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ABSTRACT

The introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) 
model in 1982 by Engle revolutionized the econometric treatment of volatility. The 
Generalized ARCH (GARCH) model and its variants have proved to be useful in 
capturing stylised facts about financial markets, which include volatility clustering, 
leptokurtosis in the distribution of returns, mean reversion tendencies and leverage 
effects. The Periodic GARCH (PGARCH) variants proposed by Bollerslev and 
Ghysels (1996), in particular, made it possible to explicitly incorporate the effects of 
periodicity in financial time series into the parameters of the volatility models. An 
investigation of return volatility using high frequency Kuala Lumpur Composite 
Index (KLCI) returns data shows that the intraday volatility pattern follows the double 
U-shaped pattern, which is consistent with the findings of other studies on markets 
that are closed during the lunch hour. The study also investigates the best technique 
for modelling and forecasting the intraday periodicity on the Kuala Lumpur Stock 
Exchange (KLSE), using both the jointly estimated and the two-step filtration 
approaches with different PGARCH structures. The results indicate that the PGARCH 
models produce superior model fit, better forecasting performances and superior 
forecast quality than the standard GARCH equivalents. However, the results suggest 
that Value-at-Risk (VaR) models, constructed from the PGARCH forecasts, produce 
poor results. This study also investigates the integrated realized volatility measure 
introduced by Andersen and Bollerslev (1998a), which can be constructed by 
summing up intraday squared returns. The results suggest that the daily integrated 
realized volatilities constructed using different intraday return sampling frequencies, 
produce superior forecasting performances for the GARCH models when compared 
with the results of the same models using the daily squared returns. The VaR models 
constructed from the GARCH forecasts and the Autoregressive and Moving Average 
(ARMA) forecasts appear to satisfy the requirements of the framework for interval 
forecast evaluation.
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CHAPTER 1

INTRODUCTION

1.0 Research Background

Early econometric models and conventional times-series models operate under 

the assumption of constant variance. In 1982, Engle introduced the Autoregressive 

Conditional Heteroskedasticity (ARCH) model (an associated estimation 

methodology), which allows the variance to change over time as a function of past 

errors. This method has been found to be successful in modelling various times series 

applications because it is able to parameterise some of the stylised facts underlying 

financial markets. These stylised facts include volatility clustering (Mandelbrot, 

1963), fat tails in the unconditional distribution, mean reversion and a phenomenon 

referred to as the leverage effect (Black, 1976). Since then, there has been a veritable 

explosion of papers analysing models of changing volatility. For example, a survey 

paper by Bollerslev, Chou and Kroner (1992) lists more than 100 papers on this 

subject. Some of the more popular variants of models of changing volatility have 

proved to be the variants o f the Generalised ARCH (GARCH) model.

The GARCH class models have been proven valuable in modelling and 

forecasting the returns volatility at the monthly (see, for example, Cao and Tsay, 

1992), weekly (see, for example, Cumby, Figlewski and Hasbrouck, 1993) and daily 

(see, for example, Akigray, 1989, Bera and Higgins, 1997) frequencies. Poon and 

Granger (2005) find that the GARCH models are as good as or even better than some 

of the traditional forecasting methods widely used previously. But with the 

availability of databases that provide tick data at the intraday frequency, serious doubt 

is cast upon the GARCH models regarding their ability to account adequately for
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intraday periodic effects that are often observed in financial time series. One of the 

most common periodic observations is a phenomenon which is referred to as the U- 

shaped pattern. Wood, Mclnish and Ord (1985) were among the earliest researchers to 

document the existence of a distinct U-shaped pattern in the variances of stock returns 

over the course of a trading day in the US markets. Similar patterns have also been 

observed in other markets in the US, such as the foreign exchange markets (see, for 

example, Baillie and Bollerslev, 1991, and Dacorogna, Muller, Nagler, Olsen and 

Pictet, 1993). This periodic pattern is now accepted as a typical feature of financial 

asset returns and recent studies have in fact shown that for markets that are closed 

during the lunch hour, a double U-shaped pattern is observed (see, for example, 

Taylor, 2004).

Although it is argued that this intraday periodicity is irrelevant for the analysis 

of data recorded on a daily, weekly or monthly basis, there are many recent studies 

that make use of intraday data in order to get a better appreciation of the 

interrelationship between different variables o f interest during a particular trading 

day. For example, there are studies concerning the lead-lag relations between two or 

more markets that trade simultaneously.1 Other examples include studies that explore 

the role o f information flow and microstructure variables as determinants of intraday 

return volatility.2 Therefore, it is not surprising to see why high frequency data has 

become very popular in many studies concerning volatility modelling and forecasting.

However, some recent studies focusing on intraday return volatility report that 

standard GARCH models, even though they represent the dominant technique for the

1 See, for example, Baillie and Bollerslev (1991), who utilized hourly observations on five exchange 
rates and Chan, Chan and Karoyli (1991), who investigated five-minute returns, associated with 
stock index and stock index futures.

2 See, for example, Bollerslev and Domowitz (1993), who analyzed five-minute foreign-exchange 
returns, and Locke and Sayers (1993), who modelled one-minute stock index futures returns.
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empirical modelling of volatility at the daily (and lower) frequencies, are not able to 

capture adequately the systematic patterns observed during the trading day. 

Subsequently, many studies comparing the GARCH models with competing volatility 

models often report that the GARCH models tend to exhibit inferior forecasting 

performance (see Andersen and Bollerslev, 1997, and Martens, 2001). Andersen and 

Bollerslev (1997) argue that the pervasive intraday periodicity in the return volatility 

in foreign exchange and equity markets is shown to have a strong impact on the 

dynamic properties of high frequency returns. Therefore, only by taking account of 

this strong intraday periodicity is it possible to uncover the complex intraday volatility 

dynamics that exist both within and across different financial markets. This paves the 

way for new volatility modelling techniques that incorporate periodic components 

into the formulation of the conditional volatility equation.

One of the periodicity adjustment methods which has been proposed, and is 

gaining in popularity, is the periodic GARCH or PGARCH model developed by 

Bollerslev and Ghysels (1996). This technique makes it possible to explicitly 

incorporate periodicity into the parameters of any standard GARCH models through 

the conditional variance equation. Andersen and Bollerslev (1997), for example, 

applied a procedure based upon the flexible Fourier functional form (FFF) of Gallant 

(1981, 1982) to control and to account for the periodicity effects using the PGARCH 

structure. The application of this measure in the US foreign exchange market 

produced a marked improvement in the performance of GARCH models in producing 

forecasts. This finding is supported in a recent study in the UK futures market. 

Specifically, McMillan and Speight (2004b) report that applying the FFF method to 

standard GARCH models provides more consistent and reliable forecasting results.
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As an alternative, Taylor (2004) introduces the spline version of the 

PGARCH model, which is capable of estimating different cubic spline functions 

between selected points (or knots) within a specific periodic cycle. This technique not 

only overcomes the rigidness of the functional form of the FFF-version of the 

PGARCH, but is also capable of producing superior model fit and forecasting 

performances. Further applications of these techniques on existing conditional 

volatility models have again documented their usefulness. This is evident in the 

superior model fit and forecasting performance produced when compared against the 

standard unadjusted models. These recent developments augur well for the 

continuing usage of the GARCH models in volatility modelling and forecasting 

research.

Another recent issue that has become important in the return volatility 

literature concerns the measurement of the unobservable “true volatility”. The most 

popular method used to measure ex post daily volatility is to use absolute demeaned 

daily returns or squared demeaned daily returns over the relevant forecasting 

horizons. However, Andersen and Bollerslev (1998a, 1998b) argue that the measure 

of “true volatility” based on ex post daily squared returns is problematic, as it includes 

a noisy component, which makes it an inefficient estimator. Moreover, Andersen and 

Bollerslev (1998a, 1998b) reason that the relative failure of the GARCH models 

arises not from a failure of the model but a failure to specify correctly the “true 

volatility” measure against which forecasting performance is compared.

As an alternative measure, Andersen and Bollerslev (1998a) introduced a new 

generation of conditional volatility models, which make use of a volatility measure

3 Martens, Chang and Taylor (2002) find that the P-GARCH model provides the best forecasting 
performance and that the FFF-based variable is an efficient way of determining the periodic 
components of volatility. In addition, Taylor (2004) finds that the use of the spline-version of the 
PGARCH model produces more accurate forecasts and consistent VaR measures.
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known as integrated realized volatility measure. This measure can be constructed by 

summing intraday squared returns. This allows the treatment of daily volatility as 

observed rather than latent, providing that the sampling frequency of squared returns 

is sufficiently high. By making use of the theory of quadratic variation and arbitrage- 

free processes, Andersen, Bollerslev, Diebold and Labys (2001, 2003) show that 

realized volatility constructed as above is not only model-free, but as the sampling 

frequency of the returns approaches infinity, has estimates that are measurement- 

error-free as well. However, as a cautionary note, a recent study has shown the 

potential of this measure in reviving the usefulness of the GARCH models in 

volatility modelling and forecasting. Specifically, McMillan and Speight (2004a) 

implement this technique in a study that comprises a dataset of 17 daily foreign 

exchange rate series. It is found that the GARCH model outperforms smoothing and 

moving average techniques, which have been previously identified as providing 

superior volatility forecasts.

1.1 Significance of the Study

As highlighted above, intraday periodicity has been widely observed in 

financial time series. Recent research examining intraday volatility dynamics in the 

developed markets reports that failure to account for this periodicity results in 

inconsistent GARCH parameter estimates in relation to the theoretical predictions on 

temporal aggregation. It has been observed that intraday volatility appears higher at 

the market opening and the market closing, resulting in a stylised U-shape pattern 

being reported for a variety of markets. Previous studies on the KLSE also indicate 

the presence of a U-shaped intraday volatility pattern in the return volatility 

(Mohammed, Fauzias and Othman, 1995, and De Brouwer, 2002). These studies, 

however, did not attempt to distinguish the trading periods into a morning session and
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an afternoon session. This could be an inaccurate assumption because studies of 

financial markets that are closed during the lunch hour indicate the presence of two 

distinct U-shaped patterns, i.e., one for the morning session and one for the afternoon 

session.4 As the KLSE is also closed during the lunch hour, we will investigate 

whether a similar observation is valid for the KLSE using 5-minute returns obtained 

using KLCI data. This will lead to a better understanding of the dynamics of return 

volatility across the trading day for the KLSE.

The current study is also the first comprehensive attempt to compare the 

performance of three conditional volatility models within the parametric GARCH 

class of models using high frequency KLCI returns data. Previous studies on the 

Malaysian stock exchange relied on the symmetric GARCH and the GARCH-M 

models, with daily closing prices as the basis for the computation of return volatility 

(see Mohammed, Fauzias and Othman, 1995, and Chong, Ahmad and Abdullah, 

1999) with lag parameters (p,q) of (1,1) as the preferred specification. We also use lag 

structures (p,q) o f (1,1) to determine the best performing GARCH model but the 

returns are based on 5-minute returns data. In addition, this study utilises several 

recent methods developed to incorporate the effects of periodicity into intraday 

volatility modelling. We make use of a simplified version of the PGARCH processes 

introduced by Bollerslev and Ghysels (1996), which make it possible to explicitly 

incorporate the periodicity effects into the parameters of the GARCH models. In this 

aspect, we employ half-hourly and quarter-hourly dummy variables in the conditional 

volatility equation of the GARCH models. We also apply the FFF-based and the

4 See, for example, Andersen, Bollerslev and Cai (2000), who found that intradaily volatility exhibits a 
double U-shaped pattern for the Japanese stock market based on a 4-year sample of 5-minute Nikkei 
225 returns from 1994 to 1997. Taylor (2004) finds similar pattern for the cocoa futures market on 
the Euronext.liffe exchange based on 5-minute frequency returns on all futures contracts from 1997 
to 2002.
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spline-based variables suggested by Andersen and Bollerslev (1997, 1998a) and 

Taylor (2004), respectively, as the inputs into the PGARCH processes, to account for 

the intraday periodicity. As an alternative approach to control for the effects of 

periodicity, we also apply the two-step filtration method proposed by Andersen and 

Bollerslev (1997,1998a) and Martens, Chang, and Taylor (2002). This latter approach 

differs in that there is a clear separation in the process of modelling the volatility and 

estimating the periodicity components. All these approaches are new modelling 

techniques that have not previously been applied to KLSE data.

To examine the relative quality of the various models employed, we also 

undertake an extensive analysis of the out-of-sample forecasts produced by the 

standard GARCH models and the various PGARCH specifications. To compare the 

predictive accuracy of alternative forecasts, we employ an asymptotic test of the null 

hypothesis of no difference in the accuracy of two competing forecasts proposed by 

Diebold and Mariano (1995). As an alternative, this study considers the test of 

forecast encompassing developed by Harvey, Leyboume and Newbold (1998). This 

aspect of forecast evaluation has been largely ignored or has never been applied to 

any study of volatility on the KLSE.

Another new contribution of this study to the literature is the use of GARCH 

forecasts in the construction of VaR models. VaR has become increasingly important 

in recent years as a measure of the market risk of a portfolio. The VaR models are 

widely used in financial and banking institutions as well as by market players. The 

adequacy and the quality of the VaR models developed in this study are evaluated 

using the three-step testing procedures proposed by Christoffersen (1998) and the 

regression-based tests of Clements and Taylor (2003). These are again newly 

introduced measures, which have not previously been applied to the KLSE.
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Finally, we model the intraday dynamics of return volatility using the new 

integrated realized volatility measure introduced by Andersen and Bollerslev (1998a). 

We use the ARMA (1,1) specification to model the daily realized volatility with 

different intraday squared returns sampling frequencies. We then compare the 

forecasting performance of both the ARMA models and the GARCH models with the 

specially constructed daily realized volatilities as the proxy for the true daily 

volatility. We also compare the performances of both the ARMA and the GARCH 

models with the previous approach of using the demeaned squared returns as the 

proxy for the true daily volatility. We then construct VaR models based on both the 

most accurate ARMA and the GARCH forecasts, and ascertain whether these models 

provide adequate coverage through the various tests mentioned above. Again, all 

these applications are relatively innovative and we believe that this study is the first of 

its kind in the Malaysian context.

1.2 Justification of the Study

The application of new methods in the modelling and forecasting of KLCI 

returns is important because the KLSE is one of the largest emerging capital markets 

in Asia. It has a good chance of developing into a viable regional competitor to 

several currently large markets in the Asia Pacific region. It is important to recognise 

that the KLSE has different risk and return characteristics as well as different 

institutional structures from other developed markets. Many of the recently developed 

methods have not yet been evaluated in the context of the KLSE. Therefore, a major 

aim of this thesis is to examine whether the applications of these methods produce 

similar results to those reported for other markets. Certainly, this offers a window of 

opportunity to test and to evaluate the robustness of the various new measures, which
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have been found to be successful in more developed markets. The findings of the 

current study have important implications for those in risk-related industries, as well 

as for academics who are researching volatility in emerging and new financial 

markets. For example, the new modelling methods, which incorporate the effects of 

periodicity, could aid in the production of superior forecasts and, in turn, create better 

VaR models. The new methods could also be considered for other conditional 

volatility models (such as the stochastic volatility models), and the GARCH models 

used in this study could serve as a performance benchmark.

The introduction of the integrated realized volatility measure will help us to 

understand the true nature of volatility dynamics and offer an alternative to the 

demeaned squared returns volatility measure, which is widely used in the literature. 

The application of the integrated realized volatility measure will also provide a good 

opportunity to revaluate the relevancy and the adequacy of the GARCH models, 

which have been proven successful in the past. Finally, we hope to contribute to the 

scarce literature on emerging capital markets, considering that these markets form 

about 75% of the world’s organised capital markets (Ariff, Shamsher and Annuar, 

1998).

1.3 Objectives of the Study

The main focus of this study is to investigate the usefulness of the GARCH- 

based models in intraday volatility modelling and forecasting in the presence of 

periodicity. Specifically, this study has the following objectives:

1. To ascertain whether the two distinct U-shaped patterns, which are common to 

markets that are closed during the lunch hour, are observable for the KLSE.
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2. To model the intraday volatility patterns using thirteen competing GARCH- 

based modelling approaches.

3. To assess the out-of-sample forecasting performances of the various GARCH 

models resulting from the applications of the thirteen modelling approaches.

4. To evaluate the quality of the forecasts generated in objective no.3, using both 

the Diebold and Mariano (1995) and the Harvey, Stephen and Newbold (1998) 

tests.

5. To evaluate the quality and adequacy of the various VaR models constructed 

from the GARCH forecasts and the RiskMetrics model, using both the three- 

step testing procedures proposed by Christoffersen (1998) and the regression- 

based tests of Clements and Taylor (2003).

6. To construct daily realized volatility measures based on the 1-minute, 5- 

minute, 10-minute, 15-minute and 30-minute intraday squared returns 

sampling frequencies as well as the one-day frequency realized volatility 

(equivalently, the daily squared returns).

7. To model the various daily realized volatility measures in objective no.6, 

using the ARMA (1,1) model.

8. To compare the forecasting performances of the ARMA models and the daily 

GARCH models using the various daily realized volatility measures as proxies 

for true volatility.

9. To evaluate the adequacy of the VaR models constructed from the ARMA, 

RiskMetrics and GARCH forecasts assessed in objective no.8, using both the 

Christoffersen (1998) and the Clements and Taylor (2003) tests.
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1.4 Organisation of the Thesis

This study is divided into seven chapters. The present chapter has discussed 

the background and the rationale for the study, outlined the study’s objectives, and 

briefly presented the methodology to be used. This chapter draws attention to the need 

for comprehensive research into volatility modelling and forecasting from a 

Malaysian perspective.

Chapter 2 provides an overview of the stylised facts regarding financial 

markets; these include volatility clustering, fat tails in the unconditional distributions 

of financial asset returns, mean reversion effects and leverage effects. It also describes 

in details the properties of the ARCH/GARCH processes. This chapter then provides 

some explanation for the U-shaped phenomena. In addition, it gives an overview of 

the PGARCH framework and the development of the integrated realized volatility 

measure, and provides some details of past findings on the performance of the 

GARCH models.

Chapter 3 gives an overview of the history and the development of the KLSE 

since its inception in the early 1960s. It then focuses on the performance of the KLCI 

and how the index is designed and computed. The chapter ends with a brief 

description of the trading practices of the KLSE.

Chapter 4 focuses on the intraday volatility pattern (i.e. periodicity) of returns 

across the trading day, taking into account the fact that the KLSE is closed during the 

lunch hour. It then discusses the methods and approaches used to model the intraday 

volatility periodicity on the KLSE. There are thirteen approaches used in this thesis, 

each based on one of the following models: the non-periodic (unadjusted) GARCH 

models, the jointly estimated GARCH models and the two-step filtration models. 

Both the jointly estimated GARCH and the two-step filtration models employ one of
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four variables in the conditional volatility equations. These variables are in the form 

of half hourly and quarter hourly dummy variables, the FFF-based variables and the 

spline-based variables. Augmented versions of the FFF-based and the spline-based 

variables using both the jointly estimated methods and the two-filtration techniques 

are also discussed.

Chapter 5 focuses on the forecasting performances of the thirteen volatility 

estimation approaches which utilise the PGARCH-based models and the non-periodic 

GARCH specifications described in Chapter 4. The performance of each approach is 

assessed using the mean squared forecast error (MSFE) and the mean absolute 

forecast error (MAFE). This chapter also discusses the applications of both the 

Diebold and Mariano (1995) and the Harvey, Leyboume and Newbold (1998) tests to 

compare the predictive accuracy of alternative forecasts. Finally, this chapter focuses 

on the evaluation of the adequacy of the VaR models produced by the available 

GARCH forecasts. For this purpose, both the Christoffersen (1998) and the 

regression-based tests of Clements and Taylor (2003) are applied.

Chapter 6 focuses on the integrated realized volatility measures. It describes 

how the various daily realized volatilise measures are designed and the ARMA 

models used to estimate them. The comparison of the out-of-sample forecasting 

performances of both the ARMA and the daily GARCH models using the various 

daily realized volatilities and the daily squared returns as proxies for the true daily 

volatility are then discussed. Finally, the chapter investigates the adequacy of the VaR 

models constructed from both the ARMA and GARCH forecasts. Again, both the 

Christoffersen (1998) and the regression based tests of Clements and Taylor (2003) 

are applied. The final chapter, Chapter 7, summarises the important conclusions based 

on the findings of the thesis.
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CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

The aim of this chapter is to present an overview of the literature on the areas 

covered in this thesis. The following discussion is divided into six sections. The first 

section begins with a discussion of the random walk hypothesis and the efficient market 

hypothesis. The second section touches on the stylised facts about the financial markets. 

Subsequently, issues on the properties of the ARCH and GARCH models, the U-Shaped 

pattern and the theories explaining this pattern, how volatility impacts financial markets, 

the performance of the GARCH model taking into account the periodicity factor, the 

availability of high frequency data and the integrated realized volatility measure will be 

discussed.

2.1 The Random Walk and the Efficient Market Hypotheses

The random walk hypothesis and the efficient market hypothesis are perhaps the 

earliest models proposed to explain the dynamics of financial assets. The random walk 

hypothesis asserts that financial asset price movements will not follow any patterns or 

trends and that past price movements cannot be used to predict future price movements. 

In the simplest terms, a random walk is a process whereby the previous change in the 

value of a variable is unrelated to future changes. In other words, a random walk defines 

the path of a random variable where each change or innovation is independent of all 

previous changes (implying zero correlation between successive pairs of observations) 

and each is drawn from an identical probability distribution (i.e. one with the same
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distributional parameters; the same mean and the same standard deviation). The efficient 

market hypothesis, on the other hand, encompasses broader concepts regarding the nature 

of asset prices. Despite its breadth, these concepts all imply one core feature: that 

financial markets are efficient transmitters of information that affects price. Much of the 

development of the theory on these subjects can be credited to the pioneering works of 

Bachelier (1900) and Cowles (1933, 1944), and subsequently, the works of Kendall 

(1953), Samuelson (1965), Fama (1965) and Roberts (1967). Fama (1970) assembles a 

comprehensive review of the theory and evidence of market efficiency. He concludes that 

the price of a stock reflects a balanced rational assessment of its true underlying value 

(i.e. rational expectations). This implies that the stock price at a particular time will have 

fully and accurately discounted (taken account of) all available information (news).

The efficient market hypothesis assumes several underlying conditions, which 

include perfect information, instantaneous receipt of news, and a marketplace with many 

small participants (rather than one or more large participants with the power to influence 

prices). The theory also assumes that news arises randomly in the future (otherwise the 

non-randomness would be analysed, forecast and incorporated within prices already). The 

theory predicts that the movements of stock prices will approximate stochastic processes, 

and that technical analysis and statistical forecasting will most likely be fruitless. 

Samuelson (1965), for example, eloquently summarises that a more efficient market will 

generate random price changes sequences, and the most efficient market of all is one in 

which price changes are completely random and unpredictable.

Therefore, in an efficient market, financial asset price movements can be 

described as

14



r, = Pl P- ' = M,+ e ,. E [ft] = 0 ,V ar[e,] = O-,2. (2.1)
P,-\

where the return at time /, rh is the percentage change in the asset price p, over the period 

from /-I to /. This is equal top , , a non-random mean return for period /, plus a zero mean

random disturbance e , that is independent of all past and future e \s . It is the lack of serial

correlation in the random s,s  that is the defining characteristic of efficient market pricing,

i.e., past price movements reveals no information about the sign of the random 

component of the return in period /. Therefore, given this intuitive appeal, it is not 

difficult to see why the random walk hypothesis and the efficient market hypothesis have 

become icons of modem financial economics that continue to fire the imaginations of 

academics and professionals alike.1

However, several major works have challenged the supremacy of these two 

hypotheses. These works have managed to uncover empirical evidence which suggests 

that stock returns contained predictable components. Keim and Stambaugh (1986), for 

example, find statistically significant predictability in stock prices by using forecasts 

based on certain predetermined variables. In addition, Fama and French (1988) show that 

long holding-period returns are significantly negatively serially correlated, implying that 

25 to 40 percent of the variation in longer horizon returns is predictable from past returns. 

Moreover, Lo and MacKinlay (1988) find that the random walk model is generally not 

consistent with the stochastic behaviour of weekly returns, especially for smaller 

capitalization stocks.

1 For a brief and an excellent history of market efficiency, please refer to Dimson and Mussavian (1998).
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At the same time, many researchers who have studied price movements in stock 

markets began to document stylized facts about financial markets - facts that present 

enough evidence to seriously challenge the validity of the random walk and the efficient 

market hypotheses.

2.2 Stylised Facts of Financial Markets

One of the earliest observations of these stylised facts concerns the volatility of 

financial asset returns: in particular, the phenomenon where certain periods are more 

volatile than others. Mandelbrot (1963) describes this market volatility as follows:

“At closer inspection, however, one notes that large price changes are not isolated 

between periods of slow change...In other words, large changes tend to be followed 

by large changes - of either sign - and small changes tend to be followed by small 

changes...”

(Mandelbrot, 1963, page 418)

This phenomenon later became known as volatility clustering, and is one of the 

many features of today’s high frequency financial market data. Subsequent studies by 

Fama (1965), Chou (1988) and Schwert (1989) confirmed this observation. They also 

report that large changes in the price of an asset are often followed by other large 

changes, and small changes are often followed by other small changes. These 

observations are so universal that any casual observation of financial time series reveals 

bunching of high and low volatility patterns. In other words, volatility is positively 

correlated over time. The implication of such volatility clustering is that volatility shocks 

today will influence the expectation of volatility for many periods in the future.
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Another stylised fact related to market volatility is what is known as fa t tails in 

the unconditional distributions of financial asset returns. This phenomenon has been 

observed since the early 1960s, again by Mandelbrot (1963) and Fama (1963, 1965). 

They report that financial asset returns have leptokurtic unconditional distributions. 

Typical kurtosis estimates range from 4 to 50, indicating very extreme non-normality. 

The source of the heavy tails may be revealed by the relation between the conditional 

density of returns and the unconditional density. If the conditional density is Gaussian, 

then the unconditional density will have excess kurtosis if the conditional Gaussian 

densities have different variances. However, there is no reason to assume that the 

conditional density itself is Gaussian, and many studies assume that the conditional 

density is itself fat tailed, generating still greater kurtosis in the unconditional densities. 

Volatility clustering and the fat tails associated with financial asset returns are closely 

related. Indeed, while the latter is a static explanation, a key insight provided by volatility 

models such as the ARCH models is a formal link between dynamic (conditional) 

volatility behaviour and (unconditional) heavy tails. The ARCH models, introduced by 

Engle (1982) and the numerous extensions thereafter, as well as the stochastic volatility 

(SV) models, are essentially built to mimic volatility clustering.

Financial asset return volatilities also exhibit a property known as mean reversion. 

It is important to note that volatility clustering implies that volatility is temporal. Thus a 

period of high volatility will eventually give way to more normal volatility, and similarly, 

a period of low volatility will be followed by a rise in volatility. Mean reversion in 

volatility is generally interpreted as meaning that there is a normal level of volatility to 

which volatility will eventually return. Very long run forecasts of volatility should all
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converge to this same normal level of volatility, no matter when they are made. While 

most practitioners believe that this is a characteristic of volatility, they differ in view 

regarding the normal level of volatility and whether it is constant over time or not.

Another important stylised fact that is often quoted in the literature on market 

volatility is an observation known as the leverage effect. This term, coined by Black 

(1976), describes the tendency for volatility to rise more following a large price fall than 

following a price rise of the same magnitude. Black (1976) reasons that when the price 

of a company’s stock falls, its value (of the equity) will also fall. As a result, the 

company’s leverage or its debt-to-equity ratio will increase. Leverage is generally 

interpreted as an indicator of company riskiness. Therefore, when the leverage is high, 

the company is considered more risky, and a higher degree of risk or uncertainty entails 

higher volatility. Many proposed volatility models impose the assumption that the 

conditional volatility of the financial asset is affected symmetrically by positive and 

negative innovations. Clearly, this is inadequate because the presence of leverage effects 

implies an asymmetry in volatility clustering in financial markets. Therefore, there is a 

need for volatility models that can accommodate leverage effects, and this is one of the 

motivating factors lying behind many extensions of the basic ARCH models. Basic 

understanding of volatility asymmetry permits researchers to refine existing models by 

incorporating variables that account for the asymmetry in a more efficient way.

One of the objectives of this thesis is to model the intraday dynamics of index 

return volatility. We realize the importance of accommodating the stylised facts in the 

volatility models. Gigli (2002) explains the importance and the impact of the stylised 

facts on the design of a model. He reasons that empirical stylised facts often guide the
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specification of a model. A model’s ability to reproduce such stylised facts is a desirable 

feature and failure to do so is most often a criterion to dismiss a specification. On the 

other hand, one does not try to explain all possible empirical regularities at once with a 

single model. Consequently, this thesis makes extensive use of the ARCH/GARCH 

models and their many extensions in modelling and forecasting return volatility.2 

Subsequent discussion will focus on the properties of these models and their applications, 

particularly with regard to modelling and forecasting return volatility.

2.3 The ARCH and the GARCH Models

Studies have indicated that many relationships in finance are intrinsically non

linear. For example, Campbell, Lo and MacKinlay (1997) assert that the payoffs to 

options are non-linear with respect to some of the input variables, and investors’ 

willingness to trade off returns and risks is also non-linear. These observations provide 

clear motivations for consideration of non-linear models in a variety of circumstances in 

order to better capture the relevant features of the data. In short, much financial time 

series data exhibit features that could not be captured adequately by linear models. It can 

be said that a serious limitation of the linear models is their failure to account for 

changing volatility. For instance, the width of a forecast interval remains constant even as 

new data become available, unless the parameters of the model are changed.

2 For a detailed survey of the various extensions of the basic ARCH/GARCH and stylised facts about return 
volatility, please refer to Bollerslev, Engle and Nelson (1994) and Hamilton (1994).
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This is because linear models generally assume that the expected value of all error 

terms, when squared, is the same at any given point. This assumption is termed 

homoskedasticity. In contrast, data in which the variances of the error terms are not 

equal, in which the error terms may reasonably be expected to be larger for some points 

or ranges of the data than for others, are said to suffer from heteroskedasticity.

It has been shown that in the presence of heteroskedasticity, the regression 

coefficients from an ordinary least squares regression are still unbiased, but the standard 

errors and confidence intervals estimated by conventional procedures will be too narrow, 

giving a false sense of precision. Engle (2001) argues that instead of considering this as a 

problem to be corrected, ARCH and GARCH models treat heteroskedasticity as variance 

to be modelled. As a result, not only are the deficiencies of least squares corrected, but 

also a prediction is computed for the variance of each error term. The forecast intervals, 

therefore, are able to widen immediately to account for sudden changes in volatility, 

without changing the parameters of the model. Because of this feature, the ARCH and 

GARCH models have become valuable in the analysis of economic time series.

2.3.1 The ARCH Model

The ARCH model was introduced by Engle (1982). The acronym ARCH stands 

for AutoRegressive Conditional Heteroskedasticity. The term “heteroskedasticity” refers 

to changing volatility or variance. It must be stressed that it is not the variance itself 

which changes with time according to the ARCH model; rather, it is the conditional 

variance which changes, in a specific way, depending on the available data. The
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conditional variance quantifies our uncertainty about future observations, given all 

information available to date.

To provide a context for the ARCH model, let us consider the conditional aspects 

of a simple first-order autoregression equation

yi=<xy,-1+ « ,  • (2 .2)

where t = {t e  Z+:l < t < T), e, is white noise with variance F(w,) = <t2, the 

unconditional mean of y , is zero, while its conditional mean is ayt_x. It has unconditional 

variance V(yt) = <72, and its conditional variance is V(yt y t_x) = cr2 / ( I - a 2), so it is

clear that the variance of this model is constant. Now consider the properties of the 

ARCH processes.

The proposed ARCH process consists of two equations. The first is the 

conditional mean equation. The simplest conditional mean equation could be based on 

the assumption that (log) returns, Rh are generated under weak-form efficiency, as 

follows:

R, = ft+  e, e, ~  D(0,h,). (2.3)

where n  is the mean of the process, y/,_x is the set of information available at time /-l, 

and D is a Normal distribution with support over (-00, 00), a mean equal to zero and 

conditional variance equal to erf or ht , which is the volatility process to be estimated. 

The error term or the returns innovation process, s ,, is then written as e, =crlz li with z, 

an independent zero-mean, unit-variance stochastic process noise term. Equation (2.3) 

says that the conditional distribution of et given y/t_x is normal, D(0, ht). In other words,

given the available information y/t_x the next observation e , has a normal distribution
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with a conditional mean of = 0, and a conditional variance of V[s,\y/,_x\ = hr

We can think of these as the mean and variance of et computed over all paths which 

agree with y/,_x.

The second equation in the ARCH process is the conditional variance equation. 

Suppose the ARCH (q) model for the series et is defined by specifying the conditional

distribution o ff,, given the information available up to time M , and q is the lag 

parameter. The information set i//,_x is assumed to consist of all observed values of the 

series, and anything that can be computed from these values, e.g., innovations, squared 

observations, etc. We say that the process e , is ARCH (q) if the conditional distribution

oie , , given the available information y/ t_x, is

Equation (2.4) specifies the way in which the conditional variance ht is

determined by the available information. Here h, is not constant. Rather, it is made up of

two components. The first is the constant term and the other is the dependence of the 

current variance on the size of the error term in the previous period. Notice that the 

conditional variance h, is defined in terms of squares of past innovations. In other words,

the volatility is modelled by allowing the conditional variance of the error term, h, , to

depend on the (immediately) prior value of the squared error. Therefore, if the error was 

large in the previous period (positive or negative), then the variance in period / will be

(2.4)

with a 0 > 0ya i > 0 for all /, and < 1.
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higher. This, together with the assumptions that a 0 > 0 and a t > 0, guarantees that ht is

positive, as it must be, since it is a conditional variance (a negative variance at any point 

in time would be meaningless).

The ARCH (q) model is nonlinear, since if s , could be expressed as

oo

then we would have variance K[£,L,_,] = V[e,\e,_l9e,_2,...] = V[ef], a

constant. This contradicts equations (2.3) and (2.4), so {et } must be a nonlinear process.

Moreover, since the model is nonlinear, the observations {st} in an ARCH (q) model are

non-Gaussian. The distribution of {s, } tends to be more fat-tailed than that implied by a

normal distribution. Thus, outliers may occur relatively more often. This is a useful 

feature of the model, since it reflects the leptokurtic nature of returns observed in 

practice. Moreover, once an outlier does occur, it will increase the conditional volatility 

for some time thereafter. Once again, this reflects a pattern often found in real data. It 

may seem odd that, while the conditional distribution of et given y/t_x is Gaussian, the

unconditional distribution is not. The reason for this is that the unconditional distribution 

is an average of the conditional distributions for each possible path up to time /-l. 

Although each of these conditional distributions is Gaussian, the variances ht are 

unequal. So we get a mixture of normal distributions with unequal variances, which is not 

Gaussian.

A practical problem encountered in fitting ARCH («q) models to financial asset 

returns data is that in order to obtain a good fit, the value of q, the number of lags of the 

squared error that are required to capture all of the dependence in the conditional 

variance, might be very large. Moreover, the non-negativity constraints described above
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might be violated if the value of q is very large (see Brooks, 2002). Everything else being 

equal, the more parameters there are in the conditional variance equation, the more likely 

it is that one or more of them will have negative estimated values.

2.3.2 The GARCH Model

An alternative and more flexible lag structure is provided by the Generalized 

ARCH, or GARCH (p,q) model proposed independently by Bollerslev (1986) and Taylor 

(1986). The full GARCH (p,q) model adds p  autoregressive terms to the ARCH (q) 

specification. It gives a parsimonious representation that is easy to estimate and even in 

its simplest form, has proven successful in predicting conditional variances. The GARCH 

model allows the conditional variance to be dependent upon previous lags, so that the 

conditional variance equation in the simplest case is now

h , = a 0+ a,sf_, + /3a l, . (2.5)

This is known as a GARCH (1,1) model. Again, ht is the conditional variance, since it is

a one-period ahead estimate for the variance based on any past information thought 

relevant. Using the GARCH model, it is possible to interpret the current fitted variance, 

hh as a weighted function of a long-term average value (dependent on a Q) of information

about volatility observed during the previous period ( a ,^ 2.,) and the fitted variance from 

the model obtained during the previous period (/?<t2_,).

To see how the GARCH model is more parsimonious than the ARCH model, 

consider the conditional variance equation of GARCH (1,1) above. Taking lags of the 

conditional variance equation in (2.5), the following expression would be obtained:
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o-,2., = « 0+ a,e ,ij + P<j ?_2. (2.6)

Taking the lag of this equation gives,

= «0 + a ,r ,l3 + /?<t 2_3 . (2.7)

Substituting into (2.6) for cr2_,

O',2 =«0 + a ,£l ,  + P (a0 + a ,£2_2 + P a 2_2 ) , (2.8)

= ®0 + i +GCQP  + GCiP€l_2 + P  Of 2 . (2.9)

Now substituting into (2.9) for cr2_2

a? = a„ + a2sl, +aap+a,Ps2_2 + p 2 {a„ + a,£,2_3 + /7a-2_3) , (2.10)

= a 0 +a,e,l, +a0p+ a ,psl2 + a0p 2 +atp 2e2_, + P2<j 2_2 , (2.11)

= a 0(l + /? + )?2) + «,£,!, (l + /K + y92i 2) + p ’crl, , (2.12)

where Z, is the lag operator. An infinite number of successive substitutions of this kind 

would result in

<r,2 = a Q (1 + p  + p 2 +...) + a xs]_x (1 + 0L +j32L2 + ...) + /T<r02. (2.13)

The first expression on the right-hand side of (2.13) is a simple constant and, as the

number of observations tends to infinity, /?°° will tend to zero. Hence the GARCH (1,1) 

model can be written as

a) =yQ+axe lx(\ + pL + p 2l} + ...), (2.14)

= /o + /2 f ,2-! +yieL  +■■■ (2-i5)

Equation (2.15) is a restricted infinite order ARCH model. Thus the GARCH (1,1)

model, containing only three parameters in the conditional variance equation, is a very
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parsimonious model that allows an infinite number of past squared errors to influence the 

current conditional variance.

The GARCH (1,1) model can be extended to a GARCH (p,q) formulation, where 

the current conditional variance is parameterized to depend upon q lags of the squared 

error and p  lags of the conditional variance,

a f  = a 0 + a ,s l, + a 2sf_2 +...+ar,s,l, + Pl<rl, +P2° l 2 + ...+Ppcrlp, (2.16)

or

h  = «o + £  a ,el ,  + £  P K ,  ■ (2-17)
;=1 7=1

Nelson and Cao (1992), and Drost and Nijman (1993) give the necessary and sufficient 

conditions to ensure non-negativity of conditional variance in (2.17), and the process is 

covariance stationary if and only if ai + CC2 + ...+ Oq + fii + fh  +...+ pp < 1. To 

demonstrate the latter condition, consider again the following GARCH (1,1) model: 

Rt -  p  + s t . s t \y/,_x ~ D(0, erf) (2.18)

ht = a 0+ a xe]_x + ph,_x. (2.19)

where ar0 > 0,ar, > 0,/? > 0. If a x + p  < 1, then the unconditional variance of et is given 

by

V[s,] = a J ( \ - a t - P )  (2.20)

For a x+ f i t  1, the unconditional variance of et is not defined and hence is non-stationary.

In many applications, especially with daily frequency financial data, the estimate 

for a x + a 2 + a 3 +... + a q + fix + fi2 + fi3 + ...+ fip turns out to be very close to unity. The

sizes of the parameters a  and f i  determine the short-run dynamics of the resulting
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volatility time series. Large p  coefficients indicate that shocks to conditional variance 

take a long time to die out, so volatility is “persistent”. Large a  coefficients mean that 

volatility reacts quite intensely to market movements, and so if a  is relatively high and 

p  is relatively low, then volatilities tend to be more “spiky”.

The introduction of the GARCH model spurred a vigorous line of research 

leading to a number of variants of the GARCH (p,q) model. Many of the extensions of 

the GARCH model have been suggested as a consequence of perceived problems with 

the standard GARCH (p,q) model. Basically, there are three inadequacies that need to be 

addressed; they are:

1. The non-negativity conditions that might be violated by the estimated model. The 

only way to overcome this is to place artificial constraints on the model 

coefficients in order to force them to be non-negative.

2. The GARCH models cannot account for the leverage effects described earlier. 

The leverage effect stems from the fact that the standard GARCH model enforces 

a symmetric response of volatility to positive and negative shocks. This arises 

since the conditional variance equation is a function of the magnitudes of the 

lagged residuals and not their signs. In other words, by squaring the lagged error 

in the conditional variance equation, the sign is lost.

3. The standard GARCH model does not allow for any direct feedback between the 

conditional variance and the conditional mean.

This thesis will not attempt to investigate or discuss all the possible variants of the 

standard GARCH (p,q) model. Instead, the reader is invited to refer to the excellent 

survey conducted on the subject by Bollerslev, Chou and Kroner (1992). What this thesis
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will focus on are four different variants, which have lifted some of the restrictions and 

inadequacies of the basic GARCH model. The models in question are the Exponential 

GARCH (EGARCH) model proposed by Nelson (1991), the Threshold GARCH 

(TGARCH) model of Zakoian (1994) and the GARCH in Mean (GARCH-M) models 

suggested by Engle, Lilien and Robins (1987) through the ARCH-M specification. A 

brief description of each of these models is given in Chapter 4. We now turn our 

discussion to the U-shaped pattern in the intraday volatility of asset returns.

2.4 The U-Shaped Pattern

Empirical research on equity markets, using stock market transactions data, has 

revealed several intraday regularities in the returns on stock prices. Perhaps the most 

interesting regularity is the U-shaped intraday pattern in the volatility of asset returns and 

in the volume of trading in markets with an overnight close. The existence of a U-shaped 

pattern in volatility across the trading day could be dated back to at least the findings of 

Wood, Mclnish and Ord (1985) and Harris (1986) in the US markets. Harris (1986), for 

example, examined the phenomena on the New York Stock Exchange (NYSE) and found 

that prices rise sharply during the first 45 minutes of trading and that returns are high near 

the very end of the day, particularly on the last trade of the day. Furthermore, it is 

observed that the day-end price changes are greatest when the final transaction is within 

the last five minutes of trading.

Regarding trading volume, Jain and Joh (1988) studied hourly aggregate NYSE 

volume and found that the volume is particularly high at the beginning and towards the 

close of trading. Similar studies by Brock and Kleidon (1992) and Foster and
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Viswanathan (1993) yielded U-shaped patterns in both volume and volatility of returns in 

NYSE stocks. These studies exhibited a significant positive relationship between the 

volume and volatility of the stocks; for example, the highest volume coincides with the 

highest variance, which incidentally is more frequent at both the open and the close than 

for the rest of the day. Studies in other markets find similar results: Yadav and Pope 

(1992) for the UK market, Choe and Shin (1993) for the Korean market, and Lam and 

Tong (1999) for the Hong Kong market. The existence of intraday patterns and, more 

specifically, U-shaped patterns are not exclusive to equity markets. These patterns have 

been demonstrated for other markets as well. These include the findings of Peterson 

(1990) and Aggarwal and Gruca (1993) for the equity options markets; Baillie and 

Bollerslev (1991) for the foreign exchange markets; Cornett, Schwarz and Szakmary 

(1995) for the foreign exchange futures markets; and Jordan, Seale, Dinehart and Kenyon 

(1988) and Taylor (2004) for the commodities markets.

In addition, studies in markets that have a break during the lunch hour indicate the 

presence of a double U-shape pattern instead of a single one. Andersen, Bollerslev and 

Cai (2000), in a study of the Nikkei 225 on the Tokyo Stock Exchange using 5-minute 

frequency returns, find that the intraday return volatility exhibits a double U-shaped 

pattern associated with the opening and closing of the separate morning and afternoon 

sessions. They report that Nikkei 225 index volatility is significantly higher at the 

opening of the morning and the close of the afternoon sessions than during the mid- 

morning and mid-afternoon sessions. These features, combined with an increased 

volatility immediately before and after the lunch break, result in two distinct U-shapes: 

one in the morning and one in the afternoon. Taylor (2004), in a study using 5-minute
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frequency returns of cocoa futures contracts on the Euronext.liffe exchange, also reports a 

similar finding. It is found that return volatility is high at the opening of trading, both at 

the beginning of the trading day and at the beginning of trading after the lunchtime 

period. This pattern is repeated at the close of trading, both at the end of the trading day 

and just before the lunchtime period.

Summarising, it is crucial to recognize and identify what kind of impact and 

influence the intraday patterns may have on modelling return volatility. Many recent 

studies have indicated that studies that utilize daily, weekly and monthly prices will not 

be able to explain the intraday dynamics of return volatility (see Andersen and Bollerslev, 

1998a). The availability of high frequency data has made it possible to do this and many 

of the recent studies in the ARCH/GARCH literature, for example, have employed a 

higher frequency, typically at the 5-minute and 15-minute intervals, to model return 

volatility. This presents a unique opportunity to test the robustness of the GARCH model 

and its many extensions. We now discuss some of the theories that attempt to explain the 

dynamics of the U-shaped pattern.

2.5 Explanations for the U-Shaped Pattern

The existence of the U-shaped patterns in the volatility of asset returns and in the 

volume of trading has generated a strong interest in finding the appropriate models to 

explain and understand the origin of these phenomena. The three models that are most 

often quoted are the asymmetric information hypothesis of Admati and Pfleiderer (1988) 

and Foster and Viswanathan (1990) and the increased demand hypothesis of Brock and 

Kleidon (1992). All these models consistently assume that the existence of heterogeneous 

investors, combined with periodic market closure, results in discretion by investors in
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timing their trades, which can lead to an endogenous concentration of trades and price 

changes. Admati and Pfleiderer (1988) argued that the interaction between informed and 

uninformed discretionary investors gives rise to the U-shaped pattern. Uninformed 

discretionary investors are defined as those investors who have the ability to choose when 

to trade during the day on the basis of trading costs. It is reasonable to assume that there 

are times during the day that attract both informed and uninformed discretionary 

investors to trade, which in turn result in a concentration of trade volume. The reason 

why informed investors will operate in the market at a certain time is because there will 

also be uninformed investors through whom they can disguise their trades. Similarly, 

uninformed discretionary investors will choose to trade when they perceive that there are 

increased activities of informed investors relative to other periods. These are the times 

when the trading costs are at the optimal level. The interaction of both parties at these 

times results in a clustering of volume, which could explain concentrations of volume 

such as the one just before the market closes or at market openings. The model cannot, 

however, predict with certainty whether a concentration of trading volume should occur 

at the opening of the market, in the middle of the day or at the close.

Foster and Viswanathan (1990) propose that the intraday pattern is due to the 

interaction between informed traders and a subset of the discretionary liquidity traders 

who act strategically. The informed traders receive information each day, but the value of 

this information diminishes through time because there is a public announcement of some 

of the private information each day. In this way, discretionary liquidity traders have an 

incentive to delay their transactions when they believe that the informed traders are 

particularly well-informed. By waiting, they can learn from the trades that occur and the
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public signal that is released. On the other hand, the informed traders, knowing that there 

is a forthcoming public signal, trade more aggressively, and thus more information is 

released through that trading. The delay tactic by the discretionary liquidity traders leaves 

less liquidity in the market and makes it easier for the market makers to infer the 

informed traders’ reasons for trading. As a consequence, the volume is lower and prices 

are more volatile.

Brock and Kleidon (1992) argue that most trading in the beginning and at the end 

of the trading day results from the inability to trade when the market is closed. It is 

argued that the risk of holding positions overnight when trade is not possible differs from 

that of holding them during the day when continuous trading strategies can be followed. 

This may cause traders to adjust their positions at the end of the day to account for the 

change in trading possibilities. The end of the day is therefore likely to be a period when 

the volume of non-discretionary liquidity trading is high. Symmetrically, discretionary 

liquidity traders will especially trade in the morning at the opening of the following day, 

due to the accumulation of overnight information in the absence of an opportunity to 

trade. Brock and Kleidon (1992) also observe that there is a tendency for passive 

portfolio managers to trade at the end of the day. This is a consequence of the fact that 

the performance of these funds is based on how closely the fund tracks a specified index. 

Because the value of the index is calculated using closing prices, passive portfolio 

managers can reduce the tracking error by trading at the end of the day. For example, 

they can decide to sell (to obtain a paying investment) at the end of the day when the 

index is decreasing to do better relative to the index. Another reason for trade clustering 

at the end of the day may be due to the rising industry of day traders who close positions
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before exchanges close so as not to have overnight positions. This course of action is 

more likely to happen at the end of the day.

Gerety and Mulherin (1992) go further by focusing on the assumption that 

investors differ in their willingness and/or ability to hold positions overnight. 

Accordingly, if these investors transfer the risk of holding a position while the market is 

closed, then the volume at the end of the day should be directly related to the volatility 

expected to occur overnight. Correspondingly, the trading activity at the opening is 

positively related to unexpected overnight volatility. On the other hand, Kim and 

Verrecchia (1994) point out that an anticipated information event may affect not only the 

trading pattern during the transition between trading and non-trading periods, but also 

during other periods in the trading day. This takes place before the announcement event if 

the anticipated public announcement stimulates private information-gathering and 

trading. When the announcement is released, investors form posterior beliefs and trade on 

their private information and market prices. After the announcement, given slow 

dissemination of earnings information, excess portfolio rebalancing activities may result 

during the trading day. We will discuss below some of the findings that made use of high 

frequency data and the impact on the adequacy of the ARCH and GARCH models in 

modelling and forecasting return volatility.

2.6 Review of Past Findings

2.6.1 Volatility and the Financial Markets

The temporal behaviour of stock market volatility has fascinated many researchers 

since the 1970s. Malkiel (1979) and Pindyck (1984) contend that the upward trend in 

volatility during the last thirty to forty years in the US is the reason for the decline in
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equity prices. Pindyck (1984) argues that the variance of the firms’ real gross marginal 

return on capital has increased significantly since 1965. This has increased the relative 

riskiness of investors’ net real returns from holding stocks. He believes that this can 

explain the reason for the market decline. To a certain extent, this argument is in line with 

Black’s (1976) findings that stock returns tend to be strongly negatively correlated with 

changes in volatility.

Porteba and Summers (1986) investigate this issue by testing the time-series 

properties of volatility. It is argued that shocks to volatility have to persist for a very long 

time in order for volatility to have a significant impact on stock prices. If shocks to 

volatility are only transitory, no adjustment of the future discount rate will be made by the 

market. Therefore, expected stock returns are not affected by the volatility movement. 

This finding contradicts the claims of Malkiel (1979) and Pindyck (1984) above. Pindyck 

(1986), however, responded by estimating a portfolio choice model. It is reasoned that 

even though the changes in variance do not persist for long, they do provide a better 

explanation for the market decline compared to other variables such as changes in 

corporate profits and changes in the real interest rate. In fact, about one-third of the 1974 

market decline can be attributed to volatility changes.

Chou (1988) supports the findings of Pindyck (1986), using the GARCH 

estimation technique to study volatility persistence. The findings highlight the weaknesses 

of the two-stage OLS estimation methodology employed by Porteba and Summers (1986). 

Specifically, it is argued that this method is inadequate and less efficient than the 

maximum-likelihood methods used in GARCH estimation. It is demonstrated that the 

GARCH (1,1) -  M model, in particular, is a more suitable tool than the two-stage methods
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due to the quality of results obtained. It is also demonstrated that the parameter estimates 

using the two-stage methods are very sensitive to the frequency of volatility measurements 

and that the monthly measure used by Porteba and Summers (1986) tends to seriously 

underestimate the persistence parameter. Furthermore, it is argued that the assumption of 

constant conditional means and variances is both unrealistic and inaccurate. Subsequently, 

it is discovered that the persistence of shocks to the stock return volatility is so high that 

the data cannot distinguish whether the volatility process is stationary or not. Assuming 

stationarity, it is found that the half-life of the volatility shocks is about one year. The 

parameter estimates and the non-stationary test results are both robust to changes in the 

frequency of data measurements. The results confirm the findings of Malkiel (1979) and 

Pindyck (1984) above and at the same time emphasize the need to accommodate the effect 

of heteroskedasticity when estimating return volatility.

2.6.2 Performance of the GARCH Model

There is a vast literature that attempts to compare the performance and accuracy of 

the GARCH model with other volatility models in producing out-of-sample volatility 

forecasts. Among the earliest research to extensively test the properties of the 

ARCH/GARCH processes was the study carried out by Akgiray (1989), who finds 

evidence that time series of daily stock returns exhibit significant levels of dependence 

that cannot be modelled as a linear white-noise process. A reasonable return-generating 

process is empirically shown to be a first-order autoregressive process with conditionally 

heteroskedastic innovations. It is found that the GARCH (1,1) model in particular fits the 

data very satisfactorily. A comparison of forecasts of 24 monthly return variances using
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four methods - the simple historical average, the exponentially weighted moving average 

(EWMA), the ARCH and the GARCH models - concluded that the ARCH and GARCH 

models could simulate the actual pattern of stock market volatility more closely than the 

simple historical average and EWMA methods and that the GARCH specification is 

superior to the ARCH. The results of the simple historical average forecasts do not reflect 

short-term changes in volatility and are virtually unchanged throughout the 24-month 

period. The same is also true for the EWMA forecasts, which are found to inadequately 

model the transitory changes in volatility. These findings show that the time-series 

behaviour of market volatility can be realistically modelled by conditionally 

heteroskedastic processes.

The analysis proceeds by evaluating the various model-based forecasts using a 

number of forecast error statistics. Based on the relative values of these statistics, it is 

found that the GARCH forecasts are far better than the other three, and that this is even 

more so in periods of high volatility. GARCH forecasts are also generally less biased, as 

evinced by the smaller values of the forecast error statistics obtained. Therefore, it is 

concluded that the GARCH forecasts constitute substantial improvement over the 

traditional forecasts such as the historical sample averages.

In a similar study, Pagan and Schwert (1990) compare the EG ARCH, GARCH, 

Markov switching regime, and three non-parametric models for forecasting monthly US 

stock return volatilities. The results indicated that for the US stock market from 1834 to 

1937, the EG ARCH is the best volatility forecasting model. The GARCH models 

performed moderately while the remaining models produce very poor forecasts. Finally, 

West and Cho (1995) compare the out-of-sample performance of univariate

36



homoskedastic, GARCH, autoregressive, and non-parametric models for conditional 

variances, using five bilateral weekly exchange rates for the dollar. It is found that for a 

one-week horizon, GARCH models tend to produce slightly more accurate forecasts. 

However, for longer horizons, it is difficult to find grounds for choosing between the 

various models.

While the modelling and forecasting of US stock market conditional volatility has 

found some support for the GARCH framework, the analysis of conditional volatility in 

other international stock markets has produced conflicting results. Tse (1991) examines 

stock return volatility in the Tokyo Stock Exchange. Based on fitted ARCH and GARCH 

models in the period from 1986 through 1987, the forecasts of return volatility in 1988 

through 1989 are produced. The ARCH/GARCH forecasts are compared with a 

benchmark value, a naive forecast and an exponential weighted moving average 

(EWMA) forecast. The results show that the EWMA method produces the best forecasts. 

Tse and Tung (1992) apply the same tests in the Singapore stock market and obtain the 

same results.

In a more extensive study, Franses and van Dijk (1996) compare the volatility 

forecasting performance of the GARCH, quadratic-GARCH (QGARCH, Engle and Ng, 

1993), and TGARCH models in comparison to the random walk model using weekly 

German, Dutch, Italian, Spanish and Sweden stock index returns over the period from 

1986 to 1994. It is found that the random walk model performs particularly well when the 

crash of 1987 is included in the estimation sample, while the QGARCH model performs 

better upon its exclusion.
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Brailsford and Faff (1996) examine the ability of various volatility models to 

forecast aggregate monthly stock market volatility in Australia. The models tested 

include the random walk, historical mean, moving average, exponential smoothing, 

EWMA, a simple regression model, two standard GARCH models and two asymmetric 

Glosten, Jagannathan and Runkle (GJR) GARCH models. Using several loss functions, 

they are unable to identify a clearly superior model and suggest that the best forecasting 

model depends upon the subsequent application. The rankings of the various model 

forecasts are sensitive to the choice of error statistic. However, the study finds some 

support for the GARCH models, particularly the GJR-GARCH (1,1) specification, which 

is consistently ranked high, together with the simple regression model.

McMillan, Speight and Gwilym (2000) analyse the predictive power of several 

classes of GARCH models (Standard GARCH, TGARCH, EG ARCH, Component- 

GARCH), against the random walk, historical mean, moving average, exponential 

smoothing, EWMA and regression models, for the FTSE 100 (FTSE) and FT All Share 

(FTA) Indices in the UK. The comparison was carried out using data obtained over 

monthly, weekly and daily frequencies, using both symmetric and asymmetric loss 

functions in the evaluation of forecasts. Under symmetric loss, the results suggest that the 

random walk model provides vastly superior monthly volatility forecasts, while the 

random walk, moving average and recursive smoothing models provide moderately 

superior weekly volatility forecasts, and the GARCH, moving average and exponential 

smoothing models provide marginally superior daily volatility forecasts. When 

asymmetric loss is considered, it is found that the ranking of forecasting methods is 

dependent on the series, frequency and the direction of the asymmetry. The historical
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mean shows the best result for the forecasting of daily FT A and FTSE volatility. The 

historical mean and simple regression are jointly favoured for weekly FTA volatility, and 

exponential smoothing is favoured for forecasting weekly FTSE volatility. However, if 

attention is restricted to one forecasting method for all frequencies, the most consistent 

forecasting performance is provided by the moving average and GARCH models.

There are very few studies published on the performance of the GARCH models 

in emerging stock markets. Gokcan (2000) compares the forecasting performance of the 

GARCH (1,1) model against the EG ARCH (1,1) model using monthly returns from seven 

emerging stock markets, including Argentina, Brazil, Colombia, Malaysia, Mexico, the 

Philippines and Taiwan. The results indicate that for all the countries except Brazil, the 

GARCH (1,1) model produces superior model fit and out-of-sample forecasting 

performance. Similarly, Chong, Ahmad and Abdullah (1999) study the performance of 

six variations of GARCH models against the random walk model using five daily 

observed Malaysian stock market indices (Composite Index, Tins Index, Plantations 

Index, Properties Index, and Finance Index) on the KLSE. The results indicate that the 

EGARCH (1,1) model is the best model in forecasting volatility for all five stock market 

indices. This is followed by the symmetric GARCH (1,1) model and the non-negative 

GARCH (1,1) model. The unconstrained GARCH (1,1) and the GARCH-M (1,1) models 

are both ranked fourth. The random walk model is ranked second last while the 

Integrated GARCH (1,1) model is ranked last.

Poon and Granger (2003) carried out an extensive survey of the volatility 

forecasting research over the last twenty years. They focus on four types of volatility 

forecasting methods that have been widely used in the literature; viz. historical volatility
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(HISVOL) models, ARCH/GARCH models, SV models and option-implied volatility 

(ISD) based on the Black-Scholes model. Poon and Granger (2003) define the scope of 

the historical volatility method such that it includes the random walk and historical 

averages of squared returns or absolute returns. Also included are moving averages, 

exponential weights, autoregressive models, fractionally integrated autoregressive 

absolute returns and the more sophisticated techniques like the multivariate realized 

volatility model in Andersen, Bollerslev, Diebold and Labys (2003). In order to find the 

method that will produce the best forecasts, they carried out pair-wise comparisons 

involving 66 studies that include the four volatility forecasting methods. Interestingly, for 

studies involving both HISVOL and ARCH/GARCH models (39 related studies in total), 

twenty-two found HISVOL better at forecasting than ARCH/GARCH, and seventeen 

found ARCH/GARCH superior to HISVOL. When they examined eighteen studies 

involving both ARCH/GARCH and ISD models, they found that seventeen studies are in 

favour of the ISD compared to only one in favour of the ARCH/GARCH models. In 

another comparison, which involves four studies on ARCH/GARCH and SV models, 

three are in favour of the SV models as opposed to only one for the ARCH/GARCH 

models. Poon and Granger (2003) also find that in studies involving ARCH/GARCH 

models, the GARCH models produce better forecasts than the ARCH models. In general, 

models that incorporate volatility asymmetry, such as the EGARCH and GJR-GARCH 

models, perform better than the standard GARCH models.

The overall ranking suggests that ISD provides the best forecasts, followed by 

HISVOL and ARCH/GARCH with roughly equal performance. The superior 

performance of ISD is expected because the forecasts are based on a larger and timelier
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information set. Poon and Granger (2003) explain that the options markets are small 

compared to the equity markets and in most emerging markets, for instance, options are 

not traded at all. Therefore, time series models will continue to influence the direction of 

volatility forecasting even though they are inferior to the ISD models. They also highlight 

the possible problem of bias in the publication of these studies, i.e., papers presented are 

prepared for different reasons, use different data sets, many kinds of assets, various 

interval frequencies, a variety of evaluation techniques, and face the pressure of 

conforming to support a viewpoint for a particular method in the publication process.

2.6.3 High-Frequency Data and the Periodicity Factor

The increased availability of high-frequency financial data has spurred research 

interest in the complex nature of intraday-retum dynamics. The applicability of the 

standard GARCH model as an adequate description of volatility in intraday financial data 

has been called into question recently. In particular, studies examining intraday foreign 

exchange rate and index futures data have reported GARCH coefficients that are 

inconsistent with those reported at the daily level in the light of theoretical results on the 

temporal aggregation of GARCH processes (see Andersen and Bollerslev, 1997). The 

problem is made worse when it is also documented that the standard GARCH models are 

also incapable of modelling satisfactorily the return volatility, which varies systematically 

over the trading day.

Andersen and Bollerslev (1997) demonstrate the problem of direct ARCH 

modelling of intraday return volatility in the presence of pronounced systematic 

fluctuations in the return series. It is argued that standard ARCH models imply a
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geometric decay in the return autocorrelation structure and simply cannot accommodate 

strong regular cyclical patterns (intraday periodicity), which have a strong impact on the 

autocorrelation patterns of the 5-minute return series employed in their study. Instead, the 

combination of recurring cycles at the daily frequency and a slow decay in the average 

autocorrelations may be explained by the joint presence of the pronounced intraday 

periodicity (the U-shaped pattern for example) coupled with the strong daily conditional 

heteroskedasticity, which can be modelled sufficiently with standard ARCH models. They 

suggest that high frequency volatility modelling should start on this premise, i.e., 

awareness of the interaction between the interdaily conditional heteroskedasticity and the 

intraday periodicity. Similarly, McMillan and Speight (2004a) reason that the importance 

of identifying an appropriate method of periodicity adjustment and reliable GARCH 

model estimation follows directly from the fact that the relative frequency of intraday 

observations, compared with identifiable shocks, is much greater than that afforded by 

interday data. It is found that estimates of parameters are only consistent when the 

periodicity effects are taken into account.

Several periodicity adjustment methods have been introduced in recent years to 

control for the periodicity effect in intraday volatility modelling. The more popular ones 

are the methods introduced by Bollerslev and Ghysels (1996) and Andersen and 

Bollerslev (1997, 1998a). Bollerslev and Ghysels (1996) introduced the periodic GARCH 

(PGARCH) framework, which is designed to capture the repetitive periodic time variation 

in the second-order moments. It is claimed that the PGARCH model provides a natural 

generalization of the time-invariant seasonal GARCH models to allow for a greater degree 

of flexibility when modelling periodicity in the conditional variances. The PGARCH
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framework includes all GARCH models in which a set of periodic intercept dummy 

variables is included in the variance equation.

Meanwhile, Andersen and Bollerslev (1997, 1998a) advocate a procedure based 

upon the FFF variables, which employs a series of trigonometric terms to identify the 

systematic component of the return series. It is claimed that this method would aid in 

uncovering the complex link between the short and long run return components, which in 

turn may help to explain the apparent conflict between the long memory volatility 

characteristics observed in interday data and the rapid short run decay associated with 

news arrivals in intraday data.

Martens, Chang and Taylor (2002), using a GARCH (1,1) model for the original 

returns as the benchmark, show that modelling the intraday seasonal (periodicity) 

volatility pattern improves the out-of-sample volatility forecasting. In addition to the FFF 

variables, which are used in conjunction with the PGARCH structure, they also introduce 

a two-step approach in modelling the intraday periodicity in the foreign exchange market. 

First, they estimate the seasonal component by applying an OLS regression of squared 

returns (or absolute returns) on either the FFF variables or the dummy variables 

constructed under the PGARCH framework. The standardized return series from this 

regression is then considered as the filtered or deseasonalized return series. In the second 

step, they estimate the parameters of the GARCH model based on the filtered return series. 

The results indicate that the PGARCH model provides the best forecasting performance, 

followed by the two-step filtration approach, and lastly by the standard GARCH model 

without any adjustment for periodicity.
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The advantage of controlling for the periodicity in intraday return series is also 

highlighted by Taylor (2004) using UK commodity futures data. The PGARCH model 

once again produces superior forecasts of future return volatility compared to other 

competing volatility models and the standard GARCH model. Similarly, McMillan and 

Speight (2004a), using data from the stock index futures market in the UK, report that 

GARCH models that use returns that are adjusted for periodicity (using the FFF method) 

provide better model fit and produce superior forecasting results when compared with 

similar models that utilize unadjusted returns data. The subject of periodicity adjustment 

will be dealt with in greater detail in Chapter 4 of this thesis.

2.6.4 The Integrated Realized Volatility Measure

Another recent development that has revived the usefulness of the GARCH model 

is the introduction of a new volatility measure by Andersen and Bollerslev (1998a). In 

this paper, they argue that the failure of the GARCH model to provide good forecasts, 

which is reported throughout the literature, is not a failure due to the properties of the 

GARCH model itself, but a failure to specify correctly the “true volatility” measure 

against which forecasting performance is measured. Andersen and Bollerslev (1998a) 

reason that the standard approach of using ex post daily squared returns as the measure of 

“true volatility” for daily forecasts is flawed because this measure includes a large and 

noisy zero mean constant variance error term, which is unrelated to actual volatility. Let 

us consider again equation (2.1) above. A common approach forjudging the forecast 

performance of any model is to compare its predictions with subsequent realizations. 

Since volatility is not a directly observable process, this approach is not immediately
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applicable. However, if the model for erf is correctly specified, then 

Ef_,(/?2) = E,_,(o-2z2) = o*,2,which appears to justify the use of squared returns

innovation over the relevant horizon as a proxy for ex post volatility. However, while the 

squared innovation provides an unbiased estimate of the volatility process, it may yield 

very noisy measurements due to the idiosyncratic term, z t. This component typically

displays a large degree of observation-by-observation variation relative to erf, such that

the proportion of variability in squared returns that can be attributed to volatility is low. 

This is the reason why volatility models often report poor predictive power. 

Consequently, an alternative measure for “true volatility” is suggested based upon the 

cumulative squared returns from intraday data. This measure, which is referred to as 

integrated realized volatility, allows more meaningful and accurate volatility forecast 

evaluation. Subsequently, it is found that the forecasting performance of a GARCH (1,1) 

model is improved when the daily volatility is measured by means of the cumulative 

squared intraday returns. It is also demonstrated that the variance is substantially smaller 

the higher the frequency used to generate the integrated realized volatility. Therefore, 

with the availability of high frequency returns, the ex post realized daily volatility should 

be measured using the highest frequency.

Recent research in this area has provided evidence to support the superiority of 

the new volatility measure when compared to the squared returns measure used 

previously. An example of this is the findings of a study conducted by Martens (2001). 

Multiple period forecasts from intraday volatility models are compared with forecasts 

from daily volatility models. When these forecasts are evaluated using integrated realized 

volatility, the results show that the higher the frequency used, the better the daily
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volatility forecast from the relevant GARCH (1,1) model becomes. This forecast is 

simply constructed from multiple out-of-sample forecasts for frequencies higher than the 

daily frequency. The GARCH (1,1) model for intraday returns also gives better forecasts 

than augmenting the daily GARCH (1,1) model to include the difference between the 

daily high and low. Extending the daily model with the sum of squared intraday returns 

leads to a similar performance as modelling the intraday returns directly.

In a recent study, McMillan and Speight (2004a) reconsider the accuracy of the 

GARCH-based volatility forecasts compared to those produced by exponential smoothing 

and moving average models for seventeen daily exchange rates relative to the US dollar 

in the foreign exchange market. The measure of “true volatility” used to evaluate 

forecasts is based upon 30-minute intraday observations and the models were estimated 

over a five-year in-sample period with a one-year out-of-sample forecasting period. The 

results show that the GARCH models outperform both the exponential and the moving 

average models for sixteen out of the seventeen currencies in the sample. This is almost 

the complete reverse of results that previously showed that the GARCH models 

consistently underperform compared to the two statistical averaging models.

Very few studies on integrated realized volatility have been conducted in 

emerging capital markets. One recent study is conducted on the Indian Stock Exchange. 

Pandey (2003) compares the empirical performance of various unconditional volatility 

estimators and conditional volatility models (GARCH and EGARCH) using time-series 

data on the S&PCNX Nifty, a value-weighted index of 50 stocks traded on the National 

Stock Exchange (NSE), Mumbai. The estimates computed by various estimators and 

conditional volatility models over non-overlapping one-day, five-day and one-month
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periods are compared with the “realized volatility” measured over the same period. The 

data set used to construct measures of realized volatility is based on three years’ (1999- 

2001) five-minute frequency returns. In order to test the ability of the estimators and 

models to forecast volatility, the estimates of unconditional estimators are compared with 

the realized volatility measured in the next period of the same length. For conditional 

volatility models, the forecasts for the same periods are obtained by estimating models 

from the time-series prior to the forecast period. The results indicate that while 

conditional volatility models provide less biased estimates, extreme-value estimators are 

more efficient estimators of realized volatility. As far as the forecasting ability of the 

models and estimators is concerned, conditional volatility models fare extremely poorly 

in forecasting the five-day (weekly) or monthly realized volatility. In contrast, extreme- 

value estimators generally perform relatively well in forecasting volatility over these 

horizons.

In summary, this chapter has highlighted the finer points of the random walk 

hypothesis and the efficient market hypothesis in relation to assets pricing and returns 

volatility. It has also discussed the stylised facts about financial markets. The properties 

of the ARCH and GARCH models are elaborated in detail, followed by a discussion of 

the intraday U-Shaped pattern, which is a common observation in financial markets. The 

theories behind the occurrence of the U-shaped pattern are also discussed. The chapter 

ends with a discussion of the impact of volatility on the financial markets and the impact 

of periodicity and high frequency data in the forecasting performance of the GARCH 

model. The final part of this chapter also discusses the integrated realized volatility 

measure, why it is better than the squared returns measure and how it is able to revive the
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usefulness of the GARCH model. The following chapter, Chapter 3, looks at the history 

and the evolution of the KLSE. It also discusses how the KLCI is designed and 

computed. The KLCI returns data will be used extensively in this thesis. Chapter 3 ends 

with a brief explanation of the trading practices on the KLSE.
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CHAPTER 3

THE KUALA LUMPUR STOCK EXCHANGE

3.0 Introduction

The aim of this chapter is to provide some information about the KLSE. The 

following discussion is divided into five sections. The first section gives an overview of 

the history and the development of the KLSE. The second section touches on company 

listings on the KLSE. Subsequent discussions focus on the KLCI, the performance of the 

KLCI, and finally on how stock trading is conducted on the KLSE.

3.1 The History and Development of the KLSE

In Malaysia, the KLSE1 is the only stock exchange approved by the Minister of 

Finance under the provisions of the Securities Industry Act, 1983. The KLSE is a self- 

regulatory organization with its own memorandum and articles of association, as well as 

rules which govern the conduct of its members in securities dealings. The KLSE is also 

responsible for the surveillance of the marketplace and for the enforcement of its listing 

requirements, which spell out the ten criteria for listing, disclosure requirements and 

standards to be maintained by listed companies.

Although the history of the KLSE can be traced to the 1930s, the public trading of 

shares in Malaysia only really began in 1960, when the Malayan Stock Exchange (MSE) 

was formed. When the Federation of Malaysia was formed in 1963, with Singapore as a 

component state, the MSE was renamed the Stock Exchange of Malaysia (SEM). With

1 The KLSE changed its name to the Bursa Malaysia Berhad following the successful demutualization of 
the Malaysian Securities Commission and the KLSE in April 2004.
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the secession of Singapore from the Federation of Malaysia in 1965, the common stock 

exchange continued to function, but as the Stock Exchange of Malaysia and Singapore 

(SEMS). The year 1973 was a major turning point in the development of the local 

securities industry, for it saw the split of SEMS into the Kuala Lumpur Stock Exchange 

Berhad (KLSEB) and the Stock Exchange of Singapore (SES). The split was opportune 

in view of the termination of the currency interchange ability arrangements between 

Malaysia and Singapore. Although the KLSEB and SES were deemed to be separate 

exchanges, all the companies previously listed on the SEMS continued to be listed on 

both exchanges. When the Securities Industry Act 1973 was brought into force in 1976, a 

new company called the Kuala Lumpur Stock Exchange (KLSE) took over the operations 

of the KLSEB as the stock exchange in Malaysia. Its function was to provide a central 

marketplace for buyers and sellers to transact business in shares, bonds and various other 

securities in Malaysian listed companies. On 1 January 1990, following the decision on 

the “final split” of the KLSE and SES, all Singaporean incorporated companies were de

listed from the KLSE and vice-versa for Malaysian companies listed on the SES. The 

KLSE became a public company limited by shares, as opposed to its previous status as a 

company limited by guarantee, in January 2004. Subsequently, in April 2004, the KLSE 

officially launched its new name, Bursa Malaysia, together with a new organization 

structure. The holding company is now known as Bursa Malaysia Berhad. In March 

2005, Bursa Malaysia Berhad made its debut on the Main Board. Bursa Malaysia’s 

market capitalization as of 5 February 2005 stands at over RM700 billion (over USD 173 

billion).2

2 Source: Commerce International Merchant Bankers Berhad (2005).
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3.2 Company Listing on the KLSE

Since the inception of the KLSE in the 1960s, the Main Board was the only board 

for company listing until the establishment of the Second Board in November 1988. The 

Second Board complements the Main Board and provides an opportunity for smaller 

firms that have great potential to grow but do not meet the listing requirements of the 

Main Board. Each board is further classified by sectors, which reflect the core business of 

these companies. As part of its aggressive push to become an Asian-Pacific hub for 

information and communication technology (ICT), in October 1997, the Government of 

Malaysia launched the Malaysian Exchange of Securities Dealing and Automated 

Quotation (MESDAQ) as a third board of the Malaysian stock market. The MESDAQ, 

which is modelled on the NASDAQ, is intended as an avenue for small and medium 

enterprises in technology-related areas to raise capital in order to establish a base in the 

multimedia super-corridor south of Kuala Lumpur. To give an example of the current 

state of affairs, as of 6 June 2006, a total of 648 companies were listed on the Main Board 

and 259 companies were listed on the KLSE Second Board, as well as 118 companies 

listed on the MESDAQ Market, giving a total of 1025 total companies listed on the 

KLSE. This is an increase of almost five-fold since the inception of the exchange back in 

1973. At that time, the number of listed companies was only 262.

3.3 Kuala Lumpur Composite Index

The KLSE computes an index for each of the main sectors traded on the bourse, 

and currently there are 14 indices used to indicate the performance of each of the various 

economic sectors. However, the most widely followed, by far, is the Kuala Lumpur
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Composite Index (KLCI). The KLCI3 was introduced in 1986 after it was found that there 

was a need for a stock market index that would serve as a more accurate indicator of the 

performance of the Malaysian stock market and the economy. The KLCI is a weighted 

index, which was introduced in 1986 but extended back to January 1977, with 1977 as 

the base year. Prior to 1986 there was effectively no index that represented the entire 

market. The main indices used then were the KLSE Industrial Index (an all-shares value- 

weighted index), the New Straits Times Industrial Index (a 30-share price-weighted 

index) and the OCBC Composite Index (a 55-stock multi-sector based value weighted 

index). The rapid growth of the Malaysian economy saw the need for an encompassing 

index that could reflect the relationship between the market and the economy. The 

impressive growth and increased economic performance of KLSE listed companies 

meant that the three indices above were not adequate in absorbing and reflecting these 

rapid changes. The KLCI, introduced in 1986, was therefore designed to overcome these 

limitations. The following objectives were sought:

1. It should effectively reflect the performance of the companies listed on the stock 

exchange;

2. It should be generally sensitive to the investors’ expectations;

3. It should be generally indicative of the impact of government policy changes;

4. It should be reasonably responsive to the underlying structural changes in the 

different sectors of the economy.

It started with a base of 67 component stocks in its augural year, 86 stocks until April 

1995 and 100 stocks thereafter.

3 Previously the KLCI was known as the KLSE Composite Index. The change of name was officially 
established in February 2005.
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The KLCI design carefully takes into account the composition of the component 

stocks included in the computation of the index, in that they must reflect the sectoral 

developments of the economy. To ensure that the component stocks do not over or under

present certain sectors, the number of component stocks selected for different economic 

activities is also constantly correlated with the sectoral contribution to gross domestic 

product. The KLCI is computed by the market capitalization of each component stock as 

the weight, and the arithmetic mean as the method of averaging. Thus, the sum over all 

component stocks of the truncated mean of the daily closing prices, P0, of a component 

stock in 1977 multiplied by the number of shares outstanding, Q0, on 1 January 1977 is 

used as the Opening Base or Base Aggregate market value (Base AMV). The index on 

the first trading day of 1977 (3 January 1977) is given by

± p,Q,
Index = —-------- (3.1)

±'.&
1

where is the Current AMV and ^ P qQq is the Base AMV. n is the number of

component stocks, and Px and Qx are the daily closing price of a component stock and the 

corresponding number of shares outstanding as of 3 January 1977, respectively.

The following formulas are used to adjust the aggregate market value for rights 

issues, and inclusion and exclusion of a component stock into the index:

1. Rights Issue

Adjusted Base AMV =

, n ., Old.Current. AMV + Market.Value.of .Rights.IssueOld Base AMV x --------------------------------------------  — ------------
Old.Current. AMV
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2. Inclusion of a Component Stock

Adjusted Base AMV =

Old Base
AMV x Old.Current. AMV + Market.Value.of .Included.Component Stock

Old.Current. AMV

3. Exclusion of a Component Stock

Adjusted Base AMV =

Old Base
AMV  x Old.Current. AMV -  Market.Value.of .Included.Component Stock

Old.Current. AMV

The old current AMV is the aggregate market value of all component stocks based 

on the closing prices on the last day of cum-rights or on the last day before the inclusion 

or exclusion of a component stock. Similarly, the market value for rights, the market value 

of included component stocks and the market value of excluded component stocks are 

calculated on the same basis. No adjustment is made for bonus issues or stock splits, as 

there is no change in the aggregate market value. Since 3 January 1977, there were 

numerous occasions when adjustments were made for rights issues, inclusion and 

exclusion of component stocks. Thus, the KLCI is constantly updated to take any such 

changes into account.

3.4 The Performance of the KLCI

In terms of performance, the KLCI reached its highest peak at 1275.32 points at 

the end of 1993. This was an increase of 98% over the level at the end of 1992. At this 

time, it was ranked third among the world’s top performers. The KLCI outperformed the
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indices of several developed and regional bourses, including the Tokyo (2.9%), New York 

(13.7%), London (20.1%), Singapore (59%) and Bangkok (88.4%) markets, but was lower 

than the gains of 115.7% and 154.4% in the Hong Kong and Manila markets, respectively. 

The KLCI performances remained bullish thereon, and it managed to remain above the 

1000-point barrier until the occurrence of the Asian Currency Crisis in 1997. From the 

high of 1271.57 points on 25 February 1997, the KLCI declined by 794 points or 62.5% to 

477.16 points on 12 January 1998. Due to the further declining health of the corporate 

sector and the high level of non-performing loans shouldered by the banking sector, the 

KLCI suffered its lowest level ever at 262.70 points on 1 September 1998. Nevertheless, 

prices rebounded strongly from 2 September 1998 to 7 September 1998 as the KLCI 

gained 69% to close at 445.06 points. The periods under study (2001 and 2002) saw the 

KLCI hover between 600 and 800 points, clearly on the path to recovery. Since then, the 

KLCI has continued on its upward path. As of 26 May 2006, the KLCI stood at 930.75 

points.

3.5 Trading on the KLSE

In the early days, trading on the KLSE was conducted through an open-outcry 

system, where stock and share prices were determined through the bid and ask levels 

shouted out by traders on the trading floor of the KLSE. Since 1992, the KLSE has 

operated a fully automated trading system. All buy-ins and odd lots trading are fully 

automated. All trades are executed via the ‘SCORE* or System on Computerised Order 

Routing and Execution maintained by the KLSE. Dealers will now key the bid and ask 

prices into their Broker Front End (BFR) terminals, which will electronically transmit all
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orders to SCORE. SCORE will then match these prices and orders. Once matching is 

completed, SCORE will confirm the successful transactions back to the dealers and also 

channel the same data to the Securities Clearing Automated Network System Sendirian 

Berhad or ‘SCANS’ for clearance. SCANS, which is a subsidiary of the KLSE, will be 

responsible as a co-ordinator to clear all trades transacted between the brokers. In other 

words, all payments for and delivery of stocks and shares are made by the brokers, on 

behalf of their clients, to SCANS and vice versa. Today, such functions are also fully 

automated via desktop banking and the central depository system.

Prior to July 1992, physical scrips that represented the stocks and shares issued by 

public listed companies were widely used for delivery in settlement of trades. To enhance 

settlement efficiency, the scripless system or Central Depository System (CDS) was fully 

implemented in November 1992. Under the CDS, all stocks and shares issued and traded 

on the KLSE will merely be book entries into and out of investors’ securities or CDS 

accounts maintained with the Malaysian Central Depository Sendirian Berhad or MCD. 

The role of the MCD (a subsidiary of the KLSE) is to maintain a fully computerised 

Register of Depositors and administer the book entries for movement of stocks and shares 

transacted from one investor’s CDS account to another.

Trading takes place five days a week (Monday-Friday), except on public holidays 

and other market holidays (when the Exchange is declared closed by the Bursa Malaysia 

Committee). There are two trading sessions on any market day: the morning session from 

9:00 a.m. to 12:30 p.m. and the afternoon session from 2:30 p.m. to 5:00 p.m. The 

transaction day is denoted as day "t", whilst the following trading day (a day when KLSE 

is open) will be denoted as day "t+l" and so forth. Orders may be entered between 8:00

56



a.m. and 12:30 p.m. and between 2:00 p.m. and 5:00 p.m. The KLSE orders entered for 

each of the two trading sessions in a day are good for that session only. Unexecuted 

orders at the end of a trading session have to be re-entered into the system for execution.

Trades transacted on the KLSE must be cleared via the t+3 Rolling Settlement 

System (T+3 RSS), whereby settlement must conclude no later than t+3, i.e., the third 

trading day after the transaction day. There are three types of settlement basis under the 

T+3 RSS:

1. Ready Basis

Payments for purchases transacted on day t must be made no later than 12.30 p.m. 

on day t+3. Delivery for a sale contracted must be made no later than 12.30 p.m. 

on day t+2. Hence, a seller has to ensure that there is sufficient credit balance of 

the stocks and shares that he has sold in his CDS account before they are due for 

delivery.

2. Designated Basis

Stocks and shares that have been declared "designated counters" by the KLSE will 

follow the designated basis settlement period. This means that a seller must have 

sufficient stocks and shares in his CDS account prior to placing a sell order with 

his broker. Likewise, a buyer of designated stocks will need to make payment for 

the stocks and shares prior to placing a purchase order with his broker.

3. Immediate Basis

A seller will have to ensure that the stocks and shares are available for sale in his 

CDS account not later than 12.30 p.m. on day t+l, whereas buyers must make 

payment to their brokers not later than 12.30 p.m. on day t+2.

57



To summarise, this chapter has provided an overview of the history and the 

development of the KLSE. It has also discussed the types of board that are available for 

company listing on the KLSE. The chapter then discusses why and how the KLCI was 

established and designed. Finally, the chapter discusses the current trading practices on 

the KLSE. The next chapter, Chapter 4, will focus on the investigation of the intraday 

volatility dynamics of the KLCI using 5-minute frequency returns data. The same set of 

data will also be extensively used in Chapter 5. The next chapter will introduce several 

modelling approaches mainly based on the PGARCH models in conjunction with the 

jointly estimated and the two-step filtration estimation techniques.
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CHAPTER 4

INVESTIGATING INTRADAY VOLATILITY DYNAMICS

4.0 Introduction

The work presented in this chapter is the first of the three major investigations 

concerning the dynamics of intraday volatility on the KLSE. The second investigation 

focuses on the evaluation of performance and quality of various volatility forecasts 

produced by competing modelling approaches that employ GARCH-based models. We 

also evaluate the adequacy of the various VaR models constructed from the available 

volatility forecasts. All these works will be discussed in detail in Chapter 5. The third and 

final investigation centres on the modelling and forecasting of daily realized volatility. 

We will ascertain whether the adoption of the daily realized volatility as a proxy for the 

true daily volatility will improve the forecasting performance of the standard daily 

GARCH-based models. This work will be discussed in Chapter 6.

In this chapter, we attempt to establish the existence of the double U-Shaped 

periodicity pattern for the Malaysian market. We also investigate the usefulness of the 

GARCH-based models in modelling this intraday periodicity pattern using high 

frequency data. In this respect, we make comprehensive performance comparisons 

between thirteen competing modelling approaches. In order to ascertain the potential of 

the PGARCH models, we formulate twelve out of the thirteen modelling approaches 

using the PGARCH structure, while the remaining modelling approach is the standard
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unadjusted GARCH-based model. The best performance is determined by assessing 

which modelling approach has the best model fit.

This chapter is divided into four major sections. In the first section, we discuss the 

background of the work that will be covered in the chapter. In the second section, we 

provide details on the properties of the various conditional volatility models as well as the 

descriptions of the various modelling approaches. In the third section, we provide details 

on the data and the test procedures, as well as the results. We finish in the fourth section 

with a summary of the major findings. All results are presented at the end of the chapter.

4.1 Chapter Background

Estimates of asset return volatility are used to assess the risk of many financial 

instruments. Extensive research has shown us that volatility is the single most important 

variable in finance and it has become a vital component for consideration in investment 

management, security valuation, risk management and hedging strategies. Moreover, 

with the rapid growth in volatility-dependent financial derivative markets and products, 

the need for more sophisticated methods of measuring volatility becomes more crucial.

Another significant application of asset return volatility forecasts is in the 

application of VaR models. Manganelli and Engle (2001), for example, define VaR as the 

maximum potential loss in the value of a portfolio of financial instruments for a given 

probability over a certain horizon. Today, VaR has become the standard measure that 

financial analysts use to quantify market risk (market risk estimates the uncertainty of 

future earnings, due to changes in market conditions). The application of VaR has 

become so widespread that currently central banks in many major money centres, led by
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the Basle Committee on Banking Supervision (Basle Committee, 1996), require their 

supervised banks to measure the market risk of their assets and trading books within a 

VaR framework.

Given the above requirements, understanding how to obtain reliable measures 

(and forecasts) of asset volatility and how their dynamics evolve over time is essential. 

Research in this field is very active and many leading papers initially relied on the daily 

data in producing volatility estimates and forecasts. The increasing availability of 

financial market data at intraday frequencies has resulted in a change in focus. Moreover, 

it has led to the development of better ex post volatility measurements as well as an 

important information source for volatility forecasts. To this end, it is widely observed 

that return volatility varies systematically over the trading day, and this pattern is highly 

correlated with the intraday variation of trading volume and bid-ask spreads.

Many empirical studies have shown that standard time series models are 

inefficient with regards to modelling the dynamics of the intraday return volatility 

process.1 In particular, new time series models need to take account of the seasonal or 

periodic volatility patterns that most high-frequency asset returns exhibit. These models 

should also be able to deal with well-known characteristics which are common to many 

financial time series. These include volatility clustering, i.e. the tendency of large 

absolute changes to be followed by large absolute changes and small absolute changes 

tend to be followed by small absolute changes; leptokurtosis (fat-tailed ness) in the 

unconditional distribution of financial time series returns; and the “leverage effect”,

1 See, for example, Andersen and Bollerslev (1998a), who attribute this to the inadequacy of the standard 
time series models of volatility when applied to high frequency returns data. Their analysis of intraday 
volatility patterns in the DM-USD foreign exchange and S&P 500 equity markets demonstrated that 
traditional time series methods, when applied to raw high frequency returns, may give rise to erroneous 
inferences about the return volatility dynamics.
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which refers to the negative correlation between changes in stock prices and volatility. 

The introduction of conditional volatility models has made it possible to capture these 

characteristics, and in certain cases, to explicitly model the intraday periodicity patterns.

The introduction of the periodic GARCH (PGARCH) models by Bollerslev and 

Ghysels (1996) made it possible to explicitly incorporate periodicity into the parameters 

of the model. They show how practical estimation and extraction of the intraday periodic 

component of return volatility is both feasible and indispensable for a meaningful 

intraday dynamic analysis. Particular attention is focused on the differing impact of the 

periodic pattern on the dynamic return features at the various intraday frequencies. This is 

a significant development because it demonstrates that not only could the PGARCH 

model high frequency financial data more effectively than previous GARCH-based 

models, but also that it could successfully model periodically the systematic patterns in 

average volatility across the trading day.

To this end, many empirical studies using high frequency intraday data from a 

variety of markets indicate that PGARCH models give superior return volatility forecasts 

than those produced from standard GARCH models.2 Taylor (2004) points out that many 

of the PGARCH modelling applications thus far have used data that are characterized by 

a U-shaped intraday volatility pattern and it may not be appropriate to use the existing 

PGARCH models if the volatility pattern is otherwise characterized. In order to overcome 

this deficiency, Taylor (2004) introduces augmented versions of the PGARCH models 

that allow for more complex conditional volatility dynamics, i.e., models capable of

2 See, for example, Martens, Ghang and Taylor (2002), for an application using the DM/USD and the 
YEN/USD exchange rates; Clements and Taylor (2003), for an application using FTSE100 index futures 
data; and Taylor (2004), for an application using data on the cocoa futures on LIFFE.
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allowing for intraday return volatility patterns that may not conform to the U-shaped 

pattern.

Although the PGARCH model is potentially more efficient than the standard 

GARCH-based models, it poses a problem in that a large number of coefficients are 

required if there are many time periods included within each periodic cycle under study. 

In this respect, the model could become less parsimonious and the computation time 

involved may result in difficulty in estimating the periodic conditional return volatility. 

One solution to this problem is to apply the FFF-based variables advocated by Andersen 

and Bollerslev (1997, 1998a) in conjunction with the PGARCH model. The FFF version 

of the PGARCH model proves to be parsimonious and, more importantly, allows for 

smooth volatility dynamics. Recent studies by Martens, Chang and Taylor (2002) and 

Taylor (2004) indicate that this approach provides a highly significant improvement over 

the use of standard GARCH models in forecasting future return volatility. However, 

Taylor (2004) argues that the FFF version of the PGARCH model is rather restrictive 

because the technique assumes equality in conditional volatility at the beginning and end 

of the periodic cycle (due to the patterns generated by the cosine and sine functions). As 

an alternative, Taylor (2004) introduces the spline version of the PGARCH model, which 

is capable of estimating different cubic spline functions between selected points (or 

knots) within a specific periodic cycle. This technique not only overcomes the rigidness 

of the functional form of the FFF version of the PGARCH, but is also capable of 

producing superior and consistent VaR measures.

An interesting alternative to the simultaneous models of conditional volatility and 

periodicity described above is the two-step filtration approach proposed by Andersen and
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Bollerslev (1997, 1998a) and employed by Martens, Chang and Taylor (2002). The two- 

step filtration approach is attractive because it is computationally less expensive than the 

jointly estimated PGARCH models that include periodic components. The first stage of 

the technique involves estimating and extracting the seasonal pattern, i.e. removing the 

periodicity from the financial data. The seasonal pattern could be estimated by either 

using simple intraday means of (log) squared returns or the fitted values from an ordinary 

least squares regression of (log) squared returns on FFF-based variables. The second 

stage is to estimate the filtered or adjusted data using GARCH-based models. A recent 

study by Martens, Chang, and Taylor (2002) indicates that modelling using the two-step 

approach based on FFF variables performs only marginally worse than similarly defined 

jointly estimated PGARCH models. Further modelling using the two-step filtration 

approach based on different financial markets with different microstructures could well 

be important in determining the robustness and the potential of this technique.

The KLSE, which is the focus of this study, is different from other established 

markets in that the trading session closes over the lunch time period i.e., it has two 

trading sessions. Studies of markets that are closed during lunch hours indicate that asset 

return volatility follows a double U-shaped pattern over the trading day.3 Previous studies 

on the U-shaped intraday volatility pattern of asset return on the KLSE include the works 

of Mohammed et al. (1995) and De Brouwer (2002). Neither of these studies, however, 

attempted to distinguish the trading periods into a morning session and an afternoon 

session. This results in a single U-shaped pattern in volatility of returns across the trading 

day, i.e., following the dynamics of trading for markets that have a single trading session

3 See, for example, Chang et al. (1993), and Andersen, Bollerslev, and Cai (2000), for the Japanese 
market; Cheung et al. (1994) for the Hong Kong market; and Bildik (2000) for the Turkish market.
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instead of two in a trading day. Taylor (2004) argues that for markets that are closed 

during lunch hours, the intraday returns should not be characterized by a smooth U- 

shaped pattern because during the lunch time period, accumulated information may be 

compounded into prices at the opening of the afternoon session, resulting in an abrupt 

and discontinuous increase in return volatility at this point of time. It is to this gap in the 

literature that this chapter contributes. The results using high frequency KLCI returns 

data show that as in many other Asian markets which close during lunch hours, the KLSE 

does exhibit a double U-shaped intraday periodicity in return volatility.

This chapter also compares the performance of several different conditional 

volatility models within the parametric GARCH class of models on high frequency KLCI 

returns data. The following specifications of GARCH models were analysed: GARCH 

(generalized ARCH), EG ARCH (exponential GARCH) and TGARCH (threshold 

GARCH). In order to evaluate whether these models adequately capture the volatility 

process and the intraday pattern of return volatility, we employ the periodic versions of 

these models (generically referred to as PGARCH models) introduced by Bollerslev and 

Ghysels (1996). We compare the results of volatility modelling using four competing 

variables incorporated into the conditional volatility equation of the five GARCH-based 

models above. The four variables used in the estimations are:

1. Half-hourly dummy variables equally spaced throughout the trading day,

2. Quarter-hourly dummy variables positioned at the opening and the 

closing of the trading period and quarter-hourly dummy variables 

positioned just before and after the lunch time period,

3. Flexible Fourier form based variables,
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4. Spline variables based on selected points within the trading day.

This estimation approach is known as the joint estimation technique of the PGARCH 

model. Based on the same four variables, we estimate the parameters of the three 

GARCH models using the two-step filtration technique of Andersen and Bollerslev 

(1997, 1998a). The testing methodology is described in detail in Section 4.2. We use the 

non-periodic GARCH models as the benchmark to evaluate the performance of 

PGARCH models estimated jointly and estimated using the two-step technique. The aim 

is to ascertain whether the joint estimation and two-step filtration techniques offer 

significant advantages or contributions in terms of superior model fits over the standard 

GARCH models.

It is believed that this is the first study of its kind on the KLSE. The contribution 

of this study is that it not only provides an assessment of new techniques in modelling the 

intraday periodicity of the KLSE, but the modelling techniques also utilize high 

frequency 5-minute returns KLCI data that has not been employed in any of the earlier 

studies. We hope this effort will lead to a better understanding of the intraday volatility 

dynamics of the index returns in this market. We believe with better modelling 

techniques, we could improve on the accuracy and the quality of forecasts of the stock 

index. This is crucial for asset pricing and hedging, considering that the KLCI is also 

used as the underlying basis for stock index futures trading.
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4.2 Conditional Volatility Models

This section gives a brief description of the non-periodic and periodic conditional 

volatility models adopted in the study. Throughout this description, the models 

considered will reflect the fact that KLCI returns are used in the empirical section.

4.2.1 Non-Periodic GARCH-based models

All the GARCH class of models used in this study consists of a linear mean and 

volatility equation. The mean equation is based on the assumption that (log) returns, Rh 

are generated under weak-form efficiency, thus

R,=M  + e, ~N(0,cr?) (4.1)

where / = {/ e Z+ : 1 < t < T}, p  is the mean of the process, y/,_{ is the information set 

available at time /-l, and N  is a continuous distribution with support over (-00, 00) and 

mean equal to zero and conditional variance equal to <7,2 (also denoted as ht). With the

exception of the GARCH-M models, we will use this particular mean equation for the 

rest of the GARCH models applied in this study, i.e., the GARCH models will 

differentiate themselves by changes in the specification of the volatility equation.

We note that information arrival in financial markets is clustered (hence 

conditional variance, ht , is time-dependent). Therefore, the volatility equations of

GARCH models analysed in the study are formulated such that current conditional 

variance is parameterised to depend upon q lags of the squared error and p  lags of the 

conditional variance.
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4.2.1.1 GARCH (p,q) model

This model assumes that conditional variance, hh is a weighted average of past 

squared residuals with weights that approach zero. The GARCH model also allows the 

conditional variance to be dependent upon previous lag.

h,=a> ! ,+ £ / ? ,A -,-  (4 2 >
»=1 y=l

The process is covariance stationary if and only if ai + ... + Oq + Pi + ... + /3p<\.

4.2.1.2 EGARCH (p,q) model

The Exponential GARCH (EGARCH) model introduced by Nelson (1991) 

assumes that ht is an asymmetric function of past si’s as defined by:

In*, = ® + £  a,g(2,_,) + X  A  ln(CT/- ,) ■ (4-3)
i - i  j - i

where z, -  Et I a  { is the normalized residual series. The value of g(zt ) depends on 

several elements. Nelson (1991) suggests that to accommodate the asymmetric relation 

between stock returns and volatility changes, the value of g(zt ) must be a function of

both the magnitude and the sign of z t .

4.2.1.3 TGARCH (p,q) model

This model was introduced by Rabemananjara and Zakoian (1993) and is able to 

capture asymmetric responses to positive and negative errors in the conditional variance,
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p
K =® + £ a ,£ ,2_, + + 'Z P ,K ,  • (4.4)

To allow for asymmetry in volatility, the basic GARCH (p,q) model is augmented by 

including a dummy variable, dt_j, that takes the value of unity if s t_x<0, and zero 

otherwise. Asymmetry in volatility is inferred if y * 0 and a leverage effect is present in 

the data if the estimated value of y  is positive.

4.2.2 Jointly Estimated Periodic GARCH model

In order to incorporate the periodic variation in any standard GARCH model, 

Bollerslev and Ghysels (1996) propose the inclusion of a set of periodic dummy variables 

in the conditional volatility equation of the particular GARCH model. For example, the 

PGARCH model of Bollerslev and Ghysels (1996) allows all coefficients in (4.2) to take 

a different value for each s time period within the periodic cycle of length S, where 

s = { s e Z + : 1 < s < S} and s and t are related by a function denoted by s(t) such that

However, for reasons of parsimony, a restricted version of their model is considered in 

this study. In particular, only the constant term in (4.2) in the conditional equation is 

allowed to vary over the periodic cycle. Under this assumption, the standard PGARCH 

model can now be expressed as follows:

(4.5)

where
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and the dummy variable, Ds,h takes a value of unity if the current observation is in the 5th

also be similarly formulated for other conditional volatility models in (4.2.1.1), (4.2.1.2) 

and (4.2.1.3). In this study, this method is known as the jointly estimated dummy version 

o f the PGARCH model.

Taylor (2004) warns that a potential problem with the above model is that a large 

number of coefficients may be required if the number of periodic dummy variables 

incorporated is large, i.e., if there are many time periods included within each periodic 

cycle (i.e., S  is large). This makes the approach more expensive in terms of the time 

needed to estimate the parameters of the models. Taylor (2004) suggests that it might be 

possible to sidestep this problem by selecting periodic dummy variables that span more 

than one time period. However, this assumes that conditional volatility is constant within 

the time period covered by the dummy variables and then changes abruptly whenever a 

new time period is entered.

Andersen and Bollerslev (1997, 1998a) provide a solution to this problem and 

propose the use of the FFF-based variables to model periodic conditional volatility. As 

mentioned previously, this form can be used in conjunction with a PGARCH model and 

if we apply this to (4.2), for example, then the formulation will be as follows:

stage of the periodic cycle, and a value of zero otherwise. The dummy variables could

h > = ' L  S c,r c o s
f 2 nqs(ff
< S j

r27iqs(t)\' q p

q=1 V V s  J)
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Where S  is the number of return intervals per day, Q is the tuning parameter to determine 

the order of the Fourier expansion, and S  is the coefficient of the FFF-based variable. In 

this study, this approach is referred to as the jointly estimated FFF version o f the 

PGARCH model

Again, a similar formulation can be used in conjunction with the other non

periodic volatility models described above. Taylor (2004) argues that this approach may 

not be adequate for markets that are closed over the lunch period due to the disruption in 

the continuity of conditional return volatility. The problem lies with the measure of time 

used with the periodic components estimated in the conditional volatility equation. Taylor 

(2004) argues that the periodic components in (4.6) are measured according to what is 

termed business time, with / e{ l,2 ,...,T } . Such time does not continue during the lunch 

period. It will only commence after the lunch period is over. Therefore, the zero 

increment in time during the lunch period implies that the periodic components in (4.6) 

do not change over this period. This in turn implies that conditional return volatility 

before and after the break is equal. This assumption is somewhat restrictive and may not 

necessarily reflect the actual volatility process before and after the lunch period. As an 

alternative, Taylor (2004) suggests that the estimation of the periodic components should 

utilise a measure of time that is based on the actual timing of events. This is referred to as 

calendar time. In order to reflect this more appropriate time measure, the s(t) and S  in 

(4.8) are replaced with sc(t) and Sf, respectively, where sc(t) is the calendar time of the /th 

observation within the periodic cycle, and Sf is the calendar time of the last observation 

of the periodic cycle. This approach is, henceforth, referred to as the jointly estimated 

augmented FFF version o f the PGARCH model.

71



In order to overcome the somewhat restricted functional form of the FFF version 

of the PGARCH model, Taylor (2004) introduces the spline-based PGARCH model. This 

model makes use of cubic spline functions in the estimation of the conditional return 

volatility and is therefore able to capture complex periodic volatility dynamics. 

Specifically, the spline-based PGARCH model allows different cubic spline functions to 

be estimated between selected points (referred to as knots) within the periodic cycle. In 

this instance, we let kj denote the yth knot, with kj = \kj e Z + :0< kj < 5 }, j  e {0,1,.

and ko = 0. Therefore, if we apply this to (4.2), for example, then the formulation will be 

as follows:

y '- i
a U D J + « 2  J D J + «3 j D j

s ( t ) - k j ,3 \

M y-/
(4.7)

Where kj is the knot position within the periodic cycle, j  is the number of knots, and Dj

is the coefficient of the spline variable. Dj equals unity ifs(/) > k j , and zero otherwise.

This modelling approach is henceforth referred to as the jointly estimated spline version 

o f the PGARCH model. This approach has a similar embedded restriction to the jointly 

estimated FFF version of the PGARCH model, when an intraday trading break occurs. 

The use of calendar time instead of business time may allow the periodic components of 

conditional return volatility to vary between the opening and closing of the trading day. 

Again, in order to do this, we need to replace s(t) and S  in (4.7) with sc(t) and Sf 

respectively. This approach is henceforth referred to as the jointly estimated augmented 

spline version o f the PGARCH model.
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4.2.3 Two-step Filtration Periodic GARCH model

An alternative approach to the jointly estimated approaches described above is to 

apply the two-step filtration approach employed by Andersen and Bollerslev (1997, 

1998a) and Martens, Chang, and Taylor (2002). This approach differs in the sense that 

there is a clear separation in the process of modelling the volatility and estimating the 

periodicity components. The first step in this approach is to estimate the periodic 

components of the data used to give the fitted periodic components. The next step is to 

remove these fitted periodic components from the asset returns. This is done by dividing 

the returns by the fitted periodic components. The final step involves modelling these 

filtered returns using one’s preferred volatility model(s).

The simple intraday means of squared returns are often used to estimate the 

periodic components (see Martens, Chang and Taylor, 2002, for example). In this study, 

we estimate the fitted components based on an ordinary least squares (OLS) regression of 

squared returns on several hourly dummy variables especially created to capture the 

intraday periodicities present in the dataset. Once the intraday returns data are filtered, we 

model the volatility using the standard GARCH specifications in (4.2.1.1), (4.2.1.2) and

(4.2.1.3). We refer to this approach as the two-step dummy version o f the PGARCH 

model. An alternative periodic component that we use to filter the intraday returns is the 

fitted periodic components from an ordinary least squares regression of squared returns 

on the FFF-based variables. We call this procedure the two-step FFF version o f the 

PGARCH model. The filtered dataset is then modelled again using the various standard 

GARCH specifications described earlier. Similarly, applying FFF-based variables 

estimated using the calendar time, we have the two-step augmented FFF version o f the
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PGARCH model. Next we use the spline variables in the regression to obtain the fitted 

periodic components. Again we divide the returns by these fitted periodic components to 

remove the periodicity from the return series. We then estimate the conditional return 

volatility using the five GARCH models explained earlier. This approach is henceforth 

known as the two-step spline version o f the PGARCH model. In order to account for the 

closure during the lunch period, we use periodic components that are measured using the 

calendar time and apply the two-step filtration method. This approach is therefore known 

as the two-step augmented spline version o f the PGARCH model,

4.3 Data, Tests and Results

This section proceeds by describing the data and the methodology used to 

investigate periodicities in conditional return volatility. It also describes in detail how the 

thirteen modelling approaches are constructed and used in the volatility estimation. This 

section concludes by reporting the results of each approach in terms of model fit.

43.1 Data

The minute frequency KLCI return data obtained for this study span the period 

commencing on 29 January 2001 and ending on 29 December 2002 and were obtained 

from the KLSE. The market is open from Monday through Friday. The morning trading 

session runs from 9.00am until 12.30 pm, and then closes for a two-hour lunch break. 

The afternoon trading session then commences at 2.31pm and runs until 5.00pm. The 

data set gives 146,160 observations, which cover 406 trading days. However, following 

the recommendations of Andersen and Bollerslev (1998a), we convert the data into five-
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minute frequency returns. This frequency is deemed to be low enough to avoid stale data, 

and high enough to avoid loss of information. We compute the 5-minute return intervals 

as the first logarithmic difference of the index prices measured in percentages terms. 

Specifically, the 5-minute returns of the KLCI are computed as follows:

tf,= 100*log(p,//?,.,) (4.8)

where Rt is the 5-minute return and p t is the level of a price index at time t. We obtained 

30,044 5-minute return observations and we use these observations in the estimation of 

all the volatility models described above.

The properties of the KLCI returns for the period under study are presented in 

Table 4.1. The mean return is negative, indicating that the market is still bearish after 

experiencing the impact of the Asian financial crisis in 1997-1998. The figures for the 

maximum, the minimum and the standard deviation of returns over the period are also 

high, indicating a volatile and unsettled market. The return series skewness coefficient is 

fairly positive, implying that the distribution of returns is not symmetric but skewed to 

the right. The coefficient of the sample kurtosis is very high (more than the normal value 

of 3), indicating that the distribution is highly leptokurtic. The Jarque-Bera statistic for 

the normality test is highly significant at the 1% level of confidence, suggesting that the 

null hypothesis of normality can be rejected.

4.3.2 Periodicity Tests

The first stage of the analysis involves an examination of intraday volatility. 

Figure 4.1 shows the plot of the KLCI returns for the sample period of 406 trading days. 

The plot clearly demonstrates the volatility clustering effect, which is common in many
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financial asset returns. Volatility appears to occur in bursts and the plot also shows that 

the returns are more volatile in the early part of the sample than in the latter part. This is 

not surprising, considering that the Malaysian economy was still at the recovery stage 

following the Asian financial crisis in 1997-1998. The situation appears to be improving 

towards the end of 2 00 2 .

Next, we compute the mean intraday value of absolute returns using the entire 

sample of data. The plot of the mean absolute returns is presented in Figure 4.2. The plot 

indicates that volatility is high during the first ten minutes and even higher during the last 

five minutes of the trading period. The plot exhibits the presence of U-shaped patterns for 

both the morning and afternoon trading sessions. It is interesting to note that there is a 

surge of volatility five minutes prior to the start of the lunch break. After the lunch break, 

the volatility appears to drop steadily until it picks up again in the middle of the afternoon 

session, then drops again before rising to the end of the session. The highest volatility of 

the trading day occurs a few minutes before the close of trade. A plot of the intraday 

standard deviation of returns during the day is presented in Figure 4.3. The plot appears 

to confirm the double U-shaped pattern observed for the morning and afternoon trading 

sessions. These results are consistent with those found by Andersen, Bollerslev and Cai 

(2000) using Japanese data, Bildik (2000) using Turkish data, and Taylor (2004) using 

UK data.

The second stage of the analysis is to design appropriate periodic dummy 

variables to be incorporated into the conditional equations of the volatility models. We 

create twelve half-hourly dummies (7 dummies for the morning session and 5 dummies
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for the afternoon session), which are incorporated into the volatility equations in (4.2),

(4.3) and (4.4) above. The dummies are constructed along the following time intervals:

Dj = 9.01am to 9.30am Dg = 2.31pm to 3.00pm

D2 = 9.31am to 10.00am D9 = 3.01pm to 3.30pm

D3 = 10.01am to 10.30am Dio = 3.31pm to 4.00pm

D4 = 10.31am to 11.00am Du = 4.01pm to 4.30pm

D5 = 11.01am to 11.30am D12 = 4.31pm to 5.00pm

D6 = 11.31am to 12.00 noon 

D7 = 12.01pm to 12.30pm 

These dummies are selected and designed to capture the periodicities over the two trading

sessions. The lag structure p  and q of (1,1) are used in the PGARCH models. This result

in 3 competing PGARCH based models. In order to detect the presence of intraday

periodicity, we apply Wald tests designed to test for periodicities for each of the models.

This is done by restricting the coefficients of the dummy variables to equal zero. The

results of the Wald tests are presented in Table 4.2. All results obtained are statistically

significant at the 5% level of confidence, indicating the existence of strong intraday

periodicities in the KLCI returns. The results suggest the need to consider the impact of

periodicity on the dynamic return features when modelling intraday volatility.

4.3.3 Model Estimation

After finding evidence of intraday periodicities in return volatility, specific 

models of conditional volatility are now estimated. Thirteen different modelling 

approaches are employed in this study. Each approach, in some form, utilizes the 

GARCH class of models described in Section 4.2. Specifically, the non-periodic standard
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conditional volatility models that are used to estimate the conditional variance are the 

GARCH, the TGARCH and the EGARCH models. All the GARCH-based models are 

estimated based on the lag structure of ( 1,1) and by maximizing the quasi-maximum 

likelihood function, with Bollerslev-Wooldridge robust quasi-maximum likelihood 

(QML) covariance/standard errors. In addition, all estimation of parameters is carried out 

using the EViews Version 3.1 software package. We determine the best approach by 

comparing the model fit produced by the best GARCH-based model in each category.

A brief description of the thirteen different approaches is now given. The first 

approach is to estimate the KLCI returns data using non-periodic conditional volatility 

models, i.e., with no periodic components incorporated in the conditional variance 

equation. This approach is known in this study as the non-periodic GARCH model and 

this is referred to as approach Tl. The next twelve approaches have periodic components 

incorporated into the conditional variance equation to account for the periodicity in the 

volatility process. Specifically, the second approach employed half-hourly dummy 

variables that are equally spaced throughout the trading day. This approach is referred to 

as the jointly estimated full dummy version of the PGARCH model and is denoted as 

approach T2. The third approach is the two-step full dummy version of the PGARCH 

model and is referred to as approach T3. The fourth approach employed 4 quarter-hourly 

dummy variables which are positioned at the following time intervals:

Di = 9.01am to 9.15am D3 = 2.31pm to 2.45pm

D2 = 12.15pm to 12.30pm D4 = 4.45pm to 3.30pm

This approach is therefore referred to as the jointly estimated partial dummy version of

the PGARCH model and is denoted as approach T4. The fifth approach is the two-step

partial dummy version of the PGARCH model and is referred to as approach T5. The
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sixth approach is the jointly estimated FFF version of the PGARCH model and is referred 

to as approach T6 . The seventh approach is the two-step FFF version of the PGARCH 

model and is referred to as approach T7. The eighth approach is the jointly estimated 

augmented FFF version of the PGARCH model and this is referred to as approach T8 . 

The ninth approach is the two-step augmented FFF version of the PGARCH model and 

this is referred to as approach T9. The tenth approach is the jointly estimated spline 

version of the PGARCH model and this is referred to as approach T10. The eleventh 

approach is the two-step spline version of the PGARCH model and this is referred to as 

approach T11. The twelfth approach is the jointly estimated augmented spline version of 

the PGARCH model and this is denoted as approach T12. The final approach is to 

estimate the conditional return volatility using the two-step augmented spline version of 

the PGARCH model and this is referred to as approach T13. Please refer to Section 4.2 

for detailed descriptions of the basis of each approach.

The first step in T1 is to estimate the three GARCH-based models described 

above. The estimated parameters obtained for each of the three GARCH-based models 

are then compared to select the best model fit. Model fit is measured in three ways: the 

log likelihood (LL), the Akaike Information criterion (AIC) and the Schawrz Information 

criterion (SIC). However, given the penal nature of the latter two measures, the best 

model fits are determined by the model that produces the minimum values of AIC and 

SIC. The estimated parameters for each class, together with their associated Bollerslev- 

Wooldridge heteroskedastic-consistent standard errors, and measures of model fit, are 

given in Table 4.3.
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The results for the non-periodic GARCH models indicate that the conditional

A
return volatility appears to follow a stationary process (a + J3 < 1), but exhibits a 

significant degree of time dependency, as indicated by the significant coefficients on past 

conditional return volatility and past squared errors. The best overall model is the 

EGARCH model with a LL value of 31981.16, an AIC value of -2.1287 and a SIC value 

o f-2.1273.

The T2 approach follows the same systematic process as above. Each class of 

GARCH models is now estimated with the twelve half-hourly time-interval dummy 

variables. These dummy variables are included in the specification of the GARCH class 

of models in order to account for the intraday volatility process. The estimated 

parameters are presented in Table 4.4. The results indicate that the T2 approach appears 

to be competent in capturing the periodicities in the intraday data. In fact, the overall 

results demonstrate that the T2 approach produces superior results across all classes of 

GARCH models when compared to the models estimated in Tl. This is evinced by the 

values of the log likelihood functions and the information criteria, which provide a much 

greater degree of fit than obtained previously. This suggests that the inclusion of periodic 

components into the variance equations, as demonstrated in the PGARCH structure, does 

offer a superior description of the volatility dynamics than the non-periodic GARCH 

models. The results obtained are consistent with the results of previous studies discussed 

earlier. The most appropriate model is again given by the EGARCH model, with values 

of LL of 33788.20, AIC of -2.2483, and SIC of -2.2438. One may argue that restricting 

the periodicity to the intercept term in the conditional volatility equation in this approach 

seems restrictive. In order to assess whether allowing the intercept to vary is correct, we
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consider the term a  (a  is more likely to vary more than the term p  in intraday analysis 

in equation 4.2 above) to also vary over the trading day. In this respect, we multiply each 

of the twelve dummy variables with the squared error term e from the previous period 

and together with the twelve dummy variables, we estimate the return volatility using the 

GARCH model. The result is shown in Table 4.16. It could be observed that in every 

respect, this approach is comparable to the T2 approach in terms of model fit.

The T3 approach used in this study is based on the periodicity pattern estimated 

using intraday squared returns. This involves an OLS regression of squared returns on the 

twelve dummy variables described above to obtain the fitted periodic components, which 

are subsequently used to filter the returns. The filtered returns are then used in the 

parameter estimation for each class of the standard GARCH models employed in the 

study. The log likelihood (and information criteria) is then adjusted for each case by 

multiplying the mean adjusted returns by the value of the fitted periodic components and 

the estimated conditional variances by the squared value of the fitted periodic 

components. The adjusted log likelihood (and information criteria) for each specification 

of the GARCH models is then compared to determine the best model fit. The parameter 

estimates are presented in Table 4.5. The GARCH model gives the best fit, with a LL 

value of 33308.53, an AIC value of -2.2171, and a SIC value of -2.2159.

The T4 approach is almost similar to the T2 approach. The only difference as 

mentioned earlier is in the form of two quarter-hourly dummy variables which are 

positioned at the opening and closing of the trading period respectively and another two 

which are placed just before and after the lunch time period. The results are presented in 

Table 4.6. The EGARCH model provides the best model fit with values of LL of
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33581.42, AIC of -2.2350 and SIC of -2.2325. Similarly, the mechanics of the T5 

approach mirror the mechanics of the T3 approach. The results are reported in Table 4.7. 

This time around the GARCH model produces the best model fit with values of LL of 

33392.07, AIC o f-2.2226 and SIC o f-2.2215.

The next approach, T6 , attempts to model the periodicities in the data with the 

FFF-based variables instead of the half-hour and quarter-hour dummy variables. This is 

carried out within the PGARCH structure described in section 4.2.2. This approach uses 

the business time measurement.4 We then attempt to find the optimum tuning parameter 

Q to determine the order of the Fourier expansion. Using a grid search over the space, q = 

{1,...,5}, the optimal fit is achieved when the number of FFF variables (sin 6t and cos 6t)

equals 2, i.e. Q - 2 .  The detailed results are presented in Table 4.8.5 The results again 

indicate that periodicity is significant in the data. The best model fit is given by the 

EGARCH model with a LL value of 33012.92, an AIC value of -2.1971 and a SIC value 

of -2.1946. The seventh approach, T7, is the two-step FFF version of the PGARCH 

model. The fitted periodic components are estimated with Q = 2, the same as that used in 

T4. An OLS regression using the four FFF variables is then performed to generate the 

fitted periodic components, which are subsequently used to produce the filtered returns. 

The adjusted returns are then used in the parameter estimation for each class of GARCH

4 To clarify the definitions of time, assume that we are using five-minute frequency returns over the trading 
day, and that trading starts at 9:00 and finishes at 17:00, with a two-hour break in trading between 12:30 
and 14:30. This means that the business and calendar times of the last observations of the periodic cycle,
S and Sf, will be 72 (= 6 x 12) and 288 (= 24 x 12), respectively. Therefore, at the opening at 9:00, s(t)/S 
equals 1/72 and sc(t)/Sf equals 1/288, and at the lunch-time close in trading, s(t) equals 42/72 and sc(t)/Sf 
equals 42/288. However, at the opening of trading at 14:30, s(t)/S still equals 42/72, but s0̂ ) /^  has 
increased to 66/288. It is this difference in the sc(t)/Sf values at the close of morning trading and the 
opening of afternoon trading that allows conditional return volatility to be different at these points in 
time. Similarly, at the close of the trading at 17:00, s(t)/S equals unity while sc(t)/Sc equals 96/288. 
Therefore, only the use of the latter ratio will enable the periodic components to differ, and hence, will 
allow conditional return volatility to differ over these points in time

5 Results pertaining to other values of Q are available upon request.
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model employed in the study. Similarly, the log likelihood is then adjusted for each case 

by multiplying the mean adjusted returns by the fitted periodic components’ value and 

the estimated conditional variances by the square of the fitted periodic components’ 

value. The results are presented in Table 4.9. The TGARCH model provides the best 

model fit, with values ofLL of 32670.37, AIC o f-2.1745 and SIC o f-2.1731.

The next approach, T8, is very similar to the technique applied for approach T6. 

The only difference now is that instead of using business time to model the periodicities 

in the return volatility, we use the calendar time measurement with Sf = 288 and sc = 

1,...,42, 66,...,96,...,288 (sc is the 5-minute return interval). The trading break is 

indicated by the gap in the 43rd time interval and 66th time interval respectively. For 

comparison purposes, we apply the same tuning parameter Q = 2, which is used in 

approaches T6 and T7, in order to determine the order of the Fourier expansion. The 

results are reported in Table 4.10. The best model fit is again given by the EGARCH 

model, with a LL value of 32652.07, an AIC value of -2.1731 and a SIC value of -2.1706. 

The technique applied in approach T9 is similar to the one used in approach T7. The 

difference lies in the use of the calendar time measurement, which has been described in 

approach T8 above, instead of the business time measurement. Again, the fitted periodic 

components are estimated with Q = 2, the same as that used in approaches T6, T7 and T8 

above. The results are presented in Table 4.11. The TGARCH model provides the best 

model fit with values of LL of 32564.72, AIC of -2.1675 and SIC of -2.1661.

The next approach, T10, attempts to model the periodicities in the data with the 

spline-based variables. This approach uses the business time measurement with S  =72 

and s = 1,...,72 (5 is the 5-minute return interval). In order to estimate the periodic
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components, we need to select the appropriate number and position of knots to obtain the 

optimal AIC statistics. Based on the number of observed 5-minute time intervals, we 

assume that four (approximately) equally spaced intraday knots occur at the following 

positions: at ko = 0, kj = 19, = 37 and k$ = 56 respectively. We then incorporate these

knots into the estimation of the conditional variance as formulated in equation 4.7 for 

each of the three GARCH models. The results are reported in Table 4.12. The results 

indicate that periodicity is significant in the data. The best model fit is given by the 

EGARCH model with a LL value of 33698.65, an AIC value of -2.2422 and a SIC value 

of -2.2375. The eleventh approach, Ti l ,  is the spline version of the two-step filtration 

technique. The fitted periodic components are estimated with the four knots identified in 

approach T6 . An OLS regression is then performed to generate the fitted periodic 

components, which are subsequently used to produce the filtered returns. The adjusted 

returns are then used in the parameter estimation for each of the five standard GARCH 

models. The log likelihood is then adjusted for each case by multiplying the mean 

adjusted returns by the fitted periodic components’ value and the estimated conditional 

variances by the square of the fitted periodic components’ value. The results are 

presented in Table 4.13. The TGARCH model provides the best model fit, with values of 

LL of 33551.49, AIC o f-2.2332, and SIC o f-2.2318.

The twelfth approach, T12, and the thirteenth approach, T13, are similar in almost 

all aspects to the approaches T10 and T il respectively. However, the T12 and T13 

approaches make use of calendar time. Unlike T10 and T11, for both T12 and T13, the 

positions of the knots are assumed to be at ko = 0, kj = 24, = 48 and k  ̂ =72
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respectively.6 Similar estimation techniques to those described in approaches T10 and 

T11 are then applied. The results for the T12 are reported in Table 4.14. The best model 

fit is again given by the EGARCH model with a LL value of 33736.84, an AIC value of - 

2.2447 and an SIC value of -2.2399. The results for the T13 approach are presented in 

Table 4.15. The TGARCH model provides the best model fit, with values of LL of 

33536.20, AIC o f-2.2321 and SIC o f-2.2308.

The relative performances of all the modelling approaches described above are 

presented in Table 4.164. The GARCH model with the best model fits for each approach 

is reported, together with the corresponding LL, AIC and SIC statistics. The performance 

of the approaches is then ranked based on the AIC (for in-sample evaluation) and the SIC 

(for out-of-sample evaluation) statistics. It is clear that based on the AIC and SIC 

rankings, the best performing approach appears to be the T2 approach. This is followed 

by T12, T10, T4, T11, T13, T5, T3, T6 , T7, T8 , T9 and finally Tl. It is clear from Table 

4.16 that any modelling approach that accounts for periodicity produces superior results 

to the non-periodic approach. This suggests that the PGARCH structure provides a better 

explanation and superior information regarding the periodicity effects in intraday 

conditional volatility. The overall results suggest that the best approach to estimate the 

conditional return volatility for the KLCI returns is to apply approach T2, that is, to 

jointly estimate the half-hourly dummy variables in the conditional variance equation. 

However, if we are to group the periodic approaches according to the types of variable

6 Different positions of the knots are selected because the calendar time measurement is used, i.e., Sf = 
288, instead of the business time measurement, where S = 72. The usage of the calendar time 
measurement is useful as it allows the modelling of the discontinuity in conditional return volatility 
during trading breaks. Time, therefore, does increase, and periodic components do change during the 
break, implying that conditional return volatility before and after the break will not be the same. The 
different positions of the knots for T10 and T il are therefore different, due to the longer time period 
measurement.
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used in the estimation, there is a strong indication that approaches that incorporate spline- 

based variables generally perform better than the approaches that employ half-hourly 

dummy variables and the FFF-based variables, respectively. This is true for both AIC and 

SIC rankings, if we exclude the performance of the T2 approach.

It is also difficult to establish whether the jointly estimated technique is superior 

to the two-step filtration technique. For example, for the dummy version of the PGARCH 

models, it is apparent that the jointly estimated technique is superior to the two-step 

filtration technique. For the FFF version of the PGARCH models, similar finding is 

observed. For modelling based on business and calendar time measurement, the jointly 

estimated based technique is superior to the two-step filtration technique. It is also 

observed that modelling based on business time produces superior model fit than 

modelling based on calendar time (the model fit of approaches T6 and T7 are better than 

the model fit of approaches T8 and T9). Approach T6 provides the best overall result for 

the FFF version of the PGARCH models. For the spline version of the PGARCH models, 

the position is much clearer. The jointly estimated technique gives superior model fit over 

the two-step filtration technique when both the business time and calendar time 

measurements are applied. The best results for the spline-based variables is produced by 

T10, which is a jointly estimated technique using the calendar time measurement. There 

is, however, no clear evidence suggesting the superiority of approaches that utilize the 

calendar time measurement over the approaches that are based on the business time 

measurement.

Another important finding from the observation based on Tables 4.3 to 4.15 is 

that the EGARCH model specification produced consistently superior results to other
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GARCH specifications used in all thirteen approaches. This suggests that modelling 

intraday conditional volatility, at least for the KLSE, using the EGARCH could provide a 

better explanation for the asymmetric relationship between returns and volatility changes.

The performance and the ability of each approach (T1 to T13) to capture features 

of the intraday volatility periodicity can be examined further by inspection of Figures 4.4 

to 4.10. A clear periodicity is apparent from the plots. The return volatility is found to be 

high during the opening of trading and the time just prior to the lunch hour. Volatility is 

also high at the opening of trading after the lunch hour. The highest volatility occurs 

during the last five minutes of trading. From Figure 4.10, it is clear that the T2 approach 

produces the best volatility fit when compared against the other ten competing 

approaches. It is also clear from Figures 4.4 to 4.9 that in all cases, the PGARCH models 

produced superior volatility fit to the non-periodic GARCH models. This confirms the 

findings above.

4.4 Conclusion

This study provides a detailed investigation into intraday volatility dynamics in 

the Malaysian stock market. The data used are based on 5-minute frequency returns of 

the KLCI series. Two types of test are conducted. The first focuses on the intraday 

volatility pattern or periodicity of returns across the trading day, taking into account the 

closure for the lunch break. Consistent with previous studies, we find that the intraday 

volatility is dominated by two separate U-shaped patterns: one for the morning trading 

session and another in the afternoon trading session. The heightened volatility around the 

opening and closing of the two separate trading sessions on the KLSE is broadly
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consistent with the predictions from theoretical market microstructure models based on 

the strategic interaction of asymmetrically informed agents suggested by Admati and 

Pfleiderer (1988) and Foster and Viswanathan (1990).

The second test is intended to provide insights into the methods of modelling the 

intraday volatility periodicity on the KLSE. The results generally indicate that modelling 

approaches that incorporate periodic components in estimating the conditional variance 

provide a greater degree of model fit and better performance compared to the 

performance of the non-periodic conditional volatility models. We compared the 

performance of the two-step filtration technique of Andersen and Bollerslev (1997, 

1998a) with the jointly estimated technique, both within the PGARCH structure 

suggested by Bollerslev and Ghysels (1996), using four types of variables, namely half- 

hourly and quarter-hourly dummy variables, FFF-based variables and spline-based 

variables. These variables are designed to capture the periodicity effect in the returns 

data. Consistent with the findings of Martens, Chang and Taylor (2002), we find some 

evidence that the jointly estimated technique does provide superior performance over the 

two-step filtration technique. This is the case when we find that the jointly estimated full 

dummy version of the PGARCH model approach produces the best performance among 

the thirteen approaches evaluated in this study. The jointly estimated technique is clearly 

dominant when half-hour and quarter-hour dummy variables and spline-based variables 

are used in the estimation of the conditional volatility equations. We also find that the 

two-step filtration approaches incorporating the spline-based variables and FFF-based 

variables offer an encouraging and less (computationally) expensive alternative to the 

jointly estimated modelling approaches. For example, both the two-step spline version
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and the two-step augmented spline version of the PGARCH models produced comparable 

performance to the more expensive approach of the jointly estimated spline version and 

the jointly estimated augmented spline version of the PGARCH models evaluated in the 

study.

The overall results of this chapter support the case that the practical estimation 

and extraction of the intraday periodic component of return volatility is both feasible and 

indispensable for a meaningful intraday dynamic analysis. We evaluate whether 

modelling the intraday conditional volatility using the calendar time measurement, as 

suggested by Taylor (2004), offers any significant advantage over the business time 

measurement. The results are somewhat mixed, but a very encouraging result is shown by 

the jointly estimated augmented spline version of the PGARCH model approach, which 

uses the calendar time measurement. The gap in performance is very small when this 

approach is compared using AIC and SIC rankings in relation to the best approach, which 

is the jointly estimated full dummy version of the PGARCH model.

Finally, the results show that at least for the GARCH-based models, there is a 

motivation for using the EGARCH model to accommodate the asymmetry in the 

relationship between returns and volatility changes. Results for the jointly estimated 

based approaches indicate that the EGARCH model consistently produce superior model 

fit compared to the other GARCH-based models used in the study.

The findings from this chapter could provide a clue to the expected forecasting 

performance of the thirteen modelling approaches, which will be discussed in detail in 

Chapter 5. Findings from previous studies suggest that the success of a volatility 

modelling approach lies in its out-of-sample forecasting power. Therefore, it would be

89



interesting to see whether the jointly estimated full dummy version of the PGARCH 

model approach could continue to produce superior performance among the thirteen 

approaches. The same could be expected for the modelling approaches that utilized 

spline-based variables, which have also shown strong in-sample performances. We would 

also like to see whether the two-step filtration based modelling approaches (which are 

computationally less expensive) could produce superior forecasting performance 

compared with the jointly estimated based modelling approaches. In addition, it would be 

interesting to assess the accuracy of the forecasts from the thirteen modelling approaches 

in mapping the ex post realized volatility, which we suspect will exhibit the double U- 

shaped intraday periodicity pattern.
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Table 4.1: Summary Statistics for the KLCI Returns

This table reports the various statistics for the KLCI returns. The period under examination is 
from 29 January 2001 to 29 December 2002

KLCI Returns

Mean -0.0004
Standard Deviation 0.1131
Skewness 0.8621
Kurtosis 183.1164
Maximum 3.5741
Minimum -4.37351

Jarque-Bera 40614251
(0.0000)1

1 The number in brackets is the p-value for the corresponding Jarque-Bera statistic.
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Table 4.2: Testing for Periodicity

This table contains the F-statistics under the Wald tests associated with the joint estimate using the
PGARCH periodicity test for intraday periodicity (F(D = 0)) . The dummies are constructed along thea
following time intervals:

D\ = 9.01 am to 9.30am Dg = 2.31 pm to 3.00pm
D2 = 9.31 am to 10.00am D9 = 3.01pm to 3.30pm
Dj = 10.01am to 10.30am D\0 -  3.31pm to 4.00pm
D4 = 10.31 am to 11.00am D\ x = 4.01 pm to 4.30pm
£>5 = 11.01am to 11.30am Dn -  4.31pm to 5.00pm
D6 = 11.31am to 12.00 noon 
£>7 = 12.01pm to 12.30pm

These tests are based on 5-minute returns frequency of the KLCI returns (Rt). These tests are conducted for 
the sample period commencing on 29 January 2001 and ending on 29 December 2002. The significance of 
these tests is denoted by ** (1% significance) and * (5% significance).

Periodicity Test

II o w

Model

GARCH 6.3992**

TGARCH 6.4026**

EGARCH 4.7305**
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Table 4.3: Comparison of the Non-Periodic GARCH models -  KLCI

This table describes the parameter estimates of the Non-Periodic GARCH models described and denoted in 
the text as approach Tl. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The 
log likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) 
are also given. The significance of these estimates is denoted by ** (1% significance) and * (5% 
significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0004** -0.0006** -0.0008

(0.0005) (0.0004) (0.0005)
Volatility Eauation

cti 0.1527* 0.1467**
(0.0110) (0.0120)

Pi 0.8042** 0.8031**
(0.0104) (0.0104)

(RESID<0)* a, 0.0137
(0.01431)

|RES|/SQR[GARCH](1) 0.2492**
(0.0180)

RES/SQR[GARCH]( 1) -0.0020
(0.0083)

EGARCH(l) 0.9487**
(0.0058)

C 0.0005** 0.0005** -0.0008**
(5.07E-05) (5.08E-05) (0.0005)

Model Fit
LL 31952.65 31954.42 31981.56
AIC -2.1269 -2.1269 -2.1287
SIC -2.1258 -2.1255 -2.1273
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Table 4.4: Comparison of the Jointly Estimated Full Dummy version of the PGARCH Model -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T2. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. B! to Bn are 
the coefficients of the dummy variables described in Table 4.2 above. The log likelihood (LL), the Akaike 
Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are also given. The significance 
of these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0013** -0.0013** -0.0013**

(0.0004) (0.0004) (0.0004)
Volatilitv Eauation

<*1 0.0432**
(0.0036)

0.0428**
(0.0042)

P. 0.9370** 0.9374**
(0.0048) (0.0048)

(RESIDO)* a, 0.0003
(0.0038)

|RES|/SQR[GARCH](1) 0.0673**
(0.0073)

RES/SQR[GARCH]( 1) -0.0002
(0.0032)

EGARCH(l) 0.9956**
(0.0009)

B, -0.0039** -0.0039** -0.5152**
(0.0009) (0.0009) (0.0311)

b2 -0.0027** -0.0026** -0.3696**
(0.0005) (0.0004) (0.0227)

b3 -0.0025** -0.0025** -0.3044**
(0.0005) (0.0005) (0.0253)

b4 -0.0027** -0.0027** -0.3789**
(0.0005) (0.0005) (0.0252)

b5 -0.0025** -0.0025** -0.2872**
(0.0005) (0.0005) (0.0242)

b6 -0.0027** -0.0027** -0.3778**
(0.0005) (0.0005) (0.0254)

b7 -0.0021** -0.0020** -0.1753**
(0.0005) (0.0005) (0.0378)

b8 -0.0027** -0.0027** -0.3730**
(0.0005) (0.0005) (0.0332)

B, -0.0026** -0.0025** -0.3361**
(0.0005) (0.0005) (0.0249)

Bio -0.0024** -0.0024** -0.2902**
(0.0005) (0.0005) (0.0232)

B„ -0.0026** -0.0026** -0.3512**
(0.0005) (0.0005) (0.0300)

C 0.0026** 0.0026** 0.2467**
(0.0005) (0.0005) (0.0195)

Model Fit
LL 33369.82 33369.89 33788.20
AIC -2.2205 -2.2204 -2.2483
SIC -2.2163 -2.2160 -2.2438
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Table 4.5: Comparison of the Two-step Full Dummy version of the PGARCH Models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T3. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since B? is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0075 -0.0077 -0.0069

(0.0051) (0.0049) (0.0052)
Volatility Eauation

0.0226**
(0.0022)

0.0224**
(0.0028)

Pi 0.9741**
(0.0022)

0.9739**
(0.0022)

(RESIDO)* a, 0.0007
(0.0031)

| RES |/SQR[G ARCH] (1) 0.0620**
(0.0079)

RES/SQR[GARCH](1) -0.0009
(0.0037)

EGARCH(l) 0.9957**
(0.0009)

C 0.0031** 0.0031** -0.0445**
(0.0008) (0.0008) (0.0057)

Model Fit
LL -39173.43 -39173.34 -39229.18
Adjusted LL 33308.53 33308.62 33252.79
AIC 2.6081 2.6082 2.6119
Adjusted AIC -2.2171 -2.2169 -2.2133
SIC 2.6092 2.6095 2.6133
Adjusted SIC -2.2159 -2.2156 -2.2119
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Table 4.6: Comparison of the Jointly Estimated Partial Dummy version of the PGARCH Model -
KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T4. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. Bj to B4 are 
the coefficients of the dummy variables described as below respectively:

Dj = 9.01am to 9.15am 
D2 = 12.15 pm to 12.30 pm 
D3 = 14.31 pm to 14.45 pm 
D4 = 16.45 pm to 17.00 pm

The log likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion 
(SIC) are also given. The significance of these estimates is denoted by ** (1% significance) and * (5% 
significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0011* -0.0012* -0.0012**

(0.0005) (0.0005) (0.0004)
Volatility Eauation

0.1479** 0.1473**
(0.0184) (0.0195)

P. 0.5967**
(0.0416)

0.5966**
(0.0366)

(RESIDO)* a, 0.0466
(0.0250)

|RES|/SQR[GARCH](1) 0.1455**
(0.0111)

RES/SQR[G ARCH]( 1) 0.0021
(0.0052)

EGARCH(l) 0.9743**
(0.0034)

B, -0.0005 -0.0005 -0.3149**
(0.0006) (0.0007) (0.0235)

b2 -0.0001 -0.0001 0.2306**
(0.0005) (0.0005) (0.0518)

b3 -0:0002 -0.0002 -0.0579
(0.0004) (0.0004) (0.0444)

b4 -0.0001 -0.00003 0.5595**
(0.0010) (0.0010) (0.0242)

C 0.0090** 0.0090** -0.2583**
(0.0009) (0.0008) (0.0221)

Model Fit
LL 23050.44 22949.12 33581.42
AIC -1.5340 -1.5272 -2.2350
SIC -1.5318 -1.5247 -2.2325
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Table 4.7: Comparison of the Two-step Partial Dummy version of the PGARCH Models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T5. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since R* is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0094 -0.0092 -0.0083

(0.0050) (0.0049) (0.0051)
Volatility Eauation

a, 0.0262**
(0.0024)

0.0265**
(0.0031)

P. 0.9699** 0.9699**
(0.0024) (0.0024)

(RESIDO)* a! -0.0006
(0.0033)

|RES|/SQR[GARCH]( 1) 0.0711**
(0.0087)

RES/SQR[GARCH](1) 0.0007
(0.0038)

EGARCH(l) 0.9951**
(0.0011)

C 0.0036** 0.0036** -0.0512**
(0.0009) (0.0009) (0.0063)

Model Fit
LL -38987.65 -38987.57 -39051.60
Adjusted LL 33392.07 33392.15 33328.12
AIC 2.5957 2.5958 2.6000
Adjusted AIC -2.2226 -2.2225 -2.2184
SIC 2.5968 2.5972 2.6014
Adjusted SIC -2.2215 -2.2212 -2.2167
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Table 4.8: Comparison of the Jointly Estimated FFF version of the PGARCH models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T6. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The significance of these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0002 -0.0012** -0.0019**

(0.0004) (0.0004) (0.0004)
Volatility Eauation

Otj 0.0783** 0.0771**
(0.0058) (0.0065)

Pi 0.8826** 0.8848**
(0.0069) (0.0066)

(RESIDO)* a, 0.0039
(0.0073)

| RES |/SQR[G ARCH] (1) 0.1203**
(0.0109)

RES/SQR[GARCH](1) 0.0017
(0.0051)

EGARCH(l) 0.9877**
(0.0021)

Var 1 0.0002** 0.0068**
(2.67E-05) (0.0026)

Var 2 -0.0002** -0.0356**
(1.40E-05) (0.0023)

Var 3 0.0003** 0.0439**
(3.58E-03) (0.0052)

Var 4 -0.0001** -0.0469**
(2.17E-05) (0.0038)

C 0.0003** 0.0003** -0.1466**
(2.80E-05) (2.72E-05) (0.0145)

Model Fit
LL 32618.42 32625.42 33012.92
AIC -2.1709 -2.1713 -2.1971
SIC -2.1687 -2.1688 -2.1946
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Table 4.9: Comparison of the Two-step FFF version of the PGARCH models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T7. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since R2 is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0085 -0.0104* -0.0088

(0.0051) (0.0049) (0.0051)
Volatility Eauation

(Xi 0.0279** 0.0261**
(0.0024) (0.0029)

P. 0.9679** 0.9699**
(0.0027) (0.0025)

(RESIDO)* a, 0.0004
(0.0035)

|RES|/SQR[GARCH]( 1) 0.0731**
(0.0081)

RES/SQR[G ARCH]( 1) -0.0006
(0.0040)

EGARCH(l) 0.9947**
(0.0011)

C 0.0044** 0.0039** -0.0517**
(0.0009) (0.0008) (0.0058)

Model Fit
LL -40036.18 -40035.05 -40093.75
Adjusted LL 32669.27 32670.37 32611.67
AIC 2.6655 2.6655 2.6694
Adjusted AIC -2.1745 -2.1745 -2.1706
SIC 2.6666 2.6669 2.6708
Adjusted SIC -2.1734 -2.1731 -2.1692
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Table 4.10: Comparison of the Jointly Estimated Augmented FFF version of the PGARCH models -
KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T8. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The significance of these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0024** -0.0016** -0.0014**

(0.0004) (0.0004) (0.0004)
Volatility Eauation

a, 0.0991** 0.0949**
(0.0068) (0.0075)

P. 0.8598** 0.8591**
(0.0075) (0.0075)

(RESIDO)* a, 0.0079
(0.0088)

| RES |/SQR[G ARCH] (1) 0.1969**
(0.0161)

RES/SQR[GARCH](1) -0.0026
(0.0072)

EGARCH(l) 0.9477**
(0.0064)

Var 1 7.52E-05 6.88E-05 0.0036
(4.15E-05) (4.1 IE-05) (0.0087)

Var 2 -3.51E-05* -3.37E-05* -0.0094*
(1.54E-05) (1.54E-05) (0.0045)

Var 3 0.0003** 0.0003** 0.0644**
(4.66E-05) (4.60E-05) (0.0090)

Var 4 -0.0002** -0.0002** -0.0517**
(2.86E-05) (2.86E-05) (0.0064)

C 0.0004** 0.0004** -0.4107**
(3.85E-05) (3.83E-05) (0.0399)

Model Fit
LL 32571.01 32576.40 32652.07
AIC -2.1678 -2.1681 -2.1731
SIC -2.1656 -2.1656 -2.1706
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Table 4.11: Comparison of the Two-step Augmented FFF version of the PGARCH models — KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T9. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since R2 is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0097 -0.0099* -0.0086

(0.0049) (0.0049) (0.0049)
Volatility Eauation

a, 0.0307** 0.0279**
(0.0025) (0.0029)

P. 0.9644** 0.9675**
(0.0029) (0.0027)

(RESIDO)* a, 0.0007
(0.0035)

|RES|/SQR[GARCH]( 1) 0.0753**
(0.0076)

RES/SQR[G ARCH]( 1) -0.0008
(0.0037)

EGARCH(l) 0.9944**
(0.0011)

C 0.0052** 0.0045** -0.0531**
(0.0009) (0.0009) (0.0054)

Model Fit
LL -40090.39 -40088.53 -40131.49
Adjusted LL 32562.86 32564.72 32521.76
AIC 2.6691 2.6691 2.6719
Adjusted AIC -2.1674 -2.1675 -2.1646
SIC 2.6702 2.6705 2.6733
Adjusted SIC -2.1663 -2.1661 -2.1632
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Table 4.12: Comparison of the Jointly Estimated Spline version of the PGARCH models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T10. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The significance of these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0012** -0.0013** -0.0012**

(0.0004) (0.0004) (0.0004)
Volatility Eauation

0.0633** 0.0625**

P.
(0.0013)

0.9061**
(0.0016)

0.9064**

(RESID<0)* a, 

|RES|/SQR[GARCH](1) 

RES/SQR[GARCH]( 1) 

EGARCH(l)

K1

(0.0015)

0.1404*

(0.0016)
0.0013

(0.0021)

0.1481*

0.0705**
(0.0012)
-0.0003

(0.0009)
0.9949**
(0.0002)

22.7240*
(0.0602) (0.0602) (11.3708)

K2 -4.0279 -4.7234 -440.8920
(6.7163) (6.7149) (1254.2250)

K3 -3.9563 13.1251 302.1174
(211.9122) (211.8415) (39996.65)

K4 0.0817 0.0887 -20.1064
(0.0564) (0.0564) (13.3339)

K5 -4.2439 -5.5737 1395.085
(4.3829) (4.3813) (923.8201)

K6 301.0686 325.5863 271.2493
(288.5744) (288.6183) (63386.32)

K7 0.1705** 0.1518** -38.1993**
(0.0471) (0.0473) (13.2347)

K8 -41.2169** -41.3318** -316.5800
(2.5079) (2.5118) (848.8320)

K9 905.9667** 831.7836** 212.9649
(199.3422) (200.3341) (56702.69)

K10 -0.2449** -0.2502** -36.9277**
(0.0575) (0.0578) (13.7952)

Kll -52.6003** -50.0337** 2033.9910*
(5.0038) (5.0331) (1027.4290)

K12 454.1034 406.1318 98.8022
(296.9193) (298.6590) (64401.51)

C -0.0012** -0.0012** -0.3385**
(0.0001) (0.0001) (0.0277)

Model Fit
LL 33284.87 33281.73 33698.65
AIC -2.2147 -2.2144 -2.2422
SIC -2.2103 -2.2097 -2.2375
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Table 4.13: Comparison of the Two-Step Spline version of the PGARCH models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T il. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since R2 is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0113* -0.0111* -0.0096

(0.0050) (0.0049) (0.0052)
Volatility Eauation

a, 0.0247** 0.0249**
(0.0022) (0.0028)

Pi 0.9717** 0.9718**
(0.0022) (0.0022)

(RESIDO)* a, -0.0006
(0.0031) •

|RES|/SQR[GARCH](1) 0.0646**
(0.0078)

RES/SQR[GARCH](1) 0.0003
(0.0034)

EGARCH(l) 0.9955**
(0.0009)

C 0.0035** 0.0034** -0.0465**
(0.0008) (0.0008) (0.0056)

Model Fit
LL -39760.52 -39760.44 -39842.10
Adjusted LL 33551.40 33551.49 33469.83
AIC 2.6471 2.6471 2.6526
Adjusted AIC -2.2332 -2.2332 -2.2277
SIC 2.6482 2.6485 2.6539
Adjusted SIC -2.2321 -2.2318 -2.2263
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Table 4.14: Comparison of the Jointly Estimated Augmented Spline version of the PGARCH models
-KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T12. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The significance of these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0013** -0.0013** -0.0015**

(0.0004) (0.0004) (0.0004)
Volatility Eauation

oti 0.0625** 0.0621**

Pi
(0.0013)

0.9081**
(0.0015)

0.9079**

(RESIDO)* a, 

|RES|/SQR[GARCH](1) 

RES/SQR[GARCH]( 1) 

EGARCH(l)

K1

(0.0015)

0.1536**

(0.0015)
0.0009

(0.0021)

0.1534**

0.0703**
(0.0013)
-0.0003

(0.0009)
0.9952**
(0.0002)

26.3727**
(0.0230) (0.0232) (6.1101)

K2 -5.9993** -5.9852** -675.7031
(2.1298) (2.1446) (545.3857)

K3 77.9203 77.6183 495.1117
(55.0443) (55.3722) (14050.96)

K4 0.0203 0.0200 -2.0827
(0.0354) (0.0355) (10.0023)

K5 -6.2341* -6.1712** 1516.424*
(2.4278) (2.4284) (697.8170)

K6 355.8842** 354.0881* 351.0654
(136.1915) (136.6791) (39742.53)

K7 -0.3189 -0.3155 -99.9645
(0.3606) (0.3609) (71.8476)

K8 -55.4306 -55.4558 1215.923
(33.5288) (33.5448) (5920.305)

K9 414.1275 417.9437 149.2934
(769.2131) (769.8277) (146067.2)

K10 0.0706 0.0724 -65.0524**
(0.1124) (0.1124) (22.7732)

Kll -59.4579** -59.5813 -694.4943
(21.3565) (21.3681) (3775.867)

K12 331.0778 333.1204 117.4853
(790.9784) (791.4737) (147248.4)

C -0.0013** -0.0012** -0.3426**
(5.74E-05) (5.77E-05) (0.0184)

Model Fit
LL 33309.42 33309.38 33736.84
AIC -2.2163 -2.2162 -2.2447
SIC -2.2119 -2.2115 -2.2399
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Table 4.15: Comparison of the Two-Step Augmented Spline version of the PGARCH models -  KLCI

This table describes the parameter estimates of the PGARCH models described and denoted in the text as 
approach T13. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. The log 
likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information Criterion (SIC) are 
also given. The log likelihood is based on the data used to estimate each GARCH model specification. 
Since R1 is used to estimate the periodicity pattern, the adjusted log likelihood is reported for each case. 
The adjusted log likelihood is obtained by multiplying the residuals by the periodicity pattern as well as 
multiplying the estimated conditional variances by the square of the periodicity term. The significance of 
these estimates is denoted by ** (1% significance) and * (5% significance).

GARCH TGARCH EGARCH

Mean Eauation
C -0.0133** -0.0127** -0.0108*

(0.0049) (0.0049) (0.0051)
Volatility Eauation

a i 0.0249** 0.0256**
(0.0024) (0.0029)

Pi 0.9716** 0.9718**
(0.0025) (0.0024)

(RESIDO)* a, -0.0018
(0.0031)

|RES|/SQR[GARCH](1) 0.0638**
(0.0084)

RES/SQR[G ARCH]( 1) 0.0007
(0.0032)

EGARCH(l) 0.9957**
(0.0009)

C 0.0034** 0.0034** -0.0458**
(0.0008) (0.0008) (0.0060)

Model Fit
LL -39845.55 -39844.81 -39937.95
Adjusted LL 33535.45 33536.20 33443.05
AIC 2.6527 2.6528 2.6589
Adjusted AIC -2.2322 -2.2321 -2.2259
SIC 2.6539 2.6541 2.6603
Adjusted SIC -2.2311 -2.2308 -2.2246
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Table 4.16: Comparison of Modelling Approaches

This table reports the parameter estimates of the best performing models for each of the approaches 
denoted T1 -  T13 in the text. The statistics shown are the log likelihood (LL), the Akaike Information 
Criterion (AIC), and the Schwarz Information Criterion (SIC). Column 2 presents the best performing 
GARCH model specification under each individual approach. Ranking of overall best approach according 
to AIC and SIC statistics is shown under the reported statistics in columns 4 and 5 respectively.

Approach Best GARCH 
Model 

Specification
LL AIC

(Rank)
SIC

(Rank)

T1 Non-periodic GARCH 
model

EGARCH 31981.56 -2.1287
(13)

-2.1273
(13)

T2 Jointly estimated full 
dummy version of the 
PGARCH model

EGARCH 33788.20 -2.2483
(1)

-2.2438
(1)

T3 Two-step full dummy 
version of the PGARCH 
model

GARCH 33308.53 -2.2171
(8)

-2.2159
(8)

T4 Jointly estimated partial 
dummy version of the 
PGARCH model

EGARCH 33581.42 -2.2350
(4)

-2.2325
(4)

T5 Two-step partial dummy 
version of the PGARCH 
model

GARCH 33392.07 -2.2226
(7)

-2.2215
(7)

T6 Jointly estimated FFF 
version of the PGARCH 
model

EGARCH 33012.92 -2.1971
(9)

-2.1946
(9)

T7 Two-step FFF version of 
the PGARCH model

TGARCH 32670.37 -2.1745
(10)

-2.1731
(10)

T8 Jointly estimated 
Augmented FFF version of 
the PGARCH model

EGARCH 32652.07 -2.1731
(H)

-2.1706
(ID

T9 Two-step Augmented FFF 
version of the PGARCH 
model

TGARCH 32564.72 -2.1675
(12)

-2.1661
(12)
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Table 4.16: Comparison of Modeling Approaches (continued)

This table reports the parameter estimates of the best performing models for each of the approaches 
denoted T1 -  T13 in the text. The statistics shown are the log likelihood (LL), the Akaike Information 
Criterion (AIC), and the Schwarz Information Criterion (SIC). Column 2 presents the best performing 
GARCH model specification under each individual approach. Ranking of overall best approach according 
to AIC and SIC statistics is shown under the reported statistics in columns 4 and 5 respectively.

Approach Best GARCH 
Model 

Specification
LL AIC

(Rank)
SIC

(Rank)

T10 Jointly estimated Spline 
version of the PGARCH 
model

EGARCH 33698.65 -2.2422
(3)

-2.2375
(3)

T il Two-step Spline version of 
the PGARCH model

TGARCH 33551.49 -2.2332
(5)

-2.2318
(5)

T12 Jointly estimated 
Augmented Spline version 
of the PGARCH model

EGARCH 33736.84 -2.2447
(2)

-2.2399
(2)

T13 Two-step Augmented 
Spline version of the 
PGARCH model

TGARCH 33536.20 -2.2321
(6)

-2.2308
(6)

Jointly estimated full 
dummy version of the 
PGARCH model allowing 
a to vary periodically

GARCH 33547.40 -2.2316 -2.2244
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Figure 4.1: KLCI Returns

This figure shows the plot of the KLCI 5-minute returns for the 406 trading days used as the sample in the 
study. Index returns are computed by taking the first difference in log prices during various five-minute 
intervals over the trading days.
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Figure 4.2: In traday  Periodicity

This figure shows the intraday volatility o f the KLCI returns. Intraday volatility is computed by taking the 
means o f  absolute returns during various five-minute intervals over the trading day. The break in the curve 
indicates closure o f  trading during lunch hours.
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Figure 4.3: In traday  Periodicity

This figure shows the intraday volatility o f the KLCI returns. Intraday volatility is calculated by taking the 
standard deviation o f returns during various five-minute intervals over the trading day. The break in the 
curve indicates closure o f  trading during lunch hours.
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Figure 4.4: In traday  Return  Volatility

The chart below compares the mean realized and estimated intraday return volatilities using the following approaches: 

T1 = Non-periodic GARCH model
T2 = Jointly estimated full dummy version o f the PGARCH model 
T3 = Two-step full dummy version o f  the PGARCH model
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Figure 4.5: Intraday Return Volatility

The chart below compares the mean realized and estimated intraday return volatilities using the following approaches: 

T1 = Non-periodic GARCH model
T4 = Jointly estimated partial dummy version o f  the PGARCH model 
T5 = Two-step partial dummy version o f the PGARCH model
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Figure 4.6: In traday  Return Volatility

The chart below compares the mean realized and estimated intraday return volatilities using the following approaches:

T1 = Non-periodic GARCH model
T6 = Jointly estimated FFF version o f the PGARCH model
T7 = Two-step FFF version o f the PGARCH model
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Figure 4.7: In traday  Return Volatility

The chart below compare the mean realized and estimated intraday return volatilities using the following approaches: 

T1 = Non-periodic GARCH model
T8 = Jointly estimated Augmented FFF version o f  the PGARCH model 
T9 = Two-step Augmented FFF version o f  the PGARCH model

0.10

0.09 -

Realized T8 - T9
0.08 -

0.07 -

0.06 -

0.05 ■

0.04 -

0.03 -

0.02 ■

0.01 -

0.00
14.00 15.00 16.00 17.0010.00 11.00 12.00 13.009.00

Time of day



R
ea

liz
at

io
n 

an
d 

Fi
tte

d 
V

ol
at

ili
ty

Figure 4.8: In traday Return Volatility

The chart below compare the mean realized and estimated intraday return volatilities using the following approaches: 

T1 = Non-periodic GARCH model
T10 = Jointly estimated Spline version o f the PGARCH model 
T 11 = Two-step Spline version o f  the PGARCH model
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Figure 4.9: In traday  Return  Volatility

The chart below compare the mean realized and estimated intraday return volatilities using the following approaches: 

T1 = Non-periodic GARCH model
T12 = Jointly estimated Augmented Spline version o f  the PGARCH model 
T13 = Two-step Augmented Spline version o f the PGARCH model
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Figure 4.10: In traday Return Volatility

This figure shows the mean realized and estimated intraday return volatilities using the following approaches:

T1 = Non-periodic GARCH model
T2 = Jointly estimated full dummy version o f the PGARCH model 
T3 = Two-step full dummy version o f  the PGARCH model 
T4 = Jointly estimated partial dummy version o f the PGARCH model 
T5 = Two-step partial dummy version o f the PGARCH model 
T6 = Jointly estimated FFF version o f the PGARCH model

T7 = Two-step FFF version o f the PGARCH model
T8 = Jointly estimated Augmented FFF version o f the PGARCH model
T9 = Two-step Augmented FFF version o f the PGARCH model
T10 = Jointly estimated Spline version o f the PGARCH model
T 11 = Two-step Spline version o f  the PGARCH model
T12 = Jointly estimated Augmented Spline version o f the PGARCH model
T13 = Two-step Augmented Spline version o f the PGARCH model
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CHAPTER 5

EVALUATING VOLATILITY FORECASTS AND VALUE-at-
RISK (VaR) MODELS

5.0 Introduction

In Chapter 4, we demonstrated that volatility modelling using the PGARCH- 

based models produced superior model fit to the standard GARCH models. In 

particular, the jointly estimated full dummy version of the PGARCH model 

dominated all the other modelling approaches. In addition, we found that for the 

jointly estimated based approaches, the EG ARCH model, which was used in 

conjunction with the PGARCH formulation, clearly produced better results compared 

with the results of the symmetric GARCH and TGARCH models with similar 

formulation. Furthermore, it is also interesting to note that with the exception of the 

dummy-based variable used in approach T2, the spline-based PGARCH models 

showed superior performances compared to the PGARCH models with the FFF-based 

variables.

In this chapter, we are going to assess the forecasting power of all the 

modelling approaches discussed earlier. We believe that a good forecasting model 

should be one that can withstand the robustness of an out-of-sample test - a test design 

that is closer to reality. To this end, we are not only going to measure the accuracy of 

the forecasting performance of each of the modelling approaches, but more 

importantly, we are going to evaluate the quality of the forecasts produced. In 

addition, we are also going to construct VaR models with the available forecasts and 

evaluate the economic significance of these models in terms of adequacy.
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Following this introduction, section 5.1 discusses some aspects of volatility 

forecasting using high-frequency data, as well as some details on the VaR measures. 

Section 5.2 details the construction of data that provide the basis for our subsequent 

empirical analysis. We will also discuss the details of how the volatility forecasts 

generated by the thirteen volatility modelling approaches are evaluated in terms of 

performance and accuracy. We then discuss how the VaR models are constructed and 

the tests applied to evaluate the quality of these VaR models. In section 5.3, we 

discuss the results of the in-sample fits and the out-of-sample forecasting performance 

of the various GARCH models estimated using the thirteen volatility modelling 

approaches described in Chapter 4. We also compare and evaluate the VaR models 

constructed from the various GARCH forecasts using the coverage tests of 

Christoffersen (1998) and the regression-based tests developed by Clements and 

Taylor (2003). We finish in section 5.4 with concluding remarks. All results are 

reported at the end of the chapter.

5.1 Chapter Background

There is no question that the accuracy of volatility forecasting has received 

much attention recently, not only from academics and financial market participants, 

but also from policy makers who are concerned about the stability and the well being 

of the economy. The growing attention on volatility forecasting is not surprising 

considering the impact of asset return volatility on financial markets. However, the 

complex dynamics inherent in the volatility process mean that rather different results 

may be obtained depending on the model used and on the market conditions. For 

example, large price swings in stock, bond, foreign exchange, commodity and energy 

markets in today’s globally interconnected financial markets have proven to be a
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serious concern to all parties. Numerous instances of financial instability, such as the 

1997 Asian financial crisis (with the associated collapse of stock markets), and a 

number of widely publicized losses suffered by major corporations and banks, are 

partly due to adverse and volatile market movements.1 For these reasons, much effort 

has been made in trying to understand the dynamics of asset return volatility. Only 

when the nature of return volatility is sufficiently understood can the search for 

superior modelling techniques begin.

This intensive endeavour, pursued by academics and practitioners alike, has 

resulted in a large literature on volatility modelling and forecasting.2 However, most 

of the works done in this area have until recently utilised interday data rather than 

intraday data. The development of intraday databases, spanning a host of financial 

instruments and markets, has presented a new challenge to the modelling and 

forecasting of asset return volatility. The availability of the so-called “ultra high 

frequency” (Engle, 2000) tick data has made it possible to use high frequency data to 

model the intraday volatility patterns of asset returns. This application of volatility 

models within the day is a natural extension of the daily models examined so widely 

in the past. The outcomes of many of the studies have resulted in a richer 

understanding of the intraday volatility generating process, revealing some behaviours 

that were not observed at daily and lower frequencies.3 The obvious question now is 

“does the use of high frequency data produce better volatility forecast performance?” 

A study by Andersen, Bollerslev, Diebold and Labys (2003), for example, found that 

this could be the case. They go further by suggesting that forecast improvement is not 

only due to the application of high frequency data, but also that the information

1 See, for example, the collapses of the Enron Corporation of the United States in 2001, and Barings 
Bank of the UK in 1995.

2 See, for example, Poon and Granger (2003), for a detailed survey of 93 published and working papers.
3 See, for example, Taylor (2004), on intraday and interday volatility periodicities in cocoa fiitures 

contracts traded on the Euronext.liffe exchange.
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content in high frequency data is useful for forecasting at longer horizons, such as 

monthly or quarterly periods. On the negative side, however, they found that standard 

volatility models used for forecasting at the daily level cannot readily accommodate 

the information in intraday data. Moreover, the results show that when these models 

are specified for the intraday data, they are generally found not to be sufficiently 

successful in capturing the longer interdaily volatility movements. This finding does 

not augur well, for it highlights a serious limitation of the GARCH models in 

modelling intraday asset return volatility. This limitation exists because the GARCH 

models were originally developed and designed to capture features of financial time 

series measured at daily (and lower) frequencies. An earlier study by Andersen and 

Bollerslev (1998a) confirmed that this is the case when they found that the GARCH 

models provide seemingly poor forecasts of daily volatility when standard forecast 

evaluation criteria are imposed on high frequency data. Predictably, these findings 

have led to the perception that GARCH models are of limited practical use in studies 

involving the use of high frequency data.

What could be the shortcomings of the GARCH models when applied to high 

frequency data? Empirical findings by Figlewski (1997) suggest that all GARCH 

models share two significant weaknesses as forecasting tools. Firstly, the models 

seem to require a large number of observations or data points for the estimation to be 

robust. Secondly, the GARCH models are subject to the general problem of fitting the 

sample data. It is found that, in general, the more complex the construction of the 

GARCH model (i.e. the presence of more parameters), the better it will tend to fit a 

given sample data and the quicker it will tend to fail out-of-sample. For any procedure 

to be useful in forecasting, it must be sufficiently stable over time that one can fit 

coefficient estimates on historical data and be reasonably confident that the model
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will continue to hold over time. Nevertheless, the standard GARCH model and its 

derivatives are still useful because they serve as a benchmark for comparison and 

evaluation purposes with respect to other new models such as the stochastic volatility 

models and models based upon “realized volatility” proposed by Andersen, 

Bollerslev, Diebold and Labys (2003).

As mentioned above, one important use of volatility forecasts, which has 

grown substantially in importance over recent years, is as an input to financial risk 

management. One of the most popular approaches to financial risk management is 

what is known as VaR. In general, VaR is a measure of the market risk of a portfolio. 

It quantifies, in monetary terms, the exposure of a portfolio to future market 

fluctuations.4 It is, at present, a regulatory disclosure requirement by the Basle 

Committee on Banking Supervision (1996,1998) for capital adequacy and in financial 

reports. While the concept is simple and attractive, there is no consensus on how best 

to implement VaR. Rather, in practice, there are a wide variety of alternative models 

that are used in the generation of VaR forecasts, with each alternative model tending 

to yield different VaR forecasts. As such, there is a need to assess the quality of these 

VaR forecasts, for it is often found that different methodologies can yield different 

VaR measures for the same portfolio, sometimes leading to significant errors in risk 

management. Consequently, there has been a surge in interest in the empirical 

literature in measuring the quality of alternative VaR implementations and in tackling 

the problem of model selection. Among the more popular volatility models that are 

used in VaR estimation are the GARCH-based models. They have been tested

4 J.P Morgan (1996), for example, defines VaR as a measure of the maximum potential change 
expected in the value of a portfolio with a given probability over a pre-determined horizon.
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extensively and have been proven useful in the generation of VaR forecasts in 

developed markets, but less so in emerging capital markets.5

The aim of this chapter is therefore to combine and advance the two literatures 

in volatility forecasting and financial risk management via VaR modelling. This 

chapter will attempt to address the question of the usefulness of GARCH-based 

models in explaining past volatility and forecasting the future volatility of stock index 

returns for the KLSE. In this respect, we undertake an extensive analysis of out-of- 

sample forecasts in an effort to gain a better understanding of volatility predictability. 

To this end, we employ the GARCH-based models and the thirteen volatility 

modelling approaches introduced in the previous chapter. More specifically, we will 

evaluate whether the incorporation of periodic components in the volatility models 

produces better forecasting performance than the standard non-periodic GARCH 

model. We will address whether one volatility modelling approach is significantly 

better than another among the thirteen approaches employed in the earlier chapter. To 

do this, we will apply the forecast comparison test proposed by Diebold and Mariano 

(1995), and the forecast encompassing test developed by Harvey, Leyboume and 

Newbold (1998). These two tests are important because they provide statistical 

significance to the quality of forecasts produced by the various modelling approaches. 

In view of the economic significance of VaR, we will also assess the adequacy and 

quality of the VaR measures produced through the forecasts generated by the 

GARCH-based models by applying the coverage tests of Christoffersen (1998) and 

the regression-based tests proposed by Clements and Taylor (2003).

As mentioned earlier, this study is important because the KLSE is one of the 

largest emerging capital markets in Asia. It has different risk and return characteristics

5 See, for example, Christoffersen, Diebold and Schuermann (1998), Lopez (1999), Berkowitz and 
O’Brien (2002), Brooks and Persand (2003), Giot and Laurent (2004), and Bredin and Hyde (2004).
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as well as different institutional structures from developed markets. It is hoped that 

this study will cast light on the behaviour and intraday forcastability of volatility via 

an evaluation of VaR risk management on the KLSE. We also hope to contribute to 

the scarce literature on similar studies in emerging capital markets.

5.2 Data and Methodology

The same set of KLCI data described in Chapter 4 is utilized in this chapter. 

The data set consists of high frequency data measured at 5-minute intervals over the 

period from 29 January 2001 to 29 December 2002. This set of data produces 30044 

observations or 406 days with 72 5-minute frequency observations in a trading day. 

This setting will be the benchmark for testing a number of related objectives. The 

basic methodology involves the estimation of the various GARCH-based model 

parameters using an initial set of data and the application of these parameters to later 

data, thus forming out-of-sample forecasts. The total sample of 30044 observations is 

therefore split into two parts: the first 22644 observations (306 days) are used for the 

in-sample estimation of the parameters of the various GARCH-based models 

employed by the thirteen volatility modelling approaches. The last 7400 observations 

are then used to generate 5-minute one-step-ahead out-of-sample forecasts for all the 

available GARCH-based models used in the study for the 100-day forecast period.6

It has been established from the findings from the previous chapter that the 

KLCI return volatility is periodic. It has also been found from Chapter 4 that 

modelling approaches that incorporate the periodic components in the conditional 

volatility process exhibit superior model fit over the standard non-periodic GARCH 

model approach. However, we believe that the success of a volatility modelling

6 Other forecast periods were also considered, with similar results.
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approach lies in its out-of-sample forecasting power. Therefore, it is of interest to 

compare the forecasting performance of the PGARCH-based models with those of the 

non-periodic GARCH model, i.e., the standard GARCH model without periodic 

components. It would also be insightful if we could establish whether the GARCH- 

based models (periodic and non-periodic) are superior in terms of forecasting 

accuracy to the naive model, which will be based on the estimate of historical 

volatility over the estimation period. We compute the historical variance over the 

estimation period as:

where rt = RrM> is the 5-minute interval returns, // is the expected return, and T is 

the total number of 5-minute intervals observed in the estimation period. For 

convenience, we reproduce the thirteen volatility modelling approaches and the best 

performing GARCH-based model for each individual approach in Table 5.1 below.

The first phase of this chapter is to evaluate the forecasting performance of the 

GARCH-based models for the thirteen approaches described in Table 5.1. We begin 

by estimating (in-sample) the parameters of the GARCH-based models for the T1 to 

T il modelling approaches. The in-sample period covers 306 days or 22644 5-minute 

observations. All GARCH models are estimated by maximum likelihood with 

Bollerslev-Wooldridge robust QML covariance/standard errors. In addition, as before, 

the fit of the models is measured by the AIC and the SIC statistics as well as the LL 

function. We then rank each approach according to the model fit. The best approach is 

ascertained by the model that gives the minimum AIC and SIC values. When the AIC 

and SIC values are in conflict, the best model is ranked by the SIC measure, as the 

SIC embodies a much stiffer penalty term than AIC, and therefore is preferred in a 

forecast evaluation setting. The next best modelling approach is then ranked



accordingly based on the next GARCH-based model that produces the minimum AIC 

and SIC values. The process continues until all the approaches are appropriately 

ranked. The second phase involves generating 5-minute one-step-ahead forecasts for 

the 100-day out-of-sample period for all the available models and modelling 

approaches, using the in-sample parameters estimated previously. We therefore have 

thirteen sets of 5-minute one-step-ahead forecasts, which will then be evaluated in 

terms of performance and accuracy.

Table 5.1: Comparison of Modelling Approaches

This table shows the thirteen volatility modelling approaches used in Chapter 4. The best performing 
GARCH-based model in terms of model fit is given in the second column.

Approach Best GARCH Model 
Specification

T1 Non-periodic GARCH model EGARCH

T2 Jointly estimated full dummy version of the PGARCH model EGARCH

T3 Two-step full dummy version of the PGARCH model GARCH

T4 Jointly estimated partial dummy version of the PGARCH model EGARCH

T5 Two-step partial dummy version of the PGARCH model GARCH

T6 Jointly estimated FFF version of the PGARCH model EGARCH

T7 Two-step FFF version of the PGARCH model TGARCH

T8 Jointly estimated Augmented FFF version of the PGARCH model EGARCH

T9 Two-step Augmented FFF version of the PGARCH model TGARCH

T10 Jointly estimated Spline version of the PGARCH model EGARCH

Til Two-step Spline version of the PGARCH model TGARCH

T12 Jointly estimated Augmented Spline version of the PGARCH model EGARCH

T13 Two-step Augmented Spline version of the PGARCH model TGARCH
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5.2.1 Evaluating Volatility Forecasts

There are a variety of statistics available to evaluate and compare the

are used to evaluate the accuracy of forecasts: viz., the mean squared forecast error 

(MSFE) and the mean absolute forecast error (MAFE). These measures are defined 

as:

where yt+h is the realization of the series at time t + h, y4 h is the /z-step ahead 

forecast of the series using data observed up to and including time t, and T2 is the 

number of /z-step-ahead forecasts considered. The MSFE provides a quadratic loss 

function which disproportionately weights large forecast errors more heavily relative 

to the MAFE and thus may be useful in forecasting situations when large forecast 

errors are disproportionately more serious than small errors.

We compute the MSFE and the MAFE for each set of one-step-ahead 

forecasts generated. We then rank each of the thirteen approaches according to which 

produces the most accurate forecasts. Starting with the MSFE, we first rank the 

approach that gives the smallest MSFE statistic. Next, we take the second smallest 

MSFE statistics produced by the next relevant approach. The process continues until 

all approaches are ranked accordingly. We then repeat the same process with the 

MAFE statistics for all the volatility modelling approaches. At the end of the exercise, 

we have two sets of forecasting performance rankings for T1 to T13. Finally, we

7 For a detailed survey on the popular evaluation measures used in the literature, please refer to Poon 
and Granger (2003).

performance of forecasts produced by volatility models.7 In this study, two measures

1 0  t= \

(5.2)

MAFE (5.3)

A
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compute the MSFE and MAFE for the unconditional variance estimator for 

comparison purposes.

To compare the predictive accuracy of alternative forecasts, we employ an 

asymptotic test of the null hypothesis of no difference in the accuracy of two 

competing forecasts proposed by Diebold and Mariano (1995). This is a convenient 

test of the null hypothesis that the forecasts from two models do not differ 

significantly. We assume that the time t loss associated with a forecast i is an arbitrary

A

function of the realization and prediction, g(yt,y it) ; specifically, it is assumed to be a

A

direct function of the forecast error, g(y,9y u) = g(eit). Under this assumption, the 

null hypothesis of equal forecast accuracy for two competing forecasts is 

E[g(ej,)] = E[g(eJ,)] or E [d, ] = 0, where dt = [g(e;,) -  g(eJt)] is the loss differential.

Thus, the equal accuracy null hypothesis is equivalent to the null hypothesis that the 

population mean of the loss-differential series is zero.

Let (5 .4 )
2 /=1

denote the sample mean loss differential over T2 forecasts, and let g{eit)be a general

function of forecast errors (e.g. MAFE or MSFE); then the Diebold Mariano (1995) 

test statistic (henceforth denoted DM) is given by:

DM  = - f  -  . (5.5)
2^ , ( 0)

1  t 2

A

where / </(0)is a consistent estimate of the spectral density of the loss differential at

frequency zero. The DM statistic has a standard normal distribution with mean zero 

and unit variance under the null hypothesis. The loss functions adopted in this study
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are the squared function (MSFE) and the absolute function (MAFE). We proceed by 

comparing the MSFE and MAFE values associated with the forecasts of each of the 

thirteen approaches, T1 to T13, with the naive model, denoted by M l. Next, we apply 

the DM asymptotic test for each competing pair of forecasts among the thirteen 

volatility modelling approaches. This exercise produces 78 forecast quality 

comparisons.

We then apply the test of forecast encompassing developed by Harvey, 

Leyboume and Newbold (1998). Forecast encompassing refers to whether or not the 

forecasts from a competing model contain information that is missing from the 

forecasts of the original model. If they do not, then the forecasts from the competing 

model are said to be ‘encompassed’ by the forecasts from the original model. 

Furthermore, a forecast is considered ‘conditionally efficient’ if the variance of the 

forecast error from a combination of that forecast and a competing forecast are equal 

to or greater than the variance of the original forecast error. Therefore, a forecast that 

is conditionally efficient ‘encompasses’ the competing forecast. Harvey, Leyboume 

and Newbold (1998) developed an encompassing test based on the fact that if the 

forecasts from model 1 encompass the forecasts from model 2, then the covariance 

between eu and eit- ̂ 2t will be negative or zero (eu and e2t are the two sets of forecast 

errors from model 1 and model 2 respectively). The alternative hypothesis is that the 

forecasts from model 1 do not encompass those from model 2, in which case the 

covariance between eu and eu -  e2t will be positive. The Harvey, Leyboume and 

Newbold (1998) test statistic (henceforth denoted HLN) is formulated as follows:

HLN = c (5.6)
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where c -  — 2_jCt , ct = eu (eu - e 2t) , and T2 is the number of observed forecasts. The
T i  t=i

HLN statistic has an asymptotic standard normal distribution. Similar to the steps 

applied in the DM asymptotic test above, we compare the unconditional variance 

estimator with each forecast of the individual volatility modelling approaches, T1 to 

T13. Finally, we proceed by comparing the forecasts for each pair of competing 

volatility modelling approaches. This again results in 78 forecast quality comparisons.

5.2.2 Evaluation of VaR Models

To examine the economic significance of the volatility forecasts, we evaluate 

the quality of the VaR models constructed from the available GARCH-based models 

forecasts for each of the thirteen volatility modelling approaches. In addition to these 

approaches, we also consider the RiskMetrics modelling approach, a methodology for 

measuring market risk, which is widely used in the financial industry.8 The VaR 

measures associated with these models are constructed using the 5-minute one-step- 

ahead forecasts with a 100-day forecast horizon and both 95% and 99% confidence 

levels, as recommended by the Basle Committee. Assuming that the return series is 

conditionally normally distributed, the VaR measures are computed by multiplying

A

the conditional standard deviation (cr,) by the appropriate percentile point on the

normal distribution ( a  = 0.05 and a  = 0.01 respectively). With this, we construct the 

dynamic interval forecasts (i.e., VaR measure) using the out-of-sample forecasts

8 The RiskMetrics VaR model adopts an exponentially weighted moving average approach to return 
volatility modelling. In particular, it assumes that return volatility evolves as follows:

K =  (1 -  P)̂ _x +  /%M ,
where s t — Rt — n  and p  is given a value between 0.94 and 0.99, and in this study, we assume 
that p  = 0.94.
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produced above, which are designed to cover 95% and 99% future outcomes. 

Formally, the lower and upper limits of the intervals are computed as:

A A

for an interval with a nominal a  x 100% coverage.

For comparison purposes, in view of the presence of fat tails in the distribution 

of the KLCI returns series, we also consider VaR measures that are computed by

A

multiplying the conditional standard deviation (cr,) by the appropriate percentile

point on the Student t distribution (a  = 0.05 and a  = 0.01 respectively) to control for 

the effect of the fat tails. In the current application, we use Student t distributions with 

4 and 24 degrees of freedom to approximate the distribution of KLCI returns series.

In order to evaluate the quality and adequacy of the various VaR measures, we 

adopt the framework for interval forecast evaluation developed by Christoffersen 

(1998). Christoffersen emphasizes testing what is known as the “conditional 

coverage” of the interval forecasts. The importance of testing “conditional coverage” 

arises from the observation of volatility clustering in many financial time series. Good 

interval forecasts should be narrow in tranquil times and wide in volatile times, so that 

observations falling outside a forecasted interval are spread over the entire sample, 

and do not come in clusters. A poor interval forecast may produce correct 

unconditional coverage, yet it may fail to account for higher-order time dynamics. In 

this case, the symptom that would be observed is a clustering of failures.

Christoffersen (1998) begins by classifying an interval forecast as a success or 

a failure. This classification is achieved by means of a simple indicator function. The 

indicator function, /,, takes values as follows:
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I, = 1 if y, e [ AH ( P W , ( 5-8> 

= 0 otherwise.

where y t denotes a sequence of time series observations, Z,/|M(/?) denotes the lower

level, and £/,(M(p) the upper level of an out-of-sample interval forecast which

nominally covers a proportion p  of the possible outcomes, and is made at period t-1 

for the following period t. Christoffersen (1998) defines a set of ex ante interval 

forecasts as being efficient with respect to the information set (denoted £^_j) if the

conditional expectation of /, equals p, that is, E[/, m _j] = p . If one restricts the

information set to past values of the indicator function,Q  = , then this is

equivalent to saying that {/,} is independently and identically distributed (i.i.d)

Bernoulli with parameter p. To test for the “correct conditional coverage”, 

Christoffersen (1998) develops a three-step testing procedure: a test for “correct 

unconditional coverage”, a test for “independence”, and a test for “correct conditional 

coverage”.

In the test for correct unconditional coverage, the null hypothesis of the failure 

probability a  is tested against the alternative hypothesis that the failure probability is 

different from a , under the assumption of an independently distributed failure 

process. We follow the likelihood ratio framework used by Christoffersen (1998). We 

test for the “correct unconditional coverage” by evaluating for each /, series obtained 

from the out-of-sample forecasts available with E [/, | = p  for both 95% and 99%

confidence levels. This is performed for VaR estimation based on out-of-sample 

forecasts with 100-day out-of-sample forecasts. We assess the models’ performances 

by first computing the empirical failure rate for both the left and right tails of the
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distribution of returns. By definition, the failure rate is the number of times returns 

exceed the forecasted one-period-ahead VaR measure. If the VaR model is correctly 

specified, the failure rate should be equal to the pre-specified VaR level of a  -  0.01 

and a  -  0.05, respectively. As the computation of the empirical failure rate defines a 

sequence of yes/no observations, it is possible to test the following hypothesis:

H0 : f  = a ,  (5.9)

and the alternative hypothesis

H x : f * a , (5.10)

A

where /  is the observed failure rate.

Based on (5.8), we can reformulate hypotheses (5.9) and (5.10) with the following 

null hypotheses:

E [l,] = p ,  (5.11)

against the alternative hypothesis:

E [/,]* /> . (5.12)

We define the likelihood function as:

£ ( * ; / „ / , ./„) = ( l - * r * \  t f e n  = [0,l] (5.13)

where n, = / ( is the number of ones in the indicator series; and n„ = n -  «, is the

number of zeros in the indicator series.

We then apply the following likelihood ratio statistic to test for unconditional 

coverage:

LRuc = -2  ln{L(p)/ ! (* )} -  ^  (5.14)

where L(p ) = (1 -  p )n~n1 p n1, and L(n) = (1 -  £)"■"> £ ”■.
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The likelihood ratio statistic is the ratio of the likelihood under the null hypothesis to 

the likelihood evaluated under the maximum likelihood estimate (MLE) it over the 

entire parameter space n .  We define it as the observed sample proportion of 

“successes”, where n  -  nx /(«0 + nx). Under the null hypothesis H 0, the likelihood

ratio statistic has a chi-square distribution with 1 degree of freedom.

In the test for “independence”, the hypothesis of an independently distributed 

failure process is tested against the alternative hypothesis of a first-order Markov 

failure process. The likelihood ratio statistic is computed as:

( \ - i t 2){noo+nio)ir?0'+n")
(\-itoiy°°irn"(\-ituy'°ir:i' Zi (5.15)

where ntJ is number of i values followed by a j  value in the I t series, i, j  = 0,1,

= Pr {/, = y}, £„i = "oi/("oo + "oi)> *h = ”u /(nio + nu ) , and

it 2 = (w01 + nn )/(n00 + n0l +nl0+nn).

Finally, the test of “correct conditional coverage” is achieved by testing the 

null hypothesis of an independent failure process with failure probability a  against 

the alternative hypothesis of a first order-Markov failure process with a different 

transition probability matrix. The test for correct conditional coverage is calculated as:

LRCC = -2  In p ni( i - p y °a-it0lyM̂ (\-itny-it^ x 2 (5.16)

If we condition on the first observation, then the likelihood ratio test statistics are

related by the identity: LRCC = LRUC + LR1ND
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Christoffersen’s basic framework is limited in that it only deals with first- 

order dependence in the {/,} series. It would fail to reject a {/,} series that does not

have first-order Markov dependence but does exhibit some other kind of dependence 

structure (e.g. higher order Markov dependence or periodic dependence). Three recent 

papers, Christoffersen and Diebold (2000), Clements and Taylor (2003) and Engle 

and Manganelli (2004), generalize this observation. These papers suggest that a 

regression of the /, series on its own lagged values and some other variables of 

interest, such as day-dummies or the lagged observed returns (the periodic component 

is 5), can be used to test for the existence of various forms of dependence structure 

that may be present in the {/,} series. Under this framework, the conditional

efficiency of the /, process can be tested by testing the joint hypothesis:

H  :<& = 0,aQ = p . (5.17)

where

in the regression

s s
^ = a o + Z “*/<-*+Z / /A < +*<- (518>

5=1 5=1

where t = S  +1, S  + 2,..., T and Ds t are explanatory variables.

The hypothesis (5.17) can be tested by using an F-statistic in the usual OLS 

framework.

We then employ the regression-based tests of Clements and Taylor (2003) to 

test for both independence and correct conditional coverage. This is done by 

performing an OLS regression of the /, series on its lagged value. For the 

independence test, we set the following hypothesis:

/ / : $  = 0.  (5.19)
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Similarly, we test for correct conditional coverage by testing the joint hypothesis in 

(5.17). Both tests are again conducted for 95% and 99% VaR coverage for all out-of- 

sample VaR measures constructed for the 100-day out-of-sample forecasting period.

5.3 Results

This section reports the findings of the estimations and tests performed on the 

various available GARCH-based models as well as the VaR models described above. 

The discussion of results will be conducted in the following stages. In the first stage, 

the discussion will focus on the evaluation of the model fits of the periodic GARCH 

and non-periodic GARCH models as well as the naive model obtained from the initial 

sample estimates.

The objective of this exercise is to ascertain whether periodic GARCH models 

produce superior model fits to the non-periodic GARCH models and the naive model. 

A comparison of ranking with the results obtained in Chapter 4 is then carried out 

with regard to which volatility modelling approach produces the best model fit. At 

this stage, we want to see whether there is any consistency in the performance ranking 

for the thirteen volatility modelling approaches for both the 406-day (performed in 

Chapter 4) and the 306-day (performed in this chapter) in-sample estimates.

The second stage of the analysis reports the forecasting performance 

produced by each of the GARCH-based models and the naive model, using the MSFE 

and the MAFE error statistics. Of major interest from this section is to ascertain 

whether the models with better fits (evaluated over the in-sample period) produce 

better forecasting performance than the less well fitted models. The relationship 

between model fit in the initial estimation periods and the ensuing forecasting 

performances obtained would be valuable for any future work in the field. If it is
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determined that better model fit translates to superior forecasting performances, then 

what one should do is to evaluate all available models extensively in the initial 

estimate periods and choose the best performing model. The best model should then 

be able to produce the best volatility forecasts.

The third stage considers the quality of the various forecasts available using 

the DM asymptotic test, followed by the HLN forecast encompassing test. We 

compare the quality of forecasts produced by each of the GARCH-based models with 

the forecast generated by the naive model. Next we compare the forecasts produced 

by each of the volatility modelling approaches. The aim is not only to determine 

whether the PGARCH forecasts are superior in quality compared to those produced 

by non-periodic GARCH models; we also wish to ascertain whether there is any 

statistically significant difference in terms of quality among the available PGARCH- 

based models forecasts.

In the final stage, we discuss the performance of the VaR measures generated 

by the various GARCH-based models. This covers the three tests under the 

framework developed by Christoffersen (1998), as well as the results of the 

regression-based tests proposed by Clements and Taylor (2003).

5.3.1 Model Fit

The results of the in-sample estimates for the thirteen competing volatility 

modelling approaches are presented in Table 5.2. The best model fit is produced by 

approach T10, followed by those produced by approaches T2, T12, T11, T13, T5, T3, 

T6, T8, T4, T7, T9 and T l, respectively. It is clear that all the volatility modelling 

approaches that utilize PGARCH-based models exhibit superior model fit compared 

to the non-periodic GARCH model. The results are consistent with the results
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obtained in Chapter 4 (please refer to Table 4.16). However, when we compare the 

ranking of volatility modelling approaches, we find that with the exception of the T9 

and T11 approaches, there is a change in the order of ranking for all approaches. The 

ranking of best performing approaches from Chapter 4 is as follows: T2, T12, T10, 

T4, Ti l ,  T13, T5, T3, T6, T7, T8, T9 and Tl, respectively. It is clear now that 

approach T10, which is the jointly estimated spline version of the PGARCH model, is 

the best performing approach in the in-sample estimates. It is again encouraging to see 

that both the business time based spline version and the calendar time based spline 

version of the PGARCH models (both jointly estimated and two-step estimation) 

show strong performance in the 306-day in-sample period. The ranking of the FFF 

version of the PGARCH models in this study has also changed. Now, we find that the 

jointly estimated approaches (T6 and T8) are superior in terms of model fit to the two- 

step approaches (T7 and T9) where previously, in the 406-day in-sample estimates the 

results indicate that the T7 approach is superior to the T8 approach. There is evidence 

that the choice of in-sample estimation period does influence the ranking of 

performance of the volatility modelling approaches.

5.3.2 Forecast Performance

Regarding forecasting performance, the results presented in Table 5.3 show 

that both PGARCH and non-periodic GARCH models perform much better than the 

naive model. It is clear that all available GARCH models provide smaller forecast 

error statistics (both for MSFE and MAFE) than those for the naive model. 

Comparison of forecasting performance among the thirteen volatility modelling 

approaches, however, has to be evaluated separately according to the choice of 

forecast error applied. If the MSFE statistic is applied, the ranking shows that
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approach T10 (the jointly estimated spline version of the PGARCH model) exhibits 

the best forecasting performance. The subsequent best performances are shown by 

approaches T12, T2, T11, T5, T13, T6, T8, T3, T7, T9, T4 and T l, respectively. If we 

take the MAFE as the choice of forecast error statistics, we find that approach T12 

now produces the best forecasting performance. This is followed by the performances 

of approaches T10, T2, T6, T3, T4, Ti l ,  T8, T13, T5, T9, T7 and T l, respectively. 

The ranking order now is completely different from that obtained when the MSFE is 

applied. It is clear, however, that the first three positions have been occupied by the 

same approaches under both MSFE and MAFE statistics. It is also demonstrated that 

the jointly estimated spline version of the PGARCH model (both calendar time and 

business time based) produces better results than the jointly estimated full dummy 

version of the PGARCH model, even though the T12 approach produced inferior 

model fit to the T2 approach in the in-sample estimation period. Regarding the best 

GARCH model to use in each approach, the results indicate that at least for the 

Malaysian market, the EGARCH model is the most appropriate GARCH-based model 

to be considered in forecasting volatility, since the EGARCH model is used by the 

three top volatility modelling approaches here. There is also a strong indication that 

using the spline variables in volatility fitting and forecasting is more appropriate and 

therefore is recommended for the Malaysian market.

It is clear from the above results that there is a departure in consistency when 

we compare the rankings of in-sample estimation performances with the forecasting 

performances of the thirteen volatility modelling approaches considered in this study. 

The results suggest that the approach that produces the best in-sample model fit does 

not necessarily produce the best forecasting performance. However, there are 

indications that volatility modelling approaches that exhibit superior in-sample model
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fit statistics generally produce better forecasting performances than the approaches 

which show poor in-sample model fit statistics. The results also demonstrate that on 

the whole, the PGARCH-based models produce superior forecasting performances to 

the non-periodic GARCH models. This is clearly evident when both the MSFE and 

the MAFE are applied. Therefore, the incorporation of periodic components in the 

conditional volatility process is strongly recommended because it does improve the 

forecasting performance of the volatility model.

The plots of the average of 5-minute out-of-sample forecasts of individual 

volatility modelling approaches against the realized volatility are presented in Figures 

5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 respectively. Figure 

5.14 presents the plots of all forecasts for the volatility modelling approaches T1-T13 

against the realized volatility. It is clear that the T2, T10 and T12 approaches, which 

use the EGARCH model, exhibit the best fitted volatility as well as doing an adequate 

job in modelling the double U-shaped intraday periodicity, which is observable 

through the plot of the ex post realized volatility.

5.3.3 Forecast Quality

The results are presented in Tables 5.4 to 5.6. The DM tests performed using 

both the MSFE and the MAFE as the loss functions produce significant results for all 

comparisons of the naive model and each of the volatility modelling approaches, Tl 

to T13. The test statistics obtained are significant at the 1% level. The results suggest 

that the quality of the forecasts produced by all the volatility modelling approaches is 

superior to those generated by the naive model. Similar results are also obtained when 

we assess the quality of forecasts for all comparisons of the non-periodic GARCH 

approach (Tl) and each of the PGARCH-based modelling approaches (T2 to T13).
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The results are not as clear-cut as when the same tests are performed among 

competing pairs of the PGARCH-based models forecasts. If we consider the MSFE 

loss function, we find that the following pairs provide insignificant results: T2 v. T5, 

T2 v. Tl 1, T2, v. T12, T3 v. T4, T3 v. T6, T3 v. T7, T3 v. T8, T3 v. T9, T4 v. T9, T5 

v. T6, T5 v. T8, T5 v. T9, T5 v. Tl 1, T5 v. T13, T6 v. T8, T6 v. T13, T7 v. T8, T7 v. 

T9, T8 v. T9, T8 v. T13, T10 v. T12, T il  v. T12 and T il v. T13. Similarly, if we 

consider the MAFE loss function, the following pairs produce insignificant results: T2 

v. T10, T2 v. T12, T3 v. T4, T3 v. T6, T5 v. T8, T5 v. T9, T5 v. T13, T7 v. T9, T8 v. 

Tl 1, T8 v. T13, T10 v. T12 and Tl 1 v. T13. All forecast comparisons are statistically 

insignificant at the 5% level, and therefore suggest that the quality of forecasts among 

these competing PGARCH-based models is similar.

It is also clear that more insignificant results are obtained when we use the 

MSFE rather than the MAFE as the loss function. A possible explanation for these 

findings could be attributed to the components of the metric used in the tests, which is 

the MSFE loss function. The MSFE loss function employs squared forecast errors in 

its computation and this complicates the task of forecast evaluation when used in the 

Diebold and Mariano (1995) test, because the square of a variance error is the 4th 

power of the same error measured from standard deviation. Poon and Granger (2003) 

highlight this complication when forecast errors are measured from variances. They 

argue that the confidence interval of the mean error statistic can get very wide and the 

situation can be made worse if the variance errors are squared. This leads to extremely 

noisy “quality” estimates that in turn make the small differences between squared 

forecast errors of models tested indistinguishable from each other.

The overall results indicate that regardless of whether we use the MSFE or the 

MAFE to evaluate the quality of competing forecasts, the quality of forecasts of the
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PGARCH-based approaches is superior to the quality of forecasts of both the naive 

model and the non-periodic GARCH-based model. This suggests that the inclusion of 

periodic components in the forecasting exercise does provide benefits in terms of 

superior model fits and forecast quality.

The results of the HLN forecast encompassing tests are presented in Tables 

5.6 to 5.7. The overall results seemed to confirm the above findings. The HLN test 

statistics are significant at 1% significant level for all comparisons of forecasts 

between the naive model and the individual volatility modelling approaches Tl to 

T13. Similar findings are observed when we compare the quality of forecasts of the 

PGARCH models against the non-periodic GARCH models. Therefore, we conclude 

that in this instance, for all forecast quality comparisons under the encompassing test, 

we reject the null hypothesis that the forecasts from competing models encompass 

each other, i.e., the competing forecasts embody no useful information that is missing 

in the preferred forecasts. The results suggest that there is statistically a difference in 

the quality of forecasts generated by the naive, the non-periodic GARCH and the 

PGARCH models. This is in line with the findings of the DM tests above.

When we look at the comparisons of forecasts among the PGARCH-based 

modelling approaches, we find the following competing pairs produce results that are 

insignificant at the 5% level: T2 v. T3, T2 v. T4, T2 v. T5, T2 v. T6, T2 v. T7, T2 v. 

T8, T2 v. T9, T2 v. Tl 1, T2 v. T13, T5 v. T6, T5 v. T8, T6 v. T7, T6 v. T8, T6 v. T9, 

T7 v. T8, T7 v. T9, T10 v. T i l ,  T10 v. T12, T10 v. T13 and T il  v. T13. Therefore, 

we conclude that the quality of forecasts for these twenty comparisons is similar.
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5.3.4 Assessment of VaR Performance

As mentioned earlier, the GARCH models are widely used for the 

management of risk. It is thus important to assess their quality through the various 

VaR measures discussed below. We begin with the assumption of conditional normal 

distribution in the return series and the results of the coverage tests for the thirteen 

modelling approaches and the RiskMetrics model. We then report the results of the 

coverage tests for the Student t distribution assumption, with 4 and 24 degrees of 

freedom.

A

5.3.4.1 Test for “Correct Unconditional Coverage” Ho: /  = a

99% VaR Forecast
A

The main criterion is to achieve a probability of failure /  equal to the desired 

level, i.e. a  =0.01. The results of backtesting the VaR models for the 100-day out-of- 

sample forecasting period assuming normal distribution are shown in Table 5.8. The 

Christoffersen (1998) test rejects all the volatility modelling approaches except Tl. 

The likelihood ratio statistics for approaches T2 to T13, and the RiskMetrics, are all 

highly significant at the 1% level. This suggests that approaches T2-T13, and the 

RiskMetrics, do not have the correct unconditional coverage property. However, the 

likelihood ratio statistics for Tl is not statistically significant at the 1% level of 

significance, and therefore appears to satisfy the required coverage.

We next look at the results for the Student t distribution with 4 degrees of 

freedom assumption, which are shown in Table 5.14. It is clear that all results are 

statistically significant at the 1% level. Therefore, the results suggest that all 

modelling approaches (inclusive of the RiskMetrics), fail the correct unconditional 

coverage tests. However, more favourable results are obtained when we consider the
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results of the Student t distribution with 24 degrees of freedom assumption, which are 

reported in Table 5.20. With the exception of the T3, T4, T5, T13 and the RiskMetrics 

approaches, the results of the coverage test for the other nine modelling approaches 

are not significant at the 1% level. Therefore, it appears that the nine modelling 

approaches satisfy the correct unconditional coverage property.

95% VaR Forecast

We turn to the results for the normal distribution assumption, which are 

presented in Table 5.9. The likelihood ratio statistics for the T4, T8, T i l ,  T12 and 

T13 volatility modelling approaches are statistically insignificant at the 5% level. 

Therefore, it appears that only these five approaches have the correct unconditional 

coverage. The rest, including the RiskMetrics approach, fail the correct unconditional 

test.

Similarly, the results of the coverage tests for the Student t distribution with 

assumptions of 4 degrees of freedom and 24 degrees of freedom are presented in 

Table 5.15 and Table 5.21, respectively. All results with the exceptions of the T4 and 

T5 approaches (for the 24 degrees of freedom) are statistically significant at the 5% 

level. All the modelling approaches fail the coverage test, and therefore, none of the 

modelling approaches appears to have the necessary coverage.

5.3.4.2 Test for “Independence”

First, we focus on the results for the normal distribution assumption for the 

99% and 95% VaR models, which are presented in Table 5.10 and Table 5.11, 

respectively. For the 99% VaR coverage, we find that all approaches T1-T13 and the 

RiskMetrics fail the independence test. The F-statistics obtained for these approaches 

are highly significant at 1% level. Therefore these approaches do not appear to have
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the required coverage property. For the 95% VaR coverage, only the T l, T2 and the 

T10 approaches pass the independence test. The F-statistics of all other approaches 

are significant at the 5% level. Therefore, we conclude that only the T l, T2 and T10 

approaches satisfy the independence coverage criteria.

Next, we turn to the results of the 99% and 95% VaR independence tests for 

the Student t distribution, assuming 4 degrees of freedom, which are presented in 

Table 5.16 and Table 5.17, respectively. For the 99% VaR coverage, we find that with 

the exception of the T4, T6 and the RiskMetrics approaches, all the modelling 

approaches pass the independence test. The F-statistics for these approaches are not 

statistically significant at the 1% level, and therefore, they appear to have the required 

coverage property. For the 95% VaR coverage, we find that with the exceptions of the 

T4, T7, T9 and Tl 1 approaches, all the other approaches including the RiskMetrics 

approach appear to have the necessary coverage. The F-statistics for these approaches 

are not significant at the 5% level.

Next, we look at the results of the 99% and 95% VaR independence tests for 

the Student t distribution, assuming 24 degrees of freedom, which are reported in 

Table 5.22 and Table 5.23, respectively. For the 99% VaR coverage, we find that only 

approach T6 passes the independence tests. The F-statistics is insignificant at the 1% 

level. The rest of the modelling approaches do not appear to have the independence 

property. For the 95% VaR coverage, we find that only the T l, T2, T7, T10 and the 

T12 approaches have the independence property. The results for the rest of the 

modelling approaches are statistically significant at the 5% level, and therefore, they 

fail the independence test
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5.3.4.3 Test for “Correct Conditional Coverage”

We analyse the results of both the 99% and 95% VaR measures for the normal 

distribution assumption, which are presented in Table 5.12 and Table 5.13, 

respectively. For the 99% VaR coverage, we find that the regression-based tests reject 

the adequacy of all models conclusively, with all F-statistics obtained showing 

significance at the 1% level. The results exhibit the existence of significant lagged 

dependence in the failure process. Given these results, we conclude that none of the 

VaR models are appropriate for the KLCI returns. The results are similar when we 

focus on the 95% VaR coverage. We find that all approaches produce results that are 

statistically significant at the 5% level. Therefore, these approaches do not have the 

correct conditional property.

Next, we turn to the results of the 99% and 95% coverage for the Student t 

distribution with 4 degrees of freedom. The results are reported in Tables 5.18 and 

5.19 respectively. The results obtained for both the 99% and 95% VaR coverage 

indicate that all modelling approaches fail the correct conditional test. The results are 

statistically significant at the 1% level. Therefore, none of the modelling approaches 

has the required VaR coverage.

Finally, we analyse the results of the 99% and 95% coverage for Student t 

distribution with 24 degrees of freedom, which are reported in Tables 5.24 and 5.25 

respectively. For the 99% VaR coverage, we find that all approaches do not have the 

required correct conditional coverage property. The results for all approaches are 

significant at the 1% level. The results for the 95% VaR coverage indicate that all the 

approaches again fail the correct conditional coverage test. All results are highly 

statistically significant at the 1% level. Therefore, none of the modelling approaches 

has the correct conditional coverage property.
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5.4 Conclusion

In this chapter, we have evaluated the forecasting performance of the thirteen 

volatility approaches that utilize the PGARCH-based models and the non-periodic 

GARCH specification described in Chapter 4. We find that approaches that use 

PGARCH-based models achieve better model fit compared to the non-periodic 

GARCH models when in-sample analysis is performed. This is evinced by the 

superior AIC and SIC statistics produced in the in-sample initial period generated by 

the PGARCH-based models. Due to the superior model fit, the PGARCH-based 

models (used by approaches T2 to T13) also produce better forecast performance than 

the non-periodic GARCH model used in approach T l. Specifically, the MSFE and 

MAFE values show that PGARCH forecasts produce smaller forecast errors than the 

forecast error associated with the non-periodic GARCH model. The results of both 

forecast error statistics also indicate that all GARCH-based models utilized by the 

thirteen volatility modelling approaches produce smaller forecast errors than those 

obtained for the naive model. The results suggest that the inclusion of periodic 

components when modelling volatility would improve the forecasting performance of 

the particular volatility model. However, as shown in section 5.3.1, the model or the 

approach that produces the best in-sample statistics does not necessarily produce the 

best forecasting performance. The overall results, however, demonstrate that the 

approaches that make use of the spline variables in the conditional volatility process 

tend to perform better in a forecasting exercise. More specifically, the best out-of- 

sample forecasting performance incidentally is produced by the jointly estimated 

spline version of the PGARCH model (T10 -  based on MSFE) and the jointly 

estimated augmented spline version of the PGARCH model (T12 -  based on MAFE). 

This is not surprising considering that these two approaches are consistently highly
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ranked in the in-sample estimates and in the ranking of the best performing modelling 

approaches in Chapter 4.

With regard to the asymptotic tests of Diebold and Mariano (1995) for “equal 

accuracy” and the encompassing forecast tests of Harvey, Leyboume and Newbold 

(1998), we find strong evidence that the quality of forecasts produced by both the 

PGARCH-based models and non-periodic GARCH models are superior to the naive 

model, which is based on historical variance. Furthermore, we also find evidence that 

the forecasts produced by the PGARCH-based models are superior to the forecasts 

produced by the non-periodic GARCH models. The results from comparing the 

alternative forecasts among the PGARCH-based models also indicate that the quality 

of forecasts of the top three best forecast performing models are the same. Similarly, 

there is a difference in terms of quality when the forecasts of these top three 

performers are compared with the forecasts of the less well performing PGARCH- 

based models. The strong performance of the PGARCH-based models over the non

periodic GARCH models and the naive model is an encouraging result, in view of the 

statistical significance provided by the two asymptotic tests in relation to the 

evaluation of forecasts. The results also reinforce the virtue of the PGARCH structure, 

which has now been proven not only capable of providing superior model fit (as 

evinced in Chapter 4), but more importantly, of generating genuinely superior 

forecasts, which is the real test of a good forecasting model. However, it is important 

to appreciate that the two asymptotic tests (the DM and HLN tests) do not produce 

similar results. Even within the DM tests, we have seen that different results can be 

obtained in evaluating the same pair of competing alternative forecasts. The results 

obtained in this chapter, for example, indicate that the statistical significance of the 

results very much depends on the type of loss function used. This is evinced in some
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of the different results obtained when we apply both the MAFE and MAFE loss 

functions on the same pair of competing alternative forecasts. Part of the problem 

could be the effect of squaring the squared forecast errors when the MSFE is used as 

the loss function. Therefore, as far as the DM test is concerned, we believe that the 

better choice is to use the MAFE as the loss function.

We now turn to the performance of VaR models constructed based on the 

forecasts of the thirteen volatility modelling approaches and the RiskMetrics model. 

We have strong reservations about getting favourable results when the normality 

assumption is applied due to the fat-tailed distribution of the KLCI returns series used 

in this study. In particular, the RiskMetrics approach makes the very strong 

assumption that returns are conditionally9 normally distributed. Therefore, we provide 

alternative distribution assumptions in the form of the Student t distribution, initially 

with 4 degrees of freedom to control for a very fat-tailed distribution, and later with 

24 degrees of freedom to account for a less severe effect of the fat tails. The results 

for the normal distribution indicate that for the 99% VaR coverage, the effect of fat 

tails is very strong, and as expected, the VaR is seriously underestimated. This is 

perhaps the reason for the poor results obtained for all modelling approaches in the 

correct conditional coverage test. Similar results are obtained when we consider the 

95% VaR models. We find none of the approaches pass the independence and the 

correct conditional coverage tests, and are therefore these approaches do not have the 

necessary coverage property.

When we analyse the overall results for the 99% and 95% VaR models using a 

Student t distribution with 4 degrees of freedom, the results indicate that this 

distribution is not suitable, due to its failure to accommodate the fat-tail effects. The

9 “Conditional” here means conditional on the information set at time t, which usually consists of the 
past return series available at time t.
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use of a Student t distribution with 24 degrees of freedom does not appear to mitigate 

the effect of fat tails, at both the VaR coverage. We find that at the 99% VaR 

coverage, all the PGARCH-based models and the RiskMetrics model fail both the 

independence and the correct conditional coverage requirements, and therefore do not 

produce accurate VaR models. The same could be said for the results for the 95% 

VaR coverage, where we find again that all the modelling approaches fail the correct 

conditional coverage test. Therefore we conclude that none of the VaR models 

constructed in this study are economically reliable.

The work done in this chapter completes the second out of the three 

investigations towards a better understanding of the dynamics of intraday volatility on 

the KLSE. In this chapter, we have focused on the measurement and evaluation of the 

performance and quality of various volatility forecasts produced by competing 

modelling approaches using high frequency data. More specifically, we have shown 

the superiority of the PGARCH-based models in producing superior forecasts. In the 

next chapter, we will continue modelling and forecasting using high frequency data. 

We will investigate a new volatility measure in the form of integrated realized 

volatility, which can be constructed by summing the intraday high-frequency squared 

returns from different return sampling frequencies. Similar to the works carried out in 

this chapter, we will evaluate the performance and the quality of forecasts, as well as 

the accuracy of the VaR models generated by the ARMA and the GARCH models.
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Table 5.2: Comparison of Volatility Modelling Approaches — KLCI 
306 In-sample Estimation Period

This table describes the in-sample parameter estimates of the five volatility modelling approaches described and 
denoted in the text as approaches Tl, T2, T3, T4, and T5. The numbers in parentheses are Bollerslev- 
Wooldridge robust standard errors. The log likelihood (LL), the Akaike Information Criterion (AIC), and the 
Schwarz Information Criterion (SIC) are also given. The significance of these estimates is denoted by ** (1% 
significance) and * (5% significance).

Tl
EGARCH

T2
EGARCH

T3
GARCH

T4
EGARCH

T5
GARCH

Mean Eauation
C -0.0003 -0.0006 0.0014 -0.0002 -0.0004

(0.0006) (0.0005) (0.0062) (0.0007) (0.0060)
Volatility Eauation

a. 0.0301** 0.0349**
(0.0030) (0.0034)

Pi 0.9641** 0.9586**
(0.0035) (0.0039)

|RES|/SQR[GARCH](1) 0.2749** 0.0859** 0.0884**
(0.0202) (0.0098) (0.0113)

RES/SQR[G ARCH]( 1) -0.0109 8.63E-05 -0.0027
(0.0102) (0.0045) (0.0059)

EGARCH(l) 0.9383** 0.9928** 0.9929**
(0.0082) (0.0017) (0.0021)

C -0.4848** 0.2191** 0.0056** -0.0709** 0.0062**
(0.0417) (0.0238) (0.0018) (0.0140) (0.0019)

Model Fit
LL 22140.12 23330.17 23041.034 22584.34 23084.81
AIC -1.9551 -2.0592 -2.0347 -1.9939 -2.0386
SIC -1.9533 -2.0535 -2.0333 -1.9907 -2.0372

RANKING 13 2 7 10 6
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Table 5.2: Comparison of Volatility Modelling Approaches -  KLCI
306 In-sample Estimation Period (continued)

This table describes the in-sample parameter estimates of the six volatility modelling approaches described and 
denoted in the text as approaches T6, T7, T8, T9, T10 and T il. The numbers in parentheses are Bollerslev- 
Wooldridge robust standard errors. The log likelihood (LL), the Akaike Information Criterion (AIC), and the 
Schwarz Information Criterion (SIC) are also given. The significance of these estimates is denoted by ** (1% 
significance) and * (5% significance).

T6 T7 T8 T9 T10 T il
EGARCH TGARCH EGARCH TGARCH EGARCH TGARCH

Mean Eauation
C -8.59E-05 0.0005 -8.59E-05 -0.0002 -0.0004 -0.0029

(0.0006) (0.0058) (0.0005) (0.0057) (0.0005) (0.0059)
Volatility
Eauation

Oti 0.0372** 0.0412** 0.03173**
(0.0044) (0.0044) (0.0038)

Pi 0.9544** 0.9487** 0.9633**
(0.0043) (0.0045) (0.0032)

y 0.0012 0.0029 -0.0009
(0.0053) (0.0055) (0.0043)

|RES|/SQR[GARCH](1) 0.0895** 0.0897** 0.0871**
(0.0114) (0.0113) (0.0017)

RES/SQR[GARCH]( 1) -0.0016 -0.0016 3.50E-05**
(0.0055) (0.0058) (0.0012)

EGARCH(l) 0.9914** 0.9934** 0.9921**
(0.0021) (0.0026) (0.0004)

c -0.1045** 0.0082** -0.1085** 0.0094** -0.2952** 0.0053**
(0.0149) (0.0019) (0.0156) (0.0018) (0.0056) (0.0015)

Model Fit
LL 22824.15 22553.66 22822.13 22469.87 23359.67 23279.27
AIC -2.0156 -1.9916 -2.0149 -1.9842 -2.0617 -2.0557
SIC -2.0124 -1.9898 -2.0117 -1.9824 -2.0557 -2.0539

RANKING 8 11 9 12 1 4
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Table 5.2: Comparison of Volatility Modelling Approaches -  KLCI
306 In-sample Estimation Period (continued)

This table describes the in-sample parameter estimates of the six volatility modelling approaches described and 
denoted in the text as approaches T6, T7, T8, T9, T10 and T il. The numbers in parentheses are Bollerslev- 
Wooldridge robust standard errors. The log likelihood (LL), the Akaike Information Criterion (AIC), and the 
Schwarz Information Criterion (SIC) are also given. The significance of these estimates is denoted by ** (1% 
significance) and * (5% significance).

T12
EGARCH

T13
TGARCH

Mean Eauation
C -0.0007 -0.0037

(0.0005) (0.0058)
Volatility Eauation

a, 0.0311**

Pi
(0.0037)

0.9649**

Y
(0.0033)
-0.0017

|RES|/SQR[GARCH]( 1) 0.0867**
0.0042

RES/SQR[GARCH]( 1)
(0.0017)

0.0002

EGARCH(l)
(0.0012)

0.9927**

c
(0.0004)

-0.3479** 0.00478*
(0.0229) (0.0013)

Model Fit
LL 23299.80 23265.57
AIC -2.0565 -2.0545
SIC -2.0539 -2.0527

RANKING 3 5
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Table 5.3: Forecast Performance 100-Day Out-of-sample Forecasting Period-PGARCH

The following table reports two forecast error statistics for the forecasts produced by the various volatility 
modelling approaches listed below. The results are based on a one-step-ahead forecast covering a 100-day out- 
of-sample period. The errors computed are the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE).

MSFE Ranking MAFE Ranking
based on based on
MSFE MAFE

Naive Model 0.000412 0.014005

Volatility Modelling Approach:

Tl Non-periodic GARCH model 0.000290 13 0.006158 13

T2 Jointly-estimated full dummy 0.000265 3 0.005297 3
version of the PGARCH model

T3 Two-step full dummy version of 0.000281 9 0.005547 5
the PGARCH model

T4 Jointly-estimated partial dummy 0.000293 12 0.005584 6
version of the PGARCH model

T5 Two-step partial dummy version 0.000274 5 0.005705 10
of the PGARCH model

T6 Jointly estimated FFF version of 0.000277 7 0.005468 4
the PGARCH model

T7 Two-step FFF version of the 0.000283 10 0.005951 12
PGARCH model

T8 Jointly estimated Augmented 0.000279 8 0.005674 8
FFF version of the PGARCH
model

T9 Two-step Augmented FFF 0.000285 11 0.005879 11
version of the PGARCH model

T10 Jointly estimated Spline version 0.000261 1 0.005287 2
of the PGARCH model

T il Two-step Spline version of the 0.000267 4 0.005690 7
PGARCH model

T12 Jointly estimated Augmented 0.000264 2 0.005282 1
Spline version of the PGARCH
model

T13 Two-step Augmented Spline 0.000276 6 0.005701 9
version of the PGARCH model



Table 5.4: Comparing Forecast quality - 100-Day Out-of-sample Forecasting Period

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecasts generated based on unconditional variance (Ml) are of 
the same quality as the forecasts generated by the various volatility modelling approaches listed in Table 
5.4 above. The alternative hypothesis adopted is that the forecasts produced by the volatility modelling 
approaches are superior to the forecasts of Ml. The results are based on a one-step-ahead forecast covering 
a 100-day out-of-sample period. The test is implemented with the mean squared forecast error (MSFE) and 
the mean absolute forecast error (MAFE) as the loss functions. The significance of these tests is denoted by 
** (1% significance) and * (5% significance).

Metric
MSFE MAFE

Naive Model (Ml)

Naive Model v. Volatility Approach

Ml v. Tl 28.9677** 111.5225**

Ml v.T2 33.9285** 122.3850**

Ml v.T3 13.2278** 88.5388**

Ml v. T4 27.3170** 119.1960**

Ml v. T5 14.6689** 92.8531**

Ml v. T6 54.2777** 126.7412**

Ml v.T7 24.4348** 113.6956**

Ml v. T8 55.6680** 118.3783**

Ml v. T9 22.7638** 114.3227**

Ml v. T10 27.2498** 120.7394**

Ml v .T il 18.9399** 106.7386**

Ml v.T12 32.2998** 123.4641**

Ml v. T13 14.1643** 89.9590**
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Table 5.5: Comparing Forecast Quality between Volatility Modelling Approaches

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecast generated based on a volatility modelling approach is of 
the same quality as the forecast generated by another competing volatility modelling approach. The 
alternative hypothesis adopted is that the forecast produced by a volatility modelling approach is superior to 
the forecast generated by a competing volatility modelling approach. TTie results are based on a one-step- 
ahead forecast covering a 100-day out-of-sample period and comparisons of forecast quality are performed 
among the eleven modelling approaches described in Table 5.4. The tests are implemented with the mean 
squared forecast error (MSFE) and the mean absolute forecast error (MAFE) as the loss functions. The 
significance of these tests is denoted by ** (1% significance) and * (5% significance).

Comparison of Modelling Approaches MSFE MAFE

Tl v.T2 4.3308** 19.4479**
Tl v.T3 2.8766** 10.5286**
Tl v. T4 2.7168** 13.4282**
Tl v. T5 2.5245** 7.1157**
Tl v. T6 4.0038** 20.5943**
Tl v. T7 3.7369** 19.1887**
Tl v. T8 3.2555** 13.0602**
Tl v. T9 3.6628** 22.1336**
Tl v. T10 4.1741** 19.3239**
Tl v. T il 3.2733** 15.1879**
Tl v. T12 4.3373** 20.0497**
Tl v. T13 3.1635** 3.9132**
T2v.T3 -2.5590** -5.2430**
T2v.T4 -3.9073** -6.2292**
T2 v.T5 -1.5812 -9.9015**
T2 v.T6 -2.9737** -6.3934**
T2 v.T7 -2.9544** -6.4356**
T2 v.T8 -3.8773** 12.0068**
T2 v.T9 -2.6002** -4.5452**
T2 v. T10 1.5869 0.9565
T2 v .T ll -0.4185 -4.3717**
T2 v. T12 1.4933 1.4766
T2 v. T13 -2.1822* -14.0415**
T3 v.T4 -0.9478 -0.5436
T3 v.T5 2.0396* -5.4331**
T3 v.T6 0.3821 1.4045
T3 v.T7 -0.3745 10.5847**
T3v.T8 0.2174 2.2318*
T3 v. T9 -0.3130 -10.6115**
T3 v. T10 3.5683** 5.5488**
T3 v .T ll 2.6448** 2.0499*
T3 v. T12 2.7939** 5.5148**
T3 v. T13 1.9620* -11.0735**
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Table 5.5: Comparing Forecast Quality between Volatility Modelling Approaches (continued)

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecast generated based on a volatility modelling approach is of 
the same quality as the forecast generated by another competing volatility modelling approach. The 
alternative hypothesis adopted is that the forecast produced by a volatility modelling approach is superior to 
the forecast generated by a competing volatility modelling approach. The results are based on a one-step- 
ahead forecast covering a 100-day out-of-sample period and comparisons of forecast quality are performed 
among the eleven modelling approaches described in Table 5.4. The tests are implemented with the mean 
squared forecast error (MSFE) and the mean absolute forecast error (MAFE) as the loss functions. The 
significance of these tests is denoted by ** (1% significance) and * (5% significance).

Comparison of Modelling Approaches MSFE MAFE

T4 v. T5 4.5719** -3.8299**
T4 v. T6 4.9923** 3.2349**
T4 v. T7 2.2520* -8.4924**
T4 v. T8 3.6295** -2.0168*
T4 v. T9 1.2053 -2.9685**
T4 v. T10 3.7249** 6.2097**
T4 v .T ll 2.7515** -2.3126*
T4 v. T12 3.9059** 6.6777**
T4 v. T13 3.2583** -4.6407**
T5 v. T6 -0.3819 4.4843**
T5 v. T7 -3.4126** -2.4923**
T5 v. T8 -0.5989 0.5751
T5 v. T9 -3.4440 -1.6221
T5 v. T10 2.5618** 10.3286**
T5v. T il 0.8830 4.8839**
T5 v. T12 2.8022** 10.1695**
T5 v. T13 -1.9242 1.8886
T6 v. T7 -1.9709* -13.5379**
T6 v. T8 -0.1781 -2.5288**
T6 v. T9 -2.1809* -8.6218**
T6 v. T10 2.9136** 6.0267**
T6 v. T il 2.4565** -2.5656**
T6 v. T12 3.0074** 7.2359**
T6 v. T13 0.01278 -8.0263**
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Table 5.5: Comparing Forecast Quality between Volatility Modelling Approaches (continued)

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecast generated based on a volatility modelling approach is of 
the same quality as the forecast generated by another competing volatility modelling approach. The 
alternative hypothesis adopted is that the forecast produced by a volatility modelling approach is superior to 
the forecast generated by a competing volatility modelling approach. The results are based on a one-step- 
ahead forecast covering a 100-day out-of-sample period and comparisons of forecast quality are performed 
among the eleven modelling approaches described in Table 5.4. The tests are implemented with the mean 
squared forecast error (MSFE) and the mean absolute forecast error (MAFE) as the loss functions. The 
significance of these tests is denoted by ** (1% significance) and * (5% significance).

Comparison of Modelling Approaches MSFE MAFE

T7v.T8 0.2496 3.5811**
T7 v. T9 -1.0245 1.0790
T7 v. T10 2.7936** 6.4912**
T7 v. T il 2.6474** 3.2487**
T7 v. T12 2.8790** 6.8542**
T7 v. T13 2.6654** 5.5613**
T8 v. T9 0.1543 -5.6248**
T8 v. T10 3.5796** 11.2892**
T8v. T il 2.6685** 1.9180
T8 v. T12 3.8493** 6.0678**
T8 v. T13 0.1787 -1.1813
T9 v. T10 3.6175** 4.6494**
T9 v. T il 2.5878** 2.4790**
T9 v. T12 3.4181** 4.9648**
T9 v. T13 1.9782* 2.6522**
T10 v .T ll -2.2991* -4.9265**
T10 v. T12 -1.1547 0.4329
T10 v. T13 -3.2016** -14.1042**
T il v.T12 0.6014 4.6423**
T il v. T13 -1.3237 -1.1903
T12 v. T13 -2.4173** -14.4052**
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Table 5.6: Comparing Forecast Quality -  Forecast Encompassing Test

This table reports the results of the asymptotic “forecast encompassing” test of Harvey et al. (1998) using a 
5% significance level. The test statistic is denoted by HLN. TTie null hypothesis is that if forecasts from 
model 1 encompass the forecasts from model 2, then the covariance between eu and elt-e2t will be negative 
or zero (eu and e2t are the two sets of forecast errors from model 1 and model 2 respectively). The 
alternative hypothesis is that the forecasts from model 1 do not encompass those from model 2, in which 
case the covariance between elt and eit-e2l will be positive. The results are based on a one-step-ahead 
forecast covering a 100-day out-of-sample period. Forecast quality comparisons are made with 
unconditional variance (Ml) with the various volatility modelling approaches listed in Table 5.4. The 
significance of these tests is denoted by ** (1% significance) and * (5% significance).

Metric

HLN

Naive Model (Ml)

Naive Model v. Volatility Approach 

Ml v. Tl 

Ml v.T2 

Ml v.T3 

Ml v. T4 

Ml v. T5 

Ml v. T6 

Ml v.T7 

Ml v. T8 

Ml v. T9 

Ml v. T10 

Ml v .T il 

Ml v. T12 

Ml v. T13

192.5334**

224.8631**

129.0693**

336.6812**

131.8517**

272.5332**

199.5606**

212.3302**

206.0263**

212.8964**

165.8173**

229.4463**

124.0719**
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Table 5.7: Comparing Forecast Quality between Volatility Modelling Approaches -  Forecast
Encompassing Test

This table reports the results of the asymptotic “forecast encompassing” test of Harvey et al. (1998) using a 
5% significance level. The test statistic is denoted by HLN. The null hypothesis is that if forecasts from 
model 1 encompass the forecasts from model 2, then the covariance between eu and ei,-e2t will be negative 
or zero (elt and e2t are the two sets of forecast errors from model 1 and model 2 respectively). The 
alternative hypothesis is that the forecasts from model 1 do not encompass those from model 2, in which 
case the covariance between elt and e[t-e2t will be positive. The results are based on a one-step-ahead 
forecast covering a 100-day out-of-sample period. Forecast quality comparisons are made among pairs of 
the various volatility modelling approaches listed in Table 5.4. The significance of these tests is denoted by 
** (1% significance) and * (5% significance).

Comparison of Modelling Approaches Metric

HLN

T1 v.T2 6.6743**
T1 v. T3 3.7384**
T1 v. T4 2.4824**
T1 v. T5 4.5773**
T1 v. T6 5.6130**
T1 v.T7 6.3567**
T1 v. T8 5.5171**
T1 v. T9 6.2283**
T1 v. T10 6.3236**
T1 v. T il 5.8912**
T1 v. T12 6.5314**
T1 v. T13 4.4355**
T2 v.T3 0.2926
T2 v.T4 -1.2510
T2 v.T5 0.8277
T2 v. T6 -1.6576
T2v.T7 -0.0604
T2 v.T8 -1.7334
T2 v.T9 -0.0243
T2 v. T10 3.1102**
T2 v. T il 1.3237
T2 v. T12 3.1148**
T2 v. T13 0.4360
T3 v. T4 2.4949**
T3 v. T5 3.2483**
T3 v. T6 2.5379**
T3 v.T7 2.9598**
T3 v. T8 2.5751**
T3 v. T9 2.8921**
T3 v. T10 5.0904**
T3 v. T il 4.4601**
T3 v. T12 4.4467**
T3 v. T13 2.6710**
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Table 5.7: Comparing Forecast Quality between Volatility Modelling Approaches -Forecast
Encompassing Test (continued)

This table reports the results of the asymptotic “forecast encompassing” test of Harvey et al. (1998) using a 
5% significance level. The test statistic is denoted by HLN. The null hypothesis is that if forecasts from 
model 1 encompass the forecasts from model 2, then the covariance between eu and eu-e2x will be negative 
or zero (elt and e2x are the two sets of forecast errors from model 1 and model 2 respectively). The 
alternative hypothesis is that the forecasts from model 1 do not encompass those from model 2, in which 
case the covariance between elt and eu-e2x will be positive. The results are based on a one-step-ahead 
forecast covering a 100-day out-of-sample period. Forecast quality comparisons are made among pairs of 
the various volatility modelling approaches listed in Table 5.4. The significance of these tests is denoted by 
** (1% significance) and * (5% significance).

Comparison of Modelling Approaches Metric

HLN

T4 v. T5 4.6698**
T4 v. T6 8.3765**
T4v.T7 5.5554**
T4 v. T8 7.9951**
T4 v. T9 5.4518**
T4 v. T10 5.9663**
T4 v. T il 5.8639**
T4 v. T12 6.1850**
T4 v. T13 4.6473**
T5 v. T6 1.7597
T5 v. T7 2.4719**
T5 v. T8 1.7261
T5 v. T9 2.4281**
T5 v. T10 4.0332**
T5 v. T il 3.3419**
T5 v. T12 3.3922**
T5 v. T13 -2.8132**
T6 v.T7 1.7701
T6 v. T8 0.1706
T6 v. T9 1.6824
T6 v. T10 4.1308**
T6 v. T il 3.6762**
T6 v. T12 4.0909**
T6 v. T13 2.5606**
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Table 5.7: Comparing Forecast Quality between Volatility Modelling Approaches -Forecast
Encompassing Test (continued)

This table reports the results of the asymptotic “forecast encompassing” test of Harvey et al. (1998) using a 
5% significance level. The test statistic is denoted by HLN. The null hypothesis is that if forecasts from 
model 1 encompass the forecasts from model 2, then the covariance between eu and eu-e2t will be negative 
or zero (eu and e2t are the two sets of forecast errors from model 1 and model 2 respectively). The 
alternative hypothesis is that the forecasts from model 1 do not encompass those from model 2, in which 
case the covariance between eu and eu-e2t will be positive. The results are based on a one-step-ahead 
forecast covering a 100-day out-of-sample period. Forecast quality comparisons are made among pairs of 
the various volatility modelling approaches listed in Table 5.4. The significance of these tests is denoted by 
** (1% significance) and * (5% significance).

Comparison of Modelling Approaches Metric

HLN

T7 v. T8 1.4962
T7 v. T9 0.2045
T7 v. T10 4.4298**
T7 v. T il 4.3939**
T7 v. T12 4.1598**
T7 v. T13 3.3099**
T8v.T9 2.2916**
T8 v. T10 5.3902**
T8 v .T ll 4.3813**
T8 v. T12 5.6594**
T8 v. T13 2.9528**
T9 v. T10 4.3430**
T9 v. T il 4.3654**
T9 v. T12 4.0654**
T9 v. T13 3.2976**
TIO v.T ll 0.3963
T10 v. T12 -1.5665
T10 v. T13 -0.2136
T il v. T12 4.4789**
T il v. T13 -0.1001
T12 v. T13 -9.4931**
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Table 5.8: Results of test for “Correct Unconditional Coverage” -  Normal Distribution

This table contains the results of the test for “correct unconditional coverage” in the failure series (99% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : f  = a , equation (5.9) for 99% VaR coverage. The likelihood ratio statistic is given

by: LR„C = -  2 ln{z,(p) / L(n)}. The variables are defined in the main text. The significance of these tests is 
denoted by ** (1% significance).

Volatility Modelling Approach Observed
f

Likelihood
Ratio

Statistic

p-value

T1 Non-periodic GARCH model 0.0122 3.2681 0.0706
T2 Jointly-estimated full dummy version of 

the PGARCH model
0.0172 31.5747** 0.0000

T3 Two-step full dummy version of the 
PGARCH model

0.0341 265.9433** 0.0000

T4 Jointly-estimated partial dummy version 
of the PGARCH model

0.0255 125.2580** 0.0000

T5 Two-step partial dummy version of the 
PGARCH model

0.0228 90.3686** 0.0000

T6 Jointly estimated FFF version of the 
PGARCH model

0.0161 23.3407** 0.0001

T7 Two-step FFF version of the PGARCH 
model

0.0173 32.6781** 0.0000

T8 Jointly estimated Augmented FFF version 
of the PGARCH model

0.0166 27.3256** 0.0000

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0164 25.2986** 0.0000

T10 Jointly estimated Spline version of the 
PGARCH model

0.0162 24.3117** 0.0000

T il Two-step Spline version of the PGARCH 
model

0.0165 26.3044** 0.0000

T12 Jointly estimated Augmented Spline 
version of the PGARCH model

0.0162 24.3117** 0.0000

T13 Two-step Augmented Spline version of 
the PGARCH model

0.0209 68.0997** 0.0000

RiskMetrics 0.0296 181.8108** 0.0000
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Table 5.9: Results of test for “Correct Unconditional Coverage” -  Normal Distribution

This table contains the results of the test for “correct unconditional coverage” in the failure series (95% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : /  = a , equation (5.9) for 95% VaR coverage. The likelihood ratio statistic is given

by: LR„C = -  2 In {/,(/?) / L(n)}. The variables are defined in the main text. The significance of these tests is 
denoted by * (5% significance).

Volatility Modelling Approach Observed

f

Likelihood
Ratio

Statistic

p-value

T1 Non-periodic GARCH model 0.0314 62.1116* 0.0000
T2 Jointly-estimated full dummy version of 

the PGARCH model
0.0447 4.4792* 0.0343

T3 Two-step full dummy version of the 
PGARCH model

0.0759 91.1227* 0.0000

T4 Jointly-estimated partial dummy version 
of the PGARCH model

0.0543 2.8369 0.0921

T5 Two-step partial dummy version of the 
PGARCH model

0.0564 6.0470* 0.0139

T6 Jointly estimated FFF version of the 
PGARCH model

0.0405 14.8621* 0.0001

T7 Two-step FFF version of the PGARCH 
model

0.0431 7.7461* 0.0062

T8 Jointly estimated Augmented FFF version 
of the PGARCH model

0.0495 0.0454 0.8312

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0430 8.0603* 0.0045

T10 Jointly estimated Spline version of the 
PGARCH model

0.0443 5.2093* 0.0224

T il Two-step Spline version of the PGARCH 
model

0.0477 0.8344 0.3610

T12 Jointly estimated Augmented Spline 
version of the PGARCH model

0.0457 2.9663 0.0850

T13 Two-step Augmented Spline version of 
the PGARCH model

0.0519 0.5511 0.4578

RiskMetrics 0.0668 38.3912* 0.0000
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Table 5.10: Results of test for “Independence” -  Normal Distribution

This table contains the results of the test for “independence” in the failure series (99% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 9.0517** 0.0026
T2 Jointly-estimated full dummy version of the 

PGARCH model
10.4495** 0.0012

T3 Two-step full dummy version of the PGARCH 
model

13.2486** 0.0003

T4 Jointly-estimated partial dummy version of the 
PGARCH model

55.8022** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

18.3282** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

18.1697** 0.0000

T7 Two-step FFF version of the PGARCH model 12.2878** 0.0006
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
7.1667** 0.0074

T9 Two-step Augmented FFF version of the PGARCH 
model

6.4315** 0.0085

T10 Jointly estimated Spline version of the PGARCH 
model

17.5973** 0.0000

T il Two-step Spline version of the PGARCH model 6.9068** 0.0051
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
7.5449** 0.0060

T13 Two-step Augmented Spline version of the 
PGARCH model

13.0958** 0.0003

RiskMetrics 18.7099** 0.0000
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Table 5.11: Results of test for “Independence” -  Normal Distribution

This table contains the results of the test for “independence” in the failure series (95% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 0.0288 0.8651
T2 Jointly-estimated full dummy version of the 

PGARCH model
2.9972 0.0835

T3 Two-step full dummy version of the PGARCH 
model

29.3056** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

49.3478** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

16.5607** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

5.5777* 0.0182

T7 Two-step FFF version of the PGARCH model 12.6545** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
9.4828** 0.0021

T9 Two-step Augmented FFF version of the PGARCH 
model

11.4365** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

1.5230 0.2172

T il Two-step Spline version of the PGARCH model 9.4898** 0.0014
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
4.5239* 0.0335

T13 Two-step Augmented Spline version of the 
PGARCH model

20.7999** 0.0000

RiskMetrics 28.0943** 0.0000

166



Table 5.12: Results of test for “Correct Conditional Coverage** -  Normal Distribution

This table contains the results of the test for “correct conditional coverage” in the failure series (99% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding ^-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 5.4739** 0.0042
T2 Jointly-estimated full dummy version of the 

PGARCH model
14.7314** 0.0000

T3 Two-step full dummy version of the PGARCH 
model

66.3112** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

55.2764** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

32.4812** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

15.7608** 0.0000

T7 Two-step FFF version of the PGARCH model 11.6015** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
12.1847** 0.0000

T9 Two-step Augmented FFF version of the PGARCH 
model

9.2817** 0.0001

T10 Jointly estimated Spline version of the PGARCH 
model

15.7704** 0.0000

T il Two-step Spline version of the PGARCH model 10.6209** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
11.4459** 0.0000

T13 Two-step Augmented Spline version of the 
PGARCH model

25.2697** 0.0000

RiskMetrics 53.0367** 0.0000
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Table 5.13: Results of test for “Correct Conditional Coverage” -  Normal Distribution

This table contains the results of the test for “correct conditional coverage” in the failure series (95% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding /7-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic /j-value

T1 Non-periodic GARCH model 44.0134** 0.0000
T2 Jointly-estimated full dummy version of the 

PGARCH model
4.9190** 0.0000

T3 Two-step full dummy version of the PGARCH 
model

40.7226** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

24.9239** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

9.3301** 0.0001

T6 Jointly estimated FFF version of the PGARCH 
model

13.8152** 0.0000

T7 Two-step FFF version of the PGARCH model 4.7998** 0.0083
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
5.1163** 0.0057

T9 Two-step Augmented FFF version of the PGARCH 
model

4.5386* 0.0107

T10 Jointly estimated Spline version of the PGARCH 
model

4.3788* 0.0126

T il Two-step Spline version of the PGARCH model 10.6209** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
4.8751** 0.0077

T13 Two-step Augmented Spline version of the 
PGARCH model

10.4479** 0.0000

RiskMetrics 53.0367** 0.0000
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Table 5.14: Results of test for “Correct Unconditional Coverage*’ -  Student t Distribution (4 Degrees
of Freedom)

This table contains the results of the test for “correct unconditional coverage” in the failure series (99% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : f  = a ,  equation (5.9) for 99% VaR coverage. The likelihood ratio statistic is given

by: LRuc = -  2 In {L(p) / Z,(£)}. The variables are defined in the main text. The significance of these tests is 
denoted by ** (1% significance).

Volatility Modelling Approach Observed
/

Likelihood
Ratio

Statistic

p-value

T1 Non-periodic GARCH model 0.0028 53.4779** 0.0000
T2 Jointly-estimated full dummy version of the 

PGARCH model
0.0015 84.6036** 0.0000

T3 Two-step full dummy version of the 
PGARCH model

0.0034 44.0665** 0.0000

T4 Jointly-estimated partial dummy version of 
the PGARCH model

0.0054 18.9427** 0.0000

T5 Two-step partial dummy version of the 
PGARCH model

0.0018 77.2817** 0.0000

T6 Jointly estimated FFF version of the 
PGARCH model

0.0023 64.4334** 0.0000

T7 Two-step FFF version of the PGARCH model 0.0020 70.5907** 0.0000
T8 Jointly estimated Augmented FFF version of 

the PGARCH model
0.0026 58.7431** 0.0000

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0023 64.4334** 0.0000

T10 Jointly estimated Spline version of the 
PGARCH model

0.0014 88.5152** 0.0000

T il Two-step Spline version of the PGARCH 
model

0.0012 92.6503** 0.0000

T12 Jointly estimated Augmented Spline version 
of the PGARCH model

0.0014 88.5152** 0.0000

T13 Two-step Augmented Spline version of the 
PGARCH model

0.0018 77.2817** 0.0000

RiskMetrics 0.0047 24.3177** 0.0000
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Table 5.15: Results of test for “Correct Unconditional Coverage” -  Student t Distribution (4 Degrees
of Freedom)

This table contains the results of the test for “correct unconditional coverage” in the failure series (95% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : /  = a , equation (5.9) for 95% VaR coverage. The likelihood ratio statistic is given

by: LRuc = -  2 ln{z,(/?) / L(n)}. The variables are defined in the main text. The significance of these tests is 
denoted by * (5% significance).

Volatility Modelling Approach Observed

f

Likelihood
Ratio

Statistic

/7-value

T1 Non-periodic GARCH model 0.0091 389.8936* 0.0000
T2 Jointly-estimated full dummy version of 

the PGARCH model
0.0118 325.3299* 0.0000

T3 Two-step full dummy version of the 
PGARCH model

0.0268 100.5804* 0.0000

T4 Jointly-estimated partial dummy version 
of the PGARCH model

0.0209 166.7845* 0.0000

T5 Two-step partial dummy version of the 
PGARCH model

0.0169 227.1436* 0.0000

T6 Jointly estimated FFF version of the 
PGARCH model

0.0111 340.5279* 0.0000

T7 Two-step FFF version of the PGARCH 
model

0.0122 316.5413* 0.0000

T8 Jointly estimated Augmented FFF version 
of the PGARCH model

0.0127 305.0976* 0.0000

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0122 316.5413* 0.0000

T10 Jointly estimated Spline version of the 
PGARCH model

0.0127 305.0976* 0.0000

T il Two-step Spline version of the PGARCH 
model

0.0130 299.5051* 0.0000

T12 Jointly estimated Augmented Spline 
version of the PGARCH model

0.0130 299.5051* 0.0000

T13 Two-step Augmented Spline version of 
the PGARCH model

0.0155 250.3677* 0.0000

RiskMetrics 0.0222 144.6096* 0.0000
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Table 5.16: Results of test for “Independence” -  Student t Distribution (4 Degrees of Freedom)

This table contains the results of the test for “independence” in the failure series (99% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 0.7418 0.3891
T2 Jointly-estimated full dummy version of the 

PGARCH model
0.7408 0.3894

T3 Two-step full dummy version of the PGARCH 
model

0.7422 0.3890

T4 Jointly-estimated partial dummy version of the 
PGARCH model

32.6408** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

0.7410 0.3894

T6 Jointly estimated FFF version of the PGARCH 
model

17.7300** 0.0000

T7 Two-step FFF version of the PGARCH model 0.7412 0.3893
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
0.7416 0.3892

T9 Two-step Augmented FFF version of the 
PGARCH model

0.7414 0.3891

T10 Jointly estimated Spline version of the PGARCH 
model

0.7407 0.3895

T il Two-step Spline version of the PGARCH model 0.7407 0.3895
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
0.7407 0.3895

T13 Two-step Augmented Spline version of the 
PGARCH model

0.7410 0.3894

RiskMetrics 16.5635** 0.0000
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Table 5.17: Results of test for “Independence” -  Student t Distribution (4 Degrees of Freedom)

This table contains the results of the test for “independence” in the failure series (95% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic /7-value

T1 Non-periodic GARCH model 0.1521 0.6965
T2 Jointly-estimated full dummy version of the 

PGARCH model
0.1213 0.7277

T3 Two-step full dummy version of the PGARCH 
model

0.1571 0.6919

T4 Jointly-estimated partial dummy version of the 
PGARCH model

8.9282** 0.0028

T5 Two-step partial dummy version of the PGARCH 
model

0.2713 0.6025

T6 Jointly estimated FFF version of the PGARCH 
model

1.2424 0.2650

T7 Two-step FFF version of the PGARCH model 5.6119* 0.0179
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
0.3624 0.5472

T9 Two-step Augmented FFF version of the 
PGARCH model

5.6119* 0.0179

T10 Jointly estimated Spline version of the PGARCH 
model

1.4368 0.2307

T il Two-step Spline version of the PGARCH model 6.3757* 0.0116
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
0.0325 0.8568

T13 Two-step Augmented Spline version of the 
PGARCH model

2.8849 0.0895

RiskMetrics 0.0064 0.9364

172



Table 5.18: Results of test for “Correct Conditional Coverage” -  Student t Distribution (4 Degrees of
Freedom)

This table contains the results of the test for “correct conditional coverage” in the failure series (99% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding /7-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 67.0584** 0.0000
T2 Jointly-estimated full dummy version of the 

PGARCH model
180.5801** 0.0000

T3 Two-step full dummy version of the PGARCH 
model

48.1932** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

33.3263** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

143.2934** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

107.9377** 0.0000

T7 Two-step FFF version of the PGARCH model 116.2140** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
79.7874** 0.0000

T9 Two-step Augmented FFF version of the PGARCH 
model

95.7395** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

204.9468** 0.0000

T il Two-step Spline version of the PGARCH model 234.8781** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
204.9648** 0.0000

T13 Two-step Augmented Spline version of the 
PGARCH model

143.2934** 0.0000

RiskMetrics 32.1608** 0.0000
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Table 5.19: Results of test for “Correct Conditional Coverage” -  Student t Distribution (4 Degrees of
Freedom)

This table contains the results of the test for “correct conditional coverage” in the failure series (95% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding p-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic />-value

T1 Non-periodic GARCH model 696.8286** 0.0000
T2 Jointly-estimated full dummy version of the 

PGARCH model
470.4661** 0.0000

T3 Two-step full dummy version of the PGARCH 
model

78.0893** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

168.3339** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

250.3084** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

513.9741** 0.0000

T7 Two-step FFF version of the PGARCH model 441.0879** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
413.9792** 0.0000

T9 Two-step Augmented FFF version of the 
PGARCH model

441.0879** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

421.1928** 0.0000

T il Two-step Spline version of the PGARCH model 396.1689** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
402.3475** 0.0000

T13 Two-step Augmented Spline version of the 
PGARCH model

299.0286** 0.0000

RiskMetrics 135.0970** 0.0000
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Table 5.20: Results of test for “Correct Unconditional Coverage” -  Student t Distribution (24
Degrees of Freedom)

This table contains the results of the test for “correct unconditional coverage” in the failure series (99% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : f  = a ,  equation (5.9) for 99% VaR coverage. The likelihood ratio statistic is given

by: LRyc = -  2 ln{z(p) / Z-(jt)}. The variables are defined in the main text. The significance of these tests is 
denoted by ** (1% significance).

Volatility Modelling Approach Observed

f

Likelihood
Ratio

Statistic

p-value

T1 Non-periodic GARCH model 0.0089 0.9063 0.3410
T2 Jointly-estimated full dummy version of the 

PGARCH model
0.0118 2.1826 0.1395

T3 Two-step full dummy version of the 
PGARCH model

0.0257 128.1708** 0.0000

T4 Jointly-estimated partial dummy version of 
the PGARCH model

0.0205 63.6567** 0.0000

T5 Two-step partial dummy version of the 
PGARCH model

0.0166 27.3256** 0.0000

T6 Jointly estimated FFF version of the 
PGARCH model

0.0104 0.1212 0.7277

T7 Two-step FFF version of the PGARCH 
model

0.0120 2.8840 0.0894

T8 Jointly estimated Augmented FFF version 
of the PGARCH model

0.0126 4.5561 0.0328

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0120 2.8840 0.0894

T10 Jointly estimated Spline version of the 
PGARCH model

0.0124 4.1047 0.0427

T il Two-step Spline version of the PGARCH 
model

0.0130 6.0401 0.0139

T12 Jointly estimated Augmented Spline version 
of the PGARCH model

0.0128 5.5237 0.0187

T13 Two-step Augmented Spline version of the 
PGARCH model

0.0153 17.8785** 0.0000

RiskMetrics 0.0219 88.3806** 0.0000
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Table 5.21: Results of test for “Correct Unconditional Coverage” -  Student t Distribution (24
Degrees of Freedom)

This table contains the results of die test for “correct unconditional coverage” in the failure series (95% 
VaR estimation) of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven 
volatility modelling and the RiskMetrics approaches listed below. The first column gives the names of the 
approaches, the second column reports the observed failure rates, the third column gives the likelihood ratio 
statistic for the unconditional coverage and the fourth column reports the probability of success with the
null hypothesis, Hq : f  = a , equation (5.9) for 95% VaR coverage. The likelihood ratio statistic is given

by: LR^ = -  2 ln{z,(p) / Z(£)}. The variables are defined in the main text. The significance of these tests is 
denoted by * (5% significance).

Volatility Modelling Approach Observed

f

Likelihood
Ratio

Statistic

/j-value

T1 Non-periodic GARCH model 0.0262 105.8597* 0.0000
T2 Jointly-estimated dummy version of the 

PGARCH model
0.0381 23.9169* 0.0000

T3 Two-step dummy version of the 
PGARCH model

0.0659 36.1605* 0.0000

T4 Jointly-estimated dummy version of the 
PGARCH model

0.0485 0.3475 0.5555

T5 Two-step dummy version of the 
PGARCH model

0.0495 0.0454 0.8312

T6 Jointly estimated FFF version of the 
PGARCH model

0.0365 31.2720* 0.0000

T7 Two-step FFF version of the PGARCH 
model

0.0368 29.9701* 0.0000

T8 Jointly estimated Augmented FFF version 
of the PGARCH model

0.0426 9.0429* 0.0026

T9 Two-step Augmented FFF version of the 
PGARCH model

0.0369 29.3312* 0.0000

T10 Jointly estimated Spline version of the 
PGARCH model

0.0374 26.8497* 0.0000

T il Two-step Spline version of the PGARCH 
model

0.0407 14.4265* 0.0001

T12 Jointly estimated Augmented Spline 
version of the PGARCH model

0.0377 25.6544* 0.0000

T13 Two-step Augmented Spline version of 
the PGARCH model

0.0450 4.0243* 0.0448

RiskMetrics 0.0576 10.2550* 0.0013
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Table 5.22: Results of test for “Independence” -  Student t Distribution (24 Degrees of Freedom)

This table contains the results of the test for “independence” in the failure series (99% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
approaches and the RiskMetrics listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic p-value

T1 Non-periodic GARCH model 9.6212** 0.0019
T2 Jointly-estimated full dummy version of the 

PGARCH model
9.6998** 0.0018

T3 Two-step full dummy version of the PGARCH 
model

10.6067** 0.0011

T4 Jointly-estimated partial dummy version of the 
PGARCH model

36.3383** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

16.5809** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

6.4145* 0.0113

T7 Two-step FFF version of the PGARCH model 21.2647** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
8.3138** 0.0039

T9 Two-step Augmented FFF version of the 
PGARCH model

17.2993** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

22.9025** 0.0000

T il Two-step Spline version of the PGARCH model 26.8896** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
13.6407** 0.0002

T13 Two-step Augmented Spline version of the 
PGARCH model

20.3159** 0.0000

RiskMetrics 11.8489** 0.0006
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Table 5.23: Results of test for “Independence” -  Student t Distribution (24 Degrees of Freedom)

This table contains the results of the test for “independence” in the failure series (95% VaR) estimation of 
the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility modelling 
and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in equation
(5.18) is performed. The first column gives the details of the approaches, the second column gives the 
estimated F-statistics of the hypothesis specified in (5.19) and the final column reports the corresponding 
p-values. The significance of these tests is denoted by ** (1% significance) and * (5% significance).

Volatility Modelling Approach F-statistic /7-value

T1 Non-periodic GARCH model 0.0858 0.7697
T2 Jointly-estimated full dummy version of the 

PGARCH model
1.4719 0.2251

T3 Two-step full dummy version of the PGARCH 
model

21.8269** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

35.3169** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

6.6576** 0.0099

T6 Jointly estimated FFF version of the PGARCH 
model

4.5419* 0.0331

T7 Two-step FFF version of the PGARCH model 3.2092 0.0733
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
9,9944** 0.0016

T9 Two-step Augmented FFF version of the 
PGARCH model

14.5861** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

3.7930 0.0515

T il Two-step Spline version of the PGARCH model 11.4961** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
2.5209 0.1124

T13 Two-step Augmented Spline version of the 
PGARCH model

4.8749* 0.0273

RiskMetrics 20.5522** 0.0000
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Table 5.24: Results of test for "Correct Conditional Coverage*' -  Student t Distribution (24 Degrees
of Freedom)

This table contains the results of the test for “correct conditional coverage” in the failure series (99% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding /7-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic /7-value

T1 Non-periodic GARCH model 5.6360** 0.0036
T2 Jointly-estimated full dummy version of the 

PGARCH model
5.4249** 0.0044

T3 Two-step full dummy version of the PGARCH 
model

38.1919** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

33.8514** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

16.1611** 0.0000

T6 Jointly estimated FFF version of the PGARCH 
model

3.2112* 0.0404

T7 Two-step FFF version of the PGARCH model 14.6798** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
5.5569** 0.0039

T9 Two-step Augmented FFF version of the 
PGARCH model

8.7895** 0.0008

T10 Jointly estimated Spline version of the PGARCH 
model

12.3853** 0.0000

T il Two-step Spline version of the PGARCH model 16.7902** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
8.3760** 0.0002

T13 Two-step Augmented Spline yersion of the 
PGARCH model

15.1793** 0.0000

RiskMetrics 27.4250** 0.0000
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Table 5.25: Results of test for “Correct Conditional Coverage” -  Student t Distribution (24 Degrees
of Freedom)

This table contains the results of the test for “correct conditional coverage” in the failure series (95% VaR) 
estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the eleven volatility 
modelling and the RiskMetrics approaches listed below. For each approach, an OLS regression as given in 
equation (5.18) is performed. The first column gives the names of the approaches, the second column gives 
the estimated F-statistics of the hypothesis specified in (5.17) and the final column reports the 
corresponding /?-values. The significance of these tests is denoted by ** (1% significance) and * (5% 
significance).

Volatility Modelling Approach F-statistic /i-value

T1 Non-periodic GARCH model 83.5690** 0.0000
T2 Jointly-estimated full dummy version of the 

PGARCH model
16.9102** 0.0000

T3 Two-step full dummy version of the PGARCH 
model

20.9637** 0.0000

T4 Jointly-estimated partial dummy version of the 
PGARCH model

19.5575** 0.0000

T5 Two-step partial dummy version of the PGARCH 
model

3.6536* 0.0259

T6 Jointly estimated FFF version of the PGARCH 
model

24.9218** 0.0000

T7 Two-step FFF version of the PGARCH model 18.5138** 0.0000
T8 Jointly estimated Augmented FFF version of the 

PGARCH model
12.6098** 0.0000

T9 Two-step Augmented FFF version of the 
PGARCH model

18.3668** 0.0000

T10 Jointly estimated Spline version of the PGARCH 
model

21.0492** 0.0000

T il Two-step Spline version of the PGARCH model 8.2988** 0.0000
T12 Jointly estimated Augmented Spline version of the 

PGARCH model
19.1093** 0.0000

T13 Two-step Augmented Spline version of the 
PGARCH model

5.8184** 0.0030

RiskMetrics 11.8335** 0.0000
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Figure 5.1: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f  the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step- 
ahead forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T1 = Non-periodic GARCH model
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Figure 5.2: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f  the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T2 = Jointly estimated full dummy version o f the PGARCH model
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Figure 5.3: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f  the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step- 
ahead forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T3 = Two-step full dummy version o f the PGARCH model
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Figure 5.4: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T4 = Jointly estimated partial dummy version o f  the PGRACH model
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Figure 5.5: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step- 
ahead forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T5 = Two-step partial dummy version o f the PGARCH model
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Figure 5.6: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step- 
ahead forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T6 = Jointly estimated FFF version o f the PGARCH model
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Figure 5.7: Forecasting Perform ance of Volatility Modelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T7 = Two-step FFF version o f the PGARCH model
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Figure 5.8: Forecasting Perform ance of Volatility Modelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f  5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T8 = Jointly estimated Augmented FFF version o f  the PGARCH model
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F igure  5.9: F orecasting  P erfo rm ance o f V olatility  M odelling A pproach

The chart below com pares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f  5-minute one-step-ahead 
forecasts) for a 100-day out-of-sam ple forecasting period using the following approach:

T9 = Two-step Augmented FFF version o f  the PGARCFI model
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Figure 5.10: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f  the mean realized volatility and the forecasted return volatility (the daily average o f  5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T10 = Jointly estimated Spline version o f the PGARCH model
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Figure 5.11: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots o f the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T 1 1= Two-step Spline version o f the PGARCH model
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Figure 5.12: Forecasting Perform ance of Volatility M odelling A pproach

The chart below compares the plots of the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T12= Jointly estimated Augmented Spline version o f  the PGARCH model
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Figure 5.13: Forecasting Perform ance of Volatility Modelling A pproach

The chart below compares the plots of the mean realized volatility and the forecasted return volatility (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-day out-of-sample forecasting period using the following approach:

T13= Two-step Augmented Spline version o f  the PGARCH model

vou>

0.05

0.04

 Realized T13

0.03

0.02

0.01

0.00 ■i i i i i i i i i i i i i i i i i i i i ' i  i i i " i  i i r  i ' i  i i "i

15.0012.00 13.00 16.00 17.009.00 11.00 14.0010.00
Time of day



Figure 5.14: Forecasting P erform ance of Volatility M odelling Approaches
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The chart below compares the plots o f the mean realized volatility and the forecasted return volatilities (the daily average o f 5-minute one-step-ahead 
forecasts) for a 100-Day out-of-sample forecasting period using the following approach:

T1 = Non-periodic GARCH model
T2 = Jointly estimated full dummy version o f the PGARCH model 
T3 = Two-step full dummy version o f the PGARCH model 
T4 = Jointly estimated partial dummy version o f the PGRACH model 
T5 = Two-step partial dummy version o f the PGARCH model 
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CHAPTER 6

MODELLING AND FORECASTING DAILY REALIZED
VOLATILITY

6.0 Introduction

In Chapter 4, we demonstrated that the availability of high frequency data has 

made it possible to model the intraday volatility pattern of KLCI returns. In particular, 

we were able to model the double U-shaped pattern using GARCH-based models. 

Using high frequency data, we also found that the PGARCH-based models produced 

superior model fit compared to the standard GARCH models. In Chapter 5, we 

demonstrated that not only do the PGARCH-based models have superior model fit in- 

sample; we also found that these models produce superior forecasting performance 

than the standard GARCH models and the naive model, which is based on the 

historical variance.

In this chapter, we will utilise the same high frequency data to construct a 

daily volatility measure known as integrated realized volatility. The construction of 

realized volatility is simple, in that one simply sums intraday high frequency squared 

returns, taken day by day. Many recent studies on integrated realized volatility using 

high frequency data conclude that integrated realized volatility is, in principle, error- 

free, and that therefore it is natural to treat volatility as observable. Observable 

volatility presents new opportunities in that we can analyse it, use it and forecast it 

with much simpler techniques than the complex econometric models required when 

volatility is latent. In this chapter, we aim to model the daily realized volatility using 

ARMA model based on various return sampling frequencies. We will also assess the 

performance of various daily GARCH models using the daily realized volatilities as



the proxies for the true daily volatility. In addition, we will also evaluate whether both 

the ARMA and the GARCH models are able to produce accurate VaR measures.

This chapter is organized as follows. Section 6.1 gives an overview of the 

background of the recent research in realized volatility. In section 6.2, we provide a 

brief theoretical background of the quadratic variation theory that forms the basis for 

constructing the realized volatility. Section 6.3 describes the data and the methods for 

obtaining competing ARMA and GARCH forecasts. It also describes in detail the 

construction of the VaR models from the available ARMA and GARCH forecasts, as 

well as from the RiskMetrics model. In section 6.4, we present the estimation results 

and discuss the in-sample parameter estimates and out-of-sample forecast 

performance of alternative volatility models using various measures of realized daily 

volatility. In this section, we also assess the adequacy of VaR forecasts generated by 

the best performing ARMA and GARCH models at both the 1% and the 5% level of 

significance. Section 6.5 concludes the chapter. All results are reported at the end the 

chapter.

6.1 Chapter Background

It is a standard approach that the forecast performance of any volatility model 

is evaluated by comparing its predictions with realizations. Since volatility is not a 

directly observable process, this approach is not immediately applicable. The task of 

forecasting volatility is therefore difficult because of the need to identify the “true 

volatility” process. Identifying a suitable proxy for the true volatility is not an easy 

task but it is crucial. This, is because any measure of volatility that represents the “true 

volatility” is used as the realized volatility against which the forecast performances of 

the volatility models are measured and subsequently evaluated. Lazarov (2004) argues



that studies that employ an ex post estimate of volatility could induce a serious bias, 

because it. favours the model which is used to calculate the estimate of latent 

volatility. Andersen, Bollerslev, Christoffersen and Diebold (2005) highlight the 

problem of finding the true volatility as follows:

“Treating the volatility process as latent effectively transforms the volatility estimation 

problem into a filtering problem in which the “true” volatility cannot be determined exactly, 

but only extracted with some degree of error.”

(Andersen, Bollerslev, Christoffersen and Diebold, 2005, page 3) 

Many researchers until recently have resorted to using daily squared returns,

calculated from market daily closing prices, to proxy the true daily volatility. This is a 

non-parametric approach that is simple to compute1 and widely used in the volatility 

forecasting literature. In Chapter 5, we have, in fact, used the squared returns as the 

proxy for true volatility in measuring the forecasting performances of the thirteen 

volatility-modelling approaches introduced in Chapter 4.

Prior to the availability of high-frequency data, the type of data that was most 

frequently used in association with the GARCH models was the daily market closing 

prices, from which daily returns are computed. It is therefore natural that the daily 

squared returns were often used as the proxy for true daily volatility. Using daily 

squared returns as the basis of forecast measurement, many of the earlier empirical 

results show that the parameters of different GARCH models are highly significant in- 

sample. However, the evidence is mixed regarding the provision of good out-of- 

sample forecasts. In fact, many of the more recent studies have shown that the 

standard GARCH models are incapable of producing good forecasts. Research 

findings by Jorion (1995, 1996), Figlewski (1997) and Andersen and Bollerslev 

(1998a), for example, show that the standard GARCH models provide poor forecasts

1 Please refer to equation 5.1 for the computation of squared returns.
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and explain little of the variability of the ex post daily squared returns measure. This 

naturally leads to the belief that the standard GARCH models may be of limited use in 

practice.

Andersen and Bollerslev (1998a), however, argue that the failure of the 

GARCH models to provide good forecasts is not a failure of the GARCH models per 

se, but a failure to specify correctly the true volatility measure against which 

forecasting performance is measured. It is argued that the standard approach of using 

the daily squared returns as the measure of the true volatility for daily forecasts is 

inappropriate because this measure includes a large and noisy independent zero mean 

constant variance error term, which is unrelated to actual volatility. Therefore, the 

daily squared returns measure is not a suitable estimator for the daily volatility and 

consequently does not provide a reliable estimate for the true underlying latent 

volatility. It is more likely to be for this reason that standard GARCH models often 

report poor predictive power.2

As an alternative, Andersen and Bollerslev (1998a) introduced a new 

generation of conditional volatility models, which make use of a volatility measure 

known as the integrated realized volatility. Use of such a measure allows more 

meaningful and accurate volatility forecast evaluation. The daily realized volatility 

can be constructed by summing up intraday squared returns. This allows the treatment 

of the daily volatility as observed rather than latent, providing that the sampling of

high frequency squared returns is sufficiently frequent. By making use of the theory
/

of quadratic variation and arbitrage-free processes, Andersen, Bollerslev, Diebold and 

Labys (2001, 2003) show that the realized volatility constructed as above is not only

2 However, we have demonstrated in Chapter 5 that by using high frequency data, the performance of 
the standard GARCH models can be improved with the application of the PGARCH-based models.
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model-free, but as the sampling frequency of the returns approaches infinity, the 

estimates are measurement-error-free as well.

Based on a simulation of realized volatility implied by the GARCH (1,1) 

diffusion limit, Andersen and Bollerslev (1998a) find that realized volatility provides 

a less noisy estimate of the latent volatility than does the daily squared returns. It is 

concluded that by sampling more frequently and producing a measure based on 

intraday data, the noisy component of the realized volatility diminishes, and that in 

theory, the realized volatility based on the high-frequency data is much closer to the 

actual volatility of the day. Subsequent studies by Bamdorff-Nielsen and Shephard 

(2002a, 2002b) and Areal and Taylor (2002) indicate that the sum of squared high 

frequency intraday returns provides reliable estimation of the actual daily volatility.

There is also compelling evidence that volatility models that are parameterised 

using realized volatility produce superior forecasting performance. For example, 

Andersen, Bollerslev, Diebold and Labys (2003) consider the volatility of the 

Japanese Yen against the US Dollar and the Deutsche Mark against the US Dollar 

exchange rates, using an autoregressive fractionally integrated moving average 

(ARFIMA) model to characterize the realized volatility process. The results indicate 

that the predictive ability of this model is much better than the predictive ability of the 

GARCH (1,1) model, which relies on daily returns to compute the ex post estimate of 

the volatility. Lazarov (2004) estimates and compares several classes of volatility 

models for the DAX index futures, either using the realized variance or the squared 

daily returns. The findings show that realized variance is a much better estimate of the 

latent volatility than the sum of weighted daily squared returns and as such it is better 

suited for comparing the out-of-sample performance of competing volatility models. 

A similar conclusion is drawn when Bali and Lu (2005) apply the ARMA-fitted
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realized volatility models for 1-day-ahead and 20-day-ahead forecasts of the S&P 100 

index. The results indicate that almost all information is provided for by the sum of 

squared five-minute returns. They conclude that there is little incremental information 

in the traditional volatility estimator based on the absolute demeaned daily index 

returns compared to those provided by the realized volatility measures. Studies on 

implied volatility have also highlighted the favourable results obtained when the 

realized volatility is used in time series volatility models. Results from the studies of 

Pong, Shackleton, Taylor and Xu (2002) and Lazarov (2004), for example, indicate 

that the realized volatility is a much more efficient estimator of the latent volatility 

than the daily returns, which enter as parameters in popular volatility models like the 

daily GARCH model and its various derivatives. It is not surprising, therefore, to find 

that more and more recent work on daily volatility modelling and forecasting has 

employed the realized volatility as a benchmark to which the volatility models’ 

performances are compared and evaluated.

The main purpose of this chapter is to highlight the impact of using different 

ex post realized daily volatility measures (to proxy the true daily volatility) on the 

forecasting performance of competing volatility models, and the adequacy of the VaR 

models constructed from the available forecasts. Specifically, we will compare and 

assess the out-of-sample forecasting performances of two competing sets of volatility 

models. The first set of volatility models comprise the various GARCH models 

specified in the previous chapter. The GARCH models are estimated using the daily 

returns computed from the daily closing price at the end of each trading day. The 

GARCH forecasts are our primary focus because we want to see whether by using the 

daily realized volatility to proxy the actual daily volatility, one can obtain a better 

forecast performance over the forecasts measured against the traditional volatility
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proxy, i.e., the daily squared returns. The second set of volatility model is the ARMA

(1,1) model, which is used to model the various daily realized volatility measures. The 

daily realized volatility is computed as the sum of the squared intraday returns for the 

given trading day. The motivation for this comparison arises from the desire to know 

whether by utilising intraday data (upon which the realized volatility is estimated), 

one can obtain a better model to proxy the true daily volatility, i.e., all the relevant 

data during the trading day are being compounded and accounted for. This is achieved 

by evaluating the performance of both the ARMA and GARCH models over a 

number of specially constructed daily realized volatilities. The ARMA model’s 

forecasting performances in this instance could be useful in ascertaining the optimal 

intraday return sampling frequency for the daily realized volatility to be applied in the 

Malaysian market. We measure and evaluate the performance and the quality of the 

out-of-sample forecasts produced by the available volatility models, using both the 

MSFE and MAFE statistics and the Diebold and Mariano (1995) asymptotic test, 

respectively. Based on the forecasts obtained from the ARMA and GARCH volatility 

models, we construct the appropriate daily VaR models. We then assess the adequacy 

and quality of these daily VaR models at both the 1% and 5% level of significance.

This chapter complements the literature in two ways. First, we use high 

frequency data from an important emerging capital market, the KLSE, which is 

considered one of the biggest in South-East Asia. Second, we believe that this is the 

first study of its kind on the Malaysian stock exchange using ARMA and GARCH 

models to estimate and compare the properties of the realized daily volatilities.
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6.2 An Overview of the Theoretical Background of Integrated Realized 
Volatility

A rigorous treatment of the theoretical background of this theory can be found 

in Andersen, Bollerslev, Diebold and Labys (2001, 2003). Let us consider the 

following simple multivariate continuous-time stochastic volatility diffusion process, 

dp, = Ptdt + QdtWt . (6.1)

where p t is the k x  1 instantaneous logarithmic price, ph is a drift parameter, and d,W, 

is a k x  1 standard Brownian motion. The k x k positive definite diffusion matrix Qt

follows a strictly stationary process and satisfies Q, Qt = Qt . For this diffusion, the 

integral of the instantaneous variances over the day, that is,

Q, = \ " n j c o .  (6.2)

provides an ex post measure of the true latent volatility associated with day t. By 

cumulating the intraday squared returns, as shown in Merton (1980), we can 

approximate the integrated volatility in equation (6.2) to any arbitrary precision. In

A A/

particular, we can obtain an estimate, denoted by Qt , of Qt as 

* X
a i = Z Jrn j , s - r, . j is-  (63)

7=1

where rt+JIS s  p t+JIS -  /7 t+(y_1)/(5 denotes the continuously compounded returns, 

sampled S times per day. Note that the subscript t indexes the day, while j  indexes the

A

time within day t. The measure £lt is referred to as realized volatility, as in

Andersen, Bollerslev, Diebold and Labys (2001, 2003). By the theory of quadratic 

variation, it can be shown that equation (6.3) provides a consistent estimate of latent 

volatility as

P 'in W .A  =£<• (6.4)
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In other words, as the sampling frequency of returns increases, 8  -» oo, the ex post 

realized volatility measures so constructed will converge to the integrated latent 

volatilities. This measure contrasts sharply with the common use of the squared j-  

period returns as the simple ex post volatility measure, which, although it provides an 

unbiased estimate for the realized volatility, is an extremely noisy estimator. 

Furthermore, for longer horizons, any conditional mean dependence will tend to 

contaminate this variance measure, whereas the mean component is irrelevant for the 

quadratic variation.

6.3 Data and Methodology

It is important to highlight in this chapter that there are two types of volatilities 

being examined. The first type of volatility is the integrated realized daily volatility, 

which is obtained by summing the intraday squared returns using the KLCI data. The 

daily integrated realized volatility, as explained above, is a volatility measure that is 

assumed to be model-free and an unbiased estimator of the true daily volatility. The 

choice of the appropriate frequency of intraday squared returns sampling is discussed 

below. The second type of volatility under consideration is the traditional measure of 

volatility based on the daily squared returns using the same set of data. This volatility 

measure is the most frequently used in the literature as a proxy for the true daily 

volatility.

The main focus of this chapter, therefore, is on the differences between the 

two measures, and whether there is any significant difference in the forecasting 

performance of volatility models that utilise these two different measures of volatility. 

For the purposes of meaningful comparisons and easier references, we also refer to 

the daily squared returns as the one-day frequency realized volatility. The ARMA
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(1,1), GARCH (1,1), TGARCH (1,1) and the EGARCH (1,1) models are used 

extensively in this study. For easier references, we simply denote these models as the 

ARMA, GARCH, TGARCH and the EGARCH models respectively.

We set the stage by first computing various daily sums of intraday squared 

returns that will generate the daily realized volatilities, and compute the one-day 

frequency realized volatility (i.e. the daily squared returns) based on end-of-day 

returns. Next, we model all the realized daily volatilities using the ARMA model. We 

then generate one-day one-step-ahead forecasts from this model. Next, we employ the 

various GARCH models described above to model the daily volatility. In order to do 

this, we make use of the daily composite index end-of-day returns data as the input to 

the estimation process. Similarly, we generate one-day one-step-ahead forecasts using 

the in-sample parameters of the GARCH models. The finer details are explained 

below.

6.3.1 Modelling and Forecasting Realized Volatility

A point that has yet to be agreed upon in the construction of integrated 

realized volatility is the optimal frequency of intraday squared returns sampling, 8 in 

equation (6.3) above. Earlier works such as French, Schwert and Stambaugh (1987) 

and Schwert (1989) obtained the monthly realized volatilities using daily return 

observations. With the arrival of high frequency data, many recent studies have 

experimented with different returns intervals of sizes ranging from one minute to 25 

minutes. One of the earliest studies to use high frequency data is by Schwert (1990), 

who relied on the 15-minute returns to obtain the daily realized volatilities. However, 

several studies suggest that the choice of the optimal sampling frequency very much 

depends on the type of market being tested, market activity and the microstructure

204



frictions associated with a particular market. It is important, therefore, that the 

sampling frequency considers a balance between measuring the volatility with as little 

noise as possible on one hand and avoiding market microstructure effects on the other. 

The microstructure effects are market frictions that arise due to market factors such as 

bid-ask price bounces, price discreteness or non-synchronous trading. As a trade-off 

between these two biases, Andersen, Bollerslev, Diebold and Labys (2001, 2003), for 

example, propose the use of 5-minute returns as the optimal sampling frequency in the 

US foreign exchange market. Oomen (2001), on the other hand, argues that the 

optimal sampling frequency for his dataset (using FTSE-100 stock market index) is 25 

minutes after evaluating the adequacy of sampling frequencies between 1 and 45 

minutes. Giot and Laurent (2004), meanwhile, concur with Schwert (1990) and find 

that 15-minute returns are adequate for their work on data from the French CAC40 

stock index and SP500 futures contracts traded on the Chicago Mercantile Exchange. 

Melvin and Melvin (2003) also use 15-minute returns to study the volatility spillovers 

of the Japanese Yen/US Dollar and the Deutsche Mark/US Dollar exchange rate 

across American, European and Asian markets.

In this study, we use 1-minute, 5-minute, 10-minute, 15-minute and 30-minute 

returns as the sampling frequencies in constructing the daily realized volatility 

estimates. We choose this range of return intervals so as to ascertain which return 

sampling frequency is the most appropriate for the Malaysian market. We also wish to 

examine the robustness of the 5-minute return sampling frequency in mitigating the 

problem of bias as suggested by Andersen, Bollerslev, Diebold and Labys (2001, 

2003). Moreover, there, is evidence that non-synchronous trading induces serial

3 Similar suggestions are also advanced by Andersen, Bollerslev, Diebold and Ebens (2001) in the 
study of equity markets (New York Stock Exchange (NYSE), the American Stock Exchange 
(AMEX), and the National Association of Security Dealers Automated Quotation System 
(NASDAQ)) in the US.
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correlation in the return process in many emerging markets such as the KLSE.4 This 

in turn would render the cumulative squared returns measures as biased. Ebens 

(1999), however, argues that the microstructure effects are minimal when the focus is 

on an index, as the effects would tend to wash out in the aggregate. We will 

investigate whether this claim has any justification in the context of an emerging 

capital market.

The data used in this chapter are the KLCI in the form of 1-minute, 5-minute, 

10-minute, 15-minute and 30-minute returns, as well as the end-of day returns, which 

will be used as the input in the GARCH model estimations and the computation of the 

one-day frequency realized volatility (i.e. the daily squared returns). Our sample 

covers the period from 29 January 2001 to 29 December 2002, resulting in a total of 

406 trading days. In a typical trading day, the market opens at 9:00 am with a break 

for lunch at 12:30 pm. It then continues after lunch from 2:30 pm right through to 

5:00 pm when the market closes for the day. This six-hour trading period provides us 

with a total of five sets of continuously compounded intraday returns for each day. 

The first set comprises of 360 continuously compounded 1-minute returns for each 

day, corresponding to 8 = 360 in the notation above. The second set makes use of 72 

continuously compounded 5-minute returns for each day, corresponding to 8 -1 2 .  

The third set comprises of 36 continuously compounded 10-minute returns for each 

day, corresponding to 8 -  36. The fourth set is based on 24 continuously 

compounded 15-minute returns for each day, corresponding to 8  = 24. The fifth and 

final set is based on 12 continuously compounded 30-minute returns for each day, 

corresponding to 8 - 12. Based on the five returns series (obtained from the

4 See, for example, Ariff, Shamsher and Annuar (1998).
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logarithmic composite index difference), we construct the five competing daily 

realized volatilities (y t) for the KLCI returns as

y, • (6-5)
7=1

where r, t and j  are defined as per equation (6.3) above and S=  360, 72, 36, 24 and 

12. We then examine the distributional characteristics of the daily realized volatilities 

for the sample period with reference to the mean, median, standard deviation, 

skewness, kurtosis and the normality of the distribution.

Next, the daily realized volatilities series are split into two sub-periods: an in- 

sample estimation period and an out-of-sample forecast evaluation period. The in- 

sample period covers the first 306 trading days, while the out-of-sample period 

comprises the last 100 trading days of the 406 trading day sample period.

6.3.2 Modelling and Forecasting Volatility using the ARMA model

As mentioned above, we model the various realized daily volatilities and one- 

day frequency realized volatility (i.e. the daily squared returns) using the ARMA (1,1) 

model (henceforth, we refer this as the ARMA model). The ARMA model, in this 

instance, postulates that the current value of the daily realized volatility series 

obtained from equation (6.5) depends linearly on its own previous value plus a 

combination of current and previous value of a white noise error term. The model 

could be written as follows:

yt = a+  p\yt.\ + (p\ut.\ + ut. (6.6)

where ut is a sequence of independently and identically distributed (i.i.d) random 

variables with E (w,) = 0, E (uf) = < j 2 , and E (utus) ,  t * s .
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In the in-sample period, we fit the ARMA model to each of the five daily 

realized volatilities series and the one-day frequency realized volatility (i.e. the daily 

squared returns). The two information criteria we use in order to decide the 

appropriate model fit are the AIC and the SIC statistics. We will use this information 

to ascertain whether the best fitted model will produce superior out-of-sample 

forecasting performance later in the analysis.

In the out-of-sample period, based on the ARMA model, we generate one-day 

one-step-ahead forecasts for each of the five sets of the daily realized volatilities and 

the one-day frequency realized volatility series. To evaluate the performance and 

accuracy of the available forecasts, we apply the two forecast error statistics used in 

the previous chapter, namely MSFE and MAFE statistics. In order to get the 

appropriate error statistics, we compare the ARMA forecasts obtained against the 

particular daily realized volatility, which is used to proxy the true daily volatility. For 

example, the ARMA forecast obtained from the 1-minute return sampling frequency 

are compared against the corresponding 1-minute frequency daily realized volatility to 

get the appropriate MSFE and MAFE measures. Similarly, we apply this procedure 

for the other sampling frequencies (the 5-minute, the 10-minute, the 15-minute and 

the 30-minute return sampling frequencies) as well as for the one-day frequency 

realized volatility series.

6.3.3 Modelling and Forecasting Volatility using the GARCH models

In the estimation period, we make use of the various GARCH-based model 

specifications described earlier. All the GARCH-based models are estimated by 

maximum likelihood with Bollerslev-Wooldridge robust QML covariance/standard 

errors. Again we employ the AIC and the SIC statistics to evaluate the appropriate
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model fit. We then choose the GARCH-based model that gives the best model fit, 

based on the two information criteria, in order to ascertain whether the same model 

will produce superior forecasting results when we subsequently evaluate the 

forecasting performance of each model.

For the out-of-sample period, we generate one-day one-step-ahead forecasts 

for each of the 3 competing GARCH-based models. We then apply the two forecast 

error statistics used earlier: the MSFE and the MAFE. Similar to the approach adopted 

for the ARMA model, we compare the available GARCH forecasts against the five 

measures of the daily realized volatilities and the one-day frequency realized volatility 

series to obtain the appropriate MSFE and MAFE statistics. We begin by comparing 

the 3 competing GARCH forecasts against the 1-minute return frequency daily 

realized volatility used as the benchmark volatility to get the first set of MSFE and 

MAFE statistics. Next, using the same 3 GARCH forecasts, we compare these 

forecasts against the 5-minute return frequency daily realized volatility series to get 

the next sets of MSFE and MAFE statistics. We repeat this procedure with the other 

daily realized volatilities by comparing the same GARCH forecasts with the 10- 

minute return, 15-minute return, and 30-minute return sampling frequency daily 

realized volatility series to get additional sets of MSFE and MAFE measures. Finally, 

we compare the same GARCH forecasts against the one-day frequency realized 

volatility (i.e. the daily squared returns) to get the final set of MSFE and MAFE 

statistics. For each procedure, we select the best performing GARCH-based model by 

evaluating the model that produces the smallest MSFE and MAFE statistics 

respectively.

For comparison purposes, we also generate 5-day and 20-day one-step-ahead 

forecasts using 5-day and 20-day KLCI returns data described earlier using
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procedures described for the daily forecasting exercise above. To facilitate the 

estimation process, we only consider a sample of 400 days5 instead of the original 406 

days for the 5-day and 20-day forecasts. This provides us with 60 observations for the 

in-sample estimates and 20 observations for the out-of-sample forecasts for the 5-day 

forecasts and 15 observations for the in-sample estimates and 5 observations for the 

out-of-sample forecasts for the 20-day forecasts. We then compute the appropriate 

MSFE and MAFE for all available forecasts for according to the sampling frequencies 

discussed earlier.

6.3.4 Evaluating the Quality of Forecasts

We apply the Diebold and Mariano (1995) asymptotic test to test the null 

hypothesis of no difference in accuracy between the two competing forecasts. The 

properties of this test have been described in detail in the previous chapter. Since 

there are two types of volatility models being examined, we apply the tests separately 

for each type of daily realized volatility measure and the one-day frequency realized 

volatility (i.e. the daily squared returns). In the first undertaking, we focus on the 1- 

minute return sampling frequency daily realized volatility. We select the best 

performing GARCH-based model in terms of the MSFE statistics. Using the Diebold 

and Mariano (1995) test, we compare the forecast of this GARCH model with the 

forecast of the ARMA model. The null hypothesis is that the forecast generated by the 

ARMA model is of the same quality as the forecast generated by the GARCH model. 

The alternative hypothesis adopted is that the forecast produced by the ARMA model 

is superior to the forecast of the GARCH model. Next, for the same daily realized 

volatility, we now select the best GARCH-based model using the MAFE statistics and

5 In this instance we omit the first three days and the last three days out of the 406 days original 
sample period to give us with a 400-day sample.
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compare. We repeat the Diebold and Mariano (1995) test using the MAFE as the loss 

function by comparing the forecast of the best performing GARCH-based model with 

the forecast of the ARMA model.

The same procedure is then repeated for the best performing GARCH models 

in terms of producing the smallest MSFE and MAFE statistics with the ARMA 

forecasts for the next four daily realized volatilities, 5-minute, 10-minute, 15-minute 

and 30-minute return frequencies and finally for the one-day frequency realized 

volatility (i.e. the daily squared returns). The same objective is considered; that is, we 

test whether the forecast produced by the ARMA model is of the same quality as the 

forecast produced by the best performing GARCH model. For comparison purposes 

we also extend the Diebold and Mariano (1995) tests to all the volatility models for 

the 5-day and 20-day forecast evaluations.

6.3.5 Daily VaR Models

We follow the methodology described in the previous chapter to construct 

daily VaR forecasts at the 99% and 95% confidence levels. The VaR models are now 

assessed at the daily intervals instead of the 5-minute intervals used in the last 

chapter. In the first stage, we make use of the 3 one-day one-step-ahead GARCH 

volatility forecasts to produce 3 competing daily VaR forecasts. In order to evaluate 

the quality and adequacy of these VaR measures, we apply the framework for interval 

forecast evaluation developed by Christoffersen (1998). In this framework, we 

perform a test for “correct unconditional coverage”, a test for “independence”, and a 

test for “correct conditional coverage” for each of the VaR forecasts. In order to test 

for correct unconditional coverage, we test the null hypothesis (5.9) and apply the 

likelihood ratio statistic as specified in equation (5.14) in the previous chapter. We
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test for VaR levels of a = 0.01 and a  -  0.05. We also employ the regression-based 

tests of Clement and Taylor (2003) to test for both the independence and the correct 

conditional coverage properties. This is done by performing an OLS of the indicator 

function (/,) series on its one-lag value. The regression equation is specified in 

equation (5.18). We then test the null hypotheses (5.17) and (5.19) to test the quality 

and the adequacy of the VaR forecasts. Please refer to the previous chapter to 

appreciate the significance of each test and the hypotheses proposed to evaluate the 

adequacy of each VaR forecast.

In the second stage, we look at VaR models constructed from the ARMA 

forecast from each of the daily realized volatilities (the 1-minute, 5-minute, 10- 

minute, 15-minute and 30-minute return frequencies) and the one-day frequency 

realized volatility (i.e. the daily squared returns). In addition to the ARMA model, we 

also consider the RiskMetrics VaR model, the details of which have been discussed in 

Chapter 5. Similarly, in order to evaluate the quality and adequacy of these models, 

we apply the Christoffersen (1998) tests followed by the regression-based tests of 

Clement and Taylor (2003).

6.4 Results

6.4.1 Volatility Distribution Statistics

The summary statistics are presented in Table 6.1. The statistics report the 

results for the whole sample, which covers the period of 406 trading days. It can be 

observed that the mean of the daily squared returns is larger than the means of all the 

daily realized volatilities at 1.4339. Among the daily realized volatilities, the daily 

realized volatility based on the daily summation of 30-minute squared returns exhibits 

the highest mean value, at 1.209, while the lowest mean value of 0.9466 is produced
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by the daily realized volatility based on the 5-minute return sampling frequency. 

Turning to the median value, the daily realized volatility based on the 30-minute 

return sampling frequency again shows the highest value among all proxy volatilities 

at 0.5272. The one-day frequency realized volatility (i.e. the daily squared returns) 

exhibits the lowest median value at 0.3039. This series is also the most volatile series 

among all the proxy daily volatilities, with a maximum value of 39.8279 and a 

minimum value of zero. Among the daily realized volatilities, the largest maximum 

value is shown by the daily realized volatility based on the 5-minute return sampling 

frequency. However, the largest standard deviation value is exhibited by the daily 

realized volatility based on the 30-minute return sampling frequency.

The entire set of daily realized volatilities series is highly skewed. The series 

skewness coefficients for all the daily realized volatilities are positive, implying that 

the distributions of the volatilities are not symmetric but skewed to the right. The 

daily realized volatility based on the 1-minute return sampling frequency produces the 

largest skewness value, at 8.4296. The value of skewness for the daily squared returns 

is 5.8731, and this positions it at number four among the six daily realized volatilities. 

Looking at the coefficients of the series kurtosis, we find that all values are much 

larger than the normal value of 3, indicating that the distributions for all the daily 

volatilities series are highly leptokurtic. The largest kurtosis value is shown by the 

daily realized volatility based on the 1-minute return sampling frequency, at 

102.1200. The value for the one-day frequency realized volatility (i.e. the daily 

squared returns) puts it in the fourth place among the six daily volatilities, at 44.6260. 

The Jarque-Bera normality test statistics for all daily realized volatilities are highly 

significant, with p-values of 0.0000 for all six series. This indicates that the null 

hypothesis of normality can be easily rejected for all the daily realized volatilities.
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Figure 6.1 shows the plots of the five daily realized volatilities and the one- 

day frequency realized volatility (i.e. the daily squared returns) for the whole sample 

period of 406 days. It can be clearly observed that for all the proxy daily volatilities, 

the period of high volatility is approximately from days 60 to 90 of the sample period. 

The last 100 days are much less volatile than the first 100 days of the sample period. 

This is in line with the much more stable financial climate experienced by the 

Malaysian economy during the later period of the sample. It is also clear that the one- 

day frequency realized volatility (i.e. the daily squared returns) series is the most 

volatile among the entire set of daily realized volatilities studied here.

6.4.2 Model Fit

The model fit for the ARMA model for all the daily realized volatilities and 

the model fit for the daily GARCH models are presented in Tables 6.2. For the 

GARCH-based models, a particular volatility model is judged to be the best if the 

model fit produces the smallest AIC and SIC values. The GARCH model provides the 

best model fit with values of AIC of 3.2122 and SIC of 3.2609. This is in contrast to 

the findings in Chapter 4 and Chapter 5, where the EG ARCH models clearly 

dominate both in the in-sample estimations and out-of-sample forecasting exercises.

6.4.3 Forecast Performance and Forecast Quality

The out-of-sample forecasting period covers a horizon of 100 days. The 

results are reported according to the particular daily volatility series used, i.e. the five 

different daily realized volatilities and the one-day frequency realized volatility (i.e. 

the daily squared returns).
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Table 6.3 reports the MSFE and the MAFE statistics for the ARMA model and 

the GARCH models, respectively while Table 6.4 presents the MSFE and the MAFE 

for the ARMA model and the best performing GARCH-based model for each 

sampling frequency. For the 1-minute return sampling frequency, the MSFE and the 

MAFE statistics for the ARMA model are at 0.1119 and 0.3084 respectively. Among 

the GARCH-based models, we find that the EGARCH model produces the smallest 

MSFE statistics, at 1.0629 and the smallest MAFE statistics, at 0.8789. It is clear that 

the ARMA model perform better than the EGARCH model. This is not a surprise, 

considering that the GARCH estimates are based on the end-of-day returns and 

therefore may not be able to capture sufficiently the latent properties of the daily 

volatility, which in this case is represented by the 1-minute return sampling daily 

realized volatility. It is also interesting to note that the naive model performance is 

better than all the GARCH models’ performances. This is true for both the MSFE and 

the MAFE statistics.

Similarly, for daily realized volatility based on the 5-minute return sampling 

frequency, as the benchmark volatility, the MSFE and the MAFE statistics for the 

ARMA model are at 0.1949 and 0.4195 respectively. For the GARCH-based models, 

the EGARCH model again produces the smallest MAFE statistics at 1.0961 and the 

smallest MAFE statistics at 0.8997. Again we see that the naive model forecasts 

outperform all the GARCH forecasts.

For daily realized volatility based on the 10-minute return sampling frequency 

the ARMA model reports MSFE and MAFE values of 0.2219 and 0.4338 

respectively. There is no surprise for the performance of the GARCH-based models. 

As before, the EGARCH model outperforms the rest of the available GARCH-based 

models. The MSFE and the MAFE statistics for this model are at 1.0576 and 0.8907
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respectively. It is interesting to observe that under the MAFE metric, we find that all 

the GARCH-based models actually outperform the naive model.

For forecasts using benchmark volatility based on the 15-minute return 

sampling frequency, the ARMA model produces MSFE metric with a forecast error of 

0.2512 and MAFE metric with a forecast error of 0.4391. Among the GARCH-based 

models, the best performer for both the MSFE and the MAFE metric is the EGARCH 

model with values of 1.0242 and 0.8738 respectively. As before, we find that under 

the MAFE metric, the GARCH-based models easily outperform the naive model.

For daily realized volatility based on the 30-minute return sampling frequency 

as the benchmark volatility the ARMA model reports MSFE metric with a value of 

0.3529 and an MAFE value of 0.5237. Turning to the GARCH forecasts, the best 

performers are again the EGARCH model with an MSFE value of 0.9580 and an 

MAFE value of 0.8341. This time around, there is no question that all the GARCH 

forecasts outperform the unconditional variance forecasts. This is true for both the 

MSFE and MAFE statistics.

For the one-day frequency realized volatility the ARMA model produces an 

MSFE value of 2.2907 and an MAFE value of 1.1831 For the GARCH forecasts, the 

EGARCH model again outperforms the rest of the available GARCH-based models 

with an MSFE value of 2.3336 and an MAFE value of 1.0961. The results are 

consistent with the findings of Chapter 4 and Chapter 5. As expected, we find that all 

the GARCH forecasts outperform the unconditional variance forecasts for both the 

MSFE and MAFE metrics.

The plots of forecasts of the ARMA and the best performing GARCH-based 

models against each of the daily realized volatilities and one-day frequency realized
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volatility (i.e. the daily squared returns) are presented in Figures 6.2, 6.3, 6.4, 6.5, 6.6 

and 6.7 respectively.

There are five observations that we would like to highlight here. The first 

observation is that the models with the best SIC value (as a result of the in-sample 

model estimation above) does not, in any case, provide superior forecasting 

performance as one might expect. For example, for the daily GARCH-based models, 

the in-sample estimation results indicate that the GARCH has the potential to produce 

the best forecast performance, considering that it is the model with the smallest SIC 

value of 3.2609. The out-of-sample forecast results instead find that the EGARCH 

model with an inferior SIC value of 3.2972, is able to produce superior forecasting 

performance.

The second observation we would like to highlight is regarding the 

performance of the ARMA models. We find that as the return sampling frequency 

becomes higher for the daily realized volatility, the forecasting performances of the 

ARMA models improve, i.e. the ARMA models produce smaller MSFE and MAFE 

statistics. For example, if we take the daily realized volatility based on the 30-minute 

return sampling frequency as the benchmark volatility, the MSFE and the MAFE 

figures for the ARMA model are 2.2907 and 1.1831, respectively. When we increase 

the return sampling frequency to 15 minutes, the MSFE and the MAFE for the 

ARMA model are now 0.2512 and 0.4391, respectively. The improvement in the 

forecasting performance of the ARMA model is clearly observable as we continue 

increasing the return sampling frequency. For example, for the 1-minute return 

sampling frequency, the MSFE and the MAFE statistics are 0.1119 and 0.3084 

respectively. This observation is consistent with the theory of quadratic variation and 

arbitrage-free processes proposed by Andersen, Bollerslev, Christoffersen and
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Diebold (2001, 2003).6 It is also interesting to note that the ARMA model’s 

forecasting performances are superior to the naive model (based on the mean realized 

volatility) for both MSFE and MAFE metrics, as well as for all measures of daily 

realized volatilities.

The third observation concerns the performance of the GARCH models. It can 

be observed that the forecasting performances of all the GARCH models are better 

when the measure of daily volatility is based on the summation of intraday squared 

returns, instead of the one-day frequency realized volatility (i.e. the daily squared 

returns). For example, if we refer to Table 6.3 and take the one-day frequency realized 

volatility as the benchmark daily volatility, the EGARCH model which provides the 

best forecasting performances produce MSFE and MAFE figures of 2.3336 and 

1.0961, respectively. In contrast, if we apply the five daily realized volatilities as the 

benchmark volatilities, we find that the EGARCH models produce smaller figures for 

the MSFE and MAFE. The range of results for the MSFE and the MAFE are from 

0.9580 to 1.0629 and from 0.8341 to 0.8789, respectively. In fact, the benchmark 

volatility that produces the best forecasting performance for the EGARCH model is 

the daily realized volatility with 30-minute return sampling frequency (MSFE figure 

of 0.9580 and MAFE figure of 0.8341).

The fourth observation regards the performance of the ARMA and the 

GARCH forecasts when the one-day frequency realized volatility (i.e. the daily 

squared returns) is used as the benchmark volatility to measure the MSFE and the 

MAFE statistics (see Tables 6.3 and 6.4 respectively). If we follow the performances 

of these two models based on the MSFE metric, it is clear that the ARMA model

6 To recap, the theory predicts that as the sampling frequency of returns increases, the ex post realized 
volatility measures so constructed will converge to the integrated latent volatilities. Therefore, the 
improvement in the forecasting results of the ARMA models suggests that the estimate for the daily 
realized volatility is slowly converging to the true latent volatility.
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outperforms all the GARCH-based models. This is clearly not a good result for the 

GARCH-based models, considering the fact that the ARMA model, with simpler 

structure, can outperform the supposedly superior GARCH formulations. However, 

the opposite is observed if we consider the MAFE metric. The GARCH-based models 

perform better on the whole when compared with the performances of the ARMA 

model.

The fifth and final observation is with regards to the most appropriate intraday 

squared return sampling frequency for the Malaysian market. In order to determine 

the optimal return sampling frequency, we plot the graphical diagnostic termed the 

“volatility signature plot” developed by Andersen, Bollerslev, Diebold and Labys 

(2001). This is a plot of average realized volatility against return sampling frequency, 

which may reveal the severity of microstructure7 bias as sampling frequency 

increases, and may therefore be useful in guiding the selection of sampling frequency. 

In Figure 6.8, we show the plots of the average daily realized volatilities against the 

sampling frequencies used in this study. The average daily volatility is at its lowest 

when the sampling frequency is at 5 minutes. Therefore, we would recommend the 

use of a return sampling frequency of 5 minutes, which represents a reasonable trade

off between minimizing microstructural bias and minimizing sampling error. The 

result is consistent with the findings of Andersen, Bollerslev, Diebold and Labys 

(2001, 2003), who suggest the use of 5-minute return frequency for the US foreign 

exchange market.

Table 6.5 presents the results of the DM test for forecast quality. The DM tests

performed using the MSFE and the MAFE as the loss functions provide significant

results for all comparisons of the ARMA model and the corresponding EGARCH

7 According to Andersen, Bollerslev, Diebold, and Labys (2001), the optimal sampling frequency will 
likely be a value ideally high enough to produce a volatility estimate with negligible sampling 
variation, yet low enough to avoid microstructure bias.
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model for all daily realized volatilities based on the summation of intraday squared 

returns. The results suggest that the quality of forecasts produced by the ARMA 

model in the pair-wise comparisons is superior to the forecasts generated by the 

EGARCH model. In contrast, the pair-wise comparisons between the ARMA and the 

EGARCH model for the one-day frequency realized volatility (i.e. the daily squared 

returns) produce insignificant result for the MSFE metric, suggesting that the quality 

of forecasts for both the ARMA and the EGARCH models is the same. However, the 

results for the MAFE metric indicate that the quality of the EGARCH forecast is 

superior to the quality of the ARMA forecast at the 5% level.

Tables 6.6 and 6.8 summarise the forecasting performances of the ARMA and 

the GARCH-based models for the 5-day and the 20-day one-step-ahead out-of-sample 

forecasts respectively. For the 5-day forecasts, the best performing GARCH-based 

model is the TGARCH model, which dominates all the return sampling frequencies 

and similarly, for the 20-day forecasts, the GARCH model is clearly dominant. These 

results are not consistent with the one-day one-step-ahead forecasts in which the 

EGARCH model dominates all GARCH forecasts comparisons regardless of the 

choice of return sampling frequency. For the 5-day forecasts, we find that as the 

return sampling frequency becomes higher for the realized volatility, the forecasting 

performances of the ARMA model improve, i.e. the ARMA models produce smaller 

MSFE and MAFE statistics. This is consistent with the second observation for the 

one-day one-step-ahead forecasts above, There is somewhat mixed performance of 

the GARCH-based models with regards to the choice of return sampling frequencies 

for the 5-day forecasts. It can be observed that the forecasting performances of all the 

GARCH-based models are better when the measure of realized volatility is based on 

the 1-minute, 5-minute, 10-minute and 15-minute summation of intraday squared
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returns, instead of the 5-day frequency realized volatility (i.e. the 5-day squared 

returns). However, the same could not be said for the GARCH-based models using 

the 30-minute return sampling frequency measure. The results show that all the 

GARCH-based models performed worse than similar models using the 5-day
o

frequency realized volatility measure. It is also clear that in most cases, the ARMA 

and the naive models produce smaller forecast errors than the GARCH-based models. 

For the 20-day forecasts, the results are mostly consistent with the observations for 

the 5-day forecasts. We observe that in all comparisons, the ARMA and the naive 

models perform better than the GARCH-based models in terms of producing smaller 

forecast errors. This is true for all return sampling frequencies. We also find that there 

is an improvement in the performances of the GARCH-based models that employ the 

intraday realized volatility measures over similar models that are based on the 20-day 

squared returns measure.

Tables 6.7 and 6.9 report the results of the DM tests for the 5-day and 20-day 

forecasts respectively. For the 5-day forecast, the DM tests performed using the 

MSFE as the loss function provide significant results at the 5% level for all 

comparisons between paired ARMA and GARCH-based models. This suggests that 

the quality of forecast between competing GARCH-based models is not the same i.e. 

of different quality. The same could not be said for the MAFE metric. In this instance, 

only comparisons using the 1-minute and 5-minute return sampling frequencies 

produce significant results at the 5% level, while for other return sampling 

frequencies, the results are insignificant, which suggest that the quality of forecasts 

for each pair is the same. For the 20-day forecasts, only comparisons using the 1- 

minute, 5-minute and the 20-day return sampling frequencies produced significant

8 However, for the 5-day frequency realized volatility, the TGARCH model produces smaller MAFE 
figure than the ARMA model.
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results at the 5% level. This is true for both the MSFE and MAFE statistics. 

Therefore, we conclude for that these three cases, the quality of the ARMA forecast is 

superior to the quality of the GARCH forecast.

6.4.4 VaR Performance

We proceed with the results of the tests for correct unconditional coverage and 

then discuss the results of the regression tests of Clements and Taylor (2003) for both 

the independence and correct conditional coverage tests. The actual daily returns for 

the out-of-sample period are used as the benchmarks to produce the indicator function 

It series described in the previous chapter.

6.4.4.1 Daily GARCH Models

A

Test for “Correct Unconditional Coverage” Ho: /  = a  

Table 6.10 presents the results for the 99% VaR coverage (a  = 0.01), while 

Table 6.13 reports the results for the 95% VaR coverage ((o r = 0.05) for the 

evaluation of the 3 VaR models constructed from the 3 available GARCH out-of- 

sample forecasts. From both tables, we find that in all cases, the likelihood ratio 

statistics obtained are statistically insignificant at the 1% level Therefore, we accept 

the null hypothesis (5.9) and reject the alternative hypothesis (5.10), i.e., the observed

failure rate ( / )  in all cases is the same as the required failure rate (a ) as specified in 

the VaR model. We conclude that for all these GARCH-based models, the correct 

unconditional coverage for the 99% VaR and 95% VaR models is satisfied and 

appears to be adequate.
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Test for “Independence”

The results for the 99% and 95% VaR independence tests for the VaR models 

are presented in Table 6.11 and Table 6.14, respectively. The regression tests for the 

99% and 95% VaR coverages produce positive results. All the GARCH models 

appear to have the property of independence because the F-statistics are not 

statistically significant at either the 1% or 5% levels. Therefore, these models appear 

adequate for the 99% and the 95% VaR models and we accept the null hypothesis 

(5.19).

Test for “Correct Conditional Coverage”

The results for both the 99% and 95% VaR measures are presented in Table 

6.12 and Table 6.15, respectively. The outcomes of the regression tests for both the 

99% and the 95% VaR coverages mirror the results for the “independence” test above. 

All the GARCH-based models appear adequate. The overall results for the 99% VaR 

coverage indicate that for all models, the F-statistics are not statistically significant at 

either the 1% or 5% levels. Therefore, we accept hypothesis (5.17) and conclude that 

all the GARCH-based VaR models have the property of correct conditional coverage. 

The same conclusion can be drawn regarding the GARCH-based models for the 95% 

VaR coverage. For these models, the F-statistics are insignificant at the 5% level. The 

regression tests do not exhibit the existence of significant lagged effects in the failure 

process. Therefore, we have to accept the null hypothesis (5.17) and conclude that the 

models are adequate at providing the required 95% VaR coverage.

6.4.4.2 Daily ARMA and RiskMetrics Models -  Daily Realized Volatility and
Daily Squared Returns

Tables 6.16 to 6.18 present the results for the 99% VaR coverage {a = 0.01), 

while Tables 6.19 to 6.21 report the results for the 95% VaR coverage ((a  = 0.05) for
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the evaluation of the VaR models constructed from the ARMA forecasts measured 

against the six daily realized volatilities.

The overall results indicate that the ARMA model has the appropriate 

unconditional coverage, independence and the correct conditional properties. This is 

true for both the 99% and the 95% VaR coverages. All coverage tests yield 

insignificant statistics at both the 1% and the 5% levels regardless of the return 

sampling frequency used. The results for the RiskMetrics model are quite similar 

though it fails the correct unconditional coverage at the 1% level. Therefore, we 

conclude that for both the ARMA and the RiskMetrics models, the VaR models 

appear to be adequate and accurate.

It is clear that the daily GARCH models employed in this chapter produce 

more accurate and reliable VaR models than the non-periodic GARCH models in 

Chapter 5, assuming that the distribution of returns series is normal. At both the 99% 

and 95% VaR coverage, the effects of fat tails are stronger for models that are based 

on high frequency data. Therefore, we see a rapid deterioration in performance not 

only for the non-periodic GARCH models, but also for the PGARCH-based and the 

RiskMetrics models. It appears that at the daily level, the effects of fat tails are 

insignificant, thus the strong performances of the daily GARCH, the RiskMetrics, and 

the ARMA models.

We do not provide any VaR analysis for the 5-day and 20-day forecasts in 

view of the very small9 number of out-of-sample observations obtained from the

9 For the 5-day forecasts, only 20 out-of-sample observations are obtained while for the 20-day 
forecast, only 5 out-of-sample observations are available. This is in relation to the 100-day 
forecasting period applied in the study.
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modified sample (see section 6.3.3) above. We believe that the small number of out- 

of-sample observations10 would provide inaccurate VaR models.

6.5 Conclusion

The choice of the ex post estimate of volatility is crucial in the tests 

performed in this chapter. In this chapter, we focus on two types of volatility to proxy 

the actual daily volatility. The first type of volatility being examined here is the daily 

realized volatility. This is computed as a series of daily sums of intraday squared 

returns: specifically, the 1-minute, 5-minute, 10-minute, 15-minute and 30-minute 

intraday squared returns are used to produce five competing daily realized volatilities. 

Andersen, Bollerslev, Diebold and Labys (2001, 2003) provide the theoretical 

foundation (the theory of quadratic variation and arbitrage-free processes) and 

justification for this measure of daily realized volatility. They show that this measure 

provides consistent and reliable estimates of the unobservable daily volatility. Many 

recent studies have demonstrated the efficiency of this measure. The main appeal of 

this daily volatility measure is that it incorporates the intraday volatility components, 

which are not considered and are missing in the daily squared returns computations.

The second type of volatility examined is the daily squared returns, also

known as the one-day frequency realized volatility. This is the traditional method of

measuring the daily volatility. There is, however, no sound theory to justify this

method apart from it being a simple estimator of volatility. Consequently, it is very

popular and has become the mainstay of many studies in volatility modelling and

forecasting. However, Andersen and Bollerslev (1998a, 1998b) argue that this method

is a noisy estimator for daily volatility and therefore it does not provide a reliable

10 The Basle Committee (1998) recommends a backtest which sets the market risk capital requirements 
equal or greater than the average of the daily VaR measures during the preceding sixty business days, 
times the supervisory multiplier set by the committee.
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estimate for the true underlying latent volatility. Andersen and Bollerslev (1998a) also 

suggest that the recent poor forecasting performance of the standard GARCH models 

is partly due to the use of the daily squared returns as the benchmark volatility to 

measure forecast errors.

The results obtained in this chapter demonstrate the superiority of the daily 

realized volatility measure over the daily squared returns measure. The one-day 

frequency realized volatility (i.e. the daily squared returns) series is evidently more 

volatile than the five daily realized volatility series. This can be observed from the 

summary statistics of the six volatility series in Table 6.1 and from the plots of the 

series in Figure 6.1. We find that the GARCH-based models produce superior 

forecasting performance when the benchmark volatilities used are the five daily 

realized volatilities (which are based on the summation of intraday squared returns), 

instead of the one-day frequency realized volatility (i.e. the daily squared returns). We 

would also recommend the 5-minute return as the optimal sampling frequency for the 

daily realized volatility among the five different return sampling frequencies 

examined for the Malaysian market here. This is in line with the optimal 5-minute 

return sampling frequency recommended by Andersen, Bollerslev, Diebold and Labys 

(2001). In view of the better forecasting performance produced by the daily GARCH 

models when the daily realized volatility based on the summation of intraday squared 

returns is used as the daily volatility measure, we support the findings that the daily 

squared returns is not a reliable ex post estimate of the true daily volatility, and 

therefore, wherever possible, it should be substituted with the realized volatility 

measure considered in this study.

The ARMA model, which is used to model the daily realized volatility, 

certainly produce superior forecasting performance compared to the various GARCH
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forecasts when all five daily realized volatilities are used as the benchmark volatilities 

to measure the forecast errors. However, the forecasting performance of the ARMA 

model is inferior to the forecasting performances of the GARCH-based models when 

we consider the MAFE metric for the one-day frequency realized volatility (i.e. the 

daily squared returns as the benchmark volatility). We also find that as the return 

sampling frequency of the daily realized volatility becomes higher (from one-day 

frequency to 30-minute to 15-minute to 10-minute etc.), the forecasting performance 

of the various ARMA models improves considerably and the size of the forecast 

errors produced also becomes smaller. This is consistent with the theory of quadratic 

variation and arbitrage-free processes discussed earlier.

The Diebold and Mariano (1995) tests applied to the forecasts suggest that the 

quality of the ARMA forecast is superior to the quality of the EGARCH forecast 

when the same daily realized volatility (based on summation of intraday squared 

returns) is used as the benchmark volatility. However, the opposite is true if we 

consider the one-day frequency realized volatility. The results suggest that both the 

ARMA and EGARCH forecasts are of the same quality when the MSFE is considered 

as the loss function. However, the situation is the opposite when the MAFE is used as 

the loss function. The results indicate that the quality of the EGARCH forecast is 

superior to the quality of the ARMA forecast.

The overall results for the 5-day and 20-day one-step-ahead forecasts are 

consistent with the one-day one-step-ahead forecasts. Generally, the ARMA produces 

superior forecasting performances compared to the performances of the GARCH- 

based models. The results also indicate the merit of using the intraday summation of 

squared returns in producing better performances from the GARCH-based models. 

However, the majority of the results of the differences in the quality of forecast
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between competing ARMA and GARCH-based models are not as significant as those 

obtained for the one-day one-step-ahead forecasts.

The VaR models constructed from the GARCH, the ARMA and the 

RiskMetrics forecasts appear to satisfy all the requirements of the framework for 

interval forecast evaluation at both the 99% and the 95% VaR coverage and, 

therefore, they are economically accurate and reliable. The overall results suggest that 

the daily GARCH-based, the RiskMetrics-based, and the ARMA-based VaR models 

investigated in this chapter are more accurate than the standard GARCH, PGARCH, 

and the RiskMetrics based VaR models evaluated in Chapter 5. This could be partly 

explained by the less severe fat-tail effects experienced at the daily level.

The work done in this chapter completes the final investigation towards a 

better understanding of the dynamics of intraday volatility on the KLSE. In this 

chapter, we have demonstrated the benefits of using the daily realized volatility 

measure as the ex post true daily volatility measure. It is simple to compute and could 

be modelled adequately using simple ARMA models. In addition, the realized 

volatility measures improve the forecasting performances of the standard daily 

GARCH models. The application of the realized volatility measures also produces 

accurate and adequate ARMA-based as well as GARCH-based VaR models. In the 

next chapter, we will summarise the major findings of our investigations into the 

dynamic characteristics of the intraday return volatility on the KLSE.
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Table 6.1: Summary Statistics for the Realized Volatility and the Daily Squared Returns 
(For the whole sample -  406 Trading days) KLCI Data

This table reports the summary statistics for the daily realized volatilities based on the 1-minute, 
5-minute, 10-minute, 15-minute and 30-minute returns frequencies of the sample under study. It 
also reports the summary statistics for the demeaned daily squared returns, which are computed 
based on the end-of-day prices for the same sample.

Daily Realized Volatility 

Return Frequency

One-day
frequency
Realized

Volatility/
Daily

Squared
Returns

1 min 5 min 10 min 15 min 30 min

Mean 0.9637 0.9466 1.0506 1.0847 1.2097 1.4339

Median 0.5054 0.4445 0.4633 0.4827 0.5272 0.3039

Maximum 25.2119 27.6839 27.0661 20.7921 22.1117 39.8279

Minimum 0.1163 0.0805 0.07076 0.0377 0.0298 0.0000

Standard
Deviation 1.7443 1.9129 2.0976 2.0415 2.4226 3.8713

Skewness 8.4296 8.4086 6.8615 5.2855 5.3302 5.8731

Kurtosis 102.1200 102.2655 68.9919 38.3051 37.1067 44.6260

Jarque-
Bera
(p-value)

171011
(0.0000)

171475
(0.0000)

76857
(0.0000)

22976
(0.0000)

21601
(0.0000)

31646
(0.0000)
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Table 6.2: Model Fit for Auto Regressive Moving Average (ARMA) models and
Generalised Autoregressive Conditionally Heteroskedastic (GARCH) models 
KLCI Sum-of-Squared Returns (In-sample 306-day)
Daily Realized Volatility

This table reports the log likelihood (LL), the Akaike Information Criterion (AIC), and the Schwarz Information 
Criterion (SIC) for the ARMA models that employ the sum of squared returns sampling frequency and the daily 
squared returns to estimate the daily realized volatility. This table also reports the LL, the AIC and the SIC for 
the GARCH models below. The conditional volatilities are estimated based on 306 end-of-day returns.

MODEL LL AIC SIC

ARMA Models

Daily Realized Volatility estimate based on:

1-minute Returns Sampling Frequency 
Mean Realized Volatility 

ARMA
-640.4622
-628.6604

4.1926
4.1420

4.2047
4.1786

5-minute Returns Sampling Frequency 
Mean Realized Volatility 

ARMA
-669.7809
-655.6030

4.3842
4.3187

4.3964
4.3553

10-minute Returns Sampling Frequency 
Mean Realized Volatility 

ARMA
-697.4518
-672.4658

4.5650
4.4293

4.5772
4.4659

15-minute Returns Sampling Frequency
Mean Realized Volatility 

ARMA
-688.3604
-654.1980

4.5056
4.3095

4.5178
4.3461

30-minute Returns Sampling Frequency
Mean Realized Volatility 

ARMA
-741.4458
-701.6744

4.8526
4.6208

4.8648
4.6574

One-day Frequency Realized Volatility
Mean Realized Volatility 

ARMA
-884.5195
-875.3312

5.7877
5.7595

5.7999
5.7961

Dailv GARCH Models

GARCH -485.8579 3.2122 3.2609

TGARCH -485.7423 3.2179 3.2789

EGARCH -488.5177 3.2362 3.2972
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Table 6.3: Forecast Performance 100-Day Daily Forecast Horizon -  Auto Regressive Moving 
Average (ARMA) Models and Generalised Autoregressive Conditionally 
Heteroskedastic (GARCH) models

This table reports two forecast error statistics for the forecasts produced by the ARMA and the GARCH 
models below. The results are based on a one day one-step-ahead forecast covering a 100-day out-of- 
sample period. The errors computed are the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The benchmark daily volatility is represented by the appropriate daily realized 
volatility (based on the return sampling frequency). The GARCH forecasts are estimated from the in- 
sample model fit based on the end-of-day returns.

MODEL MSFE MAFE

Benchmark Daily Realized Volatility based on: 

1-minute Returns Sampling Frequency
Naive Model 0.7039 0.8211
ARMA 0.1119 0.3084
GARCH 1.0745 0.8830
TGARCH 1.0694 0.8950
EGARCH 1.0629 0.8789

5-minute Returns Sampling Frequency
Naive Model 0.7056 0.8144
ARMA 0.1949 0.4195
GARCH 1.1071 0.9005
TGARCH 1.1006 0.9116
EGARCH 1.0961 0.8997

10-minute Returns Sampling Frequency
Naive Model 0.9201 0.9263
ARMA 0.2219 0.4338
GARCH 1.0695 0.8915
TGARCH 1.0617 0.9027
EGARCH 1.0576 0.8907

15-minute Returns Sampling Frequency
Naive Model 0.9651 0.9451
ARMA 0.2512 0.4391
GARCH 1.0364 0.8746
TGARCH 1.0281 0.8858
EGARCH 1.0242 0.8738

30-minute Returns Sampling Frequency
Naive Model 1.2113 1.0449
ARMA 0.3529 0.5237
GARCH 0.9772 0.8388
TGARCH 0.9642 0.8486
EGARCH 0.9580 0.8341

One-day Frequency Realized Volatility
Naive Model 2.8547 1.4539
ARMA , 2.2907 1.1831
GARCH 2.4138 1.1148
TGARCH 2.3815 1.1178
EGARCH 2.3336 1.0961
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Table 6.4: Best Forecast Performance -  ARMA and GARCH Models 
Daily Realized Volatility and Daily Squared Returns

This table reports the models that produced the forecasting performance in terms of the mean 
squared forecast error (MSFE) and the mean absolute forecast error (MAFE) statistics. The results 
for the daily realized volatility are shown according to the return frequency used to estimate the daily 
volatility and which are subsequently used in the measurement of forecast errors. The best 
performing GARCH model is reported for each return frequency used as the benchmark volatility to 
measure the MSFE and the MAFE. The GARCH models are estimated based on end-of-day returns.

MSFE MAFE

Daily Realized Volatility based on:

1-minute Return Frequency
ARMA 0.1119 0.3084
EGARCH 1.0629 0.8789

5-minute Return Frequency
ARMA 0.1949 0.4195
EGARCH 1.0961 0.8997

10-minute Return Frequency
ARMA 0.2219 0.4338
EGARCH 1.0576 0.8907

15-minute Return Frequency
ARMA 0.2512 0.4391
EGARCH 1.0242 0.8738

30-minute Return Frequency
ARMA 0.3529 0.5237
EGARCH 0.9580 0.8341

One-day Return Frequency
ARMA 2.2907 1.1831
EGARCH 2.3336 1.0961
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Table 6.5: Comparing Forecast quality -  100-Day Daily Forecast Horizon
Daily Realized Volatility

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecasts generated by the ARMA models are of the same 
quality as the forecasts generated by the GARCH models. The alternative hypothesis adopted is that the 
forecasts produced by the ARMA models are superior to the forecasts produced by the GARCH models. 
The results are based on the comparison of the appropriate ARMA and GARCH models, as listed in 
Table 6.4. The test is implemented with the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The significance of these tests are denoted by ** (1% significance) and * (5% 
significance). The true daily volatility is proxied by the realized daily volatility.

Comparison Metric
MSFE MAFE

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA v. EGARCH -5.4419** -9.8909**

5-minute Return Frequency 
ARMA v. EGARCH -5.0925** -8.5849**

10-minute Return Frequency 
ARMA v. EGARCH -5.0169** -8.4756**

15-minute Return Frequency 
ARMA v. EGARCH -4.9837** -8.2388**

30-minute Return Frequency 
ARMA v. EGARCH -4.0938** -6.3583**

One-day Return Frequency 
ARMA v. EGARCH -0.2974 2.4980*
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Table 6.6: Forecast Performance 100-Day Forecast Horizon -  Auto Regressive Moving Average 
(ARMA) Models and Generalised Autoregressive Conditionally Heteroskedastic 
(GARCH) models-
5-day One-step-ahead Out-of-sample Forecasts

This table reports two forecast error statistics for the forecasts produced by the ARMA and the GARCH 
models below. The results are based on a 5-day one-step-ahead forecast covering a 100-day out-of- 
sample period. The errors computed are the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The benchmark daily volatility is represented by the appropriate daily realized 
volatility (based on the return sampling frequency). The GARCH forecasts are estimated from the in- 
sample model fit based on the 5-day returns.

MODEL MSFE MAFE

Benchmark 5-Day Realized Volatility based on: 

1-minute Returns Sampling Frequency
Naive Model 8.1885 0.8049
ARMA 0.4749 0.0516
GARCH 10.7454 0.7209
TGARCH 9.9302 0.6889
EGARCH 11.3489 0.7436

5-minute Returns Sampling Frequency
Naive Model 5.6942 0.7197
ARMA 2.0824 0.4272
GARCH 13.6412 0.7782
TGARCH 12.7245 0.7463
EGARCH 14.3174 0.8010

10-minute Returns Sampling Frequency
Naive Model 8.8322 0.9016
ARMA 3.4906 0.5587
GARCH 14.5040 0.7603
TGARCH 13.5639 0.7284
EGARCH 15.1969 0.7831

15-minute Returns Sampling Frequency
Naive Model 9.6855 0.9713
ARMA 4.5571 0.6589
GARCH 15.1645 0.7339
TGARCH 14.2086 0.7021
EGARCH 15.8686 0.7567

30-minute Returns Sampling Frequency
Naive Model 11.5273 1.0759
ARMA 5.8826 0.7564
GARCH 19.6592 0.8131
TGARCH 18.5749 0.7812
EGARCH 20.4553 0.8359

5-day Frequency Realized Volatility
Naive Model 6.7229 0.8545
ARMA 6.7149 0.7731
GARCH 17.9446 0.7844
TGARCH 17.1979 0.7525
EGARCH 18.4991 0.8072
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Table 6.7: Comparing Forecast quality -  100-Day Forecast Horizon
5-Day Realized Volatility

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. TTie null hypothesis is that the forecasts generated by the ARMA models are of the same 
quality as the forecasts generated by the GARCH models. The alternative hypothesis adopted is that the 
forecasts produced by the ARMA models are superior to the forecasts produced by the GARCH models. 
The results are based on the comparison of the appropriate ARMA and GARCH models, as listed in 
Table 6.6. The test is implemented with the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The significance of these tests are denoted by ** (1% significance) and * (5% 
significance). The true daily volatility is proxied by the realized daily volatility.

Comparison Metric
MSFE MAFE

5-DAY REALIZED VOLATILITY BASED ON

1-minute Return Frequency 
ARMA v. TGARCH -21.7767** -2.8253**

5-minute Return Frequency 
ARMA v. TGARCH -10.6926** -2.0049*

10-minute Return Frequency 
ARMA v. TGARCH -6.9649** -1.2631

15-minute Return Frequency 
ARMA v. TGARCH -5.2771** -0.3570

30-minute Return Frequency 
ARMA v. TGARCH -4.6949** -0.1921

5-day Return Frequency 
ARMA v. TGARCH -3.2974** 1.3334
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Table 6.8: Forecast Performance 100-Day Forecast Horizon -  Auto Regressive Moving Average 
(ARMA) Models and Generalised Autoregressive Conditionally Heteroskedastic 
(GARCH) models -
20-Day One-step-ahead Out-of-sample Forecasts

This table reports two forecast error statistics for the forecasts produced by the ARMA and the GARCH 
models below. The results are based on a 20-day one-step-ahead forecast covering a 100-day out-of- 
sample period. The errors computed are the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The benchmark daily volatility is represented by the appropriate daily realized 
volatility (based on the return sampling frequency). The GARCH forecasts are estimated from the in- 
sample model fit based on the 20-day returns.

MODEL MSFE MAFE

Benchmark 20-Day Realized Volatility based on: 

1-minute Returns Sampling Frequency
Naive Model 138.4826 11.7236
ARMA 6.5765 1.7879
GARCH 99.4709 9.9212
TGARCH 106.7647 10.2822
EGARCH 155.0247 12.4090

5-minute Returns Sampling Frequency
Naive Model 96.5298 9.7199
ARMA 63.2736 7.8442
GARCH 133.9547 11.4849
TGARCH 142.3774 11.8459
EGARCH 197.2886 13.9727

10-minute Returns Sampling Frequency
Naive Model 147.7144 12.0044
ARMA 113.8831 10.5088
GARCH 143.1551 11.8129
TGARCH 151.8148 12.1739
EGARCH 208.1214 14.3008

15-minute Returns Sampling Frequency
Naive Model 160.7909 12.4681
ARMA 132.5782 11.2853
GARCH 150.1923 12.0356
TGARCH 159.0127 12.3966
EGARCH 216.2665 14.5234

30-minute Returns Sampling Frequency
Naive Model 188.4061 13.4350
ARMA 174.6798 13.1354
GARCH 204.0075 14.0036
TGARCH 214.2488 14.3646
EGARCH 279.8736 16.4914

20-day Frequency Realized Volatility
Naive Model 287.9076 18.6590
ARMA 270.5780 15.8302
GARCH 546.5138 23.0994
TGARCH 563.3227 23.4604
EGARCH 667.6377 25.5873
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Table 6.9: Comparing Forecast quality -  100-Day Forecast Horizon
20-Day Realized Volatility

This table reports the results of the Diebold and Mariano (1995) asymptotic test for forecast quality 
evaluation. The null hypothesis is that the forecasts generated by the ARMA models are of the same 
quality as the forecasts generated by the GARCH models. The alternative hypothesis adopted is that the 
forecasts produced by the ARMA models are superior to the forecasts produced by the GARCH models. 
The results are based on the comparison of the appropriate ARMA and GARCH models, as listed in 
Table 6.8. The test is implemented with the mean squared forecast error (MSFE) and the mean absolute 
forecast error (MAFE). The significance of these tests are denoted by ** (1% significance) and * (5% 
significance). The true daily volatility is proxied by the realized daily volatility.

Comparison Metric
MSFE MAFE

20-DAY REALIZED VOLATILITY BASED ON

1-minute Return Frequency
ARMA v. GARCH -7.3262** -6.4912**

5-minute Return Frequency 
ARMA v. GARCH -2.9675** -2.9604**

10-minute Return Frequency 
ARMA v. GARCH -0.7763 -0.7813

15-minute Return Frequency 
ARMA v. GARCH -0.3678 -0.3652

30-minute Return Frequency 
ARMA v. GARCH -0.6750 -0.0219

20-day Return Frequency 
ARMA v. GARCH -1.9557* -2.0458*
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Table 6.10: Results of test for “Correct Unconditional Coverage”
Daily GARCH Models -  Estimated Based on End-of-Day Returns (99% VaR)

This table contains the results of the test for “correct unconditional coverage” in the failure series (99% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. The first column gives the names of the models, the second column gives the likelihood ratio 
statistic for the unconditional coverage and the third column reports the probability of success with the
null hypothesis, Hq : f  = a  (equation 5.9) for 99% VaR coverage. The likelihood ratio statistic is given

by: LR„C = -  2 ln{l,(p) / !(£)}. The variables for the likelihood ratio statistic are defined in the main text. 
The true daily volatility is proxied by the realized daily volatility. The significance of these tests is 
denoted by ** (1% significance).

Observed Likelihood p-\ alue
f  Ratio

Statistic

Daily GARCH Models

GARCH 0.0100 0.0000 1.0000

TGARCH 0.0100 0.0000 1.0000

EGARCH 0.0100 0.0000 1.0000

Table 6.11: Results of test for “Independence”
Daily GARCH Models -  Estimated Based on End-of-Day Returns (99% VaR)

This table contains the results of the test for “independence” in the failure series (99% VaR) estimation 
of the KLCI returns based on the out-of-sample VaR forecasts produced by the models below. For each 
model, an OLS regression as given in equation (5.18) is performed. The first column gives the names of 
the models, the second column gives the estimated F-statistics of the hypothesis specified in (5.19) and 
the final column reports the corresponding p- values. The significance of these tests is denoted by ** (1% 
significance) and * (5% significance).

F-statistic p-value

Dailv GARCH Models

GARCH 0.0098 0.9213

TGARCH 0.0098 0.9213

EGARCH 0.0098 0.9213
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Table 6.12: Results of test for “Correct Conditional Coverage”
. Daily GARCH Models -  Estimated Based on End-of-Day Returns (99% VaR)

This table contains the results of the test for “correct conditional coverage” in the failure series (99% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the 
models below. For each model, an OLS regression as given in equation (5.18) is performed. The first 
column gives the names of the models, die second column gives the estimated F-statistics of the 
hypothesis specified in (5.17) and the final column reports the corresponding p-values. The 
significance of these tests is denoted by ** (1% significance) and * (5% significance).

F-statistic p-value

Dailv GARCH Models

GARCH (1,1) 0.0051 0.9949

TGARCH (1,1) 0.0051 0.9949

EGARCH (1,1) 0.0051 0.9949

239



Table 6.13: Results of test for “Correct Unconditional Coverage”
Daily GARCH Models -  Estimated Based on End-of-Day Returns (95% VaR)

This table contains the results of the test for “correct unconditional coverage” in the failure series (95% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. The first column gives the names of the models, the second column gives the likelihood ratio 
statistic for the unconditional coverage and the third column reports the probability of success with the
null hypothesis, H q : f  = a  (equation 5.9) for 95% VaR coverage. The likelihood ratio statistic is given

by: LRuc = -  2 In\L(p) I The variables for the likelihood ratio statistic are defined in the main
text. The true daily volatility is proxied by the realized daily volatility. The significance of these tests is 
denoted by * (5% significance).

Observed Likelihood p-value
r Ratio

Statistic

Daily GARCH Models

GARCH (1,1) 0.0200 2.4286 0.1191

TGARCH (1,1) 0.0200 2.4286 0.1191

EGARCH (1,1) 0.0200 2.4286 0.1191

Table 6.14: Results of test for “Independence”
Daily GARCH Models -  Estimated Based on End-of-Day Returns (95% VaR)

This table contains the results of the test for “independence” in the failure series (95% VaR) estimation 
of the KLCI returns based on the out-of-sample VaR forecasts produced by the models below. For each 
model, an OLS regression as given in equation (5.18) is performed. The first column gives the names of 
the models, the second column gives the estimated F-statistics of the hypothesis specified in (5.19) and 
the final column reports the corresponding p- values. The significance of these tests is denoted by ** (1% 
significance) and * (5% significance).

F-statistic p-value

Dailv GARCH Models

GARCH (1,1) 0.2476 0.6199

TGARCH (1,1) 0.2476 0.6199

EGARCH (1,1) 0.2476 0.6199
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Table 6.15: Results of test for “Correct Conditional Coverage”
Daily GARCH Models -  Estimated Based on End-of-Day Returns (95% VaR)

This table contains the results of the test for “correct conditional coverage” in the failure series (95% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. For each model, an OLS regression as given in equation (5.18) is performed. The first column 
gives the names of the models, the second column gives the estimated F-statistics of the hypothesis 
specified in (5.17) and the final column reports the corresponding p-values. The significance of these 
tests, is denoted by ** (1% significance) and * (5% significance).

F-statistic p-\ alue

Dailv GARCH Models

GARCH (1,1) 2.1972 0.1166

TGARCH (1,1) 2.1972 0.1166

EGARCH (1,1) 2.1972 0.1166
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Table 6.16: Results of test for “Correct Unconditional Coverage”
Daily ARMA and RiskMetrics Models (99% VaR)

This table contains the results of the test for “correct unconditional coverage” in the failure series (99% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. The first column gives the names of the models, the second column gives the likelihood ratio 
statistic for the unconditional coverage and the third column reports the probability of success with the
null hypothesis, H0 : f  = a  (equation 5.9) for 99% VaR coverage. The likelihood ratio statistic is given

by: LRuc = -  2 In{/,(/?)/ . The variables for the likelihood ratio statistic are defined in the main
text. The true daily volatility is proxied by the realized daily volatility. The significance of these tests is 
denoted by ** (1% significance).

Observed
f

Likelihood
Ratio
Statistic

/>-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency
ARMA 0.0300 2.6324 0.1047

5-minute Return Frequency 
ARMA 0.0200 0.7827 0.3763

10-minute Return Frequency 
ARMA 0.0200 0.7827 0.3763

15-minute Return Frequency
ARMA 0.0200 0.7827 0.3763

30-minute Return Frequency 
ARMA 0.0100 0.0000 1.0000

One-day Return Frequency/Daily Squared 
Returns
ARMA

EGARCH 0.0100 0.0000 1.0000

RiskMetrics 0.0500 8.2582** 0.0040
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Table 6.17: Results of test for “Independence”
Daily ARMA and RiskMetrics Models (99% VaR)

This table contains the results of the test for “independence” in the failure series (99% VaR) estimation 
of the KLCI based on the out-of-sample VaR forecasts produced by the models below. For each model, 
an OLS regression as given in equation (5.18) is performed. The first column gives the names of the 
models, the second column gives the estimated F-statistics of the hypothesis specified in (5.19) and the 
final column reports the corresponding p-values. The significance of these tests is denoted by ** (1% 
significance) and * (5% significance).

F-statistic /j-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA 0.0100 0.9205

5-minute Return Frequency 
ARMA 0.0099 0.9209

10-minute Return Frequency 
ARMA 0.0099 0.9209

15-minute Return Frequency 
ARMA 0.0099 0.9209

30-minute Return Frequency 
ARMA 0.0098 0.9213

One-day Return Frequency/Daily Squared Returns
ARMA 0.0098 0.9213

EGARCH 0.0098 0.9213

RiskMetrics 0.0102 0.9196
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Table 6.18: Results of test for “Correct Conditional Coverage”
Daily ARMA and RiskMetrics Models (99% VaR)

This table contains the results of the test for “correct conditional coverage” in the failure series (99% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. For each model, an OLS regression as given in equation (5.18) is performed. The first column 
gives the names of the models, the second column gives the estimated F-statistics of the hypothesis 
specified in (5.17) and the final column reports the corresponding/?-values.
The significance of these tests is denoted by ** (1% significance) & * (5% significance).

F-statistic /;-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA 0.7284 0.4853

5-minute Return Frequency 
ARMA 0.2758 0.7596

10-minute Return Frequency 
ARMA 0.2758 0.7596

15-minute Return Frequency 
ARMA 0.2758 0.7596

30-minute Return Frequency 
ARMA 0.0051 0.9949

One-day Return Frequency/Daily Squared Returns 
ARMA 

EGARCH 0.0051 0.9949

RiskMetrics 1.8017 0.1705
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Table 6.19: Results of test for “Correct Unconditional Coverage”
Daily ARMA and RiskMetrics Models (95% VaR)

This table contains the results of the test for “correct unconditional coverage” in the failure series (95% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. The first column gives the names of the models, the second column gives the likelihood ratio 
statistic for the unconditional coverage and the third column reports the probability of success with the
null hypothesis, H0 : f  = a  (equation 5.9) for 95% VaR coverage. The likelihood ratio statistic is given

by: LRuc = - 2  In[L(p) / L(n)}. The variables for the likelihood ratio statistic are defined in the main 
text. The true daily volatility is proxied by the realized daily volatility. The significance of these tests is 
denoted by * (5% significance).

Observed
f

Likelihood
Ratio

Statistic

p-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA 0.0900 2.7510 0.0971

5-minute Return Frequency 
ARMA 0.0700 0.7530 0.3855

10-minute Return Frequency 
ARMA 0.0700 0.7530 0.3855

15-minute Return Frequency 
ARMA 0.0600 0.1984 0.6564

30-minute Return Frequency 
ARMA 0.0600 0.1984 0.6564

One-day Return Frequency/Daily Squared 
Returns
ARMA

EGARCH
0.0200
0.0200

2.4286
2.4286

0.1191
0.1191

RiskMetrics 0.0800 1.6158 0.2036
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Table 6.20: Results of test for “Independence”
Daily ARMA and RiskMetrics Models (95% VaR)

This table contains the results of the test for “independence” in the failure series (95% VaR) estimation 
of the KLCI returns based on the out-of-sample VaR forecasts produced by the models below. For each 
model, an OLS regression as given in equation (5.18) is performed. The first column gives the names of 
the models, the second column gives the estimated F-statistics of the hypothesis specified in (5.19) and 
the final column reports the corresponding/7-values. The significance of these tests is denoted by ** (1% 
significance) and * (5% significance).

F-statistic p-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA 3.2322 0.0753

5-minute Return Frequency 
ARMA 0.9055 0.3437

10-minute Return Frequency 
ARMA 0.9055 0.3437

15-minute Return Frequency 
ARMA 0.2592 0.6118

30-minute Return Frequency 
ARMA 0.2592 0.6118

One-day Return Frequency/Daily Squared Returns
ARMA 0.2476 0.6199

EGARCH 0.2476 0.6199

RiskMetrics 0.5949 0.4424
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Table 6.21: Results of test for “Correct Conditional Coverage”
Daily ARMA and RiskMetrics Models (95% VaR)

This table contains the results of the test for “correct conditional coverage” in the failure series (95% 
VaR) estimation of the KLCI returns based on the out-of-sample VaR forecasts produced by the models 
below. For each model, an OLS regression as given in equation (5.18) is performed. The first column 
gives the names of the models, the second column gives the estimated F-statistics of the hypothesis 
specified in (5.17) and the final column reports the corresponding p-values. The significance of these 
tests is denoted by ** (1% significance) and * (5% significance).

F-statistic /»-value

DAILY REALIZED VOLATILITY

1-minute Return Frequency 
ARMA 2.0365 0.1360

5-minute Return Frequency 
ARMA 0.6125 0.5441

10-minute Return Frequency 
ARMA 0.6125 0.5441

15-minute Return Frequency 
ARMA 0.2989 0.7423

30-minute Return Frequency 
ARMA 0.2989 0.7423

One-day Return Frequency/Daily Squared Returns 
ARMA 2.1972 0.1166

EGARCH 2.1972 0.1166

RiskMetrics 0.7335 0.4829
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Figure 6.1: Daily Realized Volatility and Daily Squared Returns

The chart below compares the plots o f  the five daily realized volatilities and the daily squared returns for the 406-day sample period.
DRV 1-min = Daily Realized Volatility with 1-minute return sampling frequency
DRV 5-min = Daily Realized Volatility with 5-minute return sampling frequency
DRV 10-min = Daily Realized Volatility with 10-minute return sampling frequency
DRV 15-min = Daily Realized Volatility with 15-minute return sampling frequency
DRV 30-min = Daily Realized Volatility with 30-minute return sampling frequency
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Figure 6.2: F orecasting  P erfo rm ance of Daily V olatility M odels

The chart below compares the plots o f the daily realized volatility, the daily squared returns and the forecasted return volatilities o f the best performing volatility
models for the 100-Day Out-of-sample forecasting period.

DRV 1-min = Daily Realized Volatility with 1-minute return sampling frequency

12 I
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Figure 6.3: F orecasting  P erfo rm ance of Daily V olatility M odels

The chart below compares the plots of the daily realized volatility, the daily squared returns and the forecasted return volatilities o f the best performing volatility models
for the 100-Day Out-of-sample forecasting period.

DRV5-min = Daily Realized Volatility with 5-minute return sampling frequency
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F igure 6.4: Forecasting  P erfo rm ance of Daily V olatility M odels

The chart below compares the plots of the daily realized volatility, the daily squared returns and the forecasted return volatilities of the best performing volatility models
for the 100-Day Out-of-sample forecasting period.

DRV 10-min = Daily Realized Volatility with 10-minute return sampling frequency

12

10 DRV 10-min  Daily Squared Returns —■— ARIW\ * EGARCH



F igure 6.5: Forecasting P erform ance o f Daily V olatility M odels

The chart below compares the plots of the daily realized volatility, the daily squared returns and the forecasted return volatilities of the best performing volatility models
for the 100-Day Out-of-sample forecasting period.

DRV 15-min = Daily Realized Volatility with 15-minute return sampling frequency
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F igure 6.6: Forecasting  P erfo rm ance o f Daily V olatility M odels

The chart below compares the plots o f the daily realized volatility, the daily squared returns and the forecasted return volatilities o f the best performing volatility
models for the 100-Day Out-of-sample forecasting period.

DRV 30-min = Daily Realized Volatility with 30-minute return sampling frequency

12

DRV 30-min Daily Squared Returns ■ARMA EGARCH
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Figure 6.7: Forecasting  P erfo rm ance o f Daily V olatility M odels

The chart below compares the plots o f the daily squared returns (One-day Frequency Realized Volatility) and the forecasted return volatilities o f the best performing
ARMA and GARCH models for the 100-Day Out-of-sample forecasting period.
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Figure 6.8: Representative Volatility Signature Plots

The chart below shows the plots o f  the average daily realized volatilities against the five intraday sampling frequencies used in the study: 1-minute, 5-minute, 
10-minute, 15-minute and 30-minute.
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CHAPTER 7

CONCLUSION

7.0 Introduction

This thesis addresses four central issues regarding the modelling and forecasting 

of return volatility on the KLSE. The first issue concerns the intraday U-shaped pattern 

for return volatility that is observed in most financial markets. We investigate whether the 

KLSE shows a double U-shaped pattern instead of the single one as a result of the dual 

trading sessions observed during each trading day.

Secondly, we examine the viability and the advantages of controlling for 

periodicity effects in modelling return volatility. To this end, we compare the 

performances of the unadjusted GARCH models with the performances of the PGARCH 

models with half-hourly dummy, quarter-hourly dummy, FFF-based and spline-based 

variables incorporated into the conditional volatility equation to account for the 

periodicity effects. We also examine the performances of the two-step filtration method, 

which is an alternative to the jointly estimated formulation.

Thirdly, we compare the out-of-sample forecasting performances of the naive 

model (based on historical variance), the non-periodic GARCH models (unadjusted 

GARCH models) with the performances of the PGARCH models using both the joint 

estimation and two-step filtration techniques. In addition, we also look at the impacts of 

using business time and calendar time as the measure of time in the estimation process. In 

order to emphasize the statistical significance of forecast quality evaluation, we make use 

of both the Diebold and Mariano (1995) asymptotic test and the forecast encompassing
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test of Harvey, Leyboume and Newbold (1998) to evaluate the predictive accuracy of 

available alternative forecasts. Following this, the economic significance of the forecast 

is evaluated through the performances of the various VaR measures. We assess the 

adequacy of VaR models constructed from these GARCH forecasts using the framework 

for interval forecast evaluation developed by Christoffersen (1998) and the regression- 

based tests of Clement and Taylor (2003).

Finally, the thesis examines the out-of-sample forecasting performance of the 

ARMA model, which is used to estimate the daily realized volatility measures proposed 

by Andersen, Bollerslev, Diebold and Labys (2001, 2003). We then evaluate the out-of- 

sample forecasting performances of both the ARMA and the daily GARCH-based models 

using the various daily realized volatility measures as the proxy for the true daily 

volatility. In addition, we assess the adequacy of the VaR models constructed from the 

ARMA and the best performing daily GARCH forecasts using the various adequacy tests 

described earlier.

7.1 Conclusion

We find that a reasonable double U-shaped return volatility pattern does exist for 

the KLCI returns for the period under study. This is shown both by the plots of the 

absolute returns and the standard deviation of returns during the trading day. This 

periodicity effect is also found to be statistically significant when we apply the Wald 

coefficient restriction tests. The plots of the best-fitted GARCH models from each of the 

thirteen volatility estimating approaches appear to model sufficiently the observed double
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U-shaped pattern. The results are consistent with similar findings documented for 

financial markets that are closed for the lunch break period.

We find that there is a strong case for periodicity adjusting methods in modelling 

returns volatility. The results indicate that superior model fit is obtained for the GARCH 

models that are jointly estimated and the models that are estimated using the two-step 

filtration techniques when compared against the non-periodic (unadjusted) GARCH 

models. In particular, the PGARCH models that incorporate the half-hourly dummy 

variables in the conditional variance equation produce the best results. The results for the 

two-step filtration models are also encouraging, and they provide a serious alternative to 

the more computationally expensive method provided by the jointly estimated PGARCH 

models. We find that using half-hourly dummy variables gives better results compared to 

the alternative FFF-based variables. The same could be said for the spline-based 

variables. They occupy the second, the third, the fifth and the sixth positions for the best 

performing modelling approach. This indicates that the spline-based estimation 

techniques do provide a superior modelling approach, at least for the Malaysian market.

The superior results of the PGARCH model fits are also translated into superior 

out-of-sample forecasting performances. Specifically, PGARCH forecasts give smaller 

forecast error statistics than the standard unadjusted GARCH equivalents. We find that 

the quality of forecasts of the PGARCH-based models is superior to the quality of the 

naive and the standard GARCH forecasts (both the results of the Diebold and Mariano 

(1995) asymptotic test and the encompassing test of Harvey, Leyboume and Newbold 

(1998), using the MSFE and MAFE metrics, are statistically significant). Therefore, it is 

clearly desirable to adjust and control for periodicity effects, in terms of producing
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superior forecast quality, and this does add additional informational content to the quality 

of forecasts. However, we find that VaR models constructed based on high-frequency 

forecasted data are sensitive to the effects of the fat tails of the series distribution. 

Assuming normal distribution, the VaR produced by the available GARCH forecasts fails 

miserably when the coverage tests are applied at both the 99% and the 95% levels.

Finally, we demonstrate the superiority of the daily realized volatility measure, 

based on the intraday summation of squared returns, over the daily squared returns 

measure. We observe that the daily GARCH models produce superior forecasting 

performances when the daily realized volatility measures are used as the proxy for the 

true daily volatility. This is consistent with the results of previous studies. The results, 

therefore, suggest that in order to optimise the application of the GARCH models, one 

should consider using the integrated realized volatility measure as the proxy for the actual 

volatility. Based on the volatility signature plot, we recommend that the most appropriate 

sampling frequency for the daily realized volatility among the five different return 

sampling frequencies examined in this study is the 5-minute return frequency. This is 

certainly consistent with the 5-minute sampling frequency often used and cited for the 

developed capital markets.

In addition, we also find that the ARMA model used to model the daily realized 

volatilities produce superior forecasting performances compared to the daily GARCH 

models when the same daily realized volatility is used as the benchmark. The results, 

however, are rather mixed when the daily squared returns are considered. Here, for the 

MAFE statistics, the daily GARCH models are superior to the ARMA model, while the 

opposite is true when the MSFE statistics are taken into account. The results of the
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Diebold and Mariano (1995) asymptotic tests are also significant and suggest that in all 

paired comparisons of alternative forecasts, the quality of the ARMA forecasts is superior 

to the quality of the GARCH forecasts, with the exception of forecast evaluation using 

the one-day frequency realized volatility, where we find that the quality of both the 

ARMA and the GARCH forecasts is the same when the MSFE metric is applied. Finally, 

there are some positive results for VaR models based on the ARMA and the daily 

GARCH forecasts. The GARCH-based VaR models appear to have the required coverage 

properties. In addition, the results indicate that the ARMA model that were sampled at 

the 1-minute, 5-minute, 10-minute, 15-minute, 30-minute return and one-day sampling 

frequencies easily satisfy the required VaR criteria. The same could be said for the 

RiskMetrics model, which passes all the correct conditional coverage tests conclusively. 

Turning to the most appropriate sampling frequency for the daily integrated realized 

volatility, we find that the 5-minute return sampling frequency provides the lowest 

average daily volatility and therefore produces the best proxy for the true daily volatility.
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