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SUMMARY

Pathways regulated by Phosphotidylinositide-3-kinase (PI3K) have emerged as 
important mediators of cell proliferation and survival. When altered, several 
components of this pathway have been identified to contribute towards a wide 
range of human malignancies. PI3K has been implicated in the development of 
several EBV-associated malignancies of both lymphoid and epithelial origin. 
These include Burkitt’s lymphoma, Hodgkin’s disease and nasopharyngeal 
carcinoma. Although progress has been made in dissecting the pathways regulated 
by PI3K, the key components contributing to lymphocyte transformation have not 
been fully characterised. This study sought to investigate downstream targets of 
PI3K in lymphocytes in order to further our understanding of the contribution of 
PI3K signalling to lymphocyte proliferation and survival, particularly within the 
context of EBV-associated B-cell lymphomas.

Initial work in this study revealed that a component of the mammalian ribosome, 
S6-ribosomal protein, is a major target for PI3K activation in transformed 
lymphocytes. In order to study PI3K and EBV regulated proteins on a larger 
scale, the technology of two-dimensional electrophoresis (2DE) was employed. 
The use of 2DE in combination with a PI3K inhibitor did not allow the 
identification of PI3K regulated proteins. However, three EBV regulated proteins 
were detected in the B-lymphocyte nucleus using this technology. The technology 
was further developed to study the post-translational modifications of DNA bound 
transcription factors. This detected multiple isoforms of the cAMP-response 
element binding protein (CREB), signal transducers and activators of transcription 
1 (STAT1) and forkhead box O (FOXO) transcription factors in the nuclei of 
EBV immortalized lymphocytes.

More detailed analysis of the PI3K regulated pro-apoptotic transcription factor, 
FOXOl, revealed that this protein is downregulated in EBV positive cells at both 
the transcriptional and translational levels. This downregulation was shown to 
directly correlate with the protein expression of a known target gene activated by 
FOXOl, Bcl-6, and to inversely correlate with protein levels of Cyclin D2, a 
target transcriptionally repressed by FOXOl. Further investigations into the 
mechanisms by which EBV downregulates FOXOl implicated a role for two 
EBV encoded proteins, Latent membrane protein-1 (LMP1) and LMP2A in the 
downregulation of both FOXOl, and its target gene, Bcl-6.

In conclusion, this work has explored the use of antibody detection and proteomic 
techniques for the identification and analysis of nuclear proteins and transcription 
factors regulated by PI3K and EBV. Together, these investigations have deepened 
our understanding of the molecular changes that occur in lymphocytes in response 
to EBV infection, and how EBV may influence malignancy.
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CHAPTER 1

Review of the literature

1.1 Epstein-Barr Virus (EBV)

1.1.1 Discovery of EBV

Denis Burkitt, a British missionary surgeon working in equatorial Africa first 

described an aggressive B cell lymphoma prevalent in children in this region 

in the late 1950s and early 1960s. He suspected an environmental or infectious 

etiology of the lymphoma due to its climatic and geographical distribution, but 

was unsuccessful in identifying a candidate agent (Burkitt, 1962, Burkitt & 

Wright, 1966). In 1964, Anthony Epstein and his colleagues Yvonne Barr and 

Bert Achong successfully cultured cells from Burkitf s lymphomas patient 

biopsies and identified herpesvirus particles in electron micrographs of the 

cultured lymphoblasts. This virus was shown to be distinct from previously 

identified herpesviruses as it did not react with antibodies towards known 

human herpesviruses and was unable to replicate in other cultured cells 

(Epstein et al, 1964). The transforming ability of EBV was subsequently 

demonstrated by two studies that reported blast transformation and continual 

proliferation of infected B lymphocytes (Pope et al, 1968, Pattengale et al, 

1973). Thus, EBV was the first virus to be implicated with the development of 

human cancers.

1.1.2 EBV classification and structure

EBV is a member of the lymphocryptovirus (LCV) genus of the gamma 

subfamily of herpersviruses. LCV are found exclusively in primates, with 

EBV being the only LCV known to infect humans. EBV is also known as 

human herpesvirus-4 (HHV4) due to taxonomist classification.

1



Gammaherpesviruses are characterized by their tropism for lymphoid cells and 

ability to efficiently immortalize B lymphocytes of their hosts. Other features 

that characterize gammaherpesviruses relate to their genomic composition, 

encoding several early regulators of viral gene expression and a homologue of 

bcl-2, an anti-apoptotic protein (Kieff & Rickinson, 2001). In addition, 

integral membrane proteins capable of triggering intracellular signaling 

pathways are encoded by the long unique region (LUR) of the viral genome 

(Brinkmann & Schultz, 2006).

EBV has a toroid shaped protein core that is wrapped with the linear double 

stranded DNA genome of approximately 185 kb. This is surrounded by an 

icosahedral nucleocaspid of approximately 100-110nm in diameter that is 

composed of 162 caspomeres. A protein tegument lies between the 

nucleocaspid and the envelope, and is encapsulated by an outer envelope that 

contains external viral glycoprotein spikes on the surface. A schematic 

representation of the structure of EBV is shown in Figure 1.1. The most 

abundant EBV envelope and tegument proteins are glycoproteins of 350 

(gp350), 220 (gp220) and 152 (gpl52) kDa. Additional viral envelope proteins 

expressed at lower levels include gp85, gp25, gpllO, gp84/l 13, gp43/38 and 

gpl5. The structure of the EBV genome is characterized by short and long 

unique sequence domains (Us and U l) that contain most of the genome coding 

capacity. Other features include tandem direct repeats (TR) of 0.5 kDa at both 

termini and internal direct repeats (IR-1) consisting of 6 to 12 tandem repeats 

of 3-kb (Kieff & Rickinson, 2001).

1.1.3 Infection, persistence and transmission of EBV

EBV is a ubiquitous virus that persistently infects greater than 95% of the 

population worldwide. The virus is largely lymphotropic but can also infect 

other cell types such as epithelial cells (Kieff & Rickinson, 2001). EBV gains 

entry into the B lymphocyte via an interaction between the viral envelope 

glycoprotein BLLF1 (gp350/220) and human complement receptor type 2 

(CD21) molecules expressed at the B cell surface (Fingeroth et al, 1984, 

Nemerow et al, 1985, Tanner et al, 1987). The normal function for CD21 is

2
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Figure 1.1 Schematic representation of the structure of Epstein-Barr virus.
Adapted from http://www.stden.lanl.stdgen/bacteria/prv/herpes.html.

http://www.stden.lanl.stdgen/bacteria/prv/herpes.html


the receptor for the complement component Cd3 (Rickert, 2005). A complex 

formed between the viral glycoproteins gp25, gp42/38 and gp85 also 

contribute towards the adsorption of EBV by forming an interaction with 

major histocompatibility complex (MHC) class II molecules expressed on the 

surface of B cells (Knox & Young, 1995). This interaction functions as a co

receptor for the entry of EBV into B cells. Aggregation of CD21 molecules 

within the plasma membrane follows, which induces the internalization of 

EBV within cytoplasmic vesicles (Nemerow et al, 1984, Carel et al, 1990). 

Alternative mechanisms by which EBV infection occurs are also likely, as one 

study has demonstrated that EBV lacking gp350/220 was able to infect B cells 

and epithelial cells (Janz et al, 2000). Upon entry of EBV into a cell, the linear 

viral genome circularizes due to the joining of terminal repeats, and 

extrachromosomal copies of the viral episome persist within the host nucleus. 

Viral DNA is replicated by host cellular machinery and is transmitted to 

daughter cells by the process of cell division (Kutok & Wang, 2006).

1.1.3.1. EBV latent infection in vitro

A unique characteristic of EBV is its ability to infect and transform primary B 

lymphocytes in vitro into permanently proliferating lymphoblastoid cell lines 

(LCLs). LCLs are a good model for cells in the polyclonal phase of post

transplant lymphoproliferative disorder (PTLD); an EBV associated 

malignancy observed in immunocompromised individuals. LCLs are therefore 

a powerful in vitro model of EBV latent infection, and have proved valuable 

for the study of the transforming effects of the virus. EBV readily infects 

primary B lymphocytes derived from peripheral blood, tonsils, or foetal cord 

blood in vitro. (Kieff and Rickinson, 2001).

Successful in vitro infection of primary B lymphocytes by EBV results in the 

generation of latently infected cells. Approximately 100 genes have been 

identified in the EBV genome, however, only a small proportion are actively 

transcribed during EBV latent infection of B cells, and encode proteins that 

induce cell cycle entry, continual proliferation and the maintenance of viral 

latency. These include six EBV nuclear antigens; EBNA1, EBNA2, EBNA3A,
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EBNA3B, EBNA3C and EBNA-leader protein (EBNA-LP), three latent 

membrane proteins; LMP1, LMP2A and LMP2B, two small 

nonpolyadenylated RNA molecules (EBERs) and transcripts spliced from the 

BamRlK region of the viral genome (BARTs). This pattern of EBV gene 

expression is characteristic of LCLs and is termed latency III (Rowe et al, 

1992). The latency programmes expressed by EBV are summarized in Table

1.1. LCLs are similar in phenotype to lymphocytes proliferating in response to 

antigenic or mitogenic stimulation in that they express high levels of the B cell 

activation markers CD23, CD30, CD39, CD70 and also adhesion molecules 

CD1 la/18 (LFA-1, lymphocyte-function-associated antigen-1), CD58 (LFA-2) 

and CD54 (ICAM-1- intercellular adhesion molecule 1) that induce inter

cellular adhesion (Rowe et al, 1987).

The in vitro infection of EBV negative Burkitt’s lymphoma (BL) cell lines 

with EBV can also be achieved but at a reduced efficiency compared to 

peripheral blood lymphocytes (Kieff & Rickinson, 2001). The continual 

proliferation of BL cell lines is driven by the constitutive expression of c-myc, 

a transcription factor that promotes cell proliferation by regulating the 

expression of numerous target genes involved in cell cycle progression (Dang, 

1999). This is a result of the characteristic reciprocal chromosomal 

translocation detected in BL cells that places c-myc at chromosome 8q24 

adjacent to one of three immunoglobulin heavy or light chain genes on 

chromosome 2, 14 or 22 (Hecht & Aster, 2000). EBV infection of BL in vitro 

initially leads to the establishment of a latency III pattern of EBV gene 

expression as in LCL’s, which can be maintained in culture. However, 

continual culture of EBV infected BL cells can also lead to the loss of the 

EBV genome from a proportion of the cells. Another proportion of the cells 

may also maintain the EBV episome, but revert to a different pattern of EBV 

gene expression referred to as latency I. During latency I, only EBNA-1, 

EBERs and BARTs are expressed. Cell lines generated from the in vitro 

infection of BL cells with EBV are therefore often heterogeneous in their EBV 

status (Kieff & Rickinson, 2001).
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Table 1.1 Patterns EBV gene expression during latency

Latency
programme

Gene expression Examples of latency pattern

I EBNA1, EBERs Burkitt’s lymphoma

II
EBNA1, LMP1, LMP2, EBERs Hodgkin’s lymphoma 

Nasopharyngeal carcinoma 
T cell lymphomas

III
EBNA1, EBNA2, EBNA3A, 

EBNA3B, EBNA3C, LMP1, LMP2, 
EBERs

Lymphablastoid cell lines 
Post-transplant lymphoroliferative disease 

X-linked lymphoproliferative disease 
AIDS-associated B cell lymphomas

LL3.L1EBNA1

EBNA1 is a DNA binding nuclear phosphoprotein expressed in all virus 

infected cells. The central role of EBNA1 is the maintenance and replication 

of the viral episome during the cell division cycle. This is achieved by the 

sequence specific binding of EBNA1 dimers to the plasmid origin of 

replication (oriP) of the EBV episome, resulting in the tethering of the viral 

episome to chromosomes (Marechal et al, 1999, Lee et al, 1999). EBNA1 can 

also act as a transcriptional regulator of other EBNAs, LMP1, LMP2B as well 

as EBNA1 itself by binding to certain viral promoters (Kieff & Rickinson,

2001). The EBNA1 mature protein is stabilized by glycine-glycine-alanine 

repeat sequences that separate the N- and C-terminal domains of the protein. 

This domain protects EBNA1 from proteasomal-mediated degradation 

necessary for MHC-class I restricted epitope presentation to cytotoxic T 

lymphocytes (CTL) (Levitskaya et al, 1995). EBNA1 has therefore evolved to 

be poorly recognized by the immune system.

One study has addressed the role of EBNA1 in the immortalization of primary 

B lymphocytes by generating a mutant strain of EBV lacking the entire 

EBNA1 open reading frame. The infection of primary human B cells with this 

mutant strain did result in the outgrowth of LCLs, although at a much reduced 

efficiency compared to wild type virus (Humme et al, 2003). These results 

suggested that EBNA1 is not absolutely required for the in vitro growth
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transformation of primary B cells with EBV. However, the inhibition of 

EBNA1 function has been demonstrated to impair the growth of EBV positive 

BL cells both in vitro and in vivo (Kennedy et al, 2003, Nasimuzzaman et al, 

2005). In addition, B-cell specific expression of EBNA1 in transgenic mice 

induced the development of B-cell lymphomas, further indicating a role for 

EBNA1 in EBV mediated cell transformation (Wilson et al, 1996a).

Ll.3.1.2 EBNA2 and EBNA-LP

EBNA2 and EBNA-LP (EBNA-leader protein) are the first viral proteins to be 

expressed after the infection of resting B cells (Allday et al, 1989). EBNA2 is 

crucial for the immortalization process by EBV. This was first demonstrated 

by the inability of the P3HR-1 laboratory strain of EBV, which lacks the gene 

encoding EBNA2 as well as the last two exons encoding EBNA-LP, to 

transform B cells in vitro (Miller et al, 1974). Homologous recombination 

experiments restoring EBNA2 gene expression by P3HR-1 resulted in the 

transformation of primary B cells into LCLs, confirming the importance of 

EBNA2 in this process (Cohen et al, 1989). EBNA-LP is not essential for B 

cell transformation in vitro, but is required for the efficient outgrowth of LCLs 

(Mannick et al, 1991). EBNA2 and EBNA-LP are nuclear proteins that co

operate to act as transcriptional activators of both viral and cellular genes 

involved in the initiation and maintenance of cell proliferation. The expression 

of viral latent membrane proteins, LMP1 and LMP2 are upregulated by 

transactivation by EBNA2, as well as the other EBNA proteins by binding of 

EBNA2 to the viral Cp promoter. Cellular gene targets of EBNA2 include c- 

myc, c-fgr, EBI1/BLR2 and the B cell activation markers, CD21 and CD23 

(Kutok & Wang, 2006). EBNA2A and EBNA-LP have also been shown to co

operate to induce the transition of infected cells from Go to Gi by inducing the 

expression the cyclin D2 cell cycle protein (Sinclair et al, 1994).

EBNA2 does not bind to DNA directly, but interacts with a ubiquitous cellular 

transcription factor, JK-recombinantion-binding protein (RBP-Jk). RBP-Jk is a 

downstream component of activation through the Notch signaling pathway, 

which plays a role in many developmental processes including early
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embryogenesis and lineage commitment of lymphocytes. In the absence of 

Notch activation or EBNA2, RBP-Jk acts as a transcriptional repressor by 

recruiting histone deacetylase complexes to promoter sites. An interaction 

between RBP-Jk and activated Notch or EBNA2 relieves this repressive effect, 

and leads to the modulation of cellular and viral promoters containing Jk 

cognate sequences. For these reasons, EBNA2 has been implicated as the viral 

functional homologue of a constitutively active Notch receptor (Zimer-Strobl 

& Strobl, 2001).

Ll.3.1.3 EBNA3A, EBNA3B and EBNA3C.

Genes encoding EBNA3A, 3B and 3C are tandemly placed in the EBV 

genome and encode hydrophilic nuclear proteins. Studies with EBV 

recombinants have demonstrated the requirement for EBNA3A and EBNA3C 

for B cell transformation in vitro, whereas EBNA3B is not necessary for this 

effect (Tomkinson et al, 1992, Tomkinson et al, 1993). EBNA2A, 3B and 3C 

all form a stable association with RBP-Jk, thereby limiting its binding to 

EBNA2 and cognate Jk sequences. This consequently has the potential to 

represses EBNA2 mediated transcriptional activation of viral and cellular 

target genes (Robertson et al, 1996). All EBNA3 proteins have been 

demonstrated to reduce the activation of the EBNA Cp promoter by EBNA2 

(Murray & Young, 2001). One study investigating the effects of EBNA3A 

overexpression in an LCL reported that the disruption of EBNA2-RBP-Jk 

association was accompanied by a downregulation in c-myc, CD21 and CD23 

along with the initiation of Go/Gi growth arrest (Cooper et al, 2003). EBNA 

3C can also co-operate with EBNA2 in upregulating LMP1 (Lin et al, 2002). 

Therefore, the EBNA3 proteins co-operate with EBNA2 in regulating the 

balance of viral and cellular promoter activation by RBP-Jk.

L1.3.L4 LMP1

LMP1 is a 63 kDa integral membrane phophoprotein that is essential for EBV 

mediated transformation of B cells. This was demonstrated with the use of a 

recombinant virus lacking functional LMP1. This mutant form of EBV was
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unable to induce the growth transformation of primary B cells in vitro (Kaye et 

al, 1993). Studies using an inducible LMP1 gene have demonstrated that this 

protein is also required for the continued proliferation of B cells in vitro 

(Kilger etal, 1998).

The LMP1 protein consists of a three segments. The short amino terminal 

consists of 24 amino acids and functions to orientate and stabilize LMP1 

within the plasma membrane. Six hydrophobic transmembrane-spanning 

domains (residues 24-186) induce the oligomerization of LMP1 molecules, 

which is required for LMP1 function. The third segment consists of a long 

carboxy-terminal cytoplasmic tail (residues 187-386) that can be further 

subdivided into three C-terminal activating regions (CTAR 1,2 and 3) (Li & 

Chang, 2003) CTAR1 and CTAR2 have been shown to be crucial for the 

transforming effects of LMP1, and serve as docking sites for the recruitment 

of specific cellular proteins that constitutively transduce survival and 

proliferative signals to infected cells (Kaye et al, 1995, Izumi & Kieff, 1997). 

For this reason they are also referred to as transformation effector sites (TEFs).

LMP1 activation is functionally analogous to activated CD40, a member of the 

tumour necrosis factor receptor (TNF-R) family, as the CTAR regions of 

LMP1 recruit components of the TNF-R signaling pathway to activate 

downstream signalling pathways. CTAR1 is located proximal to the 

membrane and activates signaling pathways via an interaction with molecules 

of the TNF-R associated factor (TRAF) family. CTAR2 is located at the 

extreme C-terminus of LMP1 and activates signaling pathways by binding to 

TNF-R-associated death domain (TRADD) proteins (Li & Chang, 2003).

The Nuclear Factor-icB (NFkB) transcription factor pathway is one of the 

major signaling pathways activated by the CTAR1 and CTAR2 domains of 

LMP1 (Huen et al, 1995, Busch & Bishop, 2001). This effect contributes 

towards many of the phenotypic consequences of LMP1 expression, including 

the induction of various anti-apoptotic genes such as A20, bcl-2, blf-1 and 

Mcl-1, as well the production of the pro-inflammatory cytokines IL-6 and IL-8 

(Li & Chang, 2003). Both CTAR1 and CTAR2 also engage the p38/mitogen-
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activated protein kinase (MAPK) cascade leading to the activation of 

activator-transcription factor-2 (ATF-2) (Eliopoulos et al, 1999a). Janus 

kinase (JAK) activation of the signal transducers and activators of 

transcription (STAT), and c-Jun N-terminal kinase (JNK) mediated activation 

of the activating protein-1 (AP-1) transcription factor are also pathways 

activated by CTAR1 and CTAR2, that contribute towards the transforming 

effects of LMP1 (Kieser et al, 1997, Gires et al, 1999, Busch & Bishop, 2001). 

One study employed a mutant form of LMP1, containing inactivating 

mutations of both CTAR1 and CTAR2, to investigate the signalling properties 

of these domains. This mutant form of LMP1 inhibited LMP1 -stimulated 

transcription of NFkB, STAT and Jun, demonstrating the importance of these 

domains for effective signalling through LMP1 (Brennan et al, 2001, Zhang et 

al, 2004). The CTAR1 has also been associated with the activation of the 

Phosphotidylinositol-3-Kinase (PI3K) pathway, which mediates several 

signalling pathways leading to cell survival and proliferation (Dawson et al, 

2003, Maniou et al, 2005). The CTAR3 region of LMP1 lies between the 

CTAR1 and CTAR2 regions within the carboxy-terminal cytoplasmic tail of 

LMP1. This region remains relatively poorly characterized with respect to its 

signaling properties, but has been suggested to bind JAK3 and mediate DNA 

binding of the ST ATI transcription factor (Gires et al, 1999).

1.L3.1.5LMP2A andLMP2B

The gene encoding LMP2 yields two distinct transmembrane proteins, 

LMP2A and LMP2B. LMP2A and LMP2B are structurally similar, containing 

twelve transmembrane spanning domains and a 27 amino acid cytoplasmic C- 

terminus. Exon 1 of LMP2A encodes a 199 amino acid N-terminal hydrophilic 

cytoplasmic domain, whereas exon 1 of LMP2B is non-coding and the protein 

therefore lacks this domain. LMP2B is thought to function as a negative 

regulator of LMP2A (Longnecker & Miller, 1996). The N-terminal domain of 

LMP2A contains eight tyrosine residues. Two of these tyrosines at positions 

74 and 85 are constitutively phosphorylated and form an immunoreceptor 

tyrosine-based activation motif (ITAM). During normal B cell signalling, 

phosphorylated IT AM molecules present in the B cell receptor (BCR) mediate
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the recruitment and activation of the Syk protein tyrosine kinase (PTK) as well 

as the Src family PTKs, which play an important role in the mediation of 

lymphocyte proliferation and differentiation in response to BCR ligation. 

LMP2A stably associates with the Src family PTKs, Lyn and Fyn, and also 

Syk via its phosphorylated IT AM motif, blocking normal signalling through 

the BCR (Burkhardt et al, 1992, Miller et al, 1995). This was demonstrated by 

a study showing that normal BCR cross-linking is blocked in LCLs. BCR 

signalling was, however, found to be normal in a recombinant form of EBV 

lacking expression of LMP2A as measured by calcium mobilization, cellular 

kinase activation and induction of tyrosine phosphorylation (Miller et al, 1993, 

1995, Fruehling et al, 1996). The Lyn and Syk binding regions of the ITAM 

motif of LMP2A were subsequently found to be required for this effect 

(Fruehling & Longnecker, 1997, Fruehling et al, 1998). In vivo, LMP2A 

provides developmental and survival signals to BCR-deficient B cells, 

allowing their survival in the periphery (Caldwell et al, 1998). LMP2A 

therefore has a role in driving the proliferation and survival of B cells in the 

absence of signaling through the BCR. By blocking signalling through the 

normal BCR, LMP2A also has a role in maintaining the virus in its latent 

phase by preventing the activation of resting lymphocytes that induces the 

reactivation of the lytic cycle of EBV. Indeed, inhibition of BCR-signalling by 

LMP2A correlates with lower levels of EBV lytic replication (Miller et al,

1994).

In addition to blocking normal signalling through the BCR, LMP2A has also 

been shown to induce constitutive signalling through the PI3K/PKB (protein 

kinase B) pathway in B cells (Swart et al, 2000) and epithelial cells (Scholle et 

al, 2000, Morrison et al, 2003). Activation through this pathway normally 

provides a survival signal in response to BCR signaling. In B cells, the 

constitutive phosphorylation of PKB via PI3K required the recruitment of Syk 

and Lyn to the ITAM motif (Swart et al, 2000). A subsequent study 

demonstrated that LMP2A inhibits Transforming Growth Factor -  pi (TGF- 

pi) mediated apoptosis through activation of the PI3K/AKT pathway in a BL 

cell line (Fukuda & Longnecker, 2004). The role of LMP2A mediated 

activation of the PI3K/PKB pathway in promoting B cell survival has also

11



been demonstrated in vivo, as B cells from LMP2A transgenic mice are 

sensitive to apoptosis in the presence of specific inhibitors of PI3K and PKB 

(Portis & Longnecker, 2004a). Neither of the LMP2 proteins are absolutely 

essential for EBV induced B cell-transformation in vitro (Longnecker et al, 

1993). However, these proteins do greatly enhance the efficiency of B cell 

immortalization (Brielmeier, 1996).

1.1.3.1.6 EBERs

The two small nonpolyadenylated RNA molecules, EBER1 and EBER2, are 

the most abundant EBV RNAs expressed in latently infected cells and are 

expressed in all forms of latency. The EBERs co-localize in the nucleus and 

assemble into stable ribonuclear complexes with the autoantigen La, ribosomal 

protein L22 and EBER associated protein (EAP). EBERs also bind the double

stranded RNA activated protein kinase R (PKR) to inhibit its function. PKR is 

an interferon-a (IFN-a)-inducible serine/threonine kinase, and is a key 

mediator of the antiviral activities of IFN-a. EBER inhibition of PKR may 

therefore play a role in EBV persistence (Nanbo et al, 2002). EBERs are not 

essential for the transforming effect of EBV on primary B cells in vitro (Kieff 

& Rickinson, 2001). However, the expression of EBERs in BL cell lines has 

been shown to increase the survival potential of these cells, as well as induce 

the expression of the anti-inflammatory cytokine, interlukin-10 (IL-10) 

(Nanbo & Takada, 2002). EBERs are therefore postulated to contribute 

towards the persistence and survival of EBV infected cells.

1.1.3.2 EBV latent infection in vivo

Primary EBV infection is believed to occur predominantly in the oropharynx 

and is transmitted through saliva. Shedding of the virus is detected in the 

saliva of patients with acute infectious mononucleosis (IM) as well as healthy 

long term carriers of the virus (Niederman et al, 1976, Yao et al, 1989). It 

remains to be defined whether EBV directly infects its target cells, which are 

B cells of the lymphoid tissue underlying the submucosal epithelium of the 

throat, or whether this occurs via an initial infection of oropharyngeal
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epithelium cells. Since B cells residing beneath this region are predominantly 

naive B cells, EBV target cells are thought to be mainly in a resting state 

(Thorley-Lawson & Babcock, 1999). Subsequent events leading to the 

persistence of EBV in healthy individuals have been studied by the group of 

Thorley-Lawson. This group analysed the presence and frequency of EBV- 

infected cells from distinct human B-cell subsets as well as the expression 

pattern of EBV-encoded genes in these cells. On the basis of these studies, a 

model of latent EBV infection in vivo was proposed (Thorley-Lawson, 2001, 

Thorley-Lawson, 2005), and is summarized below.

The infection of naive B cells in vivo with EBV leads to a latency III pattern of 

EBV gene expression, as described in section 1.3.1 (Joseph et al, 2000). This 

is thought to activate the proliferation and clonal expansion of infected cells 

without the requirement for external signalling. Proliferating B cell blasts 

latently infected with EBV are continuously produced in the tonsils, and are 

susceptible to elimination via cytotoxic T-lymphocyte (CTL) mediated attack 

(Rickinson & Moss, 1997, Khanna et al, 1999). However, a proportion of the 

proliferating cells migrate into the follicles, and undergo germinal centre (GC) 

differentiation to increase the pool of EBV-infected cells. In peripheral blood, 

EBV is found exclusively in these cells (Babcock et al, 1998). In GC B cells, 

the viral transcription programme switches to latency II, where the only viral 

proteins expressed are EBNA1, LMP1 and LMP2A (Babcock et al, 2000). 

EBNA1 is required for the replication of viral DNA (Marechal et al, 1999, Lee 

et al, 1999). LMP1 and LMP2 are thought to co-operate to drive the latently 

infected B cell through the GC reaction by driving immunoglobulin gene 

mutation (Casola et al, 2004), isotype switching (He et al, 2003) and 

downregulating the expression of bcl-6, which signals the exit of memory B 

cells from the GC (Panagopoulos et al, 2004). GC B cells subsequently 

differentiate into memory B cells, forming a long-term reservoir of the virus. 

The precise mechanism by which this occurs is controversial, however, this 

transition does require that the transcription of EBNA2 is switched off, as 

EBNA2 blocks differentiation (Polack et al, 1996). Memory B cells are 

typically in a resting state and are long lived in the periphery. This provides a 

setting whereby EBV can persist in the memory B cell pool throughout the
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lifetime of the host. Viral gene expression in the EBV-positive memory B cell 

may be restricted to EBNA1 (Hochberg et al, 2004), or may be completely 

absent (Babcock et al, 1999).

The shutting down of viral gene expression plays an important role in the 

persistence of EBV in long-lived EBV positive memory B cells, by evading 

the immune recognition by EBV-specific CTLs. In addition, as the growth 

promoting latent genes are not expressed, infected cells are non-pathogenic 

and so can persist in the memory B cell pool in a benign state (Thorley- 

Lawson, 2001). To facilitate virus transmission, a proportion of the infected 

memory B cells enter the viral lytic cycle for the production of progeny virus 

particles. This may be triggered in response to the terminal differentiation of 

memory B cells into antibody plasma cells (Laichalk & Tholey-Lawson,

2005). This provides a mechanism whereby the virus can be amplified for the 

infection of new naive B cells in the oropharynx, to replenish the pool of 

infected cells.

A schematic illustrating a proposed model of EBV infection, persistence and 

transmission in the human host is shown in Figure 1.2.

1.1.3.3 EBV lytic infection.

Infectious viruses are produced during the lytic phase of the EBV viral life 

cycle. During lytic viral replication, approximately 80 viral genes are 

expressed and encode structural proteins, including the viral capsid antigens, 

as well as proteins involved in transcriptional activation and DNA replication 

(Kutok & Wang, 2006). They key mediators of the switch from viral latency to 

lytic cycle are the BZLF1 and BRLF1 proteins encoded by early-immediate 

genes of the viral genome. Both proteins are transcriptional activators that 

potently induce the transcription of the full array of EBV lytic genes that result 

in the generation of new viral infectious particles (Amon & Farrel, 2005). The 

viral genome is then packaged within a capsid to generate transmissible 

virions that can infect new hosts.
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Figure 1.2 Schematic illustrating a proposed model of EBV infection, persistence and transm ission 
in the human host. Adapted from Rickinson & Kieff, 2001
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1.1.4 Clinical features of EBV infection

1.1.4.1 Infectious mononucleosis (IM)

Primary infection with EBV occurring during infancy or childhood is usually 

asymptomatic. In contrast, if primary infection is delayed until adolescence or 

adulthood, it can be accompanied with the development of a self-limiting 

lymphoproliferative disease termed infectious mononucleosis (IM). IM is 

typically characterized by symptoms such as sore throat, fever, 

lymphoadenopathy, headache and fatigue (Cohen, 2005). A key feature of IM 

is the extensive proliferation of EBV-infected B cells, and subsequently EBV- 

specific CTLs working to control the infection in the tonsillar tissue. It is the 

excessive secretion of inflammatory cytokines in response to CTL lysis of 

EBV-infected cells that is believed to cause the symptoms associated with IM 

(Williams & Crawford, 2006).

1.1.4.2 X-linked lymphoproliferative syndrome (XLP)

XLP is a rare genetic disorder which causes extreme sensitivity to EBV 

infection in young males. Males with XLP are unable to control primary 

infection with EBV, resulting in fatal infectious mononucleosis in greater than 

50% of cases (Williams & Crawford, 2006). Infection results in the infiltration 

of the liver and bone marrow with EBV-infected B cells and CTLs along with 

macrophage activation, resulting in severe hepatitis and bone marrow failure 

(Cohen, 2005). Those that survive primary infection by EBV are likely to go 

on to develop hypogammaglobulinemia and/or malignant lymphoma. The 

mutated protein in XLP is the signalling lymphocytic activation molecule -  

associated protein (SAP), which is expressed and activated in T cells and 

natural killer cells. SAP regulates cell signaling in B cells, T cells and 

dendritic cells during immune system responses. Mutations in this protein 

therefore result in the impaired regulation of B and T cell responses during 

acute infection (Williams & Crawford, 2006).
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1.1.4.3 Oral hairy leukoplakia (OHL)

OHL is a nonmalignant disorder that presents in severely 

immunocompromised individuals, and was first identified in AIDS patients 

(Greenspan et al, 1985). OHL is characterized by white corrugated hairy 

lesions of the squamous epithelium of the tongue. EBV may enter the tongue 

epithelium from EBV infected B cells circulating in the blood (Walling et al, 

2004). The disorder is unique in being the only EBV-associated disorder in 

which the virus is actively replicating in the lytic cycle (Kutok & Wang,

2006).

1.1.5 EBV-associated malignancies

EBV was the first virus to be implicated as the causative agent of human 

cancer due to its association with the development of Burkitf s lymphoma 

(BL) (Epstein et al, 1964). In addition to BL, EBV-associated B cell 

lymphomas include Hodgkin’s disease (HD), post-transplant 

lymphoproliferative disease (PTLD), and AIDS-associated lymphomas. EBV 

has also been associated with the development of malignancies of epithelial 

and T cell origins. These include Nasopharyngeal carcinoma (NPC) and T- 

lymphocyte Non-Hodgkins lymphoma (NHL) respectively. The high 

prevalence of EBV in these tumours and the ability of EBV to efficiently 

transform primary human B cells in vitro supports the hypothesis that the virus 

contributes towards the development of these malignancies. However, a role 

for additional co-factors is likely as of the 95% of people infected with the 

virus, only a minority develop virus-associated malignancies. Therefore, 

whether EBV is the causative agent of lymphomagenesis, or whether it is 

secondary to genetic alterations remains controversial.

1.1.5.1 Burkitt’s lymphoma (BL)

According to the World Health Organization (WHO) classification, BL is a 

highly aggressive mature B cell neoplasm of which there are three clinical
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variants. These are endemic, sporadic and immunodeficiency-associated, that 

differ with respect to their geographical and clinical presentation, and 

association with EBV (Kutok & Wang, 2006). The endemic form of BL is the 

type originally described by Denis Burkitt that has high incidence rates in 

children throughout equatorial Africa and New Guinea. The incidence of BL 

in these regions is 50-100 cases per million individuals per year. The most 

compelling evidence for the involvement of EBV in BL pathogenesis is the 

clonal presence of the virus in almost 100% of BL tumours within endemic 

areas (Kutok and Wang, 2006). BL also occurs as a rare, sporadic lymphoma 

outside endemic areas and is mainly seen in young adults and children. In 

contrast to the endemic form of BL, the sporadic form has no specific 

geographical distribution. Incidence rates of the sporadic BL in the United 

States are 2-3 cases per million individuals per year and their association with 

EBV is also much lower, at 15-30% of cases in the United States and Europe. 

BL is also observed as a consequence of Human Immuodeficiency Virus 

(HIV) infection, and frequently occurs prior to the development of AIDS. 

However, only 30-40% of these immunodeficiency-associated BL cases are 

associated with EBV infection (Rickinson & Kieff, 2001).

The defining feature of BL, irrespective of geographical location or 

immunodeficiency-association, are chromosomal translocations involving the 

long arm of chromosome 8 (8q24) in the region of the c-myc proto-oncogene. 

These chromosomal translocations place c-myc under the control of the 

immunoglobulin (Ig) heavy chain (14q32) or less frequently under the control 

of one of the Ig light chain loci (2pll or 22qll) (Bhatia et al, 1992). This 

results in the inappropriate expression and constitutive activation of c-myc, 

which promotes uncontrolled cell proliferation by driving cells through the 

cell cycle and activating anti-apoptotic pathways. In addition, mutations in the 

gene encoding the tumour suppressor p53 (Bhatia et al, 1992) and the putative 

tumour suppressor retinoblastoma-like 2 (RB2) (Cinti et al, 2000) are also 

observed in cases of BL. In the case of p53, this occurs in a third of cases and 

appears to be independent of geographical location (Bhatia et al, 1992). In 

contrast, mutations in the RB2 gene was found in most cases of endemic BL
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and only in a small subset of sporadic cases (Cinti et al, 2000). These genetic 

events may therefore facilitate tumour progression in some cases of BL.

Phenotypic studies have provided evidence that BL cells originate from 

germinal centre B-cells (Gregory et al, 1987, Ling et al, 1989, Onizuka et al,

1995). BL cells express the germinal centre centroblast specific markers 

CD 10, CD77, and bcl-6 and lack the activation markers associated with 

proliferating, non-germinal centre B cells such as CD21 and CD23. This 

theory is further supported by evidence of somatic hypermutation (SHM) of 

immunoglobulin genes in BL cells, a characteristic of germinal centre B cells 

(Chapman et al, 1995. 1996, Harris et al, 2001, Sale and Neuberger, 1998). 

Studies analysing the chromosomal breakpoints of c-myc-immunoglobulin 

translocations have indicated that these translocations occur either as a mistake 

of SHM or class-switch recombination (Goossens et al, 1998, Kuppers & 

Dalla-Favera, 2001), providing yet further evidence that BL cells stem from 

germinal centre B cells.

Southem-blot hybridization of DNA from EBV positive BL biopsies have 

indicated that tumour cells are monoclonal with respect to EBV infection 

(Raab-Traub & Flynn, 1986), suggesting that EBV infection occurs prior to 

tumour development and may therefore play a role in the transformation 

process. However, EBV-positive tumours display a highly restricted latency I 

pattern of EBV gene expression, where only EBNA1 and EBERs are 

expressed (Rowe et al, 1987, Niedobitek, 1995). The role of EBV in the 

pathogenesis of BL is therefore controversial. It has been proposed that EBV 

may have an initiating role in establishing a pool of growth-transformed 

infected cells that are prone to subsequent c-myc translocations (Polack et al,

1996). Alternatively, evidence exists that suggests that EBNA1 and EBERs 

may have a more direct role in promoting tumourigenesis by providing a 

survival advantage. EBNA1 has been shown to be essential for the continued 

survival of EBV-infected BL cells (Kennedy et al, 2003) and moreover, tissue 

specific expression of EBNA 1 in transgenic mice leads to the development of 

B cell lymphomas (Wilson et al, 1996a). In addition, EBERs can induce IL-10 

expression and mediate resistance to IFN-a induced apoptosis in BL cells
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(Kitagawa et al, 2000, Nanbo et al, 2002) which may contribute towards 

tumour growth and the survival of malignant cells. A crucial role for PI3K in 

the survival of BL cells has also been implicated, as the inhibition of PI3K 

leads to the rapid apoptosis of both EBV negative and EBV positive BL cell 

lines (Brennan et al, 2002). In EBV positive BL cells, this effect may be 

mediated via LMP2A, as this protein has been demonstrated to inhibit 

Transforming Growth Factor -  pi (TGF-pi) mediated apoptosis in a PI3K 

dependent manner in an EBV positive BL cell line (Fukuda & Longnecker,

2004). These observations point to a mechanism whereby PI3K activity may 

contribute towards the survival of BL cells.

1.1.5.2 Hodgkin’s disease (HD)

Hodgkin’s disease is characterized by atypical, large, tumour cells referred to 

as Hodgkin and Reed-Stemberg (HRS) cells. HRS cells typically represent 

less that 1% of the cells in the tumour tissue, with the remaining tumour mass 

being composed of non-malignant reactive inflammatory cells including T- 

lymphocytes, B-lymphocytes, eosinophils, granulocytes and plasma cells 

(Harris et al, 1994, Drexler et al, 1992). Based on differences in the histology 

and the reactive background, HD is distinguished into two major categories. 

These are nodular lymphocyte predominant HD (NLPHD), accounting for 5% 

of cases and classic HD (CHD), which account for 95% of cases (Harris et al, 

1999). In general NLPHD follows an indolent course, in contrast to CHD, 

which is fatal without therapy.

The incidence of HD occurs at 2-3 cases per 100,000 individuals annually and 

has a worldwide distribution. CHD is more common in males and 

demonstrates a bimodial age distribution (<10 and >50 years of age). The 

association of HD with EBV varies according to pathological subtype and 

geographical location. Approximately 40% of cases of CHD are associated 

with EBV, in contrast to the NLPHD subtype where less than 10% of cases are 

EBV-associated. In western countries up to 50% of HD cases carry the virus, 

compared with near 100% of cases in other populations in underdeveloped 

countries (IARC, 1997).
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In EBV-associated HD, the viral genomes are found in monoclonal form, 

suggesting that EBV infection of the tumour cell has occurred prior to clonal 

expansion, and thus EBV may have a role in the carcinogenic process 

(Anagnostopoulos et al, 1989). The viral genome is present in every HRS cell 

and generally expresses a latency II pattern of viral genes (EBERs, EBNA1, 

LMP1 and LMP2A) in EBV positive tumours (Herbst et al, 1991, Deacon et 

al, 1993, Grasser et al, 1994, Niedobitek et al, 1997). LMP1 is expressed at a 

high level in HRS cells (Pallesen et al, 1991, Murray et al, 1992) and may 

therefore contribute towards the pathogenesis of EBV-positive tumours. HRS 

cells show many characteristics of LMP1-induced phenotypic changes 

including the strong activation of NFkB (Bargou et al, 1996, 1997). The 

PI3K/PKB pathway has also been demonstrated to be constitutively activated 

in HRS cell lines and in most primary HRS cells, and contributes towards their 

survival (Morrison et al, 2004, Dutton et al, 2005, Nagel et al, 2005, 

Georgakis et al, 2006). Nagel et al demonstrated that constitutive PI3K 

activation in HRS cell lines may enhance the expression of the pro- 

inflammatory cytokine, IL-6 (Nagel et al, 2005). IL-6 plays and important role 

in the growth of EBV infected cells (Tosato et al, 1990, Scala et al, 1990) and 

is therefore believed to have a pathological role in HD as well as other EBV 

associated tumours. Recently, a role for LMP2A in the constitutive activation 

of PI3K in B cells has been demonstrated (Swart et al, 2000), highlighting 

another potential mechanism whereby EBV may contribute towards the 

survival of infected B cells.

Because of the co-expression of several cell lineages, the cellular origin of 

HRS cells has long been unclear. However, the detection of Ig rearrangements 

and somatically mutated Ig genes in isolated HRS cells has provided strong 

evidence that these cells are B cells derived from the germinal centre (Kuppers 

et al, 1994, Kanzler et al, 1996, Braeuninger et al, 1997, Foss et al, 1999, 

Maratofi et al, 2000). It is now widely thought that HRS cells are derived from 

pre-apoptotic, germinal centre B cells that have acquired ‘crippling’ mutations 

in their Ig genes (Kanzler et al, 1996, Kuppers, 2002). Such B cells are usually 

efficiently eliminated by apoptosis. However, HRS cells are rescued from
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apoptosis by a transforming event. A study by Bechel et al demonstrated that 

EBV can rescue BCR-deficient germinal centre B cells from apoptosis, further 

implicating a role for EBV in the pathogenesis of HD. Furthermore, LMP2A, 

which can mimic the BCR, can induce the survival of BCR-deficient immature 

B cells in transgenic mice (Cladwell et al, 1998, Casola et al, 2004). The 

constitutive activation of NFkB in HRS cells has also been shown to prevent 

HD tumour cells from undergoing apoptosis (Bargou et al, 1997). Thus, in 

EBV positive HRS cells, LMP1 and LMP2A expression may therefore 

substitute B cell survival signals, allowing the survival of mutated germinal 

centre B-cells and tumour progression.

1.1.5.3 Post-transplant lymphoproliferative disease (PTLD)

The T-cell immunosuppressive therapy given to patients after transplantation 

is associated with a greatly increased risk of developing lymphoproliferative 

disease. These post-transplantation lymphoproliferative diseases (PTLDs) are 

of B cell origin and can be of clonal or polyclonal morphology (Loren & Tsai,

2005). The detection of somatic hypermutation activity (Brauninger et al, 

2003, Timms et al, 2003, Capello et al, 2003) and the expression of the 

centroblast marker CD77 (Randhawa et al, 1994, Arbus et al, 2000) in PTLD 

B cells provides strong evidence that these cells are derived from the germinal 

centre.

Nearly all PTLDs are associated with EBV (Knowles, 1998). PTLD is thought 

to arise as the immunosuppressive regime impairs the function of EBV 

specific CTLs, which usually work to control the proliferation of EBV 

infected B cells (Rickinson & Moss, 1997, Khanna et al, 1999). Thus, in the 

immunocompromised host, the normal control over excessive proliferation of 

infected cells is lost and leads to the onset of PTLD (Haque et al, 2002). This 

model is supported by the observation that in many cases of PTLD, the 

relaxation of immunosupression can lead to the elimination of EBV positive 

cells and tumour regression (Starzl et al 1984, Tsai et al, 2001).
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The majority of EBV positive B cells in PTLD express a latency III pattern of 

viral gene expression, where the full complement of latent genes are expressed 

(EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNA-LP, LMP1, LMP2, 

EBERs and BamHI A rightward transcripts. This situation is modeled in vitro 

by LCLs, which can be established by infecting primary human B cells with 

EBV (Rowe et al, 1998). PI3K has been shown to be essential for the 

proliferation of LCLs (Brennan et al, 2002). Inhibition of PI3K in these cells 

induces growth arrest due to a decrease in the expression of two Gi cyclins 

required for cell cycle progression, cyclin D2 and cyclin D3, and an increase 

in the expression of the cell cycle inhibitor, p27kipl. This implicates a 

mechanism whereby PI3K may influence the proliferation of EBV infected B 

cells in PTLD.

1,1.5.4 Nasopharyngeal carcinoma (NPC)

Nasopharyngeal carcinoma (NPC) is an epithelial tumour of the nasopharynx. 

According to the WHO classification of NPC, there are three histopathological 

subtypes; keritinising squamous cell carcinoma, differentiated non-keritinising 

carcinoma and undifferentiated carcinoma. NPC is a rare malignancy in most 

parts of the world, with incidence rates under 1 per 100,000 individuals per 

year. However, NPC is frequently observed in China, particularly within 

southern regions, with incidence rates at 20-30 cases per 100,000 individuals 

per year. Other populations with elevated rates include the natives of the 

Arctic, Southeast Asia and North African regions (Yu & Yuan, 2002). The 

increased risk of developing NPC in these regions is associated with cultural, 

dietary and genetic pre-dispositions (Niedobitek, 2000). The undifferentiated 

carcinoma form of NPC shows consistent association with EBV, regardless of 

geographical location, and the virus is present in all tumour cells (Niedobitek 

et al, 1996, Niedobitek, 2000). EBV association with the more differentiated 

forms of NPC (keritinising squamous cell carcinoma and differentiated non- 

keritinising carcinoma) have been shown, especially in geographical regions 

with high incidence of undifferentiated NPC (Pathmanathan et al, 1995b).
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Southem-blot hybridization of DNA from NPC tissues has demonstrated that 

these tumours are monoclonal with respect to resident EBV genomes (Raab- 

Traub & Flynn, 1986, Pathmanathan et al, 1995a). This suggests that EBV 

infection occurs prior to the clonal expansion of malignant cells. EBV latent- 

gene expression in NPC is predominantly restricted to the latency II pattern of 

viral gene expression (EBNA1, LMP1, LMP2A and EBERs), similar to that 

observed in HD (Niedobiteck, 2000). EBNA1 and EBERs are expressed in all 

EBV positive cases of NPC, whilst LMP1 and LMP2A protein expression can 

only be detected in around 35% and 50% of cases respectively (Heussinger et 

al, 2004, Niedobitek et al, 1992, Young et al, 1988, Gulley et al, 1995). 

However, LMP1 can be detected in all pre-invasive lesions, suggesting that 

LMP1 may have an initiating role in the carcinogenic process, but is not be 

essential in established cancers (Pathmanathan et al, 1995a). Downstream 

components of the PI3K/PKB pathway have been shown to be constitutively 

activated in specimens from NPC tumours (Morrison et al, 2004), indicating a 

potential role for this pathway in the development and pathogenesis of this 

malignancy. Furthermore, LMP1 and LMP2A have been demonstrated to 

induce constitutive PI3K activation in epithelial cells (Scholle et al, 2000, 

Morrison et al, 2003, Dawson et al, 2005). LMP2A has also been 

demonstrated to activate mTOR, a downstream component of the PI3K 

pathway in NPC cell lines (Moody et al, 2005). Thus, these studies suggest a 

mechanism whereby EBV may induce constitutive PI3K activity in the subset 

of EBV positive NPC tumours expressing these viral proteins.

In summary, the consistent detection of EBV in several human malignancies 

points to a role for this virus in the pathogenesis of these tumours. As a result 

the WHO have classified EBV as a class I carcinogen. Constitutive activation 

of the PI3K pathway seems to be a feature in HD and NPC, and is a major 

contributor towards the survival of BL cells, and the proliferation of LCLs. 

These observations therefore suggest an important role for PI3K in the 

pathogenesis and development of several EBV-associated tumours.
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1.2 Phosphotidylinositol-3-Kinase (PI3K)

1.2.1 Catalytic activity of PI3K

Phosphatidylinositol-3-kinases (PI3Ks) are an evolutionary conserved family 

of intracellular lipid kinases that catalyze the phosphorylation of inositol lipids 

at the D3 position of the inositol ring to generate the 3-phosphoinosities 

(Whitman et al, 1988). PI3K family members have been identified in species 

ranging from yeast to humans and have been found to be present in every 

eukaryotic organism examined to date (Engelman et al, 2006). The inositol 

ring can be phosphorylated on any of the free hydroxyl carbons resulting in the 

generation of phosphatidylinositol-3-phosphate (PI(3)P), phosphatidylinsoitol- 

3,4-phosphate (PI(3,4)P2) and phosphatidylinositol-3,4,5-phosphate

(PI(3,4,5)P3) molecules located in the inner leaflet of the plasma membrane. 

PI(3,4)P2 and PI(3,4,5)P3 are often referred to as second messenger molecules, 

acting as molecular scaffolds for the recruitment of specialised protein-lipid 

binding domains. The structure and the metabolism of phosphoinositides by 

PI3K are illustrated in Figure 1.3.

The most studied protein-lipid binding domains that mediate signalling 

downstream of PI(3,4,5)P3 formation are pleckstrin-homology (PH) domains. 

PH domains are composed of a sequence of 100-120 amino acids that form a 

structurally conserved module that bind inositol lipid head groups 

phosphorylated at the D3 position (Lemmon & Ferguson, 2000). This domain 

is found in more than 500 proteins of diverse cellular functions including 

protein kinases, guanine nucleotide exchange factors, GTPase activating 

proteins, lipid transport proteins and phospholipases (Balia, 2005). However a 

smaller subset of PH domains are specific for the D3 lipids and preferentially 

bind to PI(3,4)P2 and P(3,4,5)P3. Among these are the most important 

mediators of signalling downstream of PI3K in lymphocytes, the protein 

kinase B (PKB)/AKT family.
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Figure 1.3 Regulation of the phosphorylation of phosphoinositide lipids by PI3K, PTEN 
and SHIP.

Adapted from Vivanco & Sawyers, 2002.

Phosphoinositol lipids are composed of a membrane associated fatty acid groups (red) and a 
glycerol moiety (green) that this linked to a cytosolic phosphorylated inositol head group 
(black). PI3K catalyses the phosphorylation of PI(4,5)P2 at the D3 position of the insoitol ring 
to form PI(3,4,5)P3. P(3,4,5)P3 molecules that can subsequently act as second messengers 
via the recruitment of pleckstin homology (PH) domain containing proteins. 
Dephosphorylation of PI(3,4,5)P3 to regenerate PI(4,5)P2 is accomplished by the 3- 
phosphatase, PTEN. PI(3,4,5)P3 can also be dephosphorylated at the D5 position by the 5- 
phosphatase, SHIP, to generate PI(3,4)P2.
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1.2.2 Classes ofPI3K

The PI3Ks are divided into four classes, class I a ,  Ib> II and III and are 

classified according to their structure, mechanism of activation and substrate 

specificities (Koyasu, 2003). The Class U PI3Ks are activated by tyrosine- 

kinase-associated receptors and are heterodimeric in structure containing one 

catalytic subunit (pi 10a, pi 10(3 or pi 108) and one regulatory subunit (p85a, 

p85p, p55a, p55y or p50a). All catalytic subunits can form a heterodimer with 

all regulatory subunits. A schematic representation of the structure of class 1a 

PI3K heterodimers is illustrated in Figure 1.4. The only member of class Ib, 

PI3Ky, is composed of a 11 Oy catalytic subunit which associates with one of 

two adaptor subunits, p i01 or p84. PI3Ky is activated by G-protein coupled 

receptors. All class I enzymes can also be activated by Ras (Bader et al, 2005), 

a small monomeric GTP binding protein involved in signal transduction 

pathways that mediate cell proliferation and suppression of apoptosis (Bianco,

2006). The lipid substrates of class I PI3Ks are PI, PI(4)P and PI(4,5)P2, 

although the primary substrate in vivo is PI(4,5)P2 (Vivanco & Sawyers,

2002). Three isoforms of class II PI3K have been identified in mammals, 

PI3K-C2a and P are ubiquitously expressed, whilst PI3K-C2y is liver specific. 

Class II enzymes are currently believed to be monomeric as a regulatory 

subunit has not been identified. Consequently little is known about the 

molecular mechanisms underlying their activation. However, the substrates of 

class II PI3Ks have been identified to be PI and PI(4)P. Class III PI3Ks are 

heterodimeric comprising analogues of the yeast Vps34p PI3K subunit and a 

p i50 adaptor subunit. Class III catalyse the formation of PI(3)P only 

(Hennessy et al, 2005).

1.2.3 Activation of Class Ia PI3K

Although multiple forms of PI3K exist, the class Ia PI3Ks are primarily 

responsible for the formation of D3 phosphoinosities at the plasma membrane 

in response to tyrosine kinase activation (Cantley, 2002). This activation 

occurs in response to a wide range of extra-cellular signals including growth 

factors, chemokines, cytokines, the ligation of B cell and T cell receptors and
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co-stimulatory molecules (Koyasu, 2003, Ruggero & Sonenberg, 2005). 

Ligand binding to a receptor tyrosine kinase (RTK) at the cell surface induces 

the activation and dimerisation of the receptor. This causes the 

autophosphorylayion of the RTK at tyrosine residues which in turn serve as 

high affinity docking sites for Src homology 2 (SH2) domain containing 

molecules (Cully et al, 2006). The current and widely accepted view is that in 

resting cells, heterodimeric PI3K molecules reside in the cytoplasm where 

they lack catalytic activity. However, upon stimulation, the docking sites 

created by RTK phosphotyrosine molecules recruit PI3K molecules to the 

plasma membrane via a physical interaction that occurs between the 

phosphotyrosine molecules and two SH2 domains and an inter-SH2 domain 

located within the p85 regulatory subunit of PI3K (Vivanco & Sawyers, 2002). 

The specificity of interaction occurs in the context of a YXXM consensus 

sequence (X denotes any amino acid) surrounding the phosphotyrosine residue 

(Songyang et al, 1993). Two mechanisms have been proposed that lead to the 

increase in PI3K activity following binding of p85 to phosphorylated RTK 

molecules. Firstly, PI3K molecules are now located within close proximity to 

their lipid substrates at the plasma membrane. Secondly, this interaction is 

believed to induce a conformational change in the PI3K heterodimer that 

relieves the trans-mhibitory effect of p85 on pi 10, thereby releasing pi 10 

catalytic activity (Schlessinger, 2000).

Two other pathways of PI3K activation occur that are dependent on an 

interaction between growth factor receptor-bound protein 2 (GRB2) adaptor 

proteins and RTK phosphotyrosine molecules. This interaction occurs in the 

context of a YXN motif surrounding the phosphotyrosine residue (Pawson, 

2004). GRB2 molecules interact with GRB2 associated binding protein 

(GAB), a scaffolding protein that can bind p85 molecules leading to the 

activation of pi 10 catalytic subunits (Ong et al, 2001). The interaction 

between GAB and p85 can occur either directly, or indirectly via an 

interaction with Ras. Activation of pi 10 through Ras is believed to occur 

independently of p85 (Cully et al, 2006).
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Figure 1.4 Schem atic representation of the domain structure of class lA PI3K 
heterodimers.

Adapted from Engelman et al, 2006.

a) All class lA regulatory subunits have a common core structure consisting of two tandem 
src homology 2 (SH2) domains that allow binding to phosphotyrosine containing 
sequences and recruitment to receptor signalling complexes. Between the SH2 domains is 
an inter-SH2 sequence that is responsible for binding of the p110 catalytic subunit. The 
p85 isoforms (a and p) also contain an extended N-terminal region (outined by a dashed 
line) that contains a src homology 3 (SH3) domain that binds poly-proline rich motifs, and 
two such polyproline-rich motifs (P) that flank a region that has homology with the 
breakpoint cluster region of BCR-Abl (BH).

b) The N-terminus of the p110 catalytic subunit contains a motif that binds to p85 which 
lies adjacent to a sequence that binds the small GTPase, Ras. Within p110 also lies a 
phospholipid binding C2 domain, a phosphotidylinositol kinase homology (PIK) domain and 
the catalytic (kinase) domain at the C-terminus.
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1.2.4 Negative regulation of PI(3,4,5)P3 formation

PI3K catalytic activity is tightly regulated in normal cells by various 

mechanisms. Subcellular localisation has an important role in the regulation of 

PI3K activity. Only PI3K molecules situated at the plasma membrane within 

close proximity to their lipid substrates are actively involved in the generation 

of PI(3,4,5)P3. PI(3,4,5)P3 generated at the plasma membrane acts as potent 

second messenger for the activation of PH domain containing proteins that 

mediate downstream signalling through PI3K. The PI(3,4,5)P3 molecules are 

therefore major targets for attenuation of signalling through PI3K. This is 

achieved through the activities of two lipid phosphatases; phosphatase and 

tensin homologue deleted on chromosome ten (PTEN) and the 57/2-containing 

inositol-5’-phosphatase (SHIP) protein. The regulation of PI(3,4,5)P3 

phosphorylation by PTEN and SHIP is illustrated in Figure 1.3.

PTEN is a 54 kDa protein that contains an N-terminal phosphatase domain 

with specificity towards PI(3,4,5)P3 and also phosphotyrosine molecules to a 

lesser extent. PTEN molecules are ubiquitously expressed and are located in 

the cytosol and the nucleus. Localisation at the membrane occurs due to an 

interaction between C2 domains located at the C-terminus of the protein and 

phospholipid components of the membrane (Sly et al, 2003, Stiles et al, 2004). 

The main lipid substrate of PTEN is PI(3,4,5)P3 and catalyzes its conversion 

into PI(4,5)P2 through dephosphorylation at the D3 inositol position 

(Maehama & Dixon, 1998). PTEN is stabilized at the membrane by elevated 

PI(3,4,5)P3 due to phosphorylation events at its C-terminal domain mediated 

by protein kinase C (PKC) or protein kinase CK2 (Torres & Pulido, 2001, 

Torres et al 2003).

PI3K activity is also negatively regulated by SHIP. SHIP is a 145kDa protein 

that is restricted in expression to heamatoipoietic cells. SHIP possesses a 

central phosphoinositol phosphatase domain that selectively catalyses the 

hydrolysis of the D5 phosphate of PI(3,4,5)P3 resulting in the formation of 

PI(3,4)P2 (Sly et al, 2003). SHIP molecules have been shown to translocate to 

the membrane in response to cellular stimulation (Phee et al, 2001) and is
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likely to occur at sites of PI(3,4,5)P3 production. PTEN and SHIP removal of a 

phosphate from PI(3,4,5)P3 inhibits the PI3K pathway by preventing the 

localisation of proteins containing pleckstrin homology domains at the cell 

membrane.

1.2.5 Signalling networks downstream of PI3K -  PKB/Akt

Several families of PH domain containing proteins mediate events downstream 

of PI3K activation. The most important and widely studied of which is the 

PKB/AKT family. This family has an important role in the coordination of 

cellular events downstream of PI3K including cell survival, cell proliferation, 

protein synthesis and cell cycle entry with the overall effect of increasing the 

survival potential of the cell.

PKB/Akt belongs to a subfamily of protein kinases termed the AGC (cAMP- 

dependent protein kinase Al protein kinase G/protein kinase C) protein kinases 

that also includes protein kinase A (PKA) and protein kinase C (PKC). In fact, 

PKB/Akt was first identified as a novel protein kinase with high homology to 

PKA and PKC and was therefore referred to as PKB (Jones et al, 1991). Other 

studies also identified PKB/Akt to be the cellular homologue (c-Akt) of the 

retroviral oncoprotein (v-Akt), and was therefore also named Akt (Staal et al, 

1977, Bellacosa et al, 1991). There are three mammalian isoforms of PKB/Akt 

encoded by separate genes, Aktl, Akt2 and Akt3. The gene products (PKBa 

PKBP and PKBy) are conserved proteins of 57kDa that have a broad tissue 

distribution (Cooray, 2004). All isoforms are composed of three domains, an 

N-terminal PH domain, a central catalytic domain and a C-terminal 

hydrophobic regulatory domain. The domain structures of the three human 

PKB isoforms are illustrated in Figure 1.5.

1.2.5.1 Activation o f PKB/Akt

Activation of PKB/Akt occurs rapidly after cell stimulation. Stimulation of 

RTKs results in the recruitment of PKB to the plasma membrane within 

minutes after ligand binding via a PH domain as described in section 1.2.1.
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Figure 1.5 The domain structure of the human PKB isofroms.

Adapted from Osaki et al, 2004.

Each PKB isoform (a,(3 and y) consist of three functional domains: The N-terminal pleckstrin 
homology (PH) domain that mediates binding to inositol phospholipids phosphorylated at the 
D3 position (see figure 1.3), a central kinase domain, and a C-terminal regulatory domain. 
Activation of all PKB isoforms require phosphorylation at two critical resides. The equivalent 
sites of phosphorylation on threonine (Thr) and serine (Ser) are indicated.
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Mutations within the PH domain of PKB block the activation of PKB catalytic 

activity (Franke et al, 1995, Klippel et al, 1997). Once at the plasma 

membrane, PKB undergoes a conformational change that exposes two amino 

acids that become phosphorylated. In PKBa, these residues are threonine 308 

located within the catalytic domain and serine 473 located within the 

hydrophobic region. The kinase responsible for phosphorylation at the 

threonine 308 site has been identified as another PH domain containing 

protein, phosphoinositide dependent kinase 1 (PDK1). Phosphorylation at 

serine 473 is carried out by an as yet uncharacterized kinase, which is often 

referred to as (PDK2). Putative candidates include the mTOR rictor complex, 

integrin-linked kinase (ILK), PKC(3II, MAPKAP kinase 2 and PBK itself. 

Both phosphorylation events are required for full activation of PKB. 

(Hennessy et al, 2005). Following its activation, PKB is released from the 

membrane and phosphorylates various substrates at serine or threonine 

residues within RxRxxS/T consensus motifs, where x is any amino acid (Kane 

et al, 2002). These substrates reside at various subcellular compartments 

including the cytoplasm, nucleus and mitochondrial membrane and usually 

become inhibited by the phosphorylation event. PKB target proteins have 

diverse cellular functions that are involved in the regulation of cell survival, 

cell proliferation, cell growth, protein synthesis and progression through the 

cell cycle. A schematic of signalling downstream of PI3K/PKB activation is 

illustrated in Figure 1.6.

1.2.5.2 Regulation o f cell survival by PKB.

The role of PKB in the mediation of cell survival pathways downstream of 

PI3K was established by several studies demonstrating the protective effect of 

PKB against apoptosis in epithelial, neuronal and myeloid progenitor cells 

(Khwaja et al 1997, Kauffman-Zeh et al, 1997, Dudek et al, 1997, Songyang 

et al, 1997). Subsequently studies into the molecular mechanisms by which 

PKB carries out this effect have led to the identification of several PKB targets 

involved in apoptosis.
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One of the first substrates of PKB to be identified was the bcl-2 family 

member Bad. Bad promotes apoptosis by forming a heterodimer with the 

survival factor B c1-Xl on the mitochondrial membrane inducing the release of 

cytochrome c. The phosphorylation of Bad by PKB prevents this interaction, 

allowing suppression of apoptosis by B c1-Xl (Datta et al, 1997). The catalytic 

activity of another component of the apoptosis machinery, the pro-death 

caspase-9 has been shown to be inhibited by phosphorylation by PKB 

(Cardone et al, 1998). In addition, PKB has been shown to phosphorylate and 

activate MDM2 (murine double minute-2), a protein which regulates the 

activity of the pro-apoptotic tumour suppressor protein p53 (Mayo & Donner, 

2001). MDM2 negatively regulates p53 by its targeting for degradation via the 

ubiquitin ligase proteasome pathway (Zhou et al, 2001a). Thus PKB promotes 

the destabilization of P53, thereby increasing the survival potential of the cell.

PKB also controls cell survival indirectly through the regulation of 

transcription. Phosphorylation of the forkhead box O (FOXO) family of 

transcription factors (FOXOl, F0X03 and F0X 04) by PKB prevents their 

nuclear localization, where they direct the transcription of genes encoding 

several pro-apoptotic proteins including the ligand for the death receptor Fas - 

Fas-ligand (Fas-L), and the pro-apoptotic BH3 only protein, bim (Downward, 

2004). The activities and the regulation of FOXO transcription factors by PKB 

are discussed in more detail in section 1.3. The IkappaB kinase a (IKKa) 

protein has also been identified to be a substrate for PKB (Ozes et al, 1999, 

Romashkova et al, 1999). IKK is activated in response to phosphorylation by 

PKB, resulting in the phosphorylation and subsequent degradation of its 

substrate IkappaB (IkB) through the proteasomal pathway (Kane et al, 1999). 

IkB in its unphosphorylated form negatively regulates the activity of the 

nuclear factor-kappa-B (NFkB) transcription factor by anchoring the p50 

subunit of NFkB to the cytoplasm. The degradation of IkB in response to PKB 

activation therefore leads to the release of the p50 subunit of NFkB. Once 

released from IkB, p50 NFkB can travel into the nucleus and form a functional 

transcriptional unit with its dimerization partner, p65 (also known as REL-A) 

(Li & Verma, 2002). This leads to the activation of NFkB, which directs the 

transcription of several antipoptotic genes including the bcl-2 family member,
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BcI-Xl, and the caspase inhibitors of apoptosis, c-IAPl and C-IAP2 (Barkett et 

al, 1999, Caamano & Hunter, 2002).

The activity of the cAMP responsive element binding protein (CREB) 

transcription factor is also partly mediated by PKB phosphorylation. CREB 

mediates cyclic AMP (cAMP), growth factor and calcium dependent gene 

expression through binding to consensus cAMP responsive elements (CREs). 

CREB transcriptional activity is activated through phosphorylation of the 

critical ser 133 residue. This has been shown to occur in response to several 

protein kinases including protein kinase A (PKA), mitogen activated protein
9+kinases (MAPKs), Ca /calmodulin dependent protein kinases (CaMKs), and 

also PKB (Johannessen et al, 2004). This phosphorylation event has been 

shown to regulate the expression of several immediate early growth response 

genes such as c-fos and junb (Dey et al, 1991, Amato et al, 1996). Ser 133 

phosphorylated CREB also binds to the promoters of anti-apoptotic genes such 

as Bcl-2 and Mcl-1 to regulate their expression (Wilson et al, 1996b, Wang et 

al, 1999, Joo et al, 2004)

1.2.5.3 Regulation o f cell growth and proliferation by PKB.

Activated PKB modulates the function of numerous substrates related to the 

regulation of cell growth and proliferation. One mechanism by which PKB 

stimulates cell growth is by enhancing the activity of the mammalian target of 

rapamycin (mTOR) protein. mTOR is a serine/threonine kinase that acts as a 

molecular sensor and regulates protein synthesis according to nutrient 

availability (Bjornsti & Houghton, 2004). The kinase activity of mTOR is 

negatively regulated by a heterodimer consisting of hamartin and tuberin, 

encoded by the tuberous sclerosis complex-1 (TSC1) and TSC2 tumour 

suppressor genes. PKB activation has been shown to induce the 

phosphorylation of tuberin (TSC2), which induces its dissociation from its 

binding partner, hamartin (TSC1), and promotes their degradation (Dan et al, 

2002, Manning et al, 2002). This subsequently releases the kinase activity of 

mTOR, leading to the phosphorylation and subsequent activation of its 

substrates. The major targets of mTOR are the ribosomal protein S6 kinase
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(p70S6K) and 4E-binding protein (4E-BP) which regulate components of the 

translational apparatus (Richardson et al, 2004). Thus stimulation via the 

PI3K/PKB pathway in the presence of sufficient nutrients stimulates the 

translation of proteins which are required for cell cycle progression from Gi to 

S phase.

The first physiological substrate of PKB to be identified was glycogen- 

synthase kinase 3 (GSK-3) (Cross et al, 1995). PKB activation results in the 

phosphorylation and subsequent inhibition of GSK-3 activity. GSK-3 in its 

active form phosphorylates several proteins regulating cell cycle progression 

and proliferation to maintain them in an inactive state or to target them for 

degradation. Examples include the cytosolic signalling protein p-catenin and 

c-myc (Cantley, 2002). Prevention of P-catenin degradation by GSK-3 

inactivation has been shown to induce its nuclear translocation, where it 

induces the expression of cyclin D l, mediating progression through the cell 

cycle (Diehl et al, 1998). Another mechanism whereby PKB can direct 

progression through the cycle is by phosphorylating and hence inactivating 

two cell cycle inhibitors, p21cipland p27k,pl. PKB mediated phosphorylation of 

both p21c,pl and p27kipl induces their nuclear exclusion and subsequent 

cytosolic sequestration or proteasomal degradation (Zhou et al, 2001b, Liang 

et al, 2002, Shin et al 2002). This results in progression through the cell cycle 

and increased cellular proliferation due to the increased availability of active 

cyclin molecules.

1.2.6 PI3K in lymphocytes

In cells of the immune system, PI3K is activated by the binding of a ligand to 

antigen receptors, antibody receptors, cytokine receptors, and co-stimulatory 

molecules (Fruman & Cantley, 2002). In B-cells and T-cells, PI3K is activated 

within seconds of receptor ligation (Ward et al, 1993, Gold et al, 1994, Astoul 

et al, 1999, Costello et al, 2002). Activation through the BCR or TCR and co

stimulatory receptors such as CD 19 on B cells and CD28 on T cells mediates 

the activation of class Ia PI3K (Okkenhaug et al, 2001, Wang et al, 2002).
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Gene knockout studies in mice have provided information on the importance 

of specific isoforms of PI3K in the maintenance of a normal immune response. 

Investigations into the loss of the PI3K class U regulatory subunit 

demonstrated that mice lacking p85a, but retaining the expression of p50a and 

p55a were viable but had defects in B cell development and proliferative 

responses and were susceptible to infection (Fruman et al, 1999, Suzuki et al, 

1999). T cell development and proliferation were unaffected in these mice 

(Fruman et al, 1999). A subsequent study has demonstrated enhanced T cell 

proliferation in mice lacking p85a (Deane et al, 2004), implying that PI3Ks 

have both positive and negative roles in leuokocytes. Mice lacking all three 

regulatory subunits died shortly after birth, suggesting that p50a and p55a 

expression are critical in vivo. Bi et al investigated the loss of isoforms of the 

pi 10 catalytic subunit of class Ia PI3K, and demonstrated that the loss of the 

pi 10a and pi 10p isoforms in mice is embronically lethal (Bi et al, 1999, Bi et 

al, 2002). The expression of the pi 108 isoform is restricted to leukocytes and 

has therefore been proposed to play an important role in PI3K mediated 

signaling in the immune system (Chantry et al, 1997). Two independent 

investigations into the function of the pi 108 by the generation of pi 108 

knockout mice demonstrated that this isoform is crucial in regulating B cell 

function (Clayton et al, 2002, Jou et al, 2002). In both studies mice lacking 

pi 108 were viable but displayed reduced B cell numbers, reduced antibody 

responses, impaired B cell proliferation and defective PKB phosphorylation. 

Furthermore, mice expressing a catalytically inactive form of pi 108 due to a 

point mutation (pllOD910A) display impaired B-cell and T-cell function and 

developed a mild form of inflammatory bowel disease (Okkenhaug et al, 

2002). B cells and T cells purified from pllO D910A mutant displayed reduced 

proliferation in response to IgM and anti-CD3 stimulation respectively 

(Okkenhaug et al, 2002).
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Figure 1.6 Signalling downstream  of PI3K/PKB activation

Activation of class lA phosphotidylinositol-3-kinases (PI3Ks) (p85-p110) occurs through stimulation 
of receptor tyrosine kinases (RTKs) and the concurrent assembly of receptor-PI3K complexes at 
the plasma membrane. When localized at the membrane, the p110 catalytic subunit of PI3K 
catalyses the conversion of PI(4,5)P2 (PIP2) to PI(3,4,5)P3 (PIP3). PIP3 molecules serve as second 
messengers by recruiting and activating pleckstrin homology (PH) domain containing proteins 
(PKB, PDK1). PKB becomes fully activated once phosphorylated at two sites (Thr308 and Ser473 
for PKBa) by PDK1 and PDK2. Activated PKB mediates the activation and inhibition of several 
target proteins involved in pathways that lead to protein synthesis, apoptosis and cellular growth, 
survival and proliferation. The formation of PIP3 molecules at the plasma membrane is tightly 
regulated by two phosphatases (PTEN) that catalyses the conversion of PIP3 to PIP2, negatively 
regulating the activation of PI3K/PKB and downstream pathways.
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1.2.7 PI3K and cancer

Genetic aberrations in several components of the PI3K pathway have been 

detected in a wide range of human cancers. These include, p85, pi 10a, PTEN 

and PKB. Viral modulation of the PI3K/PKB pathway is also an important 

mechanism by which viral transformation is achieved, and is often a precursor 

to tumorigenesis. The frequency of alterations in components of the 

PI3K/PKB pathway in human cancers is summarized in Table 1.2.

1.2.7.1 PI3K

The PIK3CA gene that encodes the pi 10a catalytic subunit of PI3K is one of 

the most frequently mutated genes identified in human cancers (Samuels & 

Ericson, 2006). Somatic mutations and amplifications of PIK3CA have been 

detected in a wide range of human cancers including colorectal, gastric, 

cervical, ovarian and breast cancers (see Table 1.2 for details). The majority of 

the mutations detected to date are heterozygous missense alterations and affect 

highly conserved residues (Samuels & Ericson, 2006). Mutational hotspots in 

PIK3CA have been mapped to the helical and kinase domains of pi 10a 

suggesting an increase in PI3K activity (Samuels et al, 2005, Bader et al, 

2005). This is in accordance with studies reporting increased of enzymatic 

function of PIK3CA mutants in vitro and in vivo, as demonstrated by the 

increased phosphorylation of PKB (Kang et al, 2005, Samuels et al, 2005, 

Ikenoue et al, 2005). Furthermore, PIK3CA mutants have been shown to be 

oncogenic both in vitro and in vivo (Kang et al, 2005, Bader et al, 2006).

The p85 regulatory subunit of PI3K is also targeted for mutation in human 

cancer. A truncated form of p85 -  p65 PI3K was originally isolated from 

transformed thymic cell lines and was shown to induce constitutive activation 

of PI3K contributing towards transformation (Jimenez et al, 1998). Mutations 

in the p85a domain are relatively rare but have been associated with the some 

cases of ovarian and colon cancer (Philp et al, 2001). A truncated form of p85 

resulting from a frame-shift mutation has also been detected in a human 

lymphoma cell line derived from a patient with Hodgkins lymphoma (Jucker
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et al, 2002). These alterations are believed to release the regulatory activity of 

p85, thereby promoting transformation by allowing increased survival 

signalling through pi 10 PI3K (Vivanco & Sawyers, 2002).

1.2.7.2 PTEN

Inactivation of the PTEN lipid phosphatase is the most common mechanism of 

activation of the PI3K pathway in human cancers. In fact, PTEN is the most 

commonly mutated tumour suppressor in humans after p53, demonstrating the 

importance of regulation of the PI3K/PKB pathway. Loss of PTEN 

hetreozygosity is detected in a significant proportion of several human cancers 

including glioblastoma, melanoma, prostate cancers, and some cases of B-cell 

chronic lymphocytic leukaemia (B-CLL) (see Table 1.2 for details). In 

addition, germline PTEN mutations have been detected in over 80% of 

individuals with Cowdens disease (Altomare & Testa, 2005), a familial 

disease which is associated with a high risk to develop breast, thyroid and 

endometrial cancers (Eng, 2003). Biallelic inactivation of PTEN is rarely 

detected in human tumours, indicating that PTEN haploinsufficiency is 

sufficient to promote tumour formation (Engelman et al, 2006). This model is 

supported by a study showing that a progressive reduction in PTEN gene 

dosage correlates with an increase in the aggressiveness of mouse prostate 

neoplasia (Trotman et al, 2003). In normal cells, PTEN activity works to 

tightly regulate the levels of PI(3,4,5)P3 at the cell surface. Inactivating 

mutations or loss of heterozygosity of PTEN therefore leads to an increase in 

the basal levels of P(3,4,5)P3 and these levels are maintained for a longer 

period of time following stimulation compared to wild type cells (Parsons, 

2004). This in turn prolongs the activities of PH domain containing proteins 

that transduce survival and proliferative signals to the cell (Di Cristofano & 

Pandolfi, 2000).
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1.2.7.3 PKB

No mutations of the gene encoding PKB - Akt have been reported in human 

cancers. However, Akt gene amplifications have been frequently detected in 

various human cancers. The first study to implicate PKB as a potential 

oncogene was the isolation of AKT as a retroviral oncogene (y-Akt) encoded 

by the genome of a murine lymphoma virus. The v-Akt was later found to be 

the viral homologue of cellular PKB (c-Akt) (Staal et al, 1977, Bellacosa et al, 

1991). The same group detected Aktl amplification in primary human gastric 

carcinoma (Staal et al, 1987). Subsequently, Akt2 gene amplifications have 

been detected in ovarian, breast, pancreatic and gastric cancers (Bellacosa et 

al, 1995, Cheng et al, 1996, Ruggeri et al, 1998) suggesting that Akt2 

amplification is a frequent event in human cancers. Up-regulation of Akt3 

mRNA has been reported in cases of breast and prostate cancers (Nakatani et 

al, 1999).

In addition to Akt amplifications, PKB overactivation occurs due to aberrant 

upstream molecules of PKB. PIK3CA and PTEN mutations, the 

overexpression or mutations in RTKs and the overexpression of growth factors 

can all result in the overactivation of PKB (Altomare & Testa, 2005). A large 

body of data demonstrates that many solid tumours and haematological 

malignancies display an increase in the protein expression and catalytic 

activity of PKB, including breast, colon, ovarian, pancreatic and prostate 

cancers and acute myeloid leukaemia (Bellacosa et al, 2005). Increased PKB 

activity has been reported to be prevalent in high grade, late stage and 

metastatic tumours (Altomare & Testa, 2005). However, increased levels of 

phosphorylated PKB have also been detected in pre-neoplastic lesions (Tsao et 

al, 2003, Balsara et al, 2004), suggesting that deregulation of PKB can also be 

an early event during tumour formation. Furthermore, ectopic expression of 

constitutively active and wild type PKB are sufficient to induce oncogenic 

transformation in vitro and tumour formation in vivo (Cheng et al, 1997, 

Hutchinson et al, 2001, Malstrom et al, 2001, Mende et al, 2001, Sun et al, 

2001, Majumder et al, 2003).
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Table 1.2 Frequency of mutations in the PI3K/PKB pathway in cancers

Adapted from Engelman et al, 2006.

Genetic Mutations Cancer Percentage Frequency References
PIK3CA (pi 10a)
Mutations Breast 26% Samuels et al, 2004 

Wu et al, 2005a 
Levine et al, 2005 
Lee et al, 2005 
Bachman et al, 2004 
Campbell et al, 2004 
Saal et al, 2005

Colon 26% Samuels et al, 2004 
Velho et al, 2005

Glioma 8% Samuels et al, 2004 
Hartmann et al, 2005 
Knobbe et al, 2005

Hepatocellular 36% Lee et al, 2005
Ovarian 10% Campbell et al, 2004 

Levine et al, 2005
Gastric 7% Samuels et al, 2004 

Lee et al, 2005 
Velho et al, 2005 
Li e t a l2005

Amplifications Head and Neck 42% Pedrero et al, 2005 
Woenckhaus et al, 2002

Thyroid 9% Wu eta l, 2005a
Squamous cell 66% Pedrero et al, 2005 

Woenckhaus et al, 2002
Breast 9% Wu et a\, 2005b
Gastric 36% Byun et al, 2003
Cervical 69% Ma et al, 2000

PTEN
Loss of heterozygosity Glioblastoma 54% Wang eta l, 1997 

Chariello et al, 1998 
Smith et al, 2001

Prostate 35% Cairns et al, 1997 
Feilotter eta l, 1998 
Pesche et al, 1998 
Gray eta l, 1998

Breast 23% Feilotter eta l, 1999 
FreihofF et al, 1999

Melanoma 37% Birck et al, 2000 
Celebi et al, 2000 
Reifenberger et al, 2000 
Pollock et al, 2002

Gastric 47% Byun et al, 2003
B-CLL 28% Leupin et al, 2003

PKB
Amplifications Ovarian 12% Bellacosa et al, 1995 

Cheng et al, 1992
Pancreatic 20% Ruggeri et al, 1998
Breast 3% Bellacosa et al, 1995
Gastric 20% Staal eta l, 1987
Head and Neck 30% Pedrero et al, 2005

PIK3R1 (p85a)
Mutations Ovarian 4% Philp et al, 2001

Colon 2% Philp et al, 2001
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1.2.7.4 Viral activation o f PI3K

Viruses have long been implicated in the pathogenesis of several human 

cancers. Viral transformation is often achieved through modulation of host cell 

signalling pathways, particularly those that mediate cell survival and 

proliferation. The PI3K/PKB pathway is utilized to this effect by several 

viruses and is an important mechanism by which viruses achieve inhibition of 

apoptosis during acute infection, long-term virus survived and transformation 

(Cooray, 2004). Epstein-Barr Virus (EBV), human T-cell leukaemia virus 1 

(HTLV-1) and human papilloma virus (HPV) all have the capacity to 

modulate PI3K. In the case of EBV, several gene products have been shown to 

activate PI3K activity to increase the survival potential of infected B cells 

during latent phase, and to ensure reactivation of the lytic phase for viral 

propagation (Cooray, 2004). The activation of PI3K by EBV is discussed in 

more detail in section 1.2.8 below. The high risk HPV type 16 (HPV-16), 

which is frequently detected in cervical and urogenital cancers, encodes a 

putative integral membrane protein, E5, that enhances signalling through 

PI3K/PKB (Zhang et al, 2002a). The ability of the HTLV-1 encoded protein 

Tat to induce cellular transformation has also been attributed to its capacity to 

enhance the activity of PI3K and contributes towards the development of adult 

T-cell leukaemia (Liu et al, 2001).

1.2.8 PI3K and Epstein-Barr Virus (EBV)

Several studies have implicated a role for PI3K in the survival and 

proliferation of EBV transformed cell lines and EBV associated tumours. 

Constitutive activation of the PI3K/PKB pathway has been detected in the 

EBV associated B cell lymphoma, Hodgkin’s Disease (Dutton et al, 2005, 

Nagel et al, 2005, Georgakis et al, 2006) and nasopharyngeal carcinoma, an 

EBV associated malignancy of epithelial origin (Morrison et al, 2004). 

Activation of the PI3K/PKB pathway may contribute significantly towards cell 

survival and the morphological changes observed during B cell transformation 

by EBV, as inhibition of PI3K has been shown to reverse the transformed 

phenotype (Dawson et al, 2003). Furthermore, inhibition of PI3K in EBV
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immortalized B cell lines induces growth arrest due to a decrease in the 

expression of two cyclins required for cell cycle progression, cyclin D2 and 

cyclin D3, and an increase in the expression of the cell cycle inhibitor, p27k,pl 

(Brennan et al, 2002).

A number of studies have implicated a role for two EBV encoded latent 

transmembrane proteins in the constitutive activation of PI3K. Latent 

membrane protein-1 (LMP1) has been demonstrated to induce constitutive 

activation of PI3K in epithelial (Dawson et al, 2003) and fibroblast cells 

(Maniou et al, 2005). This increase in PI3K activity correlated with increased 

cell survival in epithelial cells and contributed towards the transformation of 

both human and rodent fibroblasts by EBV. The cytosolic C-terminal 

activating region-1 (CTAR1) has been suggested to be essential for these 

effects (Dawson et al, 2003, Maniou et al, 2005). This may be due to an 

interaction between CTAR1 of LMP1 and the p85 regulatory subunit of PI3K 

(Dawson et al, 2003). Another EBV encoded latent membrane protein, 

LMP2A, has also been demonstrated to induce constitutive signalling through 

the PI3K/PKB pathway in B cells (Swart et al, 2000) and epithelial cells 

(Scholle et al, 2000, Morrison et al, 2003). A subsequent study demonstrated 

that LMP2A inhibits Transforming Growth Factor -  pi (TGF-pi) mediated 

apoptosis through activation of the PI3K/PKB pathway in a Burkitt’s 

lymphoma cell line (Fukuda & Longnecker, 2004). Another component of the 

PI3K pathway, mTOR has also been shown to be activated by LMP2A in 

epithelial carcinoma lines (Moody et al, 2005). In addition, B cells from 

LMP2A transgenic mice are sensitive to apoptosis in the presence of PI3K and 

PKB inhibitors (Portis & Longnecker, 2004a). Collectively, these studies 

indicate a role for EBV induced activation of the PI3K/PKB pathway in 

regulating the survival of EBV transformed cells.

1.2.9 Pharmacological inhibitors of PI3K

Pharmacological inhibitors of PI3K have contributed towards our 

understanding of the biological role of PI3Ks and their substrate proteins. Two 

inhibitors have been used extensively in this context. Wortmannin is a
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hydrophobic fungal metabolite isolated from Taloromyces wortmannii, that 

irreversibly inhibits PI3K activity (Ui et al, 1995,). Wortmannin has proved 

useful in investigating PI3K regulated signal transduction pathways. However, 

this inhibitor has been shown to have several targets (Nakanishi et al, 1995, 

Ferby et al, 1996). Other limitations of wortmannin are its short half life and 

instability in aqueous solution. LY294002 is structurally distinct PI3K 

inhibitor developed as a synthetic analogue of quercetin, a naturally occurring 

bioflavinoid. It is an ATP-competitive inhibitor and is therefore reversible, but 

is more stable in solution and has a longer half life compared to wortmannin 

(Vlahos et al, 1994). Characterisation of the specificity of LY294002 indicated 

that this compound is specific for PI3Ks (Vlahos et al, 1994). Neither 

LY294002 nor wortmannin are isoform specific, and can therefore inhibit 

other members of the PI3K superfamily other than class Ia PI3K (Finan & 

Thomas, 2004). Despite their limitations, both of these compounds have 

proved to be useful tools for the study of PI3K signalling in mammalian cells, 

and have been used to implicate PI3K in cell survival and proliferation in a 

wide variety of systems.
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1.3 FOXO transcription factors.

The FOXO transcription factors belong to the large family of functionally 

diverse Forkhead proteins that act as transcriptional regulators. Forkhead 

proteins are characterized by the presence of a highly conserved monomeric 

110 amino acid DNA binding domain that is also known as the ‘forkhead box’ 

(FOX) (Kauffmann & Knochel, 1996). Over a 100 members of the forkhead 

transcription factor family have been identified in species ranging from yeast 

to humans, and 39 distinct members have been identified in humans to date. 

Forkhead proteins have been divided into 19 subgroups according to 

phylogenetic analysis, FOX A-S, and are therefore classified according to 

structure rather than function (Greer & Brunet, 2005). Among the forkhead 

family, only the FOXO subclass has been demonstrated to be regulated by the 

PI3K/PKB pathway (Burgering & Medema, 2003). FOXO proteins are highly 

conserved and have been identified in a range of organisms including 

Caenorhabditis elegans, zebrafish, Drosophila, mouse, rat and humans. The 

FOXO subgroup contains four members, FOXOl, FOX03, FOX04 and 

FOX06, which contain a unique five amino acid insertion (GDSNS) 

immediately prior to the DNA binding helix (H3) within the forkhead domain. 

FOXO transcription factors are expressed in an overlapping range of human 

tissues (Anderson et al, 1998, Biggs et al, 2001) and have important roles in 

several biological processes including cell cycle arrest and apoptosis (Greer & 

Brunet, 2005).

1.3.1 Regulation of FOXO transcriptional activity by PI3K/PKB.

Genetic studies in C. elegans initially established a role for the PI3K/PKB 

pathway in the regulation of daf-16, a member of the FOXO subfamily, in 

development and longevity (Lin et al 1997, Ogg et al, 1997). Subsequent 

studies in mammalian cells have shown that PKB directly phosphorylates 

FOXO transcription factors in response to activation of the PI3K pathway by 

growth factors and hormones (Biggs et al, 1999, Brunet et al, 1999, Kops & 

Burgering 1999, Rena et al, 1999, Tang et al, 1999, Takaishi et al, 1999).
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1.3.1.1 FOXOl, F 0X 03 and F0X04.

Phosphorylation of FOXOl, F0X03 and F0X 04 by PKB occurs at three key 

conserved regulatory sites (Thr24, Ser253 and Ser 316 in the FOXOl 

sequence) located within the consensus sequence for PKB phosphorylation 

(RxRxx(S/T)) (Alessi et al, 1996, Arden, 2006). The first PKB 

phosphorylation motif is located in the region immediately downstream of the 

start codon, the second is located in the forkhead domain, and the third is in 

the region downstream of the forkhead domain (Jacobs et al, 2003). These 

phosphorylation events inhibit the ability of FOXO transcription factors to 

transactivate target genes (Brunet et al, 1999, Kops et al, 1999, Biggs et al, 

1999, Rena et al, 1999).

The mechanism whereby FOXOl, F0X 03 and F0X04 activity is suppressed 

by PKB has been elucidated (Biggs et al, 1999, Brunet et al, 1999). In the 

absence of cellular stimulation and PKB activity, these FOXO factors are 

predominantly localized within the nucleus where they are capable of inducing 

the expression of target genes and are therefore presumed to be active. 

However, upon activation of PKB by growth or survival factors, FOXO 

phosphorylation triggers the rapid relocalization of FOXO proteins from the 

nucleus to the cytoplasm. Jacobs et al, observed that epithelial cells transfected 

with GFP-tagged FOXOl and F0X03 constructs displayed predominantly 

cytosolic localization of FOXOl and F0X 03 molecules in 80% of cells in 

response to growth factor stimulation for 24 hours. Subsequent serum 

starvation resulted in the predomninant nuclear localization of these proteins 

(Jacobs et al, 2003). The requirement for PI3K for FOXO nuclear exclusion 

was demonstrated by a studies showing that the inhibition of PI3K with 

LY294002 dramatically impairs FOXO nuclear export (Brownawell et al,

2001) and leads to increased active nuclear FOXO (Chandramohan et al,

2004). The change in the subcellular localization of FOXO transcription 

factors to the cytoplasm prevents their ability of to bind and transcriptionally 

activate target gene sequences. Phosphorylated FOXOs have been 

demonstrated to specifically interact with 14-3-3 proteins in the nucleus, and 

function as chaperone molecules to promote FOXO nuclear exclusion (Brunet
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et al, 1999, 2002). A schematic of the regulation of FOXO transcriptional 

activity by PKB is illustrated in Figure 1.7.

The precise mechanism whereby 14-3-3 proteins mediate FOXOl, F0X03 

and F0X04 nuclear exclusion is currently unclear. The binding of 14-3-3 

proteins to FOXO proteins has been proposed to decrease the ability of FOXO 

factors to bind DNA (Cahill et al, 2001). It has also been suggested that a 

conformational change in FOXO, induced by the binding of 14-3-3, may 

expose the nuclear export signal (NES), allowing interaction with the export 

machinery protein, Exportin/Crml (Brunet et al, 2002). The phosphorylation 

of FOXO factors has been shown to induce an interaction with Exportin/Crml 

and the small GTPase, Ran, a regulator of Exportin/Crml activity , thereby 

accelerating the relocalization of FOXO factors to the cytoplasm (Rena et al,

2002). Once, in the cytoplasm, 14-3-3 binding may play a role in the 

cytoplasmic sequestration of FOXO factors by masking the nuclear 

localization signal (NLS) (Brownawell et al, 2001, Rena et al, 2002), 

maintaining FOXO factors in an inactive state. Protein phophatases involved 

in the dephosphorylation of FOXO transcription factors to counteract the 

effect of PKB have not been identified. Proteasomal degradation is an 

additional mechanism whereby FOXOl and FOX03 transcription factors are 

irreversibly inactivated. This is mediated by the ubiquitin-dependent 

proteasome pathway and is dependent on phosphorylation by PKB (Matsuzaki 

et al, 2003, Plas & Thompson, 2003, Aoki et al, 2004, Hu et al, 2004, Huang 

et al, 2005). Whether ubiquitination plays a role in the degradation of FOX04 

remains to be examined.

1.3.L2 FOX06

The regulation of the latest member of the FOXO family to be identified, 

FOX06, by PKB appears to be distinct from that observed for the other FOXO 

members (Jacobs et al, 2003). This protein contains the first and second 

regions containing PKB phosphorylation motifs, but lacks the third, located in 

the region downstream of the forkhead domain in the other FOXO members. 

FOX06 remains predominantly nuclear in the presence and absence of growth
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Figure 1.7 Schematic of regulation of FOXO transcriptional activity by PKB. Adapted from 
Birkenkamp and Coeffer, 2003.

a) In the presence of growth factors and survival signals PI3K is active and results in the activation of 
PKB. Active PKB proteins phosphorylate FOXO proteins at three conserved sites, which induces the 
release of FOXO proteins from DNA target sequences. 14-3-3 proteins and export machinery mediate 
the translocation of phosphorylated FOXO proteins to the cytoplasm, where they are unable to bind 
target sequences and are therefore inactive.

b) In the absence of growth and survival signals, FOXO proteins are unphosphorylated and 14-3-3 
proteins are released. Under these conditions, import machinery mediate the translocation of FOXO 
transcription factors into the nucleus where they are transcriptionally active and induce the 
transcription of genes regulating cell cycle arrest and apoptosis.
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factor stimulation, and is therefore considered to be constitutively nuclear 

(Jacobs et al, 2003). Investigations into the transcriptional activities of 

F0X06 have revealed that this protein does function as a transcriptional 

activator of FOXO target genes, but is not constitutively active (Jacobs et al, 

2003, Van der Heide et al, 2005). Growth factor stimulation inhibits FOX06 

activity in a Thr26 and Seri 84 dependent manner, but is independent of nuclo- 

cytoplasmic shuttling (Van der Heide et al, 2005).

1.3.2 PKB independent phosphorylation of FOXO

Although the main regulator of FOXO function is the PI3K/PKB pathway, 

additional pathways are also involved in regulating FOXO activity. The 

structurally related protein kinase, serum and glucocorticoid-stimulated kinase 

(SGK), also phosphorylates FOXO transcription factors at identical sites to 

PKB, but preferentially phosphorylates the C-terminal PKB motif (Brunet et,

2001). SGK activation is also dependent on PI3K (Kobayashi & Cohen, 1999, 

Park et al, 1999), and is primarily active within the nucleus (Buse et al, 1999). 

It has therefore been proposed that PKB and SGK may phosphorylate FOXO 

proteins at different locations within the cell (Burgering & Medema, 2003). 

FOXOl has also been shown to be phosphorylated on two additional residues, 

Ser 322 and Ser 325, by casein kinase 1 (CSK1) (Rena et al, 2002). In 

addition, the Ser239 residue in the FOXOl sequence can be phosphorylated by 

the dual tyrosine phosphorylated regulated kinase 1 (DYRK1), a member of 

the MAP kinase family (Woods et al, 2001). This phosphorylation event 

appears to prime phosphorylation by CSK1 (Rena et al, 2002). A more recent 

study has demonstrated that FOX03 can be phosphorylated by IkB kinase-p 

(IKK-P), resulting in FOX03 nuclear exclusion and proteasomal mediated 

degradation (Hu et al, 2004). These additional phosphorylation events can 

therefore also participate in the regulation of FOXO subcellular localization 

(Van der Heide et al, 2004). It has been proposed that the phosphorylation of 

distinct sites by various protein kinases may allow the differential activation 

FOXO proteins in distinct cellular contexts (Nakae et al, 2000). The structure 

and the phosphorylation sites of FOXO proteins are illustrated in Figure 1.8.

50



PKB CK1
IKK

DYRK1SGK

*▼ Y \ ▼
S2 S3 S4 S5 T2 T3

NES

DNA binding 

domain

Figure 1.8 The structure and phosphorylation sites of the FOXO transcription factors.
Adapted from Arden, 2006.

FOXO transcription factors contain an N-terminal forkhead domain that mediates DNA binding 
to target sequences. This domain lies adjacent to a  nuclear localization sequence (NLS). 
FOXO proteins also contain a  nuclear export sequence (NES) which is located towards the C- 
terminal end of the protein. FOXO subcellular localization and transcriptional activity is 
regulated by phosphorylation in response to growth factor stimulation of various signalling 
pathways. The kinases responsible for FOXO phosphorylation and their threonine (T) and 
serine (S) target sites are indicated. PKB: Protein kinase B, SGK: Serum and glucocorticoid- 
stimulated kinase, CK1: Caesin kinase 1, DYRK1: Dual tyrosine phosphorylated regulated 
kinase 1, IKK: IkB Kinase.
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1.3.3 Transcriptional targets of FOXO

When present in the nucleus, FOXO transcription factors act as transcriptional 

activators of a diverse set of genes involved in various cellular processes 

including cell cycle arrest and cell death (Greer & Brunet, 2005). Gene array 

analyses have indicated that FOXO proteins can also act as transcriptional 

repressors (Ramaswamy et al, 2002). The FOXO target genes mediating these 

effects are described below. A summary of identified FOXO target genes 

involved in cell cycle control and apoptosis is given in Table 1.3.

1.3.3.1 FOXO mediated regulation of cell proliferation

Studies in mammalian cells have shown that the overexpression of FOXOl, 

F0X03 and F0X 04 causes a strong inhibition of cell proliferation (Collado et 

al, 2000, Medema et al, 2000, Nakamura et al, 2000, Kops et al, 2002). In the 

immune system, optimal proliferation of primary B cells requires the 

inactivation of FOXO transcription factors in a PI3K dependent manner 

(Yusuf et al, 2004). FOXO overexpression promotes cell cycle arrest at the 

Gi/S boundary in a variety of cell lines, including B cells (Yusuf et al, 2004), 

T cells (Fabre et al, 2005), Ras transformed and PTEN deficient cell lines 

(Medema et al, 2000, Nakamura et al, 2000). In several cases, this effect was 

demonstrated to be dependent on FOXO mediated transcriptional activation of 

the cyclin dependent kinase (cdk)-inhibitor, p27kipl (Medema et al, 2000, 

Nakamura et al, 2000 Yusuf et al, 2004). p27kipl regulates Gi/S transition 

through its cdk-inhibitory activity, which blocks the cell in Gi phase by 

preventing cdk-dependent phosphorylation of the retinoblastoma protein (Rb), 

and subsequent progression through the cell cycle (Toyoshima & Hunter, 

1994, Nakayama & Nakayama, 1998). p27kipl independent mechanisms for 

FOXO mediated cell cycle arrest also exist. Conditional activation of FOX03a 

and FOX04 can upregulate mRNA and protein expression of the Rb family 

member p i30 (Kops et al, 2002). This effect was accompanied by cell cycle 

arrest and a sustained inhibition of cell proliferation. In its 

hypophosphorylated form, p i30 binds to E2F transcription factor molecules, 

resulting in the repression of genes required for cell cycle progression (Smith
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et al, 1996). The critical roles for p27kipl and p i30 in FOXO mediated cell 

cycle arrest was further demonstrated as FOXO induced Gi arrest is 

diminished in p27kipl and p i30 deficient fibroblasts (Kops et al, 2002). FOXO 

factors are also capable of binding and transactivating the promoter of another 

cdk-inhibitor, p21cipl, resulting in cell cycle arrest at the Gi phase (Seoane et 

al, 2004).

Another mechanism whereby FOXO proteins mediate inhibitory effects on 

cell cycle progression is by transcriptional repression of D-type cyclins. D- 

type cyclins are critical mediators of cell cycle progression in response to 

mitogens, and are induced as quiescent cells are stimulated to enter the cell 

cycle. When present at sufficient amounts, D-type cyclins activate cdk 

activity, critical for Gi-S phase progression (Sherr, 1995). Constitutively 

active forms of FOXO 1 and FOX03, in which all three PKB phosphorylation 

sites are mutated, are strong inhibitors of cyclin D1 and cyclin D2 mRNA and 

protein expression (Ramaswamy et al, 2002, Schmidt et al, 2002). The 

overexpression of FOX04 in mouse embryonic fibroblasts was shown to 

induce similar effects on cyclin D1 and cyclin D2 expression levels (Schmidt 

et al, 2002). A subsequent study by Fernandez de Mattos et al indicated that 

repression of cyclin D2 by FOX03 may occur indirectly, via bcl-6 binding to 

the Cyclin D2 promoter (Fernandez de Mattos et al, 2004). Bcl-6 is a 

transcriptional repressor which has itself been shown to be transcriptionally 

activated by FOX04 (Tang et al, 2002). Therefore, the FOXO transcription 

factors play a major role in the inhibition of cell cycle progression by both 

upregulating cell cycle inhibitors (p27k,pl and p21cipl) and by transcriptionally 

repressing proteins required for cell cycle progression (Cyclin D1 and Cyclin 

D2).

1.3.3.2 FOXO mediated regulation o f cell survival

In a number of cell types, particularly those of haematopoietic origin, FOXO 

transcription factors have been reported to induce apoptosis rather than cell 

cycle arrest. The regulation of programmed cell death is an important feature 

of the immune system in maintaining self-tolerance and the size of
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haematopoietic subpopulations during immune responses. The expression of 

constitutively active forms of FOXO proteins have been reported to trigger 

cell death in some lymphocyte cell lines by the transcriptional activation of 

pro-apoptotic proteins (Brunet et al, 1999, Dijkers et al, 2002, Stahl et al,

2002). Bim, a pro-apoptotic bcl-2 family member is transcriptionally 

activated at the mRNA and protein levels by F0X 03 in cytokine dependent T 

and pro-B cell lines (Djikers et al, 2000, Stahl et al, 2002) as well as in 

neuronal cells (Gilley et al, 2003). This correlated with the induction of 

apoptosis. Furthermore, apoptosis induced by inhibition of the PI3K/PKB 

pathway is reduced in lymphocytes from bim-deficient mice, highlighting the 

role for bim as an important target of FOXO mediated induction of apoptosis 

(Bouillet et al, 1999, Greer & Brunet, 2005). The induction of bcl-6 

expression by FOX04 (Tang et al, 2002) demonstrates a further role for 

FOXO proteins in the regulation of bcl-2 family members. This induction of 

bcl-6 by FOX04 was shown to negatively regulate the expression of the anti- 

apoptotic protein, B c1-Xl . Therefore, one way in which FOXO factors regulate 

cell survival is by modulating the balance between pro and anti-apoptotic 

members of the bcl-2 family.

FOXO induced apoptosis in some cell types is also dependent on the induction 

of death cytokines. The Fas-Ligand (Fas-L) promoter, a member of the death 

inducing TNF family, contains putative FOXO binding sites and is responsive 

to FOX03 activation in fibroblast cell lines (Brunet et al, 1999). FOXOl and 

FOX03 have also been demonstrated to upregulate TRAIL (Tumour-necrosis 

factor-related apoptosis-induced ligand) in prostate cancer cell lines (Modur et 

al, 2002). A subsequent study demonstrated that cytokine mediated inhibition 

of TRAIL is mediated by the phosphorylation of FOX03 in various cytokine 

dependent haematopoietic cell lines (Ghaffari et al, 2003). Fas-L and TRAIL 

binding to death receptors result in activation of the caspase cascade leading to 

subsequent cell death (Wallach et al, 1999). These studies therefore indicate 

additional ways by which FOXO factors can influence cell death pathways.
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Table 1.3 FOXO target genes regulating cell cycle control and cell death-

Adapted from Birkenkamp& Coffer, 2003

Target gene Cellular function References

Fas-Ligand (Fas-L) (t) Induction of death-receptor-mediated 
apoptosis

Brunet etal, 1999

Tumour-necrosis factor- 
related apoptosis-induced 
ligand (TRAIL) (f)

Induction of apoptosis Modur et al, 2002 
Ghaffari et al, 2003

Bim ( |) Induction of intrinsic apoptosis 
pathways

Dijkers et al, 2000 
Stahl et al, 2002 
Gilley et al, 2003

p27 KJP1 (f) Cell cycle inhibition -  Gi arrest Dijkeres et al, 2000b 
Medema et al, 2000 
Stahl et al, 2002

p2 iap,(T) Cell cycle inhibition -  Gi arrest Seoane et al, 2004
pl30 (f) Cell cycle inhibition -  Gi arrest Kops et al, 2002
Cyclin B (f) Completion of cell cycle progression Alvarez et al, 2001
Cyclin D1 ( |) Cell cycle progression Schmidt et al, 2002 

Ramaswamy et al, 2002
Cyclin D2(l) Cell cycle progression Schmidt et al, 2002 

Ramaswamy et al, 2002 
Fernandez de Mattos et al, 2004

Cyclin G2 ( |) Cell cycle inhibition -  G2 arrest Ramaswamy et al, 2002 
Martinez-Gac et al, 2004

Polo-like kinase ( |) Completion of cell cycle progression Alvarez et al, 2001
Bcl-6 (t) Transcriptional repression Tang et al, 2002

t - Upregulated by FOXO j - Downregulated by FOXO

1.3.4 FOXO transcription factors and cancer

Initial identification of the FOXO transcription factor family in humans 

occurred as three members were identified at chromosomal translocations in 

human tumours, namely FOXOl in alveolar rhabdomyosarcomas (ARMS), 

F0X03a in acute myeloblastic leukaemia (AML) and F0X 04 in acute 

lymphocytic leukaemias (Galili et al, 1993, Davis et al, 1994, Parry et al, 

1994, Hillion et al, 1997, Borkhardt et al, 1997). These discoveries were the 

first indications that FOXO transcription factors have a role in tumour 

development.
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These chromosomal translocations result in the formation of chimeric fusion 

proteins in which the C-terminal domains of FOXO transcription factors are 

fused to the N-terminal domain of other transcriptional regulators. These are 

paired box (PAX) 3 or PAX7 with FOXOl, and Mixed Lineage Leukaemia 

gene (MLL) with F0X03 and F0X 04 (Galili et al, 1993, Davis et al, 1994, 

Parry et al, 1994, Hillion et al, 1997, Borkhardt et al, 1997, Anderson et al, 

1998). The resulting fusion proteins retain the DNA binding domains of 

PAX3, PAX7 and MLL, whereas the FOXO transactivation domains are lost 

(Barr et al, 2001, Khan et al, 1999, Keller et al, 2004). Of the three PKB 

phosphorylation sites present in the intact FOXO proteins, only two are 

retained in the PAX3-F0X01 and PAX7-F0X01 fusion proteins. These 

proteins are therefore no longer regulated by PKB and are constitutively 

located in the nucleus (del Peso et al, 1999). The PAX3-F0X01 fusion 

protein has been shown to be stronger transcriptional activators of PAX3 

genes than the individual protein alone (Khan et al, 1999). These genes 

include myogenic transcriptional mediators such as MyoD and Myogenin, and 

the growth factor gene Igf2. It is therefore possible that these effects are 

responsible for the cancer phenotypes observed.

It has also been proposed that the loss of a functional FOXO allele may 

potentiate the tumourigenicity of the fusion proteins due to loss of its normal 

function in restraining cell cycle progression and promoting cell death 

pathways. This theory has not been supported by mouse model experiments as 

human PAX3-FOXOl expression in transgenic mice is not sufficient to 

promote tumourigenesis (Anderson et al, 2001, Lagutina et al, 2002, Keller et 

al, 2004). Furthermore, tumour incidence was not increased in mice in which 

one FOXOl allele has been knocked out and also expressed the PAX3- 

FOXOl fusion protein (Keller et al, 2004). These experiments indicate that the 

loss of one FOXOl allele is not sufficient to increase tumour incidence, and 

therefore suggests that additional events are required for tumuorigenesis, such 

as the loss of the remaining FOXOl allele.

In addition to chromosomal translocations several other lines of evidence have 

indicated a role for FOXO transcription factors in tumour progression. A role
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for the tumour suppressor, PTEN, in the negative regulation of FOXO 

transcription factors has been established and has therefore implicated a role 

for FOXO factors in tumour progression in PTEN deficient cells. This is 

supported by the observation that FOXOl is cytosolic and therefore inactive in 

PTEN-negative renal and prostate carcinoma cells (Nakamura et al, 2000). 

The overexpression of FOXO proteins in PTEN-negative tumour cells mimics 

the effect of the restoration of a functional PTEN in these cells, inducing cell 

cycle arrest in the Gi phase due to an increased expression of p27kipl (Medema 

et al, 2000, Nakamura et al, 2000). The overexpression of FOXO proteins in 

PTEN-deficient prostate cancer cells can also induce apoptosis through the 

direct activation of TRAIL (Modur et al, 2002). Furthermore, the expression 

of a constitutively active form of FOXOl can reduce tumours in PTEN- 

deficient nude mice (Ramaswamy et al, 2002). The inactivation of FOXO 

transcription factors has therefore been proposed to be an important 

mechanism by which PTEN-deficient cells are transformed (Burgering & 

Kops, 2002). These studies also demonstrate that the nuclear exclusion of 

FOXO factors not only regulates cell proliferation and survival in normal cells 

but also contributes towards the pathogenesis of cancer (Nicholson & 

Anderson, 2002).

More recent studies have demonstrated that loss of FOXO activities due to 

protein degradation contributes towards cellular transformation of primary 

breast cancer tumours (Hu et al, 2004) and mouse primary lymphomas (Huang 

et al, 2005). Immunohistochemical staining of primary breast cancer 

specimens revealed that cytoplasmic localization of FOX03 correlated with 

poor patient survival (Hu et al, 2004). FOXOl phosphorylation also correlates 

with shorter survival of acute myeloid leukemia patients (Accili & Arden,

2004). A further role for another FOXO member, FOX04, in breast cancer has 

been implicated, as the expression of a constitutively active form of FOX04 in 

nude mice transplanted with cells expressing the breast cancer associated 

HER2 oncogene reduced tumour onset, size and progression (Yang et al,

2005). Furthermore, RNA interference mediated depletion of PI3K in breast 

cancer cell lines, activated FOXO transcription factors and induced Gi phase 

cell cycle arrest and apoptosis (Regan-Shaw & Ahmad, 2006).
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These studies highlight the potential of FOXO transcription factors as useful 

biomarkers for the identification of unfavorable clinical outcomes in certain 

cancers, such as AML and breast cancer. These studies also suggest that 

FOXO inactivation may play an important role in cellular transformation.

1.4 Aims of thesis

Pathways regulated by Phosphotidylinositide-3-kinase (PI3K) have emerged 

as important mediators of cell proliferation and survival. When altered, several 

components of this pathway have been identified to contribute towards a wide 

range of human malignancies. Several EBV-associated B-cell lymphomas 

have been associated with deregulated PI3K signalling. Although progress has 

been made in dissecting the pathway regulated by PI3K, the key components 

contributing to lymphocyte transformation have not been fully characterised. 

This thesis sought to investigate downstream targets of the PI3K pathway in 

lymphocytes in order further our understanding of the key components 

contributing to the transforming effects of PI3K, particularly within the 

context of EBV-associated malignancies.

(1) The first objective was to investigate the usefulness of employing a 

phospho-specific antibody, specific for the substrate consensus phospho- 

motif of Protein Kinase B (PKB), the main downstream effector of PI3K 

activation, to identify important targets of PI3K in transformed 

lymphocyte cell lines (Chapter 3).

(2) Following on from these experiments, the next aim was to develop the 

technology of two-dimensional electrophoresis with a view to study PI3K 

and EBV regulated proteins on a larger scale. The successful 

establishment of this technique would also allow the study of the post- 

translational modifications associated with PI3K and EBV regulated 

transcription factors (Chapter 4).
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(3) In order to further characterise the nuclear targets of PI3K in EBV 

immortalized cells, the final objective of this thesis was to investigate the 

interplay between EBV and a pro-apoptotic transcription factor target of 

PI3K, FOXOl. This would further our understanding of the molecular 

changes occurring in lymphocytes in response to EBV infection, which 

have the potential to contribute towards malignancy (Chapter 5).
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CHAPTER 2

MATERIALS AND METHODS

2.1 Tissue culture

2.1.1. Tissue culture media and reagents

RPMI-1640 without glutamine (Gibco BRL) was stored at 4°C

Foetal calf serum (FCS; PAA, Batch number A01229-367) was stored in 50

ml aliquots at -20°C.

Glutamine 200mM (Gibco BRL) was stored in 5 ml aliquots at -20°C and 

used as a lOOx stock solution.

Penicillin/Streptomycin 5000U/ml and 5000pg/ml (Gibco BRL) was stored 

in 10ml aliquots at -20°C and used as a 50x stock solution.

1M HEPES pH7.2 (Sigma) was stored at 4°C

lx  phosphate-buffered saline (PBS) was made up by dissolving 50 PBS 

tablets (Oxoid) in 5 litres of distilled water. 500 ml aliquots were sterilised by 

autoclaving and stored at room temperature.

Dimethyl sulfoxide (DMSO; Sigma) was stored at room temperature. 

Mycophenolic acid (Sigma) was prepared as a 2mg/ml stock solution in 

analysis grade methanol (Fisher) and stored in aliquots at -20°C. 

Xanthine/Hypoxanthine (Sigma) was prepared as a 160pg/ml and lOpg/ml 

respectively stock solution in filter sterilised 0.2M NaOH and stored in 

aliquots at -20°.

G418 (Sigma) was prepared as a lOOmg/ml stock solution in sterile distilled 

water and stored in aliquots at -20°C.

Tetracycline (Boeringer Mannheim) was prepared as a 1 mg/ml stock 

solution in sterile PBS and stored in aliquots at -20°C.

Interleukin-2 (IL-2; Chiron, Proleukin) was prepared as a 100pg/ml stock 

solution in sterile RPMI-1640 without glutamine and stored in aliquots at - 

70°C.
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2.1.2 Maintenance of cell lines

The cell lines used in this study are summarized in Table 2.1. All cell lines 

were cultured in growth medium comprising of RPMI-1640 medium, which 

was supplemented with 10% FCS, 2mM L-glutamine and antibiotics (100U of 

penicillin/ml and lOOpg streptomycin/ml). The medium used to culture the 

Kit225 T-cell line was supplemented with 20ng/ml IL-2. Drug selection 

(G418) of stable cell lines was performed as specified by the creators of 

specific cell lines. Tetracycline was used to silence tTA-responsive genes as 

specified by the creators of specific cell lines. Up to 80% of each culture was 

removed three times a week and replaced with fresh growth medium pre

warmed to 37°C. Cells were maintained at 37°C in a humidified atmosphere 

containing 5% CO2 . The EBV status of the BL41 + B95.8 cell line was 

checked by immunoblotting for two EBV encoded proteins -  LMP1 and 

LMP2A (see sections 2.3 and 2.5).

2.2 Transient transfection of lymphoid cell lines

2.2.1 Plasmids and luciferase reporters.

The plasmids and luciferase reporter used in this study are summarised in 

Table 2.2.

2.2.2 Transient transfection

DG75 cells were transfected with plasmid DNA by electroporation to 

transiently express required exogenous genes. Cells were washed in pre-
n

warmed growth medium and re-suspended at a concentration between 1.5x10 

and 2xl07 cells per ml in growth medium. A specific amount of plasmid DNA, 

typically between lpg and lOpg, was pipetted into an electroporation cuvette 

(Biorad, 0.4mm gap) and a 0.5ml aliquot of the cell suspension was added. 

Cells were then electroporated at 300V and 950pF using a Biorad Genepulser 

II electroporator. Cells were then re-suspended in an appropriate volume of 

fresh pre-warmed growth medium in a 6-well plate, and incubated at 37°C in a 

humidified atmosphere containing 5% CO2 .
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The transfection efficiency of DG75 cells was checked by transfection of cells 

with green fluorescent protein and subsequent analysis by flow cytometry. The 

mean value for transfection efficiency from three replicate experiments was 

52%.

Table 2.1 Table of cell lines used.

Cell line Description EBV gene 

expression

Citation/Provider

BL41 EBV negative BL N/A Rowe et al, 1986

BUI +B95.8 B95.8 transformed BL Latency

II/III

Rowe et al, 1986

I ARC-171 B95.8 transformed LCL Latency III Rowe et al, 1986

Mutu 1 EBV-positive BL Latency I Gregory et al, 1990

Mutu III EBV-positive BL Latency III Gregory et al, 1990

BJAB gpt.l EBV-negative B cell lymphoma N/A Wang et al, 1990

BJAB gpt.2 EBV-negative B cell lymphoma N/A Wang et al, 1990

BJAB MTLM.6 LMP1 expressing stable cell line LMP1 Wang eta l, 1990

BJAB MTLM.17 LMP1 expressing stable cell line LMP1 Wang eta l, 1990

DG75 EBV-negative BL N/A Ben-Bassat et al, 1977

DG75 tTA EBV negative BL N/A Floettmann et al, 1996

DG75 tTA LMP1 Stable cell line with inducible LMP1 

expression

LMP1 Floettmann et al, 1996

DG75 tTA LMP2A Stable cell line with inducible 

LMP2A expression

LMP2A Floettmann et al, 1996

DG75 tTA EBNA2A Stable cell line with inducible 

EBNA2A expression

EBNA2A Floettmann et al, 1996

Akata EBV-positive BL Latency I Takada& Ono, 1989

AK.31 EBV negative subclone of Akata N/A Jenkins et al, 2000

IB4 B95.8 transformed LCL Latency III Sample & Kieff, 1990

SP B95.8 transformed LCL Latency III Generated at CUSM

EB B95.8 transformed LCL Latency III Generated at CUSM

Kit 225 IL-2 dependent T-cell line N/A Hori eta l, 1987
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2.2.3 Luciferase reporter assay on transiently-transfected cells

Luciferase reporter assays were carried out using a Dual-Luciferase Reporter 

Assay system (Promega) according to the manufactures instructions as 

described below.

Luciferase assay

Approximately 5xl06 of transfected cells (half of transfection) were harvested, 

washed once in chilled PBS, and lysed in lOOpl of lx Passive lysis Buffer 

(Promega) for 20 minutes. The lysate was then clarified by centrifugation at 

13,000rpm for 30 seconds in a microcentrifuge. 50pi of the lysate 

(supernatant) was assayed for luciferase activity. Light release was measured 

by Berthold LB9501 luminometer following injection of lysate with lOOpl of 

Luciferase Assay reagent II (Promega). Light release was integrated for 10 

seconds.

Table 2.2 Plasmids and luciferase reporters.

Name Description Citation

Plasmids

pSG5-LMPl Wild-type LMP1 Huen et al, 1995

pSG5-LMP2A Wild type LMP2A Longnecker eta l, 1991

pSG5-LMPlAAA CTAR1 inactivated LMP1 mutant Eliopoulos eta l, 1999b

Luciferase reporter

Bcl-6ABcl-6 -Luc Bcl-6 reporter construct containing a FoxO 

consensus binding sequence upstream of a 

luciferase gene. The Bcl-6 promoter sequence 

was mutated to lack the consensus Bcl-6 

binding site in the Bcl-6 gene promoter.

Tang etal, 2002
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2.3 Cellular protein analysis

2.3.1 Preparation of whole cell extracts for SDS-PAGE 

Reagents

2x gel sample buffer (GSB) contained lOOmM Tris-HCL pH6.8, 20% 

glycerol, 0.2M DTT, 4% sodium dodecyl sulphate (SDS), 0.02% bromophenol 

blue. Aliquots of 2x GSB were stored at -20°C.

Cells were counted on a haemocytometer and re-suspended in 50pl of lx PBS 

per 106 cells. An equal volume of 2x GSB was then added. Cells were 

sonicated using a W0385 sonicator (Hearsystems-Ultrasonics Inc.) and, 

following sonication, samples were heated at 100°C for 5 minutes on a dry 

heating block.

2.3.2 Preparation of cytosolic and nuclear extracts for SDS- 

PAGE

Reagents

Low salt detergent lysis buffer contained lOmM HEPES pH7.9, 1.5mM 

MgCE, lOmM KC1 and 0.1% NP40 and was stored at room temperature.

High salt buffer contained 20mM HEPES pH7.9, 420mM NaCl, 1.5mM 

MgCh, 0.2mM EDTA and 25% glycerol and was stored at room temperature.

Nuclear and cytosolic extracts were prepared using a method previously 

described (Brennan and O’Neill, 1995). Extracts were prepared on ice. 

Cytosolic extracts were prepared by lysis of cells for 5 minutes in lOOjul of 

low salt detergent lysis buffer per 107 cells. Low salt detergent lysis buffer was 

supplemented with ImM phenylmethoslfonyl fluoride (PMSF), a 1:100 

dilution of Phosphatase Inhibitor Cocktail I (Sigma) and a 1:100 dilution of
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Phosphatase Inhibitor Cocktail II (Sigma). These supplements were added 

immediately prior to use due to their short half-lives. Following centrifugation 

(13,000 rpm, 5 minutes, 4°C), supernatant was collected (cytosolic extract). 

Nuclear extracts were prepared by incubating the pellet for 15 minutes in 60pl 

of high salt buffer per 10 cells. High salt buffer was supplemented with a 

1:100 dilution of Phosphatase inhibitor cocktail I and a 1:100 dilution of 

Phosphatase inhibitor cocktail II immediately prior to use. Following 

centrifugation (13, OOOrpm, 5 minutes, 4°C), supernatant was collected 

(nuclear extract). For extracts prepared from equivalent cell numbers, 50pi of 

2x GSB was added to both the cytosolic and nuclear extracts. Alternatively, 

the protein concentration of the cytosolic and nuclear extracts was determined 

by a protein determination assay (section 2.3.3), prior to addition of an equal 

volume of 2x GSB to the extracts. Extracts were heated at 100°C for 5 minutes 

on a dry heating block.

2.3.3 Protein determination assay

Protein concentration was determined using a method based on that of 

Bradford (Bradford, 1976). Protein concentration standards were generated 

using a 1 mg/ml BSA (bovine serum albumin; Sigma) solution. Doubling 

dilutions of the 1 mg/ml BSA solution were prepared in a flat-bottomed 96 

well plate. For the generation of a protein standard curve, triplicate lOpl 

aliquots of each BSA dilution was used. Three wells containing lOpl distilled 

H2O were included for the generation of the standard curve. A fixed volume 

(2-5 pi) of the nuclear or cytosolic extract was pipetted into the 96 well plate. 

Protein assay reagent (Biorad, 500-0006) was diluted 1 in 5 with distilled H2O 

and 200pi was added to each standard and extract. The plate was incubated at 

room temperature for 5 minutes. A microplate reader (Biorad, 170-6850) was 

used to read the absorbance of each well at 570nm. The protein concentration 

of each extract was determined by plotting the OD57onm of a protein standard 

curve on an Excel spreadsheet, from which the concentration of protein in 

each sample extract was calculated.
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2.3.4 DNA affinity precipitation of nuclear proteins

The ability of various transcription factors to bind to consensus DNA 

sequences was investigated by a DNA affinity precipitation (DNA-AP) 

protocol. This method is a way of measuring protein-DNA binding. 

Streptavidin-conjugated agarose beads precipitate biotinylated oligonucleotide 

sequences from nuclear extracts of target cells. DNA affinity precipitation 

experiments were performed by a modification of a method previously 

described (Beadling et al, 1996).

Reagents

Dilution buffer contained 50mM Tris-HCl pH8, 0.25mM EDTA, lOmM NaF 

and 10% v/v Glycerol and was prepared when required.

Tris-EDTA (TE) contained lOmM Tris-HCl pH8 and ImM EDTA and was 

stored at room temperature.

2.3.4.1 Generation of double stranded oligonucleotides

The forward and reverse oligonucleotide sequences used are summarised in 

table 2.3. The consensus binding sites are underlined. Oligonucleotides were 

purchased from MWG Biotech. The forward oligonucleotides were supplied 

with 5’-biotinylation, whereas the reverse complementary sequence was not 

modified with biotinylation. Double stranded oligonucleotides were prepared 

using a method previously described (Brennan & Athie-Morales, 2001). 

Oligonucleotides were diluted to a concentration of lpg/pl in TE and equal 

volumes of the forward oligonucleotide and the complimentary sequence were 

mixed. Preparations were incubated for 10 minutes at 95°C in a water bath. 

The water bath was switched off and preparations were allowed to cool to 

room temperature. This gave a lpg/pl stock solution. For working dilutions, 

preparations were diluted to O.lpg/pl with TE buffer. Stock solutions were 

stored at -20°C. Working dilutions were kept at 4°C.
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Table 2.3 Oligonucleaotides used for DNA Affinity precipitation.

Transcription

factor

Oligonucleotide Oligonucleotide sequence 

(Forward/reverse)

CREB CREB

consensus

5 ’-BIO-agagattgccteacetcaeaeaectae-3 ’ 

5 ’ -ctagctctctgacgtcaggcaatctct-3 ’

CREB Cyclin D2 

consensus

5 ’-BIO-seeaeeaeaectaactscccaeccaecttscetcaccecttcaeaeceea-3 ’ 

5 ’ -tccgctctgaagcggtgacgcaagctggctgggcagttagctctcctccc-3 ’

P65 NFkB NFkB

consensus

5 ’ -BIO-aetteaeeeeactttcccaeeec-3 ’ 

5 ’ -gccctgggaaagtcccctcaact-3 ’

FoxOl Bim 5 ’-BIO-cagagttactccggtaaacacgccagegac-3 ’ 

5 ’-gtccctggcgtgtttaccggagtaactctg-3 ’

2.3.4.2 DNA affinity precipitation

Cytosolic and nuclear extracts were prepared from a maximum of 10 million 

cells on ice as described in section 2.3.2. 50pl of nuclear extract was mixed 

with 950pl of dilution buffer supplemented with a 1:200 dilution of 

Phosphatase inhibitor cocktail I (Sigma), a 1:200 dilution of Phosphatase 

inhibitor cocktail II (Sigma), 0.5mM PMSF, 0.5mM NaV04 and 5mM DTT. 

Supplements were added immediately prior to use due to their short half-lives. 

Nuclear proteins were subsequently incubated (4°C, 60 minutes, rotating) with 

lpg of 5’-biotinylated double stranded oligonucleotide and 30jnl of pre

washed streptavidin-conjugated agarose beads (50% slurry in PBS; Sigma, s- 

1638) to allow binding of proteins to DNA. lpg of non-specific (STAT1) non- 

biotinylated double stranded oligonucleotide was also included in the mixture 

to favour the binding of low affinity proteins to reduce non-specific binding of 

proteins to the 5’ biotinylated oligonucleotide. Oligonucleotide conjugated 

beads were collected by centrifugation (4°C, 6000rpm, 5 minutes) and 

complexes were washed three times using dilution buffer supplemented with 

0.5mM PMSF, 40mM NaCl and 5mM DTT immediately prior to use. DNA 

binding proteins to be analysed by 1-dimensional SDS-PAGE were eluted 

from the DNA by the addition of 2x GSB and heating at 100°C for 5 minutes 

on a dry heating block. DNA binding proteins to be analysed by 2-dimentional
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(2D)-electrophoresis were eluted by the addition of 2D sample buffer 

(7MUrea, 2M Thiourea, 2% w/v CHAPS) and incubation at room temperature 

for 1 hour.

2.4 Protein analysis by 2D-electrophoresis (2DE)

2.4.1 Protein precipitation and removal of interfering substances.

Prior to isoelectric focusing (IEF) protein samples were cleaned using a 2D 

Clean-up kit (Amersham) according to manufactures instructions. This 

procedure precipitates proteins and eliminates interfering substances that may 

interfere with IEF such as detergents, salts, lipids, phenolics and nucleic acids.

Nuclear protein extracts were generated as described in section 2.4.2. A 

nuclear protein sample containing lOOpg of protein was mixed with 300pl of 

Precipitant (Amersham) and incubated on ice for 15 minutes. 300pl of Co- 

precipitant (Amersham) was subsequently added to the mixture and was mixed 

briefly by vortexing. The sample was centrifuged at 13,000rpm for 5 minutes 

and the supernatant was carefully removed without disturbing the pellet. 40pl 

of co-precipitant was layered on top of the pellet and was left to incubate on 

ice for 5 minutes. The sample was centrifuged at 13,000 rpm for 5 minutes and 

the wash was removed and discarded. 25pi of distilled water was added to the 

remaining pellet and the sample was vortexed until the pellet was fully 

dispersed. 1 ml of pre-chilled Wash Buffer (Amersham) containing 5 pi of 

wash additive (Amersham) was added and incubated at -20°C for 1 hour with 

vortexing every 10 minutes. The precipitated protein pellet was collected by 

centrifugation for 13,000rpm for 5 minutes. The pellet was subsequently re

suspended in an appropriate volume of 2D sample buffer that allowed 

complete solubilisation of the protein pellet (typically 80-100pl), and were 

incubated at room temperature for 1 hour before use or storage. Samples were 

stored at -20°C.
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2.4.2 Resolution of protein samples by Isoelectric-focusing (IEF)

Isoelectric focusing (IEF) of proteins was carried out using Immobilized pH 

gradient (IPG) strips (Amersham). The pH gradients used in this study are 

summarized in Table 2.4.

Reagents

2D sample buffer contained 7M Urea (Sigma), 2M Thiourea (Sigma) and 2 or 

4% w/v CHAPS (Sigma). Stocks were stored as 1 ml aliquots at -20°C for no 

longer than 2 months.

Dithiothreitol (DTT) (Sigma) was supplied as a 1M solution and was stored 

as 200pl aliquots at -20°C.

Immobline pH gradient (IPG) buffers (Amersham) were stored at 4°C. 

Bromophenol blue (Sigma) was prepared as a 0.01% w/v solution in distilled 

water

7cm Immobiline Drystrip Gels (IPG) (Amersham) were rehydrated, for 12 

hours at 20°C in Ettan IPGphor Strip Holders (Amersham), with an 

appropriate amount of protein sample, typically between 10-15pg, in a total 

volume of 125 pi of 2D sample buffer supplemented with DTT (20-5OmM), 

1% bromophenol blue and 0.5% v/v IPG buffer (Amersham). Isoelectric 

focusing of the samples was performed on the Ettan IPGphor II IEF system 

(Amersham) using the following program: 1 hour at 500V; 2 hours at 1000V 

(gradient); 1 hour at 1000V, 2 hours at 8000V (gradient); 8 hours at 8000V. 

IPG strips were subsequently equilibrated for 15 minutes in equilibration 

buffer (IX NuPAGE LDS sample buffer, Invitrogen) containing 0.5 ml 10X 

NuPAGE sample reducing agent (Invitrogen). The focused IPG strips were 

then equilibrated for 15 minutes in equilibration buffer containing 125mM 

iodoacetamide (Sigma). Equilibrated IPG strips were transferred to the IPG 

well of NuPAGE 4-12% Bis-Tris Zoom gels (Invitrogen) (Table 2.5) for 

separation in the second dimension by SDS-PAGE as described in section 

2.6.3.
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Table 2.4 Immobiline Drystrip gels and IPG buffers used for IEF

Immobiline Drystrip Gel (7cm) IPG buffer

pH 3-10 non-linear pH 3-10 nonlinear

pH 5.6-8 linear pH 6-11

pH 4-7 linear pH 4-7

2.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) and western blotting.

Protein analysis by SDS-PAGE was carried out using two methods. Gels were 

poured using the Mini protean II SDS-PAGE apparatus (Biorad). 

Alternatively, the NuPAGER-Novex Pre-cast system (Invitrogen) was used. 

The NuPAGE-Novex pre-cast gels used are summarised in table 2.5.

2.5.1 Solutions and Buffers

Pre-stained molecular weight markers (Invitrogen, 10748-010 and 

LC5925) were supplied as ready-to-use protein markers and were stored in 

aliquots at -20°C.

Acrylamide solution (Merck) was purchased as a ready mixed 40% stock 

containing acrylamide and bis-acrylamide at a ratio of 37.5:1 and stored at 

4°C.

Ammonium persulphate (APS) was prepared as a 15% solution (w/v) in 

distilled water and stored at -20°C.

Resolving gel buffer was prepared as a 4x stock solution containing 1.5M 

Tris HCL pH8.8, 0.24% v/v TEMED, 0.4% w/v SDS. This 4x stock was 

stored for up to one month at 4°C.

Stacking gel buffer was prepared as a 2x stock solution containing 0.25M 

Tris-HCl pH6.8, 0.12% v/v TEMED, 0.4%w/v SDS. This 2x stock was stored 

for up to one month at 4°C.
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Electrophoresis running buffer for poured gels was prepared as a lOx stock 

solution containing 0.25M Tris-base (USB), 1.92M glycine (Fisher), 1% SDS. 

The pH of the running buffer was pH8.3, and was not adjusted with HC1. This 

lOx stock solution was stored at room temperature.

Electrophoresis running buffers for pre-cast gels (Invitrogen) were diluted 

appropriately to lx for use and were stored at room temperature.

Transfer buffer was prepared as a lx working solution containing 25mM 

Tris-base, 192mM glycine, 20%w/v analysis grade methanol (Fisher). This lx 

working solution was stored at room temperature.

IX PBS (phosphate-buffered saline) was prepared by dissolving 50 PBS 

tablets (Oxoid) in 5 litres of distilled water. The 1 x PBS stock solution was 

stored at room temperature.

PBS-Tween contained 0.1% Tween-20 detergent (v/v) in lx PBS and was 

stored at room temperature.

Blocking buffer was prepared as a 1 x working solution containing 0.2% I- 

block (Tropix. Inc), 0.1% v/v tween-20 and 0.02% v/v sodium azide (NaN2) in 

PBS. 500ml of distilled water was heated in a microwave until boiling and 5 

PBS tablets were added, lg of I-block was then dissolved in the heated PBS by 

stirring on a magnetic mixer. After the I-block had dissolved, the solution was 

cooled before 0.5ml of Tween-20 and 0.5ml of NaN2 were added. The 

blocking buffer was stored for up to 1 month at 4°C.

Alkaline phosphatase assay (APA) buffer (Tropix Inc.) was prepared as a 

10 x stock solution containing 1M diethanolamine pH 9.5 and lOmM MgCb. 

10 x APA buffer was stored for up to one month at 4°C.

CDP-Star development reagent (Tropix Inc.) was supplied as a ready to use 

solution and was stored at 4°C. It is an alkaline phosphatase substrate for use 

in chemiluminescent detection protocols.

MESNA stripping buffer was prepared as a 1 x working solution containing 

6.25mM Tris-HCl pH 6.8, 2% w/v SDS and 50mM 2-mercaptoethansulfonate 

(MESNA; Sigma). MESNA stripping buffer was kept for no longer than two 

weeks and was stored at 4°C.
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2.5.2 Equipment

Polyethylene lay flat film 204mm (Jencons).

Hypobond-P polyvinylidene diflouride (PVDF) membrane (Amersham) 

Chromatography paper 3MM Chr (Whatman)

P200 gel loading tips (Greiner)

Mini protean II SDS-PAGE apparatus (Biorad)

Mini protean 1mm glass plates, spacers, combs and stand (Biorad)

X-cell SureLock Mini-cell SDS-PAGE apparatus (Invitrogen)

Mini-trans-blot blotting apparatus (Biorad)

Powerpac 300 power suppliers (Biorad)

X-omat LS Kodak film 18 x 24 cm (Amersham)

2.5.3 Resolution of protein samples by SDS-PAGE

Poured gels were prepared by mixing resolving gel buffer (2.8ml), 40% 

acrylamide (3.4ml), 15% APS (38pl) and distilled water (5.1ml). This gave a 

resolving gel of 12% and the volumes given were sufficient to pour two 

polyacrylamide resolving gels. The mixture was poured into a mini protean gel 

apparatus and a layer of water- saturated butan-2-ol was pipetted over the gel 

to ensure an even and flat level interface and to assist setting of the 

polyacrylamide gel. Resolving gels were left to set at room temperature for 1 

hour. Once the resolving gels was set, the layer of butan-2-ol was poured off 

and the surface of the gel was rinsed with distilled water with any remaining 

excess water absorbed with paper tissues. Sufficient stacking gel for two mini

gels was prepared with distilled water (3.1ml), stacking gel buffer (3.9ml), 

40% acrylamide solution (0.8ml), 15% APS (78pl) and TEMED (8pl). The 

stacking gel was poured over the solidified resolving gel and a comb was 

inserted to form the wells of the gel. The stacking gel was left to set for 30 

minutes. When the stacking gel was set, the combs were removed and the 

wells were rinsed with lx electrophoresis running buffer and filled with 

running buffer.
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Pre-cast gels (Invitrogen) were prepared by removing the gel cassette from the 

cassette pouch and rinsing with deionised water. The tape covering the slot at 

the back of the gel cassette was removed. The comb was removed carefully to 

expose the loading wells and the wells were rinsed with lx electrophoresis 

running buffer. The gel cassette was inserted into the lower buffer chamber 

assembled with the gel tension wedge, adjacent to the buffer core. Wells were 

filled with lx electrophoresis running buffer.

Pre-stained molecular weight markers and protein samples were then loaded 

onto the gels by pipetting under the running buffer using the P200 gel loading 

tips. Gels were run at 200V for 45 minutes to 1 hour.

Table 2.5 NuPAGE-Novex Pre-cast gels (Invitrogen) used for SDS-PAGE 

protein analysis

Gel type Running Buffer Use

4-12% Bis-Tris (1mm) 10 wells MOPS SDS 1D-E

4-12% Bis-Tris Zoom (1mm) IPG well MOPS SDS 2D-E

7% Tris-Acetate gel (1mm) 10 wells Tris-Acetate SDS 1D-E

4-12% Tris-Glycine gel (1mm) 10 wells Tris-Glycine SDS 1D-E

2.5.4 Transfer of resolved proteins onto polyvinylidene 

diflouride (PVDF) membranes.

PVDF membranes were soaked in analysis grade methanol before use and then 

equilibrated in transfer buffer. Polyacrylamide gels were placed onto the 

membranes between two pieces of Whatman 3MM filter paper soaked in 

transfer buffer in a blotting cassette. Protein transfer/blotting was carried out at 

100V for 60 minutes (Mini Trans-blot apparatus, cooled with a container of 

ice). The blots were then washed tree times in PBS-Tween.
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2.5.5 Immunostaining of western blotted membranes

Blots were blocked in a sealed polyethylene bag with 15ml of blocking buffer 

and was placed on a rocking apparatus either for 1 hour at room temperature 

or overnight at 4°C. The blocking buffer was then removed and replaced with 

10-20ml of primary antibody diluted to the required concentration in blocking 

buffer (see Table 2.6), and blots were incubated with primary antibody for a 

minimum of 1 hour. Blots were then washed three times for at least 10 minutes 

in PBS-Tween. Subsequently, the blots were incubated for a minimum of 1 

hour with 15ml of appropriate alkaline phosphatase-conjugated secondary 

antibody diluted to 1/10,000 with blocking buffer (see Table 2.7). Blots were 

then washed again three times for at least 10 minutes in PBS-Tween. This was 

followed by a final 10 minute wash in lx  APA buffer. Excess APA buffer was 

drained off and blots were incubated with CDP-Star development reagent for 

10 minutes. Again, all excess liquid was removed and blots were exposed to 

autoradiograph film (Kodak), through a polyethylene envelope.

2.5.6 Stripping blots for repeat immunostaining

Blots were stripped, by incubating blots with 20ml of MESNA stripping buffer 

in a sealed polyethylene bag for 30 minutes at 50°C in a water bath. 

Subsequently, blots were washed in 10 ml of SDS wash buffer followed by 

three 10 minute washes in PBS-Tween. Blots were then blocked overnight at 

4°C with rocking by placing them in a sealed polyethylene bag with 15ml of 

blocking buffer. Blots were then ready for repeat immunostaining as described 

in section 2.4.5.

All results of protein analysis by western blotting are representative of at least 

three independent experiments.
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Table 2.6 Primary Antibodies

Specificity Clone/

Cat.

Number

Species Working

Concentration

Citation/Supplier

Actin A-2066 Rabbit 1/1000 Sigma

Bcl-6 Sc-858 Rabbit 200 ng/ml SCB

Calregulin Sc-11398 Rabbit 200ng/ml SCB

CREB1 #9192 Rabbit 1/1000 CST

Phospho CREB1 Serl33 #9191 Rabbit 1:1000 CST

Cyclin D2 Sc-593 Rabbit 200ng/ml SCB

EBV EBNA2 PE2 Mouse 1 pg/ml Young etal,  1989

EBV LMP1 CS.1-4 Mouse 1 pg/ml Rowe etal,  1987

EBV LMP2A 14B7 Rat 1 pg/ml Fruehling etal,  1996

FoxOl #9462 Rabbit 1/1000 CST

PARP Sc-7150 Rabbit 200 ng/ml SCB

Phospho (Ser/Thr)- 

PKB substrate

#9611 Rabbit 1/1000 CST

P65-NFkB Sc-109 Rabbit 200ng/ml SCB

S6-Ribosomal protein #2212 Rabbit 1/1000 CST

Phospho S6 Ribosomal 

protein Ser235/236

#2211 Rabbit 1/1000 CST

STAT1 Sc-346 Rabbit 200 ng/ml SCB

a-Tubulin T9026 Mouse 1/1000 Sigma

SCB - Santa Cruz Biotechnology; CST -  Cell signalling technologies

Table 2.7 Secondary Antibodies -  Alkaline Phosphatase-conjugated

Specificity Cat. number Species Working concentration Supplier

Mouse IgG 170-6520 Goat 1/10,000 Biorad

Rabbit IgG 170-6518 Goat 1/10,000 Biorad

Rat IgG Sc-2021 Goat 1,10,000 SCB

SCB - Santa Cruz Biotechnology
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2.6 Staining of proteins separated on SDS-PAGE gels

2.6.1 Silver staining

Silver staining of resolved proteins on an SDS-PAGE gel was carried out with 

a Silver staining kit (Amersham). The protocol supplied by the manufactured 

was modified to allow compatibility for subsequent analysis of proteins by 

mass spectrometry.

Reagents

Fixing solution contained 40% v/v Ethanol (Fisher) and 10% v/v Glacial 

acetic acid (Fisher).

Sensitising solution contained 75 ml Ethanol (Fisher), 1.25 ml Glutaraldehyde 

(25% w/v)*, 10ml sodium thiosulphate (5% w/v)* and 17g Sodium acetate*, 

and was made up to 250ml with distilled water.

Silver solution contained 25ml silver nitrate solution (2.5 w/v)* and 0.1ml 

Formaldehyde (37% w/v)*, and was made up to 250 ml with distilled water. 

Developing solution contained 6.26g of sodium carbonate* and was made up 

to 250 ml with distilled water.

Stop solution contained 3.65g of EDTA-Na2 * and was made up to 250 ml 

with distilled water.

* Supplied as part of the Plus-One Silver staining kit for protein (Amersham).

Gels were removed from the gel cassette after SDS-PAGE and were placed in 

a tray on rocking apparatus. Gels were fixed by soaking in 125 ml of fixing 

solution for 30 minutes. The gels were subsequently washed three times in 

fresh distilled water for 5 minutes each time. Gels were then soaked in 125 ml 

of sensitizing solution (Amersham) for 30-60 minutes. Gels were once again 

washed three times in fresh distilled water for 5 minutes each time before 

applying 125 ml silver solution (Amersham) for 20 minutes. Silver solution
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was removed by washing with distilled water twice for 1 minute each time. 

The silver stain was developed by applying developing solution (Amersham) 

for a maximum of five minutes. Staining was terminated by soaking the gels in 

stop solution (Amersham) for 10 minutes. The stop solution was removed and 

gels were once again washed with distilled water three times for 5 minutes 

each time. All procedures were carried out at room temperature. Gels were 

stored in sealed polyethylene bags containing 1% v/v acetic acid.

2.6.2. Phospho-specific staining

Phosphorylated proteins resolved on an SDS-PAGE gel were stained with Pro- 

Q -Diamond phosphoprotein gel stain (Molecular Probes, Invitrogen) 

according to manufactures instructions as described below.

Gels were removed from the gel cassette after SDS-PAGE and were placed in 

a tray on rocking apparatus. Gels were fixed by soaking in 125 ml of fixing 

solution (50% v/v methanol, 10% v/v glacial acetic acid) for 30 minutes. The 

gels were subsequently washed twice in fresh distilled water for 10 minutes 

each time. The gels were then incubated with 50ml pf Pro-Q Diamond 

phosphoprotein gel stain (Molecular probes) for 100 minutes in the dark. The 

phosphoprotein stain was replaced with a destain solution (Molecular probes) 

to reduce gel background signal and signal from non-specific binding. The 

gels were incubated with 125ml of destain solution twice for 1 hour in the 

dark, for a total of 2 hours. All procedures described were carried out at room 

temperature. The Pro-Q Diamond phosphoprotein stain has an excitation 

maximum at ~555nm and an emission maximum at 580 nm. Stained proteins 

were visualized using a fluorescence scanner (Amersham Typhoon 9400).

2.7 2D gel analysis

Gels were scanned to a high resolution (600 dpi) with a high specification 

scanner (ImageScanner, Amersham Biosciences) and saved as tiff images. 

Detailed gel analysis was subsequently performed using Phoretix 2D
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Expression software version 2004 and later version 2005 (NonLinear 

Dynamics Ltd., Newcastle). This software has been previously demonstrated 

to be an objective and accurate method of gel analysis and to be effective in 

this type of study (Mahon and Dupree, 2001). The software automates the 

identification and quantification of gel spots by normalizing spot volumes and 

excluding background noise spots by having a minimum area parameter. Pairs 

of 2D gels can be compared with the software which matches spots between 

gels by comparing their location (selected by determining the centre of optical 

density within the spot). It was additionally necessary to manually confirm 

that each spot had been correctly identified by the software and validate the 

results for spot comparison between gels. This was achieved by studying 

enlarged on-screen images of the gels. In this study we were interested in the 

absence of spots in one gel compared to the other or a marked difference in 

spot intensity. The marked difference in spot intensity was arbitrarily set as a > 

4-fold difference following advice from the software manufacturers 

(Nonlinear Dynamics Ltd).

2.8 Protein identification by Mass spectrometry

Protein spots of interest were manually excised from 2D gels and were 

analysed by The Functional Genomics and Proteomics laboratories at the 

University of Birmingham using the following protocol.

2.8.1 In-gel protein digestion

In gel trypsin digestion of manually excised spots was performed using an 

automated 96-well plate protocol plate modified from Shevchenko et al. 1996. 

Spots were dehydrated with acetonitrile (80 pi, 5 min), de-stained (lvol: lvol 

ratio of freshly made 30 mM K.3Fe(CN)6, 100 mM Na2S2C>3.5H20; 50 pi per 

spot, 15 min shaking occasionally), rinsed 2/3 times in with 25 mM NH4HCO3 

(50 pi) and supernatant removed. Acetonitrile was added (50 pi, 15 min), 

supernatant removed, gel rehydrated in 25mM NH4HCO3 (50 pi, 10 min), 

supernatant removed, acetonitrile added (50 pi, 15 min). The samples were
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dried to completeness in an oven (60 °C, 30-45 min) and lOmM DTT in 25 

mM NH4HCO3 added (25 pi, 56 °C for 1 h). The sample was cooled to room 

temperature, supernatant removed and 55mM iodoacetamide in 25mM 

NH4HCO3 added (25 pi, 45 mins at room temperature in the dark). 

Supernatant was removed and the gel plugs washed with 25mM NH4HCO3 (25 

pi; 10 min). Supernatant was removed and acetonitrile added (50pl, 15 min). 

Supernatant was removed and the plugs were rehydrated with 25mM 

NH4HCO3 (50 pi, 10 min). Following further dehydration in acetonitrile (50 

pi, 15 min) and removal of the supernatant, the spots were dried to completion 

in an oven (60 °C, 30-45 min). Sequencing grade modified trypsin was 

prepared as described by the manufacturer and made to a final concentration 

of 6.25ng/pl in 50mM NH4HCO3 . This trypsin solution was added to the gel 

plugs (lOpl on ice until the gel had fully rehydrated). Once fully rehydrated 

(approximately 2 0  min), the plug was covered with a minimal volume of 

25mM NH4HCO3 (10pl) to keep gel wet during digestion and incubated at 

37°C overnight. The digestion buffer (10 pi) that surrounds the gel plug was 

removed and placed in a well in a clean plate. The buffer was dried to 

completion in an oven (60 °C) and the remaining peptides resuspended 1 % 

(v/v) formic acid ( 6  pi) for tandem MS (MS/MS) or in 0.1 % (v/v) 

trifluoroacetic acid (TFA; 0.5 pi) for matrix-assisted laser 

disorption/ionisation-time of flight (MALDI-TOF) MS.

2.8.2 Protein identification

MS/MS was performed on the sample (5 pi) using a nanoESI Q-Tof mass 

spectrometer (Q-Tof Ultima GLOBAL, Micromass UK Ltd, Manchester) 

following separation of peptides using capillary liquid chromatography 

(Waters Ltd, Elstree, Hertford UK) and a PepMap C l8  column (75 pm i.d. x 

15 cm; Cat. No. 160396, Dionex (UK) Ltd, Camberley, Surrey UK). 

Following MS/MS the raw data was processed using MassLynx 3.5 

(Micromass). The tryptic peptide sequences were then compared with the 

NCBI non-identical protein sequence database using MASCOT software 

(Matrix Science Ltd, London UK). The criteria used for conclusive
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identification of a protein was either one peptide with a peptide expectation 

value (p) of < 0.00001, or two or more peptides with p<0.05. A conclusive 

identification was also allowed for two or more peptides with peptide 

expectation values of <1.0 and the sum of the MOWSE scores for only these 

peptides was >100. Peptides matching with trypsin and keratin were 

disregarded as contaminants.

2.9 Molecular biology

2.9.1 Bacterial culture media and reagents

Sterilisation of bacterial culture media and other reagents was carried out by 

autoclaving for 40 minutes at 15psi and 121 °C where indicated.

Luria-Bertani (LB) broth was prepared to a final concentration of 0.5% 

(w/v) yeast extract (Oxoid), 0.17M NaCl (Fisher) and 1% (w/v) tryptone 

(Oxoid) in distilled water, before sterilising. If, required, antibiotics were 

added after sterilising prior to use. LB broth was stored at 4°C.

Luria-Bertani (LB) agar was prepared by adding 15g of bactoagar (Oxoid) to 

1 litre of LB broth before sterilisation. Antibiotics for selective agar plates 

were added when the agar had cooled sufficiently following sterilisation, 

immediately before pouring the agar plates. Both LB agar and agar plates were 

stored at 4°C.

Ampicillin (Sigma) was used as an antibiotic to isolate transformed bacteria. 

A 50mg/ml stock solution was prepared in 50% Ethanol. Aliquots were stored 

at -20°C and were used at a final concentration of 50pg/ml.

2.9.2 Transformation of competent bacterial cells

Competent bacterial cells (One shot TOP 10 chemically competent E.Coli, 

Invitrogen) were thawed on ice and 25 pi of competent cells were incubated on 

ice with 50-200ng of plasmid DNA for 30 minutes. The competent bacteria
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were then heat-shocked at 42°C for 90 seconds on a heating block. 

Subsequently, 0.5ml of LB broth pre-warmed to 37°C (without any antibiotic 

selection) was added and the cells were incubated at 37°C. The transformation 

reactions were plated onto ampicillin selective LB agar plates and incubated 

overnight at 37°C without agitation.

2.9.3 Preparation of bacterial cells

A 5ml volume of LB broth containing ampicillin (50pg/ml) was inoculated 

with a single colony of bacterial cells from a streaked LB agar plate, and 

incubated at 37°C overnight on a rocking incubator. 2.5ml of the overnight 

culture was then used to inoculate a further 250 ml pf LB broth, which was 

again incubated at 37°C until the optical density at A,=600nm (OD6oonm) 

reached 0.3 to 0.6 (approximately 10 to 16 hours incubation).

2.9.4. Large-scale preparation of plasmid DNA

Large-scale preparations of plasmid DNA were performed using a DNA 

preparation kit (Ultramobius 1000 Plasmid Kit, Novagen) according to the 

manufactures instructions as described below.

A starter culture was used to inoculate 250 ml of selective LB medium this 

was incubated overnight at 37°C in an orbital shaker. The bacteria were 

harvested by centrifugation and re-suspended in 8 ml of Bacterial resuspension 

buffer (Novagen). Once the bacterial pellet was thoroughly re-suspended, 8  ml 

of Bacterial Lysis Buffer (Novagen) was added and the suspension was mixed 

gently by inverting the tube five times. This was incubated for 5 minutes at 

room temperature and 8 ml of Neutralization Buffer (Novagen) was then 

added. The solution was mixed again by inversion. After a 5 minute 

incubation on ice, the white precipitate was removed by centrifugation at

10,000 x g for 2 minutes at 4°C in a Sorvall SS-34 rotor and filtration of the 

resulting supernatant into a fresh tube. This supernatant was loaded onto a 

Mobius 1000 Column (Novagen) pre-equilibrated with 10ml of Mobius
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Equilibration Buffer (Novagen), and was centrifuged at 2000 x g for 3 

minutes. The flow through was retained and was incubated with 2.4ml of 

Detox Agent (Novagen) for 15 minutes on ice. The lysate was subsequently 

centrifuged at 10,000 x g and the clarified lyaste was loaded onto the 

equilibrated Mobius 1000 Column (Novagen). Once the flow through had 

passed through the column, the column was washed with 20ml of Mobius 

Wash Buffer (Novagen). The plasmid DNA was subsequently eluted by 

adding 5ml pf Mobius Elution Buffer (Novagen) to the column. The plasmid 

DNA was then precipitated, by adding 3.5ml of isopropanol (Fisher) and 

centrifuging at 15,000 x g for 20 minutes at 4°C in a Sorvall SS-34 rotor. The 

pellet was washed carefully with 2ml of 70% ethanol (v/v) and re-centifuged 

at 15,000 x g for 10 minutes. The supernatant was decanted and the DNA 

pellet was re-suspended in a suitable volume of TE. An aliquot was used to 

quantify the yield of DNA obtained. This aliquot was diluted 1:100 in TE and 

the absorbance of the solution at 260nm was measured on a spectrophotometer 

(Pharmacia Biotech UltrospecR 3000). A 50pg/ml DNA solution has an A260nm 

of 1.

2.10. Total RNA extraction from lymphoid cell lines.

Total RNA was extracted from lymphoid cell lines using the RNeasy system 

(Qiagen) according to the manufactures instructions as described below.

A total of 4 x 106 cells were pelleted by centrifugation at 13,000 rpm for 5 

minutes and the supernatant was removed. The remaining pellet was loosened 

by flicking the tube before the addition of 350pl of Buffer RLT (Qiagen) 

supplemented with 1.43mM of P-mercaptoethanol (Sigma). The sample was 

homogenized by passing the lysate five times through a 20-gauge needle 

(0.9mm diameter, Tyco Healthcare) fitted to an RNase-free syringe. 350pl of 

70% ethanol (supplier) prepared with DEPC treated water was added to the 

homogenized lystae before mixing well by pipetting. 700pi of the sample was 

applied to an RNeasy column (Qiagen) placed in a 2ml collection tube 

(Qiagen). The sample was subsequently centrifuged for 15 seconds at 8,000xg
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and the flow-through was discarded. 350pl of Buffer RW1 (Qiagen) was 

pipetted into the RNeasy mini column and was centrifuged for 15 seconds at

8,000 x g to wash. The flow through was discarded. 80pl of DNase incubation 

mix (Qiagen) was pipetted directly onto the RNeasy silica-gel membrane and 

was incubated at room temperature for 15 minutes to ensure complete DNA 

digestion.350pi of Buffer RW1 (Qiagen) was subsequently applied onto the 

column and centrifuges for 15 seconds at 8,000 x g before discarding the flow

through. The column was transferred into a new 2 ml collection tube and 

washed by the addition of 500pi of Buffer RPE to the column before 

centrifuging for 15 seconds at 8,000 x g. The flow through was discarded. The 

RNeasy silica-gel membrane was dried by the addition of 500pl Buffer RPE to 

the column and centrifugation for 2 minutes at 8,000 x g. The RNA was eluted 

by the addition of 30pl of RNase-free water (Qiagen) directly onto the RNeasy 

silica-gel membrane and centrifugation for 1 minute at 8,000 x g. An aliquot 

was used to quantify the yield and purity of RNA obtained. This aliquot was 

diluted 1:50 in RNase free water (Qiagen) and the absorbance of the solution 

at 260nm and 280nm was measured on a spectrophotometer (Pharmacia 

Biotech UltrospecR 3000). A 40pg/ml solution of RNA has an A260nm of 1. 

Pure RNA has an A260nm/A280nm ratio of 1.9-2.1.
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CHAPTER 3

Identification of PI3K target proteins in lymphocytes.

3.1 Introduction

The main objective of this study was to further our understanding of the 

interplay of the Phosphotidylinositide-3-kinase (PI3K) enzyme with its 

downstream targets to define its contributions to lymphocyte biology. The 

serine/threonine kinase Protein Kinase B (PKB) is a crucial kinase in this 

pathway. The minimum peptide motif for PKB mediated phosphorylation was 

initially established as Arg-Xaa-Arg-Yaa-Zaa-Ser/Thr-Hyd, where Xaa is any 

amino acid, Yaa and Zaa are small residues other than glycine, and Hyd is a 

large hydrophobic residue such as phenylalanine or leucine (Alessi et al, 

1996). This motif was found to be present in more than 400 different proteins 

(Nicholson & Andersen, 2002). Other studies using orientated peptide library 

approaches and motif-profile scoring algorithms have shown that additional 

motifs can be targets for phosphorylation by PKB, and are found in > 14,000 

different sequences and in approximately 9500 vertebrate protein sequences 

(Obata et al, 2000, Yaffe et al, 2001, Lawlor & Alessi, 2001). These 

approaches have therefore identified many proteins to be potential targets for 

phosphorylation by PKB. Whether these are substrates of PKB in vivo remains 

to be defined, as factors in addition to primary protein sequence, such as 

subcellular localization and tertiary protein structure, are important for 

substrate recognition in vivo. Despite this, these studies suggest that many 

proteins remain unidentified as PKB targets.

Epstein - Barr virus (EBV) is an important contributory factor towards B-cell 

malignancies. EBV immortalization of primary human B-cells results in the 

generation of lymphoblastoid cell lines (LCLs), a good model for cells in the 

polyclonal phase of Post-transplant lymphoproliferative disease (PTLD)
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(Rowe et al, 1998, Kieff & Rickinson, 2001). EBV contributes towards B-cell 

survival and proliferation by the co-operative action of many EBV genes that 

generate survival signals through various signalling pathways. EBV encoded 

proteins have been shown to activate signalling through the PI3K/PKB 

pathway (Swart et al, 2000, Scholle et al, 2000, Morrison et al, 2003, Dawson 

et al, 2003). Furthermore, PI3K has been shown to be essential for the 

proliferation of EBV immortalized B cells (Brennan et al, 2002). However, 

little is known about the downstream components of the PI3K pathway 

responsible for this proliferative advantage.

An alternative and powerful approach for the analysis of downstream 

components of signalling pathways mediated by protein kinases are the use of 

phospho-specific antibodies. These antibodies are directed against defined 

serine/threonine phosphorylated peptides within the consensus

phosphorylation motif of a kinase of interest. This allows the detection of 

phosphorylated substrates of the kinase and is a useful way of investigating the 

substrates of serine/threonine kinases in intact cells. In this chapter, a phospho- 

specific antibody directed against the consensus phosphorylation motif of PKB 

was employed in combination with a specific inhibitor of PI3K, LY294002 to 

identify the key molecules targeted by PI3K in lymphocytes that may 

contribute towards cellular survival and proliferation.
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3.2 Identification of a major target of PI3K signalling in B cells 

using a phospho-motif specific antibody.

Activation of the PI3K/PKB signalling pathway leads to an alteration in the 

phosphorylation status of several PKB target proteins involved in cellular 

proliferation and survival pathways. Protein phosphorylation is a key cellular 

regulatory mechanism of cellular signalling pathways, mediating several 

aspects of protein properties, including activity, function, subcellular 

localisation and interaction (Yaffe & Cantely, 1999). An investigation into the 

phosphorylation changes that occur in LCLs downstream of PI3K activation 

was therefore initiated to identify targets of PI3K/PKB activation in LCLs. 

The approach taken was the use of a phospho-(Ser/Thr)-PKB-substrate 

(phospho-PKB-substrate) antibody supplied by Cell Signalling Technologies, 

in combination with a specific inhibitor of PI3K, LY294002. The phospho- 

PKB-substrate antibody is specific for the substrate consensus motif of PKB 

(RxRxxS/T), and therefore detects phosphorylated substrates of PKB (Kane et 

al, 2002, Ly et al, 2003).

3.2.1 Identification o f a 32 kDa phosphoprotein as a major target o f PI3K 

signalling in lymphablastoid cell lines.

Nuclear and cytosolic extracts were generated from two LCLs. SP-LCL was 

generated in house by the in vitro infection of peripheral blood lymphocytes 

with the B95.8 isolate of EBV. IB4-LCL is an LCL generated from cord blood 

B-cells immortalized with B95.8 EBV (Sample & Kieff, 1990). The cells were 

either left untreated or were treated with LY294002 (20pM, 1 hour). Diluent 

control experiments were previously carried out to ensure that the effect of 

inhibitor treatment on cells was specific to LY294002. Proteins were 

subsequently resolved by SDS-PAGE and detected by immunoblotting with 

the phospho-PKB-substrate antibody. Many bands representing 

phosphorylated substrates of PKB remained unchanged in intensity upon 

treatment with LY294002 (Figure 3.1). However, the phosphorylation of a 

protein of 32 kDa (pp32) was dramatically inhibited following treatment with
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LY294002 in both the cytosolic and nuclear fractions of both IB4-LCL and 

SP-LCL. These results indicted that pp32 is a major target of PI3K/PKB 

signalling in LCLs.

3.2.2 Identification o f  pp32 as S6-Ribosomalprotein.

Two previous studies have used the same phospho-PKB substrate antibody to 

detect a 32 kDa LY294002 sensitive protein in 3T3-L1 adipocytes (Kane et al, 

2002) and chronic myeloid leukaemia cells (Ly et al, 2003). These groups 

identified pp32 to be S6 -ribosomal protein (S6 ), a component of the ribosome. 

When phosphorylated, S6  has been demonstrated to upregulate the translation 

of mRNA molecules bearing a 5’-terminal oligopolypyrimidine tract (TOP 

mRNAs) that translate components of the translational apparatus such as 

elongation factors, ribosomal proteins and ribosome biogenesis factors 

(Ruggero & Pandolfi, 2003). To investigate whether the LY294002 sensitive 

pp32 detected in this study was S6 , antibodies specific for pan-S6  and a 

phosphorylated-(Ser 235/236)-S6 were utilized.

A dose response experiment was carried out in IB4-LCLs, treating cells with 

varying concentrations of LY294002 prior to the generation of nuclear protein 

extracts. Nuclear proteins were subsequently resolved by SDS-PAGE and 

detected by immunoblotting with phospho-PKB-substrate, phospho-(235/236)- 

S6 , and panS6  antibodies. The phosphorylation of both pp32 and S6  were 

found to be constitutive in IB4-LCLs. Furthermore, LY294002 treatment 

inhibited the phosphorylation of pp32 and S6  in a similar dose dependent 

manner (Figure 3.2). The total levels of S6  protein expression were not 

affected by PI3K inhibition. The phosphorylation of pp32 and S6  were also 

dramatically reduced to a similar degree in response to treatment with 

rapamycin (20ng/ml, 1 hour) (lane 6 , Figure 3.2). Rapamycin is an inhibitor of 

the mammalian target of rapamycin (mTOR) protein, which is activated in 

response to signalling through PI3K. When activated, mTOR phosphorylates 

and activates S6 K (p70-S6 Kinase), which subsequently phosphorylates S6  

(Ruggero & Pandolfi, 2003). The total level of S6  protein expression was not 

affected by rapamycin treatment.
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To further characterise the response of pp32 to PI3K inhibition, time course 

experiments were performed. IB4-LCLs were treated with LY294002 (20pM) 

for varying periods of time prior to the generation of nuclear protein extracts 

for analysis by immunoblotting. The incubation of IB4-LCLs with LY294002 

for increasing periods of time led constant abrogation of both S6  and pp32 

phosphorylation (Figure 3.3). The total level of S6  expression was not altered 

over time in response to LY294002 treatment.

These data provided strong evidence to conclude that the 32kDa LY294002 

sensitive protein detected with the phospho-PKB-substrate antibody is S6 . 

This conclusion was based on the observations that pp32 was the same size, 

and had similar inhibitor responses and kinetics to S6 . In addition, the 

phosphorylation of pp32 and S6  were both inhibited in response to inhibition 

of mTOR by rapamycin. To conclude, S6  was found to be constitutively 

phosphorylated, and is a major target for PI3K signalling, in LCLs.

3.3 Identification of S6 as a major target of PI3K signalling in 

Burkitt’s lymphoma B cell lines.

Having established that S6  is an important target for PI3K signalling in LCLs, 

the phosphorylation status of S6 , and the response of S6  to PI3K inhibition 

were investigated in other continually proliferating B cells lines derived from 

Burkitt’s lymphoma (BL) patients. BL cells are driven into continual 

proliferation by the constitutive expression of c-myc, a transcription factor that 

promotes cell proliferation by regulating the expression of various genes 

involved in cell cycle progression (Dang, 1999). This is the result of a 

characteristic reciprocal translocation that places c-myc adjacent to 

immunoglobulin genes in BL B cells (Hecht & Aster, 2000). Signalling 

through PI3K has also been demonstrated to play a critical role in the survival 

of BL cells, as PI3K inhibition for 24 hours rapidly induces apoptosis 

(Brennan et al, 2002).

88



Nuclear protein extracts were therefore generated from two EBV negative 

Burkitt’s lymphoma B cell lines, DG75 and BL41, as well as IB4 and SP- 

LCLs that were treated with varying doses of LY294002 for 1 hour. Proteins 

were subsequently analysed by SDS-PAGE and the phosphorylation status of 

S6  was analysed by western blotting. The phosphorylation of S6  was inhibited 

by LY294002 in a dose dependent manner in DG75 and BL41 cells in a 

similar manner to that observed in LCLs (Figure 3.4). Time course studies 

were also carried out in DG75 and IB4-LCL cells, treating the cells with 

LY294002 for increasing periods of time. The phosphorylation of S6  was 

completely inhibited by LY294002 (20pM) at 4 hours in DG75 cells (Figure 

3.5). These results indicate that S6  is constitutively phosphorylated, and is an 

important target of PI3K signalling in BL B cells as well as LCLs.

3.4 LY294002 and Rapamycin inhibit S6 phosphorylation in T 

cells.

Signalling through PI3K has been demonstrated to have an important role in 

the regulation of T-lymphocyte proliferation. PI3K has been shown to be 

activated downstream of the IL-2 receptor, the T cell receptor and the co

stimulatory molecule CD28 (Reif et al, 1997, Ward & Cantrell, 2001). Studies 

using pharmacological inhibitors of PI3K have implicated a role for PI3K in 

antigen receptor-mediated and IL-2 induced proliferation of T-cells (Shi et al, 

1997, Brennan et al, 1997; 1999). Mice deficient in PI3K pi 10 catalytic 

subunits have defects in T cell proliferation, development and antigen receptor 

signalling (Okkenhaug et al, 2002, Webb et al, 2005). IL-2 stimulation of 

PI3K has been demonstrated to induce PKB and P70 S6  kinase activation in T 

cells (Reif et al, 1997).

3.4.1 S6 is a target fo r  PI3K signalling in T cells.

As in B cells, many targets of the PI3K/PKB pathway in T cells remain 

uncharacterised. The approach of employing the phospho-PKB substrate 

antibody was therefore also applied to attempt to identify phosphorylated
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targets of PKB in the nuclei of Kit225 cells. Kit225 is an IL-2 dependent 

leukaemic T cell line derived from a patient with T cell chronic lymphocytic 

leukaemia (Hori et al, 1987). Kit225 cells have an absolute requirement for 

IL-2 for the induction of cell cycle progression and growth of the cells. In the 

absence of IL-2, these cells accumulate in the Gi phase of the cell cycle. Upon 

the addition of IL-2, Kit225 cells re-enter the cell cycle.

Kit225 cells were therefore quiesced by washing out of IL-2 for 3 days. Cells 

were subsequently pretreated with LY294002 (20pM) for 30 minutes or were 

left untreated, and then stimulated with IL-2 (20ng/ml) for 30 minutes. 

Nuclear protein extracts generated were resolved by SDS-PAGE and analysed 

by immunoblotting using the phospho-PKB-substrate antibody. The majority 

of bands detected were unchanged in intensity in response to IL-2 or treatment 

with LY294002 (Figure 3.6). However, a band at 32 kDa that was detected at 

very low levels in quiesced cells showed a considerable increase in intenstity 

in response to IL-2 stimulation (Figure 3.6). Treatment with LY294002 

(20pM, 1 hour) dramatically inhibited the phosphorylation of this protein. As 

this protein was of identical size to S6  and due to its inhibitory response to 

LY294002, it was likely that pp32 detected in Kit225 cells was also S6 .

This was confirmed by testing the sensitivity of S6  and pp32 phosphorylation 

to the inhibition of PI3K by LY294002 in these cells. Quiesced Kit225 cells 

were pretreated with various doses of LY294002 for 30 minutes before they 

were stimulated with IL-2 for 30 minutes. Nuclear protein extracts generated 

were subsequently analyzed by SDS-PAGE and immunoblotting with the 

phospho-S6  and pan-S6  antibodies. Some constitutive phosphorylation of S6  

was observed in quiesced cells (Figure 3.7). This could be increased 

considerably by stimulation with IL-2. Treatment with LY294002 inhibited 

the IL-2 induced phosphorylation of S6  in a similar dose responsive manner to 

that observed in LCLs and BL cells. Overlaying western blot films from the 

experiments carried out in Figure 3.6 and 3.7 confirmed that pp32 and S6  were 

of identical molecular weights to further support our hypothesis that pp32 

detected in Kit225 cells is also S6 . These results therefore demonstrate that S6  

is a major target for IL-2 induced PI3K signalling in T cells.
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3.4.2 LY294002 and rapamycin inhibit S6phosphorylation in T cells.

Lymphocyte proliferation is a key feature of the immune system and relies 

upon entry of cells into the cell cycle. This process is tightly regulated by the 

activities of D type cyclins and their partner cyclin-dependant kinases (cdk) 

(Sherr, 1996). Cyclin D2 is the first cell cycle protein to be expressed in 

lymphocytes following cell activation in repose to B and T cell receptor 

ligation, cytokine stimulation and EBV infection (Sinclair et al, 1994, Banerji 

et al 2001, Martino et al, 2001). This is accompanied by a downregulation in 

cdk inhibitors (CDKI), such as p27kipl (Sinclair et al, 1994, Frost et al, 2001, 

Appleman et al, 2002). These events promote the formation of catalytically 

active complexes comprised of a D-type cyclin and a cdk molecule that induce 

progression through the Gi phase of the cell cycle. PI3K activation in 

response to IL-2 signalling has been linked with components of the cell cycle 

machinery, inducing the expression of cyclin D3 and the degradation of p27kipl 

in T cells (Brennan et al, 1997). These observations demonstrate a role for 

PI 3 K in mediating T cell proliferation.

A study in the laboratory further investigated the role of PI3K and downstream 

pathways in the regulation of D-type cyclins in Kit225 cells using the 

pharmacological inhibitors, LY294002 and rapamycin. This study 

demonstrated that LY294002 inhibits cyclin D2 and cyclin D3 at both the 

transcriptional and post-transcriptional level, whilst rapamycin inhibited these 

cyclins at the post-transcriptional level only. The differing effects of the 

inhibitors prompted an investigation into the effect of these inhibitors alone 

and in combination on T cell proliferation. The results indicated that a 

combination of LY294002 and rapamycin was significantly more effective in 

inhibiting T cell proliferation than when used alone at similar doses. In 

addition, the study showed that the expression of both cyclin D2 and cyclin D3 

were reduced in response to treatment with a combination of LY294002 and 

rapamycin and is likely to contribute towards the suppressive effect of these 

inhibitors on T cell proliferation (Breslin et al, 2005).
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As part of this study, the phosphorylation status of S6  was analysed post 

treatment with a combination of LY294002 and rapamycin in Kit225 cells to 

characterise the effects of these inhibitors on downstream pathways. Kit225 

cells were quiesced by washing out of IL-2 for 3 days. The cells were 

subsequently treated with LY294002 and rapamycin, either alone or in 

combination at various doses for 30 minutes prior to stimulation with IL-2 for 

30 minutes. Total cellular protein extracts were generated and protein levels 

were analysed by SDS-PAGE and immunoblotting using antibodies specific 

for phospho-S6  and pan-S6  antibodies. Some constitutive phosphorylation of 

S6  could be observed in quiesced Kit225 cells (Figure 3.8). The level of S6  

phosphorylation could however be increased further by stimulation of the cells 

with IL-2. Treatment with LY294002 at 20pM was sufficient to dramatically 

inhibit S6  phosphorylation, whilst a dose of 5pM brought S6  phosphorylation 

to similar levels to those seen in unstimulated cells. Treatment with rapamycin 

at both 20nM and 5nM were sufficient to completely abolish S6  

phosphorylation. S6  phosphorylation was therefore also completely inhibited 

in response to treatment with a combination of LY294002 and rapamycin. 

Total levels of S6  protein expression were not affected by inhibitor treatments.

The combined effects of LY294002 and rapamycin on S6  phosphorylation 

were also investigated in primary T cell blasts. Primary T cells blasts were 

generated by activating and growing human T cells in PHA (1 pg/ml) and IL-2 

(20ng/ml) for 1 week. The cells were quiesced by washing out of IL-2 for 3 

days. Cells were subsequently pretreated with LY294002 and rapamycin 

alone, and in combination at various doses for 30 minutes. Cells were then 

stimulated with anti-CD3 (2.5ng/ml) and anti-CD28 (5pg/ml) for 30 minutes. 

Total cellular protein extracts were generated and protein levels were analysed 

by SDS-PAGE and immunoblotting using phospho-S6  protein and pan-S6  

antibodies. The results indicated that some constitutive S6  phosphorylation is 

present in T cell blasts (Figure 3.9). The addition of antibodies to CD3 and 

CD28 led to an increase in the level of S6  phosphorylation in these cells. 

Treatment with both LY294002 and rapamycin, alone, and therefore also in 

combination led to an indistinguishable and dramatic inhibition of S6  

phosphorylation. Again, total levels of S6  were not affected by inhibitor
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treatment. These results suggest that LY294002 and rapamycin affect both 

overlapping and parallel pathways that lead to S6 phosphorylation. Along with 

the inhibition of cyclin D2 and D3 expression, the inhibition of S6 

phosphorylation is likely to contribute towards to inhibitory effect of 

LY294002 and rapamycin on T cell proliferation.

This data contributed towards the publication ‘LY294002 and rapamycin co

operate to inhibit T-cell proliferation’, published in British Journal o f 

Pharmacology, March 2005 (see appendix II).

3.5 Characterisation of the phosphorylation status of S6 and 

CREB in lymphocytes

The study described in section 3.5.2 established a role for PI3K in the 

regulation of the cyclin D2 cell cycle protein in T lymphocytes. In addition, 

inhibition of PI3K in EBV immortalized B cells has been shown to cause the 

downregulation of cyclin D2 protein expression (Brennan et al, 2002). 

Another study in the laboratory was initiated to characterise the molecular 

events that contribute towards the regulation of the cyclin D2 promoter in 

lymphocytes. During this study, a direct role for PI3K in the regulation of the 

cyclin D2 promoter was demonstrated with the use of an active mutant of 

PI3K and a series of cyclin D2 promoter deletion constructs. A binding site for 

the transcription factor CREB1 (cAMP response element-binding protein) in 

the cyclin D2 promoter was identified. In addition, the phosphorylation of 

CREB at serine 133, the critical site for transactivational activity, was found to 

be important for cyclin D2 promoter activity in both T cells and LCLs (White 

et al, 2006). A role for the PI3K/PKB pathway in the phosphorylation of 

CREB at serl33 in response to growth and survival signals has previously 

been reported (Du & Montminy, 1998). It was therefore important to establish 

the phosphorylation status of CREB1 in these cell types, and whether PI3K 

activity was necessary for this phosphorylation event.
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For this purpose, the phosphorylation status of CREB1 was investigated in 

IB4-LCLs and KIT-225 cells following treatment with varying doses of the 

PI3K inhibitor, LY294002. Nuclear and cytosolic extracts were generated and 

were resolved by SDS-PAGE followed by immunoblotting with an antibody 

specific for serine 133 phosphorylated CREB1. CREB1 was found to be 

constitutively phosphorylated in the nuclei of EBV immortalized LCLs. 

Phospho-CREBl is represented by the higher molecular weight band visible 

on the blot. The lower molecular weight band represents ATF-2, another 

member of the CREB family, and is visible due to cross-reactivity with the 

phospho-CREBl antibody used (Figure 3.10). The phosphorylation status of 

CREB1 was not affected by PI3K inhibition. The effectiveness of LY294002 

to inhibit PI3K was verified by its ability to inhibit S6 phosphorylation. Total 

protein levels of CREB and S6 remained constant irrespective of treatment in 

LCLs. Similar observations were made in the nuclei of KIT-225 T cells. 

CREB1 phosphorylation was constitutive in these cells and was refractory to 

inhibition by PI3K (Figure 3.11). Again, the inhibition of PI3K by LY294002 

was verified by the inhibition of S6 phosphorylation following IL-2 

stimulation. The total levels of CREB1 and S6 were unaffected by LY294002 

treatment. These results demonstrate that the phosphorylation of CREB1 at 

serl33 occurs independently of PI3K activation in the EBV immortalized B 

cells and Kit225 T cells tested. This suggests that the regulation of the cyclin 

D2 promoter by CREB1 occurs independently of PI3K in these cells.

This data contributed towards the publication ; ‘Regulation o f Cyclin D2 and 

the cyclin D2 promoter by protein kinase A and CREB in lymphocytes’ , 

published in Oncogene, April 2006 (see appendix II).
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3.6 Discussion

In this chapter a phosphomotif-specific antibody directed towards the 

phosphorylated substrates of PKB was successfully used to identify S6- 

ribosomal protein (S6) as a major target of PI3K signalling in both the cytosol 

and the nuclei of transformed B cells and leukaemic T cells. S6 is 

phosphorylated on five clustered residues located within the C terminus of the 

protein, Ser 235, Ser236, Ser 240, Ser244 and Ser247 (Krieg et al, 1988) with 

the preferred phosphorylation sites believed to be Ser236 and Ser235 (Flotow 

& Thomas, 1992). S6 was found to be constitutively phosphorylated on Ser 

236 and Ser 235 in EBV immortalized B cells (LCLs), Burkitt’s lymphoma B 

cells and in an IL-2 dependent leukeamic T cell line (Kit225). The S6 protein 

resides at the interface between the large (60S) and small (40S) ribosomal 

subunits and is a component of 40S subunit. Ultraviolet crosslinking studies 

have demonstrated that S6 interacts with tRNA, initiation factors and mRNA 

(Nygard & Nilsson, 1990) and has therefore been implicated in the regulation 

of translation initiation.

The precise role of S6 phosphorylation in translation is currently unclear. S6 

phosphorylation has been associated with an increase in the translation of a 

specific class of mRNAs that bear a terminal oligopolypyirmidine tract (TOP) 

in the 5'-untranslated region (Jefferies et al, 1994, 1997, Schwab et al, 1999, 

Loreni et al, 2000). TOP mRNA’s encode components of the translation 

apparatus including ribosomal proteins, elongation factors 1A1 (eEFlAl) and 

eEF2 and proteins involved in ribosome biogenesis and translational control 

(Ruggero & Pandolfi, 2003). Thus S6 phosphorylation was proposed to 

increase the rate of protein synthesis by enhancing the production of 

components of the translational apparatus (Duncan & McConkey, 1982; 

1984). However, more recent studies have challenged this model as TOP 

mRNA translation has been observed independently of S6 phosphorylation 

(Tang et al, 2001, Stolovich et al, 2002, Pende et al, 2004, Ruvinsky et al,

2005). The phosphorylation of S6 has however been directly implicated in the 

regulation of cell size (Ruvinsky et al, 2005), suggesting that S6 is a critical
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mediator of cell growth. Furthermore, deletion of S6 in mice causes a block in 

ribosome biogenesis and prevents cell cycle progression (Volaveric et al, 

2000). The constitutive phosphorylation of S6 observed in LCLs, BL cells and 

leukaemic T cells may therefore contribute towards the continual proliferation 

and oncogenic capacity of these cells by inducing cell growth, proliferation 

and progression through the cell cycle.

The constitutive phosphorylation of S6 in LCLs and BL B cells was found to 

be dependent on PI3K and mTOR. Inhibition of these pathways using specific 

inhibitors ablated the phosphorylation of S6. This occurred in response to a 

wide range of doses of the PI3K inhibitor, LY294002, in LCLs and BL B 

cells. The data from Kit225 and T cell blasts also demonstrated that S6 

phosphorylation is inhibited by both LY294002 and rapamycin. These 

observations suggest that LY294002 and rapamycin target overlapping 

pathways that lead to S6 phosphorylation. Constitutive phosphorylation of S6 

has previously been detected in vivo in a B cell lymphoma model derived from 

transgenic mice bearing the c-myc oncogene which constitutively express PKB 

(Wedel et al, 2004). This phosphorylation was shown to be dependent on 

mTOR as levels of phosphorylated S6 were significantly reduced in extracts 

from lymphomas treated with rapamycin, compared to untreated extracts. 

Constitutive phosphorylation of S6 has also been detected in chronic myeloid 

leukaemia (CML) cells, and was shown to be inhibited by treatment with 

LY294002 and rapamycin (Ly et al, 2003). These observations indicate that 

constitutive S6 phosphorylation is a feature of malignancies of lymphoid 

origin, and may contribute towards the enhanced proliferation of these cells. 

This is likely to be a consequence of overactivation of the PI3K pathway, as 

treatment with inhibitors targeting PI3K and mTOR abrogate S6 

phosphorylation. The abrogation of S6 phophorylation on treatment with 

LY294002 and rapamycin also highlights the usefulness of monitoring the 

phosphorylation status of S6 as a readout of both PI3K and mTOR activity.

The detection of S6 with the phospho-PKB substrate antibody suggested that 

S6 is a direct target for phosphorylation by PKB. However, a complication 

arises with the use of phospho-motif-specific antibodies as several kinases
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share similar consensus phosphorylation motifs. The consensus 

phosphorylation motif of PKB is RxRxxS/T. Phosphorylation of S6 on serine 

236 by p70 S6 kinase occurs at the consensus phosphorylation motif RxRxxS. 

It is therefore likely that the phospho-PKB-substrate antibody recognized 

phosphorylated S6 on this basis. This hypothesis is corroborated by the fact 

that S6 phosphorylation was also inhibited by the mTOR inhibitor, rapamycin. 

Thus, the inhibition of S6 phosphorylation by LY294002 is therefore likely to 

be due to the activation of mTOR by PKB, resulting in the activation of P70 

S6 Kinase and hence phosphorylation of S6.

Several previous studies have employed phospho-PKB substrate antibodies as 

an approach to identify substrates downstream of PI3K activation (Manning et 

al, 2002, Kane et al 2002, Zhang et al, 2002b, Astoul et al, 2003, Ly et al, 

2003, Kovacina et al, 2003). Two of these studies utilized the same phospho- 

PKB substrate antibody used in this study to demonstrate that the 

phosphorylation of a 32kDa protein is sensitive to LY294002 and rapamycin 

in 3T3-L1 adiopcytes (Kane et al, 2002) and in chronic myeloid leukaemia 

(CML) cells (Ly et al, 2003). Both of these studies identified pp32 to be S6. 

Kane et al isolated pp32 by immunoprecipitation, and subsequent tandem 

mass spectrometric analysis revealed the identity of pp32 to be S6 (Kane et al,

2002). Ly et al utilized a different approach by firstly further analysing pp32 

by 2-Dimensional elecrophoresis (2DE). 2DE analysis allowed the detection 

of multiple forms of S6 in the CML cells, which had isoelectric points ranging 

from pH8 to pHl 1. This information was subsequently used to search a motif 

scanning algorithm (Scansite) which allows protein sequence databases to be 

searched for motifs that are likely to be phosphorylated by specific protein 

kinases (Obata et al, 2000). The results of these investigations indicated that 

pp32 was S6, which was subsequently confirmed by repeat immunoblotting 

with antibodies specific for phospho-ser235/236-S6 and pan-S6 (Ly et al,

2003). A similar approach was taken by Zhang et al to identify phosphorylated 

S6 to be an important target for PI3K signalling in wild type but not PTEN 

deficient embryonic stem (ES) cells (Zhang et al, 2002). Interestingly, this 

study also detected phosphorylated S6 in wild type ES cells using an antibody 

directed the substrate consensus motif of PKC, suggesting that S6 may be
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phosphorylated by pathways downstream of PI3K that are independent of 

PKB and mTOR. This is supported by several studies that demonstrate that S6 

kinases are activated by PKC in various cell types (Akimoto et al, 1998, 

Romanelli et al, 1999, Martin et al, 2001, Wang et al, 2003, Valovka et al,

2003).

In several studies utilizing phopho-PKB substrate antibodies, in addition to the 

identification of S6, novel targets of PKB have been identified. For example, 

Manning et al identified tuberin, the gene product of the tuberous sclerosis 

complex-2 (TSC2) tumour suppressor gene, to be a target for PKB mediated 

phosphorylation in NIH-3T3 fibroblasts using the commercially available 

antibody used in this study (Manning et al, 2002). This antibody was also used 

to identify a 40kDa 14-3-3 binding protein (Kovacina et al, 2003) and a 

160kDa protein containing a Rab GAP domain (Kane et al, 2002) as novel 

targets for PKB in hepatoma cell lines and 3T3-L1 adipocytes respectively. In 

a more recent study, Jiang et al used the same approach to identify WNK1, a 

negative regulator of insulin-stimulated mitogenesis as a novel target for PKB 

in 3T3-L1 adipocytes (Jiang et al, 2005). Astoul et al generated a distinct 

phospho-PKB substrate antibody with immunoreactivity towards a phospho- 

peptide sequence in glycogen-synthase kinase-3 (GSK-3), a known substrate 

for PKB (Astoul et al, 2003). This antibody was subsequently used to identify 

SLY (Src homology 3 (SH3) domain-containing protein expressed in 

lymphocytes) as a novel target for antigen receptor signal transduction in T 

cells. Together, this study and the studies described above demonstrate the 

value of phosphomotif-specific antibodies as tools to study the 

phosphoproteome of various cell types, and to identify new and important 

targets of protein kinases involved in signalling transduction pathways.

In summary, a phospho-PKB substrate antibody was used to identify the S6 

protein as an important target of PI 3 K signalling in EBV transformed B cells, 

BL B cell lines and in T cells, in which PI3K is an important contributor 

towards cellular proliferation and survival. The constitutive phosphorylation of 

this protein is therefore likely to contribute towards the oncogenic capacity of 

deregulated PI3K activation in lymphocytes and may therefore be a
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contributory factor towards the development of lymphoid malignancies such 

as EBV associated lymphomas and leukaemia.
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Figure 3.1 -  Identification of pp32 as a major target of PI3K signalling in LCLs 
using a phospho-PKB substra te  antibody.

Cytosolic and nuclear extracts were generated from a)IB4-LCL and b) SP-LCL that 
were either untreated (UT) or treated with LY294002 for 1 hour (20pM LY). Proteins 
were resolved by SDS-PAGE and analysed by immunoblotting using the phospho- 
PKB-substrate antibody. Equal protein loading was checked by immunoblotting for a- 
actin.
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Figure 3.2 -  Identification of pp32 as phospho-S6-ribosom al protein.

Nuclear extracts were generated from IB4-LCLs that were either untreated (UT), 
treated with a decreasing concentration of LY294002 (20, 2.5, 0.5, 0.25pM), or 
treated with rapamycin (RAP, 20ng/ml) for 1 hour. Proteins were resolved by SDS- 
PAGE, and were analysed by immunoblotting using phospho-PKB substrate, 
phospho-S6-ribosomal protein (S6) and pan-S6 antibodies.
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Figure 3.3 -  Identification of pp32 as phospho-S6-ribosom al protein.

Nuclear extracts were generated from IB4-LCLs that were either untreated (UT) or 
treated with LY294002 (20pM) for increasing periods of time as indicated (1, 4, 8 or 24 
hours). Proteins were resolved by SDS-PAGE, and were analysed by immunoblotting 
using phospho-PKB substrate, phospho-S6 and pan-S6 antibodies.
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Figure 3.4 -  C haracterisation of the response of phospho-S6-ribosomal 
protein to LY294002 in LCLs and Burkitt’s  Lymophoma B cell lines: Dose 
reponse studies

Nuclear extracts were generated from lymphablastoid cell lines; a) IB4-LCL b) SP- 
LCL and Burkitt’s Lymphoma B-cell lines; c) BL41 and d) DG75, that were either 
untreated (UT) or treated with a decreasing concentration of LY294002 for 1 hour 
(20, 10, 5 pM). Proteins were resolved by SDS-PAGE, and were analysed by 
immunoblotting using phospho-S6 and pan-S6 antibodies.
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Figure 3.5 -  C haracterisation of the response of phospho-S6-ribosomal 
protein to LY294002 in LCLs and Burkitt’s Lymophoma B cell lines: Time 
course stud ies

Nuclear extracts were generated from a) a lymphablastoid cell line (IB4-LCL) and b) 
a Burkitt’s lymphoma cell line (DG75), that were either untreated (UT) or treated 
with LY294002 (20 pM) for increasing periods of time as indicated (1, 4, 8, 24 
hours). Proteins were resolved by SDS-PAGE, and were analysed by 
immunoblotting using phospho-S6 and pan-S6 antibodies. Equal protein loading 
was checked by immunoblotting for Poly-ADP-ribose polymerase (PARP).
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Figure 3.6 -  Identification of pp32 as a major target of PI3K signalling in T-cells.

KIT225 cells were quiesced by washing out of IL-2 for 3 days. Cells were subsequently 
pretreated with LY294002 (20pM) for 30 minutes or were left untreated, and then 
stimulated with IL-2 (20ng/ml) for 30 minutes. Nuclear protein extracts generated were 
resolved by SDS-PAGE and analysed by immunoblotting using the phospho-PKB- 
substrate antibody. Equal protein loading was checked by immunoblotting for PARP.
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Figure 3.7 -  Identification of pp32 as phospho-S6-ribosomal protein in Kit225 
cells

KIT225 cells were quiesced by washing out of IL-2 for 3 days. Cells were subsequently 
pretreated with LY294002 at various doses as indicated for 30 minutes or were left 
untreated, and then stimulated with IL-2 (20ng/ml) for 30 minutes. Nuclear protein 
extracts generated were resolved by SDS-PAGE and analysed by immunoblotting 
using phospho-S6 and pan-S6 antibodies.
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Figure 3.8 -  LY294002 and rapamycin inhibit the phosphorylation of S6-ribosomal 
protein in an IL-2 dependent leukaemic T cell line.

KIT-225 cells were quiesced by washing out of IL-2 for 3 days. Cells were subsequently 
pretreated with LY294002 and rapamycin alone, and in combination for 30 minutes at the 
doses indicated, and then stimulated with IL-2 for 30 minutes. Total cellular protein 
extracts were generated and protein levels were analysed by SDS-PAGE and 
immunoblotting using phospho-S6 protein and pan-S6 antibodies. Equal protein loading 
was checked by immunoblotting for actin.
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Figure 3.9 LY294002 and rapamycin inhibit the phosphorylation of S6-ribosomal 
protein in primary T cells.

Primary T cells blasts were generated by activating and growing human T cells in PHA 
(1 pg/ml) and IL-2 (20ng/ml) for 1 week. The cells were quiesced by washing out of IL-2 
for 3 days. Cells were subsequently pretreated with LY294002 and rapamycin alone, and 
in combination for 30 minutes at the doses indicated, and then stimulated with anti-CD3 
(2.5ng/ml) and CD28 (5pg/ml) for 30 minutes. Total cellular protein extracts were 
generated and protein levels were analysed by SDS-PAGE and immunoblotting using 
phospho-S6 and pan-S6 antibodies. Equal protein loading was checked by 
immunoblotting for actin.
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Figure 3.10 -C haracterisation  of the phosphorylation sta tus of S6-ribosomal 
protein and CREB in response  to LY294002 treatm ent in LCLs.

Cytosolic and nuclear extracts were generated from IB4-LCLs that were either 
untreated (UT) or treated with an increasing concentration of LY294002 for 1 hour 
(5, 10, 20pM). Proteins were resolved by SDS-PAGE, and were analysed by 
immunoblotting using phospho-CREB, pan-CREB, phospho-S6 and pan-S6 
antibodies. Phospho-CREB is represented by the higher molecular weight band. 
The lower molecular weight band represents ATF-2, another member of the CREB 
family, visible due to cross-reactivity with the phospho-CREB antibody.
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Figure 3.11 -C haracterisation  of the phosphorylation sta tus of S6-ribosomal 
protein and CREB in response  to LY294002 in T cells: Dose response studies.

KIT225 cells were quiesced by washing out of IL-2 for 3 days. Cells were subsequently 
pretreated with LY294002 at the doses indicated (5, 10, 20pM) for 30 minutes, or were 
left untreated (UT), and then stimulated with IL-2 (20ng/ml) for 30 minutes. Nuclear 
protein extracts generated were resolved by SDS-PAGE and analysed by 
immunoblotting using phospho-S6, pan-S6, phospho-CREB and pan-CREB antibodies. 
Equal protein loading was checked by immunoblotting for actin
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C H A PTER  4

Proteomic analysis of the lymphocyte nucleus 

4.1 Introduction

The use of a phospho-PKB substrate antibody in chapter 3 led to the 

identification of phospho-S6 ribosomal protein as one major target of PI3K 

signalling in Epstein-Barr virus (EBV) immortalized Lymphoblastoid Cell 

Lines (LCLs). To study PI3K targets in LCLs on a larger scale, two- 

dimensional electrophoresis (2DE) was employed. This method was chosen 

due to its powerful capacity to resolve complex protein mixtures according to 

two independent factors; molecular weight (Mr) and isoelectric point (pi). This 

allows the simultaneous analysis of hundreds of proteins. Moreover, the 

differential expression of large numbers of proteins between cell types or in 

response to the activation or perturbation of signalling pathways can be 

monitored, with a view to identify differentially expressed proteins. The 

resolving power of 2DE also makes it a useful technique for the study of post- 

translationally modified proteins (Naaby-Hansen et al, 2001). Other methods 

such as high-throughput screening of transcriptional profiles using chip 

technology are useful for the large scale study of gene expression at the 

mRNA level. However, the results of mRNA studies do not always reflect the 

level of transcribed proteins directly participating in cellular functions. 

Furthermore, these approaches cannot measure or identify post-translational 

modifications, such as phosphorylation or acetylation, which often influence 

the ultimate function or stability of a protein (Andersen et al, 1997, Zieske, 

2006). 2DE therefore has the advantage of allowing the study of gene 

expression at the protein level.

Previous studies using 2DE for the proteomic analysis of LCLs have 

collectively resulted in proteomic maps and databases for lymphoblastoid cells
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(Caron et al, 2002, Toda et al, 2003). Toda et al compared protein expression 

between pre- and post-immortal LCLs and reported alterations in several non- 

viral proteins (Toda et al, 2000, Toda et al, 2003). Global post-translational 

modifications associated with LCL proteins have also been investigated by the 

specific detection of methylated (Huang et al, 2002) and phosphorylated 

proteins (Caron et al, 2002). More than 100 methylaccepting and 400 tyrosine- 

phosphorylated proteins were detected in the LCL. More recent studies using a 

proteomic approach for the analysis of LCLs have looked at the effects of 

individual EBV genes on target protein expression. One study used 2DE to 

compare the proteomes of primary B cells before and after infection with 

B95.8 EBV, with a conditional immortalization system for EBV that 

expressed EBV nuclear antigen 2A (EBNA2A) under the control of an 

estrogen receptor-EBNA2 fusion protein. (Schlee et al, 2004). This study 

found that changes observed during EBNA2 reactivation reflect early events 

during primary B cell EBV infection. Another study analysed the effects of 

Latent Membrane Protein 1 (LMP1) signalling on the phosphoprotein 

component of the B cell by combining phosphoprotein enrichment with 2DE 

(Yan et al, 2006). This study demonstrated the capacity of EBV to increase the 

phosphoprotein component of the lymphocyte proteome as well as alter the 

phosphorylation patterns of individual proteins. In addition several novel 

targets of LMP1 signalling were identified, highlighting the value of this 

approach for the identification of molecules targeted by signalling pathways. 

All of these studies analysed protein expression in whole extracts of 

lymphoblastoid cells.

In this study, targets of the PI3K pathway were investigated specifically in the 

nuclei of LCLs. The nucleus plays an important role in co-ordinating cell 

activities, including growth, proliferation, and protein synthesis. The 

expression of nuclear proteins that regulate such processes are frequently 

altered in cancer in response to deregulated signalling through pathways 

activated by growth factors. The transformation of cells into diseased states is 

often associated with disturbances in transcription profiles (Maston et al,

2006). Increasing our knowledge of the expression profiles of PI3K regulated 

nuclear proteins will therefore lead to a greater understanding of the
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mechanisms behind transcriptional regulation in cancer. LCLs are a good 

model for the study of PI3K as signalling through this pathway is 

constitutively activated by EBV encoded genes (Young & Rickinson, 2004).

The initial approach taken was the analysis of differential protein expression in 

the nucleus of an LCL following treatment with LY294002, a specific 

inhibitor of PI3K. The minigel system was utilized due to its relative speed 

compared with larger gel formats. Although sensitivity is greater with the use 

of larger gels, minigels allowed a higher-throughput of data and gave the 

option of being able to study specific proteins by immunoblotting after 

resolution by 2DE more easily. The isoelectric focusing (IEF) strips and SDS- 

PAGE gels used were pre-cast to improve reproducibility and reliability. This 

system was also employed for comparing the nuclear protein expression 

profiles of EBV negative and EBV positive B cells in order to further 

characterise the effect of the EBV genome on protein expression. Further 

development of the technology included a pre-fractionation protocol prior to 

2DE that proved useful for the specific analysis of DNA-bound transcription 

factor targets of EBV. Overall, this chapter explores the use of proteomic 

strategies for the study of protein expression in the lymphocyte nucleus.
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4.2 Separation of lymphocyte nuclear proteins for analysis

4,2.1 Partitioning o f nuclear and cytosolic proteins

The objective of developing the technology of 2DE was to study the 

expression of nuclear lymphocyte proteins. It was therefore important to assess 

the efficiency of the subcellular fractionation protocol used (see section 2.3.2). 

Cytosolic fractions were generated by the addition of a low salt detergent lysis 

buffer to disrupt the plasma membrane to release cytosolic proteins, whilst 

keeping the nuclear membrane intact. After removal of the cytosolic fraction 

the remaining pellet was incubated with a high salt buffer for disruption of the 

nuclear proteins and release of proteins associated with nucleic acids. 

Partitioning of nuclear and cytosolic proteins was assessed by immunoblot 

analysis employing antibodies against marker proteins of the nucleus and 

cytosol. Protein levels of a-tubulin, a cytosolic protein, and Poly-ADP ribose 

polymerase (PARP) a nuclear protein, were analysed in cytosolic and nuclear 

extracts generated from SP-LCL and IB4-LCL (Figure 4.1a). Cells were either 

left untreated or were treated with LY294002 (20pM, 1 hour). Partitioning of 

PARP to the nuclear fraction of IB4-LCL was more successful than in SP- 

LCL as no PARP was detected in the cytosolic fraction. Some contamination 

of the cytosolic fraction with nuclear proteins was evident in SP-LCL lysates. 

The detection of a-tubulin in both cytosolic and nuclear fractions generated 

from SP-LCL and IB4 LCL demonstrated contamination of nuclear protein 

fractions with cytosolic proteins.

The efficiency of the subcellular fractionation protocol needed to be improved 

to ensure that further studies were specific to the nuclear proteome. For this 

reason, one or more washing steps of the nuclear pellet generated following 

removal of the cytosolic fraction with low salt detergent lysis buffer was 

included in the protocol. The low salt content of the washing buffer minimised 

disruption of nuclear proteins whilst ensuring the removal of cytosolic 

proteins. Protein levels of a-tubulin and PARP were analysed prior to 

washing, and subsequent to one, two and three washing steps (Figure 4.1b). In
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addition, protein levels of another cytosolic protein, calregulin (also known as 

calreticulin) were analysed. The nuclear fraction generated from the unwashed 

nuclear pellet demonstrated contamination with a-tubulin and calregulin. 

Inclusion of the washing steps in the protocol resulted in the elimination of a- 

tubulin from the nuclear fraction, with one washing step being sufficient 

observe this effect. A similar effect was observed with calregulin, although a 

small amount was detectable even after 3 washing steps. Calregulin is a Ca2+- 

binding storage chaperone that resides in the endoplasmic reticulum and is 

therefore predominantly found in the cytosol. However a small amount of 

calregulin has been found to associate with nuclear proteins. This provides an 

explanation as to why calregulin could not be completely eliminated from the 

nuclear fraction. No PARP could be detected in the cytosolic fraction and 

hence it could be used as a loading control for the nuclear fraction. Actin 

levels were analysed as a loading control for the cytosolic fraction. In order to 

ensure that further studies were carried out on nuclear proteins only, washing 

of the nuclear pellet was included as a step in the extraction protocol in all 

further experiments. Only one washing step was included in order to minimise 

the loss of genuine nuclear proteins.

4.2.2 Optimisation o f separation o f nuclear proteins by 2D electrophoresis 

(2DE)

In order to study protein expression in the lymphocyte nucleus 2DE was 

employed. A nuclear protein fraction generated from IB4-LCL was analysed 

by 2DE. Samples were prepared for 2DE using a method based on 

trichloroacetic acid (TCA) protein precipitation (Amersham) (see section 

2.4.1). This procedure was carried out to remove interfering contaminants 

from the sample such as salts, detergents, phenolics, or nucleic acids that may 

impede proper separation of proteins during isoelectric focusing (IEF). 

Precipitated proteins were subsequently solubilised in 2D sample buffer (7M 

urea, 2M thiourea, 4% CHAPS). Precipitated and solubilised IB4-LCL nuclear 

proteins (20pg) were then subjected to IEF on a nonlinear gradient ranging 

from pH 3 to pH 10, before separation by SDS-PAGE on a 4-12% gradient 

gel. A standard molecular weight marker was also resolved on the gel in a
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separate lane to allow approximation of molecular weight. Proteins and 

standard markers were visualised by silver staining. The proper displacement 

of proteins in the two dimensions should result in the formation of discrete 

protein spots. The first attempt at generating a 2D gel was unsuccessful as 

horizontal streaking of proteins was observed by silver staining, with no 

formation of discrete protein spots (Figure 4.2). The appearance of horizontal 

streaks of proteins was evidence that protein separation in the second 

dimension was successful but the process of IEF required optimization.

Efficient separation of proteins by IEF requires the cleavage of disulphide 

bonds within and between proteins to allow unfolding and complete 

denaturation. This is undertaken by the inclusion of a reductant in the sample 

buffer prior to IEF. Dithothreitol (DTT) was the reductant of choice. The 

concentration of DTT included in the original sample was 20mM. To 

investigate whether increasing the concentration of DTT would improve 

protein separation by IEF, a dose response experiment was carried out. In 

addition, the amount of protein loaded on the gel was reduced from 20pg to 

lOpg. Prepared nuclear samples from IB4-LCL were incubated with 

increasing doses of DTT (40mM, 50mM, 60mM) and were separated by 2DE. 

Proteins were subsequently visualized by silver staining (Figure 4.3). The 

increased concentration of DTT greatly improved the resolution of proteins by 

IEF, with the optimal concentration being 50mM. This was evidenced by the 

visualization of discrete protein spots being formed on the gel. In addition, 

horizontal tracks of protein spots were visible, demonstrating that distinct 

protein isoforms could be distinguished using this method.

Although good protein separation was achieved, this was mostly confined to 

higher molecular weight proteins, between 49.5kDa and 113.7kDa. The 

visualization of proteins located at the lower molecular weight end of the gel 

was obscured by a shadowing effect that occurred between pi 4.8 and pi 6.5 

(Figure 4.4- upper panel). This issue needed to be resolved as proteins of 

interest were potentially lower molecular weight effectors of signalling 

pathways. It was possible that SDS precipitation during PAGE was causing 

this effect. SDS is a reducing agent and would therefore cause a staining effect
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if precipitated out of solution during electrophoresis. One factor that has the 

potential to enhance this effect is a reaction between excess detergent micelles 

and SDS micelles during electrophoresis. A detergent is an essential 

component of the sample buffer in order to solubilise hydrophobic proteins 

and to minimize protein aggregation. CHAPS was included as a detergent in 

the sample buffer at a concentration of 4% (w/v). To determine if micelle 

formation due to excess CHAPS was the cause of the shadowing effect, a 

repeat experiment using IB4-LCL nuclear proteins was performed using 2% 

(w/v) CHAPS (Figure 4.4). Reducing the concentration of CHAPS from 4% 

(w/v) to 2% (w/v) eliminated the appearance of the shadow at the lower 

central end of the gel. This improved visualization of lower molecular weight 

proteins that could potentially be important for the study.

4.3 Identification of protein spots by tandem mass 

spectrometry (MS/MS)

The identity of protein spots on a 2D gel can be determined by mass 

spectrometry. To begin to construct a profile of protein expression in the 

lymphocyte nucleus, nuclear proteins from IB4-LCL were separated by 2DE 

(pH 3-10 NL gradient) and silver stained for visualisation. Twenty spots of 

varying intensities and location on the gel were manually excised from the gel. 

Gel plugs were sent to The Functional Genomics and Proteomics Laboratories 

at the University of Birmingham. In gel trypsin digestion of the protein spots 

was carried out and MS/MS was performed on each sample. MS/MS raw data 

was processed using MassLynx (Micromass) and the tryptic peptide sequences 

were provided as peak list (PKL) data files. The tryptic peptide sequences 

were then compared with the NCBI non-identical protein sequence database 

using MASCOT software (Matrix Science) (see section 2.8.2). Statistically 

significant hits were recorded together with the number of peptides and 

percentage coverage of protein. The criteria used for conclusive identification 

of a protein was either one peptide with a peptide expectation value (p) of < 

0.00001, or two or more peptides with p<0.05. A conclusive identification was 

also allowed for two or more peptides with peptide expectation values of <1.0
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and the sum of the MOWSE scores for only these peptides was >100. Peptides 

matching with trypsin and keratin were disregarded as contaminants. The 

approximate experimental Mr and pi of the protein, as judged by 2DE, were 

compared with the theoretical Mr and pi of the identified protein were 

compared to further assist protein identification.

Seven proteins were identified using this method (Figure 4.5 and Table 4.1). 

These were P-actin, ATP synthase - p subunit, ATP synthase -  a subunit, 

chaperonin, 2-phosphopyruvate-a-endolase, nuclear ribonuclear protein and 

GTP binding protein Ran/TC4.

4.4 Differential protein expression analysis of nuclear targets of 

PI3K signalling in lymphocytes.

One aim of developing the technology of 2DE was to utilise the technique to 

identify novel targets of PI3K signalling in the lymphocyte nucleus. The 

approach taken was to investigate differential protein expression between 

nuclear extracts generated from untreated IB4-LCL with those treated with 

LY294002, a specific PI3K inhibitor.

4.4.1 Verification o f efficacy o f PI3K inhibitor -  LY294002.

Before analysing the effects of LY294002 on protein expression in the nucleus 

as a whole, it was important to verify the efficacy of the PI3K inhibitor. As 

demonstrated in the previous chapter, a major target of PI3K signalling in B 

cells is the S6-ribosomal protein (S6). Inhibition of PI3K with LY294002 

leads to the inhibition of S6 phosphorylation. Inhibition of S6 phosphorylation 

was therefore used as a means of verification that signalling through the PI3K 

pathway was being inhibited by LY294002. Nuclear protein extracts were 

generated from IB4-LCL that were either left untreated or were treated with 

LY294002 (20 pM, 1 hour). Prior to analysis by 2D electrophoresis, an aliquot 

of each prepared protein sample was resolved by standard SDS-PAGE and 

analysed by immunoblotting (Figure 4.6). Phosphorylation of S6 was
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significantly inhibited in all four replicate samples (A-D) prepared for analysis 

by 2DE. These data demonstrated that LY294002 was effective in inhibiting 

signalling through PI3K in the four samples analysed. Total protein levels 

were not affected by treatment with LY294002 as total protein levels of S6 

and actin were not affected by the inhibitor.

4.4.2 Comparison o f protein expression between untreated and LY294002 

treated nuclear lymphocyte proteins by 2D electrophoresis.

Following verification of effective inhibition of the PI3K pathway, protein 

expression differences were analysed by 2DE. Untreated and LY294002 

(20pM, 1 hour) treated samples from IB4-LCL were prepared and proteins 

(lOpg) were resolved by 2DE using a non-linear pH 3-10 gradient. Proteins 

were visualised by silver staining. Figure 4.7 shows a complete view of 

protein expression in both treated and untreated samples in an example of one 

representative experiment. Maximal resolution of proteins was achieved 

between pi 4.5 and 8.5. Streaking was observed at the basic end of the gel (pH

8.5-10) due to the precipitation of basic proteins out of solution during IEF, 

preventing analysis of these proteins. An area within this range (pi 4.5-8.5, Mr

20.5-49.5) corresponding to four replicate experiments was selected for 

analysis using Phoretix 2D expression software (Nonlinear Dynamics) (Figure 

4.8). An overview of the workflow of analysis of protein expression using 

Phoretix 2D expression software is given in Figure 4.9.

The Phoreix 2D software allows two gel images to be overlaid so that 

differences between the gels can be visualised using complementary false 

colours. Warping can also be carried out, allowing the images to be aligned 

according to the features of the gels, compensating for differences in running 

and scanning conditions. The selected areas (Mr 20.5-49.5, pi 4.5-8.5) from 

the untreated and LY294002 treated gels from four experiments (1-4) were 

warped and overlaid to identify proteins that are altered in expression 

following treatment with the inhibitor (Figure 4.10). Spots that altered in 

expression at a rate of four-fold or higher appear coloured on the image, green 

if expressed at a higher level in the untreated sample and magenta if expressed
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at a higher level in the LY294002 treated sample. Spots that do not alter 

significantly in expression appear black. The power of this approach is 

illustrated by concentrating a specific region of a gel, where clusters of spots 

were differentially expressed in the untreated samples when compared with 

LY204002 treated samples (Figure 4.10, Areas 1-3). It was possible to zoom 

in on these areas of the gels and create montage windows for areas 1-3 

(Figures 4.1 la, 4.12a, 4.13a), allowing visualisation of the same selected area 

of each gel in each experiment simultaneously. The montage window images 

for each area illustrated that protein expression differences occurred between 

the two compared sample sets. In order to determine whether these protein 

expression differences were reproducible and specific to treatment with 

LY294002, it was necessary to quantify the differences in the expression of 

specific proteins. This was achieved in the form of histograms displaying spot 

volume generated by the software for each individual matched spot in the 

experiment (Figures 4.1 lb, 4.12b, 4.13b).

Area 1

The overlaid and warped images demonstrated that most proteins in area 1 

were not differentially expressed by a factor of four-fold or greater when 

comparing untreated and LY294002 treated gels (Figure 4.10). This was 

indicated by the black coloured spots detected using gel overlay analysis that 

were common to all four sets of gels. In addition, the black spots demonstrated 

that matching of corresponding spots between gels was successful. Some 

protein expression differences in this area could however be observed, as 

illustrated by magenta and green coloured spots. Specific spots selected for 

histogram analysis are circled in Figure 4.11a. Spot A appeared magenta in 

experiments 3 and 4 (Figure 4.10), suggesting a higher level of expression of 

this protein in LY294002 treated cells. Histogram analysis of selected spots in 

area 1 from each experiment allowed quantification of spot volume (Figure 

4.11b). This data reflected that seen with overlay analysis, indicating an 

increase in the expression of protein A following LY294002 treatment in 

experiments 3 and 4. A slight increase in the expression of protein A was 

observed in experiments 1 and 2, but was not significant. Overlay and 

histogram analysis of spot B show that although a significant decrease in
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expression following LY294002 treatment was observed in experiment 4, this 

was not reproducible and no differential expression was seen in experiments 1, 

2 or 3. Overlay and histogram analysis of spot C revealed that this protein was 

differentially expressed when comparing the two data sets. The pattern of 

change of expression, however, did not reflect a specific change in expression 

in response to treatment with LY294002. Spot C was significantly upregulated 

in experiment 4, but was downregulated in experiments 2 and 3 in response to 

LY294002. No significant alteration in the expression of this protein was 

observed in experiment 1.

Area 2

Area 2 was selected for closer analysis as many proteins within this area 

appeared to be differentially expressed when comparing untreated and 

LY294002 treated samples by overlay analysis. This was indicated by several 

magenta and green coloured spots (Figure 4.10). Spots selected for analysis 

are circled in Figure 4.12a. Histogram analysis of selected spots in area 2 from 

each experiment allowed quantification of spot volume (Figure 4.12b). A 

significant downregulation of protein A was observed in two experiments, 3 

and 4. Analysis of spot A in experiment 2, however, indicated an increase in 

expression, whilst a small decrease was observed in experiment 1. Spot B was 

clearly downregulated in response to LY294002 treatment in experiment 3, but 

this was not reproducible between experiments. Downregulation of spot C 

with LY294002 treatment was observed in experiments 1, 2 and 3, although 

not significantly in experiment 1. In contrast, a small increase in the 

expression of spot C was detected on analysis of experiment 4.

Area 3

The overlaid and warped images of area 3 indicated that at least two spots 

within this area were differentially expressed between samples in all 

experiments (Figure 4.10). To investigate this further, specific spots were 

selected for spot volume analysis (Figure 4.13a). Histogram analysis of 

selected spots in area 3 from each experiment quantified changes in spot 

volumes (Figure 4.13b). Spot A was displayed as green on overlay analysis in 

experiments 1 and 4, suggesting a higher level of expression in control
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samples. Histogram analysis of spot A in experiments 1 and 4 corroborate 

these observations with a significant decrease in spot volumes in both 

experiments. Data from experiments 2 and 3 however did not reproduce these 

results, with a contradictory increase in the expression of spot A being 

observed in the LY294002 treated sample in experiment 3. The expression of 

spot B fluctuated greatly between experiments. Overlay and analysis of spot B 

suggested a high level of expression in the untreated sample in experiment 1. 

In contrast, clear downregulation in response to LY294002 was observed in 

experiments 2 and 3. Expression of spot B was at a low level in both samples 

in experiment 4. Data from histogram analyses of spot B were in agreement 

with that observed by gel overlay, demonstrating great variability in 

differential expression between experiments. Histogram analysis of spot C 

demonstrated that although a downregulation of this protein following 

LY294002 treatment in all four experiments, this only occurred significantly 

in experiment 3.

All spots within the range of pi 4.5-8.5, Mr 20.5 -  113.7 kDa from 

experiments 1-4 were analysed by overlay and histogram analysis as described 

above. Many constitutive proteins expressed in the lymphocyte nucleus 

produced reproducible patterns detected on all gels. However, from the 

information gathered using the Phoretix analysis software the conclusion could 

be made that no proteins could be detected that were specifically upregulated 

or downregulated in response to inhibition of PI3K using this method. 

Although differential protein expression was observed between samples, these 

changes were not reproducible between experiments. This suggested that these 

changes were due to biological fluctuations in protein expression between 

samples.

4.4.3. Comparison o f protein expression between untreated and LY294002 

treated nuclear lymphocyte proteins by 2D electrophoresis using a narrow 

pH  gradient.

Analysis of differential protein expression using a wide range pH gradient 

between pH 3 and pH 10 did not allow the identification of PI3K regulated
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proteins. The majority of proteins detected within this gradient range were 

located within central areas of the gel, between pH 5 and pH 8 and with 

molecular weights above 49.5kDa. The density of proteins within this region 

therefore posed a problem in efficiently analysing the expression of individual 

proteins. For this reason, a narrower pH gradient was chosen to simplify the 

analysis of protein expression within this region. Untreated and LY294002 

treated (20pM, 1 hour) samples were prepared and proteins (lOpg) were 

resolved by 2DE using a linear pH 5.6-8 gradient. Proteins were visualised by 

silver staining. A typical example of gel sets produced by this method are 

shown in Figure 4.14. Efficient resolution of proteins was observed between 

pH 5.6 and 7.4. A streaking effect was again apparent between pH 7.4 and 8 

due to the precipitation of basic proteins out of solution during IEF. Few 

proteins below Mr 39kDa could be detected. All spots detected in three 

replicate experiments were subsequently analysed using the Phoretix software.

Although differential protein expression was observed between untreated and 

LY294002 treated samples, again, these differences were not reproducible. 

This is illustrated by selecting a specific area (pi 6.8-7.4, Mr 55-95 kDa) for 

analysis (Figure 4.15). Two smaller areas from this region (1 and 2) were 

selected and the spot volumes of proteins that were differentially expressed 

when comparing untreated and LY294002 (20pM, 1 hour) were quantified by 

histogram analysis. The selected spot in area 1 was downregulated in 

experiments 2 and 3, but was upregulated in experiment 1 in response to 

LY294002 treatment (Figure 4.16a). Similar observations were made for the 

spot selected in area 2. A significant increase in expression was observed with 

LY294002 treatment in experiments 1 and 3, but this protein was 

downregulated under the same conditions in experiment 2 (Figure 4.16b). In 

conclusion, the use of a narrower range pH gradient improved the resolution of 

higher molecular weight proteins of pi 5.6-8, but did not allow the 

identification of specific alterations in protein expression in response to PI3K 

inhibition.
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4.5 Comparison of lymphocyte nuclear phosphoproteomes 

before and after treatment with LY294002.

Many mediators of signalling pathways and gene expression are modified and 

regulated by phosphorylation. To investigate the phosphoproteome of the 

lymphocyte nucleus and phosphorylation changes that occur in response to 

signalling through PI3K, a specific phosphoprotein gel stain (Pro-Q-Diamond, 

Molecular Probes, Invitrogen) was employed. Pro-Q-Diamond is a fluorescent 

stain that sensitively and quantitatively detects proteins phosphorylated at 

tyrosine, serine and threonine residues. The intensity of staining is 

proportional to the number of phosphate groups associated with a protein.

Untreated and LY294002 (20pM, 1 hour) treated samples from IB4-LCL were 

prepared and proteins (10pg) were resolved by 2DE using a non-linear pH 3- 

10 gradient. Phosphorylated proteins were visualised by staining with Pro-Q- 

Diamond phosphoprotein stain (Figures 4.17a). Gels were subsequently silver 

stained to compare phosphoprotein expression with total protein expression 

(Figures 4.17b). Differential protein expression analysis of phospho-protein 

stained gels using Phoretix software could not be carried out as repeated 

staining of multiple gels to gain reproducible results was not successful. 

However, the central area of the gel (pi 5.2-7.6, Mr 23-90 kDa), where 

maximum separation of proteins had occurred was selected and the number of 

spots detected by the phosphoprotein stain and total protein stain in each gel 

could be calculated (Figure 4.18). The number of spots detected in the 

untreated and LY294002 treated phosphoprotein stained gels were 377 and 

293 spots respectively. Following silver staining of the same gel, 888 spots 

were detected in the corresponding area of the untreated gel and 869 in the 

inhibitor treated sample. Although not definitive, these observations suggest 

that 30-40% of the lymphocyte nuclear proteome are phosphorylated proteins.

124



4.6 Proteomic analysis of cell lines of different EBV status.

The effects of inhibition of the PI3K pathway on protein expression in the 

lymphocyte nucleus were too subtle to be detected by the method of 2DE as 

used in this study. It was therefore investigated whether this method could be 

applied to detect protein expression differences between cell types that vary 

considerably in phenotype. The infection of B cells with Epstein-Barr virus 

(EBV) leads to the activation of a diverse range of cellular molecules that 

trigger B-cell growth and immortalization. These include the activation of 

tyrosine kinases, Jun N-terminal kinase (JNK), mitogen-activated protein 

kinases (MAPKs), the transcription factor, NFkB, as well as the PI3K pathway 

(Young & Rickinson, 2004). For this reason, nuclear protein expression was 

analysed in two genetically identical B cell lines that differ in their EBV 

status. BL41 is an EBV-negative Burkitfs Lymphoma (BL) line driven into 

continual proliferation by overexpression of c-Myc. BL41 cells grow as small 

single cells in suspension that are highly prone to apoptosis. IARC-171 is a 

B95.8 EBV immortalized LCL derived from the same patient as BL41. IARC- 

171 cells grow in large clumps characteristic of an LCL and are highly 

resistant to apoptosis. In addition IARC-171 cells express a variety of 

activation markers and adhesion molecules on their surface, whereas these are 

lacking in BL41 cells.

Several EBV encoded genes contribute towards the generation of survival and 

proliferation signals in infected cells. Although many of these pathways have 

been identified, the effector molecules and downstream nuclear targets of EBV 

induced signalling remain largely poorly characterized. To investigate the 

functional components of pathways activated by EBV, a proteomic approach 

was taken using 2DE to investigate differential protein expression between 

EBV negative and EBV positive cells.

Prepared nuclear protein extracts from BL41 and IARC-171 cell lines were 

resolved by 2DE on a pH 3-10 nonlinear gradient (Figure 4.19). The area 

where maximum resolution of proteins had occurred was selected for analysis
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(pi 5.85-9.5, Mr 40.5-130kDa), (Figure 4.20). Overlay analysis of the selected 

area identified many spots that were expressed at a higher level in the BL41 

cell line, and others that were expressed at a higher level in the IARC-171 cell 

line (Figure 4.21). These proteins were mostly located within the range pi 5.9 

-  6.7, Mr 49-72 kDa. Montage windows focusing on this region were created 

and specific spots were selected for spot volume analysis (Figure 4.22a). The 

spot volumes of specific proteins were quantified by histogram analysis 

(Figure 4.22b).

Spot A was expressed at a higher level in IARC-171 in experiment 2, but was 

not significantly differentially expressed between samples in experiments 1 

and 3. The protein represented by spot A is therefore not likely to be regulated 

by EBV. Both overlay analysis and histogram analysis of spot B showed a 

dramatic decrease in the expression levels of this protein in IARC-171 cells in 

all three replicate experiments. The molecular weight and isoelectric point of 

this protein were approximately 62k Da and pi 6.5 respectively. These results 

suggest that this protein is specifically downregulated by EBV. Spot C was 

also found to be expressed at a much lower level in IARC-171 cells in 

experiments 1 and 3. This was not however reproduced in experiment 2, where 

a significant increase in expression was seen in IARC-171. Focusing on a 

cluster of spots located at the higher molecular weight end of this region (Mr > 

60 kDa), allowed the identification of two further proteins that differ in 

expression levels according to EBV status (Figure 4.23a). Histogram analysis 

of spot D demonstrated a reproducible downregulation of this protein in 

IARC-171 cells when compared to BL41. This was observed in all three 

experiments. The approximate molecular weight and isoelectric point of this 

protein are 70k Da and pi 6.2 respectively. In contrast, spot E, located at 

approximately 66 kDa, pi 6.25, was reproducibly expressed at a higher level in 

the nuclei of IARC-171 cells in all three replicate experiments (Figure 4.23b).

The comparison of nuclear protein expression between B cells of differing 

EBV status has therefore led to the detection of three proteins that are 

specifically regulated by the EBV. Two proteins were found to be
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downregulated in the LCL. Another protein was identified that is expressed at 

a higher level in the LCL.

4.7 Analysis of the post-translational modifications of 

transcription factors.

The 2D gels generated for analysis of PI3K and EBV regulated proteins 

revealed that the method used was able to detect a large number of proteins 

expressed in the lymphocyte nucleus. These were mostly highly abundant 

lymphocyte nuclear proteins as few alterations in protein expression could be 

detected even in dramatically different cell lines in response to the activation 

of multiple signalling pathways. This was demonstrated by the comparison of 

EBV negative and positive cell lines (section 4.6). However, horizontal tracks 

of proteins were detected consistently in all gels produced. These tracks are 

likely to represent proteins that differ in their post-translational modification 

(PTM) status. Data obtained from the staining of 2D gels with Pro-Q diamond 

phopho-protein stain also indicted that many proteins within the lymphocyte 

nucleus display diverse phosphorylation patterns. It was therefore clear that it 

was possible to apply this technology to study the post-translational 

modifications associated with specific proteins.

The post-translational modifications (PTMs) of transcription factor proteins 

play an important role in regulating their transcriptional activities. The 

patterns of PTMs determine the subcellular localisation, conformation and 

macromolecular interactions of transcription factors, which ultimately govern 

their function (Tootle & Rebay, 2005, Seet et al, 2006). Many transcription 

factors are known to be activated in EBV immortalized B cells, including 

NFkB, STAT1 and CREB1. The constitutive activation of PI3K in EBV 

infected cells has been described to play a role in the activation of NFkB and 

CREB1 (Brennan, 2001, White et al, 2006). The next step in the study was to 

use 2D electrophoresis to investigate post-translational modifications 

associated with these transcription factors.
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4.7.1. Western blot analysis o f  proteins separated by 2D electrophoresis.

For the analysis of specific proteins within complex protein mixtures, proteins 

separated by 2DE can be blotted onto a membrane and immunodetected using 

specific antibodies. To test the use of this approach, IB4-LCL nuclear proteins 

resolved by 2DE using a pH 3-10 nonlinear gradient were transferred on to a 

PVDF membrane. Immunodetection with an antibody towards actin revealed a 

large spot at approximately 45 kDa that ranged from pi 5.4-5.6 (Figure 4.24a). 

The theoretical molecular weight and isoelectric point of actin is 42 kDa and 

pi 5.2 respectively. Detection of the STAT1 transcription factor using this 

method with the use of a ST ATI specific antibody revealed a large train of 

spots at 91 kDa, the theoretical molecular weight of STAT1 (circled, Figure 

4.24b). Various spots spanning a large range of isoelectric points, pi 3.9 -  5.9, 

were detected at this molecular weight. The spots identified within this range 

are likely to represent distinct isoforms of STATI. Several other spots were 

evident on the membrane immunoblotted with the ST ATI specific antibody. It 

is possible that these represent degraded forms of ST ATI as they occurred at 

molecular weights below that of the intact ST ATI protein. Several distinct 

spots at 42kDa could also be detected with the use of a specific CREB1 

antibody (Figure 4.24c). The isoelectric points of CREB1 isoforms detected 

ranged between pi 4.8 and pi 5.45. The theoretical molecular weight and 

isoelectric point of CREB1 are 42 kDa and pi 5.45 respectively. These 

experiments demonstrated that the immunodetection of proteins from a 

complex mixture separated by 2DE was a useful method for the analysis of 

specific lymphocyte nuclear proteins. In addition, several distinct isoforms of 

two transcription factors, CREB1 and ST ATI were detected in the lymphocyte 

nucleus, demonstrating that this approach could be utilized for post- 

translational modification analysis.
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4.7.2 Combining DNA affinity precipitation with 2D electrophoresis for the 

study o f the post-translational modifications o f EBV regulated transcription 

factors.

Post-translational modifications (PTMs) associated with transcription factor 

targets of EBV were studied by combining 2DE and immunoblotting as 

described in section 4.7.1. DNA binding is usually required for transcription 

factors to regulate target genes and downstream effects. DNA-Affinity 

Precipitation (AP) was therefore carried out prior to 2DE to allow the study of 

PTMs associated specifically with DNA bound complexes. In addition, this 

method enriched for the protein of interest, facilitating detection by 

immunoblotting. A schematic describing the procedure of DNA-AP used for 

PTM analysis is illustrated in Figure 4.25.

DNA-AP enrichment of CREB1 from the nuclear protein extracts of IB4-LCL 

and BL41 + B95.8 cells was carried out using two oligonucleotides containing 

the conserved cAMP-responsive element (CRE) (TGACGTCA) (Brindle & 

Montminy, 1992); the cyclin D2 promoter and the CREB consensus binding 

sequence. DNA binding of CREB1 was checked by resolving the DNA affinity 

precipitated protein extracts on an SDS-PAGE gel followed by 

immunoblotting using a CREB1 specific antibody. The binding specificity of 

CREB1 proteins was confirmed by incubating nuclear extracts with agarose 

beads alone. The amount of CREB1 bound to both the cyclin D2 and CREB 

consensus binding sequences were found to be of similar levels (Figure 4.26a- 

i). Binding was specific as indicated by the absence of CREB1 in the sample 

incubated with beads alone. DNA affinity precipitated protein extracts using 

the CREB consensus oligonucleotide were subsequently resolved by 2D 

electrophoresis on a pH 3-10 nonlinear gradient. Immunodetection of CREB1 

revealed that five forms of DNA bound CREB1 could be detected in the nuclei 

of IB4-LCL and BL41 + B95.8 cells (Figure 4.26a-ii). The distinct isoforms 

detected in IB4-LCL and BL41 + B95.8 had equal molecular weights and 

isoelectric points ranging from pi 4.8-5.45 and pi 4.85-5.45 respectively. The 

three predominant isoforms in both cell lines were pi 5.2, pi 5.3 and pi 5.4. 

The isoform at pi 5.45 was also common to both cell lines, but bound to DNA
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at a reduced level. The isoform with the lowest pi in the IB4-LCL was pi 4.8, 

compared to that of pi 4.85 in BL41 + B95.8 cells.

The PTMs of DNA bound p65, a component of the NFkB transcription factor, 

was also studied. DNA-AP enrichment of p65-NFicB from the nuclear protein 

extracts of IB4-LCL and BL41 + B95.8 cells was carried out using an 

oligonucleotide containing the NFkB consensus DNA binding sequence 

(GGACTTTCC). DNA binding of p65 was checked by resolving the DNA 

affinity precipitated protein extracts on as SDS-PAGE gel followed by 

immunoblotting using a p65 specific antibody. The binding specificity of p65 

proteins was confirmed by incubating nuclear extracts with agarose beads 

alone. A clear band representing specific p65 binding to the oligonucleotide 

sequence was detected (Figure 4.26b-i). The same samples were subsequently 

resolved by 2DE on a pH 3-10 nonlinear gradient. Immunodetection with an 

antibody specific for p65 revealed that one form of DNA bound p65-NFxB 

could be detected at pi 5.5, in the nuclei of IB4-LCL and BL41 + B95.8 cells 

(Figure 4.26b-ii).

4.7.3 Investigation o f  the effect o f  kinase inhibitors o f  the DNA binding and 

post-translation modifications o f  CREB1.

The CREB transcription factor has been implicated in the regulation of 

lymphocyte proliferation and survival. This role has been demonstrated by 

studies showing that the expression of a dominant negative form of CREB in 

transgenic mice results in the impaired proliferation of thymocytes and B-cells 

(Barton et al, 1996. Zhang et al, 2002c). The transcriptional activity of the 

CREB1 transcription factor is believed to be dependent on the phosphorylation 

of CREB1 at the serine 133 residue. Kinase targets of various signalling 

pathways have been implicated in this phosphorylation event, including PKB 

downstream from PI3K, p90RSK downstream from ras signalling, CAM- 

kinase II (Ca2+/calmodulin-dependent protein kinase II) in response to Ca2+ 

signalling and PKA activation by cAMP (Mayr & Montminy, 2001, 

Johannessen et al, 2004). To investigate the effect of inhibition of these 

pathways on the DNA binding and post-translational modifications of CREB1
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a range of kinase inhibitors were employed. The inhibitors utilized were 

staurosporine, a broad spectrum protein kinase inhibitor, KT-5720, a PKA 

inhibitor, and LY294002, the specific PI3K inhibitor.

BL41 + B95.8 cells were either left untreated or were treated with 

staurosporine (2pM), KT-5720 (2pM) or LY294002 (20pM) for 1 hour prior 

to nuclear protein extraction. DNA binding of CREB1 molecules to the CREB 

consensus oligonucleotide was subsequently analysed by DNA-affinity 

precipitation, followed by SDS-PAGE and immunoblotting. A clear band 

representing CREB1 DNA binding was detected in the untreated cells. CREB1 

DNA binding was significantly reduced, to the same extent, in response to 

treatment with staurosporine, KT-5720 and LY294002 (Figure 4.27a). The 

effects of kinase inhibitors on the DNA binding of the phosphorylated form of 

CREB1 was also analysed in parallel to total CREB1 (Figure 4.27b). A clear 

band representing DNA binding of phosphorylated CREB1 was detected. 

Treatment with staurosporine (2pM, 1 hour) completely abolished DNA 

binding of the phosphorylated form of CREB1. The DNA bound CREB1 

detected in staurosporine treated cells using the pan-CREBl antibody 

therefore represent unphosphorylated CREB1 molecules. Phosphorylated 

CREB1 binding to DNA was detectable in KT-5720 treated cells, although to 

a reduced level compared to untreated cells. These results agree with data that 

demonstrates that pathways in addition to PKA have a role in regulating the 

phosphorylation of CREB1.

2DE analysis of the kinase inhibitor treated samples from BL41 + B95.8 cells 

was carried out in parallel to ID SDS-PAGE. DNA affinity precipitated 

CREB1 molecules resolved by 2DE on a pH 3-10 nonlinear gradient were 

immunoblotted using specific phospho-CREBl and pan-CREBl antibodies 

(Figure 4.28a). Multiple isoforms of CREB1 were detected in the untreated 

BL41 + B95.8 cells and their pi range reflected those previously detected 

(Figure 4.24), at pi 4.85-5.45. The predominant isoforms at pi 5.2, 5.3 and 5.4, 

and a lower abundance isoform at pi 5.45 were again detected. Treatment with 

KT-5720 did not alter the post-translational modifications associated with 

CREB1. However, the intensities of the spots detected were significantly
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reduced, reflecting the reduction in the level of DNA binding of CREB1 post 

treatment with KT-5720. The isoforms at pi 5.45 and 5.3 were most 

significantly reduced in intensity in response to treatment with the PKA 

inhibitor. Treatment with staurosporine resulted in the appearance of a protein 

smear at 42kDa, with no detection of discrete protein spots. In addition, a 

lower molecular weight spot of increased intensity was evident at 

approximately 37kDa. This pattern was reproducible and may represent 

degraded forms of CREB1.

Immunoblotting using the antibody specific for the phosphorylated form of 

CREB1 in the untreated BL41 + B95.8 cells allowed the detection of a pattern 

of spots similar to that seen using the pan-CREBl antibody (Figure 4.28a-ii). 

Although the resolution of isoforms into discrete spots was not achieved to the 

same degree, the isoform at pi 5.45 was clearly not detected suggesting that 

this isoform does not require phosphorylation for DNA binding. 

Phosphorylated forms of CREB1 in KT-5720 and staurosporine treated cells 

could not be detected by 2DE. This is likely to be due to the low amount of 

CREB bound to DNA post treatment with these inhibitors as demonstrated in 

Figure 4.27.

The use of a narrower pH gradient was used to further analyse the effect of 

KT-5720 treatment on the PTMs of CREB1. DNA affinity precipitated 

CREB1 molecules from untreated and KT-5720 (2pM, 1 hour) treated BL41 + 

B95.8 cells were resolved by 2DE on a linear pH 4-7 gradient. CREB1 

isoforms were subsequently detected by immunoblotting with the pan-CREB 1 

antibody. The narrower gradient allowed the detection of additional isoforms 

of CREB1 to those detected using a pH 3-10 gradient (Figure 4.28b). This 

suggested that individual spots detected using the pH 3-10 gradient 

represented more than one isoform of CREB1 that could not be efficiently 

resolved using this gradient. Eight isoforms of CREB1 were detectable using a 

pH 4-7 gradient in the untreated cells, with isoelectric points ranging from 4.4 

to 5.35. The isoforms of higher abundance had pi values of 4.9 and 5.0. Two 

lower abundance isoforms were of pi values 5.2 and 5.35. Four isoforms of 

lower pi values were also detectable at pi 4.4, 4.55, 4.7 and 4.8. Treatment
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with KT-5720 again resulted in the reduction in the intensities of all isoforms 

detected. However two isoforms at pi 4.55 and 4.7 (indicated with an arrow) 

were undetectable following treatment with KT-5720, suggesting that these 

isoforms require PKA for DNA binding.

In summary, combining 2DE with DNA-AP has allowed the study of 

transcription factor PTMs. By utilizing this method, one isoform of DNA 

bound p65-NFkB, and multiple forms of DNA bound CREB1 have been 

detected in the nuclei of two B-cell lines. In addition, kinase inhibitors have 

been shown to reduce the DNA binding capabilities of CREB1 as well as 

altering the pattern of post-translation modifications of this transcription 

factor.
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4.8 Discussion

In this chapter the use of 2DE for the analysis of lymphocyte nuclear proteins 

was explored. The use of the minigel system was a convenient and useful 

method for the relatively high-throughput large scale analysis of nuclear 

proteins, allowing the detection of up to 1500 proteins at one time. This 

system was successfully used in combination with several visualisation 

methods, including silver staining, phosphoprotein staining and the detection 

of specific proteins by immunoblotting. Reproducible patterns of protein 

expression were achieved. This was demonstrated by several clusters of 

proteins that were common to all nuclear lymphocyte samples analysed by 

2DE. One such protein was identified as p-actin by tandem mass spectrometry. 

In addition, the resolution of proteins was achieved to a high enough quality to 

observe distinct isoforms of proteins, represented by protein tracks on the gels 

that are likely to alter in their post-translational modification patterns.

Despite the resolution of over a thousand LCL nuclear proteins by 2DE, the 

use of this approach failed to detect PI3K regulated proteins. Although protein 

expression changes in LCLs treated with a PI3K specific inhibitor 

(LY294002) were detected, these were not reproducible and are therefore 

unlikely to be specific to treatment with the inhibitor. This suggests that 

alterations in protein expression in response to treatment with LY294002 are 

relatively subtle, and that the technology as used in this study was not 

sensitive enough to detect these changes. A study by Gygi et al evaluated the 

use of 2DE for the proteome analysis of low abundance yeast proteins (Gygi et 

al, 2000). This study found that proteins with abundances of <1000 copies/cell 

could not be detected using larger gel formats that have a capacity for 

increased protein loads (up to 50pg), compared to the mini gel format used in 

this study. This highlights the limitations of 2DE for the detection of low 

abundance proteins and may explain why PI3K regulated proteins were not 

detected in this study.
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The use of 2DE was however successfully used to detect reproducible 

alterations in protein expression in cells that altered more dramatically in 

phenotype. Three proteins were found to be differentially expressed in EBV 

immortalized B cells when compared to EBV negative Burkitf s lymphoma B 

cells that have the same genetic background. Two proteins were 

downregulated and one protein was upregualted in the LCL. These proteins 

have not been identified to date but are possibly targets of one or multiple 

signalling pathways that are activated by EBV infection. These include 

signalling through tyrosine kinases, Jun N-terminal kinase (JNK), mitogen- 

activated protein kinases (MAPKs), PI3K and the activation of the 

transcription factor, NFkB (Murray & Young, 2001). The identification of the 

EBV regulated proteins by tandem mass spectrometry would be the next step.

A useful tool for the analysis of protein spots on 2D gels was the Phoretix 2D 

expression software (Nonlinear Dynamics). Many features of this software 

simplified and automated the process of detecting differentially expressed 

proteins between two gels. This improved the detection of small differences in 

respective spot patterns that would be laborious and inefficient if carried out 

manually. The overlay analysis feature provided a useful way of gaining an 

overview of protein expression differences between samples by colour coding 

spots that deviated above background level. Histogram analysis was also 

valuable in quantifying protein expression differences between samples by 

measuring spot volume. However, the software did provide several challenges 

in efficiently analysing 2D gel spot patterns. An automated warping feature 

was part of the initial analysis step to accommodate differences in running 

conditions. This process was not always successful, and presented a problem 

when analysing whole gel images. To resolve this issue, smaller corresponding 

areas of gels had to be selected and cross-analysed. Improvements in the 

matching of spots through extensive user seeding by applying ‘landmark’ 

proteins was subsequently required before subsequent analyses were carried 

out. This was a time consuming process but did reduce errors in the data by 

reducing the mismatching of spots. A study assessing the manual editing of 

spot matching has demonstrated that this process does reduce quantitative
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errors in the data and therefore results in a more reliable method of evaluating 

differences in corresponding proteins between gels (Mahon & Dupree, 2001).

Combining DNA-Affinity precipitation with 2DE led to the detection of 

several DNA-bound isoforms of an EBV regulated transcription factor -  

CREB1. Five isoforms of CREB1 were detected in both IB4-LCL and BL41 + 

B95.8 cells that ranged between pi 4.8 -  5.45. These isoforms did not differ in 

their molecular weights suggesting that the modification groups are small and 

do not alter the apparent molecular mass of the protein. Phosphorylation is the 

only small modification group (80 Da) that has been reported for CREB1 and 

regulates CREB1 transcriptional activity in response to multiple signalling 

pathways. A phosphorylation event replaces the neutral hydroxyl groups on 

serine, threonine and tyrosine residues with a negatively charged phosphate 

group. The effect of a single phosphate group on the isoelectric point of a 

protein with a pi below 5.5 would be the addition of a single negative charge 

(Halligan et al, 2004). This results in an acidic shift. The addition of multiple 

phosphorylation groups enhances this effect, resulting in the characteristic 

‘phosphorylation train’. It is therefore possible that the CREB 1 isoforms 

detected by 2DE in this study vary in their phosphorylation patterns. A 

correlation has been observed between the intensity of the stimulus and the 

stoichiometry of CREB phosphorylation (Mayr et al, 2001) and so the 

isoforms detected may be CREB molecules at various stages of activation. The 

detection of a similar pattern of protein spots by immunoblotting with a 

phospho-CREBl antibody supports this theory, although additional small 

modifications such as acetylation or methylation cannot be discounted. A 

phosphopeptide enrichment technique such as immobilized metal-affinity 

chromatography (IMAC), which takes advantage of the affinity of phosphate 

group for Fe(III) or gallium(III), carried out prior to 2DE could prove 

beneficial in providing a definitive answer (Posewitz & Tempst, 1999, 

Stensballe et al, 2001). Other strategies that could be implemented include 

affinity based enrichment methods using phosphospecific antibodies and 

identification by tandem mass spectrometry (Gronborg et al, 2002).
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Protein expression differences were detected by comparing EBV negative and 

EBV positive proteins with the use of 2DE in this study. However, the main 

limitation of using this technique for the detection of more differentially 

expressed proteins, particularly in the context of PI3K, was sensitivity. The 

wide range of protein expression levels within the samples meant that the use 

of the minigel system in combination with silver staining limited the ability of 

the 2DE approach to detect certain proteins, particularly those of low 

abundance. This only allowed the visualization of a fraction of the proteome. 

As molecular targets of signalling pathways are likely to be lower in 

abundance compared to housekeeping proteins, this proved to be a problem in 

this study.

Improvements to the sensitivity of proteome analysis to allow more efficient 

analysis of cell signalling components could be made by the use of alternative 

proteomic techniques. The use of fluorescent dyes for the labeling and 

detection of proteins as used in 2D-fluroescence difference gel electrophoresis 

(DIGE) technology allows increased sensitivity over a broad dynamic range. 

The use of larger gel formats in this technique further improves sensitivity as it 

allows the increased resolution of larger amounts of protein. In addition, 

protein samples are compared on a single gel by labeling with different 

fluorescent dyes, therefore eliminating gel to gel variation. This ensures that 

differences observed are biological rather than experimental (Van den Bergh 

& Arckens, 2004). Mass spectrometric (MS) based proteomics are valuable 

due to the ability of MS to detect and identify proteins of low abundance. MS 

based methods also provide the additional advantage of allowing the detection 

of proteins not amenable to 2DE, such as very large or small proteins, or 

proteins with very acidic or basic properties. For example, means of enriching 

for proteins with defined chemical characteristics, such as SELDI-ToF MS 

(Surface enhanced laser desorption/ionization time of flight mass 

spectrometry), allows the subproteome of interest to be studied, and generates 

characteristic proteomic patterns for distinct protein samples (Isaaq et al, 

2002). This technique has been successfully used for biomarker discovery in 

prostate (Petricoin et al, 2002a) and ovarian cancer (Petricoin et al, 2002b). 

Other approaches involve the use of stable isotope technology for quantitative
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profiling via mass spectrometry. One such approach is Isotope Coded Affinity 

Tags (ICAT) (Gygi et al, 1999). This involves the labeling of samples with 

chemically identical tags that differ only in isotopic composition (heavy and 

light), contain a thiol-reactive group which covalently links to cysteine 

residues, and also a biotin moiety. Following labeling, differentially labeled 

samples are combined, enzymatically digested, and labeled peptides are 

selectively enriched via biotin-avidin affinity chromatography. The difference 

in the mass o f differentially labeled peptide fragments allows these peptides to 

be separated, and subsequently quantified by mass spectrometry (Gygi et al, 

1999). However, the requirement for proteins to contain a cysteine residue for 

the use of ICAT reagents means that many potential proteins of interest, 

including those containing post-translational modifications, are not detected 

(Zieske, 2006).

More recent advances in the use of stable isotope technology have improved 

upon methods such as ICAT. For example, a similar approach allows the 

comparative profiling of proteins in mammalian cells by Stable Isotope 

Labelling by Amino Acids in Cell Culture (SILAC) (Ong et al, 2002). This 

technique allows the incorporation of isotopic labels into proteins by 

metabolic labeling in cell culture, as opposed to the use of covalently linked 

tags. Samples to be compared are cultured separately in media containing a 

light or a heavy form of an essential amino acid. This setting provides the 

advantage of eliminating the requirement for several chemical processing and 

purification steps, ensuring that compared samples are kept under similar 

conditions throughout the experiment (Ong et al, 2002).

In addition, the subsequent development of iTRAQ reagents (Ross et al, 

2004), a new class of isobaric reagents has provided an alternative method of 

assessing differential protein expression in various systems. This method 

involves the labeling of samples with independent reagent of the same mass 

that, upon fragmentation in MS/MS give rise to unique reporter ions, which 

can subsequently be used to quantify the samples to be compared. The peptide 

reactive groups of these reagents react with all primary amines, including the 

N-terminus and the e-amino group of lysine side chains, therefore allowing the
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labeling of most peptides within a sample and enhancing peptide coverage for 

any given protein. In addition, this method allows the retention of other 

structural features such as post-tranlational modifications (Ross et al, 2004). 

The general workflow using iTRAQ reagents is as follows. Samples to be 

analyzed are each reduced, alkylated and enzymatically digested with trypsin. 

The resulting peptide pools are subsequently labeled with distinct iTRAQ 

reagents before the samples to be compared are combined. The peptide 

mixture is then resolved by reverse-phase column chromatography prior to 

sequence analysis by MS/MS. The resulting reporter ion spectra allows the 

detection of peptides that differ between samples. Subsequent database 

searching for peptide matches allows the identification of such proteins 

(Zieske, 2006). This approach has been used successfully by DeSouka et al to 

identify nine potential markers for endometrial cancer (DeSouka et al, 2005). 

A study by Zhang et al, combined the use of iTRAQ reagents with phospho- 

tyrosine immunoprecipitation, IMAC and MS/MS to identify signalling 

molecules in the epidermal growth factor-receptor-signalling cascade (Zhang 

et al, 2005).

The use of the approaches described above may be useful in meeting the 

objectives of this study; that is to identify signalling molecules downstream of 

PI3K that may be important for the effects of this pathway on lymphocyte 

proliferation and survival, particularly within the context of EBV 

immortalized LCLs. In summary, a combination of the approaches used in this 

study and the application of additional approaches may aid further 

characterization of the molecular changes occurring in the lymphocyte nucleus 

in response to EBV infection.
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Figure 4.1 -  Separation of nuclear and cytosolic fractions

a) Nuclear and cytosolic extracts were generated from SP-LCL and IB4-LCL that 
were either untreated or treated with LY294002 (20|jM, 1 hour). Resolved proteins 
were analysed by immunoblotting using specific antibodies to a-tubulin and PARP.

b) Cytosolic and nuclear extracts were generated from IB4-LCL. Nuclear pellets were 
either unwashed (0) or washed with low salt detergent lysis buffer a number of times 
as indicated (1, 2 or 3). Resolved proteins were analysed by immunoblotting using 
antibodies specific to a-tubulin, calregulin, PARP and actin.
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Figure 4.2 - Separation of nuclear proteins by 2D electrophoresis.

A nuclear protein extract generated from IB4-LCL was cleaned for 2D- 
electrophoresis. The concentration of DTT included in the sample buffer prior to IEF 
was 20mM. The proteins in the mixture were separated by 2D electrophoresis using 
a pH 3-10 nonlinear gradient. Proteins were subsequently visualized by silver 
staining.
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pH 3 - 10

b 50mM DTT

c 60mM DTT

Figure 4.3 -  Optimisation of concentration of DTT included in the sample buffer 
prior to IEF

A nuclear protein extract generated from IB4-LCL was cleaned for 2D-electrophoresis. 
Three samples were subsequently incubated with an increasing concentration of DTT;
a) 40mM b) 50mM c) 60mM. The proteins in the mixture from each sample were 
separated by 2D electrophoresis using a pH 3-10 nonlinear gradient. Proteins were 
subsequently visualized by silver staining.
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pH 3 10

a 4% CHAPS (w/v)

b 2% CHAPS (w/v)

Figure 4.4 -  Optim isation of the concentration of detergent (CHAPS) included 
in the sam ple buffer prior to isoelectric focusing.

A nuclear protein extract generated from IB4-LCL was cleaned for 2D-electrophoresis 
and re-suspended in sample buffer containing a) 4% CHAPS b) 2% CHAPS. The 
proteins in the mixture from each sample were separated by 2D electrophoresis 
using a pH 3-10 nonlinear gradient. Proteins were subsequently visualized by silver 
staining.
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Figure 4.5 - Identification of lymphocyte nuclear proteins by m ass spectrometry.

IB4-LCL nuclear proteins were separated by 2D-electrophoresis on a pH 3-10 nonlinear 
gradient. Protein spots were manually exised from the gels and were analysed by 
tandem mass spectrometry after trypsin digestion of peptides. Proteins were identified 
by comparing tryptic peptide sequences with the NCBI non-identical protein sequence 
database using MASCOT software (Matrix Science). The identified proteins 
corresponding with the circled spots (1-7) are listed in Table 4.1.
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Table 4.1 Lymphocyte nuclear proteins identified by mass spectrometry

Spot
no:

Accession
number

Identified
protein

Th
Mr/pl

Approx
Exp.
Mr/pl

Sequence of identified 
peptides

Seq.
Cov

MOWSE
score

1 4501887 P-Actin 42.1 kDa/ 
5.2

53kDa/
5.1

A6FASDDAPR
VAPEEHPVLLTEAPItfPK

16% 199

2 32189394 ATP synthase 
- p subunit

56.5kDa/
5.26

64 kDa/ 
4.8

TIAMDGTEGLVR
FTQAGSEVSA1LGR

16% 326

3 31542947 Chaperonin 61.2kDa/ 
5.7

78kDa/
5.2

VTDALNA.TR 
TVIIEQSWGSPK 
CIPALDSLTPANEDQK 
LVQDVANNTNEEAGDGT TTATVLAR

17% 362

4 693933 2-
Phosphopyruv-
ate-a-endolase

47.4kDa/
7.0

77kDa/
8.0

EGLELLK
EEELGSK
GMPTVEVDLFTSK

16% 297

5 24660110 ATP synthase 
- a  subunit

61 .OkDa/ 
9.14

65kDa/  
8.3

WDALGNAIDGK
SIAXDTIENQK
TGAIVDVPVGEELLGR

14% 318

6 4504447 Nuclear
ribonuclear

protein

36.OkDa/ 
8.67

49kDa/
8.4

ID T IE IIT D R
GGGGNFGPGPGSNFR

10% 135

7 4092054 GTP binding 
protein 

Ran/TC4

24.6kDa/
7.0

38kDa/
7.8

NLQYYDIASAK
VCENXPIVLCGNK

15% 117

Th. Mr/pl -  Theoretical molecular weight and isoelectric point

Approx. Exp. Mr/pl -  Approximate molecular weight (kDa) and isoelectric point as judged by 2DE 

Seq. Cov -  Sequence coverage
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Sample A Sample B

Phospho-
S6RP

Pan-S6RP

Actin

Phospho-
S6RP

Pan-S6RP

Actin

Sample C Sample D

Con 20pM Con 20pM 
LY LY

Figure 4.6 - Verification of efficacy of PI3K inhibitor -  LY294002.

Nuclear protein extracts from IB4-LCL that were either left untreated or treated 
with LY294002 (20pM, 1 hour) were cleaned for electrophoresis in four 
replicate experiments (samples A-D) . An aliquot of each protein sample was 
resolved by SDS-PAGE. Verification of the efficacy of LY294002 was carried 
out by immunoblotting for the phosphorylated-S6 ribosomal protein. Protein 
levels of total S6 ribosomal protein and actin were also determined by 
immunoblotting using specific antibodies.
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a) IB4-LCL -  Untreated nuclear sample -  Total protein stain (silver)

pl 3 4 .8  5 .6  6 .2  8 10
kDa

182 .9

113 .7

8 0 .9

6 3 .8  

49 .5

37 .4

26 .0

20 .5

b) IB4-LCL -  LY294002 (20uM. 1 hour) treated nuclear sample -  
Total protein stain (silver).

pl 3 4 .8  5 .6  6 .2  8 10
kDa

182.9

113 .7

80 .9

6 3 .8

4 9 .5

3 7 .4

2 6 .0

2 0 .5

Figure 4.7 -  Com parison of lymphocyte nuclear proteom es before and after 
treatm ent with LY294002.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20|jM, 1 hour) were cleaned and resolved by 2D 
electrophoresis on a pH 3-10 nonlinear gradient. Proteins were visualised by silver 
staining.
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Experiment 1

a) Untreated
p| 4 . 5 -------------

b) LY294002 (20pM)
—  8.5  4 .5 -----------------------------------------------------------------------------------------8.5

Experiment 2

4 9 .5  kDa ,

3 7 .4  kDa

2 6 .0  kDa

2 0 .5  kDa

4 9 .5  kDa

Experiment 3

Experiment 4

3 7 .4  kDa

2 6 .0  kDa

2 0 .5  kDa

4 9 .5  kDa

3 7.4  kDa

2 6 .0  kDa

2 0 .5  kDa

4 9 .5  kDa 

3 7 .4  kDa

2 6 .0  kDa

2 0 .5  kDa

Figure 4.8 -  Com parison of lym phocyte nuclear proteom es before and after 
treatm ent with LY294002.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D electrophoresis 
on a pH 3-10 nonlinear gradient in four replicate experiments (Experiments 1-4). Proteins 
were visualised by silver staining. The corresponding areas from each gel where 
maximum resolution of proteins had occurred (pl 4.5-8.5, Mr 20.5-49.5 kDa) were 
selected for further analysis.
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2)

3) Overlay analysis

4) Montage w indow  
spot selection

5) Histogram analysis

S a m p le  1

Q

S a m p le  2

1 2 
S p o t :194

Figure 4.9 Workflow of analysis of 2D gels using Phoretix 2D expression software.

1) 2D gels were generated to compare protein expression between two samples. 2) An area 
where maximum separation of proteins had occurred was selected for analysis. 3) Two gel 
images were overlaid using Phoretix 2D expression software so that differences between 
the gels were visualised using complimentary colours. 4) Montage windows of areas 
containing proteins differentially expressed between samples were created allowing 
visualisation of the same selected area in the two gels. 5) Differences in protein expression 
levels between samples were quantified by histogram analysis of spot volume.

Sample 2

1) Generation 
of 2D gels

Sample 1
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Experiment 1

pl 4 .5

49 .5  kDa

37.4  kDa

2 0 .5  kDa 3

Area 1

Experiment 2

8.5 4.5

Area 2

Area 3

*  -**49

•

—

m

m-

4b

Spots expressed at a higher level in the untreated sample 

Spots expressed at a higher level in the LY294002 treated sample

Fig 4.10- Overlay analysis of differential protein expression following LY294002 
treatm ent using Phoretix 2D expression  software.

Nuclear protein expression differences were detected by overlaying gels representing 
protein expression from untreated and LY294002 treated samples. This was carried out 
using Phoretix 2D expression software. Spots coloured green represent proteins detected 
to be expressed at a higher level in untreated samples. Spots coloured magenta represent 
proteins detected to be expressed at a higher level in LY294002 treated samples. Black 
spots indicate no significant difference in protein expression between samples. The areas 
selected for analysis (pl 4.5-8.5, Mr 20.5-49.5 kDa) from experiments 1 and 2 are shown. 
Smaller areas from within this region where many spots appeared to differentially 
expressed were selected for closer analysis (areas 1-3). Continued on next page.
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Experiment 3

pl 4 .5

Experiment 4

 8 .5  4 .5

49 .5  kDa

37.4  kDa

20 .5  kDa

Area 1

Area 2

---------

Area 3

• m *

Spots expressed at a higher level in the LY294002 treated sample

Fig 4.10 (continued). Overlay analysis of differential protein expression following 
LY294002 treatm ent using Phoretix 2D expression software.

Nuclear protein expression differences were detected by overlaying gels representing 
protein expression from untreated and LY294002 treated samples. This was carried out 
using Phoretix 2D expression software. Spots coloured green represent proteins detected 
to be expressed at a higher level in untreated samples. Spots coloured magenta represent 
proteins detected to be expressed at a higher level in LY294002 treated samples. Black 
spots indicate no significant difference in protein expression between samples. The areas 
selected for analysis (pl 4.5-8.5, Mr 20.5-49.5 kDa) from experiments 3 and 4 are shown. 
Smaller areas from within this region where many spots appeared to differentially 
expressed were selected for closer analysis (areas 1-3).
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Area 1
a) Untreated b) LY294002 (20pM)

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Fig 4.11a- Com parison of protein expression levels between untreated and 
LY294002 treated  sam ples -  m ontage windows of area 1.

Montage windows of area 1 are shown comparing nuclear protein expression from 
corresponding areas of a) untreated and b) LY294002 treated sample gels from four 
replicate experiments (1-4). Three spots (A, B, C) from this area were selected for 
histogram analysis.
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Fig 4.11b- H istogram  analysis of sp o t volum es in area 1.

Quantification of differential expression between untreated (UT) and LY294002 treated 
(LY) nuclear samples were carried out using histogram analysis of spot volume. 
Histogram analyses of spots A, B and C in area 1 from experiments 1-4 are shown. 
The vertical axes represent the ratio of spot volume when comparing two matched 
spots.
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Area 2
a) Untreated b) LY294002 (20pM)

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Fig 4.12a- Com parison of protein expression levels between untreated and 
LY294002 treated  sam ples -  m ontage windows of area 2.

Montage windows of area 2 are shown comparing nuclear protein expression from 
corresponding areas of a) untreated and b) LY294002 treated sample gels from four 
replicate experiments (1-4). Three spots (A, B, C) from this area were selected for 
histogram analysis.

•
A °  ^  

c O  ' S < ^
exp4con-6Q Q dpi e x p 4 ly -6 0 0 d p i

> 0 4
a O

c r ^ ) c ' o
ex p 5 con -600d p i e>qp5ly-600dpi

A ®  ^
c < 3  B<#

•

A°  
c o  b Q

ex p  10 c o n -6 0 0 d p i-b o x 1 exp 10 ly -600d p i-b ox1

a ©

C O O 
I

0 
> 

u
o

CD

ex p 1 3 con -600d p i-b ox1 exp13ly-600dpi-box1

154



Area 2

Spot A Spot B Spot C

Experiment 1

Experiment 2

Experiment 3

UT LY

S p o t:194
UT LY

Spot: 209

UT LY

Spot: 219

UT LY

S po t: 163

Experiment 4

UT LY

S pot: 166

m
UT LY

s p o t: 217

UT LY

s p o t : 237
UT LY

Spot: 248

UT LY

S p o t:170
UT LY

S p o t:182

UT LY

Spot:186
UT LY

Spot: 200

Fig 4.12b- H istogram  analysis of sp o t volum es in area 2.

Quantification of differential expression between untreated (UT) and LY294002 treated 
(LY) nuclear samples were carried out using histogram analysis of spot volume. 
Histogram analyses of spots A, B and C in area 2 from experiments 1-4 are shown. 
The vertical axes represent the ratio of spot volume when comparing two matched 
spots.
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Experim ent 2

a) Untreated b) LY294002 (20pM)

B

A ( " T )  C
B

A O  C < 

C T ®

exp4oon-600dpi exp4ly-600dpi

BA O ̂ B
A / ^ \  C

<s>
exp5con-600dpi exp5ly-600dpi

Experiment 3

Experim ent 4

o
exp10con-600dpi-box1

<2>

< S >

exp10ly-600dpi-box1

B

A  C ^ )  c
< S >  ® .

B

A C

e x p  1 3 c o n - 6 0 0 d p i - b o x 1 e x p 1 3 ly - 6 0 0 d p i - b o x 1

Fig 4.13a- Com parison of protein expression levels between untreated and 
LY294002 trea ted  sam ples -  m ontage windows of area 3.

Montage windows of area 3 are shown comparing nuclear protein expression from 
corresponding areas of a) untreated and b) LY294002 treated sample gels from four 
replicate experiments 1-4). Three spots (A, B, C) from this area were selected for 
histogram analysis.
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Fig 4.13b- Histogram  analysis of sp o t volum es in area 3.

Quantification of differential expression between untreated (UT) and LY294002 treated 
(LY) nuclear samples were carried out using histogram analysis of spot volume. 
Histogram analyses of spots A, B and C in area 3 from experiments 1-4 are shown. 
The vertical axes represent the ratio of spot volume when comparing two matched 
spots.
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3 IB4-LCL -  Untreated nuclear sample -  Total protein stain (silver).
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b  IB4-LCL -  LY294002 (20uM. 1 hour) treated nuclear sample -  
Total protein stain (silver).
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Figure 4.14 -  C om parison of lym phocyte nuclear proteom es before and after 
treatm ent with LY294002 -  u se  of a narrower isoelectric focusing range.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D 
electrophoresis on a pH 5.6-8 linear gradient. Proteins were visualised by silver 
staining.
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Figure 4.15 -  Com parison of lym phocyte nuclear proteom es before and after 
treatm ent with LY294002- u se  of a narrower isoelectric focusing range.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D electrophoresis 
on a pH 5.6-8 linear gradient in three replicate experiments (EXP. 1-3). Proteins were 
visualised by silver staining. The corresponding areas from each gel where maximum 
resolution of proteins had occurred (pi 6.8-7.4, Mr 55-95 kDa) are shown. Smaller areas 
from within this region were chosen for closer analysis (areas 1 and 2 ).
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a) Untreated b) LY294002 c) Histogram analysis
EXP. 1
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i.

UT LY

Spot: 70

UT LY

Spot: 81
J
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exp22con-600dpi-box

UT LY

S p o t:113

Fig 4.16a- Com parison of protein expression levels between untreated and 
LY294002 trea ted  sam ples -  m ontage w indows and histogram  analysis of area 1.

Montage windows of area 1 are shown comparing nuclear protein expression from 
corresponding areas of a) untreated and b) LY294002 treated sample gels from three 
replicate experiments (1-3) c) One spot (circled) from this area was selected for 
histogram analysis of spot volume to quantify differential expression between untreated 
(UT) and LY294002 treated (LY) samples. The vertical axes represent the ratio of spot 
volume when comparing two matched spots.
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a) Untreated b) LY294002 c) Histogram analysis
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Fig 4.16b- C om parison of protein expression levels between untreated and 
LY294002 treated  sam ples -  m ontage windows and histogram  analysis of area 2.

Montage windows of area 2 are shown comparing nuclear protein expression from 
corresponding areas of a) untreated and b) LY294002 treated sample gels from three 
replicate experiments (1-3) c) One spot (circled) from this area was selected for 
histogram analysis of spot volume to quantify differential expression between untreated 
(UT) and LY294002 treated (LY) samples. The vertical axes represent the ratio of spot 
volume when comparing two matched spots.
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IB4-LCL -  Untreated nuclear sample -  Phosphoprotein stain (Pro-Diamond

pl 3 4 .8  5 .6  6 .2  8 10
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IB4-LCL -  LY294002 (20uM. 1 hour) treated nuclear sample - Phosphoprotein 
stain (Pro-Diamond Q)
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Figure 4.17a -  C om parison of lymphocyte nuclear phosphoproteom es before 
and after treatm ent with LY294002.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D 
electrophoresis on a pH 3-10 nonlinear gradient. Phosphorylated proteins were 
visualised by staining with Pro-Q Diamond phosphostain. Continued on next page.
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IB4-LCL -  Untreated nuclear sample -  Total protein stain (silver)

pl 3 4 .8  5 .6  6 .2  8 10
kDa

182 .9

113 .7

80 .9
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IB4-LCL -  LY294002 (20uM. 1 hour) treated nuclear sample -  Total protein 
stain (silver)
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Figure 4.17b -  Total protein expression  in the lymphocyte nucleus before 
and after treatm ent with LY294002.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D 
electrophoresis on a pH 3-10 nonlinear gradient. Total protein expression was 
visualised by silver staining after staining of phosphorylated proteins with Pro-Q 
Diamond phosphostain.
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a) Untreated b) LY294002 (20pM)

i) P hospho

protein stain

ii) Total 
protein stain
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▼
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Figure 4.18 -  Com parison of phospho-protein expression with total protein 
expression in the lym phocyte nucleus.

Nuclear protein extracts generated from IB4-LCL that were either a) untreated or b) 
treated with LY294002 (20pM, 1 hour) were cleaned and resolved by 2D 
electrophoresis on a pH 3-10 nonlinear gradient. Proteins were visualised i) by 
phospho-protein staining ii) by silver staining. The corresponding areas from each gel 
where maximum resolution of proteins had occurred (pl 5.2-7.6, Mr 23-90 kDa) are 
shown. The total number of spots detected in the selected area in both treated and 
untreated samples post phospho-protein staining and total protein staining were 
calculated using Phoretix 2D expression software.
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a) BL41 kDa
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Figure 4.19 -  Com parison of nuclear protein expression between EBV 
negative Burkitt’s  lymphom a B cells and EBV immortalized B cells.

Nuclear protein extracts generated from a) BL41 b) IARC-171 were cleaned and 
resolved by 2D electrophoresis on a pH 3-10 nonlinear gradient. Proteins were 
visualised by silver staining.
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a) BL41
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Figure 4.20 -  Com parison of nuclear protein expression between EBV negative 
Burkitt’s  lymphoma B cells and EBV immortalized B cells.

Nuclear protein extracts from a) BL41 and b) IARC-171 cells were cleaned and resolved 
by 2D electrophoresis on a pH 3-10 nonlinear gradient in three replicate experiments 
(EXP. 1-3). Proteins were visualised by silver staining. Corresponding areas from each 
gel where maximum resolution of proteins had occurred (pl 5.85-9.5, Mr 40.5-130 kDa) 
are shown and were selected for further analysis.
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EXP. 1

EXP. 2

EXP. 3

pH 5.85 

130kDa

-9.5

40kDa 
130kDa

i
40kDa 

130kDa

i
40kDa

Spots expressed at a higher level in BL41 cells 

Spots expressed at a higher level in IARC-171 cells

Fig 4.21- Overlay analysis of differential protein expression between EBV negative 
Burkitt’s  lymphom a B cells and EBV immortalized B cells.

Protein expression differences were detected by overlaying gels representing nuclear 
protein expression from BL41 and IARC-171 cells. This was carried out using Phoretix 2D 
expression software. Spots coloured magenta represent proteins detected to be expressed 
at a higher level in BL41 cells. Spots coloured green represent proteins detected to be 
expressed at a higher level IARC-171 cells. Black spots indicate no significant difference in 
protein expression between samples. The areas selected for analysis (pl 5.85-9.5, Mr 40.5- 
130 kDa) from experiments 1-3 are shown. A smaller area from within this region where 
many spots appeared to differentially expressed were selected for closer analysis 
(outlined).
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a) BL41 b) IARC-171

pH 5 .9 ------------------------------6.7 5.9----------------------------- 6.7

EXP. 1 72 kDa

49  kDa

EXP. 2 72 kDa

4 9  kDa

EXP. 3 72  kDa

49  kDa

Fig 4.22a- C om parison of protein expression levels between EBV negative 
Burkitt’s  lymphom a B cells and EBV immortalized B cells; m ontage windows

Montage windows of a selected area (pl 5.85-9.5, Mr 40.5-72 kDa) are shown 
comparing nuclear protein expression from corresponding areas of a) BL41 b) IARC- 
171 cells from three replicate experiments (1-3). Three spots (A, B, C) from this area 
were selected for histogram analysis.
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Fig 4.22b- Histogram  analysis of sp o t volum es: Com parison between BL41 and 

IARC-171 cells.

Quantification of differential expression of proteins between a) BL41 and b) IARC-171 
nuclear samples was carried out using histogram analysis of spot volume. Histogram 
analyses of spots A, B and C from three replicate experiments (EXP. 1-3) are shown. 
The vertical axes represent the ratio of spot volume when comparing two matched spots.
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Fig 4.23a- Com parison of protein expression  levels between EBV negative 
Burkitt’s  lym phom a B cells and EBV immortalized B cells; m ontage windows.

Montage windows of a selected area (pl 6.2-6.8, Mr 60-77 kDa) are shown comparing 
nuclear protein expression from corresponding areas of a) BL41 b) IARC-171 cells 
from three replicate experiments (1-3). Two spots (D and E) from this area were 
selected for histogram analysis.
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Fig 4.23b- H istogram  analysis of sp o t volumes: Com parison between BL41 and 
IARC-171 cells.

Quantification of differential expression of proteins between samples was carried out 
using histogram analysis of spot volume. Histogram analyses of spots D and E from 
three replicate experiments (EXP. 1-3) are shown. The vertical axes represent the ratio 
of spot volume when comparing two matched spots.
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a Actin
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Figure 4.24 -  W estern blot analysis of proteins separated  by 2D 
electrophoresis.

Nuclear protein extracts generated from IB4-LCL that were cleaned and resolved 
by 2D electrophoresis on a pH 3-10 nonlinear gradient. Resolved proteins were 
transferred on to a PVDF membrane. Protein spots corresponding to a) a-actin b) 
STAT1 and c) CREB1 were subsequently detected by immunoblotting with specific 
antibodies.
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Figure 4.25 -  Overview of DNA affinity precipitation

A nuclear protein extract is incubated with biotinylated oligonucleotides containing a specific DNA 
binding sequence for a protein of choice. Also included in the mixture are streptavidin coated 
agarose beads. The high affinity interaction formed between streptavidin and biotin allow proteins 
bound to the oligonucleotide to be isolated. DNA bound proteins (red) were subsequently eluted 
from the DNA and resolved by 1D SDS-PAGE or 2DE. The amount of eluted proteins were 
detected by immunoblotting using specific antibodies.
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Figure 4.26 -1 and 2-dim ensional analysis of DNA bound transcription factors.

a) DNA affinity precipitation of CREB1 molecules from the nuclear extracts of IB4-LCL 
and BL41 + B95.8 cells was carried out with both the cyclin D2 and CREB consensus 
oligonucleotides, i) Eluted proteins from both oligonucleotides were analysed by SDS- 
PAGE. The binding specificity of CREB1 proteins was confirmed by incubating nuclear 
extracts with agarose beads alone (B.O) ii) Eluted proteins from the CREB consensus 
oligonucleotides were resolved by 2D electrophoresis on a pH 3-10 nonlinear gradient. 
CREB1 isoforms were detected by immunoblotting with a CREB1 specific antibody. The 
theoretical pl of CREB is 5.45 (indicated with an arrow).

b) DNA affinity precipitation of p65-NF«B molecules from the nuclear extracts of IB4- 
LCL and BL41 + B95.8 cells was carried out using oligonucleotides containing the p65 
specific DNA binding sequence, i) Eluted proteins were analysed by SDS-PAGE. The 
binding specificity of p65 proteins was confirmed by incubating nuclear extracts with 
agarose beads alone (B.O) ii) Eluted proteins were resolved by 2D electrophoresis on a 
pH 3-10 nonlinear gradient. P65-NFkB was detected by immunoblotting with a p65 
specific antibody.
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Figure 4.27 -  The effect of kinase inhibitors on the DNA binding of CREB1.

Nuclear protein extracts were generated from BL41 + B95.8 cells that were either 
left untreated (con) or were treated with staurosporine (2pM, 1 hour) (ST), KT-5720 
(2pM, 1 hour) (KT) or LY294002 (20mM, 1 hour) (LY). CREB1 molecules were 
subsequently DNA affinity precipitated using CREB consensus oligonucleotides. 
Eluted proteins were resolved by SDS-PAGE. a) CREB1 molecules were detected 
by immunoblotting with a CREB1 specific antibody b) The experiment described 
was repeated with the exception of treatment of cells with LY294002. Eluted 
phospho-CREB1 molecules were detected by immunoblotting with a phospho- 
CREB1 specific antibody. Pan-CREB1 molecules were also detected with a specific 
antibody. The binding specificity of CREB1 proteins was confirmed by incubating 
nuclear extracts with agarose beads alone (B.O).
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Figure 4.28 -  The effect of kinase inhibitors on the post-translational 
m odifications of CREB1.

Nuclear protein extracts were generated from BL41 + B95.8 cells that were either left 
untreated (control) or were treated with staurosporine (2pM, 1 hour) (ST) or KT-5720 
(2pM, 1 hour) (KT). CREB1 molecules were subsequently DNA affinity precipitated 
using CREB consensus oligonucleotides. Eluted proteins were resolved by 2D 
electrophoresis on a a) pH 3-10 nonlinear gradient b) pH 4-7 linear gradient. Phospho- 
and pan-CREB1 isoforms were detected by immunoblotting using specific antibodies
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CHAPTER 5

Regulation of FOXOl by Epstein-Barr virus

5.1 Introduction

The in vitro infection of primary B cells with EBV leads to the establishment 

of immortalized lymphoblastoid cell lines (LCL). Immortalization is 

characterized by rapid proliferation and resistance to apoptotic stimuli, 

including growth factor deprivation (Kuppers, 2003). The mechanisms 

whereby EBV mediates this resistance to apoptosis are not fully understood. 

The co-operative actions of several EBV genes are known to contribute 

towards this effect by generating survival and proliferation signals (Young & 

Rickinson, 2004). Constitutive activation of the extracellular signal-regulated 

protein kinases 1/2 (ERK 1/2) by EBV has been demonstrated be associated 

with a downregulation in the expression of the pro-apoptotic protein, bim, in 

EBV infected B cells (Clybouw et al, 2005). The activation of the 

transcription factor NFkB and the phosophatidylinositol-3-kinase 

(PI3K)/Protein Kinase B (PKB) signalling pathways have also been shown to 

play important roles in the regulation of survival and proliferation of B-cells 

(Brennan, 2001). While many of the targets of NFkB have been characterized, 

the nuclear targets of PI3K are relatively poorly characterized in EBV 

immortalized B-cells.

Pro-apoptotic Forkhead box class O (FOXO) transcription factors are direct 

targets of PI3K mediated signal transduction in a variety of cell systems. 

Phosphorylation of members of this transcription factor family by PKB, an 

important downstream effector of PI3K activity, results in the nuclear 

exclusion and inhibition of transcriptional activity (Biggs et al, 1999, Brunet et 

al, 1999, Takaishi et al, 1999). FOXO transcription factors co-ordinate cell 

cycle progression and cell survival by the activation of antiproliferative genes
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such as p27Kipl and cyclin G2 as well as pro-apoptotic genes such as Fas 

Ligand (FasL), bcl-6 and the bcl-2 family member bim (Brunet et al, 1999, 

Medema et al, 2000, Dijkers et al, 2002, Tang et al, 2002, Furukawa-Hibi et 

al, 2002, Essafi et al, 2005).

Initial identification of this transcription factor family in humans occurred as 

three members were identified at chromosomal translocations in human 

tumours, namely FOXOl (FKHR) in alveolar rhabdomyosarcomas, FOX03a 

(FKHR-L1) in acute myeloblastic leukaemia (AML) and FOX04 (AFX) in 

acute lymphocytic leukaemias (Galili et al, 1993, Parry et al, 1994, Davies et 

al, 1994, Borkhardt et al, 1997, Hillion et al, 1997) These discoveries were the 

first indications that FOXO transcription factors have a role in tumour 

development. Recent studies have demonstrated that loss of FOXO activities 

due to protein degradation contributes towards cellular transformation of 

primary breast cancer tumours (Hu et al, 2004) and mouse primary 

lymphomas (Huang et al, 2005).

This part of the study was therefore initiated to investigate the interplay 

between FOXO and EBV, and focused on one member of the FOXO family, 

FOXOl.
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5.2 FOXOl expression is downregulated by EBV infection

The aim of this part of the study was to investigate the relationship between 

EBV infection and FOXOl expression. To do this, nuclear FOXOl protein 

levels were analyzed by immunoblotting in cells lines with different EBV 

status using a specific antibody. Poly-ADP ribose polymerase (PARP) protein 

levels were also analyzed to verify equal protein loading as PARP is found in 

the nucleus and PARP expression levels are not affected by EBV status. The 

BL41, BL41 + B95.8 and I ARC-171 cell lines were generated from the same 

individual and thus have the same genetic background. They differ in their 

patterns of EBV gene expression and the presence of the myc translocation 

present in BL41 that is typical of Burkitt’s lymphoma cells (Rowe et al, 1986). 

BL41 is an EBV-negative Burkitt's Lymphoma (BL) line. BL41 + B95.8 is the 

same line after infection with the B95.8 strain of EBV. IARC-171 is a B95.8 

EBV immortalized LCL derived from the same patient as BL41. The results 

show high levels of FOXOl protein expression in the EBV negative BL line 

(BL41) (Figure 5.1a). In contrast, FOXOl expression is markedly 

downregulated in EBV immortalized B-cells (IARC-171). To investigate 

whether the presence of EBV is the cause of downregulation, FOXOl 

expression was also analyzed in BL41 + B95.8 cells. Less FOXOl was 

detected in BL41 + B95.9 cells when compared to BL41 cells, suggesting that 

EBV has a role in downregulating FOXOl protein expression.

EBV infection of B cells can lead to the establishment of distinct latency 

programmes as a result of the different expression patterns of viral genes 

(Kuppers, 2003). To establish whether the latency programme affects FOXOl 

expression, protein levels were compared between four EBV positive sublines 

of a BL tumour. Mutu I cells express only EBV Nuclear Antigen -1 (EBNA1), 

and two small polyadenylated RNA molecules (EBER1 and EBER2), a 

restricted pattern of viral gene expression termed Latency I. Mutu III express 

the full complement of EBV encoded latency genes (EBNA1, EBNA2, 

EBNA3A, EBNA3B, EBNA3C, EBNA-LP, LMP1, LMP2, EBER1, EBER2 

and BamHI A rightward transcripts) termed Latency III (Rowe et al, 1992).
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FOXOl protein levels were significantly lower in Mutu III cells compared to 

Mutu I cells, and were comparable to that observed in the LCL, I ARC 171 

(Figure 5.1b). The results therefore clearly demonstrate that a latency III 

pattern of viral gene expression is required for the repression of FOXOl 

protein levels.

Additional EBV negative and positive lines were also tested for FOXOl 

protein expression (Figure 5.1c). Three EBV negative Burkitt's lymphoma 

lines were analyzed. BL41 is described above. DG75 is another EBV negative 

BL line (Ben-Bassat et al, 1977). AK31 is an EBV negative subclone of Akata 

(Jenkins et al, 2000), an EBV positive BL line displaying a latency I pattern of 

gene expression. Again, FOXOl protein expression was high in EBV negative 

tumour lines. Three LCL lines were also tested. IARC-171 is described above. 

IB4-LCL is an LCL generated from cord blood B-cells immortalized with 

B95.8 EBV (Sample & Kieff, 1990). EB-LCL is an LCL generated in house 

by infection of primary B cells from the blood of a healthy donor with the 

B95.8 strain of EBV. In accordance with previous results, FOXOl expression 

was very low in EBV immortalized B cells. The level of FOXOl expression in 

the BL41 + B95.8 cells was again between that observed in BL41 and IARC- 

171 cells.

Altogether, there results demonstrate that FOXOl is downregulated in EBV 

infected cells, and that a latency III pattern of EBV gene expression is required 

for this repressive effect.

5.3 Analysis of the levels transcription factors in EBV negative 

and EBV positive cell lines

EBV has been shown to alter the expression of other transcription factors 

targeted downstream of cellular signalling pathways. The signal transducer 

and activator of transcription 1 (STAT1) transcription factor is constitutively 

activated in EBV immortalized B cells by the main transforming protein of 

EBV, Latent membrane protein 1 (LMP1) (Weber-Nordt et al, 1996,
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Richardson et al, 2003). LMP1 also recruits components of the Tumour 

Necrosis Factor-Receptor (TNF-R) signalling pathway to activate the Nuclear 

Factor-KB (NFkB) transcription factor, and is one of the major signalling 

pathways activated by EBV (Huen et al, 1995, Izumi et al, 1997). The cAMP 

response element binding protein 1 (CREB1) transcription factor has been 

shown to be constitutively phosphorylated at the critical site for activity, serine 

133, in EBV immortalized B cells (White et al, 2006).

The expression status of these transcription factors were investigated in the 

EBV negative and EBV positive B cell lines in which FOXOl protein 

expression was found to be downregulated by EBV. Nuclear protein extracts 

were generated form BL41, BL41 + B95.8 and IARC-171 cell lines and were 

resolved by SDS-PAGE. The expression levels of FOXOl, STAT1, the p65 

component of NFkB  and CREB1 were determined by immunoblotting using 

specific antibodies. Again, the expression of FOXOl was found to be 

significantly downregulated in the LCL (IARC-171) compared to EBV 

negative BL41 cells (Figure 5.2). FOXOl levels in BL41 + B95.8 cells were 

again between that of BL41 and IARC-171 cells. In contrast, the expression of 

ST ATI was dramatically increased in IARC-171 compared to BL41. ST ATI 

levels in BL41 + B95.8 cells were increased compared to BL41 cells but were 

not at levels comparable with the LCL, reflecting the intermediate effect of 

EBV on FOXOl expression in these cells. Analysis of the expression of the 

p65 component of NFkB showed no difference in the level of expression when 

comparing BL41 and BL41 + B95.8 cells, but a small increase was observed 

in IARC-171 cells. Total levels of CREB1 were similar in all three cell lines 

tested. The small decrease observed in CREB1 protein levels in IARC-171 

cells is likely to be due a slight difference in loading, as demonstrated by the 

levels of PARP, used as a loading control. These results demonstrate that the 

expression of some transcription factors, namely FOXOl, STAT1 and NFkB 

are altered by EBV, whereas others, such as CREB1 remain unaffected.
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5.4 PI3K inhibition increases nuclear FOXOl protein levels

One mechanism whereby FOXO activity is regulated is by nuclear exclusion 

and subsequent degradation once in the cytoplasm. Stimulation of the PI3K 

pathway has a central role in this process by activating the kinase activity of 

PKB. FOXO transcription factors contain three consensus PKB 

phosphorylation sites that when phosphorylated target the proteins for nuclear 

exclusion, thereby increasing the survival potential of the cell (Birkenkamp & 

Coffer, 2003). In order to investigate the role of PI3K in regulating the 

subcellular localization and protein levels of FOXOl, a specific inhibitor of 

PI3K was employed, LY294002 (Vlahos et al, 1994). BL41, BL41 + B95.8 

and IARC-171 cells were either left untreated or were treated with increasing 

doses of LY294002. Nuclear and cytosolic FOXOl protein levels were 

subsequently analyzed by western blotting.

Although basal levels of FOXOl levels are relatively high in the nuclei of 

BL41 and BL41 + B95.8 cells, this could be increased further following PI3K 

inhibition by LY294002 for 1 hour (Figure 5.3a and Figure 5.3b). In parallel to 

this increase, a decrease in cytosolic FOXOl was observed following 

LY294002 treatment in both cell lines, although to a greater degree in the 

EBV negative BL41 cells. In contrast to this, no nuclear increase or cytosolic 

decrease in FOXOl level could be detected in the LCL (IARC-171) after 1 

hour treatment with the PI3K inhibitor. Only after treatment with LY294002 

for 24 hours could an increase in FOXOl nuclear protein be detected (Figure 

5.3c). This increase was not accompanied by a decrease in cytosolic FOXOl. 

These results show that PI3K inhibition can increase FOXOl in all cell types 

but with different kinetics, suggesting a difference in the way in which PI3K 

regulates FOXOl activity in cells with different EBV status.

5.5 FOXOl mRNA is downregulated by EBV

The slow kinetics o f upregulation of FOXOl by treatment with LY294002 in 

IARC-171 suggests a different mechanism of regulation in these cells
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compared to EBV negative BL41 cells. For this reason, it was investigated 

whether FOXOl repression by EBV could occur at the transcriptional level. 

Total RNA was purified from BL41, BL41 + B95.8 and IARC-171 cells. 

FOXOl mRNA activity was subsequently measured relative to a 

housekeeping gene (L 19) by real time PCR by the group of Professor Eric 

Lam at the Department of Oncology, Imperial College London. The results 

shown are the average of triplicate results from three independent experiments 

and demonstrate that steady state levels of FOXOl mRNA were reduced by 

half in EBV infected cells compared to EBV negative cells (Figure 5.4). These 

results indicate that FOXOl is downregulated at the mRNA level by EBV.

5.6 FOXOl can bind DNA and is post-transcriptionally 

modified in EBV infected cells

DNA binding is required for transcription factors to regulate target genes and 

downstream effects. It was therefore important to determine whether the 

FOXOl detected was capable of binding DNA for mediation of its effects 

upon cell proliferation and survival. DNA affinity precipitation experiments 

were therefore carried out using an oligonucleotide containing a forkhead 

response element (5’-TAAACAC-3’) from the bim promoter (Essafi et al, 

2005). FOXOl molecules from nuclear extracts of IB4-LCLs and BL41 + 

B95.8 cells were therefore DNA affinity precipitated using the bim promoter 

oligonucleotide. FOXOl DNA binding was subsequently analyzed by 

immunoblotting. The binding specificity of FOXOl was tested by incubating 

nuclear extracts with agarose beads alone. No FOXOl DNA binding was 

observed in the LCL (Figure 5.5a). This was to be expected as very little, if 

any, FOXOl could be detected in the nuclei of all LCLs tested. DNA binding 

of FOXOl to the bim oligonucleotide could however be detected in BL41 + 

B95.8 cells. Some of this FOXOl DNA binding was likely to be non-specific 

as indicated by the presence of a small amount of FOXOl in the sample 

incubated with beads alone (Figure 5.5a). However, the amount of DNA 

bound FOXOl detected in the sample incubated with bim oligonucleotides 

was significantly higher, confirming that FOXOl molecules detected are
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capable of binding to target promoter sequences when present in sufficient 

amounts in the nucleus.

The effect of PI3K inhibition on FOXOl DNA binding in EBV negative and 

EBV positive cells was also tested. FOXOl molecules from nuclear extracts of 

BL41 and BL41 + B95.8 cells, either untreated or treated with LY294002 

(20pM) for 1 hour, were DNA affinity precipitated using the bim 

oligonucleotide. FOXOl DNA binding was analysed by immunoblotting. The 

binding specificity of FOXOl proteins was again tested by incubating nuclear 

extracts with agarose beads alone. FOXOl DNA binding was detected at 

comparable levels in both cell lines with no treatment (Figure 5.5b). Binding 

was mostly specific as indicated by only a small amount of FOXOl DNA 

binding in samples incubated with beads alone. Following LY294002 

treatment, the amount of DNA bound FOXOl was significantly increased in 

both BL41 and BL41 + B95.8 cells to a similar degree. This suggests that a 

direct correlation exists between the amount of FOXOl localized within the 

nucleus and DNA binding.

The role of post-translational modifications in the regulation of transcription 

factor activity is well established. Phosphorylation events are well known to 

have important effects on the activities of many transcription factors. FOXO 

members contain multiple PKB phosphorylation sites that mediate subcellular 

localization and DNA binding activity. Both ubiquitinylation and acetylation 

have also been reported to modulate members of the FOXO family by 

directing degradation and attenuation of DNA binding respectively (Huang et 

al, 2005, Matsuzaki et al, 2005, Perrot & Rechler, 2005) To establish how 

many DNA binding isoforms of FOXOl exist in the nuclei of EBV negative 

and positive BL41 cells, FOXOl was analyzed by applying the technology of 

2DE, in combination with DNA-AP. This method was developed in chapter 4 

of this study (section 4.7.2), and was found to be an effective method of 

analysing DNA bound isoforms of transcription factors. DNA affinity 

precipitated FOXOl eluted from bim oligonucleotides was isoelectrically 

focused using a pH 3-10 non-linear immobilized pH gradient and subsequently 

separated in the second dimension by SDS-PAGE. Immunoblot detection of
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FOXOl with a specific antibody revealed that multiple isoforms of FOXOl 

bind to DNA in BL41 + B95.8 cells (Figure 5.5c). The isoelectric points (pi) 

of the different FOXOl isoforms range between 5.4 and 6.1 and are present is 

varying amounts. The most abundant isoform has a pi of approximately 5.7. In 

contrast, only one isoform of FOXOl could be detected in BL41, which has a 

lower pi value of approximately 4.7. These results demonstrate that FOXOl is 

post-translationally modified, and multiple isoforms of FOXOl are capable of 

binding DNA in EBV positive cells but not in EBV negative B cells.

5.7 FOXOl expression correlates with Bcl-6 and inversely 

correlates with Cyclin D2.

Having established that the FOXOl detected is capable of binding DNA, it 

was investigated whether DNA binding initiated transcriptional activation, and 

the effect of EBV on target gene activity. To address these questions, 

expression levels of FOXOl target genes were analyzed using various cell 

lines. Bcl-6 is a sequence specific transcriptional repressor of proteins 

mediating lymphocyte apoptosis and differentiation and bcl-6 transcription is 

activated by FOXOl (Tang et al, 2002). Nuclear bcl-6, from various cell lines, 

was analyzed by immunoblotting. A direct correlation between FOXOl and 

bcl-6 protein levels was observed, with a high level of bcl-6 expression in cells 

with high FOXOl and less bcl-6 detected in EBV transformed LCL cells 

(Figure 5.6). The bcl-6 levels do not correspond with EBV status, per se, as 

Akata, which is EBV positive but has a latency I pattern of gene expression, 

expresses high levels of FOXOl and bcl-6. This agrees with the data from 

Mutu I cells and suggests that one, or more, of the EBV genes expressed in 

latency III is likely to regulate FOXOl. Cyclin D2 protein levels were also 

analyzed. Cyclin D2 is a cell cycle protein required for progression through 

the Gi phase of the cell cycle and has been shown to be transcriptionally 

repressed by FOXO (Schmidt et al, 2002, Fernandez de Mattos et al, 2004). 

Western blot analysis showed an inverse correlation between Cyclin D2 

expression and the expression of both FOXOl and bcl-6. These data suggest
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that FOXOl is transcriptionally active, and that the repressive effect that EBV 

has upon FOXOl also extends to its target genes.

5.8 PI3K activity can regulate Cyclin D2, but not Bcl-6 protein 

levels in EBV negative and EBV positive B cells.

Since the expression levels of FOXOl have been shown to correlate with the 

expression of two FOXOl target genes, bcl-6 and cyclin D2 (section 5.7) and 

nuclear FOXOl has been demonstrated to be increased in response to PI3K 

inhibition (section 5.4), it was investigated whether PI3K can directly regulate 

the expression of cyclin D2 and bcl-6. Cyclin D2 expression has previously 

been shown to be important for the proliferative effects of PI3K on 

lymphoblastoid cells and is downregulated in response to treatment with the 

PI3K inhibitor, LY294002 in EBV immortalized B cells (Brennan et al, 2002).

Nuclear protein extracts were generated from BL41 cells treated with varying 

doses of LY294002 for the period of time required to induce an upregulation 

in FOXOl expression in BL41 cells (1 hour). The expression of FOXOl, bcl-6 

and cyclin D2 were subsequently analyzed by SDS-PAGE and 

immunoblotting with specific antibodies. The blot generated in section 5.4 

(Figure 5.3c), where IARC-171 cells were treated with varying doses of 

LY294002 (24 hours), were also re-probed with these antibodies. The 

effectiveness of LY294002 to inhibit PI3K was demonstrated by analysing the 

phosphorylation status of the S6 ribosomal protein (S6), a major target of 

PI3K signalling in B cells as demonstrated in chapter 3 of this study. The 

levels of FOXOl in the nuclei of BL41 and IARC-171 cells were shown to be 

increased in response to LY294002 treatment for 1 hour and 24 hours 

respectively (Figure 5.7). The level of bcl-6 expression was high in untreated 

EBV negative BL41 cells, and was low in untreated EBV immortalized IARC- 

171 cells, reflecting the direct correlation observed between FOXOl and bcl-6 

observed in section 5.7. Inhibition of PI3K, however, did not alter the levels of 

bcl-6 in BL41 or IARC-171 cells. This suggests that PI3K is not sufficient to 

regulate the expression of this protein. In contrast, cyclin D2 expression was
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inhibited by LY294002 treatment in BL41 and IARC-171 cells for 1 hour and 

24 hours respectively. These data agree with a role for PI3K in the regulation 

of cyclin D2 in B cells (Brennan et al, 2002)

5.9 Both LMP1 and LMP2A can downregulate FOXOl 

expression

The establishment of EBV latency requires the expression of a repertoire of 

EBV encoded latent genes. LMP1 is the major transforming protein of EBV 

and is required for the transforming effects of EBV on primary B cells. LMP1 

mimics a constitutively activated CD40, a member of the tumour necrosis 

receptor (TNFR) superfamily, mediating ligand independent signalling 

through a range of key signalling pathways essential for survival including 

NFkB, mitogen-activated protein kinases (MAPKs), JNK, JAK/STAT 

pathways as well as the PI3K pathway (Young & Rickinson, 2004). LMP2A, 

also encoded by EBV, is another potent activator of the PI3K pathway, and 

acts as a constitutively activated B cell receptor (BCR), thereby inhibiting 

normal signalling through the BCR (Swart et al, 2000, Morrison et al, 2003). 

Since the activities of both LMP1 and LMP2A have been shown to activate 

PI3K signalling it was reasonable to suspect that they may have a role in the 

repression of FOXO 1.

To test this hypothesis, the effect of LMP1 on FOXOl expression was firstly 

investigated by employing EBV negative B cell lymphoma lines (BJAB) 

stably transfected with LMP1 (Wang et al, 1990). Protein expression levels 

were compared between the nuclear extracts generated from two BJAB clones 

stably expressing LMP1, MTLM-17 and MTLM-6, and their corresponding 

vector control lines, GPT1 and GPT2 respectively, by SDS-PAGE and 

immunoblotting. The expression of LMP1 in MTLM-17 and MTLM-6 was 

tested and was found to be expressed at comparable levels in both clones 

(Figure 5.8). The levels of FOXOl in these cells were subsequently tested. 

FOXOl was found to be significantly downregulated in the LMP1 expressing 

MTLM-6 cells when compared to its corresponding vector control cell line,
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GPT2. This observation, however, was not repeated in the other LMP1 

expressing clone, MTLM-17, in comparison to its corresponding vector 

control line, GPT1. This discrepancy prompted us to investigate the signalling 

capacity of the LMP1 molecules expressed. The expression levels of STAT1 

were therefore analysed. STAT1 was found to be constitutively expressed in 

MTLM-6 cells, but not in MTLM-17 cells, suggesting that the signalling 

potential of LMP1 in MTLM-17 cells is impaired. This explained the 

discrepancy observed in the effect of LMP1 on FOXOl between these cells, 

and suggested that LMP1 may have a role in the downregulation of FOXOl.

To further evaluate the role of LMP1, and also to investigate whether LMP2A 

has a role in mediating the downregulation of FOXOl, DG75 cells, which 

express high levels of FOXOl, were transiently transfected with increasing 

amounts of either LMP1 or LMP2A expression vectors. The total amount of 

DNA transfected was kept constant (10p,g) with the addition of the empty 

pSG5 vector. After 20 hours, cells were harvested, lysed and FOXOl and bcl- 

6 protein levels were analyzed by immunoblotting. DG75 cells transfected 

with LMP1 demonstrated reduced levels of FOXOl and also bcl-6 protein 

expression in a dose dependent manner (Figure 5.9a). Protein analysis of 

LMP2A transfected cells showed a similar decrease of FOXOl expression 

(Figure 5.9b). A clear downregulation of bcl-6 was also detected with 

transfection of lOpg of LMP2A. However, at the lower doses of 1 and 5pg, 

LMP2A did not repress bcl-6 protein expression. Actin was used as a loading 

control. Luciferase reporter assays were carried out in parallel with the lysates 

generated from DG75 cells transfected with increasing amounts of either 

LMP1 or LMP2A expression vectors. Cells were also transfected with a fixed 

amount of a bcl-6 reporter construct containing a FOXO consensus binding 

sequence upstream of a luciferase gene. The bcl-6 promoter sequence was 

mutated to lack the consensus bcl-6 binding site in the bcl-6 gene that is 

thought to act as a negative autoregulatory loop (Tang et al, 2002). LMP1 

repressed bcl-6 transcription in a dose dependent manner (Figure 5.10a). 

LMP2A however, did not repress the transcriptional activity of the bcl-6 gene 

(Figure 5.10b). The expression levels of LMP1 and LMP2A in the transfected
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cells were confirmed by immunoblotting with specific antibodies (Figure 5.9a, 

Figure 5.9b, Figure 5.10a, Figure 5.10b).

The effect of LMP1 and LMP2A on protein levels of FOXOl and bcl-6, 

protein expression levels were also analyzed in stable DG75 transfectants 

containing inducible LMP1 and LMP2A genes. In these cell lines, the LMP1 

and LMP2A genes were cloned downstream of a promoter containing binding 

sites for a hybrid tetracycline-regulated transacivator (tTA) that is 

constitutively expressed from a second co-transfected plasmid DNA. 

Tertracycline binds to the tTA and prevents binding of the promoter which 

remains silent. However, on removal of tetracycline, the tTA binds to the 

promoter sequences and activates the transcription of the gene of interest, in 

this case, LMP1 and LMP2A (Floettmann et al, 1996). The effects of another 

EBV encoded gene, EBV nuclear antigen 2A (EBNA2A) on FOXOl and bcl- 

6 expression was also analysed in a stable DG75 transfectant containing 

inducible EBNA2A. EBNA2A is a viral transcriptional activator of several 

viral and cellular genes, and is a crucial mediator of the transforming effects of 

EBV (Kutok & Wang, 2006).

FOXOl and bcl-6 protein levels were compared with those detected in two 

lymphoblastoid cell lines, IARC-171, and an early passage LCL generated 

from the B cells of a healthy donor with the B95.8 stain of EBV, CMc. In the 

presence of tetracycline, protein expression of FOXOl and bcl-6 were 

detectable in EBNA2A, LMP1 and LMP2A inducible lines, although FOXOl 

expression is higher in the EBNA2A line (Figure 5.11). On induction of LMP1 

gene expression, by culturing the cells in the absence of tetracycline, a clear 

decrease of both FOXOl and bcl-6 levels was detected at 24 hours, and to a 

greater degree at 48 hours. The induction of LMP2A expression also resulted 

in the repression o f the bcl-6 protein at both time points. The induction of 

LMP2A expression did not significantly reduce FOXOl expression, with a 

slight decrease being observed 48 hours post induction. The subtle effect of 

LMP2A may be due to the basal expression of LMP2A expression seen in the 

presence of tetracycline. FOXOl levels in the LMP1 and LMP2A inducible 

lines were considerably reduced when compared to the EBNA2A line,
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demonstrating the sensitivity of FOXOl protein expression to the residual low 

levels of both LMP1 and LMP2A signals in the presence of tetracycline. 

Induction of EBNA2A did not affect the expression of FOXOl or bcl-6. 

Calregulin was used as a loading control in this experiment. The data using 

stable cell lines expressing EBV genes was generated in collaboration with 

Martin Rowe and is included with permission.

In, summary, the results from the transient transfection and the stable lines 

demonstrate that both LM P1 and LMP2A can downregulate the expression of 

FOXOl and bcl-6.

5.10 LMP1 mediated repression of FOXOl and Bcl-6 is not 

mediated by the C-Terminal activating region -1 (CTAR-1) of 

LMP1

LMP1 gave a more dramatic reduction in FOXOl down regulation than 

LMP2A. There has been significant analysis of LMP1 signalling that has 

identified at least two different signalling domains, known as C-Terminal 

activating region-1 (CTAR1) and CTAR2. CTAR1 has been shown to activate 

PI3K in epithelial cells (Dawson et al, 2003) and fibroblasts (Maniou et al, 

2005). To investigate whether CTAR1 can regulate FOXOl, an LMP1 mutant 

was employed in which three critical amino acids within the CTAR1 domain, 

Proline 204, Glycine 206 and Threonine 208, were mutated to alanine. This 

mutant is referred to LMP1AAA. This mutation blocks CTAR1 mediated NFkB 

activation by abrograting the binding of TRAF (TNF-receptor associated 

factor) molecules, which is important for the LMP1 induced phenotypic and 

cellular changes associated with EBV mediated transformation (Eliopoulos et 

al, 1997, Brodeur et al, 1997). DG75 cells were therefore transfected with 

increasing amounts of either the wild type LMP1 or LMP1AAA expression 

vectors. After 24 hours the cells were harvested and lysates were generated. 

The protein extract was resolved by SDS-PAGE and analysed by 

immunoblotting with antibodies specific for FOXOl, bcl-6 and LMP1 (Figure 

5.12). The protein levels of ST ATI were also analysed with a specific
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antibody as this transcription factor has been demonstrated to be increased in 

expression by LMP1 through an NFkB pathway (Richardson et al, 2003). 

Actin was used as a loading control. Both the wild type LMP1 and the 

LMP1aaa mutant were able to cause a decrease in FoxOl and bcl-6 protein 

levels. However, only wild type LMP1 was able to induce STAT1. These data 

suggests that distinct domains of LMP1 are involved in the regulation of 

FOXOl and bcl-6 transcription factor protein levels, and that this may not be 

due to the direct activation of PI3K by the CTAR1 region of LMP1.

This work has been accepted for publication; ‘Epstein-Barr Virus represses 

FoxOl transcription factor through Latent Membrane Protein 1 and Latent 

Membrane Protein 2A ’, manuscript in press, Journal o f  Virology (see 

appendix III).
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5.11 Discussion

In this chapter the interplay between EBV and FOXOl was investigated. 

FOXOl has a well established role in the regulation of cell survival and so it 

was logical to suspect that it is a target of regulation by EBV. The data clearly 

demonstrated that EBV has a repressive effect on FOXOl protein expression 

in B cells and that this effect can be mediated by both EBV encoded latent 

membrane proteins-1 and 2A. The repression of FOXOl may be due to the 

ability of these membrane proteins to activate PI3K signalling. However, the 

CTAR1 component of LMP1, which has previously been shown to mediate 

PI3K activation in other cell types, was found not to be essential for the LMP1 

mediated downregulation of FOXOl. Furthermore, EBV can also repress 

FOXOl mRNA levels, suggesting alternative mechanisms for the regulation 

of FOXOl.

A correlation was observed between EBV status and activity of FOXO target 

genes, bcl-6 and cyclin D2, which are essential for B cell proliferation and 

development. The levels of bcl-6, which is a direct target gene for activation 

by FOXO (Tang et al, 2002), correlated with FOXOl expression. Bcl-6 is a 

transcriptional repressor of both lymphocyte differentiation and apoptosis and 

is the most frequently targeted proto-oncogene in non-Hodgkin’s lymphomas 

(Ye, 2000). It was demonstrated that LMP1 is sufficient for this pathway as 

inducible expression of LMP1 and transfection of a plasmid encoding LMP1 

was enough to repress both FOXOl and its target gene, bcl-6. An inverse 

correlation between LMP1 and bcl-6 has previously been described at the 

transcriptional and protein levels in the B-cells of transgenic mice expressing 

LMP1 or a chimeric LMP1CD40 molecule (Panagopoulos et al, 2004). Other 

studies have also observed the repressive effect of CD40 activation or EBV 

genome expression on bcl-6 expression in B cells and dendritic cells (Allman 

et al, 1996, Carbone et al, 1998, Moschella et al, 2001). The function of bcl-6 

repression by LMP1 is believed to be germinal centre suppression, allowing 

exit of EBV infected cells from the germinal centre. On the basis of this data, 

FOXOl can be proposed as a molecular intermediate by which LMP1 can 

regulate bcl-6.
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The role of LMP2A in the regulation of FOXO 1 and bcl-6 is more complex. 

Activation of PI3K through LMP2A has previously been shown to induce 

phosphorylation of FOXOl in epithelial cells (Morrison et al, 2003) which 

subsequently targets FOXOl for degradation. However, the effects of LMP2A 

on the total protein levels of both FOXOl and bcl-6 had not been previously 

defined. A clear downregulation of FOXOl protein expression was observed 

in this study with LMP2A transient transfection but this did not translate to a 

corresponding dose responsive decrease in bcl-6 expression. However, 

induction of LMP2A in stable transfectants did result in a clear repression of 

bcl-6 protein expression. This may be due to differences in the time or levels 

of expression. In the system with stable expression, more LMP2A is expressed 

and for a longer period of time than the 20 hours studied in the transient 

transfections.

In contrast to bcl-6, an inverse correlation was observed between Cyclin D2 

protein expression and FOXOl. It has previously been shown that PI3K 

regulates the cyclin D2 protein (Brennan et al, 2002) and the cyclin D2 

promoter (White et al, 2006) so this may in part be due to FOXOl. It is also 

possible that the repressive effect of FOXO transcription factors on Cyclin D2 

transcription may be indirect (Schmidt et al, 2002) possibly through bcl-6, via 

an interaction with the STAT5 transcription factor (Fernandez de Mattos et al,

2004). The cyclin D2 gene has a complex promoter and is subject to regulation 

by a diverse range of cellular stimuli (Martino et al, 2001, White et al, 2006).

A difference was observed in the kinetics of FOXO 1 regulation by the PI3K 

pathway when comparing EBV negative BL cells and LCLs. In IARC-171 

cells, 24 hour incubation with LY294002 was required to detect an increase in 

nuclear FOXOl but one hour was sufficient for an increase of a similar level 

in the nuclei of the EBV negative BL41 cells. This suggests extra mechanisms 

for the repression of FOXOl in EBV immortalized cells, an observation 

supported by the detection of lower levels of FOXO 1 mRNA in these cells. A 

difference in the contribution of the PI3K pathway towards survival of these 

two cell types is evident when analyzing cell survival post treatment with the
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PI3K inhibitor (Brennan et al, 2002). EBV negative BL lines rapidly undergo 

apoptosis but in contrast, LCL lines do not die, but are growth arrested. The 

difference in sensitivity to LY294002 is also seen for other agents and may be 

due in part to the delay in induction of FOXO 1 as well as the other molecules 

such as NFkB that are increased in EBV immortalized cells.

2D-electrophoretic analysis of DNA bound FOXOl shows that post- 

translational modification patterns are distinct in EBV positive B cells 

(BL41+B95.8) when compared with EBV negative B cells (BL41) suggesting 

a further level of control of FOXOl. It is possible that the multiple isoforms of 

FOXOl detected bound to DNA in EBV positive cells are differentially 

phosphorylated forms but this may be unlikely as phosphorylation targets 

FOXOl molecules towards nuclear exclusion, and so would not be easily 

detected by this assay. Acetylation of nuclear FOXO proteins has also been 

reported to affect the transcriptional programmes controlled by FOXO proteins 

due to interference with the balance of co-activator and co-repressor 

recruitment (Fukuoka et al, 2003, Van der Horst et al, 2004, Perrot & Rechler, 

2005). Again, a role for the PI3K pathway is proposed as acetylation was 

reported to increase the sensitivity of FOXO 1 to phosphorylation, contributing 

towards degradation (Matsuzaki et al, 2005). A recent study has demonstrated 

the role of ubiquitinylation by the Skp2/Cul-l/F-box protein ubiquitin complex 

in the targeting of FOXOl molecules for degradation following PKB 

activation (Huang et al, 2005). However, the pattern of spots observed did not 

show a significant increase in the molecular weight of the protein (> 1000 Da) 

which would be suggested following ubiquitinylation (Jensen, 2006). Thus, 

while pathways activated by EBV lead to differential modifications of 

FOXOl, as detected in BL41+B95.8, that may repress transcriptional activity, 

their identity is currently unknown and requires further investigation.

Integrating the data in this chapter provides evidence that EBV regulates 

FOXOl expression by three distinct mechanisms: the prototypic repression of 

FOXOl by PI3K; alternative post-translational modifications observed in 

BL41 cells infected by EBV, BL41+B95.8, and a repression of FOXOl 

expression at the mRNA level observed in LCLs. These diverse mechanisms
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ensure that FOXOl expression and activity is inhibited. The existence of these 

distinct mechanisms suggests that repressing FOXOl activity is an important 

part of EBV infection of B-cells.

In summary, these data identify FOXOl as an EBV regulated transcription 

factor and adds to a body of work demonstrating the suppression of pro- 

apoptotic pathways by EBV. Furthermore, FOXOl has been identified as one 

of the few proteins regulated by both LMP1 and LMP2A. LMP1 and LMP2A 

have been shown to activate a diverse range of signalling pathways 

contributing towards cell survival. These include the activation of tyrosine 

kinases, mitogen-activated protein kinases (MAPKs), JNK, p38, the 

transcription factor, NFkB, as well as the PI3K pathway. This chapter 

describes another nuclear target by which EBV latent membrane proteins work 

to shift the balance of anti- and pro- apoptotic pathways towards survival. 

Interplay between EBV and FOXOl is likely to contribute towards the 

characteristic apoptotic resistance of immortalized B cells in the context of 

EBV associated malignancies.
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Figure 5.1 EBV infection dow nregu lates F0X01 expression

Nuclear protein extracts were generated from a) Burkitt’s Lymphoma line (BL41), EBV 
infected Burkitt’s Lymphoma line (BL41 + B95.8) and a lymphoblastoid B cell line (IARC- 
171) b) EBV positive Burkitt’s line expressing Latency I genes (Mutu I, clones 59 and 
179), EBV positive Burkitt’s line expressing Latency III genes (Mutu III,clones 62 and 95), 
and two lymphablastoid cell lines (IARC-171, EB-LCL) c) EBV negative BL lines (BL41, 
DG75, AK31), EBV positive BL line (BL41 + B95.8) and lymphoblastoid cell lines (IB4- 
LCL, IARC-171, EB-LCL). Proteins were resolved by SDS-PAGE and FOXOI protein 
levels were determined by immunoblotting with a specific FoxOl antibody. Poly-ADP 
ribose polymerase (PARP) was used as a loading control.
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Figure 5.2 A nalysis of o ther transcrip tion  factors in EBV negative and positive B 
cell lines

Nuclear protein extracts were generated from a Burkitt’s Lymphoma line (BL41), EBV 
infected Burkitt’s Lymphoma line (BL41 + B95.8) and a lymphoblastoid B cell line (IARC- 
171) Proteins were resolved by SDS-PAGE. Levels of expression of transcription factors 
were determined by immunoblotting with antibodies specific for FOX01, STAT1, p65- 
NFkB and CREB1. Poly-ADP ribose polymerase (PARP) was used as a loading control.
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Figure 5.3 PI3K inhibition can  increase  nuclear FOXOI in all cell types but with 
different kinetics.

Nuclear and cytosolic protein extracts were generated from a) BL41 and b) BL41 + B95.8 
and c) IARC-171 B cell lines. Proteins were resolved by SDS-PAGE and immunoblotted 
with an antibody specific to FO X01. Cells were either left untreated or were treated with 
varying concentrations of LY294002 (20pM, 10pM, 5pM) for either one hour (BL41, BL41 + 
B95.8) or 24 hours (IARC-171). Antibodies specific for actin, tubulin and PARP were used 
as a loading controls. FOX01 is represented by the higher molecular weight band in part c.
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Figure 5.4 FOXOI mRNA is downregulated by EBV

Total RNA was extracted from BL41, BL41 + B95.8 and IARC-171 cells. Expression of 
FOXOI RNA was subsequently analyzed by real-time PCR and normalised to the level of 
L19, a  house keeping gene. The results shown are the average of triplicate results from 
three independent experiments.
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Figure 5.5 FOXOI can bind DNA and is p resen t in multiple form s

Nuclear protein extracts were generated from IB4-LCL, BL41 and BL41 + B95.8 cells. 
Nuclear proteins were subsequently DNA-Affinity precipitated using streptavidin coated 
agarose beads with or without biotinylated bim oligonucleotides. Bound proteins were eluted 
and resolved by SDS-PAGE and immunoblotted using the anti-FOXOI antibody a) IB4-LCL 
and BL41 + B95.8 cells b) BL41 and BL41 + B95.8 cells untreated or treated with LY294002 
(20pM, 1 hour) c) DNA-Affinity precipitated proteins using the bim oligonucleotide from BL41 
and BL41 + B95.8 cells treated with LY294002 (20pM, one hour) were analysed by 2D- 
electrophoresis. Eluted proteins were isoelectrically focused using a pH 3-10 nonlinear 
immobilised pH gradient and separated in the second dimension by SDS-PAGE. F0X01 
isoforms were detected by immunoblotting with the anti-FOXOI antibody.
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Figure 5.6 Expression  of FoxOl corre la tes with Bcl-6 and inversely correlates 
with Cyclin D2

Nuclear protein extracts were generated from B cell lines with various EBV statuses -  
EBV negative BL lines (BL41, AKATA), EBV positive BL line (BL41 + B95.8) and 
LCL’s (IARC-171, EB-LCL, IB4-LCL). Proteins were resolved by SDS-PAGE and 
subsequently analysed by immunoblotting with specific antibodies to FOX01, Bcl-6 , 
and Cyclin D2. PARP was used as a loading control.
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Figure 5.7 PI3K activity can  regulate Cyclin D2 but not Bcl-6 levels in EBV negative 
and EBV positive B cells

Nuclear protein extracts were generated from (a) BL41 and (b) IARC-171 cell lines. Cells 
were either left untreated or were treated with varying concentrations of LY294002 (20pM, 
10pM, 5pM) for either one hour (BL41) or 24 hours (IARC-171). Proteins were resolved by 
SDS-PAGE and immunoblotted with an antibodies specific to F0X 01, Bcl-6 , Cyclin D2 and 
phospho-S6 RP. Actin levels was used as a loading control.
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Figure 5.8 Role for LMP1 in the  dow nregulation of FOXOI

Nuclear protein extracts were generated from EBV negative BJAB human B cell 
lymphoma cell lines stably transfected with LMP1 (MTLM-17 and MTLM-6 ) and vector 
control tranfectants (GPT1 and GPT2). Proteins were analysed by SDS-PAGE and 
immunoblotting with antibodies specific for FOXOI, LMP1 and STAT1. Actin levels were 
used as a loading control.
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Figure 5.9 LMP1 and LMP2A dow nregulate FOX01 and Bcl-6 protein expression

DG75 cells were transiently transfected with varying amounts of a) LMP1 and b) LMP2A 
expression vectors. Cells were harvested, and lysates generated were analysed by SDS- 
PAGE and western blotting. Protein levels of FOXOI and Bcl-6  were analysed using 
specific antibodies. LMP1 and LMP2A protein levels were also checked using specific 
antibodies. Actin was used as a loading control.
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Figure 5.10 LMP1 dow nregu la tes Bcl-6 at the transcriptional level

EBV negative D G 75  cells w ere transfected with varying amounts of a) LMP1 and b) LMP2A  
expression vectors, along with a  fixed am ount of a Bcl-6 reporter construct containing a FoxO  
consensus binding sequence upstream  of a luciferase gene. The Bcl-6 promoter sequence 
was mutated to lack the consensus Bcl-6 binding site in the Bcl-6 gene promoter that is 
thought to act as a negative autoregulatory loop, i) Luciferase was measured after 
transfection ii) Protein expression levels of a) LMP1 and b) LM P2A in transfected cells were 
analysed by immunoblotting with specific antibodies.
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Figure 5.11 Inducible LMP1 and LMP2A dow nregulate F0X01 and Bcl-6 protein 
expression .

Stable DG75 transfectants containing inducible EBNA2A, LMP1 or LMP2A genes were 
maintained under drug selection and in 1 pg/ml tetracycline until required for an 
experiment. When required, cells were washed five times in RPMI 1640 medium and 
were re-cultured without drug selection and in the presence or absence of 1 pg/ml 
tetracycline for a period of either 24 (-1 ) or 48 hours (-2). Protein levels of FOX01 and 
Bcl-6  were subsequently analysed by immunoblotting using specific antibodies. Protein 
expression levels were also analysed in IARC-171 and CMc Lymphoblastoid cell lines. 
EBNA2A, LMP1 and LMP2A protein levels were also checked using specific antibodies. 
Calregulin was used as a loading control.
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Figure 5.12 FOX01 regulation by LMP1 is not m ediated through the CTAR1

DG75 cells were transiently transfected with varying amounts of wild type or CTAR1 
inactivated LMP1 mutants (LMP1AAA). Cells were harvested, and lysates generated were 
analysed by SDS-PAGE and western blotting. Protein levels of F 0X 01 , Bcl-6, and STAT1 
were analysed using specific antibodies. LMP1 protein levels were also checked using 
specific antibodies. Actin was used as a loading control.
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CHAPTER 6

FINAL DISCUSSION

The activation o f the PI3K/PKB signalling pathway has been shown to play an 

important role in the regulation o f survival and proliferation of B-cells (Brennan, 

2001). The inhibition o f PI3K in BL cell lines induces rapid apoptosis. The same 

treatment o f EBV immortalized B cells leads to growth arrest due to the inhibition 

o f proteins required for cell cycle progression (Brennan et al, 2002). In addition, a 

number o f studies have reported constitutive activation o f the PI3K/PKB pathway 

in EBV associated malignancies (Morrison et al, 2004, Dutton et al, 2005, Nagel 

et al, 2005). Activation o f the PI3K/PKB pathway may contribute significantly 

towards cell survival and the morphological changes observed during B cell 

transformation by EBV, as inhibition o f PI3K has been shown to reverse the 

transformed phenotype (Dawson et al, 2003). Despite these observations, 

relatively little is known about the downstream targets o f PI3K activation in 

lymphocytes that mediate these effects, particularly within EBV immortalized 

lymphocytes. The purpose o f this study was to investigate downstream targets of 

the PI3K pathway in transformed lymphocytes in order to further our 

understanding o f the contribution o f PI3K activation towards lymphocyte 

proliferation and survival, particularly within the context o f EBV-associated B- 

cell lymphomas.

The present thesis has identified two important targets of PI3K signalling in EBV 

immortalized B cells: S6, a component o f the mammalian ribosome (Chapter 3), 

and the pro-apoptotic transcription factor, FOXOI (Chapter 5). In addition, S6 

was found to be a major target for PI3K signalling in other transformed 

lymphocyte cell lines, including EBV negative BL cells and IL-2 dependent 

leukaemic T cells. Both o f these proteins have been shown to be PI3K regulated
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ta rgets in other systems (Biggs et al, 1999, Brunet et al, 1999, Kops & Burgering 

1999, Rena et al, 1999, Tang et al, 1999, Takaishi et al, 1999, Kane et al, 2002, 

-Zhang et al, 2002b, Ly et al, 2003, Wedel et al, 2004).

T h e  constitutive phosphorylation o f S6, and the dramatic inhibition of S6 

phosphorylation in response to PI3K and m TO R inhibition in all lymphocyte cell 

lines tested suggests that S6 is an important target for activation of these pathways 

in  lymphocytes. Since S6 activation is associated with cellular growth and 

translational control (Volaveric et al, 2000, Ruvinsky et al, 2005), the constitutive 

phosphorylation o f this protein may contribute towards the oncogenic capacity of 

deregulated PI3K activation in lymphocytes, and may therefore be a contributory 

factor towards the development o f lym phoid malignancies such as EBV 

associated lymphomas and leukaemia.

Inhibitors targeting pathways leading to S6 phosphorylation are being evaluated 

for the treatment o f EBV-associated malignancies. A study by Majewski et al 

investigated the effects o f a macrolide immunosuppressant, RAD001, a 

rapamycin derivative, on the growth o f LCLs and PTLD-like EBV positive B 

cells xenotransplanted into SCID mice (M ajewsky et al, 2000). This study 

demonstrated that RAD001 inhibited the growth o f LCLs, which reflects the 

findings of other studies investigating the effects o f mTOR inhibition on 

lymphocyte growth and proliferation (Breslin et al, 2005, Fumarola et al, 2005). 

In the in vivo model, RAD001 significantly delayed the growth or induced 

regression o f  the established tumours (M ajewsky et al, 2000). The potent 

inhibition o f S6 phosphorylation in response to mTOR inhibiton as demonstrated 

by this study and others (Ly et al, 2003, Kane et al, 2002, Wedel et al, 2004, 

Breslin et al, 2005), demonstrates that S6 is a major target for activation by 

mTOR, and suggests that this may be an important factor in the 

immunosupressive properties of rapamycin and its analogues. Indeed, the 

phosphorylation status of S6 is increasingly being evaluated as a potential 

biomarker for the activation status o f the PI3K and mTOR pathways, and for the
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monitoring o f response to treatment with inhibitors of these pathways in several 

disease contexts, including acute myeloid leukaemia, prostate cancer, breast 

cancer, and antibody-mediated rejection in heart allografts (Thomas et al, 2004, 

Thomas, 2006, Lepin et al, 2006, Chow et al, 2006). These studies demonstrate 

the potential o f analyzing the phosphorylation status of S6 in evaluating aberrant 

signal transduction contributing towards disease and malignancy.

The FOXO transcription factors have been shown to co-ordinate cell cycle 

progression and cell survival by the activation of antiproliferative and pro- 

apoptotic genes in many systems. The target genes o f FOXO proteins that mediate 

these effects include components o f the cell cycle machinery such as p27Kipl and 

cyclin G2, as well as pro-apoptotic genes such as Fas Ligand (FasL), bcl-6 and the 

bcl-2 family member bim (Brunet et al, 1999, Medema et al, 2000, Dijkers et al, 

2002, Tang et al, 2002, Furukawa-Hibi et al, 2002, Essafi et al, 2005). Studies in 

mammalian cells have shown that the overexpression of FOXOI, FOX03 and 

FO X04 causes a strong inhibition o f cell proliferation (Collado et al, 2000, 

Medema et al, 2000, Nakamura et al, 2000, Kops et al, 2002). In the context of 

the immune system, the overexpression o f FOXO proteins promotes cell cycle 

arrest at the Gj/S boundary in B cells (Yusuf et al, 2004) and T cells (Fabre et al,

2005). Furthermore, the optimal proliferation o f primary B cells requires the 

inactivation o f FOXO transcription factors in a PI3K dependent manner (Yusuf et 

al, 2004). A recent study by Uddin et al, has implicated a role for FOXO 

inactivation in the survival o f diffuse large B-cell lymphomas (DLBCL) (Uddin et 

al, 2006). The inhibition o f PI3K in primary DLBCL cells and DLBCL cell lines 

and induced apoptosis, and correlated with the de-phosphorylation FOXO 

transcription factors. The FOXO proteins have therefore emerged as important 

targets o f the PI3K pathway in lymphocytes that regulate cell survival and cell 

proliferation.

With regards to the present thesis, this was the first study to demonstrate a 

definitive link between EBV infection and FOXO expression, and formed the
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basis of a manuscript accepted for publication (Shore et al, 2006, manuscript in 

press). This work demonstrated that a latency III pattern of EBV viral gene 

expression can regulate the expression of FOXOI. An investigation into the 

mechanism by which this EBV latency pattern downregulates FOXOI expression 

identified a role for two EBV latent genes, LMP1 and LMP2A.

With respect to LMP1, it is clear that this protein utilizes several mechanisms to 

contribute towards the survival of EBV infected cells. The most well 

characterized role o f LMP1, in this regard, is its ability to activate the NFkB 

transcription factor. The current view is that EBV utilizes the activation of the 

NFkB transcription factor as a primary mechanism to promote the survival and 

transformation o f infected cells, which is reflected by the upregulation of several 

NFkB target genes in EBV immortalized B cells. For example, the upregulation of 

anti-apoptotic genes such as A20 and cIAP2 have been demonstrated to occur via 

LMP1 activation of NFkB (Laherty et al, 1992, Hong et al, 2000). The STAT 

transcription factors, which promote oncogeneis by inhibiting apoptosis and 

promoting cell cycle progression (Bowman et al, 2000) are also constitutively 

activated in LMP1 expressing cells, by a mechanism that involves NFkB 

(Richarson et al, 2003, Zhang et al, 2004, Najjar et al, 2005). This role for NFkB 

is highlighted by the fact that suppression of EBV-mediated NFkB activation 

leads to spontaneous apoptosis in EBV-transformed LCLs (Cahir-McFarland et 

al, 2000). Furthermore, inhibition o f the NFkB pathway diminishes the ability of 

LMP1 to induce cellular transformation and tumourigenesis in rat fibroblasts (He 

et al, 2000). However, it is also clear that LMP1 can utilize NFkB independent 

pathways to promote cell survival, as demonstrated by a study showing that 

LMP1 can induce the upregulation of another anti-apoptotic protein, bcl-2, to 

confer protection from apoptosis (Henderson et al, 1991, Rowe et al, 1994). The 

downregulation o f FOXOI by LMP1 provides a further insight into NFkB 

independent mechanisms employed by this protein to promote the survival of 

virus infected cells.
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The role o f LMP2A in providing survival signals to EBV infected cells has 

mainly been attributed to its ability to mimic a constitutively activated BCR 

(Burkhardt et al, 1992, Miller et al, 1995). In transgenic mice, LMP2A provides 

developmental and survival signals to BCR-deficient B cells, allowing their 

survival in the periphery (Caldwell et al, 1998), and has a critical role in 

maintaining viral latency (Miller et al, 1994). The activation of Ras and the 

PI3K/PKB pathway have a central role in this process, as B cells from LMP2A 

transgenic mice are sensitive to apoptosis in the presence of specific inhibitors of 

Ras, PI3K and PKB (Portis & Longnecker, 2004a). This induction of apoptosis 

correlated with a decrease in the expression of an anti-apoptotic protein, Bc1-Xl, 

implicating a role for this protein in apoptosis inhibition mediated by LMP2A. 

DNA microarrays o f primary B cells from LMP2A-transgenic mice, LMP2A- 

expressing human B-cell lines and LCLs have indicated that LMP2A has multiple 

effects on global gene expression. These effects include an increase in the 

expression o f genes associated with cell-cycle induction and inhibition of 

apoptosis, a decrease in the expression of B-cell specific factors and genes 

associated with immunity, and also alterations in the expression of genes 

involved in DNA and RNA metabolism (Portis & Longnecker, 2003, 2004b, 

Portis et al, 2003). Despite these observations, little is known about the effects of 

LMP2A on BCR-induced apoptosis in B cells. The demonstration in this study 

that LMP2A expression can reduce protein levels of the FOXOI pro-apoptotic 

transcription factor contributes towards our understanding of these effects, and 

suggests another potential mechanism by which PI3K activation by LMP2A 

contributes towards the survival of BCR-deficient B cells.

Together, the findings that LMP1 and LMP2A are capable of suppressing the 

expression of the pro-apoptotic FOXOI transcription point towards a mechanism 

contributing towards the characteristic apoptotic resistance of EBV immortalized 

B cells, and improves our understanding of how EBV may influence malignancy. 

In this respect, the analysis of the effects o f FOXOI on LCL proliferation would 

provide a further insight into the role of FOXOI in EBV-mediated cell
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transformation, and would be the next step in the project. The key experiment 

may be to introduce a tetracycline-regulated FOXOI transgene into an LCL and 

analyze the effects o f FOXOI on LCL proliferation. A finding of growth 

suppression would provide further evidence to support a critical role for LMP1 

and LMP2A-mediated down-regulation o f FOXOI in cell transformation. Further 

analysis of the effects o f EBV on FOXOI target genes, such as bim and Fas-L 

would also enhance our understanding o f the consequences of FOXOI 

downregulation by EBV. In addition, it would be of interest to analyse the 

expression profiles o f other members o f the FOXO transcription factor family, 

such as F 0X 03 and F 0 X 0 4 , in EBV negative and positive cells to further 

evaluate the ability of EBV to suppress pro-apoptotic pathways. During the course 

of this project, attempts were made to address this question by analysing the 

expression levels o f F 0X 03  and F 0 X 0 4  in a range of cell lines by 

immunoblotting. These attempts were unsuccessful as the antibodies employed 

failed to detect protein bands that correlated with the known molecular weights of 

F0X 03 and F0X 04. The availability o f better antibodies should resolve this 

issue.

The high levels of FOXO expression in BL cells and the repression of FOXO 

expression in LCLs raises another interesting question with regards to the levels 

of FOXOI expression in other EBV-associated lymphoid malignancies such as 

Hodgkin’s disease (HD). As mentioned in section 1.1.5.2, EBV positive HD cells 

display a latency II pattern of EBV gene expression in which EBERs, EBNA1, 

LMP1 and LMP2A are expressed. LMP1 is expressed at high levels in the large 

atypical tumour Hodgkin and Reed-Sternberg (HRS) cells that characterize HD 

(Pallesen et al, 1991, Murray et al, 1992). Furthermore, the PI3K/PKB pathway 

has been demonstrated to be constitutively activated in HRS cell lines and in most 

primary HRS cells, and contributes towards their survival (Morrison et al, 2004, 

Dutton et al, 2005, Nagel et al, 2005, Georgakis et al, 2006). With these factors in 

consideration, it would be reasonable to hypothesize that FOXOI levels are 

repressed in Hodgkin's lymphoma cells. This hypothesis has not been tested by
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this study or others, and would be an interesting question to address in order to 

further our understanding o f the role of FOXO transcription factors, and the 

contribution o f EBV induced activation of the PI3K pathway towards the 

pathogenesis o f HD.

The prominent role of the PI3K/PKB pathway in regulating cellular survival and 

proliferation, particularly within the context of human malignancies, suggest that 

components o f this pathway may be attractive targets for cancer therapy, and is an 

area of ongoing cancer research and investigation by pharmaceutical companies 

FOXOI is among many o f the PI3K targets that are under evaluation in pre- 

clinical models for their potential as targets for therapeutic benefit (Kau et al, 

2003, Schroeder et al, 2005). Since the tumour-suppressor activities of FOXO 

molecules require FOXO nuclear localization, the development o f chemical 

inhibitors of nuclear export could prove beneficial. A screen of small molecules 

for their ability to relocalize FOXOI to the nucleus in PTEN deficient cells 

resulted in the identification of two general classes (Kau et al, 2003). These were 

general inhibitors of the nuclear export protein CRM1, and specific inhibitors of 

the PI3K/PKB-dependent export pathway. A subsequent screen of extracts 

derived from natural marine products resulted in the identification o f a 

bromotyrosine derivative, psammaplysene A, as a compound that can induce the 

relocalization o f FOXOI to the nucleus in PTEN deficient cells (Schroder et al, 

2005). The value of these compounds as therapeutic approaches requires further 

investigation. In the context o f EBV-associated malignancies, such strategies are 

unlikely to prove beneficial due to the very low levels of FOXOI detected in the 

cytosol of EBV infected cells (Figure 5.3). Moreover, the involvement multiple 

pathways in mediating the survival of virus-infected cells suggests that more-than 

one, or indeed several, o f the pathways activated by the virus may need to be 

targeted to observe a repressive effect on EBV-induced proliferation.

In terms of targeting PI3K itself, the therapeutic use of PI3K inhibitors is 

controversial. This is due to the inability of many of the developed compounds to
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discriminate between the different isoforms of PI3K. As many classes and 

isoforms o f PI3K control distinct cellular processes, this is a concern. However, 

isoform selective PI3K inhibitors have been described (Sadhu et al, 2003a, 2003b, 

Finan & Thomas, 2004) and may make the therapeutic use of PI3K inhibitors 

feasible in the future. Isoform-specific inhibitors of PKB have been proposed to 

provide effective anti-tumour activity with fewer toxic side effects. Indeed, a 

number of such compounds are being developed (Defeo-Jones et al, 2005, 

Lindsley et al, 2005, Barnett et al, 2005). The identification of a small molecule 

inhibitor of PKB that inhibits the growth o f PKB expressing tumours in vivo, 

whilst not affecting PDK-1 or PI3K activity (Yang et al, 2004) has further 

highlighted the benefit o f targeting PKB as a therapeutic approach in cancer 

therapy.

In some respects, it was disappointing that during the course of this study only 

two targets of PI3K were identified in lymphocytes, and that no novel PI3K 

targets could be identified. This is especially the case when considering that two 

distinct approaches were used, namely the use of a phospho-specific antibody 

directed against the consensus phosphorylation motif of PKB (Chapter 3), and the 

application o f 2DE for the study o f PI3K signalling on a wider scale (Chapter 4). 

As discussed previously, phospho-PKB substrate antibodies have been 

successfully used by other studies for the identification of novel targets o f PKB 

(Manning et al, 2002, Kane et al, 2002, Kovacina et al, 2003, Astoul et al, 2003, 

Jiang et al, 2005). In many instances, 2DE has also proved to be a useful approach 

for screening molecular changes occurring in response to the selective activation 

or inhibition o f signalling pathways. Previously uncharacterised targets of the 

MAPK pathway (Lewis et al, 2000, Ueda et al, 2004), Fas-dependent apoptosis 

(Gemer et al, 2000), TGF-pi mediated signalling (Kanamoto et al, 2002), Rho- 

GTPases (Kabuyama et al, 2006) and growth factor stimulation o f RTKs 

(Saridaki & Penayotou, 2005) have been identified using this approach.
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With this in mind, it becomes apparent that the molecular changes that occur in 

the nuclei o f EBV immortalized B cells in response to PI3K/PKB activation are 

relatively subtle and is likely to involve low abundance proteins that could not be 

detected using a 2DE minigel system. The studies described above which 

successfully identified previously uncharacterized targets of signalling pathways 

all utilized larger 2D gel formats that allow the larger amount of protein to be 

analyzed at increased resolution. This suggests that the use of larger gel formats, 

as opposed to the 2D minigel system, may have been beneficial in this study. 

Another factor that is important to consider is that EBV can activate multiple 

signalling pathways upon infection. The specific detection of PI3K regulated 

proteins in EBV immortalized cells with the use o f a PI3K inhibitor can therefore 

be considered as a relatively simplified approach in what is a complicated setting. 

As discussed previously in section 4.8, it is possible that the use of more sensitive 

mass spectrometric based approaches would be more useful for screening the 

molecular changes that occur in the lymphocyte nucleus in response to PI3K 

inhibition.

Despite the limitations of 2DE for the detection of PI3K targets, this approach 

was successfully used to elucidate protein expression differences in cells that 

differed more dramatically in phenotype, that is EBV negative BL cells and EBV 

immortalised LCLs. In this regard, three proteins were detected that were 

differentially expressed. The identification and characterization of these proteins 

would be the next step in the project, and may increase our understanding of the 

molecular changes that occur in the B cell nucleus in response to EBV infection. 

The detection o f distinct post-translational modification patterns of the FOXOI 

transcription factor between BL41 and BL41 + B95.8 cells further suggests that 

mechanisms of protein regulation are distinct in EBV negative and EBV infected 

B cells. Multiple forms of the CREB1 and ST ATI transcription factors were also 

detected in LCLs. This suggests that EBV employs many strategies for the 

regulation of its transcription factor targets. These observations bring to light the 

complexity of the virus-host interaction, and emphasise the fact that still much is
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unknown about the mechanisms employed by EBV to mediate the regulation of 

target proteins. Previous studies employing proteomic strategies have detected 

greater than 100 methyl-accepting (Huang et al, 2002) and 400 tyrosine- 

phosphorylated proteins (Caron et al, 2002) in LCLs. A more recent study by 

Yan et al demonstrated that LMP1 can increase the total phosphoprotein 

component o f epithelial cells by 18% (Yan et al, 2006). These studies further 

support the idea that the alteration o f post-translational modification patterns, 

particularly via phosphorylation, may be an important mechanism by which EBV 

can regulate its target proteins.

One interesting point that was not addressed by this project is the question of 

which molecules regulate the activation o f PI3K in EBV immortalized cells. As 

mentioned in section 1.1 and 1.2, LMP1 and LMP2A as well as cytokines that are 

induced during EBV infection have all been shown to activate PI3K. The multiple 

mechanisms EBV utilize to activate this pathway demonstrate its importance for 

the virus. LMP2A has been shown to activate PI3K signalling in B cells (Swart et 

al, 2000) and epithelial cells (Scholle et al, 2000, Morrison et al, 2003), whereas 

the regulation of PI3K by LMP1 has only been demonstrated in epithelial 

(Dawson et al, 2003) and fibroblasts cells (Maniou et al, 2005). The ability of 

LMP1 to activate PI3K in B cells therefore remains to be defined. Interestingly, 

the present study demonstrated that both LMP1 and LMP2A were capable of 

repressing FOXOI, a target for PI3K activation, in B cells. This supports the 

hypothesis both o f these molecules can activate PI3K in B cells, although this was 

not investigated or demonstrated by this study. Further investigations into the 

mechanisms employed by EBV to activate PI3K will contribute towards our 

understanding of the role o f this pathway in the pathogenesis of EBV-associated 

malignancies.

In conclusion, this work has explored the use o f antibody detection and proteomic 

techniques for the identification and analysis o f nuclear proteins and transcription 

factors regulated by PI3K and EBV. Together, these investigations have deepened
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our understanding of the molecular changes that occur in lymphocytes in response 

to EBV infection, and how EBV may influence malignancy.
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Epstein-Barr virus (EBV) infection is associated with the development of many B-cell lymphomas, including 
Burkitt’s lymphoma, Hodgkin’s lymphoma, and posttransplant lymphoproliferative disease. The virus alters a 
diverse range of cellular molecules, which leads to B-cell growth and immortalization. This study was initiated 
to investigate the interplay between EBV and a proapoptotic transcription factor target, FoxOl. In this report, 
we show that EBV infection of B cells leads to the down regulation of FoxOl expression by phosphatidylinositol 
3-kinase-mediated nuclear export, by inhibition of FoxOi mRNA expression, and by alteration of posttrans- 
lational modifications. This repression directly correlates with the expression of the FoxOl target gene Bel-6 
and inversely correlates with the FoxO 1-regulated gene Cyclin D2. Expression of the EBV genes for latent 
membrane protein 1 and latent membrane protein 2A decreases FoxOl expression. Thus, our data elucidate 
distinct mechanisms for the regulation of the proapoptotic transcription factor FoxOl by EBV.

Epstein-Barr virus (EBV) is a member of the human 7 -her
pesvirus family. Greater than 90% of the adult population 
worldwide is infected with the virus. In the majority of cases, 
EBV infection is asymptomatic for the lifetime of the host due 
to cytotoxic T-lymphocyte-mediated targeting of infected cells 
(42). EBV primarily infects B cells but has also been reported 
to infect T cells and epithelial cells. Primary infection with 
EBV during adolescence or adulthood can be accompanied by 
the development of a self-limiting T-cell lymphocytosis known 
as infectious mononucleosis. However, EBV is also potentially 
oncogenic. The virus has been detected in malignancies of 
lymphoid as well as epithelial origin (41). The EBV genome is 
detected in most cases of posttransplant lymphoproliferative 
disease, where patients are immunosuppressed and thus can
not control the proliferation of virus-infected cells (36). Essen
tially every case of endemic Burkitt's lymphoma (BL) is EBV 
positive, in contrast with between 10 and 90% of sporadic 
cases. The virus has also been implicated in cases of Hodgkin’s 
lymphoma, nasopharyngeal carcinoma, and some T-cell lym
phomas.

The in vitro infection of primary B cells with EBV leads to 
tile establishment of immortalized lymphoblastoid cell lines 
(LCLs). The cooperative actions of several EBV genes con
tribute to this eflfect by generating survival and proliferation 
Signals (56). Activation of the transcription factor NF-kB and 
tiie phosphatidylinositol 3-kinase (PI3K)/protein kinase B 
(PKB) signaling pathway has been shown to play an important 
foie in the regulation of survival and proliferation of B cells
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(6 ). While many of the targets of NF-kB have been character
ized, the nuclear targets of PI3K are relatively poorly charac
terized for EBV-immortalized B cells.

Proapoptotic forkhead box class O (FoxO) transcription fac
tors are direct targets of PI3K-mediated signal transduction in 
a variety of cell systems. Phosphorylation of members of this 
transcription factor family by PKB, the main downstream ef
fector of PI3K activity, results in the nuclear exclusion and 
inhibition of transcriptional activity (3, 9, 49). FoxO transcrip
tion factors coordinate cell cycle progression and cell survival 
by the activation of antiproliferative genes, such as those en
coding p27K,pl and cyclin G2, as well as proapoptotic genes, 
such as those encoding Fas ligand (FasL), Bcl-6 , and the Bcl-2 
family member Bim (9, 13, 15, 20, 33, 50). Initial identification 
of this transcription factor family in humans occurred when 
three members were identified at chromosomal translocations 
in human tumors, namely, FoxOl (FKHR) in alveolar rhabdo
myosarcomas, Fox03a (FKHR-L1) in acute myeloblastic leu
kemia, and Fox04 (AFX) in acute lymphocytic leukemia (5, 
11, 21, 22, 38). These discoveries were the first indications that 
FoxO transcription factors have a role in tumor development. 
Recent studies have demonstrated that a loss of FoxO activi
ties due to protein degradation contributes to cellular trans
formation of primary breast cancer tumors (23) and mouse 
primary lymphomas (24).

This study was initiated to investigate the interplay between 
FoxOl and EBV. We focused on one member of the FoxO 
family, FoxOl, and have shown that it is downregulated in 
EBV-infected B cells. This repression was found to correlate 
with the expression of two FoxOl target genes, bcl-6 and cyclin 
D2. PI3K regulation of FoxOl protein levels and subcellular 
localization were also found to differ between EBV-negative 
and -positive B-cell lines. In addition, two EBV proteins, latent
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membrane protein 1 (LMP1) and LMP2A, have been identi
fied as sufficient for the downregulation of FoxOl expression.

M ATERIALS AND M ETHODS

Cell cu ltu re . All cell lines were cultured in RPMI 1640 medium supplemented 
with 10% fetal calf scrum, 2 mM t.-glutamine, and antibiotics (200 U/ml peni
cillin and 200 u-g/ml streptomycin) and were maintained at 37°C in a 5% CO; 
humidified incubator.

N uclear an d  cytosolic p ro te in  extraction . Nuclear and cytosolic extracts were 
generated using a modification of a previously published protocol (8). Following 
the application of inhibitors as indicated, 1 x  |()7 cells were harvested and placed 
on ice. They were washed in 1 ml o f hypotonic buffer (10 mM HEPES [pH 7.9], 
1-5 mM magnesium chloride, 10 mM potassium chloride, 10 mM phenylmethyl- 
sulfonyl fluoride [PMSF]) and centrifuged at 10,000 x  g  for 1 min. Cells were 
lyicd in 100 o f hypotonic buffer with 0.1% Nonidet P-40 and placed on ice for 
5 min. Ihc mixture was centrifuged for 5 min at 10,000 x  g. The supernatant was 
removed and retained as the cytosolic fraction. The remaining pellet was incu
bated with 60 fxl o f high-salt buffer (20 mM HEPES [pH 7.9]), 420 mM NaCl. 1.5 
mM M gO j, 25% glycerol, 0.5 mM PMSF) to release the transcription factors 
from the DNA. This mixture was incubated on ice for 15 min and centrifuged for 
5 min at 10,000 x  g. The supernatant was retained as the nuclear fraction and 
stored at -  20°C until further use.

T ransfection , W estern b lotting, and  antibody detection. For transient trans
fections, 1 x  1117 1X175 cells from a suspension culture were transfected by 
electroporation using a Bio-Rad Gcncpulscr II clectroporator at 300 V and 950 
g.F at room temperature in 500 fj.1 growth medium. Following electroporation, 
the cells were transferred to 3.5 ml o f fresh medium per sample and incubated 
at 37°C in a 5% CO : humidified incubator for 20 h. Total protein lysates were 
generated using the passive lysis buffer provided with the Promega Dual Lucif- 
erase reporter assay system (E-1910). The lysates were clarified by centrifugation 
at 13.000 x g  for 5 min. and the soluble fraction was added to an equal volume 
of 2 x  gel sample buffer (0.1 M Tris buffer, pH 6.8, 0.2 M dithiothreitol, 4% 
sodium dodecy) sulfate [SDS], 20% glycerol. 0.1% bromophenol blue) and boiled 
for 5 min. Proteins were separated by SDS-polyacrylamide gel electrophoresis 
(SDS-PAC1E) and transferred to polyvinylidcnc difluoride (PVDF) membranes 
(Amersham) for immunoblotting. Specific antibody-protein complexes were de
lected using alkaline phosphatase-conjugated secondary antibodies and CDP- 
Star (Tropix) chemiluminescence reagent.

Antibodies to  poly(A DP) ribose polymerase (PARP; sc-7150), cydin D2 (sc- 
593), Bel-6 (sc-858). and calregulin (sc-11398) were obtained from Santa Cruz 
Biotechnology and used at a concentration o f  200 ng/ml. An antibody to FoxOl 
(9462) was purchased from Cell Signaling Technologies and used at a 1/1.000 
dilution o f the stock supplied. An antibody to actin (A-2066), obtained from 
Sigma, was used at a 1/1.000 dilution o f the stock supplied. Anti-LM Pl (CS.1-4) 
(45), anti-EBNA2A (PE2) (55), and anti-LMP2A (14B7) (18) m onodonal anti
bodies have been described previously.

DNA affinity p recip ita tion . Nuclear extracts were diluted with 20 volumes of 
salt-free buffer (50 mM Tris-HCl. pH 8, 0.25 mM EDTA, 10 mM NaF. 25% 
glycerol, 0.5 mM PMSF, 10 pi/ml phosphatase inhibitor cocktail I [P-2850; 
Sigma] and phosphatase inhibitor cocktail II [P-5726], 1 mM N a V 0 4). Strepta- 
fidin-conjugatcd agarose beads (30 pi o f a 50% slurry) and a biotinylated dou
ble-stranded oligonucleotide (1 pg) were added to the lysate, which was rotated 
for 1 h at 4°C. The mixture was centrifuged at 12,000 x  g, and the supernatant 
was removed. The beads were washed in buffer three times, and the proteins 
were eluted from the beads by the addition o f 2 x  gel sample buffer (0.1 M Tris 
buffer, pH 6.8, 0.2 M dithiothreitol. 4% sodium dodecyl sulfate, 20% glycerol,
0.1% bromophenol blue) for onc-dimcnsionai analysis by SDS-PAGE. Proteins 
were eluted from the beads by the addition of sample buffer {7 M urea, 2 M 
Ottoua-a. 0.4% 3-[(3-cholamidopropyl)-dimcthylamino]-1-propancsulfonatc (CHAPS)} 
for analysis by two-dimensional (2D ) electrophoresis. Separated proteins were 
transferred to PVDF membranes and analyzed using specific antibodies. The 
sequence o f the oligonucleotide corresponding to the bim  promoter was CAG  
AGTTACTCCGGTAAACACGCCAGGGAC (15).

2D electrophoresis. DN A  affinity-precipitated proteins were eluted from 
Areptavidin-coatcd agarose beads using 100 pi sample buffer (7 M urea, 2 M 
thiourea. 0.4% CHAPS). A 7-cm pH 3-10 NL Immobiline Drystrip gel (IPG; 
Amersham) was rchydrated for 12 h at 20°C with 80 pi of the eluted sample in 
I total volume of 125 pi o f sample buffer supplemented with 50 mM dithiothre- 
kol. 1% bromophenol blue, and 0.5% IPG pH 3-10 NL buffer (Amersham). 
Isoelectric focusing (IEF) o f the samples was performed on an Ettan IPGphor 11 
1EF system using the following program: 1 h at 500 V; 2 h at 1,000 V (gradient); 
1 h at 1,000 V and 2 h at 8,000 V (gradient); and 8 h at 8,000 V. IPG strips were

then equilibrated for 15 min in equilibration buffer ( l x  NuPAGE LDS sample 
buffer; Invitrogen) containing 10x NuPAGE sample reducing agent (0.5 ml) 
(Invitrogen). The IPG strips were subsequently equilibrated for 15 min in equil
ibration buffer containing 125 mM iodoacetamide. Equilibrated IPG strips were 
transferred to the IPG wells of NuPAGE 4 to 12% bis-Tris Zoom gels (Invitro
gen) and separated in the second dimension for 1 h at 200 V. Separated proteins 
were subsequently transferred to PVDF membranes and analyzed by Western 
blotting as described previously.

Real-tim e quan tita tive  reverse transcrip tion-PC R . Total cellular RNA was 
isolated using an RNcasy kit (QIAGEN) according to the manufacturer’s in
structions. RNAs were treated with RNase-free DNase I (QIAGEN) for subse
quent real-time quantitative PCR. Total RNA was reverse transcribed with 
Superscript 111 reverse transcriptase (Invitrogen). The resulting cDNAs were 
amplified using an ABI Prism 7700 sequence detection system (Applied Biosys
tems, Foster City, CA) with the following primer pairs: F O X O l-sense (TGG  
ACA TGC TCA GCA GAC ATC), FO AW -antisense (TTG GGT CAG GCG 
GTT CA), L I 9 -sense (GCG GAA GGG TAC AGC CAA T), and L /9-antisense 
(GCA GCC GGC GCA AA). L I9 , a nonregulated ribosomal housekeeping 
gene, was used as an internal control to normalize input RNA. All measurements 
were performed in triplicate (28).

Plasm ids. The pSG5 empty vector, pSG5-LMPl (25), pSG5-LM PlAAA (14), 
and pSG5-LMP2A (29) have been described previously. The Bcl-6ABcl-6-lucif- 
erase reporter was a kind gift from Tracy Tang and Laurence Lasky (Genentech 
Inc., South San Francisco, Calif.) and has been described previously (16,50). The 
phRL-SV40 lucifcrasc reporter vector was purchased from Promega (E-6261).

Inducible expression o f LM P1, LMP2A, and  EBNA2A in stab le  transfectan ts . 
Stable DG75 transfectants containing an inducible LMP1, LMP2A. or EBV  
nuclear antigen 2A (EBNA2A) gene (17) were maintained under drug selection 
and in 1 pg/ml tetracycline until required. Prior to each experiment, cells were 
washed five times in RPMI 1640 medium and were recultured without drug 
selection and in the presence or absence of 1 p.g/ml tetracycline for a period of 
either 24 or 48 h. For the generation of total cell lysates, cells were counted on 
a hemocytometer and resuspended in 50 p.1 phosphate-buffered saline per 106 
cells. An equal volume o f 2 x  gel sample buffer (125 mM Tris-HCl, pH 6.8, 20% 
glycerol, 0.4 M sodium 2-mercaptoethanc sulfonate, 4% SDS, 0.02% bromophe
nol blue) was added, and the cells were sonicated using a W385 sonicator (Heat 
Systems Ultrasonics). Following sonication, samples were heated at 100°C for 5 
min. The solubilized proteins were separated by SDS-PAGE and transferred to 
a PVDF membrane (Amersham) for immunoblotting as described above.

RESULTS

FoxOl expression is downregulated by EBV infection. To
investigate the relationship between EBV infection and FoxOl 
expression, nuclear FoxOl protein levels were analyzed by 
Western blotting, using cell lines with different EBV status and 
a specific antibody. PARP protein levels were also analyzed to 
verify equal protein loading, as PARP is found in the nucleus 
and PARP expression levels are not affected by EBV status. 
BL41, BL41 + B95.8, and IARC-171 are from the same indi
vidual and thus have the same genetic background. They differ 
in their patterns of EBV gene expression and the presence of 
the myc translocation in BL41 that is typical of Burkitt’s lym
phoma cells (44). BL41 is an EBV-negative BL line. 
BL41+B95.8 is the same line after infection with the B95.8 
strain of EBV. IARC-171 is an EBV B95.8-immortalized LCL 
derived from the same patient as BL41 (Fig, la). Our results 
show high levels of FoxOl protein expression in the EBV- 
negative BL line (BL41). In contrast, FoxOl expression was 
markedly downregulated in EBV-immortalized B cells (IARC- 
171). To investigate whether the presence of EBV was the 
cause of downregulation, FoxOl expression was also analyzed 
in BL41+B95.8 cells. Less FoxOl was detected in BL41+B95.9 
cells than in BL41 cells, suggesting that EBV gene products have 
a role in downregulating FoxOl protein expression.

EBV infection of B cells can lead to the establishment of 
distinct latency programs as a result of the different expression
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FIG. 1. EB V  infection downregulatcs FoxO l expression. Nuclear 
protein extracts were generated from the following cell lines: (a) a 
Burkitt's lymphoma cell line ( B U I ) ,  an EBV -infected Burkitt’s lym
phoma line ( B U I  + B95.8), and a lymphoblastoid B-cell line (IA R C - 
171); (b ) an E B V -positive Burkin's line expressing latency I genes 
(Mulu 1. clones 59 and 179) and an EBV-positive Burkitt’s line ex
pressing latency 111 genes (Mutu III. clones 62 and 95); and (c) EBV- 
negative BL lines ( B U I ,  DG 75, and AK31), an EBV-positive BL line 
(B U I  +  B95.8), and lymphoblastoid cell lines (IB4-LCL, IARC-171, 
and EB-LCL). Proteins were resolved by SD S-PA G E. and FoxOl 
protein levels were determ ined by immunoblotting with a specific 
FoxOl antibody. PA R P was used as a loading control.

patterns o f  viral genes (27). T o establish whether the latency 
program affects F oxO l expression, protein levels were com 
pared using four EBV -positive sublines o f a BL tumor. Mutu I 
cells express only EBNA1 and two small polyadcnylated RNA  
molecules (EBER1 and E BE R 2). a restricted pattern o f viral 
gene expression term ed latency I. Mutu III cells express the 
full com plem ent o f  E BV  latency genes (EBNA 1, EBNA2, 
EBNA3A, E BN A 3B, EBN A 3C, EBNA-LP, LMP1, LMP2, 
EBER1, EBER 2, and Bam Hl A rightward transcripts), termed 
the latency III pattern (43). Our results clearly demonstrate 
that a latency III pattern o f  viral gene expression is required 
for the repression o f  F oxO l protein levels (Fig. lb ).

Additional EBV -negative and -positive lines were also tested 
for F oxO l protein expression (Fig. lc). Three EBV-negative 
Burkitt’s lymphoma lines were analyzed. BL41 is described 
above. DG75 is another EBV-negative BL line (2). AK31 is an 
EBV-negative subclone o f Akata (26), an EBV-positive BL 
line displaying a latency I pattern o f gene expression. Again, 
FoxOl protein expression was high in EBV-negative tumor 
lines. Three LCLs were also tested. IARC-171 is described 
above. 1B4-LCL is an LCL generated from cord blood B cells 
immortalized with E BV  B95.8 (46). EB-LCL is an LCL gen
erated in-house by infection o f primary B cells from the blood 
of a healthy donor with the B95.8 strain o f EBV. In accordance 
with previous results, FoxO l expression was very low in EBV- 
immortalizcd B cells. The level o f FoxO l expression in the 
BL41 + B95.8 cells was again between those observed in BL41 
and IARC-171 cells.

PI3K inhibition increases nuclear FoxO l. One mechanism  
whereby FoxO activity is regulated is by nuclear exclusion and 
subsequent degradation once it is in the cytoplasm. Stimulation 
o f the PI3K pathway has a central role in this process by 
activating the kinase activity o f PKB. FoxO transcription fac
tors contain three consensus PKB phosphorylation sites that, 
when phosphorylated, target the proteins for nuclear exclu
sion, thereby increasing the survival potential o f the eell (4). In 
order to investigate the role o f PI3K in regulating the subcel- 
lular localization and protein levels o f FoxO l, a specific inhib
itor o f PI3K, LY294002, was employed (52). BL41 and IARC- 
171 cells were either left untreated or treated with increasing 
doses o f LY294002. Nuclear and cytosolic FoxOl protein lev
els were subsequently analyzed by Western blotting.

Although basal levels o f FoxO l were relatively high in the 
nuclei of BL41 cells, this could be increased further following 
PI3K inhibition by LY294002 for 1 h (Fig. 2a). In parallel with 
this increase, a decrease in cytosolic FoxO l was observed fol
lowing LY294002 treatment. In contrast, no nuclear increase 
or cytosolic decrease in FoxO l level could be detected in the 
LCL (IARC-171) after 1 h o f treatment with the PI3K inhib
itor (data not shown). Only after treatment with LY294002 for 
24 h could an increase in FoxO l nuclear protein be detected  
(Fig. 2b). This increase was not accompanied by a decrease in 
cytosolic F oxO l. These results show that PI3K inhibition can 
increase the FoxO l level in both cell types, but with distinct 
mechanisms, suggesting a difference in the ways in which PI3K 
regulates FoxO l activity in cells with different EBV  statuses.

The slow kinetics o f upregulation o f F oxO l by treatment 
with LY294002 in IARC-171 cells suggests a different mecha
nism o f  regulation in these cells. For this reason, we investi
gated whether FoxOl repression by EBV could occur at the 
transcriptional level. Total RNAs were purified from BL41, 
BL41 +B95.8, and IARC-171 cells, and FoxO l m R NA  activity 
was measured relative to that o f a housekeeping gene (L19) by 
real-time PCR. The results showed that steady-state levels o f  
FoxO l m RNA were reduced by half in EBV-infected cells 
com pared to those in EBV -negative cells (Fig. 2c), indicat
ing that FoxO l is downregulated at the transcriptional level 
by EBV .

F'oxOl can bind DNA and is posttranslationally modified in 
EBV-infected cells. D N A  binding is required for transcription 
factors to regulate target genes and downstream effects. It was 
therefore important to check whether the FoxOl protein de
tected was capable o f binding D N A  for mediation o f its effects 
on cell proliferation and survival. D N A  affinity precipitation 
experiments were therefore carried out using an oligonucleo
tide containing a forkhead response clem ent (5'-TAA AC AC - 
3') from the him promoter (15). FoxO l molecules from nu
clear extracts o f BL41 and B L41+B95.8 cells, either left 
untreated or treated with LY294002 (20 p.M) for 1 h, were 
D N A  affinity precipitated using the him promoter oligonucle
otide. FoxO l D N A  binding was subsequently analyzed by 
Western blotting (Fig. 3a). D N A  binding o f FoxO l to the him 
promoter oligonucleotide was detected in untreated BL41 and 
BL41 + B95.8 cells, confirming that the FoxO l protein detected  
is capable o f binding to target promoter sequences. The effect 
o f PI3K inhibition on D N A  binding was also tested. Following 
LY294002 treatment, the amount o f D NA-bound FoxO l was 
significantly increased, to similar degrees, in both BL41 and
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(24 hour Irrulmenti

F oxO l

A clin

BL41 BL41 + B95.8 IARC-171

FIG. 2. PI3K inhibition can increase nuclear FoxOl in all cell types, but with different kinetics. Nuclear and cytosolic protein extracts were 
generated from (a) BL41 and (b) IARC-171 B-cell lines. Proteins were resolved by SDS-PAG E and immunoblotted with the anti-FoxOl antibody. 
Cells were either left untreated or treated with various concentrations o f LY294002 (20 p.M, 10 pM , and 5 pM ) for either 1 h (BL41) or 24 h 
(IARC-171). Human anti-actin was used as a loading control, (c) The expression o f FoxOl RNA was analyzed by real-time PCR and normalized 
to the level o f  L I9. The results shown are the averages o f triplicate results.

BL41 + B95.8 cells. This suggests that a direct correlation exists 
between the amount o f  FoxOl localized within the nucleus and 
DNA binding.

The role o f  posttranslational modifications in the regulation 
of transcription factor activity is well established. Phosphory
lation events are well known to have important effects on the 
activities o f many transcription factors. FoxO members contain 
multiple PKB phosphorylation sites that mediate subcellular 
localization and D N A  binding activity. Both ubiqitinylation 
and acetylation have also been reported to modulate members 
of the FoxO family by directing degradation and attenuation o f  
DNA binding, respectively (24, 32, 39). To establish how many 
isoforms o f  FoxO l exist in the nuclei o f EBV-negative and 
-positive BL41 cells, FoxO l was analyzed by 2D electrophore
sis (Fig. 3b). D N A  affinity-precipitated FoxOl eluted from him 
promoter oligonucleotides was isoelectrically focused, using a 
pH 3-to-10 nonlinear immobilized pH gradient, and subse
quently separated in the second dimension by SDS-PAGE. 
Western blot detection o f FoxOl with a specific antibody re
vealed that multiple isoforms o f FoxOl bind to D N A  in 
BL41 + B95.8 cells. The isoelectric points (pi) o f the different 
FoxOl isoforms range between 5.4 and 6.1, and the isoforms

are present in various amounts. The most abundant isoform 
has a pi o f approximately 5.7. In contrast, only one isoform o f  
FoxO l could be detected in BL41 cells, with a lower pi value 
o f approximately 4.7. We can therefore conclude that FoxOl is 
posttranslationally modified and that multiple isoforms o f  
FoxO l are capable o f binding D NA in EBV-positive cells 
(BL41 + B95.8) but not in an EBV-negative B-cell line (BL41).

FoxOl expression correlates with Bcl-6 expression and in
versely correlates with cyclin D2 expression. Having estab
lished that the FoxO l protein detected was capable o f binding 
D NA , it was then important to determine whether D N A  bind
ing initiated transcriptional activation and to measure the ef
fect o f EBV on target gene activity. To address these issues, 
expression levels o f  FoxOl target genes were analyzed by using 
various cell lines (Fig. 4). Bcl-6 is a sequence-specific transcrip
tional repressor o f proteins mediating lymphocyte apoptosis 
and differentiation, and bcl-6 transcription is activated by 
FoxOl (50). Nuclear Bcl-6 from various cell lines was analyzed 
by Western blotting. A  direct correlation between FoxO l and 
Bcl-6 protein levels was observed, with a high level o f Bcl-6 
expression in cells with high FoxO l expression and less Bcl-6 
detected in EBV-transformed LCL cells. The Bcl-6 levels did
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FIG. 3. FoxOl can bind D N A  and is present in multiple forms. 
Nuclear protein extracts were generated from BL41 and BL41 + B 95.8  
cells. Nuclear proteins were subsequently D N A  affinity precipitated  
using streptavidin-coatcd agarose beads with or without biotinylatcd  
him oligonucleotides. Bound proteins were eluted, resolved by SDS- 
PAGE. and immunoblottcd using the anti-FoxO l antibody, (a) BL41 
and BL41+B95.8 cells left untreated or treated with LY294002 (20  
pM. 1 h). (b) DNA affinity-precipitated (using the bim oligonucleo
tide) proteins from BL41 and BL41 + B95.8 cells treated with 
LY294002 (20 jaM, 1 h) were analyzed by 2D  electrophoresis. Eluted  
proteins were isoelectrically focused using a pH 3-to-10 nonlinear 
immobilized pH gradient and separated in the second dim ension by 
SDS-PAGE. FoxOl isoforms were detected  by im m unoblotting with 
the anti-FoxOl antibody.

not correspond with EBV status per se, as Akata cells, which 
arc EBV positive but have a latency I pattern o f  gene expres
sion. expressed high levels o f  F oxO l and Bcl-6. This agrees 
with the data for Mutu I cells and suggests that one or more o f  
the EBV genes expressed in latency III are likely to regulate 
FoxOl. Cyclin D2 protein levels were also analyzed. Cyclin D2 
is a cell cycle protein required for progression through the G , 
phase o f the cell cycle and has been shown to be repressed 
transcriptionally by FoxO (16, 47). W estern blot analysis 
showed an inverse correlation between cyclin D 2 expression 
and the expression o f both FoxO l and Bcl-6. These data sug
gest that FoxOl is transcriptionally active and that the repres
sive effect that EBV has upon F oxO l also extends to its target 
genes.

Both LMP1 and LMP2A can downregulate FoxO l expres
sion. The establishment o f  EBV  latency requires the expres
sion o f a repertoire o f EBV-carried latent genes. LMP1 is the 
major transforming protein o f EBV  and is required for the 
transforming effects o f EBV on primary B cells. LMP1 mimics 
constitutively activated CD40, a member o f  the tumor necrosis

FIG. 4. Expression o f FoxOl correlates with expression o f Bcl-6 
and inversely correlates with expression o f cyclin D2. Nuclear protein 
extracts were generated from the following B-cell lines with various 
EBV statuses: BL41, an EBV-negative BL line; BL41 +B95.8, an EBV- 
positive BL line (latency III); three EBV-positive LCLs (IARC-171, 
EB-LCL, and IB4-LCL); and Akata, an EBV-positive BL line express
ing the latency I pattern. Proteins were resolved by SDS-PAGE and 
subsequently analyzed by immunoblotting with specific antibodies to 
F oxO l, Bcl-6, and cyclin D2. PARP was used as a loading control.

factor receptor supcrfamily, mediating ligand-independent sig
naling through a range o f key signaling pathways essential for 
survival, including the N F-kB, mitogen-activated protein ki
nase, Jun N-terminal protein kinase (JNK). p38, and JAK/ 
STAT pathways as well as the PI3K pathway (56). LMP2A, 
which is also encoded by EBV, is another potent activator of 
the PI3K pathway, acting as a constitutively activated B-cell 
receptor (BCR), thereby inhibiting normal signaling through 
the BCR (34, 48). Since the activities o f both LMP1 and 
LMP2A have been shown to activate PI3K signaling, it was 
reasonable to suspect that they may have a role in the repres
sion o f FoxO l.

To test this hypothesis, DG75 cells, which express high levels 
o f F oxO l, were transiently transfected with increasing 
amounts o f either an LMP1 or LMP2A expression vector. 
After 20 h, cells were harvested and lysed, and FoxOl and 
Bcl-6 protein levels were analyzed by Western blotting. DG75 
cells transfected with LMP1 demonstrated reduced levels of 
FoxO l and Bcl-6 protein expression in a dose-dependent man
ner (Fig. 5a). A  reporter plasmid carrying a Bcl-6 promoter 
containing a FoxO consensus binding sequence (50) was also 
repressed by LMP1 in a dose-dependent manner (data not 
shown). Protein analysis of LMP2A-transfected cells showed a 
similar decrease o f FoxO l expression. A  clear downregulation 
o f Bcl-6 was also detected with transfection o f 10 |xg of 
LMP2A. However, at the lower doses o f 1 and 5 jxg, LMP2A 
did not repress Bcl-6 protein expression (Fig. 5b). Transfection 
o f DG75 cells with an EBNA2A expression vector did not 
repress cither the protein level o f FoxOl or Bcl-6 or the tran
scriptional activity o f the Bcl-6 gene (not shown).

To further analyze the effects o f LMP1, LMP2A, and 
EBN A 2A  on protein levels o f FoxO l and Bcl-6, protein ex
pression levels were analyzed in stable DG75 transfectants 
containing an inducible LMP1, LMP2A, or EBN A 2A  gene. 
Protein levels were compared with those detected in two lym
phoblastoid cell lines, namely, IARC-171 and an early-passage 
LCL (CMc) generated from the B cells of a healthy donor with 
the B95.8 strain o f EBV (Fig. 6). In the presence o f tetracy-
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a
Mg I -M P I  e x p r e s s io n  v e c to r  0  1 5  j q

b
Mg 1-MP2A expression vector 0  1 5 10

FIG. 5. R oles for LMP1 and LM P2A in F oxO l downregulation. 
DG75 cells were transfected with various am ounts o f  (a) LMP1 and (b) 
LMP2A expression vectors. Cells were harvested, and lysates gener
ated were analyzed by SD S-PA G E  and W estern blotting. Protein levels 
o f FoxOl and Bcl-6 were analyzed using specific antibodies. LMP1 and 
LMP2A protein levels were also checked using specific antibodies. 
Actin was used as a loading control.

cline. protein expression o f F oxO l and Bcl-6 was clearly de
tectable in EBNA2A-, LMP1-, and LM P2A-inducible lines, 
although FoxO l expression was higher in the E B N A 2A  line 
and the parent DG75 cells (not shown). U pon induction o f  
LMP1 gene expression by reculturing the cells in the absence 
of tetracycline, clear decreases in both F oxO l and Bcl-6 levels 
were detected at 24 h and. to a greater degree, at 48 h. The 
induction o f LMP2A expression did not significantly reduce 
FoxO l expression. However, the F oxO l level was lower in the 
DG75 cells that contained LM P2A, even when they were cul
tured in the presence o f  tetracycline, than in cells with the 
tetracycline transactivator alone (not shown) or cells express
ing EBNA2A. The cells clearly also expressed LM P2A. H ow 
ever, the induction o f higher levels o f  LM P2A caused a de
crease in Bcl-6 protein levels, suggesting that LM P2A may 
contribute to the regulation o f  this protein in a F oxO l-inde
pendent fashion. Similar to the LM P2A level, the F oxO l level 
in the LM Pl-inducible line was reduced com pared to that in 
the E BN A 2A  line. Together, these observations dem onstrate 
the sensitivity o f  F oxO l protein expression to the residual low 
levels o f both LMP1 and LM P2A signals in the presence o f  
tetracycline. Induction o f E B N A 2A  did not affect the expres
sion o f  FoxO l or Bcl-6. The results from the transiently trans-

J. V ir o l .

3  EBNA2A I,MPt LMP2A

Tetracycline + - 1 - 2  + - 1 - 2  + - 1 - 2  lARCCM c

F.BNA2A

LMP1

LVIP2A

F o x O l

Rcl-6

Culrt-gulin

b  I-MP1 12VIP1 A**
Mg L M P 1 ------------------------------  -----------------------------

expression vector 0 1 5 10 1 5 10

F o x O l

Bcl-6

STAT1

LMP1

A ctin

FIG. 6. Inducible LMP1 and LM P2A downregulate FoxOl and 
Bcl-6. (a) Stable DG 75 transfectants containing an inducible 
E B N A 2A , LMP1, or LM P2A gene were maintained under drug se lec
tion and with 1 |xg/ml tetracycline until required for experiments. 
W hen required, cells were washed five times with RPMI 1640 medium  
and were recultured without drug selection and in the presence or 
absence o f  1 Mg/™! tetracycline for a period o f  either 24 ( - 1 )  or 48 h 
( - 2 ) .  Protein levels o f  FoxOl and Bcl-6 were subsequently analyzed 
using specific antibodies. Protein expression levels were also analyzed 
in the IARC-171 and CM c lymphoblastoid cell lines. EB N A 2A , LMP1, 
and LM P2A protein levels were also checked using specific antibodies. 
Calregulin was used as a loading control, (b) In a similar experiment to 
that described in the legend to Fig. 5, three different amounts o f  an 
expression vector for wild-type and a mutant LMP1 (LM P1AAA) were 
transiently transfected into DG75 cells. Cells were harvested, and the 
lysates generated were analyzed by SD S-PA G E and Western blotting. 
Protein levels o f  F oxO l, Bcl-6, LMP1, and STAT1 were analyzed using 
specific antibodies. Actin was used as a loading control.

fected and stable lines demonstrate that both LMP1 and 
LM P2A can downregulate the expression o f FoxO l.

LMP1 gave a more dramatic downregulation o f FoxO l than 
did LMP2A. There has been significant analysis o f LMP1 sig-
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naling that has identified at least two different signaling do
mains, CTAR1 and CTAR2. CTAR1 has been shown to acti
vate PI3K in epithelial cells and fibroblasts (12, 30). To 
determine whether CTAR1 can regulate FoxOl, we expressed 
a mutant that had three amino acids changed in this domain, 
entitled LMP1AAA, where proline 204, glycine 206, and threo
nine 208 were all mutated to alanine. Three different amounts 
of an expression vector for wild-type LMP1 or LMP1AAA were 
transiently transfected into DG75 cells, and the cells were left 
for 24 hours. After this time, the cells were harvested and lysed 
by the addition of gel loading buffer. The protein extract was 
resolved by SDS-PAGE and transferred to a PVDF mem
brane, and the levels of four different proteins were detected 
by specific antibodies (Fig. 6b). Both wild-type LMP1 and the 
LMP1AAA mutant were able to cause a decrease in FoxOl and 
Bcl-6 protein levels. However, only wild-type LMP1 was able to 
induce ST ATI, a transcription factor that is increased by 
LMP1 through an NF-kB pathway (40). These data show that 
distinct domains of LMP1 are involved in the distinct regula
tion of transcription factor protein levels and that this may not 
be due to the direct activation of PI3K by this molecule.

DISCUSSION

This study was performed to investigate the interplay be
tween EBV and FoxOl. Our data clearly demonstrate that 
EBV has a repressive effect on FoxOl protein expression in B 
cells and that this effect can be mediated by both latent mem
brane proteins 1 and 2A. The repression of FoxOl may be due 
to the ability of these membrane proteins to activate PI3K 
signaling, although our data show that EBV can also repress 
FoxOl mRNA levels, suggesting alternative mechanisms for 
the regulation of this molecule.

FoxOl has a well-established role in the regulation of cell 
survival, and thus it is logical to suspect that it is a target of 
regulation by EBV. It is important, however, that all of the cell 
lines used in this study proliferate, suggesting that FoxOl reg
ulation can be circumvented, perhaps by the c-myc oncogene, 
in Burkitt’s lymphoma cells. In this study, a correlation was 
observed between EBV status and the activities of the FoxO 
target genes Bcl-6 and cyclin D2, which are essential for B-cell 
proliferation and development. The level of Bcl-6, a direct 
target gene for activation by FoxO (50), correlated with FoxOl 
expression. However, this does not prove that Bcl-6 is a direct 
target in these cells. The introduction of a FoxOl transgene 
into an LCL, probably in some system that allows regulated 
gene expression, could be used to directly identify FoxOl tar
get genes in EBV-immortalized cells. Interestingly, Bcl-6 is a 
transcriptional repressor of both lymphocyte differentiation 
and apoptosis and is the most frequently targeted proto-onco- 
genc in non-Hodgkin’s lymphomas (54). LMP1 is sufficient for 
this pathway, as inducible expression of LMP1 and transfection 
of a plasmid encoding LMP1 were enough to repress both 
FoxOl and the target gene encoding Bcl-6. An inverse corre
lation between LMP1 and Bcl-6 has previously been described 
at the transcriptional and protein levels for the B cells of 
transgenic mice expressing LMP1 or a chimeric LMP1-CD40 
molecule (37). Other studies have also observed the repressive 
effect of CD40 activation or EBV genome expression on Bcl-6 
expression in B cells and dendritic cells (1, 10, 35). The func

tion of Bcl-6 repression by LMP1 is believed to be germinal 
center suppression, allowing exit of EBV-infected cells from 
the germinal center. This study identifies FoxOl as a molecular 
intermediate by which LMP1 can regulate Bcl-6.

The role of LMP2A in the regulation of FoxOl and Bcl-6 is 
more complex. The activation of PI3K through LMP2A has 
previously been shown to induce phosphorylation of FoxOl in 
epithelial cells (34), which subsequently targets FoxOl for deg
radation. However, the effects of LMP2A on the total protein 
levels of both FoxOl and Bcl-6 had not been defined previ
ously. A clear downregulation of FoxOl protein expression 
was observed in this study upon LMP2A transient transfection, 
but this did not translate to a corresponding dose-responsive 
decrease in Bcl-6 expression. However, induction of LMP2A in 
stable transfectants did result in a clear repression of Bcl-6 
protein expression. This may be due to differences in the time 
or level of expression. In the system with stable expression, 
more LMP2A is expressed for a longer time than the 20 h 
studied for the transient transfections.

In contrast to Bcl-6, an inverse correlation was observed 
between cyclin D2 protein expression and that of FoxOl. We 
have previously shown that PI3K regulates the cyclin D2 pro
tein (7) and the cyclin D2 promoter (53), so this may be due, in 
part, to FoxOl. However, the repressive effect of FoxO tran
scription factors on cyclin D2 transcription may be indirect 
(47), perhaps through Bcl-6, via an interaction with the STAT5 
transcription factor (16). The cyclin D2 gene has a complex 
promoter and is subject to regulation by a diverse range of 
cellular stimuli (31, 53).

Our data have revealed a difference in the kinetics of FoxOl 
regulation by the PI3K pathway between EBV-negative BL 
cells and LCLs. In IARC-171 cells, 24 h of incubation with 
LY294002 was required to detect an increase in nuclear 
FoxOl, but 1 h was sufficient for an increase of a similar level 
in the nuclei of EBV-negative BL41 cells. This suggests the 
presence of extra mechanisms for the repression of FoxOl in 
EBV-immortalized cells, an observation supported by the de
tection of lower levels of FoxOl mRNA in these cells. A 
difference in the contributions of the PI3K pathway towards 
the survival of these two cell types is evident when analyzing 
cell survival after treatment with the PI3K inhibitor (7). EBV- 
negative BL lines rapidly undergo apoptosis; in contrast, LCL 
lines do not die but are growth arrested. This difference in 
sensitivity to LY294002 is also seen for other agents and may 
be due, in part, to the delay in induction of FoxOl as well as 
other molecules, such as NF-kB, that are increased in EBV- 
immortalized cells.

Our 2D-electrophoretic analysis of DNA-bound FoxOl 
showed that posttranslational modification patterns are dis
tinct for EBV-positive B cells (BL41 + B95.8) compared with 
those for EBV-negative B cells (BL41), suggesting a further 
level of control of FoxOl. Interestingly, there was also more 
than one band present in IARC-171 nuclear extracts, particu
larly when they were treated with LY294002 (Fig. 2a). Changes 
in molecular weight are often indicative of posttranslational 
modification. However, the small amount of FoxOl in these 
cells precluded the analysis of FoxOl by 2D gel electrophore
sis. It is possible that the multiple isoforms of FoxOl detected 
bound to DNA in EBV-positive cells are differentially phos- 
phorylated forms, but this is unlikely, as phosphorylation tar
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gets FoxOl molecules for nuclear exclusion and thus would not 
be easily detected by this assay. Acetylation of nuclear FoxO 
proteins has also been reported to affect the transcriptional 
programs controlled by FoxO proteins due to interference with 
the balance of coactivator and corepressor recruitment (19,39, 
51). Again, a role for the PI3K pathway is evident, as acetyla
tion was reported to increase the sensitivity of FoxOl to phos
phorylation, contributing to degradation (32). A recent study 
demonstrated the role of ubiquitinylation by the Skp2/Cul-1/ 
F-box-protein-ubiquitin complex in the targeting of FoxOl 
molecules for degradation following PKB activation (24). 
However, the pattern of spots observed did not show a signif
icant increase in the molecular weight of the protein, which 
would be suggested following ubiquitinylation. Thus, while 
pathways activated by EBV lead to differential modifications of 
FoxOl, as detected in BL41+B95.8 cells, that may repress 
transcriptional activity, their identity is unknown and currently 
under investigation.

Integrating the data generated in this study provides evi
dence that EBV regulates FoxOl expression by three distinct 
mechanisms, i.e., the prototypic repression of FoxOl by PI3K, 
alternative posttranslational modifications observed in BL41 
cells infected by EBV (BL41 + B95.8 cells), and a repression of 
FoxOl expression at the mRNA level. These diverse mecha
nisms ensure that FoxOl expression and activity are inhibited. 
The existence of these distinct mechanisms suggests that re
pressing FoxOl activity is an important part of EBV infection 
of B cells.

In summary, our data identify FoxOl as an EBV-regulated 
transcription factor and, as such, add to a body of work dem
onstrating the suppression of proapoptotic pathways by EBV. 
Furthermore, we have identified FoxOl as one of the few 
proteins regulated by both LMP1 and LMP2A. Putting this in 
context, LMP1 and LMP2A have been shown to activate a 
diverse range of signaling pathways contributing to cell sur
vival. These include the activation of tyrosine kinases, mitogen- 
activated protein kinases, JNK, p38, the transcription factor 
NF-kB, and the PI3K pathway. Distinctly, this study describes 
another nuclear target by which EBV latent membrane pro
teins work to shift the balance of anti- and proapoptotic path
ways towards survival. The interplay between EBV and FoxOl 
is likely to contribute to the characteristic apoptotic resist
ance of immortalized B cells in the context of EBV-associated 
malignancies.

ACKNOWLEDGMENTS

A.M .S. is funded by Tenovus, a cancer charity. This work was also 
supported by the Leukemia Research Fund, UK.

REFERENCES

1. Allman, D„ A. Ja in , A. Dent, R. R. M alle, T. Selvaggi, M. R. Kehry, and  L. M. 
S taudt. 1996. BCL-6 expression during B-cell activation. Blood 87:5257- 
5268.

2. Bcn-Bassat, H., N. Goldblum , S. M itrani, T. Goldblum . J . M. Yoffey, M . M. 
Cohen. Z. Bentwich, B. Ram ot, E. Klein, and  G. Klein. 1977. Establishment 
in continuous culture of a new type o f lymphocyte from a “Burkin like” 
malignant lymphoma (line D.G.-75). Int. J. Cancer 19:27-33.

3. Biggs, W. H., I ll , J . M eisenhelder, T. H unter, W. K. Cavenee, and K. C. 
Arden. 1999. Protein kinase B/Akt-mediated phosphorylation promotes nu
clear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. 
Acad. Sci. USA 96:7421-7426.

4. Birkenkam p. K. I)., and P. J . Coffer. 2003. Regulation o f cell survival and 
proliferation by the FOXO (forkhead box, class O) subfamily o f forkhead 
transcription factors. Biochem. Soc. Trans. 31:292-297.

5. B orkhardt, A., R. Repp, O. A. H aas, T. Leis, J . H arbott, J . Kreuder, J . 
H am m erm ann, T. Henn, and F. Lam pert. 1997. Cloning and characteriza
tion o f AFX, the gene that fuses to MLL in acute leukemias with a t(X; 
Il)(q l3;q23). Oncogene 14:195-202.

6. B rennan, P. 2001. Signalling events regulating lymphoid growth and survival. 
Semin. Cancer Biol. 11:415-421.

7. B rennan, P., A. M. M ehl, M. Jones, and M. Rowe. 2002. Phosphatidylinositol 
3-kinase is essential for the proliferation o f lymphoblastoid cells. Oncogene 
21:1263-1271.

8. B rennan, P., and  L. A. O ’Neill. 19%. 2-Mercaptoethanol restores the ability 
of nuclear factor kappa B (NF kappa B) to bind DNA in nuclear extracts 
from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate 
(PDTC). Evidence for oxidation of glutathione in the mechanism of inhibi
tion of NF kappa B by PDTC. Biochem. J. 320:975-981.

9. Brunet, A., A. Bonn!. M. J . Zigmond, M. Z. Lin, P. Juo , L  S. Hu, M. J. 
Anderson, K. C. Arden, J . Blenis, and  M. E. Greenberg. 1999. Akt promotes 
cell survival by phosphorylating and inhibiting a forkhead transcription fac
tor. Cell 96:857-868.

10. Carbone, A , G. Gaidano, A. Gloghini, L. M. Larocca, D. Capello. V. Canzonieri, 
A. Antinori, U. H relli, B. Falini, and R. Dalla-Favera. 1998. Differential expres
sion of BCL-6, CD138/syndecan-l, and Epstein-Barr virus-encoded latent mem
brane protein-1 identifies distinct histogenetic subsets o f acquired immunode
ficiency syndrome-related non-Hodgkin's lymphomas. Blood 91:747-755.

11. Davis, R. J ., C. M . D’Cruz, M. A. Lovell, J . A. Biegel, and  F. G. B arr. 1994. 
Fusion of PAX7 to FKHR by the variant t ( l ; 13)(p36;q 14) translocation in 
alveolar rhabdomyosarcoma. Cancer Res. 54:2869-2872.

12. Dawson, C. W., G. T ram ountanis, A. G. Eliopoulos, and  L  S. Young. 2003. 
Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phos
phatidylinositol 3-kinase/Akt pathway to promote cell survival and induce 
actin filament remodeling. J. Biol. Chem. 278:3694-3704.

13. D ijkers, P. F., K. U. Birkenkam p, E. W. Lam, N. S. Thom as, J . W. Lammers, 
L. K oenderm an, and  P. J . Coffer. 2002. FKHR-L1 can act as a critical 
effector of cell death induced by cytokine withdrawal: protein kinase B- 
enhanced cell survival through maintenance of mitochondrial integrity. 
J. Cell Biol. 156:531-542.

14. Eliopoulos, A. G., S. M. Blake, J . E. Floettm ann, M. Rowe, and  L  S. Young. 
1999. Epstein-Barr virus-encoded latent membrane protein 1 activates the 
JNK pathway through its extreme C terminus via a mechanism involving 
T R A D D  and TRAF2. J. Virol. 73:1023-1035.

15. Essaf), A., S. Fernandez de M attos, Y. A. H assen, 1. Soeiro, G. J . M ufti, N. S. 
Thom as, R. H. M edem a, and  E. W. Lam. 2005. Direct transcriptional regu
lation o f Bim by Fox03a mediates STI571-induced apoptosis in Bcr-Abl- 
expressing cells. Oncogene 24:2317-2329.

16. Fernandez de M attos, S., A. Essaft, I. Soeiro, A. M. Pietersen, K. U. Birken
kam p, C. S. Edwards, A. M artino, B. H. Nelson, J . M. Francis, M. C. Jones, 
J . J . Brosens, P. J .  Coffer, and  E. W. Lam. 2004. Fox03a and BCR-ABL 
regulate cyclin D2 transcription through a STAT5/BCL6-dependent mech
anism. Mol. Cell. Biol. 24:10058-10071.

17. Floettm ann. J . E., K. W ard, A. B. Rickinson, and  M. Rowe. 19%. Cytostatic 
effect o f Epstein-Barr virus latent membrane protein-1 analyzed using tet
racycline-regulated expression in B cell lines. Virology 223:29-40.

18. Fruehling, S., S. K. Lee, R. H errold, B. Freeh, G. Laux, E. K rem m er, F. A. 
G rasser, and  R. Longnecker. 19%. Identification of latent membrane pro
tein 2A (LM P2A) domains essential for the LM P2A dominant-negative 
effect on B-Iymphocyte surface immunoglobulin signal transduction. J. Virol. 
70:6216-6226.

19. Fukuoka, M ., H. Daitoku, M. H atta , H. M atsuzaki, S. Umemura, and  A. 
Fukam izu. 2003. Negative regulation o f forkhead transcription factor AFX  
(Foxo4) by CBP-induced acetylation. Int. J. Mol. Med. 12:503-508.

20. Furukawa-Hibi, Y., K. Yoshida-Araki, T. O hta , K. lkeda, and  N. Motoyama. 
2002. FOXO forkhead transcription factors induce G(2)-M checkpoint in 
response to oxidative stress. J. Biol. Chem. 277:26729-26732.

21. Gallli, N., R. J . Davis, W. J . Fredericks, S. M ukhopadhyay, F. J . R auscher 
HI, B. S. Em anuel, G. Rovera, and F. G. B arr. 1993. Fusion o f a fork head 
domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. 
Genet. 5:230-235. (Erratum, 6:214, 1994.)

22. Hillion, J ., M. Le Coniat, P. Jonveaux, R. Berger, and  O. A. B ernard. 1997. 
AF6q21, a novel partner of the MLL gene in t(6;ll)(q21;q23), defines a 
forkhead transcriptional factor subfamily. Blood 90:3714-3719.

23. Hu, M. C., D. F. Lee, W. Xla, L. S. Golfman, F. Ou-Yang, J . Y. Yang, Y. Zou,
S. Bao, N. H anada, H. Saso, R. Kobayashi, and  M. C. Hung. 2004. IkappaB 
kinase promotes tumorigenesis through inhibition o f forkhead FO X03a. 
Cell 117:225-237.

24. Huang, H., K. M. Regan, F. Wang, D. Wang, D. I. Sm ith, J . M. van Deursen, 
and  D. J . Tindall. 2005. Skp2 inhibits FO XO l in tumor suppression through 
ubiquitin-mediated degradation. Proc. Natl. Acad. Sci. USA 102:1649-1654.

25. Huen, D. S., S. A. Henderson, D. C room -Carter, and  M . Rowe. 1995. The 
Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation 
of NF-kappa B and cell surface phenotype via two effector regions in its 
carboxy-terminal cytoplasmic domain. Oncogene 10:549-560.

26. Jenkins, P. J., I). K. Binne, and  P. J . Farrell. 2000. Histone acetylation and 
reactivation of Epstein-Barr virus from latency. J. Virol. 74:710-720.

D
ow

nloaded 
from 

jvi.asm
.org 

by 
on 

April 19, 2007



V o l .  80, 2006 EBV REPRESSES FoxOl THROUGH LMP1 AND LMP2A 11199

27. K uppers, R. 2003. B cells under influence: transformation o f B cells by 
Epstein-Barr virus. Nat. Rev. Immunol. 3:801-812.

28. Labied, S., T. K ajihara, P. A. M adureira, 1- Fusi, M . C. Jones. J .  M. 
Higham , R. Varshochi, J . M . Francis, G. Zoum poulidou, A. EssaA, S. Fer
nandez de M attos, E. W. la m . and  J . J . Brosens. 2006. Progestins regulate 
the expression and activity o f the forkhead transcription factor FO XO l in 
differentiating human endometrium. Mol. Endocrinol. 20:35-44.

29. Ix>ngnecker, R.. B. D ruker, T. M . R oberts, and  E. Kieff. 1991. An Epstein- 
Barr virus protein associated with cell growth transformation interacts with 
a tyrosine kinase. J. Virol. 65:3681-3692.

30. M ainou, B. A., D. N. Everly, J r .,  and  N. Raab-T raub. 2005. Epstein-Barr 
virus latent membrane protein 1 CTAR1 mediates rodent and human fibro
blast transformation through activation of PI3K. Oncogene 24:6917-6924.

31. M artino . A^ J . H. T. Holmes, J . D. Lord, J . J . M oon, and  B. H. Nelson. 2001. 
Stat5 and Spl regulate transcription of the cyclin D2 gene in response to 
IE-2. J. Immunol. 166:1723-1729.

32. M atsuzakJ, H., H. Daitoku, M. H atta , H. Aoyama, K. Yoshimochi, and  A. 
Fukam izu. 2005. Acetylation of Foxol alters its DNA-binding ability and 
sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA 102:11278-11283.

33. M edem a, R. H., G. j .  Kops, J . 1- Bos, and  B. M. Burgering. 2000. AFX-like 
forkhead transcription factors mediate cell-cycle regulation by Ras and PKB 
through p27kipl. Nature 404:782-787.

34. M orrison, J . A., A  J . Klingelhutz, and  N. R aab-Traub. 2003. Epstein-Barr 
virus latent membrane protein 2A activates beta-catenin signaling in epithe
lial cells. J. Virol. 77:12276-12284.

35. M oschella, F., A  M allei, R. P. C atanzaro , K. P. Papadopoulos, D. S kerrett,
C. S. Hesdorffer, and  P. E. H arris. 2001. Transcript profiling o f human 
dendritic cells maturation-induced under defined culture conditions: com
parison of the effects o f tumour necrosis factor alpha, soluble CD40 ligand 
trimer and interferon gamma. Br. J. Haematol. 114:444-457.

36. Nalesnik, M. A  1997. Clinicopathologic features o f posttransplant lympho- 
proliferative disorders. Ann. Transplant. 2:33-40.

37. Panagopoulos, D„ P. Victoratos, M . Alexiou, G. Kollias, and  G. M osialos. 
2004. Comparative analysis o f signal transduction by CD40 and the Epstein- 
Barr virus oncoprotein LMP1 in vivo. J. Virol. 78:13253—13261.

38. Parry . P., Y. Wei. and  G. Evans. 1994. Goning and characterization o f the 
t(X;11) breakpoint from a leukemic cell line identify a new member o f the 
forkhead gene family. Genes Chromosomes Cancer 11:79-84.

39. P erro t, V., and  M . M. Rechler. 2005. The coactivator p300 directly acetylates 
the forkhead transcription factor Foxol and stimulates Foxol-induced tran
scription. Mol. Endocrinol. 19:2283-2298.

40. R ichardson, C., C. Fielding, M. Rowe, and  P. B rennan. 2003. Epstein-Barr 
virus regulates STATI through latent membrane protein 1. J. Virol. 77:4439- 
4443.

41. Rickinson, A  B„ and  E. K ief. 2001. Epstein-Barr virus, p. 2575-2627. In
D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. 
Roizman, and S. E. Straus (ed.). Fields virology, vol. 2. Lippincott Williams 
& Wilkins, Philadelphia, Pa.

42. Rickinson, A  B., and  D. J . Moss. 1997. Human cytotoxic T lymphocyte 
responses to Epstein-Barr virus infection. Annu. Rev. Immunol. 15:405-431.

43. Rowe, M ., A  L. Lear. D. Croom -Carter, A  H. Davies, and  A. B. Rickinson. 
1992. Three pathways of Epstein-Barr virus gene activation from EBNA1- 
positive latency in B lymphocytes. J. Virol. 66:122—131.

44. Rowe, M., C. M. Rooney, C. F. Edwards, G. M . Lenoir, and  A  B. Rickinson. 
1986. Epstein-Barr virus status and tumour cell phenotype in sporadic Bur
kitt’s lymphoma. Int. J. Cancer 37:367-373.

45. Rowe, M., D. T. Rowe, C. D. Gregory, L. S. Young, P. J . Farrell, H. Rupani, 
and  A  B. Rickinson. 1987. Differences in B cell growth phenotype reflect 
novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lym
phoma cells. EMBO J. 6:2743-2751.

46. Sample, J., and E. Kieff. 1990. Transcription o f the Epstein-Barr virus ge
nome during latency in growth-transformed lymphocytes. J. Virol. 64:1667- 
1674.

47. Schm idt, M ., S. Fernandez de M attos, A  van d e r H orst, R. Klompmaker, 
G. J . Kops, E. W. Lam, B. M. Burgering. and  R. H. M edema. 2002. Cell cycle 
inhibition by FoxO forkhead transcription factors involves downregulation of 
cyclin D. Mol. Cell. Biol. 22:7842-7852.

48. Swart. R^ 1. K. Ruf, J . Sample, and R. Longnecker. 2000. Latent membrane 
protein 2A-mediated effects on the phosphatidylinositol 3-kinase/Akt path
way. J. Virol. 74:10838-10845.

49. Takaishi, H„ H. Konishi, H. M atsuzaki, Y. Ono, Y. Shirai, N. Saito, T. 
K itam ura, W. Ogawa, M. Kasuga, U. Kikkawa, and  Y. Nishizuka. 1999. 
Regulation o f nuclear translocation of forkhead transcription factor AFX by 
protein kinase B. Proc. Natl. Acad. Sci. USA %: 11836-11841.

50. Tang. T. T., D. Dowbenko, A  Jackson, L. Toney, D. A  Lewin, A. L. Dent, and 
L. A  Lasky. 2002. The forkhead transcription factor AFX activates apoptosis 
by induction of the BCL-6 transcriptional repressor. J. Biol. Chem. 277: 
14255-14265.

51. van d e r H orst, A., L. G. Tertoolen, L. M . de Vries-Smits, R. A  Frye, R. H. 
M edem a, and  B. M . Burgering. 2004. F O X 04 is acetylated upon peroxide 
stress and deacetylated by the longevity protein hSir2(SIRTl). J. Biol. Chem. 
279:28873-28879.

52. Vlahos, C. J ., W. F. M atter, K. Y. Hui, and R. F. Brown. 1994. A  specific 
inhibitor o f phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-l - 
benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241-5248.

53. W hite, P. C., A  M. Shore, M . Clement, J . M cLaren, I. Soeiro, E. W. Lam, 
and  P. B rennan. 2005. Regulation of cyclin D2 and the cyclin D2 promoter 
by protein kinase A and CREB in lymphocytes. Oncogene 25:2170-2180.

54. Ye, B. H. 2000. BCL-6 in the pathogenesis o f non-Hodgkin's lymphoma. 
Cancer Investig. 18:356-365.

55. Young, L., C. Alfieri, K. Hennessy, H. Evans, C. O ’H ara, K. C. Anderson, J . 
Ritz, R. S. Shapiro, A  Rickinson, and  E. Kieff. 1989. Expression o f Epstein- 
Barr virus transformation-associated genes in tissues o f patients with EBV  
lymphoproliferative disease. N. Engl. J. Med. 321:1080-1085.

56. Young, L. S., and  A  B. Rickinson. 2004. Epstein-Barr virus: 40 years on. Nat. 
Rev. Cancer 4:757-768.

D
ow

nloaded 
from 

jvi.asm
.org 

by 
on 

April 19, 2007


