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ABSTRACT

In this thesis we introduce a new bootstrap method for testing structural DSGE 
models according to their dynamic performance. The method maintains a sep­
aration between the structural (non-linear) model as the null hypothesis and its 
dynamic time series representation. The model’s errors are discovered and used for 
bootstrapping (after whitening); the resulting pseudo-samples are used to discover 
the sampling distribution of the dynamic time series model. The test then consists 
of discovering whether the parameters of the time-series model estimated on the 
actual data lie within some confidence interval of this distribution. A test statistic 
for the parameters taken as a whole is developed (the M-metric, a Wald statistic).
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1. PREFATORY REMARKS

This paper proposes a new way of testing macroeconomic models in terms of their 
dynamic performance. It is of course by no means entirely new. In recent years 
proponents of Real Business Cycle models have proposed that models be tested 
dynamically by comparing their simulated moments with the moments in the data. 
They have disregarded the ability of these models to fit the data in static terms, 
something that other economists have generally regarded as important. Instead they 
have argued that a model is a pure abstraction that can be calibrated based on other 
(often micro) evidence (indeed some proponents have even calibrated models to fit 
dynamically as well as possible.).

We take no position here on whether models should be calibrated or estimated 
to fit the data statically as closely as possible. Our testing procedure takes as a 
primary assertion that some model is ‘true’ (as a working hypothesis) or at least to 
be treated as the null hypothesis (i.e. the hypothesis being provisionally regarded 
as holding). How this model is arrived at is not considered. From this point on 
however our method departs from RBC procedure in key ways:

1. we propose that the data restrict the error processes used to produce the 
model‘s simulated behavior. A model implies a division of the observed data 
into ‘model prediction1 and ‘error‘. The implied error is rather like the ‘fun­
damental4 in a test of capital market efficiency: one may ‘make up‘ a world 
in which some error process drives this capital market‘s price efficiently, but if 
that error process bears no relation to the actual profits or dividend process 
from which the price is derived then the test is hardly convincing. Similarly for 
example in an RBC model if the productivity process assumed in simulation 
bears no relation to the actual productivity process in the data as implied by 
the model, then the simulated moments cannot be those of the relevant world 
of the sample data. Thus we propose that actual implied errors be used in a 
bootstrap to generate simulated model behaviour.

2. We recognize the nonlinearity inherent in macroeconomic models, and hence
that any data representation process (DRP) cannot be considered a ‘reduced
form‘ of the structural model (SM). Rather if the SM holds the DRP is some
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approximation of the SM‘s implications, rather than a closed-form transfor­
mation of the SM. It follows that to find the standard errors for the DRP’s 
parameters under the assumption that the SM holds we need to simulate the 
SM; we cannot use the estimated DRP standard errors as these may be biased 
by the particular approximation involved in the DRP.

3. Nevertheless the SM may be able to supply restrictions on the DRP. This is 
especially relevant in considering whether the impulse responses implied by 
the DRP are consistent with the SM, as in general the DRP cannot supply 
identification restrictions for the current innovations.

4. By the use of bootstrapping we are able to derive ad hoc small sample distribu­
tions, rather than rely on asymptotic ones which are inappropriate in general 
given the small size of economic data samples.

In what follows we compare and contrast our proposed methods with existing 
ones; we give extended examples of their application; we consider a variety of theo­
retical and practical issues that arise with their use. The plan of the thesis is:

• by way of extended illustration apply these methods to a model of the UK 
economy that has been in use for over twenty years and also to apply them to 
a panel sample of postwar growth data across nearly 100 countries (chapter 1)

• review the existing methods that are comparable (chapter 2)

• explain the methods proposed (chapter 3)

• consider the theoretical fundamentals of the approach (chapters 4)

• conclude with some general remarks about the strengths and weaknesses of 
the approach.



2. AN APPROACH TO TESTING MACRO MODELS WITH

APPLICATIONS

2.1 Introductory remarks

Let us suppose a model has been estimated appropriately and that its parameter 
values have not been rejected by the data, in the usual sense that they exceed twice 
their standard errors. Such a test of a model is rather limited; many rival models can 
be fitted to data acceptably in this way. Furthermore tests of models against each 
other through non-nested or encompassing tests are often found to be inconclusive. 
The reason is easy to see: different theories can be pushed to explain the same facts 
by structuring the unexplained errors differently.

For this reason economists have tried to test models in other ways. They have 
in particular considered whether the models could:

1. predict within and outside sample, based on lagged data.

2. generate effects of shocks (impulse response functions) like those seen in the 
data

3. generate simulated moments like those in the data

4. generate VAR and other representations like those estimated on the data.

In chapter 2 we survey the methods that have been used in these four categories 
in some detail. But we may note some problems that have been encountered with 
them:

• the difficulty of forecasting tests (which measure success or low standard error 
in forecasting) is that errors in forecasting are inherent in any model because 
shocks cannot be forecasted. Thus for example in a world of large shocks 
model errors should be large; a model with a low forecasting error would be 
misspecified. Or, another example, if there is structural change, then a model 
should forecast badly beyond a structural break. Thus any test needs to be 
adjusted for these problems.
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• identifying the impulse response functions in the data is problematic because 
such identifying restrictions can only come from structural models. Thus the 
models being tested must be used to specify the identifying restrictions, which 
alters the test since there is now no unambiguous data-given function with 
which to compare each model. We will argue later for a way of testing the 
impulse response functions implied by structural models but it differs from 
such a comparison.

• data moments are apparently theory-free; that is one may calculate them 
without assuming any structural theory. The main problem faced is the choice 
of filter; but this in practice is of great importance. Not filtering implies that 
trended data is dominated by its trend; but filtering by differencing or common 
filters like HP or Band-Pass may produce quite different values.

• VAR and other time-series representations face a similar problem. There are 
many ways in which one can choose to represent a set of time-series; and for 
them too a decision must be made on filtering.

We suggest that a way forward is, in line with Popper’s original ideas, to set 
up as the ’null’ (strictly, the ’working’) hypothesis the structural model (SM) to be 
tested and derive from this null, as if it is the true model, its predictions about such 
features of the data as moments, impulse responses and time series properties. We 
would then test whether the model’s predicted features cohered statistically with 
those of the data. At all possible points in this procedure we impose the restrictions 
embodied in the SM.

A further suggestion is that we should use all available data in our tests. Thus the 
SM implies what the structural errors are and their values are in general supplied by 
the actual data; thus testing against the data should allow for the data’s restrictions 
under the SM on the errors being used in generating the SM’s simulated performance.

A further, related, suggestion is that we respect the small sample nature of 
our tests by using bootstrapping rather than asymptotic distributions which will in 
general mislead in small samples. Bootstrapping under small sample conditions can 
be carried out by using the actual data on the errors just mentioned.

In this chapter we pursue an extended example of such a procedure using the 
Liverpool Model of the UK on UK data since the 1970s; we also consider an appli­
cation of a growth model to postwar panel data on 76 countries. First, however, we 
consider the methods that are currently or have recently been in use. They divide, 
following Canova (2005), into four groups:

1. Watson’s R2 measure
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2. The Generalized Method of Moments (GMM) and related approaches using 
the distribution of the actual data

3-. The Simulated Method of Moments (SMM) and related approaches using the 
distribution on the simulated data.

4. Bayesian methods.

1. Watson’s R 2 statistic is not really a test statistic at all. Watson proposes a 
measure of the ’fit’ of a model against the data in terms of the error process 
that needs to be added to the model in order for the model’s autocovariance 
function to match exactly that of the data. The size of this vector error process 
is used to measure the extent to which the model fails to capture the data. 
The problem with this measure is that it has no distribution and thus cannot 
generate a test statistic.

2. Under the GMM method a model is linearized and fitted to the data by the 
Generalized Method of Moments. The error distributions on the model’s pa­
rameters create an implied distribution of the difference of the model’s mo­
ments from the data moments. This distribution is x 2 - The method relies 
throughout on asymptotic distributions. It also requires that the model is lin­
ear and that the data are made stationary by some filter. Recently Christiano 
has pointed out that in small samples the asymptotic distributions are badly 
misleading.

3. Under the SMM the parameters that are regarded as ’free’ , ie available to be 
varied according to the data, are moved until the vector of VAR coefficients 
implied by the model (which can be analytically calculated) is as close as 
possible to that from the data. The difference between these two vectors 
generates a x 2 statistic whose distribution is based on the simulated behavior 
of the model. This statistic is again asymptotic. There are a number of 
variants of this approach based on other features produced by the model and 
the data- eg spectral measures and moments.

4. Bayesian methods strictly do not test a model but rather regard the initial 
model as some sort of approximation to the true model; thus the question is 
how far this approximation can be improved by using the process of estimation 
and comparison of the model with the data to modify the prior model. At no 
point does the researcher consider rejection of the model. Rather one model 
variant may be compared with another (as ’nested’ hypotheses) and one chosen
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as giving a greater improvement than the other. Consequently the approach 
must be considered as quite different from that of testing being developed 
here, where the idea is to test quite different theories- which cannot be nested- 
against the data. Plainly if economics reached the stage where no such testing 
was necessary and the only issue remaining was to improve an agreed general 
model, then testing in our sense would no longer be relevant and instead the 
Bayesian agenda could naturally replace it. Nevertheless even then a new 
uncommitted researcher might wish to test the consensus and for that a test 
would be required in our sense.

A fuller account of all these methods is in Chapter 3. But in sum, we suggest that 
the relevant class of existing tests are those in 2) and 3). These tests have points in 
common with what we propose. In effect what we are suggesting incrementally is 
the use of bootstrapping to overcome small sample problems; the use of the original 
nonlinear model rather than linearization in simulation; and the use of implied errors 
from the data and model structure, rather than assumed error processes. With these 
tools it should be possible to make clear probabilistic statements about models.

Our paper is organized as follows. In the first section we elaborate on the nature 
of the test we propose . In the second section we apply our test to a particular model, 
the Liverpool Model of the UK, as an initial experiment; the reason for choosing 
this model is simply that we have extensive experience with using it and have FIML 
estimates of the parameters and error processes. In the third section we apply our 
test to a model of endogenous growth and taxation, using postwar panel data on a 
large number of countries. In the last section we draw some tentative conclusions 
from these experiments and discuss further work, some of which is already in hand.

2.2 Our proposed test

The basic test: comparing the reduced form parameters with the distribution
based on the structural model

In this section we explain our proposed method for testing macro models by using 
the bootstrap; we think of the method as an extension of that used by Real Business 
Cycle (RBC) modellers. Consider a) a data set: say the UK economy from 1979 
to 2004; b) a structural theory of its behavior stating that it behaves according 
to certain parameters whose values have been estimated by some means. Notice 
that in the course of estimation various tests of the model will probably have been 
performed- notably whether the parameters are statistically significant, that is are 
sufficiently large to reject the hypothesis that they are zero. But let us assume that
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the model has either passed such tests or is in any case asserted to be a reasonable 
null hypothesis. Thus we consider models that have already been estimated or 
calibrated, by whatever means; methods for estimating or calibrating models are 
not discussed in this paper. Our starting point is the assertions of some modellers 
to the effect that their model is to be regarded as ‘the tru th’, that is as a null 
hypothesis. We shall use ‘tru th’ and ‘true’ to mean that the modellers assert that 
their model is to be taken as an assertion of how the economy in question works. 
Such an assertion is made in order for testing to be done of a concrete hypothesis. 
Thus the ‘tru th’ is the same as the economist’s null (strictly, working) hypothesis.

Now consider the idea for testing models already in use by RBC modellers. This 
idea has been to reorganize the facts in the form of correlations and cross-correlations 
at different leads and lags. In this form the facts are metamorphosed into ‘stylized 
facts’ which describe the data in a relevant way but one that is entirely theory- 
free. We can call this relevant way the ‘time-series behavior’ of a set of variables, 
meaning by this the description of the variables in terms of their ‘trends’ and their 
‘cycles’, common and individual, that is their correlations (and inter-correlations) 
over time. Then the RBC proposal has been that the testing of models may be done 
by comparing the correlations they imply in simulation with the actual ones in the 
data. This sort of test is quite different from the testing of parameters (typically 
against zero) that may be done in estimating a model. The model could pass such 
a test for every parameter and yet not be a model which implies good dynamic 
behavior like that of the economy. Vice versa, a model could fail every such test 
and yet produce behavior that resembles the dynamic behavior of the economy.

The method we propose here takes this RBC idea but suggests two changes. 
First, instead of using the theoretical error distributions postulated by the model to 
compute the model’s correlations with the facts, we suggest using the actual error 
distributions implied by the data to compute them, using the bootstrap. Second, in­
stead of using correlations we suggest using a more general time-series representation 
of the data such as a VAR1.

Let us consider these two proposals in turn.

1. If a model is asserted to be true, then it implies a set of (structural) errors 
between the theory and the data. Since the model is true, the implied errors 
are also true. Hence under the null hypothesis the errors driving the model are

1 We also considered using a VECM and carried out a number of experiments with it. In the 
end we abandoned it. The reason was that the LVP model, our null hypothesis, implies that there 
should be no cointegrating vectors within our group of 5 endogenous variables: cointegration within 
the LVP model requires the presence of other (exogenous) variables . Hence in a restricted reduced 
form the ’cointegrating vectors’ we ’found’ were spurious statistical artefacts and were invalid.
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these implied ones. To test the null we use these errors to see what behavior in 
conjunction with the model they imply. Under the bootstrap we can preserve 
these sample error distributions as the basis for our stochastic draws.

It should also be noted that if a model contains exogenous variables then 
the modeler must decide whether these are stochastic or non-stochastic. If 
stochastic then they too must be modeled as some sort of stochastic process 
and their errors included in the stochastic simulations.

To summarize, a model is an assertion of a set of relationships and of which 
processes are to be regarded as stochastic, which non-stochastic. Given the 
model, the data over a sample period then define the actual (true) errors for 
the stochastic parts as well as the non-stochastic parts.

2. we would like to find a general description of the data that emphasizes its 
trend and cyclical features in a reasonably summary way, that is with a set 
of parameters that can be compared with the implications of the theory we 
wish to test. However, the potential size of the matrix of correlations and 
cross-correlations at different lags becomes very large very quickly; this is not 
therefore a compact description of the data. However a VAR is a potentially 
complete but parsimonious representation of the data in time-series form. We 
may add to this a GARCH process in the error. The VAR/GARCH repre­
sentation is not the only possibility; we discuss others below. But it is widely 
used and convenient; our main point is that a more general representation 
of the facts than the correlation matrices can provide us with a more com­
prehensive test. The more we can restrict this representation of the data in 
conformity with the implications of the structural model, the clearer a test we 
can perform of the latter as the null hypothesis. However since in general the 
structural models we consider are nonlinear they do not have a linear reduced 
form. None of the data representations will be derivable from the structural 
model: they are all some sort of approximation, on which we may possibly be 
able to impose some restrictions from the structural model.

Thus in summary the null defines the model and the structural ’error’ data and 
it also may restrict the reduced form in possible ways. We can then estimate 
the reduced form on the data and compare it with the bootstrapped predictions 
of the structural model. Our suggested test is thus designed to reject the null 
hypothesis of the model at some specified confidence level (say 95%). Under 
the null hypothesis the model stochastic error processes are defined within 
the sample period. We may then ask whether this model and these processes
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could have generated the facts as captured by the VAR estimated over the 
same sample period. Thus under the null hypothesis, the sampling variation 
would be given by bootstraps of the stochastic errors with the model; these 
bootstraps would provide us with a large number of pseudo-samples on which 
we can estimate the same VAR to establish the sampling distribution for the 
VAR parameters2.

We believe that this test provides a statistical method for rejecting the null of 
a particular model, in the sense that it answers the question ’could the facts of the 
economy have been produced by this model?’

A test for multi-variate parameter distributions

In practice a VAR or other data representation has many parameters; a test that 
relies on the single-parameter confidence intervals cannot reliably be used as a test 
of all parameters taken together. We have accordingly developed a method for esti­
mating the joint distribution of the parameters. We begin by making the heuristic 
assumption (in the sense that we can test it at a later stage and either correct it 
or check it for robustness) that the parameters of the times series model follow a 
multi-variate normal distribution; this allows us to estimate the likelihood value of 
each parameter combination, and from this we can rank them all in order of their 
likelihood. The bootstraps then give us the frequency of each combination and its 
percentile ranking relative to the highest-likelihood combination (i.e. the mean of 
the bootstrap parameter values). We call the M-metric. If we choose a 95% confi­
dence interval then the actual data should generate a parameter combination whose 
M-metric is less than 95% for the model not to be rejected.

If we could assume that the parameter combinations followed a multi-variate 
normal distribution these M-metric values could be translated back into a normal 
likelihood value. (If we found from the bootstrap distribution that that the distri­
bution was not multi-variate normal but some other one, then we could repeat the 
operation under this other distribution and translate the M-metric back into a like­
lihood value from this one.) This becomes useful for comparing two models since 
we can think of the M-metric as ranking their likelihood (that is to say, if Model 
A has a higher metric than Model B, then under Model A the data is less likely to

2 It might be thought that one could compare the ’reduced form’ distribution of the data repre­
sentation’s parameters with the distribution generated by the structural model. However because 
the ’reduced form’ is not derived from the structural model but is rather some approximation, its 
distribution is also not derived from the structural model; therefore we do not know what relation 
the two distributions should have to each other.
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be observed than under Model B; or alternatively, given the data, the likelihood of 
Model A is less than that of Model B). We would prefer to use Model B in this case.

Testing the model’s impulse responses against those in the reduced form

We also test the impulse responses implied by the SM against those in the data. We 
may note that Christiano, Eichenbaum, and Evans (1999): (CEE) have been for some 
time operating a methodology which is designed to do just this. However we believe 
it is flawed by problems of identification. CEE set up a calibrated or estimated 
theoretical structure and generate its impulse response function to particular shocks. 
This is then compared with the impulse response function obtained from a VAR 
estimated on the actual data but one that is restricted (or ’identified’) in a certain 
manner that is only weakly related to the theoretical structure. Thus the idea is to 
identify the VAR by imposing on it restrictions regarded as universally accepted by 
economists, non-controversial as it were, so that this VAR could be regarded as an 
acceptable representation of the facts. The theory can then be tested in respect of its 
ability to fit selected aspects of this representation that are of interest. For example 
CEE look at impulse response functions to a monetary policy shock. The theory can 
then be regarded if it matches this function as being a satisfactory representation 
for the purpose of monetary policy analysis.

However, the identification scheme being used for the VAR can hardly fail to 
be controversial and more to the point will in general be inconsistent with the 
structural model under test. For example CEE identify the VAR so that a money 
shock has ’hump-shaped’ response functions on both output and prices; this is a 
prior assumption emerging from some loose theory they happen to hold. Yet if the 
particular SM under test is taken as the null it may well not imply such a pattern 
of response. The SM might well be ’rejected’ (’accepted’) by such a representation 
when it would not be if the theory’s own restrictions are applied in identification.

An alternative approach, which we use below, is to compare the impulse re­
sponses of the model with those of the unrestricted VAR when the model’s restric­
tions are used to identify the relevant shocks to the VAR. This is done by establish­
ing a mapping from the model shock involved to the model-implied shocks for the 
variables in the VAR; these shocks are then input into the VAR and the resulting 
movement in those variables plotted; the 95% confidence bounds for this are found 
from the VAR bootstraps.
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2.3 Our experiments on the Liverpool Model of the UK:

2.3.1 Our procedure in summary

We look at the LVP model over the period from 1979 to 2004. As we know the 
monetary regime during this whole period has varied substantially. During the early 
1980s there were money supply targets but the money measures targeted switched 
periodically; from the late 1980s there was ‘DM shadowing’, a sort of fixed exchange 
rate regime, followed by the ERM proper from 1990-92. Finally there was a switch 
to inflation targeting from end-1992, which continues to this day.

Plainly in these circumstances we should not reasonably test the model against 
whole period correlations or VARs. We looked at data on correlations for a sample 
starting in 1970 and treating the model as one single-regime model over this period. 
However it turns out that it is hard to interpret the comparison between model­
generated and data correlations, because different filters give quite different results 
and in addition there are many different variables and sets of cross-correlations 
between them. The general problem is that there is no unambiguous test of the 
model across this plethora of information, even if we could take seriously the idea 
that the whole period was governed by the model under one regime. So we turn at 
once to a general data representation form which we may use to test the model in a 
way that allows for regime shifts.

2.3.2 The LVP Model with three separate regimes from 1979-2003:

Thus we take seriously the null hypothesis separation of monetary regimes. We 
bootstrap each regime separately to obtain pseudo-samples from 1979-2003 that 
fully embody the different regimes. We then impose these different regimes as far 
as we can on the reduced form structure.

Plainly therefore our structural model indicates some sort of shifting in the data 
representation model. We tried various data representations but the most successful 
empirically was a VAR where there is Markov switching of variances only. What 
is encouraging in this experiment is that the three states picked out do correspond 
to a high degree with the a priori regime allocations. Thus state 1 occurs largely 
from 1979-84, suggesting it is the ‘money targeting’ regime. State 3 occurs mainly 
in the mid-1990s and then from the late 1990s to 2003, suggesting it is the ‘infla­
tion targeting’ regime. State 2 according to our null hypothesis is the ‘exchange 
rate targeting’ regime which should occur from 1986-1992. According to the data 
determination here it occurs in 1986, 1992 and again in 1997; but not in 1987-1991 
which the data allocate to money targeting. This last regime also intrudes into the
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inflation targeting era, in 1998. Of course our regime allocation is far from cast- 
iron, especially in the period from 1986-1992 when considerable confusion reigned 
in policy (the prime minister and Chancellor publicly disagreed on whether the UK 
was targeting the exchange rate or the money supply).

The model fares well in terms of the 95% confidence intervals for individual 
coefficients. Thus, with the marginal exception of the variance of inflation in state 
2, it picks up the whole variance-covariance matrix in the three switching states 
(Table B.3 in Appendix B.l). For the VAR parameters it rejects 5 out of 30 at 
the 95% level, with one of them only borderline (Table B.2). Thus taking all the 
parameters of the Markov-switching model, it rejects 5 out of 75 (Tables B.4 and 
B.5). The M-metric comes out at 94.8% which means that the data (just) do not 
reject the model.

We now go on to try a data representation where we assume different VARs in the 
different regimes; we move from a Markov- to a deterministic-switching description. 
In order to keep as many degrees of freedom as possible, we treat the sample as 
a whole and in effect introduce dummies for each regime, testing in turn whether 
there is evidence in the data of shifts across regimes in constants, VAR parameters 
and the VAR error var-covar matrix.

Results of Imposing 3 Regimes on VAR

The first regime here is the monetary targeting regime, ending at 1985Q4. This is 
followed by the Fixed exchange regime until 1992Q3, at which point the inflation 
targeting regime begins and continues until the end of the sample in 2003. In this 
specification all the parameters- means, autoregressive, and var-covariance values- 
are allowed to vary, in effect through a set of dummy shift parameters. Below, in the 
Appendix B.2, we show first the actual versus fitted values from the data (Figure 
B.2); and then the parameters compared with their 95% confidence limits from the 
bootstraps (Tables B.6, B.7, B.8 and B.9).

When we compare the number of parameters rejected at 95% confidence with 
the total, it is clear that this model, restricted as it is by the fixed switching of 
regimes, is a lot less successful with individual parameters than the one where we 
allowed Markov-switching. Its M-metric is 98.8%; this is worse than the Markov 
representation and the model is thus rejected by the data when represented in this 
form. What this suggests is that the model requires adjustment; while it is bor­
derline not rejected by the data when represented by a Markov-switching process 
this non-rejection is not robust to how the data is represented, since when the data 
is represented by a fixed-switch point VAR it is rejected at the 95% level. Quite
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how the model should be adjusted is a matter for future research; but the fact that 
rejection seems to be associated with fixed or moving switch points seems to suggest 
exploring different regime switch points in the model’s application.

2.3.3 Impulse responses

Further information on the model’s strengths and weaknesses can be obtained from 
comparing its impulse responses with those in the data. In what follows we show 
the impulse responses generated by a supply shock (a rise in the employers’ tax 
rate on workers, BO) and by a nominal shock (MTEM: this is a fall in the money 
supply under the Money targeting regime; a fall in foreign prices under Exchange 
rate targeting; and a temporary rise in interest rates under the Inflation targeting 
regime). The response of the VAR when the VAR shocks are identified via the effect 
of the structural model (so that in effect their first period effect is the same as that 
of the LVP) is shown by the solid line; and the 95% confidence interval for the VAR 
effect coming from the model bootstraps is shown by the two dotted lines. If the 
model is correct, we should observe that the VAR effects lie within the 95% interval. 
(The LVP response itself is not strictly relevant and not therefore shown). All the 
responses shown are for the differences of all the variables, not their levels.

Notice that the 95% confidence intervals around the impulse responses come 
from the same VAR parameter confidence intervals we have already used to test 
the model against the data as summarized in the VAR data representations; the 
M-metric tested the model as a whole. There is no further test of the model to 
be found in the impulse responses; these are shown below merely as a source of 
information about how well the model fits in this particular dimension.

A: Money Targeting Regime (1979-85)

Here we see that all the VAR effects lie within the 95% interval except for unemploy­
ment which is somewhat outside for both the supply and nominal shocks (Figures
B.3 and B.3 in Appendix B.3; dotted red lines are the boundaries of the distribution, 
discontinuous black line is the actual response, blue solid line is the response of the 
structural model).

B: Exchange Rate Regime (1986-92)

In this regime all the VAR effects lie within the interval (Figures B.5 and B.6).
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C: Inflation Targeting Regime (1992-2003)

In this regime the VAR effects lie outside the 95% interval for several variables under 
both shocks. Under the supply shock inflation, the exchange rate and unemployment 
lie outside; under the nominal shock the exchange rate and unemployment lie outside 
(Figures B.7 and B.8).

D. Comments:

What we find here is that, with some exceptions, the model is close to capturing 
the impulse responses. A handful of responses, virtually all confined to the inflation 
targeting regime, lie outside the model’s 95% limits. It is possible that these faulty 
responses are connected with the model’s rejection by the data, as discussed above. 
However, the fact that the model captures most impulse responses suggests that 
the model is not too far from acceptance by the data. On the assumption that 
the model should thus be taken seriously, we may notice that none of the impulse 
responses have a ‘hump shape’ (in levels too, if we integrate these impulses, this 
would also be true, as can easily be verified.). Such a shape would be the product of 
particular identifying restrictions on the VAR innovations but such restrictions do 
not hold with the LVP model. Thus we have no reason here, given that the data 
is not too far from accepting the LVP, to impose other identifying restrictions on 
the VAR than those implied by the LVP. It is of course possible that some other 
model implying hump-shaped responses if put as the null hypothesis could also fit 
the data- even possibly better than the LVP. But we have been unable to check on 
this so far; and the key point made here is that one is not compelled by the data 
to assume hump-shaped impulse responses. Rather we note that the LVP model 
responses, largely accepted by the data, do not have them.

2.3.4 A Second Example: Growth and Taxation

In a recent paper, Minford, Meenagh, and Wang (2006) use the method set out 
here to test the effect of taxation on growth. This is of interest because it tests 
between several models and so extends the method here beyond just one model. As 
indicated above, we may use a model’s M-metric as an indicator of the likelihood of 
the data given that model; thus we may compare the M-metrics of different models 
and rank them accordingly by likelihood. In the paper Minford et all use annual 
panel data on 76 countries from 1970 to the present day. They set up a standard 
model of endogenous growth for a small open economy and are able to derive two 
structural equations from it, one for the production function allowing for the effect
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of the business-tax-modified incentive to innovate on productivity growth (in this 
the effect on growth of a 0.1 cut in the business tax was 0.14% p.a.- a coefficient 
of -0.014) and another for labor supply with general tax as an incentive variable. 
These two structural equations are estimated on the panel data and the implied 
errors extracted; these errors are modeled as time-series (AR) processes. The two 
tax variables are modeled in the same way. The innovations in these time series 
processes are then treated as a shock vector; this vector is a 76-country vector with 
thirty-odd years’ values. The vector is resampled with replacement, re-input into the 
time series processes and then into the structural model to generate a large number 
of pseudo-samples. These constitute the ’sampling world of the model’, that is to 
say the samples that the model could have produced with different random shock 
draws.

Just as we used a VAR to describe the data in a ’reduced form’ for the LVP 
model, so here Minford et al use a data description in terms of the ’reduced form’ 
effect of tax on growth plus time and country dummies. They find that only business 
tax is significant and so the equation is cut back to one with growth regressed on 
the level of business tax, plus dummies. The resulting descriptive equation is:

A logy* = a 1(rt + 7r't)

Using panel data with fixed effects may not be the most efficient model to run. 
Estimating the model with random effects will give a more efficient estimator (the 
reason for this is that the estimator saves degrees of freedom by not using the fixed 
country dummies but instead using the regression with fixed country dummies with 
a weight, to correct the regression with time dummies only). The results of the 
estimation are shown in the following table.

Tab. 2.1: Estimation Output
Estimation Methods Estimate Standard Error

Fixed Effect (Country and Time Dummy) -0.043 0.014
Random Effect -0.05 0.027

To test whether we should use the fixed or random effects model we run a Haus- 
man test, the results from this test were

From Table 2.2 we find that we can use either fixed or random effects in the actual 
data sample without serious risk of inconsistency. This is of interest in that it tells 
us that the effect of business tax in the descriptive regression is well-determined and 
highly significant.
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Tab. 2.2: Hausman Test
Coefficient Fixed Random Difference Standar Error X2 Prob. Value

d\ -0.043 -0.05 -0.007 0.022 0.1 0.751

We now turn to the bootstrap distribution of the business tax parameter. While 
the Hausman test indicates the random effects estimator is probably consistent for 
the actual data sample we cannot be sure it will be consistent for any sample, let 
alone the bootstrap samples. Consistency is essential for these samples since each 
sample provides us with a ’central’ estimate of the parameter in that sample; if 
it is not central then our distribution estimates will be biased. Furthermore we 
do not care about the efficiency of the estimator because we will not be using the 
standard error of the estimates; we use only the estimates to construct the bootstrap 
distribution (and implied standard error) of the ’reduced form’ coefficient. Thus we 
use the estimator that is sure to be consistent, namely that with dummies for country 
and time. On this basis, the results were as follows:

Tab. 2.3: Bootstrap Results for Model with Estimated Tax Effects
Coefficient Actual Lower Bound Upper Bound M-metric

fli -0.05 -0.054 0.017 90.8%

The basic model is thus accepted- notice the M-metric is redundant here when 
only one coefficient is of interest. However, it might be that a model in which there 
is no tax effect at all but otherwise the same, would do just as well. If so the 
acceptance of the basic model is hardly persuasive that taxes matter for growth. To 
test this Minford et al set up the same model but this time with a zero effect of 
taxes; the model was reestimated with this constraint, the new errors extracted and 
the bootstrap exercise repeated. The results were:

Tab. 2.4: Bootstrap Results for Model with Zero Tax Effects
Coefficient Actual Lower Bound Upper Bound M-metric

ax -0.05 -0.04 0.03 98.1%

We see that this alternative model is rejected, with an M-metric of 98.1%. Thus 
the basic model is accepted by the data at the 95% level, whereas the alternative 
model with no tax effect is rejected.

So far the basic model was being tested from the zero side, so to speak- to see
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whether it dominates a no-tax-effect model. It is also of interest to test it from the 
other side: to see whether a business tax effect higher than freely estimated would 
satisfy the data description. So Minford et al also reestimated the model imposing 
an increased coefficient on business tax and retrieving the implied new errors. They 
used two cases, one in which they set the coefficient to —0.02 and another in which 
they set the coefficient to —0.04. The results for the —0.02 case are shown in Table 
and the —0.04 case in Table 2.6.

Tab. 2.5: Coefficient on Business Tax set to —0.02
Coefficient Actual Lower Bound Upper Bound M-metric

a\ -0.05 -0.06 0.012 82.1%

Tab. 2.6: Coefficient on Business Tax set to -0.04
Coefficient Actual Lower Bound Upper Bound M-metric

ai -0.05 -0.062 0.011 81.7%

What is interesting about this is that there is an improvement in the model’s 
performance vis-a-vis the data description as the model’s business tax effect is raised. 
Thus if it is raised in absolute size by two standard errors to -0.02 (from the estimated 
-0.014) the M-metric falls from 90.8% to 82.1%. However the improvement stops 
from here on. If it is raised further to -0.04 it improves barely at all; this must be 
because it induces errors in the model whose variation is correlated with the tax and 
offset its effect on the distribution of a\. Hence the data estimation of the model 
itself combined with the data description tell us that a business tax parameter of 
between -0.014 and -0.02 is the most compatible with the data.

A discussion of the empirical results

There are a number of aspects of this illustration that are of interest. We may 
start by discussing the ‘conventional’ way of testing the model using the standard 
reduced form approach. Thus we note that the model implication- viz that the level 
of business tax and the rate of change of general tax both affect growth- meets a 
mixed reception. The business tax effect alone is fairly significant against the usual 
zero alternative; the general tax effect is not. We concluded from this that the 
data description should not include the general tax effect as it does not contribute 
to explaining growth. We might also have concluded that there was evidence of a 
business tax effect. However as we have argued above this ’reduced form’ evidence is
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not a persuasive test for two reasons. First, the error terms in the reduced form will 
include omitted nonlinear effects of tax on growth that can bias the ‘reduced form’ 
coefficient. Second, other models in which tax plays no part could also generate this 
‘reduced form’ result.

So we reviewed next the evidence from the bootstrapping method, where instead 
of the confidence intervals generated by the ‘reduced form’ we look at those produced 
by bootstrapping the structural model. We found here that the model was accepted 
by the data description and furthermore that an alternative model with no tax 
effects was rejected by it and thus also dominated in likelihood by the basic model. 
In fact a model with a higher business tax coefficient of -0.02 is more likely viewed 
from its fit with the data description equation (though less likely viewed as a direct 
estimate from the production function).

What is also striking is the insight afforded by the bootstrapping procedure into 
the biases in the ‘reduced form’ coefficients under the null hypothesis. Thus we 
know from simulating the model for a shock to the business tax rate that growth (in 
steady state) increases by 0.14% to 0.2% for every 0.1 (ie 10 percentage point) fall in 
the business tax rate under the model. However the ‘reduced form’ coefficients give 
a value for this business tax effect that is up to three and a half times as big. This 
indicates a huge amount of bias in the ‘reduced form’ coefficients; these values bear 
little relation to what the model would produce as the simulated effect. The model 
when bootstrapped reveals that the correlation of the tax shocks with the errors 
creates massive bias in the ‘reduced form’ estimates. To put it in concrete terms, 
for example when the business tax rate is cut this causes a rise in consumption and 
labor supply as well as in productivity growth; the former two create an independent 
source of output increase over and above the steady state increase; this association 
raises the estimated effect of a business tax cut on growth.

A last point of interest is that we were unable to change the structural coefficients 
on tax upwards beyond a certain point, even though the ’reduced form’ results would 
have been better fitted by a large business tax coefficient, ceteris paribus. What we 
found was that the data forced the structural model errors to offset the effect of 
raising the business tax coefficient beyond a certain point. Had we kept the freedom 
to ’make up’ the structural errors we would have been able to fit the ’reduced form’ 
results easily. But because we forced the structural model to fit the data through 
the implied errors used in the bootstrapping, the fitting of the ’reduced form’ was 
constrained. It is as if our results can only emerge satisfactorily if they can go 
through two mincers, each of a different shape; a structural mincer and a ’reduced 
form’ mincer; only if the model can force its way through both are its results to be
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believed.

2.3.5 Conclusions

In this chapter we have described a new method for testing macro models and 
illustrated its use. First we looked at the LVP model across three monetary regimes: 
floating with monetary targets, exchange rate targeting (implemented by fixing the 
exchange rate), and floating with inflation targeting. We represented it in the data 
by two types of regime-dependent VARs, one with Markov-switching of variances, 
the other with fixed point regime switching. The model was accepted by the data on 
the first representation but not on the second, using a measure of overall fit, the ’M- 
metric’. Together with the evidence from the impulse responses where most were 
within bootstrap confidence limits but some, especially under inflation targeting, 
were not, this performance is suggestive of ways to improve the model.

Our second illustrates the test method on panel data to do with growth and 
taxation. Here we actually compared two models, one with tax effects and the other 
where tax has no effect. Here we were able to use the M-metric not merely as the 
criterion of rejection but also as a means of ranking the two models. It ranked the 
tax-effect model above that with no tax effects.

Our final conclusion is that these methods are both practicable and provide a 
powerful tool to test and so improve model performance; we hope to use them in 
future work on other models.



3. LITERATURE REVIEW

This chapter reviews the existing methods of evaluating Dynamic Stochastic General 
Equilibrium (DSGE) models. These methods are divided into two main categories; 
what we may call structural econometric methods and methods for dealing with 
calibrated models. This separation is founded on the basis of the null hypothesis. 
In the first category the structural model is treated as the true Data Generation 
Process (DGP), in economic terms, the structural model is true and its basic set­
up is not questioned; the issue is simply one of fitting it to the data as accurately 
as possible. This consideration allows the use of formal econometric methods to 
address questions regarding the validity of the null hypothesis; if these questions are 
answered satisfactorily then no further questioning of the model is required. On the 
other hand calibration researchers argue that DSGE models are heavily misspecified 
and, therefore, should not be treated as true. They can only explain certain features 
of the real world and, therefore, their evaluation should be concentrated on those 
features which they have been created to explain. According to Canova (1994) the 
differences between the two approaches are linked to the question the two approaches 
ask. Scientists from the first category start from the condition that their model is 
true and they are asking “how false is it?” while the calibration people consider 
their model as false and they are investigating “how true is it?”.

3.1 Structural Econometric M ethods

Canova (1994) argues that the origin of this approach goes back fifty years ago to 
the methodology proposed by Haavelmo (1944). It would be useful at this stage 
to introduce the functional state space form of a linearized around a nonstochastic 
steady state solved DSGE model.

yt = Axt The Measurement Equation (3.1)

xt =  B x t-1  +  vt The State Equation (3.2)

(3.2) is the law of motion of the economy that describes the evolution of the state 
vector Xt € while (3.1) relates the state vector of the model with the observable
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variables yt G Rdy and vt G are the stochastic processes that govern the system. 
DSGE modellers from both categories emphasize on the tractability of the model 
and this induces the stochastic singularity issue; the number of the shocks in the 
model is less than the number of the observable variables (dv < dy)1. When this 
is the case a term ut, called measurement error or unobservable shock, is added to 
equation (3.1) to complete the probability structure of the model2

yt =  A xt +  ut (3.3)

3.1.1 Maximum Likelihood Estimation /  Kalman Filter Algorithm

A structural model written in the state space form (equations 3.2 and 3.1 or 3.3 when 
the latter is singular) can easily be estimated by using Kalman Filter Algorithm an 
important building block in the prediction error decomposition of the likelihood 
(for a detailed discussion see Sargent and Hansen, 2004; Canova, 2005, Chapter 9, 
Chapter 6 , respectively).

Given this estimate of the structural vector 9 =  (vec (A ) ', vec (B ) ', vech (E^)', 
vech(Euy y  the validity of the null hypothesis is examined by testing restrictions 
implied by the theory, or by general goodness of fit tests, or by comparing the fit 
of two nested models. Additionally, when the stochastic vector is augmented with 
some measurement errors Canova (2005) argues that the comparison of the size of 
the estimated standard errors of the structural shocks and of the measurement errors 
could be used as a misspecification indicator.

Measurement errors are serially and contemporaneously uncorrelated and their 
introduction does not alter the dynamic of the model. Ireland (2004) goes a step 
further and allows these errors to follow a Vector Autoregressive process (VAR(l)). 
This action obviously increases the fit of his model; for instance when conditions 
ensuring the errors are serially and contemporaneously uncorrelated are imposed the 
likelihood value falls dramatically and the Likelihood Ratio statistic reject these con­
straints. However, the new model, called hybrid model, can no longer be considered 
as structural.

There are various difficulties with using these methods (for discussion see Sargent 
(1979); Altug (1989); McGrattan, Rogerson, and Wright (1997) and Canova (2005, 
Chapter 6).) However, the principal one from our viewpoint here is that the methods

1 However, this may not be an issue these days, for instance, Smets and Wouters (2003) built a 
model with ten structural shocks.

2 See Bierens (2005) for an alternative treatment of the singularity issue.
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do not examine the ’dynamic performance’ of the model, in the sense of its ability 
to reproduce the correlation patterns in the data, unless one can be completely sure 
that the structural model is well specified, this ability needs to be examined as a 
test of the model. It is this that is the focus of calibration methods, to which we 
now turn.

3.2 Calibration Methods

Evaluation methods for calibrated models are reviewed here. These methods at­
tempt to assess the extent to which a model (usually calibrated but potentially 
also, at least partially, estimated) can reproduce the dynamic features of the data. 
Equations (3.1) and (3.2) are carried over in this section. In contrast to the preced­
ing approach, no uncertainty is allowed to 6 and the model deterministically links 
the endogenous variables to the parameters and exogenous stochastic process (see 
equation (3.1)). It is, either, the sampling variability of the exogenous stochastic 
processes (vt) in the classical framework, or, the cross section variability of 6 in the 
Bayesian framework, or, both that allows them to define a distance between the 
model and the data. Canova (2005) categorizes all these methods into four main 
groups on the basis of the nature of the mean used to measure this distance:

a . Approaches based on R2-type measure;

b . Approaches based on the sampling variability of the actual data;

c . Approaches based on the sampling variability of the simulated data;

d . Approaches which use the sampling variability of both actual and simulated
data.

For convenience this scheme is maintained here.

3.2.1 R 2-type Measures 

This subsection mainly reviews the method developed by Watson (1993).

Watson’s Method

Watson’s working assumption is that the economic model is viewed as an approxi­
mation to the stochastic processes generating the actual data or in statistical sense 
the model is not true. Goodness-of-fit (i?2-type) measures are developed to assess 
this approximation. The core of these measures is the amount of the error needed
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to be added to the data generated by the model so that the autocovariance implied 
by the model plus the error match the autocovariance of the observed data.

- The economic model describes the evolution of a vector series say xt while its 
empirical counterpart is denoted by yt. ACFy is the autocovariance function for yt, 
which is unknown but it can be estimated from the data either nonparametrically or 
parametrically by using a time series representation say a VAR or a Vector Moving 
Average (VMA) process. Differences between the estimator ACFy and ACFy arise 
solely from sampling error. Now if ACFy =  ACFX sampling error also accounts for 
the differences between ACFy and ACFX. Standard probability measures indicate 
if any discrepancy between arises solely from the sampling error. However, this test 
would be meaningful if the economic model is the actual DGP under the null, which 
is not the case in the present context.

His measure of fit is based on the size of the stochastic error required to reconcile 
the autocovariance function of x t with that of yt. To be precise, ut denotes the error 
vector required to make the autocovariances of xt +  ut equal to the autocovariances 
of yt. If the variance of ut is large, then the discrepancy between ACFy and ACFX 
is large and vice versa. Loosely speaking, you could think this as the error term 
in a regression model in which the set of regressors is interpreted as the economic 
model. The economic model might be viewed as good approximation to the data if 
the error term is small (i.e. the R 2 of the regression is large) and vice versa.

Error’s autocovariance is defined as AFCU =  ACFy +  ACFX — ACFyx — ACFxy 
where ACFy is unknown but can be estimated from the data while ACFX is com­
pletely determined by the model. DSGE models are linearized around a nonstochas­
tic steady state and expressed as low order VAR and VMA process from which ACFx 
can be readily calculated (i.e. a standard RBC model with a unique technology shock 
is expressed as xt = a (L) et where a (L) is an n x 1 matrix polynomial in L and et 
is the unique normally zero mean distributed error).

However, ACFyx is unknown because the joint probability between xt and yt 
is unknown. At this point an assumption regarding the ACFyx is required. The 
existing literature provides two assumptions regarding this issue. They are strongly 
related with the way whereby data is collected or expectations are formed. The 
researcher could either set ACFyx =  ACFX, which implies that xt and ut are are 
uncorrelated (econometric assumption), or ACFyx =  ACFy, which would imply that 
ut could be interpreted as signal extraction error, with yt be an optimal estimate 
of the unobserved “signal” xt (signal extraction assumption). Obviously, neither 
of these assumptions seems to fit in the present framework, the error is not the 
result of imprecise measurement or a forecast/signal extraction error, it represents
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the approximation or abstraction error in the economic model.
Watson’s way to define the autocovariance between yt and xt is to choose that 

ACFyX, which minimize the variance of ut. This means that the error process is 
chosen in that way in order to make the model as close to the data as possible. 
As Watson (1993) points out this arises from the fact that, independently of any 
assumption made regarding ACFyx, if the lower bound of the variance of ut is large 
then the model fits the data poorly and vice versa. Therefore, the bound is calculated 
by choosing ACFyx to minimize the variance of ut subject to the constraint that 
ACFyx is positive semidefinite (a condition that ensure that the variance will be 
meaningful). His first example is used to illustrate this process. Say that yt, x t and 
ut are scalar and for simplicity it assumed that they are serially uncorrelated random 
variables. The problem is to choose oyx to minimize cr2 subject to the constraint 
that oxy is positive semidefinite (mina2 =  a2 +  a2 — 2cryx s.t. \cryx\ < &y&x) and the 
solution is cryx =  <Jy(Tx, which implies that xt and yt are perfectly correlated with xt = 
%yt or xt = 7 yt (E (x tyt) =  % E (ytyt) = *  <Jyx = = vycrxy  Watson (1993)
uses the last equation as another measure to assess the fit of the model. This 
equation shows how to calculate fitted values of xt given the data. Then fitted data 
is plotted against the actual and this plot offers a way to judge whether or not the 
former captures growth or cyclical components of the latter. Once an expression 
about ACFxy is obtained the following R2-type measure could be used:

R2(( A = ACFu(u)g ~2( \ _  ACFu(u)lt
'  ACFy(uj)u ) / [ u u ^ A C F y i u ^  ( }

R}{u) measures the variance of the z-th component of the error relative to the 
variance of the z-th component of the data at frequency u. The latter could be seen 
as the lower bound for the distance of model from the data, frequency by frequency. 
R2(u) does the same thing, however, over a band of frequencies.

As the author notices this method ignores nonlinearities and variation in condi­
tional second and higher moments. Canova (2005) also reports two other shortcom­
ing of Watson’s procedure. He notices that it is not clear why one should concentrate 
only on the best possible fit, he suggests to use both the best and the worst fit and if 
the range is narrow and 1 — R 2 of the worst outcome small, one could conclude that 
the model is satisfactory. The second drawback is related with the fact that this 
method does not provide information that may be useful in respecifying the model. 
R2 could be low for a variety of reasons, the variances of the shocks in the data may 
be high or the dynamics of the model and of the data are different or the process for 
the states has large AR coefficients. Obviously, it makes a lot of difference whether
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it is the first or the last of these causes that makes R2 low.

3.2.2 Evaluation Methods based on the Sampling Variability

Two methods are studied in this section. One treats the structural model as true 
and construct a measure of fit on the basis of the estimation variability while the 
second does not make the same assumption and introduce a i?2-type measure based 
on the data variability.

Generalized Method of Moments

Calibration techniques were criticized for their assumption that structural parame­
ters are known with certainty. Responding to this criticism Christiano and Eichen- 
baum (1992) develop a methodology, which evaluates the fit of an DSGE model, 
when some uncertainty is assigned to them. They use formal econometric meth­
ods to estimate the vector of the structural parameters , the only unknown 
element in their model, and use the sampling variability implied by their estimates 
to evaluate the fit of the model. It is known from asymptotic theory that un­
der the usual regularity conditions §t is consistent and asymptotically normally 
distributed (&t —* 0°, V T  ~ A N(0, . Another very useful asymp­
totic result, which is the cornerstone of this procedure, shows that a vector func­
tion of §t , g (Qt ^, is also normally distributed such as V T^g (§t ^ — g {9°) ^

N  ^0, (§t ) 'ZeVeg (fir) ^ (see Serfling, 1980).

Their working hypothesis is that the world is generated by their model (the 
DGP) so that the moments generated by the model would be identical to the actual 
moments under an infinite sample since sampling variability would be eliminated; 
but would differ under a finite sample because of sampling variability both directly 
and because it would cause the parameters to be estimated with error. The au­
thors formulate a testing procedure to investigate whether these differences in the 
moments arise because of sampling variability rather than from model misspecifica- 
tion. Initially the model is linearized around a steady state growth path and then 9 
is estimated by using Hansen (1982) Generalized Method of Moment (GMM)3. Using 
the authors’ notation, we let denote the structural parameters. Thus given the 
estimate of this, ,r, and of the assumed stochastic distributions, the significance 
of the difference of the model’s moments from those of the data, \&2, could be exam­
ined by a Wald J- type statistic (Canova (2005) calls this statistic economic Wald

3 For a detailed discussion regarding this method see Hamilton (1994, Chapter 14) or Canova 
(2005, Chapter 5).
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statistic).
Given \I>i the model implies particular values for \F2. Denote these values by 

g (^i). The test asks whether or not the differences between g (^ i)  and \k2 are 
equal to zero (F (W) =  g (^ i) — \£2 where 'F = [\ki, \P2]). For instance and without 
loss of generality, assume that the structural model is given by yt = axt + ut, x t = 
pxt-i+Vt (where |p| < 1 and E (xtut) = 0); in this case #1  =  (a,p, crj, cr̂ ), \I>2 =  cry, 

9 (^ i) =  and F  W  = ( i q ^  + al )  ~  A second order Taylor ex­

pansion of F  (^) about \F° gives the J-statistic as J  =  F Var ^F F  
whose main element is the variance-covariance matrix of the estimated parame-

d F ( ^ ) '  dF(4f)F  f ^  J 1 =   -v-z . Under the null hypothesis this statistic is
distributed as a chi square with degrees of freedom equal to the number of the mo­
ments tested (x2 (dim (\k2)))- Thus in the simple example above the statistic follows 
a x2 (1) distribution.

This distribution is based on asymptotic theory. This implies that this process 
would work properly if the sample size was big enough. However, big samples are a 
luxury that, usually, we do not have in macroeconomics. This implies the existence of 
a small sample bias which distorts the inferences obtained from the above procedure. 
The evidence4 suggests that estimates of the parameters and of the standard errors 
are biased in small samples; this means that the J-statistic should be used with 
caution in small samples.

The use of GMM methods and the J-statistic require stationary series. This
implies that either growth rates (differencing) or some filter should be used in order
to ensure that the above moments exist. However, the use of a filter is not innocuous,
Christiano and den Haan (1996) found that Hodrick-Prescott (HP) filtering induces
large and persistent serial correlation in the residuals of the orthogonality conditions
and this creates problems in the estimation of the spectral density at frequency zero5 
6

Apart from Christiano and Eichenbaum (1992), Burnside, Eichenbaum, and Re-

4 Issues related with the sources of this bias, its direction and its importance are explained by 
Canova (2005, Section 5.4.1). He provides a list of studies examined the small sample properties 
of GMM estimators.

5 This matrix is one of the main elements of the parameters’ variance covariance matrix, which 
is estimated by using HACC techniques at zero frequency. The authors conducting a Monte Carlo 
study found that when the series have been HP filtered that matrix is downward biased and this 
affects the coverage probabilities that seem to be very far from the nominal values in this case. 
For more details see Christiano and den Haan (1996, Section 5).

6 Christiano and den Haan (1996) applied a Monte Carlo study for the GMM and for the 
economic Wald statistic and they note: ’’The results are disappointing. The asymptotic theory 
appears to provide a poor approximation in finite samples, particularly when the data have been 
HP filtered.”.
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belo (1993) and F‘eve and Langot (1994) have also used this method to evaluate 
their DSGE models.

Resampling Methods

The method introduced by Diebold, Ohanian, and Berkowitz (1998) is reviewed in 
this section. They consider their work as an extension of Watson (1993) procedure 
and they assess models by comparing model’s spectra Sx(u ,9 ,vt) to data’s spectra 
Sy(u). This method allows for graphical comparison between Sx(u>, 9, vt) and Sy{u) 
over w, so we could, easily, see along which frequencies the model performs well 
and along which frequencies it performs poorly. For instance, Real Business Cycle 
(RBC) scientists would concentrate their attention on the business cycle frequencies.

Sx(u,9 ,vt) is calculated either analytically or numerically by simulating long 
series of data from the model. Therefore, there is no sampling variability because 
the DGP is known, however, this is not the case for the actual data. An estimate for 
the latter Sy(u) is obtained by using well established techniques and its sampling 
variability is created through the Cholesky factor bootstrap algorithm.

Bootstrap distributions are valid frequency by frequency, however, one often 
wants to assess the sampling variability of the the spectral density function over 
a band of frequencies, such as the business cycle frequencies. In this case a set of 
(1 — a)% confidence intervals constructed for each of n ordinates will not achieve 
(1 — a)% joint coverage probability. This is resolved by using the Bonferroni method 
to approximate the desired coverage level, by assign (1 — a/ri)% coverage to each 
ordinate since the resulting tunnel has coverage of at least (1 — a)%.

A measure of fit described by the authors, which can also be used for estimation 
of 9 is the following:

(4/2
L* (s£(uO, Sx(w, e, vM  W {u)du  (3.5)

1 '

where in practice, the integral is replaced with a sum over frequencies Uj = 2nj/T , j  —
1, ...,T / 2  — 1, L* measures the distance between Sy(u) and Sx(u, 9, vt) and it is usu­
ally of quadratic form, tr 9)D(u)j\9)), where D(cjj]9) = Sx(u ,9 ,v t) — Sy(u)
and, finally, an estimate of the structural vector is given by 9 =  arg max 9)D{pjj\ 9)).

Macroeconomic data, particularly, interest rate and exchange rate time series 
display nonlinear dynamic structure which cannot be captured by the suggested 
resampling technique; a weakness noticed by the authors.

L(6,vt)=  [
J Cl)
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3.2.3 Evaluation Methods based on the Sampling Variability of the Simulated
Data

We study methods that construct measures of fit based on the sampling variability 
of the simulated data. In a classical framework this variability arises from the 
variability of the stochastic processes of the model while in a Bayesian framework 
this, normally, arises from the parameter uncertainty.

Calibration as Testing

This method provides a simple way to judge the distance between population mo­
ments or statistics of a simulated macroeconomic model, Sx(9, vt), and their observed 
counterparts, Syt , where Syr  —► Sy. Gregory and Smith (1991, 1993) show that a 
wide class of measures of fit could be obtained through the randomization of the 
stochastic processes of the model, vt. An estimate of the distance between Sx(9,vt) 
and SyT could be obtained by using either asymptotic or probabilistic, Monte Carlo, 
criteria.

To be precise, sequence of errors, j {yiY=\} > are drawn from the hypothetical

distribution and used for the calculation of {Sl(9, Vt)Yj=y The latter sequence is or­
dered numerically and we check if Svt lies inside a prespecified range of the simulated 
distribution or we calculate the number of the replications for which S3X(9, v}) < SyT. 
According to Gregory and Smith (1991) this gives the size of the calibration test. If 
a model is a poor approximation to the data, the simulated distribution of S3X(9, v°t ) 
will be far away from the distribution in the data and extreme statistics will be 
obtained.

Since Sx(9,vt) is a random variable we know from the Central Limit Theorem 
that

Vt)) Z  N (0, 1)
var {Sx(9,vt))

and this offers an alternative testing procedure. For each replication j  we test 
whether or not different from N (0,1) and we
construct a dummy variable dj that takes value one if this is the case and zero oth­
erwise and, finally, J -1 i dj giyes the percentage of times the model is rejected.

Apart from Gregory and Smith (1991, 1993), Soderlind (1994) and Cogley and 
Nason (1994) have also used this method to evaluate their DSGE models where 
Sx(Q,vt) denotes spectral densities and semi-structural responses, respectively.

Canova (1994, 1995) and Maffezzoli (2000) augment the above analysis by al­
lowing parameter uncertainty. This additional source of sampling variability is a 
maneuver to the criticism that 9 is known with certainty; an assumption made by
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calibrationists. The density from which 9 is drawn is a smooth histogram of all the 
estimates (both time series and cross-sectional) existing in the literature.

Simulated Quasi-Maximum Likelihood

This technique, introduced by Smith (1993), is more an estimation procedure for 
nonlinear DSGE models with its own measure of fit rather than an evaluation pro­
cess. 6 is selected in such way so the density of the simulated data reconciles with the 
density of the actual data, f ( x t(9)/xt-i(9), ...,xt- p(9), 7 ) =  f ( y t/y t- 1, 7 )- A
VAR with identically independently distributed (i.i.d.) residuals is chosen to approx­
imate the true conditional density because of its computational advantages.

The mapping from 9 to 7  (VAR coefficients on lagged variables and the parame­
ters of the covariance matrix) is highly nonlinear and it is calculated by simulation. 
To be precise, we know that for a large series of the simulated data

t T

7 t {9) =  a rgm ax^^ log /(:rs(0)/:r5_i(0),...,xs- p(9),y(9)) 7 (9)
s= 1

and under the null hypothesis there exists a 9° such that 7 0 =  7 (9°), which is the 
limit of the sequences of the VAR(p) estimate using historical data, yT- There­
fore, the null hypothesis could be tested on the basis of the dim(7 ) — dim{9) over- 
identifying restrictions imposed by the structural model on 7

W = T(1 +  r - 1) - 1 (7 r  -  7 £ £  { I t  ~  7rW ) (3.6)

where E^T is the Quasi Maximum Likelihood covariance matrix of

t

I t  = a r g m a x l o g / (yt/y t- \ , 7 ) -»• 7 °
t= 1

and W’s asymptotic distribution is nonstandard7.

3.2.4 Evaluation Methods Based on the Variability of both Actual and Simulated
Data

Evaluation procedures studied in this section construct measures of fit based on 
sampling and simulation variability.

7 W follows a x 2 distribution with degrees of freedom equal to dim (7 ) — dim {9) when the 
Information M atrix Equality holds (see White, 1994, Chapter 11).
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Resampling Methods

Canova and De Nicolo (1995) evaluate the performance of a DSGE model by exam­
ining the degree of the overlap between the bootstrapped distribution of the statistic 
of interested, say Sy, using actual data and the simulated distribution of the statistic 
conditional on the structural model, Sx(0, vt). In this exercise, simulated and ac­
tual data are treated symmetrically, for instance, one can either ask the probability 
Sx(0, vt) falls within the q% bootstrap contour of the Sy or the probability that Sy 
falls within the q% contour of the distribution of Sx(9, vt).

Few words are necessary to be said about the way whereby the simulated distri­
bution of Sx(0,vt) is obtained. Given the assumption that the joint density of 6 is 
just the product of the marginals of each component of 6, f (0 /I t) = 
simple bootstrap techniques are used to derive the empirical distribution of 6. For 
instance the technological parameters are obtained by bootstrapping 1000 times the 
residuals of a regression of the consumption series on a constant. At each replication 
they generate a new consumption series and collect values of the mean, the standard 
deviation and the AR(1) coefficient which are used to construct the corresponding 
structural parameter. Finally, the simulated distribution of Sx(0,vt) is derived by 
drawing randomly with replacement 0 from f{0 /I t) and simulate the model.

Corradi and Swanson (2005) assess the performance of I DSGE models, simulta­
neously, based on how close is the joint distribution of the simulated data of model
i, F%(u\6%) (the cumulative density function, c.d.f.), to the joint distribution of the
historical data, F°(u; 6°). According to their null hypothesis no model can provide a 
better approximation than model 1, the benchmark model. This comparison is done 
using a Kolmogorov/squared error sense-type statistic and a distributional general­
ization of White’s (2000) reality check, which assesses whether at least one of the 
alternative models provides a more accurate approximation to the true cumulative 
distribution than does the benchmark model.

01) ) 2 -  (F°(u; 0°) -  **(«; 04))2)  4>(u)du < (53.7)

F ^u ; 01))2 -  (F°(«; 9°) -  F^u; F ))2)  <t>(u)du > ($3.8)

Hq : max
t=2,..., I J

Ha : max i=2,..., I

/ f ( (F > ;0 ° )

J  f ( ( F > ; 0°)
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The relevant statistic is >/TZt,s where Zt ,s — maxj=2,...,z $v ZitTts(u)</>(u)du w^h

z >,t ,s (u ) =  j ,  Y j  ( 1 {yt <  «} - 1 J 2  ( i  (#}■) <  « } )
t=  1 \  S=1 /

T /  S  \  ^

- f  E  (1 fa  ̂“> - 1 E  t1 {x* (&)  ̂“})) (3-9)
t = l  \  s= 1 /

where 1 {yt < it} is a indicator function and S  is the length of the simulated data. 
The limiting distribution of the statistics is a functional over a Gaussian process 
with a covariance kernel that reflects the contribution of the structural parameter 
estimation error. This implies that the latter distribution is not free of nuisance 
parameters and critical values cannot be tabulated, however, they introduce Moving 
Block Bootstrap (MBB) procedures to overcome this problem. For instance, the 
bootstrapped data is produced by resampling b blocks of length m  of the actual 
data. The structural model is fitted to the new data in order to get the bootstrapped 
estimate of the structural vector which is used for the new simulation of the model. 
If the simulation error does not vanish then the simulated data is resampling again. 
At each replication y/TZ^ s is calculated and the null hypothesis is rejected when 
V TZ t,s is greater than the (1 — a)th-quantile of the distribution of y/TZ^ s .

Bayesian Calibration Methods

Bayesian DSGE economists have developed their own procedures to evaluate struc­
tural models and we review these methods in this subsection. Since these are not 
very widespread it would be useful for the continuation of this discussion to high­
light some of the key features, which are common to all of them. Measures of 
fit created in this category are based on the simulation and sampling variabil­
ity, which arise from the uncertainty assigned on the parameters of the struc­
tural model (6) and on the coefficients of the parametric representation of the 
data (7 ), respectively. Since any DSGE model in the form of equations (3.1) 
and (3.2) (state space representation) can always be written as a theory restricted 
VAR(l), yt — AB(B'B)~*B'yt- i  +  Avt8, a natural choice to describe the data 
would be a VAR(p), yt =  Tiyt- i  +  ... +  Tpyt- p +  ut or using the companion ma­

trix,

y t

y t - 1
=

V t - p + i

Ti
Irht

r2
0  dy

0dy 0dy

I p

0 dy

0 dy

y t - 1 Ut

y t - 2 0 dy
+ =

y t - p 1

O
1

TYt.  1 +  Ut

8 Equation (3.2) is substituted into equation (3.1) and the generalized inverse matrix  is used.
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with yt =  I  dy 0 dy • • • 0 dy J Yt =  yt =  nyt. Therefore, any comparison be­
tween the model and the data can be viewed a test for the validity of the theo­
retical restrictions. The second moments of yt can be easily shown that are func­
tions of 7  =  (vec(Ti)', ...,vec(Tp)',vech(Eu)')\ for instance £y  =  TEyT' + £[/ 
or uee(Ey) =  {l{dyp)2 — T <8> T) 1 vec(T,u) and the autocorrelation function, due to 
Yule-Walker equations (see Lutkepohl, 1993, Section 2.1.4b, page:23), is a first order 
difference equation with solution ^ y ( j)  = TJ£y.

The uncertainty assigned on, say, 7  is illustrated by the prior distribution, (7(7 ) = 
n £ is (7 i) ,  which, in a significant level, is subjective. This is an assumption for 
which Bayesian methods are criticized a lot. This happens because the posterior 
distribution of 7 , g ^ /y t) ,  which is the product of the prior and the likelihood of yt, 
g (l/y t) =  g{l)L{yt/')), is heavily influenced by this subjective choice when either 
the likelihood is very flat or the sample size is small. This simply says that in these 
two cases the posterior estimate will not be much different from the prior.

Most of the methods studied in this subsection use a noninformative prior for 7  

that preserves the stationarity condition i.e. the eigenvalues of T are less than one 
in absolute terms. A noninformative prior and a normal likelihood for yt generate 
a Normal- Wishart closed form posterior distribution for 7 . Therefore, the posterior 
distributions of Dy and j ) are obtained by drawing randomly 7  from the above 
posterior and Ey and \Py(j) are calculated for each draw.

DeJong, Ingram, and Whiteman (1996) also make a subjective assumption re­
garding g{6) and they derive the simulated distribution of Ex and ^ x ( j )  by ran­
domly drawing 6 from g(0), solving the model and calculating Ex and ^x (j)-  Let 
g(Sy, i) be the data based distribution of the element i of Sy  and let g(Sx, i) be 
the model based distribution for Sx, i then a measure of fit is given by the overlap 
between the two distributions

1 r i - p /2
CICi =   -----  /  g(Sx, i)d(Sx, i) (3.10)

1 -  P J p/2

which is called Confidence Interval Criterion (CIC), where 1—p = g(Syt i)d(Syt i)
and 0 < CICi < ẑrp- CICi indicates the relative proportions of g(Syy *) and 

i)> which lie in the interval [p/2 1 — p /2]. Values of CICi close to zero indicate 
poor fit of the structural model, g(Sx, i) displays little overlap with g(Syt i), while, 
like a rule of thumb, the bigger the CICi the better the structural model. DeJong, 
Ingram, and Whiteman (1996) introduce also a second measure of fit

(EgjSx, i) ~ Eg(SY, Q) 
(var g{SY, i))1/2

(3.11)
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which shows how different is the location of g(Sx, i) from that of g(Sy, i )-  This is 
analogous to ^-statistic and large values of this measure indicate that the fit of the 
model is poor. The drawback of this method is that it compares the posterior of the 
data with the predictive density of the model. The posterior of the model requires 
Bayesian Maximum Likelihood (BML) techniques and, more importantly, Monte 
Carlo Markov Chain (MCMC) integration techniques. We will see below that the 
same authors improve their method and eliminate this asymmetry.

Geweke (1999) suggests another way to overcome the above mentioned asymme­
try. His advice is to view a DSGE model as a representation for the population mo­
ments of observable functions of the data, not their sample counterparts. This frame­
work allows comparisons across models without using the likelihood of the data. 
To be precise, let Sy^ =  E {S y /9 \,M i), S y 2 =  E (S y / 9 2 ,M 2 ), p (Sy,i/M i) and 
p(Sy 2 lM .2 ) be the population moments of observable of a subset of the data and their 
densities for two alternative DSGE models Adi and M 2 , respectively. The introduc­
tion of a third, econometric, model M 3 to bridge population and sample statistics 
is necessary given that DSGE models have no interpretation for the observables and 
p{Sy /y t , M 3 ) denotes the posterior of S y . From Assumption 1  of Geweke (1999, 
page:20), if Sy is known in the context of M 3 then M i  and M 2 have nothing further 
to say about y (p(yt/S?, M u  M 3 ) =  p (y t/S ? , M 2, M 3) = p (y t /S ^ ,M 3)), we get 
result Result 1  (see Geweke, 1999, page:20) p {M \/S y  ,y t, M 3 ) = p { M i /S y ,M 3 ) 
and p{M 2 /S y  ,yt, M 3 ) =  p (M 2 /S y ,  M 3 ) which means that if we knew Sy we 
could draw conclusion about M \  and M 2 without even collecting data yt. In fact 
we do not know Sy  but we can use Ad3 to get sample version of it. However, As­
sumption 2  of Geweke (1999), p ( S y /M 3 ) oc const,p(Sy / Adi, M 3 ) = p {S y /M \)  
and p (S y /M 2 ,M 3 ) = p{Sy / M 2 ), restricts .M3 to say nothing about Sy either 
absolutely or relative to M \  and Ad2. The latter assumption leads to the following 
result, p {M i/y t, M 3 ) oc p (M i/M 3) f  p(Sy/Mi)p(S%?/yt,M 3 )d(S%?) that is the 
product of a scale factor, the prior of the model, and the convolution of the density 
for Sy implied by the DSGE model M \  and of its posterior obtained by using the 
empirical model M 3 and the data yt. From this a measure of fit can be constructed

p (M i/y t,M 3) _  p (M i/M 3) f  p(SP‘/ M 1)p(Sp’/y t,M 3 )d(S$’) 
p (M 2 /y t,M 3) p (M 2 / M 3 ) f p ( S ? / M 2 )p(S?’/y t,M 3 )d(Sp>) ( ' ’

which is called the posterior odds ratio, which is the product of the prior odds ratio 
and the Bayes factor. Loosely, speaking the greater the overlap between the two 
densities say p (S y /M i)  and p {S y /y t,M 3 ) the grater the Bayes factor in favor of 
model Adi.
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Bayesian Maximum Likelihood Methods

DeJong, Ingrain, and Whiteman (2000) solve the asymmetry, which rises in their ear­
lier work, by deriving the posterior distribution of 0, p(0/yt, M \)  = p(0)L(yt/0 , M \). 
Given p(9/yt,M i ), they construct the predictive distributions of the model (out of 
sample forecasts from one to forty quarters) and compare them, through graphical 
methods, with those produced by a Bayesian VAR (BVAR) model with Minnesota 
Priors9. However, p(9 /yt,M \)  is analytically intractable and numerical methods, 
importance sampling (see Geweke, 1989), are used to analyze it. Given an im­
portance sample and the system (3.1) and (3.2), predictive distributions are easily 
calculated by dynamically simulating the transition equation. It should be men­
tioned that a similar evaluation analysis is also undertaken by Smets and Wouters
(2003).

Schorfheide (2000) constructs a method of evaluating two DSGE models by using 
a benchmark model and a Loss Function. This benchmark is a mixture of the DSGE 
models (.Adi, .Ad2) and a reference, econometric model (M 3 ), which is introduced 
to cope with the potential misspecification of the DSGE models. This augmenta­
tion is necessary in order the posterior distribution of the vector of some popula­
tion characteristics, Sy  , to be obtained. The posterior model probabilities, 71\ t  = 

^,op(yt/M) 10 jnciicate the mixture weights of M \, M 2 and M 3 and also their£i=i nitop(vt/Mi) 0
statistical fit. It should be noticed that these probabilities are obtained only after the 
parameter’s posterior distribution, p(0i/yt, M i) is obtained and this is done by using 
a random walk Metropolis algorithm. Given p(9i/yt, M i), the posterior distribution 
of S y  , which is function of the structural parameter, is obtained, p ( S y ' %/y t,M i). 
In the next step of this procedure Loss Functions, L (^Sy,Sy^j, are introduced to 
assess the ability of the ability of the DSGE models to replicate patterns observed 
in the reality. These functions are initially used to get an optimal predictor of S y ' 1, 

S y ,% = argmax —ieRdS f  L (s%>, SJ?) p ( S y ,l/ y t , M i)d (S%?) and given this estimate

and the loss function we can evaluate the expected loss implied by S y ’1, R ( S y ' l / y t) — 

f  L  ( s ? ,  55?) p ( S y  / y t )d  (S ? ), where p ( S ? / y t ) = £ ? =1 n , T P ( S y '1/y u M i). As it is

indicated by the author the posterior risk R (S y ,l/yt) provides an absolute measure 
of how well model M i  predicts the populations characteristics S y ,  which can be 
used for model comparisons.

Del Negro and Schorfheide (2004) construct a very neat measure of fit, A, which 
assesses the plausibility of the restrictions imposed by the model on the data. The

9 BVARs with Minnesota Priors are considered to have a remarkable forecasting performance
10 7Tito are the prior probabilities for all models, where 2 = 1,2,3
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cornerstone of their procedure is a model called DSGE-VAR(A), which is an unre­
stricted VAR with priors coming from the structural model. To be precise, these 
priors are obtained by generating dummy observations from the DSGE model and 
adding them to the actual data. The ratio of dummy over actual observations, A, 
measures the weight of the prior relative to the sample. After a proper factoriza­
tion of the posterior distribution of the parameters of the DSGE-VAR(A) model, 
p{hQ/yt) — p(l/Vt> Q)p(0/yt)> it can be shown that the posterior mean of 7  is a 
function of A. For instance, let a VAR(p), yt = A \yt- \  +  ... +  Apyt- p +  ut, be 
written as Y  =  X $  +  U where $  =  [Ai,...,Ap] and x t = [1,yj_l 5...,yt-P]' and 
let Y>*x(9) =  Eq[xtx't] and = Eq[ytx't] be the second moments generated
by the dummy observations. Del Negro and Schorfheide show that the posterior 
mean of is <1 (9) =  (ATY?XX (9) +  X ’X )”1 [XT'E*x (9) +  X 'Y )  and the posterior 
mean of Et, is t v (9) =  £ [ (ATEJ,, (6) + Y ’Y) -  (ATE;, (6) + Y 'X ) {\TT,'XX (6) + 
X 'X ) 1 (\TY,*xy{9) -I-X 'Y )  ]. Obviously for A =  0 the posterior mean of <£ con­
ditional on 9 is given by the OLS estimator while for large values of A the pos­
terior mean of $  will stay close to the restrictions implied by the DSGE model. 
A data-driven procedure, which is the maximization of the marginal data density 
/ Px{yt/0)p(9)d(9) with respect to A over some grid A = {Ai,...,Ag}, is suggested 
to determine an appropriate value for A. Given this value, A, the DSGE-VAR(A) 
is compared with unrestricted VARs. Similar analysis has also be undertaken by 
Del Negro and Schorfheide (2005) and Del Negro, Schorfheide, Smets, and Wouters
(2004).

Fernandez-Villaverde and Rubio-Ramirez (2004) do not really introduce a new 
evaluation procedure. They assess DSGE models in a standard Bayesian way (pos­
terior odds ratio, BVAR), however, the structural model needs not being linearized 
now. In a earlier work Fernandez-Villaverde and Rubio-Ramirez (2002) have de­
veloped an MCMC algorithm that allows to construct the posterior distribution of 
the parameter vector of a nonlinear structural model (this is done by using Sequen­
tial Monte Carlo filtering in order to evaluate the likelihood of a nonlinear DSGE 
model), p(9/yt). Given the latter distribution any evaluation exercise studied in this 
subsection could be contacted.



4. EVALUATING MACROECONOMIC MODELS: A DETAILED

DISCUSSION

In this chapter we go through the steps in our method in more detail, reviewing 
particular issues that arise at each stage. In the first part the proposed evaluation 
procedure is decomposed into three simple steps. Initially, it is illustrated how 
abstraction error is obtained using perturbation solution methods. In the second 
step the probability density function (p.d.f.) of the above errors, pseudo data and 
statistic of interest is derived though bootstrapping schemes and simulation of the 
structural model respectively. The final step is the one from which the inference 
regarding the structural model is drawn. Given the existence of macroeconomic 
softwares like Dynare1, or, for more computationally advanced users, Sims’ solution 
package2 this decomposition makes clear that the proposed method can be applied 
by researchers with minimal computational skills.

The second part of this chapter is again divided into two sections. In the first we 
illustrate how the true but unknown data generating process (DGP, that is here the 
process that describes the time series behavior of the data) may be approximated. 
In the second we show how methods studied in the last chapter, which construct 
measures of fit based on sampling or simulation variability or both, can be encom­
passed by our method. We can illustrate these two points from our example in 
chapter 1 when we tested the LVP model. In it, the policy regime varies over the 
sample period. Hence, the DGP chosen to describe the data over this period should 
be able to capture this feature. In our exercise three alternative time series models 
were used whose parameter vectors are, in the first case, time dependent and, for 
the other two cases, regime dependent both in a stochastic and deterministic way. 
We then go on to show how the time series model, which provides closed form ex­
pressions for the population moments, can be compared with the structural model 
in a way that encompasses the existing methods; we do this using both time and 
frequency domain techniques.

The implementation of the Wald type statistic, discussed in the first chapter, is 
described in the final part. Its relation with the existing methods and its sensitivity

1 See http://www.cepremap.cnrs.fr/dynare/
2 See http://sims.princeton.edu/yftp/gensys2 /

http://www.cepremap.cnrs.fr/dynare/
http://sims.princeton.edu/yftp/gensys2/
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regarding the choice of the time series model is investigated there. The inference 
about the structural model does not rely on asymptotic theory but on the, numeri­
cally approximated, small sample distribution of the above statistic. The introduced 
methodology relies heavily on the properties of the Quasi Maximum Likelihood Es­
timator (QMLE) whose variance-covariance matrix is calculated numerically. We
discuss the use of various section closed form expressions for the score vector and 
the Hessian matrix of an Intervention3 VAR(p) and for the scores of a Markov 
Switching VAR(p) are provided. These expressions eliminate numerical instabilities 
and significantly reduce the approximation error.

4.1 The Proposed Procedure

4.1.1 A Detailed Description of the Assessment Process

The set of equilibrium conditions of a wide set of DSGE models in macroeconomics 
form a system of nonlinear rational expectations equations. For instance, the equi­
librium conditions of the simple neoclassical growth model are given by

cT* =  p E tc Z i A t+ i K ^ P l - 6 ]  (4.1)

Ct +  kt+i = Atkt +  (1 — S)kt (4-2)

In At+i =  i ln A t  + oet+i (4.3)

which can be rewritten as

#  (s*+i, su aet+i)+Aar)t+1 =
SJ  ~ 0 (SJ +1 +  m + i) [aeS3't+lsh l i  +  1 “  s]

si,t +  s2,t -  eS3**s5|t -  (1 -  6) s2,t =  0
53 , t+i  ~  7 53,t — 1

(4.4)
Following Kim, Kim, Schaumburg, and Sims (2005) we do not discriminate between 
predetermined, xt G (xt =  [kt, In At}' in this example ), and non-predetermined, 
yt G Rdy {yt =  (H in this example ), variables, st = [yt, x t\'.

One of the most important features of the evaluation process proposed here is 
that it tries to preserve the nonlinear properties of the structural model. For this 
purpose Perturbation Solution Methods, second order approximations to the policy 
function, are used. This is one of the two most popular nonlinear ways of solving 
DSGE models; the other is Projection Methods. Further research, which investi­
gates how Projection Methods .

3 See below
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Step 1: Determination of the approximation or abstraction error of the economic 
model conditional on the actual data.

In this step the structural model is solved using a second order approximation to 
the policy function and the error implied by the theory conditional on the historical 
data is calculated, yt — yt(6) =  et. To be precise, the solution of equation (4.4) has 
the following form

st = (4.5)

A second order Taylor Expansion applied on (4.5) around a deterministic steady 
state, (s, 0), gives

st
dsx 1

Vs$ ( s t_i,£t;0) Ve$ ( s f_i,£*;0)
dsxds dsxde

dsx(ds+de)

St-1 1
+  2

*'f-i e 't J ®
lx (ds+de) 
dsx((ds+de)ds)

£t
(ds+de) x 1

Vs (vecVs$(s*_i,5t;0)) Ve (vecVs$ (st-i,£ t] 0))
ds2xds ds2xde

ds2 x (ds+de)

Ve (yecVs$  (st- i ,e t\d)) Ve (vecV£$ (5t_ i ,^ ;0))
(dsxde)xds (dsxde)xde

(ds+ck) x (ds+de)
((ds+de)ds) x (ds+de)

S t -1  

et
(ds+de) x 1

(4.6)

Variables and derivatives, which are expressed as deviations or evaluated, respec­
tively, at the steady state are denoted with ~. The use of the vec operator allows 
us to avoid the use of both tensor notation, usually employed in this literature 
and matrices with more than two arrays; the matrix of the second derivatives of 
/  : —> Rdy has three dimensions, namely, d y x d x x  dx. I believe the way whereby
(4.6) is derived provides a comparative advantage to tensor notation, which will be
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shown immediately. (4.6) is rewritten as

s t = [ V s$ ( s t-i,£f,0) V £${s t-i,et\0) St -1

St

vec (Vs (vecVs$ (st-i,et]9) 
vec f v e (vecVs$ (st-i,£ t\d) 
vec \V S (vecV£$ (st~i,£t',0) 

vec (Ve (vecV£$ (st-i,£t;0)

or,

s t  =  [ V s $ ( s t - i , £ t ]6 )  V £^ ( s t - i , £ t ;0 )  ]
St -1

St

+ 1  ( [  (s f-1  ®  5t - i )  { K - i  ® £t )  [£t ®  % - i )  (c* ® 4 )
2 VI lx(dsxds) lx(dsxde) lx(dsxde) lx(dexde)

vec ( v .  9)))
ds3x l

vec ( v E(vecVs$ ( s t^ e t-,0)))
((dsxde)ds)x 1

vec ( v s (vecV£$  (st_i,et;0 )^
((dsxde)ds)xl

vec ( v e (vecV£$  (st-i,et;0))) 
((dsxde)de)xl

Prom (4.7) we get

st = Vs$ («t-i,et; 6) s*-i + Ve$  (st_i, ef; 0) et 

+\  (Vs (5*-i>e*;^))) (5*-i ® 5*-i)

+ ( v e (vecV,$(st_i}£t;0))) (st- i 0 £t)

+ i v e (vecV£$(st-i,e*;0)) (e* ®e*)

= Vai(5 t_ i,e t;0)5t_i + Ve$(5t_i,et;^)ei

( v .  (vecVs$ (st_i,et; 0))) (st- 1 ® 3t-i)

+ i  Ve (vecV£$ (st_ i, et; 0)) (et <8> e*)

+ ( v £ (vecVs$ (s t- i ,£ f,0 )^  (st- i  ® /* ) (1 ® et)

(4.7)
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= Vs$ (st-i,£t;0)st-i + ^ ( v s (vecVs$ (s t- 1,£t;0)')') (st- i® s t-i)

+^Ve (vecVe$ (st-i,£t;0fj (£t <8> £t) + {st-i,£ t;0)£t

+ (v e (vecVs$  (st-i,£t;0))) {st-\®Ide)£t 

= Vs$ (st-I,£f,0)st-1 +   ̂ ( v s (v e c V s $ ( s t _ i , e * ; 0 ) ) )  (s*_i (8) S t - i)

+ ^ V e (v e c V e$  ( s t- i ,  e f ; 0 ) )  vec (e*e{)

+ ^Ve$ (s t-i,e t;0)+  ( v e (vecVs$(5t_i,£:t;0))) (st- i  ® Ide^j et

=  V s$ ( s t- i , £ t ’,0 ) s t- i  +  ^  ( v s ^ e c V s $ ( s t _ i , £ t ; 0 ) ) )  (st- i  <g> st- i )

Ve$(s*_ i,et ;0)
+ ( v e (vecVs$(s*_i,£:*;0))) (3t_i 0 /*)

vec(£t£'t)
et

=  V s$ { s t- i , £ t ] 0 ) h - i  +  ] i ( V s ( y e c V s$ ( s t - u £ t ’,0)y)  {st- i ® s t- i )

+

+A £t®£t
£t

(4.8)

Initially, it should be emphasized that the normality assumption, usually, adopted 
regarding the distribution of st does not seem acceptable. Clearly, from equation 
(4.8) St, conditional on s*_i, follows a non-central chi-squared distribution; a char­
acteristic also highlighted by Sungbae (2005, page: 15). Equation (4.8) is very im­
portant for the method proposed here for two reasons. Given the historical data 
the abstraction theory error, et, can be derived, while, in the next step, given the 
empirical distribution of the latter, Fe, the distribution of st, Fs, conditional on the 
structural model is obtained. Now, yt+i is just a selection of s*+i, for simplicity and 
without loss of generality let’s assume that yt+i = st+i and by equation (4.8), we
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get

et ®et
= Vt+i -

et +

® et = A+

Vt+i  ~

+

Vs$ (s*_i,e*;0) st-i
\  ( v s (uecVs$ (st-i,e t;0 ))) {st-i <8> 5t_i)

Vs$(si_i,£:t;0)st_i
i  ( v a (vecVs$ (s t_ i,£ t ;0 ) ) )  (5t_ «t-i)

0 1
(lxde)

V s$  ( s t - l j £ t ' , 0 )  S t - 1  

+ 5  (V« (vecVai(« t_ i,e t;0)))  (3t_i ® St_i)

Va$(st_i,et;0)5t-i 
+ 5  (V. (vecVs$(s*_i,et;0))) (st- i  0  «t-i)

The crucial assumption here is that et has the same dimension as yt, dy = de, this 
eliminates the stochastic singularity issue mentioned in the last chapter. Additional, 
the null hypothesis is imposed and +  denotes the generalized inverse matrix, again 
mentioned in the last chapter.

These are two of the points where the proposed process departs from existing 
evaluation methods. First, instead of using the theoretical errors drawn from the 
hypothetical distribution to assess the performance of the structural model, the 
proposed process uses the errors implied by the actual data. Second, the nonlinear­
ity of the DSGE model is preserved. This will be more obvious in the following steps.

Step 2: Approximation of the distributions of interest conditional on the structural 
model or conditional on the null hypothesis.

According to the null hypothesis {st}t=i should not contain any structure, in other 
words they should be identically independently distributed (i.i.d). In order to ensure 
this {£t}t=i are properly filtered. Given the filtered errors their empirical distribu­
tion, Fe, is readily estimated by using standard resampling techniques for i.i.d data. 
Let the bootstrapped errors be denoted by j j  . Given equation (4.8) the 

empirical distribution of yt conditional of the structural model M , f ( y t /M) ,  can be 

approximated through simulation. Let . stands for the new pseudo
data sets. Although resampling techniques are used to approximate Fe, during the 
simulation of the structural model the hypothetical variance-covariance matrix of
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et, is used. This oddity could be justified by the fact that £ e is part of the 
hypothetical world M ,  strictly speaking part of the structural parameter vector 9, 
and, therefore, an important determinant of et.

Given } the distribution of any statistic or population moments

of interest, Sy, conditional on M ,  f ( S y / M ), is easily derived. We cam clarify 
this point through an example. It is well known that the conditional distribution 
of the actual data is well approximated by a VAR with i.i.d. residuals. Using 
the companion matrix a VAR(p), yt = A\fit- i  +  ... +  Apfit~p +  ut , can be written

Ax A 2

= AiVU + Ut =
yt-1

=
Idy

4?
O 

•

1 1 + 1—* 1 1 O £ 0 dy

'dy

’dy

fi t-1

f it -2

f i t -p

+

Ut
0 dy

and the second moments are given by Sy =  ASyA' +  S^ or -uec(Sy)

(l(dyP)2 -  A® A) 1vec(Eu) and #y(z) = A ^ y . Given [{fit'J}^=1} f i ^ y / M )
T  ^

and / '\ ^ y { i ) / M)  are derived by fitting at each {fi*'J}t=1 a VAR(p) and calculating 
EyJ and ^ry(z)*,J by using the above given equations.

The benefit of following this process is that we can establish /  (S y / M ) for any 
time series model, T, without requiring the mapping from the structural, 9, to 
reduced from, 7 , parameters to be established analytically, 9 : Q 7 . For non- 
homogeneous historical data T  should be able to capture these nonlinearities which 
implies that T  is probably nonlinear and the only way to establish Q is via simulation 
(this idea is similar to the one introduced by Smith, 1993). For instance, if interest 
or exchange rates are elements of yt then a linear VAR(p) is not sufficient to capture 
the higher order dynamics, usually, displayed by these series. This requires T  being 
a VAR(p) with a time varying covariance matrix for its error vector. In this cases Q 
is derived by fitting T  into {yl'J} and then 7^  =  arg max7.,Jer LT (y*'J A4)  
is used for the calculation of S ~’J, where LT is the log-likelihood using T.

Step 3: Inference Step.

We show in this step that given almost all methods, except the Bayesian
one, studied in the last chapter can be encompassed by the one proposed here.

We start with the methods that use the sample variability to assess the perfor­
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mance of the structural model such as the one proposed by Diebold, Ohanian, and 
Berkowitz (1998) and reviewed in the last chapter. It was mentioned in the preced­
ing step that the time series model T  is selected with the aim of summarizing the 
dynamic structure of the actual data satisfactorily and standard econometric tests, 
like the Information Matrix Equality test (see White, 1994, Chapter 11), could be 
used to investigate if this holds. In this case the residuals of T  are i.i.d and standard 
resampling schemes are applied to establish the sampling distribution of S~'3 after 
7^,J =  argmax^.,jer LT ($ '3 /'y*'3) is obtained. Then we investigate whether or not 
j  Ylj=i lies within a prespecified confidence interval, say 95%, of /  (^Sy/T^j.

In a similar manner it can be shown that the proposed method encompasses those 
which construct measures of fit based on the simulation variability. Given T  and 
7t =  argmax7Gp Lr (yt ; 7 ), Sy can be readily calculated and, now, we investigate 
whether or not Sy lies within a prespecified interval of f  (Sy/M)  given by step 2. 
We can also see from this that the methods of the third category, measures of fit 
based on both simulation and sampling variability, are also encompassed. Examples 
for all these three cases are given in the following section.

In contrast to these methods, reviewed in the last chapter, the one suggested here 
respects the nonlinearity of the structural model and therefore the nonlinearities in 
the relationships describing the data. Structural nonlinearities may be important 
for explaining features of the historical data and, therefore, should be tested. On 
the other hand nonlinearities within the actual data processes are equally important 
and should not be ignored. For instance, consider a sequence of time series model, 
p l} £ i ,  which starts from a very simple linear time series model 7i, say a VAR(p), 
and it goes up to a highly nonlinear model for which the Information Matrix Equal­
ity cannot be rejected 7^-, say a VAR(p) whose parameters are state dependent and 
which follows a Markov Switching process. Applying the proposed method sequen­
tially, starting from 71 up to 7#, we could identify what characteristics of the real 
world the structural model, M , fails to explain. This type of information may be 
useful to the researchers who are interested to improve the fit of their models.

4.1.2 Some Exercises

In this section we illustrate from the Liverpool Model exercise (see chapter 1) how 
the evaluation methods existing so far in the literature could be encompassed by the 
one proposed here. The Liverpool Model of UK economy and UK data between 1979 
and 2003 for output (GDP at factor cost), unemployment, inflation (Retail Price 
Index), nominal interest rates (Nominal deposit interest rate with local authorities, 
3 month) and nominal exchange rates (Trade-weighted exchange rate)
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Fig. 4.1: Series Representation
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have been used in this exercise (see Minford, Meenagh, and Webb, 2004, for a 
detailed description of the model and the data used here).

The policy regime followed during the sample period was not constant. It 
switched, at 1986, from a monetary targeting to exchange rate targeting regime 
and, finally, from 1992 to an inflation targeting regime. Therefore, time series rep­
resentations, T, able to capture these changes should be used. Three different Ts 
were used in this study, the first allowing the parameter set 7  to vary over the time, 
in the second model 7  follows a Markov process and, finally, 7  changes at some pre­
specified points. The length of yt € R5 is large and very quickly the number of the 
estimated parameters becomes huge while, on the other hand, the macroeconomic 
data is limited. Due to this data limitation the Information Matrix Equality Test 
(see White, 1994, Chapter 11) cannot be applied and the choice of the most plau­
sible T  is founded on the basis of some diagnostic tests on the estimated residuals, 
selection criteria and computational simplicity.
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The parameters of the first time series model follow a VAR(l) process

+  ut (4.9)
r 1

i

i—1
 

__
_
i

Ct A ij

= Btzt + ut = (z't <g> Idx) +  ut 

(3t = v  +  Fpt-i + vt (4-10)

where Ut ~  N (0, EW)t), vt ~  N (0, Ev), E(utv't) =  0. ut = Y T ^2wt is conditional 
heteroskedastic aiming to capture clusters in volatility, usually displayed by interest 
and exchange rate series or, in economic terms, asymmetries in agents’ risk prefer­
ences toward policy regime changes. The estimation process of this model explores 
the special structure of its Information Matrix; it is block diagonal. In the first step 
equations (4.9) and (4.10) are estimated by using Kalman Filter techniques (see 
Lutkepohl, 1993; Hamilton, 1994, Chapter 13) while in the second step a Dynamic 
Conditional Correlation Multivariate GARCH is estimated

£'u,t — DtRtDt (4*11)

where Dt is a diagonal matrix of time varying standard deviations for univariate 
GARCH models and Rt = Q*t~lQt Q t 1 is the time varying correlation matrix, where 
Qt = (1 — oc — g)Q + a (u t- iu '^ )  -f gQt-i and QJ is a diagonal matrix composed 
by the square root of the diagonal elements of Qt (see Engel and Sheppard, 2001). 
Since the number of the estimated parameters quickly becomes large F  and E„ are 
constrained to be diagonal matrices. The fit of this model is illustrated by the 
following diagrams, which present the evolution of the mean and the normalized 
power spectrum,

(4-12)

where
sf = (27r)-1(Idx -  ~  A ' ^ ) ' 1 (4.13)

A itT and Ew>r denoted the smoothed estimates of A i)t and EU|t, respectively. Equa­
tion (4.12), which is used by Cogley, Morozov, and Sargent (2003) as inflation per­
sistence measure, would be equal to one for a white noise process.

Figures 4.2 to 4.2 show actual and predicted mean values by regime for all five 
selected variables, and also the normalized power spectrum. Let us analyze the 
behavior of the inflation change Ant in Figure 4.4 (the analysis of the rest of the 
series follows similarly). From the pattern of the fitted mean we can see significant 
variation during the Monetary Targeting Regime, which dies away in the second
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Fig. 4.2: T V P -V A R (l)/D C C (1 ,1 )-G A R C H (1 ,1 ): Ay t
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Fig. 4.4: T V P -V A R (1)/D C C (1 ,1 )-G A R C H (1 ,1 ): Atrt
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Fig. 4.6: T V P -V A R (l) /D C C (1 ,1 )-G A R C H (1 ,1 ): Ae*
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period and it is further reduced after 1992. This pattern seems plausible, however, 
we know that the adoption, by the monetary authorities, the Inflation Targeting 
policy would induce 7rt and, consequently, Airt to be a white noise process. This 
implies that after 1992 the normalized power spectrum would be flat and equally 
to one, however, the latter is flat but significantly lower than one, which reflects 
negative autocorrelation both in sort and long horizons. This is a contradiction 
and, therefore, T\ cannot be considered as the true DGR

The second time series model estimated is a VAR(l) model, A xt = c+A\ Axt-\ + 
Ut, where the variance-covariance matrix of the errors processes is regime, s*, depen­
dent, ut ~  -/V(0, X)i=i £ U)Sft), and this regime follows a first order Markov Process, 
P{st = j / s t - 1  = £, St- 1  = k , ...} — P{st = j / s t~i =  i} = Pij. ft is a Markov Chain

(1, 0, 0) ' 

(0, 1, 0) ' 

(0, 0, 1)'

when st =  1 
when st = 2 
when st = 3

which follows a VAR(l) process

f t+ i  — -Pft +  Wf+i
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where P  = is the matrix of the transition probabilities. This
P ll P 21 P31 

P\2 P22 P32 

Pl3 P23 P33
model (which we call MSH(3)-VAR(1)) seems to estimate, fairly accurately, the 
policy regime turning points. To be precise, the pattern of the smoothed probabilities 
picks up these monetary policy switches. For instance, it is clear from the diagram

Fig. 4.7: P a tte rn  of S m oothed  P ro b ab ilitie s
S m o o th e d  Probab ilities

US

that the area after 1992 (second, from the LHS, vertical red line) is dominated by 
the existence of one state (light green area), which could be viewed as the inflation 
targeting regime introduced after that date. While the monetary targeting regime 
(yellow area) ends few quarters earlier than it is expected to end (1985Q4, fist, from 
LHS, vertical red line). Table B.l illustrates some of the properties of the estimated 
residuals. The Diagnostic Tests applied on the residuals of T2 are Portmanteau tests 
for autocorrelation known as Q and Adjusted-Q statistics, a multivariate ARCH-LM 
test, which investigates for the existence of conditional heteroscedasticity (for both 
statistics see Lutkepohl and Kratzig, 1994, Section 3.5.2), while, for multivariate 
unconditional heteroscedasticity the statistic introduced by Doornik (1996) is used. 
Clearly, these results do not support the view that T2 is a proper estimate of the true

Tab. 4.1: D iagnostic T ests/M S H (3)-V A R (1)
Statistics Chi-Square DF P-values

Conditional Heteroskedasticity 1101.1 900 0
Heteroskedasticity 266.5 150 0

Q- Statistics lags (12) 385.6 275 0
Adj-Q- Statistics lags (12) 410.95 275 0
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DGP. The fact that this time series representation correctly identifies the known 
structural breaks is not borne out by Table B.l, which indicate the presence of 
important misspecification. However, this model is going to be used below.

The third, and final, time series model, %, estimated here is a VAR(l) whose 
autoregressive and variance-covariance parameters vary across regimes in a deter­
ministic way.

A x t
C\ +  A i^A x t-i +  €t Efac't) =  £1 t < T\ =  1986
C2 +  A if2 Axt~i 4- et E{et^t) = E2 t < T2 =  1992

 ̂ C3 -f A i^A x t-i +  E(ete't) =  £3  t > T3 =  1992

This model is called an Intervention model; a detailed discussion of these models 
can be found in Lutkepohl (1993, Section 12.4). This representation implies that 
a particular stationary DGP is in operation until period Ti and another process 
generates the data after that period. One of the advantages of this data repre­
sentation process is its simplicity both from an intuitive and computational point 
of view. However, the estimation of this model poses some theoretical difficulties, 
such as consistency4, which cannot to be overcome easily. Another important char­
acteristic of the Intervention model used above is that after an intervention the 
moments of the process do not reach a fixed new level immediately but only asymp­
totically. For instance, let’s assume that the intervention appears at t = 4 solving 
backwards up to t =  3 we get AX 3  = X )i= o ^ i,iCl 2 i = o ^ i , i c*-» + ^ i.iA e o , for 
t = 4, A x4 =  c2 +  A i )2A x 3 +  e4 and, for t >  4, A xt =  £  - i j  A\ 2 c2 +  A\ 2et- i  +  

A\ 2 (E JU A iC i +  +  ^ 1,1 A^o)- The last term of the latter expression
vanishes as t —► 00 due to stationarity assumption (the maximum eigenvalue of Ai)2 
less than one in absolute terms). This assumption, t —► 00 , may make sense if there 
is only one intervention but this is not the case here. However, this behavior may 
be quite plausible in practice because a system may react slowly to an intervention 
(see Lutkepohl, 1993, Section 12.4.1, page:409).

The Table 4.2 illustrates the properties of 7^’s standardized residuals which do 
not seem to contain any structure. Additionally, Table 4.3, which presents the values 
of various selection (Akaike, Schwartz and Hannan-Quinn) criteria, indicates higher 
fit for 73 than for T\ and T2. Also, T3  provides some computational advantages which 
are important for the exercises carried in this section. For all these reasons T3  is 
used for the rest of this section.

4 The estimates of the middle regimes are functions of their sample sizes which do not tend to 
infinity. A convenient but not very plausible assumption requires T», for i = 1,2, being fractions 
of T  and they tend to infinity asT —* 0 0 .
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Tab. 4.2: Diagnostic Tests
Statistics Chi-Square DF P-values

Conditional Heteroskedasticity 203.45 225 0.846
Heteroskedasticity 162.75 150 0.225

Q- Statistics lags (18) 383.1 425 0.928
Adj-Q- Statistics lags (18) 469.3 425 0.068

Tab. 4.3: Selection Criteria
Information MSH(3)- TVP-VAR(l)- Intervention

Criteria VAR(l) DCC(1,1)-GARCH(1,1) VAR(l)
AIC -31.657 -31.357 -37.888
SIC -28.140 -30.315 -34.349
HQ -30.233 -30.936 -36.456

Since is just a description of the data, its parameter vector, 7 , does not convey 
any economic interpretation and so in this exercise 7  is not reported. However, 
the maximum eigenvalue of and the trace of the Variance-Covariance

3matrices of et, {tr(Y,\)}i=1, are calculated (Table 4.4). The maximum eigenvalue and 
the trace indicate the persistence and the uncertainty, respectively, that the whole 
vector, xt — (y't, u't,'K/t,r't , ej);, displays over policy regimes. Two characteristics are 
worth mention from this table, first, the remarkable persistence that the vector of 5 
variables yt shows during the middle regime and, second, that the size of uncertainty 
falls steadily.

Tab. 4.4: Regime Features
Features/Regimes Monetary Exchange Rate Inflation

Maximum Eigenvalue 0.451 0.933 0.68
Trace of the Covariance Matrix 0.0043 0.0012 0.0007

Since et does not indicate any dependence or heterogeneity, bootstrapped samples 
of xt , {xt'3 }j=i> are easily generated by using parametric resampling techniques. 

Pseudo samples of et , {e^J }^=1, are produced by drawing randomly with replacement 
from et and then T3 is used recursively to produce x *t '3 given the initial condition X q . 

Next the sampling distribution of various population moment or other statistics, Sx, 
are established, /  {Sx/x t), and the question asked here is whether or not moments 
or statistics of the data produced by Liverpool Model’s (A4), Sx, lies within 95% 
of f ( S x/x t). Sx in our case is a vector of population moments both in time and



4. Evaluating Macroeconomic Models: A Detailed Discussion 58

frequency domain, vech(Ex) and diag(Ex(u)) where u  = [0, 7r], respectively.
The next three tables indicate the performance of M  over these three periods. 

The second column of these tables show the moments produced by using 7-j and 
data simulated by M . The third and fourth column illustrate the lower and the 
upper, respectively, bounds of the bootstrapped distribution and, finally, the fifth 
column contains the bootstrapped probability values. Values outside the empirical 
Cl are denoted by **.

Tab. 4.5: Monetary Targeting/Sampling Variability
Second

Moments
M ’s

Moments
T ’s Lower 

Bound
T ’s Upper 

Bound
Bootstrapped 
Prob- Values

& A yA y 0.0005 0.0001 0.0019 0.686
& AuA y -0.0027 -0.0044 0.0000 0.123
O A n A y -0.0001 -0.0001 0.0006 0.102
&A rA y -0.0001 -0.0003 0.0006 0.220
® A e A y 0.0002 -0.0011 0.0003 0.968
&AuAu 0.0337 0.0010 0.0231 0.989**
O An Au 0.0001 -0.0026 0.0000 0.998**
O A rA u 0.0023 -0.0025 0.0009 0.997**
O AeAu -0.0002 -0.0006 0.0058 0.084
O A n An 0.0002 0.0000 0.0007 0.647
O' A r A n 0.0000 0.0000 0.0007 0.149
O AeA n -0.0001 -0.0006 0.0002 0.570
O A rA r 0.0012 0.0001 0.0020 0.923
O A eA r 0.0001 -0.0004 0.0013 0.478
O AeA e 0.0037 0.0002 0.0036 0.978**

Before presenting the results it should be emphasized that the length of xt £ R5 is 
rather large for a standard DSGE model comparison exercise, dx implies a significant 
number of moments, 5̂ 1) =  15, per policy regime which is not usually met in this 
literature. However, even in this case M  performs remarkable well. To be precise, 
for the first and second regimes only two among fifteen moments lie outside the 
empirical Cl while in the final period this number increases to four, however, some 
of the key moments are included in this number. To be precise, from tables 4.5 
and 4.6 it could be inferred that during the first period M  has some difficulties in 
explaining the variance of Aut and its cross moment with A^*, while, during the 
Exchange Rate Targeting regime it is the variance of Art and its covariance with A 7rt 
that worsen the outstanding performance of M . In the third regime M  seems to 
capture almost all the cross moments of x t , however, the variance of Ayt, Airt, A rt, 
and Aet lie outside the bootstrapped CL
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Tab. 4.6: Exchange Rate Targeting/Sampling Variability
Second

Moments
M ’s

Moments
T ’s Lower 

Bound
T ’s Upper 

Bound
Bootstrapped 
Prob- Values

O A yA y 0.00275 0.0001 0.0255 0.876
Oa u A y -0.01466 -0.0539 0.0005 0.142
O An A y 0.00159 -0.0002 0.0030 0.961
O A r A y 0.00793 -0.0004 0.0096 0.971
O A eA  y 0.00000 -0.0006 0.0130 0.184
O AuAu 0.09276 0.0022 1.3973 0.828
O An Au -0.00830 -0.0083 0.0036 0.050
O'ArAu -0.03763 -0.0352 0.0044 0.049
O AeAu 0.00001 -0.0301 0.0203 0.595
O Air Air 0.00132 0.0000 0.0011 0.976**
O ArAir 0.00503 -0.0002 0.0013 0.988**
O Ae Air 0.00000 -0.0009 0.0014 0.710
O A rA r 0.04070 0.0001 0.0106 0.987**
O A eA r -0.00001 -0.0007 0.0067 0.218
O AeA e 0.00000 0.0005 0.0288 Q**

Tab. 4.7: Inflation Targeting /Sampling Variability
Second M ’s T ’s Lower T ’s Upper Bootstrapped

Moments Moments Bound Bound Prob- Values
O A yA y 0.0003 0.0006 0.0120 0.005**
O Au A y -0.0017 -0.0273 0.0005 0.838
O Air A y 0.0000 -0.0005 0.0007 0.448
O A rA y 0.0001 0.0002 0.0065 0.008**
O A eA y 0.0002 -0.0090 0.0077 0.642
O AuAu 0.0169 0.0069 0.1387 0.298
OAir Au -0.0001 -0.0017 0.0024 0.435
O A rA u -0.0011 -0.0145 0.0012 0.746
O AeA u -0.0010 -0.0533 0.0106 0.815
O Air Air 0.0009 0.0001 0.0004 0.998**
O ArAir -0.0002 -0.0002 0.0006 0.030
OAe Air -0.0003 -0.0018 0.0013 0.384
O A rA r 0.0055 0.0002 0.0039 0.989**
O A eA r 0.0010 -0.0069 0.0030 0.895
O A eA e 0.0022 0.0037 0.0785 0.009**
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Fig. 4.8: Monetary Targeting/Sampling Variability
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Fig. 4.9: Exchange Rate Targeting/Sampling Variability
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Fig. 4.10: Inflation Targeting/Sampling Variability
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This good performance is also confirmed when frequency domain measures, such 
as the normalized power spectrum discussed above, are used.

2 7 T S *  ( u ) )  , a i a \
g ?M  = r  * (4-14)

where now
s* =  (2tt) - 1(/dx -  (4.15)

However, in the figures below the log of equation (4.14) is plotted and this is done 
only for illustration purposes. Cogley, Morozov, and Sargent (2003) argue that equa­
tion (4.14) measures more autocorrelation rather than auto-covariance. Therefore, 
figures 4.8, 4.9 and 4.10 provide an optical way to assess the performance of M  in 
terms of the autocorrelation. These figures indicate that M , correctly, estimate the 
size of persistence in the economy, the estimated equation (4.14) using data simu­
lated by M. (blue solid line) lies within the 95% of the bootstrapped distribution, 
/ ( gj( uj)/13, xt) (red solid lines). This may not being totally true for the last regime, 
however, even in this case the size of persistence of and Aut series produced by 
M  lies within the bootstrapped CL

So far it was shown how methods that construct sampling variability measures
can be encompassed by the one proposed in this section. This is also true for the
methods that use simulation variability to assess the performance of the structural
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Tab. 4.8: Monetary Targeting/Simulation Variability
Second

Moments
T ’s

Moments
M. ’s Lower 

Bound
M ’s Upper 

Bound
Bootstrapped 
Prob- Values

G A yA y 0.0089 0.0009 0.0321 0.252
& Au A y -0.0009 -0.0061 0.0070 0.468
G A n A y 0.0134 -0.0078 0.0224 0.059
G A rA y -0.0002 -0.0347 0.0079 0.423
O’A eA y -0.0006 -0.0091 0.0082 0.658
&A uA u 0.0026 0.0027 0.0210 0.978*
G An Au -0.0014 -0.0071 0.0082 0.817
<7 A r A u -0.0003 -0.0049 0.0109 0.767
G A eAu 0.0004 -0.0023 0.0064 0.510
G A n A it 0.0327 0.0006 0.0462 0.045
G A rA n -0.0012 -0.0336 0.0062 0.557
G AeA n -0.0013 -0.0097 0.0081 0.782
G A rA r 0.0008 0.0008 0.0528 0.983*
G A eA r 0.0001 -0.0053 0.0132 0.535
G A eA e 0.0015 0.0016 0.0163 0.985*

Tab. 4.9: Exchange Rate Targeting/Simulation Variability
Second

Moments
T ’s

Moments
M ’s Lower 

Bound
M ’s Upper 

Bound
Bootstrapped 
Prob- Values

G A yA y 0.0026 0.0008 0.1451 0.161
G A u A y -0.0013 -0.0044 0.0478 0.166
G A nA y 0.0005 -0.0299 0.0284 0.584
G A rA y -0.0001 -0.0081 0.0067 0.490
G A eA y -0.0001 -0.3487 0.2117 0.447
G A uAu 0.0024 0.0019 0.0350 0.069
G A nA u -0.0026 -0.0076 0.0099 0.140
G A rA u 0.0008 -0.0032 0.0027 0.750
G AeAu 0.0006 -0.1763 0.1823 0.594
G  A n An 0.0048 0.0009 0.0608 0.510
G A rA n -0.0017 -0.0037 0.0033 0.084
G A eA n -0.0008 -0.1380 0.1173 0.555
G A rA r 0.0006 0.0031 0.0200 0 .000**
G A eA r 0.0002 -0.0253 0.0436 0.510
G AeA e 0.0009 0.0015 35.2037 0 .012**
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Tab. 4.10: Inflation Rate Targeting/Simulation Variability
Second

Moments
T ’s

Moments
M. ’s Lower 

Bound
M. ’s Upper 

Bound
Bootstrapped 
Prob- Values

° A y A y 0.0012 0.0013 0.0778 0.017**
O Au A y -0.0002 -0.0047 0.0151 0.542
O An A y 0.0001 -0.0112 0.0064 0.658
& A rA y -0.0008 -0.0156 0.0183 0.443
& A eA y 0.0001 -0.0239 0.0257 0.443
& A uA u 0.0011 0.0027 0.0215 0 .000**
OAir Au -0.0004 -0.0031 0.0018 0.530
O A rA u 0.0031 -0.0047 0.0036 0.955
& AeAu -0.0004 -0.0041 0.0071 0.191
& Air Air 0.0002 0.0030 0.0108 0 .000**
& A rA ir -0.0011 -0.0037 0.0127 0.228
&AeAir 0.0001 -0.0113 -0.0001 0.975
& A rA  r 0.0101 0.0014 0.0525 0.408
& A eA r -0.0009 -0.0282 0.0094 0.757
O AeA e 0.0006 0.0076 0.0384 0 .000**

model. It was explained above that given equation (4.8) and the actual data, x t , 
the simulated distribution of Sx conditional on the actual data, /  ^Sx/ %,  x ^ j ,

is readily derived. Given /  ( s x/M ,T z,X t^, the question is reversed and it is inves­
tigated whether or not Sx lies within 95% of the latter distribution. Again the same 
population moments, both in time and frequency domain, are used for this purpose.

When the exercise is conducted in this way the picture regarding the performance 
of M  does not change. From tables 4.8 and 4.9 we can see that the number of 
moments that lie outside the boundaries remains the same. However, this time, 
they are the variances of Art and Ae* that cause the problem in both regimes. 
Similarly, in the last period the cross moments of xt fall inside the 95% simulated 
Cl but not the variances of its components (see table 4.10).

In terms of the spectral domain analysis the size of persistence of the historical xt 
always lies into within the 95% of the simulated distribution of gx, /  (gX/ M ,  % ,xt), 
for the first and second policy regime (figures 4.11 and 4.12). However, in the 
Inflation Targeting period there is now a departure compared to the preceding case. 
This time they are the sizes of persistence of the historical Ayt and Aut, which are 
captured by /  (gX/ M ,  xt), and not the size of Airt (figure 4.13).

It was shown in this section how the two of the four calibration methods of 
evaluating DSGE models studied in the last chapter could be encompassed by the 
proposed one. It was mentioned above that xt 6  Rdx implies dx̂ +1) moments, how-
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Fig. 4.11: M onetary Targeting/Simulation Variability
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Fig. 4.12: Exchange Rate Targeting/Simulation Variability
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Fig. 4.13: Inflation Targeting/Simulation Variability
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ever, the assessment of the structural model was done of the basis of each moment 
individually and not on the basis of dx̂ +1) simultaneously. Certainly, we know 
from the Cramer- Wold Theorem that a vector random sequence converges to a ran­
dom vector if and only if each every sequence of the vector converges (see Davidson, 
1994, Theorem 25.5, page:405), which probably means that Sx does not converge to 
Sx and vice versa. In this section a Wald type statistic is described which allows 
for multivariate comparison.

4.1.3 The Proposed Statistic or M-metric

The above exercises are based on functions of the estimated parameter vector 7  

of the time series representation T, namely, ( (7 ). A first order Taylor expansion 
around 7  gives C (7 ) =  C (7 ) + V7 C (7 ) (7  — 7 ) and from here standard asymptotic 
results can be used to show that y/T ( ( (7 ) — f  (7 )) ~  N  (0, V7 C (7 ) X7 V7 C (7 )') 
(see Serfling, 1980, page: 122-124).

However, ( (7 ), V7 C (7 ) and are unknown probability limits which are, usu­
ally, replaced by consistent estimates. Due to the theory developed in the last 
chapter these limits can be recovered through stochastic simulation and we denoted 
them by C (7 / M ,  T , xt), V7 C (7 / M,  T, xt) and £ i / M , T , x t respectively. Given these 
limits there are various ways to test the hypothesis H0 : C (7 ) =  ( (7 /M ,  T, x t).
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1. Asymptotic Theory: Under the null hypothesis

V T (C (7 ) -  C ( j / M ,  T ,  Xt))  ~  N  (0, V7C (7 / M ,  T ,  xt) S ,V 7C (7 / M ,  T ,  xt)')

which implies that if the value of the following expression

W ,  =  T  (C (7 ) -  C ( i / M ,  T ,  Xt))' H r '  (C (7 ) -  f  (7 / M , T ,  x t )) (4.16)

exceeds the value of the x 2 distribution with degrees of freedom equal to the 
dimension of £ (7 ) and significance level a  then the null hypothesis is rejected.

2 . Small Sample Distribution: The small sample distribution of expression 4.16 
conditional on the the structural model and the actual data, /  (VMy/At, T, xt), 
is readily derived. Once the above mentioned limits have been calculated the 
simulated data used for these calculation could be used again to approxi­
mate the distribution of expression 4.16. If VMy exceeds the 1 — a  values of 
/  x t ) then the null hypothesis is rejected.

The second way has been used in this section and £ (7 ) = 7 , therefore, the null 
is # 0 : 7  =  7  (M ). Two time series representation have been used in this exercise, 
the Intervention(3)-VAR(l), %, and the MSH(3)-VAR(1), T2.

The analysis relies on the estimation properties of the QML estimator. The latter 
estimator under very weak assumptions is consistent and normally distributed, 7t ~  
N  where |  £ f =1 V? l o g / (3/3/ 7 , .M) and Dy =

V ^log/(y»/7 ,A 4)). I am providing here closed form expressions for both the score 
vector and the Hessian matrix of the log-Likelihood of which could be used for 
T2 as well, however, under very restrictive assumptions. To be precise, can be 
written as

s

y  =  ^ 2  (Es*  ®  Idv) @s +  u (4 -1 7 )
S=1

where u ~  N  n), Es <g) , Es =  diag (£s) and X  = [1T, Y - i , .., Y-p} and the
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log-likelihood in this case is written as

s
L . =

dyT log |Ea 0  Ea| + (y -  (ESX  0  Idy) (3S)' (Es
2 log (2^) {y -  (Z ,X  ® Idy) &)

dyT

5 = 1

S

log (2?r)-5
5 = 1

S

' log {1=1^ |E /* }  + { y -  (ESX  ® Iiy) f t ) ' ' 

(E's ® 7^) {IT ® E ;1) (S» ® lay)
(y -  (ESX  0  Idy) /3S)

s s
= - djY  log(27T) -  y  £ > g  13.1 -  i  £  { ^ lo g  |s .l  +  <  (It ® S J 1) «,}(4.18)

S = 1 5 = 1

All the matrix derivatives derived below rely on matrix calculus rules developed by 
Lutkepohl (1993, Appendix A. 13). The first block of the score vector is given by

J y  =  ~ \ ( ~ 2) ( (5 ,X  <8> la ,) ' (7t ® E J1) (Es ® Idy) ( y -  (ESX ® 7^) ft)}

=  (ESX ® Idy)' (Es ® E7 1) (y -  [ESX  ® Idy) f t)  (4.19)

while the first derivatives with respect to the error variances of each regime are given 
by

dL _  d ( - t*  log |£ a| -  \trace {u's£ s 1us}) 
dHs 9Yjs

= - y S ; 1 +1 ( e ^ i / ' e ; 1) (4.20)

The Hessian matrix in this case has the following form

# 7  =

d2L
dPidft

0

d 2L
daidp[

0

0
d2L

dfodP’o

0

0
d 2L

d<T2dP'2

0

0

d2L
dPsdP's

0

0

d 2L
das dp's .

(  d2L y  
\d a i d p [  )

0

0

>21 
 ̂da2dP'2

(  d2L y  .

" V

0 0 -  f e ) '
d2L

da\da'x

0 p 2l
da2da'2

0

0

p 2l
dasda's

(■ •21)
where

d2L
a f ta f t

=  -  (ESX ® 7tf„)' (3, ® E J1) (ESX  ® 7d„) (4.22)
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Tab. 4.11: DGP: INTERVENTION(3)-VAR(l)
C l S i m u l a t e d  S t a t i s t i c A c t u a l  S t a t i s t i c

94% 1.21
95% 1.243
96% 1.325
97% 1.574
98% 1.699
9 9 % 1 .9 6 5 1 .9 5 9 8  ( 9 8 .7 6 % )
100% 5.918

92L l / r i f t r n M W S )
do,dp. 2 ' 8 s d fi

= \  (S7 1 (81 E7 1) { ( U s ® Idy) ( -  (X  ® Idy)) + (Idy ® V.) K T,iy ( -  {X ® Idy)) }

=  - | ( S , _1 ® S 7 1){(l/.A-(8i /dl() + ( /^ ® t/ . ) K r ,(il,(X (8 i / (,I,)} (4.23)

and, finally,

3 ^ 7  =  y  (S71 ® S71) -  \  p j ' u . V . ' E ; 1 ® S71) -  i  (E71 ® x j ' U s U p j 1)

(4.24)
Given the above expressions for the score vector and the Hessian matrix the 

derivation of /  x t) is something less than easy. Table 4.11 presents the
results from this exercise using 7jj

Obviously, the hypothesis Hq : 7^ =  7  is rejected at significance level, a, equal to 
5% but not for a = 1%, the value of is less than the value of the 99% percentile 
of f  (W y/M ,T ,X t). This result confirms the inference drawn regarding M  in the 
last section. It was shown there that the structural model performs remarkably 
well in terms of the second moments when these are examined individually. This 
section reaches the same conclusion by using a Wald test statistic or M-metric. In 
simple terms this statistic says that the parameter vector 7  obtained by using T  
and historical data is not statistically different from that obtained by using T  and 
data simulated by the structural model conditional on the actual data.

The same exercise is repeated by using T2 this time. The estimation of this time 
series model is done by using the Expectation Maximization algorithm. This is a two 
steps procedure where in the first, Expectation, step the pattern of the smoothed 
probabilities, is estimated and in the second, Maximization, step these
probabilities are used during the maximization of 4.18. The Hessian matrix in this
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Tab. 4.12: DGP: MSH(3)-VAR(1)/FULL
C l Sim ulated  S ta tistic A ctua l S ta tistic

9 4 % 0.032
95% 0.0354 0.0344
96% 0.0366
97% 0.0389
98% 0.0414
99% 0.0507

1 0 0 % 0.3921

case has the following form

f  8 2l  
[dpdp

H =
8 2L 

do \ 8/3'

0

0

0
8 2l

8 0 2 8 /3'

0

0 

0

8 2L 
8as d(3' J

(JP L -Y\d<nd/3>)  

0

0

0

\d<T2d/3')

8 2L 
8 0 1 8 0 x

0

0

0
(  8 2L 
\ d 0 sd l3>

0 0

8 2L
8 0 2 8 0 2

0

0
8 2L

8 0 s d 0 's

0 '

(4.25)
However, the above expressions regarding the first and the second derivatives of 7  

cannot be used for the construction of 4.25 and this is because £Sjt are also functions 
of 7 . Therefore, closed form expressions both for the Score vector and the Hessian 
matrix cannot be derived and the latter have to be calculated numerically.

Table 4.12 summarizes the results from this exercise. In the present case the null 
hypothesis, i/o  : 7 t  =  7 > cannot be rejected at significance level of 5%. The benefit 
from the latter exercise is twofold, it could be viewed as an additional indication 
regarding the good performance of M  and, also, as a robust check of the sensitivity 
of results when T  varies. The estimation of the above and the calculation of 
is computationally cumbersome by itself and when this has to be done for a large 
number of simulated sets this task becomes even worse. From Krolzig (1997) we 
know that there are closed form expressions for 7  (set equations (4.19) and (4.20) 
equal to zero and solve for /3S and os respectively) and consequently for the Scores 
of (4.18), however, this is not true for the Hessian matrix.

An alternative approach, which decreases the computational effort substantially,
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is to treat the pattern of the smoothed probabilities for each regime, Sa, during 
the maximization of (4.18) as known. In this case the estimation problem becomes 
similar to the one studied above, Intervention(3)-VAR(l) (73), because the Max­
imization step becomes independent of Expectation step. Certainly, this a very 
restrictive assumption and I was not able to think, so far, of a conceptual justifica­
tion of treating the two steps as independent, however, this does not seem to make 
much difference in terms of the statistical inference. Table 4.13 indicates, again, 
that the null hypothesis cannot be rejected at significance level 5% even when the 
latter procedure is applied.

_______ Tab. 4.13: DGP: MSH(3)-VAR(1)_______
C l S im ulated  S ta tis tic  A ctua l S ta tistic  

94% 35.842
95% 38.698 37.594
96% 41.734
97% 45.266
98% 67.38
99% 78.388
100% 139.51



5. MEASURE THEORY RESULTS

In a very recent paper Santos and Peralta-Alva (2005) provide a general framework 
of the simulation of stochastic dynamic models. They establish that the simulated 
moments from numerical approximations of model’s equilibrium function (due to 
the nonlinearity of the structural model an explicit solution of the latter function 
is not available) converge to their exact values as the approximation errors of the 
computed solutions converge to zero. The above studied evaluation process defines 
a notion of distance in which a selected set of statistics is compared with its data 
counterparts. However, this exercise is only meaningful if the statistics computed 
from the numerical approximation are sufficiently close to the true ones.

In order the importance of their result to be fully understood their first example 
of an earlier version of the above paper is presented here. Let </> be the real-values

Fig. 5.1: Numerical Approximation
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function shown in the figure, which has three interior steady states ki,km and kh 
and <f>* is another real valued function with its own steady states /cf, k^  and k*h. 
From the figure it is clear from the figure that steady states km and k^  are unstable, 
therefore, any initial condition over the interval (km, fejjj will converge to point kh 
under <j> but will converge to point k* under </>*. Consequently, a small perturbation 
on the function <j> will not generally have good stability properties near the stationary
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solution km. From these functions we can now construct a random dynamical system 
under the following i.i.d process. At each date, t = 0 , 1 , 2 , let the system move 
by function (f) with probability 1/2 and by <j>* with equal probability. The resulting 
random dynamical system has two ergodic invariant distributions whose supports 
are the intervals [fc*, k{\ and jfcj, kh]. Points over the interval [km, k*J will leave this 
domain with probability one and this interval no longer will contain a stationary 
solution. Therefore, by assigning a small stochastic perturbation to a deterministic 
dynamical system may lead to substantial discrepancies in the long run.

Their results entail that the moments computed from numerical simulations con­
verge to the moments of the model’s invariant distributions as the approximation 
errors of the computed solutions converge to zeros. However, their results apply only 
when one single sample path of arbitrary large length is simulated by the structural 
model and not for a large sample of paths (J ) of length equal to that of the data 
sample (T), which is the common practice in macroeconomics. By using Product 
Space Analysis and similar to the above authors methodology we develop results 
that cover the latter case, actually, the former results could be viewed as a special 
case, J  = 1, of the results introduced here.

The second issue is related with the measurability of the estimated parameters 
of a time series model (7 ) fitted to the simulated data. The structural parameters 
(6 ) used for the simulation are the estimated one (0). The set of the time series 
parameters ( r)  becomes a function of 6  and e^t or, in other words, T(0 , e^t) is a ran­
dom set. Stinchcombe and White (1992) provide conditions whereby the extremum 
of a random function over a random set is itself a random object. However, these 
results cannot, directly, be applied here. We provide conditions when this holds in 
the present framework.

5.1 Accuracy of Numerical Simulations

5.1.1 Asymptotic Convergence Results

The aim of this subsection is not to provided new theoretical results regarding 
the limiting behavior of Markovian Economic models. The author’s target is to 
supply those conditions so the theory has been developed all these years (see Futia, 
1982; Stockey, Lucas, and Prescott, 1989; Hopenhayn and Prescott, 1992; Santos 
and Peralta-Alva, 2005) can be utilized here. This is done through the use of the 
product space analysis.

The core of a DSGE model is the equilibrium law of motion mainly written as
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a dynamical system of equations Sjyt+1 = ^((stjCt+iJj)1,'where s G Rds and e G Rde. 
The observable or jump variables are function of the Sj)t, y^t — ((s*> et,vt)j) with
y G Rdy and u G Kdv . The only thing needed to say about the last equation is 
that y is a function of v only when the number of the stochastic processes is smaller 
than the observable variables (dy > de). From the estimation of the structural 
model point of view this augmentation is necessary so the stochastic singularity is 
eliminated2. For the rest chapter the latter equation is not going to be used again 
and all the attention is concentrated on the law of motion equation. The following 
definition ideally summarizes the a random dynamical system.

Definition 5.1.1: A random dynamical system (r.d.s) is defined by the following 
data: (a) a state space =  X̂ =1S, S  = (g>j=1<Ŝ  is a separable metric space, and 

a Borel subset and metric subspace of a complete, separable metric space3; S  is 
its Borel <r-field; (b) a measurable space =  X/=iE, £ <S>j= 1 £, Qe = x/=i^e) of 
events', (c) a stochastic kernel Qe : (X̂ =1(S x £)) —» [0,1]; thus Qe (X̂ =1(s*, A)j )  is 
the probability of realizing event A  G £ given that the current state is Sj>t G S; (d) a 
mapping 0 : ^ S x E j  =  (X;^(S x E)) —► S; for each Sj>t G S </> ((st, -)j) is assumed 

to measurable while for each G E <j> ((•, et)j) is continuous.

The above definition is the one given by Futia (1982, Definition 5.1) adjusted 
in terms of the current analysis. In technical terms this means that product space 
notation has been used to account for the fact that multiple series of shocks are 
drawn from the hypothetical distribution. This is a characteristic that bequeaths 
the present definition with a significant level of flexibility and a taste regarding this 
property is given below. The above definition simple says that the state of the 
system evolves form one period to the next in the following way. If the state at j , t  
is Sjtt, an event eJ>t G £  is realized according to the probability law Qe (X̂ =1(s*, -)j). 
The state at date j, t +  1 is then Sj<t+1 =  (<p(st , Ct+i)j)-

Random Dynamical Systems can generate very complex dynamics. To analyze 
the average behavior of sample paths, it is required to define the transition probabil­
ity function. The following theorem shows how the function (f> and the probability 
measure of can be used to construct the transition function for the Sjit4-

1 Double index notation illustrates that the second procedure of simulation is going to be used
2 For an alternative treatment of the stochastic singularity issue see Bierens (2005)
3 Separability of the product metric space requires that each component is separable metric 

space. This is a very essential assumption for the product space analysis undertaken here (see 
Billingsley, 1968, page:20-21) and it will be maintained for the rest of the thesis

4 The theorem is similar to the one introduced by Futia (1982, Theorem 5.2, page:398). How­
ever, the proof uses the analysis developed by Stockey, Lucas, and Prescott (1989, Theorem 8.9, 
page:234).
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Theorem 5.1.1: Let ^E, £ ,p  = x^=1/iej  be a product probability space and let ^S, SJ 
be a product measurable space. Let <j>: X̂ =1(S x E) —> X̂ =1S be a measurable func­
tion and define the correspondence T : <8 >j=1S  —* X̂ =1(S x E) to be the inverse 
of the <j>, T(A) = {(s,e)j G X/=1(S x E) : (f>((s,e)j) £ A}  all A  € X/=1S. Then 
Qe (X/=i(s, A)j) =  )(j=ifjLE ^[r(A)]â  defines a transition probability function on

(s,<S^ ( [r(A)]Sj. = {sj £ S : (s, e)j € X̂ =1(S x E ),<f>((s,e)j) £ A } is Sj-section of 
[T(A)\ see Definition A.0.1 on Appendix A ).

Proof: First we must show that Qe is well defined. To do this, it suffices to 
show that [r(A)]Sj. G £ for all Sj G S.The desired results follows from (i) the as­
sumption made regarding </> (it is measurable), which implies that T(A) G S  <8> £ 
and (ii) the theorem A.0.3 (see Appendix A or for more details Halmos (1950,
Section 37)). Next we must show that for each Sj G S, Qe  (X̂ =1(s, -)j) is a prob­
ability measure on S. Fix Sj G S. Clearly, Qe (X̂ =1(s, 0)j) =  /x(0) = 0 and 
Qe (Xj=1 (s, S)j^ =  n{S) =  1. Also, for any disjoint sequence {A*} in S  the 

sets Ci — r(Aj) i =  1,2,..., in S  <g) £ are disjoint 5. Hence their Sj-section are 
also disjoint so QE (X/=1(s, |J “ i M)j) = X/=iMe ([U Si Ci]Sj)  =  /i (|J,“ i [<?«]»,) =

( l^ L j)  =  T ,Z iQ e  (Xj=1 (s,Ai)j). Therefore QE (Xj=1 (s, •),) is countably 
additive. Finally, we must show that for each A  G <S, Qe  (X̂ =1(-, A)j) is S- 
measurable function. Since (f> is measurable then for each A  G S  the set C = 
r(A) = <f)~l (A) is in S  ® £, therefore, it suffices to show that the function p(CSj), 
viewed as function of Sj, is S  measurable for all C G S  <S> £. Let Q = {C £ S  ® £ \ 
p(CSj) is a measurable function of Sj}. By the Monotone Class Lemma (see Lemma 
A.0.1 on Appendix A), it suffices to show that Q contains all the finite unions of 
measurable rectangles and that Q is a monotone class. First, let C =  A  x B  where 
A  G S and B  £ E with p{CSj) =  fi(B)l[SjEA]- Since A is a measurable set, p{CSj) 
is a measurable function of Sj because the latter is a simple function, which implies 
that C £Q. From Theorem A.0.11 and the inclusion-exclusion formula

/  n \  n
p  I | J  A j  J =  /i (.A j v  (a j n  A k ) +  n  Afc n  A i ) - . . . ± i x  (A i n  a 2 n ... n  A n)

Vj=l /  3=1 &k frk#
(5.1)

,where the sign of the last term is negative if n is even and positive if n is odd 
and there are 2n — 1 in the sum in total, we know that if G i, ..., Gn are measurable 
rectangles, then (j*=1Gi £ Q. (5.1) is obtained by induction; the claim holds for

5 There is always a way to write the set of all finite unions of measurable rectangles as the finite 
union of the set of all measurable rectangles (see Stockey, Lucas, and Prescott, 1989, Exercise 7.27, 
page: 196)
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n =  1. Suppose that it holds for n — 1.

UG«
vi=1

IK 0 *)*
,* = i

n—1

U (G i)S)U(Gn)Sj
.1 = 1  

n—1

U (G i).,

OW,
.*=1

+  /i [(G^n)sj] A4 

+  /i [(^n)sj] — A4

/ n —1

(n—1
(J (G ,n G „ ) (5.2)

Finally, we will show that C/ is a monotone class. Let Gi C G2 C ... be an in­
creasing sequence of sets in Q, with G =  (JS i Note that this implies that the 
S sections (Gi)Sj C (G2 )Sj Q form an increasing sequence in S. From theorem 
A.0.126 we know that n is continues which implies that fj, ({Gi)3̂ j -  /*((G)„), 
which the pointwise limit of a sequence of measure functions, since by hypothesis 
m((G i)ŝ  is measurable function of Sj for each i. From theorem A.0.13 and the

equality, lim inf* // (j,Gi)ŝ ) =  limsupi /* (jiGi)Ŝ J, we know that limz- (i ({Gi)ŝ j is 
also a measurable function and G is in Q. We proceed in a similar way when {G*} 
is a nested decreasing sequence in Q. Hence, it is a monotone class. ■

Given the transition function and any initial probability measure fiQ on <S the 
evolution of future probabilities is determined by the the recursion law

th+\{A ) =  J J  Qe  (X/=1(s, A)j) iM{dSj) = J  Qe  (* /= i(s , A)j) nt{dsj) (5.3)

The necessity rises here is those conditions, which guarantee that equation 5.3 con­
verges to an invariant or stationary distribution,

=  J  "  J s Q e  (x/= i( s > A ) i) M*(rfsj) = j  Q e  (X/= i(s , A)j) ^ ( d s j )

. Futia (1982) and Santos and Peralta-Alva (2005) advise that this could be eas­
ily done through the use of Markov-KakutanVs theorem (see Appendix A Theorem 
A.0.6). In order to verify the conditions required by the latter theorem some addi­
tional notation should be introduced.

6 This actually holds generally, not excluding the case n ( {G)Sj) = oo see Davidson (1994, 
page:38)
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Let C(S) be the space of all continuous real-valued functions /  on S. The integral 
Is / ( sj) M (5j) or expected value of /  over fj, will be denoted by E( f)  whenever the 
distribution /j, is clear from the context. The weak topology is the coarsest topology 
such that every functional in the set (ji —> f(sj)jj,d(sj), f  G C(S)^ is continuous.

If we endow C(S) with the following norm || /  ||= sup e§ \f(sj)\ then the latter is 
a Banach space. A transition function Qe  on (S, S) defines a Markov operator T  
from C(S) to itself, (Tf )  =  f  f ( s jyt+\)QE (X/=1(s*, dst+i)j) all Sj G S, and each oper­
ator T  is associated with its adjoint T* such that for (/, fi) =  f(sj)/j,(dsj) we have 
(Tf, fj) =  (/, T*/j) for all /  and fi ^where T*fi =  J§Qe ( X / = 1 ( s ,  A)j )  fi(dsj) all A  G S'j

Theorem 5.1.2: Given the definition 5.1.1 there exists a probability measure fi* such 
that n* == Tfi*.

Proof: The proof is established when the hypotheses of Markov-Kakutani’s Theorm 
(see Appendix A Theorem A.0.6) are satisfied. Santos and Peralta-Alva (2005, 
Assumption 2) make a convenient assumption that shows that T  maps C(S) into 
itself. On the other hand Futia (1982, Proposition 5.6, page:400) proves that the 
latter is true (see Appendix A Proposition A.0.1). Hence, operator T* must be 
weakly continuous. Moreover, from Bertsekas and Shreve (1996, Proposition 7.22, 
page:130) we know that in the weak topology, (C(S)*), the set of all probability 
measures in S , (P (S )), is compact, consequently a convex set. Therefore, Markov- 
Kakutani’s Theorem conditions are satisfied.®

The analysis for the rest of this section moves on the lines drawn by Santos and 
Peralta-Alva (2005). The assumptions adopted by these authors are not so hard to 
be checked in applications; a characteristic that makes the whole study attractive. 
In the present work 0 is a real-matrix-valued function on RrdsxJ and || • || is its 
matrix norm in RTdsxJ. One more thing, which is going to be used extensively in 
the rest of this section, is Fubini’s Theorem (see Appendix A Theorem A.0.7 or, for 
more details, Halmos (1950, Chapter 7)). Equation 0 could also be viewed as the 
mapping 0 : S x E x J  —> S x J. This notation facilitates the rest analysis a lot. 
Following Santos and Peralta-Alva (2005) we define for any two real-matrix-valued 
functions the following metric

d(0,0) =  max 
ses

f  II <t> ((«> «)j) -  <i> ((s, e)}) || QEj{dtj)
J E x J

(5.4)
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Using Definition A.0.2 and Fubinis’s Theorem we can rewrite equation 5.4 as

d(fa fa) =  max /  || 0  ((s, e)j) -  4> ((s, c)j) || QEj{dej)
ses U exj

= max 
ses

= max 
ses

^  /  II <KS>e) -  e) IIj QEj{dej)
S  L J E x J

[  II fas, e) -  fas, e) II QE(de)
JE

(5.5)

The last equality is obtained by setting J j  || fas,e) — fas, e) \\j Q j ( d j )  =  || 

0(s, e)—0(s, e) || and using Fubinis’s Theorem. Equation 5.5 is identical to Equation
(3.1) of Santos and Peralta-Alva (2005, page: 1945). From the analysis so far it is 
clear that each fa defines the associated pair {Qe^T*) .  While from Theorem 5.1.2 
there always exist an invariant distribution /x* =  The aim of this section
is to establish those conditions that guarantee that the moments of an invariant 
distribution of a sufficiently good numerical approximation must be arbitrarily close 
to the moments of some invariant distribution of the model. The following Theorem 
is in this direction.

Theorem 5.1.3: Let {fa} be a sequence of functions that converge to 4>. Let {/x*} 
be a sequence of probabilities on S  such that /x* =  T*[i* for each i. Under the 
assumptions made regarding the compactness of S  and the weak topology (C(S)*), 
if fj,* is a weak limit point of { /X j} ,  then /x* =  T/x*.

Proof: Santos and Peralta-Alva (2005), basen on the analysis of Dubins and Freed­
man (1966, Theorem 3.4, page:839), mention that the Theorem will be established 
if we could show the continuity of the evaluation of the map ev(<f>, fi) = (ft • [i.

An alternative way to define the topology of weak convergence is by using the 
following metric

d(/x, v) = sup 
feeiu? {  /  
f £ C  V J S xJ

JJ S xJ
/ ( s jMds j ) (5.6)

where C is the set of Lipschitz functions on S. The following equation f SxJ f(sj)[i(dsj) 

can be rewritten as Js ( f j f ( s , j ) n j (d j ) j  fJ-.,(ds) (by definition). At this point we set 

f (s)  equals to f j  f(s, j)fij(dj)  then from Fubini’s Theorem (see Appendix A Theo­
rem A.0.7) we have f SxJ f(sj)fi(dsj) = Js f(s)dfi3 (ds). Applying the same logic to
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the second part of the right hand side (RHS) of equation 5.6 we get 

d(ft,v) =  supj  /  f ( s j ) n { d s j ) -  /  f ( s j ) v ( d . S j )
fGC \  J S x J  J  S xJ

= sup (  [  f(s)/i 3 (ds) -  [  f (s)vs(ds) \  
fee I Js Js J

(5.7)

The last equality of the above equation is identical to equation (A.l) of Santos and 
Peralta-Alva (2005, proof of Theorem 2 , page: 1968). It should be noticed that C is, 
now, the set of Lipschitz functions on S with constant £ and such that — 1 < / <  i. 
From this point the proof is identical to the one given by Santos and Peralta-Alva 
(2005, proof of Theorem 2). For any two mappings (j) = fj(j)j(s,e)Qj(dj) and
A _ A

(f) = e)Qj(dj) and any two measures /is and vs we have7

f  f (s)  [(i> -Us] -  [  f (s)
Us Js

=  | /  [  /  /  W 5 » c ) ) 0 s ( d € )
I v S L*'

l*s(ds) -  J  J  f  (<£(s, e)) QE(de)

<

+

<

/  [ [  f{<t>(s,e))QE(de) /is (ds) -  [  [  f  ((p(s,e)) QE(de) 
Js U E J Js U E

Vs(ds) -  J  J  f  e)) QE{de)f  (<t>(s,e))QE(de)

[  f  f(<t>(s,e))QE(de) 
JS U E

vs {ds)

vs (ds)

vs {ds)

[/is (ds) -  vs (ds)] + 4>) (5.8)

The first inequality arise from the triangle inequality, while the second one from the 
fact that /  € C. Then by 5.7 the Theorem will be established if we could show that 
for every arbitrary rj > 0 there exists a weak neighborhood V(/is) of /is such that 
for all vs in V(/is) and all JE f  (4 >(s, e)) QE(de) in C

Vr} 1 I e  ^  ^ S ’ ® E ( d 6 ^ )

= { tfc € V ( S )  : j ] J j  (*(«, e)) QE(de) [fis (ds) -  vs (ds)] <r/> (5.9)

The condition of Arzela-Ascoli’s Theorem (see Appendix A, Theorem A.0.8) are 
satisfied, this means that the set C is compact. Hence,we can define a set of ele­
ments {fi} such that for every /  in C an element fi satisfies that sup \ f  — fi\ <

The subscript denotes the section
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Additionally, by definition f E f  (0(s, e)) QE{de) is continuous in S. Hence, for every 
ft there exists a weak neighborhood V*(ms) such that for all vs in Vi(/is)

Vv fc, f t  (0(s, e)) QE(de) , ..., f k (</>(s, e)) QE(de), y ^

= I  vs € V(S)  :  ̂jT /< (0(s, e)) Q e(^) [Ms(ds) -  vs-(ds)] < y , * =  1, k

(5.10)

By ranging over all the possible f t , ..., fk and 770, for each k E N, we define a collection 
of open neighborhoods of /is- The base collection Vv (/is, k, f E fi (4>(s, e)) QE(de), 
defines a weak topology on V(S).  Define now

Vo n -  I f  \  f  f  (0(s, e)) Qsidt)
IJ  S L J  E

[/ios(ds) -  u(ds)] > 0

Then for any vs € Va (u5 : f E ft (</>(s, e)) Qi?(de))

[  [  f(<f>(s,e))QE(de)
JS  J E'S U E  

<

[/i5(ds) -  u5(ds)]

+

+

+

[  [  f(4>(st€))QE(d€) f i s (ds) -  [  [  ft (</>(s, e)) QE(de) 
Js IJE J Js UE

[  [  ft((j)(s,e))QE(de)
Js U e

/z5(ds)

[/x5(ds) -  Mos(ds)]

f  f  fi (<KS>e)) Qf?(dc) Mos(ds) -  [  [  f  (0(s, e)) Qs(de)
ds UE J Js U E

[  [  f(<l>(s,t))QE(de)
Js Ue

Mos(ds)

[Mos(ds) -  vs (ds)]

3 3 3
= V

[  [  f  (<j)(s,t))QE(de)
JS IJE

[Mos(ds) -  v(ds)]

(5.11)

As it is described by Santos and Peralta-Alva (2005) the quintessence of the above 
theorem relies on the fact that the correspondence of the invariant distributions is 
closed (bilinear convergence of Tf/i* to T*/i* in the weak topology), and given the 
fact that the set of all probability measures in S  is compact we can conclude that the 
correspondence of the invariant distributions is upper semicontinuous. Mainly, upper 
semicontinuity is established by imposing assumptions on the transition function QE
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(see Stockey, Lucas, and Prescott, 1989, Section 12.4), however, the latter function 
is not handled easily. It is usually derived by the knowledge of (f) and any assumption 
imposed on Q e j  have to go through conditions applied on </>, which cannot be done 
straightforwardly.

5.1.2 A Robust Law of Large Numbers for DSGE models

Laws of Large Numbers LLN  for Random Dynamical Systems are based on the 
ergodic theorem. The application of the latter requires the initial state sJ)0 must 
lies into an ergodic set. Mainly, this is guaranteed either by imposing a technical 
condition, known as Hypothesis D (Doob, 1953; Stockey, Lucas, and Prescott, 1989), 
which ensures that for every initial value s^o, dynamic system will enter one of its 
ergodic sets almost surely, or by assuming a unique invariant distribution (Breiman, 
1960).

However, both assumptions seem to be weak in the applied work. For instance, 
both Santos and Peralta-Alva (2005, Section 3.2) and Stockey, Lucas, and Prescott 
(1989, Chapter 11) declare that Hypothesis D is difficult to be verified in economic 
applications. On the other hand uniqueness of the invariant distribution is viewed 
as strict assumption for numerical approximations. Even if conditions, which ensure 
uniqueness, would be imposed on the original model they would be hardly preserved 
during the discretization of the state space8.

Santos and Peralta-Alva (2005, Theorem 3, page: 1950) goes a step further and 
derives a LLN  robust to the above mentioned weakness. The task of this subsection 
is to make the latter result compatible with our current setup. We define a new 
probability space that comprises all infinite sequences uj = (ei, C2» ---)• Let ^  = 
XgjE and T  be the <r-filed in XgjE generated by the collection of all cylinders 

Ai.i x Ai|2 x ... x A ltT x
A2,i x A 2 ,2 x ... x A 2<t  x XgjE

where Ajj  G E for j  =  1,.., J  and i =  1,..., T.

_ A Jy 1 x A j ,2 X ... x A j , t  x X ~ j E  J
A probability measure A can be constructed over these finite dimensional sets as

t
el»l £  A i :i e l,2 €  A i >2 . • c i,r G Aitr

Wj :
*

.  Cj«1 €  A j f i ej,2 6  A j $  . • £j ,t €  A j ,t

T  J

{5-n )
i=  1 j —1

From Caratheodory and Hahn extension Theorems (see Appendix A Theorem A.0.9

8 An example regarding this failure is given by Santos and Peralta-Alva (2005, Section 3.2, 
page:1948)
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and Theorem A.0.10, respectively) A has a unique extension on T,  which allows us 
to define the following product probability space (fi, T,  A).

Theorem 5.1.4: Let /  belongs to C(S). Then, given the Definition 5.1.1 the following 
limits exist for A-almost all Uj.

lim I inf
T —*oo \  S o e §

lim I sup
T-*°° \ , 0 6 S

_1 _1 
T J

1 1

T J

t=1 j=\ 
T  J

t=i j=i

=  £ min(/) 

=  E max(f)

(5.13)

(5.14)

Proof: The proof is based on Crauel (2002, Chapter 6 ) and Santos and Peralta-Alva 
(2005) results9. Time t is allowed to range from — oo to oo, which implies that Uj =
(..., e_t,..., e_i, eo, €i, ..., et, ...)j. Similar to equation 5.12 we can define a new proba­
bility measure and a probability space (fi, P, A). Let Gt = supSoGg Ym=i J2j=i f  isj,t(so>

= suPSoes E L i / ( s*(5o,u;)) , where f  (st(s0 ,u)) =  E /= i /  ( s j A s o ^ j ) ) -  In order 
to use the ergodic theorem of Kingman (1968) we need to show that G t is a subad­
ditive process, which is done through the use of the shift operator. For each integer 
k the fc-shift operator is defined as Wk : fi —> fi, a7fc(..., £_*,..., e_i, £o, €i, •••> £t, —)j =
(..., e-t+k, •••, C- i c * , ,  Ci + k , ..., et + &, ...)j. Easily, you could see that Wk is bijective 
and measurable10. Crauel (2002 , page:96) shows that Gr+k{^j) < Gr(wj) + Gk{ujj)
(for positive integers k and T)  is derived through straightforward calculations. This 
means that Gt {wj) is subadditive process and from Kingman (1968) we know that

lim g r(^ j) =  H  (5 15)
T^<x> T

for A-almost all Uj. By Kingman (1968) result equality 5.13 will be established if 
we can show that f SxJ f(sj)fi*(dsj) = H. For 77 > 0 and t G N consider the set

{ T  J

(U j ,  So) : Y s Y l  f  wi ) )  Z . H - V

t=1 j =1

. Due to continuity assumption (Proposition A.0.1) the latter set is measurable.
A primitive result of the Measure Theory result indicates that there exist a mea­
surable hpf function on P ro j ^ H ^ )  such that ( u j , h N ( u j j ) )  G H7̂. Following San­
tos and Peralta-Alva (2005) the empirical distribution [iJSQ  ̂ for any sample path

9 The latter results could be viewed as an extension of the previous work.
10 For full discussion of its properties see Crauel (2 0 0 2 , page:82-84)
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{{si,t(*o,<*»*)}/=,} is defined as =  57 for every su (s0 ,Uj), for
every 1 < t < T  and 1 < j  < J. Then let fiN = fn MfhN(ujj) By Corollary
6.13 of Crauel (2002, page:88) there exists a subsequence /xTn (n € N) converging to 
an invariant distribution fj,*. Upper semi-continuity of fx —> f s f(s)fxd(s) together 
with the definition of f.iT gives

f  f ( s )n’d(s) > lim f  f(s)fiTnd(s)

=  E ( ?  ^ S° ’

> H - t ]  (5.16)

We set Rf  =  sup ( f s f(s)fxd(s) : fx(K) =  1 , /x invariant for (j)}11, then Rf  > H  — 1 , 
say. Crauel (2002, page:97) proves that the set { / i : ix(K) — 1, fx 0 — invariant, and 
Js f(s)nd(s) > H —1} is compact and nonvoid. Thus Rf  is realized as the maximum 
instead of just a supremum, which implies, {fx : fx(K) = 1 , \x 0 —invariant, and f  fdfx 
Rf}  7  ̂ 0. Since extremal points of this compact convex set are extremal in the set 
{v : v, 0  — invariant}, hence ergodic, there exist an ergodic ^-invariant fx supported 
by K  with f s f(s)/xd(s) = Rf.  From 5.16 we have

[  f(s)ixd(s) = R f > [  f(s)fx*d(s) > i f  -  17
Js Js

for rj > 0 arbitrary gives f s f(s)fxd(s) = Rf  = f s f(s)[x*d(s) = H. ■

As it is discussed by Santos and Peralta-Alva (2005), the above Theorem ensures 
that J2t=i Yfj=i f  (sj A so> uj)) approaches the interval [Emin{f) = min 
f s f(s)n*d(s), E max(f)  =  max{M*:/i*=T.M*} f s f(s)/x*d(s) ] 12 uniformly in s0 for A- 
almost all Uj, and the bounds Emm(f)  and Emax( f ) are tight. Breiman (1960) 
theorem is obtained as corollary of the above Theorem (See Santos and Peralta- 
Alva, 2005, Corollary 3, page: 1950) under the condition that there exist a unique 
invariant distribution (x*. In this case

£ ” - ( / )  =  Emax(f)  = E(f)

11 K  is the compact support of the invariant measures for 0
12 The integral f s  f(s)[i*d(s) is the iterated integral over the j-sections.
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5.2 Extrema of Random Functions

The testing procedure described in the next chapters relies on the estimated param­
eter vector of a time series model (7 ) fitted to the data simulated by a structural 
model whose (structural)parameter vector (9) has been estimated.

7  =  argmaxL* ( y t ^argm dg.Ls (yt,9)Sj  ,7 ^ 13 (5.17)

It is clear from the above formula that 7  is a constrained estimate, to be precise, it 
would be the time series estimate implied by the structural model if the latter could 
be written as the former model.

We could view this as two stage estimation problem

L{yuyt{0),0>l) =
Ls{yt, 0 )

7 )  _
(5.18)

with Vfli7L =  014. Since Quasi Maximum Likelihood (QML) estimation techniques 
are used in both stages, White (1994) notation and terminology will be used for the 
rest of this section. The complication, addressed in this section, is the fact that T 
is dependent of 9 and the realizations of the stochastic processes ut and vt. In other 
words T becomes random (IV).

The properties (Consistency and Normality) of a two-stage QML estimator are 
well established (see White, 1994). However, these results cannot be directly used. 
We must show that the supremum over IV is a itself a random or a measurable 
function. Fortunately, Stinchcombe and White (1992) - using Analytic Set Theory - 
and White (1994, Theorem 8.17, page: 185) - verifying the conditions of the Theorem 
4.5 of Debreu (1967) - show that this is true under some general conditions.

Given an unconstrained QML estimate (QMLE) 7 , an estimate of the structural 
vector 9 and the assumption that the mapping from the structural to time series 
parameter vector ( 6  : 6  —> 7 ) has closed form, a test of 7  =  6(9) could be based on 
7  — 6(9). However, the latter mapping can be established under very restrictive con­
dition, for instance, for a linearized DSGE model and for a linear time series model 
e.g low order VAR or VARMA. However, similar to Smith (1993), this mapping can 
be produced via simulation and this is what we get form equation 5.17. In other 
words 5.17 could be viewed as m ax^r £/?(?/t> 0,7 ) s.t. t t (9 ,^)  = 0.

Assumption 5.2.1: Let (fl,F,  /x^), (E,S, f i^)  and (V, V, fiy) be complete separable

13 Lr is the likelihood of the time series model, while Ls is the likelihood of the structural model.
14 V<?)7 is the matrix of the cross derivative of 6 with respect of 7
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probability spaces. Let O and T be two Souslin topological spaces, with respective 
Borel cr-fields M  and M.. Let r  : 0  x T -> R be a measurable with respect to the 
product cr-field N ® M ,  and let L  : Qx  E x V  x 0 x T  —> M be measurable in Cl x E  x 
V  x © and continuous in T. Further, let (  : —> 0  be a measurable function and
define the correspondence S  : Q x  E  x V  —> T by S(u>, e, v) = < 7  G T : r (§, 7 ) = 0 >.

E x V  —> M. and a set At € T  <S> £ <8> V with =  1 such that for all
(cu,€,v) G At

Proof: By the assumption 5.2.1 the product probability space ( Q x E x V , E < 8 >£<8 )

Define, L*(u>, e, v) =  sup -j L (u , e, v, 0,7 ) : 7  G 5(a;, e, v

Theorem 5.2.1: Given assumption 5.2.1 there exists a measurable function ^  x

max
7  ES(u>,e,v)

V, Ato x He x fiy) is complete. The rest of the proof follows the proof of Theorem 
8.17 of White (1994, page:213). ■

Given the above result the properties of 7  are well established (see White, 1994, 
Section 8.2).



6. CONCLUSION

In this thesis we have introduced a new bootstrap method for testing structural 
DSGE models according to their dynamic performance. The method maintains a 
separation between the structural (non-linear) model as the null hypothesis and its 
dynamic time series representation. The model’s errors are discovered and used for 
bootstrapping (after whitening); the resulting pseudo-samples are used to discover 
the sampling distribution of the dynamic time series model. The test then consists 
of discovering whether the parameters of the time-series model estimated on the 
actual data lie within some Confidence interval of this distribution. A test statistic 
for the parameters taken as a whole is developed (the M-metric, a Wald statistic).

In contrast to the existed methods used for the evaluation of the DSGE models, 
only, the proposed one could be used for non-linear structural models. However, it 
should be emphasized that this method could not be used for the estimation of the 
latter model. This is a task that requires further research.

The thesis also discusses whether the simulations we use have the property that 
their approximation error converges to zero asymptotically. Here we follow the anal­
ysis of Santos and Peralta-Alva (2005) for the case of a single error. We establish that 
in the case of multiple errors the same convergence property holds. This underpins 
the perturbation methods we have used here for our stochastic simulations.

We demonstrated the use of these methods in two applications- one to the Liver­
pool Model of the UK over recent postwar data and one to postwar panel data for 76 
countries. We tested the Liverpool Model and found that, according to which time 
series reprsentation of the data we used it was either marginally accepted at the 95% 
level or at the 99% level; another interesting finding was that when VAR impulse 
response functions were identified by the Liverpool Model they were not found to 
be hump-shaped but rather in gereal consistent with the new classical patterns of 
the Liverpool Model. On the panel data we were able to test between a model in 
which taxation affected growth negatively and one where there was no effect at all 
and we showed that the latter was rejected at 95% while the former was accepted.
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A. APPENDIX A

Definition A.0.1: Let (X, A’), (Y, y )  be measurable spaces and (Z, Z ) is their prod­
uct. Let E C Z and x  € X. Then the x-section of E is the set (in Y) Ex — 
{y € Y  : (x,y) € E}. The y-section (a set in X) is defined similarly.

Definition A.0.2: Let X, Y  and Z, defined as in the above definition. Let /  : Z —> R. 
Then the x-section of f  is the function f x : Y  —> R  defined by f x(y) = f(x,  y). The 
y-section of / ,  f y : X —► R is defined similarly.

Definition A.0.3: A monotone class is a nonempty collection M. of sets such that 
M. contains:

a. The union of every nested increasing sequence A\ C A 2 C ... of sets in M .

b. The intersection of every nested decreasing sequence A\ D A^ D ... of sets in 
M .

Theorem A.0.2: Every section of a measurable set is a measurable set.

Proof: See Halmos (1950, Theorem A, page: 141 ).■

Theorem A.0.3: Every section of a measurable function is a measurable function 

Proof: See Halmos (1950, Theorem B, page: 142). ■

Theorem A.0.4: Let (S x J , S  <8> J )  be a product measurable space:

a. If {AnJ-JJLj is an increasing sequence in S  0  J  that is An C An+1 C . .. ,  all 

ft,then / i( |J ~ = i)  =  lim n^oo/x(An).

b. If {Bn }™ = 1  is a decreasing sequence in S  0  J ,  that is, if Bn+1 C Bn C • • • and 
if n(Bm) < oo for some m, then fi( f |^L i) =  lim^oo fi{Bn).

Proof: a. If n{An) =  oo for any n, then the result is trivial. Suppose that
MA.) < oo, all n. Let A q =  0. Then {(An\An_i)} is a sequence of disjoint 
sets in 5  <g> J ,  U~ i =  \J Z i  {(A V A -i)}- Then

A4 ( Ai J -
<n=1

|J(A AA ,-l)
_n=l

N

=  y ^ K A i\A n )  =  lim E M A V M M )■ * rJ—►rvo ....N —k x )n=l n=l
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At this point we define An\A n- i  =  3> =  <$ fl Acn_x £ S<S>J and by assumption 
(An C An- 1) we have An_i U $  = An and An_i fl $  =  0. Hence

l^{An— i) +  //(^) — //(An) (A.2)

as //($) > 0 we have //(An_i) < //(An), since fi(An) < oo for all n the difference 
//(An) — fi(An-i)  is well defined and

//(^) — ii(An\A n-i)  //(An) //(An_x) (A.3)

which implies that equation A.l is equal to limjv^oo Z)n-i [M A O  /i.(A n_ i) ]

limjv-̂ oo MAO

b. Without loss of generality we assume that //(Hi) < oo. Then it is sufficient 
to show that //(Hi) — //(HULi Bn) =  //(Hi) — limn_̂ oo //(Hn) using the same 
logic the last equality can be written as /z(Hi\ H^Li -®n) =  limn^oo [m(Hi) — 
//(Hn)] =  limn_>00//(Hi\Hn). {Hi\Hn} is an increasing sequence in S ® J  and 
U r= i(^ \^ n )  = H i\n "= i^ n . Therefore,

n=1 n=l
= lim /x(Hi\Hn) =  lim //(Hn)

Theorem A.0.5: Let (S x J, S ® J )  be a measurable space and let {/n} be a sequence 
of S  0  J  of measurable functions converging pointwise to /

lim f n(sj) = f{sj) all sj = (s,j) G S x J  (A.4)
n—* oo

Then /  is also measurable.

Proof: We want to show that for any a  G M

A  =  {sj =  ( s j )  G S x 3\f(sj) < a}  £ S  <g> J  (A.5)

Fix a  G K and for k =  1,2,... andn =  1,2,..., let Aifc =  {s^ =  (s ,j) G Sx J | / n(sj) < 
a + |} ,  since f n is measurable, A nk G S<g>J, all n, fc. Then, since £0*7 is closed under 
countable unions and intersections, it follows that B^k — f)n=7V Aifc £ S  <S> J  all 
N, k\ so that Bk =  Un=i &Nk € <S0  J ” all A;; and finally, that H =  HS=i £ S ® J .  
Hence, it is sufficient to show that H =  A,  where A  is defined by (A.5). First we will 
show that A C  B. Suppose that Sj £ A.  Then f(sj)  < a, and for each k = 1, 2 ,..., it
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follows from (A.4) that for some Nk, n > Nk we have f n(sj) < o +  ^  with Sj G Ank- 
■Hence, for each A;, we have Sj G B^k all N  > Nk so Sj G and hence Sj € B. 
Therefore, A C  B. Next will show that B  C A. Suppose that Sj G B. Then s e Bk 
for each k. Hence for each k, Sj G BNk for some Nk.  Hence, for each k we have 
n > Nk  such that Sj G An*., which implies that / (sj) < a  so Sj G A. Hence B  C A.
m

Lemma A.0 .1: Let S  be a set and let A  be an algebra of subsets of S. Then the 
monotone class M. generated by A  is the same as the cr-algebra S  generated by A.

Proof: See Stockey, Lucas, and Prescott (1989, Lemma 7.15, page:200). ■

Theorem A.0.6: Let K  be a compact convex subset of a linear topological spaces 
X.  Let T  be a commuting family of continuous linear mappincs which map K into 
itself. Then there exist a point p in K such that Tp = p for each T  G T .

Proof: See Dunford and Schwartz (1958, Theorem 9, page:456)

Proposition A.0 .1: Suppose a random dynamical system is given. Assume tat the 
map S  —> ca(E x J), where ca(E x J) is the set consists of the countably additive 
set functions, defined be Sj —* Q e j { s j »•) is continuous when ca(E x J) is regarded 
as Banach Space in the total variation norm, if /  G C(S), it then follows that 
T f  G C(S).

Proof: See Futia (1982, Proposition 5.6, page:400).B

Proposition A.0 .2 : If S  is a compact metrizable space, then P(S)  (the set of all 
probability measures in S) is a compact metrizable space.

Proof: See Bertsekas and Shreve (1996, Proposition 7.22, page:130).B

Theorem A.0.7: If /  is an integrable function on S x J, then almost every section 
of /  is integrable. If the functions h and g are defined by h(s) = f  f(sj)dp(j)  and 
g(j) =  f  f(sj)dp(s),  then h and g are integrable and

J  fd(p{s)  x p(j)) = J  hdp(s) = J g d p ( j )  (A.6)

Proof: See Halmos (1950, Theorem C, page: 148).B
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Theorem A.0.8: Let (S, d) be a totally bounded metric space. A set A C C(S) is 
relative compact under du(f,  g) =  supa.€5 | f{x) — g(x) | if and only if it bounded and 
uniformly equicontinuous.

Proof: See Davidson (1994, Theorem 5.28, page:91). ■

Theorem A.0.9: Let S be a set, A  an algebra of its subset and p  a measure on A.

Let T  be the smallest <r-algebra containing A .  Then there exists a measure p* on 
T  such that p ( A )  =  p*(A),  all A  € A .

Theorem A.0.10: Let S, A , p  and T  be specified as in Theorem A.0.9. If p  is 
cr-finite, then the extension is p* to T  is unique.

Theorem A.0.11: For arbitrary ^-sets, A, B  and { Aj ,  j  E N},

(i) A C  B  => p ( A )  <  p ( B )  (monotonicity);

(ii) p ( A  U 5 ) +  p ( A  fi B )  =  p ( A )  +  p { B ) \

(iii) p ( U j A j )  =  E j P ( A j )  (countable subadditivity).

Proof: See Davidson (1994, Theorem 3.3, page:37). ■

Theorem A.0 .12: A finite measure is continues.

Proof: See Davidson (1994, Theorem 3.4, page:38). ■

Theorem A.0.13: Let {/„} be a sequence of J 7/^-measurable functions. Then infn f n, supn f n, 
liminfn / n and limsupn / n are T /13-measurable.

Proof: See Davidson (1994, Theorem 3.26, page:52). ■



B. APPENDIX B

.1 R esu lts  from  the  M arkov Sw itch ing  V A R ( l )  Exercise

Fig. B . l :  P a tte rn  of Sm oothed  P ro b ab ilitie s
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Tab. B . l :  D iagnostic T ests/M S H (3)-V A R (1)
Statistics Chi-Square DF P-values

Conditional Heteroskedasticity 1101.1 900 0
Heteroskedasticity 266.5 150 0

Q- Statistics lags (12) 385.6 275 0
Adj-Q- Statistics lags (12) 410.95 275 0

S m o o th e d  Probab ilities

1980 2000
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Tab. B.2: Distribution of the Autoregressive Param eters /  MSH(3)-VAR(1)
Parameters Actual Estimates Lower Bound Upper Bound State

CA y -0.0003 -0.0321 0.0131 IN
C A u -0.0142 -0.0347 0.0351 IN
CA-k 0.0006 -0.0387 0.0173 IN
Ca t -0.0015 -0.0252 0.0116 IN
C A e 0.0065 -0.0343 0.0178 IN
A  A y

A y -0.2377 -0.9734 0.9061 IN
A&v
^ A u 2.0814 -1.5017 1.5007 OUT
A & y

n A ir 0.5809 -1.1047 1.2411 IN
A & V

^ A r 0.7502 -0.816 0.7364 OUT
AAy

A e -0.1129 -1.1481 0.9939 IN
A Ait
Ay 0.0762 -0.2589 0.2895 IN

ylAli
^ A u 0.1478 -0.413 0.5709 IN

a A u
A ir 0.0699 -0.2935 0.3651 IN

a A u
n A r 0.1073 -0.1925 0.278 IN

a A u
Ae 0.2129 -0.4088 0.3353 IN

ylATT
Ay 0.0656 -0.6312 0.589 IN

/tA7r
a A u 0.2451 -1.0365 1.0584 IN
A A ir  

A ir 0.0551 -0.6704 0.762 IN
A A ir  

A A r 0.099 -0.6169 0.3988 IN
A A ir  

Ae 0.2492 -0.863 0.7246 IN
4 A r

Ay 0.6101 -0.2411 0.2166 OUT
/[Ar -0.5829 -0.3497 0.4128 OUT
^A r

A7T -0.0322 -0.3376 0.2661 IN
^A r

^ A r -0.2724 -0.2999 0.3293 IN
4  Ar 

^ A e 0.4387 -0.3468 0.3038 OUT
/lAe

A y -0.061 -0.6441 0.4252 IN
a a &

A A u -0.0043 -0.74 0.8845 IN
A A e

^ A i r -0.1366 -0.5907 0.7798 IN
A Ae 

^ A r -0.1213 -0.4298 0.5003 IN
/I Ae 

^ A e -0.1555 -0.6315 0.522 IN
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Tab. B.3: Distribution of the Covariance Parameters /  MSH(3)-VAR(1)
Covariances Actual estimates Lower Bound Upper Bound State

® A yA y 0.0015 0.0004 0.1648 IN
1

® A uA y 0.0034 -0.0528 0.0755 IN
ct1u A'k A y 0.0009 -0.0346 0.0643 IN

1
O A rA y 0.0013 -0.0297 0.0251 IN

1
® A eA y 0.0007 -0.0133 0.0517 IN
f j l
u A uA u 0.0123 0.003 0.7145 IN
®AirAu 0.0022 -0.0514 0.0594 IN
G A rA u 0.0028 -0.065 0.0864 IN
® AeAu 0.0029 -0.0892 0.0318 IN
^A irA n 0.001 0.0007 0.2563 IN
®ArAir 0.0008 -0.057 0.0262 IN
^ A eA n 0.0004 -0.1038 0.0292 IN
a A rA r 0.0013 0.0006 0.293 IN
® A eA r 0.0004 -0.0265 0.0399 IN
^ A eA e 0.0013 0.0005 0.2484 IN
2

® A yA y 0.0008 0.0003 0.1238 IN
2

O A uA y 0.001 -0.0299 0.0537 IN
2

^ A ttA  y 0.0005 -0.0125 0.0297 IN
2

® A rA y 0.0006 -0.0301 0.0271 IN
2

® A eA y 0.0008 -0.0169 0.0382 IN
® AuAu 0.0022 0.0017 0.1966 IN

2
®AirAu 0.0003 -0.0405 0.0292 IN

2
® A rA u 0.0000 -0.0256 0.0955 IN

2
G AeA u -0.0001 -0.0321 0.0224 IN

2
^A ir  A7r 0.0004 0.0006 0.2037 OUT

2
G ArAir 0.0004 -0.0462 0.0196 IN
H2^A eA ir 0.0003 -0.0367 0.0135 IN

2
® A rA r 0.0005 0.0005 0.187 IN

2
® AeA  r 0.0007 -0.0308 0.0363 IN
rr2° A e A e 0.0021 0.0006 0.1805 IN
® A yA y 0.0009 0.0003 0.1048 IN
rr'3u A uA y 0.0021 -0.0373 0.0258 IN
GAirAy 0.0007 -0.011 0.03 IN
OA rA y 0.0007 -0.0109 0.0157 IN
® A eA y 0.0005 -0.012 0.0196 IN
® AuAu 0.0063 0.002 0.1809 IN
rr3a AixAu 0.002 -0.0406 0.0169 IN
® A rA u 0.0016 -0.0092 0.0477 IN
® A eA u 0.0015 -0.0221 0.0201 IN
rr3A jtA w 0.0007 0.0006 0.1356 IN
®ArAir 0.0006 -0.0233 0.0058 IN
^ A eA n 0.0005 -0.0382 0.0113 IN
® A rA r 0.0006 0.0005 0.0826 IN
a A eA r 0.0004 -0.0079 0.0195 IN
rr3a A eA e . 0.0005 0.0004 0.0852 IN
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Tab. B.4: The Number of the Autoregressive Parameters Rejected
Confidence Range Number of Parameters Rejected

1 0
0.995 1
0.99 1
0.985 3
0.98 3
0.975 4
0.97 4
0.965 4
0.96 4
0.955 5
0.95 5

Tab. B.5: The Number of the Covariance Param eters Rejected
Confidence Range Number of Parameters Rejected

1 0
0.995 0
0.99 0
0.985 0
0.98 0
0.975 0
0.97 1
0.965 1
0.96 1
0.955 1
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B.2 Results from the Intervention VAR(1) Exercise

Fig. B.2: Intervention Mean Adjusted VAR(l) Model 
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Tab. B.6 : Distribution of the M ean/ Intervention Mean Adjusted VAR(l)

Mean Actual Lower Bound Upper Bound Bootstrapped Prob Values State
A y 0.0042 0.0004 0.0125 0.847 IN
A n 0.0299 -0.1239 0.0311 0.032 IN
A n -0.0003 -0.0022 0.0015 0.418 IN
A r -0.0002 -0.0081 0.0102 0.433 IN
A e -0.0008 -0.0455 0.0043 0.059 IN
A y 0.0088 0.0074 0.0225 0.958 IN
112 r A u 0.0290 -0.2046 -0.0207 0.000 OUT
A n -0.0003 -0.0055 -0.0028 0 .0 0 0 OUT
A r -0.0017 -0.0011 0.0045 0.990 OUT
A e -0.0076 -0.0456 0.0074 0.253 IN
A y 0.0117 0.0094 0.0188 0.879 IN
r A u -0.0082 -0.1367 -0.0161 0.015 OUT
Air -0.0003 0.0005 0.0028 0 .0 0 0 OUT
A r -0.0017 -0.0028 0.002 0.849 IN
A e -0.0016 -0.0281 0.0046 0.144 IN
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Tab. B.7: Distribution of the Parameters (Regime 1)

- Parameters Actual Lower Bound Upper Bound Bootstrapped Prov. Values State
A&V
&A Au

A An  

AAr
$yAAe

A A v

0.0128
-1.6212
0.1404
0.0385
0.007

-0.5577
-1.6854
-0.3343
-0.6769
-0.8879

0.4447
1.0895
0.4907
0.7618
1.0028

0.366
0.973
0.356
0.525
0.473

IN
IN
IN
IN
IN

A&y
^ A u -0.0455 -0.0839 0.226 0.923 IN
a A u

^ A u 0.1606 -0.1373 0.7542 0.844 IN
A Air 

^ A u 0.0194 -0.1637 0.0577 0.116 IN
a A t

^ A u 0.0165 -0.2276 0.2384 0.475 IN
AAe

n Au -0.0033 -0.2867 0.2748 0.463 IN
A±y Si An 0.1409 -0.5999 0.5317 0.267 IN
a A u  Si Air -2.9414 -1.4825 1.4928 0.000 OUT
A Air Si Air -0.3617 -0.6956 0.1234 0.661 IN
A Ar Si Air 0.6422 -0.7575 0.8289 0.045 IN
AAe. Si An -1.1134 -1.1167 0.7214 0.975 OUT
A * y

A r -0.0536 -0.702 0.2467 0.287 IN
a A u  Si A t -0.0684 -0.8594 1.5914 0.802 IN
A AnSiAr 0.0666 -0.5257 0.1092 0.035 IN
A A rSiAr 0.0882 -0.8109 0.6828 0.451 IN
A A e  Si A r 0.8146 -0.8272 0.5971 0.007 OUT
A&VSi Ae -0.1094 -0.3299 0.187 0.649 IN
A A u  Si Ae 0.0666 -0.6253 0.8872 0.676 IN
A An  Si A e 0.0257 -0.0461 0.3785 0.896 IN
A A rSiAe -0.0581 -0.1803 0.4167 0.879 IN
A A e  Si Ae 0.2576 -0.4259 0.3434 0.050 IN

® A yA y 0.0002 0.0003 0.0012 0.000 OUT
® AuA y -0.0001 -0.0029 -0.0005 0.000 OUT
O An A y 0.0000 -0.0005 0.0000 0.035 IN
& A rA y 0.0000 -0.0004 0.0004 0.540 IN
® AeAy 0.0000 -0.0003 0.0010 0.809 IN
® AuAu 0.0025 0.0023 0.0112 0.973 IN
O An Au -0.0002 -0.0001 0.0013 0.980 OUT
& ArAu -0.0002 -0.0011 0.0012 0.772 IN
® AeAu 0.0005 -0.0025 0.0014 0.153 IN
& An A n 0.0000 0.0002 0.0009 0.000 OUT
0~ArAn 0.0000 0.0000 0.0009 0.963 IN
& A e A n 0.0000 -0.0011 0.0001 0.059 IN
O^ArAr 0.0002 0.0004 0.0032 0.000 OUT
G A eA r -0.0001 -0.0012 0.0004 0.428 IN
OAeAe 0.0016 0.0011 0.0046 0.844 IN
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Tab. B.8 : Distribution of the Parameters (Regime 2)

- Parameters Actual Lower Bound Upper Bound Bootstrapped Prov. Values State
A&y

&  A Am
&A An
$ y /I Ar
&/lAe
£ y

0.2194
-1.1006
0.0888
-0.0236
0.1560

-0.4603
-1.0583
-0.4245
-1.2564
-0.5401

0.2233
1.0384
0.3437
1.1196
0.6296

0.030
0.985
0.312
0.515
0.337

IN
OUT

IN
IN
IN

A&V^A m -0.0275 -0.0839 0.1553 0.728 IN
A Am ^Au 0.5950 0.1412 0.8215 0.500 IN
A An ^Au 0.0086 -0.1607 0.0376 0.079 IN
A At 

^ A u -0.0401 -0.3664 0.3115 0.629 IN
A&e

^ A u -0.0087 -0.1498 0.2690 0.748 IN
AAy^ A n 0.2565 -0.3542 0.1614 0.003 OUT
A Am 
^ A  n -1.3935 -0.4574 0.9537 0.000 OUT
A An 
n An -0.4377 -0.7264 -0.1493 0.525 IN
AAr
^ A n 0.2642 -1.1670 1.1637 0.300 IN
A Ae 

An -0.9034 -0.3492 0.3443 0.000 OUT
Aay^ A  r -0.0715 -0.1031 0.0769 0.936 IN
A Am 
a At 0.0218 -0.2266 0.2782 0.460 IN
A A*  
^ A r 0.0619 -0.1540 0.0900 0.072 IN
A At 
^ A  r 0.0817 -0.4519 0.4811 0.300 IN
/tAe

^A r 0.6310 -0.1487 0.1007 0.000 OUT
AAyn Ae -0.0842 -0.3084 0.1680 0.443 IN
A Am 
^ A e -0.0815 -0.6240 0.9357 0.884 IN
^Ae 0.0272 -0.0163 0.3365 0.928 IN
A At ^A e 0.0095 -0.2134 0.4592 0.723 IN
AAe^Ae 0.2444 -0.2999 0.4227 0.173 IN

&AyAy 0.0002 0.0007 0.0020 0.000 OUT
GAm Ay -0.0001 -0.0047 -0.0014 0.000 OUT
G An Ay 0.0000 -0.0007 0.0002 0.168 IN
®ArAy 0.0000 -0.0018 0.0012 0.478 IN
GAeAy -0.0001 -0.0005 0.0010 0.715 IN
GAm Am 0.0033 0.0048 0.0161 0.000 OUT
&AttAm -0.0002 -0.0005 0.0018 0.903 IN
& At Am -0.0003 -0.0037 0.0047 0.658 IN
&AeAM 0.0005 -0.0025 0.0020 0.290 IN
GAit Air 0.0000 0.0009 0.0023 0.000 OUT
& Ar An 0.0000 -0.0036 0.0025 0.342 IN
G Ae An 0.0000 -0.0015 -0.0002 0.005 OUT
GArAr 0.0003 0.0072 0.0544 0.000 OUT
G AeAr -0.0002 -0.0026 0.0037 0.748 IN
GAeAe 0.0029 0.0017 0.0054 0.458 IN
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Tab. B.9: Distribution of the Parameters (Regime 3)

- Parameters Actual Lower Bound Upper Bound Bootstrapped Prov. Values State
A A y  

A Au

¥  A A r

$ yA A e
&V

0.3733
-0.7354
0.0561
-0.0125
-0.0093

-0.3820
-0.6356
-0.5523
-0.5889
-0.4048

0.1778
0.7531
0.4018
0.5776
0.6115

0.007
0.985
0.295
0.559
0.708

OUT
OUT

IN
IN
IN

A * y  
n Au -0.0088 -0.0794 0.1243 0.564 IN
A A u
^ A u 0.6629 0.3482 0.8514 0.488 IN
A A it 
^ A u 0.0058 -0.1529 0.0786 0.230 IN
A A r
^ A u -0.0399 -0.1886 0.1735 0.703 IN
A  A e  
^ A u -0.0689 -0.1449 0.2478 0.901 IN
A A y  

^ A tt
0.2715 -0.1531 0.0392 0.000 OUT

A A v,
Air -1.0064 -0.0661 0.3944 0.000 OUT

A Air 
Air -0.4491 -0.7150 -0.2804 0.300 IN

A A t 
A ir 0.2122 -0.1375 0.1683 0.012 OUT

A A e  
Air -1.1928 -0.0594 0.4041 0 . 0 0 0 OUT

A A y  
A r -0.0099 -0.1433 0.0528 0.470 IN

A Am 
A r 0.0888 -0.1325 0.2723 0.131 IN

/t A w  
^ A r 0.0370 -0.2078 0.0899 0.094 IN

/I A r  
^ A r 0.1174 -0.2917 0.2477 0.097 IN

/t A e  
A r 0.3020 -0.1228 0.2146 0 . 0 0 0 OUT

A A y  
7 1  A e -0.0501 -0.2451 0.0995 0.267 IN
/ l A u

^ A e -0.1224 -0.3002 0.5749 0.956 IN
>1 A7T 

^ A e 0.0128 0.2657 0.8698 0 . 0 0 0 OUT
A A r
A Ae 0.0212 -0.1720 0.2328 0.542 IN
/I A e  

7 1  A e 0.2147 -0.4580 0.1212 0.010 OUT
& A yA y 0.0002 0.0009 0.0028 0 . 0 0 0 OUT
OAu A y -0.0001 -0.0060 -0.0020 0 . 0 0 0 OUT
OAir A y 0 . 0 0 0 0 -0.0011 0.0006 0.364 IN
& A rA y 0 . 0 0 0 0 -0.0010 0.0009 0.550 IN
& AeAy 0 . 0 0 0 0 -0.0005 0.0013 0.696 IN
&AuAu 0.0023 0.0062 0.0154 0.000 OUT
&AirAu -0.0001 -0.0018 0.0014 0.408 IN
& ArAu -0.0002 -0.0026 0.0030 0.644 IN
GA eAu 0.0002 -0.0018 0.0021 0.579 IN
& Air Air 0.0000 0.0033 0.0076 0.000 OUT
G A rA ir 0.0000 -0.0022 0.0018 0.364 IN
^ A e A T r 0.0000 -0.0062 -0.0022 0.000 OUT
O A rA r 0.0002 0.0047 0.0333 0.000 OUT
G A eA r -0.0001 -0.0016 0.0026 0.767 IN
& A eA e 0.0021 0.0038 0.0091 0.000 OUT
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Tab. B.10: The Number of Parameters Rejected per Regime
Targeting Regimes Means Autoregressive Var- Covariances All

Monetary 0/5 3/25 5/15 8/45
Exchange 3/5 5/25 6/15 14/45
Inflation 2/5 9/25 7/15 18/45

Total 5/15 17/75 18/45 40/135
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B.3 Impulse Response Analysis

Fig. B.3: Monetary Targeting Regime /  Supply Shock
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Fig. B.5: Exchange Rate Targeting Regime /  Supply Shock 
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Fig. B.7: Inflation Targeting Regime /  Supply Shock
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