6)
k

These are called two-scale relations, and play an important role in synthesiz­
ing wavelet reconstructions in signal processing.

Taking the Fourier transform of both sides of (3.7.5), I obtain

- * ? p

(3-7-7)'> ( ! ) k

This requires that has compact support on [—27t,27t]. Similarly, from
(3.7.6), I derive

=  l Y , b*e~iiP’ (3.7.8)
4>(p)

? ( 5) k

which requires to have compact support on [—27r, 27r]. The cross-paired 
wavelets {̂ >*, </>*}, defined by (3.6.9) and (3.6.15) do not satisfy the two-scale 
relationships (3.7.5) and (3.7.6), since
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does not have compact support on [— 2w], which is illustrated in Fig. 3.6. 
Similarly,

does not have compact support on [—27t, 27t], which is shown in Fig. 3.7. 
Nevertheless, the cross-paired wavelets {^>*,0*}, defined by (3.6.9) and 
(3.6.15), do satisfy equations (3.7.5) and (3.7.6) in an approximate sense. 
In particular, I will show that if the coefficients {a^, 6*} are chosen as the 
Fourier coefficients

1.0-1

-10 -5 5 10
P

Figure 3 a- . does not have compact support on [—27T, 27t].

Tp*(p) 7rp sech ( |p )  tanh (^p)
(3.7.10)

(3.7.11)

(3.7.12)
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-10
p

Figure 3.7: ^ | j  does not have compact support on [—27T, 27t].

then, although the residuals in the two-scale relations will not tend to zero as 
k —► oo, they will be extremely small. Since equations (3.7.5) and (3.7.6) are
not satisfied exactly, I shall calculate estimates on the error functions e(x)
and p{x), where

e(x) =  </>*(x) — ^ ^ ak(fi*{2x — k ), (3.7.13)
k

and

p{x) = -  Y 1  M *(2z -  fc). (3.7.14)
k

Theorem  3.5.

|| e ||2< 5 x 10"4 and || p ||2< 2 x 10“3. (3.7.15)

Alternatively, using best approximation in the supremum norm,

|| e ||OG<  5 x 10"4 and || p ||oc< 2 x 10"3. (3.7.16)
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Since the two-scale relations only hold exactly in the range — 2tt < p < 2tt, 
I obtain

4>*(p) ~  \$ *  (i) E t - o o  <  p  <  oo;
e(p) = |  (3.7.17)

0 , —27r < p  < 2n.

For |p | > 27r I can express e(p) as follows, by splitting the real line into 
intervals of length 47r. So p G [—27r +  47m, 2n +  47m], n = — oo . . .  oo. When 
n =  0 we get the above interval [—27r, 27t]. I observe that e(p) =  e(g +  47rn), 
q G [—27r, 27t]. Thus, I now have

e(p) =  < (3.7.18)
0 , — 27T < p < 27r;

E n  [^*(p + 4?m) “  2^* (f  +  2irri) Efc , |p| > 27r,

where I have used the fact that e- l%(p+4™) — e~l^p. By Parseval’s theorem 
[53],

e o =
2t tm mj'

Consequently, using (3.7.17) and (3.7.18), I obtain

(3.7.19)

\ 4 l  =
i /*27r f  w=°° r i ___  1 1

= 2tr /  | +  4?m) ”  2^* ( I  +  2?rn)  ^  ajfee~^P f dp ̂ Ln=-oo L A: J J

s? £&»+4™) - ̂  (1+H  jrj§ dp, (3.7.20)

using (3.7.7). When n =  0, the integrand is equal to zero. Also, when |n| > 1, 
the integrand is so small that there is a negligible contribution to the sum. 
This is because </>*(p) is very small for large |p|. For 4>*{x) = sech(rr),

Mis =  \  Y ,  ( | b  +  4 jm ] ) -  sech ( j [ p  +  4™ ]) dp.

(3.7.21)
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Similarly, I obtain

pip) =
0 , —27r < p < 27T,

(3.7.22)
|p| > 27r

**(!)
dp.

(3.7.23)

E n  ^*(P +  47m) -  ±0* (f  +  27m) h e  ^ p] , 

and consequently,

"I OO /*27T .
II P II2 =  2^  5 Z  /  +  4?rn) -  +  27rnJ

n = —00 ^ —2tt |_

For ^ ( x )  =  sech(x)[l — xtanh(x)], I find that
3 n=oo «27r C

IMIi =  y  J  | ( p  +  47rn )sechQ [p  +  47rn ] ) ta i ih ^ [ p  +  47rn]J

/7T r A  P sech ( f p )  tanh (£p) 1 2
-sech (^ [p  +  4 H ) -------------------- } dp. (3.7.24)

The series in (3.7.21) and (3.7.24) converge very rapidly, and by calculating 
the integrals numerically, it can be shown that

|| e ||2< 5 x 10~4 and || p ||2< 2 x 1(T \ (3.7.25)

Alternatively, using best approximation in the supremum norm it can be 
shown that

,< 5 x 10-4 and p ||oo< 2 x 10 3. (3.7.26)

The coefficient set {a*, 6*} is displayed in Table 3.4 for both of the above 
cases. By viewing Table 3.4, it is clear that the coefficients a* compare 
relatively well, but the coefficients 6* have a slightly larger discrepancy. At 
finer scales £7 =  2 3 > 0, the L 2 norms of the residuals are reduced, since

|| e(2ix) ||2< 5 x 2~i x 10"4 and || p(2jx) ||2<  2 x 2 ' - x  10"3.

(3.7.27)
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However, there is no reduction in the supremum norms (3.7.26). The first 
inequality in (3.7.27) is proved using the following argument

II e(2Ja;) ||2 =  ( ^ J  [e(2  3x ) ] 2 dx^j

= ^ I  2 ~j [e(X)]2d X y  (X  = 2j x)

= 2 (^J  [c(^)]2 dx^ (x — X )

= 2ri || e(*) ||2
< 5 x 2“ 2 x 1(T4. (3.7.28)

The other inequality is proved in the same fashion.
In working with experimental data, the storage and loss moduli are rarely 

given to an accuracy of less than 1%. Consequently, the choice of an approxi­
mate multiresolution analysis with scaling a <  4 is more than adequate when 
working with a cross-pair {0*,^;*}.

3.8 Choice of primary subspace

In order to give a wider choice of base subspace, which I call the primary 
subspace, I no longer insist upon the dyadic scaling a = 2~J for the scaling 
functions. I now allow resolutions of the form

<j =  2-j’<7o, j  € Z, ao € R. (3.8.1)

Then <f>jtk(x ) = 4>* {2? Oq1 x  — kaag1), (3.8.2)

where (f>*(x) = sech (3.8.3)

and a^Q1 is the new sampling rate. cr0 is a non-dyadic control on the scale in
the primary subspace. The primary subspace can be kept as Vo by varying 
do accordingly (i.e. o =  <r0).
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k a* (L2) bk (L2) ak (Minimax) bk (Minimax)

0 0.44724 0.76911 0.44417 0.75786
1 0.33103 0.25317 0.33440 0.26495
2 0.18352 -0.10911 0.17949 -0.12232

3 0.10581 -0.12672 0.11032 -0.11188
4 0.06163 -0.11473 0.05680 -0.13059
5 0.03746 -0.08330 0.04245 -0.06668
6 0.02228 -0.06426 0.01718 -0.08134
7 0.01375 -0.04362 0.01890 -0.02618
8 0.00814 -0.03210 0.00295 -0.04977
9 0.00509 -0.02075 0.01030 -0.00291
10 0.00296 -0.01508 -0.00225 -0.03301

Table 3.4: Coefficients determined by an L 2 algorithm (Fourier coefficients) 
and by Minimax.

3.9 Conclusion

The main purpose of this chapter was to introduce wavelet analysis and 
the concept that wavelet transforms arise naturally in the theory of linear 
viscoelasticity. I have shown that the loss modulus is in fact a father wavelet 
transform of the spectrum at unit scaling in log-time and I have used wavelet 
analysis to validate expressing the continuous relaxation spectrum as a sum 
of wavelets.

I have introduced the Calderon-Mallat decomposition of the identity, and 
used it to calculate the error term in one of the earliest approximations of 
the continuous relaxation spectrum. I have also defined a new way of pairing 
mother and father wavelets from different families, which I call cross-pairing. 
In particular, I have shown that the mother and father wavelet cross-pairing
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(,tp*(x),(l)*(x)) = (sech(#)[l—£tanh(:r)],sech(:r)) satisfies the respective rigor­
ous constraints of wavelet frames and Riesz bases. In particular, it has been 
shown that the mother wavelets associated with sech(x), in both the con­
ventional Calderon-Mallat sense and the cross-pairing method, have tighter 
frames than the well-known Mexican hat wavelet for frame sampling rates 
a < 1. Furthermore, it has been shown that these cross-paired wavelets can 
be used to construct an essential multiresolution analysis.
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Chapter 4 

Model Development

4.1 Real-Time Integrable (RTI) Wavelets

It is my purpose in this thesis to represent the continuous relaxation 
spectrum in logarithmic time as a sum of wavelets, i.e.

t k )  ~I" ^   ̂ t k ) -  (4-1.1)
j k 

3>J

With the choice

©
, t  , f t
1  tanh —

a \ a
(4.1.2)

in this first section I address the physical constraints imposed on the param­
eter <r, and the procedures I must follow to satisfy these constraints.

Every viscoelastic material possesses a finite total viscosity. This imposes 
an integral constraint on H ( t ) and h(t ) ,  given by

roc roo
I H(r)dr = I h f y e ^ d t  < oo.

JO J —oo
(4.1.3)

I define h to be real-time integrable (RTI) if h  satisfies constraint (4.1.3). 
The representation of h  in (4.1.1) consequently demands that both the father

77
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wavelet (f>* and the mother wavelet if;* are RTI. For the father wavelet 4>*(t) = 
sech (£) to be RTI, I require a such that

£ 86011 f t )
e tdt < oo. (4.1.4)

Manipulating the integrand of (4.1.4), I obtain

sech (1) e~‘ =  2exp [t (I  -  l)] (l +  exp [ | ] ) . (4.1.5)

To avoid the integrand becoming infinitely large as t —> — oo, I require 0 < 
a < 1. Thus, 4>*(t) is RTI when 0 < a < 1.

Similarly for the mother wavelet ip*(t) = sech ( I )  [1 - ; t a n h (£)] to b e  
RTI, I require a such that

£ 86611 ft) M ^ f t ) e tdt < oo. (4.1.6)

Again this constraint is fulfilled when 0 < a < 1. Consequently, the basis
elements in (4.1.1) are only RTI when 0 < a < 1.

If I choose a primary subspace for which 0 < a < 1, I have satisfied the
physical constraint of finite viscosity. In particular, if a = £ (n € N, n > 1),
then 2n — 1 moments exist.

In fitting the data available, it may be necessary to seek a subspace of 
the Riesz basis Vo which is RTI for a > 1. The simplest of these subspaces 
are of the form of sech triplets

sech ( — ) +  A sech I ) +  sech
a ( ? ) ] b e (4.1.7)

I now derive the value of A  such that these sech triplets are RTI, i.e.

+  A sech I — )  + sech H  ~  6 e ldt < oo.

(4.1.8)
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The integrand decays exponentially as t —> oo for all a > 0. The same is not 
true, however, as t —► —oo. By adopting the expansion

sech © c -‘ = 2 exp 

2 I exp

[(H -K  
H

1 +  exp 

exp

2t
a

- l

K H + . .

(4.1.9)

the integrand can be expressed as

2

- 2

+2

1 +  2 A  cosh ©]
\ ( \  \  1exp - - i t
\ °  J -

1 +  2̂ 4 cosh

1 +  2 A  cosh

36

(?)

r / 3  \  1
exp I -----1 ) *

r / 5  \  i
exp i i H-1

\cr j + (4.1.10)

By choosing

A =  - i Se c h ( ^ ) , (4.1.11)

the first term vanishes and all higher terms are integrable provided 0 < a < 3. 

I now investigate the positivity of the sech triplet

sech I — 
a

isech ( —
2 V o

sech ( + +  sech
t — b

(4.1.12)

Multiplying by the entirely positive function cosh (£) cosh ( ^ )  cosh ( ^ ) ,
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we find that

I860*1 (?) - Jsedi (9 b* (^)+sech (̂ )]}
xcosh cosh cos*1 ( " — ”)

=  cosh ( * ± > )  cosh ( i z l t )  _  COsh [cosh ( i ± 5 )
\  a J  \  °  )  2 cosh (£) [ \  a  )

( 2 t \  ( 2b \  r ' ~ ’
=  2 cosh ( — J +  2 cosh ( — j

2 cosh [ — ) + 2 cosh ( — ) —(?) 
(?)-

o )  

21 
V °

. ( t - b  +  cosh ------
— * W L V - / V <7
cosh (3±&) +  2 cosh (&) +  cosh ( ^ ) ~ 

cosh (£)

2 +  2 cosh ( —

\ V /

> 0  V 6 GR, b > 0 . (4.1.13)

The constraint 0 < a < 3 guarantees both the real-time integrability and 
positivity of the basis function (4.1.12).

It is also possible to find a subspace of Wj (j  <  0) which is RTI for 
1 < cr < 3, but it would be unlikely that mother wavelets would be required 
in the representation with such low resolution {a >  1).

I therefore construct the following approximations for h for 0 < a < 1 
and 1 < cr < 3 respectively

h(t) ~  W +  5 Z  5 1  h  k 6  Z, (To £ R,
3 k 

j >  0

(4.1.14)

W-) ~  ^ 2 dk $ ; o(t) -  isech  Q )  {<l>lk( t - b )  + <t>lk(t + b)}

+ E E  Ch k ^ lJfc W, 3, k e  Z, 6, (70 € R. (4.1.15)
j  k  

j >  0
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4.2 Model Development for G' and G"

To determine the set of coefficients in the approximation of h I develop new 
Riesz bases to fit the storage and loss moduli data. I convolute the estimates 
for h from (4.1.14) and (4.1.15) with the respective kernels of equations (2.1.8) 
and (2.1.9) to subsequently form models for gi(x) and gr2(^)- As long as a 
is rational, all the required convolutions can be calculated analytically via 
residue calculus. Since h consists of a (mother) wavelet part and a scaling 
function part, the convolutions required for modeling g\(x) and g2(x) axe of 
the respective forms

(f>*jfi{x) ★ [1 + tanh(x)], ipjjk(x) ★ [1 +  tanh(rr)], (4-2.1)

and k ★ sech) (a;), ★ sech)(#). (4.2.2)

I will consider values of cr =  n and a = ^ (n G N+) for the scaling 
function convolutions. For values of < cr < ^ I will construct a homotopic 
approximation for the models. Adequate resolution of experimental data has 
never required a value of cr > |  in the mother wavelet part. As a result, I will 
merely give results for the mother wavelet convolutions for cr =  A. (n 6  N+).

4.2.1 Scaling function convolutions for G '

To develop the part of the model for gi(x) emanating from the scaling 
function part of h, I require the following convolutions for different values of 
cr:

sech ^ ★ [1 +  tanh(a:)] =  an  +  sech ^ ★ tanh(x) (4.2.3)

The convolution

sech ( —̂  T*rtanh(x) (4.2.4)
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can be obtained from the convolution theorem for Fourier transforms using 
the distribution theory developed in section 2.1. As a consequence of (2.1.22), 
I can write

[tanh(rr)]A(p) =  —27rcosech » (4.2.5)

and

jsech  ̂★tanh(x) (p) =  sech (p) [tanh(a:)]A (p)

=  —ia7r2sech cosech (J^P^ ■

(4.2.6)

By taking the inverse Fourier transform, I obtain

sech  ̂* tanh(rr) =
i f ^ O ;

0 if x  = 0 .
(4.2.7)

The pole at p  = 0 is integrable. I shall now calculate this integral for different 
values of a. Let

/(*) =

f ( z )  has poles when

cosh ( ^ z )  sinh ( |z )

(i) cosh ( y z )  =  0
2 m  — 1. ,

=> z  = --------- i, m  G rr
a

(ii) sinh =  0

=*. z =  2m i ,  m €  N.

(4.2.8)

(4.2.9)

(4.2.10)

Case (i): a = i ,  n =  2m, m e  N+
I use the following indented contour (Fig 4.1). f ( z )  has n simple poles
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-s

Figure 4.1: Contour 7  

at z =  2mi  (m € N \  {^}, m < n), and one pole of order 2 at 2 =  ni. Let

/(*) =  f ( f ) ’ where

9(z) =
cosh (£ * )  ’ 

h(z) =  sinh •

(4.2.11)

(4.2.12)

Then the residue at the simple poles of f ( z )  is calculated as follows:

g(2mi)
Res{f(z);2mi} =

h'(2mi)
,—2 mx

7r cosh (^7ri) cosh (rmri)
9  „ - 2 m i
£ ( _ i y » _ f ---------
7T cos (ffijr)

(4.2.13)

Since there is a double pole at z = n i , I consider a Laurent expansion of f ( z )  
at z = ni. The Taylor expansion of elxz at z = ni is

1 + ix(z — ni) — \ x 2(z — ni)2 + ... (4.2.14)



84 CHAPTER 4.

The Taylor expansion of cosh (—2) at 2 =  ni is

7r 
2 n

i(z — ni)
7T

(4.2.15)

The Taylor expansion of sinh ( |z )  at 2 =  ni is

7r
( - 1) 2 - ( 2 -n « )

7Tl + ^(z-ni)2 + ... (4.2.16)

The Laurent expansion of f ( z )  at z = ni is therefore

4n . a+i. 
-5-(—l ) a+1*7T

_ e~nx [1 +  i:r(z — ni) +  ...]
(.z — ni)2[l +  ...]

4n , t ,e~nx [1 +  ix(z — ni) +  ...1
=  - o ( - l  ) 2 *-----7

(4.2.17)
(2; — n i)2

The residue of f (z )  at the double pole z = ni is equal to the coefficient of 
(z — ni)~l in the Laurent expansion. Consequently,

4n

Note that

Res (/, ni) =  —  (—l)*xe nx
7T

lim [  f (z )dz  = i7rRes{ f(z)] 0} =  2i, 

lim I f (z )dz  = inRes{f(z)]2ni} = —2ie' 2 nx

(4.2.18)

(4.2.19)

(4.2.20)

By using Cauchy’s residue theorem and also by using the same method as 
shown in Section 2.3 for evaluating the contour integral, as R, S  —* 00 inde­

pendently and ei,C2 ~  ̂0) I obtain

gtx(p+2ni)

/J —(

yipX
■dp — 1J  —(

dp
Loo cosh ( ^ p) sinh (§p) cosh ( ^ ( p  +  2ni)) sinh ( f  (p +  2ni))

m=n
= 2m  ^  Res{/(,?); 2mi}. (4.2.21)

m=0
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Since n  is even, I can simplify the above equation by using the fact that

cosh (^-(.P  +  2m)^ 

sinh (J^ip +  2m)^
- cosh( ^ ) ’ 
sinh ( | P)  . (4.2.22)

I consequently obtain

[1 +  e x)/J —|

0ipx

( ^ p ) sinh ( I  p)
dp

=  2m
1 2 e -2* 2 e - t" -2)1 2 B+1 e-("+2>*
7T f c o s ( j )  )T C O s ( ^ 7 r ) + !T COS ( ^ 7 r )

4n
7r 7T

=  2z —2 nx1 — e
cos

^ y ( e - 2x - e - < 2n- 2>1) +

:ce
7T

/«/ —(

3tpx

7-00 Cosh (£ p ) sinh (fp) 

2 ( - l ) ? +1

^~rdp = i sech(nx) ( e (n -2 )z  _  e - ( n - 2 ) x \
c o s ( j)

4n
+ -  +  \ n  2 \  ~  e ' 2* )  +  —

C08( ^ )  71

=  2i sech (nx) 2( 1) .S+i
sinh ( n x )  ^ - s in h K n  -  2)x\ +  ... +

cos (J) cos ( ^ tt)
sinh(2x)

2^ / ^ 2H (—l ) 2x7r

= 2i sech(nx) n 2n
j - 2 1 ^ 2

( -1 )^ — x + sinh(na;) +  ^  x sinh[(n — 2 j)d
71 cos (£*)

n>2

(4.2.23)
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Using equations (4.2.3) and (4.2.7), I finally obtain

sech (nx) ★ [1 +  tanh(x)] =  — ( 1 +  sech(na;)
n \
fc_ n—2

(_1)5—  x  + sinh(nx) +  V '  ^  . sinh[(re — 2k)x] )
*  rr? cos( »  J/

n>2

(4.2.24)

The results for n = 2 (j = 1) and n = 4 (j = 2) are displayed in Table 4.1. 
Also, the result for n =  2 is plotted in Fig. 4.3(a) (in red).

Case (ii): a =  £, r  — 2m +  1, m € N
The integral I now have to calculate is

eipx
/J — <

, x —7— rdp (x  ̂  0). (4.2.25)
cosh (^.p) sinh ( |p )

For this case I use the same indented contour as shown in Fig. 4.1, except 
for the height of the contour is now 2ri. Let

pizx
f ( z )  = ------ 7 r-t r- (4.2.26)

cosh ( ^ z )  sinh ( |  z)

f ( z ) has r  + 1  simple poles at z =  2mi (m E  N, m  < r) which have the same
residue as shown in (4.2.13) (n exchanged with r), and one simple pole at
z =  ri. Let f( z )  = where

eixz
i W  = • v  (4-2-27)sinh ( f  z)

Then

Res { f (z ) ; r i}  =

k(z) = cosh • (4.2.28)

j(ri)
k'(ri) 
2 r
7r sinh (§7r«) sinh (|«)

=  ( - 1 ) ^ —e -r l . (4.2.29)
7r
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Note that

lim [  f(z)dz  = «7rRes{/(^); 0} =  2i, (4.2.30)

lim [  f(z)dz  = «7rRes{/(^); 2ri} =  2ie~2rx. (4.2.31)

I again use Cauchy’s residue theorem to show that, as R, S  —► oo indepen­
dently and €i, €2 —► 0, I obtain

/
o o  gipx / * o o  gix(p+2

oo cosh ( ip )  sinh (fp ) dp cosh ( i ( p  +  2ri)) si
/ • o o  ipx

Pi _  ^-2rxl /  f_________ ,7-n

„ix(p+2ri)
C _______________ dP

sinh ( f  (p +  2ri))

[ l - e  

2iri
7r

/oo ipx
_______ ___________  1

oo cosh ( ip )  sinh (fp)

2 e_2x 2 r^i 2 r±i e ~ ^ x
7r  COS ( 7 )  +  +  7T c o s  ( ^ 7 1 - )  +  7T c o s  ( ^ “ Tr)

+ -  +  - — j -rz p ,  +  —e-2rx +  ( - l ) 1̂ — c -” ]
7T COS 7T 7T

= 2i

1 2 e_2x 2 .-------- —— +  ... -)— ( _ i )  2 -------.
7T COS ( 7 )  7T c O s ( ^ T r )

i e - 2rI +  ( - I ) 1?  —
7T 7T

r  ^

1 +  e- 2̂  -  (e~2x +  e-(2f- 2)*) +  +  (e
« * ( ? )  ^ + e  j  +  -  +  c o s ( ^ ) l<

r+1 __
2 r e  r a :

-(r+l)xj

+ 2( 1)

/OO g ip x

—  , x , Ndp =  2« cosech(nr) 
.oo cosh ( f p )  smh (fp) ^ v '

r—1 
22(—1) - , , , , Nii±

+ ^ ( 3 ^ ) coshW  +  ( - l )  * r

cosh(nc) 7—7 cosh[(r — 2)x] +  ...
cos ( f  J

(4.2.32)
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Using equations (4.2.3) and (4.2.7), I obtain

sech (rx ) ★ [1 +  tanh(a:)] =  — ( 1 +  cosech(rx) (—1) 2 r  +  cosh(r\r)

fc=

+  \ cosh[(r — 2k)x] ^ (4.2.33)
f r i  cos(fTr) \ )
r>l

The result for r  =  1 (j = 0) is given in Table 4.1.
Case (iii): a =  ra, m E  N+ \  {1}.
In this thesis the largest integer value of cr > 1 that I have needed to fit 

Gf and G" data is a = 2 . The subsequent scaling function convolution for G' 
when a = 2 is

/ x \  f°° eipx
sech ( - )  * ta*h(z) =  - * ( 4 . 2 . 3 4 )

Let

/(* ) = . ,  . . .  v  (4-2.35)cosh (7rz) sinh ( |z )

I again use the contour shown in Fig. 4.1, but this time the height of the 
contour is 2i. f ( z )  has two simple poles within the contour at z — \ i  and 
z =  | i ,  with residues

Res{f(z);^-i} = (4.2.36)
Z IT

Res { f ( z ) ; h }  = — e~tx, (4.2.37)
Z 7T

respectively. There are also two isolated simple poles at z =  0 and z =  2i, 
which have the following residues:

Res{/(z); 0} =  - ,  (4.2.38)
7T

Res{/(z); 2i} = - - e ~ 2z. (4.2.39)
7T
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Also,

lim [  f ( z )dz  = i7rRes{f(z);0} = 2i, (4.2.40)

lim f  f{z )dz  = inR es{ f (z ); 2i \  = —2ie~2x. (4.2.41)
£2̂ °

I again use Cauchy’s residue theorem to show that, as R, S  —► oo indepen­
dently and ci, 62 ~ 1” 0, I have

/OO gipx r oo e zx(p+2i;

oo cosh (7rp) sinh (fp )  /_<*> cosh (7r(p + 2*)) sinh ( f  (p + 2z))

/ oo pipx

 T7—  Z T i r \  dp
oo cosh (7rp) sinh (fp )

= 2i Jl -  e_2x + (e_2x — e_2 Ĵ
giP'l' r / /jf* \ -i

«  cosh M  sinh ( f p ) d p  =  “  sech(x) rh(x) “  ^ Sinh U )J

= 2i |tanh(:r) — \ p l  sech(ar) sinh j • (4.2.42)

Consequently, using equations (4.2.3) and (4.2.34), I obtain

sech * [1 + tanh(x)] — 2 tt 1 +  tanh(:r) — \/2sech(x) sinh •

(4.2.43)

The result for m = 2 (j =  — 1) is given in Table 4.1.

4.2.2 Scaling function convolutions for G n

To develop the part of the model for g^ix) emanating from the scaling 
function part of h, I require the following convolutions for different values of 
a:

sech  ̂ * sech(x). (4.2.44)
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j sech(2Jx) ★ [1 +  tanh(x)]
-1 27r [l +  tanh(x) — \ / 2sech(x) sinh ( |) ]
0 7r[l +  coth(x) — cosech(x)] (x ±  0) 

7r (x =  0)
1 |7r[l +  tanh(2x)] — 2xsech(2x)

2 f  ( l  +  sech(4x) sinh(4x) — 2y/(2) sinh(2x) +  f  £

Table 4.1: Scaling function convolutions for fitting G' data, with a = 2 K

By taking the Fourier transform of (4.2.44), and using the convolution theo­
rem,

sech ^ ★ sech(x) (p) = <77r2sech sec^ •

(4.2.45)

By taking the inverse Fourier transform, I obtain

eipx
sech ^ ★ sech(x) =  ^  J

_oo cosh (sz-p) cosh (fp)

I shall now calculate this integral for different values of o. 
Case (i): a =  n =  2m, m  G N+
I use the contour displayed below in Fig 4.2. Let

„izx
/(* ) =

T ^ d p .  (4.2.46)

(4.2.47)
cosh ( s x) cosh ( f  ■z)

Within the contour 7 , f ( z )  has n simple poles at z = (2m -I- 1 )i (m G N, 
m < n  — T) and a simple pole at z = ni. Let f ( z )  =  where

= — u7 7r \ >cosh ( ^ z )  

h(z) = cosh •

(4.2.48)

(4.2.49)



4.2. MODEL DEVELOPMENT FOR G' AND G" 91

2sL
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Figure 4.2: Contour 7

Then

Res (2m +  1)«} =

Now let f( z )  =  where

Then

k ( z )

j(z)  =

k(z) = 

Res{/(z);m } =

g[(2m +  !>'] 
h'[(2m 4- l)i]
2 g-(2m+l)x
7r cosh ( 2̂ 17rz) sinh
9 „-(2m+l)x

} c o s ( ^ ) -

cosh ( f  2) ’

cosh ( -^-z)  . 
\2n  J

j[ni\
k'[ni]
2 n
7r cosh ( | ni) sinh ( | i )

7T

(4.2.50)

(4.2.51)

(4.2.52)

(4.2.53)
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By Cauchy’s residue theorem, as R, S  —> oo independently, I obtain

Dipx poo gix(p+2ni)

cosh (^ p )  cosh (fp ) J_0o cosh (f^(p +  2m)) cosh ( f  (p +  2m))/J —c

/ OO g i p x

oo cosh (^ p )  cosh (fp ) dp

dp

n —19  t  p -(2 A H -l)x  9 „

cos ( n f J M  w

/.
k=0

oo pipx

oo

= 2sech(mr)

cosh (^ p )  cosh (fp)
i— n-2 

"  '  ( - 1)*

^ -rd p  =  2sech(nrr)
n—1 ___ p [n—(2fc+l)]x

E t - 1)* -  -N +  ( - 1)* "
k=0

2 E
k=0
n>2

cos

Consequently, using equation (4.2.46), I obtain

C° S  ( 2 | t H r )

cosh([n — (2k +  l)]x) +  (—1) %n (4.2.54)

7T
sech (nx) * sech(x) =  — sech(mr) ( (—1) 2 n 

n
«__n-2

2

+ - :~2 / 2fe+i_\ CQsh[(n -  (2k +  l))g]
A=0 
n>  2

COS ( ^ )
(4.2.55)

The results for n = 2 (j = 1) and n = 4 (j = 2) are displayed in Table 4.2. 
Also, the result for n = 2 is plotted in Fig. 4.3(a) (in blue).

Case (ii): a = J, r = 2m +  1, m e  N
The integral I now have to calculate is

etpx
/J  — (

■dp. (4.2.56)
cosh (£p ) cosh (fp)

For this case I use the same contour as shown in Fig. 4.2, except for the 
height of the contour which is now 2ri. Let

eizx
/(*) = cosh (f^z) cosh ( f z)

(4.2.57)
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f ( z )  has r — 1 simple poles at 2  =  (2m + l)i  (m G N \  m < r — 1)
which have the same residue as shown in (4.2.50) (n exchanged with r), and 
one double pole at z = ri. To calculate the residue of the pole at z =  ri, 
I construct a Laurent expansion of f ( z )  at z =  ri. By exchanging n for r 
in (4.2.14) and (4.2.15), I obtain respective Taylor expansions for etzx and 
cosh ( ^ 2), at z = ri. The Taylor expansion of cosh ( f  z) at 2 =  ri is given 

by

1 +  J © 2 (2 - ” ) 2 + - (4.2.58)

Hence it can be shown that the Laurent expansion of f ( z )  at z = ri is

=  (4.2.59)
7T (z — ri)z

The residue of f ( z )  at the double pole 2 =  ri is equal to the coefficient of 
(z — r i )-1 in the Laurent expansion. Consequently,

Res (/, ri) =  — ̂ ( —l Y ^ i x e  rx. (4.2.60)
7T

By Cauchy’s residue theorem, as R, S  —► 00 independently, I obtain

Jpx r  00 gix(p+2ri)/oo gtpx r c

oo cosh (£ p )  cosh ( f p ) d p  7 -0 0  cosh (£ ( p  +  2ri)) cosh ( f  (p +  2ri))

/ oo ipx
 r-A  7—rdp

.oo cosh (g p )  cosh ( fp )

-r-dp
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=  2m

- FJ —C

r—14 r  r i 2  E - i  p —(2k+i)x
- 2 i - i ) ^ i X e - ™ + - i  y ,  ( - i ) t+ 1 --------------

k= 0 COS ( ^ )

-,tpl

cosh ( i p )  cosh (fp ) 

=  2cosech(rx)
r —12  r  r - i   ̂ J r -(2 fc + l)]x

fc=0

=  4cosech(rx)
2

- ( - l ) ^ x +  £ ( - 1)

cos

(c+i sinh([r — (2k +  l)]x)

k=0  
r >  3

COS ( ^ )

(4.2.61)

Consequently, using equation (4.2.46), I obtain

sech (rx ) * sech(x) =  — cosech(rx) ^ (—l ) ^ 1 ^ x
7r

2

+ £
(-iy

fc=0
r>3

COS ( ^ )
sinh[(r — (2fc +  l))x] I. (4.2.62)

The result for r  =  1 (j =  0) is given in Table 4.2.
Case (iii): a =  ra, m G N+ \  {1}.
When a takes integer values, I derive the following simple equation for 

sech (^ )  *sech(x) in terms of the results for sech (rax)*sech(x) given in cases
(i) and (ii).

sech  ̂★ sech(x) =  J  sech ^x— — ̂  sech(s)ds

/ OO

sech (x — t) sech(mt)dt (mt = s)
■oo

= m

= m  sech (rax) * sech(x).

The result for cr =  2 (j  = — 1) is given in Table 4.2 below.

(4.2.63)
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j sech(2Jx) ★ sech(a:)
-1 27rsech(a;) [\/2cosh ( |)  — 1
0 2xcosech(a;) (x ^  0) 

2 (s =  0)
1 7rsech(2a:) [y/2 cosh(x) — 1]
2 7rsech(4x) [A~ 2 cosh(3x) — B~% cosh(x) + l]

Table 4.2: Scaling function convolutions for fitting G" data, where A = 2+ \/2  
and B = 2 — y/2, and a = 2- J .

4.2.3 W avelet convolutions for G '

To develop the part of the model for g\(x) emanating from the mother 
wavelet part of h, I require the following convolutions for different values of 
a:

[1 +  tanh(rr)] * sech  ̂ [l — ~  tanh ( “ ) ]  =  tanh(x) ★ sech ( ^ j  [l ~  “  tanh ( “ )]

=  ta n h ( x ) * £ [ x s e c h 0 )]

=  [tanh(x)] ★ [x  sech j
=  sech2(:r) ★ |a; sech > (4.2.64)

where I first used the fact that the mother wavelet sech (^) [l — f  tanh (^)] 
has zero area, and then used the derivative property of convolutions. Using
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equation (2.1.22) and properties of the Fourier transform, I find that 

^sech2(x) ★ x  sech (p) — [sech2]A (p) sech (p)

=  (?r pcosech [sech ( ^ p ) ] )

0-2 7T3 . , /7T  \  (O 'K  \  , / (77T \
=  — ip cosech (^-pj sech p j  tanh {— pj

_  cr2ir3 . sinh (^ p )
2 ^sinh ( |p )  cosh2 (^fp)

(4.2.65)

By taking the inverse Fourier transform of (4.2.65), I obtain

tanh(x) *  — \ x  sech f —'ll -  -  ( - Y  i f °  Psinh ( t p )  ^
tanhW *rfxLXSeChU JJ "  I 2 )  J _ ^  sinh (fp) cosh2 (^p)

_  /<J7T\ 2 d Z*00 sinh ( ^ p )  eipx
\  2 /  da; sinh ( |p )  cosh2 (^fp) ^

(4.2.66)

I consider values of a = where n =  2m, m  G N+, when calculating the 
above convolution. Let

sinh eizx
f ( z )  = ------ , \ 2------- -----r . (4.2.67)
J '  sinh (5 z) cosh2 (2f  z) V '

Using (4.2.9) and (4.2.10), it is clear that f ( z )  has simple poles at 2 =  2mi  
(m G N) and double poles when z =  (2m — l)m  (m G N+). When using 
the same contour as shown in Fig. 4.1, f ( z )  has n simple poles at 2 =  2mi  
(m G N \  { |} , m  < n), and one pole of order 3 at z =  ni. Let f (z )  = 
where
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Then the residue at the simple poles of f ( z )  is calculated as follows:

Res{/(z);2rm} =
h'(2mi)
2 sinh ni) e~2mx 
7T cosh2 cosh (mni)

= ^ ( —l) mztan sec 7r^ e~2mx. (4.2.70)

From (4.2.70) note that

Res{/(z); 0} =  Res{/(z); 2m} =  0 (4.2.71)

z =  lim [  f{z)dz  = 0. (4.2.72)

Since there is a triple pole at z =  ni, I consider a Laurent expansion of f ( z )  
at z = ni. The Taylor expansions of etxz and sinh ( |z ) ,  at z — m, is given 
in (4.2.14) and (4.2.16), respectively. Also, from (4.2.15), it can be seen that 
the Taylor expansion of cosh2 (^-z) at z =  ni is given by

lim / f ( z )d

(4.2.73)

Furthermore, the Taylor expansion of sinh ( ^ z )  at z = ni is given by
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Consequently, the Laurent expansion of f ( z )  at z = ni is given by

1 +  ix(z - n i )  + \  [ (£ ) 2 - 1 2] (z -  n i f  + ...]8n2^

** (z -  n i f  [l +  { i  ( I ) 2 +  i  ( £ ) 2} (z -  ni)2 +  ...]

^U 1)®+Iie~ni [l +  ix(z — ni) + i  ") — x2] (z — n i)2 +  ...
7r3(z — ni)3

S+i8 n 2( - l ) f  

7r3(z — ni)3
te 1 +  ix(z — ni) +  |  -

2 nJ

i o - o ^ n
(z — ni)2 +

(4.2.75)

The residue of f ( z )  at the triple pole z = ni is equal to the coefficient of 
(z — ni)-1 in the Laurent expansion. Consequently,

Res (/; ni) =
4n2(—1) 2+1.
--------------: ----------- : --------------- f%

37r3
(4.2.76)

Hence, by Cauchy’s residue theorem with R, S  —> oo independently, I obtain

sinh ( £ p ) e ixp f°° sinh [£ (p  +  2ni)\ eix{P+2ni^f°° _ s m h ( | p ) e ^ _  f
7 -0 0  s in h  ($p) c o s h 2 ( £ p )  7 -_oo sinh ( f p) cosh2 ( £ p )  7 -o o  sinh [|(p +  2m)] cosh2 [^ (p  +  2m)]

dp

/°

•C

s in h (^ p )e “ ” 
sinh ( f p) cosh2 (£ p )

dp



4.2. MODEL DEVELOPMENT FOR G' AND G" 99

k=n

k= 0

sec | —7r | e 
n

—2 kx

^ 4 n 2(—1) 2+1
37T3

/•“  sinh (j^p) eixp 2sech(„ x) /  2n2( - l ) l  T _
• ' J . x  sinh (fp ) cosh2 (£ p )  P ( ) \  3tt> [V2n i  U J

-  Q tt)  sec Q tt)  e("“21:)x|

*?!

=  4 s e c h ( n x ) | ^ g ) l [ ( ^ ) 2 - ( | ) 2 - 3 a:

— (—1)* tan T—7r^ sec f —7r} cosh [(n — 2k)x\
k—0 \ n  /  \ n  /

(4.2.77)

Using (4.2.66),

tanh(a:) sech (nx)\ = — —
dx n dx

sech (nx)
n2(—1) 2

Sir2

y ;  (—l) fe tan ( —ir\ sec ( —ir J cosh [(n — 2Ar)a?] 
fc=o n n

k = % -  i

0 ) 2sech(na;)| ^  (—l) fc(n — 2fc) tan ( —7r )  sec ( —7r )  sinh [(n — 2k)

( - l ) ^ x2 +  re

f c = S - l

n2(—1)2 
37T2

— (—l) fe tan ) sec ( “ Tt ) cosh [(n — 2fc)rc]
fc=0 n

(4.2.78)

I list the following table of results for n = 2 (j =  1) and n = 4 (j =  2). The
result for n =  2 is plotted in Fig. 4.3(b) (in red).
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j (sech(2Jx)[l — 2Jo:tanh(2-7a:)]) ★ [1 +  tanh(x)]
1 |sech(2x) [(tt2 +  16a:2) tanh(2or) — 16a:]

2 — ||sech(4a:) ^8\/2  sinh(2a:) — ™ x  

—4tanh(4a:) [4\/2 cosh(2a:) — x 2 — 5]^

Table 4.3: Wavelet convolutions for G' data, where a =  2 K

4.2.4 W avelet convolutions for G"

To develop the part of the model for g-zix) emanating from the mother 
wavelet part of h, I require the following convolutions for different values of 
o\

sech (a;) ★ —  
dx

x  sech 0] (4.2.79)

Using (2.1.13) and (4.2.65), it can be shown that the Fourier transform of
(4.2.79) is given by

s e c h x  sech ^ (p) = [sech(a:)]A (p) * ^x sech j (p)

r2„3<J7T , /7T \  . ( (TTT \  , /  (T7T \
=  — P sech y - p j  sech p j tanh

sinh (^ p )C727T3
2 ^cosh ( |p )  cosh2 (^fp)

(4.2.80)

By taking the inverse Fourier transform, I obtain

sech(x) ★
dx

x sech ( - ) l  =
\<jJ J V 2 / J_00 cosh (|p) cosh ( f̂p)

sinh (^p) eipx/  (T7T \  2 . d f
~ \ ~ 2 J

„ ~di).
2 /  <fa cosh ( |p )  cosh

(4.2.81)
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For the same reason as in section 4.2.3, I will only consider values values of 
cf = z, where n = 2m, m  E N+. Letn7 '

. sinh (^-z)  eizx . .

Using the same contour as displayed in Fig. 4.2, f ( z )  has n simple poles at 
z =  (2m +  l) i (m E N, m  < n  — 1) and a double pole at z = ni. I calculate 
the residue at the n  simple poles as follows. Let f ( z )  = where

. sinh (£-z) eizx

h(z) = cosh • (4.2.84)

Then

Res {f{z); (2m +  l)i} =
g[(2m +  l)i] 
h'[{2m +  l)i]
2 sinh ( ^ ^ t t i )

7r sinh ( 2rn+ 1 n t )  cosh2 ( 2t̂ ~1 n i )

2 r
i t  cos2 ( ^ t t )

(4.2.85)

Since there is a double pole at z =  ni, I consider a Laurent expansion of 
f (z )  at z = ni. The Taylor expansions of elxz, cosh2 ( ^ z )  and sinh ( ^ z ) ,  
at z =  ni, are displayed in (4.2.14), (4.2.73) and (4.2.74), respectively. The 
Taylor expansion of cosh ( |z )  at z =  ni is given by

7r2
( - 1)2 1 +  — ( z - m ) 2 + ... . (4.2.86)
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Hence it can be shown that the Laurent expansion of f (z )  at z = ni is given

by

(_l)t+i (*1) 2 ̂ -” [l + fa( -̂ m) + ...]
\  7r /  (z — m y

The residue of f ( z )  at the double pole z =  ni is equal to the coefficient of 
(z — ni)~1 in the Laurent expansion. Consequently,

R es (/;m ) =  (—1)^ xe~nx.

(4.2.88)

Hence, by Cauchy’s residue theorem with R, S  —► oo independently, I obtain

f ”  sinh ( eipx , _  no
7-00 cosh (Ip ) cosh2 ( ^ p )  7-00 cosh ( f  (p +  2m))
r f°° sinh ( £ p ) e ipx[l +  e l /   , \ 2n J 2 ,---- rdp

7 -o o  cosh (fp ) cosh (^ p )

sinh (£ (p  +  2m)) eix^ +2ni^
( |( p  +  2m)) cosh2 (£ (p  +  2m)) ^

[l + e
J  — OO

)  *» ( ^ - )  ( i ) :2m xe -nx

/ oo 

•oo cosh
sinh (&>)

(fp ) cosh2 ( i p )

,ipx
■dp = mi sech(mr)

+1 ( ¥ 4  -  (^ * )
fc=0 \  /  \  /

sech(mr) — 1)* sec tan (̂ ^ 2 n  ^7r)  sinh ([ri — (2k +  l)]ar)7TZ
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( n)
( —1) 2   —X

Using (4.2.81),

sech(x) ★ [x sech (nx)] = ^  |sech(nx)

+4 l ) fcsec ^ —2 n ~ 7F)  tan ( ~ ^2n ^7F)  S*n*1 ~  ^

=  © 2sech(nx){ (- 1)?̂

+4 ^ ( —l) fc[n — (2k +  1)] sec tan cos^ — ^

—n tanh(n:r)
n ( 2 n ) 2 

( - 1 )2 -— —x

+ 4 ^ ^ ( —l^ s e c  tan sinh([n — (2k +  l)]a;)

I list the following table of results for n =  2 (j = 1) and n = 4 (j = 2). The 
result for n = 2 is plotted in Fig. 4.3(b) (in blue).

(4.2.90)

j (sech(2Jx)[l — 2Jx tanh(2Jx)]) ★sech(x)

1 2̂ sech(2a:) ^ y/2 cosh(:r) — |

—2 tanh(2x) [ \/2 sinh(:r) — £ (x)] ^

2 ^sech(4a:) cosh(3x) — \Ah  cosh(x) +  f  

—4tanh(4x) |B §  sinh(3:r) — \A% sinh(rr) +  | (x) ^

Table 4.4: Wavelet convolutions for G" data, where A = 2 +  y/2 and B  = 
2 — y/2, and a =  2~K
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- 0.11

8
x

(a) </>i)0(aO*(l+tanh(x)) (red), (<fti0* (b) (V>1,0 * (1 +  tanh))(x)(red), ( ^ 0 ★ 
sech) (a;) (blue) sech)(x) (blue)

Figure 4.3: Examples of scaling function convolutions and wavelet convolu­
tions used for fitting G' and G" data when a  =  J.

4.3 A pproxim ation of the Gaussian

I will now approximate the Gaussian spectrum as a test case. I use a 
Gaussian with unit standard deviation, i.e.

h(t) = e 2 . (4.3.1)

4 .3 .1  sech  tr ip let approxim ation

At resolution a  =  1 (i.e. J  = 0), I have the Riesz basis 

Vo =  closL2(R)span{sech(a; — £)}, fcGZ, (4.3.2)

with sampling rate a =  1. Since <7 = 1,1 require sech triplets of the form

sech(x) — ^sech(6) [sech (a: — 6) +  sech(x +  b)] (4.3.3)
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to approximate h. In order to ensure that these triplets are members of Vo, 
I need b to be an integer. By trial and error, I discovered that the best fit 
was achieved with b = 2 in the sech triplet. This gives rise to a one term 
approximation of the form

h(t) «  b\ -  isech(2)[0J _2(t) +  , (4.3.4)

where b\ is a constant to be determined.
I determine bi in a direct method by minimizing the unweighted sum of 

squared residuals

£  [Aofe)]2 , (4.3.5)
j

where

A0(t) =  h(t) -  bi ^ o ( f )  -  isech(2)[05_2(t) +  <f>lt2(t)]j , (4.3.6)

evaluated on the discrete point set tj = 0.5j, j  = —16,..., 16. This gives 
rise to the approximation, displayed against the actual spectrum, in Fig. 
4.4(a), with b\ = 1.0889 and a root mean square (RMS) error of 0.332%. 
The maximum error of 1.20 x 10-2  is shown in Fig. 4.4(b).

However, the correct method to determine b\ is through fitting my con­
voluted models for gi(x) and 92(2) (developed earlier in this chapter) to the 
storage and loss moduli data for the Gaussian spectrum. I calculated numer­
ically the noise-free storage and loss moduli data for the Gaussian spectrum 
at the sample points tj given above. The data is plotted with the Gaussian 
in Fig. 4.5. I simultaneously fit my models for g\(x) and g2(x) to the data, 
by minimizing the unweighted sum of squared residuals

£ [ A 1(tJ)]2 +  £ [ A 2(tj )]2,
3 3

(4.3.7)
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where

^1 {tj) ~  G (tj) 9i(tj),

A 2 (tj) =  G"(tj) — g2(tj),

(4.3.8)

(4.3.9)

and where

g2(x) = bx I <f>Zfi(x) -  -sech(2)[05_2(x) +  $Ji2(x)]J *sech(x)

(4.3.11)

I obtained a fit to the data of 0.087% (bi = 1.0871) and a recovered 
spectrum with a fit to the Gaussian with an RMS error of 0.336% (Fig. 
4.6(a)). The maximum error in the recovered spectrum is 1.09 x 10-2  (Fig. 
4.6(b)).

4.3.2 Calderon enriched approxim ation

Although I can get a very good approximation for the Gaussian using Vo 
alone, I can increase the accuracy of the approximation further by enriching 
my basis with elements of the space Wi, defined in (3.6.19) and (3.6.20), 
where

V’i.tW  =  2^V*(23x - k a ) , (4.3.12)

with sampling rate a = 1 and

x) = sech(x) [1 — £tanh(x)]. (4.3.13)

I choose basis functions from W\  centred at the point of maximum residual 
in the sech triplet approximation, illustrated in Fig. 4.6(b). This gives rise



4.3. APPROXIMATION OF THE GAUSSIAN 107

to an enriched approximation for h of the form

h(t) «  bi ^ S |0M ~  ^ sech(2) [<f>% _2(t) +  0Jt2(t)]^

+<*i,2K  - 2W +  ^ i,2(01 i (4.3.14)

where 61 and <21,2 are now the constants to be determined. The form of the 
approximation is chosen to guarantee symmetry.

I determine 61 and <1̂ 2 in a direct method, in the same way as explained 
in the sech triplet approximation. This gives rise to the approximation, 
displayed against the actual spectrum, in Fig. 4.7(a), with bi = 1.0872 and 
0-1,2 = 0.0122 and a root mean square (RMS) error of 0.133%. The maximum 
error of 4.61 x 10-3 is shown in Fig. 4.7(b).

I simultaneously fitted the models for g\(x) and <72(2 ) to the storage and 
loss moduli data (Fig. 4.8(a)), in the same way as explained in the sech 
triplet approximation. We obtained a superb fit to the data of 8.47 x 10-3% 
(61 =  1.0867, a i,2 =  0.0132), and a recovered spectrum with an RMS error 
of 0.136%. The maximum error in the recovered spectrum is 4.77 x 10-3 

(Fig.4.8(b)).
I can increase the accuracy of our approximation even further by enriching 

my basis with elements of the space W2. I choose basis functions from W2 
centred at the point of maximum residual in the first enriched approximation, 
illustrated in Fig. 4.8(b). This gives rise to an enriched approximation for h 
of the form

h{t) «  61 ( $ l 0(t) -  isech(2)[0 J _2(t) +  0Sj2(*)l)

+al,2ty,ll- 2W + ^1,2 W1
+  <*2,2 [^ 2 ,-2  M  +  ^ ^ ( O ]  +  a 2 ,3 [^ 2 ,—3 M  +  ^ 2,3  (^)]>

(4.3.15)

where 61, a ^ ,  <22,2 and 02,3 are now the constants to be determined.
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In the direct approximation, I have b\ = 1.0870, a\$ =  0.0114, 02,2 =  
0.0037 and 02,3 =  0.0068, with an RMS error of 0.0142% (Fig. 4.9(a)) and a 
maximum error of 2.92 x 10-3 (Fig. 4.9(b)).

I simultaneously fitted the models for g\(x) and 02M  to the storage and 
loss moduli data (Fig. 4.10(a)). I obtained a remarkable fit to the data with 
an RMS error of 6.14 x 10"4% (61 =  1.0867, a1%2 = 0.0115, a2,2 =  0.0056, 
a2)3 =  0.0034) and a recovered spectrum with an RMS error of 0.0409%. The 
maximum error in the recovered spectrum is 1.11 x 10-3 (Fig. 4.10(b)).

The coefficients and RMS error values from the three direct approxima­
tions of the Gaussian given above axe displayed in Table 4.5, whereas those for 
the three approximations of the Gaussian using the storage and loss moduli 
data are given in Table 4.6.

sech triplet Calderon enrichment 

(Wi)

Calderon enrichment 

(Wi and W2)

bi 1.0889 1.0872 1.0872

0-1,2 0.0122 0.0114

02,2 0.0037

a 2,3 0.0068
Spectrum (%) 

RMS error
0.332 0.133 0.0142

Maximum error 1.20 x 10"2 4.61 x 10"3 2.92 x 10"3

Table 4.5: Direct approximations of the Gaussian.
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sech triplet Calderon enrichment 
(W1)

Calderon enrichment 
(Wi and W2)

bi 1.0871 1.0867 1.0867

0>1,2 0.0132 0.0115

02,2 0.0056

02,3 0.0034
Data RMS error (%) 0.0874 8.47 x 10“3 6.14 x 10"4

Spectrum RMS error (%) 0.336 0.136 0.0409
Maximum error 1.09 x 10-2 4.77 x 10"3 1.11 x 10“3

Table 4.6: Approximations of the Gaussian using the storage and loss moduli 
data.

00 I

.00 -

>.oo: ■

O u t f t

-o.<

-o.oioj8

(a) Direct approximation. (b) Error in the direct approximation.
Maximum error =  1.20 x 10~2.

Figure 4.4: Direct approximation of the Gaussian spectrum with a sech 
triplet (hi =  1.0889, a = 1, b =  2, a =  1, RMS error=0.332%).
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2.5

1J

-1 0 5 0 J 10

Figure 4.5: G' (red) and G" (blue) data calculated from the above Gaussian 
spectrum.

C 00 5-

1J-

-0.005

s 6 -2■4 0 2 4 6 8
- 0.010-1

(a) Simultaneous fit to G ' and G " (b) Error in approximation of Gaus- 
data, with resulting spectrum. sian. Maximum error =  1.09 x 10-2 .

Figure 4.6: Simultaneous fit to G' and G" data by sech triplet convoluted

models. Resulting fit to spectrum with RMS error=0.336%.
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f

4 6 8

- • - 6  -4  -2 0 2 4 6 •  _0004.

(a) Direct approximation. (b) Error in the direct approx­
imation. Maximum error =
4.61 x 10"3.

Figure 4.7: Direct approximation of the Gaussian spectrum using Calderon 
enrichment (one mother wavelet).

- •  -6 -4  -2  0 2 4 6 •
A - •  -6  -4 4 6 t

(a) Simultaneous fit to G ' and (b) Error in approximation of 
G" data, with resulting spec- Gaussian. Maximum error =
trum. 4.77 x 10“3.

Figure 4.8: Simultaneous fit to G' and G" data by convoluted models, using

Calderon enrichment (one mother wavelet). Resulting fit to spectrum with

RMS error=0.136%.
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0.4

0.2

8■8 ■6 4 ■2 0 2 4 6

(a) Direct approximation. (b) Error in the direct approximation.

Figure 4.9: Direct approximation of the Gaussian spectrum using further 
Calderon enrichment (three mother wavelets).

8 6 •4 •2 0 2 « 84

(a) Simultaneous fit to G ' and G" (b) Error in approximation of Gaus- 
data, with resulting spectrum. sian. Maximum error =  1.11 x 10-3 .

Figure 4.10: Simultaneous fit to G' and G" data by convoluted models, using

Calderon enrichment (three mother wavelets). Resulting fit to spectrum with

RMS error=0.0409%.
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4.4 Conclusion

In Chapter 4, the concept of real-time integrability of wavelets (RTI 
wavelets) has been introduced, to ensure that the finite viscosity constraint of 
a viscoelastic fluid is maintained. It has been shown that the basis elements 
for h introduced in Chapter 3 are only RTI for 0 < a < 1. I introduced 
sech triplets as a subspace of the Riesz basis Vo, to fulfill the finite viscosity 
constraint when using 1 < a < 3. Although it is also possible to find a 
subspace of Wj (j  <  0) which is RTI for 1 < a < 3, it would be unlikely 
that mother wavelets would be required in the representation with such low 
resolution (a > 1). The above theory has enabled me to give more concise 
estimates for h, with representations for 0 < a < 1 and 1 < a < 3 given by 
equations (4.1.14) and (4.1.15), respectively.

The main part of this chapter has been concerned with the development 
of models for g\(x) and g2{x), to fit the storage and loss moduli data. As long 
as a is rational, all of the required convolutions can be calculated analytically 
via residue calculus. In this chapter I have given proofs and results for only 
selected values of o. In Chapter 5 it will be shown that a homotopic approxi­
mation can be used to construct models for the storage and loss moduli, and 
indeed the continuous relaxation spectrum, for arbitrary values of a > 0.

I have also approximated the Gaussian spectrum as a test case for my 
models in this chapter. I have shown that I can fit the Gaussian data with 
good accuracy using the scaling function part of h alone. I have then shown 
that Calderon enrichment can be introduced to give exceptional accuracy. In 
this chapter I have given results for synthetic, noise-free data. In the next 
chapter I will concentrate on real data, and also synthetic data with and 
without added noise.
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Chapter 5 

W avelet Regularization

5.1 Introduction

Regularization is required in the numerical treatment of any deconvolu­
tion problem with smooth kernel, in order to control the instability inherent 
in the inversion process. The instability manifests itself in the amplification 
of any noise in the data. Even very small amounts of noise (e.g. rounding 
error in the computer representations of real numbers) can lead to very high 
levels of noise amplification in the solution. In dealing with dynamic data 
from an oscillatory shear experiment, levels of noise of around 1 or 2% are not 
unusual, and the recovery of a relaxation spectrum is not possible without 
some form of regularization.

I will illustrate the need for, and nature of, regularization by considering 
the deconvolution problem

sech(x) ★ h(x) = g(x) (5.1.1)

where h(x) and g(x) are in L2(R). Let v(x) be the noise induced in h(x) by 
noise n{x) in g{x), i.e. assume

sech(x) * [h(x) -I- v{x)\ = g(x) +  n(x). (5.1.2)

115
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Then

sech(rr) ★ v(x) = n(x), 

and taking Fourier transforms I find that

v(p) = 1  cosh nip).

(5.1.3)

(5.1.4)

The Fourier transform of the noise in g(x) is therefore amplified exponentially 
by the growth in cosh ( | p) as p —* ±oo.

This noise amphfication is brought under control by applying a filter z(x) 
with Fourier transform zip). In the act of regularization, equation (5.1.2) is 
replaced by its filtered approximation

sech(a;) *hp(x) = 9 f (x), (5.1.5)

where gFix) and hF(x) are regularized approximations to g(x) and h(x), 
respectively, and gF{x) takes the form

gF(x) = z(x) * [g(x) +  n{x)} 

It follows immediately that

hF(p) = zip) — cosh
7T &) [g(p) + n(p)},

(5.1.6)

(5.1.7)

and consequently if a regularized approximation in L2(R) is required, the 
filter must be strong enough to ensure

zip) — cosh 
7r

n(p) —> 0 as p —> ±oo. (5.1.8)

In other words the filter 2 removes the amplified noise in (5.1.3) at high 
frequencies.

The way in which the filter zix)  is chosen is determined by the method of 
regularization. Not every regularization method ensures that the recovered
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relaxation spectrum is in L2(R). For example, in Tikhonov regularization, 
the resulting claves of filter have been described and analysed by Anderssen 
and Davies (1986 [27]). In Tikhonov’s method the Fourier transform of the 
filter can be written down explicitly in the form

%>) =  T T ^ ,  (5-1.9)

where A denotes a shape parameter, and the integer n controls the rate of 
decay of the filter. The rate of decay of the Tikhonov filter is, by defini­
tion, algebraic, and is not suited to stabilizing the exponential growth in 
noise observed in (5.1.3). Despite this, Honerkamp [43] and co-workers have 
attempted to use Tikhonov regularization in recovering the relaxation spec­
trum. Such an approach is destined to limited success since (5.1.8) can never 
be satisfied with the choice of filter in (5.1.9).

In their sparse spike deconvolution method, Baumgaertel and Winter [14], 
create a filter which cannot be written down explicitly. Nevertheless it is 
easily shown (see below) that the filter implicitly created by Baumgaertel 
and Winter is not strong enough to satisfy (5.1.8). In their approach, the 
filter is such that z(p) [J cosh (fp)] remains bounded as p —* ±oo, which 
is consistent with the representation of the regularized solution as a sum 
delta-functions.

In this thesis I mainly represent the relaxation spectrum as a wavelet 
series in the space Vo with scale o. I shall show that, as in the case of Baum­
gaertel and Winter, the filters I introduce through wavelet regularization 
cannot be written down explicitly, but, in contrast to the method of Baum­
gaertel and Winter, my filters are strong enough to guarantee that (5.1.8) 
holds.

Previous work connected with wavelet regularization includes the work 
by Shen and Walter [68] (who introduce a regularization procedure based on 
band-limited orthogonal wavelets- the Meyer wavelets) and also the work by
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Antoniadis and Fan [9] (who introduce nonlinear regularized wavelet estima­
tors for estimating nonparametric regression functions when sampling points 
are not uniformly spaced).

5.2 Continuous wavelet dictionaries

D efinition 5.1: I define the set of functions

to be a dictionary. The dictionary is characterized by its sampling rate /i and 
its scale cr. The sampling rate is the distance between the central positions 
of adjacent wavelets. Each element of the dictionary is called an atom. The 
elements of Da are linearly independent, and any d separate atoms in Da 
span a d-dimensional subspace of Vo-

In this chapter I will focus on approximating the continuous relaxation 
spectrum h(t) by selecting elements from the dictionary Da. I will show 
in the forthcoming sections that, when dealing with noisy dynamic data, 
Calderon enrichment is not required if the scale a is chosen appropriately.

Each of the atoms in (5.2.1) are convoluted with both sech (a:) and 1 +  
tanh(a:) to give a transformed dictionary Ta\

I shall choose atoms from Ta to fit the experimental values of the complex 
shear modulus. It is easily shown that the transformed dictionary Ta shares 
the same sampling rate n as the dictionary Da. In particular,

where x is a complex function whose real and imaginary parts are defined in

(5.2.1)

t<> =  { x ( x ~ kiA> e Z } , (5.2.3)

(5.2.2).
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5.2.1 Sparsity in redundant dictionaries

Complex signals often include structures that are not well represented by 
a few vectors in any single basis. Bases such as Fourier series have a limited 
capacity of sparse expression. On the other hand, dictionaries with a large 
number of atoms offer a greater likelihood of representing a function to a 
given resolution in terms of a small number of elements.

In building an approximation to a given function, there are a selection 
of algorithms which can be used to select atoms from a dictionary. When 
the atoms chosen are linearly spaced then the approximation is said to be 
linear. On the other hand, if the spacing between atoms is irregular then the 
approximation is said to be non-linear.

In this chapter I consider ra-sparse approximations for the continuous 
relaxation spectrum of the form

M<) =  l|b o ||= m , (5.2.4)
keA m  \  a  /

where T(t) = sech (t) (5.2.5)

and x \fc =  Xq ka. (5.2.6)

h(t) is a linear combination of m  atoms chosen from Da. Xk denotes the 
position of an atom; the integer k labels the atom, and k belongs to an index 
set Am with m  elements. For example, with m  = 4, one possible index set 
is Am =  {0,17,23,42}, which means that h(t) would be constructed from 
four atoms centred at x$, xn ,  x 2$ and x 42. I shall confine attention to a 
linear search algorithm, in which the spacing parameter a in (5.2.6) is an 
integer multiple of the sampling rate (i of the dictionary. x0 is the centre of 
the first selected basis function. I will give details of the search algorithm 
in Section 5.4. The approximation (5.2.4) has an associated parameter set 
{m, <7, a, x0, 60, ..., 6m_ 1}. This means that there are ra +  4 degrees of freedom 
in the approximation.
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5.3 Regularization mechanisms.

The key parameters in constructing an approximation for the continuous 
relaxation spectrum are a (which dictates the resolution of the primary ap­
proximation space Vo), m (which is the number of basis functions selected 
from Vo) and a (the spacing parameter of the representation).

The resolution, controlled by cr, is an extremely important factor in deter­
mining the sparsity of an approximation. If a low resolution approximation is 
sought after, which is associated with a large value of a , and approximate h 
from Vo alone, then if a is too large it will be impossible to get a respectable 
fit to the data in terms of a positive relaxation spectrum. In particular, if 
the resolution is too low it is impossible to resolve peaks in the spectrum 
without losing positivity.

If a high resolution approximation is preferred, which is associated with 
small values of cr, and approximate h from Vo alone, then fewer basis elements 
can generally be used to obtain a very good fit to the data. However, de­
creasing a affects the smoothness of the spectrum and if a is too small, more 
peaks in the distribution of h are obtained than can be physically justified. 
If a is too small, h is represented by a sparse set of spikes, which is analogous 
to sparse spike deconvolution [53]. There is consequently a trade-off between 
smoothness of the spectrum and accuracy when fitting the data.

A good choice of a means that h can be approximated from Vo alone and 
Calderon enrichment is not required. I have found that when dealing with 
real data, if a is too large and Calderon enrichment is needed, this can give 
an excellent fit to the data, but can give rise to significant, and physically 
meaningless, negative lobes in the relaxation spectrum. I believe this occurs 
when the resolution of the spaces Wj is too high for the level of noise in 
the data, and consequently I begin to fit the noise in the data. For the 
remainder of this thesis I will therefore aim to select an appropriate value of
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a for which Calderon enrichment is not necessary. From the Calderon-Mallat 
decomposition, it is evident that approximating h from Vo alone is equivalent 
to applying a low-pass filter to the true spectrum. This is analogous to other 
filtering methods, which were mentioned in the introduction to this chapter.

I have also found that increasing m  increases accuracy but reduces sta­
bility, and when m  gets too large I get noise amplification. Furthermore, I 
have discovered that a, the spacing parameter, can also act as a regulariza­
tion mechanism. If a is too small it can affect the numerical stability as you 
proceed along an algorithm, and if a it is too large a respectable fit to the 
data cannot be achieved.

5.4 Search Algorithm

In general I assume that the data G'(ujj), G"(ojj) are measured at N  values 
of frequency Uj, j  = 1,..., N. In this section I discuss a search algorithm 
which enables me to construct a least-squares fit to the data using atoms from 
the transformed dictionary Ta. Since Ta is infinitely-dimensional I cannot 
search the whole of Ta, and I restrict attention to a (large) d-dimensional 
sub-dictionary with d̂ $> N  m.

The d atoms in the transformed dictionary Ta are evaluated at each of 
the N  dynamic data points to give a discrete representation of each atom in 
R N. This gives us a discrete sub-dictionary, which has the form of an N  x d 
complex matrix x, i.e.

Xjk = x i x j - k f j ) ,  j  =  l,...,JV, fc =  L - d + l , . . . , L ,  (5.4.1)

where \  was introduced in (5.2.3).

The search algorithm selects m  equally spaced columns of the matrix 
X that give the best simultaneous least squares fit to the storage and loss
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moduli data. I do this by minimizing the weighted sum of squared residuals

A i(^ )
(5.4.2)

where

Ai(ij) = G'(wj) -  gi(xj),

A 2( i j )  =  G"(u>j) -  gi{xj),

(5.4.3)

(5.4.4)

where Xj = In atj and

9i(x ) = X  W  ( ~ — —)  * I1 +  tanh(rr)],
ke Arr \  a  S

92(2) = X bkT ( ~ — —) * sechM -
k€ Am \  a  /

(5.4.5)

(5.4.6)

I minimize the weighted sum of squared residuals for all possible choices 
within the dictionary for m  equally spaced atoms, and select the m  equally 
spaced atoms which give the lowest RMS error, with spacing a. This gives 
rise to an estimate for the continuous relaxation spectrum of the form

m - 1  / ,  \

h(t) =
fc=0 '  '

where T(t) = sech(t) 

and Xk =  x0 +  Jca.

(5.4.7)

(5.4.8)

(5.4.9)

For each value of m, the search algorithm calculates the least-squares 
fit to the data and subsequent RMS error for all possible values of xo and 
a from the sub-dictionary. This parameter search is explained graphically 
in Fig. 5.1, where the vertical z-axis refers to the RMS error levels. The
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selected values of x0 and a are those that give the minimum RMS error for 
the search.

I compare the data fits and their associated relaxation spectra for different 
values of m  and or. I select the smallest value of m  compatible with acceptable 
root mean square error (RMS) levels. For a chosen value of m  I will now 
compare results, for various values of cr, for a set of real data, to help establish 
methods for selecting the optimal value of a.

Figure 5.1: Parameter search. 2-axis refers to the RMS errors.
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5.5 PB1 Results

In this section I use a set of data published by Honerkamp [43]. This 
data describes a polybutadiene polymer blend, which we called PB1. The 
values of G' and G" are shown in Fig. 1.2 (pl5); the frequency range is 
2.493 < u  < 1.114 x 103 and the corresponding range of x  = In uj is 
0.913 < x  < 7.016.

Honerkamp, using a discrete method based on Tikhonov regularization 
[43], concluded that this particular polymer blend has a bimodal relaxation 
spectrum. I shall now show that wavelet analysis confirms Honerkamp’s 
conclusions that the relaxation spectrum is bimodal.

For this set of data I discovered, using my search algorithm, that the least 
value of m  compatible with acceptable RMS levels is m  = 4. This leads to 
an estimate for the continuous relaxation spectrum of the form

where Xk =  Xo+ka. For this m-sparse approximation, I found that the largest

a = \  which gives an RMS error of 1.96%, leading to a bimodal relaxation 
spectrum with a very small negative lobe (Fig. 5.2(a)). The relaxation 
spectrum is plotted on the same axis as the log-frequency axis, as a function 
of t = — In r . The spectrum shown is therefore the mirror image of the true 
spectrum as a function of ln r . The spectrum in Fig. 5.2(a) has its larger 
peak centred at T\ = 1.4 x 10-3 and the secondary peak at r2 =  1.6 x 10-2 . 
These results are not too dissimilar to those obtained by Honerkamp, whose 
has peaks centred at T\ =  8 x 10-4 and r2 =  2 x 10-2.

When I decrease the scaling parameter to a =  |  I start to get a trimodal 
spectrum (Fig. 5.2(b)), which is more prevalent when a = \  (Fig. 5.2(c)). 
When a is small enough, e.g. a = |  (Fig. 5.2(d)) I obtain an 4-mode

h(t) (5.5.1)

value of a that gives an acceptable fit to the storage and loss moduli data is
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distribution, giving an excellent fit to the data. Interestingly, the lowest 
RMS error is achieved when a = |  (for m  = 4) and not when a =  0 (the 
discrete case (Fig. 5.2(e))), which shows that the best fit to the data is not 
achieved by a discrete relaxation spectrum. The parameter values of the xq, 
a and the coefficients 6*, are displayed in Table 5.1 for each value of a.

All the spectra in Fig. 5.2 give estimates of the relaxation spectrum 
which result in acceptable fits to the data. From the point of view of fitting 
the data, there is very little to distinguish between them. Therefore, I must 
have an a priori selection criterion for choosing a. The criterion I choose is 
minimum total curvature.

a x0 a bo bi 62 bo RMS
1/2 2.95 1.20 -0.57 6.14 -1.92 3.87 1.96
1/3 2.47 1.52 -0.10 6.23 1.54 3.71 1.64
1/4 2.20 1.72 -0.02 7.69 3.48 4.36 1.35
1/6 3.77 1.27 9.47 5.08 3.41 5.56 1.24
1/7 3.73 1.23 10.48 6.26 3.54 6.77 1.28
0 3.61 1.16 3.96 3.34 1.12 3.34 1.42

Table 5.1: Parameter values which minimise the RMS error for different 
values of a (m = 4). The 6* should be multiplied by 105 for their true value.

5.5.1 M inimum total curvature as a m ethod for choos­
ing a .

The relaxation spectrum H( t ) (or h(t)) is a density function describing 
the continuous distribution of relaxation times associated with a viscoelastic 
material. Density functions which occur frequently in nature are invariably 
smooth. Consequently, to choose a value of a for a fixed value of m, I select



126 CHAPTER 5.
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(a) <t =  | ,  RMS error=1.96%. (b) a  =  RMS error=1.64%.
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(c) cr =  RMS error=1.35%. (d) a  =  RMS error=1.24%.
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(e) <7 =  0, RMS error=1.42%.

Figure 5.2: Sparse approximation of PB1 using sech dictionary, with m  =
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the smoothest spectrum that fits the data to an acceptable tolerance. This
choice normally coincides with the smallest number of peaks that gives an ac­
ceptable fit to the data. As stated in the introductory section of this chapter, 
when dealing with dynamic data from an oscillatory shear experiment, levels 
of noise of around 1 or 2% are not unusual. I therefore perceive an acceptable 
fit to the data to have an RMS error less than 2%. Consequently, I believe 
that this particular polymer is most likely to have a bimodal relaxation spec­
trum. Since a =  |  produces a bimodal spectrum with an unphysical negative 
lobe, and cr = |  produces a tri-modal spectrum, I infer from Table 5.1 that 

the optimal value of a is in the range 5 < * < 5 -
So far in this thesis, I only have analytical models for g\{x) and <72(2 ) 

for integer values of a and their reciprocals. To select an optimal value for 
cr, I constructed a homotopic approximation for the spectra and data fits, 
linearly interpolating between the values of a  — |  and cr =  | .  I then selected 
the optimal value of cr by choosing the spectrum in this range which has the 
smallest total curvature. The curvature, k(t), of a spectrum h(t) at the point 
t is given by

value of <7 that gives the minimal total curvature. By calculating the total 
curvature, T, for each spectrum in the above range (decreasing a in steps of 
0.01 from |) ,  I get minimum total curvature when cr = 0.45. Consequently, I 
believe that the optimal scale for this approximation, using merely four basis 
elements, is a = 0.45, which gives an RMS error of 1.84%. The corresponding 
relaxation spectrum is shown in Fig. 5.3(a). Here the larger peak occurs at

(5.5.2)

and the total curvature of the spectrum, T, is given by

T (5.5.3)

T  is calculated for each value of cr in the selected range and I choose the
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ti =  1.2 x 10"3 and the secondary peak at r2 =  1.7 x 10~2, which are closer 
to the values obtained by Honerkamp, compared with the values for a = 
This is illustrated in Fig. 5.3(b), where I have plotted Honerkamp’s relax­
ation spectrum [43] against my normalized homotopic approximation, as an 
increasing function of In r. In order to compare my homotopic approximation 
with Honerkamp’s spectrum, I have plotted h(—t) /h 0, where

The vertical bars displayed in Honerkamp’s spectrum denote error bars. The 
overall shape of the two spectra is similar, but an important advantage of 
my homotopic approximation over Honerkamp’s spectrum is that it does not 
predict any negative lobes.

(5.5.4)

2 4 6 8 10

0.5 -|

-0 .1  J

(a) Homotopic approximation, a  =  (b) Normalized homotopic approxima-
0.45, RMS error=1.84%. tion against Honerkamp’s spectrum.

Figure 5.3: Comparison of homotopic approximation and Honerkamp’s spec­
trum.
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5.5.2 Super-resolution

The concept of super-resolution is another important factor in deciding 
upon an optimal value of a.

Theorem 5.1: Shannon, Whittaker [53]. If the support of h is included

whose Fourier transform has finite support) can be recovered completely 
from its sampled values h(ns). I shall now show that both h(t) given by
(5.2.4)-(5.2.6) and 92(00) given by (5.4.6) are essentially band-limited.

From (5.2.4) and (5.2.5), and by using (2.1.13) and the scaling and trans­
lation properties of the Fourier transform (see Table 1.1), I obtain

in [ - 7 - f] >then
n=+oo

where

s is the sampling rate of the data and the range [—7 , 7 ] is known as the 
Nyquist range of the data. This means that a band-limited function (one

ftfcsech

which is windowed by the function sech ( ^ p )  . Hence h(t) is essentially band- 
limited. Furthermore, from (2.1.26), we have

=  sech airbke (5.5.7),—iaxkP (5.5.7)

(5.5.8)

Substituting the above equation into (5.5.6), I obtain
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This shows that g^ip) is windowed by the function sech ( f p) sech (%fp) and 
hence 92(2) is also essentially band-limited.

I can now address the question of resolution. If a function is band-limited 
or essentially band-limited, then its resolution is determined by its Nyquist 
bandwidth or its essential bandwidth. The larger the bandwidth (the broader 
the window) then the smaller the sampling interval in the Shannon-Whittaker 
theorem. High resolution therefore corresponds to a broad window, and 
low resolution to a narrow window. The window in (5.5.6) is broader than 
the window in (5.5.8), which means that the level of resolution obtained in 
approximating the spectrum is greater than the level of resolution obtained 
in approximating the loss modulus. Another way of stating this is to say that 
the resolving power of the dictionary Da is greater than the resolving power 
of the dictionary Ta. This is clearly evident from Figs. 5.2(a) and 5.3, where 
the two peaks are clearly resolved, whereas the two peak structure in p2(^) 
is hidden. It is interesting to observe that the functions h and #2 correspond 
to the same function resolved at different scales.

In the modern signal processing literature, e.g [53], the term super­
resolution seems to be widely used to describe the enhanced resolving power 
introduced in the previous paragraph. Formerly, this would have been de­
scribed simply as resolution enhancement. In this thesis, I shall use the 
term super-resolution to describe spectral extrapolation beyond the Nyquist 
range of the data [1]. In particular, I shall say that super-reso lu tion  oc­
curs w hen th e  Fourier tran sfo rm  of th e  recovered function  h(t) lies 
ou tside th e  N yquist range of th e  d a ta .

In this context, it will become clear that super-resolution can be con­
trolled by the choice of the scaling parameter a. Super-resolution occurs 
when not all of the area of the window function of h is contained within the 
Nyquist range of the data. I can consider the amount of super-resolution to 
be the percentage of the area of the window function that lies outside this
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range. Then the amount of super-resolution for a particular value of a can 
be calculated as follows. Applying property (1.5.3) to equation (2.1.13), we 
see that

The percentage of super-resolution, SR,  for a particular value of a can then 
be expressed as

become narrower. As a consequence, its Fourier transform gets wider and 
the amount of super-resolution increases. This is displayed in Fig. 5.4, for 
a sampling rate s = 0.5. When a =  | ,  over 99% of the area of the window 
function is confined to the Nyquist range. But, as o decreases, more and 
more of the window function lies outside the Nyquist range. When o = | ,  
less than 37% of the area of the window function is confined to the Nyquist 
range, and when a =  less than 10% of the area is confined to the range.

then in the limit as a —> 0 the basis functions for h become 5-functions. Also, 
because

as a —> 0, h(p) has infinite support and is way beyond the limit of the 
sampling theorem. Consequently, here is another argument against using

(5.5.10)

S R  = 1 — ^  I  sech dp x 100%, (5.5.11)
8

where s is the sampling rate of the data.
It is clear from this definition that there will always be a certain amount 

of super-resolution. As the value of a decreases the basis functions for h

Since

(5.5.12)

6(t)(p) =  1 (5.5.13)
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Figure 5.4: Window function for a =  1/2, a = 1/8 and a =  1/32 against 
Nyquist limit for 5 =  1/2.

the ^-functions as basis functions for h , since the value of cr =  0 includes all 
frequencies and gives maximum (100%) super-resolution.

Using the translation property of the Fourier transform (see Table 1.1), 
equation (5.5.6) can also be expressed as

h(p) =  ansech  ( ^ - p j  bk [ 6 ( t - a x k)]A (p).  (5.5.14)
fc€Am

Therefore h{t)  can be expressed in the form

h(t )  =  sech ( — j ★ bk8(t  — a x k). (5.5.15)
ke\m

This shows that the approximation for h(t )  is just a set of (5-functions win­
dowed by a sech function.

The sampling rate of the PB1 data is approximately s = 0.38 and hence 
the Nyquist limit of the data is n / s  «  8.24. Consequently, using (5.5.10),
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the percentage of super-resolution for each value of a is calculated from the 
equation

r* 8 .2 4

S R 1
/ * 8 .2 4  . .  -|

— / sech ( —np) dpi x 100%. (5.5.16)
2 J— 8 . 2 4  ' 2  /  J

The results are listed in Table 5.2 for the various values of cr. Since the recov­
ered spectrum for o =  0.45 was achieved through homotopic approximation, 
the subsequent amount of super-resolution was estimated accordingly, lin­
early interpolating between the super-resolution values for a = \  and cr =  | .  

For different values of a, an illustration of how much super-resolution that is 
taking place is given in Fig. 5.5, where in each case I have plotted h(p) (in 
blue) and its unwindowed trigonometric polynomial (in red). The Nyquist 
range of the data is the interval between the two vertical bars. These graphs 
show that if cr is too small then the effective bandwidth of the spectrum 
is wider than the Nyquist bandwidth of the data, resulting in significant 
super-resolution. When a =  0 there is no window function.

In general, when recovering the continuous relaxation spectrum from ex­
perimental data, I try to avoid super-resolution as much as possible. For 
the PB1 data, a value of S R  less than 1% would seem to be acceptable. By 
comparing Figs. 5.1 and 5.2 with Fig. 5.4 and Table 5.2, it can be seen that 
when a value of a leads to a value of S R  > 1%, there are more than two 
lobes in the relaxation spectrum.
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(a ) ( J = \ .  (b)<r=±.
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1.x i tf

(e) cr =  0. (f) a  — 0.45. Homotopic approxima­
tion.

Figure 5.5: Effect of windowing function. Trigonometric polynomial (red), 
h{p) (blue) and the Nyquist bandwidth of the data (bold black).
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a Super-resolution (%)

1/2 0.20

0.45 0.65

1/3 1.70

1/4 5.00
1/6 14.66

0 100

Table 5.2: Percentage of super-resolution for each of the approximations in 
Fig. 5.2.

5.6 Results from other datasets

5.6.1 PB2 data

This set of data from a polybutadiene melt (Fig. 5.6(a)) was sent to us 
by John Dealy, and was obtained by Christopher Robertson at Bridgestone, 
Akron, Ohio. The data has a similar shape to PB1 data, but was collected 
over a different frequency range.

For this set of data I discovered, using my search algorithm, that the least 
value of m  compatible with acceptable RMS levels is m  = 5. This leads to 
an estimate for the continuous relaxation spectrum of the form

h(t) =  ^  frfcsech ^ , (5.6.1)

where Xk = +  ka. With a = \  I get a good fit to the data, with an RMS
error of 1.89%. This leads to a bimodal continuous relaxation spectrum 
(Fig. 5.6(a)) which has a remarkably similar shape to the optimal spectrum 
obtained from PB1 data. The sampling rate of the PB2 data is s «  0.46 
and hence the Nyquist limit of the data is 7r/s «  6.82. Consequently, using
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(5.5.10), the percentage of super-resolution for this optimal value of o is given 

by
• 6.82

SR = i r  82 / i  \
1 — -  / sech I -7 rp I dp 

4 6_82 \4  /
x 100% «  0.60%.

This means that over 99% of the area of h(p) is contained within the Nyquist 
range of the data. This is also illustrated in Fig. 5.6(b).

200000-
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(b) Super-resolution.
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(a) a  =  RMS error=1.89%.

Figure 5.6: Sparse approximation of PB2 relaxation spectrum with m = 5 
and a = \  (a). Effect of windowing function (b); trigonometric polynomial 
(red), h(p) (blue) and the Nyquist bandwidth of the data (bold black).
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5.6.2 Honerkamp A

Honerkamp A data is a set of synthetic data produced by Honerkamp [43]. He 
invented a bimodal spectrum (a double-Gaussian) and then obtained G'(u) 
and G"(u) directly from it. A large amount of noise was added to the data 
(approximately 4%). His spectrum is of the form

1 /  T (* +  ln20)2l f (t — In5)2] \
h(t) = = r p +exp )

(5.6.3)

I fitted this noisy data to my models to see how well the double-Gaussian 
spectrum could be recovered. To approximate this spectrum I have discov­
ered that the most accurate reconstruction is obtained when o = 1 (J  =  0). 
For this value of a, I require sech triplets in Vo to approximate h. I found 
that the sparsest approximation that gave an acceptable fit to the data was 
achieved when m  = 2. Using our search algorithm, the best fit to the data 
was obtained with a = 4.64, xo = —1.62, and b = 1.75 in the sech triplet. 
I obtained a fit to the data of 5.13%, plotted with the recovered spectrum 
(blue) in Fig. 5.7(a). Although the above parameter values led to the best 
fit to the data, an improved reconstruction of the spectrum was discovered 
when using a = 4.57, x0 = —1.55 and b = 1.95 (see Fig. 5.7(c)). However, it 
was obtained through a poorer fit to the data, where the RMS error in the 
data was 5.58%.

Super-resolution and RTI wavelets

When using o > 1, we express the continuous relaxation spectrum as a sum 
of sech triplets, namely
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Taking the Fourier transform of h(t), we obtain

h(p) = sech ("Tpp) 1 — sec^ c o s (crbp) a^b^e
k&Am

-1 ( 7 X 1 kP

(5.6.5)

which is again a trigonometric polynomial, windowed by the function 

sech (^fp) •
The amount of super-resolution in both of these approximations is ex­

tremely small. The Fourier transforms of the approximations in Fig.’s 5.7(a) 
and 5.7(c) are plotted in Fig.’s 5.7(b) and 5.7(d), respectively. The sampling 
rate of the double Gaussian data is s «  0.48 and hence the Nyquist limit 
of the data is 7r/s «  6.59. The effect of the window function in both cases 
is substantial, as almost all of h(p) is contained within the Nyquist range 
of the data. In Fig.’s 5.7(b) and 5.7(d), the trigonometric polynomials are 
plotted in red, h(p) in blue and the Nyquist bandwidth of the data is plotted 
in bold black. Using (5.5.10), I can calculate the amount of super-resolution 
in each recovery. For both approximations, we have S R  «  0.0040%, which 
is extremely small.

5.6.3 Double Log-Normal Spectrum  Approxim ation

I now give another example of how well my models can fit synthetic data 
using our search algorithm. The double log-Normal distribution

was used by Stadler & Bailly [70]. To approximate this spectrum I have 
discovered that the most accurate reconstruction is obtained when a = cr0 =  
2 (J  =  0). Since a > 1, I require sech triplets in Vo to approximate h. The 
data I was given did not contain noise, so I used an unweighted least squares

1000 exp — i ( t  +  3 In 10)2 j  (5.6.6)
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Figure 5.7: Sparse approximation of Honerkamp A spectrum using noisy data 
with m  = 2 and <7 = 1.
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fit to the storage and loss data in the search algorithm, by mininmizing the 
unweighted sum of squared residuals

y ; [ A 1(xi )]2 +  ^ [ A 2(xJ.)]: (5.6.7)

where Ai(xj) and A2(xj) are defined in (5.4.3) and (5.4.4). Using my search 
algorithm, with b = 4 in the sech triplet, I found that the sparsest approxi­
mation that gave an acceptable fit to the data was achieved with m  = 2. I 
obtained this two term approximation to the above spectrum with a = 6.91 
and x 0 = —4. I obtained a fit to the data with an RMS error of 0.33% (Fig. 
5.8(a)) and a recovered spectrum (Fig. 5.8(b)) with a fit to the Gaussian with 
an RMS error of 0.77%, with a maximum error in the recovered spectrum of 
1.65 x 10"2 (Fig. 5.8(c)).

The amount of super-resolution in this approximation is incredibly small. 
The Fourier transform of the approximation is plotted in Fig. 5.8(d). The 
sampling rate of this double Gaussian data is s «  0.47 and hence the Nyquist 
limit of the data is ir/s «  6.63. The effect of the window function is huge, 
as almost all of h(p) is contained within the Nyquist range of the data. In 
Fig. 5.8(d), the trigonometric polynomials is plotted in red, h(p) in blue 
and the Nyquist bandwidth of the data is plotted in bold black. Using 
(5.5.10), I can calculate the amount of super-resolution in the recovery as 
S R  »  1.16 x 10“7%.

Because there is no noise in the data, I could use Calderon enrichment 
to improve the accuracy of both the data fit and the spectrum recovery. 
However, since I can get such a good recovery of the double log-Normal 
spectrum using sech triplets alone, Calderon enrichment is not necessary.
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Figure 5.8: Sparse approximation of double Gaussian spectrum using noise- 
free data, with m  = 2 and a = 2.
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5.7 Conclusion

In this chapter the concepts of sparse approximation and dictionaries have 
been introduced and implemented. I have explained the need for regulariza­
tion mechanisms in the ill-posed problem of relaxation spectrum recovery. 
The most important regularization parameters involved are the scale cr and 
the sparsity m. It has been shown in this chapter how a acts as a regular­
ization parameter. From using both real and synthetic data, it is evident 
that if the value of a is too high I get a poor fit to the data and do not 
capture enough information about the resulting spectrum. Conversely, if a 
is too small I get substantial superresolution, a concept that has also been 
introduced in this chapter. I will show in chapter 6 how the sparsity m  and 
the spacing parameter a act as regularization parameters.

To select an optimal value of a for a chosen value of m  I select the 
smoothest spectrum that fits the data to an acceptable tolerance. If I choose 
a small enough I can always obtain m  peaks in the distribution, but not all 
of these peaks are supported by the underlying data. My philosophy is to 
choose the smallest number of peaks that gives an acceptable fit to the data.

When it is clear that the optimal level of resolution is cr ^  ^ (cr < 1), I 
have developed a method for choosing a more accurate optimal value of cr. I 
construct a homotopic approximation for the spectra and data fits, linearly 
interpolating between the originally selected value of cr (where the spectrum 
contains the smallest number of peaks that gives an acceptable fit to the 
data) and the nearest known smaller value of cr (where there is at least one 
extra peak). I then select the optimal value of a by choosing the spectrum 
in this range which has the smallest total curvature.

I have introduced the concept of super-resolution, which is connected 
with part of the Fourier transform of the spectrum lying outside the Nyquist 
range of the data. When recovering the continuous relaxation spectrum



5.7. CONCLUSION 143

from experimental data, I try to avoid super-resolution as much as possible. 
I believe that a value of super-resolution less than 1% is an acceptable value, 
since zero super-resolution is impossible when estimating the spectrum as a 
sum of hyperbolic wavelets.

I have given four sets of results for fitting data from real data, synthetic 
data with added noise, and synthetic noise-free data. I fitted the data using 
a basic search algorithm, which selects m  equally spaced basis functions to 
give the best simultaneous least squares fit to the storage and loss moduli 
data. In chapter 6 I will introduce other search and pursuit algorithms.

In this chapter we have focussed on a particular search algorithm. In 
Chapter 7, I will introduce other algorithms I have used in the recovery of 
the continuous relaxation spectrum.



CHAPTER 5.



Chapter 6

Other D ictionaries

So far in this thesis I have restricted attention to one dictionary - the 
sech-dictionary. In the current chapter I investigate other dictionaries in 
terms of whose atoms the relaxation spectrum can be expressed. There is 
a very important reason for considering more than one dictionary, namely, 
consistency of results. If similar estimates for the spectrum can be found 
by using more than one dictionary, then their consistency of representation 
enables greater confidence to be placed in the result.

I choose the sech-dictionary because, at scale <7 =  1, the Mallat term in 
the Calderon-Mallat decomposition is proportional to G"(uj). This enables 
me to present the Calderon term as a correction term for the FK approxi­
mation for the spectrum. A natural extension of the sech-dictionary is the 
sechn-dictionary (n-th power of sech). These dictionaries enable me to find 
correction terms for higher order differentiation formulae (due to Schwarzl 
and Staverman [67], and Tschoegl [74]). The sechn-dictionaries are derived 
in Section 6.2.

In this chapter I will focus on constructing wavelet dictionaries based on 
the Mallat part of the Calderon-Mallat decomposition. This means that the 
continuous relaxation spectrum is represented by father wavelets alone (as
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was shown in Chapter 5).
In Section 6.1 I give an example of a sub-hyperbolic dictionary, namely 

the x  cosech dictionary. The factor x  means that the atoms have a slightly 
slower rate of decay than exponential - hence sub-hyperbolic. In Section 
6.3 I give examples of super-hyperbolic dictionaries with atoms of the form 
x~l tanh(x)sech2n-1(x).

6.1 The x  cosech dictionary

In Chapter 3 I introduced the scaling function <f)*{x) = sech(x), which 
was then used in the recovery of the continuous relaxation spectrum. If

<p(x) = sech(x), (6.1.1)

then from Table 4.2, I obtain

4>*(x) =  sech(x) * sech(x)

=  2xcosech(:r). (6.1.2)

sech(x) and its autoconvolution 2xcosech(x) are plotted together in Fig. 6.1, 
where both functions have been normalized to have unit area. The auto­
convolution of sech(x) is a broader function than sech(rr). The factor x  
means tha t the scaling function 2xcosech(x) has a slightly slower rate of 
decay than sech(x), which has exponential decay. Hence I call ^cosech(rr) 
a sub-hyperbolic father wavelet. Using the convolution property of Fourier 
transforms from Table 1.1, the Fourier transform of <f>*(x) is given by

(f>*{p) = 7r2sech2 • (6.1.3)

The cross-paired mother wavelet for (f)*{x) is given by

4>*(x ) =

= 2a:cosech(x) [2 — zcoth(a;)]. (6.1.4)



6.1. THE X  COSECH D IC TIO N ARY  147

0 3 ;

0.1

-10 5 0 5 10

Figure 6.1: xcosech(x) (blue) against sech(x) (red), where both functions 
have been normalized to have unit area.

These cross-paired wavelets are plotted below in Fig. 6.2. Using the theory 
behind Section 3.5, it is not possible to give a closed form for the conventional 
mother wavelet pairing, B{x), for = 2xcosech(x). However, in a similar 
fashion to Section 3.5, I can compare the two mother wavelets in Fourier 
space. Using Table 1.1, we derive

— (x[sech(x) ★ sech(x)]) 
ax ip)

= ~pi[sech(p)f

=  - n2pTPsech2 & )

= 7r3p sech2 (^ p )  tanh Q p )  . (6.1.5)
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-10

-0.5-

Figure 6.2: (j)*(x) (red) against ip*(x) (blue).

Furthermore

B \ p )  = (x[sech(x) ★ sech(:r) ★ sech(x) * sech(a:)]) 

d r-—r , 4

A

ip)

=  - % [ sech^ ]

= - ^ sech4( ip)
=  27r5p sech4 ( t̂ p)  tanh (r^pj

. . B (p) =  v^br^sech2 y p ta n h  { ^ P j-  (6.1.6)

These two functions derived in (6.1.5) and (6.1.6) are plotted below in Fig. 
6.3, to compare the two mother wavelets in the Fourier domain.

I will now show that the cross-paired wavelets (-0*,0*) defined in this 
chapter satisfy the respective constraints of wavelet frames and Riesz bases. 
I will compare results with those obtained from the cross-paired wavelets 
introduced in Chapter 3.
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Figure 6.3: B(p) (blue) against ip*(p) (red).

6.1 .1  W avelet fram es

Definitions. Let \F* denote the set {V^aJ o.aOgz2, where

^*(x) =  2xeosech(x)[2 — a;coth(x)], (6.1.7)

Let B* denote the set {Bj,k}(j,k)ez2i where

B(pc) ★ B(x) = (x[sech(:r) ★ sech(x) * sech(a:) * sech(x)]). 
ax

(6 .1.8)

Let the sets B and M  be defined as they were in Section 3.6.
Theorem  6.1. The sets \I>* and B* each define frames of L2(M) for a 

sampling rate a <  2.
T heorem  6.2. With a sampling rate a <  frame B is tighter than 

frame VP, which is tighter than frame B*, which is tighter than frame 
which is tighter than frame M.
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Theorem  6.3. With a sampling rate § <  a <  2, frame B* is tighter 
than frame \£*, which is tighter than frame B, which is tighter than frame 
M, which is tighter than frame \P.
R em ark: Theorem 6.1 is also true for certain sample rates a > 2. In
particular, there exist threshold values of a, namely a > 2 and as* > 2,
for which
(i) V* is a frame for all 0 < a < a^*;
(ii) B* is a frame for all 0 <  a < a^*.

I have used Daubechies’ necessary and sufficient conditions (equations 
(3.6.4)-(3.6.7)) to calculate the frame bounds for and B*, for certain 
values of the sampling rates, and with normalizations ||^*||2 =  ll-^lb =  1- 
These are shown in Tables 6.1 and 6.2. Theorems 6.1, 6.2 and 6.3 are now 
easily established by viewing the frame bounds shown in these tables, and 
from the frame bounds shown in Tables 3.1-3.3.

sampling rate (a) A q Bo Bo/Ao
2 6.915 7.250 1.048

3/2 9.369 9.517 1.016

1 14.067 14.261 1.014

1/2 28.135 28.521 1.014

1/4 56.270 57.043 1.014

Table 6.1: Estimated frame bounds for the hyperbolic wavelet ipj k(x), defined 
in (6.1.7).
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sampling rate (a) ^0 Bo B q/ A o

2 10.597 10.762 1.016
3/2 14.213 14.265 1.004

1 21.326 21.390 1.003
1/2 42.653 42.780 1.003
1/4 85.305 85.561 1.003

Table 6.2: Estimated frame bounds for the hyperbolic wavelet B j ik(x),  de­
fined in (6.1.8).

6.1.2 R iesz basis

The set {<j>j)k}kez, where

4>*{x) = 2xcosech (x ) , (6.1.9)

is a Riesz basis of the space Vj  C L 2(M). In particular, the set {(f>l)k}kez is a 
Riesz basis of the space Vo it generates, since

o o

Va>e [—7T, tt], 8.56 x 10“8 <  |f*(w -  2*7r)|2 <  f t  (6.1.10)
fc=—OO

where j3 = 1 to 15 decimal places. The above basis has been normalised 
in the sense that ||0o fell =  1. When compared to the Riesz bounds for the 
sech basis in Section 3.6, it is clear tha t in the above case the lower bound is 
much closer to zero and the upper bound is much closer to 1. This is because 
the autoconvolution of sech(x) is wider than sech itself and, consequently, 
the Fourier transform of the autoconvolution is narrower than the Fourier 
transform of sech itself. Therefore the wider the basis function (f>*(x) the 
smaller the essential support of the Fourier transform and the closer the 
lower and upper Riesz bounds get to 0 and 1, respectively. To emphasize 
this point further, if I choose an even wider basis function, e.g.

</>*(x) = sech (x) ★ sech (x) ★ sech (x ),
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then the set {(f>o^}kez is a Riesz basis of the space Vo, the subsequent lower 
Riesz bound of 1.77 x 10~n  is even closer to zero and the upper Riesz bound 
is equal to 1 to a staggering 23 decimal places. For consistency, in all of the 
calculations of the Riesz bounds I have kept to 40-digit arithmetic on Maple.

6.1.3 Tw o-scale relations

The cross-paired wavelets {^*, </>*}, defined by (6.1.4) and (6.1.2) do not 
satisfy the two-scale relationships (3.7.5) and (3.7.6). Nevertheless, the cross­
paired wavelets {■?/>*, <f>*} do satisfy equations (3.7.5) and (3.7.6) in an approx­
imate sense. In particular, if the coefficients {a*,, 6*,} are chosen as the Fourier 
coefficients given in (3.7.11) and (3.7.12) then, although the residuals in the 
two-scale relations will not tend to zero as k —► oo, they will be extremely 
small. Using (3.7.20) and (6.1.3), it can be shown that

kin
3 n=oo

7 1 =  — OO ~
L [sech2 (f1* ■+ 4™0 - sech2 (jip ■+ 4™0 sech2 ( f  p)

< 2 x 1CT7. (6.1

Similarly, using equation (3.7.23) and (6.1.5), I obtain

5 71=00 -27T^5 n=oo -27r f
=  — / < (p +  47rn)sech2 \p +  47rn]J tanh [p +  47rn]J

7 1 =  — OO — 27T V

< 2 x 10"6. (6.1.12)

This shows that the new cross-pairing of wavelets, derived in this chapter, 
give a smaller error in the two-scale relations than the original cross-pairing 
of wavelets derived in Chapter 3. Consequently, this new wavelet pairing can 
also be used to construct an essential multiresolution analysis.
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6.1.4 R eal-tim e in tegrability

For the father wavelet = t cosech (£) to be RTI, I require a such
that

e dt < oo.f  t cosech ( | )  

Manipulating the integrand of (6.1.13), I obtain

(6.1.13)

t cosech =  2t exp
r \  \ i r to
m  — 1 (exp —

.  V*7 ) . V a
-  1

- l
(6.1.14)

To avoid the integrand becoming infinitely large as t —► — oo, I require 0 < 
a < 1. Thus, <p*(t) is RTI when 0 <  a < 1. Similarly for the mother wavelet 
ip*(t) = t cosech (£) [2 — I  coth (£)] to be RTI, I require a  such that

j ° °  t cosech ^  2 —^ c o t h ( ^ e tdt < oo. (6.1.15)

Again this constraint is fulfilled when 0 < a  <  1. Consequently, the basis 
elements in (6.1.16) are only RTI when 0 <  a < 1. Since t cosech (J:) is 
a much wider function than sech (£) for the same value of cr, I have not 
required a value of a > |  in the new basis functions for the data I have 
utilized. I have therefore had no reason to investigate whether there is a 
subspace of the Riesz basis Vo which is RTI for cr > 1.

Using the definition of 4>*i k in (3.8.2), I keep Vo as our primary subspace, 
by varying cr0 accordingly. I have now satisfied the necessary constraints to 
enable me to obtain a representation for h(t) which resembles a discrete form 
of the Calderon-Mallat decomposition

h(t) € Z, <Tq G R.
i  *j> 0

(6.1.16)
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6.1.5 Transformed dictionaries

In a similar fashion to Chapter 4, I form models for g\{x) and <fc(a:), in
order to fit the storage and loss moduli data. The above estimates for h are
convoluted with both sech (a:) and H -tanh(x) to form atoms of a transformed 
dictionary x-

Scaling function convolutions for G'

To develop the part of the model for g\{x) emanating from the scaling 
function part of h, I require the following convolutions for different values of 
a\

2xcosech ^ ★ [1 +  tanh(x)]

=  sech ^ ★sech ^ ★ [1 +  tanh(rr)]

=  ^jsech ^  (0) +  sech ^ ★sech ★tanh(x)

=  (cr7r)2 +  sech ^ ★sech ^ ★ tanh(x). (6.1.17)

The convolution

sech ^—̂  ★ sech ^—̂  ★ tanh(x) (6.1.18)

can be obtained from the convolution theorem for Fourier transforms using 
the distribution theory developed in section 2.1. As a consequence of (2.1.22),
I can write

[tanh(x)]A(p) =  —27rcosech > (6.1.19)

and

sech 0 )  ★sech 0 )  ★tanh(x) (p) =  ̂ sech  ̂(p) [tanh(z)]A (p)

=  — icrV sech2 (~^~p'j cosech •

(6 .1.20)
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By taking the inverse Fourier transform I obtain

cosh2 ( j fp )  sinh ( |p )  ^

e ipx

(6 .1.21)

I shall now calculate this integral for different values of a. Let

^  cosh2 ( ! f z )  sinh ( f  z ) '

glXZ
(6 .1 .22)

Using (4.2.9) and (4.2.10), it can be seen that f ( z )  has simple poles at z =  
2mi, m G N, and double poles at z =  m  G N+

C ase (i): a = n = 2m, m  G N+

I use the indented contour displayed in Fig 4.1. f ( z )  has n simple 
poles at 2 =  2mi (m G N \  {^}, m  <  n), and one pole of order 3 at £ =  ni.

Using (4.2.13), I find tha t the residue at the simple poles of f ( z )  is

Let S(z) = where

(6.1.23)

h(z) = sinhf — z \ . (6.1.24)

Res{/(z); 277iz} =  - ( - l ) m
7T

e—2 mx

COS2
(6.1.25)

Since there is a triple pole eX z — ni, I consider a Laurent expansion of f( z )
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at 2 =  ni. Using equations (4.2.14)-(4.2.16), this gives

8 n2
7T'"

( - 1)2+12
e nx [l 4  ix{z — ni) — | x 2(z — ni)2 4  ...]

(z -  ni)3 [1 4  g ( z  -  ni)2 4  ...] [l 4  ± ( ^ ) 2 (z -  ni)2 4  ...] 

e~nx [l 4 - ix{z — ni) — \ x 2{z — ni)2 4  ...]
® 2 -(-i)l+ » ______________________________________T
n3 (z -  ni)3 [l 4  ( f  ) 2 (I  4  3̂ )  (z -  ni)2 4  ...]

8 n2
tt3(z  —  n i ) 3

{ - l ) ^ +1e~nx x

1 4  ix(z — ni) — ~  n*)2 +  ••• 1-(D*G + 3̂ ) (* - ™ )2 +  - .
(6.1.26)

The residue of f ( z )  at the double pole z = ni is equal to the coefficient of 
(z — m )_1 in the Laurent expansion. Consequently,

Q„2
Res (f ,n i )  = ^ ( - l ) 2

7T

7T\ 2 ( \

6 3n22 V2

( n x f  +  ^  (" 2 +  2) (6.1.27)

Note that

lim f  f ( z )d z  = 27rRes{/(z); 0} =  2i, (6.1.28)
^ % £1

lim f  f ( z )d z  = i7rRes{f(z);2ni} = 2ie~2nx. (6.1.29)

I now use Cauchy’s residue theorem, with R, 5  —► oo independently and
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ei,e2 —► 0. Using (4.2.23), I find tha t

/ oo e ipx r

o o  cosh2 (£ p )  sinh (%p) dp J_

gix(p+2ni)

cosh2 p) sinh ( f p) cosh2 ( ^ ( p  +  2m)) sinh ( f  (p +  2m))
dp

=  [ 1 - e —2nx
,tpx

cosh ( i b ) s in h (fp )
dp

=  2m

/ .

1 1 n —1 2fcx
_  +  _ e_2nx +  -  y v - l ) fe- * . +  4 ( - l )
7r 7T 7T “  COS2 (^ 7r) 7T3fc=l

MS
( ^ ) 2 +  J2 (n2 +  2)

3tpx

- o o  cosh2 ( i p )  sinh (fp) 
(

7~XdP

=  *cosech(nx)
n —1

=  2*cosech(na:) I — (—1) 2

.  g (2̂  w)x ^
e”  +  e"“  +  2 ^ ( - 1 ) *  ,  +  - ( “ I)'

COS2 (^ 7r) 7T

+  cosh(nrr)

fc=l
MS

(^)2 + (n2 + 2)12

\

/

7T ( ^ ) 2 +  (n2 +  2)

S - i

k= 1 
n >4

COS
cosh([n — 2fc]x) ].

(£*)

(6.1.30)

Using equations (6.1.17) and (6.1.21), I finally obtain 

sech (n x ) ★ sech (n x ) * [1 +  tanh(x)]

=  ( 0  | l + c o s e c h ( n r r ) ^ ( - l ) §  (nx)2 +  ^  (n2 +  2)

2_1 (—I)* \  1
+  cosh(mr) +  2 V  — . cosh([n — 2fc]a?) I >.

COS ( n V  )  J
(6.1.31)

The results for n = 2 (j =  1) and n = 4 (j =  2) are displayed in Table 6.3. 
Also, the result for n = 2 is plotted in Fig. 5.4 (in red).
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C ase (ii): a = J, r = 2m  +  1, m € N

-dp. (6.1.32)

The integral I now have to calculate is
e ipxrJ  — iL oo  cosh2 (£ p )  sinh (fp)

For this case I use the same indented contour as shown in Fig. 4.1, except 
for the height of the contour is now 2ri. Let

^  =  cosh2 (£ z )  sinh ( f  z ) ' (6.1.33)

f ( z )  has r+1 simple poles at z  = 2mi (m € N, m  < r) which have the same
residue as shown in (6.1.25) (n exchanged with r), and one double pole at
z = ri. Note that

lim f  f ( z )d z  = m Res{/(^); 0} =  2i, (6.1.34)

lim f  f ( z )d z  = iTrRes{f(z);2ni} = —2ie~2nx. (6.1.35)
€2- * % 2

In order to calculate the residue at the double pole, I consider a Laurent 
expansion of f ( z )  at z  = ri. To enable me to do this, I require the Taylor 
series expansion of sinh ( f  2) at z =  ri, which is given by

sinh ^  cosh ( ^ r ®) (z ~~ r *) “l~ \  ( ^ )  s*nk ( ^ r *) ~  r ^ 2

=  ( - 1 ) ^ *  [l +  \  ( | )  (z -  r *)2 + - J  (6.1.36)

Using equations (6.1.36), (4.2.14) and (4.2.15), I find that the Laurent ex­
pansion of f ( z )  at 2 =  ri is given by

^ ( - l ) ^ e- r l H + i x ( z - r i )  + ...}
7T (z — rz)z

Consequently,
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Using Cauchy’s residue, with R , S - ^  oo independently and ei,e2 —► 0 ,1 find 
that

e ix(p+2ri)

JJ — c

,tpx

cosh (g:p) sinh (fp )
dp - fJ — C cosh2 (^p(p +  2ri)) sinh ( f  (p +  2ri))

dp

= [1 +  e-  ]
/ . 7 3_oo cosh2 (£ p ) sinh ( | p)

=  271'i

L

I  _  l e-*«  +  2 +  / 2 r V  ( _ 1}
^  ̂ ^ COS (r71’) V ^ /

2 xe

3tpx

_oo cosh2 (£ p ) sinh (fp)
dp

r—1

fc=l COŜ

2r2

(W
r—1 

2

7T

( - 1)'= 2isech(rx) I — (—l ) r2 x +  sinh(rx) +  2 . sinh([r — 2k\x) ).
V 1 COS ( r * )  J

r> 3

(6.1.39)

Using equations (6.1.17) and (6.1.21), I obtain

sech (r x ) ★ sech (r x ) ★ [1 +  tanh(x)]

=  ^ ^1 +  sech(rx) (—l ) 1̂ x  +  sinh(rx)

r—1 
2

+2 H  V sinh([r -  2fc]x)
^  COS2 (* 7 r )fc=l
r>3

(6.1.40)

The result for r  =  1 (j =  0) is given below in Table 6.3.

Scaling fu n c tio n  convolu tions for G"

To develop the part of the model for p2(x) emanating from the scaling 
function part of h, I require the following convolutions for different values of
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sampling rate (j) <f>j)0(x) ★ [1 +  tanh(o;)]
0 7r2 ( l +  sech(o;) [sinh(o;) — |x ] )
1 \  [7r2 +  cosech(2x) (7r2 [cosh(2o;) — 1] — 8a;2)]
2 ^  [7r2 +  cosech(4x) (n2 [cosh(4o;) — 4cosh(2o;) +  3] +  32a;2)]

Table 6.3: Scaling function convolutions for fitting G' data.

a:

sech ^ ★sech  ̂ ★sech(x). (6.1.41)

By taking the Fourier transform of (6.1.41), and using the convolution theo­
rem, I find that

sech  ̂★sech ^ ★sech(:r) (p) = cr27r3sech2 sech ■

(6.1.42)

By taking the inverse Fourier transform I obtain 

sech 0  *sech 0 )  *sech(*) =  ^  j T
0ipx

cosh2 p) cosh ( |p )
dp.

(6.1.43)

I shall now calculate this integral for different values of a.
Case (i): a = n =  2m, m e  N+
I use the contour displayed in Fig 4.2. Let

^  cosh2 ( i 2) cosh ( f z ) ' (6.1.44)

Within the contour 7 , f ( z )  has n simple poles at 2 =  (2m +  1 )i (m e  N, 
m < n — 1) and a double pole at z =  ni. Let f ( z )  = where

eizx
9{z) =

cosh2 ( )  ’ 
h(z ) =  cosh ( ? ^ )  •

(6.1.45)

(6.1.46)
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Then

Res {f(z);  (2m +  1)«} =
g[(2m +  l)i] 
h'[(2m +  l)i]
2 g—(2m+l)x
7r cosh2 ( 2^ 1 ni) sinh ( 2™+ 1 7ni) 

o „-(2m+l)i
=  f ( _ _________.

5T COS2 ( ^ J r )
(6.1.47)

In order to calculate the residue at the double pole, I consider a Laurent 
expansion of f ( z )  at 2 =  ni. Using equations (4.2.14), (4.2.15) and (4.2.86), 
I find that this expansion is of the form

( 2 n y (_ l ) , +1e nx[l + i x { z - n i )  + ...]
(z — ni)2

(6.1.48)

Consequently,

Res{/, m} =  (—\)* +lixe nx.

By Cauchy’s residue theorem, as R, S  —> oo independently, I obtain

e ix(p+2ni)

(6.1.49)

/J —l

,ipx
, _________________ (]nn
_oo cosh2 (^ p )  cosh (fp ) 7-00 cosh2 ( ^ ( p  +  2ni)) cosh ( f  (p +  2m))/ dp

=  [i
/ c

•(

,tpx

cosh2 ( s jp ) cosh (fp)
dp

71— 1

=  2tt* —* 5 Z (-1 ) fc+l ,-(2 fc+ l)x

/
k=0

oo „ipx

COS2 (^ ± V )
+

2n
7T

(—1) 2+1ixe

7-00 cosh2 (^ p )  cosh (fp)
-—ydp =  2cosech(na:)

n —1 e [n-(2*+ l)]x  2 n 2

E ( - « * s 5 7 E r T  + - ( - « 'Lfc=o

= 4cosech(n:r)
k=

n 
7r

n—2 
2

(-1 )3*  + ( - 1)'

k=0  
n >  2

COS ( W * )
sinh([n — (2fc + l)]x) (6.1.
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Consequently, using equation (6.1.43), I obtain

sech (nx) * sech (nx) ★ sech(x)
i— n - 2

«  O ^— o

(6.1.51)

The results for n = 2 (j = 1) and n = 4 (j = 2) are displayed in Table 6.4. 
Also, the result for n = 2 is plotted in Fig. 6.4 (in blue).

C ase (ii): a = £, r = 2m  +  1, m  € N
The integral I now have to calculate is

For this case I use the same contour as shown in Fig. 4.2, except for the 
height of the contour is now 2ri. Let

f ( z )  has r-1 simple poles at 2 =  (2m +  l)i  (m E N \  m < r  — 1)

one triple pole at 2 =  ri. To calculate the residue of the pole at 2 =  ri, I 
construct a Laurent expansion of f ( z )  &t z = ri. Using equations (4.2.14), 
(4.2.15) and (4.2.58), I obtain the following Laurent expansion of f ( z )  at 
z = ri

(6.1.52)

^   ̂ cosh2 ( ^ z )  cosh ( | z)
(6.1.53)

which have the same residue as shown in (6.1.47) (n exchanged with r), and

Consequently,

Res (f , r i )  = ^  ^  ie—  (rx)2 +  ^ - ( r 2 +  2) . (6.1.55)
7T 1 2
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By Cauchy’s residue theorem, as R, S  —► oo independently, I obtain

eix(p+2ri)

fJ  —(

0ipx

W)dp-J -_oo cosh2 (^ p )  cosh (fp ) J cosh2 (§:(p +  2ri)) cosh (§ (p +  2ri))7-rdp

=  [1 +  e -2- ]  r
J - C cosh2 (g:j>) cosh (fp )

=  27T«

■ ■ ■ /*/—c

4(—l ) 1̂ 1 ie
7T-

(r*)2 +  ^ ( r 2 +  2)

,tpa:

= 2sech(rx)

=  4sech(rx)

cosh2 (£ p ) cosh (fp ) 

2( 1)

dp

r—1O ' i  p —(2k+l)x
+  - i  Y '  ____________

7r cos2 (^ ^ 7 r)fc=0 COS"

1—1 
2

7T
(rx )2 +  ^ ( r 2 +  2)

r—1 . e [r - {2 k + \) )x

+ E  ( - 1) ( M , )

(-1)r—1 
2

7T
(rx)2 +  ^ ( r 2 +  2)

fc=0

k—l—A
2

COS

+  E  ( - 1)
fccosh ([r — (2fc +  l)]x)

k=0
r>3

COS"

(6.1.56)

Consequently, using equation (6.1.43), I obtain

sech (rx) ★ sech (rx) * sech(x)

=  2 ^ sech(rx) (-1)r—1 
2

7T"
(rx)2 +  ^ ( r 2 +  2)

Jfc-I=3 
2_u V " / n fcCosh([r-(2fc +  l)]x) 

+  cos2 (2§ti7r)
fc=0
r>3

(6.1.57)

The result for r  =  1 (j = 0) is displayed below in Table 6.4. I have not 
calculated the mother wavelet convolutions for G’ and G", because in this
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sampling rate (j) fij,o(x ) * sech(x)
0 2 ( x 2 4- ^ )  sech(x)

1 7rcosech(2x) [7r sinh(:r) — 2x\

2 |cosech(4x) 7r ( ^ 7 5  sinh(3x) — sinh(x)) + 4x

Table 6.4: Scaling function convolutions for fitting G" data.

-2-6
x

Figure 6.4: (f)*it0{x) ★ [1 + tanh(ar)] (red), ^ 0(x) * sech(x) (blue).

thesis I have only used the models in this section to fit real data. So, for the 
same reason as stated in Chapter 5, we disregard the mother wavelet part 
oh h when fitting real data.
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6.1.6 R esu lts for real data

As in Chapter 5, I ignore the mother wavelet part of h and consider ra- 
sparse approximations for h over an appropriate index set A with m  elements:

h(f) = ^ 2  CkT (~— ’ Hb°H = m’
k e A m  \  a  /

where T(t) =  2tcosech(t) 

and Xk =  xq +  ka.

(6.1.58)

(6.1.59)

(6.1.60)

From the formulation of h above, and using (6.1.3) and the scaling and 
translation properties of the Fourier transform (see Table 1.1), I obtain

h(p) = E f t - x k\
Ck --------  cosech --------

V * J V * J 

) £

_fc€A

(?,
(P)

—i2<rxkP (6.1.61)

which is windowed by the function sech2 (^fp) . From Chapter 5, it was ex­
plained that super-resolution occurs when not all of the area of this window 
function is contained within the Nyquist range [—7 , 7 ] , where s is the sam­
pling rate of the data. I again consider the amount of super-resolution to 
be the percentage of the area of the window function that lies outside this 
range. Then the amount of super-resolution for a particular value of a  can 
be calculated as follows. Applying property (1.5.3) to equation (2.1.22), it 
can be shown that

177T

T
J  sech2 dp =  1. (6.1.62)

I can then express the percentage of super-resolution, S R , for a particular 

value of cr as

S R  =
(T7T f  *

~  T
sech2 ) dp x 100%. (6.1.63)
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I use the search algorithm introduced in Section 5.4 to compare the results 
from the original sech dictionary and the new xcosech dictionary when fitting 
PB1 data. For consistency, I keep the value of the sparsity at m  = 4.

The spectrum is of the form

h(t) = ^  ck{x — £fc)cosech ( - — . (6.1.64)
k=o V a  /

For this m-sparse approximation, I find that the largest value of a that 
gives an acceptable fit to the storage and loss moduli data is achieved when 
<j = where I have an RMS error of 1.80% and I obtain a physically ac­
ceptable bimodal spectrum (Fig. 6.5(b)). This value of a is smaller than 
when using the sech dictionary, but this is not surprising, considering that 
the new basis functions rrcosech (^) are wider than the sech dictionary ba­
sis functions sech (^) at the same value of a. Indeed, when a = |  in the 
new dictionary, there is a much poorer fit to the data of 3.19%, leading to a 
bimodal relaxation spectrum (Fig. 6.5(a)) with a more significant negative 
lobe than the sech dictionary with a = \  (Fig. 5.2(a)). When a = 11 obtain 
a trimodal spectrum (Fig. 6.5(c)). When a  is small enough, e.g. a  =  |  (Fig. 
6.5(d)) I obtain an m-mode distribution, giving an excellent fit to the data 
of 1.24%. The parameter values for xo and a, as well as the coefficients ck, 
are displayed in Table 6.5 for each value of a.

When a = 11 obtain an excellent fit to the data, but for the same reason 
as discussed when exploring the sech dictionary, I cannot justify that the 
underlying data supports a four mode distribution. Using my philosophy of 
choosing the smallest number of peaks tha t gives an acceptable fit to the 
data, I have concluded from the results of this dictionary that this particu­
lar polymer is most likely to have a bimodal relaxation spectrum, which is 
consistent with the results obtained from the sech dictionary.

To select an optimal value for a I constructed a homotopic approximation 
for the spectra and data fits, linearly interpolating between the values of
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<7 x 0 a co Cl C2 c3 RMS
1/2 4.76 0.10 -20.7 64.6 -67.2 23.3 3.19
1/4 2.65 1.40 -0.0204 1.13 0.972 0.704 1.80
1/5 2.29 1.67 -0.0620 1.58 6.07 0.901 1.46
1/6 3.92 1.81 2.21 1.11 1.06 0.675 1.30
1/8 3.79 1.32 3.32 1.71 1.26 1.82 1.24

Table 6.5: Optimal parameter values for varying a (m = 4). The c* should 
be multiplied by 106 to attain their true value.

<7 =  1 (where the spectrum is bimodal) and <7 =  1 (where there are three 
peaks). I calculated the total curvature, T, for each spectrum in this range 
(decreasing o in steps of 0.01 from 1). I get minimum total curvature when 
<7 =  1. Consequently, I believe tha t the optimal amount of resolution for 
this approximation, using merely four basis elements, is <7 =  1, which gives 
an RMS of 1.80% and a physically respectable bimodal relaxation spectrum 
(Fig. 6.5(b)).

Since the sampling rate of the data is approximately 0.38, the percentage 
of super-resolution for this optimal value of a  is much less than 1%, calculated 
from equation (6.1.63) as follows

» 8.24

S R  =
/* /7T \  1

1 -  T7T /  sech2 ( - p )  dpi x 100% «  0.31%. (6.1.65)
16y_824 Vo /  J

The results for the amount of super-resolution for this, and other, selected 
values of a are given in Table 6.6. For different values of <7, an illustration 
of how much super-resolution is taking place is given in Fig. 6.6, where in 
each case I have plotted h{p) against its trigonometric polynomial and the 
Nyquist bandwidth of the data. As in Chapter 5, these graphs show that if 
cr is too small then the effective bandwidth of the spectrum is wider than 
the Nyquist bandwidth of the data, resulting in significant super-resolution.
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In Fig. 6.6(a), the maximum amplitude of the trigonometric polynomial is 
approximately 2 x 109, but I have only shown the part of the function that 
I can readily compare the effect of the windowing function with other values 
of a in Figs. 6.6(b)-6.6(d).

In Fig. 6.7(a), I have plotted the respective data fits and relaxation spec­
tra  from the two separate dictionaries, using the optimal values of a in each 
case. These results are very similar, giving consistency in the approximations 
for the continuous relaxation spectrum of this particular polymer. When I 
plot the individual basis functions of the two separate dictionaries (normal­
ized so that they have unit area) with the optimal values of a in each case 
(Fig. 6.7(b)), it becomes clear that I am using very similar basis functions 
in the two approximations.

a Super-resolution (%)
1/2 0.0005
1/4 0.310
1/5 1.12
1/8 7.58

Table 6.6: Percentage of super-resolution for each of the approximations in 
Fig. 6.5.
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RMS error=3.19%. RMS error=1.80%.

RMS error=1.46%. RMS error=1.24%.

Figure 6.5: Sparse approximation of PB1 using x  cosech dictionary, with 
m  = 4.
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(b) a =  i

Is -IS

-J.

(C) * = i (d) a  =

Figure 6.6: Effect of windowing function. Trigonometric polynomial (red), 
h{p) (blue) and the Nyquist bandwidth of the data (bold black).
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(a) Comparison of results from (b) Basis function comparison, 
separate dictionaries.

Figure 6.7: Comparison of the optimal results obtained from the xcosech
dictionary (blue) and the sech dictionary (red) (a), and of the basis functions 
used (b).

PB 2 d a ta

For this set of data I achieved similar results to when using the sech 
dictionary. When using my search algorithm, I again found that the least 
value of m  compatible with acceptable RMS levels is m =  5. The spectrum 
is of the form

With a = \  I get a superb fit to the data, with an RMS error of 1.55%. 
This leads to a bimodal continuous relaxation spectrum which again has a 
remarkably similar shape to the optimal spectrum obtained from PB1 data, 
when approximating h from the x  cosech dictionary (Fig. 6.8(a)). This fit is 
achieved with xq = —6.99 and a =  3.40.

h(t) =  Ck{x — a;fc)cosech ( —— — J 
k=0

(6 .1 .66)
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Since the sampling rate of the PB2 data is s »  0.46,1 use equation (6.1.62) 
to show that the percentage of super-resolution for this optimal value of o is 
given by

S R  =
n_ r6 82 

/_6.82
sech { 7̂Tp dp x 100% «  0.94%. (6.1.67)

This means that over 99% of the area of h(p) is contained within the Nyquist 
range of the data. This is also illustrated in Fig. 6.8(b).

-4 -2 0 2 4 6 8
x,t

x  l(fi

(a) Data fit and spectrum. (b) Effect of windowing function.

Figure 6.8: PB2 data results.

6.2 Error term s in th e  d elta  sequence m ethod

The delta sequence method for deriving successive approximations to the 
relaxation spectrum is explained by Friedrich [34] and in the PhD thesis of 
D. Morgan [58]. This approach generalizes the results obtained by Schwarzl 
and Staverman [67], and Tschoegl [74]. They introduced an approach to the
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delta function, namely

5(:r) =  lim £„(:r), (6.2.1)
n—*oo

with the elements of the delta sequence taking the form

. , . sechn(x) ^ .
8n(x) = ----------- , (6.2.2)

Ain

where

/ oo
sechn(:r)ckr. (6.2.3)

-OO

fin is the normalizing factor required to keep the area of each element in 
equation (6.2.2) to satisfy the property

/ oo
Sn(x)dx = 1. (6.2.4)

■OO

Morgan [58] proved that

M2-.+1 =  2^(niyK (6 -2 -5 )

2 2n(n1)2
^  ( n - 1 } -  ( 6 - 2 - 6 )

The starting point is the canonical relationships

1 f°°G'(uj) = -  I  H (r)  [1 +  tanh(ln(o;r))] d ln r , (6.2.7)
^  J —oo
1 f°°

G"(uj) = -  I  ^/’(r)sech(ln(o;T))dlnr. (6.2.8)
2 J  — oo

The first element of the delta sequence is
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which is a symmetric function centred at ljt = 1. Taking this quantity as a 
very crude approximation to the delta function,

roo
G"{uS) = — /  H ( r ) 8 i ( \ n ( u r ) ) d l n T  (6.2.10)

^  J —oo 
roo

~  — I H(r)S(\n(ujT))dln.T. (6.2.11)
^ J —oo

On writing H(r) = h (ln r) =  H(elnT) and using the sifting property of the 
delta function, it can be shown that

H ( t ) «  —G "(r-1). (6.2.12)
7T

This first approximation is regarded as the trivial case, as it does not involve 
any derivatives, and for this purpose, is known as the zeroth approximation 
of the relaxation spectrum. I have already shown, in Section 3.4, that the 
error term in this approximation can be derived through the Calderon-Mallat 
decomposition of the identity, to be

l  | ln(a;r) j 1 -  (urf* 
s \  1 +  (o;r)«

d s
— dlnuj.
s z(WT)
(6.2.13)

To proceed along the sequence, higher powers of sech are matched to corre­
sponding logarithmic derivatives of the dynamic moduli; illustrated for the 
next four cases in equations (6.2.14)-(6.2.17). These take the form of Fred- 
holm integral equations of the first kind.

1 r°° dCTuA-  J  ^f(r)sech2(ln (a;r))d ln r =  —- , (6.2.14)

l

— OO 

OO

i7(T)sech3(ln(a;r))d ln r =  G"(uS) — ^ j~n~  » (6.2.15)
—oo

J ° °   _  4dG'(w) 1 d?G'{u)

I

—oo
oo

J?(T)sech4(ln(a;r))rflnt  =  (6.2.16)

u ,   ̂ u5/, /  ̂ 5 <PG"{u) , 1 d*G"(a>)l/(r)sech  (ln(a)r))d lnr =  ^  M  -

(6.2.17)
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The kernels in the above equations, and in the equations that would follow 
in the delta sequence method, involve powers of the sech function and may 
also be expressed as

sechn(ln(a;r)) = /  2a) r  V  
\1  +  uj2t 2 J

(6.2.18)

showing that as n increases the more impulsive this kernel becomes and 
hence the more exact the sifting property which inverts the process. Using 
the powers of sech in the above equations as approximations for the delta 
function, the following respective approximations for the relaxation spectrum 
are obtained:

Hi (r) 

H 2{t )

H3(t )

H 4( t )

dG'( u>)
din a; ’ 

2 
7T

3

G "M  -
<PG"(ui)
d(lnu;)2J 

AdG'juj) l d3G'(uj)
3 din a; 3d(lna>)3

8 f3 5 <PG"(lj) 1 d4G"(uj)
37r 4 U 6 d(lna;)2 12 d(lna;)4

(6.2.19)

(6 .2 .20) 

(6 .2 .21)

(6.2 .22)

The first three approximations (H0(r ), H\{r) and i72(r)) are classical and 
appear in the texts of both Ferry [33], Tschoegl [74] and Friedrich [34]. The 
remaining approximations are far more unfamiliar, mainly due to the fact 
that higher order numerical differentiation of measured inexact data is nec­
essary.

I will now derive the error term, E n(r) in these approximations for the 
relaxation spectrum, obtained via the delta sequence method. Equations 
(6.2.19)-(6.2.22) above can be written in the form

1 f°°Hn—i(t ) =  —  / i/(r)sechn(ln(u;7-))dlnT (n >  1). (6.2.23)
f^n J —oo
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Using the substitutions (2.1.6) and (2.1.7), I obtain

hn-i( t)  =  — h(t) *sechn(£). 
f^n

Let a = 1 and choose

(0i * 0 i)W  =  sechn(t). 

From (3.1.16) and (6.2.3), I note that

Cif) = (An)

and hence equation (6.2.24) becomes

/in_ i( t )  =  (h. ★ (f>\ ★ 0 i ) ( t ) ,

(6.2.24)

(6.2.25)

(6.2.26)

(6.2.27)

which is the Mallat part of the Calderon-Mallat decomposition of the identity 
(3.2.10), with a = 1. Since hn(t) is an approximation for h(£), the error in 
this approximation is the Calderon part

E n (t ) — —- f
Mn Jo  &

(6.2.28)

It follows from (3.1.17) and (3.4.9), that

(0 s *  0 s) ( t )  = sechn ( -
t  , f t  

1 — n -  tanh s  \ s (6.2.29)

By using (6.2.29) and aj = r  , I can now express the error term as

£?n(r) =  —  [  h(t)  * s e c h n 
Jo

= I / T  Maseeh" (
Mn Jo J —oo V

1 — n -  tanh s ©]
d s
12

t  — x t  — x  . f t  — x  
1 — n  tanh

, d s
CLX——

s2

1- /  r  H ^ se c W 'fd ^ L
Mn Jo J —oo \

+  In a;]

(—flnr +  lno;]) . /  —[lnr +  lnu;] 
1 — n-— ------------- — tanh 1 din s z
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i L L  ^ ) sech"(K^D
Jl +  nln(a;r)^ tanh |hi (u;r)_ *

(6.2.30)

Substituting (3.4.12) and (3.4.13) into (6.2.30), I can express the error term 
in the delta sequence approximation in terms of the physical variables u  and
r  as

E u(t ) =
9n  poo pi
-  H{ uT‘)r
r n  J  —oo JO M

(a; r ) :

+  (a;r)'
1 +

nln(a;r) J 1 — (a;r)« 
s  \  1 +  (a;r)s

ds
dlnuj.

(6.2.31)

6.3 Wavelet families in linear viscoelasticity

It was shown in Chapter 3 tha t the loss modulus is a father wavelet 
transform of the relaxation spectrum at unit scaling. In this section I will 
show that the storage modulus is also a special type of wavelet transform 
of the spectrum, and I shall introduce a whole family of wavelet transforms 
that occur naturally in the theory of linear viscoelasticity. Examples of dic­
tionaries, consisting of father wavelets, will be introduced, that can be used 
to construct the continuous relaxation spectrum.

6.3.1 G eneralized w avelets

D efinition  5.3.1. (T he  generalized  w avelet.) I define a generalized 
wavelet to be a function £(x) such that <f>°(x) = ^C (^) is a father wavelet, 
with the property that

0 < 00(0) =  (C . ^  < oo. (6.3.1)
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The function

£(x) = 1 +  tanh(x) (6.3.2)

is a generalized wavelet, since

<jp(x) = =  sech2 (a:) (6.3.3)

is a father wavelet, because

<£°(0) =  2 (6.3.4)

from (6.2.6) and (6.2.26).

6.3.2 G eneralized w avelet transform s

The generalized wavelet transform of h G L 2(M) at the time t and scale 
s is defined by the convolution product

[Gh](s,t) = (h*& )(t), (6.3.5)

where ga(x) = £a>0(:r) = -i=£ ( ^ j  . (6.3.6)

Equation (2.1.10) shows tha t in terms of log-frequency th e  storage modu­
lus is a generalized wavelet transform of the continuous relaxation  
spectrum , at unit scaling s = 1, i.e.

2i(z) =  [Gh](l,x) = (h*£)(x)  (6.3.7)

with £(x) = £1(2 ) = £1,0(2 ) =  1 +  tanh(a;) =  1 +  tanh(lno;).

(6.3.8)

Furthermore, if

£(x) =  arctan(sinh(a:)), (6.3.9)
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then

<fP{x) = =  sech(x). (6.3.10)

Consequently, g2 {x')dx' is a generalized wavelet transform of the con­
tinuous relaxation spectrum, at unit scaling s = 1. These two generalized 
wavelets introduced above are plotted together in Fig. 6.9.

-10

Figure 6.9: Two generalized wavelets. £(x) = tanh(x) (red) against £(x) = 
arctan(sinh(x)) (blue).

6.3 .3  D ifferen tia tin g  w avelet transform s

It has already been shown that, starting with a generalized wavelet £(x), 
differentiation with respect to x introduces a father wavelet 4>°(x). Then 
ip°(x) is the mother wavelet associated with 4>°(x). I will now show that 
further levels of differentiation will always produce mother wavelets. Let
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Then

V^(o) =
t m  <»>
(ip)" tf“(p)] lp=o 

=  0, (6.3.12)

which shows that the function %l)n{x) has zero area. ipn(x) is a mother wavelet 
if it is also true that

C V  =  f ~  ^ d p  < oo. (6.3.13)

Substituting (6.3.11) into (6.3.13) and using table 1.1,

^  _  r °  \(ip)n$°(p)\2
x̂l>n — I  i—i d p

Jo bl
roo ^

=  /  p2n~1$°(p)dp, (6.3.14)
Jo

which is the (2n  — l)-th  moment of 0°(p). As long as 0°(p) decreases ex­
ponentially, C^n is finite. This is indeed the case for 4>°(x) = sech(x) or
4>°{x) =  sech2(:r).

Since
cT rin r°°

[h{x)*(t>°(x)] = —  j  h{t)(jp(x — t)dt

/
oo Jn

(jn
= (6.3.15)

it follows that differentiating a father wavelet transform will produce a 
mother wavelet transform, and all further derivatives will always produce 
mother wavelet transforms.

If (/)°(x) is an even function of x  then, when n is odd -^(f){x) will be an 
odd mother wavelet, and when n is even -^(f){x) will be an even mother 
wavelet.
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6.3.4 n -th  level reconstruction  formulae

I have just shown that as we continue the process of differentiating wavelet 
transforms, I continue to get more and more wavelet transforms. I will now 
derive formulae for calculating reconstruction formulae for the continuous 
relaxation spectrum associated with the n-th level of differentiation. For the 
reconstruction formula at level n, I still require ij)n(x) * ipn(x) and 4>n(x) * 
(f)n{x). Using (3.1.3), I will now derive a useful formula for (pn(x) * <f)n(x):

1A/„m2 _  r  lfen( * ) ] » | 2
i :

- I

- £

■du
U

■du

du
u

Jpoo
I a;2n-1| [<f)°(x)]A (u)\2du
Vd

\[4>n{x) * (f)n (x)]A (p)\ =  - p 2n [<f>°(x) * (f>°(x)]A (p)|
’ ' dp

\[x<f>n(x)*(i)n(x)}A(p)\ = dx2n'

. - . 4 r ( x ) * M x )  =  (*<■(*) * / ( * ) )
X

(p)

(6.3.16)

Also, by generalizing equation (3.1.17), I obtain

i>n{ x ) * ‘tpn{x) =  -L[x(4>n ■* 4>n){x)} (6.3.17)

and by substituting equation (6.3.16) into the above equation, I find that

i>n(x )* ipn(x) = ^

<Pn
dx2n

x [

(0°(x)*0°(:r)) . (6.3.18)
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At the n-th level of differentiation I can now express the Calderon-Mallat de­
composition of the identity (3.2.10) using the cross-pair {<f>n(x)*<f)n(x), ^ n(x)* 
^ n(x)} in terms of the autoconvolution of the original father wavelet <f>°(x)

m  =  / V  * c  * « ) ( « ) § +
'ipn Jo  s

ds— I I h.(t.\ + ----
Cii

1CV»<T " t dt2"-1 ’ (6.3.19)

where C^n is given by (6.3.14). Since equations (2.1.8) and (2.1.9) are in­
finitely often differentiable, there are infinitely many cross-pairs to choose 
from when attempting to recover the relaxation spectrum.

In particular, for

= sech(t), (6.3.20)

and n =  1, the Mallat part of the above Calderon-Mallat decomposition is 
proportional to

1 d
h{t) * sech(t) =  h(t) * t -1sech(t) tanh(t). (6.3.21)

t dt
Consequently, the continuous relaxation spectrum can be constructed 
from super-hyperbolic dictionaries consisting of atoms of the form 
t -1sech(t) tanh(t). The factor t~l means that the atoms have a slightly faster 
rate of decay than exponential - hence super-hyperbolic.

6.4 Conclusion

The main purpose of this chapter was to show that introducing a new dic­
tionary of basis functions for recovering the continuous relaxation spectrum 
gave results that were consistent with those obtained with the sech dictio­
nary, which we used originally. I have introduced the autoconvolution of
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sech(x), which is proportional to xcosech(x), as a sub-hyperbolic wavelet. I 
have shown in this chapter that it is another valid choice of father wavelet for 
constructing dictionaries, whose atoms can be used to represent the contin­
uous relaxation spectrum. It satisfied the constraint of finite positive Riesz 
bounds, and its associated mother wavelet gave a tighter frame than the 
mother wavelet associated with sech(x), for larger sampling rates. For small 
sampling rates, however, the mother wavelet associated with sech (a;) gave a 
tighter frame. The cross-pair of father and mother wavelet resulting from 
this new dictionary gave extremely small errors in the two-scale relations, 
even smaller than our original cross-pairing from Chapter 3.

We showed that, like the cross-pairing resulting from the sech dictionary, 
the new cross-pairing also required 0 < a  < 1 to attain real-time integrability, 
and consequently meet the constraint of finite total viscosity. I have produced 
models for g\{x) and <72 (^) for general values of er, using the xcosech(x) 
dictionary, and by using the same set of real data which was used with 
the sech dictionary, I achieved very similar data fits and resulting spectra. 
The relaxation spectra obtained from the two different dictionaries using the 
optimal value of a was very similar, and gave consistency in my results. The 
main result to come out of this section of the chapter was that by using 
two different dictionaries, the search algorithm appears to choose a value of 
a which gives a similar shape of basis function for fitting both the storage 
and loss moduli data. Consequently, in this particular case, this results in a 
similar shape of basis function for the relaxation spectrum, as illustrated in 
Fig. 6.7(b).

Another important part of this chapter was to produce error terms in the 
delta sequence method of relaxation spectrum recovery. This was derived by 
using powers of sech as dictionaries for the spectrum. I was able to show 
that the error terms were in fact the Calderon part of the Calderon-Mallat 
decomposition of the identity, and I gave the integral form of these errors in
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terms of the physical variables lj and t .
The final part of this chapter introduced other wavelet transforms which 

arise naturally in the theory of linear viscoelasticity. It has been explained 
what happens during the process of differentiating wavelet transforms and 
I derived general formulae for linking the corresponding mother and father 
wavelet, at the n-th level of differentiation, with the original father wavelet 
in the unique father wavelet transform. An example has been given of super- 
hyperbolic dictionaries, whose atoms can be used to represent the continuous 
relaxation spectrum.



Chapter 7 

Other A lgorithm s

In this chapter I will explore other algorithms for estimating the contin­
uous relaxation spectrum from the dynamic data set PB1, using both sech 
and x  cosech dictionaries. The main purpose of this chapter is to discover 
whether different algorithms will give results that are consistent with those 
obtained from my search algorithm (introduced in Chapter 5), in the sense 
th a t they all point towards a bimodal relaxation spectrum for this particular 
polymer blend.

7.1 Greedy A lgorithm s

A greedy algorithm is an algorithm that is designed to search for an 
optimum solution along a heuristic approach. The choice made by a greedy 
algorithm may depend on choices made so far but not on future choices. 
I t iteratively makes one greedy choice after another, reducing each given 
problem into a smaller one. A crucial property of a greedy algorithm is that 
it cannot choose the same basis function more than once. A greedy algorithm 
will enable me to construct the relaxation spectrum in a systematic way.

Many pursuit algorithms are available for sparse approximation and an

185
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excellent account of those available are given by Chen, Donoho and Saun­
ders (2001 [21]). Examples include Basis Pursuit (BP), Best Orthogonal Ba­
sis (BOB) and Orthogonal Matching Pursuit (OMP). The greedy algorithm 
which we have chosen is OMP.

7.1.1 C hoosing A by O rthogonal M atching Pursuit 

(O M P)

OMP is an iterative process for selecting a subset of atoms from a dictionary. 
It has been in use for about four decades, where it was used originally in 
Statistics under the name of Forward Selection Algorithm [57]. A recent 
account is given in the work by Tropp and Gilbert in signal analysis [73].

The structure of this problem is already set up for OMP. We use OMP to 
choose iteratively which vectors of the sub-dictionay % (introduced in Section 
5.4) give the best simultaneous least squares fit to the data for the storage 
and loss moduli. The algorithm works as follows: [73]
INPUT:

• An TV x d measurement matrix x

•  An TV-dimensional data vector g

•  The sparsity level m  of the ideal signal 

OUTPUT:

•  An estimate s G R N for the ideal signal

•  A set Am containing m  elements from {1,, d}

•  An TV-dimensional approximation am of the data vector g

•  An TV-dimensional residual r m =  g —
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PROCEDURE:

•  Step 1: Initialize the residual r 0 =  g, the index set A0 =  0 ,  and the 
iteration counter t = 1.

•  Step 2: Find the index At tha t solves the easy optimization problem

At =  arg max |(rt_i,x*)|.
{k=l , . . . , d}

• Step 3: Augment the index set At = At~i U {At} and the matrix of 
chosen atoms Xt — [Xt-i XaJ- The convention used is that %0 is an 
empty matrix.

•  Step 4: Solve a least squares problem to obtain a new signal estimate:

xt =  a r g m in ||x tx - g ||2.
X

•  Step 5: Calculate the new approximation of the data and the new 
residual:

a t  =  Xt  x t  

r* =  g - a t.

•  Step 6: Increment t , and return to Step 2 if t < m.

•  Step 7: The estimate s for the ideal signal has nonzero indices at the 
components listed in Am. The value of the estimate s in component A j 
equals the j- th  component of x t



188 CHAPTER 7.

7.1.2 P B 1 results  

Case 1: sech dictionary

When using the model for h from equations (5.2.4)-(5.2.6):

h(t) = ) ,  (7.i.i)
ke  Am \  a  /  

where T(t) =  sech(t) (7-1.2)

and x k = xq + ka , (7.1.3)

we found that with PB1 data, the most stable results occurred when a = |  
and a = 0.1. Five iterations of OMP are required in order to bring the root 
mean square error (RMS) below two per cent. The fit for G'(u>) and G"(u), 
when m  = 5, is displayed in Fig. 7.1(a). The resulting continuous relaxation 
spectrum is then plotted in Fig. 7.1(b). There is a slight wobble in the 
largest of the peaks in Fig. 7.1(b) and a small negative lobe at very small 
relaxation times. The value of m  required to get a respectable fit to the data 
using OMP is one higher than in my own search algorithm, introduced in 
Chapter 5. Therefore, I have a less sparse approximation using OMP.

As I increase m  from 5 to 8 the RMS decreases from 1.79% to 1.06% 
(see Table 7.1). The resulting spectra are relatively stable, as shown in 
Fig. 7.1(c). However, when m  becomes too large we get noise amplification.
This is evident in Fig. 7.1(d), where m  is increased to nine. As a result I
get an extra peak in the spectrum and more small negative lobes. This is 
because m, as well as cr, is acting as a regularization parameter in this greedy 
algorithm. If m  is too small I get a very poor fit to the data, whereas if m  is 
too large I start to fit the noise in the data and consequently get unrealistic 
approximations for the relaxation spectrum, cr acts in a very similar manner 
as illustrated in earlier chapters where I have used my own search algorithm.
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(a) Data fit for G '(oj) and (b) Relaxation Spectrum, m  =  5.
m =  5 and RMS error=1.79%.
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(c) Relaxation Spectrum, m  =  6 — (d) Relaxation Spectrum, m =  9. 
8. m =  6 (green), m =  7 (red), 
m  =  8 (blue).

Figure 7.1: OMP with sech dictionary; a  =  a =  0.1.
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m 5 6 7 8 9
RMS 1.79 1.60 1.18 1.06 0.93

Table 7.1: Values of RMS for progressing iterations of OMP, where cr =  1/2 
and a =  0.1.

Case 2: xcosech d ic tio n a ry

When using the model for h of the form

h{t) = (7.1.4)
fceAm '  '

where T(t) =  2tcosech(t), (7.1.5)

(7.1.6)

I discovered that the relaxation spectra that I obtained was much more stable 
than in case 1. I obtained the most stable results with cr =  1/4 and a = 0.2. 
When compared to case 1, OMP required one extra iteration to bring the 
RMS error below 2%, but once it did so, the spectra from iterations 6-8 were 
extremely stable, as shown in Fig. 7.2(c). For these progressing values of m, 
the RMS error changes much less than in case 1 (see Table 7.2).

When m  = 6, the data  fit for G'(uj) and G"{u) is given in Fig. 7.2(a) 
and the resulting spectrum is plotted in Fig. 7.2(b). As in case 1, we again 
see how m  acts as a regularization parameter. Making m  too large leads to 
noise amplification. This is displayed in Fig. 7.2(d), where m  =  9.

The optimal value of cr obtained from OMP for the xcosech dictionary 
is the same as obtained via the search algorithm in Chapter 6. OMP again 
gives a less sparse approximation than my search algorithm, since the smallest 
value of m  which gives a respectable fit to the data with this dictionary is 
m  =  6.
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(a) Data fit for G'(u;) and G " (u ) . (b) Relaxation Spectrum, m  =  6. 
m  =  6, RMS=1.19%.
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(c) Relaxation Spectrum, m  =  6 — (d) Relaxation Spectrum, m  =  9.
8 .

Figure 7.2: OMP with axosech dictionary, cr =  1/4, a =  0.2.
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m 6 7 8 9
RMS 1.19 1.13 1.12 1.01

Table 7.2: Values of RMS error for progressing iterations of OMP using the 
x  cosech dictionary. <7 =  1/4, a =  0.2.

7.1.3 Synthetic d ata

I found that when applying OMP to the synthetic Honerkamp A data (intro­
duced in Section 5.6.2), I required a much larger value of m  to get a suitable 
fit to the data and a good recovery of the double-Gaussian spectrum. Al­
though OMP gives an approximation which is much less sparse than that 
obtained by my search algorithm, OMP does provide a value of the scaling 
parameter a that compares closely with the value obtained by my search 
algorithm.

I have also discovered from using OMP that a, the sampling parameter, 
can act as a regularization parameter. It can affect the numerical stability 
as I proceed along the algorithm. If a is too small then the columns of 
the matrix x  in the sparse approximation become linearly dependent, and a 
spectrum is obtained which is absolute nonsense. Conversely, as a gets larger 
it becomes increasingly difficult to get a desirable fit to the data.

7.2 Parity reduction

Using OMP, the shape of the relaxation spectrum for PB1 is consistent 
with results obtained from my search algorithm. One of the disadvantages of 
using OMP is that, when compared to my search algorithm, it requires more 
basis elements to fit the dynamic data to an acceptable level. I now introduce
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a method to try to improve upon this fault of OMP. The idea behind parity
reduction is to exploit symmetry of atoms, and hence work with symmetric
and anti-symmetric parts of the data. Thus, I split the storage and loss 
moduli into odd and even parts and fit the models to these parts separately. 
For the PB1 data there are N  = 17 data points &, i = {1,..., N}. The odd 
and even parts of G'(u;) are given respectively by

G'oiti) = (7.2.1)

G i(6 )  =  G' ^ + 2G' ^ , (7.2.2)

Similarly, the odd and even parts of are given respectively by

OSK.) .  „.!3)
C M , .  ,7.2.4,

After parity reduction, I use OMP to choose the basis functions to fit the 
data, separately, and consequently reconstruct h.

I discovered that, using either dictionary, I obtain much better results by 
fitting the models to the odd and even parts of G"(lj) first, and subsequently 
constructing G'{uS) from these results, rather than the other way around.

Case 1: sech d ic tio n a ry

By fitting the models to G '^ uj) with cr = \  again, I obtained an excellent 
fit to the data of 0.37% with just three basis functions. This result is plotted 
in Fig. 7.3(a), along with the independent fit to Gq (lj), where I got an 
RMS error of 4.67% with four basis functions. Two of the basis functions 
were the same in each of the independent approximations, so that when I 
combine the two to form an approximation for G"(uj), I only have five separate 
basis functions. The overall fit to the G"(u) data is 0.60% and is plotted in
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Fig. 7.3(b) along with the subsequent fit to the G'(lj) data, which has an 
extremely large RMS error of 11.8%. Although the fit looks extremely good 
the problem is that there is a large percentage difference in the G'(uj) data 
at low frequencies. The overall fit to the data is 8.35%, which is much poorer 
than results obtained by using OMP on its own. The resulting relaxation 
spectrum is also shown in Fig. 7.3(b).

A much better fit to the data is obtained, however, by using the five basis 
functions found from the above method, but then allowing a simultaneous 
fit to the storage and loss moduli. This gives a superb fit to the overall data 
of 1.45%, and is plotted in Fig. 7.3(c), along with the resulting spectrum. 
The separate relaxation spectra, obtained from the two different methods, 
are plotted together in Fig. 7.3(d). The similarity implies that our ‘tweaked’ 
method of finding the coefficients in the approximation has very little dif­
ference in the appearance of h , but it dramatically increases the quality of 
the data fit. The small negative lobe is reduced in size, too, which is also 
desirable.

Case 2: xcosech dictionary

I obtained similar results using the xcosech dictionary. By fitting the 
models to G' (̂u>) with a  =  I obtained a superb fit to the data of 0.48% 
with five basis functions. This result is plotted in Fig. 7.4(a), along with 
the independent fit to Gq{uj), where I got an RMS error of 4.70% with four 
basis functions. Two of the basis functions were the same in each of the 
independent approximations, so that when I combine the two to form an 
approximation for G"(oj), I only have five separate basis functions. The 
overall fit to the G"(u) data is 0.67% and is plotted in Fig. 7.4(b) along with 
the subsequent fit to the G'(oj) data, which has an RMS error of 5.60%. The 
overall fit to the data is 3.99%, which is much poorer than results obtained 
by using OMP on its own. The resulting relaxation spectrum is also shown
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(a) Independent fits to G"E (blue, (b) Fit to G " (m  =  5), subsequent 
m  =  3) and G"0  (red, m  =  4). fit to G ' (m =  5) and resulting spec­

trum.

200000-

100 2 84 6
t

(c) Simultaneous fit to G ' and G " (d) Relaxation spectra comparison, 
(m =  5) and subsequent spectrum . Spectrum from simultaneous fit in

blue.

Figure 7.3: OMP and parity reduction, using sech dictionary.
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in Fig. 7.4(b).
As with the sech dictionary, a much better fit to the data is obtained by 

using the five basis functions found from the above method, but then allowing 
a simultaneous fit to the storage and loss moduli data. This gives an excellent 
fit to the overall data of 1.11%, and is plotted in Fig. 7.4(c), along with the 
resulting relaxation spectrum. The separate relaxation spectra, obtained 
from the two different methods, are plotted together in Fig. 7.4(d), and are 
extremely similar.

However, when I compare these results with the rrcosech dictionary to 
those obtained by using OMP on its own (see Fig. 7.2), parity reduction 
introduces a small third peak into the approximation for h , which was not 
there before.

7.3 D ensity estim ation

7.3.1 Introduction

In probability and statistics, density estimation is the construction of an 
estimate, based on observed data, of an unobservable underlying probability 
density function. A variety of approaches to density estimation are used, 
including Parzen windows [63] and a range of data clustering techniques, 
including vector quantization [37]. The most basic form of density estimation 
is a rescaled histogram. More details on density estimation can be found in 
Bowman and Azzalini [18], and Silverman [69]

From (2.1.9), it was shown that the loss modulus could be expressed as

This expression shows tha t the loss modulus is a smoothed estimate of the 
continuous relaxation spectrum, where sech (a: — t) is the kernel and h(t) is 
the unknown density function.

/ OO

sech(x — t)h(t)dt.
-OO

(7.3.1)



7.3. DENSITY ESTIM ATION  197

(a) Independent fits to G"E (blue, (b) Fit to G " (m =  5), subsequent 
m =  5) and G q  (red, m =  4). fit to G ' (m =  5) and resulting spec­

trum.

(c) Simultaneous fit to G ' and G " (d) Relaxation spectra comparison, 
(m =  5) and subsequent spectrum . Spectrum from simultaneous fit in

blue.
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Figure 7.4: OMP and parity reduction, using xcosech dictionary.
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7.3.2 Kernel d ensity  approach

I define g{x\ a) by

, x 1 f°°g{x\a) =  —  I sech (x — t;a)h(t)dt, (7.3.2)

where

sech(x — t;cr) = sech x  — t
(7.3.3)a

When a = 1, I obtain

(7.3.4)

and the true value of the density function h(x) is obtained in the limit as

In this interpretation of density estimation, a is regarded as a smoothing 
parameter.

select atoms from a transformed sub-dictionary x  to fit the loss moduli data 
to obtain g{x\ 1). The sub-dictionary consists of N  atoms x (x ~  &)> (* =  
1,..., N ). I introduce an L1-algorithm, which I call residual bisection, in the 
next subsection, to fit the model to the data, to form

I shall use PB1 data and a specific model for /i(t), so that I can compare 
density estimation results with those obtained from my search algorithm in 
Chapter 5, and from OMP earlier in this chapter. I then re-parameterize to 
form g{x\cr). I decrease a  towards zero and observe what happens. Since 
the problem is ill-posed, the best estimate for h will not be obtained when 
(j =  0, but at some value 0 < a < 1.

(7

h(x) = lim g(x ; a).
a —>0

(7.3.5)

I represent h(t) using atoms from a specific dictionary and subsequently

(7.3.6)
fcGAm
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7.3.3 Residual b isection

The main objective of this algorithm is to avoid negative lobes in the 
distribution of h. Residual bisection is a matching pursuit algorithm based 
on L1, unlike OMP, which is based on an L2-algorithm. However, like OMP, 
residual bisection is also an iterative process for selecting a subset of atoms 
from a transformed dictionary. Residual bisection can choose the same atom 
more than once, which is a property tha t greedy algorithms like OMP do not 
have. These atoms are centred at the data points &, where i = 1,.., N .

Residual bisection uses as many atoms from a sub-dictionary as it can 
to fit the data without giving negative coefficients in the representation. 
Because this pursuit algorithm selects as many basis functions as it possibly 
can, it acts in the opposite manner of the search algorithm that I introduced 
in Chapter 5, which has the underlying principle of sparsity.

The algorithm works as follows:

PROCEDURE:

• S tep 1: Choose k\ G { l,...,iV } such that P2& 1) >  &(&) Vfc G
{1 ,...,N }. Set ki G Am. Form the first approximation of g{x\ 1),
namely

g(x ; l) i  =  bklx (x  -  f fcl), (7.3.7)

where

K  = (7.3.8)

Set

res(£fc)i =  0 2 (6 ) “  9&  l)i. (7.3.9)
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«. Step 2: Choose fc2 € {l,...,iV } such that res(£fc2)i >  res(£k)i Vfc G 
{1 , ...,iV}. Set fc2 G Am. Form the second approximation of g(x; 1)2, 
namely

g(x; 1)2 =  bklx (x  ~  +  &fc2x(z -  &2), (7.3.10)

where

bk2 = ire s (f fc2)i. (7.3.11)

Set

res(&)2 =  g2(£k) -  g(x; 1)2. (7.3.12)

• Step 3 ... Step r+1: Repeat step 2 for incremented i (i = 3,..., r+ 1 ). 
Stop at step r+ 1  when 31 G {1,..., N }  such that res(^)r+i <  0. Choose

r
g{x\ 1) =  g(x; l ) r =  bkix (x  -  £ki)

i= 1

=  (7-3.13)

where there are m  < r  atoms selected from the transformed dictionary.

7.3.4 D ensity  estim ation  results for P B 1 data

I use a Dirac-delta model for h(t), namely

h(t) =  ^ 2  akS(t -  x[fc]). (7.3.14)
k

Using (7.3.2), I obtain
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Since the problem is ill-posed, the best estimate for h will not be obtained 
when g = 0, but at some value 0 <  a  <  1. Thus the kernel density approach 
gives a smoothed estimate for the density function h(t), expressed as a sum 
of dilated and translated sech functions. I fitted the model g(x\ 1) to the 
loss moduli data using residual bisection, which used six basis functions and 
gave a fit to the data with an RMS error of 2.59%. The fit to the data 
(irg(x; 1)) is plotted in blue in Fig. 7.5(a) along with g(x\ 1) (the smoothed 
estimate for the relaxation spectrum when a =  1). Although the fit is poor 
when compared to other algorithms I have used, the subsequent information 
it gives us about the spectrum as I decrease a in the re-parameterize model 
for g(x; a) agrees with my previous results. As o is decreased, the density 
function change from being almost unimodal (Fig. 7.5(a)) when a = 1, to a 
bimodal density (Fig. 7.5(b)), until a  is between the values of 0.4 and 0.5 
(Fig. 7.5(c)), where the density function starts to display a third peak. This 
agrees with my results from PB1 data using the search algorithm in Chapter
5. In that chapter I explained why I thought that the relaxation spectrum 
for this particular viscoelastic material was bimodal, and I used homotopic 
approximation to obtained a value of a = 0.45 as the smallest value of a 
for which the spectrum was still bimodal. Using density estimation, I find 
th a t by estimating the continuous relaxation spectrum as a sum of dilated 
and translated sech functions, I obtain the sa m e  smallest value of a for 
which the spectrum is still visually bimodal (see Fig. 7.5(d)). As I decrease 
a  further towards the value zero (Fig. 7.6(a)) I obtain more modes in the 
approximation for h(t) and when a =  0 I obtain the six delta functions 
displayed in Fig. 7.6(b).
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Figure 7.5: Density Estimation.
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Figure 7.6: Density Estimation.

7.4 C onclusion

In this chapter, I have explored other algorithms for estimating the con­
tinuous relaxation spectrum from the dynamic data set PB1, using both sech 
and x  cosech dictionaries. The results of these algorithms are consistent with 
the results of my search algorithm, in the sense that they all point towards 
a bimodal relaxation spectrum for this particular polymer.

OMP is a greedy algorithm that gives adequate results, but requires more 
basis elements than our search algorithm to fit the data to an acceptable level. 
A disadvantage of this algorithm, when using PB1 data, is that it predicted a 
non-physical negative lobe in the spectrum. Noise amplification also became 
an issue if m  was too big.

I introduced a kernel density approach for recovering the continuous re­
laxation spectrum from the loss moduli data, and I showed that the loss 
modulus is a smoothed estimate for the relaxation spectrum. I introduced
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residual bisection, a simple pursuit algorithm for fitting the data and ensuring 
that the subsequent spectrum maintains positivity. Although this algorithm 
made it difficult to get an excellent fit to the data, the subsequent results 
added weight to my conclusion that the spectrum is bimodal, and it also 
predicted the same optimal value of a as in Chapter 5.



Chapter 8

Conclusions

In this thesis I have developed a new method for continuous relaxation 
spectrum recovery through wavelet analysis. One of the main results of this 
thesis is showing that wavelet analysis establishes natural models for the 
continuous relaxation spectrum. It has been shown that there exist wavelet 
transforms which are intrinsic to the theory of linear viscoelasticity, which 
give rise to these natural models. In particular, I have shown that the loss 
modulus is a father wavelet transform of the continuous relaxation spectrum 
at unit scaling.

I have explained how Calderon-Mallat decomposition allows me to express 
the continuous relaxation spectrum as a sum of mother and father wavelets. 
I have introduced a modification of Calderon-Mallat decomposition, defining 
a new way of pairing mother and father wavelets from different families, 
which I call cross-pairing. In particular, I have shown that the mother and 
father wavelet cross-pairing (il>*(x), <fi*(x)) = (sech(x)[l — xtanh(x)], sech(a:)) 
satisfies the respective rigorous constraints of wavelet frames and Riesz bases. 
In particular, it has been shown that the mother wavelets associated with 
sech(x), in both the conventional Calderon-Mallat context and the cross­
pairing context, have tighter frames than the well-known Mexican hat wavelet
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for frame sampling rates a <  1. Furthermore, it has been shown that these 
cross-paired wavelets can be used to construct an essential multiresolution 
analysis. The concept of real-time integrability of wavelets (RTI wavelets) 
was introduced, to ensure tha t the finite viscosity constraint of a viscoelastic 
fluid is maintained. It was shown that the basis elements of the spectrum 
introduced in Chapter 3 are only RTI for 0 < a < 1. I introduced sech triplets 
as a subspace of the Riesz basis Vo, to fulfill the finite viscosity constraint 
when using 1 < a < 3.

I have produced models for the storage and loss moduli to fit the dynamic 
data. As long as a is rational, all of the required convolutions can be cal­
culated analytically via residue calculus. I introduced a Gaussian spectrum 
and calculated noise-free dynamic data, as a test case for the models. It was 
shown that the Gaussian data could be fitted with very good accuracy using 
the scaling function (or father wavelet) part of the spectrum alone. Calderon 
enrichment was introduced to show that exceptional accuracy could be at­
tained.

I have shown tha t recovery of the continuous relaxation spectrum is an 
exponentially ill-posed inverse problem, and consequently explained the need 
for regularization in the recovery process. I have introduced the regulariza­
tion mechanisms acting in this particular method of relaxation spectrum 
recovery. The most important regularization parameters involved are the 
scale a  and the sparsity m. Using both real and synthetic data, it is evident 
that if the value of o is too high, a poor fit to the data is achieved, and not 
enough information about the resulting spectrum is captured. Conversely, if 
a is too small, substantial superresolution is encountered, a concept that has 
been explored in this thesis. It has also been explained how the sparsity m  
and the sampling parameter a act as regularization parameters.

To select an optimal value of a , for a chosen value of m, I select the 
smoothest spectrum that fits the data to an acceptable tolerance. If I choose
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o small enough I can always obtain m  peaks in the distribution, but not all 
of these peaks are supported by the underlying data. My philosophy is to 
choose the smallest number of peaks tha t give an acceptable fit to the data.

When it is clear that the optimal level of resolution is cr ^  ^ (cr < 1), I 
have developed a method for choosing a more accurate optimal value of a. I 
construct a homotopic approximation for the spectra and data fits, linearly 
interpolating between the originally selected value of a  (where the spectrum 
contains the smallest number of peaks tha t gives an acceptable fit to the 
data) and the nearest known smaller value of a  (where we have at least one 
extra peak). I then select the optimal value of a  by choosing the spectrum 
in this range which has the smallest total curvature.

It has been shown that super-resolution is an important factor when se­
lecting an optimal value of a. Super-resolution occurs when the Fourier 
transform of the recovered function h(t) lies outside the Nyquist range of the 
data. When recovering the continuous relaxation spectrum from experimen­
tal data, I have tried to avoid super-resolution as much as possible. I believe 
that a value of super-resolution less than 1% is an acceptable value, since 
zero super-resolution is impossible when estimating the spectrum as a sum 
of hyperbolic wavelets.

The concepts of sparse approximation and dictionaries have been intro­
duced and implemented in this thesis. One of the main results of the entire 
thesis is that, with an appropriate choice of the scaling parameter <7, the 
spectrum can be recovered with an acceptable level of accuracy using only 
the scaling function part of the spectrum. Consequently, Calderon enrich­
ment is not required. This is particularly evident when dealing with noisy 
dynamic data when the resolution of the mother wavelets required is too high 
for the level of noise in the data, and leads to non-physical negative lobes in 
the spectrum.

In Chapter 6, I have shown that there are a whole family of wavelet
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transforms occurring naturally in the theory of linear viscoelasticity. Sub­
sequently, I introduced other dictionaries that consisted of valid choices of 
father wavelet to construct the spectrum with. In particular, I introduced 
the auto-convolution of sech (a;) as a viable option. I showed that with an ap­
propriate value of cr, I could produce results that were consistent with those 
obtained with the sech dictionary. I conclude that for any valid, sensible 
choice of hyperbolic father wavelet, one should be able to produce similar 
results to the sech dictionary, provided an appropriate value of a is used.

In Chapter 7, I have explored other algorithms for fitting the dynamic 
data set for PB1. The results of these algorithms are consistent with the 
results of my search algorithm, in the sense that they all point towards a 
bimodal relaxation spectrum for this particular polymer blend.

Also in this thesis, I have introduced generalized formulae for double 
integral inversion formulae relating moments of the relaxation spectrum to 
data involving I have given a specific example of a well-behaved
relaxation spectrum tha t does not have a Maclaurin series. Furthermore, I 
have shown in this thesis tha t Calderon-Mallat decomposition can be used to 
derive the error terms in the Delta Sequence method of relaxation spectrum 
recovery.

I have developed a fresh approach to numerical deconvolution in this 
thesis, which is applicable to the deconvolution of noisy data where there is 
a strong level of ill-posedness in the associated inverse problem. In my PhD 
I have confined attention to an exponentially ill-posed inverse problem in 
linear viscoelasticity, which also has an analogue in the relaxation of dielectric 
materials. However, the methodology I have developed can be used more 
generally, and I believe there is a possibility of potential impact of my work 
in other application areas of signal and image processing.
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