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ABSTRACT

Cancer is a new growth that arises from abnormal and uncontrolled division of cells that 

may go on to invade and destroy surrounding tissues. The eukaryotic cell cycle consists o f  

a complex sequence of events that regulates cell division and responses to DNA damage. 

These processes rely upon several key enzymes, including the cyclin dependent kinases 

(CDKs), checkpoint kinases (Chk2) and poly(ADP-ribose)polymerase-l (PARP-1).

CDKs are a family of protein kinases that control progression of the cell cycle, and are 

themselves regulated by a complex network of activating and inhibitory mechanisms. The 

vital importance of CDKs in regulating of the cell cycle, emphasise their importance as 

anti-cancer drug targets. CDKs inhibitors compete with the natural substrate ATP in a 

competitive manner. Hymenialdisine and kenpaullone have been identified as novel and 

potent CDK inhibitors both containing an unusual azepinone scaffold.

Checkpoint kinase 2 (Chk2) is a novel target for anti-cancer drug design. The enzyme 

mediates cell proliferation in response to DNA damage by inducing cell cycle arrest, 

which facilitates the DNA repair pathways. Chk2 inhibition has been recognised as a 

potential target for the chemopotentiation of current anti-cancer treatments. Few Chk2 

inhibitors are known, kenpaullone has been identified as a novel and selective ATP 

competitive Chk2 inhibitor (IC50 = 0.8 pM). Debromohymenialdisine (DBH) also 

containing an azepinone scaffold has also been reported to inhibit Chk2.

Poly(ADP-ribose)polymerase-l (PARP-1) is activated in response to DNA damage, and 

inhibition can potentiate cancer chemotherapy and radiotherapy. A PARP-1 inhibitor in 

combination with a cytotoxic agent should enhance drug activity by blocking the repair 

capabilities o f PARP-1 in cancer cells.

Although many types of inhibitors have been identified for each of these three enzymes, 

compounds containing a seven-membered lactam ring have been identified as key 

inhibitors for CDKs/Chk2/PARP-l. This study is entered upon developing the synthesis 

for a series of novel inhibitors o f these three enzymes containing the essential lactam 

pharmacophore in their structures. The compounds synthesised in this study were 

assessed by a number of biological assays showing moderate or good growth or catalytic 

inhibitory activity against CDKs and PARP-1 respectively, while assays against Chk2 

showed no inhibition.
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CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION

Cancer is a major cause of poor health and illness in all countries of the world. Each year 

10.9 million people worldwide are diagnosed with cancer and there are 6.7 million deaths 

from the disease. It is estimated that there are 24.6 million people alive who have received 

a diagnosis of cancer in the last five years. However, there are large geographic 

differences in the incidence of cancer. These differences have often helped researchers 

understand more about how cancer can be caused by cultural and environmental factors. 

So an individual risk of developing cancer depends on many factors, including smoking 

behaviour, diet and genetic disorder. Overall, it is estimated that more than one in three 

people will develop some form of cancer during their lifetime, with one in four dying 

from their disease (http://www.cancerresearchuk.org.html, accessed 1st September 2005).

There are many classes of anti-cancer drugs including alkylating agents, DNA-targeting 

drugs, hormons and enzyme inhibitors. All current treatments are limited by effectiveness 

and side effects, and exploring new biological targets in cancer treatment is important to

PhD Thesis, P Hamidi, 2006
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Chapter 1. Introduction

develop more effective cancer treatments. The enzymes that regulate the cell cycle and 

DNA repair are currently under investigation as novel targets in the treatment of cancer. 

Deregulation of cellular mechanisms such as those controlling cell cycle progression or 

DNA damage contribute to the development of cancer (Morgan, 1995; Sielecki et al., 

2000). Almost all tumours are usually caused by cumulative effects of several mutations 

in a somatic cell over time which explains why the incidence of cancer generally increases 

with age. It is estimated that three to seven independent mutations are required (Guo and 

Hay, 1999).

There are several ways to treat cancers including surgery, radiotherapy and chemotherapy; 

the main agents currently used in chemotherapy include agents that damage DNA or 

disrupt DNA synthesis. Cellular responses to DNA damage constitute an important field 

in cancer biology (Kastan and Bartek, 2004) with potential for the design of novel 

therapeutic agents.

The most frequently mutated gene in human cancer has been found to be the p53 tumour 

suppressor gene, which is a key regulator of the cell cycle and of genome stability. This in 

turn will lead to deregulated control o f cell cycle checkpoints, which can result in the 

replication of damaged DNA (Elledge, 1996; Sherr, 1996). In response to DNA damage, 

mammalian cells activate checkpoint regulators, to delay cell cycle progression 

(Tominaga et al., 1999).

The cell cycle is a vital process in the body, controlling cell division and ensuring 

accurate duplication of genetic material. In all eukaryotic organisms it is essential that the 

cell cycle transitions are coordinated precisely. In cancer cells this process fails to 

function normally, resulting in uncontrolled cell proliferation (Ho and Dowdy, 2002).

The cyclin dependent kinases (CDKs) are a group of serine threonine kinases, which 

control the transition between cell cycle phases. Since cancer cells are more likely to be 

proliferating than non-transformed cells, the proteins that drive and control cell cycle 

progression are potential drug targets for anti-cancer agents. CDKs may therefore be 

important therapeutic targets in cancer therapy (Garrett and Fattaey, 1999; Meijer, 1996). 

As the majority of protein kinases belong to the same superfamily of proteins, specificity

PhD Thesis, P Hamidi, 2006
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Chapter 1. Introduction

is a major issue (Cohen, 1999; Garrett and Fattaey, 1999). However, recent development 

of ATP competitive protein kinase inhibitors which show high potency and specificity 

indicate the important role that chemical inhibitors of CDKs may play in the suppression 

of cell division (Garrett and Fattaey, 1999).

Progression through the cell cycle is also controlled by various surveillance mechanisms 

that block or delay transitions until each phase of the cell cycle is accurately completed. 

Recent studies in yeast, as well as in mammalian cells, have shown that these control 

pathways, termed checkpoints, are found in all phases o f the cell cycle. Integrity of the 

checkpoint pathways is critical for genomic integrity (Hartwell, 1992) as well as for the 

repair and survival of cells exposed to DNA-damaging agents and replication inhibitors 

(Yu et al., 2002). Cells can respond to DNA damage by activating checkpoints that delay 

cell cycle progression, allowing time for DNA repair. There is considerable data to 

suggest that DNA damage is a major contributor to the development of human cancers, it 

is reasonable to speculate that alterations in these pathways increase the risk of cancer 

developing (Kastan and Bartek, 2004). Chemical inhibitors o f the G2 phase DNA damage 

checkpoint may be used as tools to understand better how the checkpoint is regulated and 

may be used to sensitize cancer cells to DNA-damaging therapies (Curman et al., 2001). 

Inhibitors of checkpoint regulators have the potential to increase the efficacy of DNA- 

damaging anti-cancer therapies by selectively increasing the sensitivity of tumour cells 

with checkpoint and repair defects (Zhou and Bartek, 2004). Checkpoint kinase 2 (Chk2) 

is a checkpoint regulator and a novel, relatively unexplored target for anti-cancer drug 

design. This enzyme blocks cell proliferation in response to DNA damage by inducing 

G2/M cell cycle arrest; this is believed to facilitate the DNA repair process, and could be a 

promising target for future cancer therapy strategies (Bartek et al., 2001).

Poly(ADP-ribose)polymerase-l (PARP-1) has become an important target in cancer 

therapy. It is a DNA-strand break sensor activated by radiotherapy and chemotherapies 

that target tumour DNA (Oliver et al., 2004). It initiates repair of the damage inflicted by 

these therapies. Interruption of this process by pharmacological inhibition of PARP-1 

would limit the ability of the tumour cells to repair their damaged DNA and, therefore, 

increase the effects of cancer radiotherapy and DNA damaging chemotherapy (Southan 

and Szabo, 2003).

PhD Thesis, P Hamidi, 2006
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Chapter I. Introduction

The discussion so far has highlighted three major enzymes, namely cyclin dependent 

kinases (CDKs), checkpoint kinases (Chk2) and poly(ADP-ribose)polymerases (PARPs), 

that are all potential targets for the treatment of cancer. Each will be explained in greater 

depth in the following sections.

1.2 THE CELL AND THE CELL CYCLE

1.2.1 Cells

The importance of the cell as the fundamental unit of life was first fully understood in the 

mid-nineteenth century, based upon the idea that both plants and animals are made o f  

cells with the extraordinary ability to create copies of themselves by growing and dividing 

in two (Nurse, 1998). Therefore, new cells can arise only by the division of pre-existing 

cells (Murray and Hunt, 1993). To be able to reproduce new cells the existing ones must 

replicate their chromosomes and then separate into two daughter cells (Alberts et al

1998), Chapter 17. These daughter cells were found to closely resemble their parent and 

each other, and were able to repeat the process.

The adult human being is constituted of 50 trillion living cells all o f which originated 

from the initial fertilized egg. Every second our body undergoes approximately 20 million 

cell divisions to compensate for continuous cell loss and death (Gray et al., 1999). In the 

late 1970s and 1980s, in light of advances in molecular biology, scientists better 

understood the very basics o f cell composition and this provided a frame-work for further 

investigation into the molecular details of cells and the cell cycle; the particular sequence 

o f events that lead from one to two daughter cells (Nurse et al., 1998).

PhD Thesis, P Hamidi, 2006
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Chapter I. Introduction

1.2.2 The cell cycle

The cycle of duplication and division of the contents of the cell is known as the cell cycle 

(Alberts et al., 1998), Chapter 18. The eukaryotic cell cycle is divided into four phases, 

Gi, S, G2 and M and is controlled by the input of growth factor signals (Figure 1.1).

^  [Quiescent state

Mitosis

Pre-synthetic growth

S Phase

Figure 1.1 The four phases of the eukaryotic cell cycle.

The cell cycle is an ordered, tightly regulated process with multiple checkpoints that 

control extracellular growth signals, cell size, and DNA integrity to ensure that the events 

o f the cell cycle take place in the correct sequence (Ho and Dowdy, 2002). Failure of 

these checkpoints to arrest the cell after inappropriate chromosome replication and 

segregation is a hallmark o f cancer (Hartwell and Kastan, 1994; Swanton, 2004). The 

most significant event is M phase, consisting o f mitosis (nuclear division) and cytokinesis 

(cell separation) (Crews and Mohan, 2000; Johnson and Walker, 1999).

In a mammalian cell, M phase takes about an hour, which is only a small fraction of the 

whole cell cycle period. M phase represents actual cell division, the time between two M 

phases is called interphase, which is the period during which both cell growth and DNA 

synthesis occurs in preparation for cell division (Crews and Mohan, 2000; Johnson and 

Walker, 1999).

PhD Thesis, P Hamidi, 2006
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Chapter I. Introduction

Interphase is further subdivided into the remaining three phases o f the cell cycle (Cooper, 

2000). S phase, during which DNA synthesis and cell enlargement occurs, is flanked by 

two gap phases Gi and G2. The Gi phase, is a preparatory phase during which the 

enzymes necessary for DNA synthesis are produced and the cell mass increases in order 

to support division. In the G2 phase the cell prepares for mitosis with two complete sets o f  

chromosomes. In addition to Gi, S, G2 and M, the term Go is used to describe cells that 

have exited the cell cycle and become quiescent (Johnson and Walker, 1999). Most of the 

cells within a healthy organism are in this non-dividing (quiescent) state. In quiescent 

cells, DNA has not yet duplicated. Upon appropriate external stimulation, G0 cells can 

enter the cell cycle into early Gi, also cycling cells present in early Gi can exit into Go in 

the lack of external growth stimulus (Zetterberg et a/., 1995). The cell cycle is very 

responsive to extracellular signals, such as growth factors, which usually control 

progression through the Gi phase in the cell cycle.

Cancer cells differ from normal cells because they often receive excessive growth factor 

signalling, are therefore locked in the cell cycle and subjected to increased cell division.

1.2.3 Cell signalling

For multicellular organisms to remain functional it is essential that growth, differentiation, 

and metabolism of cells is regulated by a wide variety of signalling molecules, including 

proteins, amino acids and hormones (Alberts et al., 1994).

One of the key groups of extracellular stimuli are growth factors, which act on the cell 

cycle and mitosis via transmembrane signal transduction (Sherr, 1993). There are 

essentially two pathways by which extracellular signals can effect a response. Firstly, the 

extracellular signalling molecule (ligand) can bind to a specific protein (receptor) on the 

target-cell surface and, secondly, the signalling ligand can enter the target cell to activate 

it by binding to a receptor within the cell. For the signalling ligand to diffuse across the 

plasma membrane it must be small and hydrophobic. Once the signal has passed through 

the plasma membrane of the target-cell, by either method, the message is relayed by

PhD Thesis, P Hamidi, 2006
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Chapter 1. Introduction

intracellular signal cascades across the cell interior and an alteration in cell behaviour 

results (Alberts et al., 1994; Hinterding et al., 1998).

1.2.4 Tyrosine kinases

The epidermal growth factor receptor (EGFR) subfamily is one of the best studied 

tyrosine kinase receptors (Fry, 1999; Noonberg and Benz, 2000).

Tyrosine kinases are integral components of the signal transduction pathways used by 

cells to maintain normal growth and differentiation, they are proteins involved in both 

normal cell growth and transformed cells. Several different families of tyrosine kinases 

have been identified, many of which transmit extracellular signals from receptors on the 

cell surface into the cytoplasm, using signal transduction cascades which end in the 

nucleus as a signal to divide or arrest. In rapidly proliferating cancer cells, tyrosine kinases 

and signal pathways are often deregulated, resulting in increased signalling to the cell 

cycle and uncontrolled growth. Comprehensievly reviewed by (Raymond et al., 2000).

1.2.4.1 Epidermal growth factor (EGFR) and the cell cycle

The relationship between EGFR and the cell cycle has been primarily identified by 

examining the effects o f specific EGFR targeting agents on cancer cells. Suppression o f  

specific growth signalling by various therapeutic agents results in cell cycle arrest in 

many tumour cells, and several studies have demonstrated an alteration of cell cycle 

regulatory molecules following EGFR blockade (Yanlui and Grandis, 2002).

1.2.4.2 EGFR structure and function

EGFR is present in most cell types and has ligand-dependent intracellular tyrosine kinase 

activity (Raymond et al., 2000; Velu, 1990). It is composed of three major regions: an N-
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Chapter I. Introduction

terminal extracellular region, a hydrophobic transmembrane region, and a C-terminal 

intracellular region, which contains the tyrosine kinase domain. The role o f the 

extracellular region, a ligand-binding site, is to bind various ligands or growth factors, but 

mainly EGF and transforming growth factor a  (TGF-a). The intracellular domain o f the 

receptor has enzymic, or more specifically, tyrosine kinase, activity (Gill and Lazar, 1981; 

Gross et al. , 1991; Osada and Saji, 2003).

1.2.4.3 EGFR and signal transduction

When a ligand, e.g. EGF or TGF-a, binds to the extracellular ligand-binding site o f EGFR, 

receptor dimerization takes place and the intracellular tyrosine kinase is activated, 

resulting in the binding o f an ATP molecule (Figure 1.2). This results in tyrosine 

autophosphorylation of the receptor subunits, activation of catalytic activity, and 

generation of phosphorylated tyrosine residues (Fabbro et al., 2002; Raymond et al 

2000).

After ligand induced activation, EGFR can bind to a number of intracellular proteins 

involved in signal transduction cascades. This phosphorylates and activates proteins called 

transcription factors, which enter the nucleus and initiate gene expression, resulting in 

various responses including cell division. As a consequence of this process, extracellular 

signals are transmitted to the cell nucleus (Raymond et a l 2000).

Hydrophobic
Transmembrane

Cytoplasmic
regionExtracellular reglon 

ligand-binding I I 
region / Signal

transduction
cascadeTyrosine kinase 

domain Nucleus

Intracellular proteins

Cell membrane

Figure 1.2 Schematic representation o f EGFR and its function.
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Chapter I. Introduction

1.2.5 Cyclin dependent kinases (CDKs)

The control of the cell cycle in higher eukaryotes is carried out by a specific family of 

protein kinases, enzymes that regulate progression through Gi, S, G2 and M phase of the 

cell cycle. (Knockaert et al., 2002; Nugiel et al., 2001; Schultz et al., 1999). Cyclin 

dependent kinases are responsible for the phosphorylation of intermediates essential for 

progression of the cell cycle, and catalyse the transfer of a phosphate group from their 

substrate, ATP, to a particular amino acid side chain on their target: a protein implicated 

in cell cycle progression. CDK levels do not fluctuate throughout the cell cycle, but their 

activity is controlled by interaction with cyclin protein partners (Figure 1.3), the levels of 

which do vary within the cell cycle (Jeffery et al., 2001; Murray, 2004). Although cyclin 

binding is the primary determinent of CDK function, other regulatory subunits and protein 

kinases also modulate CDK activity, which will be discussed shortly.

G row th Factors

G2 Checkpoint

M Checkpoint P 15/p 16/p 18/p 19
CDC25

Cyclin D/ 
CDK4/6

Gt Restriction point

Cyclin B, AJ 
CDK1

Cyclin E/ 
CDK2 -

Gj Checkpoint

Interphase

p27
Cyclin E/CDK2

S Phase

Cyclin A/CDK2

CDC25

Figure 1.3 Detailed function of the mammalian cell cycle (Yanlui and 
Grandis, 2002).
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Under appropriate external growth factor stimulation, cells which are quiescent in Go, can 

enter the cell cycle into early Gi, likewise cycling cells present in early Gi can exit into Go 

from the lack of extracellular signals (Ho and Dowdy, 2002). In early-mid Gi, 

extracellular signals modulate the activation of CDK4 and CDK6 by expression o f D-type 

cyclins, which is a requirement for Go-Gi transition and entry into a new round o f cell 

division (Knockaert et al., 2002; Sherr, 1994).

The point of irreversible commitment between late Gi phase and entry into S phase and 

another round of cell division, is termed the restriction point (Zetterberg et al., 1995). 

Entry into S phase is coincident with activation of CDK2 by the sequential degradation o f  

cyclin E and expression of cyclin A, which is essential for the replication of DNA 

(Roberts and Heichman, 1994).

Following completion of DNA synthesis, CDK1 combines with cyclin A or B in G2 to 

activate cell division (Solomon et al., 1990). This completes the cell cycle and is followed 

by exit from mitosis into G\. Cells can then either enter quiescence in Go, or commit to 

further cell division in Gi/S.

1.2.6 CDK regulatory mechanisms

Based primarily on studies of CDKs involved in cell cycle control, at least four major 

mechanisms appear to govern CDK activity, reflecting the diversity o f the signalling 

pathways that converge on them (Figure 1.4) (Morgan, 1995; Pavletich, 1999). The 

primary mechanism of CDK activation is the binding of the cyclin subunit, as the isolated 

CDK has no activity. Cyclin binding imports partial activity to the kinase, for complete 

activation most CDKs requires phosphorylation of the CDK/cyclin complex at a 

conserved threonine residue by cyclin activating kinase (CAK) (Fisher and Morgan, 1994; 

Kaldis et al., 1996). The fully active kinase, as well as the activation process, can be 

turned off by interaction with two families of cell cycle inhibitory proteins. Members o f 

the Cip family bind to and inhibit the active cyclin/CDK complex (Johnson and Walker, 

1999; Sherr and Roberts, 1995). Members of the INK4 family use an indirect process. 

They bind to the isolated CDK and prevent its association with the cyclin and thus its
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activation (Obaya and Sedivy, 2002; Pavletich, 1999). However, they can also bind to and 

inhibit the pre-formed CDK/cyclin complex without dissociating the cyclin, suggesting 

that may have multiple mechanisms of action (Pavletich, 1999; Serrano, 1997).

An understanding of these structural modifications, and the nature of other CDK 

regulatory interactions, is vital in the design of potential anti-cancer agents aimed at cell 

cycle inhibition.

INK4

CDK 
(Inactive)

Cyclin

CDK 
(Partially Active)

CAK

CDK P O t:
Fully Active

Cyclin

Figure 1.4 Summary of CDK regulation (Pavletich, 1999).

1.2.7 The monomeric CDK

Although the tertiary structure of CDK2 is similar to that of other protein kinases there are 

two regions that differ from the general kinase structure (Pavletich, 1999). One is an a- 

helix, present in other kinases, but which has a unique amino acid sequence, PSTAIRE, in 

the cyclin-dependent kinases (Noble and Endicott, 1999; Noble et al., 1997; Pavletich, 

1999). The other is a regulatory loop (the T-loop) that contains the activating 

phosphorylation site, threonine 160. In the inactive, monomeric, form of CDK this loop 

and Thr 160 is buried. This conformation is known as the closed conformation (Pavletich, 

1999), as the residues present in the active site are incorrectly positioned with respect to
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the triphosphate moiety o f ATP for catalysis to occur. Although the inactive form of 

CDK2 does not allow correct orientation o f the ATP phosphate groups it is still able to 

bind ATP (Brown et a l ,  1999a; Brown et al., 1999b). CDK2 is activated by two events: 

binding of a cyclin and phosphorylation on Thrl60, both dramatically affect the structure 

and the conformation o f the protein (Jeffrey et al., 1995; Russo et al., 1996).

1.2.7.1 The A TP binding site o f CDKs

The ATP binding domain of a protein kinase is a common feature present in all kinases. 

The residues involved in catalytic activity remain fairly constant among different kinases 

(Hunter, 1987; Taylor and Radzioandzelm, 1994). X-ray crystallographic analysis o f ATP 

bound to CDK2 has revealed key interactions of ATP with Glu81 and Leu83 in the 

adenine binding region, Phe80 in hydrophobic region I and Lys33 in the phosphate 

binding region.

Hydrophobic
r e g o n l

Adenine
regan

0 Phosphate
binding
region

Hydrophobic
regjanll

H \  Ribose binding 
pocket

Figure 1.5 A pharmacophore diagram o f the CDK2 ATP binding site. 
Hydrogen bonding interactions in the adenine binding site are shown by a 
dotted line, labelled with the interatomic distance in A (Toledo et al., 1999).
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The adenine ring of ATP is bound at the bottom of the active site cleft. Two hydrogen 

bonds are observed between the protein, from the backbone NH of Leu83 to N-l of the 

purine and from the backbone carbonyl of Glu81 to the 6 -NH2 of adenine (Figure 1.5). 

The entrance to the pocket is surrounded by a number of hydrophobic residues (not 

shown), which create mainly van der Waals interactions with the purine ring (Schulze- 

Gahmen et al., 1996).

The other region important for the orientation and binding of ATP is the ribose binding 

pocket, which is mainly hydrophilic. The phosphate binding region is exposed to solvent 

and plays a role in the transfer o f inorganic phosphate (Traxler and Furet, 1999).

The ATP binding site also consists o f two hydrophobic pockets deeper into the kinase 

structure not occupied by ATP (Figure 1.5). The first hydrophobic pocket extends in the 

plane of the adenine N7 nitrogen of ATP. In CDK2, Phe80 occupies this position. The 

second hydrophobic pocket is exposed to solvent (Traxler and Furet, 1999). In spite o f the 

fact that this pocket apparently plays no role in the binding and catalytic activity of ATP, 

it could act as a target for drug design, and as an area o f potential importance in 

modifying the selectivity of drugs between kinases.

1.2.8 Natural inhibitory proteins and CDK regulation

The cell cycle can be arrested at any stage by endogenous peptide CDK inhibitors 

(CDKIs), in response to genetic damage and other factors (Crews and Mohan, 2000; 

Harper, 1997). The CDKIs can be divided into two families (Morgan and Debondt, 1994; 

Veeranna et al., 1996).

PhD Thesis, P Hamidi, 2006
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1.2.8.1 CDKs regulation by INK4 family

Members of the INK4 family consist of pi 5, p i6 , p i 8 and p i9, which exclusively bind to  

CDK4 and CDK6 and prevent creation of CDK4 or 6/cyclinD complexes (Johnson and 

Walker, 1999).

CDK4 and CDK6/cyclinD complexes are highly involved in the hyperphosphorylation o f  

pRb and effect the transition from Gi into S phase. The CDKIs p i5, p l6 , p i 8 and p l9  

prevent the phosphorylation of pRb, inhibiting the release of the E2F transcription factor 

required for S phase (Bartek et al., 1996; Sherr, 1993).

Many tumour cells have p l6 defects. In tumour cells where p 16 is inactivated, Rb, a vital 

factor for transition from Gi into S phase, is dephosphorylated, and in turn, inhibits the 

release of the E2F transcription factor. Hence, p i6 appears to play a unique role 

regulating Rb. (Johnson and Walker, 1999; Koh et al., 1995; Okamoto et al., 1994; 

Serrano et al., 1993).

Due to the specificity of the INK4 family for CDK4 and 6 with cyclinD complexes, these 

inhibitors only block progression through the restriction point in Gi (Cooper, 2000; Vidal 

and Koff, 2000).

1.2.8.2 CDKs regulation by Cip/Kip family

Members o f the Cip/Kip family can act on most CDK/cyclin complexes and even on 

some kinases other than the CDKs (Johnson and Walker, 1999). p21 was identified as the 

first member of this family which includes p27 and p57 (Hengst and Reed, 1996; Johnson 

and Walker, 1999). They inhibit the activities of CDKs at the Gj/S checkpoint and 

prevent the hyperphosphorylation of Rb (Harper, 1997; Harper et al., 1993; LaBaer et al., 

1997 Johnson, 1999 #298). They insert into the ATP binding site, blocking ATP binding 

as well as binding to the CDK/cyclin complex (Pavletich, 1999; Russo et al., 1996).

PhD Thesis, P Hamidi, 2006
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CDK4/CyclinD
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CDK2/Cyclin E

Interphase
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15 h r s  - —  ------ \  /
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T
t

P53

t PCNA| p21

DNA Damage

Figure 1.6 Induction o f p21 by DNA damage (Crews and Mohan, 2000).

p21 is induced by the p53 tumour suppressor gene, which is activated in response to DNA 

damage. p21 inhibits cell proliferation and activates DNA repair (Johnson and Walker,

1999). Induction of p21 blocks cell cycle progression by CDK inhibition and inhibition of 

DNA replication by interacting with PCNA, an elongation factor for DNA polymerase 8, 

required for DNA synthesis (Figure 1.6) (Buolamwini, 2001; Eldeiry et al., 1993; Gartel 

et al., 1996; Johnson and Walker, 1999).

1.2.8.2.1. The p53 pathway

The p53 gene was the first tumour suppressor gene to be identified and is altered in many 

human cancers (Pecorino, 2005). It can be activated by signals such as cell stress and 

DNA damage, and can trigger several crucial cellular responses that suppress tumour 

formation. In response to stress signals, p53 can cause cell cycle arrest or DNA damage 

repair. The ability to arrest the cell cycle by induction of p21 is one of the central
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functions of p53 in response to DNA damage which gives the opportunity to repair the 

damage prior to the next round of replication, thus damaged DNA will be prevented from 

being replicated and passed on to daughter cells (Pecorino, 2005).

1.2.8.2.2. The Rb pathway

The retinoblastoma protein (Rb) regulates the cell cycle by inhibiting the Gj/S phase 

transition (Pecorino, 2005). Rb regulates Gi progression by binding to and regulating the 

activity of a critical transcription factor called E2F in its hypophosphorylated form and 

this complex inhibits transcription by binding to DNA (Bramson et al., 2001; Cooper, 

2000; Crews and Mohan, 2000). Phosphorylation of pRb by CDK/cyclin D complexes 

releases E2F from Rb thus enabling gene expression (Figure 1.7) (Bramson et al., 2001; 

Cooper, 2000; Crews and Mohan, 2000; Johnson and Walker, 1999). Wheras cyclin E 

positively regulates E2F activity, cyclin A participates in a negative feedback loop for 

E2F regulation (Bramson et al., 2001).

GO/early GI Dite Gl/early S s , G2, M

p53

p21 p21

Rb H e)
cyclinE/CDK2

cyclinD/CDK4,6

cyclinA/CDK2
pRb

Repressor Inactive

Figure 1.7 Regulation of E2F transcriptional activity through the cell cycle 
(Johnson and Walker, 1999).
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1.2.9 Inhibitors of cyclin dependent kinases

Uncontrolled cell cycle progression, which is the hallmark of cancer, often involves the 

deregulation of CDKs or cyclins in human cancers, and has presented numerous 

opportunities for an extensive search for potent and selective inhibitors of cyclin 

dependent kinases. Sources o f small-molecule inhibitors are very varied, and include 

natural products (from microorganisms, plants, etc), and purely synthetic compounds, 

some being active at nanomolar concentrations. Isolation of a lead compound allows for 

the development of a structure activity relationship (SAR). Although several possible 

targets for inhibition exist within the CDK/cyclin complex, the most existing advances 

have been small molecule inhibitors that competitively inhibit ATP. These will be 

discussed in more detail below and each compound represents a potential starting point 

for the establishment of a SAR, to guide the design of selective and more potent inhibitors 

(Coleman et al., 1997; Gray et al., 1999; Knockaert et al., 2002; Meijer et al., 1997; 

Meijer et al., 2000; Walker, 1998).

ATP-binding pocket inhibitors o f CDKs are varied chemically and structurally, but they 

all share some common properties. They are flat hydrophobic heterocycles with low 

molecular weights (<600). They act by competing with ATP for binding in the kinase 

ATP binding site, interacting mostly by hydrophobic interactions and hydrogen bonds 

with key residues within the active site (Knockaert et al., 2002; Meijer et al., 1999).

The selectivity of CDK inhibitors is quite remarkable. Since kinases are vital to the 

function o f many processes in the body, there is a concern about unwanted side effects 

from compounds with a lack o f selectivity. Although the structural reasons for 

selectivity of inhibitors are not completely understood, selectivity is probably due to 

exclusive interactions with amino acid residues that do not interact with ATP (Meijer et 

al., 1999). In accordance with the structural data from co-crystallization of various 

inhibitors with CDK2, amino acids that are essential for inhibitor interaction have been 

discovered. The inhibitors usually contain a planar heterocyclic ring, and two or three 

hydrogen bonds are consistantly seen between the inhibitors and the Glu81 and Leu83 

residues of CDK2 (Meijer et al., 1999). The backbone carbonyl and amide NH group of 

Leu83 act, respectively, as a H-bond acceptor and a H-bond donor to the inhibitors,
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whereas the backbone carbonyl of Glu81 acts as a H-bond acceptor (Knockaert et al. , 

2002).

Table 1.1 Chemical inhibitors of CDKs: IC50 (concentration required to inhibit 50% o f  
enzyme activity) against CDK1/cyclin B, CDK2/cyclin A and CDK4/cyclin D l.

Inhibitor
IC50 (pM)

CDKl/cyclin B CDK2/cyclin A CDK4/cyclin Dl

Staurosporine (1) 0.004 0.007 >10

UCN-01 (2) 0.031 0.03 0.032

Flavopiridol (3) 0.3 0.28 0.4

6 -Dimethylaminopurine (5) 120 - -

Olomoucine (6 ) 7 7 >1000

Roscovitine (7) 0.65 0.7 >100

Indirubin (8 ) 10 2.2 12

5-Chloroindirubin (9) 0.4 0.75 -

Indirubin-3-monoxime (10) 0.18 0.44 3.33

Indirubin-5-sulphonic acid 

(11)
0.055 0.035 0.3

Paullone (12) 7 0.68 >100

Kenpaullone (13) 0.4 0.68 -

Hymenialdisine (14) 0.022 0.07 0.6

The different families of CDK inhibitors have varied potency, selectivity and cellular 

effects and their specificity against different protein kinases indicates that a purine 

nucleus, as found in ATP the natural substrate, is not a requirement for protein kinase 

inhibition (Coleman et al., 1997; Meijer, 1996; Walker, 1998). Table 1.1 outlines 

inhibition data and these inhibitors will be discussed as follows:
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1.2.9.1 Natural product cyclin dependent kinase inhibitors

A

HN,

C H 3

1, R=H, Staurosporine
2, R=OH, UCN-01

Staurosporine (1), a microbial alkaloid, and its analogue UCN-01 (2), are extremely 

potent, non selective inhibitors o f a range of serine/threonine and tyrosine kinases 

(Coleman et al., 1997; Meijer, 1995,, 1996).

The crystal structure of staurosporine bound to monomeric CDK2 revealed that the 

molecule is highly complementary to the ATP binding site of CDK2, and it appears to 

behave as a competitive inhibitor for ATP binding (Noble and Endicott, 1999). 

Staurosporine (1), is a non-specific kinase inhibitor, which makes it difficult to elucidate 

fully the cellular mechanism of action. Despite the lack of selectivity, they are both potent 

inhibitors o f CDKl/cyclin B and CDK2/cyclin A (Table 1.1) (Meijer, 1996).

UCN-01 (2) blocks cell cycle progression, promotes apoptosis and although it is very 

non-selective and inhibits a wide range of kinases is currently in phase II trials (Akinago 

et al., 2000).
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FlavopiridolDeschloroflavopiridol (Flavonoids)

O OH

'OH

.OH

CH3

3, R=C1, Flavopiridol
4, R=H, Deschloroflavopiridol

Flavopiridol (3) was shown to arrest cells in Gi phase and at the G2/M boundary. 

Therefore, CDKs were considered as its molecular target, inhibition (competitive with 

ATP) of CDKs 1, 2 and 4 in vitro, and co-crystallization o f a flavopiridol derivative in the 

ATP binding pocket of the enzyme confirmed direct interaction with CDKs (Fischer and 

Lane, 2000; Sausville, 2003).

The crystal structure of a complex between CDK2 and inhibitor 4 showed that the flavone 

portion of the inhibitor binds to the adenine binding pocket of the CDK (PezerRoger et 

al. , 2002). Moreover, the position of the piperidine group enables the inhibitor to make 

contacts with the enzyme where the ribose and phosphate groups sit.

The promising preclinical effects seen with flavopiridol have led to phase I/II clinical 

evaluation o f the drug. Initial results show good tolerance of the drug, that safe 

concentration needed for CDK inhibition can be achieved, resulting in some anti-cancer 

effects (Fischer and Lane, 2000; Garrett and Fattaey, 1999; Sausville, 2003). Flavopiridol 

is reported to have cytotoxic activity against a wide range of cancer cell lines and has 

demonstrated its efficacy in several clinical trials (Wirger et al., 2005)
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1.2.9.2 Synthetic cyclin dependent kinase inhibitors

Many of compounds that have been tested for activity against CDKs have been based on a 

purine core. It was suggested that these types of compounds would most closely resemble 

ATP in the CDK active site (Figure 1.8) (Noble and Endicott, 1999).

Glu81

Asp145

Asn132

Leu83

Phe80

Phe82

Figure 1.8 Interactions between ATP and CDK2 backbone residues Glu81 
and Leu83.

Based on crystal structure studies and depending on the nature of the substituents, the 

ATP binding pocket is tolerant of a number of different purine derivatives. It appears that 

only one hydrogen bond interaction is conserved between all purine inhibitors, which is 

equivalent to the hydrogen bond interaction between N1 of ATP and Leu83 (Noble and 

Endicott, 1999).
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Dimethylaminopurine

5

The study of substituted purines as CDK inhibitors began with 6-dimethylaminopurine 

(DMAP) (5), which was originally synthesized as an analogue of the natural product 

puromycin (De Azvedo et al., 1997; Garrett and Fattaey, 1999). DMAP was found to be a  

CDK1 inhibitor (Fischer and Lane, 2000), and the least specific protein kinase inhibitor o f  

this series with IC50 values for CDKs higher than 40 pM (PezerRoger et al., 2002; Rialet 

and Meijer, 1991; Veeranna et al., 1996; Vesely et al., 1994). The weak inhibitory activity 

o f dimethylaminopurine led to great interest into purine analogues as potential inhibitors.

Olomoucine/Roscovitine

Olomoucine Roscovitine

Further investigations of purine analogues led to olomoucine (6 ) and roscovitine (7). 

Olomoucine showed an increased selectivity for CDK1 and CDK2 but only moderate 

activity. It also displayed selectivity as it is a poor inhibitor of CDK4 (Table 1.1) (Meijer, 

1995; Sielecki et al., 2000). Therefore, extensive synthetic work into purine derivatives 

identified roscovitine as an alternative derivative, which showed a 10-fold increase in 

activity for CDK1 (IC50 = 0.65 pM) compared to olomoucine (Kavanaugh and Williams,

1996). The 2- and 9-substituents in both are increased in size and structure activity
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relationship studies (SARs) indicated that a benzyl group at C-6 or the lipophilic 

substituent at N-9 dramatically increased enzyme inhibition. These results were confirmed 

in part by examination of the binding modes of olomoucine/roscovitine in the CDK2 ATP 

binding site by X-ray crystallography (De Azvedo et al., 1997; Schulze-Gahmen et a l ,  

1995). They are both specific for CDK1, 2 and 5, but are very weak inhibitors of CDK4. 

Roscovitine is a relatively potent inhibitor o f CDK 1/cyclin B and CDK2/cyclin A (Table 

1.1) (Meijer et al., 1997; PezerRoger et al., 2002; Veeranna et al., 1996; Vesely et al., 

1994). Roscovitine contains a single chiral centre and it has been demonstrated that the 

(R)-stereoisomer is two-fold more potent than the (S)-stereoisomer (Meijer et al., 1997). 

Cell-cycle analysis has shown that olomoucine and roscovitine arrest cells in the Gi and 

G2 phases (Garrett and Fattaey, 1999).

1.2.9.3 Non-purine CDK inhibitors

Recent investigations have brought to light an interesting new range of CDK inhibitors 

obtained from traditional Chinese medicine. Indirubin (8) is the active ingredient o f a 

plant used in traditional Chinese medicine to treat various chronic diseases. Since 

indirubin shows poor solubility and absorption, several analogues have been produced 

(Hossel et a l ,  1999). Indirubin and its analogues (Atkinson et a l,  2002; Bramson et al., 

2001; Draetta and Eckstein, 1997) are very specific inhibitors of CDKs, blocking cell 

proliferation at late Gi and G2/M phase and show very little activity against other protein
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kinases. Indirubin blocks all CDKs equally while some indirubin derivatives were shown 

to have a preference for CDK1, CDK2 and CDK5. Higher antitumour activity was 

observed in animal models for 5-chloroindirubin (9) (Table 1.1) (Hoessel et al., 1999). 

The synthesis of indirubin-3-monoxime (10) and indirubin-5-sulfonic acid (11) has also 

been carried out, both showing an increase in inhibition against CDK 1/cyclin B compared 

to indirubin.

The crystal structures of both indirubin-3-monoxime (10) and indirubin-5-sulfonic acid 

(11) in complex with monomeric CDK2 have been obtained. Both bind within the ATP 

binding site and show a similar binding mode, with the lactam amide nitrogen of the 

inhibitor donating a hydrogen bond to the oxygen of Glu81, the NH of Leu83 donating a 

hydrogen bond to the lactam amide oxygen, and the indole NH acting as a hydrogen bond 

donor to the carbonyl oxygen of Leu83.

Paullones

Table 1.2 CDKl/cyclin B 
inhibitory activity of paullone 
analogues (Schultz et al., 1999).

Substitution IC50
on paullone CDKl/cyclin B 

scaffold (pM)

9-H 7.0

9-Br 0.4

9-C1 0.6

9-CN 0.024

9-NO2 0.035

9-CF3 0.4

2 ,3-di-OCH3 4.3

The paullones (12) were discovered using COMPARE, an NCI (National Cancer 

Institute) algorithm that detects similarities in the pattern of compound action against

------------------------------------------------------------------------------------------------------------------------------------------- 24
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human tumour lines compared to a compound of known activity, in this case flavopiridol. 

Paullones act as competitive inhibitors of ATP binding; based on molecular modelling 

studies, paullones make contacts in the ATP binding site similar to those observed in the 

crystal structure of other CDK2-bound inhibitors (Zaharevitz et al., 1999a). The potency 

of kenpaullone (13) is quite high (IC50 = 400 nM) and it has less effect on other protein 

kinases (IC50 values in the pM range). It is a selective inhibitor of CDK1, 2 and 5 over 

CDK4. Kenpaullone has also been shown to inhibit the growth of tumour cells in culture 

and causes altered cell cycle progression, comprehensively reviewed (Zaharevitz et al., 

1999b). Several analogues of kenpaullone have been synthesized by modifying the 

paullone scaffold in a search for CDK inhibitors with improved potency and antitumour 

activity (Table 1.2) (Schultz et al., 1999).

Investigation of structure activity relationships based on molecular modelling studies and 

biological data for a considerable number of analogues revealed that a lactam ring, a free 

indole nitrogen, and a substituent in the 9-position were necessary parts of the paullone 

pharmacophore. An obvious relationship was found between the kinase inhibitory activity 

and the electron withdrawing property of the substituent in the 9-position (Schultz et al.,

1999).

A computer model of kenpaullone bound to the active site of CDK2 gave a greater insight 

into how further activity could be gained from the paullone series (Kunick et al., 2000). 

The model suggested that substituents in the 2-position could be accommodated in the 

access channel to the ATP binding site. It was supposed that polar groups at the terminal 

o f a carbon chain could form favourable interactions with amino acid side chains present 

in the vicinity o f the binding site, or interact with solvent molecules. The bromine can 

also form hydrophobic interactions with Phe80 (Evans et al., 1983).
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Hymenialdisine

HN

Br

NH

Hymenialdisine (14) is a compound which was isolated from a marine sponge and 

contains a lactam, bromopyrrole and guanidinone heterocycles (Meijer et al., 2000). It 

acts as an ATP competitive inhibitor and the crystal structure of the 

CDK2/hymenialdisine complex shows three hydrogen bonds to the conserved Glu81 and 

Leu83 residues of CDK2, as observed in other CDK/inhibitor structures. It is a very 

potent inhibitor of CDKl/cyclin B, CDK2/cyclin A and CDK5/p35 (Table 1.1). 

Interestingly, it shows high inhibitory activity against three other protein kinases 

presumably involved in Alzheimer’s disease: glycogen synthase kinase-3(3 (GSK-3p), 

casein kinase 1 (CK1) and CDK5, with IC50 values of 10 nM, 35 nM and 28 nM, 

respectively. The inhibitory activity o f hymenialdisine related natural compounds as well 

as some synthetic analogues o f hymenialdisine have been tested against CDKl/cyclin B, 

however none were found to be more active than hymenialdisine itself. The nature of the 

selectivity of hymenialdisine is of great interest, as the range of targets and protein 

kinases that this inhibitor interacts with within a cell is quite limited, comprehensievely 

reviewed by (Meijer et al., 2000). By contrast with kenpaullone, the bromine atom of 

hymenialdisine is directed outward from the cleft towards the solvent.

Glu81

Asp145

Gln131

Phe80
3.17A
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1.3 CHECKPOINTS
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Figure 1.9 Activation o f the G2-checkpoint following DNA damage.

Progression through the cell cycle is regulated by further mechanisms that block or delay 

transitions to make sure that each phase of the cell cycle is precisely completed (Yu et al

2002). These mechanisms are vital for regulation of the cell cycle once the cell has passed 

the restriction point (Bartek and Lukas, 2001; PlanasSilva and Weinberg, 1997; Ringo, 

2004). Recent studies in yeast and mammalian cells have revealed that these control 

pathways, called checkpoints, are found at all phases of the cell cycle. Integrity o f  

chekpoint pathways is vital for the repair and survival of cells exposed to DNA-damaging 

agents (Yu et al., 2002). A key regulator of the cell cycle at the G2/M transition is the 

serine/threonine checkpoint kinase 2 (Chk2) (Bartek and Lukas, 2001; Zhou and Elledge,

2000). Many cancer cells have mutations in genes involved in the Gi checkpoint because 

of alterations of the Rb and p53 pathways (Yao et al., 1996). Only exceptionally do some 

cancer cells show the G2 checkpoint defects in addition to Gi checkpoint (Kawabe et al.,

1997). Therefore, the G2 checkpoint appears particularly important for cancer cells and 

targeting the G2/M checkpoint could be an effective strategy for enhancing the 

cytotoxicity o f DNA damaging agents (Yu et al., 2002).
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Following DNA damage, Chk2 (and functionally related Chkl) are activated by upstream 

kinases ATM and ATR. The checkpoint kinases inhibit critical proteins required for cell 

cycle progression and result in cell cycle arrest at the G2/M checkpoint (Ward et a l ,

2001). Small molecules that can inhibit the checkpoint kinases may enhance the efficacy 

of DNA damaging chemotherapeutics or radiation therapy (Yu et al., 2002; Zhou et al., 

2003).

1.3.1 The molecular pathways associated with DNA damage ATM and ATR

ATM and ATR are central components of the DNA damage response in mammals 

(Elledge, 1996; Zhou and Elledge, 2000). They are sometimes referred to as “ sensor 

kinases” for DNA damage (Pommier et al., 2005). They are members of the 

phosphoinositide 3-kinase (PI3K) family, which are extremely large protein kinases with 

predicted molecular mass of 350 and 301 kDa. respectively. They phosphorylate 

numerous substrates to achieve their physiological goals and can be activated instaneously 

following exposure to appropriate genomic stress (Kastan and Bartek, 2004; Kastan and 

Lim, 2000). The function of pathway involving ATM is better understood than that 

involving ATR owing to ATM mutations in human disease like Ataxia talengiectasia and 

as it is not essential for normal cell cycle progression or cellular differentiation (Kastan et 

al., 1992; Shiloh and Kastan, 2001). ATM seems to become engaged in signalling 

pathways at any point in the cell cycle primarily following the introduction of double 

strand breaks (DSBs) caused by ionisation radiation (LR) and similar genotoxic agents, 

whereas ATR responds to single strand DNA and damage to DNA replication forks 

(Falck et al., 2001; Nyberg et al., 2002; Zhou and Bartek, 2004; Zhou and Elledge, 2000). 

Both homologues share a number of substrates and therefore display overlapping roles, 

however, the way in which ATM and ATR are regulated is still widely unknown. 

Activation of ATM and ATR lead to the phosphorylation/activation of the checkpoint 

effectors (CDC25A and CDC25C, p53, BRCA1), via phosphorylation/activation of the 

chkl and chk2 kinases, (Pommier et al., 2005). This pathway is illustrated in Figure 1.10.
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Figure 1.10 A summary of the DNA damage response network.

BRCA1 is a vital tumour suppressor gene whose inactivation increases the risk of breast 

and ovarian cancers (Rahman and Stratton, 1998). Cells deficient in BRCA1 show 

hypersensitivity to IR and DNA cross-linking agents (Bhattacharyya et al., 2000; 

Moynahan et al., 1999; Wang et al., 2001).

1.3.2 The checkpoint kinases

The checkpoint kinases Chkl and Chk2 are two serine/threonine kinases that are 

structurally unrelated but share some overlapping substrate specificity (Zhou and Elledge, 

2000). Chkl and Chk2 are small size proteins compared to the PI3Ks, as they share a 

range of substrates, they perform major roles for cell cycle arrest/checkpoint activation, 

DNA repair, and DNA damage-induced transcription (Bartek and Lukas, 2003). Chkl is a 

checkpoint kinase in mammals and regulates G2/M and S phase cell cycle checkpoints. It 

is absent or minimal in quiescent and differentiated cells (Kaneko et al., 1999; Lukas et 

al., 2001). Like ATR, Chkl is essential for cell viability and is activated by 

phosphorylation at Ser345 and Ser317 in response to different types of DNA damage like 

IR (Ionization Radiation), UV (Ultraviolet) and HU (Hydroxylurea) (Xiao et al., 2003). 

Although structurally distinct, Chk2 shares overlapping substrate specificity with Chkl 

and can phosphorylate substrates such as CDC25A and CDC25C in vitro (Chaturvedi et 

al., 1999; Madani et al., 2002; O'Neill et al., 2002). Cell cycle progression is blocked by 

Chkl when replication is inhibited, and by Chk2 when double-strand breaks (DSBs) exist. 

Furthermore, Chk2 activation led to cell cycle arrest in Gj/S, S and G2/M phase after
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DNA damage (Falck et al., 2001). However, fundamental differences exist between Chkl 

and Chk2. Chk2 is activated primarily by ATM in response to DSB, whereas Chkl is 

primarily activated by ATR in response to replication-associated damage (Liu et al

2000). Chk2 is a stable protein, which is expressed and can be activated throughout the 

cell cycle, including Go. By contrast, Chkl is an unstable protein, and its expression is 

restricted to S and G2 phases of the cell cycle (Lukas et al., 2001). As a result of the 

normal function of Chk2 in DNA damage checkpoints, and its link to Li-Fraumeni 

syndrome disease (with a mutated p53 tumour suppressor), Chk2 has been identified as a  

promising pharmacological target for anti-cancer drug design.

1.3.3 Cell cycle checkpoints and cancer

One of the most important features of aberrant checkpoint control in cancer, is the link 

between the CDKIs and p53. The detection of DNA damage at one of the cell cycle 

checkpoints (Gi/S, G2/M) activates the p53 suppressor gene which stimulates the 

synthesis of a range of CDKIs and gives the cell time to repair the malfunction (Elledge, 

1996; Sherr, 1996). However, it is well known that the p53 gene is defective in a wide 

range of human cancers (Greenblatt et a l,  1994). This in turn will lead to aberrant control 

o f cell cycle checkpoints and result in the replication of damaged DNA. As the checkpoint 

and repair pathways facilitate cellular responses to DNA damage, and because there is 

reasonable information indicating that DNA damage is a major contributor to the 

development of human cancers, it is possible that alterations in these pathways increase 

the risk of cancer developing (Kastan and Bartek, 2004). Development of the checkpoint 

pathway that works independently of the p53 pathway provides an alternative route by 

which cancer cells can mediate DNA repair and survive. This not only highlights the 

importance of the checkpoints in normal cells but also emphasises the role the checkpoint 

kinases play within cancer cells.
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1.3.4 Chk2 as a therapeutic target

Numerous investigations have suggested that Chk2 is vital for the maintance or arrest a t 

the DNA damage induced G2 checkpoint. The Gi checkpoint is defective in many cancer 

cells, which implies the importance o f the G2 checkpoint in pharmacological studies. The 

G2 checkpoint and Chk2 acts as the primary target of anti-cancer agents such as UCN-01 

(2), and leads to a synergistic action with ionising radiation and currently used anti-cancer 

drugs, comprehensievely reviwed by (Pommier et al., 2005) in Gi defective cells. UCN- 

01 is a non-specific kinase inhibitor that has been recently identified as a Chkl and Chk2 

inhibitor (Pommier et al., 2005; Yu et al., 2002). Observations such as these lead the 

efforts into understanding the molecular mechanisms and pharmacology of Chk2. In 

further support of Chk2 as a therapeutic target, the ATM/Chk2 pathway responds almost 

instantaneously to double strand breaks caused by radiotherapy and similar agents (Bartek 

et al., 2001). One would therefore expect that the initial response to DNA damage, as a  

result o f anti-cancer treatments would be mediated via a Chk2 pathway.

BRCA1, as a substrate for Chk2, has been implicated in the DNA damage response 

suggesting that Chk2 inhibition may block this pathway leading to arrest of cell division 

within tumours and subsequent cell death (Lee et al., 2000). P53 is another substrate 

linked to Chk2 (Bell et al., 1999; Chehab et al., 2000). Chk2 inhibition in p53 capable 

tumour cells will prevent cell arrest at the Gi and G2 checkpoint and block mediation o f  

repair factors by p53 (Zhou and Sausville, 2003).

Continuing research in pharmacology will confirm if the Chk2 enzyme is an attractive 

target for drug discovery, and several pharmaceutical companies are searching for small 

molecule inhibitors of this kinase.

1. 3.4.1 Chemosensitization

The sensitisation of tumour cells to chemotherapy or radiotherapy is known as 

chemosensitization or radiosensitization respectively (Zhou and Bartek, 2004). Caffeine, 

an ATM inhibitor, treatment has been used as a research tool in many biological
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evaluations. Following radiation damage, caffeine prevents Chk2 phosphorylation by 

ATM inhibition, and has led to the principle o f sensitisation (Suganuma et al., 1999). This 

has now been showed by a few compounds. UCN-01, inhibits Chkl predominantly by 

abrogating G2 cell cycle arrest following DNA damage where p53 is mutated (Graves et 

a l,  2000). It has been shown to potentiate the cytotoxicity of a number of anti-cancer 

agents, encouraging a combination therapy approach for treating cancer. It is currently in 

clinical trials.

1.3.4.2 Chemoprotection

Chemoprotection or radioprotection refers to the protection of normal cells from the 

toxicity of cancer chemotherapeutic agents or radiotherapy (Zhou and Bartek, 2004). A 

few studies question whether the role of Chk2 in the DNA damage response network is 

redundant. Chk2 appears to mediate p53 in apoptosis in response to DSBs (Zhou and 

Sausville, 2003; Zhou and Bartek, 2004). This observation has proposed Chk2 as a novel 

chemoprotective target; inhibition of Chk2 may improve the side effects of dose-limiting 

anti-cancer therapies such as radiotherapy. Blockade of the apoptotic pathway, via Chk2 

inhibition, in healthy cells may reduce intolerable side effects such as diarrhoea, vomiting 

and hair loss.

To summarise, the points above demonstrate that the inhibitors of checkpoint kinases may 

selectively increase the chemosensitivity of cancer cells with checkpoint and repair 

defects or selectively increase the chemoprotection of normal cells, enhancing the efficacy 

of DNA-damaging cancer therapies. Therefore the availability o f selective inhibitors 

would validate these therapeutic hypotheses (Zhou and Bartek, 2004).
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1.3.5 Known Chk2 inhibitors
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Very limited reports o f small molecules which inhibit Chk2 are available in the literature 

(Arienti et al., 2005). The indolocarbozole UCN-01 (2) (Yu et al., 2002) and the marine 

natural product debromohymenialdisine (DBH) (15) (Wan et al., 2004) are the only 

characterized inhibitors of the Chk2 kinase. UCN-01 was reported to be a potent inhibitor 

o f Chk2 (10 nM) but inhibits a variety of other kinases involved in the cell cycle control, 

making this compound and other similar indolocarbazoles, poor tools for exploring the 

pharmacology of specific Chk2 inhibition (Pommier et al., 2005; Sordet et al., 2003). 

UCN-01 can inhibit both Chk2 and Chkl, however its activity with respect to checkpoint 

kinases works predominantly through Chkl (Yu et al., 2002).

Debromohymenialdisine was reported to inhibit both Chkl (IC50 = 3 pM) and Chk2 (IC50 

=3.5 pM) while inhibiting the G2 checkpoint and sensitising cancer cells to DNA 

damaging agents (Curman et a l,  2001). Interestingly, debromoaxinohyantoin (DBAH, 16 

a related marine natural product isolated in similar fractions to HYM (14) and DBH) 

showed no G2/M checkpoint inhibition, suggesting there are exact requirements for 

orientation of the carbonyl group and indicating that precise molecular design could be 

used to synthesize molecules with high selectivity towards a particular checkpoint kinase.

We have recently identified the CDK inhibitor kenpaullone (13), to be a potent small 

molecule inhibitor of Chk2 (IC50 = 0.8 pM). It has a similar structure to HYM, DBH and 

DBAH containing a seven membered lactam ring and a bromine substituent, which might 

be contributory to its potent activity.
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The structure of Chk2 is currently unknown. A homology model of the Chk2 kinase has 

been developed (see Appendix A). Kenpaullone has been docked within the ATP binding 

site to develop a SAR study of the Chk2 active site (Figure 1.11).

Figure 1.11 Kenpaullone (13) docked into the Chk2 homology model.

Compounds that inhibit Chk2 and the G2 checkpoint may be useful tools to assess the 

value of this target in cancer therapy to enhance the effectiveness of DNA-damaging 

agents in tumours with a defective Gi DNA damage checkpoint, such as those with 

mutated p53 (Pommier et a l,  2005; Sordet et a l,  2003).

To exploit the G2/M checkpoint as a novel target for cancer therapeutics we wish to 

identify potent and specific inhibitors of the signalling kinase Chk2 using lactam-based 

DBH and kenpaullone lead compounds to identify Chk2 structure activity relationships 

and the requirements for selectivity.
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1.4 POLY(ADP-RIBOSE)POLYMERASES (PARPs)
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Figure 1.12 PARP control of DNA damage.

Poly(ADP-ribose)polymerases (PARPs) are members of a large family of enzymes, which 

are usually involved in poly(ADP-ribosyl)ation of DNA binding proteins. They use NAD+ 

as a substrate to transfer ADP-ribose onto glutamic acid residues of target proteins, a 

reaction that functions as a DNA damage sensor and is induced by ionising radiation (IR), 

oxidative stress, and DNA damaging anti-tumour drugs (DAmours et al., 1999; Smith,

2001). Poly(ADP-ribose)polymerase-l (PARP-1) is the principle and best known member 

of the PARP enzyme family consisting o f PARP-1 and several recently identified novel 

poly(ADP-ribosyl)ating enzymes.

Although poly(ADP-ribosyl)ation is barely noticeable in resting cells, it is increasingly 

induced in cells confronted with DNA damaging agents. Therefore in the absence of DNA 

damage, PARP is not required for cell survival. Numerous studies have shown that PARP 

knockout mice are completely healthy, and appear unaffected by this lack of enzyme 

(Wang et a l, 1995). If PARP has no involvement in physiological processes, then
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inhibiting the enzyme is unlikely to induce major toxicity. PARP is therefore an attractive 

target for anti-cancer drug design (White et al., 2000).

1.4.1 PARP-1: Sructure and Function

Poly(ADP-ribose)polymerase-l (PARP-1), also known as poly(ADP-ribose)synthetase 

(PARs) and poly(ADP-ribose)transferase (PADPRT), is a nuclear enzyme present in all 

eukaryotes. It is a 116 kDa protein comprising of three main domains: the N-terminal 

DNA-binding domain containing two zinc fingers, the automodification domain, and the 

C-terminal catalytic domain (Southan and Szabo, 2003). The catalytic function of PARP- 

1 relates to its role as a DNA-damage sensor and signalling molecule mentioned earlier. 

The enzyme initially recognizes and binds to a site of DNA damage. PARP-1 contains a  

pair of zinc fingers to recognize single and double-stranded DNA. Binding to damaged 

DNA stimulates PARP-1 to catalyse the synthesis of ADP-ribose polymers from its 

substrate nicotinamide adenine dinucleotide (NAD+) (Figure 1.13), with release o f 

nicotinamide (Benjamin and Gill, 1981).

o— I • o — I •o
n h 2

HO OH

OHHO

Figure 1.13 Structure of Nicotinamide Adenine Dinucleotide (NAD+).

NAD+ is used to synthesize branched ADP-ribose polymers that are covalently attached to 

acceptor proteins, including histones, transcription factors and primarily PARP-1 itself 

(Davidovic et al., 2001; Virag and Szabo, 2002) (Figure 1.14).
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Figure 1.14. (Diagram obtained from Smith, 2001) (a) ADP-ribosylation of 
a protein using NAD+ as a substrate. ADP-ribose is transported from NAD+ 
to a glutamic acid residue on a protein acceptor by the action of PARP-1. 
This complex can then act as an acceptor for the accumulation of a further 
ADP-ribose. (b) Long, linear and branched chains of negatively charged 
ADP-ribose polymers are thus synthesized, (c) Numerous polymers can 
alter the properties of the protein acceptor. Poly (ADP-ribosyl)ation of a 
protein bound to DNA can inhibit DNA binding through electrostatic 
repulsion of the negatively charged polymer (Smith, 2001)
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The size of the branched polymer varies from a few to 200 ADP-ribose units (Virag and 

Szabo, 2002). However, branched and short polymers are degraded more slowly than long 

and linear polymers (Hatakeyama et a l, 1986; Malanga and Althaus, 1994). As the 

polymer gradually accumulates more negative charge by the sequential addition of ADP 

units, because of its high negative charges, the covalently attached ADP-ribose polymer 

affects the function of target proteins by preventing any interaction with other anionic 

molecules such as DNA (Virag and Szabo, 2002).

More than 30 nuclear substrates of PARPs have been identified in vivo and in vitro 

(Althaus and Richter, 1987). Among these substrates, the major and most abundant 

acceptor of poly(ADP-ribosyl)ation is the enzyme itself, representing a major regulatory 

mechanism for PARP-1 resulting in the down-regulation of enzyme activity. In addition 

to PARP-1, histones are also the second major acceptor of poly(ADP-ribose) (Virag and 

Szabo, 2002).

Poly(ADP-ribosyl)ation is a dynamic process, with the polymer having a short in vivo half 

life (less than 1 minute) due to the catabolic actions of two particular enzymes (Whitacre 

et a l,  1995). Poly(ADP-ribose)glycohydrolayse (PARG) and ADP-ribosyl protein lyase 

are involved in the catabolism of poly (ADP-ribose). Branched short polymers are 

degraded more slowly than long and linear polymers. Additionally, the nicotinamide 

released during the polymerisation reaction exerts an inhibitory effect on PARP-1 thus 

allowing for a negative feedback mechanism.

Essentially, poly(ADP-ribosyl)ation contributes to DNA repair and the preservation of the 

genome. When DNA is only moderately damaged, PARP-1 contributes in the DNA repair 

process and the cell survives. However, in the case o f extensive DNA damage, excessive 

activation of PARP-1 causes the over-consumption of NAD+ and consequently ATP 

(needed for synthesis of NAD+), thus the consequential culmination is cell dysfunction or 

necrosis (Shieh et a l,  1998). Subsequently this is implicated in the pathogenesis o f 

several diseases where cellular damage occurs including stroke, myocardial infarction and 

diabetes. Thus, PARP-1 can be considered a viable target for pharmacological 

development against conditions such as these, in addition to enhancing the efficacy o f 

DNA-damaging anti-cancer agents (Bowman et a l,  2001).
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Until recently, poly(ADP-ribosyl)ation was believed to result from the function of a single 

enzyme. One of the first clues indicating the presence of multiple PARPs was the 

observation of some residual PARP activity in PARP-1 deficient cells (Shieh et al., 1998; 

Virag and Szabo, 2002). Intensive research commenced to identify the enzymes 

responsible for this activity. Four new PARPs possessing poly (ADP-ribosyl)ation activity 

were identified: PARP-2, P AJRP-3, vault-PARP (VPARP) and tankyrase (Smith, 2001) 

with the original member of the PARP enzyme family becoming known as PARP-1. The 

homology between these proteins is limited to the C-terminal domain of PARP-1, called 

the PARP homology domain, with no relationship outside this region between the five 

PARPs. Tankyrase contains the smallest PARP domain sufficient for PARP activity 

(Smith, 2001). Although the biological and pharmacological significance o f these other 

PARP enzymes is not well understood at present, interesting data about their structure and 

properties has already been determined.

1.4.2 Poly(ADP-ribose)polymerase-2 (PARP-2)

Poly(ADP-ribose)polymerase-2 (PARP-2) bears the closest resemblance to PARP-1. It 

has approximately 60% homology in the catalytic PARP domain (Arne et al., 1999). 

Relative to PARP-1, the DNA-binding of PARP-2 is distinct from PARP-1 and could 

signify different substrate specificities for these two proteins. The automodification 

domain is missing in PARP-2. Moreover, PARP-2 is capable o f autopoly(ADP- 

ribosyl)ation, however, it can not poly(ADP-ribosyl)ate histones, which are prototypical 

PARP-1 substrates, comprehensievely reviwed by (Virag and Szabo, 2002). PARP-2, 

contributes to the residual poly(ADP-ribose) activity observed in PARP-1 knockout cells 

after treatment with DNA-damaging agents, indicating a biological role for PARP-2 in 

response to DNA-damage (Smith, 2001).
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1.4.3 Poly(ADP-ribose)poIymerase-3 (PARP-3)

PARP-3 is the smallest member of the PARP family and also is the least studied PARP 

thus far, consisting of a unique N-terminal domain of 39 amino acids followed by the 

PARP homology domain. The catalytic site of PARP-3 has 39 % homology with PARP-1. 

It is not well understood if this protein shares properties with PARP-1 and PARP-2 such 

as a nuclear localization, DNA-binding activity, or response to DNA damage. These 

properties might be enclosed by the unique N-terminal domain or by the PARP homology 

domain itself (Smith, 2001).

1.4.4 Vault poly(ADP-ribose)polymerase (VPARP)

Vault PARP has been identified in the vault complex, a ribonucleoprotein particle that is 

expressed in many eukaryotes. Their biological role is still unknown but believed to be 

nuclear transport proteins. Vault PARP has been found to associate with and poly(ADP- 

ribosyl)ate the major vault protein (mvp). Unlike other PARPs, this enzyme is not 

activated by damaged DNA and has only 29% homology at the PARP catalytic domain. 

In vitro studies with purified vault proteins indicate that MVP and VP ARP act as 

acceptors for ADP-ribosylation. Thus poly(ADP-ribosyl)ation could regulate changes in 

vault confirmation, such as opening and closing the vaults to allow entry and exit o f 

transport molecules, comprehensively reviwed by (Kickhoefer et al., 1999).

1.4.5 Tankyrases

Tankyrase is an enzyme with homology to the highly conserved enzyme, poly(ADP- 

ribose)polymerase (PARP-1), which is limited to the catalytic domain of PARP-1. 

Tankyrase is capable of the (ADP-ribosyl)ation o f itself and the telomeric-binding protein 

TRF1 (Smith et a l 1998). TRF1, regulates telomere length by inhibiting the action o f 

telomerase at the ends of telomeres (Harley, 1991). The modification of TRF1 by 

tankyrase allows access for the enzyme telomerase, which is responsible for maintaining 

telomere length (Smith and de Lange, 2000). Telomeres are protective caps at the ends o f
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chromosomes (Blackburn, 1991) that decrease in length following each cell division 

(Harley et al., 1990). After a certain number of cell divisions telomeres reach a critical 

length initiating cellular senescence (Harley, 1991). The maintenance of telomere length 

is therefore crucial for tumorigenesis and telomerase activity has been detected in most 

tumours (Neidle and Parkinson, 2002).

1.4.6 Pharmacological inhibitors of PARPs

Inhibition o f DNA repair by pharmacological inhibition of PARP would limit the ability 

o f the tumour cells to repair their damaged DNA and, therefore, increase the effects o f  

cancer chemotherapy (Southan and Szabo, 2003). Small molecule inhibitors bind to the 

conserved NAD+-binding site of the enzyme, although this site is conserved in all PARPs, 

there is sufficient diversity in amino acid sequence between proteins to predict the 

improvement o f isozyme-specific inhibitors. This observation could be quite useful to 

predict the therapeutic potential of individual PARPs (Smith and de Lange, 2000). PARP 

specific inhibitors could be developed for use in conditions such as diabetes, stroke and 

myocardial infraction as these are pathological diseases affected by PARP-1 (Zhang et al., 

1999). However, the clinical possibilities of interest within the scope of this project are 

the potential use of the PARP-1 inhibitors in anti-cancer therapy. These could be used in 

conjunction with a chemotherapeutic drug to obstruct DNA repair and hence resistance 

development in PARP-1 up-regulated cancer cells brought about by the ability of a  

tumour cell to repair induced damage (Smith, 2001).
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1.4.7 Chemical inhibitors of PARPs

Ser904
Gly863

HIM
O H

/

Most PARP inhibitors act as competitive inhibitors of the enzyme by interfering with 

NAD+ binding to the catalytic domain o f the enzyme. One can conclude that a fairly 

consistent structural relationship exists between NAD+ and the inhibitors. Based on the 

crystal structure information of PARP-1, it is obvious that the majority of PARP 

inhibitors are based on the benzamide pharmacophore, which mimics the conformation o f  

nicotinamide (17) moiety of NAD+ due to the fact they are designed to interact with the 

same active site residues (Jagtap and Szabo, 2005).

The residues of PARP-1 that provide hydrogen-bonding interactions with these inhibitors 

are completely conserved in PARP-2. In PARP-1 the amide group of these inhibitors 

interacts with the backbone atoms of Gly863, and the side chain of Ser904 additional non

polar 7i-7i interactions with Tyr907 and, to some degree, Tyr896 which lines the other side 

of pocket and provides further binding interactions (Jagtap and Szabo, 2005). Additional 

inhibitor specificity has been correlated with the formation o f additional H-bonds either to 

a catalytic glutamate, Glu988, or to the hydroxyl group of Tyr907 (Figure 1.15) (Oliver et 

al., 2004).

1.4.8 The development of existing PARP inhibitors and the PARP-1 active site

During the past decade, structure-based design and an increased knowledge of the 

molecular details of the active site of PARP-1 have been useful in the discovery of highly 

potent PARP inhibitors. Most PARP inhibitor compounds fall into the categories of bi-
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and tricyclic heterocyclic scaffolds. Recent investigations have been pointed to the 

synthesis o f tri- and tetracyclic PARP inhibitor scaffolds. The general knowledge of the 

SARs of these benzamide pharmacophore based PARP inhibitors has directed the 

synthesis of highly potent novel inhibitors (Peukert and Schwahn, 2004; Southan and 

Szabo, 2003). Reviewing the published data illustrates a consistent orientation of each 

inhibitor in almost identical positions in the PARP-1 active site (Figure 1.15).

Ser904
Gly863

NH

Tyr 907
HNGlu988 HO'

■OH
Tyr896

Figure 1.15 NU1058 complexed with the catalytic domain of PARP.

A common structural feature for PARP inhibitors is an aromatic amide or the amide group 

placed in a polyaromatic heterocyclic skeleton to generate a fused aromatic lactam or an 

amide restrained by an intramolecular hydrogen bond, see 18 in Figure 1.15 (Virag and 

Szabo, 2002).

Early structure activity relationship (SAR) studies revealed nicotinamide and various 3- 

substituted benzamides such as 3-aminobenzamide (20) to be some of the first effective 

PARP-1 inhibitors. They have IC 50 values of approximately 30 pM in an isolated PARP-1 

enzyme assay. Being a natural compound, nicotinamide (17) with an IC 50 = 9 pM (Suto et 

al., 1991) acts as a substrate for other NAD+ metabolising enzymes. Structurally similar 

compounds such as benzamide, pyrazinamide and substituted benzamides, in particular 3- 

aminobenzamide also demonstrated inhibition of PARP-1 (Southan and Szabo, 2003).
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These studies revealed the importance of the carboxamide group within the compound. 

Yet poor efficacy, specificity and sometimes inadequate water solubility, is a 

complication in the clinical testing o f these compounds (Southan and Szabo, 2003). One 

possible reason for the lack of effectiveness of these compounds is that the amide bond o f  

the nicotinamide or 3-aminobenzamide is free to rotate relative to the plane of the 

aromatic ring and is not restricted to the biologically active ‘planar’conformation. 

Therefore, the synthesis of isoquinolinones in which the amide bond was incorporated in 

an anti-configuration within an aliphatic ring system was reported (Figure 1.16). (Griffin 

et al., 1995; Griffin et al., 1998). The anti-isomer 21 has an IC 50 0.41 pM and the IC 50 o f 

syn-isomer 20 is approximately 8 pM (Suto et al., 1991).

'N H

20, R=H 21, R=H

Figure 1.16 Structures of isoquinolinones (anti- and syn-configuration).

As restriction of the carboxamide into the favourable conformation should result in 

increased inhibitory potency, a series of benzimidazole-4-carboxamides compounds were 

synthesised that favoured the active conformation by intramolecular hydrogen bonding 

between the amide proton and a heterocyclic nitrogen (Figure 1.17) (Southan and Szabo,

2003).

PhD Thesis, P Hamidi, 2006
44



Chapter I. Introduction

H N

R

22, R=H

N H

23, R=H
24, R=Ph

R 25, R=C6H5CH2N(CH3)2 
=AG 14361

Figure 1.17. Examples of ring open and cyclized PARP inhibitors.

These compounds (22, 23) show more potency, both with an IC50 about 300 nM, more 

active compared to the monocyclic carboxamides.

The strategy of cyclizing an open benzamide structure by the synthesis of 7-membered 

rings (Figure 1.17) is one of the best approaches to design new PARP inhibitors. All 

lactam derivatives that contain a carboxamide group in an anti-(or syn-) configuration 

within a ring structure are reasonably more effective than their ring open amide analogues 

(Suto et al., 1991).

Studies indicate that a phenyl group at the 2-position of the benzimidazole (Figure 1.17) 

improves efficacy (Southan and Szabo, 2003).

AG 14361 (25) is a lactam-based PARP-1 inhibitor. An important feature within this 

molecule is the addition of the benzyldimethylamine group at the R-position of compound 

25. This drug has also undergone a reasonable degree of clinical testing; hence making it a 

useful compound for comparisons (SARs).

This PARP-1 inhibitor embraces the overall favourable pharmacological properties o f 

high potency ( K j  < 5nM), specificity, stability, and in vivo activity all of which that are 

necessary for its application in humans (Calabrese et al., 2004).
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1.5 AIMS OF RESEARCH

The cell cycle, including checkpoints, and the DNA damage response are all important 

therapeutic targets for the treatment of cancer. Although many types of inhibitors have 

been identified in each of these areas, compounds containing a seven-membered lactam

ring have been identified as key inhibitors for CDKs/Chk2/PARP-l. This thesis aims to

investigate the medicinal chemistry of this pharmacophore against various biological 

targets and develop synthetic routes for compounds of interest. Hence, the aims of this 

research can be divided into three sections:

• Design of novel cell cycle inhibitors

• Design of novel cell cycle checkpoint inhibitors

• Design of novel DNA repair inhibitors

The first aim was to synthesize novel inhibitors of the cyclin dependent kinases (CDKs). 

The starting point of this project was centred upon developing the synthesis based on the 

essential lactam pharmacophores in kenpaullone (13) and hymenialdisine (14) (Figure

Both kenpaullone and hymenialdisine inhibit CDKl/cyclin B (IC50 = 0.4, 0.02 pM 

respectively) and CDK2/cyclin A (IC50 = 0.68, 0.07 pM respectively) in low micromolar 

concentrations. The main aim was to develop a synthetic route to synthesise compounds 

that could be used to explore the SARs associated with novel lactam based 

hymenialdisine/kenpaullone related CDK inhibitors. Based on details of the interaction o f 

kenpaullone with the CDK active site, the lactam occupies little of the ATP binding 

pocket volume where the sugar and phosphate groups of the ATP interact, and bulky,

1.17).

Br

13 14
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lipophilic groups in this region are of great importance (Arris et al., 2000). This may 

result in better potency and antitumour activity.

The synthesis of analogues containing a seven-membered lactam ring fused to an aromatic 

ring will provide diverse selection of potential inhibitors to screen for anti-cancer activity 

and reinforce the hypothesis that such compounds can be developed as cell cycle 

inhibitors. The lactam group can form hydrogen bond interactions with the enzyme with 

the conserved residues Glu81 and Leu83. In addition, these compounds contain a free NH 

at the 5-position (Figure 1.18). As shown in Figure 1.18, lead compounds 26, 27 and 28 

can be altered in different ways.

Seven membered lactam ring 
Hydrogen bonding to enzyme

&
Leu83

Seven membered lactam ring 
Hydrogen bonding to enzyme

Leu83

H
N

1

5
N
H

Glu81

H

N N H

27, Rj + R2 = Fused Ph
28, Rj + R2 = H

Site of aromatic ring 
or aliphatic lactam

X

Site of extension to phosphate binding region Site of extension to phosphate binding region

Figure 1.18 SAR determination of compounds 26, 27 and 28.

The second aim of this project was to study a series of compounds as a preliminaiy study 

for the identification of novel and potent inhibitors for Chk2. Currently there are few 

published small molecule inhibitors of Chk2, as the Chk2 kinase is yet to be crystallized. 

To determine if Chk2 is a suitable target for anti-cancer therapeutics based on the lactam 

pharmacophore, SAR studies would be useful and lead us to develop our synthesized 

compounds (Figure 1.18). From the studies of the kenpaullone docked within the ATP 

binding site of the Chk2 homology model and current known Chk2 inhibitors, the 

bromine atom appears to play an important role in the activity of this compound as it fills
------------------------------------------------------------------------------------------------------------------------  47
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the back of the binding site and may serve as a hydrophobic anchor to put the molecule 

into place (Figure 1.19). In addition to the bromine, the amide group is predicted to form 

hydrogen-bonding interactions with an aspartate residue (Figure 1.20).

Figure 1.19 The ATP binding pocket of the Chk2 model, bromine is 
presented as a sphere.

Figure 1.20 Lactam interactions of kenpaullone with Chk2 aspartate.

The third aim was to synthesize novel inhibitors of PARP-1, by investigating novel 

modifications to a known lactam pharmacophore and introducing various additional 

substituent groups to improve PARP-1 inhibition. The benzo-fused pharmacophore (29) 

has recently been patented (Lubisch et al., 2003) and is an interesting option to improve 

PARP-1 inhibition. It comprises an aromatic ring extension that could potentially provide 

the platform for further active site interactions. Numerous derivatives of this structure,

PhD Thesis, P Hamidi, 2006
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mostly concerned with the variation of phenyl imidazole ring segment, were analysed in 

this patent (Lubisch et al., 2003) with generally promising activity. However with the aid 

o f molecular modelling several new ideas were hypothesised for prospective 

pharmacophore modifications, through the addition o f substituent groups at the X-, Y- 

and Z-positions, which could permit possible novel compounds with novel interactions 

between the inhibitor and the PARP-1 active site.

The important feature of this scaffold is the extension of different groups to allow 

exploration of additional interaction with Gly863 and Ser864, as well as other amino acid 

residues previously untargeted in PARP-1 inhibitor design (Figure 1.21).

Ser904

Gly863

Ser864

N H

B

Figure 1.21 Benzo-fused pharmacophore for PARP-1 inhibition.

To search for interactions within the enzyme active site, this project aimed to devise and 

prepare novel dibenzo-derivatives with emphasis on aromatic substituents that could 

enhance the intermolecular binding with amino acid residues within the PARP-1 active 

site, and build up SARs for this series of compounds. The synthesis and biological 

evaluation of the various benzo-derivative compounds is described in this thesis.
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CHAPTER 2

CELL CYCLE INHIBITORS, RESULTS AND DISCUSSION

Small molecule inhibitors targeting cyclin dependent kinases (CDKs), have been the focus 

of extensive interest in cancer research. Although a number of small molecule inhibitors 

have been identified, they frequently lack potency and/or specificity. Efforts are underway 

to uncover inhibitors that selectively target specific CDKs and to develop these as a new 

generation of antitumour drugs. In order to develop the methodology required for the 

synthesis of seven-membered lactam pharmacophore found in kenpaullone (13) and 

hymenialdisine (14), and to generate non-purine based CDK inhibitors, benzodiazepin-2- 

one (26) was selected as a scaffold and initial synthetic target. The synthesis and 

biological activity of some of these compounds has been previously reported. N-5 is the 

main group of this compound where substitution can occur (Figure 2.1).

maintain important hydrogen bonding interactions

introduce extension to 
ribose/phosphate binding region

Figure 2.1 The main substitution site previously investigated on the 
benzodiazepin-2-one scaffold.
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Chapter 2. Cell Cycle Inhibitors, Results and Discussion

2.1 EFFICIENT BENZODIAZEPIN-2-ONE SYNTHESIS (Bachman and Helsey,

1949)

A concise synthesis was reported by treating 1,2-phenylenediamine (30) with aqueous 

acrylic acid (31), followed by heating in concentrated hydrochloric acid (Bachman and 

Helsey, 1949) (Scheme 2.1). The resulting product, isolated as an off-white solid, was 

used for most syntheses described in this chapter with no further purification. Although 

the yields for this reaction were low, 37 % was the greatest achieved, the synthesis 

involved cheap, commercially available starting materials and was performed on a large 

scale (up to 15 g). 26 is surprisingly water-soluble (clogP = 0.6) and problems extracting 

this material during the work-up of the reaction may account for the low yields observed 

in the synthesis.

Scheme 2.1

i) Acrylic acid (60 %), conc.hydrochloric acid, reflux, 37 %.

2.1.1 Synthesis of N-5 benzodiazepin-2-one derivatives

By analogy to kenpaullone (13) it is expected that the amide group of previously reported 

CFU58 (26) will interact with Glu81/Leu83 in the active site of CDK2, and extensions to 

the pharmacophore will be possible from the amine N-H. Therefore, in order to 

investigate the extent of hydrophobic interactions made by the N-5 substituent within the 

active site of the CDKs, 5-benzylbenzodiazepin-2-one (32, CFU38) and 5- 

phenethylbenzodiazepin-2-one (33, CFU46) were synthesised previously within the 

group.
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The GI50 values obtained for these compounds (aasays were conducted by the Tenovus 

group) suggested that they are more active than CFU58 (26), which was expected since 

their extensions should occupy the cleft of the active site (Table 2.1). It appears that 

hydrophobic extensions into the active site cleft are beneficial to biological activity and 

the slightly improved activity of CFU46 (33) compared to CFU38 (32) suggests a longer 

extension is better.

Table 2.1 Growth inhibition (MCF7) results.

Compound CFU GI50 ftiM)

26 58 >100

32 38 188

33 46 141

To study structure-activity relationships in the active site cleft, the synthesis of saturated 

ring analogues, which may have alternative interactions with the active site of CDKs was 

proposed.

These analogues may be prepared by similar methodology. CFU58 (26) was treated with 

cyclohexylmethyl bromide (34) to give CFU40 (35) (Scheme 2.2). In spite of the 

predicted lower reactivity of the amide nitrogen, this reaction was regioselective to the 

amide nitrogen. No amine substituted products could be identified from the reaction.
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Scheme 2.2

HN

N
H 34

N

N
H

l) NaH, DMF, 32 %.

Since cyclohexylmethyl bromide (34) is quite sterically hindered, and this reacts with the 

amide nitrogen adjacent to a relatively bulky carbonyl group, this suggests the N-5 amine 

centre is more hindered for reaction with the incoming electrophile.

2.1.1.1 Attempts to enhance the reactivity o f the electrophile

Considerable effort was made to synthesize mono-substituted analogues selective to the 

amine N-5 position of CFU58 (26) using iodide derivatives, as iodide is a better leaving 

group than bromide and increased reactivity may overcome the steric problem. The 

Finklestein reaction was the best method for preparing suitable iodo derivatives: 

commercially available cyclohexylmethyl bromide was treated with sodium iodide 

producing the desired compound in high yield with no need for further purification 

(Scheme 2.3).

Scheme 2.3

i) Nal, acetone, reflux, 100 %.
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Hence, CFU58 (26) was reacted with cyclohexylmethyl iodide (36) in the precence of 

sodium hydride at room temperature, but the product isolated after purification by column 

chromatography (beside starting material) was mono-substituted selectively on the amide 

nitrogen (Scheme 2.4). In this compound, the precise N-alkylation was determined by the 

presence of amine signals in the ]H NMR (85.15). Further evidence for the amide 

substitution in compound 35 was provided by the two dimensional NOESY spectrum, an 

NMR experiment used to detect protons with close proximity, generally 2-4A, falling off 

rapidly as the inverse sixth power of the distance apart of the nuclei. NOE interactions 

were observed between the amine peak at 55.15 and protons in the aromatic region and 

the adjacent CH2 peak. There were also NOE interactions between the cyclohexylmethyl 

CH2 peak and the aromatic proton (Figure 2.2).

NOE

CH

NOE NOE

I ik
NH.

0

-CH;R-

_JlJUL

-c h 2-

I L L j U aa

I ;

* 4 1

I

ppm

►li 

1.0 

1A 
2.0 

U 
J.0 

f-M 
4.0 

4.5 

-10 
IS 
10 

15  

1J»
7JS

7.5 7.0 6.5 6 0 5.5 5.0 4.5 4 0 3.5 3.0 2 5 2.0 13  1.0 0.5 ppm

Figure 2.2 The Nuclear Overhauser effects observed in compound 35.
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Scheme 2.4

H
N

N
H

26 36

i) NaH, DMF, 40 %.

This suggests that the electrophile’s steric hindrance has a greater effect than the 

increased reactivity due to the iodide leaving group, however, the approach requires 

further investigation.

2.1.1.2 An amide protecting strategy for the synthesis o f benzodiazepin-2-one analogues

(Annoura and Tatsuoka, 1995)

One of the major problems with the previous method had been the steric bulk of the 

alkylating reagent, suppressing addition at the amine nitrogen and resulting in addition at 

the amide nitrogen. Therefore, the use of an alternative procedure was considered, in 

which a less bulky, amide protecting group was inserted at an early stage of the synthesis. 

The rationale was that since the amide appeared to be readily substituted it should be easy 

to incorporate a protecting group selectively at this position. 2- 

(Trimethylsilyl)ethoxymethyl chloride (37) was chosen as a robust silyl protecting group, 

which is readily cleaved by fluoride. Additionally, the electrophilic centre of the silylating 

reagent is a primary carbon atom resembling the previously used alkylating reagents but 

with low steric bulk (Scheme 2.5). The protected product 38 was shown to have the 

correct N-substitution by NMR, due to the presence of a peak at 85.12 for the amine 

proton, and the lack of the amide peak at approximately 89.
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Scheme 2.5

c h 3 
h 3c ^  | ^ c h 3

Si

= SEM

i) NaH, DMF, 16 %.

H
N

N
H

C H 3

h 3c .  | .C H 3 
Si

Cl
37

c h 3

h 3c  | ^ c h 3

Si

N

N
H

38

A low yield for the SEM protected compound (38) was observed. Unexpectedly the yield 

was even lower compared to CFU40 (35), as the SEM-C1 looked to be less hindered than 

cyclohexylmethyl bromide at the electrophilic carbon. The reason for the low yield o f  

compound 38 was unclear.

2.1.1.2.1. Synthesis o f  the protected lead compound analogues

With the protecting group in place, compound 38 was treated with cyclohexylmethyl 

iodide (36) in the presence of potassium carbonate (a strong base) to deprotonate the 

amine in DMF. This reaction was successful in alkylation of the N-5 amine nitrogen 

(Scheme 2.6).

Scheme 2.6

SEM

N

N
38 H

36

i) K2C 0 3, DMF, 150 °C, 30 %.

SEM

.N-

N
39
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As previously explained, the Finklestein reaction was reused to activate an alternative 

electrophile, (2-bromoethyl)cyclohexane (40), by converting to (2-iodoethyl)cyclohexane 

(41) in presence of sodium iodide (Scheme 2.7).

Scheme 2.7

i) Nal, acetone, reflux, 90 %.

This method could now be used to investigate how introducing various substituents at the 

N-5 position would affect biological activity. For this purpose, following an analogous 

procedure to that attempted for the synthesis o f 39, compound 38 was treated with (2- 

iodoethyl)cyclohexane (41) in presence of potassium carbonate in DMF to produce the 

compound 42 (Scheme 2.8).

Scheme 2.8

i) K2C 0 3, DMF, 150 °C, 36 %.

In order to vary the ring size for structure activity purposes, methylcyclopentanol was a 

commercially available reagent that could be readily converted into a suitable alkylating 

reagent. This was achieved by treating methylcyclopentanol (43) with methanesulfonyl

SEM SEM
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chloride (44) to yield the mesylate derivative, a good leaving group and thus converting 

the alcohol into a powerful alkylating reagent (Scheme 2.9).

Scheme 2.9

i) TEA, THF, 100%.

SEM protected lactam 38 was heated with the activated mesylate 45 in presence o f 

potassium carbonate in DMF, but surprisingly no reaction occurred. This was presumably 

due, again, to the bulkiness of the reagents at the point of reaction (Scheme 2.10).

Scheme 2.10

SEM SEM

N
38 H

O  S  C H ,

N

N
46

i)K 2C 0 3, DMF, 150 C, 0 %.

In order to investigate the effect on activity of the smaller aliphatic rings which may be 

better accommodated in the binding pocket, the commercially available cyclobutylmethyl 

bromide (47) was used. To do so, following an analogous procedure to that previously 

used, compound 38 was treated with cyclobutylmethyl bromide in presence of potassium 

carbonate in DMF to produce the compound 48 (Scheme 2.11).
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Scheme 2.11

S E M

N

N'
38 H

i) K2C 0 3, DMF, 150 °C, 45 %.

An alternative alkylating reagent was cyclohexoyl chloride (49), due to its higher 

reactivity as an electrophile. The reaction was performed in the presence of sodium 

hydride at room temperature to produce the compound 50 in an improved yield compared 

to the use of halide or mesylate derivative (Garin et al., 1987; Puodziunaite et al., 1997) 

(Scheme 2.12).

Scheme 2.12

i) NaH, pyridine, CH3CI, 50 %.

The final step needed to recover the target compounds is the cleavage of the 2- 

(trimethylsilyl)ethoxymethyl (SEM) protecting group. This is reported to proceed with 

1M tetrabutylammonium fluoride solution at reflux (1M in TBAF) (Whitten et al., 1986). 

Compounds 39, 42, 48 and 50, were treated with 1M TBAF/THF solution at reflux to 

furnish the desired products 52, 53, 54 and 55 respectively (Scheme 2.13). The yields 

were unexpectedly poor for silyl deprotection. The silicon not being bonded directly to the
-------------------------------------------------------------------------------------------------------------  50
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nitrogen might have impeded the reaction, since silyl removal is followed by the 

decomposition of the N-methylhydroxy intermediate shown in Figure 2.3.

TBAF ^CH3
+  C H 2= C H 2 +  F  Si C H 3

CH ,

+ C H ,0

Figure 2.3 Proposed steps in the SEM deprotection. 

Scheme 2.13

S E M

39, R=cyclohexylmethyl 
42, R=2-cyclohexylethyl 
48, R=cyclobutylmethyl 
50, R=cyclohexoyl

52, R-cyclohexylm ethyl, 30 %
53, R=2-cyclohexylethyl, 53 %
54, R=cyclobutylmethyl, 20 %
55, R=cyclohexoyl, 40 %

i) 1M TBAF/THF solution, reflux.

Molecular modelling studies o f compound 62 (page 63) bound to CDK2 revealed that the 

presence of Asp86 in the ribose-binding pocket provided a residue for potential 

interaction. Furthermore, this residue has been exploited by other CDK2 inhibitors.
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Figure 2.4 Overlay of olomoucine (grey sticks) and compound 62 (yellow 
sticks) bound to the active site of CDK2. (Oxygen is shown in red, nitrogen 
in blue).

To introduce these functional groups, the established method could be used, using a 

suitable alkyl halide. However, it would be necessary to protect the hydroxyl group of the 

alkyl halide in order to protect possible side reactions. The chosen protection group was 

tert-butyldimethylsilyl chloride (TBDMS-C1), a well-known silyl protecting group for 

alcohols that is easy to introduce: reaction of 56 with TBDMS-C1 in the presence of 

imidazole in DMF had excellent yields of 98 % (Scheme 2.14).

GIM31

Phe8!
Asp86

Leu83
Glu81

An overlay of 62 and olomoucine (6) bound to monomeric CDK2 (Figure 2.4) revealed 

that both inhibitors bind to the same residues within the ATP binding site, but with one 

less hydrogen bond interaction formed by compound 62 compared to olomoucine. 

Therefore, it was hypothesised that the introduction of an alcohol functional group into 

the N-5 substituent could mimic the ethyl hydroxy group of olomoucine and lead to 

favourable interactions with residues in the ribose-binding domain thereby providing 

greater activity and the possibility of introducing further activity.
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Scheme 2.14

CH3 CH-

•OH .O Si

56 p L J  C H 3

57 GH3

i) TBDMS-C1, imidazole, DMF, 98 %.

The silylated alkyl halide was reacted with the SEM-protected amide 38 under the 

previously used conditions (Scheme 2.15). The yield for this reaction was moderate, 

although comparable to previous derivatives, but the steric hindrance resulting from the 

crowded methyl groups might affect the reaction.

Scheme 2.15

i)K 2C 0 3, DMF, 150 °C, 36%.

This methodology now allowed an investigation of the effect of increasing the aliphatic 

chain length of the N-5 substituent, a similar procedure was used to add the 

hydroxy propyl substituent at N-5 (Scheme 13). Again the protection step was performed 

before the main reaction to yield the iodopropyl compound 60 (Scheme 2.16).

Scheme 2.16

SEM

.OTBDMS

OTBDMS

59
O H

1) TBDMS-C1, imidazole, DMF, 84 %. 
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This was reacted with SEM-protected amide 38 under similar conditions as previous, 

yielding the protected hydroxyl N-propyl compound 61 (Scheme 2.17).

Scheme 2.17

SEM

'OTBDMS

N

N

60 61

OTBDMS

i) K2C 0 3, DMF, 150°C, 30 %.

The analogous compounds 58 and 61 contain both O-silyl and C-silyl protecting groups. 

However, the method used to cleave the SEM protecting group should also be applicable 

to deprotect the O-TBDMS, group. To do so, compound 58 and 61, were both treated with 

1M TBAF/THF solution at reflux that resulted in simultaneous deprotection of the SEM 

and TBDMS groups in one pot (Scheme 2.18).

Scheme 2.18

SEM

58. R O TB D M S

61. R
O T B D M S

62. R

63. R
o h  , 2 6 %

i) 1M TBAF/THF solution, reflux.
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The crystal structure of CDK2 complexed with H717 (64), an olomoucine-derived highly 

potent CDK2 inhibitor (IC50 = 48 nM) showed that the purine ring system of H717 binds 

quite differently from the purine portion of the ATP but in a similar way as olomoucine 

which is 200-fold weaker (IC50 = 7pM, CDKl/cyclin A) (Dreyer et a l , 2001). The 

improved potency of this compound due to the presence of the 4-aminocyclohexylamino 

group was possibly as a result of an additional interaction between the charged amino 

group connected to the cyclohexyl ring, which interacts via a salt bridge to Asp 145, and a 

hydrogen bond with Asnl32, as observed in the X-ray structure (Figure 2.5).

Figure 2.5 The binding orientation o f H717 in CDK2. The 4- 
aminocyclohexyl group is shown interacting with Asnl32 and Asp 145 .

Therefore, in an alternative attempt to further probe the ATP binding site in the vicinity of 

the benzodiazepinone N-5 substituent leading to any possible interactions with Asp 145 or 

other residues in the ribose-binding pocket, the preparation of an amine containing 

analogue was proposed. Initally, the nitrobenzyl derivative of 66 was synthesised. This 

was done by treating intermediate 38 with 4-nitrobenzyl bromide (65) in presence of 

sodium hydride in DMF (Scheme 2.19).

Asn132 ^pr<
r  \  2.70A

Glu81

Leu83

Asp145

2.86A
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Scheme 2.19

S E M

S E M

N
38 H

B r '

65 'N O , 66

'N O ,

i) NaH, DMF, 51 %.

As discussed, the presence of an interaction bond between the N-5 substituent and 

Asnl32 or Aspl45 was favourable for activity work was carried out to reduce the nitro 

group. The attempted reduction of compound 66 was unsuccessful when using the 

standard conditions of palladium-catalysed hydrogenation. In an alternative attempt, this 

reaction was tried by treating compound 66 in presence of Fe/AcOH in ethanol at reflux, 

but the reaction was also unsuccessful (Webb II et al. , 1991) (Scheme 2.20). Both 

conditions removed the benzyl ring from compound 66. One explanation for this may be 

the presence of the electron-withdrawing nitro group on the benzyl group, which was 

stable to hydrogenation when attempted previously, makes the debenzylation reaction 

more likely to occur. Due to these unsuccessful reactions, no further work was carried out 

on this compound.

Scheme 2.20

SEM

N

N

66

n o 2

SEM

N

N
67

n h 2

i) H2, 10% Pd/C, MeOH, 0%. ii) Fe/AcOH, EtOH, 0 %.
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2.2 LIPOPHILIC MODIFICATION TO BENZODIAZEPINE-2-ONE SCAFFOLD

Phe80 is an important residue in the active site of CDK2 forming a hydrophobic region 

deep in the active site of the enzyme, In order to assess the importance of lipophilic 

interactions with CDK2 modifications to benzodiazepine-2-one scaffold (26, CFU58) by 

incorporation of methyl groups, and the synthesis of the compound 68 was hypothesized 

(Figure 2.6).

2.2.1 The synthesis of modified benzodiazepin-2-one

Compound 68 was synthesized by treating 1,2-phenylenediamine (30) with methacrylic 

acid (69), and heating in concentrated hydrochloric acid (Bachman and Helsey, 1949) 

(Scheme 2.21). The desired product was isolated, although the yields for this reaction 

were low, and most of the starting material remained unreacted. However, the synthesis 

involved cheap, commercially available starting materials. The presence of the bulky 

methyl groups on the methacrylic acid may account for the low yields observed in this 

reaction.

Scheme 2.21

Leu83

H

c h 3

Figure 2.6 Lipophilic modification to benzodiazepinone scaffold.

Phe80

0

i) Methacrylic acid (60%), conc. hydrochloric acid, reflux, 16 %.
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2.2.1.1 Attempts to synthesis o f modified benzodiazepin-2-one analogues

As it is seen in Figure 2.6, it is expected that the amide of 68 will interact with 

Glu81/Leu83 in the active site of CDK2. Furthermore, the methyl groups of the 

methacrylic acid derivative could have lipophilic interactions with Phe80. Additionally, 

extensions from the 5-NF1 o f 68 could form further binding interactions within the active 

site cleft.

As described previously, mono-substitution of compound 68 regioselectively at the N-5 

position was required. To avoid formation of the amide substituted by-product, protection 

of this group was performed using SEM-C1. The low yield of this reaction was 

comparable to that obtained previously with analogue 38 (Scheme 2.22). Having the SEM 

group attached to 70, improved its physical properties as 70 became more nonpolar and 

thus easier to purify.

Scheme 2.22

c h 3

h3c ^  I ^ c h 3

i) NaH, DMF, 18%.

To continue the determination of SAR, the synthesis of N-5 derivatives was required. The 

dimethyl compound (70) was reacted with benzyl bromide (71) (Scheme 2.23), but no 

reaction occurred and only the starting material was recovered. This was possibly due to 

the bulkiness of the compound 70 at the N-5 nitrogen, adjacent to two methyl groups.
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Scheme 2.23

SEM

C H 3

i) NaH, DMF, 0 %.

71

SEM

CH e

72

Owing to polarity of lead compound (68) resulting in difficulty purifying it, no further 

examples were studied using this method, which is presumably restricted to the use o f 

aliphatic reagents.

2.3 SYNTHESIS OF DIBENZODIAZEPIN-2-ONE ANALOGUES

To further explore SAR of the benzodiazepine-2-one system, an additional benzene ring 

was introduced to give dibenzo analogues. As previously discussed in chapter 1, many 

known CDK inhibitors form three hydrogen bonds with the backbone residues of the 

active site.

To compensate for the lack of one intermolecular hydrogen bond seen in the previously 

made compounds it was believed that an amino group at the 4-position of compound 27 

(page 47) could be beneficial for interactions within the ATP binding site of CDK2. 

Additionally, the amino group could be further substituted with additional functional 

groups.

It was proposed these compounds could be synthesised by a condensation reaction 

between 74 and 30 (Scheme 24). Initially, 2-bromo-5-nitrobenzoic acid (73) was 

esterified which afforded compound 74. Compound 74 was heated with 1,2-
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phenylenediamine (30) in dimethylacetamide (DMA) at 150 °C for 10 h, yielding the 

desired compound in good yield (Skalitzky et a i, 2003) (Scheme 2.24).

Scheme 2.24

'OH 'OMe

H ,N .

h 2n

30

NH

10

i) Conc.H2S 0 4, MeOH, 100 %. ii) DMA, 150 °C, 51 %.

The reaction undergoes an S^Ar mechanism, the nitro group activates the para-bromo 

promoting the nucleophilic attack of the amine, followed by intramolecular attack of the 

ester group by the unreacted amine (Figure 2.7). Despite the poor nucleophilicity of the 

phenylenediamine, the yield was good.

'OMe

H 2N

O' ‘OMe

NH

76 n h 2

30

+ 8  OMe0 2N NH

NH

NH2

Figure 2.7 The proposed mechanism for cyclization of compound 75.
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Dibenzo compound 75 contains both an amide and amino functional group, so mono

substitution of the amine alone could still be challenging. It was hoped the amine would 

be more acidic than the amide anion due to stabilisation from the presence of the 

additional benzene ring and the para-nitro group i.e.

Thus, amine substitution was initially attempted without protection of the amide as had 

been necessary with the previous derivatives. Reacting compound 75 with benzyl bromide 

in presence of sodium hydride in DMF, yielded the di-substituted product (81) shown in 

Scheme 2.25.

Scheme 2.25

i) NaH, DMF, 19 %.

This suggested that although the amine is more reactive, substitution at the amide N-l 

position also occured readily in the dibenzo series. Therefore, introduction of an amide 

protecting group was again attempted, using 2-(trimethylsilyl)ethoxymethyl (SEM) 

chloride. This was synthesized using a similar method as for compounds 38 and 70 

(Scheme 2.26).

>
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Scheme 2.26

SEM

+

Cl

N H

i) NaH, DMF, 30 %.

The SEM protected amide 82 was obtained in moderate yield, similar to that obtained 

previously. The correct regioselectivity of 82 was clearly determined by NOESY that 

showed the NOE interactions between the amine proton and aromatic protons. NOE 

interactions were also observed between the aromatic proton and CEE peak (Figure 2.8).

NH,amine

1 • _ . i

NCH,

NOE
C H -H '

o

o
* ‘

Figure 2.8. The Nuclear Overhauser effects observed in compound 82.
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This compound is a key intermediate, needed for the synthesis of further analogues 

described in this chapter, so in order to improve the yield of the protection step the 

introduction of alternative protecting groups like tosyl and tert-butyldimethylsilyl 

Chloride (TBDMS) were also investigated (Scheme 2.27, 2.28).

The synthesis of an N-tosyl derivative was attempted followed by treating 75 with two 

equivalents of tosyl chloride and potassium /er/-butoxide in presence of 18-crown-6 to 

mop up the potassium ion with the aim of protecting the amide NH (Abell et al., 1998; 

Makosza and Kwast, 1995). However, no product was recovered from this reaction 

despite the highly reactive nature of the tosyl-chloride reagent.

Scheme 2.27

i) Potassium /erf-butoxide, 18 crown-6, tosyl chloride, THF, 0 %.

Similarly, the synthesis of the amide N-TBDMS compound yielded no product (Scheme 

26).

Scheme 2.28

Me

i) TBDMS-C1, NaH, DMF, 0 %.
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It was thought that the bulkiness of these protecting groups might prevent them reacting 

with the nitrogen, and this would appear to have been a major factor in these reactions not 

occurring. Therefore, SEM was found to be the best option in our studies to date, since it 

contains a primary alkylhalide at the point of reaction.

2.3.1 Synthesis of the protected lead compound analogues

As previously explained, for our proposed compounds to be fully biologically active cell 

cycle inhibitors, they must be extended into the ATP binding region to form further 

binding interactions within the active site cleft. N-Benzyl groups have previously been 

introduced to the benzodiazepin-2-one scaffold and this was also attempted in the 

dibenzodiazepinone series.

To synthesize 85, SEM protected compound 82 was treated with benzyl bromide (71) in 

presence of potassium carbonate in DMF, to produce the desired compound in a 

reasonable yield (Scheme 2.29).

Scheme 2.29

SEM
SEM

i) K2C 0 3, DMF, 150 °C, 54%.

06-(Cyclohexylmethyl)-2-aminopurine (86 , NU2058) is a known CDK inhibitor (Gibson 

el al., 2002), that has been synthesized in our laboratory as a control compound in 

biological studies (Figure 2.9).
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Leu83 Leu83 Glu81

Figure 2.9 The binding orientation of NU2058 (86) in CDK2.

Its X-ray structure bound to CDK2 has been reported, and can aid inhibitor design. The 

06-substitution of NU2058 (86 ) occupies a similar position to that of the ribose ring of 

ATP and due to the presence of the aliphatic ring in the molecule, it was thought that the 

introduction of saturated rings at the N-position of the dibenzodiazepin-2-one may be 

beneficial for activity compared to the benzylated analogues. So, in order to probe the 

extent of hydrophobic interactions made by the 06-substituent within the active site of 

CDK2, the following synthesis was achieved using the cyclohexylmethyl iodide method 

for compound 88 . The product was obtained in moderate yield (Scheme 2.30).

Scheme 2.30

SEM

I

87

i) K2C 0 3, DMF, 150 °C, 31 %.

Glu81Leu83
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The synthesis of further analogues was planned to study the effect of the increasing the 

aliphatic chain length of the N-substituents on activity. To do so, compound 82 was 

heated with (2-iodoethyl)benzene (89) and (2-iodoethyl)cyclohexane (90) to introduce 

ethyl linkers between the main pharmacophore and the aliphatic ring. Potassium carbonate 

and the iodide derivatives in DMF produced the compounds 91 and 92 respectively 

(Scheme 2.31). It was hypothesised that an improvement in yield may have been achieved 

with these compounds since the halogen leaving group is further away from the bulky 

ring. However, only a modest improvement was seen for 92 (54 %) and a poorer yield 

was obtained for 91 (21 %).

Scheme 2.31

1) K2CO3, DMF, 150 °C.

The removal of the protecting group (SEM) was achieved using the previously reported 

procedure by refluxing the compounds 85, 88, 91 and 92 with tetrabutylammonium 

fluoride solution (1M TBAF/THF) furnishing the desired compounds as described in 

Scheme 2.32. A surprising variation in yield was observed for these deprotections.

Scheme 2.32

n 89

90 R

91, R=ethylbenzene, 21%
92, R=ethylcyclohexane, 54%

o

R
R

85, R=benzyl
88, R=methylcyclohexyl
91, R=ethylbenzyl
92, R=ethylcyclohexyI

93, R=benzyl, yield=37 %
94, R=methylcyclohexyl, yield=47 %
95, R=ethylbenzyl, yield=22 %
96, R=2-ethylcyclohexyl, yield=60 %

i) 1M TBAF/THF solution, reflux.
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Finally the nitro group can be readily reduced to the amino group using palladium- 

catalysed hydrogenation (Scheme 2.33). The amino group are predicted to form further 

intermolecular hydrogen bonding interactions with the CDK active site.

Scheme 2.33

NH
NH

93, R=benzyl
94, R=cyclohexylmethyl
95, R=2-ethylbenzyl
96, R=2-ethylcyclohexyl

i) H2, 10 % Pd/C, MeOH or DCM.

97, R=benzyl, 84 %
98, R=cyclohexylmethyl, 64 %
99, R=2-ethylbenzyl, 100 %
100, R=2-ethylcyclohexyl, 100 %

To investigate whether the extended compounds could be accommodated in the active site 

of CDK2, 4-aminodibenzodiazepin-2-one extended analogues, were superimposed over 

NU2058 (86) in the crystal structure of CDK2. The initial studies indicated that all the 

structures would be accommodated by the active site (Figure 2.10). Also showed good 

alignment with the cyclohexyl ring of NU2058.

Glu81

Figure 2.10 Superimposition of NU2058 (grey sticks) and 100 (yellow 
sticks) in the active site of CDK2.
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Extension was also attempted with cyclobutylmethyl bromide (47), which was a small 

hydrophobic modification that may be better accommodated in the active site, in order to 

investigate the effect of the smaller aliphatic rings upon activity. An analogous reaction to 

the previously mentioned method was performed to obtain the desired compound (101) 

(Scheme 2.34).

Scheme 2.34

i) K2C 0 3, DMF, 150 °C, 25 %.

The compound 101 was deprotected by refluxing with 1M TBAF/THF, producing the 

compound 102 as a yellow solid. The final step was the reduction o f the nitro group using 

the standard hydrogenation procedure, furnishing the compound 103 in quantitative yield 

(Scheme 2.35).

Scheme 2.35

i) 1M TBAF/THF solution, reflux, 44 % ii) H2, 10% Pd/C, DCM, 100 %.

Previous structure activity relationship (SAR) studies indicated that the presence o f a 

benzyl amino substituent and a lipophilic ethyl hydroxy substituent at N-9 of olomoucine 

PhD Thesis, P Hamidi, 2006 ^

O



Chapter 2. Cell Cycle Inhibitors, Results and Discussion

(6 ), dramatically increased enzyme inhibition. Since these results were confirmed in part 

by examination of the binding modes of olomoucine/roscovitine in the CDK2 ATP 

binding site (De Azvedo et al., 1997; Schulze-Gahmen et a l , 1995), it was hypothesized 

that the introduction o f a lipophilic methyl group at N-7 and a benzyl group on the 4- 

amino group could lead to favourable interactions with ATP binding site residues, 

specially the hydrophobic regions including Phe80, lie 10 or Lys89 (Figure 2.11)

G lu81 Leu83 Leu 83

Figure 2.11 Compound 104 interactions with CDK2.

In order to synthesize compound 104, protected amide compound 82 was treated with 

methyl iodide in presence of sodium hydride in DMF. The reduction of the nitro group 

achieved using standard conditions, in order to form the amino group necessary for 

benzylation (Scheme 2.36).

Scheme 2.36

0 ,N

i) CH3I, NaH, DMF, r.t., 83 % ii) H2, 10% Pd/C, DCM, 73 %.

The introduction of the benzyl group on the 4-amino group was achieved using an N- 

alkylation procedure. Compound 106 was treated with benzyl bromide (71) in presence o f
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potassium carbonate in DMF. However, following purification by column 

chromatography, the predominant compound obtained was the N, A-dibenzylated 

compound. Increasing the polarity of the eluent led to the isolation of the desired mono N- 

substituted compound in a smaller quantity (Scheme 2.37).

Scheme 2.37

SEM

H2N

106

'Br

SEMBn
\ I
/

N

Bn

107

71

Bn'

i) K2C 0 3, DMF, 107, 56 %, 108, 12 %.

SEM
H
N

108

The synthesis of 108 was attempted via a reductive amination reaction involving the use 

of benzaldehyde (109), to attempt to improve the yield. Compound 106 was treated with 

benzaldehyde in presence of ethanol and acetic acid (1:1) at reflux for 10 h (Albuschat et 

al., 2004), but no reaction was achieved (Scheme 2.38).

Scheme 2.38

SEM

106

SEM

H
+

109 110

i) EtOH/AcOH (1:1), reflux, 0 %.
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These attempts were unsuccessful so the direct benzylation method was repeated for the 

synthesis of compound 108. The desired compound (108) obtained from that method was 

enough for final key step, which was the SEM deprotection of compound 108 to form the 

free amide (Scheme 2.39).

Scheme 2.39

SEM

108

i) 1M TBAF/THF solution, reflux, 41 %.

H
N. NH

104

Once compound 104 was synthesised, it was modelled to investigate its fit in the active 

site of CDK2 by overlaying with olomoucine (Figure 2.12).

Figure 2.12 Superimposition of olomoucine (grey sticks) and 104 (pink 
sticks) in the active site of CDK2. (Nitrogens shown in blue, oxygen in 
red).
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2.4 SYNTHESIS OF BENZODIAZEPINONE-5-ONE ANALOGUES

A slightly modified pharmacophore, benzodiazepine-5-one was proposed for 

investigation.

An overlay of compound 27 and 28 show that both parent compounds bind in the same 

orientation in the active site. As a result of this, it was believed that the 

dibenzodiazepinone and benzodiazepinone series could show similar structure activity 

relationships (SARs) for the substituents common to both of them (Figure 2.13).

NH

H m CD

Figure 2,13. Overlay of 27 and 28 showing common groups.

2.4.1 Synthesis of the protected lead compound analogues

The benzodiazepinone scaffold still has the advantage of an additional site (N-amine) 

where substitution could be carried out, thereby allowing the possibility of further 

interactions being obtained, leading to more potent and selective inhibitors.

In order to confirm this, synthesis of N-amine substituted analogues was attempted. To do 

so, precursor 7-nitrobenzodiazepinone was first synthesised by a modified procedure to 

that previously discussed: commercially available 2-bromo-5-nitrobenzoic acid was 

esterified to afford 74. Compound 74 was heated with ethylenediamine (111) in 

dimethylacetamide (DMA) (Skalitzky et a l , 2003) (Scheme 2.40).
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Scheme 2.40

o 2n
h2n NH

OH OMe

+

h2n

112111

i) Cone. H2S 0 4, MeOH, 100 %, ii) DMA, 150 °C, 59 %.

In this reaction, the bromine is activated for SnAt displacement reaction by the para-nitro 

group (see the mechanism in Figure 2.7). As it is expected the yield was better compared 

to that obtained with aromatic diamino compound, as the aliphatic amines are more 

nucleophilic.

To N-mono-substitute the amine o f compound 112 the method described previously was 

used, compound 112 was protected by stirring with SEM in presence of sodium hydride in 

DMF to synthesise 113 (Scheme 2.41).

Scheme 2.41

o2n NH

112

CH,

4 -

37

SEM

1

113ci

i) NaH, DMF, r.t, 27%.

The protected compound 113 was shown to have the correct regioselectivity by NMR, due 

to the presence of a peak at 58.07 for the amine proton, and the lack o f the amide peak at 

approximately 58.5. The downfield shift for the amine was due to the strong electron 

withdrawing para-nitro group.
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To synthesise 114, protected compound 113 was treated with benzyl bromide (71) in 

presence of potassium carbonate in DMF, yielding the desired compound in a moderate 

yield (Scheme 2.42).

Scheme 2.42

l) K2C0 3, DMF, 150 °c, 32 %.

Work was also carried out to investigate the effect of saturation o f the ring on activity.

Since the crystal structure of hymenialdisine (14) bound to CDK2 revealed that the 

introduction of cyclobutylmethyl in the N-amine could lead to a better accommodation 

thereby providing greater activity and possibly further selectivity (Figure 2.15).

So, extension was attempted with cyclobutylmethyl bromide (47) in an analogous reaction 

to the previously mentioned reaction to obtain the desired compound (115) in a reasonable 

yield (Scheme 2.43).

Scheme 2.43

o

o

i) K2C 0 3, DMF, 150 °C, 41 %.

PhD Thesis, P Hamidi, 2006 83



Chapter 2. Cell Cycle Inhibitors, Results and Discussion

Compounds 114 and 115 were deprotected by refluxing with 1M TBAF/THF, producing 

the desired compounds 116 and 117 in moderate yield (Scheme 2.44).

Scheme 2.44

S E M

NH N H

R

114, R=Benzyl 116, R=Benzyl, 28 %
115, R=Cyclobutylmethyl 117, R=CyclobutylmethyI, 17%  119, R—Cyclobutylmethyl, 99 %

i) 1M TBAF/THF solution, reflux, ii) H2, 10 % Pd/C, MeOH.

The final step was the reduction of the nitro groups using the standard hydrogenation 

procedure, but for some unknown reasons it did not succeed for compound 118.

An overlay of hymenialdisine (14) and compound 119 bound to CDK2 showed that both 

bind within the ATP binding site and show a similar binding mode (Figure 2.15).

/Glu81

Figure 2.15 Overlay of hymenialdisine (grey sticks) and compound 119 
(blue sticks) in the active site of CDK2.
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The previous study indicated that the N-benzyl groups of olomoucine and 104 showed 

good alignment but the fused benzene ring of the dibenzodiazepinone scaffold might be 

too bulky to be accommodated in the CDK2 active site compared to the methyl group o f  

olomoucine. Therefore, an alternative strategy for the synthesis of a benzodiazepinone 

pharmacophore was proposed.

Modelling suggested that the benzodiazepine-5-one (120) may be more favourably 

accommodated. Furthermore, the amino methyl group occupies a similar position to that 

of other compounds and can interact with hydrophobic regions of the active site (Figure 

2.16).

c h 3

HN
120

Leu83

Figure 2.16 The binding orientation of compound 120 in CDK2.

In order to synthesise compound 122, the protected compound 113 was methylated by 

treating with methyl iodide in presence of sodium hydride in DMF and the nitro group 

reduced using the standard palladium catalyzed hydrogenation procedure (Scheme 2.45). 

Both reactions were achieved in excellent yield.

Scheme 2.45

S E M S E M S E M

113 H 121 122

i) Mel, NaH, DMF, r.t, 88 %, ii) H2, 10% Pd/C, MeOH, 100 %. 
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The N-7 benzylation of compound 122 was performed using the method used for the 

synthesis of compound 98, by stirring the compound 122 with benzyl bromide in presence 

of sodium hydride in DMF. The N, //-di benzyl ated compound 123 was obtained 

following purification by column chromatography as the major product, and the desired 

compound was obtained by increasing the polarity of the eluent to obtain the minor 

product. The final step was deprotection of 124 by treating compound 124 in 1M 

TBAF/THF at reflux, to deprotect the amide functional group (Scheme 2.46).

Scheme 2.46

Bn SEM

Bn

S E M

H2N 123

SEM
122 H

N NHC H 3 /
Bn Bn

120124
c h 3 c h 3

i) BnBr, NaH, DMF, r.t, 123, 32 %, 120, 17 %, ii) 1M TBAF/THF solution, reflux, 40 %.

Compound 120 was modelled in the active site of CDK2 by overlaying with olomoucine 

(Figure 2.15). Hydrogen bond interactions were seen with Glu81 and Leu83 and the N- 

benzyl groups of both compounds showed good alignment.
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Figure 2.17 Superimposition of olomoucine (grey sticks) with compound 
120 (green sticks) in the active site of CDK2.

Literature reports showed that the introduction of substituted phenylamino groups at the

2-position of the purine scaffold could lead to an increase in activity compared to NU2058 

(86) (Hardcastle et a l , 2004). This is best explained by the introduction of a sulfonyl 

group at the 2-position (125, NU6102) (Hardcastle et al., 2004).

h 2n

125 N
H

A dramatic increase in activity was observed for NU6102 (125) compared with that of the 

parent compound NU2058 (86) (Table 2.2).
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Table 2.2: IC50 Values for NU2058 and NU6102 (Davies 2002).

Compound NU Number
IC50 Values

CDK1 CDK2

86 NU2058 7 ± 0.7 pM 17 ± 2 pM

125 NU6102 9.49 ± 0.13 nM 5.36 ±1.01 pM

The reason for this increase in activity was shown by the crystal structure of NU6102 

bound to CDK2 and as predicted the purine ring makes the triplet of hydrogen bonds to 

Glu81 and Leu83 (Figure 2.18) (Davies et al., 2002). However, additional interactions 

take place between the phenyl ring and the area of hydrophobic residues, and two further 

hydrogen bond interactions are also formed. The sulfonamide group forms a hydrogen 

bond network with the side chain group of Asp86. These additional interactions are 

almost certainly responsible for the increase in potency of NU6102 (125) compared to 

NU2058 (86) (Davies et al., 2002).

Leu83

3.35 A2.83 AGlu81
2.82 A

.98 A

4.15 A
Asp86

G lu81

Leu83

Leu83

Figure 2.18 NU6102 (125) bound to CDK2 (Davies et al., 2002).
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As a result of this, the synthesis of the following substituted sulfonamides based on the 

lead compound CFU58 (26), was attempted:

HN

N
H

126

A Friedel-Crafts method was tried to synthesise the compounds with AICI3 and NJSf- 

dimethylsulfonyl chloride (128). Instead of the desired compound 126, compound 129 

was obtained alternatively (Scheme 2.47).

Scheme 2.47

HN

N
H

H ,C -

H-jC

\
N  S  Cl

/
h 3c  o  

128

i) AlCb, DMF, 150 °C, 12 %.

HN

N
126 H

H
N

N 129

o = s = o

H , C ' ' c h 3

Compound 129 was synthesised with an overall yield o f 12 %. The nucleophilic attack by 

the amine nitrogen appears to be relatively fast in order to yield the compound 129, no 

destabilization of the tc electrons of the benzene ring occurred, thus avoiding any side 

reaction involving the benzene.
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Alternatively the following reaction was also tried in order to obtain the desired 

compound 131 (Peyronneau et a l ,  2004) (Scheme 2.48).

Scheme 2.48

i) Trifluoromethanesulfonic acid, methylsulfonyl chloride, THF, r.t., 54 %.

This time again compound 132 was produced with an overall yield of 54% as previously 

discussed. This line of chemistry was stopped here and no further examples were studied 

in this regard.

The trichlorophenyl substituted pyrazolopyrimidine (133) is an alternative CDK inhibitor, 

the crystal structure determined the binding mode of this inhibitor (Markwalder et al. , 

2004) (Figure 2.20). It binds in the ATP binding site by forming three hydrogen bonds 

with Leu83 and Lys33. The tri-chlorophenyl group provides a hydrophobic interaction 

with either the glycine rich loop or the C-terminal domain (Markwalder et al., 2004).
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Leu83 

Leu83 \

  Lys33

Figure 2.20 Compound 133 bound to CDK2.

To investigate further the importance of the interactions formed by tri-chlorophenyl 

group, several attempts were made to introduce the tri-chlorophenyl group to the 

benzodiazepine-5-one pharmacophore at the 1-position shown in Scheme 2.49.
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Scheme 2.49 (General Synthesis)

NH

134

ci

NH

This could be achieved from a number of intermediates, and required the activation of the 

commercially available tri-chlorophenol. The first attempt gave the required compound 

136 in a quantitative yield, by treating compound 135 with methylsulfonyl chloride (130) 

in presence of triethyl amine (TEA) in THF (Scheme 2.50).

Scheme 2.50

+  h 3c — s — Cl

i) TEA, THF, 100 %.

However, subsequent reaction followed by heating compound 26 and 136 in presence o f 

potassium carbonate in DMF was unsuccessful by liberation of the compound 136 to its 

starting material, tri-chlorophenol (135) (Scheme 2.51).
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Scheme 2.51

o 2n N H

Cl .Cl

137
136

ci

N H

Cl

i) K2CO3, DMF, 150 °C ,0% .

It implies that either the aromatic ring is too sterically crowded to undergo an SnAt 

displacement reaction or the tri-chlorophenol anion is possibly more stable than 

methylsulfonyl anion. The presence of the three chlorine groups on the benzene ring 

would make the anion even more stable.

Two attempts were made to vary the leaving group to see if by increasing the stability o f 

the intermediate anion, the reaction would go in the required manner. To do so, 

trichlorophenol was treated with trifluoroacetic anhydride in presence of triethylamine 

(TEA) in THF (Scheme 2.52), but the reaction failed, due probably to the increased steric 

bulk of the anhydride, which made the contact of the reagents impossible.

Scheme 2.52

VCF3
0

i) TEA, THF, 0 %.
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The final attempt gave the required intermediate (139) in a quantitative yield (Scheme 

2.53).

Scheme 2.53

O H

Cl

135

Cl

XI o
II

+  f 3c — s ---------Cl

II
141 o

•CF-

Cl

139

ci

i) TEA, THF, 100 %.

However, when compound 26 was reacted with 139 the same liberation of tri- 

chlorophenol was observed (Scheme 2.54). It seemed that tri-chlorophenol anion is still 

more stable than tri-fluoromethanesulfonyl anion or that, the C -0 bond is hindered or 

difficult to break.

Scheme 2.54

NH

Cl .Cl

140139
ci

ci

NH

i) K2C 0 3, DMF, 150 °C, 0 %.

The same reaction was also attempted on 3,5-dichlorophenol (142) to establish if by using 

a less substituted phenol the required product could be obtained. In order to do so, the
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commercially available 3,5-dichlorophenol was reacted with /n-fluoromethanesulfonyl 

chloride using a similar procedure to yield the intermediate in a good yield (Scheme 2.55).

Scheme 2.55

142 141 143

i) TEA, THF, r.t., 60 %.

Finally, compound 26 was treated with 143, but instead of giving the desired product the 

same liberation of intermediate (143) occurred (Scheme 2.56). It seemed that the steric 

nature of the compound may not affect in formation of the by-products and the main 

reason might be the stability of the phenoate anions.

Scheme 2.56

NH

144‘C lci
143

o 2n NH

i) K2C 0 3, DMF, 150 °C ,0% .
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2.5 ATTEMPTED SYNTHESIS OF AN ALTERNATIVE PHARMACOPHORE

To improve the interaction of the diazepinone pharmacophore an alternative modification 

was proposed. The known CDK2 inhibitors hymenialdisine and kenpaullone have a 

heterocyclic group fused to the azepinone ring in place o f the benzo-groups investigated 

so far in this thesis. Incorporation of a heterocyclic group would provide an extra 

functional group for hydrogen bonding interactions (Figure 2.21). A pyrrole group is 

present in hymenialdisine and kenpaullone contains an indole group.

Figure 2.21. The two key areas of the proposed heterocyclic 
pharmacophore.

The synthesis was proposed from commercially available indole-2-carboxylic acid (146) 

using a condensation with ethylenediamine in a similar manner to that used previously 

(Scheme 2.57).

Scheme 2.57 (Outline of Synthesis)

extension towards the 
exterior of the protein

Extra hydrogen bonding position

146

OH

Esterification Bromination

OMe

O
O

Ring Formation
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The synthesis of 145 was proposed in three steps: first an esterification reaction to 

generate methyl indole-2-carboxylate (147), secondly bromination of the indole (147), 

and thirdly the condensation to 145.

The esterification was easy to carry out by refluxing indole-2-carboxylic acid (146) in 

methanol and in presence of concentrated sulfuric acid, to yield the ester in almost 

quantitative yield (Scheme 2.57).

A reported method of indole bromination using N-bromosuccinimide (NBS) was 

attempted (Barraja et al., 1999) (Scheme 44). Indoles are preferentially brominated at the

3-position and it was found that bromination occurred exclusively at this position again in 

very good yield. This brominated compound was the key precursor for the subsequent 

cyclization step (Scheme 2.58).

Scheme 2.58

i

.OH
OMe .OMe

146 147 148 H
o o

i) Conc.H2S 04, MeOH, reflux, 95 %, ii) NBS, DMF, 95 %.

Several attempts were made to achieve the cyclization of the brominated indole ester 

(148). Initially, a simple coupling was attempted by dissolving in DMF in presence o f 

ethylenediamine (111) with extensive refluxing. However, no product was isolated from 

this reaction (Scheme 2.59).

Scheme 2.59

.OMe

0

H ,N '

111
NH

145

i) DMF, reflux, 0 %.
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To improve the method to synthesise compound 145 an alternative procedure was 

proposed using an activated carboxylic acid. Conversion to the indole acid chloride was 

followed by treatment with oxalyl chloride, followed by treatment with ethylenediamine .

It is noteworthy that if the reaction was carried out on the indole N-unsubstituted 

compound (149), the unprotected nitrogen would react with a second molecule of the 

indole acid chloride, and the main product of the reaction was the dimer (151) (Figure 

2 .22).

NH
150

149

151

Figure 2.22 Formation of the unwanted side product (151) when the amide 
bond forming reaction is carried out on the free NH indole.

Based on the above theoretical speculation, it was necessary to protect the indole nitrogen 

for the diazepinone forming reaction to be successful.

Since the benzyl protecting group is stable under a variety of conditions, except for strong 

acid conditions (Greene and Wuts, 1999), it was thought that this protecting group would 

be resistant to the conditions used to form the cyclized diazepinone, and could then be 

removed once reaction was complete. The benzyl group was introduced to the indole NH 

followed by ester hydrolysis to afford 152 (Scheme 2.60).
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Scheme 2.60

.OM e

147
O

71

Br

152

OH

a: i) NaH, THF, li) THF, b: NaOH (aq), MeOH, 60 °C, 81 %.

The N-protected indole 152 could be activated using oxalyl chloride. It was proposed to 

react this directly with ethylenediamine to synthesise the amide (153), a stable 

intermediate with one of the bonds for the essential diazepinone having been made 

(Scheme 2.61). Unfortunately, this reaction was unsuccessful.

Scheme 2.61

.OH

152

.N H ,

H ,N

111
'N H 2

153

i) TEA, oxalyl chloride, THF, 0 °C, ii) ethylenediamine, THF, 0 %.

A more concise synthesis was tried without the need to protect the indole nitrogen and an 

alternative synthetic route to form the amide bond was attempted (Sharma and Tepe, 

2004) (Scheme 2.62). The synthesis involved using 1 -(3-dimethylaminopropyl)-3- 

ethylcarbodiimide hydrochloride (EDCI) as a coupling reagent, but there was no progress 

in the reaction.
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Scheme 2.62

.OH

146
o

.NH?

+ n2H?N

111
0

'N H ?

154

i) EDCI, DMAP, DCM, 0 %.

This was due possibly to the formation of some unwanted reactions by unprotected 

diamine. jV-Benzylethylenediamine, a commercially available protected ethylenediamine, 

was used as an alternative reagent in the EDCI coupling reaction (Scheme 2.63). This 

reaction was successful, although a poor yield was obtained after purification.

Scheme 2.63

.OH

146
o

H ,N '

O H +

155
NH

156 0

i) EDCI, DMAP, DCM, 18 %.

The next step was bromination of 156, attempted by treating 156 with N- 

bromosuccinimide (NBS) in DMF (Scheme 2.64), but due to an unclear NMR spectra and 

mass spectrum it was not possible to identify if the compound had been synthesised.

Scheme 2.64

i) NBS, DMF.
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However, the compound obtained from the bromination reaction was subjected to 

cyclization conditions by heating compound 157 in DMF at 150 °C and in presence o f  

copper, but the NMR spectra was still unclear and no product was recovered (Scheme

2.65).

Scheme 2.65

Br

157

NH
158

NH

i) Cu, DMF, 150 °C ,0% .

While the product (158) had not successfully been isolated, this method was also 

attempted with the commercially available chlorinatedindole acid (159). The esterification 

was achieved by refluxing the 5-chloro indole-2-carboxilic acid (159) in ethanol and in 

presence of concentrated sulphuric acid, to yield the ester in an excellent yield. 

Compound 160 was quantitatively brominated using NBS at the 3-position (Scheme

2 .66).

Scheme 2.66

N
160 H N

161 H

O E t

i) Conc.H2S 04, EtOH, reflux, 99 %, ii) NBS, DMF, 100 %.
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Again, the final cyclization method was not successful, which was attempted by refluxing 

in DMF in presence of ethylenediamine (111) and copper oxide. No product was obtained 

(Scheme 2.67).

Scheme 2.67

ci

.O E t

O

H N

N H

O

i) CuO, DMF, 150 °C, 0 %.

2.6 CONCLUSIONS

Reasonable methodology has been developed for synthesis o f benzo- and 

dibenzodiazepinones and their rationally extended derivatives. Over all the syntheses 

investigated, the critical step appeared to be the amide protection step due to the 

surprisingly similar reactivity of the amide and amine groups resulting in disubstituted 

compounds. This limiting step considerably reduced the overall yield of the compounds 

synthesised. Nontheless, sufficient quantities of compounds were synthesised in order to 

undertake biological testing.

Ultimately, suitable amide-NH protection was achieved using the SEM group to 

overcome the regioselectivity problem. Improving the reactivity of the electrophiles 

(alkylating reagents) by iodination was an alternative approach, which was effective in the 

synthesis of the desired compounds.

Although we were unable to introduce a variety of groups at the N-l position of the 7- 

nitro-benzodiazepine-5-one (28), we managed to synthesise a small series N-l substituted
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analogues to be able to establish SARs between these compounds and compounds 26 and 

27 analogues.

However, deprotection of the SEM group at the end of the synthesis was not very 

efficient, small quantities of the desired analogues were formed, further investigations 

could improve the yield or choice of protecting group.

Several interesting compounds have been synthesised to probe SARs between these 

compounds.

The synthesis of indolodiazepinone (145) and its related analogues were not successful, 

and further research could study the improved bromination of the indole ring.

2.7 NOMENCLATURE

The synthesised compounds were named using the “Hantzcsh-Widman Nomenclature for 

Heterocyclic rings” combined with the “Fused ring Nomenclature” as described by the 

International Union of Pure and Applied Chemistry (IUPAC) nomenclature system.

NH
6

7

NH
6

7

H

Benzo and 1H, 4//-diazepin-5-one (as the base component) common bond: [6,7-f\

Based on this system, compounds were numbered anti-clockwise around the diazepinone 

ring from N being position 1.
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Numbering of the fused rings was as follow:

o o

7

8

26 9

10

112 75 8

Figure 2.23. Numbering system used for cyclized compounds giving the 
three heteroatoms the lowest combined numbers.

Therefore, the names were:

26, 3,4-Dihydro-l//,5//-benzo[2,3-£]diazepin-2-one 

112, 2,3-Dihydro-7-nitro-l//,4//-benzo[6,7-/Jdiazepin-5-one 

75, 4-Nitro-l//,7//-dibenzo[2,3-6][6,7-/|diazepin-2-one

However, compounds 26,112 and 75 were trivially named benzodiazepine-2-one, 7-nitro- 

benzodiazepine-5-one and 4-nitro-dibenzodiazepine-2-one. These names were used 

throughout this thesis.

Compound 145 was an alternative group of compounds synthesised and named according 

to this system.

l//,5//-Diazepino and l//-indole-2-one (as the base compound) common bond: [2,3-b]

Based on this system, pre-cyclized compounds were numbered anti-clockwise around the 

indole ring from N being position 1.

o
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Numbering of the fused ring was as follow:

5

H N

N H8

9 145

10

Figure 2.24. Numbering system used for cyclized compound giving the 
heteroatoms the lowest combined number.

Therefore, the name was:

145, 4,5-Dihydro-3//,6//-diazepino[2,3-£]indole-2-one

This structure was trivially named indolodiazepinone, and is reported by that name 

throughout this thesis.
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CHAPTER 3

PARP INHIBITORS, RESULTS AND DISCUSSION

3.1 INTRODUCTION

The first generation of PARP inhibitors such as 3-aminobenzamide (20) (Schulze-Osthoff 

et al., 1995) suffered from poor potency, and non-specific side effects (Piret et al., 1995).

Since this initial report, interest in the use of PARP inhibitors as anti-cancer agents has 

rapidly expanded. The design of novel PARP inhibitors was greatly accelerated when the 

x-ray structure of PARP and bound ligands was solved. Due to 100 % homology in the 

amino acid sequence of the catalytic domain of human and chicken PARP, the crystal 

structure of the catalytic site of chicken PARP bound to the 3,4-dihydroquinolin-l(2//)- 

one (163) gave comprehensive information on the nature of the enzyme-inhibitor 

interaction (Weinfeld et al., 1997). The inhibitor was bound to the active site by two 

hydrogen bonds from the carboxamide group to the peptide backbone of Gly863, and a 

third hydrogen bond from the carbonyl oxygen to the side chain of Ser904 (D'Silva et al., 

1999; Weinfeld et a l,  1997). This mimics the binding of the nicotinamide portion o f 

NAD+, the enzyme’s natural substrate. There were also hydrophobic interactions between
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this inhibitor and the adjacent Tyr907. The Glu988 residue, located at a distance of 4A 

from a methyl carbon atom, is involved in catalysis (Boulton et al., 1999; Gaken et a l , 

1996) (Figure 3.1). The positions of binding of all other PARP inhibitors studied by X-ray 

crystallography are similar.

Figure 3.1 Left: A schematic representation of the enzyme-inhibitor interactions between

Ser904
\  Gly863

I / ----- \
HO  /  \

m - y  Gly863 
< a  \  am

Glu988

Tyr907
Tyr907

Glu988

PARP catalytic site and 3,4-dihydroquinoline inhibitor. Right: Crystallographic data of 

the same interaction (Weinfeld et al., 1997).

A series of benzimidazole carboxamides have been developed as potent PARP-1 

inhibitors br researchers at Newcastle University. The amide group required for hydrogen 

bond interactions is held in the correct conformation for hydrogen bond interactions with 

Gly863 and Ser904 by an intramolecular hydrogen bond. This pharmacophore contains an 

aryl ring at the 2-position of the benzimidazole that occupies a relatively spacious pocket, 

containing amino acid residues that could be targeted by further substitution on the 

aromatic ring (Figure 3.2).

o

6

7

Carboxamide rotation 
restricted by intermolecular 
hydrogen bond

HN

164

OH
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Ser904 • 

1.92A \
Gly863

Tyr907

Tyr896

Figure 3.2 Structure of 2-(3’-hydroxyphenyl)-1 //-benzimidazole-4- 
carboxamide (164) complexed with the catalytic domain of PARP.

The substituted benzimidazole-4-carboxamides (164) were found to be extremely potent 

PARP inhibitors (IC50 = 0.08-1.10 pM) more so than the 3-substituted benzamides such as 

3-aminobenzamide (20) (IC50 = 1 9  pM) under the same assay conditions (Anderson and 

LeesMiller, 1992; Lee etal., 1997).

The study of benzimidazole PARP inhibitors were extended by the synthesis of 7- 

membered lactam derivatives to totally restrain the amide rotation, and additional 

aromatic substituents will interact with the PARP-1 active site (Figure 3.3) (Southan and 

Szabo, 2003). The parent compound (23, R=H) has an IC50 = 300 nM (Ferraris et al., 

2002), and it was found that potency could be further increased by the phenyl substituent 

(R = Ph) (IC 50  = 26 nM) (Ferraris et al., 2002), indicating that those compounds with the 

substituent on the 7-membered (lactam) ring are not as potent as those with the 

substitution at the 2-position (Webber et al., 2000).

However, the benzimidazole PARP inhibitors were improved by the synthesis of 

AG 14361 (25) by researchers at Newcastle University and Pfizer with an (Ki < 5 nM) 

(Calabrese et al., 2004). Modelling of AG 14361 has indicated that, due to the presence of 

a spacious pocket in the active site, a dibenzodiazepinone could be incorporated into the
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active site of PARP-1 and that an additional fused benzo-ring could increase the 

inhibitory efficacy (Figure 3.3) (Southan and Szabo, 2003). Furthermore, aromatic 

substituents may be added to probe for active site interactions.

Figure 3.3 Structure of dihydroimidazobenzodiazepin-6(7//)-one 
complexed with the catalytic domain of PARP active site, showing the large 
active site pocket occupied by the aromatic ring.

The dibenzodiazepinone pharmacophore contains a seven-membered lactam ring for 

which we have already explored the synthesis. Preparation of these derivatives could 

allow us to further explore the medicinal chemistry of this group and its use as a novel 

PARP-1 inhibitor.
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In this chapter, the synthesis of imidazodibenzodiazepinone derivatives will be described, 

followed by discussion of each modification introduced to the main scaffold structure o f 

the lead compound.

3.2 SYNTHESIS OF IMIDAZODIBENZODIAZEPINONES 

Scheme 3.1 (Outline of Synthesis)

n h 2

'OMe NH 167
n h 2

Coupling
166

n o 2

n o 2

Reduction
169, 3-OMe
170, 4-OMe

NH

NH

Imidazole
Formation

168171,3’-OMe 
172,4’-OMe

The synthesis of PARP-1 inhbitor precursors used the same methodology as adopted 

previously, but using the different substitution pattern (166). This strategy is possible 

since the bromine of 166 is activated for substitution by an ortho-nitro group (compared 

to the para-nitro group used in previous synthesis).

Esterification of 2-bromo-3-nitrobenzoic acid (165) afforded 166. The next step involved 

its coupling with 1,2-phenylenediamine (30). Compound 166 was heated with 1,2- 

phenylenediamine in dimethylacetamide (DMA) at 150 °C for 10 h until 167 had been 

synthesized (Lubisch et al., 2003).
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The next step was the reduction of 167 which was performed using 10 % palladium on 

carbon (10 % Pd/C) in methanol in a pressure vessel under a hydrogen atmosphere of 20- 

40 p.s.i. This method produced compound 168 cleanly and in quantitative yield (Lubisch 

et al., 2003) (Scheme 3.2).

Scheme 3.2

i) Conc.H2S04, MeOH, 98 %, ii) DMA, 150 C, 48%, iii) H2, Pd/C, MeOH, 100 %.

The NOESY spectrum suggested the right position of amide-NH would be downfield 

compared to amine-NH (Figure 3.4).

NH

NH’

NOE

CONH
Ar

NH
NH,

I. I JL— .

- 1 0

« 5 48 7 3 2 110 9 ppm

Figure 3.4 Showing NOE interactions between amine-NH and NH2 and 
not between amide-NH and NH2.
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The final step of this synthetic pathway involved the formation of the fused imidazole 

ring via the addition of an aldehyde across the two amine groups. The aldehyde (169,170) 

was suspended in DMA along with amine (168) and sodium hydrogen sulfite (Scheme 

3.3) (Skalitzky et al., 2003) (Lubisch et al., 2003).

Scheme 3.3

i) NaHS03, DMA, 150 °C.

Initially an amine and aldehyde form an imine that subsequently reacts with the adjacent 

amine group, resulting in the formation of a dihydroimidazole (Figure 3.5). Sodium 

hydrogen sulfite (NaHSCb), essential to the success of this reaction, is assumed to assist 

in hydrogen abstraction to yield the desired imidazole heterocycle.

o

169, 3'-methoxybenzaldehyde
170, 4'-methoxybenzaldehyde

4'

171,3'-OMe, 50% 
172, 4'-OMe, 50 %
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Figure 3.5 Mechanism of imidazole formation.

The aryl group stemming from the imidazole ring with substituents such as methoxy 

located at the 3’- or 4’-position of the molecule was quite important to consider. The 

reasoning behind it is that 3’- and 4’-methoxy groups showed good activity in previous 

SAR studies (White et al., 2000). The chemistry is straightforward, well documented and 

also the starting materials are commercially available. More importantly, the oxygen 

group in the ether group acts as a potential H-bond acceptor that may enhance the binding 

potential of the compound to PARP-1.

The successful preparation of these initial molecules, 171 and 172 demonstrated that 

imidazodibenzo-derivatives could be simply and practically synthesized within the 

laboratory with a reasonable yield. This would therefore be helpful towards the design of 

a more effective and thus valuable molecules based on data obtained regarding the 

structure activity relationship studies (SARs) of these compounds.
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Compound 29, a PARP-1 inhibitor with fewer groups for intermolecular binding, still 

shows an IC50 of 260 nM. This implies that more developed compounds with additional 

substitutions at appropriate position to interact with active site residues, could be even 

more efficacious. Once this has been determined further work can resolve which 

functional groups are preferable in various positions. The dibenzo analogues allow further 

investigation of the active site pocket by addition of substituents onto the ring (R’) 

(Figure 3.6).

NH

29, R = H, R' -  H

Figure 3.6 Showing the addition of different substituents onto the ring.

The addition of fluorine (an electron-withdrawing group) at the X position of the lead 

compound (Figure 3.6) was initially considered, as it is a good chemical bioisostere for 

hydrogen and would be highly polar, thereby enhancing the likelihood of dipole-dipole 

and could also result in further interamolecular bonding with the PARP-1 active site.

The symmetrical tetrafluorophenylenediamine (177) would avoid any problems o f 

regiochemistry and ensure a fluorine atom was positioned at X. However, this compound 

was not commercially available.

PhD Thesis, P Hamidi, 2006
114



Chapter 3. PARP Inhibitors, Results and Discussion

The monofluoro derivative (178) could be purchased, and could yield a product with the 

fluorine at the Y or Z position (Figure 3.7).

In the coupling reaction the same method that had been previously used was reported. To 

do so, 1,2-diamino-4-fluorobenzene (178) was dissolved in DMA and heated for 10 h at 

elevated temperature (Scheme 3.4).

Scheme 3.4

OMe

166n o - 178

n h

179NO-

i) DMA, 150 C, 100%.

Being an unsymmetrical precursor, reaction with diamine 178 could possibly result in a 

mixture of isomers (Figure 3.7). However, one product was obtained from this reaction, in 

quantitative yield and shown to be a pure, single isomer.

-OMe

166
n o 2 178

NH

N 0 2 180
AND/
OR

NH

N 0 2 179

Figure 3.7 Showing the possibility o f formation of a mixture of isomers.
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A NMR NOESY spectrum confirmed which isomer had been synthesised. A Nuclear 

Overhauser Effect (NOE) was observed between the 8-H aromatic double doublet peak 

(extra splitting due to the fluorine atom) and the amine proton located within the lactam 

ring. Additionally NOE interaction between the amide proton and the 11-H aromatic 

doublet was observed (Figure 3.8). This is only possible when the fluorine group is 

located at the 9-position, therefore confirming the regiochemistry of compound 179.

NOE

4

5

NO2

NOE

NHCO

j

10

11 10 7 6 5 4 3 2 ppm

Figure 3.8 Confirming the position of F in 179 using NOE.
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The formation of the single isomer can be explained by the nucleophilic properties of the 

two amines in 178. The nucleophilicity of the amino group para to the fluorine group will 

be reduced due to the presence of the electron-withdrawing fluorine group. On the other 

hand the bromine atom on the compound (166) is a good leaving group. Therefore, it is 

expected that the meta-positioned amino group, being the stronger nucleophile, will react 

with the bromine initially followed by formation of the amide bond involving with the 

less nucleophilic amino substituent reacting with the ester group (Figure 3.9).

o

h 2n'OMe
'OMe

EW G
HN

-HBr

‘O M e

NH

N 0 2 n h 2

EW G '

NH

N 0 2

Figure 3.9 The mechanism for the coupling reaction.

The synthesis continued as expected to the imidazole-dibenzoazepinone. Initially the nitro 

functional group was reduced using 10 % Pd/C in a pressure vessel under a hydrogen 

atmosphere of 20-40 p.s.i.

The imidazole was synthesised using exactly the same conditions was used for the 

synthesis of compounds 171 and 172 by the treatment of amine 181 with NaHSCb and 3- 

methoxybenzaldehyde (169) in DMA. Once the reaction went to completion, the product 

was recovered by precipitation from water and recrystallized from methanol to yield the 

desired compound 182 in an excellent yield of 100 % (Scheme 3.5).
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Scheme 3.5

NH

u

182
OMe

NH

NO- 180

NH

181

i) H2, 10 % Pd/C, MeOH, 60%, ii) 3-methoxybenzaldehyde, NaHS03, DMA, 150 °C, 

100%.

From the modelling studies of compound 182 one could verify whether a electron- 

withdrawing group (H-bond acceptor) at the 10-position enhances the degree of 

inhibition. By comparing the structures o f 29, 171 and 172 it is also expectable that 

compound 182 will cause greater inhibition o f the PARP-1 due to the additional fluorine 

group, but as can be seen from the following picture there are no close H-bond accepting 

residues nearby the fluorine to form intermolecular interactions (Figure 3.10).

Figure 3.10 The prospective H-bonds of compound 182, fluorine substituent is in purple.

PhD Thesis, P Hamidi, 2006



Chapter 3. PARP Inhibitors, Results and Discussion

The conserved residues Ser904 and Gly863 interact with the amide as expected, as well as 

Gln763 which acts as a H-bond donator to the 3’-methoxy oxygen group (3.82A). Tyr907 

is another important residue (green), which can be seen pi-stacking above the electron rich 

heterocycle of this compound (182, see Figure 3.10) and all the compounds discussed in 

this chapter.

In order to confirm the hypothesis that the presence of high electron-withdrawing groups 

on the aromatic ring of nucleophile would reduce the nucleophilic properties of the amine 

thus creating the single isomer, the coupling method that employed in the synthesis of the 

fluorine derivative was repeated, with compound 178 being replaced with 3, 4- 

diaminobenzoic acid (183) (Scheme 3.6).

Scheme 3.6

NH

184n o 2
CO O H

N H 2
O Me

HO O C' NH 2

n o 2 1 6 6 183

i) DMA, 150 °C, 26%.

Although the yield for this reaction was much lower, a *H NMR spectrum of this 

compound (184) indicated the presence o f a pure and importantly a single isomer.

An NMR NOESY spectrum was also obtained, observing a Nuclear Overhouser Effect 

(NOE) between the aromatic singlet peak (H-8) and the amino group located within the 

lactam ring. Also the amide interacted with the H-l 1 aromatic doublet (Figure 3.11). This 

is only possible when the carboxylic acid group is located at the 9-position, thereby 

confirming the structure of compound 184.
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NHCO NH

NOE

C O O H

NOE

2 1

Figure 3.11 Showing NOE interactions between an aromatic singlet peak 
and amine, and also the amide and aromatic doublet.

The nitro group was readily reduced using the standard hydrogenation procedure. The 

subsequent amine was reacted with aldehyde 169 to form the imidazole ring. The 

purification of this, and all similar reactions was quite easy. When the reaction was 

complete, the crude product was precipitated from water and recrystallized from hot 

methanol to obtain the pure product (Scheme 3.7).

Scheme 3.7

N H

NH
N H

C O O H
N H 2 185 186C O O H C O O H

O M e

i) H2, 10 % Pd/C, MeOH, 71 %, ii) N aHS03, DMA, 150 °C, 55 %.
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Asp770

Gln763

Molecular modelling was also used to explore the binding potential of this compound 

(186) to the PARP-1 active site (Figure 3.12)

Figure 3.12 The potential H-bonds that could be formed by compound 186 
with the enzyme.

When considering the above model, an additional hydrogen bond could be generated due 

to the presence of the carboxylic acid group at the 9-position. Ser904 and Gly863 interact 

with the amide as expected. Gln763 could act as H-bond donator by interaction of its NH 

with the ether group. The Asp770 and Asp766 side-chains may also form a H-bond, even 

though this distance is outside the optimal range (2.8-3.6 A), by considering the fact that 

the flexibility of the bond may enable the bond to rotate and move favourable position 

thus allowing interamolecular bond formation to occur. Further modifiction of the 

compound 186 could also be possible by improving the structure, and the potential 

efficacy of this PARP-1 inhibitor.
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3.2.1 Modification of l ’-aryl substituents

The ether functional group at the 3’-position of the molecule was replaced with an alcohol 

at 4 ’-position to consider the consequences of the possible interactions with the PARP-1 

active site residues. Whether this modification improves the efficacy of the drug or not, it 

could offer valuable information regarding the SAR of the pharmacophore.

To achieve this reaction the methodology that has already been used successfully in the 

synthesis of compounds 171, 172, 182 and 186, was reutilised here, except that 4- 

hydroxy-benzaldehyde (187) replaced the previously mentioned aldehydes (169, 170) 

(Scheme 3.8).

A poor yield was obtained on this occasion, but molecular modelling studies can predict i f  

a H-bond donor at the 4’ position enhances the degree of inhibition over a H-bond 

acceptor at the 3’ position (Figure 3.13).

Scheme 3.8

NH

NH. 185
C O O H

O H

NH
4

3

C O O H

188187

OH

i) NaHS03, DMA, 150 °C, 9 %.
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thought that a hydrogen bond donor is better located on a ligand rather than a residue 

within the acive site which can be an additional reason for synthesizing such a compound.

Regardless of actual effects of this modification, the obtained information would be useful 

in structure activity relationship studies.

Compound 186 was treated with lithium aluminium hydride (LiAlH4) but based on TLC 

indication there was no progress in the reaction (Scheme 3.9). Although attempts to 

reduce the acid to an alcohol (189) proved unsuccessful, maybe alternative methods were 

required using alternative reducing agents in the future.

Scheme 3.9

NH

C O O H

186

•OMe

*

NH

189
O M e

i) LiAlfC, THF, 0 %.

The following picture shows hypothetical interactions between the inhibitor and active 

site residues. As it is obvious in the Figure 3.6, there might be additional interactions with 

the Asn767 H-bond accepting group as well as Asp766 and Gln763 residues (Figure 

3.14).
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Asp766

Figure 3.13 The prospective H-bonds from the 4 ’-hydroxy phenyl 
substituent of 188.

The hydroxy group of the alcohol at 4 ’-position can interact with the Gln763 side-chain 

differently from the ether, by interaction of the H-bond donating alcohol group with the 

oxygen acceptor of Gln763. The previously utilised Asp766 backbone residue can also act 

as a H-bond acceptor. Therefore, one may assume that compound 188 might be as 

effective as compound 186.

3.2.2 Attempted carboxylic acid reduction

At physiological pH the acid group is usually ionised hence reducing the hydrogen 

bonding interactions between the enzyme and the inhibitor due to the potential repelling 

force between the inhibitor and other negatively charged residues (e.g. possibly an also 

ionised Asp766). To overcome this problem, it was decided to reduce the carboxylic acid 

to an alcohol group that may have more favourable interactions with PARP-1. It is also
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Asn76‘

iSp766

Gln763

Figure 3.14 The prospective H-bonds formed with 189.

As a further example, the commercially availabe l-nitro-3,4-phenylenediamine (190) with 

a highly electron-withdrawing group on the aromatic ring was used, forming the single 

isomer (191). The same method that had been previously employed in the synthesis of the 

fluorine and carboxylic acid derivatives coupling step was used with compound 191 

(Scheme 3.10).

Scheme 3.10

O M e

N 0 2 166

0 , N

190

N H

191
N O ,

i) DMA, 150 °C, 50%
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Although the yield for this compound was much lower compared to the fluorine 

derivative coupling compound (179), it was much higher compared to the carboxylic acid 

derivative coupling (184).

An NMR NOESY spectrum was also obtained indicating a NOE between the H -ll 

aromatic doublet peak and the amide and also the H-8 aromatic singlet peak with the 

amino group located within the lactam ring. This is only possible when the nitro group is 

located at the 9-position, so confirming the structure of compound 191 (Figure 3.15).

NOE

4

5

NOE

NHCO NH

7 6 4 211 10 9 5 3 1 ppm

Figure 3.15 Showing NOE interactions between an aromatic singlet peak 
and amine, and also the amide and aromatic doublet.
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However, due to unknown reasons the standard hydrogenation procedure was not 

successful for compound 191 (Scheme 3.11), so the chemistry of compound 191 was 

stopped at this stage.

Scheme 3.11

i) H2, 10 % Pd/C, MeOH, 0 %.

As previously stated the electron-withdrawing substituents, carboxylic acid and fluorine, 

will reduce the nucleophilic properties of the /wra-positioned amino groups in the 1,2- 

phenylenediamine precursors in this reaction. The weta-positioned amino groups, being 

the stronger nucleophile, will react with the bromine. A mechanism (Figure 3.9), would 

result in the preparation of the lactam ring representing isomers 179, 184, 191. In order to 

further explore this hypothesis, diaminobenzene with electron-donating groups like 

methoxy and hydroxy will be used in the coupling reaction. Consequently this would 

cause the /wrra-positioned amine to become the stronger nucleophile. This time the amine 

would undergo substitution with the bromine and forming the alternative isomer, with the 

substituent group at the 9-position (Figure 3.16).

o o

NH-
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EDGO M e
'O M e

HN

EDG

H 2N

NH

■EDG

N 0 2

-HBr
o

+ 5  OMe

NH

N 0 2 n h 2

EDG

Figure 3.16 The mechanism for the coupling reaction with the substituent 
amine group at the 4-position.

The commercially available, compound 193 could yield a product with the methoxy group 

at the Y position (Figure 3.6) as desired.

Using the same method previously used, the mixture 166 and 193 was dissolved in DMA 

and heated for 10 h, yielding the desired product (Scheme 3.12).

Scheme 3.12

O M e

166n o 2

M e O

193

N H

O M e

194

i) DMA, 150 °C, 88 %.
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The nitro reduction was achieved by shaking under a hydrogen atmosphere for 3 h with a  

Pd catalyst. In order to synthesise compound 196, the amine 195, NaHSCh and 3- 

methoxybenzaldehyde (169) were heated in DMA forming the imidazole ring (Scheme 

3.13).

Scheme 3.13

o

■OM e

i) H2, 10 % Pd/C, MeOH, 81%, ii) 3-methoxy benzaldehyde, NaHSCh, DMA, 150 °C, 

39%.

A 'id NMR spectrum of this compound (196) showed the presence of a pure, single 

isomer. A NMR NOESY spectrum was also obtained, observing Nuclear Overhauser 

Effects (NOE) between the amide and the H-8 aromatic singlet not an aromatic doublet 

(Figure 3.17). This is only possible when the electron-donating group is located at the 9- 

position, thereby forming the compound 196.

NOE

O M e

O M e
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NHCO

Th 13

S3

7 3

•.0.

7 9 4 3 210 9 ppm

Figure 3.17 NOE interactions between the amide and aromatic singlet.

A sn868

Additionally it was concluded through the use of molecular modelling, that there would 

be a satisfactory level of H-bonding to the PARP-1 active site (Figure 3.18).

Figure 3.18 The potential H-bonds that could be formed by 196 with the 
methoxy substituent at 9-position.
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As can be observed from Figure 3.18, additional hydrogen bonds could be generated as a  

result of the positioning the methoxy group at the 9-position. The two conserved residues 

Ser904 and Gly863 interact with the amide as expected, as well as the previously 

unutilised residue, Ser864. This residue could form two bonds with the methoxy region. 

(3.20A and 4.51 A with the residues OH and NH respectively). Asn868 (4.51 A) may also 

interact with the 9-methoxy oxygen atom. The 3’-methoxy acts as a H-bond acceptor to 

Gln763 (2.75A).

An alternative electron-donating group was used in order to prove the hypothesis that the 

presence of electron-donating groups on the aromatic ring of molecule would increase the 

nucleophilic properties o f the amine para  to the substituent thus creating the obseved 

single regioisomer. To do so, compound 197 was replaced with 193, followed by 

dissolving a mixture 166 and 197 in DMA and heating for 10 h (Scheme 3.14).

Scheme 3.14

NH

O H
N
H

198
n o 2

i) DMA, 150 °C, 61 %.

A *H NMR spectrum of this compound (198) indicated the presence of a pure and a single 

isomer. To determine the identity of this single isomer, a NMR NOESY spectrum was 

obtained, indicating a Nuclear Overhauser Effect (NOE) between the H-8 aromatic 

doublet peak with the amino group located within the lactam ring, and also between the 

amide with the H-l 1 aromatic singlet (Figure 3.19).

NOE

4

5
OH

n o 2

NOE
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NHCO NH
  ( _/ i «» * • b

A. '

O

< i

I--

o

11 10 9 5 7  6 5 4 3 2  ppm

Figure 3.19 Showing interactions between an aromatic doublet and amide, 
and also between the amide and aromatic singlet.

The reduction of compound 198 was performed using 10% Pd/C in methanol in a pressure 

vessel under a hydrogen atmosphere for 3 h. This method produced compound 199 

cleanly and in good yield. The amine 199, NaHSCb and 3-methoxy-benzaldehyde (169) 

were heated in DMA forming the imidazole (Scheme 3.15).

Scheme 3.15

NO, 198

i) H2, 10 % Pd/C, MeOH, 79 %, ii) 3-methoxy benzaldehyde, DMA, 150 °C, 20 %.
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Asn868

Using the molecular modelling, one can predict the binding potential of this compound 

(200) to the PARP-1 active site (Figure 3.20).

Figure 3.20 The potential intermolecular bonds that 200 may result with the 
hydroxy located at the 9-position.

Figure 3.21 Compound 200 within the PARP-1 active site.
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This model indicates that several potential hydrogen bonds could be produced as a result 

of the locating the hydroxy group at the 9-position (200). Besides the previously 

investigated residues involved in intermolecular interactions in compound 196, the 

Asn767 side chain could also possibly create a H-bond (5.63A). Although some of these 

distances are greater than what would be ideal, one must consider the fact that bond 

rotation may enable a residue to move into a more favourable position thus allowing 

intermolecular bond formation to occur.

Compound 200 was considered as an example out of all the molecules synthesised above 

within the PARP-1 active site, so one can see how nicely the phenyl substituent targeted 

in an PARP-1 inhibitor design has been accomodated in the spacious pocket (Figure 

3.21).

3.3 CONCLUSIONS

The methodology has been successfully developed for synthesis o f the target benzo- 

derived pharmacophore and its derivatives. The integration of several modifications to the 

benzo-derived pharmacophore, using a range of substituent groups, is possible to 

synthesise novel compounds for the inhibition of PARP-1.

With the knowledge of the coupling mechanism (see the text), it is extremely possible that 

the resultant isomer can generally be predicted by determining the electronic nature of its 

substituent group. A substituent located on an aromatic ring can effect nucleophilic 

groups on the ring. Therefore, the presence of an electron-withdrawing group on the ring 

would reduce the nucleophilicity of the relevent amino group. Alternatively if there is an 

electron-donating substituent located on the ring, the relevant amine will develop into a 

stronger nucleophile. The superior nucleophile will react with the bromine initially, thus 

the substituent will go to an expected postion and the resulted isomer can therefore be 

synthesised.
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The fact that there is a large amount of vacant space in the vicinity of the active site that 

the benzo-ring extension occupies ensures that potentially large and complex substituent 

groups could be accomodated within the PARP-1 enzyme (Figure 3.22).

Figure 3.22 A diagram indicating that the benzo-derivatives can be 
developed additionally and accomodated for within the PARP-1 enzyme.

We have successfully probed the active site cavity o f PARP-1 with a variety of benzo- 

derivations of the seven-membered lactam pharmacophore under investigation in this 

thesis.

3.4 NOMENCALTURE

The naming and numbering system that was used to name the synthesised compounds in 

this chapter, originates from a reference to published nomenclature for related molecules, 

which was then used in order to name and number its subsequent derivatives (Lubisch et

al., 2003).

o

Vacant space for further 
development of larger 
substituent groups

O o
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Benzo, imidazo and diazepin (as the base compound) common bond: [b] [4,5,1 -]k\ 

Based on this system, pre-cyclized compounds were numbered clockwise around the 

diazepinon ring from N-being position 4.

Numbering of the fused rings for compound 167 as previously described and for 

compound 29 was as follow:

Therefore, the names were:

167, 6-Nitro-l//,7//-dibenzo[2,3-6][6,7-/|diazepin-2-one

29, 1 -Phenylbenzo[6]imidazo[4,5,l-jk] [ 1,4]benzodiazepin-6(7#)-one

However, compounds 167 and 29 were trivially named 6-nitrodibenzodiazepin-2-one and

l-phenylbenzoimidazobenzodiazepin-6-one.

o

5' 4'
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CHAPTER 4

BIOLOGICAL RESULTS AND DISCUSSION

The biological activity of the molecules synthesised in this project were evaluated by a 

number of biological assays. The biological assays of the cell cycle related inhibitors were 

performed by the Tenovus Centre for Cancer Research in the Welsh School of Pharmacy, 

Cardiff University. The growth inhibition o f these series o f compounds were screened 

against two cancer cell lines. The poly(ADP-ribosyl)polymerase (PARP) assays were 

conducted by Kudos Pharmaceuticals Ltd, Cambridge, UK. Kudos also conducted assays 

against Chk2, a new protein kinase implicated in cell cycle control.

4.1 GROWTH INHIBITION ASSAY

Growth inhibition assays were carried out against the MCF-7 human breast cancer cell 

line, as well as the A549 human small lung cancer cell line. MCF-7 is derived from 

epithelial cells in breast carcinoma and is widely used for testing of this nature and were 

grown in Phenol Red free media. There are no major aberrations apparent in the cell line, 

and under appropriate conditions they grow well in culture (Solute et al., 1973). A549, 

largely studied in recent years, is a cell line derived from type II alveolar epithelial cells in 

lung carcinoma, and is similarly easy to work with in culture (Lieber et al., 1976).
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Results are expressed as 50 % growth inhibition (GI50) values. GI50 is the concentration 

required to inhibit 50 % of cell growth compared to an untreated control. Results with a  

GI50 value in excess o f 100 juM but showing mild growth inhibition are quoted as % 

inhibition at 100 pM. Compounds that showed no growth inhibition (0 %) at 100 pM  

were considered inactive.

4.1.1 Reference compound

Table 4.1 NU2058 as a known cell cycle inhibitor.a NT: Not Tested, b ClogP calculated 
using Chem Draw Ultra.

Compound
Number Structure G I 50 (MCF-7) 

pM

G I 50 (A549) 

pM
ClogP b

06- O
(cyclohexylmethyl)

2-aminopurine
86

I N N 
0 n h

72 NTa 3.5

06-(Cyclohexylmethyl)-2-aminopurine (86, NU2058) is a known inhibitor with an IC50 

value of 17 pM against CDK2/cyclin A (Gibson et al., 2002), that has been synthesised in 

our laboratory and assayed under identical conditions to compare the synthesised 

compounds’ potency to this known inhibitor (Table 4.1).
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4.1.2 Benzodiazepin-2-one analogues

Table 4.2 G r o w t h  i n h i b i t i o n  r e s u l t s ,  a N A :  N o t  A c t iv e ,  b G I 50 a s s a y e d  o n  M C F - 7  c e l l  

l i n e , 0 G I 50 a s s a y e d  o n  A 5 4 9  c e l l  l i n e ,  d p r e c i p i t a t i o n  o b s e r v e d  a t  1 0 0  p M .

C o m p o u n d

N u m b e r
S t r u c t u r e

G I 50 /%  in h i b i t i o n  

(H M )
C lo g P

26 PHN NH

> 1 0 0 b 

16  % i n h i b i t i o n  a t 0 .6

1 0 0  p M

52 P
cT>:

6 3  b 4 .0

53 Q/----v /— N NH
5 7  b

4 .5

54 Q
/— N NH

t f  ^
> 1 0 0  

3 3  %  i n h i b i t i o n  a t  

1 0 0  p M

2 .9

55 0  Q\ — N NH

O ^
N A a,b 2 .4

62

X O

N A a 0 .5

63 Q
/— N NH

HO

N A a,c 0 .8

129 s Q
(H3C)2N - S - N  NH0

> 1 0 0  

12  %  i n h i b i t i o n  a t 0 .4

1 0 0  p M c

132 ? Q
F 3 C - S - N  NH °

> 1 0 0  

12  %  in h i b i t i o n  a t  

1 0 0  p M c

1.4
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Table 4.2 shows the growth inhibition results obtained for N-5 substituted benzodiazepin-

2-one analogues against MCF-7 and A549 cell lines.

The lead compound benzodiazepin-2-one (26, CFU58) gave very slight activity; this is 

expected since we propose that extension from N-5 is needed for biological activity.

Of the compounds tested in this series 55, 62, 63, 129 and 132 were inactive or poorly 

active in growth inhibition assays. Either they are not CDK substrates or they do not cross 

the cell membrane. For compound 55, the relatively bulky carbonyl group makes a large 

difference to activity, especially when compared with compound 52. Molecular 

modelling shows the extra oxygen group, forces the cyclohexyl group out of the plane of 

the molecule, a conformation that may not be acceptable for active site binding. An 

additional consequence is that two isomeric forms of compound 55 may be possible.

A similar argument may also apply to compounds 129 and 132, the bulky sulfonyl groups 

connected to N-5 may force the compounds into biologically inactive conformations.

PhD Thesis, P Hamidi, 2006
140



Chapter 4. Biological Results and Discussion

Compounds 129 and 132 were also poorly active against the A549 cell line, due possibly 

to the high polarity of the compounds (ClogP = 0.4 and 1.4 respectively), which may not 

cross the cell membrane to reach an intracellular target.

Compounds 52 and 53 are the most active compounds of this series that have been 

identified to date, which were expected due to their substituted N-5 position. These have 

extensions necessary to fill the cleft o f the active site. They have similar cellular activity 

to the known CDfC inhibitor NU2058 (86), although this compound has the ability to form 

an extra hydrogen bond to the active site of the enzyme may improve its binding to 

CDK2. In common with the purine derivative, it appears that hydrophobic extensions into 

the active site cleft are beneficial to biological activity. Compound 53 is slightly more 

active than 52 suggesting that a longer extension may be better. Despite the activity seen 

for compounds 52 and 53, the N-5 aliphatic substituted compound 54 appeared to be 

poorly active against MCF-7 cell line. It is possible that the smaller aliphatic substituents 

may not be beneficial for biological activity.
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4.1.3 4-Aminodibenzodiazepin-2-one analogues

Table 4.3. Growth inhibition results,a NA: Not Active, b GI50 assayed on A549 cell line

Compound
Number Structure GI50/ % inhibition 

(pM )
ClogP

97

NH,

N NH
NAa 3.7

98 91 4.6

99 £
0 # °

83 4.1

100

n h 2

r v A V 0 49 5.1

103 61 3.5

NH

4.2104
NH

201
NH
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Table 4.3 shows the growth inhibition results obtained for N-7 substituted 

dibenzodiazepin-2-one analogues against A549 cell line. All these compounds (except for 

97) show a generally better growth inhibition compared to the benzodiazepin-2-one 

analogues with calculated logP values being generally higher favouring cell permeation. 

Increasing the lipophilicity of the compounds by addition of an aromatic ring proves to be 

efficient as an increase in activity is observed.

Of the six compounds tested, 98 and 99 displayed weak activity against A549 cell line. 

Interestingly compound 97 was completely inactive and 100 and 103 showed moderate 

activity against this cell line. Compound 100 was the best of these two, suggesting that a  

bulky and lipophilic group is an important feature for activity. It was better than 99 

favouring a cycloalkane extension or increased lipophilicity. However, despite possessing 

ClogPs differing by nearly 1.5 units for compound 100 and 104 (about fifthteen-fold 

difference) have more similar GI50 values. This indicates that lipophilicity, above a point, 

is less important for determining activity.

Compound 104 of all these compounds was the most active (4-fold more active than the 

neaest compound) against the A549 cell line. This compound was designed, based on the 

structure of the olomoucine, to observe whether improved activity could be obtained by 

inserting a benzyl group at the 4-NH2 position. Olomoucine exhibited greater inhibitory 

potency due to the presence of a bulky benzyl group at a similar position in its structure. 

This substituent extends towards solvent, at the mouth of the CDK active site where 

lipophilic region is present (see Chapter 1). It may be that similar lipophilic contact is 

observed with compound 104, as indicated by modelling. It is noteworthy that the ClogP 

for this compound is still smaller than 100 showing high lipophilicity is not essential for 

activity.

Finally isomeric compounds 103 and 201 were found to have the same potency indicating 

that the position of the amino group may not be important for hydrogen bonding and so 

does not effect in biological activity.
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4.1.4 7-Aminobenzodiazepin-5-one analogues

Table 4.4 Growth inhibition results,a NA: Not Active, b GI50 assayed on A549 cell line.

GIso/% inhibition 
(pM)

ClogP

>100 

22 % inhibition at 

100 pM

1.3

NAa 2.0

Compound
Number Structure

N H

119

120

NH

NH

Table 4.4 shows the growth inhibition results obtained for 7-amino-benzodiazepin-5-one 

analogues against A549 cell line. Compounds 119 was poorly active (22 % inhibition at 

100 pM) and 120 was inactive. Compound 119 with ClogP = 1.3 seems to be too polar to 

cross the cell membrane and reach the target. Compound 119 might then interact with 

proteins situated on the outer surface o f the cell producing the slight activity at higher 

concentrations.

Interestingly, the lack o f the second lactam-fused aromatic ring in compound 120 and 

allowing the compound a better accommodation in the CDK2 active site as suggested by 

modelling studies resulted in an inactive compound, rather than the predicted increase in 

activity. Therefore, comparing the biological results of compounds 104 and 120 indicates 

that the aromatic ring is causing the change in activity between 104 and 120 that provides 

such a crucial role in the binding o f compound 104 to its biological target.
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4.2 CHECKPOINT KINASE 2 (CHK2) ENZYME ASSAYS

Some of the compounds which had been synthesised with the objective of inhibiting the 

cell cycle, were assayed against the Chk2 protein introduced in Chapter 1 as an alternative 

possible target. Assays were performed according to in-house methods at Kudos 

Pharmaceuticals Ltd, Cambridge, UK. As a number of CDK2 inhibitors have been shown 

to be also active against this enzyme, including debromohymenialdisine (15) (Tenzer and 

Pruschy, 2003). The natural product debromohymenialdisine is known to inhibit a few 

kinases in paricular Chkl and Chk2 enzymes.

HN
V

ChU

1, R=H, Staurosporine
2, R=OH, UCN-01

= N

HN

R

HN
NH

O

15, R=H, DBH

Table 4.5 Inhibition against Chk family enzymes (Tenzer and Pruschy, 2003).

Compound IC50 Chkl IC50 Chk2

Staurosporine (1) 8 nM NA

UCN-01 (2) 87-25 nM 1.0 pM

Debromohymenialdisine (15) 3 pM 3.5 p,M

However, all the synthesised compounds that were assayed were found to be inactive as 

Chk2 inhibitors, with IC50 values in excess of 100 pM (Table 4.6). The activity of the 

DBH (15) shows that the aminoimidazolidinone moiety of DBH would be the major 

feature that plays an important role in inhibition activity of the molecule against the Chk2 

enzyme. Extended molecules tested are very lipophilic in contrast to the polar
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aminoimidazolidinone o f 15, suggesting that a polar extension would promote some 

affinity with Chk2.

Table 4.6 Compounds tested against Chk2.

Compound
Number Structure IC50 ClogP

52
Q

/— N NH

c T ^ ° NAa 3.7

53
Qo ^ H„ NAa 4.6

55
y A ,

6 ^ °
NAa 4.1

97

n h2

M NH NAa 5.1

98

nh2

< V
N NH NAa 3.5

99

n h 2

\ _ J —
NAa 4.2
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4.3 PARP INHIBITION ASSAYS

Assays were carried out against the PARP-1 enzyme and the HelaB cell line. The HelaB 

cell line is derived from a cervical cancer cell and is widely used as they are easy to work 

with and easy to grow in the culture.

The results were quoted as 50 % Inhibition Coefficient (IC50) of PARP-1 catalytic activity 

compared to a control and 50 % Potentiation Factor (PF50) of a cytotoxic agent against 

HelaB cells. They were determined for every molecule synthesised. IC50 is the 

concentration of inhibitor required to reduce the catalytic activity of the purified PARP-1 

enzyme by 50 %, and results with a IC50 value greater than 10 pM were considered to be 

inactive. PF50 is the ratio of the 50 % growth inhibition values of HelaB cells exposed to 

the alkylating agent MMS (Methyl Methane Sulfonate) with and without 200 nM of the 

PARP-1 inhibitor.

6-Amino-7-cyclobutylmethyldibenzodiazepine-2-one (201) was used as a control for 

biological evaluations.

N H

201

The inhibitors chosen, with their PARP inhibitory IC50 values, where available, are shown 

in Table 4.7.
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Table 4.7 PARP-1 inhibitory IC50 va lues.a IC50 assayed on PARP-1.

CFU/Compound Structure IC50 (nM) a PF50

201

0

QCoNH2\3 >10,000 0.84

171

0

C %— O M e

225 0.86

OV\

172 O p
Q

O M e

260

Cellular (HeLaB) 
toxicity observed in PF50 

control: 30 % cell 
survival at 500 nM

182

O
a / " nh

K  F

( > O C H 3

246 0.86

186

0

N~H( C O O H  

O - O C H 3

114 0.83

188

O

. ^ A - nh

A\ __ COOH

0OH

130 0.81

196
nW

f> O C H 3

505 1.46

200

0

OCty™
N = /

^ ^ > - O C H 3

236 0.80
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O f the compounds tested the un-cyclised compound 201 was inactive (IC5o>10 pM) 

against PARP-1, as expected. The reason for that was the presence of the uncyclized free 

NH2-group on the molecule. However, cyclizing the compound to the imidazole 

derivatives gave a significant increase in activity (171, 172, IC50 = 225 nM, 260 nM, 

respectively). These molecules with fewer substituent groups for intermolecular binding, 

showed an inhibitory effect within the nanomolar range which was very encouraging. 

This implied that more substituted compounds containing an additional substituent at the 

9- or 10-position, could potentially be even more efficacious. Therefore, a series of 1- 

phenylbenzodiazepine-6-ones were synthesised to enable the SAR for substitutions on the 

benzene ring to be explored. A variety of substituents, with different electronic properties, 

were introduced at the 9- and 10-positions (182, 186, 188, 196 and 200). Inhibition data 

showed that PARP tolerates a variety o f 9- and 10-substituents on the benzene ring and 

does not distinguish significantly between electronically differing groups. Also the 

position of the 1-phenyl substituent (3’ versus 4 ’) was relatively unimportant for these 

examples. However, 1 -(3 ’-methoxyphenyl)benzoimidazo-10-carboxybenzodiazepine-6- 

one (186, IC50 =114  nM) was the most active compound among these inhibitors, which 

was also predictable from its molecular model (Figure 3.12). Comparison of l-(3’- 

methoxyphenyl)benzoimidazo-10-fluorobenzodiazepine-6-one (182, IC50 = 246 nM) with 

compound 186 showed that compound 182 was about 2-fold less potent than 186, 

indicating that there is no favourable hydrogen-bonding interaction between the protein 

and the 10-fluoro group. The reasoning behind it, was the small size of fluorine 

substituent, which is too far from the H-bond donating residues in the active site (Figure 

3.10). l-(3’-Methoxyphenyl)benzoimidazo-10-hydroxybenzodiazepine-6-one (200) and 

182 were equipotent (IC50 = 236 and 246 nM, respectively). However, surprisingly there 

is a decrease in activity for l-(3 ,-methoxyphenyl)benzimidazo-9-methoxybenzodiazepine- 

6-one (196) and it was about 2-fold less potent than 182 (IC50 = 505, 246 nM, 

respectively). It is due possibly to the repulsion force created between the relatively bulky 

methoxy group and active site residues close to it. This implies that small electron- 

withdrawing groups at the 10-position are more important than bulky H-bond acceptors 

for intermolecular interactions with the enzyme active site.
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NH

The structure activity relationship studies between the synthesised analogues indicates 

that the presence of the electron-withdrawing groups at R2 on the aromatic ring was quite 

important for the biological activity. However, compound 182 (R2 = Fi, R3 = OMe) was 

twice less potent than the other compounds with electron-withdrawing groups located on 

their ring at the R2 position, suggesting that the size and position of the substituent is 

important for activity. The roughly similar inhibitory activity of compounds 171 and 172 

(IC50 = 225 and 260 nM) showed that the position o f the substituent (3’ versus 4 ’) was 

relatively unimportant for the PARP-1 biological activity.

The potentiation factor can predict if  a PARP-1 inhibitor could potentiate a cytotoxic 

agent; the clinical rationale for PARP-1 inhibition. The results suggest that there is not a 

correlation between IC50 and PF50. The best inhibitor identified (186) had a PF50 value o f 

0.83, suggesting no potentiation o f MMS induced cytotoxicity in the HelaB cells. 

However, the worst inhibitor, compound 196 exhibited the best potentiation, PF50 = 1.46. 

Similar observations have been seen in other studies. Modest potentiation has been 

observed for one benzoimidazolebenzodiazepinone PARP-1 inhibitor (196), although 

further testing against other cell lines and various cytotoxic drugs or radiation could yield 

better results.
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4.4 BIOLOGICAL CONCLUSIONS

In conclusion, to investigate the seven-membered lactam pharmacophore, a series o f  

compounds have been synthesised as cell cycle inhibitors targeted at CDK2 with a  

moderate response in vitro towards MCF-7 and A549 cell lines. Preliminary biological 

results suggested that dibenzo- or benzodiazepinones may bind in the ATP binding pocket 

of CDKs, supporting the modelling studies performed, and providing further evidence for 

the potential of these series as cell cycle inhibitors. Although we were unable to introduce 

a variety of groups at the N -l position of 7-amino-benzodiazepin-5-one (28), we did 

manage to synthesise a small series, and establish SARs between these compounds and 

benzodiazepin-2-one and 4-amino-benzodiazepin-2-one analogues. The compound 

showing the best result is compound 104, which possesses a very good GI50 value.

A related series of the compounds containing the desired pharmacophore have been 

synthesised for PARP inhibition. Assays show good in vitro catalytic inhibition towards 

PARP-1. There were modest differences in IC50 values for this series of compounds all 

showed very good activity (ranging from 114-505 nM), but the compound with the best 

results is compound 186, which possesses a low IC50 o f 114 nM. Reasonable potentiation 

of a cytotoxic drug achieved by compound 196 (PF50 = 1.46) suggesting a clinical role for 

this class of compounds in cancer therapy.

The Chk2 enzyme inhibition assays showed no activity for any of the compounds 

screened (all ICso>100 pM). This result is surprising since other compounds containing 

the lactam pharmacophore under investigation have been reported to inhibit Chk2 and the 

same assay identified kenpaullone (13) as a potent Chk2 inhibitor (IC50 = 0.44 pM). This 

suggests very precise requirements for Chk2 binding that are not achieved in the 

compounds assayed.
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4.5 OVERALL CONCLUSIONS

The synthesis of benzodiazepin-2-one (26), 4-amino-dibenzodiazepin-2-one (27) and 7- 

amino-benzodiazepin-5-one (28) was successfully achieved, and analogues were made 

from these lead molecules providing the structure activity relationship studies presented in 

this thesis.

27, R 1+R2 = Fused Ph
28, Rj + R2 = H

The comparative structure activity relationship between these three series has shown a 

correlation between them, with slightly higher activity against the MCF-7 and A549 cell 

line being observed for the 4-amino-dibenzodiazepin-2-one analogues (27) than the other 

two derivatives indicating that the presence o f the second fused aromatic ring was quite 

important for the biological activity. Unexpectedly, synthesis of aliphatic derivatives o f  

the lead compound 28 was more difficult than the aromatic analogues, due possibly to the 

difficulty of handling these compounds in the laboratory.

Extensions from the ring amine was achieved with aliphatic and aromatic derivatives, 

although only two analogues were made for 7-amino-benzodiazepin-5-one (28) series. 

Analogues of benzodiazepin-2-one (26) containing bulky aliphatic substituents at the N-5 

position (52 and 53) showed reasonable activity, with only a slight increase in potency 

being observed compared to 4-amino-dibenzodiazepin-2-one (27) analogues.

The amino group of the 27 and 28 scaffolds may hold the potential for the solubility o f 

these series of compounds.

Some of the analogues in these three series of scaffolds were found to be less active or 

completely inactive against the cancer cell lines. It is believed that this decrease in activity 

against the cell lines could be due either to the misalignment of the different substituents 

or not binding to the intended biological target, a CDK. Steric effects may also play a role
----------------------------------------------------------------------------------------------------------------------------------------  152
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in the loss of inhibitory activity. The introduction of a benzyl group at the 4-amino 

position of the scaffold has produced the most active compound (104, GI50 = 12 pM) in 4- 

amino-dibenzodiazepin-2-one series to date. However, molecular modelling suggested 

that the aliphatic compound 120 might be a more suitable fit in the active site of the 

biological target CDK2.

To conclude, small molecules containing the 7-membered lactam ring pharmacophore 

displaying good tumour growth inhibition have been synthesised. Other assays on 

different cell lines would be interesting to investigate. Further experiments are required to 

evaluate the selectivity o f these novel antiproliferative compounds and to see if any other 

enzymes are targeted by the compounds assayed. The Chk2 enzyme inhibition assay 

results were all negative, indicating that the compounds tested do not bind to Chk2.

As a third aim of this project, some novel PARP-1 inhibitors were also synthesised 

enabling the structure activity relationship studies for the analogues made in this project. 

The compounds synthesised contained a range of substituents allowing structure activity 

relationships to be established. Analogues with electron-donating groups on their ring 

were found to be less active against PARP-1, due possibly to the lack of appropriate 

residue in the vicinity of the molecule in the active site. Meanwhile, the PF50 results 

suggested that there was no correlation between IC50 and P F 50 as the best inhibitor 

identified (186) had the lowest PF50 value of 0.83, so further biological investigations are 

still needed. The dibenzodiazepinone compounds are an interesting pharmacophore for 

PARP-1 inhibition and the strategy o f introducing additional aromatic substituents to 

promote active site interactions has been beneficial. Although poorer potentiation results 

were obtained, further experimentation could overcome this.

In accordance a series of nanomolar potent, novel PARP-1 inhibitors containing the 

seven-membered lactam pharmacophore have been successfully synthesised and 

analyzed.

Regarding the biological results provided one must conclude that this direction of research 

remains a significant area for future investigation and there is a great deal of development 

that could be undertaken to facilitate the progression of the drugs physiological properties.
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CHAPTER 5 

EXPERIMENTAL PROCEDURES

5.1 SPECTRAL CHARACTERIZATION

5.1.1 NMR Spectroscopy

Proton and carbon-13 nuclear magnetic resonance spectra were recorded on a Bruker Avance 

DPX300 spectrometer with operating frequencies of 300 MHz and 75 MHz respectively or a 

Bruker Avance 500 with operating frequencies of 500 MHz and 125 MHz respectively. All 

13C NMR spectra were proton decoupled and all proton and carbon nuclear magnetic 

resonance (’H NMR and13C NMR) spectra were obtained in deuterated dimethyl sulphoxide 

(ds-DMSO) except where indicated. Chemical shifts were reported as 8 values (parts per 

million). The following abbreviations are used to describe peak patterns in proton spectra 

when appropriate: br = broad, s -  singlet, d= doublet, t= triplet, q= quartet, m= multiplet; and 

combinations thereof, e.g. dd (double doublet). Coupling constants (J) are given in hertz (Hz).
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5.1.2 Thin Layer Chromatography

Thin layer chromatography (TLC) was performed on commercially available Merck Kieselgel 

60F254 plates, using a variety of mobile phases and separated components were visualized 

using short (254 nm) and long (365 nm) wave ultraviolet light, or by treatment with iodine, 

vanillin [(60 g Vanillin, 1000 mL 95 % ethanol (aq), 10 mL H2SO4 (conc.)] or permanganate 

dip [(3 g KMn04, 20 g K2C 0 3, 5 mL 5 % NaOH (aq), 300 mL water)].

5.1.3 Column Chromatography

Column chromatography was carried out under medium pressure using a hand pump and 

silica gel 60. Mixtures to be separated were absorbed onto a small amount of silica before 

loading onto the column or applied as a concentrated solution in the same eluent. Fractions 

containing the product were identified by TLC and were pooled, and the solvent was removed 

under reduced pressure.

5.1.4 Mass Spectroscopy

Low resolution electrospray (LRMS) mass spectra were run on a VG platform II Fisons 

instrument (Fisons, Altrincham, UK) (atmospheric pressure ionisation) or a Brucker 

microtof in either positive or negative mode using a mobile phase of methanol. Fligh 

resolution mass spectrometry (HRMS) was performed by the EPRSC National Mass 

Spectrometry Service Centre, University of Wales Swansea, using electron impact or 

chemical ionization (EI/CI).

5.1.5 Infrared Spectroscopy

Infrared spectra were recorded on a Perkin Elmer 1600 series FTIR spectrometer as a 

solid mixture with KBr via a diffuse reflectance accessory.
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5.1.6 Melting Point

Melting points (mp) were determined on an electric variable heater (Gallenkamp) and were 

not corrected.

5.1.7 Chemicals and Solvents

All chemicals used were purchased from Aldrich Chemical Company, Lancaster Synthesis 

Ltd. or Acros organics (Fisher Scientific Ltd.) and used without further purification. Distilled 

solvents were stored over 4 A molecular sieves under an inert gas atmosphere. Petrol refers to 

petroleum ether 60-80 and sodium hydride refers to 60 % NaH in mineral oil.

5.1.8 Molecular modelling methodology

Ligands were drawn in ChemDraw Ultra (version 7.0.1, CambridgeSoft Corporation) and 

minimized using the MM2 force field in Chem3D Pro (version 7.0.0, Cambridge 

Corporation). The structure was then uploaded into Chimera (UCSF, beta version 1) 

where it was manually superimposed onto the PDB file of a known inhibitor within the 

hidden protein, thus enabling the compound to be observed in a realistic position within 

the active site. The inhibitor was removed and the enzyme revealed, allowing details such 

as H-bond length with the prepared ligand to be calculated. Images used within the report 

have been generated through Chimera.
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5.2 GENERAL PROCEDURES 

Method A -  Cyclization I

R

A mixture of 1,2-phenylenediamine, 60 % aqueous acrylic acid or its derivatives, and 

concentrated hydrochloric acid (0.75 mL) were heated at 100 °C for several hours, cooled, 

basified with aqueous ammonia to pH = 14, then brine was added. The mixture was 

extracted with ethyl acetate, followed by drying of the organic fraction over magnesium 

sulphate (MgS04 ), filtration and evaporation, to recover the product.

Method B -  Amide protection

A solution of the amide in DMF (approx. 3mL) under nitrogen was cooled in an ice bath 

to 0 °C, sodium hydride (1.1 equiv.) was added over a period of 10 min and the reaction 

was stirred for lh  prior to the addition of 2-(trimethylsilyl)ethoxymethyl chloride (SEM- 

Cl). The resultant mixture was then warmed to room temperature and stirred overnight. 

The contents of the flask were concentrated by evaporation, followed by the dropwise 

addition of water to destroy the sodium hydride. The mixture was extracted with ethyl 

acetate and the combined organic layers were washed with water, dried over MgSCL, 

filtered and evaporated under reduced pressure to recover the product.
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Method C -  SEM deprotection

S E M

O O

A solution of SEM protected compound in 1M tetrabutylammonium fluoride/THF 

solution (approx. 5mL) was refluxed for several hours, followed by evaporation to 

dryness. Water was added to the mixture, extracted with ethyl acetate, dried over MgSCU, 

filtered and concentrated under reduced pressure to recover the product.

Method D -  Finklestein reaction

R Cl -------- ► R ------------1

To a solution o f alkyl or aryl bromide in acetone was added sodium iodide, after which 

time the slurry was refluxed for several hours. The acetone was removed by evaporation, 

followed by addition o f water to dissolve the inorganic impurities. The mixture was 

extracted with ethyl acetate, dried over MgSC>4, filtered and evaporated to recover the 

product.

Method E -  Amine alkylation/acylation I

Aik

A mixture of amine, electrophile and potassium carbonate (5 equiv.), were dissolved in 

DMF (approx. 3mL) and heated at 150 C for several hours. The mixture was extracted 

with ethyl acetate or dichloromethane and washed with water. The combined extracts 

were washed with water, dried over MgSCU, filtered and concentrated under reduced 

pressure, to recover the product.
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Method F - Tert-butyldimethylsilyl protection

The alcohol was dissolved in DMF (approx. 3mL), followed by addition of imidazole (2.2 

equiv.). Tert-butyldimethylsilyl chloride (TBDMS-C1) (1.2 equiv.) was added dropwise 

and the reaction was stirred at room temperature for several hours. The mixture was 

extracted with ether, dried over M gS04 filtered and concentrated under reduced pressure 

to recover the product.

Method G -  Amine alkylation/acylation II

A solution of amine in DMF (approx. 3mL) under nitrogen was cooled in an ice bath to 0 

°C. Sodium hydride (1.1 equiv.) was added slowly over a period of 10 min and stirred for 

1 h prior to the addition o f electrophile. The resultant solution was warmed to room 

temperature and stirred overnight. Concentration of flask contents by evaporation was 

followed by the dropwise addition of water to destroy the sodium hydride. The mixture 

was extracted with ethyl acetate and the combined organic layers were washed with water, 

dried over M gS04, filtered and evaporated under reduced pressure to recover the product.

Method H -  Esterification

The acid was dissolved in methanol, followed by addition of concentrated sulphuric acid. 

The resultant mixture was refluxed for several hours. The solvent was removed by 

evaporation and the resultant residue was washed with saturated aqueous sodium 

bicarbonate. The aqueous solution was extracted with ethyl acetate, dried over M gS04, 

filtered and concentrated under reduced pressure to recover the product.
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Method I -  Cyclization n

R

A mixture of ester and diamine, was dissolved in DMA (approx. 3mL) forming a dark 

solution. The solution was heated at 100 °C for several hours, after which time water was 

added, forming a precipitate. The brown solid was left to stir for 15 mins before being 

filtered. The brown solid, crude product was left to dry in a desicator after which time, it 

was recrystallized from hot methanol.

Method J -  Nitro reduction

The nitro compound was added to a pressure vessel with 10 % Pd/C catalyst (catalytic 

amount) in methanol or dichloromethane. The mixture was shaken under a hydrogen 

atmosphere (20-40 p.s.i) for several hours, after which time it was filtered through Celite 

and washed with methanol or dichloromethane. The solvent was removed by evaporation 

to recover the product.

Method K -  Amine benzylation

A solution of amine in DMF (approx 3mL) under nitrogen was cooled in an ice bath to 0

lh prior to the addition of benzyl bromide. The resultant solution was warmed to room 

temperature and stirred overnight. Concentration of flask contents by evaporation was 

followed by the dropwise addition o f water to destroy the sodium hydride. The mixture

r  n o 2 r  n h 2

O.C. Sodium hydride (1.1 equiv.) was added slowly over a period of 10 min and stirred for
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was extracted with ethyl acetate and the combined organic layers were washed with water, 

dried over MgSC>4, filtered and evaporated under reduced pressure to recover the product.

Method L. Alcohol protection

o

R OH  ► R  O  S  CH 3 /C F 3

II
o

Alcohol and methanesulfonyl chloride or trifluoromethanesulfonyl chloride (1.5-2 equiv.) 

were suspended in tetrahydrofuran under a nitrogen atmosphere, followed by the addition 

of triethylamine (TEA) (3 equiv.). The resultant mixture was stirred overnight at room 

temperature. The solvent was removed by evaporation and the aqueous solution was 

extracted with dichloromethane or ethyl acetate, dried over MgSC>4, filtered and 

concentrated under reduced pressure to recover the product.

Method M -  Imidazobenzodiazepinone formation

NH

NH2

OMe

NH

R

The amine and sodium hydrogen sulfite (1.5 equiv.) was suspended in DMA (approx. 

3mL). The aldehyde (1 equiv.) was added dropwise to the reaction mixture, which was 

subsequently heated at 140 C with vigorous stirring for several hours until complete by 

TLC. Distilled water was added to the resulting solution, and this was left to stir 

overnight. The precipitate produced was recovered by filtration and dried under vacuum 

to recover the product.
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3,4-Dihydro-l/f-5//-benzo[2,3-6]diazepm-2-one, (26) (Bachman and Helsey, 1949)

Method A. 1,2-Phenylenediamine (1.00 g, 9.25 mmol), 60 % aqueous acrylic acid (1.7 

mL) and concentrated hydrochloric acid (0.75 mL) were heated at 100 °C for 4 h, 

producing an off-white powder (0.548 g, 37 %); m.p. 140-142 °C (lit (Bachman and 

Helsey, 1949) 140.5-141.5 ° C ) ;  v m a x  (cm-1) 3227 ( N H ) ,  3140 (Ar-H), 3072 (Alkyl-H), 

1687 ( C O ) ;  S H  2.47-2.49 (2H, m ,  C H 2) ,  3.45 (2H, q, J  = 4.8, CTfc), 5.68 (1H, s, N H ) ,  

6.62 (1H, t ,  J  = 7.5, H-Ar), 6.75 (1H, d, J  = 7.5, Ar-H), 6.83 (1H, t ,  J  = 7.5, Ar-H), 6.88 

( 1 H ,  d ,  J  = 7.5, Ar-H), 9.40 (1H, s, C O N H ) ;  5 C  37.0 ( C H 2 ) ,  44.6 ( C H 2 ) ,  118.4, 119.3,

122.2, 124.5, 126.1, 140.0, 173.0 ( C O ) ;  HRMS (ES+/NH3) m/2  180.113I K M + N H 4) ,  

180.1131 calculated for C 9H 14N 3O ] .

Methanesulfonic acid cyclopentylmethanoate (45) (Newcomb and Courtney, 1980)

Method L. Cyclopentylmethanol (0.20 g, 2.00 mmol) and methanesulfonyl chloride (0.46 

g, 4.00 mmol) in tetrahydrofuran (10 mL), followed by the addition of triethylamine 

(TEA) (0.61 g, 6.00 mmol) produced the desired product as a light brown oil (0.38 g, 100 

%); vmas (cm '1) 2945 (Alkyl-H), 1346 (S 0 3), 1171 (S 0 2-CH3); SH 0.94-1.29 (4H, m, 

Alkyl-H), 1.51-1.73 (5H, m, Alkyl-H), 3.16 (3H, s, CHj), 4.09 (2H, d, J = 7.1, Cfcb); 6C

25.7, 29.4, 37.7, 39.2, 74.2; MS (ES‘) m'z 178.8 (M+), 179.1 (M+H).
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3,4-Dihydro-l-(cyclohexylmethyl)-5/f-benzo[2,3-6]diazepin-2-one, (35)

N

N
H

Method B. (26) (0.3 g, 1.85 mmol), sodium hydride (0.04 g, 2.47 mmol), 

cyclohexylmethyl bromide (4.85g, 30.00 mmol) and DMF (3 mL), followed by column 

chromatography (eluent 3:2 petrol:ethyl acetate) produced a pale yellow oil (0.17 g, 40 

%); 5h 0.80-0.87 (3H, m, Alkyl-H), 0.99-1.04 (2H, m, Alkyl-H), 1.18 (1H, t, J = 7.1, 

Alkyl-H), 1.32-1.34 (1H, m, Alkyl-H), 1.50-1.61 (4H, m, Alkyl-H), 2.32 (2H, t, J = 6.4, 

CH2), 3.54-3.56 (2H, m, CH2), 3.68 (2H, d, J = 7.1, CH2), 5.12 ( 1H, s, NH), 6.89-6.95 

(2H, m, Ar-H), 7.02 (1H, t, J = 7.5, Ar-H), 7.24 (1H, d, J = 7.5, Ar-H); 6C 14.1, 20.7, 25.3,

26.0, 28.4, 33.5, 35.8, 49.6, 52.1, 59.7, 121.0, 121.5, 123.3, 125.9, 133.7, 141.9, 171.4; 

MS (ES+) m/z 281.2 (M+Na).

3,4-Dihydrol-(2-trimethylsilyIethoxymethyI)-5//-benzo[2,3-6]diazepm-2-one, (38)

Method B. (26) (4.29 g, 26.45 mmol), sodium hydride (0.7 g, 30.00 mmol), SEM-C1 

(4.85g, 30.00 mmol) and DMF (6 mL), followed by column chromatography (eluent 2:1 

petrokethyl acetate) produced a pale yellow oil (3.98 g, 52 %); 5h 0.00 (9H, s, SiCHs),
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0.87 (2H, t, J = 8.2, CH2Si), 2.44 (2H, t, J = 6.3, CH2), 3.54-3.59 (4H, m, 2 x CHj), 5.10 

(2H, s, NCH2O), 5.24 (1H, br t, NH), 6.95 (1H, t, J = 7.5, Ar-H), 7.00 (1H, d, J = 7.5, Ar

il), 7.10 (1H, dd, J = 7.5, Ar-H), 7.39 (1H, d, J = 7.5, Ar-H); 8C 0.0 (SiCH3), 18.7, 35.0,

50.6, 66.1, 76.9, 122.4, 122.7, 124.0, 127.8, 134.8, 142.0, 173.8 (C=0); MS (ES+) m/z

315.1 (M+Na).

5-(CyclohexyIcarbonyl)-3,4-dihydro--l-(2-trimethyIsilylethoxymethyl)benzo[2,3-6] 

diazepin-2-one, (50)

S E M

To a solution of l-(2-trimethylsilylethoxymethyl)-5//-benzodiazepin-2-one (38) (0.98 g,

3.36 mmol) and pyridine (0.85 g, 10.10 mmol) in chloroform (30 mL) was added 

cyclohexanecarbonyl chloride (2.36 g, 16.81 mmol). The resultant solution was stirred 

overnight at room temperature. Water (25 mL) was added and the product was extracted 

with chloroform (3 x 50 mL). The organic layers were washed with hydrochloric acid (75 

mL, 1 M), dried (MgSCL), filtered and evaporated to leave the crude residue. Purification 

by column chromatography using 2:1 petrol:ethyl acetate as eluent, gave the compound as 

white crystals (0.13 g, 17 %); m.p. 87-89 °C; v ( c m 1) 2921 (Ar-H), 2859 (Alkyl-H), 

1676 (C=0), 1650 (C=0), 1282 (SiCH,); 8H (CDClj) 0.00 (9H, s, SiCH3), 0.88-1,42 

(10H, m, Alkyl-H), 1,54 (1H, t, J = 14.4, Alkyl-H), 1.67 (1H, d, J = 13.2, Alkyl-H), 1.79 

(1H, d, J = 13.2, Alkyl-H), 2,02 (1H, t, J = 11.3, Alkyl-H), 2.35-2.38 (1H, m, Alkyl-H), 

3.37-3.41 (1H, m, Alkyl-H), 3.52-3.57 (2H, m, Alkyl-H), 4.67 (1H, t, J = 13.2, Alkyl-H), 

4.93 (1H, d, J = 10.1, NCHO), 5.26 (1H, d, J = 10.1, NCHO), 7.40-7.42 (2H, m, Ar-H), 

7.54 (1H, t, J = 6.1, Ar-H), 7.66 (1H, d, J = 7.9, Ar-H); 8C (CDClj) 0.0 (SiCH3), 19.6,

26.6, 26.9, 27.0, 30.5, 31.3, 35.2, 43.3, 49.1, 68.1, 77.3, 125.6, 128.7, 130.3, 130.8, 135.8,

142.1,173.1 (C=0), 177.9 (C=0); MS (ES+) m/z 425.0 (M+Na).
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5-(Cyclohexanecarbonyl)-3,4-dihydro—l#-benzo[2,3-&]diazepin-2-one, (55)

Method C. (38) (0.93 g, 2.35 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(6 mL) were refluxed for 3 h, followed by column chromatography (eluent 1:1 

petrokethyl acetate) to produce the title compound as a white solid (0.026 g, 40 %); m.p. 

202-204 °C; vmax (cm'1) 3025 (NH), 2946 (Ar-H), 2859 (Alkyl-H), 1676 (C=0), 1615 

(C=0); 5h (CDCb) 0.85-1.74 (10H, m, Alkyl-H), 2.05 (1H, s, COCH), 2.62 (2H, m, 

CHr), 3.43-3.50 (1H, m, CH), 4.86-4.96 (1H, m, CH), 7.11-7.39 (4H, m, Ar-H), 7.61 (1H, 

s, NH); 5C (CDC13) 25.7, 25.9, 30.3, 33.8, 42.1, 47.2, 123.2, 126.5, 129.5, 129.7, 134.1,

136.3, 173.8 (C O ), 177.0 (C O ); HRMS (ES+) m/z 290.1865 [(M+NH4), 290.1863 

calculated for C16H38N2O3].

Cyclohexylmethyl iodide, (36) (Kropp and Pienta, 1983; Ogle et al., 1983)

Method D. Cyclohexylmethyl bromide (3.00 g, 16.95 mmol), sodium iodide (6.00 g,

40.03 mmol) and acetone (70 mL) were refluxed for 15 h producing the title compound as 

a dark oil (4.37 g, 100 %); 5H 0.91-1.81 (11H, m, Alkyl-H), 3.20 (2H, d, CH2); 5C 5.5,

26.5,32.9,38.9,41.6.
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5-(CyclohexyImethyl)-3,4-dihrdro-l-(2-trimethylsilylethoxymethyl)beiizo[2,3-6] 

diazepin-2-one, (39)

SEM

Method E. (38) (1.03 g, 3.53 mmol), (36) (1.20 g, 5.30 mmol), potassium carbonate (2.43 

g, 17.67 mmol) and DMF (3 mL) were heated at 150 °C for 10 h, followed by column 

chromatography (eluent: 2 % ethyl acetate:petrol) to yield the desired compound as a  

clear oil (0.41 g, 30 %); vmax (cm '1) 2920 (Alkyl-H), 1685 (C=0), 835 (SiCH3); 6h 0.00 

(9H, s, SiCH3), 0.86 (2H, t, J = 8.2, SiCH2), 1.16-1.78 (11H, m, Alkyl-H), 2.34 (2H, t, J =

6 .0 , CH2), 2.88 (2H, s, CH2), 3.33 (2H, s, CH2), 3.53 (2H, t, J = 8.2, CH2), 5.14 (2H, s, 

NCH2O), 7.13 (1H, t, J = 7.7, Ar-H), 7.19 (1H, d, J = 7.7, Ar-H), 7.28 (1H, t, J = 7.7, Ar

if), 7.45 (1H, d, J = 7.7, Ar-H); 5C 0.0, 18.6, 26.9, 27.7, 30.8, 32.0, 35.3, 35.9, 57.7, 60.2,

66 .6 , 68.0, 76.1, 121.9, 124.2, 124.4, 128.1, 138.7, 144.4, 173.6 (C=0); MS (ES+) m/z

411.1 (M+Na), 799.1 (2M+Na).

5-(CyclohexylmethyI)-3,4-dihydro -l//-b en zo[2,3-b] diazepin-2-one, (52)

Method C. (39) (0.37 g, 0.95 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(6 mL) were refluxed for 5 h, followed by column chromatography (eluent: 3:2
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petrol:ethyl acetate) to produce the title compound as a pale yellow solid (0.13 g, 53 %); 

m.p. 119-121 °C; v^  (cm '1) 3206 (NH), 2921 (Alkyl-H), 1679 (C=0); SH 0.81-1.22 (5H, 

m, Alkyl-H), 1.53-1.72 (6H, m, Alkyl-H), 2.28 (2H, t, J = 6 .6 , Cfch), 2.88 (2H, t, J = 7.2, 

Alkyl-H), 3.37 (2H, t, J = 6 .6 , Q fc), 6.92-7.09 (4H, m, Ar-H), 9.38 (1H, s, NHCO); 8C 

(CDC13) 26.4, 27.2, 31.6, 34.3, 35.7, 56.3, 60.3, 121.2, 122.4, 122.7, 126.4, 133.0, 143.0,

174.7 (C=0); HRMS (ES+) m/z 259.1805 [(M+H), 259.1804 calculated for Ci6H23N20 ].

Cyclohexylethyl iodide, (41) (Kropp and Pienta, 1983)

Method D. Cyclohexylethyl bromide (3.00 g, 16.00 mmol), sodium iodide (6.00 g, 40.03 

mmol) and acetone (70 mL) were refluxed for 15 h producing the title compound as a 

brown oil (2.40 g, 90 %); 8H 0.87-1.72 (13H, m, Alkyl-H), 3.30 (2H, t, CH2I); 8C 5.6,

26.5,26.9, 32.9,38.9,41.6.

5-(Cyclohexylethyl)-3,4-dihydro-l-(2-trimethylsiIylethoxymethyl)benzo[2,3-6] 

diazepin-2-one, (42)

S E M

Method E. (38) (0.95 g, 3.26 mmol), cyclohexylethyl iodide (1.16 g, 4.89 mmol), 

potassium carbonate (2.25 g, 16.30 mmol) and DMF (3 mL) were heated at 150 °C for 9 h, 

followed by column chromatography (eluent: 9:1 petrol:ethyl acetate) to yield the desired 

compound as a pale yellow oil (0.47 g, 36 %); 8h 0.00 (9H, s, SiCH3), 0.84-1.73 (13H, m, 
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Alkyl-H), 2.34 (2H, t, J = 6.4, CHj), 3.08 (2H, br s, O fc), 3.45-3.49 (2H, m, Cfcb), 3.56 

(2H, t, J = 8.2, C£L>), 4.31 (2H, t, J = 5.1, CH2), 5.13 (2H, s, NCH2O), 7,14 (1H, t, J = 7.9, 

Ar-H), 7.18 (1H, d, J = 7.9, Ar-H), 7.29 (1H, t, J = 7.9, Ar-H), 7.45 (1H, t, J = 7.9, Ar-H); 

5c 0.0, 18.6, 27.1, 27.6, 34.3, 35.1, 35.4, 36.0, 36.7, 51.2, 57.8, 59.8, 66.1, 75.9, 122.0,

124.3, 124.5, 128.1, 138.8, 144.0, 173.6 (C O ); MS (ES+) m/z 425.1 (M+Na).

5-(Cyclohexylethyl)-3,4-dihydro-l//-benzo[2,3-6]diazepin-2-one, (53)

Method C. (42) (0.40 g, 0.99 mmol), and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 12 h. Column chromatography (eluent 9:1 petrol:ethyl acetate, 

increasing to 7:3 petrohethyl acetate) produced the title compound compound as a white 

powder (0.08 g, 30 %); m.p. 142-145 °C; v ( c m ' 1) 2923 (NH), 2846 (Alkyl-H), 1675 

(C O ); 5h 0.86-1.67 (13H, m, Alkyl-H), 2.28 (2H, t, J = 6 .8, CH2), 3.07 (2H, t, J = 7.4, 

CH2), 3.38 (2H, t, J = 6 .8, Q fc), 6.92-7.10 (4H, m, Ar-H), 9.42 (1H, s, NH); 5C 26.1, 26.5,

33.1, 34.1, 34.8, 35.5, 50.4, 56.0, 120.6, 122.0, 122.2, 125.3, 134.0, 142.0, 172.8 (C O ); 

HRMS (ES+) m/z 273.1961 [(M+H), 273.1962 calculated for CnHjsNjO],
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5-(CyclobutyImethyI)-3,4-dihydro— l-(2-trimethylsilylethoxymethyl)benzo[2,3-b] 

diazepin-2-one, (48)

S E M

Method E. (38) (0.67 g, 2.30 mmol), cyclobutylmethyl bromide (68g, 9.20 mmol), 

potassium carbonate (1.60 g, 11.49 mmol) and DMF (3 mL) were heated at 150°C for 11 

h. The mixture was extracted with dichloromethane, followed by column chromatography 

(eluent 9:1 petrokethyl acetate) to yield the desired compound as a pale yellow oil (0.37 g, 

45 %); 8h 0.00 (9H, s, SiCH3), 0.83-2.05 (7H, m, Alkyl-H), 3.06 (2H, d, CH2), 3.63 (2H, 

m, CH2), 3.92 (2H, d, CH^, 4.13 (4H, m, CH2), 5.13 (1H, brs, NH), 5.33 (1H, s, NCH2O), 

7.00-7.42 (4H, m, Ar-H); MS (ES+) m/z 383.1 (M+Na).

5-(CyclobutyImethyl)-3,4-dihydro-l/f-benzo[2,3-6]diazepin-2-one, (54)

H
N

N

Method C. (48) (0.17 g, 0.47 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 11 h. Column chromatography (eluent 9:1 petrol:ethyl acetate, 

increasing to 4:2 petrol:ethyl acetate) produced the title compound as a pale yellow oil 

(0.022 g, 20 %); v™* (cm '1) 3008 (NH), 2970 (Alkyl-H), 1675 (C O ); SH 1.69-2.51 (5H, 

m, Alkyl-H), 1.83-1.88 (2H, m, CHh), 2.00-2.05 (2H, m, CH2), 2.33 (2H, t, J = 6.7 Hz, 

CHj), 3.14 (2H, d, J = 7.2 Cfch), 6.97-6.99 (2H, m, Ar-H), 7.08-7.14 (2H, m, Ar-H), 9.44
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(1H, s, NH); 5C 19.0, 27.4, 34.3, 34.6, 55.8, 59.7, 121.0, 121.7, 122.5, 126.4, 132.8, 143.1,

174.7 (C=0); HRMS (ES+) m/z 231.1490 [(M+H), 231.1492 calculated for Ci4H |9N20].

7erf-butyI(2-iodoethoxy)dimethylsilane (57) (Desroches et al., 2003)

9 h 3 c h 3

c h 3 C H 3

Method F. (56) (2.00 g, 11.63 mmol), imidazole (1.74 g, 25.59 mmol) and tert- 

butyldimethylsilyl chloride (TBDMS-C1) (2.10 g, 13.96 mmol) in DMF (3 mL) produced 

the product as a yellow oil (3.25 g, 98 %); 5H 0.00 (6H, s, SiCH3), 0.81 (9H, s, CCH3), 

3.73 (2H, t, J -  6.2 Hz, CH2), 3.92 (2H, t, J = 6.2 Hz, CH2); §c -3.00 (SiCH3), 9.42 

(CCH3), 18.2 (CCH3), 25.7 (CH2I), 63.6 (CHzO); MS (ES+) m/z 300.8 (M+).

5-[2(Jerf-butyldimethylsilanyloxy)ethyl]-3,4-dihydro-l-(2-trimethylsilyIethoxy 

methyl)benzo[2,3-£]diazepin-2-one, (58)

S E M

O T B D M S

Method E. (38) (1.28 g, 4.39 mmol), ter/-butyl(2-iodoethoxy)dimethylsilane (1.89g, 6.59 

mmol), potassium carbonate (3.03 g, 21.96 mmol) and DMF (4 mL) were heated at 150 °C 

for 13 h. Column chromatography (eluent 9:1 petrobethyl acetate) yielded the desired 

compound as a pale yellow oil (0.72g, 36 %);. 8h 0.05 (15H, s, SiCH3), 0.89 (9H, s, 

CCH3), 2.35 (2H, t, J = 6 .8, CH2), 3.22-3.25 (2H, m, CH2), 3.42-3.47 (2H, m, CH2), 3.57 

(2H, t, J = 8.1, CH2), 3.63 (2H, t, J = 5.8, CH2), 3.73 (2H, t, J = 6.5, CKb), 4.55 (2H, s, 

NCH2O), 7.14 (1H, t, J = 7.5, Ar-H), 7.23-7.28 (2H, m, Ar-H), 7.47 (1H, dd, J = 1.3, 8.0,
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Ar-H); 5 c -1.8, 0.0, 19.2, 27.2, 35.3, 56.0, 57.7, 60.1, 63.9, 66.2, 121.9, 124.0, 124.4,

128.2, 138.5, 144.2, 173.5 (C=0); MS (ES+) m/z 473.3 (M+Na).

3,4-Dihydro-5-(2-hydroxyethyl)-l//-benzo[2,3-6]diazepin-2-one, (62)

H
N

N

O H

Method C. (58) (0.54 g, 1.19 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 18 h. Column chromatography (eluent 9:1 petrol:ethyl acetate) 

produced the title compound as a yellow oil (0.08 g, 33 %); 8h 2.38 (2H, t, J = 6.6, CH2), 

3.24 (2H, t, J = 6.3, CH2), 3.51 (2H, t, J = 6.6, CTfe), 3.61 (2H, q, J = 6.3, CH2OH), 4.65 

(1H, t, J = 5.3, CH2), 6.95-7.16 (4H, m, Ar-H), 9.47 (1H, s, NH); 5C 33.9, 55.0, 55.1, 58.5,

120.5, 121.4, 121.9, 124.9, 132.9, 141.7, 172.4 (C=0); HRMS (ES+) m/z 207.1126 

[(M+H), 207.1128 calculated for C 11H 15N2O2].

7e/T-butyl(3-iodopropoxy)dimethylsilane (60) (Baldwin et al., 2005)

Method F. (59) (2.00 g, 10.75 mmol), imidazole (1.61 g, 23.66 mmol), tert- 

butyldimethylsilyl chloride (TBDMS-C1) (1.94 g, 12.90 mmol) in DMF (3 mL), produced 

the product as a yellow oil (2.25 g, 84 %); 5H0.00 (6H, s, SiCH3), 0.81 (9H, s, CCH3), 

1.85 (2H, m, CH2), 3.23-3.26 (2H, m, CH2), 3.61 (2H, m, CHj); 8c -5.5 (SiCH3), 17.9 

(CCH3), 25.8, 35.5, 42.0, 59.0 (CH20 ), MS (ES+) m/z 299.2 (M-H).
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3,4-Dihydro-5-[2(terf-butyIdimethylsilanyloxy)ethyI|-l-(2-trimethylsiIylethoxy 

methyl)benzo[2,3-£>jdiazepin-2-one, (61)

S E M

I ,0

O T B D M S

Method F. (38) (1.90 g, 7.97 mmol), /er/-butyl(3-iodopropoxy)dimethylsilane (3.93g, 

8.45 mmol), potassium carbonate (5.49 g, 39 80 mmol) and DMF (4 mL) were heated at 

150 C for 20 h. Column chromatography (eluent 8.5:15 petroLethyl acetate) yielded the 

desired compound as a yellow oil (0.90 g, 30 %); SH 0.00 (15H, s, SiCFL), 0.91 (9H, s, 

CCHO. 1 64-1.69 (2H, m, CH:), 2.35 (2 H, t, J = 6.7, CFL), 3.14 (2H, br t, CH.), 3.49-3.52 

(2H, m, CH: ), 3.56 (2H, t, J = 8 .1, CH:), 3.63 (2H, t, J = 6.3, CH:), 3.70 (2H, t, J = 6.3, 

CH:), 5.13 (2H, s, NCLLO), 7.15 (1H, t, J = 7.9, Ar-H), 7.20 (1H, dd, J = 1.4, 7.9, Ar-H), 

7 29 ( 1H, t, J -  7.9, Ar-H), 7.47 (1H, dd, J = 1.4, 7.9, Ar-H); MS (ES+); m z 464.3 (M+),

465.3 (M-rH), 487.3 (M+Na).

3,4-Dihydro-5-(3-hydroxy propyl)-!/f-benzo[2,3-6|diazepin-2-one, (63)

o

/
j

N " "

O H

Method C. (61) (0.83 g, 1.77 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 18 h, followed by column chromatography (eluent 1:1 

petroLethyl acetate) to produce the title compound as a yellow Cl (3.1 3 g, 26 %); SH 1.58-
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1 63 (2H, m, CH:), 2.28 (2H, t, J = 6.7, CH:), 3.11 (2H, t, J = 7.1, CH:), 3.37-3.42 (4H, 

m, CH: ), 4.39 (1H, t, J -  5.1, OH), 6.93 (2H, d, J = 3.3, Ar-H), 7.05-7.11 (2H, m, Ar-H), 

9.40 (1H, s, NH); 5C 29.8, 33.2, 48.7,55.0, 57.9, 119.7, 121.1, 121.3, 124.4, 133.0, 141.0,

171.9 (C-O ); HRMS (ES+) m r  221.1287 [(M+H), 221.1285 calculated for C i:H i7N20 2].

l-Iodomethyl-4-nitrobenzene, (65) (Strazzolini and Runcio, 2003)

Method D. l-Bromomethyl-4-nitrobenzene (2.50 g, 11.57 mmol), sodium iodide (5.00 g,

33.36 mmol) and acetone (60 mL) were refluxed for 10 h, producing the product as a 

brown solid (3.16 g, 100 %); m.p. 121-123 °C; 6H 4.73 (2H, s, CH:), 7.70 (2H, dd, J = 1.8,

6.9 Hz, Ar-H), 8.19 (2H, dd, J = 1.8, 6.9 Hz, Ar-H); 5C 62.0, 123.3, 124.3, 127.0, 130.6,

131.6, 192.3.

3,4-Dihydro-5-(4-nitrobenzyl)-l-(2-trimethylsiIylethoxymethyl)benzo[2,3-£] 

diazepin-2-one, (66)
SEM

I °
N —  //

Method G (38) (1.43 g, 4.89 mmol), sodium hydride (0.13g, 5.38 mmol), 1-iodomethyl- 

4-nitrobenzene (2.11 g, 9.78 mmol) in DMF (3.5 mL), followed by column 

chromatography (eluent 8.25:1.75 petrol:ethyl acetate) produced the title compound as a 

yellow oil (1.06 g, 51 %); 6U 0.00 (9H, s, SiCH3), 0.95 (2H, t, J = 8.2, CH2), 2.43 (2H, br 

t, CH:), 3.38-3.42 (2H, m, CH2), 3.64 (2H, t, J -  8.2, CH:), 4.50 (2H, s, CH:Ph), 5.20 

(2H, s, NCfLO), 7.14-7.17 (1H, m, Ar-H), 7.22-7.24 (2H, m, Ar-H), 7.51 (1H, d, J = 8.2,

Ar-H), 7.61 (2H, d, J = 8 .8 , Ar-H), 8.18 (2H, d, J = 8 .8 , Ar-H); 5C 0.0, 18.9, 35.3, 56.6,
..............         -      173
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57.9, 66.7, 76.7, 122.4, 124.5, 124.8, 125.1, 128.2, 130.4, 139.1, 143.3, 147.9, 148.1, 

173.5 (C=0); MS (ES+) m/z 450.2 (M+Na).

3-Hydro-4,4-dimethyl-l//-5//-benzo[2,3-6]diazepin-2-one, (68)

Method A. 1,2-Phenylenediamine (1.00 g, 9.25 mmol), 60% aqueous 3,3-dimethylacrylic 

acid (1.7 mL) and concentrated hydrochloric acid (0.75 mL) were heated at 100 °C for 8 

h, cooled, basified with aqueous ammonia (2 mL), brine (15 mL) was added, followed by 

column chromatography (eluent 3% MeOH:DCM, increasing to 5% MeOH:DCM) to 

produce the title compound as a brown oil (0.75 g, 16 %); 5h 1.24 (6H, s, CCH3), 2.20 

(2H, s, CH2), 4.81 (1H, s, NH), 6.78-6.83 (1H, m, Ar-H), 6.87 (2H, t, J = 6 .66 , Ar-H), 

6.91-6.95 (1H, m, Ar-H), 9.43 (1H, s, NH); 8C 30.7, 46.2, 60.4, 120.6, 121.4, 121.7,

124.5, 130.7, 139.2, 167.3 (C=0).

3-Hydro-4,4-dimethyl-l-(2-trimethylsilylethoxymethyl)-5//-benzo[2,3-6]diazepm-2- 

one, (70)

S E M

Method B. (68 ) (0.26 g, 1.37 mmol), sodium hydride (0.04 g, 1.5 mmol), 2- 

(trimethylsilyl)ethoxymethyl chloride (0.34 g, 2.05 mmol) in DMF (3 mL), followed by 

column chromatography (eluent 3:1.5 petrol:ethyl acetate) yielded the title compound as a 

yellow oil (0.08 g, 18 %); 8n 0.00 (9H, s, SiCH3), 0.85 (2H, t, J = 8.2, CH2), 1.23 (6H, s, 

CCH3), 2.23 (2H, s, CH2), 3.59 (2H, t, J = 8.2, CH2), 4.72 (1H, s, NH), 5.15 (2H, s, 

NCH2O), 7.01-7.06 (2H, m, Ar-H), 7.12 (1H, t, J = 7.4, Ar-H), 7.41 (1H, d, J = 7.4, Ar-
--------------------------------------------------------------------------------------------------------------- 174
PhD Thesis, P Hamidi, 2006



Chapter 5. Experimental Procedures

H); 6c 0.0, 18.6, 29.9, 47.1, 61.1, 66.0, 76.1, 119.9, 123.7, 124.6, 127.4, 136.9, 142.0,

171.7 (C=0); MS (ES+) m z  343.2 (M+Na), 663.4 (2M+Na).

Methyl 2-bromo-5-nitrobenzoate, (74) (Klein and Boche, 1999)

0 ,N ,
'OMe

Method H. 2-Bromo-5-nitrobenzoic acid (5.00 g, 20.32 mmol), concentrated sulphuric 

acid (2.5 mL) and methanol (50 mL) were refluxed for 8 h producing the product as a 

white solid (5.18 g, 98 %); m.p. 71-74 °C; 6H 3.92 (3H, s, CH3), 8.04 (1H, d, J = 2.8, Ar

il), 8.25 (1H, dd, J = 2.8, 8 .8, Ar-H), 8.51 (1H, d, J = 8 .8, Ar-H); 6C 53.5 (OCH3), 125.9,

127.5, 128.0, 133.8, 136.0, 147.0, 164.8 (C=0).

4-Nitro-17/-7//-dibenzo[2,3-6][6,7-;/]diazepin-2-one, (75) (Giani et al. , 1985)

N H

N
H

Method I. (74) (0.50 g, 1.92 mmol), 1,2-phenylenediamine (30) (0.62 g, 5.77 mmol) and 

DMA (4 mL) were heated at 100 °C for 10 h, to produc the product as a brown solid (0.25 

g, 51 %); m.p. 338-342 °C; 6H 6.94-7.02 (4H, m, Ar-H), 7.08 (1H, d, J = 9.0, Ar-H), 8.12 

(1H, dd, J = 2.8, 9.0, Ar-H), 8.57 (1H, d, J = 2.8, Ar-H), 9.06 (1H, s, NH), 10.10 (1H, s, 

CONH); 5c 119.4, 119.6, 120.3, 121.4, 124.3, 124.8, 128.3, 128.5, 129.3, 135.4, 139.5,

154.4, 165.3 (C=0); HRMS (ES) m/z 254.0571 [(M-H), 254.0571 calculated for 

C 13H8N30 3].
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4-Nitro-l-(2-trimethyIsilylethoxyniethyl)-5//-dibenzo[2,3-£][6,7-/]diazepin-2-one,

(82)

SEM

N
H

Method C. (75) (1.55 g, 5.63 mmol), sodium hydride (0.15 g, 6.19 mmol), 2- 

(trimethylsilyl)ethoxymethyl chloride (37) (1.03g, 6.19 mmol) in DMF (6 mL), followed 

by column chromatography (eluent 3:1 petrofethyl acetate) produced the product as a  

yellow powder (0.65 g, 30 %); m.p. 168-170 °C; 5H 0.00 (9H, s, SiCfL,), 0.89 (2H, t, J =

8.0, CH2), 3.68 (2H, t, J = 8.0, CH2), 5.29 (2H, s, NCH2O), 7.21-7.23 (3H, m, Ar-H), 7.30 

(1H, d, J = 9.0, Ar-H), 7.59 (1H, m, Ar-H), 8.26 (1H, dd, J = 2.8, 9.0, Ar-H), 8.54 (1H, d, 

J = 2.8, Ar-H), 9.11 (1H, s, NH); 5C 0.0 (SiCH3), 18.8, 6 6 .8, 79.9, 124.5, 125.2, 126.6,

127.6, 127.8, 129.3, 135.3, 137.0, 139.1, 144.5, 145.2, 145.6, 168.2 (C O ) ;  MS (ES+) m/z

408.2 (M+Na).

4-Nitro-7-(phenylethyl)-l-(2-trimethylsilylethoxymethyI)dibenzo[2,3-6][6,7-:/] 

diazepin-2-one, (91)

SEM

N

Method E. (82) (1.87 g, 4.85 mmol), phenylethyliodide (3.72 g, 16.01 mmol), potassium 

carbonate (3.35 g, 24.25 mmol) and DMF (4 mL) were heated at 150 C for 24 h, followed 

by column chromatography (eluent 9.5:0.5 petrofethyl acetate, increasing to 9:1

------------------------------------------------------------------------------------------------------------------------------------------ 176
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petrol:ethyl acetate) to yield the desired compound as a yellow oil (0.50 g, 21 %); Sh 0.00 

(9H, s, SiCH3), 0.92 (2H, t, J = 6.5, CH2), 2.55 (2H, t, J = 1.6, Clfc), 2.88 (2H, t, J = 2.8, 

CH2), 3.63-3.69 (2H, m, CH2), 4.12-4.16 (2H, m, CHh), 5.03 (1H, d, J = 10.2, NCHO),

5.38 (1H, d, J = 10.2, NCHO), 7.17-7.33 (5H, m, Ar-H), 7.48 (1H, d, J = 8.0, Ar-H), 7.55 

(1H, d, J = 9.0, Ar-H), 7.64 (1H, dd, J = 1.2, 8.0, Ar-H), 8.34 (1H, dd, J = 2.8, 9.0, Ar-H),

8.38 (1H, d, J = 2.8, Ar-H); 5C 0.0 (SiCH3), 18.8, 34.6, 51.2, 67.1, 78.9, 120.6, 122.8,

125.3, 127.0, 127.6,128.1, 128.5, 128.7, 129.3, 129.5, 129.7, 130.0, 130.2, 136.8, 140.1,

143.6, 146.0, 159.4, 167.9 (C=0); MS (ES+) m z  512.3 (M+Na).

4-Nitro-7-(phenylethyI)-l//-dibenzo[2,3-6][6,7-/]diazepin-2-one, (95)

o

NH

N

Method C. (91) (0.25 g, 0.51 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 24 h, followed by column chromatography (eluent 3:1 

petrof ethyl acetate) to produce the title compound as a yellow powder (0.04 g, 22 %); 

m.p. 218-220 °C; SH 2.86 (2H, t, J -  6 .8, CH2), 4.12 (2H, t, J = 6 .8 , CH2), 7.13-7.30 (8H, 

m, Ar-H), 7.39 (1H, d, J = 9.0, Ar-H), 7.52 (1H, d, J = 9.0, Ar-H), 8.35 (1H, dd, J = 2.8,

9.0, Ar-H), 8.44 (1H, d, J = 2.8, Ar-H), 10.52 (1H, s, NCHO); 6C 33.2, 50.8, 120.2, 121.7,

121.9, 125.1, 125.8, 126.2, 126.9, 127.5, 128.0, 128.2, 128.7, 132.9, 138.8, 141.3, 142.0,

157.6, 166.3 (C=0); MS (ES+) m z  382.1 (M+Na).
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4-Ammo-7-(phenylethyI)-4-(2-trimethylsiIylethoxymethyl)-l//-dibenzo[2,3-6] [6,7-/] 

diazepin-2-one, (99)

o

NH

N

Method J. (95) (0.04 g, 0.11 mmol) in dichloromethane (40 mL), produced the product as 

a yellow powder (0.037 g, 100 %); m.p. 88-92 °C; 5H 2.77 (2H, t, J = 7.2, CH2), 3.75-3.90 

(2H, m, CH2), 5.01 (2H, s, NH2), 6.74 ( 1H, dd, J = 2.7, 8 .6 , Ar-H), 6.88  ( 1H, d, J = 2.7, 

Ar-H), 6.97-7.05 (3H, m, Ar-H), 7.10 (1H, t, J = 7.3, Ar-H), 7.19-7.35 (6H, m, Ar-H),

10.02 (1H, s, NHCO); 5C 33.5, 50.1, 114.9, 118.1, 119.4, 121.2, 123.3, 124.4, 125.8,

126.0, 128.1, 128.6, 128.8, 129.0, 133.4, 139.4, 139.6, 140.8, 144.3, 144.5, 168.7 (C=0); 

HRMS (ES+) m/z 330.1607 [(M+H), 330.1601 calculated for C21H20N3O.

7-(Benzyl)-4-nitro-l-(2-trimethyIsilylethoxymethyl)dibenzo[2,3-6] [6,7-/]diazepin-2- 

one, (85)

SEM

N " '

Method E. (82) (0.3 g, 0.78 mmol), benzylbromide (0.20 g, 1.17 mmol), potassium 

carbonate (0.54 g, 3.89 mmol) and DMF (3 mL) were heated at 150 C for 20 h. The 

mixture was extracted with dichloromethane, followed by column chromatography (eluent
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9.5:0.5 petrol:ethyl acetate) which yielded the desired compound as a yellow dense oil 

(0.20 g, 54 %); Sh 0.00 (9H, s, SiCH3), 0.97 (2H, t, J = 8.1, CH2), 3.75 (2H, t, J = 8.1, 

CH2), 4.56 (2H, s, CT^Ph), 5.41 (1H, d, J -  10.3, NCHO), 5.54 (1H, d, J = 10.3, NCHO), 

7.25-7.29 (4H, m, Ar-H), 7.33 (1H, t, J = 7.6, Ar-H), 7.37-7.52 (5H, m, Ar-H), 8.27 (1H, 

dd, J = 2.8, 9.0, Ar-H), 8.40 (1H, d, J = 2.8, Ar-H); 5C 0.5, 19.4, 54.1, 67.9, 79.3, 121.4,

123.3, 125.9, 127.6, 128.3, 128.6, 128.9, 129.2, 129.8, 130.1, 130.4, 137.1, 138.6, 144.3,

147.5, 159.6, 168.6 (C O ) ;  MS (ES+) m/z 450.2 (M+Na).

7-(Benzyl)-4-nitro-l//-dibenzo[2,3-6](6,7-/]diazepin-2-one, (93)

0

o 2n NH

Method C. (85) (0.15 g, 0.31 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 20 h, followed by column chromatography (eluent 4:1 

petrofethyl acetate) to produce the title compound as an orange powder (0.04 g, 37 %); 

m.p. 258-261 °C; 6H 5.14 (2H, s, CH2PI1), 7.11-7.15 (3H, m, Ar-H), 7.20 (1H, t, J = 7.5, 

Ar-H), 7.30 (2H, t, J = 7.5, Ar-H), 7.38 (1H, d, J = 7.5, Ar-H), 7.45 (2H, d, J = 7.5, Ar-H),

7.48 (1H, d, J = 9.1, Ar-H), 8.27 (1H, dd, J = 2.8, 9.1, Ar-H), 8.42 (1H, d, J = 2.8, Ar-H), 

10.66 (1H, s, NH); 8C 53.0, 120.4, 121.7, 121.9, 125.0, 125.2, 126.8, 127.2, 127.9, 128.0,

128.4, 130.3, 132.8, 136.9, 141.7, 142.2, 157.5, 166.5 (C=0); MS (ES+) m/z 368.1 

(M+Na).
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4-Amino-7-(benzyl)-l//-dibeiizo[2,3-6] [6,7-/]diazepin-2-one, (97)

o

h 2n NH

Method J. (93) (0.17 g, 0.49 mmol) in dichloromethane (50 mL) produced the product as 

a brown oil (0.13 g, 84 %); 8H 4.87 (2H, d, J = 6.3 Hz, CH2), 4.96 (2H, s, NH2), 6.63 ( 1H, 

dd, J = 2.8, 8 .6 , Ar-H), 6.85 (1H, d, J = 2.8, Ar-H), 6.95-7.20 (8H, m, Ar-H), 7.26 (1H, t, J 

= 7.5, Ar-H), 7.41 (1H, d, J = 7.5, Ar-H), 10.10 (1H, s, NHCO); 8C 54.2, 116.7, 119.8,

121.5, 123.1, 125.3, 126.2, 128.3, 128.7, 129.7, 130.1, 130.7, 135.3, 140.1, 143.0, 146.3,

146.6, 170.7 (C=0); HRMS (ES+) m/z 316.1443 [(M+H), 316.1444 calculated for 

C 2 0 H 1 8 N 3 O .

7-(Cyclohexylethyl)-4-nitro-l-(2-trimethylsiIylethoxymethyl)dibenzo[2,3-6] [6,7-/] 

diazepin-2-one, (92)

S E M

N

Method E. (82) (0.3 g, 0.78 mmol), cyclohexylethyliodide (0.37g, 1.66 mmol), potassium 

carbonate (0.54 g, 3.89 mmol) and DMF (3 mL) were heated at 150 C for 22 h, followed 

by column chromatography (eluent 9.5:0.5 petrofethyl acetate) to yield the desired 

compound as a yellow dense oil (0.20 g, 54 %); 8h 0.00 (9H, s, SiCFf*), 0.87-1.68 (15H, 

m, Alkyl-H), 3.68 (2H, t, J = 8.1, CH2O), 3.88 (2H, t, J -  6.2, N C F ^C ^), 5.36 (1H, d, J =
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10.3, NCHO), 5.45 (1H, d, J = 10.3, NCHO), 7.26-7.30 (2H, m, Ar-H), 7.38-7.41 (1H, dd, 

J = 1.8, 7.8, Ar-H), 7.48 (1H, d, J = 9.0, Ar-H), 7.64 (1H, dd, J = 1.8, 7.8, Ar-H). 8.33 

(1H, dd, J = 2.8, 9.0, Ar-H), 8.38 (1H, d, J = 2.8, Ar-H); 5C 0.0 (SiCH3), 18.7, 27.1, 27.4,

33.9, 35.9, 36.4, 47.7, 67.0, 78.4, 120.4, 122.6, 125.5, 126.9, 128.1, 128.5, 128.7, 129.2,

136.5, 143.5, 146.7, 159,7, 168.1 (C O ) ;  MS (ES+) m/z 518.3 (M+Na).

7-(Cyclohexylethyl)-4-nitro-l//-dibenzo|2,3-6]|6,7-/]diazepin-2-one, (96)

O

o 2n NH

Method C. (92) (0.16 g, 0.32 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 20 h. Column chromatography (eluent 8 .5:1.5 petrofethyl 

acetate) produced the title compound as a yellow powder (0.07 g, 60 %); m.p. 240-243 °C; 

5h 0.88-1.67 (13 H, m, Alkyl-H), 3.90 (2H, t, J = 6.5, CH2), 7.14-7.20 (3H, m, Ar-H), 

7.31 (1H, d, J = 6.9, Ar-H), 7.45 (1H, d, J = 9.0, Ar-H), 8.34 (1H, dd, J = 2.8, 9.0, Ar-H), 

8.43 (1H, d, J = 2.8, Ar-H), 10.58 (1H, s, NH); 6C 26.0, 30.7, 32.5, 34.2, 34.8, 47.1, 120.0,

121.7, 121.9, 125.0, 125.2, 126.9, 127.4, 127.8, 132.9, 141.6, 141.9, 157.9, 166.6 (C=0); 

MS (ES+)m  r  388.2 (M+Na).
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4-Amino-7-(cyclohexylethyI)-l//-dibenzo[2,3-6] [6,7-/]diazepin-2-one, (100)

o

N H

N

Method J. (96) (0.05 g, 0.14 mmol) in dichloromethane (30 mL) produced the compound 

as a yellow solid (0.046 g, 100 %); m.p. 186-189 °C; 6H 1.10-1.63 (13H, m, Alkyl-H), 

3.61 (2H, t, J = 6.4, CH2), 5.00 (2H, s, NH2), 6.69 (1H, dd, J -  2.6, 8.5, Ar-H), 6.84 (1H, 

d, J = 2.6, Ar-H), 6.90 (1H, d, J = 8.5, Ar-H), 7.00-7.14 (4H, m, Ar-H), 10.02 (1H, s, NH); 

6C 25.8, 26.1, 32.6, 34.6, 34.9, 40.0, 114.8, 117.2, 118.0, 119.3, 121.1, 123.1, 124.3,

128.9, 133.4, 141.2, 144.4, 144.7, 168.8 (C=0); HRMS (ES+) m/z 336.2070 (M+H), 

336.2070 calculated for C21H26N3O.

7-(CycIohexyImethyl)-4-nitro-l-(2-trimethyIsiIylethoxymethyI)dibenzo[2,3-6] [6,7 -f\ 

diazepin-2-one, (88)

SE M

Method E. (82) (0.95 g, 2.45 mmol), cyclohexylmethyl iodide (1.66 g, 7.30 mmol), 

potassium carbonate (1.69 g, 12.26 mmol) and DMF (3 mL) were heated at 150 C for 22 

h. Column chromatography (eluent 4 % ethyl acetate .petrol) yielded the desired 

compound as a dense oil (0.57 g, 31 %); 5h 0.00 (9H, s, SiCH3), 0.87-1.83 (13H, m, 

Alkyl-H), 3.22 (2H, t, J = 5.7, CH2), 3.64-3.67 (2H, m, CHj), 5.34 (1H, d, J = 10.3,
____________________________________________________________________  I g2
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NCHO), 5.45 (1H, d, J = 10.3, NCHO), 7.23-7.30 (2H, m, Ar-H), 7.39 (1H, d, J = 7.8, Ar

il), 7.48 (1H, d, J = 9.1, Ar-H), 7.62 (1H, dd, J = 1.4, 7,8, Ar-H), 8.30 (1H, dd, J = 2,8,

9.1, Ar-H), 8.37 (1H, d, J = 2.8, Ar-H); 5C 0.0 (SiCH3), 18.8, 26,6, 27.7, 30.5, 32.6, 36.2,

68.1, 78.5, 120.6, 122.8, 125.4, 126.8, 128.0, 128.5, 128.7, 129.3, 136.6, 143.5, 147.0,

159,6, 168.2 (C=0); MS (ES+) m/z 504.3 (M+Na).

7-(Cyclohexylmethyl)-4-nitro-l//-dibenzo|2,3-*l[6,7-/]diazepin-2-one, (94)

o

NH

Method C. (88 ) (0.53 g, 1.09 mmol) and 1 M tetrabutylammonium fluoride/THF solution 

(5 mL) were refluxed for 24 h. Column chromatography (eluent 9:1 petrof ethyl acetate) 

produced the title compound as a yellow powder (0.18 g, 47 %); m.p. 256-258 °C; 8h 

0.95-1.83 (11H, m, Alkyl-H), 3.72 (2H, t, J = 9.3, CH2), 7.13-7.21 (3H, m, Ar-H), 7.32 

(1H, d, J = 7.6, Ar-H), 7.45 (1H, d, J = 9.3, Ar-H), 8.32 (1H, dd, J -  2.9, 9.3, Ar-H), 8.43 

(1H, d, J = 2.9, Ar-H); 5C 25.2, 26.0, 30.2, 34.7, 55.8, 120.2, 121.9, 122.0, 125.0, 125.1,

127.0, 127.4, 127.7, 132.9, 141.7, 141.9, 158.0, 166.6 (C=0); MS (ES+) m/z 374.2 

(M+Na).
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4-Amino-7-(cyclohexylmethyl)-l//-dibenzo[2,3-£] [6,7^/]diazepin-2-one, (98)

o

h 2n NH

M e t h o d  J. (94) ( 0 . 1 6  g ,  0 . 4 6  m m o l )  i n  d i c h l o r o m e t h a n e  ( 3 0  m L ) ,  f o l l o w e d  b y  c o l u m n  

c h r o m a t o g r a p h y  ( e l u e n t  1 : 1  p e t r o f e t h y l  a c e t a t e )  p r o d u c e d  t h e  t i t l e  c o m p o u n d  a s  a  y e l l o w  

s o l i d  ( 0 . 0 9 4  g ,  6 4  % ) ;  m . p .  2 5 4 - 2 5 7  °C ; 5 H 0 . 8 8 - 1 . 8 5  ( 1 3 H ,  m ,  A l k y l - H ) ,  5 . 0 0  ( 2 H ,  s ,  

N H 2 ),  6 . 7 0  ( 1 H ,  d d ,  J  -  2 . 6 ,  8 . 6  H z ,  A r - H ) ,  6 . 8 4  ( 1 H ,  d ,  J  =  2 . 6  H z ,  A r - H ) ,  6 . 9 1  ( 1 H ,  d ,  J  

=  8 . 6  H z ,  A r - H ) ,  6 . 9 8 - 7 . 1 3  ( 4 H ,  m ,  A r - H ) ,  1 0 . 0 0  ( 1 H ,  s ,  N H C O ) ;  6 C 2 5 . 4 ,  2 6 . 2 ,  3 0 . 5 ,

3 4 . 5 ,  5 5 . 0 ,  1 1 5 . 9 ,  1 1 8 . 0 ,  1 1 8 . 4 ,  1 1 9 . 3 ,  1 2 1 . 2 ,  1 2 2 . 9 ,  1 2 8 . 9 ,  1 3 3 . 5 ,  1 4 1 . 4 ,  1 4 4 . 4 ,  1 4 4 . 9 ,

1 6 8 , 8  ( C = 0 ) ;  HRMS ( E S +)m-z  3 2 2 , 1 9 1 3  [(M+H), 3 2 2 . 1 9 1 4  c a l c u l a t e d  f o r  C 20H 25N 3O ] .

7-(CycIobutylmethyl)-4-nitro-l-(2-trimethylsilyIethoxymethyl)dibenzo[2,3-b] [6,7-/] 

diazepin-2-one, (101)

S E M

M e t h o d  E .  (82) ( 0 . 9 4  g ,  2 . 4 5  m m o l ) ,  c y c l o b u t y l m e t h y l  b r o m i d e  ( 1 . 4 6  g ,  9 . 8 0  m m o l ) ,  

p o t a s s i u m  c a r b o n a t e  ( 1 . 6 8  g, 1 2 . 1 9  m m o l )  a n d  D M F  (3  m L )  w e r e  h e a t e d  a t  1 5 0  C  f o r  2 2  

h ,  f o l l o w e d  b y  c o l u m n  c h r o m a t o g r a p h y  ( e l u e n t  9 :1  p e t r o f e t h y l  a c e t a t e )  y i e l d i n g  t h e  

d e s i r e d  c o m p o u n d  a s  a  y e l l o w  o i l  ( 0 . 2 8  g ,  2 5  % ) ;  8 h  0 . 0 0  ( 9 H ,  s ,  S i C F ^ ) ,  0 . 8 7 - 0 . 9 2  ( 3 H ,  

m ,  A l k y l - H ) ,  1 . 2 7  ( 1 H ,  s ,  A l k y l - H ) ,  1 . 7 1 - 1 . 9 6  ( 5 H ,  m ,  A l k y l - H ) ,  3 . 6 7  ( 2 H ,  t ,  J  =  8 . 1 ,  

C H 2), 3 . 8 6 - 3 . 9 8  ( 2 H ,  m ,  C L h ) ,  5 . 3 4  ( 1 H ,  d ,  J  =  1 0 .3 ,  N C H O ) ,  5 . 4 5  ( 1 H ,  d ,  J  =  1 0 . 3 ,  

N C H O ) ,  7 . 1 0 - 7 . 4 0  ( 3 H ,  m ,  A r - H ) ,  7 . 4 6  ( 1 H ,  d ,  J  =  9 . 0 ,  A r - H ) ,  7 . 6 2  ( 1 H ,  d d ,  J  =  1 .8 ,  7 . 0 ,
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Ar-H), 8.29 (1H, dd, J = 2.8, 9.0, Ar-H), 8.37 (1H, d, J = 2.8, Ar-H); 8C 0.0 (SiCH3), 18.8,

19.3, 27,1, 34.2, 55.4, 69.5, 78.5, 120.6, 122.8, 125.4, 126.9, 127.9, 128.5, 128.7, 129.2,

136.5, 143.5, 146.7, 159.7, 168.1 (C =0); MS (ES+) m/z 476.2 (M+Na).

7-(( yclohutylmethyi)-4-nilro-1 //-dihenzo|2.3-6| |6,7-/](iiazepin-2-onc, (102)

0

NH

Method C. (101) (0.26 g, 0.57 mmol) and 1 M tetrabutylammonium fluoride/THF 

solution (5 mL) were refluxed for 24 h, followed by column chromatography (eluent 3:2 

petrofethyl acetate) to produce the title compound as a yellow powder (0.08 g, 44 %); 

m.p. 270-272 °C; 8H 1.62-1.87 (7H, m, Alkyl-H), 3.85 (2H, d, J = 4.8, NCH2), 7.03-7.29 

(4H, m, Ar-H), 7.36 (1H, d, J = 9.0, Ar-H), 8.31 (1H, dd, J = 2.9, 9.0, Ar-H), 8.35 (1H, d, 

J = 2.9, Ar-H), 10.47 (1H, s, NH); 8C 17.9, 25.6, 32.7, 54.9, 120.2, 121.7, 121.9, 124.9,

125.1, 126.9, 127.4, 127.7, 132.9, 141.6, 141.8, 158.0, 166.6 (C=0); MS (ES+) m/z 346.1 

(M+Na).

4-Amino-7-(cyclobutylmethyl)-l//~dibenzo[2,3-6][6,7-/]diazepm-2-one, (103)

NH

Method J. (102) (0.07 g, 2.16 mmol) in dichloromethane (30 mL) produced the product as 

a yellow solid (0.064 g, 100 %); m.p. 224-227 C; 5h 1.65-1.93 (6H, m, Alkyl-H), 2.46-
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2.49 (1H, m, CH), 3.54-3.71 (1H, m, CH), 5.00 (2H, s, NH2), 6.69 (1H, dd, J = 2.8, 8.5, 

Ar-H), 6.89 (1H, d, J = 8.5, Ar-H), 6.98-7.10 (5H, m, Ar-H), 10.00 (1H, s, CONH); 8C

18.0, 25.8, 32.9, 54.2, 114.7, 117.9, 119.6, 119.8, 121.1, 123.2, 124.2, 129.0, 133.6,

141.3, 144.4, 144.7, 168.7 (C =0); HRMS (ES+) nv'z 294.1599 [(M+H), 294.1601 

calculated for C 18H20N3O].

7-(Mcthvl)-4-nitro-l-(2-trimethylsilyleth()\yniethyl)diben/o|2,3-6||6,7:/|dia/epin-2- 

one, (105)

SE M

N

Method G. (82) (1.09 g, 2.83 mmol), sodium hydride (0.07 g, 3.11 mmol), methyl iodide 

(0.48 g, 3.39 mmol) in DMA (3.5 mL) produced the title compound as a yellow solid 

(2.10 g, 83 %); m.p. 78-80 °C; 5H 0.00 (9H, s, SiCH3), 0.90 (2H, t, J = 8.0, CJfc), 3.45 

(3H, s, CH3), 3.66-3.70 (2H, m, CH2), 5.32 ( 1H, d, J = 10.3, NCHO), 5.42 ( 1H, d, J =

10.3, NCHO), 7.28-7.32 (2H, m, Ar-H), 7.41-7.46 (2H, m, Ar-H), 7.64 (1H, dd, J = 1.8,

7.7, Ar-H), 8.34 (1H, dd, J = 2.8, 9.1, Ar-H), 8.44 (1H, d, J = 2.8, Ar-H); 6C 0.0 (SiCH3),

18.8, 39.1, 66.9, 79.1, 119.3, 121.5, 125.5, 126.9, 127.9, 128.1, 128.7. 128.9, 135.6,

143.3, 147.6, 160.0, 168.1 (C =0); MS (ES+) m/z 422.2 (M+Na).

4-Amino-7-(methyI)-l-(2-trimethyIsilylethoxymethyI)dibenzo[2,3-£] [6,7-/]diazepin-2- 

one, (106)

SE M

N

Method J. (105) (2.09 g, 5.23 mmol) in dichloromethane (70 mL) produced the product as 

a brown oil (1.43 g, 73 %); 8h 0.00 (9H, s, SiCH3), 0.89 (2H, t, J = 8.0 Hz, CHO, 3.21
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(3H, s, CH3), 3.65 (2H, t, J = 2.0, CH2), 5.16 (1H, d, J = 10.1, NCHO), 5.23 (2H, br s, 

NH2), 5.41 (1H, d, J = 10.1, NCHO), 6.72 (1H, dd, J = 2.8, 8 .6 , Ar-H), 6.87 (1H, d, J =

2.8, Ar-H), 6.94 (1H, d, J = 8 .6 , Ar-H), 7.12 (1H, t, J = 6 .6 , Ar-H), 7.19-7.25 (2H, m, Ar

id), 7.53 ( 1H, dd, J = 0 .8 , 7.9, Ar-H); 8C 0.0 (SiCH3), 18.9,37.9, 66.6,79.0, 116.8, 118.3,

119.2, 119.4, 124.8, 125.1, 127.4, 128.9, 136.5, 144.9, 145.8, 150.5, 170.2 (C=0); MS 

(ES+)m  r  392.2 (M+Na).

4,4-Dibenzylamino-7-(methyl)-l-(2-trimethylsilylethoxymethyl)dibeDzo[2,3-6| [6,7-/] 

diazepin-2-one, (107), 4-benzylamino-7-(methyl)-l-(2-trimethylsiIylethoxymethyl) 

dibenzo[2,3-b] d[6,7-/]iazepin-2-one, (108)

S E M
SEM

HN

Method K. (106) (0.61 g, 1.66 mmol), benzyl bromide (0.31, 1.82 mmol), potassium 

carbonate (0.25 g, 1.82 mmol) and DMF (3 mL) were heated at 150 C for 24 h, followed 

by column chromatography (eluent 9.5:1.5 petrofethyl acetate) yielded the dibenzylated 

compound (107) as a yellow powder (0.43 g, 56 %), then increasing to 9:1 petrofethyl 

acetate yielded the desired compound (108) as a yellow oil (0.09 g, 12 %), data for 

compound 107: m.p. 125-127 C; 8h 0.00 (9H, s, SiCH3), 0.83 (2H, t, J = 8.0, CH?). 3.14 

(3H, s, CH3), 3.57 (2H, t, J = 8.0, C H A  4.65 (4H, s, 2 x PhCH2), 5.12 (1H, d, J = 10.1, 

NCHO), 5.32 (1H, d, J = 10.1, NCHO), 6.76 (1H, dd, J = 3.1, 9.0, Ar-H), 6.90 (1H, d, J =

3.1, Ar-H), 6.96 (1H, d, J = 9.0, Ar-H), 7.08 (1H, t, J -  7.8, Ar-H), 7.17-7.33 (12H, m, Ar

bi), 7.47 (1H, d, J = 7.8, Ar-H); Sc 0.0 (SiCH3), 18.9, 32.1, 37.9, 55.8, 66 .6 , 79.0, 115.5,

117.7, 118.6, 119.4, 124.9, 125.2, 127.5, 127.9, 128.0, 128.2, 128.9, 129.9, 130.6, 130.9,

136.3, 140.2, 145.2, 145.6, 150.3, 170.1 (C =0), MS (ES+) m/z 549.3551 (M); data for 

compound 108: 8h 0.00 (9H, s, SiCH3), 0.89 (2H, t, J = 8.0, CHA 3.18 (3H, s, CH3), 3.64 

(2H, t, J = 8.0, CH2), 4.26 (2H, d, J = 6.0, PhCHA 5.16 (1H, d, J = 10.1, NCHO), 5.40
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(1H, d, J = 10.1, NCHO), 6.26 (1H, t, J = 6.0, Ar-H), 6.71 (1H, dd, J = 2.8, 8.8, Ar-H), 

6.85 (1H, d, J = 2.8, Ar-H), 6.97 (1H, d, J = 8 .8, Ar-H), 7,12 (1H, d, J = 7.3, Ar-H), 7.21-

7.36 (7H, m, Ar-H), 7.53 (1H, d, J = 7.3, Ar-H); 5C 0.0 (SiCHj), 15.1, 37.9, 48.0, 6 6 .6 ,

79,0, 115.3, 117.4, 118.4, 119.3, 124.8, 125.1, 127.4, 128.0, 128.4, 129.0, 129.7, 131.3,

136.4, 141,4, 145.0, 145.9, 150.4, 170.2 (C=0); MS (EI+) m z  459.3 (M),

4-Bcnzylamino-7-( methyl)-1 //-dibenzo|2,3-6| |6,7-/|dia/epin-2-one. (104)

o

H N N H

N

Method C. (108) (0.17 g, 0.37 mmol) and 1 M tetrabutylammonium fluoride/THF 

solution (5 mL) were refluxed for 19 h, producing the title compound as a yellow powder 

(0.05 g, 41 %); m.p. 198-201 °C; 5h 3.17 (3H, s, CH3), 4.28 (2H, d, J = 5.2 Hz, CLhPh),

6.25 (1H, br t, NH), 6.74 (1H, d, J = 7.6 Hz, Ar-H), 6.91 (1H, s, Ar-H), 6.96 (1H, d, J =

8.6 Hz, Ar-H), 6.99-7.02 (2H, m, Ar-H), 7.08-7.14 (2H, m, Ar-H), 7.24-7.25 (1H, m, Ar

id), 7.32-7.35 (4H, m, Ar-H), 10.09 (1H, s, NH); 5C 37.4, 46.6, 113.6, 116.4, 118.0, 118.2,

121.1, 123.1, 124.4, 126.6, 127.0, 127.7, 128.3, 132.3, 141.1, 142.4, 144.4, 145.4, 168.7 

(C=0); HRMS (ES+) m z 330.1598 [(M+H), 330.1601 calculated for C21H20N3O3].

2,3-D ihydro-7-nitro-l.//-4//-benzo[6,7:/]diazepin-5-one, (112)

o

NH

N
H

Method I. (73) (8 g, 30.76 mmol), ethylenediamine, (111) (2.77 g, 46.15 mmol) and DMA 

(3 mL) were heated at 100 °C for 3 h, produced the product as an orange powder (3.74 g, 

59 %); m.p. decomposed at 202 C; Sh 3.34 (2H, q, CH2), 3.49 (2H, q, CH2), 6.80 (1H, d, 

J = 9.2, Ar-H), 7.94 (1H, d, J = 2.9, 9.2, Ar-H), 8.13 (1H, t, NH), 8.36 (1H, t, NH), 8.73
     188
PhD Thesis, P Hamidi, 2006



Chapter 5. Experimental Procedures

(1H, d, J = 2.9, Ar-H); 5C 41.1 (CH2), 47.6 (CH2), 114.8, 118.7, 126.9, 131.6, 136.0,

152.1, 168.0 (C=0); HRMS (ES+) m 'z  209.2 [(M+H), 207.19 calculated for C ^ o ^ O a ] ,

2,3-Dibydro-7-nitro-4-(2-triniethylsilyIethoxymethyl)-l//-benzo[6,7-/]diazepin-5-one,

(113)

SEM

N
H

Method B. (112) (1.00 g, 4.83 mmol), sodium hydride (0.13 g, 5.31 mmol), SEM-C1 (1.21 

g, 7.24 mmol) in DMF (3.5 mL), followed by column chromatography (eluent 3:2 

petroFethyl acetate) yielded a yellow powder (0.45 g, 27 %); m.p. 157-160 °C; 8h 0.00 

(9H, s, SiCH3), 0.90 (2H, t, J = 8.1, Ctfc), 3.52-3.55 (4H, m, Clfc), 3.59-3.61 (2H, m, 

CH2), 4.91 (2H, s, NCH20 ) , 6.81 (1H, d, J = 9.3, Ar-H), 7.98 (1H, dd, J -  2.9, 9.3, Ar-H),

8.07 (1H, br t, NH), 8.64 (1H, d, J = 2.9, Ar-H); 8C 0.0, 18.7, 46.5, 48.3, 66.1, 78.1, 116.4,

119.8, 128.0, 132.6, 137.2, 152.6, 168.8 (C =0); MS (ES+) m/z 359.8 (M+Na).

2,3-Dihydro-l-(methyI)-7-nitro-4-(2-trimethylsilyIethoxymethyl)benzo[6,7-/] 

diazepin-5-one, (121)

SEM

N

CH3

Method G. (113) (0.41 g, 1.20 mmol), sodium hydride (0.03 g, 1.32 mmol), methyl iodide 

(0.31 g, 2.19 mmol) in DMF (3.5 mL), produced the desired product as a yellow oil (0.38 

g, 88 %); 5n 0.00 (9H, s, SiCH3), 0.91 (2H, t, J = 8.1, CH2), 3.00 (3H, s, CH3), 3.54 (2H, t, 

J = 8 .1, CH2), 3.56 (2H, t, J = 5.8, CH2), 4.89 (2H, s, NCH2O), 6.66-6.67 (1H, m, Ar-H),
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6.70-6.72 (2H, m, Ar-H); 5c 0.0, 18.8, 32.1, 56.2, 59.6, 66.2, 76.7, 118.5, 124.6, 128.5,

129.5, 139.0, 152.9, 169.6 (C O ) ;  MS (ES+) m/z 352.2 (M+H).

7-Am i no-2,3-(lihydro—l-( methyl )-4-(2-trimeth\lsilyk‘thoxy met hyl)l)enzo|6,7-/l

diazepin-5-one, (122)

SEM

N

c h 3

Method J. (121) (0.33 g, 0.93 mmol) in dichloromethane (150 mL), produced the product 

as a yellow oil (0.31 g, 100 %); 5H 0.00 (9H, s, SiCH3), 0.90 (2H, t, J = 8.1, CLh), 2.65 

(3H, s, CH3), 3.00 (2H, t, J = 5.8, CH^), 3.25-3.29 (2H, m, CU2I  3.54 (2H, t, J = 8.1, 

CH2), 4.85 (2H, s, NH2), 4.89 (2H, s, NCH2O), 6.66-6.67 (1H, m, Ar-H), 6.70-6.72 (2H, 

m, Ar-H); 5C 0.0, 18.9, 32.0, 56.2, 60.3, 65.6, 75.7, 116.1, 118.7, 119.7, 132.0, 138.2,

144.7, 172.1 (C O ) ;  MS (ES+) m i  344.2 (M+Na).

7,7-Dibenzylamino-2,3-dihydro-l-(methyl)-4-(2-trimethyIsilylethoxymethyl) 

benzo[6,7-/]diazepin-5-one (123), 7-Benzylamino-2,3-dihydro-l-(methyl)-4-(2- 

trimethylsilylethoxy methy l)benzo[6,7-/ ]diazepin-5-one, (124)

S E M

N

CH'

S E M

N

C H ,

Method K. (122) (0.50 g, 1.57 mmol), potassium carbonate (0.24 g, 1.72 mmol), benzyl 

bromide (0.27 g, 1.57 mmol) in DMF (3 mL), followed by column chromatography using 

4:1 petrofethyl acetate as eluent produced the dibenzylated compound (123) as a brown
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oil (0.25 g, 32 %), then increasing to 3.5:1.5 petrol:ethyl acetate yielded the desired 

compound (124) as a yellow oil (0.11 g, 17 %); data for compound 123: 5H 0.00 (9H, s, 

SiCH,), 0.90 (2H, t, J = 10.0, CH2), 2.68 (3H, s, CH3), 3.06 (2H, t, J = 5.0, CH2), 3.31- 

3.34 (2H, m, CH2), 3.53 (2H, t, J = 7.5, CHj), 4.66 (2x2H, s, CHzPh), 4.89 (2H, s, 

NCH20 ), 6.80 (2H, s, Ar-H), 6.85 (1H, s, Ar-H), 7.25-7.30 (6H, m, Ar-H), 7.34-7.37 (4H, 

m, Ar-H); §c 0,0, 18.8, 22.5,51.5, 55.8, 59.0, 60.1,65.6, 75.7, 127.8, 128.0, 128.1, 129,8,

130.1, 130.5, 130.8, 131,2, 132.9, 136.0, 137.4, 138.7, 140.2, 144.6, 164.5; MS (ES+) m/z 

500.3286 (M-H); data for compound 124: 5H 0.00 (9H, s, SiCH,), 0.90 (2H, t, J = 8.2, 

CH2), 2.65 (3H, s, CH,), 3.01 (2 H, t, J = 5.9, C tb), 3.29 (2H, m, CHh), 3.53 (2H, t, J =

8.2, CHj), 4.24 (2H, d, J = 6 . 1, Cfcb-Ph), 4.89 (2H, s, CH,), 6.09 ( 1H, t, J =6.1, NH), 6.67 

(1H, dd, J = 2.8, 8,7, Ar-H), 6,73-6.75 (2H, m, Ar-H), 7.23 (1H, t, J = 7.1, Ar-H), 7.31-

7.37 (4H, m, Ar-H); 5c 0.0, 18.9, 32.0, 46.3, 48.3, 60.3, 65.7, 75.7, 114.8, 116.7, 119.7,

128.0, 128.5, 129.6, 130.5, 132.7, 136.1, 138.3, 141.7, 145.0, 172.1 (C=0); MS (EI+) m/z

411.2 (M +).

7-Benzylamino-2,3-dihydro-l-(methyl)-47/-benzo[6,7-;/]diazepin-5-one, (120)

N H

N

CH.

Method C. (124) (0.11 g, 0.27 mmol) and 1 M tetrabutylammonium fluoride/THF 

solution (5 mL) were refluxed for 18 h. Column chromatography (eluent 4:1 ethyl 

acetate:petrol) produced the title compound as a yellow oil (0.03 g, 40 %); 8H 2.68 (3H, s, 

CH3), 2.95 (2H, t, J -  5.8, CH2), 3.05 (2H, q, J -  5.8, CH2), 4.23 (2H, d, J = 5.8, CH2Ph),

6.02 (1H, t, J = 5.8, NH), 6.64 (1H, dd, J = 2.9, 8.7, Ar-H), 6.71 (1H, s, Ar-H), 6.74 (1H, 

d, J = 2.9, Ar-H), 7.23 (1H, t, J = 7.2, Ar-H), 7.99 (1H, t, J -  5.8, CONH), 7.31-7.37 (4H, 

m, Ar-H); 5C 46.9, 48.6, 59.7, 113.3, 1 15.1, 118.5, 126.5, 127.1, 128.2, 128.7, 130.7,

137.4, 142.4, 142.6, 171.6 (C =0); HRMS (EI+) m/z 282.1599 [(M+H), 282.1601 

calculated for Ci7H2oN30 ].

PhD Thesis, P Hamidi, 2006
191



Chapter 5. Experimental Procedures

l-(Benzyl)-2,3-dihydro-7-nitro-4-(2-trimethylsilylethoxymethyl)benzo[6,7-/]diazepin-

5-one, (114)

o
S E M

Method E. (113) (0.27 g, 0.80 mmol), benzylbromide (0.41 g, 2.40 mmol), potassium 

carbonate (0.55 g, 4.00 mmol) and DMF (3 mL) were heated at 150 °C for 20 h, followed 

by column chromatography (eluent 7:3 petrofethyl acetate) to yield the desired compound 

as a yellow oil (0.11 g, 32 %); 5H 0.00 (9H, s, SiCH3), 0.89 (2H, t, J = 8.0, CH2), 3.54 

(2H, t, J = 8.0, CH2), 3.65 (2H, br t, CHz), 3.70 (2H, br t, CH2), 4.69 (2H, s, Ph-CH^, 4.93 

(2H, s, NCH2O), 6.95 (1H, d, J = 9.3, Ar-H), 7.24-7.28 (3H, m, Ar-H), 7.34-7.37 (2H, m, 

Ar-H), 8.07 (1H, d, J = 9.3, Ar-H), 8.45 (1H, s, Ar-H), 8C 0.0, 18.7, 45.6, 57.3, 58.1, 66.1,

77.0, 119.0, 124.1, 128.2, 128.6, 129.2, 130.1, 130.3, 137.7, 139.0, 152.2, 169.4 (C=0); 

MS MS (ES+) m/z 378.2 [(M-Si(CH3)3+Na)].

l-(Benzyl)-2,3-dihydro-7-nitro-l/f-benzo[6,7-/]diazepin-5-one, (116)

Method C. (114) (0.31 g, 0.73 mmol) and 1 M tetrabutylammonium fluoride/THF

solution (5 mL) were refluxed for 20 h, followed by column chromatography (eluent 1:1

petrofethyl acetate) to produce the title compound as a yellow powder (0.06 g, 28 %);

m.p. 199-201 °C; 8H 2.94-2.96 (2H, m, Q fc), 3.42 (2H, br t, CH2), 4.50 (2H, s, ClfcPh),
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6.64 (1H, d, J = 9.4, Ar-H), 7,00-7.06 (2H, m, Ar-H), 7.12-7.15 (3H, m, Ar-H), 7.79 (1H, 

dd, J = 2.8, 9.4, Ar-H), 8.27 (1H, br t, NH), 8.39 (1H, d, J = 2.8, Ar-H); 8C 18.1, 56.6,

57.2, 117.0, 120,9, 126.6, 126.8, 127.2, 128.8, 129.4, 136.4, 137.1, 151.4, 168.3 (C=0); 

MS (ES+) m - 320.1 (M+Na).

l-(Cyclobutylmethyl)-2,3-dihydro-7-nitro-4-(2-trimethylsilylethoxymethyl)benzo 

[6,7-/]diazepin-5-one, (115)

SEM

N

Method E. (113) (0.20 g, 0.59 mmol), cyclobutylmethyl bromide (0.53 g, 3.56 mmol), 

potassium carbonate (0.41 g, 2.96 mmol) and DMF (3 mL) were heated at 150 C for 22 h, 

followed by column chromatography (eluent 9:1 petrofethyl acetate) to yield the desired 

compound as a yellow oil (0.10 g, 41 %); 5H 0.00 (9H, s, SiCH3), 0.91 (2H, t, J = 7.5, 

CH2), 1.71-1.79 (2H, m, Alkyl-H), 1.81-1.87 (2H, m, Alkyl-H), 2.01-2.03 (2H, m, Alkyl- 

H), 2.65 (1H, t, J = 7.5, CH2), 3.46 (2H, d, J = 6 .8, CH2), 3.54 (2H, t, J = 7.5, CH2), 3.58- 

3.61 (4H, m, CH2), 4.91 (2H, s, NCH2O), 7.06 (1H, d, J = 9.0, Ar-H), 8.12 (1H, d, J = 9.0, 

Ar-H), 8.41 (1H, s, Ar-H); 5C 0.0, 18.8, 19.4, 27.6, 32.01, 34.5, 45.8, 59.2, 66.2, 77.0,

118.9, 124,4, 128.2, 130.1, 138.7, 152.3, 169.4(C=0); MS (ES+) rn'z 428.2 (M+Na).
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l-(Cyclobutylmethyl)-2,3-dihydro-7-nitro-4//-benzo[6,7-/]diazepin-5-one, (117)

o

N H

N

Method C. (115) (0.90 g, 2.20 mmol) and 1 M tetrabutylammonium fluoride/THF 

solution (4 mL) were refluxed for 24 h, followed by column chromatography (eluent 2:3 

petrof ethyl acetate) to produce the title compound as a yellow oil (0.1 g, 17 %); 8H 1.71- 

1.90 (6 H, m, Alkyl-H), 1.97-2.02 (2H, m, Alkyl-H), 2.65-2.70 (1H, m, Alkyl-H), 3.52 

(2H, d, J = 7.0, CH2), 3.60 (2H, br t, CH2), 7.02 (1H, d, J = 9.5, Ar-H), 8.07 (1H, d, J =

9.5, Ar-H), 8.41 (1H, br t, NH), 8.64 (1H, s, Ar-H); 5C 18.1, 20.4, 26.2, 33.3, 57.3, 58.4,

116.7, 120.6, 126.6, 129.7, 136.6, 151.3, 168.1 (C=0); MS ( E S > / z  298.1 [(M+Na).

7-Amino-l-(cyd°butylmethyl)-2,3-dihydro-4//-benzo[6,7-/]diazepiii-5-one, (119)
o

N H

N

Method J. (117) (0.026 g, 0.094 mmol) in methanol (5 mL) produced the product as a 

brown oil (0.023 g, 99 %); SH 1.60-1.67 (2H, m, Alkyl-H), 1.77-1.84 (2H, m, Alkyl-H), 

1.95-1.97 (2H, m, Alkyl-H), 2.46-2.49 (1H, m, Alkyl-H), 2.90-2.92 (2H, m, CH2), 2.98-

3.02 (4H, m, CH2), 4.80 (2H, s, NH2), 6.62 (1H, d, J = 8 .6 , Ar-H), 6.67-6.70 (2H, m, Ar

id), 7.90 (1H, br t, NH); 8C 18.1, 22.6, 26.4, 33.5, 57.9, 58.3, 114.4, 116.8, 119.8, 131.6,

136.7, 143.3, 171.7 (C O );  HRMS (ESf) m/z 268.1417 [(M+Na), 268.1420 calculated for 

Ci4Hi9ON3Na].
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Methanesulfonic acid 2,4,6-trichlorophenoloate (136)

o

o
Cl Cl

-

Cl

Method L. 2,4,6-Trichlorophenol (2.00 g, 10.13 mmol) and methanesulfonyl chloride 

(2.32 g, 20.26 mmol) in tetrahydrofuran (45 mL), followed by the addition o f 

triethylamine (TEA) (3.07 g, 30.39 mmol) produced the desired product as a brown solid 

(2.78 g, 100 %); 8„ 3.71 (3H, s, CH3), 7.90 (2H, s, Ar-H); 5C 40.9, 129.4, 130.1, 132.3, 

141.6 (C-O).

Trifluoromethanesulfonic acid 2,4,6-trichlorophenoloate (139)

Method L. 2,4,6-Trichlorophenol (1.50 g, 7.60 mmol) and trifluoromethanesulfonyl 

chloride (1.92 g, 11.40 mmol) in tetrahydrofuran (20 mL), followed by the addition o f 

triethylamine (TEA) (2.31 g, 22.79 mmol) produced the desired product as a clear oil

o

VCF3

Cl

(2.50 g, 100%); 8h 8.10 (2H, Ar-H); 8c 119.1, 128.8, 130.2, 134.4, 140.6.
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Trifluoromethanesulfonic acid 3,5-dichlorophenoloate (143)

Method L. 3,5-Dichlorophenol (1.50 g, 9.20 mmol) and trifluoromethanesulfonyl chloride 

(3.10 g, 18.40 mmol) in tetrahydrofuran (20 mL), followed by the addition o f  

triethylamine (TEA) (2.79 g, 27.60 mmol). The required product was obtained using a  

column chromatography (eluent 100% petrol) as a clear oil (1.63 g, 60 %); 6H 7.83 (2H, s, 

Ar-H), 7.86 (1H, s, Ar-H); 6C 30.63, 116.85, 119.40, 121.28, 129.31, 135.22, 149.15.

3,4-Dihydro-5-(sulfonic acid dimethylamide)-l//-benzo[2,3-6]diazepin-2-one, (129)

o
H / /
N-—  / /

N '"

0 = S = 0

N

H3C c h 3

To a solution of 3,4-dihydro-l//-5//-benzo[2,3-£]diazepin-2-one, (26) (0.50 g, 3.08 

mmol) and jV,Wdimethylsulfamoyl chloride (0.49 g, 3.39 mmol) in DMF (4 mL) under 

nitrogen was added aluminium chloride (A1C13) (0.41 g, 3.08 mmol). The resultant 

solution was stirred overnight at room temperature. Water (50 mL) was added and the 

organic phase was extracted with ethyl acetate (3 x 50 mL), dried (MgSCL), filtered and 

evaporated to leave the title compound as an off-white solid (0.1 g, 12 %); m.p. 142-145 

°C; 8h 2.40 (2H, t, J = 6.9, CH2), 2.69 (6H, s, N-CH3), 3.96 (2H, t, J = 6.9, CH2), 7.10 

(1H, d, J = 7.9, Ar-H), 7.20 (1H, t, J = 6.9, Ar-H), 7.34 (1H, t, J = 6.9, Ar-H), 7.47 (1H, d, 

J = 6.9, Ar-H), 9.85 (1H, s, NH); 5C 33.3, 37.6 (N-CH3), 51.0, 122.5, 125.0, 128.5, 130.1,
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131.5, 137.7, 171.7 (C O ) ;  HRMS (ES+) m/z 287.1169 [(M+NH4), 287.1172 calculated 

for C ,1H,903N4S].

3,4-Dihydro-5-(trifluoromethanesulfonyI)-l//-benzo[2,3-6]diazepin-2-one, (132)

,0

o = s = o

c f3

To a solution of 3,4-dihydro-l//-5//-benzo[2,3-6]diazepin-2-one (26) (0.50 g, 3.08 mmol) 

and methanesulfonyl chloride (0.35 g, 3.08 mmol) in THF (20 mL) under nitrogen was 

added tnfluoroacetic anhydride (0.65 g, 0.44 mmol). The resultant solution was stirred 

overnight at room temperature. W ater (50 mL) was added and the organic phase was 

extracted with ethyl acetate (3 x 50 mL), dried (M gS04), filtered and evaporated to leave 

the title compound as an off-white solid (0.49 g, 54 %); m.p. 138-140 °C; Sh 2.35 (1H, dd, 

J = 5.1, 13.8, CH), 2.56-2.63 (1H, m, CH), 3.72 (1H, q, J = 7.4, CH), 4.64 (1H, dt, J = 5.5, 

CH), 7.17 (1H, d, J = 7.9, Ar-H), 7.27 (1H, t, J = 7.9, Ar-H), 7.41 (1H, d, J = 7.9, Ar-H),

7.47 (1H, t, J = 7.9, Ar-H); 8C 32.0, 49.3, 114.7, 122.5, 125.1, 129.2, 129.7, 130.4, 137.3, 

171.0 (C=0); MS (ES+) m z 294.1 (M).

M ethyl-l//-indoIe-2-carboxylate (147) (Jorgensen et al., 2005)

OMe

O

Method H. Indole-2-carboxylic acid (2.00 g, 12.41 mmol), methanol (50 mL) and 

concentrated sulphuric acid (2 mL), produced the product as a yellow powder (2.08 g, 95 

%); m.p. 150-152 C; 5H3.89 (3H, s, CH3), 7.09 (1H, t, J = 7.6, Ar-H), 7.17 (2H, s, Ar-H),
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7.28 (1H, t, J = 7 6 , Ar-H), 7.47 (1H, dd, J = 0.6, 8.3, Ar-H), 11.95 (1H, br s, NH); 8C

52.1, 108.1, 112.9, 120.5, 122.4, 125.0, 127.1, 127.4, 137.7, 162.1 (C=0); M S(ES') 173.9 

m/z (M-H).

Methyl 3-brom o-l//-indole-2-carboxylate (148) (Barker et al. , 1999)

Br

O M e

O

To a suspension o f m ethyl-l//-indole-2-carboxylate (147) (2.00 g, 11.46 mmol) in DMF 

(8 mL) under nitrogen, a solution o f N-bromosuccinamide (NBS) (2.24 g, 12.58 mmol) in 

DMF (2 mL) was added dropwise and the reaction was left stirring overnight. Ice was 

added, and the resulting precipitate was filtered and washed with water to produce the title 

compound as an off-white solid (2.76 g, 95 %); m.p. 148-150 °C; 5h 3.92 (3H, s, CH3), 

7.21 (1H, t, Ar-H), 7.37 (1H, t, J = 7.5, Ar-H), 7.51 (1H, d, J = 8.3, Ar-H), 7.56 (1H, d, J 

= 8.3, Ar-H), 12.31 (1H, s, NH); 8C 52.4, 96.4, 113.4, 120.5, 121.6, 124.1, 126.4, 127.1,

136.2, 160.9 (C =0); MS (ES ) m/z 251.9 (M-H).

1-Benzyl indole-2-carboxylic acid (152) (Olgen et al., 2001)

.OH

M ethyl-l//-indole-2-carboxylate (147) (3.09 g, 17.40 mmol) was dissolved in THF (40 

mL) under nitrogen and cooled to 0 C. Sodium hydride (1.4 g, 58.33 mmol) was added 

slowly over a period o f 10 min and stirred for 1 h. Benzyl bromide (4.54 g, 26.54 mmol) 

was added dropwise to the mixture, which was then left to stir for a further 3h. Distilled
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water was added to destroy the sodium hydride and the solvents were evaporated. The 

residue was dissolved in MeOH (30 mL) and NaOH (4 M, 30 mL). The mixture was 

stirred at 80 C for 6h. After the mixture had cooled to room temperature the solvents 

were evaporated and water was added to dissolve the remaining mixture. This was 

followed by dropwise addition o f concentrated HC1 to pH2, and the resultant solution was 

extracted with ethyl acetate, and dried over MgSCL. The solvent was evaporated under the 

reduced pressure, producing the desired product as a pale yellow solid (4.74 g, 81 %); 

m.p. 125-148 C; 8n 5.89 (2H, s, CH2), 7.03 (1H, d, J = 7.7, Ar-H), 7.07-7.31 (4H, m, Ar

il), 7.34 (1H, s, Ar-H), 7.45 (1H, d, J = 8.2, Ar-H), 7.54 (1H, d, J = 8.2, Ar-H), 7.65 (1H, 

d, J = 8.2, Ar-H), 7.72 (1H, d, J = 8.2, Ar-H), 12.98 (1H, br s, COOH); 8C 47.2, 110.8,

111.6 , 121.0 , 122.7, 125.3, 125.9, 126.6, 127.3, 128.5, 128.8, 139.0, 139.3, 163.3 (C=0); 

M S(ES') m/z 249.8 (M -l).

(2-Benzylamine)-(l/f-indolo-2-carboxamido)ethyl amine (156)

o

NH

jV-Benzylethylenediamine (155) (0 .20  g, 1.33 mmol) and 4-dimethylaminopyridine 

(DMAP) (0.12 g, 0.98 mmol) were dissolved in dichloromethane (20 mL) at 0 C. To this 

was added indole-2-carboxylic acid (0.2 g, 1.24 mmol) in DCM (2 mL), then l-(3- 

dimethylaminopropyl)-3-ethyl carbodiimide.HCl (EDCI) (0.26 g, 1.36 mmol) in DCM (2 

mL) was added. The mixture was stirred for 4 h at 0 C, then allowed to reach to room 

temperature, and stirred for a further 24 h. The solvent was evaporated and water was 

added. The precipitate was filtered and washed with water, producing the title compound 

as a white solid (0.064 g, 18 %); m.p. 250-253 C; 5h 3.66 (4H, s, 2 x CH2), 4.99 (2H, br s, 

CH2-Ph), 7.08 (1H, t, J = 7.4, Ar-H), 7.13 (1H, s, Ar-H), 7.22 (1H, t, J = 7.4, Ar-H), 7.34- 

7.51 (6H, m, Ar-H), 7.66 (1H, d, J = 8.1, Ar-H), 8.73 (1H, s, NH), 11.48 (1H, s, NH); 5C

14.1, 20.2, 59.7, 102.5, 112.1, 112.3, 119.7, 121.5, 123.3, 123.4, 127.1, 127.3, 128.7,

129.6, 131.5, 135.9, 136.4, 161.4; MS (ES+) m/z 294.2 M+H).
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Ethyl 5-chloro-l/J-indole-2-carboxylate (160) (Rydon and Tweddle, 1955)

ci

.OEt

O

Method H. 5-Chloroindole-2-carboxylic acid (1.00 g, 5.11 mmol), ethanol (30 mL) and 

concentrated sulphuric acid (2 mL), produced the product as a brown powder (1.13 g, 99 

%); m.p. 167-170 C; 5„ 1.37 (3H, t, J = 7.1, CH3), 4.38 (2H, q, J = 7.1, CH^, 7.15 (1H, s, 

Ar-H), 7.29 (1H, dd, J = 2.0, 8.8  Hz, Ar-H), 7.50 (1H, d, J = 8 .8, Ar-H), 7.76 (1H, d, J =

2.0, Ar-H), 12.12 (1H, s, NH); 5C 14.6, 61.0, 107.5, 114.6, 121.4, 125.0, 125.2, 128.1,

129.2, 136.1, 161.4.

Ethyl 3-brom o-5-chloro-l//-indole-2-carboxylate (161) (Hiremath et al., 1984)

ci

OEt

O

To a suspension of ethyl-l//-5-chloroindole-2-carboxylate (160) (1.00 g, 4.80 mmol) in 

DMF (18 mL) under nitrogen, a solution o f TV-bromosuccinamide (NBS) (0.94 g, 5.28 

mmol) in DMF (2 mL) was added dropwise to the reaction and the reaction was left 

stirring overnight. Ice was added, and the resulting precipitate was filtered and washed 

with water to produce the title compound as an off white powder (1.40 g, 100 %); m.p. 

190-194 °C; 8h 1.38 (3H, t, J = 7.1, CH3), 4.40 (2H, q, J -  7.1, CH2), 7.38 (1H, dd, J = 2.0,

8 .8 , Ar-H), 7.53 (1H, d, J = 8 .8 , Ar-H), 7.56 (1H, d, J = 2.0, Ar-H), 12.46 (1H, s, NH); 5C

14.5,61.4, 95.3, 115.4, 119.4, 125.8, 126.2, 126.6, 128.1, 134.6, 160.2.
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6-Am ino-l//-7//-dibenzo[2,3-6][6,7:/]diazepiii-2-oiie, (168) (Lubisch et al., 2003)

o

N H

N
H

N H 2

Method J. (167) (0.30 g, 1.18 mmol) in methanol (120 mL) produced the product as a  

white solid (0.27 g, 100 %); m.p. 206-208 °C; 8H 5.23 (2H, s, NH2), 6.66  (1H, s, NH), 6.71 

(1H, t, J = 7.5, Ar-H), 6.78 (1H, d, J = 7.5, Ar-H), 6.89-6.98 (5H, m, Ar-H), 9.85 (1H, s, 

CONH); 6C 118.2, 119.4, 121.0, 121.4, 121.9, 124.0, 124.2, 125.9, 131.2, 135.8, 138.4,

140.9, 168.9 (C=0); MS (ES+) m z 248.1 (M+Na).

l-(4 ’-Methoxyphenyl)benzo[6]imidazo[4,5,l-./,A] [l,4]benzodiazepin-6(7//)-one (172)

(Lubisch el al., 2003)

o

N H

O M e

Method M. (168) (0.25 g, 1.13 mmol), sodium hydrogen sulfite (0.17 g, 1.66 mmol), 4-

methoxybenzaldehyde (170) (0.15 g, 1.13 mmol) and DMA (5 mL), were heated at 140 C

for 20 h producing the product as a yellow solid (0.19 g, 50 %); m.p. 199-201 C; 8h 3.82

(3H, s, CH3), 6.68 (1H, d, J -  8 .6 , Ar-H), 6.88  (1H, t, J = 7.8, Ar-H), 7.06 (2H, d, J -  8 .6 ,

Ar-H), 7.21 (1H, t, J = 7.8, Ar-H), 7.36 (1H, d, J = 7.8, Ar-H), 7.41 (1H, t, J = 7.8, Ar-H),

7.74 (2H, d, J = 8 .6 , Ar-H), 7.88 (1H, d, J = 7.00, Ar-H), 7.93 (1H, d, J = 7.8, Ar-H),

10.25 (1H, s, NH), 5c 55.3 (OCH3), 114.4, 117.9, 122.4, 123.5, 123.8, 124.4, 125.2,

           201
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125.7, 127.1, 128.6, 130.5, 130.6, 130.7, 139.7, 142.9, 154.3, 161.0, 165.5 (C=0); HRMS 

(ES+) m/z 342.1240 [(M+H), 342.1237 calculated for C2|H 160 2N3]; CHN for 

C2]HlsN3O2.0.4 H20  found C 72.31 %, H 4.53 %, N 11.70 %, calculated C 72.38 %, H 

4.70% , N 11.95%.

I-(3'-Methoxy|>henvl)benzo|6|irnida/o|4,5,I-/,A| | l,4|benzodiaze|>in-6(7//)-one (171)

(Lubisch et al., 2003)

o

N H

O M e

Method M. (168) (0.44 g, 1.96 mmol), sodium hydrogen sulfite (0.30 g, 2.89 mmol), 3- 

methoxybenzaldehyde (169) (0.24 g, 1.96 mmol) and DMA (6 mL), were heated at 140 °C 

for 20 h producing the product as an orange/yellow solid (0.19 g, 50 %); m.p. 188-194 °C; 

§H 3.81 (3H, s, CH3), 6.69 (1H, d, J = 8.2, Ar-H), 6.91 (1H, t, J = 7.7, Ar-H), 7.13 (1H, dd, 

J -  1.78, 8.2, Ar-H), 7.22 (1H, t, J = 7.7, Ar-H), 7.30 (1H, d, J = 7.7, Ar-H), 7.38 (1H, d, J 

-  8.2, Ar-H), 7.41 (1H, d, J -  2.0, Ar-H), 7.42 (1H, s, Ar-H), 7.46 (1H, t, J = 7.7, Ar-H), 

7.93 (lH ,d, Ar-H), 7.99 (1H, d, Ar-H), 10.24 (1H, s, NH); 6C 55.3 (OCH3), 114.1, 116.4,

118.0, 121.5, 123.7, 124.0, 124.3, 125.5, 126.2, 127.2, 130.0, 130.1, 130.5, 131.6, 139.5,

142.8, 154.1, 159.4, 165.3 ( C O ) ;  HRMS (ES+) m/z 342.1233 [(M+H), 342.1237 

calculated for C2iHi602N3],
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6-Nitro-9-carboxy-l//-7//-dibenzo[2,3-6][6,7-/]diazepin-2-one (184)

o

N H

N
H

n o 2

C O O H

Method I. (166) (0.50 g, 1.92 mmol), 3,4-diaminobenzoic acid (0.56 g, 3.84 mmol) and 

DMA (3 mL), were heated at 100 C for 13 h followed by recrystallization from hot 

methanol, produced the product as a dark brown solid (0.15 g, 26 %); m.p. > 360 °C; 5h 

7.15 (2H, m, Ar-H), 7.60 (1H, d, J = 1.5, Ar-H), 7.64 (1H, dd, J = 1.7, 8.2, Ar-H), 8.06 

(1H, dd, J = 1.4, 7.7, Ar-H), 8.21 (1H, dd, J = 1.6, 8.0, Ar-H), 8.84 (1H, s, NH), 10.65 

(1H, s, NH), 12.94 (1H, s, COOH); 5C 121.0, 121.2, 123.9, 126.1, 126.9, 127.4, 129.9,

134.9, 135.3, 136.8, 138.7, 144.2, 166.2 ( C O ) ,  166.5 (C=0); MS (CL) m/z (299.2) (M).

6-A m ino-9-carboxy-l//-7//-dibenzo[2,3-6][6,7-/)diazepin-2-one (185)

o

N H

N
H

N H 2

C O O H

Method J. (184) (1.70 g, 5.68 mmol) in methanol (150 mL) produced the product as a 

dark brown solid (1.08 g, 71 %); m.p. > 360 C; 8h 5.34 (2H, br s, NH?), 6.73 (1H, t, J =

7.7 Hz, Ar-H), 6.60 (1H, dd, J = 1.2, 7.7, Ar-H), 6.85 (1H, s, Ar-H), 6.90 (1H, dd, J = 1.2,

7.7, Ar-H), 7.04 (1H, d, J = 8.2, Ar-H), 7.51 (1H, dd, J = 1.6, 8.2, Ar-H), 7.77 (1H, s, 

NH), 10.14 (1H, s, CONH), 12.73 (1H, br s, COOH); 6C 118.5, 119.4, 120.6, 122.2,

122.5, 124.5, 125.7, 126.4, 135.0, 135.5, 138.5, 140.2, 166.9(C=0), 168.8(C=0).
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l-(3 ’-Methoxyphenyl)benzo[£]imidazo[4,5,l-y&]-10-carboxy[l,4]benzodiazepm-
6(7//)-one (186)

o

N H

C O O H

Method M. (185) (0.78 g, 2.99 mmol), sodium hydrogen sulfite (0.45 g, 4.35 mmol), 3- 

methoxybenzaldehyde (0.35 g, 2.90 mmol) and DMA (6 mL) were heated at 140 C for 8 

h. The precipitate produced was recovered by filtration and dried under vacuum, forming 

a pale brown solid (1.11 g), which was recrystallized from methanol. This was left for 2 h 

at which time the precipitate formed was recovered by filtration. This was again dissolved 

using ethanol and left to cool, yielding a white, papery, translucent solid; m.p. 330-334 °C; 

SH 3.78 (3H, s, CH3), 7.12 (1H, dd, J = 2.8, 8.3, Ar-H), 7.29 (1H, s, Ar-H), 7.31 (1H, d, J 

= 1.9, Ar-H), 7.41 (1H, d, J = 8.3, A-H), 7.44 (1H, t, J = 1.9, Ar-H), 7.46 (1H, s, Ar-H),

7.48 (1H, s, Ar-H), 7.73 (1H, dd, J = 2.1, 8.3, Ar-H), 7.94 (1H, d, J = 7.0, Ar-H), 8.00 

(1H, d, J = 7.7, Ar-H), 10.52 (1H, s, NH), 12.68 (1H, s, COOH); 8C 55.3 (OCH3), 113.9,

116.6, 117.6, 121.5, 123.4, 123.8, 124.3, 126.2, 126.4, 126.8, 128.0, 129.4, 130.3, 131.3,

134.6, 139.0, 142,8, 154.0, 159.5, 164.8 (C =0), 165.6 (C=0); HRMS (ES+) rn'z 386.1141 

[(M+H), 386.1135 calculated for C 22H16N j0 4].
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l-(4 ’-Hydroxypheiiyl)benzo[&]imidazo[4,5,l-yA;]-10-carboxy[l,4]benzodiazepin- 

6(7//)-one (188)

o

N H

C O O H

O H

Method M. (185) (0.24 g, 0.88 mmol), sodium hydrogen sulfite (0.14 g, 0.88 mmol), 4- 

hydroxybenzaldehyde (0.12 g, 2.90 mmol) and DMA (5 mL) were heated at 140 °C for 13 

h. Recrystallization (hot methanol) formed the product as a beige amorphous solid (0.015 

g, 9 %); m.p. > 360 °C; 8H 6 .88  (2H, m, J = 8.4, Ar-H), 7.37 (1H, s, Ar-H), 7.43 (2H, dd, J 

= 5.4, 8.0, Ar-H), 7.64 (2H, m, J = 8.4, Ar-H), 7.73 (1H, dd, J = 1.20, 8.4, Ar-H), 7.88 

(1H, d, J = 7.7, Ar-H), 7.94 ( 1H, d, J = 7.7, Ar-H), 10.15 (1H, br s, OH), 10.51 (1H, s, 

NH). 12.81 (1H, s, COOH); 5C 115.9, 117.5, 120.5, 123.6, 123.7, 123.9, 125.6, 126.5,

126.7, 127.9, 130.2, 130.8, 134.6, 139.3, 143.0, 154.8, 159.6, 165.1, 165.7, HRMS (ES+) 

m z 372.0979 [(M+H), 372.0977 calculated for C 2 1 H 1 4 N 3 O 4 ] .

4-Fluoro-l,2-phenylenediamine (178) (Grivas and Olsson, 1985)

n h 2

Method J. 4-Fluoro-2-nitrophenyl amine (1.00 g, 6.41 mmol), Raney Nickel (catalytic 

amount which replaced 10 % Pd/C (100 mL)) produced the product as a brown solid (0.71 

g, 88 %); m.p 81-83 °C; 5,, 4.25 (2H, br s, NH2), 4.73 (2H, br s, NH2), 6.13 (lH ,d t, J =

2.9, 8.6 Ar-H), 6.32 (1H, dd, J -  2.9, 11.0, Ar-H), 6.45 (1H, dd, J -  7.2, Ar-H); 8C 101.2 

(dd, J = 23.3, 142.8, C-F), 114.4, 130.9, 136.8, 154.7, 156.5.
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6-Nitro-9-fluoro-l//-7//-dibenzo[2,3-6] [6,7-/]diazepm-2-one (179)

o

N H

N
H

n o 2

F

Method I. Methyl 2-bromo-3-nitrobenzoate (166) (2.20 g, 8.46 mmol), 4-fluoro-l,2- 

phenylenediamine (2.00 g, 15.86 mmol) and DMA (5 mL) were heated at 100 °C for 12 h. 

Recrystallization from hot methanol yielded a dark brown solid (2.32 g, 100 %); m.p. 

decomposed at 320 C; 8H 6.87-6.93 (2H, ddd, J = 2.9, 8.2, 11.1, Ar-H), 7.06 (1H, dd, J =

7.6, Ar-H), 7.15 (1H, t, J = 8.2, Ar-H), 8.06 (1H, dd, J -  1.6, 7.6, Ar-H), 8.21 (1H, dd, J =

1.6, 8.2, Ar-H), 8.71 (1H, s, NH), 10.47 (1H, s, CONH); 5C 109.4 (dd, J = 23.9, 422.6, C- 

F), 121.1, 124.1, 127.4, 129.9, 132.0, 132.2, 133.5, 138.4, 138.7, 144.8, 158.1, 160.0,

166.3 (C O ) ;  MS (CL) m z 273.2 (M).

6-Am ino-9-fluoro-l//-7//-dibenzo[2,3-£][6,7-;/]diazepin-2-one (181)

o

N H

N
H

N H 2

F

Method J. (179) (2.00 g, 7.32 mmol) in methanol (170 mL) produced the product as a 

light brown solid (1.00 g, 56 %); m.p 232-235 C; 5m 5.26 (2H, br s, N H A  6.65 (1H, s, 

NH), 6.72 (1H, dd, J = 7.7, Ar-H), 6.78-6.83 (3H, m, Ar-H), 6.90 (1H, dd, J = 1.5, 7.6, 

Ar-H), 7.12-7.15 (1H, m, Ar-H), 9.97 (1H, s, CONH); 5C 108.8 (dd, J = 23.8, 356.7, C-F),

118.4, 119.4, 122.1, 122.4, 125.9, 132.6, 135.7, 137.1, 138.6, 157.1, 159.0, 168.8 (C O );  

MS (ES+)w  z 242.1 (M-H).
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l-(3 ,-Methoxyphenyl)benzo[6]imidazo[4,5,l-./&]-10-fluorodibenzodiazepm-6(7//)-one

(182)

O

N H

O M e

Method M. (181) (0.60 g, 2.47 mmol), sodium hydrogen sulfite (0.39 g, 2.47 mmol), 3- 

methoxybenzaldehyde (0.34 g, 2.47 mmol) and DMA (4 mL) were heated at 140 °C for 11 

h produced the product as a light brown solid (0.89 g, 100 %); m.p. 239-242 °C; 5h3.81 

(3H, s, O C H 3), 6.70 (1H, dd, J = 5.6, 9.2, Ar-H), 6.81 (1H, t, J = 7.6, Ar-H), 7.13 (1H, dd, 

J = 2.6, 8.1, Ar-H), 7.20 (1H, dd, J = 2.9, 9.9, Ar-H), 7.29 (1H, dd, J = 0.9, 7.6, Ar-H), 

7.41-7.47 (3H, m, Ar-H), 7.94 (1H, dd, J = 0.9, 7.6, Ar-H), 8.00 (1H, dd, J = 0.9, 7.6, Ar

i l) ,  10.31 (1H, s, NH ); 5C 55.3, 110.6 (dd, J 24.5, 147.8, C-F), 114.1, 116.5, 117.6, 121.5,

123.9, 124.2, 126.2, 126.5, 127.2, 130.3, 131.3, 132.4, 139.1, 142.7, 154.0, 159.1, 159.4,

161.0, 165.1 (C=0); HRMS (ES+) m/z 360.1144 [(M+H), 360.1143 calculated for 

C21H15FN3O2]; C H N  for C21H14FN3O2.O.4 H20  found C 68.58 %, H 3.86 %, N 11.31 %, 

calculated C 68.86  %, H 4.25 %, N 11.36 %.

6,9-D initro-l//-7f/-dibenzo[2,3-ft][6,7-/]diazepin-2-one (191)

o

N H

N
H

N 0 2

n o 2

Method I. Methyl 2-bromo-3-nitrobenzoate (166) (1.00 g, 3.85 mmol), 4-nitro-l,2- 

phenylenediamine (1.18 g, 7.69 mmol) and DMA (3 mL) were heated at 100 C for 14 h, 

followed by recrystallization from hot methanol yielding a dark brown solid (0.58 g, 50
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%); m.p. decomposed at 190 °C; 8H 7.18-7.25 (2H, m, Ar-H), 7.93 (1H, s, Ar-H), 7.97 

(1H, d, J = 8.3, Ar-H), 8.05 (1H, d, J = 7.5, Ar-H), 8.21 (1H, d, J = 8.3, Ar-H), 8.91 (1H, 

s, NH), 10.89 (1H, s, CONH); 8C 118.27, 120.32, 121.21, 121.66, 127.08, 130.06, 137.00, 

137.33, 138.43, 139.03, 143.21, 143.34, 165.99 (C=0); MS (ES') m !z  323.7 (M+Na).

4-M ethoxy-l,2-phenylenediamine (193) (Vass et al., 2001)

Method J 4-Methyl-2-nitrophenylamine (1.50 g, 9.86 mmol) in methanol (100 mL) 

produced the product as a purple solid (1.21 g, 100 %); m.p 84-86 °C; 8h 3.40 (3H, s, 

CH,), 4.17 (2H, s, NHj), 4.32 (2H, s, NHj), 6.20 (1H, dd, J = 1.8, 7.7, Ar-H), 6.34 (1H, s, 

Ar-H), 6.40 ( lH ,d ,J  = 7.7, Ar-H); 5C 20.5, 114.7, 115.3, 117.6, 125.6, 132.3, 135.0.

6-Mtro-l 0-ni ethoxy-1 //-7 //-d  iben/o [2,3-6] j6,7-/]dia/epin-2-one (194)

o

N H

O M e
N
H

n o 2

Method I. Methyl 2-bromo-3-nitrobenzene (166) (1.25 g, 4.81 mmol), 4-methoxy-l,2- 

phenylenediamine. 2HC1 (193) (2.03 g, 9.61 mmol), triethylamine (1.46 g, 14.42 mmol) 

and DMA (4 mL) were heated at 100 C for 18 h. The solution was cooled, washed with 

hydrochloric acid (15 mL, 1 M) and recrystallized from hot methanol to produce the 

product as a dark brown solid (1.20 g, 88 %); m.p. 249-252 C; 8h3.70 (3H, s ,  CH 3 ), 6.64-

6.66 (2H, m, Ar-H), 6.95 (1H, dd, J = 1.6, 7.6, Ar-H), 7.11 (1H, t, J = 8.1, Ar-H), 8.06 

(1H, dd, J -  1.6, 7.6, Ar-H), 8.21 (1H, dd, J = 1.7, 8.1, Ar-H), 8.71 (1H, s, NH), 10.33 

(1H, s, CONH); 8C 55.4, 106.6, 109.9, 120.5, 122.4, 127.3, 129.8, 130.1, 131.5, 137.9,

141.1, 145.6, 156.6, 166.4 (C =0); MS (CI+) 286.1 (M+H).
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6-Ammo-10-methoxy-l//-7Z/-dibenzo[2,3-6][6,7-/]diazepin-2-one (195)

o

N H

O M e
N
H

N H 2

Method J. (194) (1.20 g, 4.21 mmol) in methanol (200 mL) produced the product as a 

brown powder (0.87 g, 81 %); m.p 206-209 C; 5H 3.76 (3H, s, CH3), 5.20 (2H, s, NH2), 

6.46 (1H, s, NH), 6.55-6.58 (2H, m, Ar-H), 6.68  (1H, t, J = 7.7, Ar-H), 6.76 (1H, dd, J =

1.6, 7.7, Ar-H), 6.88  (1H, dd, J = 1.6, 7.7, Ar-H), 7.03 (1H, d, J = 8.3, Ar-H), 9.80 (1H, s, 

CONH); 6c 55.2, 106.5, 109.1, 118.0, 119.4, 121.6, 122.0, 125.8, 132.2, 134.0, 136.5,

138.3, 155.4, 169.0 (C =0); MS (ES+) m/z 533.2 (2M+Na).

l-(3 ’-Methoxyphenyl)benzo[£]imidazo[4,5,l-yAr]-9-methoxy[l,4]beiizodiazepm- 

6(7tf)7-one (196)

o

N H

■OMe

O M e

Method M. (195) (0.85 g, 3.33 mmol), sodium hydrogen sulfite (0.52 g, 4.99 mmol), 3-

methoxybenzaldehyde (0.45 g, 3.33 mmol) and DMA (4 mL) were heated at 140 C for 24

h. Recrystallization from hot methanol, formed the product as a light brown solid (0.55 g,

39 %); m.p. 276-278 °C; 6H3.72 (3H, s, CH3), 3.81 (3H, s, CH3), 6.53 (1H, dd, J = 2.8, 9.1

Hz, Ar-H), 6.60 (1H, d, J = 9.1 Hz, Ar-H), 6.96 (1H, s, Ar-H), 7.11 (1H, dd, J = 2.6, 8.3,

Ar-H), 7.29 (1H, d, J = 7.6 Hz, Ar-H), 7.40-7.45 (3H, m, Ar-H), 7.93 (1H, dd, J = 0.9, 7.6

Hz, Ar-H), 10.13 (1H, s, NH); 6C 55.2, 55.4, 108.3, 109.9, 114.1, 116.2, 117.7, 121.5,

123.0, 123.6, 124.0, 126.1, 126.3, 130.1, 131.6, 133.2, 139.1, 142.7, 153.6, 157.9, 159.4,
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165.3 (0= 0); HRMS (ES+) m/z 372.1340 [(M+H), 372.1343 calculated for C j j H ^ O j ] ;  

CHN for C22Hi7N3O ,.0.4 H ,0  found C 69.84 %, H 4.91 %, N 11.01 %, calculated C 

69.79 %, H 4.74 %, N 11.10 %.

4-Hydroxy-l,2-phenylenediantine (197) (Sasaki e( a/., 2005)

nh 2

Method J. 4-Amino-3-nitrophenol (2.00 g, 12.98 mmol) in methanol (150 mL) produced 

the product as a black powder (1.62 g, 100 %); m.p 178-180 C; 5H 3.81 (2H, br s, NH2), 

4.32 (2H, br s, NHo), 5.81 (1H, dd, J = 2.7, 8.2, Ar-H), 6.03 (1H, d, J = 2.7, Ar-H), 6.32 

(1H, d, J = 8.2, Ar-H); 5C 102.3, 103.3, 115.9, 126.6, 136.7, 149.8.

6-Nitro-10-hydroxy-l//-7//-dibenzo[2,3-6][6,7-;/]diazepin-2-one (198)

o

N H

O H
N
H

N 0 2

Method I. Methyl 2-bromo-3-nitrobenzene (166) (1.5g, 5.77 mmol), 4-hydroxy-1,2- 

phenylenediamine (1.43 g, 11.54 mmol) and DMA (4 mL) were heated at 100 C for 16 h. 

Recrystallization from hot methanol produced the product as a black powder (0.95 g, 61 

%); m.p > 360 °C; 5H 6.45 ( 1H, dd, J = 2.6, 8.3, Ar-H), 6.82 (1H, d, J = 2.6, Ar-H), 7.09 

(1H, t, J = 8.3, Ar-H), 8.05 (1H, dd, J = 1.6, 7.7, Ar-H), 8.20 (1H, dd, J = 1.6, 8.3, Ar-H),

8.66 (1H, s, NH), 9.42 (1H, s, OH), 10.30 (1H, s, CONH); 6C 107.6, 110.6, 120.4, 123.5,

127.4, 128.6, 129.7, 131.4, 137.7, 139.1, 145.9, 154.8, 166.5 (C=0); MS (ES+) m/z 269.8 

(M-H).
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6-Amino-10-hydroxy-ltf-7tf-dibenzo[2,3-6J[6,7-/Jdiazepin-2-one (199)

o

N H

O H
N
H

N H 2

Method J. (198) (0.92 g, 3.39 mmol) in methanol (180 mL) produced the product as a  

black powder (0.65 g, 79 %); m.p 242-245 °C; SH 6.19 (2H, br s, NH2), 6.35 (1H, s, NH),

6.37 (1H, dd, J = 2.7, 8.5, Ar-H), 6.44 (1H, d, J = 2.7, Ar-H), 6.67 (1H, t, J = 7.7, Ar-H),

6.75 (1H, dd, J = 1.6, 7.7, Ar-H), 6.87 (1H, dd, J = 1.6, 7.7, Ar-H), 6.91 (1H, d, J = 8.5, 

Ar-H), 9.08 (1H, s, OH), 9.77 (1H, s, CONH); 8C 107.6, 110.7, 117.9, 119.4, 121.5,

122.1, 125.9, 132.1, 132.6, 136.9, 138.2, 153.3, 169.2 (C O ) ;  MS (ES+) m/z 264.1 

(M+Na).

l-(3 ’-Methoxyphenyl)benzo[^]imidazo[4,5,l-y,Ar]-9-hydroxybenzodiazepin-6(7^)-one

(200)

o

N H

O H

O M e

Method M. (199) (0.27 g, 1.12 mmol), sodium hydrogen sulfite (0.17 g, 1.68 mmol), 3- 

methoxybenzaldehyde (0.15 g, 1.12 mmol) and DMA (3 mL) were heated at 140 C for 13 

h, forming the product as a black powder (0.08 g, 20 %); m.p. decomposed at 338 C; 8h 

3.80 (3H, s, CH3), 6.31 (1H, dd, J = 2.7, 8.9, Ar-H), 6.48 (1H, d, J = 8.9, Ar-H), 6.79 (1H, 

d, J = 2.7, Ar-H), 7.12 (1H, dd, J = 2.7, 8.9, Ar-H), 7.30 (1H, d, J = 7.6, Ar-H), 7.40-7.44 

(3H, m, Ar-H), 7.92 (1H, dd, J = 0.9, 7.6, Ar-H), 7.97 (1H, dd, J = 0.9, 7.6, Ar-H), 9.78

(1H, s, OH), 10.12 (1H, s, NH); 5C 55.3, 109.5, 111.5, 114.1, 116.2, 117.8, 121.5, 121.7,
  —    211
PhD Thesis, P Hamidi, 2006



Chapter 5. Experimental Procedures

123.5, 123.7, 123.9, 126.0, 126.4, 130.1, 131.6, 139.2, 142.7, 153.6, 156.3, 159.4, 165.5 

(C=0); HRMS (ES+) m/z 358.1180 [(M+H), 358.1 186 calculated for C21H 16N3O3].

Methyl 2-bromo-3-nitrobenzoate, (166) (Krolski et al., 1988)

n o 2

Method H. 2-Bromo-3-nitrobenzoic acid (0.50 g, 2.03 mmol), methanol (20 mL) and 

concentrated sulphuric acid (1 mL) were refluxed for 5 h, producing the product as a 

white solid (0.52 g, 98 %); m.p. 77-80 °C [lit (Harris et al. , 1990) 76-77 °C]; 6H 3.92 (3H, 

s, OCH3), 8.04 (1H, d, J = 8.8 Ar-H), 8.25 (1H, dd, J = 2.8, 8 .8 , A-H), 8.51 (1H, d, J =

2.8, Ar-H); 6C 53.5 (CH2), 111.4, 127.3, 129.9, 133.3, 135.8, 151.9, 165.7 (C O ) .

6-Nitro-l//-7//-dibenzo[2,3-6]d[6,7-/]iazepin-2-one, (167) (Lubisch et al., 2003)

N H

N
H

N 0 2

Method I. (166) (1.01 g, 3.88 mmol), 1,2-phenylenediamine, (30) (0.63 g, 5.83 mmol) and 

DMA (3 mL) were heated at 100 °C for 10 h, producing the title compound as a brown 

solid (0.53 g, 48 %); m.p. 304-306 °C; SH 7.03-7.09 (4H, m, Ar-H), 7.14 (1H, t, J = 7.5, 

Ar-H), 8.07 (1H, dd, J = 1.5, 7.5, Ar-H), 8.23 (1H, dd, J = 1.5, 7.5, Ar-H), 8.80 (1H, s, 

NH), 10.41 (1H, s, CONH); 5C 121.3, 121.7, 123.1, 125.1, 125.3, 128.0, 130.2, 130.9,

137.6, 138.6, 139.2, 145.4, 166.7 (C O );  HRMS (ES ) m/z 254.0571 [(M-H), 254.0571 

calculated for C 13H8N3O3].
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6-Nitro-l-(2-trimethylsiIylethoxymethyl)-7tf-dibenzo[2,3-6][6,7-/]diazepin-2-oiie,
(202)

S E M

Method B. (167) (1.58 g, 5.74 mmol), sodium hydride (0.15 g, 6.31 mmol), 2- 

(trimethylsilyl)ethoxymethyl chloride (1.05 g, 6.31 mmol) in DMF (5 mL). Column 

chromatography (using 9:1 petrofethyl acetate) produced the product as an orange dense 

oil (1.27 g, 57 %); S„ 0.00 (9H, s, SiCH3), 0.91 (2H, t, J = 8.0, CH2), 3.69 (2H, t, J = 8.0, 

CH2), 5.32 (2H, s, NCH2O), 7.19-7.25 (4H, m, Ar-H), 7.61 (1H, d, J = 8.0, Ar-H), 8.04 

(1H, d, J = 8.0, Ar-H), 8.24 (1H, dd, J = 1.0, 8.0, Ar-H), 8.76 (1H, s, NH); 5C 0.0 (S1CH3),

18.8, 66.9, 79.3, 123.1, 124.7, 125.0, 126.8, 127.7, 129.8, 130.3, 135.2, 139.6, 140.3,

144.0, 147.4, 168.4 (C O ) ;  MS (ES+) m/z 408.2 (M+Na).

7-CyclobutyImethyl-6-nitro-l-(2-trimethylsilylethoxymethyl)dibenzo[2,3-6] [6,7-/] 

diazepin-2-one, (203)

S E M

Method E. (202) (0.64 g, 0.95 mmol), cyclobutylmethyl bromide (0.99 g, 6.64 mmol), 

potassium carbonate (1.14 g, 8.24 mmol) and DMF (3 mL) were heated at 150 C for 24 h, 

followed by column chromatography (eluent 10 % ethyl acetate:petrol) to yield the 

desired compound as a dense yellow oil (0.27 g, 36 %); 5h 0.00 (9H, s, SiCH3), 0.92-0.94 

(2H, m, Alkyl-H), 0.91-0.96 (2H, m, Alkyl-H), 1.68-1.79 (4H, m, Alkyl-H), 2.26-2.29 

(1H, m, Alkyl-H), 3.13-3.17 (1H, m, Alkyl-H), 3.65-3.70 (3H, m, Alkyl-H), 5.02 (1H, d, J
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= 10.0, NCHO), 5.57 (1H, d, J = 10.0, NCHO), 7.25-7.29 (2H, m, Ar-H), 7.37-7.41 (2H, 

m, Ar-H), 7.60 (1H, dd, J = 1.4, 7.8, Ar-H), 7.89 (1H, dd, J = 1.4, 7.8, Ar-H), 7.95 (1H, 

dd, J = 1.4, 7.8, Ar-H); 5C 0.0 (SiCH3), 18.9, 19.1, 26.6, 35.8, 56.8, 67.6, 79.3, 124.5,

125.2, 126.6, 127.7, 127.9, 129.3, 135.3, 137.0, 139.1, 144.5, 145.2, 145.6, 168.2 (C=0); 

MS (ES+) m z  476.2 (M+Na).

7-(Cyclobutylmethyl)-6-nitro-l//-dibenzo|2,3-6]|6,7-/]diazepm-2-one, (204)

O

NH

NO.

Method C. (203) (0.27 g, 0.60 mmol) and 1 M tetrabutylammonium fluoride/THF 

solution (5 mL), were refluxed for 19 h. Column chromatography (eluent 8.5:1.5 

petrohethyl acetate) produced the title compound as a yellow powder (0.11 g, 57 %); m.p. 

196-199 C; 8n 1.53-1.82 (6H, m, Alkyl-H), 2.21-2.23 (1H, m, CH), 3.09-3.16 (1H, m, 

CH), 4.09-4.12 (1H, m, CH), 7.10-7.29 (3H, m, Ar-H), 7.42 (1H, t, J = 7.8, Ar-H), 7.96 

(1H, dd, J = 1.5, 7.8, Ar-H), 8.00 (2H, dd, J -  1.5, 7.8, Ar-H), 10.60 (1H, s, NH); 6C 17.7,

25.4, 34.2, 56.7, 121.4, 124.7, 125.0, 125.4, 126.0, 128.0, 134.0, 134.9, 135.0, 140.1,

143.0, 145.5, 166.1 (C O ) ;  MS (ES+) w 'z 346.1 (M+Na).
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6-Amino-7-(cyclobutylmethyl)-l/f-dibenzo[2,3-6][6,7-/]diazepm-2-one, (201)

o

NH

NH2

Method J. (204) (0.093 g, 0.28 mmol) in dichloromethane (30 mL) produced the p ro d u c t 

as a white solid (0.085 g, 100 %); m.p. 172-174 "C; 8„ 1.50-1.82 (6H, m, Alkyl-H), 2 .27- 

2.30 (1H, m, CH), 3.19-3.32 (2H, m, C H A  5.34 (2H, s, N H ^, 6.87 (2H, d, J = 7.8, A r-H ), 

6.94-7.16 (4H, m, Ar-H), 7.45 (1H, d, J = 7.8, Ar-H), 10.24 (1H, s, NH); 8C 13.8, 25.7, 

34.6, 58.7, 117.8, 117.9, 121.1, 124.6, 126.5, 126.7, 129.2, 132.2, 134.9, 137.1, 141.0, 

145.1, 168.5 (C=0); HRMS (ES+) tn z  294.1602 [(M+H), 294.1601 calculated  for 

C 1 8 H 2 0 N 3 O ] .
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APPENDIX A

PROCEDURE USED WITHIN THE RESEARCH GROUP 

TO GENERATE THE CHK2 HOMOLOGY MODEL

A homology model was obtained using Modeller with 2Cpk and 2Phk pdb files as templates. 

The final model was refined by correcting amino acid outsiders. The supposed active site is 

located in a conserved region between a set of beta sheets and alpha helices, a hinge-like 

region of the protein. The active site was too cluttered with side-chains to generate any 

docking results. In order to accommodate a ligand inside the active site, “infinite dynamics” 

were applied to the protein, until a high-energy state was reached. This open state of the 

protein was then suitable to accommodate the ligand, the latter was positioned in the active 

site where the docking box (MOE default setting) incorporated the residues suspected to 

interact with our inhibitor. The backbone of the enzyme was then fixed, and a first docking 

was then achieved by simulating annealing (one input and high number of cycles). This 

docking was monitored by the energy level of the system until a plateau was reached, where 

the ligand hardly moved and seemed stable in the cleft. Once the molecule docked, the all 

system’s energy was minimised using molecular mechanics (MMFF94X) and by electronic 

algorithms (PM3). Then, the ligand was docked in this less cluttered active site using the 

same parameters as the previous docking until one result was obtained. The stability of this 

ligand docked in the protein could be assessed by applying molecular dynamics on the entire 

complex, and checking on any fluctuations of the ligand. As the ligand hardly moved, one 

could assume that the docking was successful.
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