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S u m m a r y

Summary

Cutaneous delivery of macromolecules is significantly impeded by the inherent barrier 
properties o f  the stratum comeum (SC). Within the last decade sophisticated 
engineering techniques have enabled the manufacture o f microneedle arrays. These are 
innovative devices consisting o f micron-sized needles which when inserted into the skin 
create physical conduits across the SC but do not impinge upon underlying nerve fibres 
or blood vessels. This study assessed the ability o f  microfabricated silicon microneedle 
arrays to penetrate the SC of ex vivo human skin for the localised delivery and 
subsequent expression of non-viral gene therapy formulations. Cutaneous gene therapy 
may represent a new method for the treatment of, or vaccination against, a range of 
candidate diseases.

Microneedle arrays o f  variant geometries and morphologies, created using dry- and wet- 
etch microfabrication methods, were characterised by scanning electron microscopy. 
The potential o f  these devices for the cutaneous delivery o f  gene therapy formulations 
was initially demonstrated by permeation o f a size and surface representative 
fluorescent nanoparticle across microneedle treated human epidermal membrane and 
observation o f  these nanoparticles in micron-sized conduits created in excised human 
skin. The ability to express exogenous genes within ex vivo human skin was 
subsequently proven by intradermal injection of the pCMVp reporter plasmid. 
However, a non-viral gene therapy vector failed to enhance cutaneous transfection. 
Cutaneous plasmid DNA delivery using the microneedle device facilitated effective, if 
somewhat limited and irreproducible, transfection of epidermal cells proximal to 
microchannels created in the skin.

These investigations confirmed the ability of a silicon microneedle device to deliver 
macromolecular formulations, including plasmid DNA, to the viable epidermis and 
have demonstrated exogenous gene expression within human skin. However, limited 
and unpredictable gene expression following microneedle mediated delivery indicate 
that further studies to optimise the microneedle array morphology, its method of 
application and the plasmid DNA formulation are warranted.
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CHAPTER 1 

Introduction
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1.1. GENERAL INTRODUCTION

Localised delivery and the subsequent expression of nucleic acid formulations within 

the skin may be used to treat inheritable skin disorders (genodermatoses), to advance 

wound healing strategies or for the development of a genetic vaccination. However the 

outermost layer of skin, the epidermis, presents a formidable physical and 

immunological barrier to the ingress of exogenous material. To enable cutaneous 

delivery of hydrophilic, high molecular weight (MW) structures such as gene-based 

therapies, more radical methods of delivery must be employed.

The aim of this study was to determine the ability of microfabricated microneedle 

devices to facilitate localised delivery and subsequent expression of exogenous genes 

within the viable epidermis of human skin. This introductory chapter considers the 

structure of human skin, the fundamental principles of gene therapy and the skin as an 

attractive target for such therapeutic strategies. Within these topics, the barrier 

properties of the skin tissue, the target cells of the viable epidermis and the novel 

methods of cutaneous delivery that have been employed to promote localised nucleic 

acid delivery are scrutinised, with a particular focus upon the progression of the 

microneedle array device to the present date.

2
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1.2. THE SKIN BARRIER: Structure and Function

As the primary interface between a living creature and the environment within which it 

resides, skin plays a significant role in protection of an organism and its ability to 

successfully interact with the external environment. Human skin is the largest and 

arguably most complex organ of the body responsible for, and contributing to, a range 

of functionalities (Menon, 2002). For pharmaceutical scientists, its direct accessibility 

and large surface area make skin an attractive portal for the delivery of therapeutic 

entities. However, its primary role is to protect the body from possible insult by 

chemicals, invading pathogens, physical trauma or UV radiation (Menon and Elias, 

2001, Williams, 2003). The formidable physical, biological and immunological barrier 

properties of skin have therefore restricted successful trans/intradermal delivery systems 

to a limited number o f  therapeutic candidates (Roberts and Walters, 1998).

1.2.1. Skin Anatomy

The skin is essentially a bilayer consisting of (i) the dermis; a connective tissue layer 

comprising the major proportion of the skin thickness and (ii) the epidermis; a cellular 

region overlying the dermis that is in contact with the external environment (Fig 1.1). 

Sub-cutaneous fat is an insulating layer located beneath the dermis that provides 

mechanical protection to underlying tissues and organs of the human body.

The epidermis can itself be considered as a two layered structure. The outermost layer, 

the stratum corneum (SC), consists of flattened terminally differentiated cells and it is 

the passage o f therapeutic compounds through this layer that is considered to be the 

primary hurdle to successful transdermal drug delivery (Scheulplein and Blank, 1971). 

For macromolecules such as nucleic acid therapies this barrier is formidable and 

penetration therefore requires radical transdermal delivery methods. Below the SC lies 

the viable epidermis, so termed as it contains nucleated cells and the proliferative cells 

that are responsible for regeneration and renewal of epidermal tissue (Lajtha, 1979) (Fig 

1 .2 ).

3
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Hair

Sweat
Gland

Figure 1.1. An illustration of the gross anatomy of full thickness human skin. 

(Adaptedfrom http.Vwww. homestead, com/doctorderm/skinanatomv. html accessed 24.05.2006)
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Figure 1.2. An illustration of the viable epidermis, highlighting the cellular organisation 

of the tissue.
(Adaptedfrom http://upload.wikimedia.0rg/wikipedia/nl/e/e8/Epidermis.jpz accessed 13.10.2005)
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1.2.2.1. The Dermis

The dermis is a connective tissue matrix consisting of, (i) collagen; which provides the 

skin with tensile strength and elasticity and (ii) elastic fibres; which resist deformation 

of the skin following the application of mechanical forces (Haake et al., 2001). The 

primary function of the dermis is to provide the skin barrier with an ability to resist 

mechanical injury. However, the dermis is also home to nerve fibres and the cutaneous 

vasculature and therefore has important roles in sensation, the transport of nutrients, 

thermal regulation and the movement of cells and biological mediators between the 

local and systemic environments (Haake et al., 2001, Williams, 2003). The upper region 

of the dermis, the papillary dermis, also contains a number of cells including fibroblasts, 

macrophages and dermal dendritic cells (DDC). The former of these cell types is 

responsible for maintenance of the connective tissue structures, whilst the latter two cell 

types are involved in the cutaneous immune system (Haake et al., 2001).

1.2.2.2. The Viable Epidermis

The viable epidermis is a complex cellular region in which the primary cell type, the 

keratinocyte, undergoes progressive differentiation from its origins in the basal 

epidermis to its destination within the SC, where it completes its life as a non-nucleated 

comeocyte. This differentiation process within the viable epidermis occurs over 

approximately 21 days (Roberts and Walters, 1998) with the resulting comeocyte then 

remaining in the SC for a further 14 days (Montagna and Parakkal, 1974) before it is 

eventually shed in the desquamation process. Other cell types within this layer include 

Langerhans cells, Merkel cells and melanocytes.

1.2.2.2.1. Stratum Basale (Basal Layer)

The region of columnar shaped keratinocytes located above the epidermal-dermal 

junction is often referred to as the basement membrane zone (BMZ). Basal 

keratinocytes are tightly bound to the underlying dermis by proteinaceous anchoring 

filaments called hemidesmosomes. Cytoskeletons of the cells consist o f the keratin 

filaments, K5 and K 14 (Menon, 2002). These are indicative keratins that are specific to 

cells located within this region. Loss of keratin or hemidesmosome functionality results

5
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in mechanical disruption of the BMZ as can be seen in blistering conditions such as the 

inheritable genetic disease, epidermolysis bullosa (Jonkman, 1999).

Continual loss o f  skin cells from the SC necessitates renewal of the underlying layers to 

maintain skin homeostasis. This regeneration is ultimately controlled by proliferative 

cells located within the basal layer of the viable epidermis. Division of these cells, their 

release from the basal layer and subsequent migration toward the SC is a tightly 

controlled mechanism that ensures maintenance of the skin barrier function (Fuchs, 

1990, Kaur and Li, 2000). Proliferative cells within the basal layer include both stem 

cells (Section 1.2.3.) and transit amplifying cells (TA), actively proliferating 

keratinocytes which after a number of divisions will eventually differentiate themselves. 

Therefore it is only within the basal layer of the skin epidermis that cells are actively 

dividing.

1.2.2.2.2. Stratum Spinosum

Migration of cells from the basal layer to the stratum spinosum is accompanied by 

morphological and biochemical changes. Keratinocytes become more polyhedral in 

shape and develop large bundles of intracellular keratin filaments that merge into 

cellular extensions. These terminate with desmosomes that bind the cells together in a 

tight cohesive unit (Fuchs, 1990). Lamellar bodies (LB), containing stacks of lipid 

enriched disks, are also evident in the cytoplasm of cells in this layer, particularly at the 

interface between the stratum spinosum and the overlying cells of the stratum 

granulosum (Odland, 1960).

1.2.2.2.3. Stratum Granulosum

Cells continue to Batten on their transition through the stratum granulosum and begin to 

develop characteristic granules which contain a high density of keratin filaments (Haake 

et al., 2001). Increasing levels o f  protein synthesis is accompanied by lipogenesis and a 

resultant increase in the membrane bound lipid rich LB. Within the upper layers of the 

stratum granulosum LBs fuse with the cell membrane, resulting in release of their lipid 

contents into the extracellular space. Remodelling of the lipid within this environment 

by co-secreted enzymes converts the lipid into a continuous intercellular lamellar 

structure. These are the beginnings of the characteristic extracellular lipid bilayers that

6
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are present in the SC. Within the stratum granulosum, intracellular enzymes also begin 

to degrade the cell organelles, thus decreasing cell viability.

1.2.2.2.4. Langerhans Cells

The skin is equipped with specialised antigen presenting cells (APC), called Langerhans 

cells (LC), that can respond to the invasion of pathogens into the skin (Fig 1.3). These 

cells, identified by Paul Langerhans in 1868 (Wolff, 1991), exist in the suprabasal area 

of the viable epidermis and although they only account for 2-8% (Larregina and Falo, 

2005) of the epidermal cell population, their finger like projections form a network that 

covers over 25% of the total skin surface area (Schuler and Steinman, 1985, Yu et al., 

1994). Immunohistochemical en face  images reveal a ‘spiderlike’ network of APC 

(Romani et al., 2003) within the epidermal layer whilst light and electron microscopy 

studies (Oota, 1999, Stoitzner et al., 2002) highlight the characteristic ‘veiled’ 

morphology of individual LCs (Fig 1.3). Their position and role in the viable epidermis 

will be discussed in greater detail during consideration of the cutaneous immune system 

(Section 1.2.4 ). Antigen presentation is currently acknowledged as the primary role of 

the LC however it is unlikely to be the sole function (Larregina and Falo, 2005).

Figure 1.3. A scanning electron micrograph of a dendritic Langerhans cell reveals the 

‘veiled’ morphology of the cell.
(Adaptedfrom http: nvni'.nature.com neb journal v5 n 10 full neb 1003-867.html accessed 16.10.2005)
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1.2.2.3. The Stratum Corneum

The barrier function of the skin is imparted by the outermost layer of the epidermis, the 

10-20fim thick SC layer (Scheulplein and Blank, 1971). This competent physical barrier 

has frustrated attempts to deliver numerous therapeutic compounds across the skin, 

resulting in the clinical use of relatively few therapeutic products. The aim of this 

investigation is to physically bypass the SC using a microneedle device.

The SC consists o f  tightly packed, flattened corneocytes, 20-40 pm in diameter, 

surrounded by a lipid matrix. This is often compared to a ‘brick and mortar’ structure, 

the bricks being the corneocytes and the mortar being the intercellular multi lamellar 

lipid sheets that surround them (Elias, 1983). These sheets consist primarily of three 

lipid types, ceramides, cholesterol derivatives and fatty acids. The corneocytes are 

densely packed with insoluble intracellular keratin filaments and although they contain 

active enzymes, their inability to regenerate and the absence of functional cellular 

organelles suggests that these cells are essentially non-viable (Madison, 2003).

Recently, it has been suggested that the ‘brick and mortar’ model of the SC should be 

extended to include the presence of desmosomes (Cork, 2004), protein rivets that are 

responsible for the cohesion o f cells within the layers of the SC. These desmosomes 

might be considered to be steel reinforcing rods that span the SC layer, holding the tight 

cohesive unit in place and maintaining cell shape and cell to cell adhesion (Wertz and 

van den Bergh, 1998). In the outer layers of the SC proteases are released from cells. 

These degrade desmosomes, which therefore permits controlled comeocyte release from 

the skin surface (Sondell et al., 1995). The SC is therefore in a dynamic state, with 

continuous renewal and modification of the extracellular barrier lipids by a host of 

different enzymes and the controlled desquamation of corneocytes from the skin 

surface. Therefore, although the SC is considered a non-viable tissue, regulation of the 

desquamation process, the continuous differentiation of corneocytes and the ability of 

the layer to respond to insult has lead to its description as ‘intelligent’ ((Menon and 

Elias, 2001), see (Elias, 2005)for a recent review).
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1.2.2. Cutaneous Innervation and Vasculature

The structure of the cutaneous vasculature is well documented (Singh and Swerlick, 

2001) (Fig 1.4). Capillaries from a deep plexus located at the base of the dermis extend 

upward to the dermal papillary areas between the epidermal projections/ridges, to form 

dermal papillary loops. It is at these loops that oxygen and nutrient transfer with viable 

epidermal cells takes place. Networks of nerve fibre bundles responsible for sensory 

perception (including pain) are found alongside capillaries and lymphatic vessels, in the 

papillary dermis. Therefore, despite the suggested presence of intraepidermal nerve 

endings over the past few decades (Hilliges et al., 1995, Vaalasti et al., 1988), 

restricting the penetration of a microneedle array to the epidermis reduces/prevents pain 

and bleeding during insertion.

Papillary plexus

Deep plexus

Figure 1.4. The vasculature structure within human skin.
(Adaptedfrom http: cai.md.chula.ac.th lesson lesson4410 data image s i 7.jpg accessed 25.10.2005)
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1.2.3. Stem Cells

The ability to transfect stem cells within any tissue is a highly attractive proposition for 

those working within the field of gene therapy as it presents an opportunity for stable 

i.e. ‘lifelong’, correction of genetic defects. Within the skin, genetic modification of 

stem cells may permit treatment of patients who suffer from currently untreatable 

inheritable skin disorders. However, there are a number of challenges to this therapeutic 

proposal, most notably an inherent difficulty in identifying keratinocyte stem cells 

(Potten and Booth, 2002).

A reservoir of multipotent stem cells within the hair follicle bulge has been identified 

(Alonso and Fuchs, 2003a, Alonso and Fuchs, 2003b, Gambardella and Barrandon, 

2003, Potten and Booth, 2002, Spradling et al., 2001). However, it is stem cells in the 

interfollicular epidermis that are responsible for continuous renewal of the skin barrier 

(Alonso and Fuchs, 2003b).

Investigations using murine skin indicate that keratinocytes are organised into 

epidermal proliferating units (EPU), where a single stem cell in the basal layer gives 

rise to a column of cells that extends towards the skin surface (Alonso and Fuchs, 

2003b, Potten and Booth, 2002). These columns are approximately 10 basal cells wide. 

However unlike human skin, the basal layer of the mouse epidermis is relatively flat and 

therefore these observations cannot be directly extrapolated to the human setting (Jones 

et al., 1995).

Taichman and co-workers have recently elucidated the location of EPUs within human 

skin and suggest that the distribution of basal stem cells is in fact non-uniform 

(Ghazizadeh and Taichman, 2005) (Fig 1.5). In this study, labelled stem cells were 

present along the length o f the basal layer and from these stem cells narrow EPUs 

extended toward the skin surface. Three major observations were made in this study:-

1. The EPU has no preferred site o f  origin i.e. 44% were located in the flat regions, 

17% were on the side of rete ridges, 22% were at the base of rete ridges and 

17% were on the tip of dermal papillae.
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2. EPUs varied in width from one to ten cells, with the widest EPUs originating 

from the side of the rete ridge and the narrowest from the base of the rete ridge.

3. Migration from the basal compartment is perpendicular to the skin surface.

Stable expression of an exogenous gene within the skin requires transfection of stem 

cells. Targeting these cells with a nucleic acid therapeutic therefore requires a device 

that can deliver the formulation to the basal region of the epidermis and a specific 

cellular marker that can promote stem cell transfection

Dermal papilla

Rete ridge tipRete ridge base

Figure 1.5. The distribution of stem cells (red) within epidermal proliferation units 

found within the viable epidermis of human skin.

The image is adapted from (Ghazizadeh and Taichman, 2005).
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1.2.4. Cutaneous Immunity

The physical barrier afforded to the skin by the SC retains external micro-organisms on 

the skin surface. Disruption or breach of this barrier however can facilitate cutaneous 

invasion of pathogens and subsequent localised or systemic infection. The skin has 

therefore been equipped with a highly competent immune surveillance system that 

ensures protection from such microbial insult.

The immunocompetence of the skin is highlighted by the primary cell type, the 

keratinocyte. This cell can release over 20 different cytokines that signal to other cells 

of the immune system and maintain the immunological balance of the

microenvironment (Williams and Kupper, 1996). Keratinocytes within the epidermis

therefore assist in the maturation and migration of immature resident APCs and are also 

responsible for maintaining cells of the immune system at the site of infection through 

the expression o f surface adhesion molecules.

Immature LCs (Section 1.2.2.2.4) are a type of dendritic cell (DC), possessing ‘finger

like’ protrusions that forge a network of cellular extensions within the suprabasal 

keratinocyte layer (Fig 1.2). This mesh facilitates their sentinel role within the skin by 

ensuring a large area for antigenic capture. DCs, such as LCs, are now recognised as

powerful primary initiators (Schuler and Steinman, 1985) and modulators of the

immune response (see (Banchereau and Steinman, 1998, Larregina and Falo, 2005, 

Romani et al., 2003) for comprehensive reviews). Antigens (Ag) that penetrate across 

the SC barrier are therefore captured by the LC network and engulfed by phagocytosis, 

macropinocytosis or receptor mediated endocytosis. Only picomolar levels of Ag are 

required for some of these uptake mechanisms to successfully stimulate an immune 

response (Banchereau and Steinman, 1998). Once the immature LC has engulfed and 

processed the Ag into immunogenic peptides, a large quantity of major 

histocompatibility class II complexes (MHC II) are released from vacuoles within the 

cell. These bind to the Ag fragments and the resulting complexes migrate towards the 

cell surface. Concurrently, the maturing LC is released from its sentinel position within 

the viable epidermis, possibly by a decrease in adhesion to surrounding keratinocytes 

(Williams and Kupper, 1996). Downward migration of a LC through the basement
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membrane and their subsequent translocation into the draining lymph node, located in 

the dermal tissue, results in interaction with and subsequent activation of naive T cells.

Presentation o f  an exogenous Ag by the MHC II complex stimulates CD4+ (T helper) 

cells. However, LCs may also process endogenous Ags i.e. those Ags synthesised 

within the cell. Endogenous Ags presented by MHC class I molecules activate CD8+ (T 

cytotoxic) cells and therefore stimulate a different immune response. Vaccinologists 

have proposed that direct transfection of both LCs and keratinocytes within the viable 

epidermis will promote a sustained, balanced immune response and therefore an 

enhanced immune protection against disease (Howarth and Elliott, 2004, Kutzler and 

Weiner, 2004, Larregina et al., 2001, Morel et al., 2004, Pardoll and Beckerleg, 1995).
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1.3. GENE THERAPY AND THE SKIN

1.3.1. Gene Therapy

Conceptually human gene therapy is simple; ‘the introduction of an exogenous gene 

into a host cell to achieve a therapeutic benefit’ (Morgan and Anderson, 1993). 

Conventional gene therapy aims to identify the defective gene(s) associated with a 

disease state and introduce to those affected cells a functional copy of the mutant gene. 

Cell functionality is consequently restored and the pathogenesis is therefore reversed. 

Such an elegant yet simple concept stimulated rapid and significant interest in the 

technology and during the 1990’s the scientific and public domains became increasingly 

enthusiastic toward gene therapy as a revolutionary new medicine. This was mirrored 

by a rapid increase in the number of human gene therapy trials from the first, conducted 

in 1989 by Rosenberg and colleagues (Rosenberg et al., 1990) to a peak of 117 trials 

worldwide in 1999 (http://www.wiley.co.uk/genmed/clinical/, 2006). However the 

death of Jesse Gelsinger in 1999 (caused by an inflammatory response to the adenovirus 

vector), combined with the hindered development of therapeutically useful gene therapy 

technologies, contributed to a significant reduction in this growth, with just 27 trials in 

progress during 2005 (http://www.wiley.co.uk/genmed/clinical/, 2006).

Nonetheless, the scientific understanding of gene therapy has progressed considerably 

since the late 1980’s and based upon information collated from over 1000 human gene 

therapy trials over the past 15 years the technology is now developing at a more 

sustainable rate. Increasing therapeutic proposals for gene therapy mean that it is not 

regarded now as simply the corrective treatment of inherited disease states but a method 

of introducing exogenous nucleic acids into cells to produce a therapeutic effect.

1.3.2. Gene Therapy Vectors

The successful expression o f therapeutic genes within a target cell is highly dependent 

on effective formulation of the nucleic acid within a vector formulation that promotes 

nuclear delivery and translation of the genetic sequence into a therapeutic protein 

(Piskin et al., 2004). The inherent ability of a virus to infect and introduce foreign 

nucleic acid into the nucleus of a host cell has resulted in significant clinical
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investigation into viral vectors as a method to deliver gene therapies 

(http://\vww.wiley.co.uk/genmed/clinical/, 2006). However, the high transfection 

efficiencies are undermined by safety concerns, including reversion to wild-type, 

adverse immunogenic response and random host integration of the exogenous nucleic 

acid. The ‘ideal’ viral vector therefore remains elusive. As a corollary to the inherent 

safety concerns o f  viral gene transfer vectors, non-viral vectors have been developed as 

an alternative approach. Synthetic delivery systems, including naked DNA or DNA 

condensed within a lipid or polymer vector system can be ‘tailor made’ using well 

characterised materials and are therefore associated with significantly reduced safety 

concerns.

Lipid-based plasmid DNA (pDNA) complexes are well characterised non-viral vectors 

used within gene therapy studies to promote cell transfection (Pedroso de Lima et al.,

2001). The lipid component of these complexes is often a cationic liposome that 

interacts spontaneously upon combination with pDNA, resulting in condensation of the 

nucleic acid. These complexes, termed lipoplexes, offer significant advantages over 

naked DNA during extra- and intra-cellular delivery, improving interaction with the 

target cell and protecting the nucleic acid from enzymatic degradation (Lian and Ho, 

2003, Lleres et al., 2004). Advances in the understanding of non-viral vector technology 

has led to the inclusion o f  polycations, such as protamine (Park et al., 2003), within 

non-viral formulations in order to improve the condensation o f particles, their stability 

in the extracellular environment and their resulting transfection efficiencies (Faneca et 

al., 2004, Gao and Huang, 1996, Lleres et al., 2004). These cationic liposome- 

polycation-DNA complexes, termed LPDs, exist in a colloidal suspension and have 

been used for both systemic (Zhang et al., 2003) and local gene transfer (Birchall et al., 

2000 ).

However the application of non-viral vectors, such as the LPD, is severely limited by 

poor transfection efficiencies, attributable to the hostile extracellular environment and 

the poorly understood mechanisms of intracellular delivery and trafficking (Belting et 

al., 2005, Lechardeur et al., 2005, Nishikawa and Huang, 2001, Ruponen et al., 2003). 

A number of key hurdles have been identified in the transition of the non-viral gene 

therapy from the extracellular space to the nucleus o f  the cell (Fig 1.6).
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1. Extracellular environment

m  2. Membrane Interaction and endocytosis
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I 4. Cytoplasmic diffusion
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6. Transcription

Figure 1.6. A schematic diagram highlighting the extra- and intra- cellular barriers to 

successful gene delivery.
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1. The Extracellular Environment

Interaction of pDNA and cationic delivery systems with components of the extracellular 

environment is a significant obstacle to effective gene therapy within localised tissues 

such as the skin (Ruponen et al., 2003). Barry and colleagues suggest that 99% of 

cutaneously delivered naked nucleic acid will be destroyed by extracellular 

endonucleases in just 90 minutes (Barry et al., 1999). Interestingly there is no 

correlation between the level of endonuclease activity within the skin tissue and the 

transfection efficiencies. The author attributes this observation to the variability 

associated with delivery by intradermal injection and the specific keratinocyte cell 

population located at the point of injection (Barry et al., 1999).

2. Membrane Interaction and Endocytosis

Cationic non-viral gene delivery systems interact non-specifically with the cell surface 

by electrostatic interaction (Gao and Huang, 1995). The phospholipid barrier that 

surrounds cells prevents the passage of hydrophilic macromolecules by simple diffusion 

(Belting et al., 2005) and therefore endocytotic mechanisms are required for passage of 

DNA therapeutics across the plasma membrane. Studies suggest that for cationic gene 

therapy complexes, such as lipid and polymer based non-viral vectors, clathrin- 

dependent endocytosis is the responsible mechanism (Lechardeur et al., 2005), although 

a number of alternative mechanisms have also been implicated (Belting et al., 2005, 

Wiethoff and Middaugh, 2003).

3. Endosomal Escape

Endocytic vesicles fuse with lysosomes resulting in exposure, and subsequent 

degradation of, nucleic acids by acidic hydrolases and endonucleases (Howell et al.,

2003). It is therefore essential for a nucleic acid to escape the endosome soon after its 

entrance into the cell. Cationic lipids are thought to facilitate this process by 

destabilising the endosomal membrane (Lechardeur et al., 2005, Wattiaux et al., 2000), 

thereby releasing their pDNA into the cytoplasm.
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4. Cytoplasmic D iffusion

Once released from the endosome, pDNA must migrate, through the cytoplasm, to the 

nucleus. However, the cytoplasm consists of a network of filaments, submerged in a 

‘soup’ of macromolecules and cellular organelles (Lechardeur et al., 2005). Therefore 

although the cytosol possesses a viscosity comparable to water, for a high MW structure 

such as pDNA, molecular crowding and physical obstacles within the cytoplasm 

dramatically reduces the mobility of the nucleic acid. Hampered lateral diffusion 

(Dowty et al., 1995) and the activity of cytosolic nucleases (Lechardeur et al., 1999) 

have resulted in the identification of cytoplasmic permeation as a significant hurdle to 

successful transfection. This factor may be considerable in keratin and lipid packed 

keratinocytes located within the epidermis (Section 1.2.2.2).

5. Nuclear Entry

The transfer of macromolecules between the cytoplasm and the nucleus is fundamental 

to the functioning o f  a eukaryotic cell and is controlled by nuclear membrane pores 

termed nuclear pore complexes (Sebestyen et al., 1998). These 50nm diameter pores 

allow' the passive diffusion of molecules that are approximately 9nm in diameter 

(Wiethoff and Middaugh, 2003). Activation of the pore by a nuclear localisation signal 

(NLS) though facilitates passage of larger molecules, potentially pDNA (Collas and 

Alestrom, 1997, Munkonge et al., 2003).

However, the more established mechanism of pDNA nuclear entry is more 

opportunistic. During mitosis i.e. when the cell is dividing, the nuclear envelope 

disintegrates thereby allowing the plasmid freedom to access the nucleus. Transfection 

may therefore be highly influenced by the rate of cell division. This stage of the 

transfection process is generally regarded as the rate limiting step (Dean et al., 2005a) 

and therefore within the skin, where the majority of cells are terminally differentiated, 

this is likely to be a considerable obstacle.
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6. Transcription

Once the pDNA has reached the nucleus it remains distinct from the host cells genome 

(episomal) and utilises the host cell’s machinery for transcription. However when those 

transfected cells divide, pDNA is degraded or diluted (Hengge et al., 2001). Within the 

skin, it is important to remember that progressive differentiation of cells and the 

desquamation process will therefore ultimately lead to plasmid loss from the tissue.

1.3.3. Cutaneous Gene Therapy

During the infancy o f gene therapy in the early 1990’s, the epidermis was recognised as 

an ‘attractive target tissue for gene therapy’ (Greenhalgh et al., 1994). Some of the 

reasons for such optimism in cutaneous gene therapy remain true today:-

1. The tissue is readily accessible for manipulation.

2. Treated areas o f  skin can be visually monitored and removed surgically if an 

adverse event to treatment is detected.

3. Integration o f  an exogenous gene within proliferative stem cells located in the 

basal layer o f  the epidermis can potentially facilitate stable integration of the 

gene and the correction of a genetic defect

4. The biology o f the epidermis and the cells contained within this stratified tissue 

are well understood.

5. Primary human keratinocytes can be maintained in vitro thereby allowing ex 

vivo treatment o f  skin disorders before reintroduction of treated cells to the 

patient.

6. The epidermis may be used as a bioreactor to synthesise therapeutic proteins for 

systemic therapeutic activity.

However just five years later negative publicity and restricted scientific progress 

prompted the question, ‘how realistic is cutaneous gene therapy’ (Hengge et al., 1999). 

At this stage, the principles o f  gene therapy were proven but a number of limitations 

prevented progression to the clinic. These included tissue targeting, stable gene 

expression, the control o f  immune responses, correction o f  all defective cells in the 

organ, the creation of an acceptable topical gene formulation and safety concerns. Since 

then, cutaneous gene therapy has been developing at a steady rate. In 2005, Hengge
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reflected upon developments over the previous decade and was encouraged by 

progression but mindful of the scientific advances required for successful translation of 

therapeutics to the clinic (Hengge, 2005).

For cutaneous gene therapy target cells are located in the viable epidermis, a narrow 

region of cells, sandwiched between the outermost SC barrier and the underlying dermal 

connective tissue. Accessibility to the target region is therefore restricted. The second 

major difficulty is obtaining efficient, reproducible and sustained transfection of cells 

within a tissue that is in the continuous process of cell renewal and differentiation. 

Numerous therapeutic applications have been proposed for cutaneous gene therapy, 

including the treatment of cutaneous malignancies (Green and Khavari, 2004, Kitagawa 

et al., 2003, Merdan et al., 2002, Rakhmilevich et al., 1996, Sotomayor et al., 2002) and 

the promotion o f wound healing (Andree et al., 1994, Jeschke, 2003, Yang et al., 1990, 

Yao and Eriksson, 2000). However, the majority of published work investigates its 

potential within the treatment of genodermatoses or the development of a genetic 

vaccine.

/. 3.3.1. Genodermatoses

Improvements in gene sequencing technologies during the 1990’s and the human 

genome project have led to the identification of the defective genes responsible for 

numerous inherited disease states (Irvine and McLean, 2003, van Ruissen et al., 2002). 

Defects in a single gene may be responsible for a disease phenotype and therefore 

correction of the identified defective sequence may enable cure of the inherited skin 

disorder (genodermatosis). By the year 2000, 80 genes associated with inherited skin 

diseases had been identified (Uitto and Pulkkinen, 2000) and just three years later this 

had increased to 139 genes (Irvine and McLean, 2003). However the increased 

molecular and genetic understanding of genodermatoses has not been mirrored by 

advances in the treatment o f  patients.

Two of the most studied inherited disease states include epidermolysis bullosa (EB) 

(Jonkman, 1999) and xeroderma pigmentosum (XP) (Magnaldo and Sarasin, 2004). Our 

understanding of these diseases has increased exponentially over recent years, aided by 

the development of representative animal models (Arin and Roop, 2004, Jiang and
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Uitto, 2005). However treatment remains symptomatic. EB is a blistering condition, 

associated with the dysfunction of hemidesmosomes (Jonkman, 1999), which may be 

debilitating, disfiguring and in the more serious cases life threatening for patients. 

Corrective gene therapy w'ould offer these patients a curative treatment. Progress within 

this field has led to recent initiation of an ex vivo clinical trial (Dellambra et al., 2000, 

Ferrari et al., 2005), the results of which are eagerly anticipated by the cutaneous gene 

therapy community.

Ex vivo delivery o f  the therapeutic transgene to diseased skin involves removal of a skin 

biopsy, propagation o f skin cells ex vivo, transfection of those cells with the selected 

genetic sequence and the subsequent grafting of cells back to the patient. This is a time 

consuming and practically difficult process that may result in the scarring of patients 

due to the surgical procedures involved. However, to date it has been preferred to in 

vivo delivery primarily because ex vivo skin may be enriched for those transfected cells 

and also expanded to regenerate large skin areas. This is a vital consideration in the 

treatment of EB, where extensive areas often require graft treatment (Lombry et al., 

2000). In vivo delivery o f a therapeutic to treat genodermatoses would be a less 

complicated and more patient acceptable method of treatment (Chaote and Khavari,

1997) but its application may be restricted to cutaneous disorders with a phenotype that 

is limited to isolated skin areas. The simplicity of in vivo delivery and the progressive 

development o f  novel cutaneous delivery methods will continue to stimulate the 

attention o f  those in the field o f  genodermatoses (Woodley et al., 2004).

1.3.3.2. Genetic Cutaneous Immunisation

As discussed previously (Section 1.2.4), the skin is a highly immunocompetent organ 

(Banchereau and Steinman, 1998, Larregina and Falo, 2005, Williams and Kupper, 

1996). It is therefore unsurprising that vaccinologists and immunologists now consider 

the skin, and more correctly the viable epidermis, to be a potential target for localised 

vaccine delivery (Babiuk et al., 2000, Glenn et al., 2003, Partidos et al., 2003, Partidos 

and Muller, 2005). Intradermal delivery aims to provide safer and more comprehensive 

vaccination regimens (Babiuk et al., 2000, Mikszta et al., 2005).
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Established immunisation schemes rely primarily on the delivery of vaccines by 

intramuscular or subcutaneous injection. Therefore acknowledgment of the skin as a 

competent immunological organ has directed vaccinologists toward the development of 

safer and less invasive methods of vaccination (Partidos et al., 2003). Studies by Glenn 

and co-workers suggest that topical application of antigenic peptide vaccines to 

hydrated skin can induce levels of systemic immunological protection (Glenn et al., 

1998a, Glenn et al., 1998b). However the SC barrier restricts vaccine candidates to 

small peptide Ags (Partidos et al., 2002, Partidos et al., 2003) which themselves only 

elicit limited immune responses (Glenn et al., 1998a, Glenn et al., 1998b). More recent 

studies by Glenn and colleagues have therefore used tape-stripping techniques and 

emery paper to disrupt the outer layers o f  the skin prior to topical Ag application (Glenn 

et al., 2003).

The poor permeability of the SC to vaccines has stimulated the development of 

alternative vaccine delivery strategies (reviewed in (O'Hagan and Rappuoli, 2004, 

Partidos, 2003)). Needle-free vaccine technologies include the helium driven 

Powderject™ device (Chen et al., 2004, Chen et al., 2000) and the more recently 

developed microneedle array (Mikszta et al., 2002, Mikszta et al., 2005, Widera et al., 

2006). Microneedle facilitated localised delivery o f  both model (Widera et al., 2006) 

and therapeutic Ags (hepatitis B (Mikszta et al., 2002) and anthrax (Mikszta et al.,

2005)) have been shown to produce equivalent or even greater immune responses than 

injected delivery techniques. Cutaneous delivery of a vaccine can potentially target key 

mediators of the immune system, the LCs, and therefore in doing so aims to improve 

immune responses and reduce systemic adverse effects.

The potential o f cutaneous immunisation using a DNA vaccine was realised over a 

decade ago (Tang et al., 1992) and has since progressed towards the treatment of 

candidate diseases including hepatitis B (Kwissa et al., 2000, Osorio et al., 2003, 

Roberts et al., 2005, Tacket et al., 1999, Xiao-wen et al., 2005), human 

immunodeficiency virus (HIV) (Giri et al., 2004, Lisziewicz et al., 2006, Lisziewicz et 

al., 2005, Liu et al., 2001) and influenza (Chen et al., 2000, Dean and Chen, 2004, La 

Montagne and Fauci, 2004, Van Kampen et al., 2005, Watabe et al., 2001). The concept 

is simple; an antigen-encoding plasmid is introduced into the skin tissue, resulting in
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expression of the antigenic protein in vivo and the subsequent induction of an immune 

response. Current established vaccination strategies utilise killed or live attenuated 

vaccines, which although successful in certain cases, have a number of drawbacks. 

These may be addressed by DNA vaccination. Creation o f  an Ag in situ mimics 

infection by viral pathogens and therefore, unlike killed vaccines, DNA vaccination 

may stimulate a more balanced immune response (Babiuk et al., 2000). DNA 

vaccination is also free from the safety concerns that surround the reversion of live 

attenuated vaccines to the wild type. Practical benefits of pDNA include the ability to 

rapidly construct pDNA for a named Ag, the rapid synthesis and purification of large 

pDNA stocks, improved stability (Babiuk et al., 2000, Walther et al., 2003) possibly 

removing the requirement of cold chain storage and low manufacturing costs (Babiuk et 

al., 2000). Such benefits would permit rapid production and distribution of 

immunisations and therefore DNA vaccines have become a particularly attractive 

proposition to those working in the field of biodefence (Dean et al., 2005b, Garmory et 

al., 2005) and for the treatment of pandemic diseases, such as influenza (Kaiser, 2004).

Significant interest in genetic immunisation, since its conception in 1992 (Tang et al., 

1992), resulted in the publication of over one thousand articles by the millennium 

(Shedlock and Weiner, 2000) and the notion of pDNA as the ‘third generation of 

vaccine’ (Alarcon et al., 1999). However although interest continues to expand, the 

technology has not advanced to clinical use (Restifo et al., 2000). The primary hurdles 

to successful cutaneous genetic immunisation are consistent with those that exist within 

other areas of gene therapy i.e. inefficient transfection and poor localised delivery of the 

formulation. However, more encouragingly, the immunocompetence of skin means that 

only small quantities of the Ag are required for an effective immune response 

(Banchereau and Steinman, 1998) and therefore, the transfection efficiencies are likely 

to be less than that required in the treatment of genodermatoses (Pertmer et al., 1995) or 

cancers (Sotomayor et al., 2002). It should also be noted that in order to stimulate a 

systemic immune response it may only be necessary to deliver the vaccine to a small 

area of skin. For these reasons cutaneous genetic immunisation is considered to be the 

most realistic therapeutic application o f microneedle mediated gene delivery to the skin.
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1.4. TRADITIONAL AND NOVEL TRANSDERMAL DELIVERY

1.4.1. Traditional Transdermal Delivery

The skin is a lucrative interface for systemic and localised drug delivery, possessing 

numerous advantages including its direct accessibility, the avoidance of first pass 

metabolism, an opportunity for controlled release products, the ability to monitor the 

therapeutic system and the potential to produce a simplistic ‘patient friendly’ drug 

delivery system. However the skin, and in particular the SC, presents a formidable 

barrier to the penetration of therapeutic compounds. Diffusion of compounds through 

the cutaneous ‘brick and mortar’ structure is primarily by the intercellular route (Potts 

and Francoeur, 1991). To enhance transdermal penetration of small therapeutic 

molecules, a number o f  elegant formulation strategies have been employed. This has 

lead to the successful development of transdermal patches, which attract annual 

worldwide revenue o f  over 2 billion pounds (Barry, 2001).

However, after decades of research only a handful of clinically useful compounds are 

delivered successfully via the transdermal route (Mitragotri, 2004). Therapeutic 

candidates are restricted primarily to potent molecules with a MW of less than 

500Daltons (Da) (Bos and Meinardi, 2000) and high lipophilicity (Prausnitz et al., 

2004). Therefore, nucleic acids such as pDNA, a hydrophilic macromolecule of up to 

lOMDa, are poor candidates for conventional methods of cutaneous delivery.

1.4.2. Novel Transdermal Delivery

The emergence o f  macromolecular therapeutics, spawned from advances in the 

biotechnology industry, has stimulated interest in alternative transdermal delivery 

strategies. Cutaneous gene therapy relies on localised delivery of macromolecular and 

nanoparticulate formulations that are often greater than lMDa and/or lOOnm in 

diameter. Novel transdermal delivery techniques have therefore been investigated for 

delivery of such macromolecules. Techniques can be grossly divided into those that 

disrupt the skin barrier and those that completely bypass the SC.
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1.4.3. Disrupting the Skin Barrier

1. 4.3.1. Electrical Methods

Electroporation is an electrically assisted method of transdermal delivery involving the 

application of short high-voltage (>50Volts) pulses across the skin. The mechanism of 

permeation enhancement has not been conclusively proven however it is believed that 

electrical stimulation opens up transient aqueous pores in the skin (Banga and Prausnitz, 

1998). Electroporation has been shown to enhance the delivery of hormones (Medi and 

Singh, 2003) and model macromolecules up to 40kDa (Lombry et al., 2000). It has also 

been considered for DNA vaccination approaches (Banga and Prausnitz, 1998). 

However, failure to deliver 14nm nanoparticles across human SC suggests that there is 

an upper limit to the size of therapeutics that can be delivered by this method (Chen et 

al., 1999).

Iontophoresis, a related technique using low voltage electrical currents (<10Volts) 

facilitates the cutaneous delivery of ‘smaller’ macromolecules, such as insulin (6kDa) 

(Kari, 1986), but there is little evidence of its applicability in nucleic acid delivery 

(Kalia et al., 2004).

1.4.3.2. Sonophoresis

Sonophoresis involves permeabilisation of the skin by application of low frequency 

ultrasound, creating disruptions within the SC by cavitation (Wu et al., 1998). This 

technique has also been linked to vaccination and more significantly facilitation of 

cutaneous gene therapy applications, including the correction of genodermatoses 

(Lavon and Kost, 2004). However although the technique has recently demonstrated an 

adjuvant effect in transcutaneous immunisation with tetanus toxoid (Tezel et al., 2005), 

the largest transdermally delivered molecule to date is erythropoetin (Wu et al., 1998), a 

48kDa macromolecule, which is up to one hundred times smaller than pDNA.

1.4.3.3. Photomechanical Waves

Pressure waves generated by laser radiation are reported to reversibly permeabilise the 

SC, creating temporary channels through which drug compounds can diffuse (Doukas 

and Kollias, 2004). Evidence for successful photomechanical delivery of
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macromolecules remains limited, although permeation of nanoparticles up to 20nm in 

diameter, up to a depth of 5pm, has been reported (Lee et al., 1998).

1.4.4. Circumventing the Skin Barrier

1. 4.4.1. Intradermal Injection

The simplest and most commonly used method for the localised introduction of 

macromolecules, most notably vaccines, into skin has been intradermal injection using a 

needle and syringe. Although precise volumes can be administered by this method, the 

depth of needle penetration and therefore the localisation of delivery is highly variable, 

dictated by the skill o f  administration and inter- or intra-variability in skin structure. A 

hypodermic needle, over 300pm in diameter (Zahn et al., 2001), creates 0.41-0.71mm 

holes within the skin (Baxter and Mitragotri, 2005) and therefore cannot facilitate 

targeted delivery to those viable keratinocytes and LCs within the epidermis. Injections 

also suffer from practical difficulties such as needle-stick injury, pain, needlephobia and 

administration dependent upon trained personnel. However, despite these 

disadvantages, intradermal injection provides an assured passage across the SC for a 

range of macromolecular formulations, including pDNA, and therefore maintains its 

position in the clinical and scientific setting as the ‘gold standard’ to which other 

cutaneous delivery techniques must be compared.

1.4.4.2. Follicular Delivery

Appendageal skin structures such as the hair follicle only contribute to 0.1% of the skin 

area available for diffusion (Barry, 2001). Although the use of the hair follicle as a 

portal for localised or systemic delivery is questionable (Meidan et al., 2005), it remains 

a target for gene therapy (Hoffmann, 2000, Ohyama and Vogel, 2003). Topical 

application naked DNA (Fan et al., 1999), cationic lipoplexes (Domashenko et al., 

2000, Li and Hoffmann, 1995) and viral vectors (Hoffmann, 2003) have been used to 

facilitate transfection of cells within hair follicles.

1.4.4.3. Ballistic Delivery

Ballistic devices aim to propel powder and particulate formulations across the SC 

barrier within a high velocity gas stream (Fynan et al., 1993). The technology has been
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used widely in the delivery of genes to the viable epidermis, resulting in a large body of 

published work (for reviews see (Chen et al., 2002, Dean et al., 2003, Kendall, 2006)). 

The ‘gene gun’, has been used extensively for genetic immunisation (Dileo et al., 2003, 

Fensterle et al., 1999, Fynan et al., 1993, Lin et al., 2000, Pertmer et al., 1995, Wang et 

al., 2004) against diseases such as hepatitis B (Roberts et al., 2005) and influenza (Dean 

and Chen, 2004, Dean et al., 2003). Recent publications assess the capabilities and also 

the current limitations of the Powderject™ system (Kendall et al., 2004, Raju et al.,

2006). One of the principal advantages of this technique is that it facilitates direct 

intracellular delivery o f  the nucleic acid and therefore eliminates extracellular barriers 

to successful gene delivery. However, limitations include variable depth of particulate 

penetration, the unknown fate of the gold carrier particles and a reduction in cell 

viability within treated areas of skin. The expense and complexity of this technology 

also restricts distribution and so hampers its employment for mass immunisation 

schemes.

Jet injection is a related technique in which a high speed stream of liquid is fired at the 

skin surface from an air or spring driven jet injector. Although the ability to deliver 

compounds across the SC barrier using this technology has been evident for many years 

(Hingson et al., 1963, Perkin, 1950), the mechanisms of delivery are only now being 

elucidated. Studies by Mitragotri and colleagues indicate that the technology creates 

conduits of similar diameter to the jet stream, approximately 100pm in diameter that 

extend to depths of over 10mm (Modamio et al., 2000, Schramm-Baxter and Mitragotri, 

2004). It is therefore unsurprising that the successful delivery of macromolecules such 

as insulin (Bremseth and Pass, 2001) has stimulated examination of this technique for 

cutaneous gene therapy (Aguiar et al., 2001, Cui et al., 2003, Mumper and Cui, 2003, 

Sawamura et al., 1999).

/. 4.3.4. Laser A blation

Laser methods including the ruby (Woan-Ruoh et al., 2002), carbon dioxide (Woan- 

Ruoh et al., 2002) and argon-fluoride (Fujiwara et al., 2005) laser have been used to 

facilitate transdermal delivery. However the erbium:yttrium-aluminium-gamet 

(erbium:YAG) laser, used to ablate the SC layer, has been characterised most 

extensively (Lee et al., 2003, Lee et al., 2002, Nelson et al., 1991, Woan-Ruoh et al.,
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2002). Transdermal delivery of small molecules such as vitamin C (Lee et al., 2003) and 

5-fluorouracil (Lee et al., 2002) has been followed by the cutaneous delivery of insulin 

and model macromolecules up to 77kDa (Fang et al., 2004), with minimal levels of skin 

damage (Lee et al., 2003). The upper size limit for cutaneous delivery using the 

erbium:YAG laser is yet to be determined and therefore its potential in cutaneous gene 

delivery remains unknown.

/. 4.3.5. Radiofrequency A blation

In 2003, Levin and colleagues reported the development of a device capable of creating 

a uniform pattern o f  microconduits through the SC using radiofrequency thermal 

ablation (Sintov et al., 2003). The Via Derm™ generator, developed by TransPharma 

Medical , consists o f  an ordered arrangement of stainless steel electrodes that are 

positioned on the skin surface and which, on application of a high frequent electric 

current, ablate the underlying cells to create a visible aqueous pore. These pores, termed 

radiofrequency (RF) microchannels, are typically 30pm in diameter and 70pm in depth 

although the dimensions o f  the conduits can be altered by simple adaptation of the 

device and its settings. The device has facilitated delivery of small molecules (Sintov et 

al., 2003) and human growth hormone (22kDa), to produce plasma levels equivalent to 

that achieved by sub-cutaneous injection (Levin et al., 2005). More recently, studies 

conducted within our laboratories have provided evidence for successful cutaneous 

delivery o f  pDNA through RF microchannels (Birchall et al., 2006) (Appendix III).

1.4.4.6. Thermal A blation

Thermal ablation involves the application of focused bursts o f  thermal energy to create 

an array of micron sized holes within the skin (Prausnitz, 2001). Development of this 

technology has been led by Altea Therapeutics® and has resulted in the development of 

a device that can facilitate the cutaneous delivery of a number of macromolecules 

including pDNA (http://www.alteatherapeutics.com/, 2005).

1.4.4.7. Microscission

Recent reports by Weaver and colleagues revealed a new minimally invasive 

transdermal delivery technique, termed microscission (Bates, 2004, Herndon et al.,
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2004). This technology utilises inert sharp sided aluminium crystals within a vertically 

applied high pressure gas stream to ‘seize’ the underlying tissue, thus creating 

substantial disruptions to the skin surface of human subjects. The created microchannels 

are up to 250pm in diameter and 200pm in depth and therefore, although the clinical 

usefulness of this technology is yet to be examined, the cutaneous delivery of 

macromolecules is a realistic proposition.

1.4.4.8. Microneedles

The microneedle array device is a recent innovation (Henry et al., 1998a), attracting 

significant interest within academic organisations and industry for the cutaneous 

delivery of protein and nucleic acid drugs. Its primary advantage over the previously 

mentioned technologies is that it is a simple mechanical device and therefore is 

potentially less expensive and more easily distributed. This promotes accessibility of the 

technology to a wider patient population and will hopefully accelerate its progression to 

the clinical setting. However, progression from laboratory prototypes to clinically useful 

devices requires scientists to address a number of challenges regarding the manufacture 

and therapeutic application o f  the device.

1.5. MICROFABRICATED MICRONEEDLES

1.5.1. The Microneedle Concept

The use of a traditional needle and syringe to deliver therapeutic compounds across
t h

restrictive biological barriers, as exemplified by the SC, was initiated in the 19 century 

(McGrew and McGrew, 1985). Surprisingly, over the previous 150 years there has been 

limited progress in the device technology, with the smallest needles available (30G) 

possessing a diameter of more than 300pm and a penetration depth that is essentially 

dependent upon the skill o f  the administrator (Zahn et al., 2001). Therefore although 

direct intradermal injection will remain an important delivery strategy for the clinician 

there is significant interest in the development of less invasive methods of drug 

administration.
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Over the last decade an exciting alternative method for enhancing cutaneous permeation 

of molecules has been developed, the microneedle array. The concept of this device (Fig 

1.7) was described three decades ago (Gerstel and Place, 1976). However it is only 

through progression of microfabrication techniques, used in the microelectronics 

industry, that micron-scale devices such as the microneedle array were realised (Henry 

et al., 1998a). In 1998, Dr Mark Prausnitz and his colleagues at the Georgia Institute of 

Technology published details of the first microneedle device to be used in transdermal 

delivery strategies (Henry et al., 1998a). The device consisted of an array of silicon, 

micron-sized needles, on the surface of a solid support backing, created using well 

defined silicon etching techniques.

Microneedles arrays are, as the term describes, a group of micron scale needles that 

when applied to skin penetrate the SC to produce conduits that extend into the 

underlying tissue layers. This provides a direct route of permeation for therapeutic 

formulations. The original microneedle concept was to use needles, ~ 150pm in length, 

which would not impinge on nerve fibres and blood vessels that reside in the underlying 

dermis. The microneedle array has therefore provided an interface for macromolecule 

delivery, that eliminates the pain and bleeding that is associated with a traditional 

needle and syringe (Henry et al., 1998b). Primary studies revealed, as would be 

intuitive, that application o f  a device and its removal prior to application of a topical 

formulation facilitates significantly greater cutaneous penetration of a topically applied 

formulation than untreated skin (Fig 1.7) (Henry et al., 1998a, Henry et al., 1998b).

The microneedle device holds benefits for patients, clinicians and the pharmaceutical 

industry. Advantages include:-

1. The direct and controlled delivery of a therapeutic compound or macromolecule 

across the SC.

2. A ‘patient friendly’ method of drug delivery with no pain or bleeding at the 

application site, potentially useful in the vaccination of children or patients 

suffering from needlephobia.

3. Topical application of a formulation over a large surface area (dictated by the 

device dimensions) and accessibility to large numbers of epidermal cells.
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4. Combination of a microneedle device with traditional transdermal delivery 

formulations to promote cutaneous delivery.

5. The ability to tailor the dimensions and geometries of individual microneedles 

and the spacing and density of microneedles within the array pattern, to suit its 

therapeutic application.

6. Mass production of the device in a reproducible and cost effective manner.

7. The potential to create a device that does not require a skilled user for 

application i.e. it may be adapted for self-administration.

Over recent years the microneedle concept has been embraced by a number of research 

groups in North America, Europe and the Far East. Collaborative efforts between 

engineers and drug delivery scientists have resulted in the progressive development of 

the microneedle geometries and morphologies. Optimisation of array characteristics and 

the integration of pharmaceutical formulations aim to create a delivery system that can 

progress from the laboratory to clinical practice.
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Figure J. 7. A schematic representation of the microneedle concept.

A: Microneedles are positioned above the area o f skin to be treated.
B: A topical formulation is applied to the skin and microneedles are subsequently inserted using a

downward force. The device may remain in place or be removed from the tissue.
C: Microneedles are inserted into the skin and then removed to expose an array o f  intradermal

microchannels. A topical formulation is then applied to the treated area.

TOPICAL
FORMULATION

32



C h a p t e r  1

1.5.2. Silicon Microfabricated Microneedles

The manufacturing methods employed by Prausnitz and co-workers for creation of 

silicon microneedle arrays (Henry et al., 1998a) have been adopted and adapted by a 

number of research groups to yield microneedle arrays of varying geometries, 

dimensions and morphologies (Chabri et al., 2004, Haider et al., date unknown, Luttge 

et al., 2003, Newton et al., 2003, Sivamani et al., 2005, Teo et al., 2005, Wilke et al., 

2005, Xie et al., 2005). The principles of manufacture and the technology required are 

detailed in the subsequent chapter (Section 2.1.1).

Initial studies by Prausnitz and co-workers demonstrated a 10,000 fold increase in 

calcein (623Da, 0.6nm radius) permeation through microneedle treated human cadaver 

skin (Henry et al., 1998a). Subsequent studies used similar devices to promote 

permeation o f bovine serum albumin (BSA) (66kDa, 3.5nm radius), insulin (6kDa) and 

even nanoparticles (25nm and 50nm diameter) through the epidermal membrane 

(McAllister et al., 2003).

1.5.3. Alternative Microneedle Materials

Microneedle design, manufacture and materials have progressed from the original 

prototype. Although silicon has established itself as a useful material, the creation of 

microneedles on a laboratory scale can be expensive, time consuming and their 

manufacture requires established clean-room facilities. Silicon can also be brittle and 

has not been proven to be biocompatible. Therefore, glass, metal and polymer 

microneedles have all been developed and used to deliver a variety of compounds using 

microneedle heights from 100 to 1000pm (Martanto et al., 2004, McAllister et al.,

2003).

The creation of titanium and stainless steel microneedle arrays does not require the 

complex microfabrication procedures synonymous with their silicon counterparts 

(Cormier et al., 2004, Lin et al., 2001, Martanto et al., 2004, Matriano et al., 2002). 

Solid stainless steel microneedles are laser patterned within a sheet of metal and are 

subsequently manually moved out of the plane of the metal sheet to create the array 

structure (Martanto et al., 2004). In recent years, Daddona and colleagues at ALZA
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Corporation have utilised a titanium microneedle array within a patch system, termed 

Macroflux™. This technology has been used to deliver ovalbumin (a model antigenic 

protein) (Matriano et al., 2002), desmopressin (Cormier et al., 2004) and antisense 

oligonucleotides (Lin et al., 2001) into the skin of hairless guinea pigs. A recent study 

by Prausnitz and colleagues has also examined insulin delivery into diabetic hairless 

rats using a steel microneedle array (Martanto et al., 2004). Localised treatment of the 

skin with the device followed by topical insulin application resulted in a reduction of 

blood glucose levels in a comparable manner to subcutaneous hypodermic injection 

(Martanto et al., 2004). Similar studies have also been conducted using bevelled glass 

microneedles, created using simple drawn-glass micropipette techniques (McAllister et 

al., 2003, Wang et al., 2005). In the future, microneedle devices may offer a painless 

method of insulin delivery for diabetic patients.

Polymer microneedles have been created by micromoulding techniques, using a silicon 

microneedle device as a template (McAllister et al., 2003, Park et al., 2005). A recent 

study demonstrates the functionality of the polymer microneedle array in facilitating the 

delivery of a simple chemical dye, calcein and BSA through treated human cadaver skin 

(Park et al., 2005). Polymer microneedles offer a potentially robust, biocompatible and 

possibly biodegradable material that can be manipulated to fashion microneedle devices 

outside of the high cost clean-room facilities required for silicon structures.

1.5.4. Hollow Microneedles

The permeation o f drug molecules from a topically applied formulation through 

aqueous microconduits created in the SC by a solid microneedle array relies upon the 

diffusive properties of the therapeutic. Permeation through such microconduits is 

influenced by interaction of the therapeutic molecule with components of the 

surrounding biological environment. Passage through the bore of a hollow microneedle 

however permits greater control over the properties of the permeation route. More 

significantly, pressure-driven flow of a formulation through hollow microneedles 

permits the active cutaneous delivery of specific volumes of a medicament at a 

controllable rate. This potentially allows complete control over cutaneous delivery 

profiles. However, we might expect hollow microneedles to be structurally weaker than 

solid needles. It is therefore important to adapt the shape of microneedles and/or employ
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robust materials such as metals and polymers in order to retain sufficient mechanical 

strength to facilitate successful insertion and removal from human skin tissue. Hollow 

microneedle arrays have now been manufactured using polymer, glass and silicon, with 

a range of needle heights and shapes (McAllister et al., 2003).

A number of commercial companies are developing hollow microneedle devices, 

intended for sustained drug delivery. The Micropyramid™ is a hollow silicon 

microneedle structure, created by Nanopass Technologies in conjunction with Silex 

Microsystems, (Gardeniers et al., date unknown, http://www.nanopass.com/, 2005, 

http://www.silexmicrosystems.com/mems.asp?page=s3, 2006). This array can be 

inserted repeatedly into the skin with minimal damage to the robust pyramidal structure. 

The technology is currently being utilised in the development o f  a sustained delivery 

device (Nanopump™) and also a bolus injection device (MicronJet™), the latter of 

which combines the microneedle array with a jet injection mechanism. Other 

commercial devices include 3M ’s microstructured transdermal system (MTS™) and 

BD’s Microinfusor™.

Prausnitz and colleagues have prepared straight walled hollow microneedles by 

electrodeposition o f  metals such as nickel on to silicon or polymer moulds (McAllister 

et al., 1999, McAllister et al., 2003). Such microneedles are capable of penetrating the 

outer layers of human skin without breaking. Upon insertion, tips do not become 

obstructed with biological debris and therefore permit efficient delivery of liquid 

formulations (McAllister et al., 1999). A recent in vivo study using diabetic hairless rats 

utilised hollow microneedles for the cutaneous delivery of insulin (Davis et al., 2005).

Hollow microneedles can also extract fluid from skin tissue and may therefore be used 

for therapeutic monitoring. Initial studies have used single glass bevelled microneedles 

(not microneedle arrays) to inject and extract fluid from skin tissue (Wang et al., 2002). 

However, hollow silicon microneedle arrays capable of multiple tissue sampling points 

have now been described (Mukerjee et al., 2004, Wang et al., 2005). Small arrays of 

solid glass bevelled microneedles, similar to those previously described to deliver 

insulin (Wang et al., 2002), have also been used in the collection of interstitial fluid 

(ISF), for glucose monitoring, both within hairless rats and also human subjects (Wang
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et al., 2005). However, although the cutaneous penetration of solid glass microneedles 

followed by vacuum driven extraction of ISF through the created microchannels has 

demonstrated a degree of success (collection of 1-1 Opl ISF), the extraction of ISF 

through the bores of a hollow microneedle was more problematic.

The difficulties in sampling of interstitial fluid from the skin using a hollow 

microneedle array may be attributed to a failure to pierce the skin, buckling of the 

microneedle upon application or blockage of the needle tip on insertion (Mukerjee et al.,

2004). However, these problems may be overcome by optimising the height and 

morphology of microneedles and the location and size of the microneedle bore. Silicon 

microneedles with ‘snake fang’ morphology have now proven successful in the 

sampling of ISF (Mukerjee et al., 2004), using only capillary action as a driving force 

for fluid withdrawal. The addition of a micropump to hollow microneedle devices has 

permitted development of an integrated glucose sensing and insulin infusion device 

where a feedback-controlled system controls the insulin delivery profile in direct 

response to the patients’ blood glucose levels (Zahn et al., 2004, Zahn et al., 2001).

1.5.5. Microneedle Structure and Mechanics

The majority o f  microneedle investigations have focused upon the impact of their 

design on the delivery o f  therapeutics. However, it is also important to consider the 

mechanical strength of the device and its method of application. A balance between 

miniaturisation and the rigidity needed to resist the forces imposed on needles during 

insertion is of paramount importance if the device is to be accepted as a reliable and 

‘safe’ drug delivery platform.

It is interesting to note that the length of microneedles used in experimental studies has 

progressed from 150pm (Henry et al., 1998a) to 1000pm (Martanto et al., 2004, 

McAllister et al., 2003), with microneedles from 300 to 600pm in length being used 

routinely by the major research groups (Lin et al., 2001, Matriano et al., 2002, Prausnitz 

et al., 2003). Evidence of bleeding following application of microneedle devices 

containing 225pm to 600pm length needles has been shown to be minimal and short 

lived (less than 24hours) with no evidence of infection or scarring during subsequent 

days (Widera et al., 2006). The average penetration depth for 50% of microneedles on
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an array was recorded at 165pm for the 225pm microneedles and 315pm for the longer 

microneedles used and all microneedles penetrated further than 90pm below the skin 

surface.

Application forces for those silicon microneedle arrays created by Prausnitz and co

workers at the end of the last decade were considered to be approximately lONewtons 

(N), which was described as ‘the force required to push an elevator button’ (Henry et 

al., 1998a, Henry et al., 1998b). This resulted in approximately 95% of microneedles 

penetrating the skin surface. However, the force required to penetrate the skin is 

dependent upon the microneedle tip diameter, its sharpness, the needle length and 

intemeedle spacing (Davis et al., 2004, Haider et al., date unknown), not forgetting the 

elasticity and tension o f the tissue into which the array is inserted. These factors were 

highlighted in a recent publication (Teo et al., 2005) where solid silicon microneedles 

demonstrated successful, but much reduced, calcein permeation in comparison to those 

original studies conducted by Prausnitz and co-workers (Henry et al., 1998a). The 

authors attributed the reduced capabilities of the microneedle array to a combination of 

the reduced sharpness o f  individual microneedles, the smaller intemeedle spacing and 

the cushioning effect o f  the underlying subcutaneous fat.

Theoretical pressures required to puncture human skin have been calculated and used to 

try and determine the forces required for effective microneedle penetration (Aggarwal 

and Johnston, 2004). Ultimately, a needle will penetrate the skin at the moment where 

the pressure at the needle tip exceeds the skins tensile strength. Davis et al have 

addressed such issues comprehensively (Davis et al., 2004). Their findings can be 

summarised thus:-

1. Insertion force varies linearly with interfacial area of needle tip.

2. Insertion forces required for microneedle penetration vary from 0.1-3.0 N.

3. The force needed to fracture microneedles increases if their walls are made 

thicker and their angle is increased.

From these findings a margin of safety is determined whereby if the ratio of fracture 

force to insertion force is greater than one, then microneedles are considered robust 

enough to insert into the skin.
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Applicators onto which microneedles have been mounted are relatively primitive, the 

most popular devices being metal/wooden rods (Davis et al., 2004, Henry et al., 1998a), 

syringe barrels (Sivamani et al., 2005, Teo et al., 2005) or even just downward pressure 

from a fingertip. Descriptions of effective applicator devices for microneedle arrays are 

limited (Cormier et al., 2004, Martanto et al., 2004, Widera et al., 2006). However, the 

development o f  devices by commercial companies such as Nanopass, 3M and BD will 

be accompanied by advances in the development of a commercially acceptable 

application device. Interestingly, preliminary experiments have been conducted to 

investigate the possibility of promoting microneedle insertion using vibratory devices, 

imparted by a piezoelectric (Newton et al., 2003) or vibratory actuator (Yang and Zahn,

2004), and suggest up to a 70% reduction in the required insertion force.

1.5.6. In vivo Human Microneedle Studies

The vast majority o f microneedle studies have been conducted using animal models 

(primarily rats and guinea pigs) and/or human cadaver skin. Although both of these are 

accepted experimental models, there are notable differences in the structure of animal 

models and cadaver/freeze-thawed human skin to in vivo human tissue (Kendall et al.,

2004, Panchagnula et al., 1997, Sekkat, 2002). It is therefore important to appreciate 

those studies that have been conducted in the most representative setting, human 

subjects. These studies provide a true reflection of the pain of microneedle insertion and 

the ability o f  a microneedle array to deliver compounds to/through human skin for 

future therapeutic application.

Initial studies applied 150pm silicon microneedle arrays to human volunteers who did 

not report any pain but sometimes describe a mild ‘sensation’ on application of the 

device (Henry et al., 1998a). A number of human studies have now been conducted, 

using a variety of microneedle lengths and all studies report a sensation of pressure but 

limited or no pain upon insertion of the device (Kaushik et al., 2001, Miyano et al.,

2005, Shirkhanzadeh, 2005, Sivamani et al., 2005, Smart and Subramanian, 2000, Wang 

et al., 2005). Early studies used microfabricated needles that were 2mm in length (not 

true ‘micro’needles) and even application of these structures recorded a score o f ‘barely 

noticable’ (Smart and Subramanian, 2000). A recent publication by Prausnitz and co

workers also highlights the inability to extract ISF from microchannels created within
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human skin after a period of 10 to 20 minutes and attributes this to the possible 

resealing of microneedle channels (Wang et al., 2005).

Until recently, the penetrative efficiency of microneedles in human volunteers relied 

upon measures of skin integrity following application (Henry et al., 1998a). However a 

recent study has employed a hollow silicon microneedle array, mounted on the end of a 

syringe, to deliver a pharmacologically active molecule, methyl nicotinate (a potent 

vasodilator) into the arms of eleven human volunteers (Sivamani et al., 2005). This 

study confirmed the delivery capabilities of microneedle arrays in human subjects. 

Notably, the lumen position of the hollow microneedles had a significant bearing on the 

flux values that were obtained, with symmetric microneedles permitting less than half 

the flux of the pointed microneedles.

1.5.7. Micro needles for Macromolecule Delivery

The localised delivery o f  a macromolecular structure to cells of the viable epidermis is a 

particularly attractive proposition for scientists within the fields of cutaneous gene 

therapy and intradermal vaccination. As discussed previously, early studies 

characterised microneedle facilitated delivery of model macromolecules, such as BSA, 

and also nanoparticles across the skin. However, the delivery of therapeutically relevant 

macromolecules and their subsequent biological functionality has received more limited 

attention.

Desmopressin, a 1.1 kDa synthetic peptide used in the treatment of enuresis, has been
(R)delivered transdermally using the titanium Macroflux microneedle technology 

(Cormier et al., 2004). This macromolecule, normally delivered by injection, was coated 

onto the microneedle array and then combined with a transdermal patch which held the 

array in position for a 15 minute treatment interval. Therapeutic levels were achieved 

and although transdermal delivery showed some variability, peptide plasma levels were 

maintained within the therapeutic window.

An intradermal biodefensive vaccine using a polymeric microneedle device has been 

investigated by BD technologies for the treatment of anthrax (Mikszta et al., 2005). The 

polymeric array consisting of pyramidal microneedle structures was ‘scraped’ laterally
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across the skin surface and the recombinant anthrax Ag was then applied topically to the 

treated area. Results indicate that although direct intradermal injection produces a more 

efficient immune response, such a technique has the potential to provide a less invasive 

vaccination method upon further improvements to the device and the vaccine 

formulation.

The group at ALZA have also published a detailed study examining the intracutaneous 

delivery of ovalbumin (45kDa), using the MacrofluxK array (Widera et al., 2006). This 

study, a follow up to previous data (Matriano et al., 2002), characterised the effects of 

microneedle length, the density of microneedles within an array, the surface area of 

treatment and the Ag (ovalbumin) dose on the systemic immune response within 

hairless guinea pigs. The study indicates that the immune response obtained is dictated 

primarily by the Ag dose, although the surface area exposed to the treatment at high Ag 

doses (where Ag uptake by LC might be saturated) may also play a role. Due to the 

solubility of ovalbumin it is able to diffuse within the skin structure and therefore was 

detected throughout the epidermal layer, regardless of microneedle length and array 

density. Therefore, for soluble therapeutics, it may only be necessary for microneedles 

to create aqueous microconduits within the SC barrier, and diffusion may then facilitate 

contact of the Ag with cells throughout the underlying tissue layers. However, for 

insoluble proteins or more sterically hindered macromolecules such as nucleic acids, 

diffusion from the site o f  deposition may be limited. Observations of oligonucleotide 

delivery using the Macroflux array indicates that lateral diffusion of nucleic acids 

around microchannels is significantly restricted (Lin et al., 2001).

Microneedle mediated nucleic acid delivery to cells within the viable epidermis of skin 

is currently poorly characterised. Studies using a puncture mediated method (similar to 

the tattooing process) (Ciernik et al., 1996) and a microseeding method (Eriksson et al.,

1998) have been used to transfect skin cells with reporter plasmids. Mikstza and 

colleagues have also transfected murine keratinocytes using a ‘microabrasion’ 

application method (Mikszta et al., 2002). The potential of conventional silicon 

microneedle devices for the delivery of gene therapy vectors below the skin surface has 

been recognised (Chabri et al., 2004). However, microneedle mediated transfection of 

keratinocytes within human skin tissue remains elusive.
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1.5.8. Novel Microneedle Formulations

Continued optimisation of the microneedle device for clinical application must be 

accompanied by the development of pharmaceutical formulations that enable cutaneous 

delivery of a therapeutic entity in a controlled manner. The challenge for the 

microneedle community is to create a ‘one-step’ integrated drug delivery system 

consisting of a microneedle device and therapeutic within a delivery system that 

promotes efficient cutaneous delivery of the active agent.

Daddona and colleagues have developed a reproducible method of coating titanium 

microneedle devices using an ovalbumin formulation (Matriano et al., 2002). 

Modification o f the formulation and refinement of the coating method permitted control 

over coating thickness and restriction of the coating to the tips of individual 

microneedles (Widera et al., 2006). Application of these devices to the skin surface 

resulted in relatively efficient deposition (>50%) of the formulation within the viable 

epidermis. Dry coating a microneedle array not only ensures that the formulation is 

brought into close contact with cells of the viable epidermis but also offers significant 

advantages in formulation stability. Unstable formulations, including proteins and 

nucleic acids may be dry coated on to an array which could then be sealed and stored 

under nitrogen. This would ensure an extended shelf life of the product, would prevent 

the requirement for ‘cold storage’ and therefore allow rapid mass distribution, a 

particularly important feature in the development of vaccinations for mass 

immunisation schemes.

Chitosan coated silicon microneedles demonstrated the ability to control the release, and 

therefore transdermal permeation, of macromolecules from a microneedle array (Xie et 

al., 2005). The therapeutic is dissolved in the hydrophilic chitosan matrix, which is then 

cast onto the microneedle surface. By altering the thickness of the chitosan film the 

release of the therapeutic can be controlled. The authors note the applicability of this 

process for the controlled release of hydrophilic macromolecules and therefore pDNA 

may be selected as a future candidate for this approach.

A calcium phosphate formulation capable of delivering a macromolecular therapeutic 

from a coated microneedle array has also been developed (Shirkhanzadeh, 2005). This
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strategy uses porous calcium phosphate, loaded with trehalose, to coat the tips of 

acupuncture needles. Penetration of needle tips in to the skin resulted in the rapid 

dissolution o f the trehalose reservoir and its diffusion into the local environment. This 

was followed by the more prolonged dispersion o f the calcium phosphate component. 

Both trehalose and calcium phosphate are recognised by the authors as possible vehicles 

for the delivery o f protein and DNA therapeutics. Altering the components of the 

coating material to control dissolution kinetics may provide an opportunity for a bolus 

dose followed by sustained release of such macromolecules from the microneedle array.

A recent innovation has been the development o f biodegradable polymer microneedle 

arrays (Miyano et al., 2005, Park et al., 2005). Prausnitz and colleagues have 

characterised biodegradable microneedle arrays produced using polylactic acid and 

polyglycolic acid, well characterised biocompatible materials (Park et al., 2005). Use of 

such materials improves the safety profile for microneedle devices, those microneedles 

that break and become deposited within the skin during or following application may 

degrade safely within the biological environment. Hanada and co-workers have also 

created biodegradable microneedles within which an active therapeutic material was 

dispersed (Miyano et al., 2005). In this case application o f the microneedle was 

intended to be followed by breakage and the deposition o f microneedles within the 

upper skin layers. Release o f the therapeutic into the local tissue can then be controlled 

by the dissolution rate o f individual microneedles.

Successful progression o f a microneedle device to the clinic relies upon coordinated 

advances in the device structure, optimisation o f microneedle mechanics, a reliable 

method o f application and effective formulation o f the pharmaceutical product. An 

integrated microneedle delivery system for the cutaneous delivery o f macromolecular 

therapeutics, such as gene therapies, therefore requires close collaboration between 

engineers and scientists within the pharmaceutical field.
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1.6. THESIS AIM AND OBJECTIVES 

Thesis aim

To assess the potential o f silicon microfabricated microneedle arrays for the cutaneous 

delivery o f macromolecular therapeutics and their prospective employment in the 

delivery and subsequent expression o f an exogenous DNA formulation, within human 

skin.

Thesis objectives

• To characterise microneedle devices created by dry- and wet-etch 

microfabrication procedures.

• To determine the ability of microneedle devices to penetrate the outermost layer 

o f human skin tissue (SC) and to assess the dimensions o f conduits created by 

microneedle devices within human skin.

• To determine the integrity of microneedle devices following their application to 

human skin.

• To investigate the importance of microchannel dimensions and the zeta potential 

of nanoparticle formulations, representative o f non-viral gene therapy vectors, 

on permeation through a model microporous membrane.

• To assess the ability o f a microneedle array to deliver nanoparticle formulations 

through heat separated human epidermal membrane.

• To maintain the viability o f excised human skin within organ culture.

• To deliver a nanoparticular/macromolecular formulation to the viable epidermis 

o f ex vivo human skin, maintained in organ culture.

• To examine the expression o f exogenous reporter genes within ex vivo viable 

human skin.

• To transfect keratinocyte cells in vitro and ex vivo using a reporter plasmid(s).

• To facilitate and investigate epidermal gene expression within human skin using 

a microfabricated microneedle array.
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CHAPTER 2

Microneedle array 

characterisation
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2.1. INTRODUCTION

The establishment o f silicon microfabrication techniques to create microneedle devices 

(Henry et al., 1998a) and the acknowledged ability of such devices to penetrate the skin 

barrier (Haider et al., Henry et al., 1998b, Luttge et al., 2003, Newton et al., 2003, 

Sivamani et al., 2005, Teo et al., 2005, Watkins et al., 2005, Xie et al., 2005) has 

prompted the selection o f silicon as a material from which to create microneedle devices 

to be used in these studies. However the manufacture o f such devices can be a complex 

and expensive process, requiring experienced engineers working within established 

clean-room facilities. A multidisciplinary approach to the development of an 

intra/transdermal delivery device is therefore crucial and so collaborations with 

engineers at Cardiff School o f Engineering (CSE) and, more recently, Tyndall National 

Institute (TNI), Cork, Ireland has been o f paramount importance during the 

investigations detailed within this report.

2.1.1. Microneedle device manufacture

The manufacture o f functional microneedle arrays uses fabrication processes that are 

sensitive to small alterations in manufacturing conditions. The creation of microneedle 

arrays by collaborative groups in CSE and TNI was a stepwise manufacturing process, 

the experimental conditions o f each ‘etch run’ being revised to optimise/customise the 

dimensions and morphology o f the microneedles created on each silicon wafer. 

Microneedle devices used within this study have been fashioned by two manufacturing 

processes, dry-etch and wet-etch microfabrication. Initial microneedle devices used 

within the laboratory were created by the group at CSE using dry-etching methods. 

However recent collaboration with the engineers at TNI has provided microneedles that 

were created by both dry-etch and wet-etch technologies. This not only provided an 

alternative manufacturing process but also microneedle devices with different structural 

properties.

2.1.1.1. Dry-etch manufacture

Dry-etch fabrication o f microneedle devices in silicon wafers uses a lithographically 

patterned mask and a blend o f reactive ion gases (therefore it is also termed reactive ion
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etching) to fashion micron-sized needles on the silicon wafer (Fig 2.1). During the 

creation o f microneedle arrays, the photoresist pattern, etching times and etching 

conditions can be altered to fabricate various array patterns and microneedles with a 

diverse range o f geometries. However, the development o f microneedle devices by this 

manufacturing method can be expensive, time consuming and requires a high level of 

technical skills and equipment.

2.1.1.2. Wet-etch manufacture

Wet-etch fabrication takes advantage o f the anisotropic behaviour o f silicon in a 

potassium hydroxide (KOH) solution (Wilke et al., 2005a, Wilke et al., 2005b). This 

technique does not require the complexity o f equipment involved in dry-etching 

procedures and the fabrication process is capable o f parallel etching up to 25 wafers. 

The method is therefore more amenable to the mass production o f devices. However 

control o f the manufacturing process is very complex, presenting a number o f technical 

challenges (Reed et al., 1998). Morrissey and colleagues at the TNI have developed 

reliable and more importantly reproducible methods o f wet-etch manufacture to create 

microneedle arrays that have been employed within studies detailed in this report (Fig 

2.2) (Wilke et al., 2005b).

The process relies upon precise alignment o f the crystal planes within the silicon 

structure and the lithographically patterned mask prior to the wafers exposure to KOH 

solution (Fig 2.3). Very slow etching planes, known as “etch stop” planes, result in a 

resistance to etching along the edges o f the square mask. However, the comers o f the 

square are less resistant and therefore are slowly under-etched to create an octagonal 

structure. When the convex comers meet the tip o f the microneedle is formed and the 

etching procedure is halted. The major disadvantage o f this fabrication process is that it 

relies upon the etch behaviour o f the silicon material (crystal structure) and therefore 

lacks the ‘freedom’ to significantly manipulate microneedle geometry and density as is 

possible with dry-etching methods (Wilke et al., 2005a, Wilke et al., 2005b).
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P-type silicon wafer, 10cm in diameter, 
525 pm thick; covered with positive- 
photoresist.

Exposure (UV - light)

Lithography . Exposure using chromium 
glass mask with circular patterns (100 pm 
diameter); cross-linking of exposed resist.

Lithography: Development of exposed 
areas; circular patterns of chromium mask 
now replicated into resist layer.

Etch step I: Isotropic silicon etch using 
SF6; etch depth equal to circle radius.

Etch step II: Deep Reactive Ion Etch 
(DRIE) using BOSCH process to create 
cylindrical needle body.

Removing of remaining resist pattern 
followed by cleaning procedures.

Figure 2.1. Process flow chart for dry etching silicon microneedles with isotropically 

etched needle tip and vertical walls made by DRIE (BOSCH process).
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P-type silicon wafer, 10cm in diameter, 525 
pm thick.
Low Pressure Vapour Deposition (LPCVD) 
of oxide and nitride layer as mask material.

After etching crystal alignment marks the 
lithographic mask for microneedles (square 
mask shape for each microneedle) was 
created oxide and nitride patterned by 
plasma etching of non-protected areas.

Silicon wet etch process in 29% KOH at 
79°C.

Figure 2.2. Process flow chart for wet etching silicon microneedles at TNI.

270min 330m in 350min

30min 120 min 180 min

Figure 2.3. En face  micrographs o f the evolution o f a wet-etch microneedle through 

convex corner undercutting. Scale Bar = 500pm. (Figure reproduced with permission of 

Nicolle Wilke and Anthony Morrisey at TNI, Cork).
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2.2. AIMS AND OBJECTIVES 

Chapter Aim

The aim o f this chapter is to assess the functionality of microneedle devices created by 

collaborative groups in TNI and CSE. The ability o f dry- and wet-etch microneedles to 

puncture the human skin surface, the dimensions of microconduits created by 

microneedle devices and their location within the skin will be assessed. The integrity o f 

microneedle devices following their application to human skin will also be considered.

Chapter Objectives

• To describe the dry-etch and wet-etch microfabrication technologies, used to 

prepare the microneedle arrays utilised in this investigation.

• To characterise the morphology and dimensions o f microneedle devices created by 

Cardiff School o f Engineering and Tyndall National Institute.

• To illustrate the ability o f microneedle devices to create micron-sized conduits 

within ex vivo human skin.

• To examine the influence o f the array structure and individual microneedle 

morphology on the dimensions o f microchannels created within human skin.

• To evaluate the integrity o f microneedle structures following repeated application to 

human skin.
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2.3. MATERIALS AND METHODS

2.3.1. Materials

All reagents were obtained from Fisher (Loughborough, UK) and were of analytical 

grade, unless otherwise stated.

Deionised water was obtained from an Elga reservoir (High Wycombe, UK). 

Glutaraldehyde solution 50% was obtained from Sigma (Gillingham, UK).

All histology materials, including Optimal Cutting Temperature (OCT) embedding 

media, Histobond® adhesive microscope slide were obtained from RA Lamb Limited 

(Eastbourne, UK) or in the case of toluidine blue, Harris’ haematoxylin, Gurrs’ eosin 

aqueous solution 1%, Histomount®, xylene (low sulphur) from Lab 3 (Bristol, UK).

Equipment:-

Leica CM305S Cryomicrotome (Leica Microsystems (UK) Limited, Milton Keynes, 

UK)

Disposable microtome blade (Leica Microsystems (UK) Limited, Milton Keynes, UK) 

Olympus BX-50 system microscope (Olympus Optical, London,UK)

Olympus D P-10 Camera (Olympus Optical, London,UK)

Olympus TH3 Power unit (Olympus Optical, London,UK)

Schott KL1500 fibre optic light source (Schott UK Limited, Stafford, UK)

Philips XL-20 Scanning Electron Microscope (Philips, Eindhoven, Netherlands)

Bal-Tec CPD030 Critical Pont Drier (Bal-Tec, Balzers, Lichenstein)

Gold sputter coater (EM Scope, Kent, UK)
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2.3.2. Scanning electron microscopy of microneedle devices

A scanning electron microscope is a complex instrument that can be considered as a 

column containing a heated tungsten filament within an electron gun at the top and the 

sample, mounted on an aluminium stub, to be examined at the other end. Samples, 

contained under high vacuum, are irradiated by a thin beam of electrons resulting in the 

emission o f secondary electrons from the sample surface that are collected by a detector. 

The beam scans over the sample surface and converts the collected signal to a 

representative two dimensional image that can be viewed on a visual display unit. This 

method o f microscopy allows visualisation o f submicron structures at high resolutions.

Microneedle structures can vary within and between microfabrication runs and therefore 

the shape and morphology o f each device was inspected at high magnification by SEM 

prior to experimentation. It was not necessary to sputter coat the sample prior to SEM 

and so following application o f a microneedle device to human skin, the device was 

often re-examined to confirm its structural integrity.

2.3.3. Light microscopy of microneedle devices

Gross alterations in the structure of microneedle devices, were analysed by light 

microscopy. The mounted microneedle array was placed on a glass microscope slide, on 

the stage o f the Olympus BX-50 microscope and was illuminated using a fibre optic 

light source. The orientation and positioning o f the device was systematically adjusted 

to enable visualisation o f each row o f the microneedles in turn.

2.3.4. Microneedle device applicators

Dry-etch microneedles were mounted, using adhesive tape, upon the aluminium stubs 

that were normally used to analyse SEM samples. Wet-etch microneedle devices were 

mounted upon stainless steel rods of various lengths, using epoxy resin.
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2.3.5. SEM analysis of microneedle treated human epidermal membranes

2.3.5.1. Preparation o f  human epidermal membrane

Isolation of the epidermal barrier (SC and viable epidermis) from human skin 

(Christophers and Kligman, 1963) is an established preparatory method. The resulting 

membrane has been shown to be a good model of the in vivo state when used in vitro 

(Roberts and Walters, 1998). Removal o f the dermis also dramatically reduces the 

volume of the skin tissue, thereby simplifying and improving tissue preparation prior to 

SEM evaluation, resulting in enhanced en face imaging o f the skin surface. Epidermal 

membranes have been used in SEM studies to demonstrate the penetrative capabilities 

o f various microneedle devices.

Human breast skin was obtained from mastectomy or breast reduction procedures with 

full ethical committee approval and informed patient consent. Tissue from female 

donors, stored at -20°C for a maximum of 6 months, was allowed to reach room 

temperature over a period o f lhour (hr). A number o f different donors were used 

(detailed in figure legends). Under containment 2 conditions, full thickness skin was 

immersed in heated deionised water (60°C) for 60seconds (secs) to enable removal of 

the epidermal membrane from the underlying dermal tissue, using curved forceps. The 

transfer o f the epidermis to cool deionised water allowed the outstretched membrane to 

orientate, with the hydrophobic SC facing upward. The epidermis was then collected on 

aluminium foil and transferred back onto the previously removed dermis, supported by 

a flat cork board, prior to microneedle treatment. The microneedle array was pressed 

onto the skin surface at an approximate pressure of 2g/cm for lOsecs. Untreated 

membranes were not subjected to microneedle application.

2.3.5.2. Human epidermal membrane processing and analysis

A conductive thin gold coat was used to promote the effective visualisation of non- 

conductive specimens such as biological samples. Therefore, following removal o f the 

microneedles the membrane was fixed (2.5% glutaraldehyde) and subsequently 

dehydrated using an ethanol gradient (70%, 90%, 100%). A critical point dryer was 

used to complete dehydration o f the specimen, which was then mounted on an 

aluminium stub and gold sputter coated prior to SEM analysis.
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2.3.6. SEM analysis of microneedle penetrated human epidermal membranes

Wet-etch microneedle penetration was also assessed by applying the device to a human 

epidermal membrane and then mounting the skin, with the inserted microneedles still in 

place, onto an aluminium stub with the viable epidermis facing upwards. The aim of 

this procedure was to visualise the microneedles protruding through the viable 

epidermis.

2.3.7. En face  imaging of stained microneedle treated human skin

Skin tissue, stored at -20°C for a maximum of 6 months, was removed from storage and 

allowed to equilibrate at room temperature for lh r before the sub-cutaneous fat was 

removed by blunt dissection. The skin was then pinned onto a cork support and the 

microneedle device was applied. The treated area was subsequently covered with a 

small volume (approximately lOOpl) o f methylene blue solution (approximately 

l%w/v). After 5mins excess methylene blue was removed from the skin surface. The 

full thickness human skin was subsequently swabbed with ethanol (70%v/v).

On removal from the donor organism, intracellular enzymes and bacteria begin to digest 

the cellular structure, altering the morphological, biochemical and immunological 

properties o f the tissue (Junqueira and Cameiro, 2005a). Fixatives, such as 

glutaraldehyde, are used to cross-link proteins and other structural tissue elements. This 

process preserves the structure o f the tissue for histological analysis. Prior to analysis 

skin tissue was therefore fixed by submersion in 2.5%v/v glutaraldehyde, on ice for lhr. 

To ensure effective penetration o f the fixative into human skin, it was important that the 

tissue volume was maintained as a low as possible (Junqueira and Cameiro, 2005a). 

Finally, the tissue was rinsed in phosphate buffered saline (PBS) for 5mins and 

visualised en face  using an Olympus BX-50 microscope and a fibre optic light source. 

Following en face analysis the tissue was embedded in OCT medium on solid carbon 

dioxide and stored at -86°C prior to cryosectioning using a cryomicrotome.
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2.3.8. M icroneedle application methods

In all cases the tissue was pinned onto a cork support before application o f the 

microneedle device. Dry-etch devices were applied with downward pressure, left in 

place for lOsecs and then removed (Fig 2.4A). Wet-etch microneedles were applied in a 

rolling motion (Fig 2.4B).

A
(i) (ii)

O V o
A. Dry-etch microneedles were 
applied with a downward force (i), 
left in place for lOsecs and then 
removed (ii).

B. Wet-etch microneedles were 
applied at approximately 90 degrees 
to the skin surface (i) and the 
applicator was then rotated slowly 
through a 90 degree angle (ii).

Figure 2.4. A schematic illustration of microneedle application methods for wet-etch 

and dry-etch arrays.
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2.3.9. Light microscopy of microneedle treated human skin

During this study, en face  examination o f skin tissue by light microscopy was often 

followed by histological evaluation o f the sample. Sample preparation required fixation, 

embedding, sectioning, staining and mounting steps to produce histological sections that 

could be analysed by bright field light microscopy.

2.3.9.1. OC T embedding

Following fixation o f human skin tissue the specimen was positioned in an OCT filled 

cryomould. OCT gel is an inert matrix, which protects cell integrity and limits 

desiccation, that hardens upon rapid cooling (Bratthauer, 1999, Webster, 1999). The 

cryomould was therefore surrounded by solid carbon dioxide and the embedding media 

was allowed to solidify over a period of 15mins. The embedded tissue was then 

wrapped in a single layer o f aluminium foil, placed in an airtight plastic container 

(important steps to limit desiccation) and stored at -87°C.

2.3.9.2. Cryosection ing

The OCT block was mounted within a cryochamber (-21°C), allowed to equilibrate over 

a period o f 30mins and then sectioned using a steel blade to a thickness of 10- 12pm 

(Paulsen, 2000). Individual cryosections were collected on a coated microscope slide 

(Histobond® or Superfrost Plus® slides) and sections were allowed to dry at room 

temperature overnight. Cryosections were finally fixed by immersion in acetone (100%) 

at 4°C for lOmins, and then stained.

2.3.9.3. Histological staining

Toluidine Blue - Slides were rinsed briefly in tap water and then covered in toluidine 

blue staining solution for 5mins. Excess stain was removed by rinsing in tap water and 

slides were allowed to dry at room temperature.

Eosin - Tissue sections were submerged in Gurrs’ eosin for 5secs and then rinsed in tap 

water. The slide was then allowed to dry at room temperature.
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Haematoxylin and Eosin (H&E) - Slides were washed briefly in tap water and then 

immersed in Harris’ haematoxylin for 2mins. Excess stain was removed by immersion 

in tap water before and the slide was subsequently submerged in acid alcohol (1% 

hydrochloric acid (1M) in 70% ethanol) for lOsecs. The slide was then rinsed once more 

in tap water for a period of 30secs before immersion in Gurrs’ eosin for 5secs. 

Following a final 5min rinse in tap water the slide then allowed to dry at room 

temperature.

2.3.9.4. Perm anent slide m ount fo r  analysis

Slides were dehydrated in an increasing ethanol gradient (50%, 70%, 90%, 100% and 

100%v/v) before immersion in xylene. After lOmins slides were removed from the 

xylene and allowed to dry. A drop of Histomount® and a glass coverslip were used to 

permanently mount the sections.

56



C h a p t e r  2

2.4. RESULTS AND DISCUSSION

During this investigation, the complex manufacturing processes, progressive 

optimisation o f microneedle designs, damage to devices during use and repeated 

applications have resulted in the examination o f a number o f microneedle devices, with 

differing morphologies. A comprehensive catalogue of all microneedle arrays, created 

by the academic institutions at Cork and Cardiff, up to July 2005, has been included as 

an appendix (Appendix I). Images selected for this chapter illustrate the development of 

microneedle devices throughout the course o f this investigation. Such developments 

were dependent upon advances in manufacturing techniques developed by collaborative 

groups in TNI and CSE and the subsequent assessment o f devices following their 

application to human skin tissue.

2.4.1. Dry-etch microneedle array devices

The engineering difficulties associated with creating three dimensional silicon 

microneedle structures using dry-etch technologies are highlighted in Fig 2.5A. 

Modification o f experimental conditions addressed the problem, resulting in the 

fabrication o f three dimensional cylindrical and cuboidal structures on the silicon wafer 

surface (Fig 2.5B & 2.5C). However further amendments to the etching conditions were 

required to produce microneedle arrays that would prove useful in laboratory 

investigations (Fig 2.6). Microneedles selected for tissue application possessed sharp 

tips capable o f penetrating the skin surface and cylindrical bodies. Individual structures 

were approximately 150pm in length, 50pm in diameter and adjacent microneedles 

within the array were 200pm apart (centre to centre spacing ratio). These 20x20 

microneedle arrays, mounted on aluminium stubs were designed to overcome the skins 

dermatoglyphics, penetrate the SC and protrude into the viable epidermis without 

impinging on nerve fibres located in the underlying layers (Kaushik et al., 2001).
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Figure 2.5. Scanning electron micrographs o f initial attempts, by CSE, to create 

microneedles using a dry-etch manufacturing procedure. A, B, scale bar = 500pm; C, 

scale bar = 1000pm.

Figure 2.6. Scanning electron micrographs of the successful creation of a microneedle 

array, by CSE, using a dry-etch manufacturing procedure. A, scale bar = 1000pm; B, 

scale bar = 100pm.
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The group at TNI also produced microneedle array structures by dry-etch fabrication 

methods. Microneedles, within a 15x16 array, possessed heights of 250-280pm and 

base diameters o f 160- 170pm (Fig 2.1 A). These microneedles were significantly larger 

than those created by the group at CSE. A platinum coat was also applied to these arrays 

in order to increase the resistance o f individual microneedles to the shear stress 

imparted on them during application to the skin surface (Fig 2.7B).

An interesting feature o f these dry-etch devices was the disfigurement of microneedles 

located at the perimeter o f the array pattern (Fig 2.7C & 2.7D). This resulted in an oval 

cross section (Fig 2.7C). Microneedle tips, designed to be symmetrical sharp points (Fig 

2.7E), were also variable with some microneedles possessing a ‘neck’ in place of a 

sharp microneedle tip (Fig 2.7F). These morphological irregularities highlight the 

technical challenges o f creating uniform symmetrical microneedles that can penetrate 

the skin reproducibly.

2.4.2. Wet-etch microneedle array devices

The most noticeable difference between dry-etch and wet-etch devices was the much 

reduced microneedle density on the wet-etch arrays (Fig 2.8). This is an inherent 

handicap o f the fabrication procedure (Wilke et al., 2005b) and although current studies 

by TNI aim to address this problem, wet-etch devices have a minimum proximity to 

adjacent microneedles, thereby limiting the array population (Section 2.1.1.2).

The wet-etch microfabrication method was developed to provide a more cost effective 

alternative to dry-etch manufacture. However the fabrication process has interestingly 

yielded microneedles with a pyramidal shape and both pointed (Fig 2.8) and ‘frustum’ 

(Fig 2.9) shaped tips.

Pyramidal microneedles were approximately 280pm in length with base diameters of up 

to 200pm (depending on the batch) (Fig 2.8). The failure force o f a microneedle 

increases with base diameter (Park et al., 2005) and therefore the platinised pyramid 

shaped microneedles were predicted to withstand much greater sheer forces upon 

application. The dimensions o f microneedles created by wet-etching methods were also
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Figure 2 .7. Scanning electron micrographs o f microneedle arrays created in TNI by the 

dry-etch manufacturing procedure. A, C, scale bar = 500p,m; D, scale bar = 200p.m; E, 

F, scale bar = 50|im. Fig B was kindly contributed by Nicolle Wilke from TNI.
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Figure 2.8. Scanning electron micrographs of a typical wet-etch microneedle array 

created by TNI. Individual microneedles have pointed tips and are equally spaced in a 

4x4 array pattern. The tip o f a hypodermic needle (30G) is included within images A 

and B as a comparative visual aid. A, B, scale bar = 1000|im; C, scale bar = 100|im.
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Figure 2.9. Scanning electron micrographs of typical wet-etch microneedle arrays 

created by TNI. Individual microneedles have frustum shaped tips and are equally 

spaced in a 4x4 array pattern. A, B, E, scale bar = 1000pm; C, D, scale bar = 100pm.
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greater than those o f the dry-etch microneedles created by CSE. However, the micron 

scale dimensions o f the microneedle protrusions remain significantly smaller than that 

of a hypodermic needle (Fig 2.8). The bodies of frustum and pointed tipped 

microneedles were o f comparable dimensions. However the tips o f the frustum tipped 

microneedles, created by minor adjustments to the manufacturing process, measured up 

to 100pm wide (Fig 2.9C & 2.9D). The insertion force for a microneedle is proportional 

to the microneedle tip area (Davis et al., 2004) and therefore an increased application 

pressure was predicted to be necessary for successful penetration of these microneedles.

The wet-etch microneedle array devices were created on smaller areas o f silicon wafer
-j

than dry-etch devices (~0.5cm ). These reduced dimensions permitted adhesion to a 

steel rod (Fig 2.9E) which enabled much greater control over the array during 

application to the tissue surface.

2.4.3. SEM analysis of microneedle treated human epidermal membranes

Following characterisation o f microneedle geometries and morphologies, both types of 

microneedle device were applied to human epidermal membrane and the skin surface 

was analysed by electron microscopy. The aim of these initial studies was to determine 

the ability o f microneedle devices to create microdisruptions in the skin surface that 

could subsequently be characterised.

2.4.3.1 SE M  analysis o f  untreated h untan epidermal membranes

Multiple layers o f flattened polyhedral shaped comeocytes provide the robust 

continuous membrane, the SC, which is responsible for the skins significant barrier 

properties (Fig 2.10A & 2.1 OB). It is these cell layers that a microneedle device must 

disrupt to facilitate cutaneous delivery of macromolecules.

Viable keratinocytes o f the BMZ can be visualised on the underside o f the untreated 

human epidermal membrane (Fig 2.10C-2.10F). The loose connection between cells and 

their ~10pm diameter was in stark contrast to the ~40pm diameter o f the tightly packed 

comeocytes (Fig 2.10A). Skin appendages, including sweat ducts (Fig 2 .10C) and the 

hair follicle (Fig 2.10D) (Hoffmann, 2000, Hoffmann, 2003), must also be considered as

63



C h a pt e r  2

Figure 2.10. Scanning electron micrographs o f untreated heat separated human 

epidermal membrane. Images A and B illustrate the untreated stratum corneum surface. 

Image C-F are pictured from the underside o f the heat separated membrane. Image C 

pictures an eccrine sweat duct extending from the viable epidermis. Image D illustrates 

a hair shaft. Keratinocytes pictured in image E compose the basal layers o f the viable 

epidermis. The 'finger like' projections extending from the cell pictured in image F are 

indicative features o f a Langerhans cell. A, scale bar = 1000pm; B scale bar = 20pm; C, 

D, scale bar = 200pm; E, F scale bar = 10pm. Skin donor is a 67 year old female.
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possible portals for localised delivery o f gene therapeutics. Interestingly, SEM images 

also revealed a number o f structures protruding from the BMZ whose morphology was 

synonymous with that of a LC (Fig 2.10E) (Stoitzner et al., 2002). It is possible that 

cells captured within these images have been activated and are migrating from the BMZ 

and into the underlying dermal tissue. Intradermal immunisation strategies aim to 

stimulate these specialised APCs to evoke a protective immune response (Section 

1.2.4).

2.4.3.2. SEM  analysis o f  dry-etch microneedle treated human epidermal 

membrane

Downward application o f the dry-etch microneedle array onto the skin surface produced 

a uniform pattern o f microdisruptions that was consistent with the pattern of 

microneedles on the device (Fig 2.11). The hair follicle pictured on the top right of the 

micrograph provides a reference to the scale o f the microchannels created by this 

device. Images suggested that microchannels were 30-40 pm in diameter at their 

opening on the skin surface. This is slightly smaller than the diameter o f the individual 

microneedles but may be explained by retraction o f the elastic skin tissue following 

removal of the microneedle device. Tissue constriction is also an established artefact of 

tissue preparation for SEM analysis (Junqueira and Cameiro, 2005a) and therefore these 

images may have underestimated the microchannel diameter.

2.4.3.3. SEM  analysis o f  wet-etch microneedle treated human epidermal 

membrane

The most noticeable feature o f skin membranes that were treated with wet-etch 

microneedles was the failure to detect a uniform pattern o f microchannels (data not 

shown). This might have been attributable to the significantly reduced microneedle 

populations and the restricted density within a single array. However the inability to 

visualise a true array pattern was more likely a consequence o f the failure of some 

microneedles to penetrate the skin membrane effectively.

The microdisruptions that were attributed to effective penetration o f the microneedle 

device vary in both morphology and geometry. Frustum tipped arrays appeared to 

produce both cylindrical channels and ‘tares’ in the membrane (Fig 2.12A & 2.12B).
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Figure 2.11. Scanning electron micrographs o f human epidermal membrane that has 

been treated with a dry-etch microneedle array (Fig 2.6). A uniform pattern o f 

microdisruptions within the skin surface was observed (indicated by arrows). A, scale 

bar = 200pm; B, scale bar = 100pm. Skin was obtained from a 66 year old female.

Figure 2.12. Scanning electron micrographs of heat separated human epidermal 

membrane that has been treated with frustum tipped (A, B) and pointed (C, D) wet-etch 

microneedle arrays. A, scale bar = 200pm (treated with TNI - Array 8); B, scale bar = 

100pm (treated with TNI - Array 8); C, scale bar = 200pm (treated with TNI - Array 5); 

D, scale bar = 50pm (treated with TNI - Array 12). Skin was obtained from a 67 year 

old female donor.
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Some of these disruptions were greater than 50pm in diameter. Those microchannels 

created by the pointed tips were more irregular in shape and possessed narrower 

diameters, approximately 30-50pm (Fig 2.12C & 2.12D).

When comparing the microconduits created by the two different types of array it was 

difficult to determine the effect of the tip structure on the dimensions and morphology 

of the microchannels. However, frustum tipped arrays produced greater levels o f tissue 

disruption and therefore this type of array may be expected to facilitate more significant 

increases in skin permeability.

Artefacts are a renowned analytical problem when interpreting electron micrographs 

and therefore meticulous analysis of the images was essential. Therefore during 

investigations although initial observations o f some membranes indicated successful 

penetration of microneedles (Fig 2.13A), under closer scrutiny the darkened areas, that 

appear as microchannels, revealed themselves to be merely indentations in the skin 

surface (Fig 2.13B). The pictured sample was treated with the frustum tipped 

microneedle array and so it is not unreasonable to assume that the frustum tips failed to 

penetrate the skin surface, as a result o f their increased tip area, and may have been 

responsible for the creation of these indentations. When analysing microneedle treated 

skin it is therefore important to inspect each microdisruption and to establish a true 

‘break’ in the skin surface by visualising damaged comeocytes surrounding the 

microconduit.

2.4.3.4. SE M  analysis o f  microneedle punctured human epidermal membrane

Images o f the microneedle array tips penetrating through the underside o f the human 

epidermal membrane confirmed the ability o f a wet-etch microneedle device to 

penetrate the skin barrier. It is worth noting however that the diameters of the 

microchannels were significantly greater than the width of the frustum shaped tips that 

protrude through the opening (Fig 2.14). This may be attributed to retraction of the 

device before sample analysis i.e. the device was applied under pressure to the skin 

surface and so upon removal o f the pressure the devices retreats from the 

microchannels.
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Figure 2.13. Scanning electron micrographs o f apparent microdisruptions in the skin 

surface, which under closer examination reveal themselves as deformations in the 

membrane. A, scale bar = 200pm; B, scale bar = 20pm. Skin was obtained from a 67 

year old female donor

Figure 2.14. Scanning electron micrographs illustrating the ability o f wet-etch 

microneedles to penetrate the epidermis with frustum-shaped tips (Treated with TNI - 

Array 4). A, scale bar = 1000pm; B, scale bar = 100pm. Skin was obtained from a 67 

year old female donor.
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2.4.4. Light microscopy of microneedle treated human skin

Tissue histology produces two-dimensional representations o f a three dimensional 

system. Analysis o f numerous sections and a selection of tissue samples were therefore 

required to build a detailed understanding of the tissue structure. It was also important 

to remember that artefacts may occur during the processing of the tissue that may distort 

the observed structure e.g. denaturation and crosslinking o f proteins during fixation, the 

conversion o f water to ice crystals during embedding and/or physical distortion during 

the sectioning process (Paulsen, 2000). The tissue sections discussed in the following 

text were therefore considered representative o f all samples analysed.

2.4.4.1. Histology o f  untreated h uman skin

It is important to understand the architecture of human skin and its organisation in order 

to design an effective cutaneous delivery system. However skin structure is influenced 

by a number o f factors including the patients’ age and the anatomical site from which it 

is obtained (Roberts and Walters, 1998). Untreated breast skin from a variety o f donor 

patients was therefore examined in order to appreciate the architecture of the tissue to be 

used throughout this investigation.

Low magnification images (Fig 2.15A) revealed the layered structure o f skin. H&E 

staining o f the tissue highlighted the nucleated areas of the skin tissue (Fig 2.15B). 

These images illustrated the practical difficulty in targeting therapies to the viable cells 

o f the epidermis (dark blue region), the majority o f the tissue being dominated by the 

elastic and collagen fibres of the dermis. The SC appeared as a continuous non

nucleated region (10-20pm thick) that covered the skin surface. Histology also 

identified two distinct layers within the dermis: a thin papillary layer containing cellular 

structures that positioned directly below the viable epidermis and the remainder o f the 

dermis, which consisted primarily of non-nucleated connective tissue (Fig 2.15B).

Histology generally defines epidermal thickness as 75 to 600pm, dependent upon the 

area of the body (Junqueira and Cameiro, 2005b). The viable epidermis within breast
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Figure 2.15 Transverse sections (10-12pm) o f untreated human breast skin, visualised 

by light microscopy. The selected micrographs were selected from different donors to 

provide an accurate representation of the breast tissue structure.

A. Toludine blue stained tissue at low magnification highlights the epidermal layer and

a hair follicle. Scale bar = 500pm. Skin donor is a 30 year old female.

B. H&E staining facilitates visualisation o f individual cells, (i) Hair follicle bulge; (ii) 

Sebaceous gland. Scale bar = 100pm. Skin donor is a 65 year old female.

C. H&E staining highlights the variability in the thickness o f the viable epidermis (see

arrows). Scale bar = 100pm. Skin donor is a 76 year old female.

D. High magnification images o f H&E stained tissue reveals the cellular organisation 

of the viable epidermis. B= Basal layer; SP = Spinous layer; G = Granular layer; SC 

= Stratum corneum. Scale bar = 50pm. Skin donor is a 65 year old female.
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tissue was just 50-100|im thick (Fig 2.15C). However the most noticeable feature of the 

viable epidermis was the variability in its thickness. This variability was present not 

only between different donors but also within the same tissue (Fig 2.15C). The 

keratinocyte ‘depth’ within the viable epidermis varied from just two cells, to more than 

twenty. This will be an important consideration in the design o f microneedle devices for 

the localised delivery o f nucleic acid formulations to this viable region.

It is possible that microneedle mediated delivery o f a therapeutic agent may require that 

a specific cell type, within this viable epidermal layer, is targeted. Columnar shaped 

keratinocytes comprising the basal cell layer o f the viable epidermis include stem cells 

(Fig 2.15D) (Ghazizadeh and Taichman, 2005), which are actively dividing and 

therefore represent the most lucrative target for gene therapies. The structure of the 

breast skin that was analysed suggested that microneedle devices may only need to 

penetrate to a depth o f 50pm in some areas of the tissue in order to access the basal 

layer.

2.4.4.2. Dry-etch microneedle treated human skin

The distribution and extent of microchannels within microneedle-treated full thickness 

human skin was confirmed by post-application staining with methylene blue. This 

hydrophilic low MW dye diffused rapidly across the compromised SC barrier and was 

retained within the underlying microchannel. This provided a simple yet clear 

demonstration o f the penetration efficiency o f dry-etch microneedles (Fig 2.16A) and 

indicated that a significant proportion o f the microneedle array successfully penetrated 

the outermost skin layer.

En face  images o f stained skin suggested that microneedle-created pores were 

approximately 50- 100pm in diameter (Fig 2.16A). However, cryosections (Fig 2.16B & 

2.16C) o f the tissue indicated that lateral diffusion of the dye may have exaggerated this 

estimation. The diameter of the microchannel visualised by transverse sections (Fig 

2.14B & 2.16C) was in close agreement with SEM images, at approximately 20-30pm 

wide with a channel depth o f 100-120pm. Eosin and toluidine blue stained sections (Fig 

2.16D-2.16F) identified the location o f the microchannel within the skin architecture. In 

the majority o f cryosections the conduit was restricted to the viable
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Figure 2.16. Light microscopy images o f microchannels created within human skin, 

treated by the dry-etch microneedle device (Fig 2.6). Skin was obtained from a 30 year 

old female donor.

A. En face  imaging o f the skin surface following microneedle treatment and methylene 

blue application. Scale bar = 500p.m.

B,C. Unstained cryosections (12pm) illustrating microchannels within the upper skin 

layers. Scale bar = 200pm.

D. Toludine blue staining o f cryosections (12pm) highlights the tissue layers. 

Microchannels, highlighted by arrows, appear as physical disruptions in the stratum 

corneum and viable epidermis. Scale bar = 500pm.

E,F. Eosin staining of cryosections (12pm), illustrate microchannels (see arrows) 

confined to the viable epidermis. E, scale bar = 200pm; F, scale bar = 100pm.
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epidermis. However, within some areas o f the tissue these microchannels pierced the 

BMZ and penetrated into the upper layer of the dermis (the papillary layer).

2.4.4.3. Wet-etch microneedle treated human skin

Downward application of a wet-etch microneedle device to human tissue was less 

penetrative than the application of dry-etch devices. This may be explained by the lower 

density of microneedles and therefore the ability of the skin to deform around individual 

microneedles upon application of the device. However a rolling application, which 

greatly improved penetration efficiency, was developed (Fig 2.4). En face  imaging 

suggested that the frustum tipped microneedles disrupted the skin surface to a greater 

degree than those with pointed tips, resulting in greater penetration of the methylene 

blue dye and larger, denser areas of staining (Fig 2.17A & 2.17B).

However, an important observation was the failure of all microneedles within an array 

to penetrate the skin surface and the different levels o f skin damage induced by those 

that did penetrate. Histology confirmed this observation with microchannels created by 

the frustum tipped microneedles ranging from minor skin disruptions, similar to those 

visualised following dry-etch application (Fig 2.17C), to microchannels that were over 

100pm wide (Fig 2.17D - 2.17F).

Another noteworthy point was the variability o f penetration, depending upon the 

method o f application. For example, a single smooth rolling motion with a wet-etch 

array, often resulted in preferred penetration o f microneedles at the perimeter of the 

array pattern (Fig 2.18A). However, if the array was moved backwards and forwards 

slightly in a rocking motion, penetration efficiency in the central area o f the array was 

improved (Fig 2.18A). The method of microneedle application was therefore noted as a 

fundamental parameter in the effective and reproducible penetration of a microneedle 

device.
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Figure 2.17. Light microscopy o f microchannels created within human skin by the wet- 

etch microneedle device. Methylene blue dye highlights areas successfully penetrated 

by the microneedle array. Skin was obtained from a 57 year old female donor.

A. En face  imaging o f the skin surface following application o f a wet etch array, with 

frustum shaped needle tips, (TNI - Array 1) in a single ‘rolling’ motion. Scale bar = 

1000p.m.

B. En face  imaging o f the skin surface following application of a wet etch array, with 

pointed needle tips, (TNI - Array 6) in a single ‘rolling’ motion, scale bar = 1000pm.

C. D, E, F. Unstained cryosections ( 12pm) o f frustum treated human skin illustrating 

microchannels within the upper skin layers. Scale bar = 200pm.
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Figure 2.18. En face  analysis of microchannels created by different application methods 

using wet-etch microneedle devices. Donor is a 61 year old female. Application o f a 

wet-etch array, with sharp tipped microneedles (TNI - Array 21) in (A) a single ‘rolling’ 

motion and (B) a ‘rolling’ and then vibratory motion. Scale bar = lOOOjim.

2.4.5. M icroneedle integrity

Microneedle devices were examined for defects following their application to the skin 

surface. The mechanical properties o f the microneedle array i.e. its strength and 

robustness must be optimised to ensure that the force involved in application o f the 

device does not damage individual microneedles within the array (Wilke et al., 2005b). 

Such damage has implications both in the laboratory development of the device, arrays 

are repeatedly used in experiments and therefore reproducible penetration is required, 

and in the clinical setting, where individual microneedles remaining in the skin 

following device removal might be seen as a significant safety issue. Regular appraisal 

of the integrity o f the microneedle array by light microscopy and SEM therefore 

ensured the device functionality. These observations also formed the basis for 

improvements in microneedle design, their engineering or their method of application to 

human skin.
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2.4.5.1. Dry-etch microneedle arrays

Repeated use o f the dry-etch devices manufactured by CSE resulted in a dramatic 

reduction in their capacity to puncture the skin surface. This was attributed to a coating 

of biological debris over the surface o f the device that resulted in occlusion o f the 

pointed needle tip (Fig 2.19A & 2.19B). Removal o f biological contamination by 

submersion in Decon® 90 for a period exceeding 24hrs, followed by an overnight 

acetone rinse, restored the individual microneedle geometries and the device 

functionality (Fig 2.19C). However the fragility o f silicon microneedles also resulted in 

irreparable physical damage to individual microneedles, particularly those located on 

the perimeter o f the array pattern (Fig 2.6A).

Platinum coated dry etch devices, produced by TNI (Fig 2.19D), showed a much greater 

resistance to physical and biological damage following repeated applications to the 

human skin. It is not unreasonable to attribute this increase in robustness to differences 

in the array pattern and the structural modification o f individual microneedles. Although 

physical damage to the device was minimal, those microneedles that were affected were 

again located primarily around the periphery of the array pattern. This suggested that 

forces imposed upon individual microneedles on their insertion into the skin are greater 

on peripheral microneedles o f the dry-etch array.
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Figure 2.19. Scanning electron micrographs of dry-etch microneedle arrays following 

repeated application to human skin (A&B). Overnight treatment of the microneedle 

device results in restoration of the device characteristics (C&D). A, C, scale bar = 

500pm; B, D, scale bar = 200pm.
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2.4.5.2. Wet-etch microneedle arrays

Wet-etch microneedles maintained their integrity following repeated applications to 

human skin. Mechanical abrasion and the previously described rinsing procedure 

(2.4.5.1) removed any traces of biological contamination. The strength of these 

microneedles has been attributed to their pyramidal shape and wide base (Wilke et al., 

2005b).

However, although mechanical strength on the whole was increased, there was also a 

noticeable difference in the robustness o f frustum tipped and pointed microneedles. The 

frustum tipped microneedles have been used in a range of experiments, including the 

lateral abrasion o f the human skin surface i.e. dragging the microneedles across the skin 

surface, and have maintained their geometry (Fig 2.20A-2.20C). The pointed tips 

however were damaged by repeated use and did not withstand the forces imposed on the 

device by lateral abrasion experiments using human skin (Fig 2.20D-2.20F). These 

microneedles splintered or broke, most commonly at the microneedle tip, thereby 

rendering the device ineffective (Fig 2.21).

Silicon microneedles break at crystal planes, due to shear stresses imposed on individual 

microneedles during application (Wilke et al., 2005b). In the future production of wet- 

etch microneedles, it will therefore be important to consider such factors. It may be that 

there will be a compromise between the robust nature o f the frustum tipped microneedle 

and the penetrative capabilities of the pointed microneedle array.
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Figure 2.20. Scanning electron micrographs of wet-etch microneedle arrays following 

their application to human skin. Figures highlight the difference in the robustness of the 

frustum tipped (A-C) and sharp tipped (D-F) arrays. A, D, scale bar = 1000pm; B, C, E, 

F, scale bar = 100pm.

Figure 2.21. A series of scanning electron micrographs highlighting the damage to 

microneedle tips following repeated applications to the human skin. A, B, scale bar = 

50|im; C, scale bar = 100pm.
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2.5. CONCLUSIONS

Microneedles, created by dry-etch and wet-etch microfabrication processes, have 

demonstrated their ability to disrupt the skin barrier and facilitate the diffusion of a low 

MW dye into the epidermal skin layer. The creation o f microchannel structures 

observed by histological analysis illustrated the basic capabilities o f the device and 

encourages their employment in the cutaneous delivery of macromolecular 

formulations, with a view to facilitating epidermal gene delivery and expression.

However, although the observed microchannels were deemed suitable for investigation 

of cutaneous macromolecule delivery, the reproducibility of microneedle penetration 

was dependent upon numerous factors including the array pattern, microneedle density, 

microneedle geometries and the method and force of application. This was further 

complicated upon repeated use of devices by biological contamination and mechanical 

disruption to microneedle structures. The reproducibility of the microchannels that are 

created by arrays is likely to be an important factor governing the therapeutic 

progression o f these devices. Therefore although cutaneous gene delivery using a 

microneedle array is the principal goal of this investigation, it is well understood that 

concurrent advances in the design of devices and the development of a reproducible 

application method will be o f paramount importance for the progression of the 

microneedle device towards a clinically useful drug delivery platform.
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CHAPTER 3

The diffusive characteristics 

of nanoparticle formulations 

through microconduits
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3.1. INTRODUCTION

Significant advances in molecular biology and the resultant expansion in the 

biotechnology industry has stimulated progression of therapeutic entities from small 

chemical compounds to an expanding range of peptides, proteins and nucleic acids. 

However, effective clinical use o f biomacromolecular therapeutics relies upon the 

development of novel technologies and formulations that can facilitate effective 

delivery of the therapeutic to its site of action. Delivery of therapeutics through the skin 

provides a portal for delivery that negates first pass metabolism by the liver. Novel 

strategies for the localised delivery of macromolecules through the outer skin barrier 

have therefore received notable recognition over recent years (Barry, 2001, Barry, 2002, 

Chiarello, 2004, Cross and Roberts, 2004, Prausnitz et al., 2004, Schuetz et al., 2005, 

Ting et al., 2004). This chapter aims, using a model system, to determine the 

physicochemical factors that influence the delivery of colloidal gene therapy 

formulations through conduits created in the skin by a microneedle device.

3.1.1. Understanding the diffusion of gene therapy complexes through the skin

An electrostatically charged colloidal gene complex, such as the LPD (Section 1.3.2), is 

likely to encounter a number of physical and biological obstacles that may retard its 

movement through aqueous microchannels created within the SC by a microneedle 

device. Predicted impediments to successful gene delivery include, (i) non-covalent 

interaction o f the gene complex with the skin surface and tissue components, (ii) 

formulation instabilities, (iii) steric hindrances and (iv) degradation o f pDNA by 

endonucleases. Recognising and understanding such barriers is of paramount 

importance in the development o f drug delivery technologies and formulations that can 

facilitate efficient and effective cutaneous gene delivery.

The engineering o f effective silicon microneedle devices for this study was a technically 

challenging manufacturing process, conducted in clean-room facilities over a period of 

several months (Section 2.1.1). During this interval, a series o f predictive studies were 

designed to determine the importance o f a colloidal particles size and surface charge 

(zeta potential) on its permeation through the microchannels of a representative 

synthetic porous membrane. The selection of a colloidal formulation and a membrane to
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be used in this model was based upon the physical characteristics of the LPD 

formulation and the microneedle treated skin surface.

3.1.2. Selecting a model nanoparticle and a representative synthetic membrane

In order for data from a model system to be valuable in the prediction o f nanoparticle 

permeation through microneedle treated skin, model design is critical. Fluorescent 

nanospheres, used previously as model nanoparticles (Alvarez-Roman et al., 2004, 

Kohli and Alpar, 2004), were therefore selected as a simple, well-defined, detectable 

and quantifiable representation of a colloidal gene therapy formulation.

Isopore® polycarbonate track-etched membranes were selected to represent microneedle 

treated skin (Fig 3.1). These membranes possess uniform cylindrical channels of 

measurable diameter and length {Apel, 2001 #48; Brendler, 1995 #51; Diez, 1989 #57}. 

Initial studies by Prausnitz and co-workers suggested that a device with an array of solid 

silicon microneedles, possessing sharp tips and a length o f 150pm, produced conduits of 

lpm  diameter within the skin (Henry et al., 1998a). However, the application of 

alternative microneedle geometries to the human skin may create conduits with altered 

dimensions (Section 2.4). With this in mind, it was decided that model diffusion studies 

should assess the diffusion o f colloidal particles through three pore sizes:-

1. 1.2pm pore size -  based on the findings o f Henry and co-workers (Henry et al., 

1998a).

2 . 10pm pore size -  to determine the effects o f an increased pore size on diffusion.

3. lOOnm pore size -  as a negative control.
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Figure 3.1. A scanning electron micrograph of a 10pm Isopore® polycarbonate track- 

etched membrane, scale bar = 50pm.

The permeation o f colloidal particles through a membrane pore was not envisaged to be 

dependent upon the pore diameter alone. Electrostatic interaction between a 

nanoparticle and the membrane surface was also predicted to influence permeation. 

Therefore the surface charge (zeta potential) o f the membrane and the nanoparticle were 

considered (Apel, 2001, Calvo et al., 1996). The skin surface has been described as a 

membrane of net negative charge with an isoelectric point of pH3-4. This was initially 

attributed to a greater proportion of negatively charged amino acid residues within the 

tissue (Burnette and Ongpipattanakul, 1987). However, electron dense desmosomes and 

desmosomal remnants are now considered to contribute significantly to this charge 

(Wertz and van den Bergh, 1998).

The Isopore® membrane has been described as a weak acid with a negative surface 

potential (Brendler et al., 1995). This is attributable to the exposure of carboxylic acid 

groups, within the pore structures, upon chemical etching of the polycarbonate 

membrane (Huismann et al., 2000, Keesom et al., 1988). Increased etching times, used 

to create larger pore sizes, therefore cause a resultant increase in the magnitude of the 

negative surface potentials (Keesom et al., 1988, Kim et al., 1997).

1. For pore sizes of lOOnm and 200nm, the zeta potential becomes constant at 

approximately-lOmV when the pH exceeds 6 .
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2. For lpm  pore membranes the zeta potential is constant when pH exceeds 6 at 

approximately -27mV.

3. Zeta potential approaches OmV at ~ pH3-5 depending on the pore size 

(isoelectric point).

The population o f charged carboxylic acid groups within membrane pores is small and 

hence the magnitude o f the negative zeta potential for polycarbonate membranes 

remains relatively low. The polycarbonate membrane may not adopt a positive charge 

until extremely acidic pH values are achieved i.e. less than pH3. The surface of the 

membrane therefore retains a general hydrophobic character (Keesom et al., 1988).

Isopore membranes were selected as a representative porous model of the microneedle 

treated skin that could be utilised in experiments to gain an appreciation of the influence 

of specific physicochemical parameters on the permeation of nanoparticles through 

microconduits. However, in vivo the permeation o f nanoparticles into microneedle 

treated skin is expected to be much more complex. Therefore penetration of model 

nanoparticles across microneedle treated human epidermal membrane was also 

assessed.

3.1.3. Nanoparticle diffusion through human epidermal membrane

Successful non-invasive transcutaneous vaccination strategies (Glenn et al., 1998, 

Glenn et al., 2000, Scharton-Kersten T, 1999) have provoked interest in the 

development o f topically applied nanoparticle formulations, containing pDNA, that can 

stimulate a protective immunity (Cui and Mumper, 2001, Cui and Mumper, 2002, Cui 

and Mumper, 2003). However current non-invasive DNA vaccination strategies suffer 

from unpredictable transfection efficiencies (Cui and Mumper, 2001, Shi et al., 1999) 

and it remains unclear how such particulate formulations penetrate the skin barrier 

(Domashenko et al., 2000, Hoffmann, 2000).

A recent diffusion study by Kohli et al assessed the ability o f a topically applied 

fluorescent latex nanoparticle formulation to penetrate the untreated skin (porcine) 

surface (Kohli and Alpar, 2004). The investigators claim to have facilitated cutaneous 

delivery o f negatively charged nanoparticles with 50nm and 500nm radii. However
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200nm and 300nm radii nanoparticles failed to penetrate the membrane. The authors 

speculate that repulsion between the more intense ‘negative charge density’ on 50nm 

and 500nm particles and those on the negatively charged lipids in the skin facilitates 

increased permeation (Kohli and Alpar, 2004). However, only 0.1% of the nanoparticle 

formulation was detected in the receptor phase of Franz diffusion cells and so it is 

questionable if the detected levels of fluorescence are attributable to nanoparticle 

diffusion or background fluorescence. Histology also failed to detect fluorescent 

nanoparticles in the epidermis or dermis tissue, casting further doubt on the results.

A more recent study examined the penetration o f negatively charged nanoparticles (20 

& 200nm in diameter) through porcine skin using confocal laser scanning microscopy 

(Alvarez-Roman et al., 2004). Accumulation of particles was only observed in follicular 

openings and furrows on the skin surface. Investigators therefore acknowledged that 

although particle size, surface charge and hydrophobicity will affect penetration and 

deposition in a biological tissue, such as the skin, there was no evidence of SC 

penetration.

3.1.4. Techniques

3.1.4.1. Photon Correlation Spectroscopy (PCS)

If a colloidal suspension is illuminated with a laser, particles within that suspension will 

scatter light, which can then be measured by a detector. If the scattered light arrives at 

the detector with the same phase it causes constructive interference. However if the 

phase patterns oppose each other it causes destructive interference. Small particles that 

collide with solvent molecules move with a greater velocity than a larger particle and so 

this movement causes a greater fluctuation in the intensity o f measurements. PCS 

therefore uses the difference in Brownian motion between a large and a small particle in 

order to determine their size.

3.1.4.2. Zeta Potential

A charged colloidal particle within an aqueous environment is associated with 

counterions, donated from the surrounding liquid environment (Fig 3.2). Therefore the 

electrical behaviour o f a particle is dictated by ions that are bound in layers of
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alternating charge around the particle. Counterions of the inner layer are tightly bound 

to the particle (Stem layer) due to their close contact with the particles charged surface. 

As they get further from the particle surface these counterion layers become less firmly 

bound (diffuse layer). Therefore as a particle moves within an aqueous media, those 

tightly bound ions remain bound to the particle surface while those in the diffuse layer 

remain behind. The potential at this boundary (the slipping plane) is the zeta potential.

Zeta potential is therefore a measure o f the charge that a colloidal particle adopts within 

a defined aqueous media. It is dictated by the surface charge of the particle and the 

counterions present in the surrounding liquid. The basic principles o f zeta potential 

measurement utilise the movement of charged particles within a colloidal system under 

the influence of an electric field i.e. electrophoresis.

0 _ ^ )

° g"~g

Zeta potential

Stem potential 

Surface potential

Figure 3.2. A schematic representation o f a positively charged colloidal particle (black) 

suspended within an aqueous environment. The stern layer (grey), zeta potential (light 

grey) and the associated counterions are highlighted.

3.1.4.3. Fluorescence Microscopy

Fluorescence microscopy is a selective detection method that permits visualisation o f a 

small amount o f a compound within a complex mixture o f non-fluorescent material. 

Only compounds that contain a fluorophore can be analysed by this method. A
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fluorophore has the ability to absorb light of a particular wavelength and to remit light 

o f longer wavelengths. The process occurs in three basic steps, (i) light is absorbed from 

an excitatory light source and electrons are excited from the ground state to a higher 

electronic state (the excited state), (ii) internal conversion of energy due to the collision 

of the excited state compound with solvent molecules causes the loss of a small amount 

of energy and the molecule is converted to its ‘lowest excited state’ and (iii) electrons 

then return to the ground state and this results in the emission of a photon of energy. 

The excitation wavelength is therefore always shorter (higher energy) than the emission 

wavelength (lower energy). Excitation and emission wavelengths are specific to 

individual fluorophores. These must be determined prior to fluorescence microscopy (or 

spectrophotometry), to ensure that the sample is illuminated at the appropriate 

wavelength and that filters are available to view the sample with the exclusion of the 

illuminating light.

The major drawback to this method of analysis is the presence o f background 

fluorescence and other fluorophores which interfere with effective analysis of your 

sample. The presence o f interfering fluorophores is a well recognised issue in the 

analysis o f biological samples, with those more complex samples such as whole skin 

tissue presenting greatest problems. For any fluorescence studies it is therefore essential 

that control samples are included to determine the relative contribution of 

endogenous/auto-fluorescence. During this investigation fluorescence microscopy has 

been utilised to determine the presence o f fluorescent nanoparticles on the surface of 

Isopore® membranes, within histological sections of skin tissue and to identify cells 

successfully transfected with the pEGFP-Nl plasmid (Chapter 4).
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3.2. AIMS AND OBJECTIVES 

Chapter Aim

The previous chapter characterised novel solid silicon microneedle devices that 

penetrated the human skin surface and thus created micron-sized conduits within the 

epidermal layer. This chapter aims, using a model system, to determine the 

physicochemical factors that influence the delivery o f nanoparticles through such 

conduits and to demonstrate permeation of a nanoparticle formulation through 

microneedle treated human epidermal membrane. The results of these studies will 

indicate whether cutaneous delivery of a pDNA nanoparticle formulation, such as the 

LPD, is a realistic ambition.

Chapter Objectives

• To determine the physicochemical properties o f the LPD non-viral gene therapy 

vector.

• To develop and characterise a representative nanoparticle model of an LPD that 

can be visualised and quantified.

• To investigate the influence of physicochemical characteristics on the diffusion 

o f a nanoparticle through a synthetic membrane containing pores of uniform 

diameter.

• To determine the ability o f a microneedle array to enhance permeation of a 

nanoparticle formulation through the epidermal skin membrane.
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3.3. MATERIALS AND METHODS

3.3.1. Materials

All reagents were obtained from Fisher (Loughborough, UK) and were, unless stated 

otherwise, o f analytical grade.

The pCMVp plasmid (7.2 kb) construct containing the LacZ  reporter gene and the 

pEGFP-Nl plasmid (4.7kb) expressing the green fluorescent protein (GFP) reporter 

gene were obtained from Promega Corporation (Madison, WI) and propagated as 

detailed in Chapter 4 (Section 4.3.2).

l,2-Dioleoyl-3-triammonium-tropane (DOTAP) was purchased as the methyl sulphate 

salt from Avanti Polar Lipids (Alabaster, AL, USA). Protamine sulphate, fluorescent 

yellow/green polystyrene nanospheres (L-1280), propranolol hydrochloride, chloroform 

and greiner 96-well polypropylene plates were obtained from Sigma-Aldrich Chemical 

Company (Poole, UK). 2-(12-(7nitrobenz-2-oxa-l,3-diazol-4-yl)amino)dodecanoyl-l- 

hexadecanoyl-sn-glycero-3-phosphocholine (NBDCn-HPC) was obtained from 

Molecular probes (Leiden, Netherlands)

All histology materials, including OCT embedding media, Histobond® adhesive 

microscope slide were obtained from RA Lamb Limited (Eastbourne, UK) or in the case 

of toluidine blue, Harris’ haematoxylin, Gurrs’ eosin aqueous solution 1%, Histomount 

and xylene (low sulphur) from Lab 3 (Bristol, UK).
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Equipment:-

Fluostar fluorometer (BMG laboratories, Offenburg, Germany)

Malvern 2000 Zetasizer (Malvern Instruments, Malvern, UK) 

pH probe (Malvern Instruments, Malvern, UK)

Extrusion apparatus (Northern lipids, Vancouver, Canada)

Coulter N4 Plus PCS Instrument (Coulter electronics, Luton, UK)

Leica CM305S Cryomicrotome (Leica Microsystems (UK) Limited, Milton Keynes, 

UK)

Olympus BX-50 system microscope (Olympus Optical, London,UK)

Olympus IX-5058F system microscope (Olympus Optical, London,UK)

Olympus D P-10 Camera (Olympus Optical, London,UK)

U-RFL-T-200 Olympus fluorescence burner (Olympus Optical, London,UK) 

Olympus TH3 Power unit (Olympus Optical, London,UK)

Schott KL1500 fibre optic light source (Schott UK Limited, Stafford, UK)

Philips 208 Transmission Electron Microscope (Philips, Eindhoven, Netherlands) 

Philips XL-20 Scanning Electron Microscope (Philips, Eindhoven, Netherlands) 

Gold sputter coater (EM Scope, Kent, UK)

Ultrasonication bath (Ultrawave, Cardiff, UK)

U-300 spectrophotometer (Hitachi, Tokyo, Japan)
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3.3.2. Nanoparticle preparation

3.3.2.1. LPD non-viral gene delivery complex

The LPD complex consists of a 3:2:1 mass ratio o f DOTAP liposome: protamine 

sulphate: pDNA. pDNA (1 mg/ml) was amplified in transformed Escherichia coli 

(E.coli) D H 5a (Section 4.3.2.2). Protamine sulphate powder was dissolved in sterile 

deionised water to create a stock concentration of 1 mg/ml and DOTAP liposomes were 

prepared to a final concentration of 1 mg/ml.

To prepare DOTAP liposomes, lOmg of DOTAP was dissolved in ~10ml of chloroform 

in a round bottomed flask. The chloroform was then removed using a rotor-evaporator 

to produce a thin lipid film on the walls of the flask. The film was dried over a 90min 

period and subsequently hydrated with 10ml of sterile deionised water (37°C). The lipid 

suspension was then vortexed briefly and maintained at 37°C for 30mins to allow

liposome formation to occur. A high-pressure extrusion apparatus containing an
(£)Isopore polycarbonate track-etched membrane (lOOnm pore size) was used to produce 

unilamellar liposomes. Ten extrusion events produced liposomes with a diameter of 

approximately lOOnm. Unimodal liposome size was measured using a Coulter N4 plus 

PCS and size distribution processor (SDP) analysis was performed.

LPD complexes were prepared by sequential addition of components:-

• 3.8ml o f deionised water added to 200pl pEGFP-Nl (lmg/ml).

o lOmin incubation.

• 400pl o f protamine sulphate (lm g/m l) added.

o lOmin incubation.

• 600pl o f DOTAP liposomes (lmg/ml).

o lOmin incubation.

• 1ml LPD complex added to 2ml o f deionised water of known pH.

For zeta potential studies, the deionised water was included at a range o f pH values, 

(adjusted with hydrochloric acid (0.01M) and sodium hydroxide (0.01M)).
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For diffusion studies, fluorescent LPD gene complexes were prepared using a DOTAP 

liposome suspension containing 5%w/w of the fluorescent lipid NBDC12-HPC. DOTAP 

liposomes were made in the same manner as detailed previously in this Section. 

However, the lOmg o f lipid now contained 9.5mg DOTAP and 0.5mg of NBDC12-HPC. 

The absorption and excitation wavelengths o f the fluorescent lipid (460nm and 534nm 

respectively) allowed the quantitative analysis o f liposomes using a fluorometer with 

excitation and emission filters set at 485nm and 520nm respectively.

3.3.2.2. Fluorescent nanosphere

Fluorescent nanospheres possess a surface bound fluorophore with maximum excitation 

and emission values o f 470nm and 505nm respectively. These values were confirmed 

by excitation and emission scans using a U-300 spectrophotometer with a slit width of 

2pm and a scan range o f 200-800nm (Appendix II). Nanospheres were diluted using 

deionised water.

3.3.2.3. Lipid coated nanospheres (LCN)

A DOTAP lipid film was created (Section 3.3.2.1). Following this, 10ml of 5pl/ml 

nanosphere suspension (concentrate/water) was added to the flask, which was then 

vortexed for approximately 30secs and finally maintained at 37°C for lhr. The 

suspension was then sonicated for lh r and a Coulter N4 plus PCS instrument was used 

to determine the size distribution o f the resulting suspension. Excitation and emission 

spectra confirmed maintenance of the latex nanospheres fluorescent properties 

following the lipid coating procedure (Appendix II).

3.3.3. Transmission Electron Microscopy (TEM)

A pioloform-coated 200-mesh nickel grid was fixed between the tips of a metal forceps 

and 15pl o f the nanoparticle formulation (LPD, nanosphere or LCN) was applied to the 

‘dull side’ o f the grid. After a contact time of 3mins, excess formulation was ‘wicked’ 

from the grid using filter paper. The grid was then placed on the surface of a filtered 2% 

aqueous uranyl acetate drop for 30secs, with the ‘dull side’ facing downward. The stain 

was then ‘wicked’ from the grid, which was rinsed twice in deionised water before 

analysis by TEM.
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3.3.4. PCS size analysis

Measurements were performed using the Coulter N4 Plus PCS instrument. Unimodal 

analysis provided a mean particle size and standard deviation for a monodisperse 

suspension. However for more complex distributions a size distribution processor (SDP) 

analysis was also used. Preparation of samples to be analysed by this technique i.e. (i) 

DOTAP liposomes, (ii) LPD complexes, (iii) fluorescent nanospheres and (iv) LCNs 

required dilution o f the suspended sample in a clear-sided disposable cuvette, with 

filtered deionised water to a volume of 3ml.

3.3.5. Zeta potential

The zeta potential was determined for each of the nanoparticle formulations using the 

Malvern 2000 Zetasizer. Briefly, nanoparticle formulations were diluted with deionised 

water. A sample was then injected into a flow through cell, allowed to equilibrate for 

30secs and then analysed repeatedly (N=5) before removal. The effect of pH on the 

stability o f the nanosphere and LCN suspensions was investigated using a multi-purpose 

titrator. This allowed measurement of zeta potential under the influence o f a progressive 

change in pH (achieved using hydrochloric acid (0.01M) and sodium hydroxide 

(0.01M) solutions).

3.3.6. Predictive diffusion studies using Isopore® membranes

Isopore® membranes were mounted between the donor and receptor chambers of static 

Franz diffusion cells o f known receptor volume and diffusional area (Fig 3.3). Each 

membrane was 27mm in diameter and possessed a pore size of lOOnm, 1.2pm or 10pm. 

The receptor compartment o f each cell was filled with an aqueous solution and a 

magnetic stirrer bar was added. Sampling arms were covered with a foil cap and each 

diffusion cell was positioned on a magnetic stirrer plate, in a water bath maintained at 

37°C. Each cell was allowed to equilibrate for at least 30mins before application of the 

formulation to the subsequently occluded donor chamber.
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Figure 3.3. A schematic representation of the static Franz diffusion cell.

The applied formulations consisted of either fluorescent nanospheres, LCNs or 

fluorescent LPDs in an aqueous solution. The pH of the resulting formulation was 

adjusted to a target pH (depending on the study) using 0.01M hydrochloric acid or 

0.01M sodium hydroxide solutions.

Degassed, deionised water filled the receptor compartment. The pH of the receptor 

phase was adjusted, using sodium hydroxide (1M) or hydrochloric acid (1M), to 

complement the formulation pH. Traditional buffer salts were not used to control pH 

due to their unpredictable effects on the zeta potential of a colloidal formulation. 

However, preliminary experiments assessing the pH value o f the receptor phase before 

and after treatment indicated that the pH of the system was maintained throughout the 

experimental procedure.

Samples (200pl) were removed from the receptor arm at 30, 60, 120, 240, 360 and 

720mins and replaced with an equal volume of receptor phase (37°C). A sample was 

also removed from the donor phase of each cell at the conclusion of the experiment. The 

final nanoparticle concentration in the donor and receptor phases was then used to 

calculate the theoretical amount of the formulation that was associated with the 

membrane. Samples were stored in a Greiner® black polypropylene 96-well plate and
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analysed using a Fluostar® fluorometer. Calibration curves were constructed for each of 

the formulations in order to determine the limits of detection and were used to convert 

fluorescence values to nanoparticle concentrations.

Franz cells were dismantled following the removal of the final sample and selected 

membranes were retained for microscopic evaluation. Isopore® membranes, isolated 

from the Franz diffusion cells, were positioned on glass microscope slides, illuminated 

with a blue excitation light source and visualised using an Olympus BX-50 microscope. 

Photomicrographs were collected to provide a qualitative assessment of the membrane 

integrity and its fluorescence. Membranes were then mounted on aluminium stubs, gold 

sputter coated and assessed by SEM (Section 2.3.5). The receptor phase was also 

collected and the pH measured.

3.3.7. Heat separated human epidermal membrane diffusion studies

3.3 .7.1. Propranolol diffusion

Human skin from a 67 year old female donor was removed from storage and allowed to 

defrost over a period o f lhr. Sub-cutaneous fat was removed by blunt dissection and the 

epidermal membrane was removed by heat separation and collected on aluminium foil 

(Section 2.3.5.1). Membranes to be treated by the microneedle device were then 

replaced on the dermal tissue and a wet-etch microneedle array (TNI -  Array 5) was 

applied to the skin surface on five consecutive occasions. The treated areas (~2.5cm ) 

were isolated from the epidermal membrane and mounted in Franz diffusion cells 

(N=6). Untreated epidermal membranes were also evaluated (N=4). The receptor 

compartment of the assembled cells was filled with PBS, pH7.4 and equilibrated in a 

water bath (37°C) for 30mins. Foil caps were placed on the receptor sampling arm and

0.5ml o f formulation was added to the donor phase, which was then occluded. The 

study compared the diffusion of a 0.5mg/ml propranolol hydrochloride formulation 

through treated and untreated epidermal membranes and used deionised water as a 

negative control.

Samples from the receptor phase were analysed as previously detailed (Section 3.3.6) at

1, 2 , 4 , 6 , 11 and 24hrs and also from the donor phase at the conclusion of the
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experiment. Excitation and emission filters were set at 280nm and 330nm respectively 

during fluorescence spectrophotometry.

3.3.7.2. Nanoparticle diffusion

Microneedle (TNI -  Array 8) treated human epidermal membranes (N=8), untreated 

membranes (N=2) and membranes punctured ten times with a hypodermic needle (N=2) 

were prepared and mounted in Franz diffusion cells (Section 3.3.7.1). The study 

investigated the diffusion of the fluorescent nanosphere formulation (Section 3.3.2.2) 

through treated and untreated epidermal membranes, using deionised water as a 

negative control for the formulation. In these experiments, the nanosphere formulation 

was utilised in its concentrated form.

Samples were removed from the receptor sampling arm at regular intervals over a 

period of 72hrs and analysed by fluorescence spectrophotometry (Section 3.3.6).
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3.4. RESULTS AND DISCUSSION

3.4.1. Physicochemical properties of nanoparticle formulations

3.4.1.1. Transmission electron microscopy

TEM images suggested comparable diameters for the LPD gene therapy complex and 

model nanoparticle formulations (Fig 3.4). The ‘finger-print’ like appearance of LPD 

particles indicated a lipid lamellar surface structure (Fig 3.4C), which was also present 

in the LCNs (Fig 3.4B). Comparable surface morphology and size suggests that the 

LCN is an appropriate representative model of the LPD.

3.4.1.2. Size analysis

PCS indicated that the three studied nanoparticles possessed diameters o f approximately 

90-140nm, with model nanosphere formulations possessing slightly greater diameters 

than the LPD complex (Table 3.1). This confirmed TEM observations (Fig 3.4). 

Microconduits created within the skin surface by a microneedle device must therefore 

be significantly greater than the diameter of these nanoparticles if enhanced permeation 

across the SC is to be facilitated effectively.

Table 3.1. PCS size analysis o f nanoparticle formulations (unimodal mean ± sd)

IDENTITY
DOTAP:Protamine:pDNA 

(LPD complex)

Fluorescent

Nanosphere
LCN

DIAMETER(nm) 89.0±34.7 138.0±25.1 141.4±46.9

3.4.1.3. Zeta potential

The zeta potential for each o f the formulations was assessed between pH2 and 12 (Fig 

3.5). The isoelectric point o f fluorescent nanospheres was just below pH5 (the pH value 

o f a colloidal formulation at which the zeta potential becomes OmV). Therefore by 

manipulating the pH of the colloidal formulation the zeta potential of the fluorescent 

nanosphere formulation can be reversed. Zeta potential values for both the LPD and the

9 8



C h a pter  3

Figure 3.4. TEM images of; A, a fluorescent nanosphere; B, a lipid coated fluorescent 

nanosphere (LCN) and C, an LPD complex, scale bar = 1 OOnm.
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LPD gene therapy complexLipid Coated Fluorescent NanospheresHuorescent Nanospheres

Figure 3.5. A graphical representation o f zeta potential values for the three studied 

nanosphere formulations between pH2 and pH 12. Dashed arrow indicates the pH at 

which the zeta potential o f the LPD formulation drops below +30mV. Fluorescent 

nanosphere, lipid coated fluorescent nanosphere, mean ± sd (N=3); LPD complex, mean 

± sd (N=5).
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LCN however are resistant to changes in pH, remaining positive between pH2 and 12. 

The positive zeta potential of these nanoparticles is contributed by the cationic lipid 

(DOTAP) within the formulations. This supports those observations of comparable 

surface morphology made by TEM.

The other important parameter illustrated by this data is the control of pH within a 

colloidal formulation. Electrostatic repulsion between charged particles maintains the 

stability o f a colloidal suspension. Therefore, to maintain a monodiperse colloidal 

system, the pH should be maintained at values that ensure a zeta potential of greater 

than approximately ±30mV (Fig 3.5). At pH values greater than 9, the zeta potential of 

the LPD formulation falls below +30mV, resulting in the aggregation of nanoparticles 

(data not shown). During microneedle mediated delivery, where aggregation of 

nanoparticles may result in occlusion rather than permeation through microconduits, the 

control of the formulation pH will therefore undoubtedly be important.

3.4.2. Predictive diffusion studies using Isopore® membranes

g
Diffusion studies analysing nanoparticle permeation through model Isopore 

membranes indicated that a particles size and surface charge will influence its migration 

through microneedle treated skin.

Diffusion experiments were conducted at two selected pH values: -

• pH7.4 -Physiological pH, fluorescent nanospheres negatively charged.

• pH3 -  Fluorescent nanospheres positively charged.

The zeta potential of the Isopore® membranes and nanoparticle formulations at each of 

the pH values were determined either by direct measurement or evaluation of the 

literature (Table 3.2). Between pH3 and 5 the membranes have a small negative zeta 

potential due to the presence of carboxylic acid groups within the track etched pores 

(Section 3.1.2). For track-etched membranes with larger pores (greater than 1pm) the 

negative surface charge is maintained at pH values as low as 3 (Keesom et al., 1988, 

Kim et al., 1997). This is particularly relevant for the 10pm pore Isopore® membrane 

used in these studies.
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Table 3.2. A summary of the zeta potential values o f nanoparticle formulations and
(K)Isopore membranes at the studied pH values. * These are theoretical values. The zeta 

potential is likely to be at a reduced value at pH3, possibly approaching OmV for the 

lOOnm and 1.2pm pore membrane.

LPD LCN Nanosphere Membrane

pH 7 Positive Positive Negative Negative*

pH 3 Positive Positive Positive Negative*

3.4.2.1. Fluorescent nanosphere diffusion through Isopore® membranes

At pH7.4, where both the nanospheres and the membrane surface have negative zeta 

potentials, diffusion through 10pm pores occured rapidly, with almost 80% of the 

applied formulation reaching the receptor phase after only 4hrs (Fig 3.6A). Rapid 

diffusion, facilitated by the significant difference between the pore and nanosphere 

diameters, highlighted the potential delivery capabilities of a microneedle device. 

Following this, the graph plateaus, indicating equilibration has been reached between 

donor and receptor phases.

The rate o f diffusion through 1.2pm pores however was much reduced; approximately 

60% of the formulation was detected in the receptor phase after the 12hr investigation 

period (Fig 3.6A). At this point the graph is still rising and therefore diffusion might be 

expected to continue to the plateau value that was observed for 10pm pores. It is likely 

that the reduction in diffusion was directly attributable to the decrease in pore size, 

although variation in charge density in the pores may have also contributed. For the 

1 OOnm pore membrane no migration of nanospheres into the receptor compartment was 

detected and microscopic examination suggested that nanospheres were accumulating 

on the upper surface o f the membrane. This negative control confirmed the validity of 

the analytical method (Fig 3.6A).
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Figure 3.6. Diffusion profiles illustrating the percentage of the applied nanoparticle 

formulation detected within the receptor phase of Franz diffusion cells over a period of 

12hrs. Isopore* membranes possessing three different pore sizes were used and the 

nanosphere formulation and receptor phases were maintained at either ~pH7.4 or ~pH3. 

A, pH3 mean ± sd (N=4); B, pH7.4 mean ± sd (N=4).
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The curve shaped diffusion profiles (Fig 3.6A) indicated that, although initial diffusion 

through 1.2pm and 10pm membrane pores was rapid, after 2hrs the diffusive rate was 

gradually reduced. This will be an important consideration for the microneedle 

mediated delivery of a gene therapy formulation into the skin, where it will be important 

to deliver the formulation to the target cells rapidly in order to reduce its residence 

within the extracellular environment and its exposure to those factors that prevent 

successful transfection (Barry et al., 1999, Ruponen et al., 2003).

Reduction of the formulation and receptor phase solutions to pH3 caused a reversal of 

the nanospheres zeta potential (Fig 3.5) and a dramatic effect on the permeation 

characteristics o f nanoparticles (Fig 3.6B). The diffusion of nanospheres through 10pm 

pores over the first 2hrs resulted in just 50% of the formulation reaching the receptor 

phase, in comparison to over 70% at pH7.4 (Fig 3.6B). However, more significantly, 

after 2 hrs diffusion was impeded and over the subsequent lOhrs fluorescence levels in 

the receptor phase decreased. The modification in diffusion characteristics, induced by 

the reduction in pH, was even more dramatic for the 1.2pm pores, where migration of 

the nanoparticles was undetectable during the time course o f the experiment.

At pH 7.4 the negatively charged nanospheres were able to diffuse freely through the 

pores of the negatively charged membrane and the rate of diffusion was dictated 

primarily by the size o f the pores, although electrostatic repulsion between the particle 

and the membrane is also likely to have occurred. However, at pH 3 the zeta potential of 

nanoparticles was reversed (Fig 3.5) and surface adsorption of positive nanoparticles to 

the negatively charged surface o f membrane pores became a dominant factor. For 10pm 

pores, although the high pore diameter: particle diameter ratio (100) was insufficient to 

prevent particle migration, permeation was significantly retarded. A subsequent 

reduction in receptor phase concentrations following the 2hr time-point may be 

attributable to the electrostatic interaction o f nanoparticles with the underside of the 

membrane. Nanoparticle permeation through 1.2pm pores was prohibited, possibly due 

to occlusion of the membrane pores by surface adsorption of nanoparticles (Fig 3.6). 

Mass balance data achieved at the conclusion of the experiments i.e. the measured 

donor and the receptor phase concentrations and the calculated membrane bound 

fraction of the applied formulation (Table 3.3) supported this hypothesis.
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nano potential
I---------

12hrs
I--------—

sphere (mV)
lOOnm 1.2pm 10pm lOOnm 1.2pm 10pm lOOnm 1.2pm

pH ~3 39.1 ± 

4.6

70.1

± 8.4

50.5

± 7.6

4.1

± 1.5
0 ± 0

0.1

± 0

39.6

± 6.4

29.9 ± 

8.4

49.5 ± 

7.7

PH

-7 .4
-39.0 ± 

5.7

91.2  ± 

7.4

37.9 ± 

16.2

8.9 ±  

0.2
0 ± 0

58.3 ± 

11.7

82.3 

± 1.2

8.8

± 7.4

3.8

± 4.6

Measurements indicate that at the conclusion o f experiments, conducted at pH3, 

50% o f the applied formulation may be associated with the membrane. Whereas, 

7.4 less than 10% o f the formulation was calculated to be membrane t 

Fluorescence microscopy o f  Isopore® membranes recovered following the expei 

confirmed these observations (Fig 3.7). Membranes maintained at pH3 showed ii 

levels o f fluorescence in comparison to those maintained at pH7.4, attributabh 

‘surface coating’ with fluorescent nanoparticles. Interestingly, SEM images < 

lOOnm and 1.2pm membranes supported this observation (Fig 3.8), both meml 

being more densely populated with nanospheres when maintained within the 

acidic conditions.

It is therefore apparent that the pH, and resulting zeta potential, o f  a col 

formulation can have significant effects on the diffusive properties o f colloidal pa 

through a porous membrane. These factors must therefore be considered when ut 

microneedle devices to deliver nanoparticle formulations, such as gene tl 

complexes, and possibly macromolecules across the skin surface and highlig 

importance o f optimising physicochemical properties o f a pharmaceutical formulai
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1 ,2pm pores

pH 7.4

x200 \200

Figure 3 .7. Fluorescent images of Isopore® membranes isolated from Franz diffusion 

cells subsequent to diffusion experiments conducted at pH3 and pH7.4. Pore size and 

pH are indicated within the table structure and magnifications are detailed as inserts.

lOOnm pores 1 Opm pores

Figure 3.8. SEM images o f Isopore® membranes isolated from Franz diffusion cells 

subsequent to diffusion experiments conducted at pH3 and pH7.4. Pore size and pH are 

indicated within the table structure. Scale bar = 1 pm.
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3.4.2.2. LCN diffusion through Isopore® membranes

The data obtained for the latex nanosphere formulation suggested that at pH7.4 the 

positive surface potential of LCNs might retard or even prevent their movement through 

the pores o f the negatively charged Isopore® membrane. However, although diffusion 

occurred at a slower rate than latex nanospheres, the negative potential o f the membrane 

did not result in retention of the LCN formulation, as was expected (Fig 3.9). Over 

12hrs, -70%  o f the formulation passed through the 10pm pores and -50%  of the 

formulation through the 1.2pm conduits (Fig 3.9).

A reduction in the pH o f the system from pH7.4 to pH3 appeared to have little effect on 

the diffusive characteristics of the LCN. This was confirmed by the mass balance 

calculation conducted at the conclusion of the experiment (Table 3.4).

Table 3.4. A  summary of the distribution of the LCN within the Franz cell at the 

conclusion of diffusion experiments. Values are expressed as mean ± sd (N=5).

LCN

Zeta

potential

(mV)

Percentage in DONOR 

phase at 12hrs

Percentage in 

RECEPTOR phase at 12 

hrs

Calculated membrane 

BOUND percentage

lOOnm 1.2pm 10pm lOOnm 1.2pm 10pm lOOnm 1.2 pm 10pm

pH ~3
76.7 ± 1.5

89.7 ± 

7.4

24.3 ± 

11.0

12.2 ± 

2.6
0 ± 0

59.9± 

2.0

79.5 ± 

2.9

8.3 ± 

8.8

15.8± 

10.41

8.3 ± 

0.8

pH -7.4
49.5 ± 1.0

84.0 ± 

6.1

31.8 ± 

9.4

14.1 ± 

1.5
0 ± 0

51.8±

9.1

69.8 ± 

8.1

13.6 ± 

9.5

16.4 ± 

2.5

16.1 ± 

7.0
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Figure 3.9. Diffusion profiles detailing the percentage of the applied LCN formulation 

detected within the receptor phase of Franz diffusion cells over a period o f 12hrs. The 

LCN formulation and the receptor phase were maintained at pH7.4/pH3 and the 

Isopore® membranes possessed lOOnm, 1.2pm or 10pm pores. A, pH3 mean ± sd (N=5) 

for lOOnm and mean ± sd (N=4) for 1.2 pm and 10pm; B pH7.4, mean ± sd (N=5) for 

all pore sizes.
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lipid suspension. Topical application o f the LCN formulation may have there 

resulted in interaction o f  excess ‘free’ cationic lipid with the membrane surface, 

endowing the surface o f  the polycarbonate membrane with comparable physicochen 

characteristics to the LCN. This would negate the opposing surface potentials oj 

membrane and nanoparticle, as observed in experiments with nanospheres at pH3 

3.6), and therefore facilitate more reproducible diffusion profiles for the LCN at 

pH values, as witnessed (Fig 3.9).

3.4.2.3. Fluorescent LPD diffusion through Isopore® membranes

Diffusion o f an LPD gene therapy complex through the microchannels o f  the Isop 

membrane was assessed by inclusion o f a fluorescent lipid within the lipos 

component o f  the LPD formulation. The shapes o f diffusion profiles at pH7.4 

comparable to those achieved with the LCN, with data indicating that ~ 80% and 

o f the applied formulation reached the receptor phases o f diffusion cells containing 

10pm and 1.2pm Isopore® membranes respectively (Fig 3.10) (Table 3.5). 

suggested that delivery o f  an LPD gene complex through microneedle treated : 

containing microchannels with diameters greater than 1 pm, was a realistic possibilit
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Figure 3.10. Diffusion profiles detailing the percentage of the applied nanoparticle 

formulation detected within the receptor phase of Franz diffusion cells over a period of 

12hrs. Isopore® membranes possess three different pore sizes. The diffusion cell was 

maintained at ~pH7.4. Mean ± sd (N=5) for lOOnm and 1.2pm; mean ± sd (N=3) for 

10pm.

Data also indicated that ~10% of the formulation diffused through the lOOnm pores, 

which was included as a negative control. There are a number o f possible explanations 

for this:-

1. The mean diameter o f the LPD is just below lOOnm (Section 3.4.1.2.). 

Therefore, the smaller complexes within this heterogeneous population may be 

capable of permeating through the membrane pores.

2. LPD complexes can deform and pass through the membrane pores.

3. Fluorescent lipid remains ‘free’ within the suspension or within liposomes that 

are not incorporated within the LPD formulation and are allowed to permeate 

through lOOnm pores.
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It is likely that a small proportion of fluorescence signal within the receptor phase of the 

analysed 1.2pm and 10pm membrane systems was contributed by ‘free’ fluorescent 

lipid or liposome within the formulation. The diffusion profiles may therefore be 

slightly exaggerated and the final receptor concentrations of functional LPDs are likely 

to be —5-10% lower than stated.

Table 3.5. A summary o f the distribution of the fluorescent LPD within the Franz cell at 

the conclusion o f diffusion experiments. Values are expressed as mean ± sd (N=5).

LPD
Zeta

potential

Percentage in DONOR 

phase at 12hrs

Percentage in 

RECEPTOR phase at 12 

hrs

Calculated membrane 

BOUND percentage

lOOnm 1.2pm 10pm lOOnm 1.2pm 10pm lOOnm 1.2pm 10pm

pH -7.4
33.9±3.2 83.9 26.5 15.2 8.8 71.2 81.9 7.3 2.4 3.0

3.4.2.4. S ummary o f  Isopore® diffusion studies

The diffusion o f fluorescent nanospheres and the LCNs across Isopore® membranes has 

highlighted the influence that physicochemical properties may have on the diffusion of 

a nanoparticle complex through microchannels, forged in the skin epidermis by a 

microneedle device. The diffusion characteristics of fluorescent nanospheres in 

particular have exemplified this. A reduction in pH reversed the zeta potential of the 

nanoparticle, encouraged electrostatic interaction with the membrane surface and 

resulted in impeded permeation. However the presence o f the cationic lipid within the 

LCN and LPD formulations reduced the simplicity of the model system and therefore 

obscured evaluation of the influence of physicochemical properties upon permeation 

through the membrane.
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3.4.3. Heat separated human epidermal membrane diffusion studies

3.4.3.1. Propranolol diffusion through human epidermal membrane

Demonstrating the ability of a silicon microneedle device to penetrate the outermost 

layers of human skin (Section 2.4) does not confirm its ability to enhance the 

permeation of compounds/particles across the skin barrier. Therefore, although it is 

instinctive to assume that microchannels fashioned by the device will promote 

permeation of therapeutics across the SC, it was important to prove the microneedles 

delivery capabilities. Propranolol is an easily analysed therapeutic molecule that has 

been the subject o f a number of transdermal permeation studies (Modamio et al., 2000, 

Rama Rao et al., 2003, Stott et al., 2001) and therefore was selected as a model, small 

drug molecule to be delivered across microneedle treated human epidermal membrane.

As might be expected the permeation of topically applied propranolol hydrochloride 

through untreated human epidermal membrane was low, with less than 2% of the 

applied formulation detected in the receptor phase after 24hrs (Fig 3.11). However, 

permeation of the compound through microneedle treated epidermal membranes was 

enhanced significantly. More than 15% of the applied formulation was detected in the 

receptor phase after 24hrs (Fig 3.11). However, the associated standard deviations 

suggested that there was a noteworthy level o f variation between diffusion cells. This 

may be attributed to variability in the penetration efficiency of the pointed tipped wet- 

etch microneedle array (Section 2.4.3.3).
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Figure 3.11. Diffusion profiles detailing the percentage of the applied propranolol 

hydrochloride dose detected within the receptor phase of Franz diffusion cells. 

Diffusion of propranolol hydrochloride through untreated and wet-etch microneedle 

treated (TNI-Array 5) membranes was compared. Mean ± sd (N=4) for untreated an 

microneedle treated membranes; mean ± sd (N=2) for the negative control.

3.4.3.2. Nanosphere diffusion through human epidermal membrane

The successful diffusion of fluorescent nanoparticles across the 10pm pores of an 

Isopore® membrane and the proven ability of a microneedle device to promote 

permeation of propranolol hydrochloride across the human epidermal membrane was 

encouraging. The passage of fluorescent nanospheres across microneedle treated, 

untreated and hypodermic needle treated human epidermal membranes was therefore 

analysed (Fig 3.12).
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Fessi and co-workers (Alvarez-Roman et al., 2004), this indicated that the epidei 

barrier is essentially resistant to the passive diffusion o f negatively chai 

nanoparticles.

Penetration o f the epidermal membrane by a hypodermic needle permitted permea 

o f nanospheres through the skin, -10%  o f the formulation reaching the receptor phas 

just 3hrs (Fig 3.12). However, fluorescence levels in the receptor phase gradu 

declined to a detectable level o f -6%  o f the applied formulation over the timecoursi 

the experiment.

Most significantly, results confirmed the ability o f frustum tipped microneedle< 

facilitate nanoparticle delivery, with more than 20% o f the applied nanospl 

formulation traversing the epidermal barrier over the 6hr period. In agreement \ 

hypodermic needle penetration, the detectable receptor phase levels were subseque 

halved over the next 18hrs. Only approximately 10% o f the applied formulation 

therefore detected within the receptor phase at the 24hr time point.

This phenomenon was consistent with the diffusion profile obtained using fluoresc 

nanosphere predictive studies at pH3 (Fig 3.6), where electrostatic interaction o f  

nanosphere formulation with the synthetic membrane resulted in blockage o f the po 

a halt in permeation and the subsequent reduction in receptor phase levels 

nanoparticle interaction with the underside o f the membrane. The skin, as a biolog 

tissue, is much more complex and therefore it is more difficult to rationalise the c 

with such confidence. However it is not unreasonable to account for the reductior 

diffusion and the decrease in receptor concentration seen in hypodermic 

microneedle studies to such physicochemical factors.
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Figure 3.12. Diffusion profiles detailing the percentage of the applied nanosphere 

formulation detected within the receptor phase of Franz diffusion cells over a period of 

48hrs. Mean ± sd (N=2) for untreated and needle treated membranes; mean ± sd (N=4) 

for microneedle treated (TNI-Array 8) and negative control membranes.

Another significant feature of the data was the large standard deviations associated with 

microneedle treated membranes. Biological variability and the poor reproducibility of 

microneedle penetration, which SEM images reveal may be even more significant for 

the frustum tipped microneedles (Section 2.4.4.3), were likely to be major contributory 

factors. However, the unusual diffusion profile and the significant variability prompted 

SEM analysis of the epidermal membranes used in this investigation.

Low magnification images of the untreated epidermal membrane confirmed the 

integrity of the membrane (Fig 3.13 A). Upon closer inspection, it became apparent that 

the SC was coated in the fluorescent nanosphere formulation, individual nanospheres 

adhering to comeocytes on the skin surface and collecting within the dermatoglyphics
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(Fig 3.13B). The identification o f discrete nanoparticles on the skin surface indicated 

that the formulation retained its colloidal stability in the diffusion cells, in a manner 

synonymous with that visualised in the predictive Isopore® diffusion studies (Section 

3.4.2.1).

The epidermal membrane, treated with the hypodermic needle, possessed a number of 

uniform circular microchannels, 50- 100pm in diameter, which were likely to have 

facilitated the passage o f nanoparticles through the membrane during diffusion 

experiments (Fig 3.13C & 3.13D). Microneedle treated membranes contained micro

disruptions of comparable diameter to those created by the hypodermic needle (Fig 

3.14A & 3.13D). However there was a greater population o f micro-disruptions, thus 

explaining the increase in the observed nanoparticle permeation (Fig 3.12).

Microchannels created by the frustum tipped microneedle arrays were visualised as both 

simple circular conduits (Fig 3.14D) and less symmetrical disruptions associated with 

lateral tears in the membrane (Fig 3.14A). Closer inspection o f the skin surface revealed 

the layered structure o f comeocytes surrounding microchannels and the obvious 

disruption o f SC integrity (Fig 3.14B, 3.14C, 3.14E & 3.14F). More interestingly 

however was the appearance of adsorbed nanospheres between the disrupted 

comeocytes and the presence o f nanoparticle aggregates on the interior surface of the 

microchannels (Fig 3.14B, 3.14C, 3.14E & 3.14F). Nanoparticle aggregates appear to 

have accumulated in the 10pm disruption, proximal to the microchannel (Fig 3.14B). 

Aggregation may have been caused by factors induced by microneedle damage to the 

tissue e.g. the release o f biological components from the tissue or a change in pH. 

Disruption o f the SC, exposure of the underlying epidermal cells and the release of 

cellular components from the damaged cells may therefore be responsible for a 

reduction in colloidal formulation stability and the blockage of microchannels by 

aggregates.

Although permeation halted (Fig 3.12), possibly due to destabilisation of the colloidal 

suspension within the biological environment and/or adherence to the tissue surface, the 

creation o f microconduits across the epidermal barrier by the device has nonetheless 

facilitated permeation o f charged nanoparticles.
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Figure 3.13. Scanning electron micrographs of epidermal membranes used in diffusion 

experiments (Section 3.4.3.2). Untreated epidermal membranes (A, B) and those treated 

with a hypodermic needle (C, D) following topical nanosphere application are pictured. 

A, D scale bar = 50pm; B scale bar = 2pm; C scale bar = 100pm.
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Figure 3.14. Scanning electron micrographs of epidermal membranes used in diffusion 

experiments (Section 3.4.3.2). A fluorescent nanosphere formulation was applied 

topically to epidermal membranes which were subsequently treated with a frustum 

tipped wet-etch microneedle device (TNI-Array 5). A, D scale bar = 50pm; B, C, scale 

bar = 10pm; E, F, scale bar = 2pm.
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3.5. CONCLUSIONS

• (fi)Investigations using Isopore membranes and three model nanoparticle formulations 

suggest that charged colloidal gene complexes can potentially be delivered through 

uniform microneedle fashioned microconduits. However, the cutaneous delivery o f a 

colloidal formulation will not be dependent simply upon the creation of conduits within 

the skin that have a greater diameter than the nanoparticles. Predictive investigations 

illustrated the importance that formulation parameters including particle size, 

formulation pH and zeta potential may have on microneedle mediated delivery across 

the SC.

The microneedle enhanced delivery of propranolol hydrochloride across the epidermal 

barrier demonstrated the ability o f the device to promote transdermal delivery of small 

drug molecules. Nanoparticle permeation across microneedle treated human epidermal 

membrane proved to be less uniform and more unpredictable. However, these studies 

encourage continued investigation o f the microneedle device as a novel drug delivery 

platform for cutaneous delivery of colloidal formulations.

However to facilitate cutaneous gene expression, i.e. expression of an exogenous 

nucleic acid formulation within the viable epidermis, a gene therapy formulation only 

needs to be delivered across the SC barrier. The subsequent chapter therefore evaluates 

the ability o f microneedles to deliver and retain nanoparticles within the viable 

epidermis of full thickness human skin and examines methods by which reporter gene 

activity within the tissue may be detected.
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CHAPTER 4

Assessment of functionality 

of reporter plasmids, 

microneedle devices and ex 

vivo human skin for 

cutaneous transfection

studies
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4.1. INTRODUCTION

The principle aim of these studies was to facilitate cutaneous delivery and subsequent 

expression, o f an exogenous pDNA formulation using a microneedle device. To assess 

the microneedle-mediated delivery o f a non-viral gene complex to the epidermal layer 

of human skin and the subsequent transfection of viable cells therein it was therefore 

essential to, (i) demonstrate effective delivery of a nanoparticle formulation to the 

viable epidermis using a microneedle device, (ii) develop a method of organ culture that 

can maintain the viability of cells within excised human skin and (iii) develop a robust 

methodology that can detect reporter gene expression within skin. These issues were 

approached in turn and have been addressed within this chapter.

4.1.1. Reporter pDNA

pDNA, isolated from bacteria, has been manipulated by recombinant DNA technology 

to create genetic sequences that can be propagated in a transformed bacterial host (most 

commonly E.coli), isolated and then purified. Plasmid constructs are well-characterised 

vectors that are used to introduce exogenous transgenes into a target mammalian cell 

and promote their subsequent expression (Uherek and Weis, 2000).

Plasmids therefore possess a number of common constituents within their genetic 

sequence:-

1. An antibiotic selection site -  an antibiotic resistance gene, e.g. ampicillin, 

permits selection o f those bacteria containing the plasmid.

2. A prokaryotic origin of replication -  For generation of multiple copies of the 

plasmid following the transformation o f bacterial cells.

3. A promoter sequence -  provides recognition sites for the RNA polymerase 

enzyme and therefore has an important role in transcription.

4. A multicloning site -  A site into which a therapeutic transgene is inserted.

Plasmids exist as extrachromosomal closed circular loops o f DNA, distinct from the 

bacterial/mammalian genome (episomal). Once the pDNA has been delivered into the 

target cell and has entered the nucleus, it utilises the cellular machinery to translate the 

nucleic acid sequence into an encoded protein. Functional plasmids typically possess 5-
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10,000 base pairs, have a zeta potential of -30 to -lOOmV and a hydrodynamic diameter 

o f approximately lOOnm (Piskin et al., 2004).

To develop novel gene delivery methods it is fundamental to distinguish expression of 

an exogenous genetic sequence from the continued transcription and translation of 

endogenous genes. Reporter sequences encode for proteins that possess a detectable 

phenotype, which can provide qualitative and/or quantitative measures o f transfection 

efficiency. Ideally, reporter genes are not endogenous to the cell under investigation and 

their product can be detected at low concentrations in a rapid, simple and reproducible 

manner. pCMVp, pEGFP-Nl and pGL3 reporter plasmids were evaluated for future 

cutaneous gene delivery experiments (Chapter 5).

pCMVB

This reporter plasmid, propagated in E. coli, contains the bacterial lacZ transgene, 

which encodes for the bacterial p-galactosidase enzyme (MacGregor and Caskey, 

1989). p-galactosidase activity can be detected in situ by histochemical techniques that 

rely on the oxidation of a substituted indoyl galactosidase, within the presence of a 

ferriferrocyanide catalyst, to a visible reaction product. The most popular substrate, 4- 

bromo-5-chloro-3-indoyl-p-D-galactopyrosanide (X-gal), is converted by the enzyme to 

a blue reaction which can be identified within a tissue by light microscopy.

pEGFP-N 1

The pEGFP-N 1 reporter plasmid encodes for a protein which, upon optimal excitation 

at 488nm, emits a detectable fluorescent green signal. This reporter system is widely 

utilised in gene therapy studies as it does not require a substrate to stimulate detection 

and therefore is simple to analyse (van Roessel and Brand, 2002). The green fluorescent 

protein (GFP) can be detected in situ within living cells by illumination under a blue 

excitation filter on a fluorescence microscope or quantified within a monodisperse cell 

suspension using flow cytometry.
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pGL3

The pGL3 plasmid contains a reporter sequence encoding for the bioluminescent firefly 

luciferase (Photinus Pyralis) enzyme (Wet et al., 1985). In the presence of adenosine 

triphosphate (ATP) and oxygen co-substrates luciferase oxidises beetle luciferin 

substrate, causing a resultant emission o f light (550-570nm). The light expressed by this 

reaction remains constant for a short period of time and its intensity can therefore be 

measured using a luminometer. The intensity of light that is produced is proportional to 

the concentration of the enzyme and hence the reporter system can provide a 

quantitative measure of transfection (Fortunati et al., 1996, Liu et al., 1997, Manthorpe 

et al., 1993, Mikszta et al., 2002).

4.1.2. Skin Models

Limited and unpredictable availability of human skin for experimental studies is a 

limitation within the field o f transdermal delivery that has resulted in the continued 

assessment o f suitable animal models (Panchagnula et al., 1997). Porcine ear skin is 

considered to be a representative model of the human skin structure and is frequently 

used in predictive permeation studies (Dick and Scott, 1992, Sekkat, 2002, Wester and 

Noonan, 1980). Porcine skin has also been utilised successfully in localised gene 

expression studies (Babiuk et al., 2003, Hengge et al., 1995, Hengge et al., 1998, 

Hengge et al., 1996). Murine models provide useful tools for the study of 

genodermatoses (Arin and Roop, 2004, Jiang and Uitto, 2005).

However differences in architecture and biology between human and animal skin are 

well recognised (Panchagnula et al., 1997). Therefore for experiments to produce data 

that is truly predictive o f the in vivo environment investigations should preferably be 

conducted in human tissue. Excised human skin was therefore selected to investigate 

microneedle facilitated cutaneous gene delivery. To date cutaneous transfection studies 

using human skin, either in organ culture (Hengge et al., 1996) or grafted onto rodents 

(Sawamura et al., 1999), has been limited. The development of a functional ex vivo 

human skin model to assess localised delivery and expression of exogenously applied 

nucleic acid formulations was therefore considered imperative to the validity of the 

results achieved.
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The availability o f human skin for experimental studies has relied upon collaboration 

with clinicians both at the Royal Gwent Hospital, Newport and Llandough Hospital, 

Cardiff and the Vale NHS trust. Skin tissue was obtained, with informed patient consent 

and NHS Trust and local ethical committee approval, from breast reduction and 

mastectomy procedures. The expression of exogenous genes within excised skin relies 

upon epidermal cells maintaining functional cellular machinery that can process the 

nucleic acid, i.e. the cells must be ‘living’, and therefore immediate availability of 

human skin, following removal from the donor, was crucial to the planned experiments.

4.1.3. ‘Viable’ ex vivo human skin

Following removal o f the tissue from the donor autolysis begins immediately (Tomita et 

al., 2004), with keratinocytes ultimately dying due to accumulation o f toxic metabolites 

and a lack o f nutrition (Sterne et al., 2000). Deterioration in tissue specimens may be 

caused by:-

1. Physical trauma -  during excision of the skin.

2. Nutrition and perfusion deprivation.

3. Hypoxia.

4. Loss o f biochemical and neural stimulation.

5. Desiccation.

6. Infection, particularly if the skin is stored in nutrient media (Cetin et al., 2000).

The successful ‘uptake’ o f human skin allografts for reconstructive surgery, bums and 

wound treatment is directly linked to the skin viability prior to grafting (Bravo et al., 

2000). The conditions used to maintain the viability of ex vivo human skin for grafting 

procedures was therefore considered.

A universal method to promote tissue viability during the transport and storage of 

human skin grafts remains uncertain, with skin banks in different countries using 

different protocols. Storage protocols for ‘fresh’ skin (fresh skin being tissue used 

following removal from the donor without freezing) prior to grafting range from, a 3 to 

15 day accepted storage period, at 4°C (Castagnoli et al., 2003, Cetin et al., 2000, Steme 

et al., 2000) or 37°C (Bravo et al., 2000), in saline (Bravo et al., 2000, Cetin et al., 2000,
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Steme et al., 2000) or nutrient medium (Ben-Bassat et al., 2001, Castagnoli et al., 2003) 

and in a flattened or rolled state (Steme et al., 2000).

The viability o f human skin can be examined using a number o f methods (Messager et 

al., 2003) including histological analysis (Castagnoli et al., 2003, Steme et al., 2000), 

trypan blue exclusion (Cetin et al., 2000), the tetrazolium reduction/MTT [3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (Cetin et al., 2000), 

oxygen consumption assay (Bravo et al., 2000, Zieger et al., 1993), lactate 

dehydrogenase activity (Halprin and Ohkawara, 1966) and pH changes (Issachar et al.,

1997). However, it is important to consider the functionality of the assay when 

interpreting viability data. Viability assays may indicate if  the cellular membrane of 

keratinocytes remains intact, if intracellular enzymes remain functional or if respiratory 

capability is maintained. However, they do not indicate the ‘true’ viability of the cell i.e. 

can the cell transcribe and translate a DNA sequence, synthesise the encoded peptide 

and finally create the functional protein? The expression o f a pDNA formulation within 

the epidermis of excised human skin necessitates such levels of viability. Detectable 

expression o f a reporter plasmid in human tissue following intradermal administration 

was therefore considered to be a more appropriate marker o f tissue viability than the 

more ‘traditional’ viability assays (Section 5.4.1).

4.1.4. Human skin organ culture models

Organ culture o f skin involves removal o f the tissue from the donor, transport to the 

laboratory, normally within media maintained at 4°C (Backvall et al., 2002, Kent et al., 

2001, Reece et al., 1998), and rapid incubation o f the tissue within defined experimental 

conditions that can maintain the viability of the tissue, ex vivo (Varani, 1998).

Although some studies indicate that skin can be maintained by submersion in nutrient 

media (Kivinen et al., 2003, Ma et al., 2003), the majority o f organ culture protocols 

incubate the tissue at the air-liquid interface, i.e. the dermis is bathed in nutrient media 

and the epidermis remains in contact with the air (Companjen et al., 2001, Moll, 2003, 

Moll et al., 1998, Rijnkels et al., 2001). The Trowell-type organ culture (Trowell, 1954, 

Trowell, 1959) is a well established method where skin is maintained on steel grids that 

are covered by lens tissue paper (Companjen et al., 2001, Larregina et al., 2001, Tammi
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and Maibach, 1987). The important features of this experimental set-up are the 

dimensions/condition o f skin biopsies, the constituents of the nutrient media and the 

incubation conditions:-

l.Skin biopsies -  Split-thickness skin, i.e. skin from which a considerable portion of 

the dermis has been removed either by a dermatome (Ben-Bassat et al., 2001, 

Bravo et al., 2000, Steme et al., 2000) or skin graft knife (Backvall et al., 2002, 

Kent et al., 2001), is prepared prior to organ culture to ensure that nutrient media 

can permeate to the epidermal cells that overly the dermis. Skin biopsies with 2- 

3mm2 surface areas are considered optimal to prevent necrosis o f the central 

portion of the tissue (Backvall et al., 2002, Moll, 2003, Moll et al., 1998, Varani,

1998), although biopsies up to l-2cm have been successfully cultured (Hengge 

et al., 1996, Reece et al., 1998).

2.Nutrient media -  A range of basal nutrient media containing various supplements 

have been utilised in the organ culture o f skin tissue, with the optimal media yet 

to be determined. However, a review by Varani (Varani, 1998) highlights the 

importance of a high level of calcium ions in the media (>lm M ) to ensure 

fibroblast viability. It is the fibroblasts, located within the dermal tissue, that are 

thought to preserve the tissue structure. The basal media (DMEM 25mM 

HEPES) selected for these studies possessed a calcium chloride concentration of 

1.8mM and has been successfully employed in other skin organ culture 

methodologies (Backvall et al., 2002, Ma et al., 2003, Moll et al., 1998, Rijnkels 

et al., 2001) used to maintain the viability o f human skin.

3.Incubation -  The tissue is routinely incubated at 37°C and 5% CO2 and the media 

is changed every 24-72 hrs (Kivinen et al., 2003, Ma et al., 2003, Moll, 2003, 

Moll et al., 1998, Rijnkels et al., 2001, Varani, 1998). Under these conditions, 

human skin has been shown to maintain its morphology and the ability to 

synthesise DNA for up to 7 days (Gaylarde et al., 1975, Tammi et al., 1979).
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The organ culture methodology developed to maintain the viability of excised human 

skin in these studies was based upon investigations examining cutaneous gene 

expression ex vivo (Hengge et al., 1996, Kent et al., 2001, Larregina et al., 2001).

4.1.5. Techniques

4.1.5.1. Mammalian cell culture

The in vitro propagation of monolayers o f immortalised mammalian cells within cell 

nutrient media provides a model of the cellular environment that is used routinely in 

gene therapy studies to screen vector formulations and nucleic acid therapeutics.

Cultured cells are grown in a monolayer on the surface o f a plastic cell culture flask 

until they approach approximately 90% confluency. At this time point a proteolytic 

enzyme is used to gently remove the cells from the flask surface, thus creating a 

monodisperse suspension that can be divided over a greater surface area. This ensures 

that cells are supplemented with sufficient growth media and are maintained 

predominantly within the growth phase of their cell cycle. Repeated ‘splitting’ of cells 

in this manner is referred to as passaging.

To study the functionality of reporter plasmids in mammalian cell lines a vector 

formulation, such as the LPD (Section 1.3.2), is often used to promote cell uptake. Cell 

transfection typically involves removal of nutrient media from a sub-confluent (i.e. 

when cells are within the growth phase o f the cell cycle) cell monolayer and topical 

treatment of the cells with the vector formulation. Successfully transfected cells are then 

identified by detection of the encoded reporter protein.

In these studies an immortalised human lung epithelial carcinoma cell line, A-549 and 

an immortalised human keratinocyte cell line, HaCaT have been utilised to assess the 

functionality o f reporter pDNA systems. A-549 cells are a well characterised 

mammalian cell line that displays the morphological and biochemical features of 

pulmonary type II cells. These have been used routinely within our laboratory (Birchall 

et al., 2000) and were therefore selected to illustrate the functionality of an LPD
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formulation and the pDNA contained therein. The HaCaT keratinocyte cell line 

provided a more representative model o f those target cells located within human skin.

4.1.5.2. Flow Cytometry

This technique determines both the light scattering and fluorescent parameters of a 

particle suspension and can therefore be used to assess the fluorescent properties of a 

cell population treated with formulations containing pEGFP-N 1. Moreover this offers a 

quantitative measure of transfection efficiency, the percentage of fluorescent cells 

resulting from expression of the plasmid distinguishable from the remainder of the cell 

population. A monodisperse cell suspension is irradiated with a laser set to the 

excitation o f the specified fluorophore. This generates a fluorescent emission that is 

collected by photo-detectors and converted into an electrical signal. Scattering of light 

by the colloidal suspension is also detected and is converted into a signal that relates to 

the finite number o f cells present in the sample. This information is then converted into 

analysable data inferring the mean fluorescence of each cell and the proportion of cells 

within the analysed population that display fluorescent properties.

4.1.5.3. Bioluminescence

In a manner similar to fluorescence (Section 3.1.4.3), bioluminescence is associated 

with the emission of photons due to the transition of electrons from high to low 

excitation states. However the chemical reaction that induces the excitation state in 

bioluminescent samples occurs much more slowly and therefore it is the initial reaction 

upon addition o f the enzyme substrate, the ‘flash’, which is measured by a luminometer. 

Luminometers detect emitted photons and process the signal to a quantitative 

measurement. The pGL3 plasmid, which encodes for the firefly luciferase enzyme, can 

therefore be used to determine the efficiency of cellular transfection by analysis of 

homogenates using a luciferase assay system and a luminometer.

1 2 7



C h a p t e r  4

4.2. AIMS AND OBJECTIVES 

Chapter Aims

Studies aim to confirm the functionality o f the LPD non-viral vector formulation and 

the intraepidermal delivery capabilities of microneedle devices. The techniques required 

to detect expression o f reporter plasmids in human skin were also considered.

Chapter Obiectives

• To isolate, purify, quantify and demonstrate the integrity o f supercoiled reporter 

plasmids, propagated in transformed E.coli.

• To assess the functionality of pCMVp, pEGFP-Nl and pGL3 by detection of the 

expressed protein, following treatment o f mammalian cells with the LPD non- 

viral vector.

• To develop an organ culture methodology to maintain the viability of human 

skin ex vivo.

• To facilitate cutaneous delivery o f a nanoparticle formulation to the viable 

epidermis of ex vivo human skin, using a microneedle device.

• To determine the ability of a microneedle array to facilitate cutaneous delivery 

of a functional biological macromolecule to the viable epidermis within ex vivo 

human skin.

• To establish a robust methodology for the detection of the bacterial P- 

galactosidase enzyme within ex vivo human skin.
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4.3. MATERIALS AND METHODS 

4.3.1. Materials

All reagents were obtained from Fisher (Loughborough, UK) and were of analytical 

grade, unless otherwise stated.

The 7.2 kb pCMVp plasmid construct containing the lacZ  reporter gene, the 4.7kb 

pEGFP-N 1 plasmid expressing the green fluorescent protein (GFP) reporter gene and 

the 5.3Kb pGL3 plasmid were obtained from Promega® Corporation (Madison, WI). 

Quantilum recombinant luciferase enzyme, the luciferase assay system, DH5a E.coli 

and the recombinant p-galactosidase enzyme were obtained from the Promega® 

Corporation (Madison, WI). The Qiagen Plasmid 2500 Mega Kit was obtained from 

Qiagen® (Crawley, UK).

l,2-Dioleoyl-3-triammonium-tropane (DOTAP) was purchased as the methyl sulphate 

salt from Avanti Polar Lipids (Alabaster, AL, USA).

Protamine sulphate, BSA, bichichonic acid (BCA), fluorescent yellow/green 

polystyrene nanospheres (L-1280), fluorescent red polystyrene nanospheres (L-9279), 

phosphatidylethanolamine dipalmitoyl-sulforhodamine B , chloroform, Greiner® 96- 

well polypropylene plates, the bright-line haemocytometer and components of the X-gal 

staining solutions were obtained from Sigma-Aldrich Chemical Company (Poole, UK).

Cell culture plastics were obtained from Coming-Costar (High Wycombe, UK). MEM 

(EAGLES) 25mM HEPES, Dulbecco’s Modified Eagle’s Medium (DMEM 25mM 

HEPES), foetal bovine serum and penicillin-streptomycin solution were obtained from 

Invitrogen Corporation (Paisley, UK). All histology materials, including OCT 

embedding media, Histobond® adhesive microscope slide were obtained from RA Lamb 

Limited (Eastbourne, UK) or in the case of toluidine blue, Harris’ haematoxylin, Gurrs’ 

eosin aqueous solution 1%, Histomount® and xylene (low sulphur) from Lab 3 (Bristol, 

UK).
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Equipment

Fluostar Optima Plate Reader (BMG Labtech, Aylesbury, UK)

Eppendorf Biophotometer (Eppendorf, Cambridge, UK)

FACScalibur System (Beckton Dickinson, California, UK)

Extrusion apparatus (Northern lipids, Vancouver, Canada)

Philips XL-20 Scanning Electron Microscope (Philips, Eindhoven, Netherlands) 

Philips 208 Transmission Electron Microscope (Philips, Eindhoven, Netherlands) 

Gold sputter coater (EM Scope, Kent, UK)

Bal-Tec CPD030 Critical Pont Drier (Balzers, Lichenstein)

Olympus IX-50585 Inverted Microscope System (Olympus Optical, London, UK) 

Olympus BX-50 Microscope System (Olympus Optical, London, UK)

Olympus DP 10 Microscope Digital camera system (Olympus Optical, London, UK) 

Olympus U-RF-L-T Power Supply Unit (Olympus Optical, London, UK)

Anthos Labtec HT2 96 well plate reader (Anthos, Salzburg, Austria)

Avanti J-20XP centrifuge (Beckmann Coulter, Miami, USA)

Sanyo Orbital incubator (Sanyo, Loughborough, UK)

Ultra-violet (UV) transilluminator (BioRad GelDoc, Hercules, CA).

Leica CM305S cryomicrotome (Leica Microsystems Limited, Milton Keynes, UK) 

Schott KLI500 fibre optic light source (Schott UK Limited, Stafford, UK)

Stemi 2000-C stereomicroscope (Zeiss, Welwyn Garden City, UK)

Olympus Camedia C-4040 Zoom Digital Camera (Olympus Optical, London, UK)
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4.3.2. Plasmid preparation

4.3.2.1. Creating competent D H Sa E.coli

An aliquot o f E.coli was thawed on ice and streaked onto a Luria agar plate which was 

subsequently incubated for 24hrs at 37°C. A single colony o f bacteria was then selected 

and cultured overnight in 10ml of Luria broth, maintained at 37°C. 100ml of fresh Luria 

broth was then inoculated with 5ml of this E.coli culture which was incubated at 37°C 

for 2.5hrs and agitated at 800r.p.m. The culture was then divided between two sterile 

centrifuge tubes and centrifuged at 3000r.p.m. for 5mins. The supernatants were 

subsequently discarded and 12.5ml of ice cold calcium chloride (0.1M) was used to 

gently resuspend the bacterial pellets. The suspensions were maintained on ice for a 

total of 2mins before centrifugation at 3000r.p.m. for lOmins. The supernatants were

discarded and the bacteria resuspended in 5ml of ice cold calcium chloride. These

suspensions were maintained on ice for a total of 2.5hrs before the addition of 5ml of 

glycerol (40%v/v in deionised water) to each suspension.

4.3.2.2. Transformation o f  D H 5a E.coli

Transformation, the introduction o f pDNA into a population of competent E.coli 

organisms, was used to create stocks o f bacteria that could propagate exogenous 

plasmids. This process relies upon antibiotic resistance genes, contained within the 

plasmid structure, to selectively isolate and/or propagate transformed bacteria. For 

pEGFP-N 1 the selective antibiotic is kanamycin and for pCMVp and pGL3 the 

selective antibiotic is ampicillin. This resistance gene is essential for the selection of 

successfully transformed bacteria.

Briefly, 200pl of competent cells (removed from storage at -86°C and thawed on ice) 

were transferred to a sterile 15ml centrifuge tube within sterile conditions (under a 

Bunsen flame). To this, lp l o f a lOng/ml solution of the pDNA was added. The 

suspension was incubated on ice for 30mins and subsequently immersed within a water 

bath (maintained at 42°C) before replacement in the ice for a further 2mins. Luria broth 

(3ml) was then added to the bacterial suspension which was incubated for 45mins in a 

shaking water bath at 37°C. A selective agar plate, containing either ampicillin
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(pCMVp, pGL3) or kanamycin (pEGFP-Nl) at a concentration o f lOOpg/ml was then 

inoculated with 150pl of the bacterial suspension, which was spread over the plate and 

allowed to dry underneath a Bunsen flame for 30mins. The inoculated plate was finally 

incubated at 37°C for 20hrs.

A single colony o f transformed bacteria was selected from the agar plate using a sterile 

loop and subsequently cultured in 10ml of antibiotic selective (ampicillin or kanamycin 

lOOpg/ml) Luria broth for a further 20hrs at 37°C. Aliquots (0.5ml) o f the overnight 

culture were then placed in a sterile microcentrifuge tube and suspended in 500pl of 

sterile 30%v/v glycerol (in PBS). Finally the aliquots of transformed bacteria were 

stored at -86°C.

4.3.2.3. Plasmid propagation and isolation

The propagation of successfully transformed bacteria relies upon selection of the 

transformed bacteria with an antibiotic to which the plasmid structure confers 

resistance. As previously stated, for pCMVp and pGL3 the selective antibiotic is 

ampicillin and for pEGFP-N 1, kanamycin.

Two Luria agar plates (2x25ml) containing lOOpg/ml of the selective antibiotic were 

streaked with the transformed E.coli. These plates were inverted and incubated for 16- 

24hrs at 37°C before storage for up to 48hrs at 2-8°C.

Two 5ml Luria broths containing lOOpg/ml of the selective antibiotic, were inoculated 

with a single colony o f E.coli from the selection plate. The broths were then incubated 

at 37°C under constant agitation in an orbital incubator at 300r.p.m for 8hrs. Four 

conical flasks, each containing 125ml of Luria broth with the selective antibiotic at a 

concentration of lOOpg/ml, were then inoculated with 1ml of the previous E.coli broth 

and agitated in an orbital incubator, maintained at 37°C, at 300r.p.m. for a total of 

16hrs.

pDNA was then isolated from the 500ml bacteria culture using the Qiagen®-Tip 2500 

Mega Kit and the enclosed protocol (September 2000), which itself was adapted from a
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procedure developed by Caplen and colleagues (Caplen et al., 1994). Briefly, the 

overnight culture was divided between two balanced centrifuge bottles and centrifuged 

at 6,000g for 15mins at 4°C. The supernatant waste was then decanted and destroyed by 

chlorination (addition of Presept® tablets).

The bacterial pellet was then re-suspended in 50ml of a tris-EDTA buffer containing the 

RNAase enzyme (PI), to create a homogenous suspension. Lysis o f bacterial cells 

continued upon addition of 50ml of a sodium hydroxide-SDS buffer (P2). After 5mins, 

lysis was halted by addition o f 50ml of a chilled acidic potassium acetate buffer (P3). 

The suspension was then mixed by six inversions of the container and maintained on ice 

for a total o f 30mins, with six inversions every 5mins ensuring a homogenous 

suspension. This buffer neutralises the lysate and causes precipitation o f denatured 

cellular debris within salt-detergent complexes. At this stage the plasmid remains in 

solution.

The resulting suspension was then centrifuged at 20,000g for 30mins at 4°C to remove 

the precipitated debris. Following centrifugation, the supernatant was carefully filtered 

through a Whatman Number 1 filter paper into a sterile beaker. The filtrate was then 

poured into the Qiagen®-tip barrel and the waste filtrate was collected underneath the 

tip. The tip, on which the pDNA was now ‘loaded’, was then washed with 200ml of a 

‘medium-salt’ pH7 buffer (QC) to remove any remaining impurities and small 

metabolites. The pDNA was finally eluted from the tip using 35ml of a ‘high salt’ 

elution buffer at pH8.5 (QF) and collected in a sterile beaker.

Propran-2-ol (24.5ml) was then added to the beaker at room temperature to precipitate 

the pDNA and the solutions were divided between two sterile 50ml centrifuge tubes 

which were centrifuged at 15,000g for 30mins at 4°C. The supernatant was carefully 

decanted and each sample pellet was subsequently rinsed with 3.5ml o f ethanol (70%). 

The sample was then centrifuged at 15,000g for lOmins at 4°C. The ethanol rinse and 

subsequent centrifugation step were then repeated. Following removal of ethanol for the 

second time, the pellet was allowed to air dry for approximately 15mins. Finally, the 

DNA pellet was re-dissolved in 1ml (0.5ml in each centrifuge tube) of warmed tris- 

EDTA buffer, pH8, and the two solutions were combined.
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4.3.2.4. Plasmid quantification

The concentration and purity of the isolated plasmid solution was analysed by UV 

absorbance at 260nm and 280nm using an Eppendorf® Biophotometer. The UV 

absorbance value of the double stranded DNA solution at 260nm ascertains the 

concentration o f the pDNA solution whereas the ratio between the absorbance at 260nm 

and 280nm ( 260nm/ 280nm) provides an indication of the sample quality, an absorbance 

ratio o f >1.8 accepted as an effectively pure pDNA solution. Sample analysis involved 

measurement o f the UV absorbance of 50pl of a 1 in 50 dilution of the harvested 

plasmid solution within a disposable UVette® eppendorf.

4.3.2.5. Agarose gel electrophoresis

Gel electrophoresis determined the integrity and identity of the pDNA following 

preparation. Agarose gel (lg ) was dissolved in 100ml of a tris-borate EDTA (TBE) 

solution by heating in a microwave oven for a period of lmin, following which the 

solution was allowed to cool to approximately 50°C. Two drops of ethidium bromide 

(approximately 1 pg) were then added to the agarose solution which was mixed well and 

subsequently poured into the electrophoresis tray, containing a well comb. The gel was 

then allowed approximately lh r to solidify and subsequently immersed in TBE buffer 

within the electrophoresis tank. The comb was gently removed from the gel, creating 

wells into which samples were loaded. Samples contained lOpl of the plasmid under 

analysis (at a concentration of 1 mg/ml) and lp l of gel loading buffer (bromophenol 

blue). Hyperladder VI (5pi) was added to an adjacent well. The tank was then 

connected to a voltage source and run at lOOVolts for up to 90mins. The gel was then 

isolated from the tank and visualised under a UV transilluminator.
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4.3.3. Mammalian cell culture methods

4.3.3.1. Cell maintenance

Cells (A-549 and HaCaT) were stored at -80°C as a homogenous suspension in a 

nutrient medium containing glycerol. Upon removal from storage, cells were thawed on 

ice and added slowly (dropwise) to nutrient media within a 25cm cell culture flask. 

Nutrient media for cell culture consisted of 2%v/v penicillin-streptomycin, 10%v/v 

foetal bovine serum (FBS) and 88%v/v Dulbecco MEM (DMEM). Cell monolayers 

were maintained within nutrient media (replenished at 48hr intervals) at 37°C and 

5%C02 and allowed to reach >75% confluency before being divided and seeded 

(passaged) into new cell culture flasks. This maintained cells within the log phase of 

growth and ensured survival.

4.3.3.2. Cell seeding

Cell monolayers, maintained in 25cm cell culture flasks were washed three times in 

sterile PBS. The cell monolayer was then rinsed for 60secs with trypsin-EDTA (1ml) 

and the flask was placed in an incubator (37°C:5% C02) for 5mins. Following 

incubation, the flask was mechanically agitated to release the cell monolayer from the 

surface. Cells were then resuspended in 10ml of growth media (2%v/v penicillin- 

streptomycin, 10%v/v FBS and 88%v/v Dulbecco DMEM). A 0.5ml aliquot was 

removed from the flask to conduct a haemocytometer cell count, which was conducted 

under a bright field light microscope. For transfection, each well of a 24 well cell 

culture plate was seeded at a density o f 50,000cells/cm2 (i.e. 72,000 cells/well) and was 

maintained in 1ml of nutrient media. For routine cell maintenance, approximately 1 

million cells were seeded into cell culture flasks and maintained in 7-8ml of nutrient 

media.

4.3.3.3. Cell transfection protocol

Cells were allowed to reach 75% confluency (A-549 approximately 70hrs post-seeding, 

HaCaT approximately 70-140hrs post-seeding based on previously determined cell 

growth studies) prior to transfection. Transfection timings, passage numbers and the 

identity of the cell line used in this chapter are detailed in the legends that accompany
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those figures. Three plasmids were used for transfection studies, pCMVp, pGL3 and 

pEGFP-Nl. All were prepared in tris-EDTA buffer (pH7.4) at a concentration of 

1 mg/ml for mammalian cell culture transfection studies.

Three formulations were utilised in cell culture studies:-

1. LPD complexes were prepared as outlined previously (Section 3.3.2.1) to a 

concentration of lOOpg plasmid/ml o f formulation (30pg/300pl). Briefly, to 

prepare sufficient vector to transfect 6 wells o f a 24-well plate: -

• Pipette 30|il o f plasmid (1 mg/ml) into a centrifuge tube.

• Add 120pl of sterile water.

• Add 60pl of protamine sulphate (1 mg/ml).

• Allow lOmins for the formulation to equilibrate.

• Add 90|il o f DOTAP liposome (1 mg/ml).

• Allow lOmins for the formulation to equilibrate.

2. Naked pDNA (1 mg/ml) was diluted to a concentration of 30pg/300|il by the 

addition of sterile water.

3. Sterile water (300|ul) was included as a negative control.

For pEGFP-Nl studies using a fluorescent LPD complex, the rhodamine labelled lipid, 

phosphatidylethanolamine dipalmitoyl-sulforhodamine B, was included at a 

concentration o f 5%w/w within the DOTAP liposome preparation prior to creation of 

the LPD (Section 3.3.2.1).

Following preparation of 300pl of formulation, 5.7ml of warmed DMEM was added to 

produce a final plasmid concentration of 5pg/ml. Media was then removed from each 

well of the 24-well plate and the cell monolayer was rinsed twice with sterile PBS, to 

ensure removal of serum, before addition of 1ml of the formulation to each of the 

selected wells. The rinse step is critical in the transfection process since serum can 

interact with cationic lipids resulting in instability o f the vector formulation and a 

subsequent reduction in transfection efficiency (Feigner et al., 1987, Gao and Huang, 

1996, Yang and Huang, 1997). The plate was then incubated (37°C:5%C02) for a 

period o f 6hrs after which time the formulation was removed from the cell surface and, 

following a brief rinse, replaced with nutrient media. Twenty four hours after treatment
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of the cell monolayer the media was removed and cells were processed to detect the 

plasmid product.

4.3.3.4. (3-galactosidase detection

Following transfection, cells were fixed over a 15min period using 180pl of freshly 

prepared 0.25%v/v glutaraldehyde solution per well. Following two PBS rinses, 90pl of 

freshly prepared X-gal staining solution (prepared using the Invitrogen® manufacturers 

protocol) was added to each well and the plate was incubated (37°C:5%C02) until blue 

pigmentation became apparent (0.5-2hrs). X-gal solution was then replaced with sterile 

PBS and cells were visualised under the Olympus IX-50 light microscope.

4.3.3.5. GFP detection

Fluorescence Activated Cell Sorting (FACS) Analysis

For (FACS) experiments, cell culture plates were transfected using the following 

formulations :-

1. PBS (Negative Control).

2. LPD containing the rhodamine-labelled DOTAP liposome and the pCMVp 

plasmid.

3. LPD containing the pEGFP-Nl plasmid.

4. LPD containing the rhodamine labelled DOTAP liposome and the pEGFP-Nl 

plasmid.

At 24hrs post-treatment, cells were washed twice with PBS and covered with 30pl 

trypsin-EDTA/well for 2mins. Cells were then incubated for 15mins and re-suspended 

in 1ml o f growth media. The cell suspension was pipetted up and down to create a 

homogenous monodisperse suspension, transferred to falcon FACS tubes and 

maintained on ice. Analysis of the sample was carried out using the FACSCalibur 

system.

Fluorescence Microscopy

HaCaT cells, grown in a 24-well cell culture plate were treated with the following 

formulations:

1. PBS (Negative control).
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2. LPD containing the pEGFP-Nl plasmid.

3. LPD containing the rhodamine labelled DOTAP liposome and the pEGFP-Nl 

plasmid.

At 1 or 24 hrs post treatment, the formulation was removed from the well o f the plate, 

the cells were rinsed in PBS and the cell monolayer was then visualised under both 

fluorescence (blue and green excitation) and bright field microscopy, using the 

Olympus IX-50. Alternative use o f bright-field and fluorescence filters permitted 

visualisation o f HaCaT cell morphology, the location o f the rhodamine fluorophore 

(contained in the LPD complex) and the identification of cells expressing pEGFP-N 1.

4.3.3.6. L ucif erase Detection

Following treatment of cells with pGL3 formulations, the Promega luciferase detection 

Kit was used, as detailed in the manufacturers’ protocol, to determine the levels of 

transfection within cell populations. Briefly, 24hrs after treatment, the cells were 

washed twice with PBS and subsequently covered with 80pl of reporter lysis buffer. 

The cell culture plate was then gently agitated for 5mins and placed on ice for 2hrs and 

then in the freezer for a further 2hrs. Following this period, the plate was removed and 

allowed to thaw over 30-45mins. Cells were finally harvested from the plate surface 

using a cell scraper and transferred to microcentrifuge tubes, which were vortexed prior 

to centrifugation at 13,000r.p.m. for 15secs. The supernatant was then removed, placed 

in a microcentrifuge tube and stored at -80°C. For assay, samples were thawed on ice 

and aliquots (50pl) were placed in a white 96-well plate which was subsequently 

analysed using the Fluostar Optima®. An autoinjector added lOOpl of luciferase 

substrate per well, the plate was then agitated and the eliminated light units were 

recorded.

A BCA protein assay determined the protein content within each sample (Smith et al., 

1985). This permitted calculation of the relative light units (RLU) per unit protein for 

each population o f cells studied. Briefly, 10ml of BCA was added to 0.2ml of CUSO4 

solution (4%w/v) and mixed for 30secs to create the assay reagent. Standard BSA 

solutions of increasing concentrations (from 0-2mg/ml) were prepared and 20pi of each 

concentration was added, in triplicate, to the wells of a colourless 96-well plate. Cell 

lysate samples (20pl), previously analysed by luminometry, were also added to the

1 3 8



C h a p t e r  4

plate. To these samples, 200pl of the BCA assay reagent was added and the plate was 

briefly agitated before incubation for 30mins at 37°C:5% CO2. Following incubation, 

the samples were allowed to cool to room temperature over a period of lhr and the UV 

absorbance o f samples and BSA calibrants were analysed at 570nm using the Anthos 

96-well plate spectrophotometer. The equation of the line, calculated for the BSA 

calibration curve, was then used to convert absorbance values for the cell lysate samples 

to protein content, which was manipulated to calculate RLU.

4.3.4. Ex vivo human skin organ culture

Human skin was obtained from breast reduction and mastectomy procedures with 

informed patient consent and full ethical approval. The tissue was placed immediately 

in nutrient skin media (DMEM supplemented with 5% FBS and 1% 

Penicillin/Streptomycin) and transported on ice to the laboratory.

Sub-cutaneous fat was removed from the tissue by blunt dissection and the tissue was 

dried briefly. The skin was then pinned to a dissection board and a significant 

proportion of the dermis was removed using a stainless steel razor blade. The ‘split 

thickness’ skin (approximately 2mm thick) was then treated with the formulation/device
■y

of interest, divided into approximately 1cm areas and maintained in a Trowell-type 

organ culture set-up (Fig 4.1). Details of the protocol for organ culture were adapted 

from methodologies utilised by Kent et al (Kent et al., 2001), Backvall et al (Backvall 

et al., 2002) and Larregina et al (Larregina et al., 2001).

After treatment the skin was positioned on lens tissue paper supported by a sterile steel 

mesh, within a six well culture plate. Each well contained 7.5ml o f freshly prepared 

nutrient media which soaked the lens tissue paper by a wicking effect. Skin was 

incubated at the air-liquid interface for approximately 24hrs at 37°C:5%C02 before 

analysis.

139



C h a p t e r  4

Figure 4.1. Split thickness human skin, obtained from surgical procedures, was 

maintained in a Trowell-type organ culture set-up. The tissue was maintained at the air- 

liquid interface at 37°C for 24-48hrs.

4.3.5. Cutaneous nanoparticle delivery

4.3.5.1. Fluorescent nanosphere formulation

These studies aimed to identify the location of a nanoparticle formulation within the 

skin structure following localised delivery by a microneedle device or an intradermal 

injection. The ideal nanoparticle model to be used in these studies would be the 

fluorescent LPD or the LCN formulation, owing to their comparability with the LPD in 

both dimension and surface morphology (Section 3.4.1). However, limited fluorescence 

signal prevented visualisation o f the formulation within the skin tissue by histological 

evaluation. The formulation used in these studies was a concentrated (stock) fluorescent 

red nanosphere (approximately lOOnm diameter) suspension.
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4.3.5.2. Intradermal Injection o f  fluorescent nanospheres

Fresh human skin from a female donor, of unknown age, was injected with 50pl of the 

latex nanosphere formulation using a 1ml syringe and 29G hypodermic needle. Skin 

was then maintained in organ culture for 8hrs, rinsed, fixed and embedded in OCT 

medium within a cryomould surrounded by solid carbon dioxide. Cryosections (10- 

12pm) were obtained and mounted on superfrost plus® slides. Tissue sections were 

illuminated by a blue excitation light source and analysed by fluorescence microscopy.

4.3.5.3. Microneedle mediated delivery o f  fluorescent nanospheres

4.3.5.3.1. Dry etch microneedles

Fresh human skin from a female donor, of unknown age, was treated topically with 50pl 

of the fluorescent nanosphere formulation followed by a single application of a dry-etch 

microneedle device (CSE-Array A). Skin was then maintained in organ culture for 

16hrs and processed to create histological sections that were analysed under blue 

illumination by fluorescence microscopy.

4.3.5.3.2. Wet etch microneedles

Fresh human skin, from a 76 year old female donor, was treated topically with lOpl of 

the fluorescent nanosphere formulation followed by 10 applications of the wet-etch 

microneedle device. This was conducted using frustum tipped (TNI-Array 8) and 

pointed tipped (TNI-Array 5) microneedles. Skin was then maintained in organ culture 

for 20hrs and processed to create histological sections that were analysed, under blue 

illumination, by fluorescence microscopy.
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4.3.6. Detecting p-galactosidase in human skin

4.3.6.1. In  vivo gen® protocol

Human skin from a 48 year old donor was collected and sub-cutaneous fat was removed 

by blunt dissection. The tissue was then divided into 1cm2 areas and treated topically 

with the microneedle device followed by a PBS formulation. Skin was then maintained 

within organ culture for a period of 46hrs and subsequently processed using the 

commercial lacZ staining kit, obtained from Invivogen®, and the manufacturers’ 

protocol.

Human skin was placed in PBS/MgCl2 solution, on ice, for a short period. Each piece of 

skin was then fixed in 2ml glutaraldehyde 0.5%v/v for 2hrs and subsequently rinsed in 

PBS/MgCb (2mM) over a period of 6hrs. Each skin biopsy was then placed in 2ml of 

X-gal staining solution at 37°C for a total period of 43hrs. All solutions were freshly 

prepared using components supplied within the Invivogen Kit® (Table 4.1).

Table 4.1. The components of the X-gal staining solution provided with the Invivogen® 

staining kit.

Volume 100ml

Potassium ferricyanide [0.6M] 1ml

Potassium ferrocyanide [0.6M] 1ml

MgCl2 [1M] 0 .2ml

Ipegal [10%] 0 .2ml

Sodium Deoxycholate [10%] 0 .1ml

X-gal solution [40mg/ml]* 2.5ml

10X PBS 10ml

h 2o 85ml

* X-gal powder is made up to a 40mg/ml solution with N-N-dimethylformamide
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4.3.6.2. Optimising detection o f  the f3-galactosidase enzyme

Over the previous 10 years Dr Ulrich Hengge and his laboratory have produced a 

number of publications investigating exogenous gene expression within the skin and are 

recognised as major contributors to this field o f research. Early studies by the group 

highlight the ability to transfect porcine (Hengge et al., 1995) and human (Hengge et al., 

1996) skin, maintained in organ culture conditions, with the pCMVp plasmid. The X- 

gal staining methodology used by Hengge and colleagues was therefore adopted in the 

studies detailed within this section.

In 1997, Weiss and co-workers recognised the difficulties in detection of the p- 

galactosidase enzyme (Weiss et al., 1997). Use o f the lacZ reporter gene and detection 

of the bacterial p-galactosidase enzyme within gene transfer studies is now 

commonplace. However the activity o f an endogenous mammalian enzyme, located 

within the lysosomes of cells, often confounds those results achieved. This effect has 

been noted in a wide range of cell and tissue types (Weiss et al., 1999). Experiments 

conducted by Weiss and co-workers aimed to reduce/abolish the activity of the 

endogenous enzyme and this optimised protocol was therefore adopted for use in these 

studies.

'y
Female skin from a 78 year old donor was collected and 6 areas ( approximately 1cm ), 

were removed from the tissue. The following formulations (lOpl) were injected 

intradermally into the superficial layers of the skin using a 25G Microlance® needle:-

1. Positive control: p-galactosidase enzyme (lUnit/lOOpl) (N=3).

2. Negative control: PBS (N=3).

Tissues were then rinsed and fixed. Two skin areas (one positive control and one 

negative control) were then immersed in 2ml of a staining solution (Table 4.2). The 

tissue was stained for 12hrs and then rinsed in PBS for lhr before analysis.
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Potassium ferricyanide [0.6M] 50 42 25

Potassium ferrocyanide [0.6M] 50 42 25

MgCl2 [lM ] 10 10 10

Ipegal [10%] 10 0 10

Sodium Deoxycholate [ 10%] 5 0 5

PBS [xlO] 500

Tris-HCl buffer 

(pH8.50) [200mM]
2500

NaH2P 0 4 

(pH7.3) [200mM]
2500

Water 4250 2150 2300

Incubation Conditions
37°C 37°C

Room

temperat

4.3.6.3. Visualising the P-galactosidase enzyme in ex vivo human skin

En face analysis

Following X-gal staining, the tissue was rinsed briefly in 2ml PBS and visuali: 

fa ce , mounted on a glass slide or between two glass slides, using a light microscop 

1. For low magnification images, a Stemi 2000-C stereomicroscope was at 

to an Olympus Camedia C-4040 zoom digital camera, the surface o f the s 

was illuminated using a Schott KL1500 fibre optic light source and 

images were stored on a Flashpath® graphics card.
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ronowing en ja ce  analysis, me tissue was emoeaaea wimin u ^ i  meaia, cryosec 

and H&E stained to identify the cellular architecture o f the tissue (Section 2.3.9).

4.3.7. Microneedle mediated cutaneous p-galactosidase delivery

Human skin from a 43 year old female donor was transported to the laboratory c 

treated with dry-etch microneedles (CSE-Array A) and treated topically with 40p  

galactosidase (1 Unit/lOOpl in a bicene buffer [50mM] containing lOOpg/ml o f  

This process was repeated, this time applying PBS as a negative control. Each s 

was placed in the chamber o f a 6-well cell culture plate and maintained at the air- 

interface in organ culture conditions for 24hrs. The tissue was then rinsed, fixe 

stained using the previously developed ‘W eiss’ protocol (Section 4.3.6.2). Sa 

were then analysed (Section 4.3.6.3).
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260nm and 280nm. All plasmid samples isolated from E.coli and deemed suital 

transfection studies possessed an initial concentration o f between 2.5 and 3.5mg/i 

a (260nm/280nm) ratio greater than 1.8. The configuration o f  pDNA solutions was an 

by agarose gel electrophoresis i.e. relaxed circular DNA, open circular DF 

supercoiled (Fig 4.2). The intense bands in lanes 1 and 2 suggest that the gi 

proportion o f the plasmid isolated from the transformed bacteria is in the super 

form (also called covalently closed DNA, where DNA is fully intact) (Fig 4 .2 A ).r 

o f relaxed circular (where DNA is fully intact, but has been ‘relaxed’) and open ci 

forms (one strand o f DNA has been cut) o f the pDNA are visualised as muc 

intense bands that migrate at a reduced rate. Transfection studies using lipid-base< 

therapy vectors have demonstrated greater success using pDNA in the supercoilec 

(Even-Chen and Barenholz, 2000, Zuidam and Barenholz, 1998). Initial failu 

transfect mammalian cells in this study were attributed to a degradation < 

supercoiled plasmid into its less effective configurations (Fig 4.2B - lane 5) 

highlighted the importance o f continued analysis o f pDNA samples by agaro 

electrophoresis during this study.

4.4.2. Determining the functionality of reporter plasmids in mammalian cell 

culture

Following transformation o f bacteria, plasmids (pCMVp, pEGFP-Nl and pGL3  ̂

propagated, isolated and their concentrations, configurations and integrity 

determined (Section 4.3.2). However before application o f these reporter plasm 

cutaneous transfection studies, it was important to ascertain their functionality 

more reproducible and controlled environment o f mammalian cell culture.
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Supercoiled
pCMVp

mm

Degraded
pCMVp

Linear /  Open
circular
pCMVp

Figure 4.2.

A. Agarose gel electrophoresis illustrated the integrity of the pCMVp (7.2Kb) (lane 1) 

and pEGFP-Nl plasmid (4.7Kb) (lane 2) used in transfection studies. The small band 

pictured ahead of the supercoiled plasmid band in lane 2 indicated the presence of a 

small amount of fragmented DNA within the formulation.

B. Agarose gel electrophoresis was used to determine the configuration of the pCMVp 

plasmid (7.2Kb) isolated from stocks of transformed DH5a E.coli (lane 4). The 

Hyperladder IV was pictured in lane 1.
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4.4.2.1. fi-galactosidase

A-549 cells, successfully transfected with pCMVP incorporated within an LPD vector, 

were visibly discriminated in situ by enzymatic conversion o f the X-gal substrate to a 

blue pigment (Fig 4.3A). Investigations using the HaCaT cell line confirmed the ability 

of an LPD formulation to transfect human keratinocytes in vitro (Fig 4.3B -  4.3D). 

However, the characteristics of cell growth within a population were not uniform. Cells 

appeared as a confluent monolayer (Fig 4.3B), as a monodisperse layer (Fig 4.3C) and 

also as clusters (Fig 4.3D). The unpredictable growth characteristics of the cells 

prevented optimisation of transfection levels. There was no visible transfection of cells 

treated with the naked pCMVP formulation, i.e. in the absence of non-viral condensing 

elements.

B

■
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Figure 4.3. Detectable transfection of (A) A-549 (passage 103) and (B-D) HaCaT 

(passage 60) cell lines with the pCMVP plasmid, incorporated within an LPD vector. 

Transfection was analysed 24hrs after topical application of the formulation. 

Magnifications A, X200; C X I00; B, D, X400.
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4.4.2.2. pEG FP-N l

The encoded product o f the pEGFP-N 1 reporter plasmid was detectable in situ, with no 

cell processing or assay required for its detection. Those successfully transfected cells 

adopted a bright green fluorescence (Fig 4.4A & 4.4B). The inclusion of a rhodamine 

labelled cationic lipid, within DOTAP liposomes that were used to formulate the LPD, 

supplemented the formulation with fluorescent red properties. This permitted 

visualisation o f the LPD location within the cell monolayer and interaction of the vector 

with the keratinocyte cell membrane.

Intense areas o f red fluorescence surrounding cells treated just lhr previously with the 

LPD formulation, indicated rapid interaction o f the positively charged LPD complex 

with the negatively charged cell membrane (Fig 4.4C). At this stage there was no 

evidence of successful transfection with the pEGFP-N 1 plasmid. However after 24hrs 

GFP was clearly identifiable within a number o f cells (Fig 4.4B & 4.4E). Persistence of 

red fluorescence in association with the cell membrane indicated a continued presence 

o f the vector, or at least components of the LPD, with the cell (Fig 4.4F). However the 

functionality o f the LPD and the location o f the rhodamine label, extra or intracellularly 

were not determined.

Flow cytometry studies provided quantitative indicators of gene expression and 

reinforced the necessity o f a vector formulation to facilitate successful transfection of 

cells maintained in culture (Fig 4.5). Each plot in Fig 4.5 represents a single cell 

population, isolated from the well o f a 24-well cell culture plate, 24hrs after topical 

application of one o f four formulations. FACS data achieved for the control formulation 

i.e. those cells treated with PBS alone, determined the background level o f fluorescence 

within a cell population (Fig 4.5A). Treatment o f cells with an LPD formulation, 

containing rhodamine labelled DOTAP liposomes and pCMVp, resulted in an upward 

shift in approximately 40% of the HaCaT cell population (Fig 4.5B). This shift 

represented those cells that possessed fluorescent red properties due to association with 

the rhodamine-labelled LPD formulation, or at least the cationic liposome component of 

the formulation. Treatment of cells with an LPD formulation containing pEGFP-Nl 

caused a right shift in the position of approximately 10% of the cell population (Fig
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4.5C). These cells possessed fluorescent green properties and were therefore deemed to 

have been successfully transfected with pEGFP-N 1. This level o f transfection is in 

general agreement with visible levels of transfection noted in fluorescence microscopy 

studies.

Application o f an LPD formulation, containing the rhodamine labelled liposome and 

housing pEGFP-N 1, induced both an upward and right shift o f a significant proportion 

(approximately 11%) o f the fluorescent cell population (Fig 4.5D). The cells in the top 

right quadrant are therefore directly associated with the rhodamine labelled lipid 

component o f the LPD formulation and have subsequently been transfected to express 

GFP. There was limited evidence o f successful transfection in cells that were not 

associated with the rhodamine component of the LPD (Fig 4.5D -  bottom right 

quadrant). Significantly, just over 50% of the cell population that was associated with 

the LPD formulation did not express GFP (Fig 4.5D -  top left quadrant). This is 

indicative o f the inefficiency o f the non-viral gene therapy vector. Replicate analysis for 

each formulation analysed (N=6) supported these observations (Fig 4.6).

4.4.2.3. pGL3

Although pEGFP-N 1 provided a plasmid that was useful for quantitative analysis of 

transfection in mammalian culture studies, the analytical method (flow cytometry) is not 

easily extrapolated to biological tissue. Reporter plasmids encoding for the luciferase 

enzyme, such as pGL3, are therefore used frequently for quantitative cutaneous 

transfection studies (Babiuk et al., 2002, Dileo et al., 2003, Li et al., 2003, Mikszta et 

al., 2002, Williams et al., 1991). Detection o f successful expression requires cell 

isolation, lysis to extract the luciferase enzyme and detection of light emitted upon 

addition of the luciferase substrate.

Transfection using pGL3, incorporated within an LPD vector, proved successful (Fig 

4.7). A ‘flash’ response was recorded from those treated cells 2secs after addition of the 

substrate and levels of emitted light were maintained for over 20secs. However, 

although this demonstrated the functionality of the plasmid, the variability in 

transfection efficiencies was notable (highlighted by the sd results in Fig 4.7). Cells 

treated with naked pGL3 or the LPD formulation containing an alternative reporter gene
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(negative control) failed to produce any detectable levels o f transfection. These results 

were in agreement with previous data obtained using the pEGFP-Nl and pCMV(3 

plasmids.

C

T

Figure 4.4. Detectable transfection o f HaCaT cell lines (passage 61, transfected 70hrs 

post-seeding), with the pEGFP-Nl plasmid, incorporated within an LPD vector. 

Transfection was analysed at lhr (C) and 24hrs (A-B, D-F) after topical application of 

the formulation. Images depict cells treated with an LPD (A, B) or a rhodamine-labelled 

LPD (C-F) and were pictured using light (A, D), blue fluorescence (B, E) or green 

fluorescence (C, F) microscopy. Magnification X400.
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10.7%
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Figure 4.5. FACS analysis of HaCaT cells treated with four different formulations 

(passage 63, transfected 141hrs post-seeding). Each dot plot is representative o f a single 

cell population to which a different formulation was applied; A=blank formulation 

(negative control), B=Rhodamine-labelled LPD containing pCMVP, C=LPD containing 

pEGFP-N 1, D=Rhodamine-labelled LPD containing pEGFP-Nl.
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Figure 4.6. Combined FACS data for treated HaCaT cells. A=Blank treatment; 

B=Rhodamine-labelled LPD containing pCMV(3 plasmid; C=LPD containing pEGFP- 

N l; D=Rhodamine-labelled LPD containing and pEGFP-Nl, mean ± sd (N=6).
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Figure 4.7. The relative light units released by A-549 cells (transfection 74hrs post- 

seeding, passage 96) following treatment with naked pGL3 (N=3), LPD pCMVP (N=3) 

or LPD pGL3 (N=8) formulations, mean ± sd.
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4.4.3. Cutaneous Nanoparticle Delivery

In vitro studies illustrated the functionality of each of the reporter plasmids studied and 

enabled progression of the investigation towards the analysis o f transfection within 

human skin tissue. However, although mammalian cells are an accepted in vitro model, 

the complexity of the skin, the organisation of keratinocytes within the three 

dimensional architecture of the viable epidermis and the necessity to deliver the 

formulation across the SC barrier makes the transfection of cells within the organ a 

significantly greater challenge.

The previous chapter demonstrated the ability o f a microneedle array to deliver small 

molecules and nanoparticle formulations across human epidermal membrane. However 

successful cutaneous expression of exogenous pDNA relies upon delivery of a 

formulation across the SC and its subsequent retention within the viable epidermis. The 

previously characterised microneedle devices, dry- and wet-etch (pointed and frustum 

tipped), were therefore used to examine localised delivery o f a nanoparticle formulation 

to the viable epidermis o f ex vivo human skin.

4.4.3.1. Nanoparticle permeation into untreated human skin

Histological analysis o f intact human skin treated topically with a fluorescent 

nanoparticle formulation revealed a uniform distribution of the formulation over the 

entire skin surface (Fig 4.8). These observations are in agreement with Alvarez-Roman 

et al (Alvarez-Roman et al., 2004). At no point were fluorescent nanoparticles 

visualised below the SC.

4.4.3.2. Intradermal injection o f  fluorescent nanospheres

Direct intradermal injection o f macromolecular therapeutics, including nucleic acid 

formulations is a well established cutaneous delivery technique (Chesnoy and Huang, 

2002, Hengge et al., 2001, Kremer et al., 1999, McCluskie et al., 1999, Meuli et al., 

2001, Sawamura et al., 2005, Sawamura et al., 2002b, Woodley et al., 2004). However 

this method o f delivery is dependent upon the skill o f the administrator. These studies

were therefore used to determine the reproducibility o f the technique and the location of

deposition upon intradermal injection o f a nanoparticle formulation.

1 5 4



Ch a pt e r  4

Following intradermal injection, the nanoparticle formulation was retained within a 

discrete reservoir in the upper dermis (Fig 4.9A). Dissemination to the surrounding 

tissue was limited. Delivery to viable cells of the epidermis relied upon interaction of 

the formulation with cells that surround the ‘needle track’ (Fig 4.9B), possibly as a 

result o f the backpressure created upon bolus administration. During removal o f the 

needle, this pressure also resulted in deposition o f a proportion of the formulation on the 

overlying skin surface. It was therefore postulated that transfection o f cells with 

nanoparticle formulations, such as non-viral gene therapy complexes, will occur 

primarily in those cells that surround the needle track and that the majority o f the 

formulation would be delivered, ineffectively, to the dermal region. This is unsurprising 

when considering a needle o f millimetre dimensions is being used to deliver a 

formulation to a micron-scale target area.

Figure 4.8. Human skin, treated topically with a fluorescent red concentrated 

nanosphere formulation. A, scale bar = 200pm; B, scale bar = 50pm. Skin was obtained 

from a female donor o f unknown age.
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Figure 4.9. Transverse sections of human skin, injected with a concentrated fluorescent 

red nanosphere formulation. E=Epidermis, scale bar = 100pm. Skin was obtained from 

a female donor of unknown age.

4.4.3.3. Dry-etch microneedle mediated nanoparticle delivery

Histological evaluation of human skin, treated with a microneedle device and 

fluorescent nanoparticles, was used to asses the delivery capabilities of the microneedle 

array. However, when interpreting histological sections it is important to remember the 

contribution o f processing parameters to the tissues final appearance. Therefore 

hundreds o f cryosections were analysed from each tissue sample and the images 

considered most representative of the tissue architecture and microchannel structure 

were selected for photomicrographs.

Treatment of human skin with a fluorescent nanosphere formulation and application of 

a dry-etch microneedle array (CSE-Array A) illustrated the ability of the device to 

facilitate epidermal delivery o f a colloidal formulation (Fig 4.10). Microchannels 

appeared as non-uniform conduits, approximately 100-200pm in length and 30-40pm in 

diameter (Fig 4.10A-4.10C). Direct interaction of the fluorescent nanoparticle 

formulation with tissue components that occupy the interior of microchannels (observed 

as red or co-localised yellow against the autofluorescent green background) highlighted 

the potential of the device for the cutaneous delivery of nanoparticles. However there
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was no fluorescent signal recorded in the epidermal tissue remote of microchannel 

structures, thus indicating restricted intercellular movement of nanoparticles.

The autofluorescence of human skin (Felner, 1976), particularly in the SC and 

connective tissue of the dermis was also illustrated (Fig 4.10). Mechanical disruption of 

the tissue, such as that resulting from microneedle penetration, appeared to increase 

levels of fluorescence within the surrounding tissue. This proved useful in the 

identification of microchannels during analysis of cryosections but detrimental to future 

investigations using pEGFP-Nl for transfection studies in human skin.

B

HV-
swr

Figure 4.10. Transverse sections of human skin, treated topically with a concentrated 

fluorescent red nanosphere formulation followed by application of a dry-etch 

microneedle device. E=Epidermis and D=Dermis in image (C). A, B, scale bar = 

100pm; C, scale bar = 50pm. Skin was obtained from a female donor of unknown age.
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4.4.3.4. Wet-etch microneedle mediated nanoparticle delivery

4.4.3.4.1. Frustum tipped microneedles

The penetrative capabilities o f wet-etch microneedles was also demonstrated by the 

localised delivery o f nanoparticles into human skin. Images recorded at low 

magnifications (x40) permitted visualisation o f the width of each tissue sample, 

allowing the relative level of membrane disruption to be appreciated (Fig 4.11). Higher 

magnification images (xlOO) permitted closer inspection o f the microchannel 

morphology (Fig 4.11).

The heterogeneity o f microchannels, created by the array, was clearly identifiable by 

comparing the disruptions in different areas o f the tissue (Fig 4 .11A-4.1 ID). Minimally 

invasive microchannels, approximately 100pm in depth and 50pm in diameter, were 

confined primarily to the viable epidermis (Fig 4.11 A & 4.1 IB). These conduits 

retained the colloidal formulation within the epidermal region and restricted interaction 

o f nanoparticles to those viable cells that constitute the interior walls of the epidermal 

microchannel. More significant disruptions, extending up to 200pm in depth, facilitated 

permeation o f the formulation across the epidermis and into the underlying dermal layer 

(Fig 4.11C & 4.1 ID). However although disruptions resulted in significant levels of the 

formulation permeating into the dermal region, detection o f nanoparticles within the 

epidermal region remained evident.

4.4.3.4.2. Pointed tipped microneedles

Pointed tipped microneedle devices caused less disruption o f the skin surface and a 

reduced conduit depth (Fig 4.12). This resulted in a greater proportion o f microchannels 

that were restricted to the viable epidermis (Fig 4.12A & 4.12B). Maintaining the 

integrity of the BMZ prevented permeation o f the nanoparticles into the dermal region. 

This may be expected to restrict non-viral gene therapy vectors to the viable epidermis 

and hence promote localised transfection.

Interestingly, microdisruptions that pierced the BMZ only facilitated permeation of the 

nanoparticle into the dermal tissue directly beneath the microchannel. The formulation 

was therefore often visualised as a columnar area of fluorescence, located directly
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below the microchannel (Fig 4.12C & 4.12E). Limited movement of the nanoparticle 

formulation within the dermis was analogous to observations made following 

intradermal injection (Fig 4.8). Restriction o f the formulation to its site of deposition, in 

the dermis, may be attributable to electrostatic interaction of nanoparticles with the 

connective tissue structures.

In conclusion, the cutaneous delivery o f gene therapy complexes aims to target those 

cells of the viable epidermis. Studies with fluorescent nanospheres indicated that 

minimal disruption o f the tissue by a microneedle device can promote localised 

epidermal delivery o f nanoparticles to this target region. However inter- and intra

individual variability in the thickness o f this epidermal layer and the heterogeneity of 

microchannels created by the device resulted in the inevitable extension of a proportion 

o f microchannels into the papillary dermis. Progressive improvements to the 

microneedle device and advances in pharmaceutical formulation must therefore improve 

the reproducibility o f penetration in order to promote exclusive delivery to the viable 

epidermis.
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Figure 4.11. Transverse sections o f human skin treated with a concentrated fluorescent 

red nanosphere formulation followed by the application of a frustum tipped microneedle 

array (TNI - Array 8). Matched images pictured at x40, scale bar = 200fim; xlOO, scale 

bar = lOOfim. Skin was obtained from a 76 year old female donor.
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x40 xlOO

Figure 4.12. Transverse sections o f human skin treated with a fluorescent red 

concentrated fluorescent nanosphere formulation followed by the application of a sharp 

tipped microneedle array (TNI - Array 5). Images are pictured at x40, scale bar = 

200pm & xlOO, scale bar = 100p.m. Skin was obtained from a 76 year old female donor.
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4.4.4. Detecting p-galactosidase in ex vivo human skin

The successful incorporation o f functional pDNA within LPD vectors and the ability of 

microneedle devices to facilitate delivery o f such nanoparticle formulations to the viable 

cells of the epidermis are fundamental requirements for effective microneedle mediated 

cutaneous gene delivery. However, the success o f this investigation also relied on the 

ability to successfully detect expression o f reporter genes within human skin. The 

pEGFP-Nl plasmid is detected in situ using fluorescence microscopy. However, as 

previously indicated, human tissue possesses autofluorescent properties (Section 

4.4.3.3). The pCMVp reporter system was therefore selected to determine the extent and 

location of gene expression in human skin cells following cutaneous gene delivery.

The staining methodology utilised in mammalian cell culture studies cannot be directly 

extrapolated to ex vivo studies, where target cells are maintained within the epidermis in 

a three dimensional architecture, sandwiched between the SC and dermal tissue layers. 

Inefficient penetration of the staining solution to all epidermal cells and adverse 

interaction with the tissue must also be considered in the detection o f those cells 

expressing the lacZ  gene.

4.4.4.1. Invivogen® protocol

Following 12hrs of Invivogen® lacZ staining, en face  images o f untreated skin samples 

revealed a low level of endogenous staining (Fig 4.13A), particularly apparent around 

hair follicles (Fig 4.13B). Further staining o f the negative control, up to 43hrs (Fig 

4.13C & 4.13D), resulted in significant levels o f endogenous surface staining. Therefore 

an alternative detection methodology was developed and validated to ensure that X-gal 

could facilitate unambiguous identification o f cells within the tissue that contained the 

pCMVp encoded bacterial p-galactosidase enzyme.
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Figure 4.13. En face  light microscopy images of microneedle treated human skin, to 

which a PBS solution has been applied. The skin is processed using the Invivogen® lacZ 

staining kit and immersed in the X-gal solution for (A), (B) 12hrs, (C) 35hrs and (D) 

43hrs. Arrows indicate areas of positive staining. Skin was obtained from a 48 year old 

female donor.

4.4.4.2. Optimising detection methods fo r  the P-galactosidase enzyme

Detection of the bacterial P-galactosidase enzyme by X-gal staining methods is 

dependent on a number of factors (Weiss et al., 1999):-

1. Fixation technique (glutaraldehyde versus paraformaldehyde versus formalin) 

could discriminate between endogenous and exogenous activity.

2. Overnight fixation reduced P-galactosidase activity to undetectable levels, 

therefore 30mins-2hrs in glutaraldehyde is recommended for whole tissues.

3. Altering the temperature and duration of X-gal exposure does not provide a 

reliable method of distinguishing between endogenous and exogenous enzyme 

activity.
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4. Exposure o f paraffin sections rather than the whole tissue to the X-gal solution 

results in poor P-galactosidase activity.

5. Endogenous enzyme activity is optimal at acidic pH values whilst exogenous 

activity is promoted at alkaline pH values.

6. The pH o f PBS buffers are reduced during incubation with the tissue, 

particularly over considerable staining periods.

7. Tris-HCl buffer (lOOmM) preserves the selected alkaline pH value during the 

staining interval.

8. Commercial Kits suggest X-gal incubation times o f 2-4hrs to reduce endogenous 

staining. However, both endogenous and exogenous activity is often eliminated.

This detailed investigation revealed the importance o f the buffer used in X-gal staining 

procedures. By maintaining the pH of the X-gal staining solution at 8.0-8.5 

unambiguous detection o f exogenous p-galactosidase activity in lung tissue was 

achieved. This principle proved to be transferable to the detection of the P-galactosidase 

enzyme within the skin (Fig 4.14).

Control experiments suggested that minor changes in staining conditions can have 

major effects on the ratio o f exogenous to endogenous P-galactosidase levels that are 

detected (Fig 4.14). The Invivogen® staining protocol produced significant levels of 

endogenous staining (Fig 4.14A). Such levels may mask subtle indications o f successful 

keratinocyte transfection by the pCMVp plasmid. The Hengge staining protocol 

reduced the level o f endogenous stain considerably, possibly due to the lower 

incubation temperature (Fig 4.14B). However, the tissue that has been processed using 

the protocol developed by Weiss and co-workers displayed no evidence o f endogenous 

stain (Fig 4.14C). This was attributed to retention o f the pH between 8.0 and 8.5 during 

the incubation period. Maintenance o f alkaline conditions upon immersion o f the skin 

tissue produces optimal conditions for the bacterial p-galactosidase enzyme, produced 

by pCMVp, and negates the effects o f the mammalian enzyme which has acidic pH 

optima (Weiss et al., 1999).
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Negative Controls Positive Controls

Figure 4.14. Enface  images o f the human skin surface following intradermal injection 

of PBS (negative controls) or the p-galactosidase enzyme (positive controls). Detection 

of p-galactosidase activity with the Invivogen® (A, B), Hengge (C, D) and Weiss (E, F) 

protocols were analysed. Inserted images in B and D are of the underside of the tissue 

i.e. the dermis. Scale bar = 500^im. Female donor is a 78 year old female.
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Intradermal injection o f the P-galactosidase enzyme, included as a positive control, 

resulted in the development o f an intense blue pigmentation using all three staining 

protocols. However distribution o f the stain within the tissue was dictated by the 

accuracy of delivery. For Invivogen® and Hengge staining protocols the stain was most 

apparent in the dermal region, indicating that the enzyme was injected below the 

epidermal layer (Fig 4.14B & 4.14D) and for Weiss methodology the stain was located 

in the upper skin layers (Fig 4.14F). This supported previous observations, suggesting 

that intradermal injection, although variable, can deliver macromolecules to the upper 

area o f the skin (Fig 4.9). Interestingly, unlike fluorescent nanoparticles, the enzyme 

was able to diffuse from its site o f injection and therefore was detected throughout the 

epidermal layer (Fig 4.15).

4.4.5. Microneedle mediated cutaneous p-galactosidase delivery

The P-galactosidase enzyme was selected as a model protein to demonstrate the ability 

of a microneedle device to deliver a biologically active macromolecule into the 

epidermal region and to detect discrete areas o f exogenous p-galactosidase enzyme in 

situ. Blue pigmentation was visible in a uniform pattern o f discretely stained areas (Fig 

4.16A). Transverse sections confirmed the ability o f a microneedle device to disrupt the 

SC barrier and demonstrated the localised delivery o f p-galactosidase up to 80pm below 

the skin surface (Figure 4.14B - 4.16D). Interestingly, membrane disruption by the dry- 

etch array appeared to be minimal and the enzyme was therefore retained exclusively 

within the confines o f the epidermal region. A negative control served to confirm the 

absence of endogenous p-galactosidase activity. Cutaneous delivery of the P- 

galactosidase enzyme and its subsequent detection supported the previously recognised 

capabilities of the microneedle array and more importantly verified the methodology 

that will be employed in subsequent reporter gene studies to detect the pCMVp encoded 

enzyme within the skin.
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Figure 4.15. A 50pm cryosection of human skin, following intradermal injection of the 

p-galactosidase enzyme (positive controls), was stained using the protocol of Weiss and 

co-workers. Arrow indicates the detected boundary of the bolus intradermal P- 

galactosidase injection. Scale bar = 500 pm. Human skin was obtained from a 78 year 

old female donor.

Figure 4.16. Dry-etch microneedle treated (CSE-Array A) human skin treated topically 

with the P-galactosidase enzyme. En face  imaging (A), an unstained transverse 

cryosection (B) and H&E stained cryosections (C & D) illustrated the deposition pattern 

and localisation of the enzyme upon microneedle mediated delivery to the skin. Scale 

bar = 100pm. Human skin was obtained from a 43 year old female donor.
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4.5. CONCLUSIONS

Three reporter plasmids were propagated, harvested and their functionality 

demonstrated in mammalian cell culture using an immortalised human keratinocyte cell 

line. These studies highlighted the importance o f vector formulations, such as the LPD, 

in the successful transfection o f keratinocytes in vitro. Ex vivo human skin however 

provides a more representative model o f the in vivo environment and will be used in 

subsequent skin gene expression studies. The Trowell-type organ culture method has 

been adopted and adapted, in order to promote skin viability throughout the 

experimental time course (Gaylarde et al., 1975, Tammi et al., 1979).

Intradermal injection o f nucleic acid therapeutics is an established but invasive method 

of cutaneous delivery. Initial studies using nanoparticle formulations suggested that the 

delivery capabilities o f the microneedle array device compare favourably to intradermal 

injection. Successful microneedle mediated delivery o f a nanoparticle formulation into 

human skin encouraged investigation of the device as an alternative minimally invasive 

platform for localised delivery o f gene therapy formulations.

To investigate the cutaneous transfection o f viably maintained ex vivo human skin, 

using a microneedle device, effective methods o f detection are required. pCMVp is an 

established reporter plasmid that encodes for the p-galactosidase enzyme. A robust 

methodology has been developed that permits unambiguous detection o f the exogenous 

p-galactosidase enzyme.
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CHAPTER 5

Cutaneous Gene Delivery

Studies
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5.1. INTRODUCTION

Recognition o f the skin as an immunocompetent organ, responsive to localised nucleic 

acid vaccination strategies (Tang et al., 1992), and continued understanding of the 

genetic abnormalities associated with skin disease (Khavari, 1998, Magnaldo and 

Sarasin, 2002) has provoked considerable interest in cutaneous gene therapy (Hengge, 

2005). However expression of an exogenous gene within the tissue requires effective 

delivery of a nucleic acid formulation to the viable epidermis and the efficient 

transfection o f the cells therein.

To date the most successful methods of cutaneous gene delivery have been biolistic 

techniques (Fynan et al., 1993, Tang et al., 1992) and direct intradermal injection (Raz 

et al., 1994). However a number of limitations to these delivery methods have been 

identified, most notably their inability to deliver formulations exclusively to the 

epidermal layer and the significant practical constraints associated with each of the 

techniques. Microneedle array devices can deliver macromolecular and nanoparticle 

formulations to the epidermal region in a simple and potentially pain free manner 

(Smart and Subramanian, 2000). Their suitability as delivery platforms for cutaneous 

gene therapies has therefore been assessed in this Chapter.

5.1.1. Biolistic cutaneous gene delivery

In the early 1990’s biolistic gene delivery, used for gene transfer in plants (Klein et al., 

1987), was adapted for cutaneous immunisation (Fynan et al., 1993, Tang et al., 1992) 

and remains the most established delivery method for DNA vaccination (Dileo et al., 

2003, Fynan et al., 1993, Lin et al., 2000, Pertmer et al., 1995, Wang et al., 2004). 

Numerous investigations, principally in animal models, have illustrated the ability of 

this technology to facilitate the localised expression o f exogenous genes in skin (Chen 

et al., 2000, Dean and Chen, 2004, Fensterle et al., 1999, Han et al., 2000, Kitagawa et 

al., 2003, Rakhmilevich et al., 1996, Roberts et al., 2005, Tacket et al., 1999). The 

potential of biolistic DNA vaccination is therefore being assessed in pre-clinical and 

Phase I clinical trials (http://www.powdermed.com/developmentOverview.htm, 2006).

The principle of biolistic delivery is to propel pDNA coated microparticles (often gold) 

at high velocity, within a stream of helium gas, through the SC barrier and into the
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underlying tissue. However, limitations to particle mediated transfection include, (i) 

failure of particles to traverse the SC barrier (Kendall et al., 2004), (ii) variability in the 

depth of microparticle delivery (Kendall et al., 2004), (iii) reduction in cell viability 

following administration (Raju et al., 2006), (iv) the unknown fate of non-biodegradable 

carrier particles within the treated tissue, (v) limited dosing capacity (resulting in 

repeated applications) (Baca-Estrada et al., 2000) and (vi) device impracticalities i.e. 

high cost and the requirement of a helium propellant system. These shortcomings 

encourage continued improvement to the device (Kendall, 2006) and have also 

stimulated interest in alternative novel cutaneous delivery methods.

5.1.2. Intradermal pDNA injection as a method of cutaneous gene delivery

Direct intradermal injection of a naked pDNA solution and the subsequent transfection 

of epidermal cells was first illustrated in mouse models in 1994 (Raz et al., 1994). 

However, it was studies by Hengge and co-workers in subsequent years that recognised 

the potential of this simplistic delivery strategy (Hengge et al., 1996). Investigations 

using murine, porcine and, most significantly, ex vivo human skin recorded localised 

expression of the p-galactosidase expressing reporter plasmid throughout the epidermis 

as early as 4hrs after treatment (Hengge et al., 1996). Expression was located in those 

cells surrounding the point o f injection and predominated in the stratum spinosum layer, 

although transfection o f basal and stratum granulosum cells was also evident.

These preliminary investigations were succeeded by a study comparing the expression 

of the pCMVp reporter plasmid in both canine mucosa and porcine skin (Hengge et al., 

1998). Interestingly, following injection o f 20pg o f the plasmid formulation the 

mucosal cells produced more encoded protein than the skin; 3.75pg o f p-galactosidase 

detected within an 8mm biopsy of the buccal mucosa and just lOOng detected within 

skin. This was attributed to the lower proliferative potential o f epidermal cells within 

the skin (Hengge et al., 1998).

Several studies by Sawamura and co-workers have also assessed intradermal pDNA 

injection for localised gene delivery (Meng et al., 1999, Meng et al., 2002, Sawamura et 

al., 2005, Sawamura et al., 2002a, Sawamura et al., 1998) and have demonstrated 

successful transfection of epidermal cells using a range of plasmids, from 0.6Kb to 9Kb
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in size (Sawamura et al., 2002b). However elegant experiments using a rhodamine- 

labelled GFP expressing plasmid also highlighted the inefficiencies o f the technique 

(Sawamura et al., 2002b). Although nearly all cells of the epidermis appeared to be 

interacting with the plasmid 4hrs after injection, this was not converted into significant 

levels o f transfection.

Obstacles presented within the extracellular domain (Barry et al., 1999, Ruponen et al.,

2003) and during the intracellular trafficking of exogenous DNA from the cell surface 

to the nucleus are well recognised (Howell et al., 2003, Lechardeur et al., 1999, 

Lechardeur et al., 2005, Wiethoff and Middaugh, 2003). For non-mitotic cells, including 

keratinocytes, it is estimated that at least 100,000 plasmids must be delivered to the 

cytoplasm of each cell to ensure passive penetration of plasmid material into the nucleus 

(Lechardeur et al., 2005). It is therefore not unreasonable to assume that the tortuous 

transition of a plasmid from its point of delivery in the superficial dermis, through the 

BMZ and across the epidermal cell membrane (Sawamura et al., 2002a) does not deliver 

sufficient quantities of a plasmid to facilitate efficient transfection. Therefore although 

direct intradermal injection is a useful tool, some even suggesting that it will have a 

place in the clinic in the future (Sawamura et al., 2002a), recent studies continue to 

highlight transfection inefficiencies as the principle hurdle to therapeutic progression 

(Meng et al., 2002, Meykadeh et al., 2005).

A number of strategies have been employed to heighten transfection efficiencies 

following intradermal injection of naked pDNA. These include subsequent 

electroporation of the tissue to improve cell membrane penetration (Babiuk et al., 2003, 

Drabick et al., 2001, Glasspool-Malone et al., 2000), the inclusion of nuclease inhibitors 

to reduce pDNA degradation by endonucleases (Barry et al., 1999, Glasspool-Malone et 

al., 2000) and the use o f pDNA solutions of increasing ionic strength (Chesnoy and 

Huang, 2002) (thought to promote transfection by reducing interaction with tissue 

components and thus improving cellular delivery). However, although all o f these 

strategies promoted cutaneous pDNA delivery, the resulting transfection efficiency 

remained low and unpredictable.
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5.1.3. Topical application of formulations for cutaneous gene delivery

5.1.3.1. Naked DNA

Topical application o f a nucleic acid formulation to facilitate efficient expression of the 

exogenous gene within the underlying viable epidermis would be the most desirable 

method of delivery, based upon the simplicity o f formulation and ease o f application. 

However, penetration of macromolecular therapies is restricted by the inherent barrier 

properties of the SC. A recent study demonstrated permeation of ~20ng plasmid/cm2 

through dermatomed human skin over a 24hr period and recorded measurable levels of 

the transcribed mRNA, both within the localised skin and lymph tissue (Kang et al.,

2004). However, a permeation of 20ng plasmid/cm2 translated to only 0.01% of the 

applied pDNA dose.

Topical application o f naked pDNA to untreated skin therefore typically results in 

inefficient and irreproducible transfection of cells, primarily associated with the hair 

follicle (Fan et al., 1999, Udvardi et al., 1999). The physicochemical properties of 

pDNA (zeta potential o f -30mV to -70mV, a hydrodynamic diameter of -lOOnrn and a 

MW of 1-10 million) (Piskin et al., 2004) and the barrier properties of the functional 

human skin barrier suggest that topical application of an aqueous pDNA solution to 

untreated human skin will never become a plausible method of facilitating efficient, 

reproducible cutaneous transfection. Topical pDNA application therefore often serves 

as a negative control in cutaneous transfection studies (Choi et al., 2006, Li and 

Hoffmann, 1995, Meykadeh et al., 2005, Mikszta et al., 2002).

5.1.3.2. Non-viral vectors

Lipoplexes have been utilised in cutaneous transfection strategies as a convenient, 

inexpensive vector that can increase the penetration of nucleic acids across the SC and 

more importantly promote the transfection o f viable cells in the underlying epidermis 

without significant disruption o f the skin surface. The hair follicle has been recognised 

as a portal for the entry of cationic liposome-DNA complexes and hence topical 

lipoplex application facilitates the transfection of keratinocytes within the follicular 

structure (Alexander and Akhurst, 1995, Domashenko et al., 2000, Li and Hoffmann, 

1995). Partition o f lipid based complexes into the sebum that surrounds the hairshaft
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and subsequent interaction o f the complex with the surrounding cells has been proposed 

as the delivery pathway (Birchall et al., 2000). Cells within the anagen phase, when the 

follicle is actively growing and cells are dividing, have been identified as particularly 

susceptible to transfection (Alexander and Akhurst, 1995, Domashenko et al., 2000, 

Hoffmann, 2000, Li and Hoffmann, 1995). A number of lipid based vesicles are 

therefore currently being analysed for cutaneous gene delivery, including conventional 

cationic liposomes (Babiuk et al., 2002, Baca-Estrada et al., 2000, Birchall et al., 2000, 

Shi et al., 1999), non-ionic liposomes (Niosomes) (Raghavachari and Fahl, 2002, Vyas 

et al., 2005), biphasic lipid delivery systems (Babiuk et al., 2002, Foldvari et al., 2006b) 

and transferosomes (Cevc et al., 1995, Kim et al., 2004). However although promising, 

the transfection efficiencies for topical lipoplexes remains low (Foldvari et al., 2006a, 

Meykadeh et al., 2005).

Other notable non-viral topical vector formulations include chitosan-based 

nanoparticles (Cui and Mumper, 2001) and microemulsion systems (Cui and Mumper, 

2002). Both types of particle enhance cutaneous transfection in comparison to topically 

applied pDNA. However although they offer a number of distinct advantages, including 

reproducibility o f nanoparticle formation, high DNA entrapment rates and 

biocompatibility o f formulation components, transfection levels remain relatively 

inefficient. Recent studies have also assessed the inclusion of adjuvants (Cui and 

Mumper, 2003) and the use of biolistic methods o f cutaneous delivery (Cui et al., 2003, 

Mumper and Cui, 2003) to improve the transfection efficiencies of these non-viral 

formulations.

Notably, prior to topical application of naked pDNA and non-viral gene therapy vectors 

investigators often utilise mechanical methods to disrupt the skin surface and thus 

enhance delivery. Tape/adhesive stripping (Liu et al., 2001, Udvardi et al., 1999, 

Watabe et al., 2001, Yu et al., 1999), depilatory products (Alexander and Akhurst, 1995, 

Shi et al., 1999) and abrasion (Yu et al., 1999) before topical application of 

formulations has been used to promote cutaneous gene expression (Choi et al., 2006, 

Foldvari et al., 2006b).

174



C h a p t e r  5

5.1.3.3. Viral vectors

Viral vectors have been successfully exploited as vehicles for delivering exogenous 

nucleic acid sequences to the skin (Ghazizadeh and Taichman, 2000, Hengge and 

Mirmohammadsadegh, 2000, Shi et al., 1999, Smith et al., 1985, Tang et al., 1997). 

However the questionable safety profile and the inflammatory response of the host 

organism to these viral vectors (Raper et al., 2003) has steered a significant number of 

investigators towards safer and potentially more simplistic non-viral methods.

5.1.4. Minimally invasive methods of cutaneous gene delivery

As previously discussed, microneedle mediated cutaneous delivery of nucleic acid 

formulations remains relatively unexplored (Section 1.5.7). Mikstza and colleagues 

have transfected keratinocytes in murine skin by lateral application of microenhancer 

arrays (MEA) across the skin surface, subsequent to the topical application of a pDNA 

solution encoding the firefly luciferase enzyme (Mikszta et al., 2002). This 

‘microabrasion’ application method resulted in transfection levels comparable to 

intradermal injection and up to 2,800 fold greater than control samples. However to 

achieve this level o f transfection at least six passages o f the device across the skin 

surface were required. This study also assessed the ability of the MEA device to 

facilitate DNA immunisation. MEA delivery of the hepatitis B surface antigen (HBsAg) 

encoding plasmid to a mouse model resulted in antibody titres that were significantly 

greater and less variable than those achieved with intradermal injection (Mikszta et al., 

2002). Such improvements in transfection levels are supported by studies using a 

puncture mediated method (similar to the tattooing process) (Ciemik et al., 1996) and 

microseeding (in which DNA is delivered by oscillating needles to a depth of 2mm) 

(Eriksson et al., 1998).
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5.2. AIMS AND OBJECTIVES 

Chapter Aims

Previous chapters have demonstrated the cutaneous delivery capabilities of microneedle 

devices and have proven the functionality of nucleic acid formulations. Studies within 

this chapter aim to demonstrate transfection o f epidermal cells within ex vivo human 

skin tissue and to investigate the suitability o f a microneedle array device as a means of 

facilitating localised delivery and expression of a reporter plasmid. Naked pDNA and 

the LPD non-viral vector will be assessed in these studies.

Chapter Objectives

• To transfect excised human skin by intradermal injection of a naked pDNA 

solution, thereby demonstrating tissue viability and reporter plasmid 

functionality.

• To translate the in vitro transfection capabilities of an LPD vector, noted in 

Chapter 4, to ex vivo human skin.

• To evaluate wet-etch and dry-etch microneedle arrays for the cutaneous delivery 

o f nucleic acid formulations and their subsequent expression within human skin.
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5.3. METHODS

5.3.1. Materials

All reagents were obtained from Fisher (Loughborough, UK) and were of analytical 

grade, unless otherwise stated.

The pCMVp plasmid (7.2 kb), the pEGFP-Nl plasmid (4.7kb) and the recombinant 

galactosidase enzyme were obtained from Promega Corporation (Madison, WI). The 

Qiagen® Plasmid Mega Kit was obtained from Qiagen® (Crawley, UK).

l,2-Dioleoyl-3-triammonium-tropane (DOTAP) was purchased as the methyl sulphate 

salt from Avanti Polar Lipids (Alabaster, AL, USA). Protamine sulphate, BSA, 

chloroform and components o f the X-gal staining solution were obtained from Sigma- 

Aldrich Chemical Company (Poole, UK).

Cell culture plastics were obtained from Coming-Costar (High Wycombe, UK). MEM 

(EAGLES) 25mM HEPES, Dulbecco’s Modified Eagle’s Medium (DMEM 25mM 

HEPES), FBS, trypsin-EDTA and penicillin-streptomycin solution were obtained from 

Invitrogen Corporation (Paisley, UK). Histology materials were obtained from RA 

Lamb Limited (Eastbourne, UK) with the exception of toluidine blue, Harris’ 

haematoxylin, Gurrs’ eosin aqueous solution 1%, Histomount® and xylene (low 

sulphur) which were purchased from Lab 3 (Bristol, UK).
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Equipment:-

Fluostar Optima Plate Reader (BMG Labtech, Aylesbury, UK)

Eppendorf Biophotometer (Cambridge, UK)

FACScalibur System (Beckton Dickinson, California, UK)

Extrusion apparatus (Northern Lipids, Vancouver, Canada)

Olympus IX-50 Inverted Microscope System (Olympus Optical, London, UK) 

Olympus BX-50 Microscope System (Olympus Optical, London, UK)

Olympus DP 10 Microscope Digital camera system (Olympus Optical, London, UK) 

Olympus U-RF-L-T Power Supply Unit (Olympus Optical, London, UK)

Anthos Labtec HT2 96 well plate reader (Anthos, Salzburg, Austria)

Schott KL1500 fibre optic light source (Schott UK Limited, Stafford, UK)

Stemi 2000-C stereomicroscope (Zeiss, Welwyn Garden City, UK)

Olympus Camedia C-4040 Zoom Digital Camera (Olympus Optical, London, UK)
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5.3.2. Ex vivo cutaneous transfection investigations

5.3.2.1. Ex vivo organ culture

Following removal from the donor, fresh excised human skin was placed immediately 

in nutrient skin media (DMEM supplemented with 5% FBS and 1% penicillin/ 

streptomycin) and transported on ice to the laboratory. Under containment 2 conditions 

sub-cutaneous fat was removed from the tissue by blunt dissection and the tissue was 

dried. The skin was then pinned to a dissection board and a significant proportion of the 

dermis was removed using a stainless steel razor blade and discarded. The formulation 

under investigation and control formulations were then applied to the split-thickness 

skin using either a hypodermic needle or a microneedle array. The combination of 

formulations and devices discussed during these studies are detailed in subsequent 

sections. The tissue was then divided into treatment areas (~ lcm 2) and maintained at the 

air-liquid interface at 37°C:5%C02 in organ culture for 24hrs prior to detection of the 

reporter gene (Section 4.3.4).

Experiments were conducted using human tissue from a number of donors, using 

various concentrations o f plasmid solutions and a range o f microneedle array devices. 

Therefore the age o f the skin donor, the concentration and identity of the formulation 

applied and the device selected to facilitate cutaneous delivery are detailed within the 

figure legend to which they relate.

5.3.3.2. Ex vivo transfection methods (Non-microneedle)

During this investigation a number non-microneedle methods of cutaneous pDNA 

delivery have been investigated. Delivery techniques have included intradermal 

injections, topical application o f an LPD and a lateral hypodermic scrape amongst 

others. The concentration o f pDNA solutions and the identity o f reporter plasmids used 

in the experiments discussed in this Chapter have been summarised in the table overleaf 

(Table 5.1). The text accompanying the table describes each o f the formulations used, 

the experimental controls and the method o f cutaneous application.
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Table 5.1. Experimental protocols used in the discussed studies that examined the 

transfection of ex vivo human skin with non-microneedle methods of delivery. The 

figure within this chapter to which each o f the methodologies relates has been included.

Figure Formulation Controls

Cutaneous

application

method

5.2
pCMVp solution 

(1 mg/ml)

Negative: PBS 

Negative: pEGFP-Nl 

solution

Intradermal 

Injection (dipped)

5.3
pCMVp solution 

(1 mg/ml)

Negative: PBS 

Positive: p- 

galactosidase enzyme

Intradermal

Injection

5.4
pEGFP-Nl solution 

(1 mg/ml)
Negative: PBS Buffer

Intradermal

Injection

N/A
LPD complex 

(pCMVP)

Negative: pEGFP-Nl 

solution 

Positive: pCMVp 

concentrated solution

Intradermal 

Injection & 

Topical 

Application

Concentrated
5.5

pCMVp solution
Negative: PBS

Lateral

Hypodermic

Scrape

• Intradermal injection: The lower section (-50% ) o f a 200pl pipette tip was 

removed and a hypodermic needle (Microlance® 3 0.5x25G) was attached to the 

remaining tip. This in turn was attached to a pipette (2-20pl) to permit exact 

volumes to be injected intradermally into the skin. Intradermal injection 

involved insertion o f the needle at an acute angle to the skin surface in order to 

deliver the formulation as close to the skin surface as practically possible.

• Intradermal injection (dipped): Before intradermal injection (described 

previously), the hypodermic needle was immersed in red fluorescent 

nanospheres (lOOnm diameter, lp l concentrate/lOpl deionised water) for 5secs.
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• Lateral Hypodermic Scrape: The hypodermic needle was immersed in a

concentrated plasmid solution for 30secs. The tip was then inserted vertically 

into the uppermost skin layer and dragged laterally across the skin surface.

• LPD complex: LPD gene therapy complexes contained 2.5pg of pCMVp in

30pl o f the colloidal suspension in a l:2:3w/w ratio o f pDNA to protamine to

DOTAP liposome, as previously described (Section 3.3.2.1). The formulation 

was applied to the skin by intradermal injection and topical application. 30 pi 

and 60pl formulation volumes were investigated.

• pCMVp solution: A 1 mg/ml plasmid solution within TE buffer at pH8.0. A

concentrated solution was 2.5-3.0mg/ml.

• p-galactosidase enzyme: A solution o f the bacterial P-galactosidase enzyme 

(1 Unit/lOOpl) was included in early studies as a positive control.
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5.3.3.3. Ex vivo transfection methods (Microneedle devices)

A number of microneedle devices and application methods have been employed during 

these investigations. For simplicity, these studies have been summarised in Table 5.2 

(wet-etch microneedles) and Table 5.3. (dry-etch microneedles). During investigations, 

the orientation o f the skin sample and the application of the device were progressively 

adapted to mimic the in vivo skin environment more closely and to improve the 

penetration o f the microneedle device. The subsequent text describes the formulations 

used, the orientation of the skin, the microneedle applicator and the application 

technique for both types o f microneedle device studied (Table 5.2 & 5.3).

All reporter plasmid formulations were prepared by plasmid propagation and isolation 

procedures (Section 4.3.2). The concentrations used were between 2.5-3.5mg/ml for all 

experiments. The specific plasmid concentration utilised within individual experiments 

is detailed in the related figure legend. Alternative reporter plasmids were used as 

controls.

Wet -etch Microneedles

For details of the experimental parameters within wet-etch microneedle studies, the 

reader is referred to Table 5.2.

• Microneedle applicators: The microneedle arrays were attached to applicators 

to enable the device to be applied in a more controlled manner. Initial studies 

attached ~0.5cm2 arrays to a syringe plunger using a cyanoacrylate adhesive 

(plunger). However, the majority o f studies used wet-etch devices where arrays 

were attached to steel cylindrical columns (2-5cm in length) using an epoxy 

resin (rod).

• Rolling application: Wet-etch microneedles were applied to skin using the 

rolling application method (Section 2.3.8). Briefly, this involved maintaining 

split-thickness human skin under tension over a curved cork platform. The 

plasmid solution was pipetted onto the skin surface and the device was then
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applied to the topically treated area. The microneedle array was positioned at a 

45° angle to the skin surface and rotated forward through an angle of 

approximately 90°, finishing at a 45° angle to the skin surface in the opposing 

direction. Downward force was maintained throughout the application. This was 

considered to be a single application. To apply the device to the skin a second 

time the contact o f the microneedle and the skin was maintained and the device 

was then rotated in the opposite direction. Therefore, in studies investigating the 

influence o f repeated microneedle application on transfection efficiency, where 

the array was applied on ten occasions, the array was moved repeatedly forwards 

and backwards in this ‘rocking’ motion.

• Lateral application: For lateral application, split-thickness human skin (Section 

4.3.4) was maintained under tension on a cork dissection board in a flattened 

state. The formulation to be investigated was topically applied to the skin 

surface. The microneedle device was then applied in a downward motion to the 

edge of the treated area, under relatively constant pressure, for a period of 

approximately 2secs and subsequently moved laterally across the skin surface 

(Fig 5.1).

O s   -------    n  O

Figure 5.1. A  schematic representation o f the lateral transfection process using wet-etch 

microneedle devices, (i) the formulation was applied and distributed over the tissue 

surface, (ii) the microneedle device was applied in a downward motion to the skin 

tissue, (iii) the device was moved in a lateral motion over the topically treated area.
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Table 5.2. A summary of experimental protocols for investigations using wet-etch 

microneedles. The figure within this chapter to which each of the methodologies relates 

has been included.

Figure Formulation Controls
Skin

set-up
Applicator

Tip

Shape

TNI

Array

ID

Application 

method (No 

of

applications)

5.10

Cone

pCMVp

solution

Cone

pEGFP-

N1

Curved

skin
Plunger Frustum 1 Rolling (2)

5.11

Cone

pCMVp

solution

Cone

pEGFP-

N1

Curved

skin
Rod Frustum 2 Rolling (1)

5.12

Cone

pCMVp

solution

Cone

pEGFP-

N1

Curved

skin
Plunger

Frustum

&

Sharp

1 & 6 Rolling (2)

5.13

Cone

pCMVp

solution

Cone

pEGFP-

N1

Curved

skin
Rod Frustum 3 Rolling (10)

5.14

Cone

pCMVp

solution

Cone

pEGFP-

N1

Flat

skin
Rod Frustum 2 Lateral (1)

5.15

(A-D)

5.15A-

H

Cone

pCMVp

solution

Cone

pEGFP-

N1

Flat

skin
Rod Frustum 6 Lateral (1)

1 Cone
5.15E

pCMVB
5.161

solution

Cone

pEGFP-

N1

Flat

skin
Rod Frustum 8 Lateral (1)
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Dry-etch Microneedles

For details o f the experimental parameters within dry-etch microneedle studies, the 

reader is referred to Table 5.3.

• Microneedle applicators: the dimensions o f the dry-etch microneedles

(0.5x1 cm) did not permit attachment to the steel rods used previously for wet- 

etch arrays. These arrays were therefore mounted upon aluminium stubs

(normally used to mount samples for SEM analysis) using double sided adhesive 

tape.

• Rolling application: Arrays were applied to the skin using a rolling application

method, as previously detailed for the wet-etch arrays. The only difference was

that split-thickness skin to which the array was applied was maintained on a 

flattened cork support, in a similar manner to that previously detailed for the 

lateral application.

5.3.3.4. p-galactosidase detection in human skin tissue

The skin was processed, 24 hours after treatment, to identify those cells successfully 

transfected with pCMVP (Section 4.3.6.2). On removal from the staining solution the 

sample was rinsed, positioned on a glass microscope slide and visualised en face  

(Section 4.3.6.3). Selected skin samples were sandwiched between two glass slides. 

This reduced the dermatoglyphics of samples, thereby improving visualisation of blue 

pigmented areas on the skin surface. Samples were then cryosectioned and tissue 

histology was examined using techniques described previously (Section 4.3.6.3).

Prior to en face  imaging, selected tissue samples were also counterstained with Nuclear 

Fast Red (NFR), a low MW dye normally used in histological techniques. A 5%w/v 

solution of NFR in deionised water was applied topically to the microneedle treated area 

and removed after 30mins. The surface o f the skin was then swabbed repeatedly with 

ethanol and the sample was mounted between two microscope slides and visualised en 

face  (Section 4.3.6.3). NFR penetrates disruptions in the SC, stains the underlying tissue 

and therefore permitted visualisation of microneedle fashioned conduits in the skin.
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Table 5.3. A summary of experimental protocols utilised during investigations with 

dry-etch microneedles. The figure within this chapter to which each of the experimental 

procedures relates has been included.

Figure Formulation Controls

Skin

set

up

Applicator
Cork

ID

Application

method

5.17

5.18

Cone

pCMVp

solution

Cone

pEGFP-

N1

Flat

split

skin

Aluminium

Stub
15 Rolling (2)

5.19

5.20

Cone

pCMVp

solution

Cone

pEGFP-

N1

Flat

split

skin

Aluminium

Stub
15 Rolling (2)

5.3.3.5. GFP detection in human skin tissue

Following administration o f pEGFP-Nl to the skin and an incubation period of 24hrs in 

organ culture, the skin was rinsed briefly in PBS and embedded in OCT medium. The 

tissue was then cryosectioned and visualised by fluorescence microscopy (Section 

4.3.6.3).
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5.4. RESULTS AND DISCUSSION

5.4.1. Intradermal injection of pDNA formulations into human skin

5.4.1.1. Evidence o f  cutaneous transfection

Before assessing the potential of the microneedle device as a platform for cutaneous 

gene delivery, it was fundamental to establish the functionality of the plasmid reporter 

system in human skin and in doing so demonstrate the viability of the excised tissue in 

organ culture. Direct intradermal injection o f naked pDNA is an established method of 

delivery for the localised expression of exogenous reporter genes (Hengge et al., 1996). 

Previous experience with this delivery technique (Section 4.3.5.2 & 4.3.6.2) indicated 

that a significant proportion of the dose would be delivered into the dermal region. 

Contact of a nucleic acid formulation with viable epidermal cells therefore relied upon 

upward migration of the formulation from its delivery point in the superficial dermis 

and/or direct interaction with cells that surround the ‘needle track’.

Following intradermal administration o f a pCMVp solution (1 mg/ml), the skin was 

maintained in culture for 24hrs to permit transcription and translation o f the lacZ gene 

and subsequently exposed to the X-gal substrate. Successful expression of the reporter 

plasmid was observed as discrete blue areas o f pigmentation, up to 250pm in diameter 

(Fig 5.2A), within the upper layers o f the skin (Fig 5.2B). Subsequent H&E staining 

highlighted the cellular architecture o f the tissue and revealed localisation of the 

pigment to the viable epidermis (Fig 5.2C). Tissues injected with the pEGFP-Nl 

reporter plasmid, as a control, did not display any signs o f blue pigmentation (data not 

shown). Prior to pCMVp injection, the needle was ‘dipped’ in a fluorescent red 

nanoparticle suspension. This was used to determine the proximity o f the transfection 

point to the location of the hypodermic needle upon delivery of the plasmid solution. 

Traces of red fluorescence, located in the dermal region underlying the point of 

transfection (Fig 5.2D), confirmed that the discrete area o f blue pigmentation was 

directly associated with the point o f intradermal injection.
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Figure 5.2. Successful transfection following intradermal injection of lOpl pCMVp 

(1 mg/ml) using a hypodermic needle that was dipped in a fluorescent nanosphere 

formulation prior to administration. A, scale bar = 1mm (inset scale bar = 100pm). 

Cryosections of the tissue revealed the location of the transfection point and the tissue 

architecture B, C, D, scale bar = 50pm. Donor skin was obtained from a 58 year old 

female.
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Further studies using a different donor tissue confirmed these observations (Fig 5.3). 

The two areas o f transfection observed following intradermal injection of the pCMVp 

formulation were associated with a major disruption o f the skin surface (Fig 5.3B & 

5.3D). It may be assumed that the disruption was caused by penetration of the 

hypodermic needle into the tissue. Histological evaluation indicated that viable 

epidermal cells were transfected at the point of the needles entrance into the skin 

(needle track) and also in a cellular region at the tip of the needle, from which the 

formulation was delivered (Fig 5.3C & 5.3E). The two areas of transfection noted were 

therefore produced by a single injection.

Transfection following intradermal pCMVp injection was always witnessed in discrete 

cellular areas associated with the point o f injection. This was attributed to a 

combination o f promoted intracellular delivery and restricted dissemination of the intact 

formulation from its site o f deposition (Hengge et al., 2001, Lin et al., 2001, 

Mirmohammadsadegh et al., 2002). Large membrane disruption (Budker et al., 2000), 

where the cell membrane is temporarily disrupted by the mechanics of the delivery 

technique, and hydrodynamic pressure (Zhang et al., 2004), where the plasmid is forced 

through transient pores in the cell membrane, have been proposed as mechanisms of 

intracellular plasmid delivery following direct pDNA injection.

The pEGFP-Nl plasmid, encoding for GFP, was selected as an alternative reporter 

system to confirm observations made with pCMVp. However the autofluorescence of 

human skin (Fig 5.4 A), which appeared heightened by mechanical disruption of the skin 

surface, resulted in significant levels o f endogenous green fluorescence surrounding the 

point of injection (Fig 5.4B). This compromised exclusive detection o f GFP and the 

reporter plasmid was therefore discarded as a method by which to detect cutaneous 

transfection using microneedle devices.
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Figure 5.3. Successful transfection following intradermal injection of 20pl o f pCMVp 

(1 mg/ml) can be detected en face  following X-gal staining. A; scale bar = 500pm. 

Cryosections of the tissue revealed the exact location of transfection (B & D) and H&E 

staining permits visualisation of the surrounding tissue architecture (C & E). B-E scale 

bar = 100pm. Donor skin was obtained from a 51 year old female.
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B

4L * 
/ > %

Figure 5.4. Cryosections of human tissue following intradermal injection of 50pl of 

pEGFP-Nl (1 mg/ml). A, scale bar = 50pm; B, scale bar = 100pm. Donor skin was 

obtained from a 54 year old female.

In conclusion, successful expression of exogenous pDNA within ex vivo human skin 

confirmed the cellular viability of human skin maintained within organ culture and 

validated the applicability of this model for future studies. Detection of the pCMVp 

encoded P-galactosidase enzyme and the omission of endogenous pigmentation in 

control samples confirmed the usefulness of this reporter plasmid. However, although 

the location and intensity of blue pigmentation identified the co-ordinates, and to a 

degree the relative levels of transfection, it did not permit identification of individually 

transfected cells. However diffuse colouration, attributed to permeation of the p- 

galactosidase enzyme into the extracellular environment, is consistent with other studies 

that have utilised this reporter system (Hengge et al., 1995, Hengge et al., 1998, Hengge 

et al., 1996).
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5.4.1.2. Inefficient cutaneous transfection

In this investigation over one hundred intradermal injections have been conducted, 

using fourteen donor tissues, over a period of six months (Appendix II -  TableAl). 

However, successful transfection of human tissue was only evident on 17 occasions. 

Inefficient and poorly reproducible transfection was attributed to limitations of 

intradermal injection as a method for localised gene delivery (Meng et al., 2002, 

Meykadeh et al., 2005). However, although transfection efficiency was poor it is likely 

to be an underestimate of in vivo transfection. Removal of skin from the donor organism 

reduces tissue viability, resulting in a concomitant reduction (up to ten times) in the 

achievable transfection levels (Hengge et al., 1998, Hengge et al., 1996), and detection 

of the pCMV(3 reporter gene also has acknowledged limitations, the X-gal staining 

procedure only identifies -80%  of successfully transfected cells within skin tissue 

samples (Couffinhal et al., 1997).

The architecture of the skin (Fig 5.2 & Fig 5.3), itself highly variable between the 

examined donor tissues, may have also contributed to the poor reproducibility of 

transfection. Logically, tissues with thinner epidermal layers may be considered more 

difficult to transfect due to a reduced population of viable cell candidates and a smaller 

target area for cutaneous transfection. Inherent inter- and intra- individual differences in 

skin structure is a significant challenge to the design of all novel cutaneous delivery 

systems. The objective is therefore to develop a platform that can deliver therapeutics to 

a heterogeneous tissue in a reproducible manner.
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5.4.1.3. Assessing plasmid dose

Preliminary investigations, conducted in the same donor tissue indicated that increasing 

the concentration of the pCMVp solution (from 1 mg/ml to 2.5mg/ml) promoted 

identifiable cutaneous transfection. However amassing o f the experimental data 

achieved over the investigated period did not support these initial observations 

(Appendix II-Table A l). Hengge and co-workers suggest that intradermal injection of 

up to 20pg of pDNA in a volume of 50-1 OOpil is optimal, higher concentrations 

providing negligible improvements to transfection levels (Hengge et al., 1995). 

However, Sawamura and co-workers oppose this observation, indicating that 6pg in 

30jil is the optimal dose (Sawamura et al., 2002b). Investigations that utilise 

electroporation to enhance transfection following intradermal injection use up to 200pg 

of pDNA in lOOpl (Drabick et al., 2001, Dujardin and Preat, 2004). The optimal pDNA 

dose and volume remains undetermined and therefore concentrated plasmid solutions 

were selected for the majority of studies discussed in the subsequent text.

5.4.2. Selecting a nucleic acid formulation to facilitate transfection of human skin

Human keratinocytes maintained in mammalian cell culture required a non-viral vector, 

the LPD, to facilitate cell transfection (Section 4.4.2). However, this did not translate to 

human skin studies. Both topical application and intradermal injection of LPD 

formulations failed to demonstrate detectable levels o f the P-galactosidase enzyme at 

24hrs post-treatment (data not shown). In a parallel experiment, in the same donor 

tissue, intradermal injection of naked pCMVp facilitated observable levels of 

transfection (Section 5.4.1.1). This is a direct reversal o f observations made in 

mammalian cell culture. Failure of the LPD complex ex vivo may be attributed to the 

reduced plasmid concentration in the formulation (28.7pg/10pl in concentrated pDNA 

compared to 2.5pg/30pl in the LPD). The concentration o f pDNA in the LPD complex 

was restricted due to precipitation of LPD vectors at increased concentrations and small 

sample volumes. An optimal topical dose o f ~8pg/30ml has been suggested for cationic 

complexes (Alexander and Akhurst, 1995, Birchall et al., 2000). However, conflicting 

studies indicate that only 3pg of a reporter plasmid is required to facilitate detectable 

cutaneous transfection (Sawamura et al., 2002b).
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The failure o f topically applied and injected LPD formulations to facilitate identifiable 

cutaneous transfection within human skin therefore prompted employment o f naked 

pDNA for studies using microneedle devices. Recognition of naked pDNA injections, in 

the absence of additional carrier systems, as an effective nucleic acid delivery system in 

both skin and muscle tissue is increasing (Basner-Tschakarjan et al., 2004, Budker et 

al., 2000, Mirmohammadsadegh et al., 2002). It has even been suggested that 

keratinocytes possess a specific ability to take up and process naked pDNA by a novel 

receptor-mediated process. However, the identity o f the receptor, mechanisms of 

transmembrane movement and intracellular trafficking remain unknown (Basner- 

Tschakarjan et al., 2004, Budker et al., 2000, W olff and Budker, 2005).

5.4.3. Lateral disruption of the skin surface

Topical application o f naked pDNA to human skin was used as a control in numerous 

experiments during the course of this investigation (data not shown) and, in agreement 

with previously published data, this failed to facilitate detectable levels of localised 

transfection (Choi et al., 2006, Li and Hoffmann, 1995, Meykadeh et al., 2005, Mikszta 

et al., 2002). It therefore became apparent that delivery of the formulation across the SC 

barrier was critical to the effective transfection o f epidermal cells. Intradermal injection 

of pDNA was poorly reproducible (highly dependent upon the skill o f the administrator) 

and evidence o f transfection was restricted to a single point of injection. Microneedle 

array devices were therefore considered to offer a more controlled method of delivery 

that could expose larger areas o f the viable epidermis to the pDNA formulation 

following multiple penetrations o f the skin surface.

As a prelude to gene delivery investigations using microneedles, a hypodermic needle 

was immersed in a concentrated solution o f pCMVp and ‘scratched’ along the skin 

surface. Two of the four treated areas displayed discrete points of transfection directly 

associated with the needle track (Fig 5.5A). This was not replicated using the lmg/ml 

formulation. Transverse sections revealed significant tissue damage, the epidermal layer 

separating from the underlying dermis in the treated area (Fig 5.5B). This might be 

expected to retard transfection efficiency as successful expression of pDNA is 

dependent upon the functionality of cells within the tissue.
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Figure 5.5. Successful transfection, indicated by arrow, following lateral application of 

a hypodermic needle (dipped prior to application in pCMVp (2.9mg/ml)) across ex vivo 

human skin. A, scale bar = 500pm; B, scale bar = 200pm. Donor skin was obtained 

from a 77 year old female.
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5.4.4. Microneedle transfection

The transfection o f human skin tissue with pCMVp, following both intradermal 

injection and the lateral disruption method, encouraged investigation of the microneedle 

device as a means to improve the reproducibility and efficiency of transfection in a less 

invasive fashion. A number o f wet- and dry-etch microneedle devices were assessed and 

several application methods used to promote delivery of the pCMVp formulation.

5.4.4.1. Wet-etch microneedles

5.4.4.1.1. Rolling wet-etch microneedle application

Application o f a frustum tipped wet-etch microneedle device facilitated successful 

cutaneous gene delivery and subsequent expression in human skin (Fig 5.6A & 5.6B). A 

uniform pattern of pigmented transfection points was indicative of the spacing between 

microneedles within the array (Fig 5.6A & 5.6B). Each transfected area was over 

100pm in diameter and the pigment was located in close proximity to microneedle 

disruptions within the viable epidermis (Fig 5.6C & 5.6D). Microchannels were 

approximately 50pm in diameter and on occasion extended from the skin surface to the 

papillary dermis (Fig 5.6C & 5.6D). It should be noted that no evidence of successful 

transfection was observed in any control samples included in this experiment or in the 

microneedle studies that are discussed in the remainder of this Chapter (data not 

shown). The exclusive transfection o f cells proximal to the microconduit suggested that 

the pDNA formulation was retained in close proximity to its point of delivery. This was 

synonymous with those observations made following intradermal pDNA injection 

(Section 5.4.1.1). Elevated transfection levels within the localised region may also be 

explained by enhanced intracellular delivery o f pDNA resulting from temporary 

mechanical disruption to cell membranes upon contact with individual microneedle 

structures (Budker et al., 2000).
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Figure 5.6. En face images and H&E stained cryosections following wet-etch 

microneedle application (TNI -  Array 1) to human skin, pre-treated topically with lOpl 

pCMVp (2.5mg/ml). B, scale bar = 200pm; C, D, scale bar = 100pm Donor skin was 

obtained from a 52 year old female. (The shape of individual microneedles used in this 

study is included as an insert in image A, scale bar = 100 pm).
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Expression o f the lacZ  gene in alternative donor tissues confirmed the functionality of 

the device (Fig 5.7). Unlike intradermal injection (Fig 5.2 & 5.3) or lateral application 

of a hypodermic needle across the tissue surface (Fig 5.5), the tissue architecture 

proximal to the point o f microneedle insertion was maintained (Fig 5.7C & 5.7D). This 

supported the fundamental concept of the microneedle device as a minimally invasive 

delivery system.

During microneedle studies, 1 mg/ml pCMVp formulations were less effective than 

more concentrated solutions (2.5-3.5mg/ml). More interestingly, transfection of the skin 

tissue was only evident when the formulation was applied to the skin surface prior to 

application of the device. The failure of pDNA to transfect cells upon topical 

application to a microneedle treated area may be explained by a combination of factors 

including ineffective penetration o f the pDNA into microconduits, limited permeation 

of the pDNA through microconduits, poor uptake by local cells, degradation by 

endonucleases and/or interaction with tissue components within the external 

environment. The adherence o f pDNA to the SC may also retain the nucleic acid on the 

skin surface and thus prevent epidermal permeation (Foldvari et al., 2006b, Kuo and 

Chou, 2004). It may therefore be postulated that application of the device to an area of 

skin pre-treated with the pCMVp formulation results in active transfer of the 

formulation from the skin surface, through the SC and possibly into the underlying 

epidermal cells.

However although microneedle arrays facilitated cutaneous expression of exogenous 

nucleic acid formulations, the procedure was poorly reproducible. Not all treated 

samples displayed visible signs of transfection and not all microneedles within a single 

array device facilitated transfection. As frustum-tipped microneedles may not efficiently 

penetrate into skin tissue (Section 2.4.3.3), further studies were conducted using pointed 

tipped microneedles.
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Figure 5.7. Unstained and H&E stained cryosections following wet-etch microneedle 

application (TNI -  Array 2) to human skin, pre-treated topically with lOpl pCMVp 

(2.5mg/ml). A, B, D, scale bar = 100pm; C, scale bar = 250pm. Donor skin was 

obtained from a 72 year old female. (The shape o f individual microneedles used in this 

study is included as an insert in image A, scale bar = 100 pm).
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Discrete areas o f blue pigmentation were noted throughout the viable epidermis, in 

close proximity to microconduits created by a pointed microneedle array (Fig 5.8). 

Counterstaining with NFR permitted detection of successful microdisruptions in the SC 

and indicates successful penetration of all microneedles (Fig 5.8B). Two identifiable 

areas of transfection from a potential sixteen may be considered inefficient. However, it 

must be remembered that such observations are synonymous with the established 

inefficiencies o f non-viral gene therapy and are therefore unlikely to be attributable 

solely to the limitations o f the device.

The transfection levels witnessed in initial studies with wet-etch microneedle array 

devices were unpredictable and inefficient. Concentrated pDNA solutions and the 

analysis of multiple skin samples were required to obtain positive evidence of 

transfection. Alternative methods of microneedle application were therefore 

investigated in an attempt to improve transfection efficiency.
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Figure 5.8. En face  images and cryosections following wet-etch microneedle 

application (TNI -  Array 6) to human skin, pre-treated topically with lOpl pCMVp 

(2.87mg/ml). TNI - Array 6 was pictured alongside the skin in image A. The skin 

pictured in image B was treated topically with NFR to highlight disruptions in the skin 

surface. A, B, scale bar = 1mm; C, D, scale bar = 100pm. Donor skin was obtained 

from a 72 year old female. (The shape o f individual microneedles used in this study is 

included as an insert in image C, scale bar = 100 pm).
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5.4.4.1.2. Multiple wet-etch microneedle application

Multiple applications of microneedle devices to skin tissue specimens, pre-treated with 

a concentrated pDNA solution, produced a notable increase in the quantity of 

transfection points but also a greater heterogeneity in the diameter and intensity of these 

pigmented areas (Fig 5.9). This may be attributable to inconsistencies in delivery of the 

formulation using the microneedle device and/or the architecture of the skin at the point 

of transfection.

Figure 5.9. En face  images following four wet-etch microneedle (TNI -  Array 3) rolling 

applications to human skin, pre-treated topically with 40pl pCMVp (2.5mg/ml). A, B 

scale bar = 1mm. Donor skin was obtained from a 48 year old female. (The shape of 

individual microneedles used in this study is included as an insert in image A, scale bar 

= 100 pm).

At present the levels of transfection observed following this method of pCMVp delivery 

remain irreproducible, some human skin tissue samples demonstrated minimal or even 

no signs of transfection following treatment whilst others displayed significant evidence 

of transfection (Fig 5.9). Nevertheless, these studies highlight the ability o f a 

microneedle array to facilitate concurrent transfection at multiple points in human skin. 

Progressive improvements to the design o f microneedle devices, a greater understanding 

of cutaneous transfection and optimisation o f the pDNA formulations will be required 

to facilitate more predictable levels o f cutaneous gene expression following wet-etch 

microneedle treatment.
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5.4.3.1.3. Lateral wet-etch microneedle application

Lateral application o f the microneedle device across the skin surface resulted in 

significant physical disruption of the tissue (Fig 5.10A). However, in doing so this 

facilitated heightened levels of cutaneous transfection. All experiments displayed 

evidence o f P-galactosidase expression although, levels again varied between donor 

tissues and between individual samples. As noted previously (Section 2.4.5.2), the 

integrity o f the microneedle device was maintained following repeated lateral 

application to the skin surface, thereby allaying safety concerns regarding the 

fragmentation o f microneedles within the skin.

Initial studies with the robust frustum shaped microneedles resulted in over 15 

identifiable points o f transfection (Fig 5.1 OB), directly associated with lateral 

disruptions in the skin surface (Fig 5 .IOC). Further studies emphasised the potential of 

this technique for cutaneous gene delivery, with over 50 distinguishable points of 

transfection located within or alongside microneedle ‘tracks’ (1.5-2cm in length) (Fig 

5.11 & 5.12D). However, no points o f transfection were noted in any other areas of the 

tissue. The reason why positively transfected areas o f tissue occur at discrete loci along 

the length o f the microneedle ‘track’ remains unclear. Further work is required to 

ascertain if the formulation is delivered homogenously along the length of the 

microneedle track and/or if  transfection points are associated with cellular areas that 

recover following mechanical disruption by the device.

Transverse sections suggested that lateral application caused significant disruption of 

the epidermal architecture, with damage extending into the papillary dermis (Fig 5.12A 

& 5.12B). It is interesting to note however that the integrity of the skin was maintained 

in the areas o f tissue between the lateral abrasions. This was in contrast to observations 

made following lateral abrasion o f the tissue with a hypodermic needle (Fig 5.4). 

Therefore, although this is obviously a more invasive method of delivery than the 

original microneedle concept (Section 1.5.1), further work to determine the recovery of 

skin following application, the risks o f infection and the levels o f tissue damage are 

warranted before it is discounted as a potential method to promote cutaneous gene 

delivery.
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Figure 5.10. A. An en face  image following application of a wet etch array (TNI - Array 

1), in a lateral motion, followed by topical application of methylene blue. A, scale bar = 

1mm. Donor skin was obtained from a 57 year old female. (The shape of individual 

microneedles used in this study is included as an insert in image A, scale bar = 100 pm). 

B, C. En face images following application of a wet-etch microneedle array (TNI - 

Array 2), in a lateral motion, to human skin pre-treated topically with pCMVp 

(2.5mg/ml). The skin pictured in image C has also been treated topically with NFR to 

highlight disruptions in the skin surface. B, C scale bar = 1mm. Donor skin was 

obtained from a 68 year old female. (The shape of individual microneedles used in this 

study is included as an insert in image B, scale bar = 100 pm).
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Figure 5.11. En face  images following application of a wet-etch array (TNI - Array 8), 

in a lateral motion to human skin, pre-treated topically with 20jnl pCMVp solution 

(3.5mg/ml). A, B, C scale bar = 1mm; D, E scale bar = 500pm. Donor skin was 

obtained from a 76 year old female (A-D) and an 80 year old female (E). (The shape of 

individual microneedles used in this study is included as an insert in image E, scale bar 

= 100 pm).
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Figure 5.12. Cryosections taken following application of a wet-etch array (TNI - Array 

8), in a lateral motion, across human skin pre-treated topically with 20pl pCMVp 

solution (3.5mg/ml). A and F are unstained cryosections whilst all other sections are 

H&E stained. A, B, C scale bar = 500pm; D, E, F, scale bar = 100pm. Donor skin was 

obtained from a 76 year old female.
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Experiments conducted in different donor tissues illustrated the contribution of the skin 

architecture to the reproducibility and efficiency of transfection (Fig 5.13). Significantly 

more transfection points of greater intensity were witnessed in the skin pictured in Fig 

5.13A, compared to that pictured in Fig 5.13B. A reduction in the epidermal width 

means a narrower target region for localised delivery, a resultant decrease in the 

numbers of cells surrounding microneedle fashioned disruptions and therefore a reduced 

population of cells exposed to the exogenous pDNA formulation (Fig 5.13B). A thinner 

epidermis may also be associated with increased tissue fragility. Therefore irreparable 

damage to epidermal cells following application of the microneedle device may have 

also contributed to the reduced transfection levels witnessed in this donor tissue.

Figure 5.13. Cryosections following application of a wet-etch array (TNI - Array 8), 

with frustum shaped microneedles, across human skin pre-treated topically with 20pl 

pCMVp solution (3.5mg/ml). A, B scale bar = 100pm. Donor skin was obtained from a 

76 year old female (A) and an 80 year old female (B).

5.4.3.2. Dry-etch microneedles

Successful exogenous gene delivery to human skin by wet-etch microfabricated 

microneedles and improved transfection following increased disruption of the SC layer 

prompted investigation of dry-etch needles as a method of facilitating cutaneous gene 

delivery. These devices possess a 15 x 16 arrangement of microneedles which were 

expected to produce a considerable increase in the frequency of microconduits in the 

skin surface and a resultant increase in the number of observable transfection points.

207



C h a p t e r  5

Penetration of the dry-etch microneedle device facilitated localised expression of 

pCMVp in the tissue surrounding the created microdisruptions (Fig 5.14). However 

NFR counterstaining also identified a large number of microchannels that failed to 

display any associated evidence of P-galactosidase expression and thus again 

highlighted the inefficiencies of cutaneous gene expression. Increased magnifications 

revealed co-localisation o f the blue pigmentation with the NFR stain, thus confirming 

the transfection of cells directly associated with microchannels (Fig 5.14C).

This was confirmed by histological evaluation (Fig 5.15A & 5.15D). Although the 

length of microprojections (250-280pm) in the dry-etch array were comparable to that 

of the wet-etch, the dimensions of microconduits and the disruption of the tissue 

architecture following application of the dry-etch device was less than that observed 

with its wet-etch counterpart (Fig 5.15). The reduction in invasiveness was attributed to 

the shape of individual microprojections and/or the increased density of microneedles 

within the array pattern. Previous investigators have noted a ‘bed of nails’ effect when 

using microneedle arrays with high densities of microprojections (Yang and Zahn, 

2004).
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Figure 5.14. En face  images following application of dry-etch microneedles (TNI -  

Array 15) to human skin, pre-treated topically 20 pi of pCMVp (1 mg/ml). The skin has 

also been treated topically with NFR to highlight microneedle disruptions in the skin 

surface. A, scale bar = 1mm; B scale bar = 500pm; C scale bar = 100pm. Donor skin 

was obtained from a 52 year old female. (The shape of individual microneedles used in 

this study is included as an insert in image A, scale bar = 100 pm).
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Figure 5.15. Cryosections following application o f a dry-etch microneedle device (TNI 

-  Array 15) to human skin treated topically with 20pl of pCMVp (lmg/ml). Sections 

E&F have been H&E stained to visualise tissue architecture. A, scale bar = 500pm; B, 

C, F scale bar = 100pm; D, E scale bar = 50pm. Donor skin was obtained from a 52 

year old female. (The shape o f individual microneedles used in this study is included as 

an insert in image A, scale bar = 100 pm).
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The relative inefficiencies o f dry-etch microneedles as facilitators of cutaneous 

transfection were confirmed in subsequent studies. All tissue samples showed evidence 

of transfection (N=4) but the number and intensity of pCMVp transfection points varied 

both between and within samples, with only 7-8 transfection points observed following 

penetration o f up to 240 microneedles (Fig 5.16A).

Histology o f dry-etch microneedle treated human tissue identified transfected areas with 

a focus o f pigmentation in the lower layers o f the viable epidermis i.e. the basal layer 

and stratum spinosum (Fig 5.15E & 5.15F). Interestingly, in the subsequent experiment 

transverse sections identified disparate areas o f transfection within the skin architecture 

(Fig 5.16B-5.16E). Pigmentation located exclusively within the upper epidermal layers 

(Fig 5.16C), the papillary dermis (Fig 5.16D) and the basal epidermis (Fig 5.16E) 

suggested that cells can potentially be transfected at any point throughout the epidermal 

region. Transverse sections of the larger pigmented area also revealed two intense areas 

of transfection within a single transfection point (Fig 5.17). Successful transfection of 

cells in the upper layers, where keratinocytes are in the latter stages of comification, 

was surprising. Prior to these investigations, cells within this layer were considered to 

be essentially ‘non-viable’ with regard to gene therapy. Investigations therefore indicate 

that specific regions o f the skin may be transfected exclusively with a nucleic acid 

formulation. However, improvements to the delivery device and advances in non-viral 

nucleic acid formulations will be required to reduce the impact o f inter and intra

individual differences in the skin structure on the targeted, reproducible transfection of 

localised skin cells.
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Figure 5.16. En face images and cryosections following application of a dry-etch 

microneedle device (TNI -  Array 15) to human skin, pre-treated topically with 20pl 

pCMV(3 (2.5mg/ml). Sections C-E are H&E stained. B, scale bar = 1mm; C, D, E scale 

bar = 50pm. Donor skin was obtained from 58 year old female. (The shape of individual 

microneedles used in this study is included as an insert in image A, scale bar = 100 pm).
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Figure 5.17. An en face image and cryosections following application of a dry-etch 

microneedle device (TNI -  Array 15) to human skin, pre-treated topically with 20pl 

pCMVp (2.5mg/ml). Section C has been H&E stained. B, C scale bar = 100pm. Donor 

skin was obtained from a 58 year old female. (The shape of individual microneedles 

used in this study is included as an insert in image A, scale bar = 100 pm).
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5.5. CONCLUSIONS

Investigations using human keratinocytes, maintained in mammalian cell culture, 

required an LPD vector formulation to facilitate detectable levels of transfection. 

However, topical application, intradermal injection and microneedle mediated 

cutaneous delivery of the LPD formulation failed to facilitate identifiable expression 

within excised human skin. Conversely, intradermal injection of naked pCMVp 

facilitated transfection of epidermal cells at the point of injection (Hengge et al., 1995, 

Hengge et al., 1996). The functionality of a naked pDNA formulation in human skin 

illustrated the importance of conducting investigations in representative experimental 

models. Results obtained from ex vivo human skin can therefore be more confidently, 

but tentatively, extrapolated to the clinical setting.

Transfection of discrete areas of human skin following, intradermal injection of a naked 

pDNA formulation, was unpredictable and inefficient. Application of a microneedle 

array to the skin can facilitate concurrent transfection of epidermal cells in several areas 

of the tissue. Transfection was directly associated with microchannels created by the 

device, it may even be postulated that mechanical disruption of cell membranes 

promoted transfection at the point of microneedle insertion. However microneedle 

mediated cutaneous transfection was inefficient and poorly reproducible and, although 

increasing the frequency of microneedle application and/or applying the device laterally 

can promote transfection, significant advances are required.

It is unclear whether unpredictable transfection efficiencies are a result of inter-/intra- 

individual differences in the skin structure, ineffective delivery of pDNA across the SC 

by the microneedle array, the inefficient transfection of cells by non-viral vector 

formulations or by a combination of such factors. Continued improvements to the 

delivery capabilities of microneedle arrays and optimisation of nucleic acid 

formulations are therefore required to address such inefficiencies.
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CHAPTER 6 

Discussion
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6.1. GENERAL DISCUSSION

Subsequent to a seminal report by Prausnitz and co-workers in 1998 (Henry et al., 

1998a), the microneedle array device has stimulated significant interest as a novel 

means to increase the permeability of the skin barrier to a range of therapeutic 

candidates, including macromolecules. During this period the concept of the device, as a 

pain and blood free method for creating microconduits through the outer skin layers, has 

been established. However, the technology remains in its infancy and therefore the 

optimal design of microneedle arrays, therapeutic candidates to be delivered by this 

method and their potential role within the clinical setting has not been fully elucidated. 

The aim of this investigation was to demonstrate the ability of a solid silicon 

microneedle array to facilitate exogenous gene expression within human skin, with the 

ultimate ambition of utilising devices as non-invasive gene delivery platforms for 

therapeutic strategies such as DNA vaccination.

The development o f microneedle arrays, used in this study, relied upon close 

collaboration and regular communication with engineers that were responsible for the 

manufacture of devices. Initial attempts to fabricate microneedles, using dry-etch 

techniques (Henry et al., 1998a), resulted in heterogeneous and fragile microneedle 

structures that failed to penetrate the skin surface and often splintered or broke during 

application. However, optimisation of dry-etching conditions and the development of a 

wet-etching manufacturing procedure generated more robust microneedles that 

maintained their integrity following repeated applications to the skin surface.

Wet- and dry-etch microfabrication techniques can produce microneedle devices with 

different physical characteristics. The dry-etch devices used in these studies consisted of 

microprojections with pointed tips and cylindrical bodies, arranged in a densely 

populated array pattern (up to 400 needles on a 1cm array). The dimensions of 

individual microneedles ranged from 150pm to 250pm in length and 50pm to 160pm in 

diameter. Wet-etch devices comprise consisted of just nine or sixteen pyramidal 

microneedles, approximately 280pm in height with base diameters of up to 200pm. 

Generally, these microneedles were larger and more robust than their dry-etch 

counterparts and could also be created with either pointed or frustum shaped tips.
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In agreement with published data, needle spacing, needle geometry and the method of 

array application significantly influenced the penetrative capabilities of microneedles 

(Park et al., 2005, Yang and Zahn, 2004). Dry-etch devices were less invasive, 

microchannels rarely exceeding depths o f greater than 100pm. Frustum tipped wet-etch 

devices however created microchannels that were frequently over 50pm in diameter and 

extended approximately 200pm into the treated human skin. It is perhaps unsurprising 

that wet-etch devices produced more significant tissue damage, given their morphology 

and the greater insertion forces required for penetration of frustum shaped tips into the 

skin (Davis et al., 2004). Ideally a minimal level o f invasiveness, based upon the spatial 

frequency of microchannels and their magnitude, would be determined for each 

microneedle device and its proposed therapeutic application.

The method of application is fundamental to the efficiency and reproducibility of 

microneedle penetration. Dry-etch devices penetrated the skin surface upon application 

of downward pressure. However this application method failed to translate successfully 

to wet-etch devices. This may be explained by the increased spacing between individual 

microneedles within the wet-etch array and the ability o f the skin to deform ‘around’ the 

needle. This may be further complicated by the elasticity of skin and the 

dermatoglyphics of the tissue surface. It may seem logical to increase the microneedle 

density in order to facilitate penetration. However, the manufacturing methods utilised 

in wet-etching technology restrict microneedle density within these arrays and the 

optimal microneedle density is yet to be determined.

It is not only the array characteristics that determine the penetration efficacy of a device, 

but also its method of application to the skin surface. For example, adoption of a 

‘rolling application’ greatly improved skin penetration of wet-etch devices. The 

pressure of microneedle application, the application technique and the tension of the 

skin, onto which the device is applied, are therefore all likely to contribute to the 

penetrative capabilities of individual microneedles within an array. Within the 

laboratory these parameters are controlled by the user and reproducible application 

therefore relies upon repeated experience with the devices. However, for microneedle 

devices to progress to the clinic and possibly public use, a uniform method of 

application that can ensure reproducible penetration is required. A microneedle
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applicator must therefore be developed in synergy with advances in the design and 

engineering of microneedle arrays.

Repeated application of microneedle arrays to human skin resulted in contamination of 

the device with biological debris, mechanical damage to individual microneedles, 

(particularly at the periphery of the array) and a subsequent reduction in penetration 

efficiency. The structural fragility of silicon microneedles may result in ineffective 

delivery of a formulation and will certainly raise concerns regarding the deposition of 

silicon, a material with unproven biocompatibility, in skin. However, optimisation of 

the array characteristics and the continued development of polymer (Park et al., 2005) 

and metal (Cormier et al., 2004) microneedle arrays may produce more robust, 

clinically acceptable, cost effective and disposable devices that are more suitable for use 

in clinical practice.

For non-viral gene therapy applications, therapeutic DNA is commonly formulated into 

nanoparticle structures. The restrictive SC barrier would prevent effective delivery of 

such nanoparticles into skin. Microchannels, created in the skin by a microneedle 

device, provide a potential route through which such materials can permeate in order to 

access the underlying cells of the viable epidermis. Studies using model membranes, in 

Chapter 3, indicated that migration of a nanoparticle across microneedle treated skin 

was influenced, in part, by the dimensions of the microconduit, the surface charge of the 

particles and the surface charge of the skin membrane. Nanoparticles (approximately 

lOOnm in diamter) diffused rapidly across aqueous filled microconduits that were 

significantly greater than the particle diameter (10pm). However for 1.2pm 

microconduits, a reduced channel size and adsorption to the membrane surface resulted 

in retention of nanoparticles and retarded permeation across the membrane.

In human epidermal studies, the increased complexity of the biological environment and 

non-uniform penetration o f the skin by microneedle devices resulted in significant 

variability in nanoparticle permeation through the epidermal membrane. Cumulative 

adhesion of nanoparticles to the skin surface and the formation of colloidal aggregates 

within microconduits appeared to occlude membrane microchannels and prohibit trans- 

epidermal penetration of applied nanoparticles. It is instinctive to assume that creating
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an aqueous conduit of greater diameter than the therapeutic will facilitate effective 

intra/transdermal delivery. However studies indicated that the physicochemical 

properties of a nanoparticle formulation and its interaction with components of the 

biological tissue may significantly influence its permeation through microneedle treated 

skin.

In vitro transfection of HaCaT cells using the pCMVp, pEGFP-Nl and pGL3 reporter 

plasmids demonstrated the functionality of an LPD vector in effective gene transfer and 

permitted validation of the techniques employed to detect the encoded protein. However 

in vitro transfection results are often not translated to the more complex biological 

environment and therefore animal models are more commonly used in cutaneous gene 

therapy studies. Unfortunately, significant differences in the architecture and biology of 

human and animal skin mean that results obtained from animal models do not always 

extrapolate directly to in vivo human skin. This was of particular relevance in our 

studies where the parameters of the delivery technology, i.e. microneedle length and 

composition, are specifically designed and optimised to enable delivery to human skin. 

During this investigation, establishment o f a successful method of organ culture to 

maintain the viability o f excised human skin has therefore provided a representative 

laboratory model that can be utilised in the assessment of cutaneous gene delivery 

strategies.

Intradermal injection of naked pDNA was successfully employed in the mid 1990’s to 

overcome the SC barrier and transfect cells in the underlying viable epidermis of ex vivo 

human skin (Hengge et al., 1995). Observations from Chapters 4 and 5 suggest that 

cutaneous gene expression relies primarily upon interaction of the formulation with 

those cells surrounding the needle track and that the majority of the dose will be 

deposited, ineffectively, in the connective tissue of the dermis region. Transfected cells 

were generally restricted to discrete areas, possibly associated with increased 

intracellular delivery resulting from mechanical disruption of cell membranes and/or the 

hydrodynamic delivery of nucleic acid.

Cell transfection following intradermal injection of pDNA was unpredictable and 

irreproducible. Limited permeation of the pDNA formulation from the point of delivery,
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degradation of the delivered nucleic acid by endonucleases present within the tissue 

(Barry et al., 1999), interaction of the formulation with components of the tissue 

architecture, an inability to deliver a sufficient number of plasmid copies to cells within 

the tissue (Lechardeur et al., 2005) or inefficiencies of non-viral gene delivery may all 

contribute to this inefficiency. The microneedle array creates more penetrations in the 

skin surface, over a larger area, and therefore was predicted to deliver the exogenous 

nucleic acid formulation to a greater number of epidermal cells.

Cutaneous delivery of naked pCMVp by wet-etch microneedle arrays and subsequent 

staining for the reporter gene product confirmed gene expression throughout all cellular 

layers of the viable epidermis in areas proximal to microneedle mediated conduits. This 

suggests that even keratinocytes in the latter stages o f differentiation, when cells are 

synthesising increasing numbers of intracellular keratin filaments and organelles are 

effectively degrading, are responsive to transfection with exogenous pDNA. Dry-etch 

arrays have demonstrated the ability to transfect discrete cellular regions within the 

viable epidermis, e.g. papillary dermis, basal epidermis and the stratum spinosum. 

However, it would be premature to conclude that microneedle devices can be designed 

to reproducibly transfect cells in specific regions of the tissue. In fact, it may be argued 

that intra- and inter-variability in epidermal architecture may never permit the delivery 

and expression of gene therapeutics to targeted regions o f the viable epidermis.

Interestingly, topical application of a nucleic acid formulation following microneedle 

treatment o f skin did not facilitate detectable exogenous gene expression in any of the 

experiments conducted. Cutaneous transfection was only observed when the pDNA 

formulation was applied to the skin surface prior to microneedle treatment. This 

phenomenon may be explained by microneedle assisted penetration of the pDNA 

formulation to the epidermal region. Promoted delivery may also be supplemented by a 

concomitant enhancement in intracellular penetration, resulting from mechanical 

disruption to cell membranes by individual microneedles. Active assisted delivery of a 

nucleic acid formulation may therefore be required to facilitate cutaneous transfection 

and so the development of hollow microneedles may be timely (Davis et al., 2005, 

Martanto et al., 2006, Wang et al., 2006). A hollow microneedle offers a potentially 

controlled environment through which a therapeutic can be actively delivered to the
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target tissue. This would eliminate reliance upon passive diffusive properties of a 

formulation and may increase intracellular gene delivery under hydrodynamic pressure. 

However, future studies will need to consider the shear forces imposed upon pDNA 

during injection from a micron sized aperture (Trebotich et al., 2003) and the possible 

interaction o f formulations with the interior surface of the microneedle structure.

Numerous points o f transfection were observed following topical pDNA application and 

microneedle treatment o f the skin surface. However, the efficiency and reproducibility 

of exogenous gene expression was generally poor. Multiple application or lateral 

disruption of the tissue resulted in increased disruption of the skin surface and notable 

increases in detectable gene expression but transfection remained unpredictable. A 

commonly employed and well characterised non-viral gene vector, the LPD complex, 

was therefore used to condense pDNA and promote cell transfection and DNA uptake. 

However, intradermal injection and microneedle mediated delivery of this formulation 

failed to facilitate detectable levels of gene expression in human skin. These 

observations are in direct contrast with mammalian cell culture studies where a non- 

viral vector was essential for successful pDNA expression. Although suggested 

mechanisms for this phenomenon exist, including receptor-mediated uptake and large 

membrane disruption, the efficacy o f naked pDNA within skin tissue remains poorly 

understood (Basner-Tschakarjan et al., 2004, Budker et al., 2000, Mirmohammadsadegh 

et al., 2002). Clearer elucidation o f the mechanisms by which naked pDNA facilitates 

transfection o f keratinocytes within human skin is required in order to enhance delivery 

strategies.

Unpredictable microneedle mediated gene expression in human skin is not solely 

attributed to limitations in the delivery capabilities o f the device. The intra- and inter

individual differences in the structure o f human skin that have been observed in this 

investigation are well documented (Roberts and Walters, 1998). This results in the 

exposure of variable numbers of epidermal cells to the nucleic acid formulation and a 

resultant disparity in the detectable transfection levels, within and between samples. 

This may be regarded as an inherent problem to the successful progression of 

microneedle mediated gene delivery to the clinic and indeed for cutaneous malignancies 

or the treatment of inheritable disease states, where treatment may rely upon the
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transfection o f all or a significant percentage of cells in the target region, this presents a 

significant barrier. However in the case of DNA vaccination, a reproducible minimum 

level of cellular transfection that can stimulate an effective immune response may be 

sufficient. Given the residence of LCs in the viable epidermis, it may be argued that the 

depth of pDNA delivery is as important as the levels of gene expression. Optimising the 

number o f microneedle penetrations to expose as many viable epidermal cells, including 

LCs, as possible and creating an effective pharmaceutical formulation to promote 

efficient transfection of epidermal cells, may therefore enhance the efficacy of a 

cutaneous DNA vaccination. The ultimate goal would be to produce an efficacious, 

pain-free, disposable, microneedle vaccination that can be self-administered and does 

not possess the infection risks that are associated with injections.

During this investigation the capabilities of solid silicon microneedle devices for the 

cutaneous delivery o f macromolecules, including non-viral gene therapies, has been 

demonstrated. However, despite illustrating proof-of-principle, further advances in 

engineering techniques, materials and design of microneedle arrays is required to ensure 

more reproducible and controlled penetration of the skin. Using microneedles for 

cutaneous gene delivery will also rely upon concurrent advances in gene delivery 

technologies. Indeed, it may be argued that the potential of a microneedle device for 

cutaneous gene therapy will only be realised subsequent to developments in the 

efficiency of gene therapy vectors. However, the emergence of the first commercial 

gene therapy product in China (Peng, 2005, Wilson, 2005) and the continued 

improvement of cutaneous non-viral gene vectors (Lisziewicz et al., 2006, Lisziewicz et 

al., 2005) permits optimism towards the development o f clinically useful and 

efficacious cutaneous gene therapies.
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6.2. FUTURE STUDIES

The cutaneous delivery and expression of exogenous pDNA is currently inefficient and 

poorly reproducible. This may be attributable to the limitations of the microneedle 

device, the inefficiencies associated with non-viral gene therapy, the reduced viability 

of ex vivo skin or a combination of such factors.

Continued dialogue with microneedle engineers is essential to the development of a 

microneedle array. Further work is required to optimise penetration characteristics of 

microneedle devices and to understand how the morphology and geometry of 

microneedle arrays affects their insertion into human skin.

The staining methodology used to detect the P-galactosidase enzyme in this study 

resulted in a diffuse area o f pigmentation that may miscalculate transfection levels 

(Couffinhal et al., 1997). Future studies should utilise anti-p-galactosidase antibodies to 

locate individually transfected cells within the epidermis. This may be combined with 

histological measures to determine the viability of epidermal cells in excised human 

skin tissue and following application o f a microneedle array (Jacobs et al., 2002, Jacobs 

et al., 2001, Jacobs et al., 2000). It would be particularly interesting to ascertain the 

viability of those cells that surround the microneedle channel following insertion of the 

device and to determine if  irreparable damage to cells results a diminished ability to 

express the exogenous plasmid or whether transient damage to cell membranes 

facilitates intracellular uptake and promotes transfection.

These improvements may also be supplemented by improvements in pharmaceutical 

formulation. The currently employed, primitive, methods of pDNA application may 

contribute to ineffective transfection and therefore the development of semi-solid 

formulations or the creation o f a coated microneedle device may improve the uniformity 

of gene delivery. For example, recent investigation of a calcium phosphate coated 

microneedle structure (Shirkhanzadeh, 2005) may be combined with the use calcium 

phosphate as a non-viral gene delivery vector (Roy et al., 2003) to produce a coated 

microneedle device that can protect nucleic acid formulation from degradation and
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facilitate controllable release, in situ, to the viable cells surrounding a microneedle 

fashioned microconduit.

Although the pCMVp reporter plasmid has been successfully employed to facilitate 

microneedle mediated exogenous gene expression within human skin, observations 

need to be supported by the use of alternative reporter plasmids and the use of systems 

that can infer quantitative measures o f gene expression. Autofluorescent areas created 

within human skin upon disruption o f the membrane prevented unambiguous detection 

of the GFP protein, encoded from pEGFP-Nl, and therefore its employment as a 

secondary qualitative indicator of transfection was compromised during this study. The 

luciferase reporter plasmid was employed in vitro to provide quantitative assessment of 

gene expression levels. However, time constraints and the increased practical 

difficulties associated with extracting the luciferase enzyme from skin tissue prevented 

its successful use in ex vivo studies. A quantitative measure of exogenous gene 

expression within human skin would permit optimisation of delivery and formulation 

strategies and determine the concentration of protein that can be expressed following 

microneedle mediated delivery. Development of a robust quantitative assessment of 

exogenous gene expression is therefore o f paramount importance to progression of these 

studies within the laboratory.

Physical disruption of the skin barrier has raised a number of safety concerns within the 

transdermal delivery community. The holes created by syringe insertion are expected to 

heal within 24-48 hours (Baxter and Mitragotri, 2005) and so it is not unreasonable to 

predict that microneedle holes, which are of significantly smaller dimensions, might be 

expected to heal in a reduced time. In the future it will therefore be important to assess 

the response o f the skin to microneedle induced tissue damage and to assess the risks 

that may, or may not, be associated with disruption o f the skin barrier function.
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1. Cardiff School of Engineering (CSE)

Illustrated below are the dry-etch silicon microneedle arrays created by Cardiff Schoool 
of Engineering (CSE), Cardiff University, under the direction of Professor David 
Barrow.
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2. Tyndall National Institute (TNI)

Illustrated below are the dry-etch silicon microneedle arrays created by Tyndall national 
institute (TNI), Cork, under the direction of Dr Anthony Morrissey.
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APPENDIX II 

(Experimental data)
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1. Excitation and Emission Spectra fo r  fluorescent nanospheres
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3. A summary of pCMVP Intraderm al Injection Experiments

Table A1 -  A summary of the results achieved over a six-month period from 

experiments investigating the intradermal injection of pCMVP into viable human skin. 

The total number of skin samples injected for each donor tissue is detailed. Positive 

identification of transfection is indicated by the asterix * and if more than one dose of a 

formulation has been used, its identity is listed and its N number stated.

Donor (N)
Trans
fection

(N)

Form ulation (N)
* indicates transfected samples

ID

- 7 1 lmg/ml - 30pl*(4) / 3.67mg/ml - 20pl(3) C58
51 10 6 lmg/ml - 20pl(5)****, 10pl**(5) C66
87 4 0 lmg/ml - 10pl(4) C71
66 4 0 lmg/ml - 10pl(4) C71
67 8 2 lmg/ml - 20pl**(8) C76
63 5 0 lmg/ml - 10pl(5) C81
58 16 1 lmg/ml - 10pl*(16) C93
58 8 1 lmg/ml - 20pl*(8) C97
77 8 2 lmg/ml - 10pl(4) / 2.93mg/ml - 10pl**(4) C102
61 16 0 lmg/ml - 20pl(8) / 2.93mg/ml - 20pl(8) C105
78 4 4 2.87mg/ml - 10pl****(4) c m
41 8 0 2.87mg/ml - 10pl(8) Cl 14
67 4 0 2.87mg/ml - 10pl(4) Cl 18
78 12 0 2.87mg/ml - 10pl(12) C122

TOTAL 114 17 lm g/m l plasmid (11 from 71) 
Concentrated plasmid (6 from 43)
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Abstract
Microneedle arrays increase skin permeability by forming channels through the outer physical barrier, without stimulating pain 
receptors populating the underlying dermis. It was postulated that microncedle arrays could facilitate transfer of DNA to human 
skin epidermis for cutaneous gene therapy applications. Platinum-coated “wet-etch” silicon microneedles were shown to be of 
appropriate dimensions to create microconduits, approximately 50 pm in diameter, extending through the stratum corneum 
(SC) and viable epidermis. Following optimisation of skin explant culturing techniques and confirmation of tissue viability, the 
ability of the microneedles to mediate gene expression was demonstrated using the (3-galactosidase reporter gene. Preliminary 
studies confirmed localised delivery, cellular internalisation and subsequent gene expression of pDNA following microneedle 
disruption of skin. A combination of this innovative gene delivery platform and the ex vivo skin culture model will be further 
exploited to optimise cutaneous DNA delivery and address fundamental questions regarding gene expression in skin.

K eywords: Microneedles, human skin, DNA, skitt organ culture, ex vivo, gene expression

Introduction

Microfabricated microneedle arrays offer a minimally 
invasive method for breaching the external barrier that 
prevents delivery of macromolecular therapeutics to the 
viable region of skin (Henry et al. 1998). Microneedles 
designed to increase skin permeability are generally 
<400 pm long, being of sufficient length to penetrate 
the stratum corneum (SC), the rate limiting barrier to 
diffusion, without stimulating the pain receptors that 
populate the underlying dermis. Their application is 
therefore free from pain or discomfort (Kaushik et al. 
2001). Microneedle treatment results in the formation of 
transient micro-pores in the SC (Chabri et al. 2004) 
thereby facilitating the transfer of macromolecular nucleic 
acids, such as siRNA, anti-sense oligonucleotides and

plasmid DNA (pDNA), to the viable epidermis or dermis. 
This in turn provides the opportunity for cutaneous gene 
therapy applications including the treatment of cutaneous 
malignancies (Hart and Vile 1994), hyperproliferative skin 
disorders (Menter 1998), alopecia (Li and Hoffman 1995, 
Ahamed et al. 1998), genodermatoses (Uitto and 
Pulkkinen 2000) and possible exploitation of the skin as 
a bioreactor for the production of pharmacologically 
relevant molecules (Lin et al. 2000). Genetic vaccination 
provides a method of immunizing patients by introducing 
DNA into cells, leading to expression of foreign antigen 
and the subsequent induction of an immune response 
(Fynan et al. 1993, Raz et al. 1994, Shi et al. 1999). Intra- 
cutaneous DNA vaccines take advantage of the excellent 
antigen-presenting capabilities of epidermal Langerhans
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cells in eliciting a T-cell mediated immune reaction, 
leading to a more efficient and lower cost vaccination 
compared with the use of recombinant proteins (Lin et al. 
2000).

It has been reported that microfabricated micro
needle arrays, prepared from a range of substrate 
materials, including silicon (Henry et al. 1998, Chabri 
et al. 2004), various metals (McAllister et al. 2003), 
glass (McAllister et al. 2003) and polymers (McAllister 
et al. 2003, Park et al. 2005) can be used to enhance the 
transdermal penetration of a range of therapeutically 
active and representative model medicaments such as 
calcein (Henryetal. 1998), methylene blue (Chabri etal. 
2004), trypan blue (McAllister et al. 2003), methyl 
nicotinate (Sivamani et al. 2005), insulin (Martanto 
et al. 2004), desmopressin (Cormier et al. 2004), 
protein antigens (Matriano et al. 2002) and lOOnm 
nanoparticles (Chabri et al. 2004). In addition, it has 
been demonstrated that microprojection structures can 
facilitate the delivery and functional expression of DNA 
vaccine in animal models (Mikszta et al. 2002). To date, 
however, the microneedle-assisted delivery of DNA to 
human skin resulting in gene expression in the viable 
epidermal layer has not been reported. Given that 
anatomical and biological differences between human 
skin and animal skin are well documented (Panchagnula 
et al. 1997), it is essential that microneedle arrays are 
designed appropriately for the delivery of pDNA to the 
appropriate cellular populations in human skin as well as 
the more commonly used animal models. In the present 
study, microneedles were used to facilitate localised 
delivery, cellular internalisation and subsequent gene 
expression of pDNA topically applied to ex vivo human 
skin. This will allow for future ex vivo investigations 
developing the optimum microneedle device compo
sition and morphology, gene delivery vector and type of 
formulation to bring about optimal skin penetration, 
epidermal targeting and gene expression efficiency.

The microneedle arrays used in this study were 
prepared with high accuracy and excellent reproducibility 
from standard silicon wafers using a potassium hydroxide 
(KOH) “wet etching” approach. Wet etching is a 
commonly employed micromachining technique with 
advantages over dry-etch procedures, routinely used to 
make microneedles, including low processing and 
development costs (Wilke et al. in press). Wet etching of 
silicon to form microneedles can be a complex process but 
in our studies control of microneedle morphology was 
achieved by exploiting the crystal structure of silicon and 
its resulting etch characteristics in KOH.

Materials and methods

Materials

The plasmid pCMVp (7.2 kb), containing the (3-galacto- 
sidase reporter gene (Clontech, Palo Alto, USA), was 
propagated using a transformed D H5a strain of Eschericia

coli, colonised onto an ampicillin selective Luria Bertani 
agar plate and cultured overnight at 37°C. The plasmid 
DNA wras harvested and purified using a Qiagen Plasmid 
Mega Kit (Qiagen, Crawley, UK). All culture plastics 
were obtained from Coming-Costar (High Wycombe, 
UK). Dulbecco’s Modified Eagle’s Medium (DMEM), 
25 mM HEPES, foetal bovine serum, penicillin-strepto
mycin solution and the pi-galactosidase specific primers 
were from Invitrogen Corporation (Paisley, UK). 
Materials required for histological studies were from RA 
Lamb Limited (Eastbourne, UK). TRI reagent* and 
individual components of the X-gal staining solution were 
from Sigma-Aldrich Chemical Company (Poole, UK). 
The DNA-free™ kit was from Ambion (Cambridgeshire, 
UK) and the one step RT-PCR kit from Qiagen Ltd. 
(Crawley, UK ). Other materials used during the course of 
these studies were of analytical grade and from Fisher 
Scientific UK (Loughborough, UK).

Microneedle fabrication

A wet etch process using KOH was used to fabricate 
arrays of silicon microneedles. A standard silicon wafer 
with crystal alignment marks is the starting material. 
The first process step is the deposition of 1000 A of 
silicon nitride on a 350 A silicon oxide layer using low 
pressure chemical vapour deposition (LPCVD). The 
oxide improves the adhesion of the nitride to the silicon. 
This double layer will act as an etching mask protecting 
designed/patterned areas of the silicon from the KOH 
solution during the etching step. To generate micro
needles in the crystalline material, square shape patterns 
are transferred into the masking double layer by 
standard photolithography, where a positive photoresist 
on the wafer is exposed to UV light to achieve the 
required pattern in the resist layer. The resist pattern is 
transferred into the nitride layer using a plasma etch 
process. The resist is stripped off and the oxide layer is 
then removed in the open areas by a wet etch process in 
H F (hydrofluoric acid). After lithography, the wafer 
undergoes a wet etch fabrication process. The patterned 
silicon wafer is etched using a 29% w/v aqueous KOH 
solution at a temperature of 79°C. The needle formation 
is based on convex-corner undercut. This means that 
crystal planes will form on every side of the square. 
Silicon has anisotropic etch behaviour in KOH; the 
etched structures are therefore formed along the crystal 
planes. Every crystal plane group has a specific etch rate. 
Very fast etching crystal planes start etching on the 
corners of the squares. When etching around 1 |xm into 
the silicon wafer, the lateral etch rate of these planes is 
twice as fast. Two planes on every corner move towards 
the square centre. The plane angle to the surface, which 
is almost 90°, decreases to 72° when the eight planes 
meet each other, forming the needle tip. Viewed from 
overhead, the etch process evolves (Figure 1) until one 
can see a very uniform octagon—the eight high index 
crystal planes which form the needle (Figure 2).
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Figure 1. T o p -d o w n  m icrographs show ing the evolution o f  m icroneedle form ation through convex corner undercutting o f  a square mask. 
N eed le  shape is gradually form ed w hen the eight high index crystal planes intersect on top o f  the frustum  in a single point, generating a sharp 
needle tip. Bar =  5 0 0  pm .

Examination of morphological effects of microneedle 
treatment o f human epidermal membranes

Skin from a 67-year-old female donor was immersed in 
heated deionised water (60°C) for 60 s to enable removal 
of the epidermal membrane from the underlying dermal 
tissue using forceps. The cooled epidermis was collected 
on aluminium foil and then placed on to the dermal layer 
before application of a microneedle array at a pressure of 
approximately 2 kg/cm2 for 10 s. Following treatment 
the microneedle arrays and the epidermal membrane 
were air dried, mounted on an aluminium stub and gold 
sputter coated (EM  Scope, Kent, UK) prior to being 
examined by scanning electron microscopy (SEM ). In 
addition, epidermal membrane was also fixed in 2.5% 
glutaraldehyde and dehydrated in an increasing ethanol 
gradient (70, 90, 100%). A critical point dryer (Samdri 
780, Maryland, USA) was used to completely dehydrate 
the specimen, which was m ounted and gold sputter 
coated prior to SEM. Bar =  200 p,m.

i a j
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Figure 2. SE M  im age o f  an overhead view  o f  a single octagonal 
w et-etch m icroneedle. Bar =  100 p.m.

Preparation and maintenance of an ex vivo human skin 
organ model

H um an breast skin from a 58-year-old female 
donor was collected imm ediately after excision, 
transported  in m edia (D M E M  25 m M  HEPES 
supplemented with 5% fetal bovine serum and 1% 
penicillin/streptomycin) on ice, and used within 2 h of 
surgical removal. Subcutaneous fat was removed using 
blunt dissection. The skin was separated using a 
scalpel blade to isolate the SC, viable epidermis 
and upper layers of the dermis (split-thickness skin).

Isolation and identification of fi-galactosidase mRNA

Following disruption of the SC and application of 
15|xg of pCM V p plasmid DNA to the disrupted 
skin surface, approximately 1 cm2 sections of skin 
were placed on lens tissue supported by metal gauze 
in a 6-well cell culture plate containing 3 ml media 
(DM EM  25 mM  H EPES supplemented with 5% 
fetal bovine serum and 1% penicillin/streptomycin) 
per well (Figure 5A). T he organ culture was 
maintained at an a ir-liqu id  interface for 24 h at 
37°C. Subsequent to treatm ent, skin sections were 
snap frozen in liquid nitrogen and ground to a fine 
powder in a pre-cooled pestle and mortar. Total 
RNA was isolated from the ex vivo hum an skin and 
E. coli (control) using T R I Reagent® with contami
nating genomic DNA removed using DNA-free™ 
kit. Two micrograms of isolated RNA was amplified 
using one step RT-PCR reaction containing primers 
specific for a 400 bp fragment of the p-gal transcript 
(5 '-T T C  A C T  G G C  C G T  C G T  T T T  ACA 
ACG T C G  T G A -3 ' and 5'-ATG TG A  G CG  
A GT AAC C C G  T C G  GAT TCT-3'). RT-PCR 
products were run on a 1% agarose gel, containing 
ethidium bromide, at 100 V for 1 h and visualized via 
a UV gel doc.
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Determination of (i-galactosidase expression in the ex vivo 
human skin model

Gene expression studies were carried out on human 
breast skin obtained from surgical procedures with full 
ethical approval and informed patient consent. Split
thickness skin was surface treated with 50 |xl of 
pCMVfl plasmid DNA solution (2.5 mg/ml) prior to 
application of silicon microneedles. The skin, divided 
into approximate 1 cm2 segments, was incubated for 
24 h using the described organ culture conditions. 
Following one wash in PBS/MgCl2 (30 min) the tissue 
was fixed for 2 h in 2% glutaraldehyde/MgCl2 on ice. 
Subsequently, the tissue was rinsed in a series of 
PBS/MgCl2 solutions for a total of 6 h. The tissue was 
stained for 3-galactosidase expression using X-Gal 
staining solution. Selected tissue samples were 
counterstained with nuclear fast red (NFR); 5% 
solution applied topically to the treated area and 
removed after 30 min. Samples were then mounted 
between two microscope slides and visualised en face 
using a Zeiss Stemi 2000C Stereomicroscope with a 
2,OX attachment and a Schott KL1500 electronic 
light source. For sectioning, tissue samples were 
embedded immediately (without N FR  staining) in 
OCT and sectioned using a Leica CM3050S Cryostat. 
Tissue sections (12p,m) were collected onto Super
frost Plus® microscope slides and allowed to dry 
overnight before analysis using the Olympus BX50 
microscope. Selected slides were stained with Harris’ 
Haematoxylin and G urr’s Eosin and examined.

Results and d iscu ssion

The morphology of the wet-etched microneedles were 
initially characterised by SEM. The same technique 
was used to visualise the microchannels produced 
when the microneedle arrays were applied to human 
skin. Figure 3 shows the array pattern and structural 
dimensions of the two types of wet-etch microneedles 
used in this study. In the example presented, the 
microneedle arrays comprised 16 microprojections of 
silicon in a 4 X 4 array across a total array size of 
3 mm2. The array size, however, is totally at the 
discretion of the user, thus smaller or larger arrays can 
be produced as required. Larger arrays would provide 
the benefit of increased treatable tissue area] however, 
arrays with greater surface areas may cause handling 
problems due to the inherent brittleness of thin micro
structures. The pyramidal structures were approxi
mately 280 pm in height with a width of 200 |xm at the 
base and were prepared with either a sharp tip 
(Figure 3A and B) or a flattened tip, termed a 
frustrum (Figure 3C and D). Process variables, most 
notably etch time (but also mask pad size) determine 
the etched depth, and hence the needle height 
reported here. Needle heights up to 300 |xm may be 
achieved given that the starting wafer thickness is

Figure 3. SE M  images o f  wet-etch platinum coated microneedle 
arrays. (A) Sharp tipped m icroneedles; the tip o f  a 30 G  hypodermic 
syringe providing a visual scale reference. Bar =  1 mm; (B) sharp 
tipped m icroneedles. Bar =  100 |xm; (C , D ) Frustum tipped 
microneedles. Bar =  1 m m  (C ) and 100 |xm  (D ).

approximately 525 |xm, and sufficient material must 
remain non-etched to allow handling and process 
completion. We now have extremely accurate and 
reproducible process control over every step in the 
microneedle etching sequence. Traditionally, wet 
etching of microneedles has been viewed as being 
overly difficult to control and this is one of the primary 
reasons why dry etching techniques have replaced 
KOH etching for such micro-structures in silicon. But 
with the process control now achievable, benefits can 
be accrued from the lower costs and greater 
robustness of the needle arrays produced.

In order to assess microneedle skin penetration, full 
thickness human skin was heat separated to recover 
the epidermal membranes (SC and viable epidermis), 
replaced onto the dermal layer and treated with the 
microneedles prior to examination by SEM. Figure 4A 
depicts an electron micrograph showing an inverted 
view of the hum an epidermal sheet with the 
microneedle array still in position. The microneedle 
array pattern was transferred to the membrane 
creating an ordered arrangement of microconduits 
that extended through the SC and viable epidermis. 
At this magnification a number of microneedle tips 
can be observed penetrating through the sheet 
(see arrow). A critical point drying method was used 
to provide more detailed visualisation of the upper 
surface of heat-separated membrane. In this micro
graph, the dermatoglyphics of microneedle treated 
human skin are clearly defined (Figure 4B). Using the 
described SEM processing conditions the epidermal 
microchannels were apparent as 50 p,m fissures 
piercing the skin corneocytes and underlying upper 
skin layers. Following topical skin application it was 
noted that the needle array remained intact, indicating 
good mechanical robustness.
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Figure 4. SEM  images o f heat separated epidermal membrane treated with the microneedle array. (A) M icroneedles inserted into epidermal 
membrane (arrow denotes a microneedle penetrating through the epidermal sheet). Bar =  1 mm; (B) microneedle-treated epidermal 
membrane. Bar =  200 |xm.

In order to maximise the cellular viability of the 
excised tissue, samples were immediately transferred 
from the patient into defined organ culture media at 
0°C, transported to the laboratory and maintained at 
air-liquid-interface in growth media. Tissue viability 
was confirmed over a 24-hour-period through the 
continued production of endogenous epidermal 
mRNA and the transcription of p-galactosidase 
mRNA (Figure 5B) following intra-dermal appli
cation of the pCMVp reporter plasmid.

Following confirmation of the presence of mRNA in 
the excised skin, the ability of the microneedles to 
facilitate gene expression was demonstrated using the (3- 
galactosidase (pCMV0) reporter gene. Figure 6 shows
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Figure 5. (A) T he human skin organ culture procedure; (B)
agarose gel showing presence o f (3-galactosidase m R N A  isolated 
from viable human skin following 24 h incubation in organ culture 
[Lane A; (3-galactosidase expression in E, coli; Lane B: (3- 
galactosidase expression in ex vivo human skin; M; Molecular 
marker].

representative results of a skin transfection experiment. 
En face imaging, following topical application of reporter 
gene and microneedle puncturing, showed detectable 
reporter gene expression (Figure 6A and B). In control 
experiments, where pDNA was applied to skin, which 
had not been treated with microneedles, expression was 
not observed. Figure 6A shows the blue staining, arising 
from the reporter gene product, proximal to two 
microchannels created via application of the micro
needle array, also shown in the figure for comparison. 
Figure 6B highlights the created microchannels by 
counterstaining with a low molecular weight red dye. As 
in Figure 6A, it is apparent that a minority of 
microchannels created in the skin stained positive for 
gene expression, despite the counterstain confirming 
that microconduits had been formed by each individual 
microneedle. The possible reasons for the variability in 
gene expression efficiency include limited access of the 
pDNA into the created microchannel, inefficient uptake 
of the pDNA into the cells located at the periphery of the 
microchannel, cell damage or death caused by the 
infiltrating microneedles, or simply unreliable detection 
of gene expression due to restricted access of the staining 
solution to the transfected cells. We are currently 
addressing these issues through the use of alternative 
microneedle materials and morphologies, different 
reporter pDNA constructs, improved detection 
methods and optimised pDNA delivery formulations. 
Clearly, for certain gene therapy applications, such as 
the correction or replacement of aberrant genes in 
genetic skin disorders and the treatment of cutaneous 
malignancies, such variable levels of expression would 
need to be addressed, although larger microneedle 
arrays could be utilised to increase surface coverage. 
In the case of genetic vaccination however, a sufficient 
number of cells may still be able to uptake and express 
the andgen gene to produce an appropriate quantity of 
antigen to stimulate an immune response. Indeed, in 
DNA vaccination, it may be more important to target 
appropriate loci within the skin rather than skin surface 
area in order to enhance antigen presentation to the 
immune responsive Langerhans cells. The depth and 
intensity of reporter gene expression in the underlying
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Figure 6. (A) En face image o f 0-galactosidase stained microchannels; the microneedle array providing a visual reference; (B) En face image of
0-galactosidase stained microchannels with N F R  counterstaining; (C) Unstained cryosection o f 0-galactosidase stained microchannel. 
Bar =  100 pm; (D ) H&E stained cryosection o f 0-galactosidase stained microchannel. Bar =  100 pm .

skin strata was established by transversely sectioning the 
positively stained microchannels. Photomicrographs of 
12 p,m cryosections are presented in Figure 6C and D. 
Microchannels created in skin following application of 
the pyramidal microneedles appeared as 150 |xm depth 
interruptions of the SC and epidermis. Figure 6C shows 
the intense level of reporter gene expression in cells 
proximal to the base of the microneedle channel. 
Haematoxylin and eosin staining of the sections revealed 
that the gene expression was restricted to the viable 
epidermal cells (Figure 6D).

During our studies, we observed that the extent of 
gene expression was unpredictable and somewhat 
difficult to control. However, we also observed that 
gene expression was more prevalent using micro
needles with flattened as opposed to sharp points. We 
have tentatively attributed this to the likelihood that 
cells are more likely to suffer some limited damage to 
their cell membrane when perturbed by the insertion 
of the flattened microneedles, when compared to 
sharper microneedles. We suggest that such minor 
membrane damage may increase pDNA uptake and 
subsequently lead to enhanced gene expression 
efficiency. We are currently investigating this hypoth
esis in our laboratory.

C onclusions

The advantages of using microneedles as opposed to 
alternative physical trans-cutanoeus drug delivery 
methodologies including biolistic particle bombard
ment (Kendall et al. 2004), jet injection (Sawamura 
et al. 1999), microscission (Herndon et al. 2004), tape 
stripping (Tregear and Dirnhuber 1962) and laser 
ablation (Lee et al. 2002) include: (i) direct and

controlled delivery of the medicament; (ii) rapid 
exposure of large surface areas of skin to the delivery 
agents (microneedle arrays can be fabricated to 
contain over 1000 microneedles); (iii) effortless, 
convenient and painless delivery for the patient; (iv) 
ability to manipulate the therapeutic formulation, e.g. 
solution, suspension, emulsion, dry powder, gel; (v) 
enhancement of concomitant delivery methods such 
as transdermal patches and (vi) minimally invasive 
methodology not requiring complex machinery at 
time of application suited to patient self-adminis
tration without the need for medical supervision. We 
have confirmed the ability of solid silicon pyramidal 
microneedles, prepared using a low cost wet-etch 
microfabrication process, to penetrate the SC and 
create microchannels within human skin to facilitate 
the intra-epidermal delivery of pDNA. Further, in 
testing these devices we have developed an ex vivo 
human skin model with retained cellular viability.

The perceived importance of gene-based therapies in 
medicine is driving the development of novel and radical 
methods for delivering macromolecular drugs such as 
DNA. A combination of this innovative gene delivery 
system and the skin organ culture model can be further 
exploited to optimise cutaneous DNA delivery for 
clinical applications and importantly, can be used to 
answer more fundamental questions concerning the 
expression of genes in viable skin layers.
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Abstract: The stratum corneum (SC) represents a significant barrier to the delivery of gene therapy formulations. In order 
to realise the potential of therapeutic cutaneous gene transfer, delivery strategies are required to overcome this exclusion 
effect. This study investigates the ability of microfabricated silicon microneedle arrays to create micron-sized channels 
through the SC of ex vivo human skin and the resulting ability of the conduits to facilitate localised delivery of charged 
macromolecules and plasmid DNA (pDNA). Microscopic studies of microneedle-treated human epidermal membrane re
vealed the presence of microconduits (10-20pm diameter). The delivery of a macromolecule, P-galactosidase, and of a 
‘non-viral gene vector mimicking’ charged fluorescent nanoparticle to the viable epidermis of microneedle-treated tissue 
was demonstrated using light and fluorescent microscopy.

Track etched permeation profdes, generated using ‘Franz-type’ diffusion cell methodology and a model synthetic mem
brane showed that >50% of a colloidal particle suspension permeated through membrane pores in ~2 hours. On the basis 
of these results, it is probable that microneedle treatment of the skin surface would facilitate the cutaneous delivery of 
lipid:polycation:pDNA (LPD) gene vectors, and other related vectors, to the viable epidermis.

Preliminary gene expression studies confirmed that naked pDNA can be expressed in excised human skin following mi
croneedle disruption of the SC barrier. The presence of a limited number of microchannels, positive for gene expression, 
indicates that further studies to optimise the microneedle device morphology, its method of application and the pDNA 
formulation are warranted to facilitate more reproducible cutaneous gene delivery.

Keywords: Microneedles, human skin, DNA, microfabrication, gene delivery, non-viral, transfection.

1. INTRODUCTION

Localised delivery and expression of gene therapeutics 
within the skin may provide novel treatment strategies for a 
number of pathological conditions, including the correction 
of genetic skin disorders i.e. ‘genodermatoses’ [1-3] and the 
non-surgical management of malignancy [4,5]. The specific 
and efficient immune processing properties of skin has also 
resulted in significant interest in the development of genetic 
vaccines [6-8] that can capitalise on the innate ability of 
Langerhans cells, powerful antigen presenting cells (APCs) 
residing within the viable epidermis, to proficiently present 
antigen to stimulate an antigen-specific T cell immune re
sponse.

The cutaneous delivery of macromolecules to skin is sig
nificantly restricted however by the inherent barrier function 
of the tissue, attributable primarily to the outermost skin 
layer, the stratum corneum (SC). The SC, comprising a 10-

* Address correspondence to this author at the Gene Delivery Research 
Group, Welsh School o f  Pharmacy, Cardiff University, Cardiff, CF10 3XF, 
UK.; Tel: 02920875815; Fax: 02920874149;
E-mail: birchalljc@cardiff.ac.uk

15fim layer of flattened non-viable cells, has restricted ef
fective transdermal delivery to a small number of low mo
lecular weight, weakly lipophilic, potent therapeutic mole
cules. Increasing emphasis on the administration of biotech
nology-derived macromolecular and DNA-based medicines 
has stimulated a number of novel delivery strategies and 
devices that circumnavigate the SC barrier to promote deliv
ery of a wide range of therapeutics to the underlying epider
mis and dermis.

Current non-chemical delivery strategies are generally 
divided into electrical and physical delivery methods. Elec
trical techniques such as iontophoresis [9], electroporation 
[10-12], sonophoresis [13] and laser ablation [14] have dem
onstrated increased permeability of the SC to certain macro
molecules. However, the expensive and complex equipment 
employed is likely to limit widespread application of such 
technologies. Physical delivery methods, including particle 
bombardment [15-18], je t injection [19,20], radiofrequency 
ablation [21], microscission [22] and microseeding [23] 
have, to varying extents, enhanced permeation of macro
molecules through the SC barrier. Such methods aim to tran
siently disrupt the integrity of the SC to facilitate therapeutic 
delivery without lasting skin damage.
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In recent years a particularly exciting alternative method 
for enhancing cutaneous permeation of molecules across a 
very wide molecular weight range has been developed. Mi
croneedle technology uses micro-fabrication techniques to 
create arrays of micron-sized needles onto the surface of a 
solid support backing. Commonly this support is silicon and 
in these cases needle fabrication can be achieved using well 
defined etching techniques [24]. Although the practical ap
plication of this technique was only demonstrated for the 
first time within the last ten years, the original concept for 
these delivery systems was described nearly thirty years ago 
[25], Microneedles are designed to pierce the SC, thus pro
viding a direct and controlled route of access to the underly
ing tissue layers. When inserted into the skin, individual mi
croneedles create channels through the SC and into the vi
able epidermis. The length of the microneedle is controlled 
so that when they are applied they do not reach the nerve 
fibres and blood vessels that reside in the underlying dermis. 
The micron-sized channels can therefore potentially facilitate 
the localised delivery of both small and large molecular 
weight therapeutics without causing pain or bleeding at the 
site of application [26].

To date, the majority of studies investigating localised 
gene expression in skin have utilised local intradermal injec
tion or biolistic devices to deliver DNA formulations to the 
target cells of the epidermis [27-29]. Alternatively another 
approach uses microstructures to laterally disrupt the SC
[30]. The transfer of cutaneous gene therapy to the clinic 
requires the development of drug delivery technologies that 
can painlessly overcome the SC barrier and reproducibly 
deliver the gene to the appropriate depth. This study charac
terises microneedle induced trans-SC channels and assesses 
their potential to facilitate macromolecular localisation in the 
viable epidermis by studying micro-channel geometry and 
macromolecular permeability. Further, the gene delivery 
results, obtained using freshly excised human tissue, demon
strate the potential of this strategy for the delivery of both 
macromolecules and gene medicines to target cells located 
within the viable epidermis of human skin.

2. MATERIALS AND METHODS

2.1 Materials

The 7.2 kb pCMV|3 plasmid construct containing the (}- 
galactosidase reporter gene and the pEGFP-Nl (4.7kb) 
plasmid containing the green fluorescent protein reporter 
gene were propagated and purified as detailed previously
[31]. l,2-Dioleoyl-3-triammonium-tropane (DOTAP) was 
purchased as the methyl sulphate salt from Avanti Polar 
Lipids (Alabaster, AL, USA). 2-(12-(7nitrobenz-2-oxa-l,3- 
diazol-4-yl)amino)dodecanoyl-1 -hexadecanoyl-sn-glycero-3- 
phosphocholine (NBDC 12-HPC) was purchased from Mo
lecular Probes (Leiden, Netherlands). [3-galactosidase en
zyme was obtained within an X-gal staining kit from 
Promega Corporation (Madison, WI).

Protamine sulphate, Bovine serum albumin, fluorescent 
yellow/green polystyrene nanospheres (L-1280), fluorescent 
red polystyrene nanospheres (L-9279) and components of the 
X-gal staining solution were obtained from Sigma-Aldrich 
Chemical Company (Poole, UK).

Cell culture plastics were obtained from Corning-Costar 
(High Wycombe, UK). MEM (EAGLES) 25mM HEPES,,.r 
Dulbecco’s Modified Eagle’s Medium (DMEM 25mM 
HEPES), fetal bovine serum and penicillin-streptomycin 
solution were obtained from Invitrogen Corporation (Paisley, 
UK). All histology materials were obtained from RA Lamb 
Limited (Eastbourne, UK). All other materials were of ana
lytical grade and purchased from Fisher Scientific UK 
(Loughborough, UK).

2.2 Microneedle Fabrication and Characterisation

Microneedle fabrication was conducted using a modified 
form of the BOSCH deep reactive ion etch (DRIE) process 
as detailed previously [32], Briefly, 4” silicon wafers were 
spin-coated with a layer of positive photoresist, selectively 
exposed to UV light through a high-resolution, chromium- 
plated photolithographic mask and developed to result in a 
uniform dot array pattern. The photoresist dots provide a 
mask against subsequent etch processes using fluorinated 
plasmas in an Inductively Coupled Plasma (ICP) etcher (Sur
face Technology Systems, Newport, UK). The symmetrical 
concave needle tips were formed by exposing the patterned 
wafers to an isotropic etch such that the photoresist dots 
were undercut almost to the centre of each dot. This was 
followed by a deep anisotropic etch producing needle shanks 
with near parallel sidewalls. Finally, the resist mask was 
removed and the silicon wafers were divided in to individual 
array chips using a wafer saw at Cardiff School of Engi
neering (Cardiff, UK). M icroneedle array chips were 
mounted on aluminium stubs and morphology examined 
using a Philips XL-200 (Philips, Eindhoven, Netherlands) 
scanning electron microscope (SEM).

2.3 Scanning Electron Microscopy of Human Epidermis

Human breast skin was obtained from mastectomy or 
breast reduction procedures with full ethical committee ap
proval and informed patient consent.

Tissue from a 66-year-old female donor stored at -20°C 
for 6 weeks was allowed to reach room temperature over a 
period of 1 hr. Immersion in heated deionised water (60°C) 
for 60 sec enabled removal o f the epidermal membrane from 
the underlying dermal tissue using forceps. Transfer of the 
epidermis to cool deionised water allowed the outstretched 
membrane to orientate, with the hydrophobic stratum cor
neum facing upward. The epidermis was collected on alu
minium foil and replaced on the dermal layer before applica
tion of a microneedle array to the skin surface at a pressure 
o f approximately 2g/cm2 for 10 secs. Following removal of 
the microneedles the membrane was fixed (2.5% glutaralde- 
hyde) and subsequently dehydrated in an increasing ethanol 
gradient (70%, 90%, 100%). A critical point dryer (Samdri 
780, Maryland, USA) was used to complete dehydration of 
the specimen, which was mounted on an aluminium stub and 
gold sputter coated (EM Scope, Kent, UK) prior to SEM .

2.4 Confirmation of Channel Creation in Microneedle 
Treated Skin

Tissue from a female donor, age 30 years, was removed 
from storage at -20°C, sub-cutaneous fat was removed by 
blunt dissection and the tissue was allowed to equilibrate at
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room temperature for 1 hour. The microneedle device was 
applied to tissue (~0.5cm2), which was subsequently covered 
with a small volume of methylene blue staining solution. 
After 5 min excess staining solution was washed from the 
skin surface by submersion in 10ml phosphate buffered sa
line (PBS) followed by surface application of an ethanol 
(70%) swab. The skin was fixed in 2.5% glutaraldehyde on 
ice for lhr. Finally, the tissue was rinsed in PBS for 5 min 
and visualised en face using an Olympus BX-50 microscope 
(Olympus UK Limited, Southall, UK) and Schott KLI500 
fibre optic light source (Schott UK Limited, Stafford, UK). 
The tissue was subsequently embedded in OCT medium on 
solid carbon dioxide and stored at -86°C prior to cryosec- 
tioning using a Leica CM3050S cryomicrotome (Leica Mi
crosystems (UK) Limited, Milton Keynes, UK).

2.5 Microneedle Mediated Delivery of P-galactosidase 
Enzyme

Human skin from a 43-year-old female donor was pre
pared and treated with microneedles as previously described 
(Section 2.4). 40pl of P-galactosidase (0.2units/ml in a bi- 
cene buffer [50mM] containing lOOpg/ml of Bovine Serum 
Albumin (BSA)) was applied to the treated skin surface. The 
process was repeated on the same donor tissue applying PBS 
as a negative control. Each sample was placed in the cham
ber of a 6-well cell culture plate, and maintained at the air- 
liquid interface in organ culture (DMEM containing 10% 
Fetal Bovine Serum, 2% penicillin-streptomycin at 37°C and 
95%:5% 0 2:C02) over 26 hrs. The tissue was then briefly 
placed in a rinsing solution (PBS containing Magnesium 
Chloride [0.04M]) and fixed in 2.5% glutaraldehyde on ice 
for 1 hr before an overnight rinse in PBS to remove all trace 
of fixative. Incubation of the tissue sample for a further 20 
hrs at 37°C in an X-Gal staining solution [33,34] (X-Gal 
[5%v/v of a 40mg/ml solution in dimethylformamide], Po
tassium ferricyanide [0.84%v/v of a 0.6M solution], Potas
sium ferrocyanide [0.84%v/v of a 0.6M solution], Magne
sium chloride [0.2%v/v o f a 1M solution], Tris- 
hydrochloride buffer pH8.5 [50%v/v of a 0.2M solution], 
deionised water to 100%) was used to detect the presence of 
the P-galactosidase enzyme. Samples were visualised en face 
and embedded in OCT medium for sectioning as previously 
described (Section 2.4).

2.6 Microneedle Mediated Delivery of Fluorescent Latex 
Nanospheres

Human skin was prepared as described previously (Sec
tion 2.4). Prior to microneedle treatment, an area of skin was 
treated with 50pl of fluorescent red amine-modified lOOnm 
latex nanospheres. This suspension was also applied to un
treated skin areas to demonstrate the integrity of the skin 
sample and the barrier properties of the intact SC (negative 
control). Following treatment, the human skin was main
tained in organ culture for 16 hrs, fixed in 2.5% glutaralde
hyde and subsequently embedded within OCT medium as 
previously described (Section 2.4).

2.7 Histology of Microneedle Treated Tissue

All tissue embedded in OCT medium was stored at -86°C 
overnight and cryosectioned. Sections were cut at 10-12pm,
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transferred to microscope slides and fixed in cold acetone. 
Selected slides were also stained with Harris’ Haematoxylin 
and Gurr’s Eosin. All tissue sections were viewed under light' 
or blue fluorescence illumination at a range of magnifica
tions. Image scale was calculated using a microscope slide 
graticule.

2.8 Preparation of Lipid:Polycation:DNA (LPD) Vectors 
and Lipid Coated Nanospheres (LCN) and Determina
tion of Particle Diameter and Zeta Potential

The LCN particulates were prepared by a film hydration 
method whereby the cationic lipid, DOTAP, was dissolved 
in a small volume of chloroform (~10ml), which was subse
quently removed under vacuum by rotary evaporation to 
produce a thin lipid film. The lipid film was hydrated with a 
known concentration of fluorescent yellow/green latex nano
spheres (5pl/ml) (Ex. 470nm; Em. 505nm), vortexed briefly, 
incubated at 37°C for 1 hr and finally sonicated (Ultrawave, 
Cardiff, UK) to disperse any aggregates. LPD complexes 
were produced at 3:2:1 w/w/w ratio, using the pCMVP 
plasmid (1 mg/ml in Tris-EDTA buffer), protamine (lmg/ml 
in sterile deionised w ater) and unilamellar DOTAP 
liposomes approximately lOOnm in diameter (lmg/ml in 
sterile deionised water), by a simple electrostatically medi
ated interaction as described previously [35,36].

Unimodal diameters of both colloidal formulations were 
measured at a light scattering angle of 90° using a Coulter 
N4 Plus photon correlation spectroscopy instrument (Coulter 
Electronics, Luton, UK). The zeta potential was determined 
by microelectrophoresis over a pH range of 3-11 using a 
Malvern 2000 Zetasizer and pH titrator (Malvern Instru
ments, Malvern, UK). All samples were prepared in de
gassed, deionised water with pH adjustment by addition of 
either sodium hydroxide or hydrochloric acid [0.25M],

2.9 Transmission Electron Microscopy (TEM)

Fifteen pi o f the LPD or LCN sample was applied to the 
surface o f a pioloform-coated 200-mesh nickel grid. After 3 
min excess sample was wicked from the grid, and the grid 
placed on a freshly filtered drop of 2% aqueous uranyl ace
tate for 30 secs. The grid was rinsed in deionised water 
stages and allowed to dry before visualisation using a Philips 
208 transmission electron microscope.

2.10 Franz Cell Diffusion Studies

Isopore® polycarbonate track etched membranes pos
sessing three different pore diameters, 0.1pm, 1.2pm and 
10pm, were mounted within static Franz-type diffusion cells. 
The receptor compartment of each cell was filled with 
deionised water (adjusted to approximately pH 7.4 with 1M 
HC1 or 1M NaOH) and the sample arm sealed with a foil 
cap. The magnetically agitated receptor compartments were 
maintained at 37°C, resulting in a membrane surface tem
perature of 32°C. 0.5ml of formulation was introduced into 
the donor compartment which was subsequently occluded. 
The receptor compartment was sampled at 30, 60 120, 240, 
360 and 720 min.

The fluorescent LPD formulation used in diffusion stud
ies comprised 0.4mg pEGFP-Nl (lmg/ml) to which was 
added 7.6ml of deionised water, 0.8mg of protamine
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(lmg/ml) and, after a ten minute incubation period, 1.2mg of 
DOTAP liposomes labelled by the inclusion of a fluorescent 
lipid, NBDC12-HPC (Ex. 460nm; Em. 534nm), at a mass 
ratio of 1:20. The LCN formulation (Section 2.8) was used at 
a nanoparticle concentration of 5p,l/ml and these membranes 
were removed from the diffusion apparatus at the end of the 
incubation period and visualised using SEM.

Quantitative analysis of LPD and LCN was achieved by 
fluorescence spectroscopy using a Fluostar® fluorometer 
(BMG Labtechnologies Inc., Durham, USA). Reproducible 
calibration curves were completed for both formulations and 
were ,used to determine colloidal concentration.

2.11 Gene Expression in Excised Human Skin

For gene expression studies, human skin from both 48 
and 52 year old female donors was surgically separated to 
remove the majority of the dermis. Split-thickness skin was 
surface treated with 50|il of pCMV(3 plasmid DNA solution 
(2.5mg/ml) prior to application of dry-etch silicon mi
croneedles. Control samples were treated with an alternative 
reporter plasmid (pEGFP-Nl). The skin was then placed on 
lens tissue supported by metal gauze in a 6 well cell culture 
plate containing 7.5ml media (DMEM 25mM HEPES sup
plemented with 5% fetal bovine serum and 1% penicil
lin/streptomycin) per well. This organ culture maintained the 
skin at an air-liquid interface for 24 hrs at 37°C. Following 
one wash in PBS/MgCl2 (30 min) the tissue was fixed for 2 
hrs in 2% glutaraldehyde/MgCl2 on ice. Subsequently the 
tissue was rinsed in a series of PBS/MgCl2 solutions for a 
total of 6 hrs. The tissue was stained for P-galactosidase ex
pression using X-Gal staining solution (see Section 2.5).

For en face  imaging, selected tissue samples were then 
counterstained with Nuclear Fast Red (NFR), a low molecu
lar weight dye normally used for histological examination, in 
order to confirm the presence of microchannels created by 
the device. A 5% solution of Nuclear Fast Red was applied 
topically to the treated area and removed after 30 mins. The 
sample was then mounted between two microscope slides 
and visualised en face  using both a Zeiss Stemi 2000C Ste- 
reomicroscope with a 2,OX attachment and an Olympus 
BX50 microscope, both with a Schott KL1500 electronic 
light source.

For sectioning, tissue samples were embedded immedi
ately (without NFR staining) in OCT and sectioned using a 
Leica CM3050S Cryostat. Tissue sections (12}xm) were col
lected onto Superfrost Plus® microscope slides and allowed 
to dry overnight before analysis using the Olympus BX50 
microscope.

3. RESULTS

3.1 Microneedle Characterisation

Microscopic analysis of the 20x20 silicon microneedle 
arrays confirms that the microneedles were approximately 
200|im in length and 80pm in diameter at their base with 
interspacing of approximately 100pm (Fig. 1). The blend of 
BOSCH and isotropic etch process conditions produces nee
dles with a sharp angle of curvature to facilitate SC penetra
tion. Previous work within our laboratory [32] suggested that 
the integrity of the device was maintained after a limited

number of applications. Continued use of the device resulted 
in defects in the array attributed to fragility of the silicon../0 
needles and contamination of the device by biological debris.
A surface coating of biological material on the microneedle 
tips (Fig. 1C) reduces the capabilities of individual needles 
to penetrate the skin. However, a simple cleaning protocol 
(overnight soaking in acetone) was shown to remove such 
contaminants and to restore penetration efficiency. In con
trast, the fragility of a silicon microneedle can result in ir
reparable damage to the device, as demonstrated by broken 
microneedles on the perimeter o f the array (Fig. 1 A).

3.2 Microscopic Analysis of Microneedle Treated Human 
Skin

Scanning electron microscopy demonstrated the capabil
ity of the microneedle device to create an array of micro
conduits through the SC (Fig. 2). The epidermis was re
moved from full thickness human breast skin, before appli
cation of the array. This provides a more accurate indication 
o f the microchannel dimensions in contrast to that reported 
in a previous study [32] where microneedle treatment of the 
skin was followed by epidermal removal. It is likely that this 
former approach resulted in over-estimation of channel di
ameter due to epidermal membrane expansion during sepa
ration. A more representative image of the skin surface was 
obtained using critical point drying for sample preparation.
In (Fig. 2 A) the arrows show the location of an array of mi
crochannels. The channels are 30-50pm in diameter and al
though biological debris on the skin surface obscures some 
channels, a uniform array of microconduits is evident.

3.3 Microneedle A rray Penetration Efficiency

The distribution and extent of channels within micronee
dle-treated full thickness human skin was confirmed by post
application staining with methylene blue. Rapid diffusion of 
the hydrophilic low molecular weight dye across the com
promised SC barrier and its subsequent retention within the 
resulting SC / viable epidermis micro-channels provided a 
simple yet clear demonstration of the utility of the mi
croneedles in facilitating cutaneous delivery (Fig. 3A,B). 
This approach demonstrated that a large proportion of the 
microneedle array appeared to have penetrated the skin.

En face  images (Fig. 3A,B) suggest that the microneedle- 
created pores are approximately 50-100|im in diameter. 
However, cryosections (Fig. 3C,D) of the tissue reveal lat
eral diffusion of the dye into the tissue surrounding the mi
crochannel which may exaggerate this estimation. The di
ameter o f the microchannel, measured in (Fig. 3C,D), is in 
agreement with SEM images at approximately 20-30(j.m with 
a channel depth o f approximately 100-120|im. An eosin 
stained section (Fig. 3D) shows the conduit being limited to 
the viable epidermis however, it should be noted that within 
other areas of the tissue, it was observed that these ~100p.m 
channels penetrated the upper layers of the dermis (the pap
illary layer).

3.4 Microneedle-Mediated Delivery of Macromolecules

P-galactosidase (P-gal), the enzyme product of a reporter 
gene to be used in subsequent qualitative gene delivery
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Fig. (1). Scanning electron microscopy of silicon microneedle arrays. A) Microneedles prior to skin application, Bar = 1mm; B) Microneedles 
prior to skin application, Bar = 100pm; C) Repeated application results in contamination of microneedles by biological debris, Bar = 200pm; 
D) Decontamination of the device restores microneedle functionality, Bar = 200pm.

Fig. (2). Scanning electron microscopy of heat separated human 
skin. Heat separated epidermal sheet treated with a microneedle 
array and prepared for SEM analysis using a critical point drying 
procedure reveals a uniform pattern of surface abrasions within the 
SC (see arrows). A) Bar = 200pm; B) Bar = 100pm.

studies, can be detected by conversion of an indoyl galacto- 
sidase substrate to a visible blue product. This enzyme was 
selected as a model protein to demonstrate, through histo- 
chemical staining, the potential of the microneedle device to 
deliver biologically active macromolecules through the SC 
barrier. Detection of the blue reaction product, within the 
upper skin layers (Fig. 4A) confirms the ability of a mi
croneedle device to disrupt the SC barrier and to provide a 
localised route of delivery for the P-galactosidase enzyme: a 
molecule that is orders of magnitude larger than those mole
cules delivered by traditional transdermal delivery strategies. 
A negative control served to confirm the absence of any en
dogenous P-galactosidase activity. Haematoxylin and Eosin 
(H&E) staining revealed the layered structure of the skin and 
the presence of the P-galactosidase enzyme up to 80pm be
low the skin surface (Fig. 4B). Localised delivery to the vi
able epidermis, a highly nucleated area consisting primarily 
of keratinocyte cells, is evident. However, there is no evi
dence o f macromolecular delivery to the dermis suggesting 
that the micro-channels did not usually extend into the der
mal tissue layers.

3.5 Microneedle Mediated Delivery of Nanoparticles

Investigations within our laboratory aim to exploit mi
croneedle arrays for the delivery of a range of gene therapy 
formulations to the cells of the viable epidermis. These 
studies will compare the expression efficiency of non-viral 
gene therapy vectors such as LPD, comprising cationic lipid 
(DOTAP), polycation (protamine sulphate) and plasmid 
DNA against naked plasmid DNA. The LPD complex is a
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Fig. (3). Methylene blue staining of microneedle-treated human skin. Disruptions within the SC indicate microneedle penetration efficiency. 
A-B) En face images of microneedle treated human skin, Bar = 600 pm; C) Unstained 10pm cryosection of microneedle treated human skin, 
Bar = 80pm; D) Eosin stained 10pm cryosection of microneedle treated human skin, Bar = 80pm.

A B

Fig. (4). Photomicrographs of cryosections from microneedle treated human skin stained for [3-gaIactosidase. A) Unstained 12pm cryosec
tion; B) H&E stained 12pm cryosection, Bar = 100pm.

colloidal suspension of charged nanoparticles, approximately 
lOOnm in diameter [30]. Therefore, to evaluate the potential 
of microneedle-mediated delivery of LPD complexes, latex 
fluorescent nanospheres, of a comparable diameter, were 
used as a representative model. Topical application o f the 
nanospheres followed by treatment with the microneedle 
array resulted in the migration of the charged fluorescent 
particles into the microchannels, and to the cells of the viable 
epidermis (observed as red or co-localised yellow against the 
autofluorescent green background) (Fig. 5A,B). The lower 
magnification micrograph (Fig. 5C) demonstrates the inabil

ity o f nanoparticles to traverse the SC in non-treated areas 
and confirms the integrity of the tissue sample that was used 
in the study.

3.6 P red ic tin g  M icroneedle M ediated Delivery of 
Nanoparticles

Microneedle treated SC can be likened to a simple porous 
membrane with pore diameter ~20pm. A synthetic model 
membrane was employed to investigate the permeation of 
colloidal particles through membrane pores. The primary
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Fig. (5). Fluorescent photomicrographs of cryosections (12|im) showing localisation of fluorescent nanoparticles in microneedle treated hu
man skin, Bar = 100p.m.

reason for this was to reduce inter-experiment variability due 
to the biological variability of skin tissue and also to negate 
the effect of variation in microneedle penetration efficiency. 
The purpose of these experiments was to study the process of 
migration of nanometer dimensioned particles through mi
crometer sized pores. Although the use o f microneedle 
treated epidermal membrane would have better predicted the 
overall process of delivery, the effects of physicochemical 
variables on nanoparticulate mass-transport would have been 
less obvious. Therefore Franz type cell diffusion studies, 
using a model synthetic membrane and a size-representative 
model formulation, were conducted to quantitatively assess 
the diffusion rates of nanoparticulate formulations through 
membrane pores. A colloidal model for the LPD non-viral 
gene vector was prepared and characterised (Table 1). Poly
carbonate track-etched membranes of thickness 10p.m and 
possessing uniform circular pores of lOOnm, 1.2(im and 
10pm diameter were selected as a simple diffusion model for 
microneedle-treated human skin membrane. The 10pm pore 
membrane provides an approximate representation for the

conduits produced in microneedle treated human epidermal 
membrane [24]. Membranes with reduced pore size were 
also studied to investigate the effect of microchannel dimen
sions on the passive diffusion of nanoparticles.

The comparable size, lamellar surface morphology (Fig. 
6) and zeta potential of the LCN and LPD particles resulted 
in comparable diffusion profiles (Fig. 7). For the three mem
branes studied, the LCNs appear to mimic the permeability 
of the LPD gene therapy formulation. The diffusion profiles 
show the importance of microchannel dimensions on the 
permeability of charged colloidal particles. As was predicted, 
when pore diameter was approximately the same as the par
ticle diameter, i.e. lOOnm, permeability approached zero. 
Although a small degree of fluorescence was observed in the 
receptor phase for the LPD particles, and may possibly re
flect a degree of deformation of the tri-component LPD 
vector permitting diffusion through the lOOnm pores, it is 
more likely that this fluorescence is attributed to the presence 
of uncomplexed fluorescently-labelled lipid. Increasing the 
diameter of the microchannel to 1.2|im in diameter

Table 1. Mean Diameter and Zeta Potential of the LPD and LCN Particles. Mean±SD, n = 6

M ean Diam eter (nm) Zeta Potential (mV) pH -5 .5 Zeta Potential (mV) pH -7 .4

LCN 141.4 ±46.9 52.2 ±1.4 49.5 ±1.0

LPD 101±17.4 32.5 ±0.5 33.9 ±3.2
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Fig. (6). Negative stain transmission electron microscopy of nanoparticles. A) Lipid:poIycation:pDNA (LPD) vector; B) Lipid-coated 
nanoparticle (LCN), Bar = lOOnm.
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Fig. (7). Cumulative diffusion profiles of nanoparticles through 
synthetic membranes. LPD (A) and LCN (B) diffusion at pH 7.3 
through Isopore® polycarbonate track-etched membranes possess
ing pore dimensions of increasing orders of magnitude. ♦  = lOOnm 
pore membrane, ■ = l.2pm pore membrane, ▲ = 10pm pore mem
brane. Mean±SD, n = 3-5.

(approximately 10X the diameter o f  the particles) resulted in 
the migration o f approximately 50% o f the applied LPD dose 
into the donor compartment within 4 hrs (Fig. 7A). This in
creased to over 60% when the channel diameter was in
creased to 10pm. After 12 hrs, over 80% o f  the LPD formu
lation was detected in the receptor phase for the 10pm pore 
size membranes and the profile was observed to tail due to a 
combination o f dose depletion and back diffusion. Perme
ability o f  LCN particles was ~10% below that o f LPD parti
cles at nearly all time points.

Fig. 8 rationalises the diffusion results through direct 
comparison o f the diameter o f  the LCN model and relative 
dimensions o f  the membrane pores. Fig. 8C clearly shows 
the nanoparticles residing in the cavities o f the lOOnm pore 
size membrane.

3.7 M icroneedle-M ediated Gene Expression in Excised 
Human Skin

Our stated aim is to utilise microfabricated microneedles 
to study the effect o f  formulatory components, e.g. non-viral 
gene vectors, on m ediating the uptake and expression o f 
pDNA in human skin. In preparation for this work our pre
liminary studies aimed to corroborate whether the delivery o f 
‘naked’ pDNA via m icroneedle-facilitated microchannels 
mediated measurable levels o f reporter gene expression in 
excised human skin. For these studies a new batch o f  mi
croneedles was prepared using the dry etch microfabrication 
technique (Biomedical M icrosystem s Team, Tyndall Na
tional Institute, Cork). Fig. 9 shows that these microprojec
tions are approximately the same height as those used for 
penetration and diffusion studies, however needle-shaft di
ameter is approxim ately double (~160ji.m at base) which 
should allow for improved en face  visualisation o f positively 
transfected microchannels.

Fig. 10 shows a typical result o f  a transfection experi
ment. En fa ce  imaging, following delivery o f pCMVjj re
porter gene, staining with X-Gal and microchannel counter- 
staining with NFR, shows that a small proportion o f the mi
crochannels have mediated detectable reporter gene expres
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Fig. (8). Scanning electron microscopy of polycarbonate track etched membranes following diffusion studies with the lipid coated nanoparti
cle (LCN). A) 10pm pore diameter; B) 1.2pm pore diameter; C) lOOnm pore diameter.

sion (Fig. 10A,B). A gallery of pictures showing 6 consecu
tive 12pm cryosections is presented in Fig. 10C-H. This 
figure clearly illustrates the high level of reporter gene ex
pression in viable epidermal cells proximal to a microneedle 
channel.

Fig. (9). Scanning electron microscopy of silicon microneedle ar
rays used for gene expression studies, Bar = 200pm.

4. DISCUSSION

Innovative techniques are required to overcome the SC 
barrier to exploit the potential of macromolecule and gene 
therapeutics within skin. Microneedle arrays have been 
shown to crealte transient micron sized conduits through the

SC thereby providing a route though which therapeutic 
agents can access the underlying tissue layers. The microfab
ricated microneedles developed for use within our laboratory 
are approximately 200pm in length and possess sharp tips. A 
uniform pattern of pore like structures on the surface of mi
croneedle-treated human epidermis (Fig. 2) and retention of 
a small molecule dye, methylene blue, within the created 
channel (Fig. 3) confirm successful penetration of the SC. 
However, inconsistencies in the pattern o f channels on the 
skin surface highlight a degree of variability in penetration 
attributable to the dermatoglyphics o f the skin surface or 
fragility or biological contamination of the individual silicon 
needles. These inconsistencies are possibly reflected in sub
sequent gene expression studies (Fig. 10). Despite the fact 
that silicon is generally an inert material, microneedle frac
turing and biological contamination would restrict the likely 
clinical exploitation of such devices to single application. 
Advances in micro fabrication technologies have led to the 
development of arrays with a range of geometries made from 
alternative materials, such as glass, metal and plastic [37,38], 
Such developments will ultimately provide increasingly ro
bust and reliable delivery systems.

Detection of topically applied P-galactosidase enzyme 
within the viable epidermis initially confirmed the ability of 
the microneedle array to facilitate delivery of large hydro
philic molecules to skin. The epidermis is not a uniform tis
sue layer, possessing projections that interdigitate with the 
underlying dermal papillae layer. This results in an epider
mal thickness that is highly variable both within and between 
donor tissues. Therefore, in some areas of the tissue mi
croneedles will deliver to the epidermis only whereas in oth-
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Fig. (10). Photomicrographs of microneedle treated human skin 
stained for P-galactosidase expression. A) En face stereomicro- 
scopy; B) En face microscopy, Bar = 0.5mm; C-H) Consecutive 
unstained cryosections, original magnification = X200, Bar = 
100p.m.

ers, we might expect disruption of the basement membrane 
zone and the creation of a conduit to the upper layers of the 
dermis. This was apparent in studies examining microneedle- 
facilitated delivery of fluorescent nanoparticles to human 
skin, where the charged particles were delivered to both the 
epidermis and upper dermis. The dimensions of a micro
channel are governed by factors such as the needle height 
and morphology and therefore modification of the device 
will enable control over the depth of delivery and access to 
cellular targets.

Cutaneous delivery of nanoparticulate formulations will 
rely upon novel delivery techniques to disrupt the otherwise 
impervious SC barrier [39]. We have shown that micronee
dle devices are able to breach the SC barrier and allow cuta
neous delivery of a fluorescent polymeric nanoparticle. For 
the application of cutaneous gene therapy however, rapid 
passage of the plasmid or gene vector from the skin surface 
to the target cells is vital to avoid physicochemical interac

tion of the DNA with the surrounding tissue components or 
its degradation by deoxyribonucleases within the extracellu-. 
lar matrix [40]. The diffusion experiments confirm that in
creasing the diameter of a microchannel will facilitate a more 
rapid delivery of the colloidal formulation. However, the 
physicochemical characteristics of the delivered particles 
must also be considered. Electrostatic interaction with the 
tissue surface or exposure to components within the channel 
may impede the delivery of charged particles to those target 
cells within the epidermis. Therefore increasing the diameter 
o f a microchannel, by adapting the structure of the mi
croneedle, will reduce contact between the nanoparticle and 
the tissue. Permeation of approximately 50% of a fluorescent 
LPD formulation within a 2 hr period through a 10|im pore 
diameter synthetic membrane indicates that the microchan
nels created within human skin during this study, approxi
mately 30|im in diameter, should facilitate rapid delivery of 
the gene therapy formulation to the viable epidermis.

Our initial gene expression studies have shown that na
ked pDNA can be expressed in excised human skin only in 
areas where microneedles have disrupted the SC barrier. 
Although a minority o f microchannels were shown to be 
positive for gene expression these studies have served to 
validate our organ culture conditions in maintaining the cel
lular viability of excised human skin and provide a realistic 
assessment of the current efficiency of the microneedle tech
nique for facilitating gene transfer. Further studies are cur
rently utilising alternative optimised microneedle devices to 
facilitate more reproducible cutaneous gene delivery and 
explore those formulatory components that influence gene 
expression in epidermal cells.

5. CONCLUSIONS

The increasing application of macromolecular and gene- 
based therapies in medicine is driving the development of 
novel methods for cutaneous delivery. This investigation has 
systematically confirmed the ability of a solid silicon mi
croneedle array to penetrate the SC and create microchannels 
within human skin that can facilitate the intra-epidermal de
livery of biologically active macromolecules, charged lOOnm 
diameter nanoparticles and plasmid DNA. This technology 
can be exploited to deliver large molecules including gene 
medicines to the viable cells of the epidermis in a controlled 
and pain-free manner.
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Abstract

The skin is a valuable organ for the development and exploitation of gene medicines. Delivering genes to skin is restricted however by the 
physico-chemical properties of DNA and the stratum corneum (SC) barrier. In this study, we demonstrate the utility of an innovative technology 
that creates transient microconduits in human skin, allowing DNA delivery and resultant gene expression within the epidermis and dermis layers. 
The radio frequency (RF)-generated microchannels were of sufficient morphology and depth to permit the epidermal delivery of lOOnm diameter 
nanoparticles. Model fluorescent nanoparticles were used to confirm the capacity of the channels for augmenting diffusion of macromolecules 
through the SC. An ex vivo human organ culture model was used to establish the gene expression efficiency of a P-galactosidase reporter plasmid 
DNA applied to ViaDerm™ treated skin. Skin treated with ViaDerm™ using 50 p,m electrode arrays promoted intense levels of gene expression in 
the viable epidermis. The intensity and extent of gene expression was superior when ViaDerm™ was used following a prior surface application of 
the DNA formulation. In conclusion, the RF-microchannel generator (ViaDerm™) creates microchannels amenable for delivery of nanoparticles 
and gene therapy vectors to the viable region of skin.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Radiofrequency-microchannels; Radiofrequency ablation; Plasmid DNA; Skin; Gene therapy

1. Introduction

The ability to target genes directly to the skin provides a strat
egy for the treatment of certain localised heritable genetic skin 
diseases (Greenhalgh et al., 1994; Ehrlich et al., 1995), vari
ous forms of malignancies (Hart and Vile, 1994) and cutaneous 
wounds (Byrnes et al., 2004; Lee et al., 2004). Furthermore, 
‘genetic immunisation’ via the skin provides a method of vac
cinating patients by introducing DNA into cells, leading to 
expression of foreign antigen and the subsequent induction of 
an immune response (Fynan et al., 1993; Raz et al., 1994; Shi et 
al., 1999). Intra-cutaneous DNA vaccines utilise the highly com

* Corresponding author. Tel.: +44 29 20875815; fax: +44 29 20874149. 
E-mail addresses: birchalljc@cardiff.ac.uk, birchalljc@cf.ac.uk 

(J. Birchall).

0378-5173/$ -  see front matter © 2006 Elsevier B.V. All rights reserved, 
doi: 10.1016/j .ijpharm.2005.12.036

petent antigen-presenting capabilities of epidermal Langerhans 
cells in eliciting a systemic immune response, leading to more 
proficient and cost-efficient vaccination compared with conven
tional vaccines (Lin et al., 2000). As the immune response is 
induced by a single gene rather than an entire organism, this 
approach is also considered to be safer than using live attenu
ated vaccines (Durrant, 1997).

The challenge of delivering genes to the viable region of 
skin is a product of the physico-chemical properties of the large 
hydrophilic DNA molecule, with or without an additional car
rier vehicle, and the significant barrier properties of cutaneous 
tissue. Superficially the skin is regarded as a valuable organ for 
the development and clinical administration of gene medicines 
as it is readily accessed, well characterized and easily monitored 
(Hengge et al., 1996). However, if cutaneous gene therapy is to 
translate from the laboratory to clinical practice then approaches
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must be developed to efficiently and reproducibly transport the 
delivered transgene to the target cell population. The primary 
role of the skin however, is to serve as a physical barrier to the 
invasion of foreign material. In humans, the epidermis, which 
constitutes the uppermost layer of the skin, is approximately 
50-150 p,m thick with the non-viable SC layer, approximately 
15-20 p,m in thickness, representing the principal barrier to pen
etration and permeation of substances through the skin (Birchall, 
2004). Therefore, in order to deliver therapeutic compounds to 
the epidermis, the underlying dermis or the systemic circulation, 
delivery strategies must overcome the physical barrier created 
by the nature of the tightly packed dead cells of the SC. Tra
ditional transdermal formulation strategies aim to enhance the 
delivery of small therapeutic molecules, less than 500 molecular 
weight, across the SC by paracellular, transcellular or intracellu
lar routes. However, in order to deliver DNA and proteins, more 
innovative and radical methods of drug delivery are required. To 
date, the physico-chemical methods employed to promote ther
apeutic drug or gene transfer to the skin include the use of direct 
DNA injection (Hengge et al., 1995, 1996; Chesnoy and Huang,
2002) chemical enhancers (Barry, 1987; Pillai and Panchagnula,
2003), iontophoresis (Green, 1996; Preat and Dujardin, 2001), 
biolistic particle bombardment (Cheng etal., 1993;Heiser, 1994; 
Udvardi et al., 1999), electroporation (Prausnitz et al., 1993; 
Dujardin et al., 2001; Zhang et al., 2002), sonophoresis (Lavon 
and Kost, 2004), laser ablation (Nelson et al., 1991), microseed- 
ing (Eriksson et al., 1998), skin tattooing (Bins et al., 2005) and 
the recent use of microfabricated microneedles (Henry et al., 
1998; McAllister et al., 2000, 2003; Chabri et al., 2004).

Recently, we have developed an innovative technology, 
coined ViaDerm™, which creates transient microchannels 
across the SC thereby enabling a more direct and controlled pas
sage of molecules to the underlying viable epidermis and dermis. 
ViaDerm™ has an intimately spaced array of microelectrodes 
which are placed against the surface of skin to individually con
duct an applied alternating electrical current at radio frequency 
(RF). Application of this rf electrical current (100-500 kHz) to 
the tissue elicits a vibration in motion of ions with localized fric
tional heating of tissue resulting in a rapid obliteration of cells 
close to the energy source. The intimate and orderly spacing 
of the microelectrodes therefore drives the orderly generation 
of functional microchannels. The passage of the electric cur
rent through cells in the upper skin strata generates localised 
ionic vibrations, heating, evaporation and cell ablation to create 
microchannels.

Previously, we have reported that RF-generated microchan
nels reside in the epidermis and dermis and are amenable to 
the effective transdermal delivery of small molecules (Sintov 
et al., 2003) and proteins (Levin et al., 2005) into the systemic 
circulation. Furthermore, the microchannels did not impinge on 
underlying blood vessels and nerve endings thus minimizing 
skin trauma, bleeding and neural sensations (Sintov et al., 2003). 
Clearly, the use of electricity for augmenting transcutaneous 
drug delivery also applies to some of the other aforementioned 
physical delivery methods, e.g. iontophoresis, electroporation. 
Unlike these examples however, the technology described in 
this study leads to the creation of an orderly array of defined

microchannels by cell ablation at specific locations (Levin et 
al., 2005).

The purpose of the present study using the ViaDerm™ 
technology was two-fold. Firstly, to extensively characterize 
ViaDerm™-generated microchannels within ex vivo human 
skin. Secondly, to assess the feasibility of ViaDerm™ in sup
porting the transdermal delivery of a mammalian expression 
plasmid with subsequent reporter expression within the target 
region of the skin.

2. Materials and methods

2.1. Materials

The 7.2 kb pCMV{3 plasmid construct containing the (3- 
galactosidase reporter gene and the pEGFP-Nl (4.7 kb) plas
mid containing the green fluorescent protein reporter gene were 
propagated and purified as detailed previously (Birchall et al., 
1999). Fluorescein isothiocyante (FITC)-labelled polystyrene 
nanospheres (L-1280) were obtained from Sigma Chemicals 
(Poole, UK). OCT embedding medium and Histobond® micro
scope slides were from RA Lamb Ltd. (Eastbourne, UK). 
One percent aqueous eosin solution and Harris’ haematoxylin 
solution were from BDH Laboratory Supplies (Dorset, UK). 
One percent aqueous toludine blue solution was from TAAB 
Laboratories Equipment Ltd. (Berkshire, UK). Cell culture 
plastics were obtained from Coming-Costar (High Wycombe, 
UK). MEM (EAGLES) 25 mM HEPES, Dulbecco’s Modified 
Eagle’s Medium (DMEM 25 mM HEPES), foetal bovine serum, 
penicillin-streptomycin solution and trypsin-EDTA solution 1 x 
were obtained from In-Vitrogen Corporation, Paisley, UK. All 
other reagents were of analytical grade and purchased from 
Fisher Scientific UK (Loughborough, UK).

2.2. ViaDerm™ treatment o f human skin

Full-thickness human breast skin was obtained from mastec
tomy or breast reduction with ethical committee approval and 
informed patient consent. Skin was collected from a variety of 
donors ranging from 45 to 65 years of age. Matched samples 
were used for each individual experiment. To maintain struc
tural and cellular viability the skin tissue was transported on 
ice in MEM (EAGLES) 25 mM HEPES growth media and used 
within 3 h of excision. All excess adipose tissue was removed 
by blunt dissection.

The components and operating conditions of the RF- 
microchannel generator (ViaDerm™, TransPharma Medical, 
Israel) have been described previously (Sintov et al., 2003). 
Briefly the ViaDerm™ device comprises an electronic con
troller unit and a disposable array of stainless steel electrodes 
(100 or 50 |xm in length) at a density of 100 electrodes/cm2 in a 
total area of 1.4 cm2. Thus, application of an RF-activated array 
(1.2 cm x 1.2 cm) resulted in the generation of 144 microchan
nels over the 1.4 cm2 area. Studies were performed using the 
electrodes at device parameter settings resulting in one, two or 
five bursts of 700 |xs burst length at an applied voltage of 290 or 
330 V and an RF frequency of 100 kHz. Control experiments
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involved equivalent pressure application of the ViaDerm™ 
device to human skin in the absence of the RF-generating power 
source.

2.3. Electron microscopy of full thickness skin

ViaDerm™ treated (100 |xm electrode, density of 
200 microchannels/cm2) full thickness human skin sam
ples were fixed with 2.5% glutaraldehyde in 0.1 M sodium 
cacodylate buffer (pH 7.4) for 60 min at room temperature and 
washed for 10 min ( 2 x 5  min) in the same buffer. The samples 
were post-fixed in 1% osmium tetroxide in 0.1 M cacodylate 
buffer for 1 h at 4 °C and then dehydrated with a graded series 
of ethanol concentrations as follows (70% for 10 min at 4°C, 
100% for 10 min at 4°C, 100% for 10 min at 4°C, 100% for 
10 min at 4°C). The samples were subsequently transferred to 
a critical point drier (Samdri 780, Maryland, USA) for 12 h. 
The samples were mounted on metal stubs and gold sputter 
coated, using an Edward sputter coater, prior to examination in 
a Philips XL-20 scanning electron microscope.

2.4. Electron microscopy o f epidermal sheets

Following ViaDerm™ treatment (100|xm electrode) of full 
thickness human skin, epidermal sheets were isolated by a heat 
separation technique (Christophers and Kligman, 1963). The 
resulting epidermal sheets were placed in cold distilled water 
and then gently lifted from the water onto a metal stub. The 
mounted epidermal sheet was allowed to dry, gold sputter coated 
and the samples were examined using a scanning electron micro
scope (Philips Xl-200 SEM) (Electron Microscopy Unit, Cardiff 
School of Biosciences, Cardiff University, Cardiff, UK).

2.5. Visualisation of microchannels enface

ViaDerm™ treated (100|Jim electrode) skin was incubated 
in media (MEM (EAGLES), 25 mM HEPES) for 24 h at 37 °C. 
Following two washes in phosphate buffered saline (PBS) the 
skin was fixed in 0.5% gluataraldehyde for 2h on ice. Methy
lene blue staining involved a 5 min surface application of five 
drops of methylene blue solution on the ViaDerm™ treated skin 
followed by removal of excessive stain with a brief PBS rinse 
and an ethanol surface swab. Tissue stained with methylene blue 
was visualised using an Olympus BX50 microscope and a Schott 
KL1500 electronic light source.

2.6. Histology of ViaDerm™ treated tissue

Skin was treated with ViaDerm™ using either 50 or 100 jjim 
electrode arrays. Following treatment the skin was washed with 
PBS and fixed for 4 h in 0.5% glutaraldehyde on ice. Fixed tissue 
was embedded in OCT and sectioned using a Leica CM3050S 
Cryostat. Sections were collected on Histobond® microscope 
slides and stained with either—(i) eosin: 1% aqueous eosin 
solution for 5 s, (ii) haematoxylin and eosin (H&E): Harris’ 
haematoxylin solution for 5 min followed by 1 % aqueous eosin

solution for 5 s or (iii) toludine blue: 1 % aqueous toludine blue 
solution for 5 min.

2.7. Diffusion o f fluorescent nanoparticles through 
RF-microchannels™

Non-treated and ViaDerm™ treated (50 and 100 |xm elec
trodes) full thickness human skin was heat separated in order 
to isolate the epidermal membranes which were subsequently 
mounted between the donor and receptor compartments of static 
Franz-type glass diffusion cells. The receptor phase of each cell 
was filled with phosphate buffered saline (PBS; pH 7.4). The 
receptor arm was sealed with a foil cap and the donor chamber 
occluded with NESCO® film to prevent sample evaporation. The 
cells were placed on a stirring plate in a water-bath maintained 
at 37 °C, to provide continuous agitation and a skin surface tem
perature of 32 °C. Prior to addition of the test formulations to 
the donor chamber, cells were allowed to equilibrate for at least 
30 min and the integrity of epidermal membranes was visually 
inspected.

Fluorescently (FITC) labelled polystyrene nanospheres 
(lOOnm diameter) were used as a size-representative model for 
the delivery of non-viral gene therapy vectors (Chabri et al.,
2004). A volume of 500 j j l I  of a 50 pd/ml dilution of the fluores
cent nanosphere stock suspension, concentration 4.5710 |j l 1— 1, 

was applied to the surface of ViaDerm™ treated epidermal 
membranes. Control cells consisted of untreated epidermal 
membrane with either the nanosphere suspension or PBS applied 
to the donor phase. At each timepoint 200 p.1 samples were 
removed from the receptor arm at regular intervals and replaced 
with PBS. On completion of the experiment, samples were anal
ysed using a fluorescence spectrophotometer (BMG Fluostar, 
Aylesbury, UK) with excitation and emission wavelengths set 
at 485 and 520 nm, respectively. A calibration curve was per
formed using standard dilutions of the suspension of fluorescent 
nanoparticles.

2.8. Localised delivery o f fluorescent nanoparticles in 
ViaDerm™ treated human skin

ViaDerm™ treated (100 |xm electrode) skin was placed in 
a six-well cell culture plate and maintained in 1.5 ml MEM 
(EAGLES) 25 mM HEPES. Fifty microliters of a concentrated 
(4.5710 p.1-1 ) stock of fluorescent red polystyrene nanospheres 
was applied to the treated skin surface and the sample incubated 
for 6 h at 37 °C. At 6 h a further 2 ml of media was added the 
submerged skin was incubated for a further 18 h. Following two 
washes in PBS the skin was fixed in 0.5% gluataraldehyde for 
1 h on ice and embedded in OCT medium prior to tissue sec
tioning using a Leica CM3050S Cryostat. Sections were either 
visualised unstained under blue fluorescence or stained with 
haematoxylin and eosin (H&E) (Olympus BX50 microscope).

2.9. Gene expression in ViaDerm™  treated human skin

Human skin was pre-treated with the ViaDerm™ device, 
50 |xm electrode arrays, prior to the topical application of 50 jxl
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of pCMVp plasmid DNA solution (1 mg/ml) to the skin surface. 
This area of skin was thereafter post-treated with the ViaDerm™ 
device at the identical skin location as the first ViaDerm™ appli
cation. The treated human skin was placed on lens tissue sup
ported by metal gauze in a six-well cell culture plate containing
7.5 ml media (DMEM 25 mM HEPES supplemented with 5% 
foetal bovine serum and 1% penicillin/streptomycin) per well. 
This organ culture maintained the skin at an air-liquid interface 
for 24 h at 37 °C. Following one wash in PBS/MgC^ (30 min) 
the tissue was fixed for 2 h in 2% glutaraldehyde/MgCl2  at 4 °C. 
Subsequently the tissue was rinsed in a series of PBS/MgCh 
solutions for 2, 3 h and 30 min. The tissue was stained for (3- 
galactosidase expression over 20 h using X-Gal staining solution 
[X-Gal (5% (v/v) of a 40 mg/ml solution in dimethylformamide), 
potassium ferricyanide (0.84% (v/v) of a 0.6 M solution), potas
sium ferrocyanide (0.84% (v/v) of a 0.6 M solution), magnesium 
chloride (0.2% (v/v) of a 1 M solution), Tris-HCl buffer pH 8.5 
(50% (v/v) of a 0.2 M solution), deionised water to 100%]. Tis
sue was visualised en face using either a Zeiss Stemi 2000C 
Stereomicroscope with a 2.0 x attachment or an Olympus BX50 
microscope, both with a Schott KL1500 electronic light source.

For sectioning, the samples were embedded in OCT and sec
tioned using a Leica CM3050S Cryostat. Tissue sections were 
collected onto Histobond® microscope slides and stained with 
H&E.

3. Results and discussion

The surface morphology of the microchannels created in 
full-thickness breast skin following application of ViaDerm™

Fig. 1. Scanning electron microscopy o f an RF-microchannel in intact human 
skin. Bar = 50 |xm.

was initially investigated using scanning electron microscopy 
(SEM). Fig. 1 shows a channel created using the 100 |xm elec
trode appearing as a deep invagination into the surface of the 
skin tissue. Further SEM characterisation of the heat-separated 
epidermal membrane, comprising of SC and viable epidermis, 
treated with ViaDerm™ is shown in Fig. 2. These data show 
that the RF-microchannels either totally or partially penetrate 
the epidermal membrane. Although the depth of the microchan
nels was variable, possibly due to variation in thickness of the 
separated epidermal sheet (Eriksson et al., 1998), the diameter of 
the microchannels (~50 |xm), was reproducible and consistent

Fig. 2. Scanning electron microscopy of RF-microchannels in heat-separated epidermal membrane. (A) Low magnification showing distribution pattern o f channels 
following two applications of ViaDerm™, bar = 1 mm; (B) high magnification showing dimensions o f microchannels, bar = 100 p.m; (C) visualisation of microchannel 
depth using an angled electron beam, bar= 5 0  p.m.
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with the microchannel dimensions observed in full-thickness 
skin (Fig. 1). More accurate determinations of the depth and 
structural morphology of the microchannels are provided in the 
histological tissue sections.

The quantity and distribution pattern of microchannels cre
ated in ViaDerm™ treated skin is shown in Fig. 3. The distribu
tion pattern of the channels can be visualised through their ability 
to uptake and retain a low molecular weight marker, i.e. methy
lene blue (Fig. 3A). At higher magnification the dye appears 
to diffuse to the periphery of the microchannel (Fig. 3B). The 
application and considerable potential of this technology for the 
cutaneous delivery of low molecular weight medicaments has 
previously been reported (Sintov et al., 2003).

The structural dimension of microchannels created in human 
breast skin following application of ViaDerm™ was assessed 
using transverse sectioning. The photomicrographs are repre
sentative of the entire population of channels observed. Fig. 4 
illustrates the dimensions of RF-microchannels that are created 
in human breast skin following application of ViaDerm™ with 
50 p.m electrode arrays at different parameter settings. In the 
majority of processed skin sections (n> 100), the channels are 
approximately 50 |xm in length and 30-50 p,m at their widest 
aperture, extending only to the viable epidermis.

In line with the data depicted in Fig. 4, doubling the elec
trode length to 100 p,m resulted in further penetration through 
the human epidermis and impingement into the superficial 
dermal layer (Fig. 5). Representative sections (n>100) show 
that microchannels were approximately 100 p,m in length and 
30-50 |xm at their widest aperture. Consequently, using isolated 
human breast skin, the 100|xm electrode arrays can create a 
microchannel of sufficient length to permit specific cell targeting 
for localised cutaneous gene therapy applications (Greenhalgh et 
al., 1994; Sawamura et al., 2002) and genetic vaccination (Dean 
et al., 2003). Clearly, the exploitation of different electrode 
lengths for creating microchannels of varying depths under
scores the flexibility of ViaDerm™ for permitting controlled 
delivery of therapeutics to different target cell populations.

(A)

Fig. 3. Light microscopy o f methylene blue stained skin following ViaDerm™  
treatment. (A) Low magnification, bar= 1 mm; (B) high magnification, original 
magnification= 4 0  x , bar= 5 0 0  pm.

. a

Fig. 4. Light microscopy of human breast skin treated with ViaDerm™  50 p-m electrode arrays. (A) One burst o f 700 p s burst length, toludine blue stained; (B) two 
bursts of 700 ps burst length, toludine blue stained. Original magnification = 2 0 0 x , bar = 100 pm.
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(A)

Fig. 5. Light microscopy of human breast skin treated with ViaDerm™ 100 p.m electrode arrays. (A) One burst o f 700 (xs burst length, toludine blue stained; (B) 
three bursts o f 700 p,s burst length, toludine blue stained. Original magnification = 200x , bar= 100 |xm.

Previously, from ex vivo studies employing a permeation 
methodology, we have demonstrated the total inability of the 
ViaDerm™ device to generate microchannels when discon
nected from a power source as evidenced by both negative 
visualization and lack of drug permeation (Sintov et al., 2003). 
Such findings were totally substantiated in follow up in vivo 
studies whereby application of drugs at a ViaDerm™ treated 
skin site in the absence of a power supply resulted in no trans- 
dermal drug delivery as compared to robust drug deliveries with

a functional power supply (Sintov et al., 2003; Levin et al.,
2005). In our histological studies, and subsequent gene deliv
ery experiments, we confirm the previously published ex vivo 
and in vivo observations (Sintov et al., 2003; Levin et al., 2005) 
of the total absence of microchannels on the surface skin follow
ing the placement of the ViaDerm™ device disconnected from 
a functional power source.

Following confirmation of the ability of ViaDerm™ to cre
ate microchannels in human skin, further experiments were
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Fig. 6. Light (A) and fluorescent (B) photomicrographs o f RF-microchannels containing fluorescent nanoparticles. Original magnification = 100 x , bar= 100 p.m; 
(C) diffusion o f fluorescent nanoparticles through ViaDerm™ treated epidermal membranes. Data presented as percentage o f topical nanoparticle dose detected in 
the receptor phase of Franz cells over a 12 h period. (O ) Untreated skin— PBS donor phase, ( x )  Untreated skin— topical nanoparticles, (□ )  50 |xm array ViaDerm™  
treated skin— topical nanoparticles, (A) 100 jxm array ViaDerm™ treated skin— topical nanoparticles (N= 3 ±  S.D.).
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performed to demonstrate the capability of these microchan
nels to permit cutaneous delivery of macromolecules or 
nanoparticulates. To that end, 100 nm fluorescent nanoparticles 
were selected as an easily detectable and size-representative 
model nanoparticle delivery system. Indeed, we have previ
ously reported their application as an experimental tool for 
lipid:polycation:pDNA (LPD) non-viral gene delivery parti
cle studies (Chabri et al., 2004). Fig. 6 confirms that the 
RF-microchannels created in skin following application of 
ViaDerm™ are of sufficient dimensions to uptake, entrap and

permit the diffusion of 100 nm fluorescent nanoparticles. The 
channels shown in Fig. 6A and B appear to be larger than those 
observed in Fig. 5, possibly due to changes in the tissue sam
ple over the incubation period (24 h compared with Oh). These 
micrographs imply that the RF-microchannels generated can be 
considered to be of appropriate dimensions for the cutaneous 
delivery of macromolecules and non-viral gene therapy vectors.

Fig. 6C shows the data from a Franz-type diffusion 
experiment designed to determine the transit of the 100 nm 
nanoparticles through ViaDerm™ treated and control epidermal

(D) (E)

Fig. 7. Photomicrographs of ViaDerm™ treated human skin stained for (i-galactosidase expression (50 |xm arrays). (A) En face stereomicroscopy; (B) en face 
light microscopy, original magnification= 40  x ; (C) en face stereomicroscopy of ViaDerm™ treated human skin treated with the pEGFP-Nl plasmid; (D) unstained 
cryosection, original magnification = lOOx; (E) H&E stained cryosection, original magnification = lOOx, bar = 100 p-m.
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membranes. The non-treated epidermal membranes demonstrate 
the significant barrier function of this membrane to 100 nm 
nanoparticles, with undetectable penetration observed following 
12 h incubation. Following ViaDerm™ treatment the epidermal 
membranes demonstrated a significantly enhanced (p> 0.05, 
one-way analysis of variance) permeability to the nanoparticles. 
Interestingly, whilst application of the 50 |xm electrode arrays 
mediated reproducible permeation of the membrane to facili
tate the diffusion of approximately 5% of the surface-applied 
nanoparticles, appliance of the 100 |xm electrode arrays led to 
enhanced, though more variable, disruption of the membrane, 
as evidenced by an increase in mean penetration of the 100 nm 
nanoparticles. A possible mechanism for the more variable per
meation of nanoparticles following ViaDerm™ treatment using 
the 100 p,m electrodes is provided by the SEM images in Fig. 2. 
When the skin is treated with ViaDerm™ using the 50 |xm elec
trodes and the epidermal membrane is subsequently removed by 
heat separation, it is not guaranteed that the entire membrane, 
i.e. stratum comeum and viable epidermis, will be punctured 
although disruption of the outer 15-30 |xm will be sufficient to 
overcome the primary diffusive barrier, the stratum comeum. 
The observed increase in nanoparticle permeation therefore 
results from particle transit through the ablated SC channels 
and subsequent diffusion through the underlying epidermis. As 
shown in Fig. 2, skin treatment with ViaDerm™ using the 
100 |xm electrodes can occasionally effect complete penetra
tion through the heat-separated epidermal sheet. Variability will 
therefore arise from the proportion of complete punctures, which 
in turn will depend on the thickness of the epidermal membrane 
following heat separation.

The delivery and expression of plasmid DNA in viable human 
skin via RF-microchannels has been initially demonstrated using 
the 50 fim electrode arrays. In these experiments the plasmid was 
used alone, i.e. without any non-viral carrier system, as numer
ous studies have shown the ability of naked DNA to undergo 
efficient expression in vivo (Hengge et al., 1995, 1996; Chesnoy 
and Huang, 2002). Fig. 7A and B clearly show the presence of 
intense blue staining, relating to substantial reporter gene expres
sion with no expression evident in skin treated with ViaDerm™ 
and probed with the pEGFP-Nl plasmid (control; Fig. 1C). The 
expression is primarily localised in the viable epidermal cells 
surrounding the RF-microchannel (Fig. 7D and E). Interest
ingly, when a solution of DNA is applied topically to an area 
of ViaDerm™ treated skin the resulting epidermal gene expres
sion is relatively low (data not shown). When the skin is treated 
with ViaDerm™ both prior to and following a topical applica
tion of the DNA solution the extent and level of gene expression 
is demonstrably greater. Consequently, it is reasonable to suggest 
that the ViaDerm™ might be used not only to create microchan
nels in the skin but also to enhance the intracellular uptake of the 
delivered DNA via a mechanism analogous to electroporation 
(Titomirov et al., 1991; Zhang et al., 2002).

In conclusion, we have demonstrated that the channels cre
ated in human breast skin following application of the RF- 
microchannel generator (ViaDerm™) are of appropriate dimen
sions, and enhance skin permeability to such a degree, as to per
mit the delivery of macromolecules and gene therapy vectors to

the skin. The ViaDerm™ device represents a significant break
through in the challenge of delivering high molecular weight 
medicaments through the SC barrier. In particular, the ability to 
facilitate minimally invasive, targeted and controlled delivery of 
genes to the viable epidermis further supports the experimental 
and clinical evaluation of this novel transdermal drug delivery 
technology.
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