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Abstract: Structural health monitoring (SHM) is of paramount importance in the aircraft indus-
try: not only to ensure the safety and reliability of aircraft in flight and to ensure timely
maintenance of critical components, but also increasingly to monitor structures under test for
airworthiness certification of new designs.

This article highlights some of the recent advances in the acoustic emission (AE) technique
as applied to SHM, and the new approaches that are crucial for the successful use of AE data
for diagnostic purposes. These include modal analysis, enhanced location techniques, and novel
signal processing approaches.

A case study is presented on a landing gear component undergoing fatigue loading in which a
linear location analysis using conventional techniques identified the position of fracture and final
rupture of the specimen. A principal component analysis approach was used to separate noise
signals from signals arising from fatigue cracks, which identified and located further fatigue crack
positions, subsequently confirmed by magnetic particle inspection. Kernel probability density
functions are used to aid visualization of the damage location.

Keywords: acoustic emission, aircraft components, fault detection, fatigue cracks, fault location,
signal processing, principal component analysis

1 INTRODUCTION

The theme of this article is an overview of the very
many modern applications of acoustic emission (AE),
which is now well-established as a reliable technique
for monitoring condition and damage in an increas-
ing variety of structures. The article examines the role
that AE now plays in monitoring aircraft structures;
key technical issues are addressed, major advances
are highlighted, and finally, a modern case study is
presented from the aircraft industry.

AE is rapidly emerging as a popular, powerful
technique in terms of non-destructive testing, condi-
tion monitoring, damage assessment, and structural
health monitoring (SHM). Its increase in popularity
is partly due to recent advances in high-speed digi-
tal waveform-based AE instrumentation that permits
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vast numbers of AE waveform signals to be digitized
and stored for analysis. However, the main reason for
the increased interest is due to recognition of the role
that AE can play in monitoring a variety of machines
and structures as part of a more holistic approach. A
significant change in the direction of AE came when
work was directed at an enhanced understanding of AE
signal propagation in terms of guided acoustic modes
[1–4]. This approach, more recently designated ‘Modal
AE’, offers the potential to depart from the tradi-
tional reliance on statistical analysis and significantly
improves the structural monitoring capabilities of AE.

The AE technique is often criticized due to the lack
of traceability of results; AE measurements are depen-
dent on many significant variables (e.g. wave transmis-
sion paths, sensor location and coupling, and sensor
and system sensitivity); therefore, results obtained
from different systems, different layouts, and even the
same system following sensor removal may not be
directly comparable. Successful practitioners are fully
aware that current commercial methods give a quali-
tative measure of the source rather than an absolute
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measure of the energy generated at the source and
have combined their understanding of source mech-
anisms and knowledge of wave propagation, together
with advanced signal processing techniques to pro-
vide an extremely powerful procedure. Researchers
are working towards traceable methods [5], but in the
meantime the AE technique advances and continues
to gain popularity in new fields.

2 SIGNIFICANT TECHNICAL ISSUES

AEs are stress waves generated by the mechanical
deformation of materials, and the term ‘AE’ is used
to describe both the practical technique and the
phenomenon on which it is based. Thus in damage
assessment applications, events related to a num-
ber of damage types release small amounts of energy
that travel through the component or structure in the
form of ultrasonic stress waves, which may undergo
reflections at boundaries, mode conversions, and may
even transfer between components. AE sensors, which
respond to surface displacements of the order of
picometers, detect the stress waves and convert them
into signals that are interpreted by the AE system.
Although AE techniques have been widely studied
since the pioneering work of Kaiser in 1950 (a com-
prehensive review of the history of AE is given by
Droulliard [6] and an extensive coverage of the theory
behind AE is given in Miller and Hill [7]), significant
advances in hardware, especially storage of data and
software, have enabled a more in-depth study than
was previously possible.

Among the significant and well-known advantages
of AE over other techniques, the following features
stand out.

1. The detected energy originates from the specimen
itself rather than being supplied from an external
source (as is the case in ultrasonic testing).

2. AE is capable of detecting the dynamic processes
associated with damage.

3. AE can detect sources without prior knowledge of
the probable location.

4. The extreme sensitivity of the method enables a
large area to be covered with a relatively low sensor
density.

The major drawbacks, however, are that the tech-
nique cannot be used to provide an instant measure
of the level of damage present in a structure and more
significantly that the identification of the precise event
resulting in each stress wave remains a significant
challenge.

A vast range of mechanisms generate AE and emis-
sion is often classified into two categories: primary
and secondary. Primary emission describes emission
from sources internal to a material and is commonly
associated with microstructural mechanisms such as

the dislocation movement and inclusion fracture that
can accompany fatigue crack development. Secondary
emission originates from sources that are external to a
material surface, and describes a vast range of mech-
anisms, often associated with frictional activity, e.g.
secondary sources from fatigue are commonly the
result of crack face closure, and include crack face
fretting, which can be more useful for fatigue crack
location than primary emissions [8], which can be dif-
ficult to distinguish. The term ‘noise’ is often used to
describe the presence of secondary AE that impedes
detection or isolation of primary sources. In fact, the
definition of noise as it is widely used in AE practice
is more subjective and usually describes the pres-
ence of any emission of no interest or relevance to
the study. Successful AE monitoring will detect, locate,
and identify emission sources (often in the presence
of background noise) and provide severity assessment
for those originating from damage mechanisms.

Location of AE sources, and thus damage, is nor-
mally performed using the time-of-arrival (TOA) tech-
nique that develops the arrival delay, based on first
threshold crossing, of a particular signal between two
or more sensors at different distances from the source.
This method uses a measure of the propagation veloc-
ity in a material to derive the source location in one,
two, or three dimensions. The procedure is well estab-
lished and is described fully by Baron and Ying [9].
Highly accurate source location is a crucial factor in
the ability to identify the source of each AE signal.
The TOA method is, however, subject to limitations
that affect its suitability to certain aspects of moni-
toring, these are primarily considerations of accuracy,
reliability, cost, and logistic complexity. In particular,
the use of TOA techniques in composite materials is
extremely difficult due to their anisotropy and hence
the absence of a single value for wave propagation
velocity [10].

The process of source identification attempts to
determine the origin of an emission source, this
is addressed by source characterization techniques.
There are essentially two approaches: the determin-
istic (or fundamental) approach attempts to develop
quantitative relationships between source parameters
and physical measurements of the AE transducer sig-
nal, while the statistical (or stochastic) approach uses
distribution, rate, and correlation analysis of AE fea-
ture data from a range of different damage sources in
samples of interest to compile empirical correlations
with measured source properties and behaviour. This
information is used to attempt to characterize AE data
of unknown origin using a range of methods, from sim-
ple filtering and inference methods to more complex
computational pattern recognition techniques.

Severity assessment is a particular challenge that
depends on the nature of the damage. Qualitative mea-
sures of activity and intensity may be made if primary
emission can be reliably identified and in some cases,
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for instance in bridge structures, if crack face closure
processes generate sufficient secondary emission, it is
possible to estimate crack lengths [8]. However, this is a
particularly complex task given the difficulty of differ-
entiating between primary and secondary emissions.
More quantitative aspects of severity assessment, such
as estimation of damage growth rate, remaining life, or
failure prediction, are extremely difficult in all but the
simplest geometries and are an ongoing challenge to
AE researchers. A wide range of studies have examined
the correlation between AE feature data and fracture
mechanics parameters in an attempt to provide some
measure of damage, these are reviewed by Muravin
et al. [11]. The common problem in this approach is
that such correlations are highly specific to a particu-
lar material, specimen geometry, and loading regime,
and are therefore only valid for the conditions in which
they were obtained.

Overall, the problem of detecting, locating, and
assessing damage in complex geometries remains a
significant challenge in all applications, but nowhere
more so than for SHM in aerospace structures, where
it is highly likely that damage will initiate at joints and
locations where the section properties change.

3 RECENT ADVANCES

In recent years, research has been focused on two main
areas. The first is to understand the wave propagation
of AE through complex geometries; this is a non-trivial
problem as the AE source is not controlled by the oper-
ator and hence the frequency of propagation cannot
be selected as in ultrasonic inspection.The second is to
process AE waveforms in an intelligent way, depend-
ing on the application, and promising techniques are
emerging.

The identification, location, and characterization of
fatigue cracks in plate-like structures in particular are
crucial for aerospace applications. However, before
propagation in complex structures can be under-
stood, it is vital to obtain characterization of the
elastic waves resulting from fatigue cracks in sim-
ple plates. Many previous studies have either had
limited results due to the use of small specimens
(which have adverse geometrical effects), or used sim-
ulated sources that do not address the issue of a
complex, real source. Recent approaches have shown
promising results, e.g. Lee et al. [12] have used a
two-dimensional FE model to model AE from fatigue
crack growth in a large aluminium plate and partially
verified the model experimentally, and Wilcox et al.
[13] have proposed a systematic modelling framework
and achieved accurate simulations of experimentally
received waveforms from a Hsu–Neilson source.

Treatment of AE waves as guided waves (termed
‘modal AE’) has undoubtedly led to a greater under-
standing of the behaviour of AE in complex structures.

Geng [14] presents a good account of the importance
of such modern AE approaches and in particu-
lar the relevance of this for aerospace applications,
where the thickness of each plate-like structure is less
than the signal wavelength and describes a landing
gear control fatigue test that proved the effectiveness
of this approach.

The modal AE approach has also led to advances
in both source location and source length estimation.
In large structures, most sources of AE produce a wave
that propagates in several modes travelling at different
velocities. It is therefore important to determine the
exact arrival time of different wave components and
their relative attenuation. This allows spatial reconsti-
tution, which involves examining the temporal separa-
tion of the signals to identify the wave mode velocities
[1, 4, 15]. This applies to plane waves and is thus
appropriate for larger structures because separation
becomes clearer with the distance from the source.

Pullin and Holford [16] used this to good effect dur-
ing the investigation of a fatigue crack initiated and
grown in a steel I-beam under controlled laboratory
conditions to a length of 35 mm. AE signals arising
from the crack tip were recorded as digital waveforms
and the presence of flexural and extensional plate
modes was observed. The dispersive behaviour plate
wave propagation was used as a means of establish-
ing the location of crack growth using a single sensor
(accuracy 1 per cent) and the separation of the wave
modes was used to estimate sensor-to-source dis-
tances. Furthermore, it was also possible to obtain an
estimation of the amount of crack growth from the
comparison of wave modes between signals detected
at periodic intervals.

Shehadeh et al. [17] have used a linear array to locate
and reconstitute the time-domain and frequency-
domain signatures of AE sources in pipes. They
demonstrate methods for automatically separating
and determining the wave velocity of components
in experimental signals and investigate a range of
techniques, including a wavelet transform technique,
a cross-correlation technique, and a filtering and
thresholding technique, to obtain arrival times for
various modes and proposed an automatic source
location technique with an accuracy of 5 per cent.

Baxter et al. [18] have developed a novel technique
for solving the problems arising from using a sin-
gle wave velocity in conventional TOA location. The
method does not require knowledge of sensor loca-
tions or wave speed and initial results indicate a
location accuracy of <2 per cent.

In terms of source characterization, it is very tempt-
ing to attempt to learn the characteristics of all
crack-related AE; but this approach is not robust
because each AE waveform is strongly dependent on
many transfer functions in the process from source to
signal, including geometry, sensors, and amplification
hardware. One approach that is proving successful is
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to provide a coherent signal processing strategy based
on patterns and trends within and between groups of
data that are physically related to AE mechanisms. In
this approach, proposed by Hensman et al. [19] and
demonstrated for detecting fatigue fractures in a land-
ing gear component, it is accepted that waveforms
will in general contain much more information than
is necessary for the identification of the source event.
The data must therefore be transformed into a lower-
dimensional set that retains the information of interest
but eliminates irrelevance and redundancy. Further-
more, they use feature novelty, previously identified
as a useful tool in vibration of structures [20], as an
additional indicator or the emergence of a fracture.

4 CASE STUDY ON A LANDING GEAR
COMPONENT

4.1 Background

Every landing gear fitting is required to complete an
airworthiness certification test, which can typically
last for 5 years with over 15 months spent in NDT. AE
has the potential to monitor such tests continuously,
resulting in a substantial saving in time and money
for each test. However, using conventional process-
ing techniques, source identification has proved to be
challenging, due to the complex propagation paths
and numerous sources of noise.

Principal component analysis (PCA) is a mathemat-
ical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncor-
related variables called principal components. PCA is a
classical method of multivariate statistics and its the-
ory and use are documented in any textbook from
that field, e.g. reference [21]. In simple terms, the first
principal component accounts for as much of the vari-
ability in the data as possible, and each succeeding
component accounts for as much of the remaining
variability as possible. PCA, therefore, will simplify
high-order data sets to lower dimensions and thus
permit a simple analysis.

A brief mathematical explanation follows. The prin-
cipal components algorithm seeks to project by a lin-
ear transformation, the data into a new q-dimensional
set of cartesian coordinates (z1, z2, . . . , zn). The new
coordinates have the following property: z1 is the linear
combination of the original xi with maximal vari-
ance, z2 the linear combination that explains most
of the remaining variance, and so on. It should be
clear that if the p-coordinates are actually a linear
combination of q < p variables, the first q principal
components will completely characterize the data and
the remaining p − q will be zero. In practice, due to
measurement uncertainty, the principal components
will all be non-zero and the user should select the
number of significant components for retention.

Calculation is as follows: given data {x}i = (x1i,
x2i, . . . , xpi), i = 1, . . . , N , form the covariance matrix [C]

[C] =
N∑

i=1

({x}i − {x})({x}i − {x})T (1)

and decompose, so

[C] = [A][�][A]T (2)

where [�] is diagonal. (Singular value decomposi-
tion can be used for this step.) The transformation to
principal components is then

{z}i = [A]T({x}i − {x}) (3)

where {x} is the vector of means of the x-data.
Considered as a means of dimension reduction

then, PCA works by discarding those linear combina-
tions of the data that contribute least to the overall
variance or range of the data set.

4.2 Experimental procedure

A landing gear lever link component was studied while
undergoing post-airworthiness testing to failure. The
lever link is manufactured from aerospace grade steel,
which has very high strength and good fatigue prop-
erties that can support significant crack growth; how-
ever, it should be noted that in landing gear applica-
tions the structures are optimized to such a high level
that only small cracks can develop before catastrophic
failure occurs, typically <0.6 mm. In this test, the com-
ponent was loaded below the maximum design load.
Ten Physical Acoustics Ltd (PAL) resonant sensors were
attached, as shown in Fig. 1, using magnetic clamps

Fig. 1 Test instrumentation and clamping methods
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Fig. 2 Location of detected signals (a) in terms of events and (b) amplitude of located events

or aluminium ‘U’-shaped clamps that were glued into
position, with foam inserts in both methods used to
prevent sensor grounding. Grease was used as a cou-
plant and the installed sensor sensitivity was verified
using the Hsu–Nielsen source (pencil lead fractures)
technique. Feature data (amplitude (dB), counts, dura-
tion (µs), energy (atto-J), and rise-time (µs)) were
recorded using a 16-channel PAL DiSP system.

4.3 Results and discussion

A conventional linear location analysis was performed
on the detected AE between pairs of sensors for the
entire test duration; the results of this are presented in
Fig. 2. It should be noted that this is a ‘wrapped’ linear
location around the edge of the component consistent
with the sensor positions in Fig. 1. Sensor positions
are shown by numbers in brackets at the top of each
plot. Figure 2(a) presents the location of cumulative
events, the peak of which coincides with the position of
the fatigue fracture and final rupture region; however,
further peaks can also be observed. The amplitude of
the detected signals is shown in Fig. 2(b) on a scat-
ter plot; a grey-scale key is shown on the right of
the plot.

To assess the suitability of the PCA method to dis-
tinguish between AE sources, groups of signals were
selected that correspond to the locations of the high-
est peaks of cumulative events throughout the test.
These 11 groups are marked at the top of Fig. 2(a),
with the amplitude ranges of the signals contained
within each group shown in boxed regions in Fig. 2(b).

Fig. 3 Location of detected groups mapped onto com-
ponent

The criterion for selection of each group was that it
would contain a minimum of 2000 events within a
6.7 mm section (which is the resolution of the loca-
tion plot). The relative positions of each of these on
the link are shown in Fig. 3. The final 2000 events in
each group were selected to ensure that signals from
fracture growth were included.

Feature data for each individual signal were
extracted, and assigned a number corresponding to
the group it came from. A PCA of all grouped signals
was then completed irrespective of group number and
location. The result of the PCA showing the greatest
variance in the data is shown in Fig. 4. The plot clearly
shows an overlapping of certain groups of data, with
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Fig. 4 PCA of all signals irrespective of group number or
position

only group 6 clearly separable. This demonstrates that
the PCA is not relying on the amplitude of the detected
signal as groups 9 and 11 also have high amplitude and
are completely separate from group 6.

It is evident from Fig. 4 that the fracture region,
group 2, is separated from the high-amplitude groups;
however, this is not very powerful as a data separator;

Fig. 5 Outcome of the magnetic particle investigation

a simple data filter during recording could be used to
eliminate high-amplitude signals. However, group 2 is
not separable from groups 3, 4, 5, 7, and 8. Follow-
ing the completion of the PCA, the paint was removed
from the component and a magnetic particle inspec-
tion (MPI) was completed, the results of which are
summarized in Fig. 5.

When the cracks identified during MPI, as shown in
Fig. 5, are compared with the regions in Fig. 4, it is
evident that the PCA technique separated all groups
associated with fracture from groups associated with
noise, with the exception of group 7. Possible reasons
for this are fracturing in the bush, which was removed
prior to the MPI investigation, or an error in the loca-
tion of the signals at the grease nipple as signals from
the source could be located between sensors 7 and 8 or
9 and 10. It is not possible to confirm either possibility.

A further aspect to any SHM system is data
visualization. Figure 6 shows a conventional planar
(two-dimensional) location plot of the completed
investigation for the upper section of the component.
Each data point represents the position of a loca-
tion, while its colour represents the number of signals
located at that position. The position of damage is
not readily identifiable (upper grease nipple) and does
require interpretation. The use of kernel probability
density functions (KPDF) can significantly improve
data visualization. KPDF allows the density of signals
and therefore damage to be readily visualized as shown
in Fig. 6(b).

KPDF does not have to be solely used in source
location; Fig. 7(a) shows a PCA analysis from an AE
investigation. The plot appears to show no distinct
clustered regions of interest that could be identified as
a single source; however, by using KPDF on the same
data a distinct source can be identified (Fig. 7(b)).

The completed investigation has demonstrated
the usefulness of the PCA technique; however, the

Fig. 6 Planar location of signals from test component; (a) traditional visualization and (b) KPDF
visualization
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Fig. 7 PCA of collected data; (a) traditional visualization and (b) KPDF visualization

detected noise in this uni-axial test is lower than
that found in the multi-axial environment of a full
landing gear module airworthiness investigation. It
is extremely difficult to demonstrate the technique
in the full environment because landing gear struc-
tures are designed not to fracture, and in order to
validate the approach a fracture needs to be occurring
during the test. In addition, the paper has high-
lighted the need for effective visualization in any NDT
application.

5 CONCLUSIONS

This article has provided a mere snapshot of some
of the current approaches to the use of AE in SHM
applications, in particular as applied to aircraft struc-
tures. The examples chosen have highlighted some of
the particular problems associated with the AE tech-
nique and moreover have illustrated the solutions
being developed.

A simple case study has been used to illustrate
the importance of integrating novel signal processing
approaches with conventional AE analysis. The inves-
tigation demonstrated the ability of the AE technique
to identify fatigue fractures in a landing gear compo-
nent. Eleven groups of signals were identified based
on AE source location. The feature data of the signals
were extracted and a PCA analysis was performed, the
result of which separated the group associated with
final rupture from the groups of high amplitude and
another group possibly related to pin noise. An MPI
investigation showed that all groups that could not be
separated from the final rupture and fracture source
were indeed from fractures. KPDF was also demon-
strated as a useful technique to aid visualization of
damage locations.

During the past 20 years, AE has come of age, with
modal (waveform) analysis replacing the old approach
based on waveform parameters. The emphasis on
developing an in-depth understanding of the factors

affecting the signal from its generating source, through
its propagation and on to the effect of the sensor and
system, has proved to be hugely beneficial. The recent
advances in microprocessors, in particular speed and
storage capacity, have enabled a new generation of sig-
nal processing strategies and these techniques are able
to make full use of the extensive information avail-
able in AE signals to provide extremely powerful data
analysis strategies.

It is evident that there are significant technical chal-
lenges associated with the use of AE; however, it is also
strikingly clear that the technical difficulties are being
overcome by researchers using a modern approach
to the subject. This leads to the conclusion that AE
is an extremely powerful technique with enormous
potential for addressing a fundamental concern of
the aerospace industry, which is the ability to provide
robust SHM solutions, both during testing of com-
ponents and also in flight. As the next generation of
aircraft will demand increased weight saving and thus
will involve taking the designs to lower factors of safety,
one of the keys to survival for aircraft manufacturers
will be to ensure increased performance with confi-
dence, to reduce cost of ownership, and to maintain
safety standards.
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